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1  Introduction

Techniques to recover object shapes from reflectance and shading information, contained in either

a single intensity image or multiple intensity images, are categorized into two main groups. One is

called shape from shading, and the other is generally known as photometric stereo. Horn origi-

nally introduced the shape from shading technique [4] which recovered object shape from a single

intensity image by using the characteristic strip expansion method. Following Horn’s method,

many other methodologies have been proposed by other researchers. (For instance, the chapter of

shape from shading in [2] is a good source of information about the shape from shading tech-

niques.) Woodham [15] proposed a new technique called photometric stereo for shape recovery.

This technique uses multiple images with different light source locations. Later, Nayar, Ikeuchi

and Kanade [10] developed a technique for recovering object shape and reflectance without any

knowledge of surface reflectance.

These techniques for shape recovery have been successfully applied to intensity images taken in a

laboratory setup. However, reports of applications for real intensity images of outside scenes have

been very limited. Intensity images synthesized or taken in a laboratory setup are well controlled

and are less complex than those taken outside under sunlight. For instance, in an outdoor environ-

ment, there are multiple light sources of different colors and spatial distributions, namely the sun-

light and the skylight. The sunlight can be regarded as yellow point light source whose movement

is restricted to the ecliptic1. On the other hand, the skylight is a blue extended light source which

is almost constant over the entire hemisphere. Due to the sun’s restricted movement, the problem

of surface normal recovery becomes underconstrained under sunlight. For instance, if the photo-

metric stereo method is applied to two intensity images taken outside at different times, two sur-

face normals which are symmetric with respect to the ecliptic are obtained at each surface point.

Those two surface normals cannot be distinguished locally because those two surface normal

directions give us exactly the same brightness at the surface point.

Another factor that makes reflectance analysis under the solar illumination different is multiple

reflection components from the object surface. Reflection from object surfaces may have multiple

1. The great circle of the celestial sphere that is the apparent path of the sun among the stars or of the earth as seen from
the sun: the plane of the earth’s orbit extended to meet the celestial sphere.
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reflection components such as the diffuse reflection component and the specular reflection com-

ponent. The two reflection components are predicted from the dichromatic reflectance model

which was proposed by Shafer [13]. Recently, Sato and Ikeuchi [12] proposed and successfully

demonstrated a methodology to separate the two reflection components at each pixel. They used a

color image sequence taken with a moving light source. The main advantage of the technique is

that it does not require any a-priori knowledge of surface reflectance, and only a sequence of

observed color vectors at each pixel is necessary.

In other situations, the object may be painted in different colors. In other words, the object has a

non-uniform surface albedo. In this case, the traditional techniques for shape recovery cannot be

correctly applied because those methods are based on the assumption of a uniform surface albedo.

To compensate for this effect, the surface albedo has to be normalized before shape recovery. If

the surface albedo varies gradually on the object surface, the normalization can be quite difficult.

However, if the problem is limited to special cases where the object surface consists of patches

with constant surface albedo, the non-uniform surface albedo can be normalized by using several

techniques. Horn [3] used Land’s retinex theory [6] to determine surface albedo which is insensi-

tive to an illumination change. By using this technique, the surface albedo can be obtained for

each uniform albedo region. Then, the surface albedo can be normalized.

In this paper, we address the three issues involved in analyzing real outdoor intensity images

taken under the solar illumination. 1. the multiple reflection components including highlight (the

specular reflection component according to the dichromatic reflection model.) 2. the normaliza-

tion of surface albedo. 3. the unique solution for surface normals under sunlight. For each of these

problems, we show a solution and demonstrate the feasibility of the solution by using images

which are taken in a laboratory setup and outdoors under the sun.

The paper is organized as follows. The section 2 describes the reflectance model that we used for

analyzing outdoor images under solar illumination. The development of the model is based on the

dichromatic reflection model and takes into account two light sources of different spectral and

spatial distributions. In the section 3, a method to remove the specular reflection component by

using a sequence of color images is explained. The normalization of the surface albedo is

described in the section 4. A method to obtain two sets of surface normals for the object surface to

choose the correct set of surface normals are discussed in the section 5. Experimental results from
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a laboratory setup and the outdoor environment will be shown in the section 6 and the section 7,

respectively. Concluding remarks are presented in the section 8.
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2  Reflection model under solar illumination

2.1  Reflection model with a single light source

In this section, a reflectance model with a single light source is described. We will develop a

reflectance model under solar illumination in the section 2.2.

A mechanism of reflection is described in terms of three reflection components, namely the spec-

ular spike, the specular lobe, and the diffuse lobe. These reflection components can be represented

by the Beckmann-Spizzichino model [1], the Torrance-Sparrow model [14] (or the Beckmann-

Spizzino model), and the Lambertian model, respectively [10]. The model of reflection which

accounts for all three components tends to be too complicated to be used as a model for actual

applications. Thus, a simplified model which represents two reflection components, the specular

reflection component and the diffuse reflection component, is used in our analysis. The specular

reflection component of the simplified reflection model represents a combination of the specular

spike and the specular lobe. The combined specular reflection component is modeled as a simple

function such as an impulse function. Nayar called the reflectance model the hybrid reflectance

model [10]. In this reflectance model, the pixel intensity of an image is expressed as

(EQ1)

where  is the diffuse reflection component and  is the specular reflection component.

In order to simplify the discussion, we develop the reflectance model in a two dimensional planer

case instead of the three dimensional case. An equivalent discussion can be applied to the three

dimensional case without fundamental differences.

The dichromatic reflection model in the two dimensional planer case can be represented by the

bidirectional spectral-reflectance distribution function (BSRDF) as:

(EQ2)

where  is the BSRDF, and are the spectral reflectance distributions,

and are the geometrical terms. The subscripts  and  refer to the diffuse

reflection component and the specular reflection component, respectively.  and  are the inci-
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dent angle and the reflecting angle as shown in Figure 1.

Figure 1  Reflectance model with two reflection components

In most reflectance models, it is assumed that the diffuse reflection component has a spectral dis-

tribution different from that of an incident light, while the specular reflection component has a

similar spectral distribution. Lee called this model the neutral-interface-reflection (NIR) model

[8]. Considering the NIR model, (EQ2) is written as:

(EQ3)

Since we assumed that the diffuse reflection component is modeled by the Lambertian model, and

the specular reflection component is modeled by a unit impulse function, (EQ3) becomes

(EQ4)

On the other hand, the intensity of incident light onto the object surface (and not into the camera)

is represented as:

(EQ5)

where is the spectral distribution of the incident light and is a geometrical term of

incident light onto the object surface. The intensity of light reflected by the object surface and

coming into the camera can be expressed as the product of and the BSRDF

. Finally, the pixel intensity  is given by:
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(EQ6)

where is the spectral response of a camera.

2.2  Reflectance model with two light sources: the sun and the sky

The reflectance model with a single light source was described in the previous section. In this sec-

tion, we extend the model for the case of two light sources of different spectral and spatial distri-

butions. In our analysis, these two light sources are the sunlight and the blue skylight.

One significant feature of the skylight is its uniformity over the entire hemisphere. The skylight is

highly scattered and it appears to be almost constant. For this reason, the spatial distribution of the

skylight  appears to be constant. As a result, the intensity of incident light (EQ5) in the case

of the sunlight and the skylight is represented as:

(EQ7)

On the other hand, the sunlight is almost a point light source. However, it has a finite size, so we

use a narrow Gaussian distribution (Figure 2) to model the sunlight spatial distribution. The cen-

ter of the distribution is the sun’s direction .

(EQ8)

By incorporating this light model (EQ7) into (EQ6), the pixel intensity is given by:
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(EQ9)

Unfortunately,  in the first term of the right side of (EQ9) is difficult to

evaluate analytically. However, we found that a cosine curve could be a good numerical approxi-

mation of the integral as shown in Figure 3. Other terms are simplified further. We finally get the

pixel intensity as:

(EQ10)

where

(EQ11)

It is important to see that the two reflection components from the skylight is constant with respect

to the direction of the sun  and the viewing direction .  is a scaling factor due to the

approximation of the geometry term of the sunlight diffuse reflection by a cosine function. Chang-

ing the coordinate system into the viewer-centered coordinate system illustrated in Figure 4,

(EQ11) becomes

(EQ12)

In our analysis, the reflectance model represented as (EQ12) is used to remove the specular reflec-

tion component and for the shape recovery. Separation of the specular reflection component and

the diffuse reflection component will be discussed in the section 3. Shape recovery under sunlight

will be explained in the section 5.
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Figure 2  The distribution of the sunlight ( , )

Figure 3  The diffuse reflection of the sun and a cosine curve

Figure 4  The viewer-centered coordinate system
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3  The specular reflection component removal from a
sequence of color images

The algorithm to remove the specular reflection component from the sunlight is described in this

section. The input to the algorithm is a sequence of outdoor color images taken at different times

(i.e. every 15 minutes) on the same day.

3.1  Estimation of the reflection component from the skylight

As stated in the section 2.2, the diffuse and specular reflection components from skylight are con-

stant with respect to the sun direction  and the surface normal direction . Therefore, shadow

regions from the sunlight have uniform pixel intensities since they are illuminated only by the

skylight. Pixel intensities in those regions don’t have the reflection components from the sunlight.

They only have the reflection components from the skylight . For this reason, the value of

the reflection component due to the skylight  can be obtained as an average pixel intensity in

the shadow regions of constant pixel intensity as shown in Color Figure 6.  is subtracted

from all pixel intensities of the image to yield

(EQ13)

Then, the pixel intensity has only the diffuse and specular reflection components from sunlight.

3.2  Separation of the two reflection component from the sunlight

The algorithm to separate the two reflection components from the sunlight is described here. The

algorithm was originally introduced by Sato and Ikeuchi in [12].

Using red, green, and blue filters, the coefficients  and , in (EQ13), become two lin-

early independent vectors,  and , unless the colors of the two reflection components

are accidentally the same:
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(EQ14)

(EQ15)

These two vectors represent the colors of the diffuse and specular reflection components in the

dichromatic reflectance model [13].

First, the pixel intensities in the R, G, and B channels with  different light source directions, are

measured at one pixel. It is important to note that all intensities are measured at the same pixel.

The three sequences of intensity values are stored in the columns of an  matrix . Consid-

ering the hybrid reflectance model and two color vectors in (EQ13), (EQ14), and (EQ15), the

intensity values in the R, G, and B channels can be represented as:

(EQ16)
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where the two vectors  and  represent the intensity values of the diffuse and specular

reflection components with respect to the direction of the sun . Vector  represents the

diffuse reflection color vector. Vector  represents the specular reflection color vector. We

call the two matrices and , the geometry matrix and the color matrix, respectively.

Suppose we have an estimation of the color matrix . Then, the two reflection components repre-

sented by the geometry matrix  are obtained by projecting the observed reflection stored in

onto the two color vectors  and .

(EQ17)

where  is a  pseudoinverse matrix of the color matrix .

The derivation shown above is based on the assumption that the color matrix  is known. The

method to estimate the color matrix , more specifically the two color vectors  and

, is discussed in the following sections.

3.2.1  Estimation of the illuminant color

Several algorithms have been proposed to estimate illuminant color. The method used by Lee [7]

is briefly described here. According to the dichromatic reflectance model [13], the color of reflec-

tion from a dielectric object is a linear combination of the diffuse reflection component and the

specular reflection component. The color of the specular reflection component is equal to the illu-

minant color (EQ15). In the x-y chromaticity diagram, the observed color of the dielectric object

lies on a segment whose endpoints represent the colors of the diffuse and specular reflection com-

ponents. By representing the color of each object as a segment in the chromaticity diagram, the

illuminant color can then be determined from the intersection of the two segments attributed to

the two objects of interest [6].

In our experiment, the row  of the color matrix, , which represents illumination color, is

estimated by using a method similar to the method described above. First, several pixels of differ-

ent colors in the image are manually selected (Color Figure 1). The observed reflection color from

those selected pixels is a linear combination of the diffuse reflection component and the specular

reflection component. By plotting the observed reflection color of each pixel in the x-y chromatic-

ity diagram over the image sequence, we obtain several line segments in the x-y chromaticity dia-
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gram. The illuminant color can then be determined by the intersection of those line segments in

the diagram. This is shown in Figure 6 for the case of the real image shown in Color Figure 1.

This technique is limited to the case that there are objects of different colors in the image. In other

words, if the image contains objects of only one color, the light source color cannot be estimated.

In those cases, the illumination color is obtained by measuring the color vector of the light source

directly. In our experiment for outdoor color images which will be shown in the section 7, the illu-

mination color of the sunlight is directly measured by using a standard color chart.

3.2.2  Estimation of the diffuse reflection color

The other row  of the color matrix cannot be obtained in the same manner because it

depends on the material of the object. Fortunately, in order to solve this problem, we can use the

fact that the distribution of the specular reflection component for the extended light source is lim-

ited to a fixed angle, depending on  in (EQ8). Therefore, if two vectors,

( ) are sampled on the  axis at large enough interval, at least one

of these vectors will be equal to the color vector of the diffuse reflection component . This

vector has no specular reflection component. The desired color vector of the diffuse reflection

component  is the vector  which subtends the largest angle with respect to the vector

. The angle between the two color vectors can be calculated as:

(EQ18)

Once we get the color matrix , the geometry matrix  can be calculated from (EQ17).

(EQ19)

(EQ20)

After the reflection components from the skylight and the specular reflection component from the

sunlight are removed by the method explained in the section 3, the pixel intensities in the image

are modeled by the equation:

K
˜ sunD

T

σ

w
˜ i IRi IGi IBi

T
= i 1 2,= θs

K
˜ sunD

T

K
˜ sunD

T
w
˜ i

K
˜ sunS

T

β
K
˜ sunS

T
w
˜ i⋅

K
˜ sunS

T
w
˜ i

--------------------------acos=

K G

Mdiffuse G
˜ DK

˜ D
T

=

Msurface G
˜ SK

˜ S
T

=



page 13

(EQ21)

Since the pixel intensity now has only the diffuse reflection component from the sunlight, the

intensities in three color bands are redundant for the purpose of shape recovery. Thus, only one

band of the three color bands is used in our discussions on surface albedo normalization and sur-

face normal determination.

(EQ22)
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4  The normalization of surface albedo

In this section, the method to normalize the surface albedo  is discussed. The shape recov-

ery algorithm will be explained in the section 5. The object image with non-uniform surface

albedo (Color Figure 2) is normalized to yield the image of the object with uniform surface albedo

(Figure 8).

The object in the image may not have a uniform surface albedo, i.e. several regions of different

colors may be on the object surface. If this is the case, the shape recovery method based on the

assumption of a uniform surface albedo will fail. Therefore, we need to apply a method to normal-

ize the surface albedo to obtain an image for shape recovery as if the object had a surface with a

uniform surface albedo .

Recently, Nayar and Bolle [9] proposed to use a ratio of surface albedos of neighboring uniform

surface albedo regions for object recognition purposes. A similar technique is used for our analy-

sis, in this case, the normalization of the surface albedo. First, the object surface is segmented into

regions with uniform albedos divided by a boundary where a pixel intensity changes abruptly.

Consider two neighboring pixels at the boundary. One pixel lies in the region  and the other

exists in the region . The two points on the object surface which correspond to the two image

pixels are assumed to have the same surface normal, for a smooth continuous surface. In this case,

the intensities of the two pixels are given from (EQ22) as:

(EQ23)

(EQ24)

As you can see in the equations above, the ratio of the two surface albedos  and  is

equal to the ratio of the two pixel intensities  and . This is because the two surface points

corresponding to the two image pixels have the same surface normal direction .

(EQ25)
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This surface albedo ratio is computed at all points along the boundary between the region  and

the region . Then, the surface albedo ratio of the two regions is given as the average of all com-

puted ratios. By repeating the same procedure for all pair of two neighboring regions in the image,

we obtain a table of surface albedo ratios. The surface albedo ratios are propagated in the table, so

that surface albedo ratio of all pairs of any two regions are obtained unless some regions are com-

pletely isolated from others. For instance, consider the two separated regions  and , and the

region  between the two regions. The surface reflectance ratio between the region  and  is

computed as:

(EQ26)

The surface albedo ratio can be computed by using another technique. The use of the Land’s ret-

inex theory [6] for calculating surface albedo was first introduced by Horn [3]. In this algorithm,

the Laplacian operator is first applied to the logarithm of image pixel intensities in order to

emphasize edges. The result is thresholded to remove smooth intensity fluctuations due to spatial

variations in the incident light distribution. Finally, the logarithm of lightness is estimated by con-

volving the result with the inverse Laplacian operator. By using the algorithm, Horn successfully

obtained the image intensity which is an estimation of the surface albedo. The estimation of sur-

face albedo can be used for normalizing the surface albedo prior to shape recovery in our analysis

of outdoor scene. Unfortunately, we found that the algorithm based on the Land’s retinex theory is

not as robust as the other method described in this section for most images. Therefore, we decided

to use the method to measure the surface albedo ratio directly.
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5  Obtaining surface normals

5.1  Two sets of surface normals

After the specular reflection removal and the surface albedo normalization, the input image

sequence has only the diffuse reflection component from the sunlight. Usually, shape from shad-

ing and photometric stereo are used for recovering shape information from diffuse reflection

images. Initially, those techniques are implemented for shape recovery in our experiments. How-

ever, we unfortunately found that neither of those techniques could yield correct object shapes. It

is attributed to various sources of noise in the input image such as incomplete removal of the

specular reflection component. Shape from shading and photometric stereo use very small number

of images for surface normal computation. That leads us to an erroneous object shape when the

images contain slight errors in pixel intensities. Therefore, we decided to use another algorithm to

determine surface normals from the input image sequence. The algorithm makes use of more

images in the sequence, rather than just few of them. We describe the algorithm in this section.

Figure 5  Sun direction, viewing direction and surface normal in 3D case

To represent the sun’s motion in three dimensional space, we consider the Gaussian sphere as

shown in Figure 5. The ecliptic is represented as the great circle on the Gaussian sphere The view-

ing direction  is fixed. The direction of the sun  is specified as the function of  in the plane of

the ecliptic.
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Consider an intensity of one pixel as the function of the sun direction . If the maxi-

mum intensity is observed when the sun is located at the direction , the surface normal of

the image pixel should be located somewhere on the great circle  which is perpendicu-

lar to the ecliptic. For obtaining robust estimations, the maximum pixel intensity  and the

direction of the sun  are found by fitting a second degree polynomial to the observed

pixel intensity sequence. According to the reflectance model (EQ22), the angle between the

sun direction  and the surface normal directions  and  on the great circle  is

given by:

(EQ27)

The surface albedo  has to be known for computing . If we assume that at least one

surface normal on the object surface is the same as the sun direction , the surface albedo

 is simply obtained as the intensity of the pixel . The pixel in the image

can be found simply as the brightest pixel. In a practical case, the estimation of the surface

albedo is computed as the average of the brightest pixel intensities from multiple images of

the input image sequence, for robustness. We empirically found the algorithm described in

this section works better for estimating surface normals in our analysis.

5.2  Unique surface normal solution

Due to the sun’s restricted movement on the ecliptic, we cannot obtain a unique solution for

surface normal by applying photometric stereo to outdoor images taken at different times at

the same day. This fact was pointed out by Woodham [15] when he introduced the photo-

metric stereo method. As a result, there has been no attempts reported for recovering an

object shape by the photometric stereo method applied to outdoor images. However, Onn

and Bruckstein [11] recently studied photometric stereo applied to two images and showed

that surface normals can be determined uniquely even if only two images are used, except

some special cases.

By using the algorithm described in the previous section, two sets of surface normals

and  are obtained. We used the constraint which Onn called integrability constraint, in

order to choose a correct set of surface normals out of the two sets of surface normals.
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(EQ28)

The Onn’s integrability constraint is described briefly here. First, we compute two surface nor-

mals  and  for all pixels. Then, the object surface is segmented into subregions by defining a

boundary where two surface normals are similar. In practice, if an angle between  and  is

within a threshold, the pixel is included in the boundary. Then, for each subregion , two inte-

grals are computed.

(EQ29)

(EQ30)

Theoretically, the correct set of surface normals produces the integral value equal to zero. In a

practical case, the correct surface normal set can be chosen as the one with the integral value close

to zero. Onn and Bruckstein showed that the integrability constraint is always valid except for a

few rare cases where the object surface can be represented as  in a suit-

ably defined coordinate system. In our experiments, the exceptional case does not occur, so the

integrability constraint can be used for obtaining a unique solution for surface normals.

n1 p1– q1– 1, ,( )=

n2 p2– q2– 1, ,( )=

n1 n2

n1 n2

R

y∂
∂p1

x∂
∂q1–⎝ ⎠

⎜ ⎟
⎛ ⎞ 2

xd yd
x y,( ) R∈

∫

y∂
∂p2

x∂
∂q2–⎝ ⎠

⎜ ⎟
⎛ ⎞ 2

xd yd
x y,( ) R∈

∫

H x y,( ) F x( ) G y( )+=
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6  Experimental results: laboratory setup

In the previous sections, we described the three algorithms which are essential for analyzing real

color images taken under the sun. They include 1. the separation of the reflection components

from the two light sources: the sunlight and the skylight, 2. the normalization of the surface

albedo and 3. the unique solution for surface normals. In this section, we applied the algorithms

for color image sequences taken in a laboratory setup, in order to demonstrate the feasibility of

the algorithms. A SONY CCD color video camera module model XC-711 is used to take all

images. In our experimental setup, the object is placed at the center of the origin of the world

coordinate system, and the color video camera is placed at the top of the object. The sunlight is

simulated by a small halogen lamp attached to a PUMA 560 manipulator which moves around the

object on its equatorial plane. The skylight is not simulated in our experimental setup. The effect

of the skylight and separation of the reflection components from the skylight will be described in

the section 7.

6.1  The specular reflection color estimation

The algorithms to estimate the illumination color, and consequently, to separate multiple reflec-

tion components are applied to a real color image sequence. A shiny ceramic brooch which is

painted in several colors is used in this experiment. First, a sequence of color images was taken as

the point light source was moved around the object from  to  by the step of

. As described in the section 3.2.1, three pixels of different colors in the image are manually

selected. The 6th frame of the color image sequence and the manually selected pixels are shown

in Color Figure 1. The observed reflection color of each pixel is plotted in the x-y chromaticity

diagram over the image sequence to obtain a line segment in the x-y chromaticity diagram (Figure

6). Then, the illuminant color which is equal to the specular reflection color  can then be

determined by the intersection of the three line segments. In this experiment, the specular reflec-

tion color vector was estimated as .

θs 50°–= θs 50=

10°

K
˜ sunS

K
˜ sunS

T
0.353 0.334 0.313, ,( )=
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Figure 6  Estimation of illuminant color in the x-y chromaticity diagram
Those three pixels of different colors are manually selected in the image (Color Figure 1).

6.2  The specular reflection component removal

The algorithm for separating the specular reflection component and the diffuse reflection compo-

nent from the sunlight, described in the section 3.2, is applied to the input color image sequence.

As stated in the section 3.2, the algorithm is applied at each pixel basis. For each pixel in the

image, the red, green and blue intensities over the image sequence are initially stored in the matrix

 as its columns. With the estimated specular reflection color vector  from the previous

section, the diffuse reflection color vector  for the pixel is estimated by the algorithm

explained in the section 3.2.2. Then, by using the estimations of the two reflection color vectors,

the geometry matrix  is obtained from (EQ17). Finally, the two reflection components which

are observed at the pixel over the image sequence are separated by using (EQ19) and (EQ20).

By using the pixel-based separation algorithm, we can generate two images of the two reflection

components. The algorithm is applied to all pixels of the input color image separately, and each

separated reflection component was used to generate the diffuse reflection component image

sequence and the specular reflection component image sequence. The 6th frames of the diffuse

reflection component image sequence and the specular reflection component image sequence are
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Color X
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0.3
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0.5
C

ol
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shown in Color Figure 2 and Color Figure 3, respectively.

6.3  Albedo normalization

After the specular reflection component from the sunlight is removed from the color image

sequence, we obtain the color image sequence which includes only the diffuse reflection compo-

nent from the sunlight. The algorithm to normalize the surface albedo on the object surface,

described in the section 4 is applied to the resulting image sequence. Note that only one color

band (for examples, in our case, the red band) is used for the normalization of the surface albedo

and the shape recovery. This is because intensity profiles of all of the three color bands are equiv-

alent in terms of shape recovery when the images include only the diffuse reflection component.

Therefore, those three color bands are redundant, and using only one band is sufficient.

The 6th frame of the diffuse reflection image sequence which is shown in Color Figure 2 is used

here. First, by detecting boundary edges, the object surface is segmented into subregions, each of

which has a uniform surface albedo. The boundary edges are defined as a group of pixels where

pixel intensities change abruptly. On the other hand, pixel intensities change gradually within

each of the subregions. After the segmentation of the object surface, all regions are uniquely

labeled by using the sequential labeling algorithm. The result of the region segmentation and the

sequential labeling is shown in Figure 7.

Figure 7  Segmented uniform albedo regions
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Figure 8  The frame 6 with normalized albedo in red band

Then, surface albedo ratios between all pairs of two neighboring subregions are computed. Con-

sider that we compute the surface albedo ratio between the region  and the region . For each

pixel of the region  which exists at the boundary between the two regions, the pixel of the

region  which is closest to the pixel in the region  is selected. Then, the ratio of the two pixel

intensities is used as the surface reflectance ratio (EQ25) between the region  and the region .

In order to obtain a more accurate estimation of the ratio, all pixels along the boundary are used to

compute the average of the ratio. The average ratio is used as the surface ratio between the region

 and the region . The same procedure is repeated for all pairs of two neighboring regions to

build a table of the surface albedo ratio. Then, the surface albedo ratios are propagated in the

table, so that the surface albedo ratios of all pairs of any two non-isolated regions are obtained.

Finally, the computed surface albedo ratios are used for normalizing image intensities of all

frames in the image sequence. Figure 8 shows the normalization result. All pixel intensities of the

object surface are normalized as if the object had a uniform surface albedo corresponding to the

region 1 in Figure 7. This normalized diffuse reflection image is used for recovering the object

shape.

6.4  Unique solution for surface normal

In this section, the algorithm to determine surface normals uniquely, which was described in the

A B

A

B A

A B

A B
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section 5, is applied to a sequence of real color images taken in our laboratory setup. A plastic

dinosaur face is used for this experiment. The sequence of color images was taken as the point

light source was moved around the object from  to  by the step of . The

specular reflection component is removed from the input image sequence by using the same algo-

rithm used in the section 6.2. In this experiment, the specular reflection color was directly mea-

sured rather than estimating as described in the section 6.1. The 8th frame of the resulting diffuse

reflection image sequence is shown in Color Figure 4.

The algorithm for obtaining two sets of surface normals which was described in the section 5.1

was applied to the red band of the resulting diffuse reflection image sequence. Computed two sets

of surface normals  and  are shown in Figure 9 as a needle diagram. Subsequently, the inte-

grability constraint was applied to determine the correct set of surface normals uniquely. First, the

object surface was segmented into subregions by defining a boundary where the two surface nor-

mals  and  are similar. The obtained boundary is shown in Figure 10. Theoretically, the

boundary should be connected and narrow. However, in a practical case, the obtained boundary

tends to be wide in order to guarantee its connectivity. Thus, the thinning operation, in our case

the medial axis transformation, was applied to narrow the boundary. Figure 11 shows the resulting

boundary after the medial axis transformation.

Figure 9  Two sets of surface normals

θs 70°–= θs 70°= 5°

n1 n2

n1 n2
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Figure 10  The boundary region obtained from two surface normal sets

Figure 11  The boundary after medial axis transformation

Then, a standard sequential labeling algorithm was applied to the segmented regions to assign

unique labels as illustrated in Figure 12. In the figure, the labels are represented by different gray

levels. Finally, the integrability constraint is applied to obtain the correct set of surface normals in

each labeled region as explained in the section 5.2. The unique surface normal solution is shown

in Figure 13. Finally, the object surface shape was recovered by using a standard height from nor-

mals procedure. In our implementation, the relaxation method proposed by Horn and Brooks [5]

was used. Figure 14 shows the surface shape of the dinosaur’s face.
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Figure 12  Segmented regions (gray levels represent regions)

Figure 13  Right surface normal set
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Figure 14  Recovered object shape
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7  Experimental result: outdoor scene (water tower)

In this section, we demonstrate successful reflection component separation and shape recovery

under solar illumination. To this end, the algorithms described in this paper were applied to real

images of a water tower (Color Figure 5) taken in an outdoor environment under the sun. A clear

day was chosen for taking the images in Pittsburgh, PA to avoid the undesirable effects of clouds

in the sky. A SONY CCD color video camera modules model XC-711 was used to take all

images, and the images are recorded by using a U-matic video recorder. Later, the images are dig-

itized from the recorded U-matic tape every fifteen minutes. The first image frame was taken at

10:45am, and the last frame was taken at 4:15pm. In this manner, we took 23 frames of color

images in total. As an example, the image frame taken at 2:15pm is shown in Color Figure 5.

First, the region of interest corresponding to the water tower was extracted. The skylight is almost

uniform through a day from the sunrise until the sunset. As a result, all background pixels which

corresponds to the sky can be defined as pixels with low intensity variation. At each pixel in the

image, the variance of the pixel intensity over the time sequence is computed. Then, all pixels

with little intensity variation are removed by applying a simple threshold, in order to extract the

region of interest for the further processing. The extracted region of interest is shown in Color

Figure 6.

The next step is to remove the reflection component from the skylight. According to the reflection

model under the solar illumination (EQ12) that we developed in the section 2.2, the two reflection

components due to the skylight are represented as a constant value . The constant value

 can be estimated as an average pixel color of a uniform intensity region which is in a

shadow from the sunlight. In our experiment, the region of a constant pixel colors is selected man-

ually as shown in Color Figure 6. The measured pixel color within the region is

 with the variance . The pixel color vector was

subtracted from intensities of all pixels to eliminate effects from the skylight. After this operation,

the color images have only the reflection components due to the sunlight. The resulting image is

shown in Color Figure 7. It can be seen that the image has more contrast between an illuminated

region and a shadow region, compared to the image with the reflection component due to the sky-

light (Color Figure 6). All of frames of the input color images are processed in the same manner

Ksky

Ksky

r g b, ,( ) 14.8 17.2 19.5, ,( )= 0.2 0.3 0.6, ,( )



page 28

to remove the reflection component due to the skylight.

After the removal of the reflection component from the skylight, the sequence of color images

includes two reflection component: the diffuse reflection component and the specular reflection

component due to the sunlight as modeled by (EQ13). The algorithm to remove the specular

reflection component explained in the section 3.2 was applied to the resulting color images. At

each pixel in the color image, the two reflection components were separated and only the diffuse

reflection component was used for further shape recovery. As an example, one frame of the result-

ing color image sequence is shown in Color Figure 8. The image includes only one reflection

component: the diffuse reflection component from the sunlight. The water tower appears to have a

uniform surface albedo. Therefore, it was not necessary to apply the surface albedo normalization

procedure explained in the section 4 in this experiment.

The algorithm to determine surface normals uniquely by using an image sequence was applied to

the red band of the resulting color image sequence. Figure 15 shows the recovered surface nor-

mals of the water tower. Note that surface normals are not obtained in the lower right part of the

water tower. This is because, in the region, the maximum intensity is not observed at each pixel

through the image sequence. To recover surface normals in the region, we need to take an input

image sequence over a longer period of time than this experiment. Also, another techniques such

as photometric stereo can be used for recovering surface normals in the region. However, in this

case, it will be hard to estimate surface normals accurately. Finally, the relaxation method for cal-

culating height from surface normals was applied. The recovered shape of the part of the water

tower is shown in Figure 16.
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Figure 15  Surface normals

Figure 16  Recovered shape of the water tank
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8  Conclusions

We studied image analysis of an outdoor scene in this paper. The scope of traditional techniques

for reflectance analysis such as shape from shading and photometric stereo has been highly

restricted to images taken under a controlled laboratory setup. It is attributed to the fundamental

difficulties in analyzing real images taken in an outdoor environment. First, we addressed the dif-

ficulties involved in analyzing real outdoor images under the solar illumination. They include 1.

multiple reflection components due to multiple light sources of different spectral and spatial dis-

tribution, namely the sunlight and the skylight, 2. non-uniform surface albedos and 3. ambiguity

in surface normal determination caused by the sun’s restricted motion. For each of those three

problems, solutions were proposed based on the reflectance model under the solar illumination

which we developed, Finally, the effectiveness of the algorithms were successfully demonstrated

by using real color images taken both in a laboratory setup simulating the sunlight and in an out-

door environment. We believe this is one of the first attempts for analyzing reflection on object

surfaces in an outdoor scene.
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 Color figures

Color Figure 1  Input color image sequence (frame
6 is shown) and manually selected pixels

Color Figure 2  Diffuse reflection component of the
frame 6

pixel 3

pixel 2
pixel 1

Color Figure 3  specular reflection component of
the frame 6

Color Figure 4  Diffuse reflection component image
(frame 8)
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Color Figure 5  Outdoor intensity image (water
tank frame 15)

Color Figure 6  Extracted region of interest

Region of constant color

Color Figure 7  Water tank image without sky
reflection component

Color Figure 8  Water tank image after highlight
removal
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