Scheduling Dependent Real-Time Activities
Raymond Keith Clark
August 1990

CMU-CS-90-155

School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in
Computer Science at Carnegie Mellon University

Copyright 0 1990 Raymond K. Clark

This research was supported in part by the USAF Rome Air Development Center (RADC) under contract
number F30602-85-C-0274; in part by RADC under contract number F33602-88-D-0027, monitored by the
CALSPAN-UB Research Center (CUBRC) as Subcontract C/UB-04; and in part by the Concurrent
Computer Corporation (CCUR). The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or implied, of
RADC, CUBRC, CCUR, or the United States Government.

Keywords: Real-time systems, Scheduling and sequencing, Operating systems, Algorithms, Command
and control, Industria control.

Thiswork is dedicated to
my parents, Ellen and Ray,
and to
my wife, Rhonda,
all of whom have dedicated so much of their lives,
and themsel ves,
to me.

Acknowledgments

A number of people deserve recognition for their contributions, both tangible and intangible, to this
thesis.

First of al, | must thank Doug Jensen. When | first encountered him, | saw that he was attempting to
solve real-time problems that were similar to some that | had confronted and which had fascinated me. He
allowed me to join the Archons Project at Carnegie Mellon in order to help solve these problems. In fact,
the "lunatic fringe" philosophy of real-time systems that he has pursued and promoted so tirelessly, and so
effectively, for so many years lies at the heart of this research. Now at Concurrent Computer Corporation,
Doug continues to support my research, both technically and financially. Notably, Doug has aways
encouraged his students to participate in the direction and operation of the project, thereby affording us a
more complete view of the way research projects are organized, managed, and monitored than would
otherwise have been possible.

When Doug returned to industry to further the development of the Alpha Operating System, Maurice
Herlihy was kind enough to assume the role as my thesis advisor. Maurice encouraged me to place a
greater emphasis on the use of formal models in this thesis, which improved the work overall.

| believe that the backgrounds and interests of my thesis committee members complemented each other
well. In addition to Doug and Maurice, | was privileged to have Rick Rashid and Steven Graves as
committee members. Rick possesses a superb systems perspective, while Stephen’s background
emphasizes scheduling theory. Both have been quite insightful in reviewing my research. Rick, in
particular, has made a number of helpful suggestions to improve the structure and writing style of this
thesis. He has also given me advice on making public presentations.

The Archons Project, in general, and the design and development of its first operating system, Alpha, in
particular, have allowed me to be part of a team of capable researchers and engineers, al striving to solve
complex problems. Duane Northcutt has been particularly outstanding, displaying great drive and energy,
technical skills, and an ability to get things done. | have learned a great deal from Duane.

Other project members also deserve mention, including Sam Shipman, Dave Maynard, and B. (Das)
Dasarathy. Das made a number of helpful comments on parts of my thesis.

Looking back, | would like to acknowledge Bill Laing's contributions to my development, both as a
person and as a professional. He was my origina mentor in computer science, introducing me to a number
of interesting applications and solutions. He has had a strong and lasting influence on me.

Finally, | would like to acknowledge my debt to my family and friends. They have always inspired me to
grow and have been tremendously patient as | have attempted to do so.

Without the support and encouragement of Rhonda Starkey, my wife, and Ray and Ellen Clark, my
parents, it is entirely possible that | would never have reached this milestone. As | was growing up, my
father was constantly on the go, aways learning something new. He understood how the physical world
worked, and he possessed an amazing array of technical skills. It seemed to be only a dlight exaggeration
to say that he could do anything. With such an example to follow, it was quite natura that | became
interested in technology and science and developed a curiosity about a wide range of topics. On the other
hand, my personality, particularly the perseverance and sense of responsibility required to accomplish
significant goals, resembles that of my mother, who continues to grow by seeking out new experiences.
Both of my parents have made great sacrifices so that | might have opportunities that they never had, and
they have encouraged me to take advantage of these opportunities.

Above and beyond the aid that a spouse might normally offer, Rhonda even had the courage and tenacity
to read sections of my thesis and to help me prepare for my thesis oral. Her observations were always
perceptive, and her comments and advice were uniformly helpful.

Many others have made this period of my life a great joy. | cannot possibly remember them all, but |
would like to thank some of them: Ravishankar Mosur and Monica Lam; my brother, Ed, and the rest of
the pick-up basketball players; and the Energy in Motion crowd, especialy Sue Waldrop, Va Labanish,
and Kathy Kniff. | consider myself unusually fortunate to have known such a wonderful group of people
and to have had so much fun with them.

Abstract

A real-time application is typically composed of a number of cooperating activities that must execute
within specific time intervals. Since there are usually more activities to be executed than there are
processors on which to execute them, several activities must share a single processor. Necessarily,
satisfying the activities' timing constraints is a prime concern in making the scheduling decisions for that
processor.

Unfortunately, the activities are not independent. Rather, they share data and devices, observe
concurrency constraints on code execution, and send signals to one another. These interactions can be
modeled as contention for shared resources that must be used by one activity at a time. An activity
awaiting access to a resource currently held by another activity is said to depend on that activity, and a
dependency relationship is said to exist between them. Dependency relationships may encompass both
precedence constraints and resource conflicts.

No algorithm solves the problem of scheduling activities with dynamic dependency relationshipsin away
that is suitable for all real-time systems. This thesis provides an algorithm, called DASA, that is effective
for scheduling the class of real-time systems known as supervisory control systems.

Simulation experiments that account for the time required to make scheduling decisions demonstrate that
DASA provides equivalent or superior performance to other scheduling algorithms of interest under a wide
range of conditions for parameterized, synthetic workloads. DAsA performs particularly well during
overloads, when it isimpossible to complete all of the activities.

This research makes a number of contributions to the field of computer science, including: a formal
model for analyzing scheduling algorithms; the bAasa scheduling algorithm, which integrates resource
management with standard scheduling functions; results that demonstrate the efficacy of DASA in a variety
of situations; and a simulator. In addition, this work may improve the current practices employed in
designing and constructing supervisory control systems by encouraging the use of modern software
engineering methodol ogies and reducing the amount of tuning that is required to produce systems that meet
their real-time constraints — while providing improved scheduling, graceful degradation, and more
freedom in modifying the system over time.

Chapter 1

I ntroduction

A real-time application is typically composed of a number of cooperating activities, each contributing
toward the overal goals of the application. The physica system being controlled dictates that these
activities must perform computations within specific time intervals. For instance, safety considerations
may dictate that an activity must respond to an alarm condition within several milliseconds of the receipt of
the alarm signal.

Real-time applications usually contain more activities that must be executed than there are processors on
which to execute them. Consequently, several activities must share a single processor, and the question of
how to schedule the activities for any specific processor —— that is, deciding which activity should run next
on the processor —— must be answered. Necessarily, a prime concern in making scheduling decisions in
real-time systems is satisfying the timing constraints placed on each individual activity, thereby satisfying
the timing constraints placed on the entire application.

Unfortunately, the activities to be scheduled are not independent. Rather, they share data and devices,
observe concurrency constraints on code execution, and send signals to one another. All of these
interactions can be modeled as contention for shared resources that may only be used by one activity at a
time. An activity that iswaiting for access to a resource currently held by another activity is said to depend
on that activity, and a dependency relationship is said to exist between them. Dependency relationships
may encompass both precedence constraints, which express acceptable execution orderings of activities,
and resource conflicts, which result from multiple concurrent requests for shared resources.

No existing scheduling algorithm solves the problem of scheduling a number of activities with dynamic
dependency relationships in a way that is suitable for the class of real-time systems called supervisory
control systems. This thesis addresses that problem. The resulting work provides an effective scheduling
algorithm, a formal model to facilitate the analytic proof of properties of that algorithm, and simulation
results that demonstrate the utility of the algorithm for real-time applications.

2 Scheduling Dependent Real-Time Activities
1.1. Problem Definition

A real-time system consists of a set of cooperating, sequential activities. These activities may be Mach
threads ([Mach 86]), Alpha threads ([Northcutt 87]), UNIX processes ([Ritchie 74]), or any other
abstraction known to the operating system that embodies action in a computer.

These activities interact by means of a set of shared resources. Examples of resources are: data objects,
critical code sections ([Peterson 85]), and signals. A shared resource may be used by only one activity at a
time. Thus, if activity A, is using a resource when activity A, requests access to the same resource, A,
must be denied access until A, has released the resource. Here, activity A, depends on activity A; since it
cannot resume its execution until A; has released the resource.

We assume that there is a single processor on which activities are executed, and that activities can be
preempted at any time. That is, at any time, the activity that is currently being executed by the processor
may be suspended. Later, it may be resumed or aborted, or it may never be executed again. If the activity
isresumed, it will continue execution at the point at which it was interrupted. If it is aborted, the resources
it holds will be returned to a consistent state and released. Subsequently, the activity may attempt to
reexecute the aborted computation.

Of course, the preemption of an executing activity —— a manipulation of a computing abstraction —— does
not preempt the physical process that the activity is monitoring and controlling. Regardless of the
execution state of the corresponding computer activity, the physical process continues to exist and,
possibly, to change.

It is assumed that activities can be aborted. This assumption, as discussed further in Chapter 2, is based
on the observation that if time constraints are not satisfied, it is desirable to place the affected portions of
the system, the application, and the physical process being controlled into acceptable operating states!.
Aborting activities provides an opportunity to perform the necessary transformations. While it is not
required that every activity can be aborted, it is advantageous to exploit the fact that some can be.

We also assume that scheduling decisions must be performed on-line — that is, they cannot be
determined in advance due to the dynamic nature of the systems of interest. For instance, while the
scheduler knows some information about current activities, it does not know their resource requirements
(that is, which resources will be needed, for how long, and in what order)2. Furthermore, new activities
may be created without warning —— perhaps in response to external events. Since the set of activitiesto be

1The concept of an aborted computation is somewhat different in a real-time system than it isin other applications. In any setting,
aborting an activity should result in returning the data items modified by that activity to a consistent state. However, in a rea-time
system not al of the actions of the activity are nullified by restoring consistent data values. Changes made in the physical world by
means of computer-controlled actuators may have to be nullified. Opening a valve, for example, may have had an effect in the
physical world that cannot be undone by simply closing the valve once again. In such cases, further compensatory actions may be
required.

2For specific, restricted applications, it may be possible to know some or all of this information in advance; but, in general, it is
impossible.

Introduction 3

scheduled may change over time, as may their dependency relationships, the scheduler must examine the
activities to be scheduled in an on-line fashion.

[Ullman 75] demonstrated that the general preemptive scheduling problem is NP-complete, implying that
tractable scheduling algorithms in even fairly simple systems cannot be optimal in al cases. Instead, they
are designed to exhibit properties that seem likely to result in desirable behavior. As will be shown, our
algorithm possesses a number of promising properties with respect to real-time systems.

1.1.1. Dependencies

Dependencies clearly have an effect on scheduling. A number of activities may be blocked due to
dependencies on other activities. Ideally, their resource needs should be taken into account insofar as
possible by the scheduler. However, in a typical operating system, if an activity is blocked, its
requirements are not considered by the scheduler. As a result, the scheduler may ignore important
activities. Consequently, in a real-time system, activities that have pressing time constraints may be
ignored because they are blocked due to dependency relationships.

A classic example of this type of behavior exists in the context of static priority scheduling systems
([Peterson 85]). The most important activities are assigned high priorities, while less important activities
are assigned low priorities®. Suppose that alow priority activity is executing a critical section when a new
event makes a medium priority activity ready to run. A priority scheduler would preempt the low priority
activity immediately, while it was still executing its critical code®. If a high priority activity subsequently
became ready to run, it would preempt the medium priority activity. Unfortunately, if the high priority
activity were to attempt to execute a critical code section, it would be blocked and the medium priority
activity would resume execution regardless of the relative urgency of their respective time constraints.

Another example, similar to the one just presented, will be examined more closely in Section 1.3 and
again in Section 3.3.

A scheduler that keeps track of blocked activities and the reason that each activity was suspended can
handle the dependency scenarios that have been presented. The scheduler can track the necessary
information by communicating with other operating system facilities, such as a lock manager or a

semaphore manager. For instance:

1. A lock manager can coordinate access by activities to shared data. If an activity’s lock
request is granted —— indicating that no other activity is currently accessing the data —— then
the requesting activity may continue executing, using the shared data as required. If the lock
request cannot be granted immediately, the requesting activity is blocked and becomes
dependent on the activity currently holding the lock.

SNote that there is no inherent correlation between an activity's priority and the urgency of its time constraint. This is a key
problem with static priority schedulers.

4Some systems prevent preemption at these times, while many do not ([KB 84, Bach 86]). But even systems that prevent
preemption suffer from other problems — for example, they have longer, potentially unbounded, response times, and they lose
information by describing an activity by a single number, its priority. This latter point will be elaborated in later sections of this
document.

4 Scheduling Dependent Real-Time Activities

2. Semaphores can be used to grant permission to execute critical sections or to access shared
devices. For critical sections, an activity executes a P operation on a semaphore to request
permission to execute a critical section. As a result, the activity either begins executing the
critical section immediately, or it is blocked because another activity is already executing a
critical section controlled by the same semaphore. In the latter case, the newly blocked
activity depends on the completion of the activity that is already executing its critical section.
The completion of acritical section isindicated by executing aV operation on the semaphore.
(Similar dependencies aso result from more general uses of semaphores. Locks can also be
used to handle critical sections and shared devices.)

3. Semaphores can provide the underlying support for precedence constraints, too. These
constraints impose partial orderings on the execution of activities and may be implemented by
means of signals between activities. For example, an activity that must complete one
computation before another activity can begin a different computation can send a signal to the
second activity when it is done. If signals are implemented in terms of semaphores, then
there is a semaphore associated with each signal, and an activity originates a signal by
performing a V operation on the corresponding semaphore, thus enabling the signal receiver
to resume execution. The signal receiver performs a P on the semaphore to detect whether
the signal has been sent yet. If the V precedes the P, then the signal was sent before the
receiver looked for it, and the receiver is alowed to continue. Otherwise, the signal receiver
must wait until the signaler has issued the signal. Hence, the receiver is blocked, and its
further execution depends on the continued progress of the signaler.

In each case, the scheduler can acquire the information it needs to construct a complete picture of the
dependencies in the system. Since this information is available in many systems, this thesis applies to a
wide range of applications and systems in which these types of dependencies occur.

1.1.2. Real-Time Systems

Timing constraints imposed by the external world imply that the time at which an activity is performed is
just as important as the correctness of the computation being performed. Despite common definitions that
refer to artifacts such as interrupt latency, context swap times, and the ability to interrupt and suspend an
activity that is executing kernel code ([Rauch-Hindin 87]), real-time systems are fundamentally concerned
with performing activities according to these externally-imposed timing constraints. Note that a relatively
fast computer that executes activities in an unfortunate order might display worse "real-time" behavior than
a slower computer that executes the activities in a more advantageous order.

There are several classes of real-time systems ([Bennett 88]). Low-level real-time systems are typified
by loop control applications, where computers interrogate sensors, perform a fixed set of calculations on
the sampled data, along with other state information, and control a group of actuators based on the results
of the calculations. The activities that implement these applications are often executed periodically ——
sometimes because the sensors produce data periodically (for example, radar) and sometimes because the
control models on which the systems are based require periodicity.

Often, severa of these low-level real-time systems are monitored and controlled by a higher level
real-time system, called a supervisory control system. For supervisory control systems, the application
events that trigger activity are typically not periodic; rather, they occur stochastically —— for example, in
response to the arrival of new work or to indicate the completion of a low-level sequence of operations.

Introduction 5

These events represent significant changes in the physical world and must be handled by the supervisory
control system in atimely manner. So, just like low-level real-time systems, supervisory control systems
have physically derived time constraints; and, in fact, meeting these time constraints is just as critical as it
isinlow-level systems.

In addition to monitoring and directing the low-level rea-time systems, supervisory control systems
perform strategic planning functions to coordinate the actions of the low-level systemsin order to meet the
application’s objectives. The supervisory control systems, in turn, receive direction from higher level
management information systems (for example, to fill a given set of orders during the current shift in a
plant). Although supervisory control activities cooperate to provide their services, they still contend for
access to shared system and application resources.

Unfortunately, the policies that are prevalent in non-real-time systems to resolve such contention are
inappropriate, and may in fact be counterproductive, in real-time systems. For instance, in time-sharing
systems, fairness is desired and is obtained by, among other things, using FIFO queueing disciplines and
round-robin schedulers ([Peterson 85]). This approach reflects the belief that all activities are equally
significant. However, in real-time systems this is clearly not the case —— some activities, and hence, some
time constraints, are decidedly more significant than others. In fact, while the failure to satisfy some timing
constraints may have no adverse effect on the physical process or platform being controlled, failing to
satisfy others can have catastrophic effects.

Throughput is another metric that is important in many non-real-time systems, but is not necessarily
meaningful in real-time systems ([Jensen 76a]). In area-time system, either all of the work that must be
done is actually performed or, if that is not possible, the most important application functions must be
performed. The latter case might not maximize throughput, but it does address the requirements of the
real-time system.

A few examples will illustrate the varying significance that may be attached to satisfying specific time
constraints.

First of al, consider a real-time supervisory control system in a process control setting —— afurnace and a
continuous caster in a steel mill. Molten steel of a specific chemistry is created from iron, scrap, and
additional materials in the furnace. When the metal in the furnace is ready to be converted into slabs of
solid steel, the molten metal is poured into a large ladle, transported to the caster, poured into the caster,
and cast into a long, continuous slab that is subsequently cut into individual slabs of appropriate length.
When the metal is originally poured into the caster’s "mold," it isliquid. It coolsin the "mold" and is solid
when it emerges, ready to be cut. Several low-level rea-time systems directly control the furnace, the
caster, and several related pieces of equipment. These systems are monitored, controlled and coordinated
by a supervisory control system.

In this setting, there are severa types of supervisory control time constraints that can be examined.
Roughly speaking, they fall into three classes: (a) time constraints that, if missed, will result in potential

6 Scheduling Dependent Real-Time Activities

loss of life and property (for example, due to liquid stedl spilling over the ared); (b) time constraints
imposed by the physical world that have financial penalties if they are missed (for instance, losing quality
control statistics for products, resulting in potentially unsellable products); and (c) time constraints that are
not physically based and result only in inconvenience if they are missed (such as operator display requests).

Military systems also provide examples of the difference in importance between various time constraints.
For afighter plane, for instance, the most importance activities are those that serve to keep the plane in the
air and the pilot alive; the activities that control weapons are less important, although, obvioudly, they are
till of great concern. On the other hand, aboard a ship, which will float stably without constant control, the
activities in charge of the defensive weapons systems may well be more important than those that steer the
ship.

The preceding examples demonstrate that there are a number of time constraints that characterize an
application and there are significant differences among the activities that must satisfy those time
congtraints. It makes sense to talk about failing to satisfy time constraints in a dynamic system because
transient, and even permanent, increases in resource demands (relative to resource supplies) are possible.
Detecting these demand peaks and deciding which time constraints should be satisfied (and which should
not) are difficult tasks. In general, however, overall application performance and function should degrade
gracefully, maintaining the most critical functions for aslong as possible.

Furthermore, although each activity operates under a time constraint, it is also classified according to its
relative importance (compared to other activities), and this importance is independent of the time
constraint. That is, there is no inherent correlation between the activity’s importance and its urgency ——
which is captured by its time constraint. A critically important activity may require little computation time
and may have a very loose time constraint (relatively speaking). In that case, it is certainly not an urgent
activity, although it is an important activity. Conversely, arelatively unimportant activity may have a very
tight time constraint. Therefore, it isfairly urgent even though it is not very important in the global scheme
of things.

Many schedulers are able to deal with an activity’s importance (such as priority schedulers, as described
in [Peterson 85]) or its urgency (for example, deadline schedulers, as described in [Conway 67]), but few
attempt to distinguish between these two attributes or to use all of the information that is captured in both
of them.

One final difference between real-time systems and general-purpose computer systems should be noted.
In a real-time system, characteristics of the workload are often known very precisely. In atime-sharing
environment, on the other hand, the types of work being performed may vary greatly, and the operating
system may know little, if anything, about the processing and resource requirements of any given activity.

Specifically, in areal-time system, it is often possible to know (with some accuracy) how long an activity
must run to accomplish a goal. This type of information is available partly due to the historica
development of real-time systems: in order to construct reliable, rea-time systems, designers used small

Introduction 7

routines that had predictable execution times. This alowed them to analyze system behavior to some
extent. As systems grew and become more sophisticated, it became more difficult to take this approach.
Nevertheless, it is still the approach that many system builders favor.

1.2. Schedulers and Scheduling Infor mation

Two distinct approaches may be taken in designing and constructing a scheduler. On one hand, a
minimal scheduler can be provided. The scheduling may be list-driven, like the rate group schedulers used
by cyclic executives ([GD 80, Stadick 83, MacLaren 80]); or it may employ avery simple algorithm, like a
priority scheduler. Such approaches impose a low system overhead. This may be entirely appropriate
when the goal is to maximize system throughput or to support a simple application structure so that
properties (such as worst case load behavior) can be demonstrated, but it is not obviously the best approach
for systems where the goal is to satisfy as many time constraints as possible or obtain the highest
application-specified value as possible. Furthermore, minimal schedulers may have limited applicability,
as evidenced by the fact that they are already stretched to the limit (or beyond) by today’s large, dynamic
real-time applications.

Alternatively, a complex scheduler may be used. In this case, application activitiestell the scheduler their
individual needs and the scheduler attempts to satisfy them, making decisions based on global information
that the application does not possess. The more complete and accurate the information, the better the job
that the scheduler can do in managing resources®; and processor cycles, of course, are one particularly
important resource.

Thisthesis explores the latter philosophy by allowing the scheduler to use more information than usual in
order to do abetter job of scheduling for supervisory control systems. There are two major points that must

be demonstrated to verify the quality of the scheduling:

1. theindividual scheduling decisions must be good (that is, the "right" activity must be selected
for execution);

2. the resources utilized to employ a more expensive scheduling algorithm must yield a benefit
in terms of improved scheduling from the point of view of the application (that is, the
scheduler must make better use of these resources than the application could).

Of course, not every application requires a complex scheduler, but some do, and this thesis explores the
use of complex schedulers to support those applications.

The previous discussion focused on time constraints without elaborating on the precise definition of these
constraints. The term has deliberately been used to capture the general notion that real-time computations
must satisfy certain timing requirements. We now introduce a formal method to describe time constraints
and introduce some additional terminology. Each activity in a real-time application is composed of a

SImproved scheduling can also be obtained by devoting more resources to analyzing a fixed amount of scheduling information.
Although the main thrust of this thesis is to study the use of more information than usual, the algorithm to be studied also requires
significant resources for the scheduler. The resulting implications will be discussed later in the document.

8 Scheduling Dependent Real-Time Activities

sequence of digoint computational phases, aso known simply as phases. The application as a whole
makes progress when its component activities make progress;, and each activity makes progress by
completing its computational phases. Therefore, the completion of a computational phase marks
measurable progress for the application, and this progress is expressed in terms of value units. Associated
with each phase, then, is atime-value function ([Jensen 75]) that specifies that phase's time constraint —— it
indicates the value acquired by the application for completing the phase as a function of time.

In general, the shape of a time-value function is arbitrary, and Figure 1-1 shows a few examples. Figure
1-1(a) shows a step function of height v. In this case, completing the computational phase by timet, yields
value v, while completing it at any later time yields no value. Figure 1-1(b) shows a situation where the
cutoff in value is not as sharp. Prior to time t, the value associated with completing the computation is
again v. However, following that time, the value decreases smoothly until, once again, a point is reached
after which no value is gained by completing the phase. Finally, Figure 1-1(c) corresponds to a phase that
must complete within a certain interval in order to acquire a non-zero value for the application. Although
sharp transitions are shown at both t.; and t,, more gradual transitions —— such as a parabola — could also
be used.

The times at which there are sharp changesin time-value functions are known as critical times. Timesty,
t. te, and t, aredl critical times.

Val ue Val ue
Y, V]
0 0
t Trme t' Trme
dl c
(a) (b)
Val ue
v |
0
t t 11 me
cl c2
(c)

Figure 1-1: Examples of Time-Value Functions

Introduction 9

The step function shown in Figure 1-1(a) illustrates several key ideas and allows the introduction of some
important terminology. First of all, timet is referred to as a deadline since it represents the last instant at
which the phase can complete and still make a meaningful contribution to the accrued vaue for the
application. Value v is called the importance of the phase. If every time-value function were a step-
function and all of the step functions had the same height (importance), then each phase that was completed
would make an identical contribution to the progress of the application and an appropriate scheduling
strategy would complete as many phases as possible prior to their respective deadlines. If, however,
different phases were to have different importances, then they would make different contributions to the
value accrued by the application and the scheduling strategy that would maximize that value would be
different. Considered over the lifetime of an application, a greater accrued value represents a more
successful application.

If resource demands, including those for processor cycles, are sufficiently low, then all activities can be
scheduled, thereby accruing alarge value for the application. However, in the event that it isimpossible to
satisfy all of the activities resource demands, an overload exists®. In this case, some subset of the
activities will meet their time constraints, while others will not, resulting in a lower accrued value for the
application. Under overload, the scheduler should maximize the value accrued by the application.

With an understanding of the simple step time-value function and the vocabulary introduced above,
consider again the notion that a scheduler can do a more effective job when it has more complete or better
quality information on which to base decisions. Given specific types of information, consider the
algorithms a scheduler can employ (unless otherwise noted, these are all discussed in [Conway 67], [Janson
85] or [Peterson 85)):

* no information —— there is no way to distinguish activities so round-robin or random
scheduling of ready activities would be appropriate;

« relative importance of activities —— priority scheduling of ready activities; this algorithm would
always run the highest priority (most important) ready activity;

« deadline and required computation time of activities —— deadline scheduling, where the ready
activity with the nearest deadline is always selected to run, or slack-time scheduling, where the
ready activity that has the least slack-time’ is always selected to run, would be optimal
algorithms with this information;

« time-value functions ([Jensen 75]), which capture importance and timing requirements —
more complex schemes such as best-effort scheduling ([Locke 86]) of ready activities can be
employed; Locke showed that under his model, this approach can be more effective than those
listed above.

This thesis explores the consequences of allowing the scheduler to have access to not only the activities
time-value functions and their required computation times, but also to information describing the

60verloads are not uncommon in operational supervisory control systems. In fact, in dynamic environments, it isimpractical, if not
impossible, to eliminate overloads by means of system or application design methods. This is because the approaches that may
eliminate overloads in small, static systems, which typically depend on the predictable nature of the environment or the allocation of
sufficient assets (processors, memory, devices, and so on) so that peak demand can be handled, do not scale well to large, dynamic
systems.

"dack-time = deadline - present time - required computation time.

10 Scheduling Dependent Real-Time Activities

dependency relationships existing between activities. This enables the system to take into account the time
constraints of blocked activities, allowing a better ordering of activities, along with earlier detection and
better resolution of overloads.

Notice that the dependency information that is to be used by the proposed scheduling algorithm is not
very exotic or difficult to obtain in many cases. Often, the operating system or a system utility, such as a
lock manager, holds key pieces of this information. Whenever an activity is unable to gain immediate
access to a shared resource, it is typically blocked. At that point, the system is capable of noting which
resource is being accessed, as well as the identities of the activities holding and requesting the resource. In
other cases, straightforward extensions to the operating system interface would provide the necessary
dependency information for the scheduler’s use. As aresult, if the algorithm can be demonstrated to have
sufficient merit, an implementation would not seem to be unduly difficult.

1.3. Scheduling Example

In order to demonstrate some of the points that have been made earlier and to illustrate the type of
problem addressed by thisthesis, consider an example.

Assume that there are only three activities, each consisting of only asingle phase. Designate these phases
P, Py @d p.. Phase p, has a relatively low importance, requires four time units of execution time to
complete, and must complete execution within 15 time units of its initiation. It requires the use of shared
resourcer. It requests accessto r after it has executed for one time unit, and releases r after it has executed
for atotal of three time units.

Phase p,, has a medium importance, requires three time units of execution time, and must complete within
four time units of itsinitiation. It also uses shared resourcer. Like p,, it requestsr after it has executed for
onetime unit and releases it after it has executed for atotal of three time units.

Phase p, has a relatively high importance, requires four time units to complete execution, and must
complete within ten time units of itsinitiation. It does not access shared resourcer.

All of these phases are initiated as a result of external events. Suppose that the event that initiates phase
p, occurs at time t = 0, and the event that initiates both p,, and p,, occurs two time units later. Thisimplies
that the deadline for completing phase p, istime t = 15, the deadline for completing phase p,, is at timet =
6, and the deadline for completing phase p, istimet = 12.

If these phases are to be scheduled using a priority scheduler, then it seems clear that their importance to
the application should act as an indication of their priority. Therefore, if Pri() is afunction that returns the
priority of a phase:

Pri(p,) < Pri(p,) <Pri(p,)

Also notice that this is a situation where urgency, when defined as the nearness of a deadline, is not the

same asimportance. To seethis, let DL() represent afunction that returns the deadline of a phase. Then:

DL(p,) <DL(p,) <DL(p,)

Introduction 11

A priority scheduler will always execute the ready phase with the highest priority. A deadline scheduler
will always execute the ready phase with the nearest deadline. Whenever a phase is waiting on a resource,
itis blocked and so is not ready. Applying these rulesto phases p,, p,,, and p., yields the execution profiles
shown in Figure 1-2. The x-axis represents time, while the y-axis indicates which phase is executing at any
given time. Significant events in the executions of the phases are indicated. Notice that neither the priority
scheduler nor the deadline scheduler could meet all three deadlines. Both failed to allow phase p,, to meet
its deadline. A more sophisticated version of the priority scheduler, for example one of the priority
inheritance schedulers discussed in Chapter 6, will also faill to meet this deadline. The algorithm
investigated in this thesiswill solve this problem.

pc
Runni ng b
p N - 1 | —)
Phase i] i Dead! i ne Schedul er
pa : ! — —
1 1 1 ,
1 1 1
! i ' : T .
0 1 1 5 1 | 10
rq, g rq rl,g rl
pc
Runni ng . . .
Phase Pb] — — Static Priority Schedul er
1 1 1
1 1 1
pa : 1 1)
! | | .
1 1 1
: ! 1 1 : I t
0 ! 5 1 1 1 10
rq, g rqgrl,g rl
rq = request r
g =grant r
rl =release r

Figure 1-2: Execution Profilesfor Priority and Deadline Schedulers

1.4. Motivation for Using Application-Defined Values

Many of the characteristics of supervisory control systems that have been presented are straightforward
and are largely based on current practices and systems. Nonetheless, a few points —— most notably the use
of application-specific values within the system —— may not be obvious or typica of existing
implementations. These issues are further explained in the following sections.

12 Scheduling Dependent Real-Time Activities
1.4.1. Accrued Value

Evaluating a scheduling algorithm by determining the total value it accrues on behalf of an application is
unusual. However, not only isit intuitively appealing, it is also appropriate in many cases.

The intuitive appeal lies in the view that accumulating value represents making progress. As each
activity completes designated portions of its execution, value accrues to indicate the utility of that particular
computation to the application®.

Similarly, the idea of minimizing a cost function is often found in deterministic scheduling problems in
operations research. Some of thiswork is summarized in [DLRK 81].

While this might sound plausible as a metric, there remains the question of whether values can be
assigned meaningfully to computational phases of an activity. In many instances, there is strong reason to
believe that thisisthe case.

The class of process control applications provides one example of the applicability of this approach.
Typically, one or more processes are being controlled or one or more products are being manufactured
under the supervision of a single supervisory control computer system. Since the goods being produced
have a monetary value, it is possible to assign values to particular activities based on the commercial worth
of the goods being produced by each activity. Consequently, the use of a scheduler that maximizes the
amount of value accrued for the application is actually maximizing the commercial value of the goods
being produced. This seems entirely reasonable. (Conversdly, if it seemed more natural, the notion of
monetary loss or penalty could be used instead of the monetary value or profit outlined. The underlying
notion is essentially the samein either case.)®

During an overload, when there are insufficient resources to meet the overal demand, some activities
may not be scheduled. In fact, it would be possible that during an overload involving three or more
activities, the activity with the highest individual value would not be scheduled. Rather, two or more
activities with lower individual values, but with a higher combined value, could be scheduled.

This overload behavior should be contrasted with that of other scheduling policies. For instance, a

8Notice that summing individual values is only one possible way to accrue value for an application. More complex accrua rules
may also be worthy of investigation. For example, it may be necessary to complete a sequence of time-constrained computations in
order to accomplish a meaningful goal for the application, in which case, perhaps no value should be accrued for any computations
until the last one has successfully completed. Or the effect of completing two time-constrained computations is greater than the sum
of their individual values, indicating that their values could be combined in another way. As always, the goal is to perform the
application as well as possible; and future experience will contribute to a better understanding of how to express an application’s goals
in terms of values and value accrual rules that best meet its requirements.

9The use of monetary measures to determine schedules has long been used in the field of operations research for job shop
scheduling. The model used in this work differs somewhat from that model. Thisis dealt with in some depth in Chapter 6. Briefly,
the typical job shop model assumes that the set of orders currently known will all befilled at some point intime. That is, all activities
will eventually be run. However, in real-time computer systems, some activities are of only transient value because they are run
frequently or because they must be run in a timely fashion or not at all due to the quality of the information or the physical time
constraints of the application. Therefore, not all activities will necessarily be run.

Introduction 13

priority scheduler would always execute the activity with the highest individual value at any given time
(assuming that the priorities assigned to activities corresponded to the commercial worth of the activity as
described previously). In the case just outlined, thiswould result in alower total value than the method that
maximized value.

A steel mill application can illustrate this point, while demonstrating the dynamic nature of the
assignment of values to tasks. The steel mill under consideration has a furnace and caster that combine to
transform raw materials into slabs of finished steel of specified chemistry. There are two functions that are
particularly interesting: chemistry control, which controls the chemical composition of the steel being
produced, and quality control tracking, which follows the progress of the steel through various stations in
the mill including the caster and associates a specific chemistry with each foot of every steel slab produced
by the mill. A single supervisory control computer monitors and controls both of these functions.

During overloads, the supervisory computer may have to decide which function should be run. Most
often, the value associated with the quality control activity should be higher than that associated with the
chemistry control activity. Thisisbecause it isimportant to know what isin each steel slab that is sold. In
fact, since many customers will not buy a slab without detailed knowledge of its chemistry, the profit that
would be realized from the dab is at stake if the tracking activity does not execute in time. On the other
hand, if the chemistry control activity is not executed, the chemistry of the steel may be different from what
was intended. This is acceptable if the resultant chemistry is one that can be sold or can be further
processed to obtain such a chemistry. Notice that the chemistry —— even if it is not the chemistry that was
originally intended —— is known and can be tracked by the quality control activity.

The dynamic nature of value assignments is shown by the fact that the above generalization does not hold
in every case. When a particularly rare chemistry is desired, it is sometimes the case that the steel cannot
be sold if the chemistry is not exactly right, therefore placing the profit for the heat in jeopardy if the
chemistry control activity is not run. It is possible that the profit involved, especialy for a specialty sted,
will outweigh the profit that will result from tracking steel slabs of more typical chemistries through the
rest of the mill. Since these decisions vary with each heat (mix) of steel, values must be assigned to the
chemistry control and quality control tracking activities dynamically to correspond to each heat.

Military defense systems are a second class of applications that seem to alow values to be assigned to
component activities meaningfully and would benefit by using a scheduler that maximized accrued value
for the application. In this case, the value accrued for an activity controlling a defense system would be
derived from the number of lives or the number of other military assets that can be saved. As unsettling as
it isto consider, it seems wise to employ a scheduler that maximizes the number of lives or assets that are
successfully defended.

These examples make use of the fact that there is a common "currency" in which values can be expressed
naturally — money in process control situations and lives or other military assets in combat systems. In

14 Scheduling Dependent Real-Time Activities

such situations, it is relatively straightforward to assign values to various activitiesl9. Other applications
may require that values take into account a number of different factors —— money, lives, operator
satisfaction, and so forth —— and appropriate weightings of these factors will have to be developed to
produce acceptable and meaningful activity values.

Of course, the real test of the utility of this approach will come in the future when scheduling algorithms
that maximize application-defined value are employed in production systems —— or, perhaps, prototype
versions of production systems. At that time, the performance of these systems can be compared directly to
alternative approaches. In order to prepare for such tests, the notion of maximizing the accrued value for
an application must be further explored. This thesis makes another contribution to that effort.

1.4.2. Time-Value Functions

As shown in the above discussion, the notion of assigning values to application activities and scheduling
activities to maximize the accrued value for the entire application has merit in a wide range of applications.
These assigned values reflect the relative importances of the activities that they represent.

Since the systems under consideration for this work are real-time systems, the value associated with the
completion of a computation varies as a function of time. For example, in an automated assembly
application, the value of closing a mechanical manipulator to grasp a part on an assembly line is a function
of time. If the grasping motion is completed too soon, the part will not have reached the manipulator yet.
If the grasping motion is completed too late, the part will have already passed by the manipulator.

Time-value functions facilitate the description of the time constraints and relative importances of the
activities comprising a real-time application. The time-value function records the value to be accrued by
completing the designated computational phase at each point in time.

Time-value functions seem to be a fairly natural expression of the utility of completing a given
computation as a function of time in many situations. A skilled operator in a process control environment
or a carefully constructed functional regquirements document for the system will often be capable of
describing all of the information encoded in atime-value function.

Although time-value functions are a relatively new formalism for expressing the relative urgency and
importance of each activity in a real-time system, they are beginning to make the transition into practice
and have been used successfully in afew selected contexts ([CMUGD 90, Alpha 90]).

10This act of assigning values to specific activities comprising an application corresponds roughly to the normal assignment of
priorities to activities (where the activities are often called processes or tasks). Through many years of experience, this procedure is
understood to some extent, but there are still some difficulties. For instance, in many modern applications a number of activities
coordinate to provide a single application-level logical function, such as material tracking —— that is, keeping track of materia as it
moves through a plant. In such systems, one activity provides a specific service, access to the tracking database, to a number of other
activities that have widely varying values. The assignment of a single value to the server activity is problematic. If it has been
assigned a lower value than the activity that it is currently serving, then it may not be scheduled as quickly as it should be. On the
other hand, if it has been assigned a higher value than the activity it is serving, then it may consume resources that could, and should,
be used by other activities. This problem is alleviated if an approach is taken where the activities in the computer application can
correspond directly to the application-level logical functions, while still providing for modular construction of the application. This
has been done in the Alpha Operating System ([Alpha 88]).

Introduction 15

1.5. Technical Approach

The technical approach described in this section was adopted to address the problem of scheduling with
dependencies and to explore and evaluate potential solutions. Briefly, the approach consists of the
following major steps:

1. define a computational model within which to work;

2.devise an agorithm that possesses the required properties and express it within the
computational model;

3. insofar as possible, demonstrate analytically the correctness, utility, and tractability of the
algorithm;

4. simulate the performance of the algorithm on common classes of supervisory control systems
and compare with other relevant algorithms or ideals.

The following sections outline each of these steps, and the results generated by this approach constitute
the mgjority of thisthesis.

1.5.1. Define Model

The first step, defining a computational model, is intended to provide a clear, useful framework that will
capture the essential aspects of the problem to be solved and will also support the specification of
unambiguous solutions, embodied primarily as scheduling algorithms. The need for a model that exhibits
al of the desired problem features, while excluding all factors that are non-essential for the problem
statement and solution is obvious. If the work is done with the simplest model that accurately expresses the
problem, then the work will be more comprehensible and succinct. Equally important is the requirement
that the model support the unambiguous specification of scheduling algorithms. Without such definitions,
the ability to perform precise/definitive analytic proofs to demonstrate properties of an algorithm will be
lost. Also, aset of requirements for problem solutionsis formulated in terms of the computational model.

1.5.2. Devise Algorithms

After the model has been created, it is possible to begin exploring various algorithms within the
framework provided by the model. While the computational model is intended to support the development
of a number of scheduling algorithms and will provide an excellent platform for the extension of this work
in the future, this thesis does not explore a wide range of aternative algorithms exhaustively. Rather, it
identifies and characterizes the behavior and performance of a single agorithm that has the desired
properties, called the Dependent Activity Scheduling Algorithm (DASA). This algorithm will be described
in two forms —— a formal, mathematical form that will be used to define the algorithm and to support
analytic proofs and a procedural form to provide a measure of the algorithm’'s complexity and to support
the simulation work that has been done.11

UActually, the mathematical definition features non-determinism in certain places, indicating that ordering is unimportant with
respect to the algorithm at those points. The procedural definition, however, does not contain any non-determinism and so can be
viewed as a single specific implementation of the algorithm that the mathematical definition describes.

16 Scheduling Dependent Real-Time Activities
1.5.3. Prove Properties Analytically

Once the DASA agorithm has been defined, analytic proofs that demonstrate that it satisfies the problem
requirements may be devised. The formal model that is used to describe the scheduling algorithms is based
on automata that accept certain sequences of scheduling events. There is a different automaton associated
with each distinct scheduling algorithm. So, for example, the automaton associated with the DASA
algorithm will accept any sequence of scheduling events that is consistent with the behavior of the DASA
algorithm. Such automata can also accumulate the value assigned to an execution history. By comparing
the execution histories accepted by the automata corresponding to different scheduling algorithms, proofs
can be constructed that show that two scheduling algorithms accept different histories. Furthermore, the
proofs may compare the values accumulated for all of the execution histories accepted by the automata
representing certain scheduling algorithms for a specific set of phases with specific time-value functions
and computation time requirements. (Taken together, these last two items —— a phase’ s time-value function
and its computation time requirement —— are referred to as the phase’s scheduling parameters.) Such
comparisons can be used to demonstrate that one scheduling algorithm is capable of generating schedules
that are superior to those of another algorithm, measured in terms of total value accrued by the application
during its execution history.

Unfortunately, real-time systems featuring complex, dynamic dependency relationships are quite
complex. And, although the analytic proofs can make some observations about the correctness, behavior,
and value of the algorithm, a complete case for its utility cannot be made without demonstrating its
performance under redlistic conditions. To address this need, simulations have been carried out to
investigate the performance of the DASA algorithm and to demonstrate properties that cannot be proven
analyticaly.

1.5.4. Simulate Algorithm

A parameterized workload has been devised that can mimic various numbers of activities displaying a
range of access patterns to a set of shared resources. Using this workload, a suite of simulations has been
run. These simulations compare the benefit of using the DASA agorithm instead of a more standard
algorithm —— for instance, a static priority or deadline scheduling algorithm with FIFO queueing for access
to each shared resource. They also compare DASA’s performance with a reasonable estimate of the
theoretical maximum value that can be obtained. The DASA scheduling algorithm is relatively complex
when compared to more standard scheduling algorithms. Consequently, in a uniprocessor implementation
of the agorithm, DASA will require more time to select an activity to execute than a more standard
algorithm would. In order to be fair in performing comparisons among scheduling algorithms, this
additional overhead is also taken into account. The simulation results reveal situations in which applying
the DASA agorithm will probably be profitable.

Chapter 2
The Scheduling M odel

Models are central to abstract study. They allow the salient features of a potentially complex system to
be isolated and restrict the size of the space of possibilities to be investigated. Properly specified, a model
provides an unambiguous definition of the behavior of a system and highlights the underlying assumptions
that are made by the investigator. Within the framework of the model, simulations and analytic analyses
may be performed.

To take advantage of al of these properties, a model has been devised that possesses the necessary
richness and within which scheduling algorithms can be studied. This chapter presents this model and
describes the rational e that shaped it.

A formal computational model has been constructed to facilitate the definition and formal analysis of
scheduling algorithms. Initialy, this model is presented informally in order to allow for a natural
discussion of the issues that shape the model and the intended structure of the model and the environment
provided by rea-time applications. This is followed with a formal description that provides a detailed,
precise specification of the model.

2.1. Informal Model and Rationale

The informal discussion of the computational model will describe each of the principal elements of the
model in general terms. This should allow the reader to have an intuitive grasp of the interplay of various
elements of the model without having to wade through a mass of symbols and mathematics. This will set
the stage for the presentation of the formal model, where all of the details will be specified for each of the
principal elements of the model.

2.1.1. Applications, Activities, and Phases

As mentioned in the previous chapter (in Sections 1.1 and 1.2), an application is composed of a set of
activities. Each activity, in turn, comprises a sequence of computational phases, and each computational
phase is characterized by a required computation time (indicating the amount of processor time it needs to
complete execution, assuming that all of the shared resources it needs are immediately available) and by a
time-value function that indicates its importance and urgency. At any given time, an activity is operating in
a single computational phase so that the activity can be uniquely identified by designating the phase that is

17

18 Scheduling Dependent Real-Time Activities

currently underway. Therefore, the complete set of activities can always be represented by the set of
phases currently in progress'2, and this set can be designated as:

{Pg Py Py -}

The execution of an application involves sharing the single processor among the set of active phases over
time. The determination of which phase to run at any given time is made by the scheduler, one of the major
components of the operating system, based on the relevant information availableto it.

2.1.2. Shared Resources

Phases may access shared resources. A request for such access is signaled by a phase by means of a
‘request’ event for the specific resource desired. Permission to access a shared resource is given to the
phase by means of a‘grant’ event.

Locks and semaphores, for example, arbitrate access to shared resourcesin areal system. Aswas stated
in Chapter 1, signals that synchronize the execution of activities can also be implemented based on
semaphores.

This research assumes that the shared resources required by a phase to complete successfully are not
known at the start of the phase. Although the resource requirements may be known for some phases in
specific applications, they may not be known for all phasesin al applications. Therefore, the decision has
been made not to rely on the availability of this information. (If some resource requirements are known,
the resources can be requested immediately after the phase has started so that the scheduler can make
decisions based on as much information as possible.)

There are often good reasons why not al of the shared resources that will be needed by a phase are
known when the phase is initiated. For example, concurrency may be increased by performing some
computation before requesting a shared resource. Concurrency can be increased due to two factors: (1) if
the request is made later, then the intervening time is available for other phases to access the shared
resource, and (2) finer granularity accesses are possible, allowing more of the data to remain available for
other phases.

An example of this second point is found in accessing a tracking database. Assume that at the start of a
phase, it is known that atracking database record will be updated, but that the exact identity of the record to
be accessed is not known. It is determined by correlating various data sources as part of the phase. This
leaves the phase two options:. either it can request access to the entire database (or a possibly significant
subset of it) at the start of the phase, thus denying other phases access to the database; or it can wait until it
has determined the record to be accessed and then request access to only that record, thus alowing other
phases nearly unrestricted access to the entire database for the phase’ s duration.

L2For the purposes of this model, a phase is considered to be "in progress' as soon as it is made known to the operating system. So,
for instance, a phase that has never executed a single instruction of its code is nonetheless considered to be in progress —— it has
progressed far enough to submit its initial resource request (in terms of required processing time, importance, and urgency) to the
system.

The Scheduling Model 19

All shared resources that are held by an activity must be released at the completion or abortion of each
computational phase. Although this assumption may seem to be restrictive, it is justifiable on two counts.
First of al, when a phase represents a distinct logical stage in a computation, there is good reason for
expecting that the resources used to carry out that phase may be released upon its completion. Of course, if
phases are used to represent very fine grained portions of a computation, then this assumption may be
called into question. However, since each phase is a unit of computation that corresponds to a single
time-value function, and since the time constraints that dictate the time-value functions are derived by the
physical necessity of completing a computation in a certain time frame, it seems clear that using phases to
delimit very small portions of an activity departs from the expected, and useful, application of phases to
decompose activitiesin areal-time system.

The existence of stylized applications or system facilities gives rise to the second justification for the
assumption that all shared resources are released at the completion of a computational phase. For instance,
an atomic transaction facility would exhibit exactly this behavior with respect to shared resources. Yet,
while the use of transactions in real-time systems is appealing, the question of how to schedule them is
unsolved. By alowing this model to capture the behavior of transaction facilities as well as the assumed
normal behavior of real-time activities, the work presented here may constitute a somewhat greater research
contribution.

2.1.3. Phase Preemption

At any given time there is one phase that is actively executing on the processor. That phase may be
preempted by the scheduler at any time. A preemption is signaled by a‘ preempt-phase’ event. Should the
scheduler subsequently determine that the phase should be resumed, it would issue a‘resume-phase’ event.

2.1.4. Phase Abortion

The scheduler may decide to abort a computational phase at any time. The scheduler initiates an abort by
issuing an ‘abort-phase’ event for the chosen phase.

A phase might be aborted to free a shared resource more quickly than it would otherwise be freed. Or, a
transaction facility ([Eswaran 76]) might issue an abort in response to a component failure or to resolve a
detected deadlock13.

The amount of time required to completely process an abort depends on the number and type of resources
held by the phase being aborted. Each time access to a new shared resource is granted to a phase, the
amount of time required to abort the phase is incremented by an amount dependent on the newly granted
resource.

13A deadlock exists among a set of phasesif each member of the set requires access to a resource that is held by some other member
of the set in order to make further progress. In such a situation, none of these phases can make progress, and an abort may be issued to
force one phase to release the resource(s) it is holding, thereby resolving the deadlock.

20 Scheduling Dependent Real-Time Activities

The incremental amount of abort time associated with a resource may arise from several sources. For
instance, for resources that are treated like data objects in a traditional database system, each data object
altered during the course of an aborted transaction must be returned to the same state it had prior to the
transaction. The time required to restore this pre-transaction state is determined by the time required to
find the desired value followed by the time required to actually update the data object.

In other cases, more must be done than merely restoring the state of the appropriate memory locations.
Real-time systems often control physical processes by regulating actuators that cause changes in the
physical environment. Permission to manipulate an actuator may be acquired by successfully requesting
exclusive access to a shared resource that is logically associated with the actuator. Once access to the
resource has been granted, the actuator is available to, and manipulated by, the requesting computational
phase. If the phase is subsequently aborted during its execution, then it is quite possible that the actuator
may have to be manipulated once more in order to return the physical environment to an acceptable state.
The amount of time required for such compensating actions must be included in the time allotted for abort
processing for each resource of thistype.

Those shared resources that represent synchronization signals between computational phases carry with
them an infinite abort time. This reflects the fact that aborting a phase that would generate a signal upon its
successful completion should not cause that signal to be sent. Rather, the signal’s receiver must wait until
the signaler has truly completed execution.

Following the completion of an abort, the affected activity will be ready to reexecute the aborted phase if
time and resources permit.

2.1.5. Events

To motivate the development of aformal model, imagine that all of the major components of an operating
system interact by signaling specific events to one another. Conceptually, these events encapsulate
information and commands, and they can originate within the operating system or from the computational
phases comprising the application.

As shown in Figure 2-1, each event includes an event timestamp, an operation name, appropriate
arguments for the operation, and the originator of the event. Timestamps are used to provide a global
ordering of all scheduling events. There are a small number of scheduler-related operations, which will be
described below. And, asfar as scheduling-related events are concerned, the originator of an event is either
the scheduler itself (meaning that the event passed across the interface from the scheduler to the rest of the
operating system, possibly continuing on to an application phase) or an individual phase (meaning that the
event passed from that phase to the scheduler, via the operating system).

The Scheduling Model 21

tevent op(parms) O
where,

t is atimestamp,

op is a scheduling operation (as defined in Fig. 2-5),

parms isthe set of arguments for the operation op,

@] isthe originator of the event (either p, for a phase, or S,

for the schedul er)
Figure2-1: Format of Scheduler Events

2.1.6. Histories

Given this model of operating system structure, an observer located within the operating system could
watch an application execute and monitor the interface between the scheduler and the rest of the operating
system. (SeeFigure 2-2.) The observer could then record a sequence of timestamped events passing across
this interface. Conceptually, these events would represent the communication of information and
commands to and from individual activity phases and the scheduler.

resume-phase preempt-phase
Application

OS
rgst \grant

Scheduler Intf.

<l

Observer

Figure 2-2: An Observer Monitoring the Scheduler Interface

22 Scheduling Dependent Real-Time Activities

Such a sequence of scheduling events is called a history. In general, any sequence of scheduling events
congtitutes a history, although not all histories are meaningful. To aid in recognizing which histories are
potentially meaningful, definitions have been developed for well-formed histories (for example, timestamps
must increase throughout the history and only the event operations listed in Figure 2-5 can be included in
it) and for legal histories —— that is, well-formed histories where the sequence of events is plausible, for
example, ‘request’s precede ‘grant’s. Operations on histories have also been defined to facilitate their
manipulation. For simplicity, the only histories that are ever dealt with in formal anaysis, after the
introduction of these definitions, are legal, well-formed histories. (The definitions referred to in this
paragraph are presented in Section 2.3.2.8.)

Different schedulers will select different activities for execution based on the relevant scheduling
parameters for each phase under consideration. Consequently, different histories will be generated by
different schedulers, even though they may be executing the same application under the same conditions.
Examining these histories allows the performance and behavior of the schedulers to be compared and
contrasted. Formally, the histories are examined by a specia type of finite state automaton, called a
scheduling automaton.

2.1.7. Scheduling Automata

Since events and histories have been defined formally, automata can be created that recognize legal
histories corresponding to various scheduling algorithms. Such an automaton is called a scheduling
automaton and is shown in Figure 2-3.

. _ Scheduling
istory: eo’ el, 92 Automaton

— accept/reject

Figure 2-3: Scheduling Automaton

Each scheduling automaton incorporates a scheduling algorithm. The automaton accepts —— that is,
recognizes —— any history that could have resulted from the use of the scheduling algorithm that it
embodies. All other histories contain some sequence of scheduling events that could not possibly have
resulted from the use of the embodied scheduling algorithm and are rejected by the automaton.

The Scheduling Model

2.1.7.1. General Structure

Figure 2-4 illustrates the structure and the internal components of a scheduling automaton.
automaton examines each event in a history in turn. Each event is either accepted or rejected.

individua event is rejected, then the entire history is rejected.

23

The
If any

Operation Selector

Event

Params

tevent OP(Params)
I [

t

P
Ko

Rejec Posy
=

Rejec Post,

L
- T

P
e

Rejec Pos},

o

Accea

State

Comps

Figure 2-4: Scheduling Automaton Structure

Each event comprises an operation, a timestamp, and a set of parameters for the designated operation.
The automaton associates a precondition with each type of event operation. When considering an event,

24 Scheduling Dependent Real-Time Activities

the automaton’s Operation Selector activates a test that determines whether the precondition associated
with the event’s operation is satisfied. If it is, then the event is accepted, and the actions specified in the
postconditions for the operation are performed. If, on the other hand, the precondition for the event's
operation is not satisfied, the event —— and hence the entire history —— is rejected.

Thisisillustrated in Figure 2-4. The diamond-shaped boxes represent the preconditions associated with
the n event operations that may be accepted by the automaton. In a manner analogous to a flowchart, the
diamond-shaped boxes have two possible outcomes, and an arrow leaves the box for each outcome. If the
precondition test fails, the arrows marked "f" indicates that the history is rejected. Otherwise, the arrow
marked "t" indicates the the postconditions associated with the operation must hold.

The operation preconditions in the automaton test various conditions. These conditions may involve the
values of the automaton’s state components, the event timestamp, or the parameters for the event operation
in question!®. The state components constitute the internal state of the automaton that persists across
events. On the other hand, the information contained in the Event Parameters box does not persist from
one event to the next — it simply represents the operation parameters and the timestamp for the current
event.

The availability of thisinformation for precondition testing is shown by the arrows leading from the State
Components and Event Parameters boxes to each precondition box.

The postconditions that must hold after an event has been accepted may change some of the state
component values, as indicated by the arrows leading from each postcondition box to the State Component
box.

If al of the eventsin a history have been accepted, the Operation Selector signals the final step — shown
as asingle box containing the word "ACCEPT" —— to declare that the history has been accepted.

2.1.7.2. Specific Scheduling Automata

The preceding discussion outlines a standard automaton framework for expressing scheduling algorithms.
Each instance of a scheduling automaton for a specific scheduling agorithm would specialize this genera
form. This would typically involve: (1) the alteration of the preconditions and postconditions for the
operations accepted by the automaton; (2) the addition of some algorithm-specific state components; and
(3) the specification of a function that would select the phase to be executed at times dictated by the
automaton’ s postconditions (or, perhaps, its preconditions).

It is largely through the last specialization — the selection function definition —— that the scheduling
algorithm embodied by the automaton is manifest. Different algorithms choose successor phases according
to different criteria. (They may also be invoked to make selections at different times, so that the selection
function alone does not completely differentiate all schedulers.)

1n principal, the originator of the event could also be tested by the precondition, but this has not proven useful to date.

The Scheduling Model 25

The General Scheduling Automaton Framework is a scheduling automaton that lacks a few critical
pieces. While, it displays the structure of a scheduling automaton and has a number of state components, it
is intentionally general and does not embody any specific scheduling algorithm. Later in this chapter (in
Section 2.3.2), portions of this automaton framework will be examined in more detail.

In later chapters, specific scheduling automata of interest will be studied. These will be presented as
extensions or specializations of the General Scheduling Automaton Framework, sharing its structure and a
superset of its state components.

2.2. Assumptions and Restrictions of M odel

The computational model presented is quite general. In order to focus on the questions of greatest
immediate interest in this thesis, afew simplifying assumptions have been made. In particular, two specific
assumptions should be stated and examined at this point.

First of all, time-value functions are restricted to be simple step functions. The most important issue to be
studied in the thesis is how to use dependency information to construct a schedule that maximizes the value
that an application accrues without spending too much time performing scheduling decisions. Thisissueis
best isolated if considerations such as maximizing the value attained by completing a phase are initially
ignored. Thisis an issue that should be dealt with in the future, but it seems like a second-order effect for
most systems.

Secondly, the compute time required by an activity to complete a computationa phase is assumed to be
known accurately. In many real-time systems, this is a fairly reasonable assumption. Adding additional
information to describe the actual distribution of computation times may increase the quality of the
scheduling decisions, but it will also involve more calculations and therefore be more costly. For the
simple types of computations done in typical supervisory control systems, it may well be sufficient to take
the simpler approach first, at a dightly reduced cost.

2.3. Formal M ode€l

In order to provide a precise framework in which to discuss scheduling policies for real-time activities,
the following formal model has been adopted. It accommodates the aspects of the problem domain that
were presented in Chapter 1 and includes all of the ideas discussed informally in the preceding sections of
this chapter.

Before discussing the model itself, the notation that is employed is described, followed by definitions of
key primitives in the model. Next, the forma model is presented in depth. This discussion is focused
around the definition of the General Scheduling Automaton Framework. All of the other scheduling
automata referred to by this work will be defined with respect to this framework. Finally, a number of
observations concerning the formal model are outlined.

26 Scheduling Dependent Real-Time Activities

2.3.1. Notation and Definitions

This section describes the notation that is used throughout the rest of this and subsequent chapters. The
notation is explained at this point so that al of the discussion that follows can be interpreted
unambiguoudly.

2.3.1.1. Naming Conventions

A set of conventions are employed in defining the computational model and the scheduling automatal®:

1. Identifiers written in al capital letters denote domains of values (for example,
"TIMESTAMP" or "BOOLEAN").

2. Individual values from these domains are written in all lower-case letters (for instance, "t," or
"true").

3. Each scheduling automaton has certain state components associated with it. They are
designated by identifiers that begin with a single capital letter followed immediately by at
least one lower-case letter ("Total" or "AbortClock," for example).

4. If an automaton accepts an event in a history, the postconditions associated with the accepted
event hold. When these postconditions result in modifying the value of a state component,
the new value is followed by an apostrophe. (For instance, "Clock’ = Clock + 1" means that
the new value of the automaton state component named "Clock" is one greater than the old
value.)

2.3.1.2. Mode-Phase Pairs

Typicaly, specifying the current workload of the processor is simply a matter of naming the phase that is
being executed at this time. However, since it is possible to execute a phase normally or to abort it, it is
necessary to refer to the computation being performed on the processor at any given time as a mode-phase
pair. Such apair specifies both the phase that is being executed and the mode of execution (either ‘ normal’
or ‘abort’), and it iswritten as an ordered pair delimited by angle brackets: <m, p>.

Two auxiliary functions exist to select the individual fields from a mode-phase pair. Specificaly, if
mpp = <m, p>, then:
Mode(mpp) = Mode(<m, p>) =m

Phase(mpp) = Phase(<m, p>) = p
2.3.1.3. Time-Value Functions

The simplified time-value functions studied in this work are described as step functions, where the
amplitude of a function indicates the value of completing the corresponding phase on time. Let the
time-value function for phase p be given by:

Value(p) = step(val, t)
where,

1550me of these conventions and much of the notation in general has been modeled after the style used in [Herlihy 87].

The Scheduling Model 27

t. isthecritical time, or deadline, for this phase of an activity,
val > 0, isthe value associated with completing a phase by its deadline, and

septval i =f VAt
0, ift>t,
Then define the following functions that select parameters from the simplified time-value functions:
Deadline(p) = DL(Value(p)) = DL(step(val, t)) =t

Val(p) = V(Value(p)) = V(step(val, t)) = val

2.3.2. The General Scheduling Automaton Framework (GSAF)

The General Scheduling Automaton Framework, expressed within the formal structure described in this
and previous sections, provides an overall specification for the generic scheduling automaton. Although it,
in fact, embodies no specific scheduling algorithm and is incompletely specified in other respects as well,
the automaton framework is useful because al of the automata discussed in the rest of thiswork are derived
by modifying it in relatively minor ways.

In the following sections, formal definitions will be given for activities, phases, shared resources, events,
operations, and histories. Within this context, the various parts of the General Scheduling Automaton
Framework can be expressed formally aswell. These parts include the automaton state components and the
preconditions and postconditions associated with the operations accepted by the automaton.

2.3.2.1. Applicationsand Activities

An application is composed of a set of activities, each of which comprises a sequence of computational
phases. At any given time, these activities can be referred to by means of the phase that they are currently
carrying out. Therefore the set of activities can be represented by the set of phases currently defined:

{Pg: Py Py - }
2.3.2.2. Eventsand Histories

While executing an application, an observer located within the operating system could monitor a
seguence of time-stamped events passing to and from the scheduler. These events are of the form:
tevent OP(PArms) O

where,
t is atimestamp,
op is the operation associated with the event (as defined below),
parms arethe argumentsfor the operation,
0] isthe originator of the event (either p, for a phase, or S,
for the scheduler)

A sequence of these eventsis called a history. Notice that some of these events are generated by individual
phases and some are generated by the scheduler.

28 Scheduling Dependent Real-Time Activities

2.3.2.3. Operations

The operations that may occur in events, and the potential originators of each, are shown in Figure 2-5.

Operation Type Potential Originator(s)
request-phase(v, texpected) Phase
abort-phase(p) Scheduler or Phase
preempt-phase(p) Scheduler
resume-phase(p) Scheduler
request(r) Phase
grant(p, 1, tnqo) Scheduler

where
v isatime-value function,
Loxpected is t_hg time required to executg the phase, assuming no

waiting must be done to acquire shared resources,

p designates a phase,
r designates a shared resource, and
tundo isthe time required to restore a shared resource to its

pre-‘grant’ed state

Figure 2-5: Operation Types and Originators

The general meaning and usage of each of these operations may be stated very briefly:

* ‘reguest-phase’ —— ends one computational phase and describes the requirements of the next
atomically;

« ‘abort-phase’ —— aborts the designated phase, returning all of the shared resources held by the
phase to acceptable states for use by other phases;

« ‘preempt-phase’ — suspends the currently executing phase;

* ‘resume-phase’ —— resumes a phase that had previously been preempted or initiates a new
phase;

* ‘request’ —— signals arequest for access to a shared resource;

« ‘grant’ —— grants permission to access a shared resource.

However, the precise meaning and usage of these operations is wholly dependent upon the scheduling
discipline embodied by the automaton. For instance, one automaton (embodying a FIFO or priority
scheduling algorithm, for example) may deem that a new ‘request-phase’ event may be signaled by the
currently executing activity at any time and that the activity may continue executing; while another

The Scheduling Model 29

automaton (embodying the DASA scheduling algorithm, which is presented in Chapter 3) may require that
a scheduling decision must be made at that point, possibly resulting in the execution of a different activity.
Similarly, the rules for when, and even if, phases may be preempted or aborted may vary from automaton
to automaton.

Section 2.3.2.10 describes, in a little more detail, the semantics associated with these operations. Once
again, there is some vagueness due to the fact that the definition is couched in terms of an automaton
framework and not a true automaton instance. In Chapter 3, specific definitions will be presented for the
operations accepted by the DASA Scheduling Automaton.

2.3.2.4. Computational Phases of Activities

The individual computational phases that comprise an activity are delimited by ‘request-phase’ events. A
‘request-phase’ event simultaneously ends one computational phase of an activity and describes the known
requirements of the the next computational phase.

Each phase that is successfully completed contributes value to the overal application. That value is
determined by evaluating the time-value function describing the phase just completed at the time of
completion. On the other hand, an aborted computational phase contributes no value to the overall
application — although it may free resources that allow other critical phases to execute.

2.3.2.5. Shared Resour ces

Phases may access shared resources. A request for such access is signaled by a phase by means of a
‘request’ event for the specific resource desired. Permission to access a shared resource is signaled to the
phase by means of a‘grant’ event.

All shared resources that are held by an activity must be released at the completion or abortion of each
computational phase.

In addition to the identifiers that represent shared resources, there is also a special identifier, nullresource,
that does not refer to any shared resource. It has been introduced for notational convenience so that formal
definitions can refer to the nullresource to indicate that a specific phase is not currently requesting or
accessing a shared resource.

2.3.2.6. Phase Preemption and Resumption

At any given time there is one phase that is active. It may be preempted by the scheduler. This is
signaled by a ‘ preempt-phase’ event. The scheduler may subsequently determine that the phase should be
resumed; thisis signaled by a‘resume-phase’ event.

The computational model allows a phase to be preempted at any time. Individual scheduling algorithms
may restrict this by only allowing preemption at specific times or by not permitting preemption at all. This
type of behavior is formally described in the precondition of the ‘ preempt-phase’ event operation for each
specific scheduling automaton.

30 Scheduling Dependent Real-Time Activities

2.3.2.7. Event Terminology and Notation

Some additional terminology and notation will be useful for discussing events. Let an event, e represent
the following event:
op(parms) O

€= tovent

Then define the following simple functions:
timestamp(€) = tq oy

eventtype(e) = op

source(e) = O
2.3.2.8. Definitions and Properties of Histories

Earlier, a history was defined as a sequence of events. Not al histories are meaningful or well-formed.
Letey €, €, ... denoteevents. Then, formally, ahistory, H, can be denoted as:
H=g kg & 0... [k,
where the operator "[denotes concatenation. This notation indicates that event e, appears first in history
H, followed sequentially by the other events in the specified order. An empty history —— that is, a history
that has no events —— is denoted by the symbol "@."

Informally, a projection of a history selects designated events from the history, preserving their relative
positions. For instance, one projection of a history could include al of the ‘request-phase’s from that
history, while another projection of the same history might include &l of the events that dealt with a
specific phase. The symbol "|" denotes a projection. So for example, H | p represents the projection of
history H onto phase p. This projection would include all of the events that were originated by phase p or
that were originated by the scheduler and included p as an operational parameter. As another example, the
projection H | A represents the projection of history H onto activity A, thereby including all of the events
that involve activity A.

The conditions that define awell-formed history include!6:

1. event timestamps must increase monotonically and must be unique —— test: examine the
timestamps on events; for example, apply the function timestampsOK() to a history H to verify
that it meets this requirement, where timestampsOK() is defined as:

timestampsOK () = timestampsOK(e) = true

timestampsOK (g, [&,[H)
:{ false, if timestamp(e;) > timestamp(e,)
timestampsOK (e, [Hl), otherwise

18/t is not always clear that a specific test be a requirement of a well-formed history or whether it is a requirement that determines
which histories will be accepted by a given automaton. There is no question that the proper tempora ordering of events is a
requirement for a well-formed history; however, tests that constrain the relative ordering of specific events —— for instance, ‘request’
and ‘grant’ events — in a history are not so obviously requirements for a well-formed history. As a result, this list is merely an
attempt to lay down an initial set of tests. Some of these tests need not be done prior to submitting the history to an automaton —— in
those cases, the automaton will enforce the requirements verified by the testsin question.

The Scheduling Model 31

2. the request for a resource must appear in the schedule before the corresponding grant
3. aphase cannot be preempted if it is not active, it cannot be resumed if it is active, and so on

4. a given phase either commits or aborts; the events assure that a single phase cannot do both;
however, a well-formed history must have at most one ‘abort-phase’ event for any given
phase

5. expected compute time is accurate —— test: check that the estimated computation time equals
the actual computational time used; for example, the following test could be applied:
ctaccurate(@) = true

ctaccurate(H) = (OA)(activityOK(H | A))
where,
activityOK(H) = true iff
(Ce)[((e =t request—phase(v, t.) p) O (CH,, Hy)(H = H,[EH,))
— ((comptime(H,) =t.) O phaseaborted(H,) [phaseunfinished(H,))]

comptime(p) =0
comptime(e) = oo

comptime(e, [8,H)17 =
t, —t; + comptime(H), if [, = t; resume—-phase(p) S
Oe, =t, grant(p) §
O[e, =t, preempt—phase(p) S
Oe, =t, request(r) p
t,-t, if [, = t; resume-phase(p) S
Oe, =t, grant(p) §
O[e, =t, request—phase(v, ty) p
Oe, =t, abort—phase(p) O]
0o, otherwise

phaseaborted(¢) = false

phaseaborted(elH)
true, if e =t abort—phase(p) O
= false, ife =1, request—phase(v, t,) p
phaseaborted(H), otherwise

phaseunfinished(g) = true

phaseunfinished(elH)

false, if e =t abort—phase(p) O
= Oe=t, request—phase(v, t,) p
phaseunfinished(H), otherwise

17This function is designed for a scheduling discipline that initiates execution of a new phase with a ‘resume-phase’ event and
which uses ‘request-phase’ and ‘abort-phase’ events to terminate phases. As was stated in Section 2.3.2.3, some scheduling
disciplines may impose different specific meanings for these events. Although the interpretation described here is accurate for many
scheduling disciplines, it isonly used at thistime to illustrate the type of tests that can be employed.

32 Scheduling Dependent Real-Time Activities

6. expected abort time is accurate —— test: similar to the previous test

7. esti rrllgted computation time required for a phase must always be greater than or equal to
zero

8. no ‘request’ event should request access to the nullresource

The preceding list includes tests to determine whether or not a history is well-formed with respect to
certain conditions. These tests are typical of those that may be developed to examine histories. Similar,
usually simpler, tests can be devised for al of the other conditions.

2.3.2.9. Automaton State Components

The state components associated with the General Scheduling Automaton Framework are shown in
Figure 2-6. Each component and the range of valuesit may take on, is described below.

ExecMode. ExecMode is a relation that associates an execution mode with each phase. At any given
time, a phase can be either executing normally or aborting. Also at any time, a normally executing phase
can be aborted. Once an abort isinitiated, it must be completed before normal execution of the entire phase
can again be attempted.

ExecClock and AbortClock. The next two state components shown in Figure 2-6 are used to track the
amount of time required to complete the normal execution or the abortion of a phase. When a phase is
executing normally, the relation ExecClock indicates the amount of processing time needed to successfully
complete the execution of that phase. Similarly, when a phase is aborting, AbortClock indicates the amount
of processing time needed to complete the abort processing.

At the start of a new phase, ExecClock associates a value provided by the activity with the phase. If the
phase was executed in isolation?9, ExecClock specifies the amount of time that would elapse before the
phase would complete executing. Each time the phase executes, the value of ExecClock for that phase
decreases. When it reaches zero, then the phase has completed execution.

On the other hand, AbortClock represents the time required to abort the current phase. In addition, the
exact length of time required to abort the phase depends on the number and type of shared resources that it
has acquired. Therefore, since no shared resources have yet been acquired, AbortClock is zero at the start
of every phase. Subsequently, after any shared resource is requested and granted, the value of AbortClock
is incremented by an amount that is a function of that resource. This amount of time has been chosen to
allow the shared resource to be returned to an acceptable state so that other phases may use it.

18An additional requirement may also be placed on the parameters of a ‘request-phase’ event: the value function must be of the
appropriate form, as outlined below. This requirement has not been included in this list because the tests that are present all apply to
the general case of scheduling with dependency considerations in a real-time environment using information available from arbitrary
time-value functions. This requirement is related to a simplification made to make the work more clear and more manageable, and so
does not seem to carry the same weight as the others listed above.

20By executing in isolation, contention with other activities for both processor cycles and shared resourcesiis eliminated. In fact, the
phase does not execute in isolation and these factors cannot be ignored —— leading to this scheduling work.

The Scheduling Model 33

General State Components.
* ExecMode: PHASE —. MODE (MODE is either ‘normal’ or *abort’)

e ExecClock: PHASE - VIRTUAL-TIME

 AbortClock: PHASE - VIRTUAL-TIME

* ResumeTime: PHASE - TIMESTAMP

* Value: PHASE - (TIMESTAMP - VALUE)

e Total: VALUE (initialy ‘0")

* RunningPhase: PHASE (initialy ‘nullphase’)

« PhaseElect: MODE x 19 PHASE (initially ‘<normal, nullphase>’)
* PhaseList: list of PHASE (initialy ‘@)

Domains for State Component Values:
* MODE: normal [0 abort

* PHASE: O {pg, P1, Py, ... } O nullphase

* RESOURCE: O {rg, rq, 15, ... } Onullresource

* TIMESTAMP: real number, expressed in ticks of standard clock

* VALUE: real number = 0

* VIRTUAL-TIME: real number = 0, expressed in ticks of standard clock

Figure 2-6: State Components of General Scheduling Automaton Framework

ResumeTime. ResumeTime associates with each phase the time at which it last resumed execution. This
value is useful in keeping the values of ExecClock and AbortClock accurate for the executing phase.
Whenever the currently executing phase is surrendering the processor, ResumeTime can be compared to the
current time to determine the amount of computation time consumed by the phase —— thus alowing
ExecClock or AbortClock to be updated, depending on the current execution mode.

Value. The relation Value associates time-value functions with phases. In this case, the time-value
functions are themselves represented by relations: given atime, atime-value relation will return the value
accrued by completing the phase at that time. As stated in Section 2.2, the time-value functions considered
in thiswork are simple step functions.

Total. Total accumulates the values accrued by successfully completing phases. Initially, since nothing
has been accomplished, Total iszero. Then, after any phase is successfully completed, the amount of value
indicated by the phase’s Value relation for that completion timeis added to Total.

19This designates a cross product. That is, PhaseElect is actually a mode-phase pair, as described in Section 2.3.1.2.

34 Scheduling Dependent Real-Time Activities

The values of the Total state components of two different scheduling automata that have worked on the
same application can be compared to determine which yielded a higher total value for the application.
(This fact will be used in simulations and proofsin later chapters when comparing two different scheduling
algorithms.)

RunningPhase. RunningPhase indicates which phase is currently executing on the processor. If no
activity is currently executing —— asisthe caseinitially —— RunningPhase is equal to nullphase.

PhaseElect. PhaseElect also indicates a phase. In this case, it is the phase that should be executing now.
If thisis different than RunningPhase, then the currently executing phase should be suspended and replaced
by the PhaseElect. Once again, in the initially empty system, PhaseElect specifies that the nullphase
should be executed normally.

PhaseElect names not only the phase to be executed but also the execution mode for the phase.

PhaseList. Phaselist is simply a list containing al of the phases known to the automaton. This list
changes as new phases arrive and old phases are completed. Initially, since there are no phases PhaseList
is empty.

Automaton-Specific State Components. Other state components are also associated with an automaton.
These are used to handle some of the bookkeeping details for the specific scheduler being used. The
components that appear above are intended to reflect the state that any specific scheduler would need and
maintain under this general model.

Specific initiadl values may be given to many of these state components in order to satisfy the
requirements of a given automaton.

Domains for State Component Values. The domains that supply the values for the state components
are straightforward and are shown in Figure 2-6 along with the state components of the General Scheduling
Automaton Framework. The domain MODE contains only two values: normal and abort. The domain

PHASE consists of all of the phases known by the automaton as well as the nullphase. Similarly, the domain
RESOURCE consists of all of the shared resources known to the automaton as well as the nullresource. The
values from all of the time-value functions are drawn from the domain VALUE. These must be positive
(according to the assumptions stated earlier in Section 2.3.1.3) and are chosen from the real numbers so that
there are no unnecessary restrictions placed on them. The domain VALUE also contains zero since Total
receives its value from this domain and it initially has no accrued value.

Time is central to the behavior of real-time systems, and the domain TIMESTAMPS provides a source of
markers in time for the automaton to use. Each timestamp is expressed in terms of ticks of a standard
clock. The ticks of this clock are equally spaced in time; and in fact, nothing in the model prevents the
timestamps from taking on fractional numbers of ticks —— thus alowing arbitrarily great precision to be
obtained in representation of times.

The Scheduling Model 35

The other domain related to time is the VIRTUAL-TIME domain. Values from this domain represent time
durations. Once again, they are expressed in terms of ticks of the standard clock. These durations are used
to supply values for state components like ExecClock and AbortClock where only non-negative durations
are meaningful.

2.3.2.10. Operations Accepted by GSAF with Preconditions and Postconditions

The operations recognized by the General Scheduling Automaton Framework are shown in Figure 2-7.
(Notice that this figure has two parts, appearing on pages 35 and 36, respectively.) Minimal, or skeletal,
preconditions and postconditions for each operation are included in the figure.

* toyent F€QUESt-phase(v, t@(pected) p:

preconditions:
true <No preconditions here so that interrupts and other new phases

can occur at any time>
postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total’ = Total + Vaue(p)(t
else
;no value for aborted phase
endif
;release the resources acquired during the phase
endif

ev ent)

;accept values for scheduling parameters
Value (p) =v

ExecClock’ (p) = texpected

AbortClock’ (p) =0

ExecMode (p) = normal

;hote that p is not resource-waiting

;make sure p is part of the list of phases, if necessary
if (texpected > 0) then
PhaseList’ = PhaseList O {p}
else
PhaseList’ = PhaseList - { p}
endif
* toyent A0Ort-phase(p) O:
preconditions:

<Specific to the scheduler under consideration>

postconditions:
ExecMode (p) = abort

ResumeTime' (p) = tq et

Figure 2-7: Operations Accepted by General Scheduling Automaton

36 Scheduling Dependent Real-Time Activities

* toyent Preempt-phase(p) S

preconditions:
<pecific to the scheduler under consideration>

postconditions:
if (ExecMode(p) = normal) then

ExecClock’ (p) = ExecClock(p) - (t ResumeTime(p))

event ~
else
AbortClock’ (p) = AbortClock(p) - (t

endif
* toyent F€SUMe-phase(p) S
preconditions:
<pecific to the scheduler under consideration>
postconditions:
ResumeTime' (p) =ty ent
* tayent FEQUESK(r) p
preconditions:
<Specific to the scheduler under consideration>
postconditions:
ExecClock’ (p) = ExecClock(p) - (t

* toyent Arant(p, r, undotime(r)) S
preconditions:
<Jecific to the scheduler under consideration>

postconditions:
ResumeTime' (p) =ty ent

AbortClock’ (p) = AbortClock(p) + undotime(r)2:

ResumeTime(p))

event -

- ResumeTime(p))

event

Figure 2-7: Operations Accepted by General Scheduling Automaton, continued

In later chapters, some specific scheduling automata will be discussed in detail. Each discussion will
include a description of the preconditions and postconditions associated with the operations accepted by the
automaton under consideration. Consequently, the discussion of those topics in this section will be brief.
Only the highlights and general structure of an automaton’s operation specification will be addressed here.

Since the ‘request-phase’ event denotes the initiation of each computational phase of every application
activity, it is accepted by every scheduling automaton. Furthermore, its precondition is simply "true",
indicating that new phases can arrive at any time. This does not necessarily require that a new scheduling
decision must be made upon the arrival of each new phase, although some automata may do just that.

2IThe function ‘ undotime()’ indicates the amount of time that will be required to restore the resource just acquired to an acceptable
state for use by another activity. In many cases, this may simply involve returning the resource to the state it had at the time it was
acquired. In other cases, returning the resource to any of a number of semantically equivalent states may be sufficient or actions may
have to be performed to affect the physical process under controlled. The actions required and the amount of time they will take may
vary from system to system and from application to application. Consequently, for the purposes of this work, they have been cast as a
function that actsto indicate their role without applying a single definition across all resources or applications.

The Scheduling Model 37

Since such a scheduling decision is not made in every scheduling automaton, no decision is made in the
General Scheduling Automata Framework.

In the same spirit, the postconditions for the ‘request-phase’ event include only those conditions that will
almost certainly belong in every scheduling automaton of interest. Those postconditions: (1) accumulate
any value accrued from completing a previous computational phase of the same activity; (2) initialize the
automaton’s state components to capture the new phase's scheduling parameters; and (3) update the list of
phases known to the automaton based on the new phase' s scheduling parameters.

Notice that value is accumulated for the completion of a previous phase only if the currently executing
phase issues the ‘ request-phase’ event, thereby signaling that the current phase has completed execution. |If
some other activity issues the ‘request-phase’ event, it is signaling the existence of a new phase to the
automaton while a different phase is executing, so no phase completion has occurred.

In addition, no value is accrued for a phase that has been aborted. If, on the other hand, the phase has
completed successfully the value accrued is determined by evaluating its time-value function at the time of
completion.

Finally, sinceit requires a positive amount of time to accomplish any processing, Algypecteg PATAMELE that
is less than or equal to zero indicates that there is no subsequent computational phase for the activity
issuing the ‘request-phase’ event. In that case, the phase is removed from the PhaseList; in all other cases,
the phase isincluded in the PhaseL.ist.

The ‘abort-phase’ event in the General Scheduling Automaton Framework is similar to the remainder of
the scheduling events: its precondition is automaton-specific and its postconditions specify bookkeeping
that must be done in the event that the event occurs. In particular, the ‘abort-phase’ event’s postconditions
change the phase’ s execution mode to abort and note the time that the phase began aborting. In the event
of a preemption, this time (ResumeTime) will be consulted to adjust the phase’s AbortClock to indicate the
amount of time required to complete the abort processing, which will be used in subsequent scheduling
decisions.

The ‘preempt-phase’ event has an automaton-specific precondition. Its postconditions handle the
bookkeeping associated with preempting the executing phase. Specifically, ExecClock or AbortClock is
updated to reflect the amount of time still required to complete the normal or abort processing of the phase,
respectively. This is accomplished by subtracting the amount of time the phase had executed prior to the
preemption from the amount of time it still needed to complete processing before it began that execution.

A ‘resume-phase’ event is used to resume execution of a phase that had been suspended by a
‘preempt-phase’ event. The ‘resume-phase’ event, which has an automaton-specific precondition, simply
notes the time at which the designated phase resumed execution. This time is used to adjust the state
components dealing with the required execution time of the phase whenever the phase is subsequently
preempted.

38 Scheduling Dependent Real-Time Activities

Once again, the ‘request’ event has an automaton-specific precondition. Its postcondition updates the
appropriate state component clock for the phase, depending on its execution mode. This is done to
facilitate the use of a scheduling decision as aresult of arequest for a shared resource. The updating of the
relevant state components ensures that the automaton will make a decision based on the most up-to-date
information.

The ‘grant’ event, which also has an automaton-specific precondition, notes the time at which the phase
is awarded the shared resource it had previously requested and begins execution. Another postcondition
increments the AbortClock state component for the designated phase to reflect the amount of time that will
be required to return the shared resource to an acceptable state for another phase in the event that the
current phase is aborted. This length of time may vary from resource to resource, and so is denoted as
undotime(r), afunction of the resource in question.

Although the ‘request’ and ‘grant’ phase events behave as if the processor is surrendered after each
request, this does not have to be the case. The ‘request’ event can be immediately followed by the
corresponding ‘grant’ event to model the situation in which the processor is not surrendered.

Typeface Convention. In the definition of the GSAF, all of the operation definitions — that is, al of the
the operations’ preconditions and postconditions —— have been presented in a roman (upright) typeface. In

the future, when automata are presented, those parts that are common with the GSAF will continue to be
written in a roman typeface. However, those parts that are different will be written in an italic typeface.
This will allow the reader to focus on those parts of the definition that are different from the general
framework.

2.3.2.11. Active Phase Selection

Although the General Scheduling Automaton Framework contains state components and will accept some
scheduling events, it is not really a scheduling automaton. Rather, it is a framework: a skeleton that has
most, but not al, of the elements of a scheduling automaton. For instance, as was discussed in the previous
section (Section 2.3.2.10), most of the preconditions for accepting various scheduling events are
unspecified in the General Scheduling Automaton Framework. Also, while some postconditions have been
specified, they have not been completely specified.

Another of the more noticeable omissions in the specification of the General Scheduling Automaton
Framework is the lack of a function to select the next phase to execute. Furthermore, not only is this
function not specified, the places in the automaton where it is to be invoked are also unspecified. Thisis
because different schedulers invoke this function at different times. Therefore, there is no canonical set of
times (corresponding to a fixed set of points in the General Scheduling Automaton Framework) where all
scheduling algorithms invoke a phase selection function. As a result, this has been omitted from the
General Scheduling Automaton Framework, which acts as a lowest common denominator of sorts among
instance of scheduling automata.

To illustrate this point, consider two simple scheduling algorithms: FIFO scheduling and priority

The Scheduling Model 39

scheduling. Whenever a new computational phase enters the system —— as indicated by a new
‘request-phase’ event —— the FIFO scheduling automaton will note that fact, but will not invoke a phase
selection function to determine what phase to execute. It ssimply allows the currently executing phase to
proceed until it gives up the processor.

On the other hand, the priority scheduling automaton will make a new determination concerning which
phase to execute: if the new computational phase has a higher priority than the currently executing phase,
then the active phase is preempted in favor of the new phase.

More complex scheduling algorithms may evaluate the phase selection function at other times as well.
For instance, the DASA agorithm described in Chapter 3 invokes the phase selection function whenever a
shared resource is requested by any phase. It is also conceivable that there are schedulers that might select
which phase to run asynchronously with respect to the given set of scheduler operations. For example, a
round robin scheduler that gave each phase a turn by offering it a time-slice would make preemption
decisions following evenly spaced clock interrupts. To accommodate such extensions, new scheduling
operations would have to be added to the model. While that is straightforward, it is not required to
investigate the algorithms of interest for scheduling supervisory control systems, and so it would only serve
to complicate the model. Consequently, the scheduling operations included in the model represent a
minimal set that captures all of the relevant behavior within supervisory control systems.

2.3.3. Notes

The following paragraphs address some additional points concerning the GSAF framework. These points
generaly explain how facets of real applications are, or can be, reflected in the forma model.

2.3.3.1. Manifestation of Assumptionsand Restrictions

Section 2.2 describes the specific assumptions and restrictions that are employed in this work. A look at
the GSAF framework will reveal how those assumptions are manifest.

The first assumption stated that all time-value functions are restricted to be ssmple step functions. The
definition provided for time-value functions in the model in Section 2.3.1.3 captures that assumption
directly.

The second assumption stated that the computation time required by an activity to complete a
computational phase is accurately known. This is reflected in the ‘reguest-phase’ operation itself. The
operation includes a parameter that informs the scheduler of the required computation time. (See the
description of the operation and its parametersin Section 2.3.2.3 or Section 2.3.2.10.)

This information is then available for use by the scheduling algorithm embodied in a given scheduling
automaton. Although the GSAF framework presented in this chapter does not use this information, other
automata may.

40 Scheduling Dependent Real-Time Activities

2.3.3.2. Manifestation of Interrupts

For any supervisory control application, a number of conditions or events are initialy received as
asynchronous interrupts, possibly accompanied by data. In the formal model, these interrupts are manifest
as ‘request-phase’ events for new phases?.

2.3.3.3. Atomic Nature of ‘Request-Phase’ Events

The GSAF postconditions for a ‘request-phase’ event atomically mark the end of one computational
phase for an activity and declare the computational requirements for the next phase. Thisis done to ensure
that each activity is always executing a phase, and hence, is always executing under atime constraint.

It is possible that in some situations the computational requirements and the time constraint for the next
phase are not known at the end of the previous phase. To map that case into the context of the formal
model, two different activities are employed. The completion of the first phase can be signaled as usua
with a ‘request-phase’ event. However, that event indicates that the phase is the final phase of the current
activity. Once the computational requirements and time constraint for the second phase are known, a
second activity is introduced that uses these scheduling parameters to describe its initial computational
phase.

2.4. Observations on the Model

A few observations may be made about the model just presented. First of al, it is formal and is precise
enough to allow analytic demonstration of some of the properties of scheduling algorithms. Some of this
formal analysisis presented in Chapter 4.

Secondly, the model considers all of the events in the system that are of interest to the scheduler. Thisis
asit should be for work that is investigating scheduling algorithms.

However, a brief inspection of the events covered in the model shows that they include some events that
are often not explicitly recognized as scheduling events. Specifically, the resource-related events ——
‘request’ and ‘grant’ — are directly presented to the scheduler because they may well result in new
scheduling decisions.

This should be contrasted with many other models and operational systems. There, there are two separate
operating system facilities: a scheduler and a resource manager. (See Figure 2-8.) The resource manager
may be representing one or more actual system managers —— the lock manager and the semaphore manager,
for instance.

21t is interesting to note that, within the confines of the formal model, interrupts could also initiate ‘request-phase’ events that
would act to change the scheduling parameters for blocked phases. Whether this capability would prove useful in actua supervisory
control systems is a matter for future study.

The Scheduling Model 41

request-phase request-phase

request

User

grant (ON)
resume-phase

block-phase EI EI
ReadyList E ResourceQueues
unblock-phase

Scheduler Resource Manager

ReadyList E

Integrated Scheduler &
Resource Manager

Figure 2-8: Organizations of Scheduling Functions

The difference in organization is often significant. When there are separate managers handling access to
resources, they will often make implicit scheduling decisions that are not in keeping with the overall goals
of areal-time system. For example, resource managers may service resource requests in a first-come-first-
serve manner. In that case, a request may be placed in a FIFO (first in, first out) queue if the desired
resource is not currently available. As a result, not only is the requesting activity blocked when it is
engueued, it is not even considered by the scheduler again until it has been removed from the queue. In
effect, al of the activities that preceded it in the queue were given precedence over it, regardless of the
relative urgency of their time constraints or any other dependency considerations.

It would be much more appealing to apply the same type of algorithm to select which activity in the
gueue should be receive access to the resource next that is used in selecting which activity should execute
next in general. The work done here does employ such an integrated approach to scheduling, and the
interfaces described in the model reinforce this integrated scheduling notion.

42

Scheduling Dependent Real-Time Activities

Chapter 3
The DASA Algorithm

The algorithm investigated in this thesis is called DAsA (Dependent Activity Scheduling Algorithm). It
addresses the dependency concerns described in the previous chaptersin a clear and natural manner. The
algorithm is based on a set of heuristics that deliver the type of behavior required in real-time systems,
particularly supervisory control systems.

This chapter presents the DASA algorithm. First, DASA is described in general terms, placing emphasis on
the rationale for the algorithm. Then a formal definition is presented, providing a framework for careful
analysis of the algorithm. Finally, the scheduling example from Section 1.3 is revisited. This time the
DASA algorithm is employed to make the scheduling decisions, thereby contrasting its behavior with that of
the algorithms previously mentioned.

3.1. Dependent Activity Scheduling Algorithm

This section describes the underlying heuristics for the DAsA algorithm, along with the rationale for their
adoption, in order to explain its high level goals. This discussion is followed by an informal definition of
the DASA algorithm. (The next section, Section 3.2, provides the formal definition.)

3.1.1. Heuristics and Rationale

The DAsA algorithm was constructed to possess a number of properties, each of which has appeal on its
own merits. Taken together, they suggest that the algorithm may be quite effective in handling scheduling
problems with dependency considerations.

Before looking at the definition of the DAsA algorithm, two important metrics must be understood. These
are the notions of value density [Locke 86] and potential value density. Vaue density is a measure of how
much value (as defined by the application) per unit time will be acquired by executing a single
computational phase. In the cases considered by this thesis, where time-value functions are simply step
functions, the value density is the height of the step function —— the value — divided by the required
computation time?3,

23In more complex cases, more involved time-value functions and less exact knowledge of required computation time may be
considered. These considerations will require a more complicated procedure to determine the value density based on the probability
of completing the phase at any given instant, weighted by the height of the time-value function at that instant.

43

44 Scheduling Dependent Real-Time Activities

The potential value density of a phase extends the notion of value density to include both the designated
phase and the set of phases on which it depends. In fact, the potential value density of such a collection of
phases is the total of their individual values divided by the total of their required computation times. The
choice to add both the values and the times of the individua phases prior to performing the division to
determine the potential value density, rather than combining this information in some other way, reflects
the fact that executing the sequence of phases will require a total time equa to the sum of the individual
times and will yield a total value equal to the sum of the individual values. Therefore, the aggregate
execution sequence can accurately be characterized by the value density computed based on these sums?4.

Furthermore, phases that are being aborted are handled differently than those that are executing normally
when calculating a potential value density: an aborting phase contributes no value, but does require
computation time. Therefore, aborting a computation will always act to reduce the potential value density
of a collection of phases. Nonetheless, aborts may be advantageous in that they may greatly reduce the
delay that must be incurred before starting the execution of a designated computation.

With these metrics in mind, the properties desired for the bAsA algorithm can be reviewed:

1. explicitly account for dependencies —— account (in terms of both required computation time
and in available potential value) for each phase, along with al of the other phases on which it
depends;

2. minimize effort — apply the minimum amount of effort necessary to allow a phase to be
scheduled, possibly using aborts to expedite the process;

3. maximize return (or benefit) —— examine phases in order of decreasing potential value
density, thereby always obtaining the greatest return (in application-defined value) on a given
investment (of computation time);

4. maximize the chance of meeting deadlines —— approximate a deadline scheduler insofar as
possible;

5. globally optimize schedule — review the schedule constructed incrementally and remove
redundant or unnecessary steps.

3.1.2. Informal Definition of DASA

The DASA Dependency Scheduling Algorithm, when given a set of phases and their scheduling
parameters, will select the next phase to be executed in accordance with the heuristics just presented. This
dependency scheduling algorithm is presented in the following section.

Since mutual dependencies among activities may arise during the course of execution, care must be taken
to detect and resolve deadlocks before applying the DAsA scheduling agorithm?®. While this thesis focuses
on the scheduling algorithm, deadlock handling is discussed briefly in Section 3.1.2.2.

2The word "potential" is used to qualify "value density" because, due to the potential for interaction among phases, it is not truly
known that spending the indicated total number of cycles will yield the indicated total value. Unanticipated interactions could negate
the chance to acquire any value from the aggregate computation. Thus, the calculated value may only potentially result from the
execution sequence.

250f course, there are a number of deadlock avoidance techniques that may be used as well, but it cannot be assumed that they can
work for all applications.

The bAsA Algorithm 45

3.1.2.1. Dependency Scheduling

The DASA scheduling algorithm conforms to the computational model defined in Chapter 2 and meets the
problem requirements, while also possessing the properties listed in Section 3.1.1 above.

The following definitions illustrate how the potential value density (PVD) for a phase p is calculated for
use by DASA:

(0} if pis aborting
PVD() = val(p) + PV(Dep(p))
<timeto complete p> + PT(Dep(p))’
otherwise
0, if p = nullphase
PV(p) = 0, if quicker to abort pthan to completep
Val(p) + PV(Dep(p)), otherwise
(0} if p = nullphase
PT(p) = <timeto abort p>, if quicker to abort pthan to completep
<time to complete p> + PT(Dep(p)),
otherwise
- null phase, if pisready to run
Den(p) { <phgse on which p depends>, ot erwisey

Notice that this calculation demonstrates a property mentioned earlier: the least amount of time possible
is expended to make the phase ready to run. This is reflected in the decision to abort a phase if that will
result in a shorter delay before phase p can be ready to execute.

For any phase, the set of phases on which it depends, either directly or indirectly, and which must
therefore be completed or aborted before it can run is called its dependency list. In the definition for
PVD(), the set of phases given by Dep(p), Dep(Dep(p)), and so forth constitutes the dependency list for
phase p. Other algorithms, similar to DASA, could also employ the dependency list concept, although their
specific definition of what constituted a dependency list might vary somewhat to reflect a different set of
desired properties.

A smplified procedural version of the bAsa Dependency Scheduling Algorithm is shown in Figure 3-1.

Notice that DASA considers all of the existing phases each time a scheduling decision is made. Most
scheduling algorithms do not do this —— they typically consider only those that are ready to run
immediately, not phases that are blocked awaiting access to shared resources. A critical objective of the
DASA algorithm is to take advantage of this additional information to improve the quality of scheduling
decisions. This information can always be examined by the system; but in non-real-time systems, there is
no motivation to look at it.

46 Scheduling Dependent Real-Time Activities

1. create an empty schedule

2. determine dependency list and PVD for each phase
3. if deadlock is detected, resolve it

4. sort phases according to PVD

5. examine each phasein turn (highest PV D first)
a. tentatively add phase and its dependencies to schedule

b. test feasibility of schedule
c. if feasible, make tentative changes; else, discard them

d. apply optimizations to reduce schedule, if possible

Figure 3-1: Simplified Procedural Definition of DAsa Scheduling Algorithm

3.1.2.2. Deadlock Resolution

The work that has been done up to this point focuses on the bAsa Dependency Scheduling Algorithm.
Deadlock handling must still be investigated, although it can be anticipated that it will have properties and
use methods that are similar to those employed by the dependency scheduling algorithm.

A great deal of work has been done to develop deadlock detection algorithms ([BHG 87, Knapp 87]) that
can be used to detect deadlocks for DASA in a straightforward manner. In fact, while forming the
dependency lists for the phases to be scheduled, cycles of dependencies can be detected easily enough.

The resolution of detected deadlocks is another matter. A number of choices can be made in this area
Section 7.3.2 discusses some of the possibilities.

3.2. Formal Definition of DASA

Thus far, the rationale and informal description of the DAsA algorithm have been presented. In order to
provide a rigorous specification that will permit analytic study of the algorithm, a more formal definition is
required. That definition is presented in the following section along with explanations of interesting and
important points.

3.2.1. The Formal Definition

The formal definition is cast in terms of the automaton model presented in Chapter 2. Remember that a
scheduling automaton examines histories of scheduling events and either accepts or rejects them. A history
is accepted by a scheduling automaton if and only if the sequence of events comprising the history could
have been generated by the scheduling algorithm embedded within the automaton.

The bAsA Algorithm 47

Although all scheduling automata share a common framework, each individual automaton has several
unique parts. (1) its state components; (2) the scheduling events that it recognizes — including the
preconditions and postconditions associated with recognizing each event and the changes that occur in state
component values as a result; and, of course, (3) the scheduling algorithm that is embedded within the
automaton. Each of these parts is formally defined in the sections that follow for the bAsa Scheduling
Automaton.

3.2.1.1. bAsA Automaton State Components

The DAsA algorithm considers all existing phases each time a scheduling decision is made. In the formal
definition that follows, let the set of phases currently known to the automaton be represented as { pg, Py, P

.}
Similarly, let the set of resources currently known to the automaton be represented as{rg, r,, r,, ... }.

The state components associated with the DAsSA scheduling automaton are presented in Figure 3-2.

General State Components.
* ExecMode: PHASE - MODE (MODE is either ‘normal’ or ‘abort’)

e ExecClock: PHASE - VIRTUAL-TIME

* AbortClock: PHASE - VIRTUAL-TIME

* ResumeTime: PHASE - TIMESTAMP

e Value: PHASE - (TIMESTAMP - VALUE)

e Total: VALUE (initialy ‘0")

 RunningPhase: PHASE (initially ‘nullphase’)

* PhaseElect: MODE x PHASE (initialy ‘<normal, nullphase>")
* PhaseList: list of PHASE (initially ‘@)

Algorithm-Specific State Components:
« Owner: RESOURCE - PHASE (initialy ‘nullphase’ for each resource)

* ResourcesHeld: PHASE - list of RESOURCE (initially ‘@)

* ResourceRequested: PHASE - RESOURCE (initially ‘nullresource’; also note:
ResourceRequested(nullphase) = ‘nullresource’)

Figure 3-2: State Components of DASA Scheduling Automaton

There are two distinct groups of state components shown: general state components, which are found in
any scheduling automaton, and algorithm-specific state components, which are defined only for a particular
scheduling automaton.

48 Scheduling Dependent Real-Time Activities

The general state components were discussed in Chapter 2. They include a number of components that
describe important characteristics of each individua phase (ExecMode, ExecClock, AbortClock,
ResumeTime, and Value), as well as components that indicate the status of the automaton itself (Total,
RunningPhase, PhaseElect, and Phaselist).

All of the algorithm-specific state components of the bAsa Scheduling Automaton deal with requesting
and holding shared resources. The relation Owner indicates which, if any, phase currently possesses each
of the shared resources. The Owner of all unassigned resources is nullphase. The ResourcesHeld relation
associates with each phase the list of resources that have been granted to that phase. And finaly, the
ResourceRequested relation specifies which resource a given phase desires. Whenever, there is no
unsatisfied resource request for a phase, the corresponding ResourceRequested value is nullresource.

The bottom portion of Figure 3-2 defines the values that each of the state components may assume. All
of these are general value domains that were discussed when the scheduling automaton model was
presented in Chapter 2. They are repeated here only for convenience — they allow the relation definitions
to appear in context so that earlier material need not be consulted.

An initial value is shown for many of the state components. These values indicate that, at the outset,
there are no phases known to the automaton, no value has been accrued, al of the shared resources are
available, and the processor is idle. Each of the relations that provide information for each phase in the
system is initially empty since there are no phases. As phases arrive (indicated by issuing ‘request-phase’
events), entries are made in each of these relations.

Access Queues for Resources. There is one state component that, although not present in the DASA
Scheduling Automaton, is commonly found in other scheduling automata for this problem domain: a
relation that, given a resource, specifies the queue of phases that are waiting for access to the resource.
That state component is not found in this automaton because it tends to reflect an ordering among pending

requests for a shared resource — for example, requesters may be served in a FIFO fashion or according to
their priority. While the bAsa algorithm will in some sense order such requests, it is done in a completely
dynamic fashion. The needs of each phase, including access to shared resources, are considered aong with
the benefit of executing the phase each time a scheduling decision is made.

3.2.1.2. Operations Accepted by basa Automaton

The operations recognized by the DASA scheduling automaton and their preconditions and postconditions
are shown in Figures 3-3, 3-4, and 3-5. Figure 3-3 presents the ‘request-phase’ operation, which is used to
initiate each computational phase of the activities comprising the application. Figure 3-4 depicts the other
operations involving phases that are recognized by the bDAsa Scheduling Automaton. And Figure 3-5
shows those operations that deal specifically with shared resources. After afew new definitions have been
introduced, each of these operations will be described in detail. (Remember the typeface convention that
was mentioned in Section 2.3.2.10: parts of the automaton that are the same as the GSAF are written in
roman face, while algorithm-specific parts appear in italics.)

The bAsA Algorithm 49

Definitions. Each phase has a state associated with it. It is either running or it is blocked. If it is
blocked, it may have been preempted or it may have blocked to wait on a resource that was unavailable
when requested.

The following formal definitions capture these facts. They are used in the definition of the operation
preconditions for the DAsA Scheduling Automaton.
Running(p) = p=RunningPhase

Blocked(p) = p# RunningPhase
ResourceWaiting(p) = ([F)(Resour ceRequested(p)=r Or # nullresource [J Owner(r) #p)

Preempted(p) = Blocked(p) 0 — ResourceWaiting(p)

Request-Phase. The ‘request-phase’ operation delimits computational phases for an activity. Each
activity begins with a ‘request-phase’ operation that declares its needs for its initial computational phase.
Subsequent ‘request-phase’ events mark the end of one computational phase and the beginning of another.
A final ‘reguest-phase’ operation denotes the completion of the activity’s last computational phase. Of
course, simple activities may consist of only one or possibly afew computational phases.

The precondition for accepting a ‘request-phase’ operation is simply true. That is, a ‘request-phase’
operation can be accepted at any time under any circumstances. This arrangement allows new phases to
arrive at any instant, thus permitting activities to be submitted to the automaton asynchronously, just as
they would be if they were initiated in response to interrupts.

The two arguments associated with each ‘request-phase’ event serve to specify the anticipated needs of
the new computational phase: (1) v, the time-value function defining the value to the application of

completing the phase at any instant in time; and (2) t the amount of computation time that would be

expected’
needed to execute the phase if there were no contention for shared resources —— including the processor.

In addition, there is no indication about the shared resources that will be needed by the phase. This
reflects the belief, explained in Section 2.1.2, that in order to alow a potentially high degree of
concurrency, it may often be necessary to use techniques that preclude the exact knowledge of which
resources will be needed by a computational phase.

The ‘request-phase’ operation has the longest set of postconditions of any of the operations accepted by
the DAsSA Scheduling Automaton. This is due in large part to the fact that the postconditions handle the
conclusion of one computational phase and the initiation of another. If the currently executing phase issues
the ‘request-phase’ operation, then the operation marks a transition between phases. In that case, the value
accrued by completing the phase is added to the running total for the application, and any shared resources
held by the activity are released. (Note that if the activity had been aborting the computational phase, no
value would be gained by completing the phase, since that simply represents the completion of the abort.)

If the activity that issued the ‘request-phase’ operation was not executing at that time, then it is a new
activity. Thereis no previous phaseto handlein that case.

Scheduling Dependent Real-Time Activities

* toyent F€QUESt-phase(v, texpected) p:
preconditions:
true <No preconditions here so that interrupts and other new phases
can occur at any time>
postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total’ = Total + Vaue(p)(t
else
;no value for aborted phase
endif
;release the resources acquired during the phase
for r in ResourcesHeld(p)
Owner'(r) =@
endfor
ResourcesHeld'(p) = @
endif

ev ent)

Value (p) =v
ExecClock’ (p) = Lo pected
AbortClock’ (p) =0
ExecMode’ (p) = normal

;make sure p is part of the list of phases, if necessary

if (t@(Ioected > 0) then

PhaselList’ = PhaseList (I {p}
else

PhaselList’ = PhaseList - { p}
endif

;update execution clock for running phase, if necessary
if (RunningPhase # p) and (RunningPhase # nullphase) then
if (ExecMode(RunningPhase) = normal) then
ExecClock’ (RunningPhase)
= ExecClock(RunningPhase) - (tg e - RESUMeTime(RunningPhase))
else
AbortClock’ (RunningPhase)

= AbortClock(RunningPhase) - (t - ResumeTime(RunningPhase))

. event
endif
ResumeTime’ (RunningPhase) =t o

endif

PhaseElect’ = SelectPhase(Phaselist’)
if (p = RunningPhase) then
;give up processor until next ‘resume—phase
RunningPhase = nullphase
else
;happened under interrupt——leave ‘ RunningPhase’ alone
endif

Figure 3-3: ‘RequestPhase’ Operation Accepted by DASA Scheduling Automaton

The bAsA Algorithm 51

* toyent AOrt-phase(p) O:

preconditions:

(RunningPhase=nullphase) [J (Phase(PhaseElect)=p)
0 (Mode(PhaseElect)=abort)

postconditions:
ExecMode’ (p) = abort
ResumeTime' (p) =ty ent
ResourceRequested'(p) = @ ;cancel attempt to acquire more resources
RunningPhase = Phase(PhaseElect)

* toyent Preempt-phase(p) S
preconditions:

(RunningPhase=p) [(RunningPhase# nullphase)
O (RunningPhase# Phase(PhaseEl ect))

postconditions:
if (ExecMode(p) = normal) then
ExecClock’ (p) = ExecClock(p) - (t
else
AbortClock’ (p) = AbortClock(p) - (t
endif

- ResumeTime(p))

event

ResumeTime(p))

event -

RunningPhase’ = nullphase
* toyent F€SUMe-phase(p) S
preconditions:
(RunningPhase=nullphase) [J (Phase(PhaseElect)=p)
0 (Phase(PhaseEl ect) # nullphase) O (Mode(PhaseEl ect)=normal)
0 - ResourceWaiting(Phase(PhaseEl ect))
postconditions:
ResumeTime’ (p) =ty ent
RunningPhase’ = Phase(PhaseElect)

Figure 3-4: Other Phase Operations Accepted by DASA Scheduling Automaton

Whether or not the computational phase is the first for the activity, the ‘request-phase’ postconditions
dictate that the time-value function and expected compute time parameter are associated with the new
phase. The expected compute time parameter is used to initialize a virtual clock, called ExecClock. This
clock indicates the amount of time required to complete the current phase for a given activity.

Other state components are altered aswell. AbortClock is similar to ExecClock —- it indicates the amount
of time required to abort the current phase of an activity. Each time a new shared resource is acquired
during a phase, AbortClock is increased by a resource-specific amount of time. Initially, it takes no time to
abort a computational phase since nothing has been done yet and no shared resources have been acquired.
Furthermore, ExecMode for the new phaseis ‘normal’, not ‘abort’.

It is possible that the ‘request-phase’ event may signal the completion of the final phase of an activity. In

52 Scheduling Dependent Real-Time Activities

* toyent FEQUESK(r) p

preconditions:
(RunningPhase=p) [(RunningPhase# null phase)
postconditions:
ExecClock’ (p) = ExecClock(p) - (tg,en: - RESUMETIME(P))
ResourceRequested'(p) = r ;indicate ‘ p’ isresource-waiting
PhaseElect’ = SelectPhase(Phaselist)
RunningPhase = nullphase ;give up processor until ‘ grant’ ed resource
* toyent Orant(p, r, undotime(r)) S
preconditions:

(RunningPhase=nullphase) (1 (Phase(PhaseElect)=p) [(r # nullresource)
0 (Resour ceRequested(Phase(PhaseEl ect))=r)
O (Mode(PhaseElect)=normal)
postconditions:
ResumeTime (p) =ty ent
AbortClock’ (p) = AbortClock(p) + undotime(r)
RunningPhase’ = Phase(PhaseElect)
Owner'(r) =p ;indicate ‘ p’ isowner of resource
ResourceRequested'(p) = @
ResourcesHeld'(p) = ResourcesHeldil

Figure 3-5: Resource Operations Accepted by DAsSA Scheduling Automaton

that case, the required computation time, Lexpected: is declared to be zero —— that is, no more computational
cycles are needed for the activity.

If the ‘request-phase’ event does mark the completion of processing for an activity, then the phase is
removed from the list of known phases, PhaseList. Otherwise, the phase is amember of PhaseList.

The selection algorithm requires that the execution clocks of al of the phases accurately reflect the
amount of processing time still needed to complete the current phase. All of the clocks will be up to date
with the possible exception of the currently executing phase. It's execution clock has not been changed
since it last resumed execution. If the activity requesting the new phase is not the currently running
activity, then the execution clock of the running phase is updated before the selection algorithm is applied.

At this point, SelectPhase() is consulted to decide which phase should be executed next. This function is
described in detail in Section 3.2.1.3.

In the interests of convenience and clarity, the value of one state component in these postconditions,
PhaseElect’, is expressed as a function of another state component, PhaseList’, in the same group of
postconditions. The alternative requires that all of the new state component values be expressed solely in
terms of the old state component values. Of course, this can always be done, but it may be cumbersome.
For example, it is possible to express the new value of PhaseElect in terms of the old state component
values, asfollows:

The bAsA Algorithm 53

if (texpected > 0) then

PhaseElect’ = SdlectPhase(Phaselist 0 {p})
else

PhaseElect’ = SelectPhase(Phaselist — {p})
endif

Finally, if the currently executing activity, RunningPhase, issued the ‘request-phase’ event, it surrenders
the processor —— clearing the way to execute the PhaseElect specified by SelectPhase().

Note that surrendering the processor redly has no effect if PhaseElect specifies that the currently
executing activity should continue. In that case, while the processor will nominally begin executing the
nullphase, it will actually resume execution of the PhaseElect immediately. The transition to the nullphase
is only a convenience in terms of modeling the automaton. After reviewing the other scheduling events
accepted by the DAsA Scheduling Automaton, the convention employed throughout to mark potentia
changes in execution due to a preemption, abortion, or unsatisfiable request should be clear.

Abort-Phase. As modeled, phases are aborted only as aresult of a decision by the scheduling function,
SelectPhase()28.

By convention, each time the executing activity, RunningPhase, makes a new request to either begin a
new phase or to acquire a new shared resource —— necessitating a scheduling decision —— the activity gives
up the processor. That is, as a postcondition for accepting one of these requests, RunningPhase is set to be
nullphase. This is done to meet the preconditions to accept either an ‘abort-phase’ or a ‘resume-phase’
event. Once the processor is idle, then if the execution mode of PhaseElect is ‘abort’, then an
‘abort-phase’ event can be accepted by the bAsa Scheduling Automaton.

The postconditions for this event make sure that the phase is aborting, note the time at which execution
resumed, cancel any outstanding requests for shared resources (since no new resources must be acquired to
undo whatever was done to those previously acquired), and designate the new executing phase.

Preempt-Phase. As indicated by its precondition, the scheduler issues a ‘preempt-phase’ event if the
processor is executing some phase other than the PhaseElect or the nullphase. In response, the current
RunningPhase is suspended, its execution clock (either ExecClock or AbortClock, depending on the
execution mode) is updated to reflect the true time left to free the shared resources held by the phase, and
the processor is left idle.

Of course, the processor will probably not remain idle for long since either an ‘abort-phase’, a
‘resume-phase’, or a ‘grant’ event will be issued to execute another phase: (1) an ‘abort-phase’ event is
issued for a phase that is being aborted; (2) a ‘resume-phase’ event is issued for a phase that is executing

%6This should not be viewed as precluding the possibility of an activity aborting a phase autonomously —— perhaps due to a failure
within a transaction. Rather, the model can easily be extended to accommodate that possibility: If the executing activity decides to
abort the current phase, it issues an ‘abort-self’ event. This event changes the execution mode of the phase to ‘abort’, consults
SelectPhase() to determine what to run next, and gives up the processor. When the scheduler selected that phase to begin its abort
processing, it would issue an ‘abort-phase’ event, and processing would continue as described above.

54 Scheduling Dependent Real-Time Activities

normally, but is not waiting for a resource (that is, it is a previously preempted phase); and (3) a ‘grant’
event is issued for a phase that is executing normally and is waiting for access to a shared resource. All
three of these scheduling events reqguire that the processor be idle before they dispatch the next phase.
(Along with the ‘preempt-phase’ event, the ‘request-phase’ and ‘request’ events also leave the processor
idle when appropriate to set the stage for these phase-dispatching events.)

Resume-Phase. The ‘resume-phase’ event resumes the execution of a previously preempted phase. The
processor must be idle before a ‘ resume-phase’ event can be accepted by the bAsa Scheduling Automaton,
and the phase resumed must be executing normally —— as opposed to aborting —— and must not be waiting
on access to a shared resource.

The postconditions for the acceptance of a ‘resume-phase’ event note the time at which execution of the
phase resumed and assign the processor to execute the phase.

Request. A ‘request’ event signals that the currently executing phase wishes to access a shared resource.
As denoted by the event’s preconditions, such a request can be made at any time while the phase is
executing on the processor.

After accepting a‘request’ event, the postconditions for the event update the requesting phase’ s execution
clock to indicate the exact time left to complete the phase, record the resource that has been requested by
the phase, select the next phase to be executed (possibly the requesting phase), and remove the requesting
phase from the processor.

It should be understood that the decision to suspend the requesting phase's execution is only made to
provide a simple, coherent formal model, not to suggest the actual design of an implementation of the DASA
algorithm. Notice, for example, that in the forma model, it is quite possible that a phase could request a
resource that is currently available, give up the processor, and immediately be reassigned the processor as
the result of a ‘grant’ event. This is perfectly fine in the model, but an efficient implementation of the
algorithm should decide whether the processor should actually be turned over to another phase before ever
suspending execution of the current phase.

Grant. The ‘grant’ scheduling event assigns the processor, which must be idle, to execute a phase that
has been blocked awaiting access to a shared resource. The phase assigned to execute has been previously
selected and is designated PhaseElect.

Once the ‘grant’ event has been accepted by the DAsA Scheduling Automaton, the postconditions
associated with that event record the time at which the phase is granted the resource, adjusts the AbortClock
to indicate the increment in work that is required to undo actions on the newly acquired shared resource,
mani pulates various relations to show that the resource now belongs to the designated phase, and starts the
processor executing that phase.

Although there are ‘request’ and ‘grant’ events, there is no explicit ‘release’ event. This is due to the
model of computation that has been adopted. Since all activities are composed of a sequence of

The bAsA Algorithm 55

computational phases and all shared resources that are acquired during a phase are released at the
completion of the phase, there is no need for such an event. Rather, an implicit release of these resourcesis
performed as part of the ‘request-phase’ event, which, among other things, denotes the completion of a
phase (as described above).

3.2.1.3. SdlectPhase() Function for bAsa Automaton

The function SelectPhase() embodies the DAsA scheduling algorithm. As shown in Section 3.2.1.2,
SelectPhase() is evaluated each time a ‘request-phase’ or a ‘request’ event is encountered. In Figure 3-6,
SelectPhase() is formally defined as a mathematical function. Since this definition looks quite different
than the brief procedural definition offered in Section 3.1.2.1, a few comments are in order to explain the
utility of thisformat and its organization.

The algorithm is described as a mathematical function for a few reasons. First and foremost, it is a
concise and precise notation. But it also is more expressive in some ways than procedural definitions.
Specifically, this mathematical format is capable of expressing the sequential nature of a set of operations
—— by using functional composition, for example, where each function corresponds to one of the sequential
operations. At the same time, this mathematical format can also express the nondeterminism that is present
in the algorithm definition. For instance, the order in which the elementsin alist are examined may or may
not be important. When the order isimportant, there is a specific method to describe the order. Thisissaid
to be deterministic, in that there is only one correct order. When the order is unimportant, any order will
do; and so this case is said to be nondeterministic. A typical procedural definition cannot readily capture
this nondeterminism. Such a definition would usually have to specify some ordering, even if the ordering
was not critical.

The function SelectPhase(), when given a list of phases, selects the next phase to run and specifies its
execution mode (either ‘normal’ or ‘abort’). Informally, the definition shown for SelectPhase() in Figure
3-6 determines a set of phases that can feasibly meet their time constraints given all of the information that
is currently known about them. It then selects one of the phases from this set that must be done by the
earliest deadline and designates it as the next phase that the processor should execute.

All of the phases in the phase list P that was passed to SelectPhase() are considered when constructing the
list of phases that can feasibly execute. Also, as each phase is examined in turn, any dependency that
prevents it from executing immediately are noted and resolved by indicating those other activities that must
precedeit in any schedule — either completing or aborting their current phases.

A closer look is necessary to see how the SelectPhase() definition actually specifies the desired behavior.
A bottom-up examination of the definition will incorporate both some functions that have been discussed
previously and some totally new functions.

The following descriptions constitute an informal definition of the functions comprising SelectPhase().
Often only the "main” or "normal” case value will be discussed for a function, even though its definition

Scheduling Dependent Real-Time Activities

SelectPhase(P) = pickone(mustfinishby(DL;,(mpplist), Popequied(P)))»
where
mpplist = tobescheduled(Pg o y1eq(P))

<normal, p>, if <normal, p> 0 MPP ODep(p) = nullphase
. _ <abort, p>, if <abort p>0MPP
pickone(MPP) = = ((g)(<normal, g> 0 MPP 0 Dep(q) = nullphase)
<normal, nullphase>, otherW|se

if MPP =@
DLy;,(MPP) = Deadllne(p) | (<normal p>0 MPP) . _
otherwise

if P=¢
SChedUIed(P) { PfeaSlble(Pﬂlhedmed(P {p}) O {p}) if pD PIeaStPV(P)

P it P=
Preasibie(P) = : if feasible(P)
Pfeasi bl e(P_{ p}) | p O PIeastPV(P)1 otherwise

if P=¢
Pleasipv(P) ={ {pl (p 0OP) D(Cg[qDP — ((PVD(p) < PVD(q))
O(PVD(p)=PVD(q) — ExecClock(p) < ExecClock(q)))]},
otherwise

tobescheduled(P) = ¢ if P=¢
obescheduled(P) { {<normal, p>} 0 dependencylist(p) [tobescheduled(P—{ p}),
ifpOP

®, if Dep(p) = nullphase
. _ dependencylist(Dep(p)) O { <normal, Dep(p)>},
dependencylist(p) = if AbortClock(Dep(p)) = ExecClock(Dep(p))
{<abort, Dep(p)>}, otherwise

Figure 3-6: Functional Form of DAsA Algorithm

The bAsA Algorithm

mustcompleteby(t, P) =¢ & if t<toent
{p | [<normal, p> [tobescheduled(P) (I Deadline(p) <t]},
otherwise
mustfinishby(t, P) ={ @ if P=@ O t<t o 0 mustcompleteby(t, P)=¢

reduce(t, P, {<normal, p>} O dependencylist(p) O mustfinishby(t, P-{p})),
if p 0 mustcompl eteby(t, P)

O<abort, p> [0 mustfinishby(t™, P)

reduce(t, P, MPP—{<abort, p>}), if <abort, p>, <normal, p>MPP
reduce(t, P, MPP) =
MPP, otherwise

feasible(P) =true, iff (Ot)[(t=t, ..) — timerequiredby(mustfinishby(t, P)) < (t-t

event: event)]

0, if MPP=
. . ExecClock(p) + timerequiredby(MPP-{<normal, p>}),
timerequiredby(MPP) = ® e?f <norr¥1al, >D{MPP Ph

AbortClock(p) + timerequiredby(MPP—{ <abort, p>}),
if <abort, p>[O MPP

0} if ExecMode(p) = abort
PVD(p) = Val(p) + PV(Dep(p))

ExecClock(p) + PT(Dep(p))’ otherwise
0, if p = nullphase
PV(p)=q O if AbortClock(p) < ExecClock(p)
Val(p) + PV(Dep(p)), otherwise
0, if p = nullphase
PT(p) = AbortClock(p), if AbortClock(p) < ExecClock(p)
ExecClock(p) + PT(Dep(p)), otherwise
=J nullphase, if ResourceRequested(p) = nullresource
Dep(p) { Owner (Resour ceRequested(p)), otherwise

Figure 3-6: Functiona Form of bAsa Algorithm, continued

58 Scheduling Dependent Real-Time Activities

includes a number of other cases as well?’. This is because the other cases usually handle degenerate
situations that arise as a result of the recursive nature of some of the function definitions.

To start, remember that a few basic functions were described in Section 2.3.1. They include Deadline()
and Val() and are used in the definitions that follow as basic building blocks.

Also remember that SelectPhase() is a function that is evaluated within the context of the DAsA
scheduling automaton. As such, it has access to all of the state components of the automaton, which in turn
provides access to al of the status information for each phase in the system. Furthermore, since
SelectPhase() is always evaluated as a result of accepting a scheduling operation, the t that appears in
the formal definition refers to the timestamp for the accepted event.

event

One shorthand notation with regard to the state components has been adopted in the function definitions:
whenever SelectPhase() is evaluated, it accesses the state component values that result from the
postconditions for the event being accepted. For instance, when a ‘request-phase’ event is accepted,
SlectPhase() accesses ExecClock'(p), rather than ExecClock(p). This permits a more convenient
presentation of the functions than would be possible if additional cases had to be added to the functions
solely to produce the postcondition value for each relevant state component instead of referencing it
directly. The outcome isthe samein both cases.

With that background in mind, we can begin to examine the formal definition of SelectPhase() in earnest.
Consider first the set of functions that form the dependency lists and evaluate the potential value densities
of al of the phasesin the system.

The function ‘Dep()’, evaluated for a specified phase, returns as its value the phase that is currently
preventing the specified phase from executing (due to a dependency). If the phase is ready to execute
immediately, then the ‘nullphase’ is the value of ‘Dep()’. Otherwise, the phase has requested a shared
resource and is dependent on the owner of that resource —— that is the phase that currently holds the shared
resource — if there is one. The phase holding the resource must relinquish it before the dependent phase
can continue execution.

The resource can be relinquished in one of two ways: either the phase can complete its normal course of
execution or it can be aborted. Both of these alternatives take time?8, and the bAsa algorithm attempts to
minimize the amount of time waiting for the resource. So DASA completes the phase unless it is faster to
abort it.

The function ‘dependencylist()’ uses the information supplied by ‘Dep()’ about the dependencies of

2I\Which case i's to be used to evaluate the function typically depends on the value of one or more arguments to the function.

2A s was pointed out in Section 2.1.4, a phase that has been aborted does not instantaneously return the shared resources allocated
to it to the system. Rather, the shared resources must be placed into a meaningful, acceptable, safe, and (possibly) consistent, state
prior to their release. It is the processing that puts the shared resources into these acceptable states that consumes time after an abort
has been issued for the phase.

The bAsA Algorithm 59

individual phases to construct a list that includes all of the phases that must execute before a specified
phase. ‘Dependencylist()’ also specifies the execution mode for each of the phases that must be executed
prior to the specified phase. Therefore, the dependency list is actually a set of mode-phase pairs of the
form <mode, phase>. It is in this function that the decision to minimize the length of time to remove
dependenciesis implemented.

The definition of the function is recursive. It initially examines the phase, p, that was given as its
argument. If pisnot dependent on any other phase, then its dependency list is empty. Otherwise, it will be
non-empty. Specificaly, if it isfaster to abort the phase on which p depends, then the dependency list will
have only one member: <abort, Dep(p)>. Alternatively, if it is at least as fast to complete the normal
execution of the phase on which p depends, then p's dependency list will be constructed by adding
<normal, Dep(p)> to the dependency list of Dep(p).

Once a dependency list has been determined for a phase, it is possible to evaluate the potential value
density for that phase. This is done by the function PVD(), which employs two auxiliary functions, PV()
and PT(). These functions are similar to those discussed earlier in this chapter, in Section 3.1.2.1. They
total the value that may be accrued and the execution time that is required jointly by the given phase and all
of the phasesin its dependency list. (Note that aborting a phase requires time but yields no value directly.)
These totals are then used to determine the potential value density for the specified phase.

The function P),4p\ () €xamines a set of phases and returns the subset of phases that have the lowest
potential value. In case more than one phase has the same (lowest) potential value density, the phase or
phases that will consume the least execution time is returned. This choice is made because, when
considering two phases with the same PV D, the phase that executes longer will obtain a higher value than
the one that runs shorter since value is the product of PV D and execution time.

Another group of functions determine the amount of time required to carry out a specified set of
executions and aborts over al of the critical time intervals, thereby allowing the feasibility of the specified
computations to be ascertained. So, for instance:

* tobescheduled() —— given a set of phases to be executed, this function determines the set of
mode-phase pairs that must be scheduled in order to eliminate existing dependencies involving
that set of phases; this set of mode-phase pairs includes each of the phases in the specified set
executing in normal mode;

* timerequiredby() —— given a set of mode-phase pairs, this function determines the total
execution time required to carry out all of the specified computations;

« mustcompleteby() —— given atime and a set of phases, this function identifies those phases that
must complete execution by the specified time;

» mustfinishby() —— given a time and a set of phases, this function identifies all of the normal
executions and abortions that must finish by the specified time; whereas, mustcompleteby()
identified those phases that had to complete their normal executions by the specified time,
mustfinishby() adds to that group al of the other work that must be done in order to remove
any existing dependencies that might prevent those phases from executing immediately; also
notice that this function uses another function, reduce(), to eliminate unnecessary aborts from
the resultant list;

« reduce() —— this function eliminates unnecessary aborts by noticing cases where the same

60 Scheduling Dependent Real-Time Activities

phase is being both completed and aborted?®, but the completion must be done prior to the
abort due to the dependencies currently in effect; of course, there is no need to abort a phase
once it has completed;

« feasible() — given a set of phases, this function determines whether all of the phasesin the set,
along with al of the other computations on which they depend, can meet their deadlines; for a
schedule to be feasible, at every point in time the total amount of time required to complete the
computations that must be done by that time must never exceed the actual time remaining until
that time.

With this set of functions to use as building blocks, it is possible to describe at afairly high level how to
select the phase that should execute next.

A set of phases that can be feasibly run (given current knowledge of requirements and resources) is
constructed by examining each existing phase ordered by PVD, starting with the phase with the highest
PVD. The functions Py qyieq) @Nd Preagipe) CONstruct this set®. Given a set of N phases, Pgpequied()
will first (recursively) determine which of the N-1 phases with the greatest potential value may feasibly be
executed. Py iuied0)s USING Proagye() @nd ultimately feasible(), then determines if the phase with the least
potential value can feasibly be added to the set. If so, itis.

Once Py cquieq() has identified which phases can be completed successfully, it is fairly straightforward to
determine which phase should be executed first. The auxiliary function DLy () specifies the earliest
deadline that must be met by those phases that can complete execution. That information, along with the
set of phases to be completed, is once again passed to the function mustfinishby() to determine all of the
work that must be done by the earliest deadline. And finally, pickone() selects a mode-phase pair from that
set to execute first. pickone() always prefers to complete a phase normally if possible, but if that cannot be
done, it will initiate (or continue) the abortion of a phase.

3.2.2. Observations on the Definition

Several observations can be made now that the formal definition of the bAsa Scheduling Automaton has
been presented in full. Each of the following sections focus on an interesting observation.

3.2.2.1. Manifestation of Desirable Properties

Section 3.1.1 listed five desirable properties that the DAsA algorithm should possess. Now that the

algorithm has been presented in some depth, those properties should be reviewed again:

1. explicitly account for dependencies —— this has been accomplished. The definition of
SelectPhase() was described from the bottom up, and the first thing that was done in
considering any phase was to determine those phases that it depends on (its dependency list)
and the aggregate value of this group of phases to the application.

2t is not unexpected that both the completion and the abortion of a single phase will sometimes be executed. In the expected case,
the phase is aborted in order to allow some other phase, with a tighter deadline, to execute. Later, the aborted phase can be restarted
and completed normally, still meeting its time constraint.

%Note that the functions that are named P, () all represent sets of phases.

The bAsA Algorithm 61

2. minimize effort — this property refers to the amount of effort required to enable a phase to be
ready to execute. The DASA agorithm has minimized this effort by minimizing the time
needed to eliminate each of the dependencies for that phase: if it is quicker to abort a phase
than it is to execute it to completion, than it is aborted. This minimizes alatency, of sorts, at
the possible cost of later reexecuting phases that have been aborted.

3. maximize return (or benefit) —— the use of the potential value density addresses this concern
directly. As outlined in Section 3.1.1, by adding those phase groups (a phase along with the
phases that comprise its dependency list) with the highest PVD to the schedule first, the
algorithm guarantees that no other phase group can attain a higher aggregate value consuming
the same number of cycles, based on current knowledge. This builds on the notion of
"forwards induction" ([Gittins 81]) in a manner similar to that employed by [Locke 86].

4. maximize the chance of meeting deadlines —— this property has been met through the
placement of phases in the tentative schedule that is recursively constructed by SelectPhase().
The key observation is that, although phases are considered for addition to the tentative
schedule in order of decreasing PV D, they are actually added to the schedule in an order that
is determined only by the deadlines of the phases being placed and their dependencies:. stated
informally, a phase that is to be executed to completion is inserted in the schedule according
to its deadline, unless that time is too late to alow a scheduled phase that depends on it to
completeintime. Inthelatter case, it inherits the latest deadline that will allow the dependent
phase to meet its deadline.

5. globally optimize schedule —— the function reduce() applies some global reductions to the
tentative schedule that is recursively constructed by SelectPhase(). This is necessary since
each phase is added to the schedule, along with its dependencies, independently of any other
phases that may already be part of the schedule. Asaresult, it is possible that the abortion of
a phase may be scheduled after the same phase’s completion. Although this would have no
real effect on the sequence of phases executed —— after the phase had completed, it would
release al of the shared resources it was holding so that the next evaluation of SelectPhase()
would have no dependency requiring its abortion —— it is important to eliminate it from the
tentative schedule so that the most redlistic estimate of processor cycle demands can be
maintai ned.

3.2.2.2. Nondeter minism in Definition

Aswas mentioned in Section 3.2.1.3, a mathematical form was chosen for the function definitions in part
to allow orderings to be specified when they are important, and to be unspecified otherwise. The

definitions of SelectPhase() and its subsidiary functions provide examples of each:

 Order matters when determining which phases to add to the tentative schedule. The function
Pocheduled?) SElects the phase to be removed from the set P it was given according to the PVDs
and execution clocks of the individuals phasesin P. (Even here there is some nondeterminism,
sinceit is possible — though probably unlikely —— for more than one phase to belong to the set
P|eastp(), With each of these phases having the same PV D and execution clock value.)

* Order does not matter when the set of mode-phase pairs that must be in a schedule in order to
successfully complete a given set of phasesis constructed. This construction is carried out by
the function tobescheduled(), and in this case, the phase to be removed from the set P for the
next recursive call to tobescheduled() istotally unspecified —— any element of P will do.

There are other examples for each of these cases in the DASA definition, but these serve to illustrate the
ability of the notation to capture the essential aspects of ordering without imposing unnecessary constraints.
This clarity may be of considerable benefit when weighing the correctness of alternative implementations
of the algorithm that use different orderings for various evaluations.

62 Scheduling Dependent Real-Time Activities

3.2.2.3. Explicit Appearance of Time

Time does not explicitly appear in many of the individual function definitions. This may be unexpected
for an environment where time —— and meeting time constraints — is a central concern. Of necessity, time
explicitly playsarole in testing the feasibility of executing groups of phases. And while this testing occurs
throughout the evaluation of SelectPhase(), references to time seem infrequent since phases are added to
the tentative schedule according to their potential value density, not according to the urgency of their time
constraints.

3.3. Scheduling Example Revisited

Now that the scheduling algorithm has been presented, it is possible to reconsider the scheduling example
discussed in Section 1.3. Once again, the problem is to schedule phases p,, p;,, and p, so as to meet their
time congtraints, if possible. In fact, it is possible, and this is shown by the bottom execution profile in
Figure 3-7. Notice that phase p, is aborted during the course of execution, thus allowing phase p,, to meet
its deadline. This necessitates the reexecution of the start of phase p,, at alater time.

The top of Figure 3-7 shows the execution profile for a scheduler that is identical to DASA, except that it
cannot abort phases. It, too, meets al of the deadlines, while consuming fewer cycles than DASA in the
process. However, it must tolerate a longer delay between the time that it determines that a given phase
should be executed and the time a which that phase may actually begin execution due to existing
dependencies. This variant of the DAsA agorithm is shown only as areference point. At this point, it is not
anticipated that it will studied in significant depth as part of the proposed thesis research.

The bAsA Algorithm 63

pc 7
Runni ng]
Phase pb - i DASA Schedul er
1 1 1 .
pa ! ro | (wi t hout Aborts)
1 1 1 1
| 1 1 ! | ! t
0 1 1 1 5 1 10
rq, g rqrl,g rl
pc 7
Runni ng DASA Schedul er
Phase pb i | .
i | (with Aborts)
pa T bt 1 — —
1 [} 1 1 1
: k \ \ :
T T r r T
0 : P 5 : 10 i : t
rq, g rq ! rl ! rl
rl,g rq, g
rq = request r
g =grant r
rl = release r
e = abort phase

Figure 3-7: Execution Profiles for basa Scheduler with and without Aborts

Scheduling Dependent Real-Time Activities

Chapter 4
Analytic Results

This chapter presents a set of analytic results that argue for the benefits of the basa algorithm. First, a
number of high-level requirements that real-time scheduling algorithms must possess is discussed. Then a
strategy for demonstrating that the DASA scheduling algorithm possess those properties is outlined,
followed by a set of proofs conforming to that strategy. The final section of the chapter discusses various
interesting behaviors that the DAsA algorithm may demonstrate, which are revealed by its formal
description.

4.1. Requirementsfor Scheduling Algorithms

Any practical solution to the problem of scheduling while taking dependencies into account must be
correct, valuable, and tractable.

The solution must be correct. Specifically, any scheduling decisions that are made must observe al of
the known dependencies. Therefore, for instance, any activity that is selected to execute must be able to
execute at that point in time. The solution must also obey the concurrency control rules of the model; in
particular, for the model presented here, mutually exclusive access to the shared resources must be
guaranteed.

The solution must be valuable. When cast in the computational model described above, this requirement
simply means that the schedules dictated by the scheduler must yield good values relative to other
scheduling algorithms. Notice that this is partially a comment on the scheduler’s behavior in normal
situations and partially a comment on its behavior in overload situations. In normal (non-overload)
situations, the ordering of activitiesis critical and many schedulers will not order them appropriately, even
when there are sufficient processor cycles present to satisfy all demands; in overload situations, the
application (and the system) should display a graceful degradation of function3l. Both of these types of
situation are accurately gauged by the value metric previously introduced.

Finally, the solution must be computationally tractable. In fact, it must be efficient. For the purposes of
this work, this means that the solution must consume, at worst, an amount of time and space that is

31Even schedulers that take dependencies into account may handle overload situations differently, resulting in different scheduling
decisions, and hence different values, for executing the application.

65

66 Scheduling Dependent Real-Time Activities

polynomia in the problem size —— in this case, the problem’'s size is the number of phases under
consideration by the scheduler.

4.2. Strategy for Demonstrating Requirement Satisfaction

Analytic proofs have been constructed to demonstrate the correctness, value, and tractability of the DASA
algorithm. These proofs are contained in Section 4.3.

To demonstrate correctness, it is shown that the Dasa algorithm respects any existing dependencies
among phases and makes legal selections. Thisis accomplished by demonstrating that any phase that bAsA
selects for execution is capable of executing immediately. Specificaly, it is shown that bAsa will either
(1) select aphase that is ready to run (that is, one that is not blocked waiting for an allocated resource), or
(2) designate that a phase is to be aborted, since an abort may commence immediately for any phase. This
proof is presented in Section 4.3.1.

To demonstrate value, proofs serve to illustrate that DAsA performs well when compared to other
scheduling algorithms in appropriate situations. In particular, when there are no dependency
considerations, DASA can be compared to a number of well-known algorithms. In fact, it is shown that, if
there are no overload conditions, the DAsSA automaton will accept the same histories as an automaton that
accepts histories conforming to Locke's Best Effort Scheduling Algorithm (LBESA). Not coincidentally,
this is simply a deadline-ordered history. In overload situations, it is demonstrated that the DAsA
automaton will accept histories that the LBESA automaton will not accept, and that these histories may have
a higher value than any history that the LBESA automaton may accept involving the same phases with the
same scheduling parameters. These proofs are presented in Section 4.3.2.

To demonstrate tractability, a procedural version of the DAsA algorithm has been developed, and its
computational complexity has been analyzed to prove that the time and space requirements of the algorithm
are indeed polynomial in problem size —— that is, that the time and space required to execute the algorithm
are each proportional to the number of active phases raised to some constant power. Both the procedural
version of the DAsA algorithm and the derivation of its space and time properties are presented in Section
4.3.3.

4.3. Proofs of Properties

The proofs in the sections that follow demonstrate properties of the DASA scheduling algorithm according
to the strategy outlined in the preceding section. Each section contains all of the proofs corresponding to a
single property of concern. In addition to the proofs themselves, other material that must be developed to
complete the proofs is also presented. For example, in Section 4.3.2.1, a derivation of another scheduling
automaton is presented. This automaton is subsequently used in proofs to assess the utility of the bAasa
algorithm.

Analytic Results 67

4.3.1. Algorithm Correctness

There is only one proof in this section. It demonstrates that DASA respects all existing dependencies
among phases by showing that the phase selected for execution can execute immediately. Therefore, no
phase is ever selected for normal execution if it is dependent on some other execution. Of course, a phase
that is blocked due to a dependency could be selected to abort, since it can abort at any time regardless of
dependency considerations.

4.3.1.1. Proof: Selected Phases May Execute Immediately

Theorem 1. For any Phaselist, the set of phases known to the DASA automaton, PhaseElect, the phase
selected for execution, is aways eligible to run immediately.

Proof. In every casein the DAsSA automaton, PhaseElect, the phase selected for execution, is determined
by evaluating SelectPhase(PhaseList). The function SelectPhase() is defined as:
SelectPhase(P) = pickone(mustfinishby(DL, «(mpplist), Py equied(P))
where
mpplist = tobescheduled(Pg o q1e4(P))
and pickone() is defined as:

pickone(MPP) =
<normal, p>, if <normal, p>0MPP
0 Dep(p) = nullphase
<abort, p>, if <abort, p>0MPP
0 = (Cg)(<normal, g> 0 MPP
0 Dep(q) = nullphase)
<normal, nullphase>, otherwise

Notice that pickone() will return one of three values:
» <normal, p>, for some phase p —— this occurs only when Dep(p) = nullphase; in that case, pis
ready to run by definition;

« <abort, p>, for some phase p —— any phase may be aborted at any time, even if it had
previously been waiting to access a shared resource; so once again, by definition, p is ready to
run;

e <normal, nullphase> —— this designates an idling condition, which is always possible, so
nullphase istrivially ready to run32,

In each case, PhaseElect is assigned a mode-phase pair in which the phase is ready to run.

32Notice that <normal,nullphase> is returned only in the case that there are no phases ready to run in either their normal mode or
their abort mode.

68 Scheduling Dependent Real-Time Activities
4.3.2. Algorithm Value

Since most scheduling algorithms do not utilize dependency information, it is difficult to make fair
comparisons between their performance and that of DASA when dependencies are involved. Therefore, this
section will compare DASA to an another algorithm (LBESA) in the absence of any dependencies.

Since LBESA was shown in[Locke 86] to outperform a number of standard algorithms in a range of
situations, a favorable comparison with LBESA will demonstrate that bAasa behaves well.

To that end, the two proofs presented in this section demonstrate that the bAsA algorithm performs well
when compared to the LBESA algorithm. They consider a set of activities that are independent of one

another, each of which is described by atime-value function that is a step function. They show:

1. If there is no overload, then both DAsA and LBESA yield identical expected value to the
application.

2. Under overload, bDASA may schedule more activities than LBESA, yielding a greater expected
value than LBESA.

Before presenting the two proofs, the next two sections develop the formal scheduling automata that they
will use. First, Section 4.3.2.1 presents the LBESA Scheduling Automaton. Then Section 4.3.2.2 presents a
scheduling automaton corresponding to the DAsA algorithm when there are no dependencies to consider.

4.3.2.1. LBESA Scheduling Automaton

The LBESA Scheduling Automaton is cast using the General Scheduling Automaton Framework described
in Section 2.3.2. Once again, each scheduling decision is made based on the set of phases currently known
to the automaton: {py, P, Py, - - - }-

LBESA Automaton State Components. The state components associated with the LBESA Scheduling
Automaton are presented in Figure 4-1. They are simply the General State Components that every

scheduling automaton contains, and they were described in detail in Section 2.3.2.9.

Operations Accepted by LBESA Automaton. The operations accepted by the LBESA automaton and their

preconditions and postconditions are shown in Figures 4-2 and 4-3.

These are a somewhat simpler version of those presented in Section 3.2.1.2 for the bAsa Scheduling
Automaton. Most notably, there are no operations for dealing with resources —— in particular, there are no
‘request’ and ‘grant’ operations. (Of course, in keeping with the Genera Scheduling Automaton
Framework, these operations actually exist for the LBESA Scheduling Automaton. However, their
preconditions are defined to be false, indicating that events with these operations can never be accepted by
the LBESA Scheduling Automaton.) In addition, there are no postconditions for ‘request-phase’ to release
previously acquired resources, and the precondition for ‘resume-phase’ is one term shorter.

The LBESA Scheduling Automaton does not accept ‘abort-phase’ operations either. This is because the
LBESA scheduling algorithm does not abort activities or phases. Such aborts are not required because the
activities are al assumed to be independent.

Analytic Results 69

General State Components.
* ExecMode: PHASE —. MODE (MODE is either ‘normal’ or *abort’)

e ExecClock: PHASE - VIRTUAL-TIME

 AbortClock: PHASE - VIRTUAL-TIME

* ResumeTime: PHASE - TIMESTAMP

* Value: PHASE - (TIMESTAMP - VALUE)

e Total: VALUE (initialy ‘0")

* RunningPhase: PHASE (initialy ‘nullphase’)

* PhaseElect: MODE x PHASE (initialy ‘<normal, nullphase>")
* PhaseList: list of PHASE (initially ‘¢')

Algorithm-Specific State Components:
* None

Figure4-1: State Components of LBESA Scheduling Automaton

When activities are not independent, then aborts must be introduced into the model. Notice that this does
not mean that the scheduler must generate abort signals, but rather, that there must be a way to return
shared resources to acceptable states before allowing other activities to acquire them and to return the
aborted activity to a known state (presumably to handle an abort exception) if it is to have any chance at
continuing normal execution.

References to the AbortClock state component have been left in the postconditions for the
‘preempt-phase’ operation merely for convenience when comparing it to another automaton. Since aborts
are never used, the clause that deals with the AbortClock state component will never actually have an
effect.

SelectPhase() Function for LBEsA Automaton. The function SelectPhase() embodies the LBESA
scheduling algorithm in this scheduling automaton, just as the identically-named function had done in the
DASA Scheduling Automaton. Figure 4-4 shows the definition of this function.

Since Locke never employed such formalisms in his work, he never provided as rigorous a definition for
his scheduling algorithm as the one shown here. In particular, he never provided a mathematical function
corresponding to his definition. As a result, the definition shown here captures Locke's algorithm in this
formal framework.

There are a number of ways of defining SelectPhase(), and the one chosen parallels the structure of the
SelectPhase() function for the bAsa Scheduling Automaton in order to facilitate comparisons between
them.

70 Scheduling Dependent Real-Time Activities

* toyent F€QUESt-phase(v, texpected) p:

preconditions:
true (This allows interrupts and new phases to occur at any time)
postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total’ = Total + Vaue(p)(t
else
;no value for aborted phase
endif
;release the resources acquired during the phase
; involves no action for this automaton
endif

ev ent)

Value (p) =v
ExecClock’ (p) = Lo pected
AbortClock’ (p) =0
ExecMode (p) = normal

;make sure p is part of the list of phases, if necessary

if (texpected > Q) then

PhaseList’ = PhaseList O {p}
else

PhaseList’ = PhaseList - { p}
endif

;update execution clock for running phase, if necessary
if (RunningPhase # p) and (RunningPhase # nullphase) then
ExecClock’ (RunningPhase)
= ExecClock(RunningPhase) - (tyent -
ResumeTime' (RunningPhase) =t o
endif

ResumeTime(RunningPhase))

PhaseElect’ = SelectPhase(Phaselist’)
if (p = RunningPhase) then
;give up processor until next ‘ resume—phase
RunningPhase = nullphase
else
;happened under interrupt——leave ‘ RunningPhase' alone
endif

Figure 4-2: ‘Request-Phase’ Operation Accepted by LBESA Scheduling Automaton

Despite the degree to which the effort to cast these functions in the same form succeeded, there are still
substantial differences between the two functions. The most important of these is the order in which phases
are added to the tentative schedule by the two algorithms. This difference is seen in the Pyyqyed
subsidiary function of each definition. LBESA adds phases to the tentative schedule in deadline order,
nearest deadline first. DASA, on the other hand, adds phases to the tentative schedule in order of decreasing
potential value density.

Analytic Results 71

* toyent Preempt-phase(p) S
preconditions:

(RunningPhase = p) O (RunningPhase # nullphase)
O (RunningPhase # Phase(PhaseElect))

postconditions:
ExecClock’ (p) = ExecClock(p) - (t

RunningPhase’ = nullphase
* toent F€SUMe-phase(p) S
preconditions:
(RunningPhase = nullphase) O (Phase(PhaseElect) = p)
O (Phase(PhaseElect) # nullphase) [0 (Mode(PhaseElect) = normal)

postconditions:
ResumeTime' (p) =ty ent

RunningPhase’ = Phase(PhaseElect)

avent - RESUMETime(p))

Figure 4-3: Other Operations Accepted by LBESA Scheduling Automaton

In the event that a tentative schedule is not feasible, both algorithms (effectively) remove phases from the
tentative schedule in order of increasing value density or potential value density, respectively. The fact that
LBESA adds phases to the schedule based on one attribute and sheds phases based on another, while DAsA
uses a single attribute for both purposes, causes the algorithms to make different scheduling decisions
under certain circumstances. This leads directly to the fact that, under overload, DASA can attain greater
value for an application than LBESA can, asis shown in Section 4.3.2.4.

Locke was silent on some details concerning his algorithm, such as which phase should be selected if two
or more phases shared the nearest deadline in a schedule or which phase to shed if two or more phases had
a common value density that was lower than that of al of the others phases in the tentative schedule.
Whenever possible, these details have been resolved in the manner that seemed to make the most sense.
For example, when two or more phases are characterized by the same value density, the phase requiring the
least computation time is deemed to be less valuable than the others since its contribution to the overal
value of the application is a product of value density times required computation time. If two or more
phases share the same value density and the same required computation time, then any of the phases may
be chosen.

4.3.2.2. DASA/ND Scheduling Automaton

The DASA/ND33 Scheduling Automaton embodies the simplifications to the DAsa Scheduling Automaton
that can be made when there are no dependency issues to consider. The derivation of this simplified
automaton appears in Appendix A. For the sake of convenience, the resulting automaton is presented in
this section.

33pasa/nD stands for basa/No Dependencies.

72

Scheduling Dependent Real-Time Activities

SelectPhase(P) = pickone(mustfinishby(DL;,(mpplist), Popequied(P)))»
where
mpplist = tobescheduled(Pg o y1eq(P))

ickone(MPP) =d <normal, nullphase>, if MPP=¢
prekone(MPP) { <normal, p> | <normal, p>LIMPP, otherwise
o, if MPP=¢
DLy, 4(MPP) = Deadline(p) | (<normal, p>0OMPP) .
O(Og)[<normal, g> O MPP - Deadling(q) = Dheadl!ne(p)],
otherwise
P (P) :{ o, |f P=¢
heduled Preasible(Pscheduied(P—{PH) U {P}), it pOPgpL(P)
7 it P=g
Preasibie(P) = P if feasible(P)
PreasiblelP—{P}) | PLPigagpv(P), otherwise

o, if P=@

PlasoL (P) :{ {p1(POP) O(0Q)[qTP -~ ((Deadline(p) > Deadline(q))
0 (Deadling(p)=Deadling(q) - PVD(p) <PVD(Q)))]},
otherwise

if P=@

O(PVD(p)=PVD(q) — ExecClock(p) < ExecClock(q)))]},

(py
P eastrv(P) ={ {pl(PLOP) O (Ng[gUP - ((PVD(p)<PVD(q))
otherwise

tobescheduled(P) = {<normal, p> | pd P}

mustcompleteby(t, P) = & if t<to et
{p|[pOP ODeadline(p) <t]}, otherwise
o, if P=@ O t<ty gy
mustfinishby(t, P) = O mustcompl eteby(t, P)=@
{<normal, p> | p 0 mustcompleteby(t, P)}, otherwise

feasible(P) = true, iff (OM)[(t2t,) — timerequiredby(mustfinishby(t, P)) < (t-t

event)]

- - Jo if MPP=
timerequiredoy(MPP) { ExecClock(p) + timerequiredby(MPP—{ <normal p>}).

if <normal, p>C0MPP
Val(p)

PVD(p) = VD(P) = £racciockip)

Figure 4-4: Functional Form of LBESA Algorithm

Analytic Results 73

As before, each scheduling decision is made based on the set of phases currently known to the automaton
and designated asthe set {py, P1, Py, - .- }-

DASA/ND Automaton State Components. The state components associated with the DAsSA/ND scheduling
automaton are presented in Figure 4-5. Since the algorithm-specific state components of the DAsa
Scheduling Automaton are all used to handle resources, they have been omitted in the DASA/ND Scheduling
Automaton, leaving only the General State Components found in every scheduling automaton. (See
Section 2.3.2.9.)

General State Components.
* ExecMode: PHASE - MODE (MODE is either ‘normal’ or *abort’)

e ExecClock: PHASE - VIRTUAL-TIME

* AbortClock: PHASE - VIRTUAL-TIME

* ResumeTime: PHASE - TIMESTAMP

* Value: PHASE - (TIMESTAMP - VALUE)

e Total: VALUE (initialy ‘0")

* RunningPhase: PHASE (initialy ‘nullphase’)

* PhaseElect: MODE x PHASE (initialy ‘<normal, nullphase>")
 Phaselist: list of PHASE (initially ‘@)

Algorithm-Specific State Components:
* None

Figure 4-5: State Components of DASA/ND Scheduling Automaton

Operations Accepted by DASA/ND Automaton. The operations recognized by the bAsa/ND Scheduling
Automaton and their preconditions and postconditions are shown in Figures 4-6 and 4-7.

Once again, these are simpler than those shown previously for the DAsa Scheduling Automaton in
Section 3.2.1.2. In fact, largely because the automaton does not have to handle dependencies and aborts,
this set of operation specifications is identical to that shown in the previous section for the LBESA
Scheduling Automaton. Nonetheless, the two automata are not identical since their SelectPhase() functions
differ significantly.

SelectPhase() Function for DASA/ND Automaton. Figure 4-8 shows the definition of the SelectPhase()
function for the bAsA/ND Scheduling Automaton.

This definition is structurally similar to the definition for SelectPhase() found in the LBESA Scheduling
Automaton. But, although many of the functions are identical, there are some critical differences.

74 Scheduling Dependent Real-Time Activities

* toyent F€QUESt-phase(v, texpected) p:

preconditions:
true (This allows interrupts and new phases to occur at any time)

postconditions:
if (RunningPhase = p) then
if (ExecMode(p) = normal) then
Total’ = Total + Vaue(p)(t
else
;no value for aborted phase
endif
;release the resources acquired during the phase
;involves no action for this simplified automaton
endif

ev ent)

Value (p) =v
ExecClock’ (p) = Lo pected
AbortClock’ (p) =0
ExecMode (p) = normal

;make sure p is part of the list of phases, if necessary

if (texpected > Q) then

PhaseList’ = PhaseList O {p}
else

PhaseList’ = PhaseList - { p}
endif

;update execution clock for running phase, if necessary
if (RunningPhase # p) and (RunningPhase # nullphase) then
ExecClock’ (RunningPhase)
= ExecClock(RunningPhase) - (tyent -
ResumeTime' (RunningPhase) =t o
endif

ResumeTime(RunningPhase))

PhaseElect’ = SelectPhase(Phaselist’)
if (p = RunningPhase) then
;give up processor until next ‘ resume—phase
RunningPhase = nullphase
else
;happened under interrupt——leave ‘ RunningPhase' alone
endif

Figure 4-6:. ‘Request-Phase’ Operation Accepted by DASA/ND Scheduling Automaton

The most noticeable difference is the absence of the subsidiary function P, (), which locates the phase
with the latest deadline. A less noticeable difference isinvocation of Py ,4p\ (), rather than P4, (), in the
definition of Py queq0- N fact, it is Pyyqeq() that orders the phases as they are added to a tentative
schedule for both the LBESA and the DASA/ND Scheduling Automata. Since the DASA/ND Scheduling
Automaton adds phases to the schedule in order of decreasing potential value density, it has no need for

PlasoL0-

Analytic Results 75

* toyent Preempt-phase(p) S
preconditions:

(RunningPhase = p) O (RunningPhase # nullphase)
O (RunningPhase # Phase(PhaseElect))

postconditions:
ExecClock’ (p) = ExecClock(p) - (t

RunningPhase’ = nullphase
* toent F€SUMe-phase(p) S
preconditions:
(RunningPhase = nullphase) O (Phase(PhaseElect) = p)
O (Phase(PhaseElect) # nullphase) [0 (Mode(PhaseElect) = normal)

postconditions:
ResumeTime' (p) =ty ent

RunningPhase’ = Phase(PhaseElect)

avent - RESUMETime(p))

Figure 4-7: Other Operations Accepted by DASA/ND Scheduling Automaton

As was mentioned in the previous section, this difference in schedule construction may allow the
DASA/ND Scheduling Automaton to accumulate a higher value for an application than the LBESA Scheduling
Automaton. Thiswill beillustrated by the proof in Section 4.3.2.4.

4.3.2.3. Proof: If No Overloads, DAsA and LBESA Are Equivalent

The introduction of the two scheduling automata in the previous sections has set the stage for the proofs
in this section and the next. The proof that follows demonstrates that if there are no overloads, then both
automata will accumulate the same value for the application —— that is, both algorithms will make the same
scheduling decisions. In fact, both automata will accept the same sequence of events as the scheduling
automaton embodying a deadline scheduler, and a deadline-ordered schedule is known to be optimal for a
uniprocessor when there are no overloads ([Liu 73]).

Theorem 2: Consider (1) a set of independent activities each comprising a single computational phase
that is characterized by a simple time-value function —— a step function with a positive value before a
designated critical time and a value of zero after that time (that is, each phase has a hard deadline) ——
where (2) there are sufficient processor cycles to allow al of the phases to meet their deadlines. Every
history involving these activities that is accepted by the LBESA Scheduling Automaton is also accepted by
the DASA Scheduling Automaton, yielding equal value.

Proof. For the sake of simplicity, since LBESA cannot handle dependencies among phases, this proof will
be carried out by comparing the LBESA automaton with the DASA/ND automaton —— a simplified version of
the DAsA Scheduling Automaton that contains no dependency considerations. The DASA/ND automaton is
defined in Section 4.3.2.2. Furthermore, the only histories being examined by the automata are histories
that do not involve overload situations.

76

Scheduling Dependent Real-Time Activities

SelectPhase(P) = pickone(mustfinishby(DL;,(mpplist), Popequied(P)))»
where
mpplist = tobescheduled(Pg o y1eq(P))

ickone(MPP) =d <normal, nullphase>, if MPP=¢
pickone() { <normal, p> | <normal, p> [MPP, otherwise
00, if MPP=¢
DLy, 4(MPP) = Deadline(p) | (<normal, p> [0 MPP)
O (dg)[<normal, g> 0 MPP - Deadline(q) = Deadling(p)],
otherwise
P (P) :{ o, |f P=¢
scheduled Preasible(Pschedutea(P—{P}) T {p}), ifp 0P aspv(P)
) if P=@
Preasibie(P) = P if feasible(P)
Preasibie(P={P}) | PO Py gagpv(P); otherwise
@, if P=@
Pleaspv(P) = {P|(pOP) O(Oop[qUP — ((PVD(p) < PVD(q))
O (PVD(p)=PVD(q) — ExecClock(p) < ExecClock(q)))]},
otherwise
tobescheduled(P) = {<normal, p> | pO P}
mustcompleteby(t, P) = & if t<ty ent
{p|[pOP ODeadline(p)<t]}, otherwise
o, ifP=@ O t<ty gy
mustfinishby(t, P) = O mustcompl eteby(t, P)=¢@
{<normal, p> | p O mustcompleteby(t, P)}, otherwise

feasible(P) =true, iff (Ot)[(t>ty,q,) — timerequiredby(mustfinishby(t, P)) < (t-tg ey

i i ={ 0 if MPP=
timerequiredoy(MPP) { ExecClock(p) + timerequiredby(MPP—{ <normal p>}).
if <normal, p>0 MPP

Vval(p)

PVD(D) = 5 ecCiockp)

Figure 4-8: Functiona Form of DASA/ND Algorithm

Analytic Results 77
The proof is performed by induction over the eventsin an accepted history.

Basis. Show that (1) if LBESA accepts the first event in a history, DASA/ND will aso accept it, (2)
RunningPhase, Phaselist, PhaseElect, and Total are the same for both automata, and (3) Value, ExecClock,
ExecMode, and ResumeTime are the same for each active phase in both automata.

Initialy,

RunningPhase = nullphase
PhaseList = @

PhaseElect = <normal, nullphase>
Total =0

As aresult, the only event whose precondition for LBESA may be satisfied is ‘ request-phase.” Therefore,
the first event in any history that LBESA will accept must be a‘request-phase.’

Let thisfirst event be denoted:

teventy request—phase(v, texpectedl) P1
LBESA accepts this event — its precondition for accepting it is true —— and as dictated by its
postconditions, it sets:
Total' =0
Valug (py) = Vv

ExecClock (p,;) = Lexpected1
ExecModé (p;) = normal

PhaseList' = {p;}
PhaseElect’ = SelectPhase(Phaselist)
- { <normal, p,>, if feasible({p,})
<normal, nullphase>, otherwise

DASA/ND also accepts this event —— its precondition is also true —— and, the state component changes
induced by the postconditions for the event include those made by LBESA.

Therefore, DASA/ND accepts the first event in any history accepted by LBESA. Furthermore,
RunningPhase, PhaseList, PhaseElect, and Total are identical in both automata after accepting this event.
And finally, Value, ExecClock, and ExecMode are the same in both automata after accepting the event for
the only currently active phase, p;, while ResumeTime is not yet defined for any phase in either automata
——and soistrivially the same in both.

Inductive Step. Given that DASA/ND has accepted the first n events in a history that LBESA accepts; that
RunningPhase, Phaselist, PhaseElect, and Total are the same for both automata after accepting those
events, and that Value, ExecClock, ExecMode, and ResumeTime are the same in both automata for each
active phase after accepting those events; show that DASA/ND will also accept the n+ 13 event in the history
if LBESA accepts it, that RunningPhase, Phaselist, PhaseElect, and Total will be the same in each
automaton after that event is accepted, and that Value, ExecClock, ExecMode, and ResumeTime will be the
same in each automaton for each active phase after the n+1% event is accepted.

78 Scheduling Dependent Real-Time Activities

LBESA may accept any event for which the precondition is satisfied. In this case, it may accept an
appropriate:
* ‘preempt-phase’

* ‘resume-phase’

* ‘request-phase’

The precondition for accepting each of these events is the same in both automata. The preconditions
depend only on the values of RunningPhase, PhaseElect, and the parameter p. Hence if LBESA accepts the
n+13 event, DASA/ND will also accept it since, by inductive hypothesis, it has the same values for the
relevant state components, the same parameter values, and the same precondition as LBESA.

Next, it should be demonstrated that RunningPhase, Phaselist, PhaseElect, and Total are the same for
both automata after the n+ 15 event is accepted, and that Value, ExecClock, ExecMode, and ResumeTime
are the same for both automata for each active phase after that event is accepted.

Consider each of the three possible events:

1. ‘preempt-phase’ — in both automata, RunningPhase’ is set to nullphase while PhaseElect
remains unchanged, and therefore equal. Also in both automata, ExecClock'(p) is assighed a
new value. The formula used to update ExecClock'(p) is the same in both automata,
ExecClock(p) and ResumeTime(p) are the same in both automata by inductive assumption,
and tg,. IS the same in both since it is part of the n+ 18 event and so is independent of the
state of the automata. Therefore, ExecClock'(p) will be the same in both automata.

2. ‘resume-phase’ — in both automata, RunningPhase is set to PhaseElect, which has the same
value in both automata after accepting the first n events, while PhaseElect remains
unchanged, and therefore equal, in both automata. Also, ResumeTime (p) is set to ty oy This
assignment results in the same state for ResumeTime (p) in both automata since ResumeTime
was the same in both automata for all active phases after the first n events had been accepted
and t, o is the same for both automata because it is part of the n+ 18 event and so is
independent of the states of the automata.

3. ‘request-phase’ ——

* RunningPhase: in both automata, RunningPhase’ may conditionally be set to nullphase;
in each automaton, the condition under which this is done —— p = RunningPhase —— is
the same, RunningPhase is the same by inductive hypothesis, and p is the same since it
is part of the n+1% event and has a value that is independent of the state of the
automaton.

Phaselist: in both automata, Phaselist’ will conditionally be set to either
PhaseList [0 {p} or PhaseList — {p}; in each automaton, the condition under which this
is done — texpected> 0 — is the same, Phaselist is the same by inductive hypothesis,
and p and t, .«q @€ the same since they are part of the n+ 1% event and have values
that are independent of the state of the automaton.

PhaseElect: in both automata, PhaseElect’ is set to SelectPhase(PhaselList’). Asargued
in the previous bullet, Phaselist' is the same in both automata. Now consider the
function SelectPhase() for each automaton. Most of the subordinate functions involved
in the definition of SelectPhase() are identical in both automata. In fact the only
subordinate function that differs is Py qq,eq) — dthough the form is the same in
both, the specific ordering of recursive functional evaluations is different in the two
automaton definitions.

It is given that there are sufficient processor cycles available to alow all of the phases

Analytic Results 79

to meet al of their deadlines. In terms of the mathematical formulation of these
automata, this is equivalent to saying that (OP)feasible(P) =true —— that is, it is
feasible to schedule all of the known phases at any given time.3* In that case, for both
automata the definition of Py, () can be simplified from

B it P=
Preasible(P) = : if feasible(P)
PreasibleP—{P}) | PO P gaqp(P). Otherwise
to
i = d if P=

et { 3 it feasble(P)
and, finaly, to

Preasible(P) =P

Since Prgaqpe() acts as an identity function, the definition of Py, ., e() can aso be
simplified from:

5 o =f o if P=¢
scheduled(P) { Preasible(Pschedued(P—{P}) O {p}), if pO P, (P)

where P, () is Py ,4p, () for LBESA and P 4p/() fOr DASAIND, to:
P P) :{ o if P=0
scheduled Pehedued(P—{PH) O {p}, if pOP(P)
which is equivalent to:
Pscheduled(P) = P

Of course, the definitions of SelectPhase() for both automata are now exactly the same.
The evauation of SelectPhase(Phaselist’) depends on the values of Phaselist',
ExecClock’, and Value, al of which are shown to be the same for both automata after
the n+ 15 event in the history is accepted. The value also depends on toent Which isthe

same for both automata since it is part of the n+1% event and is therefore independent
of the state of the automata. Consequently, PhaseElect’ will be the same for both
automata.

Total: in both automata, if RunningPhase = p and ExecMode(p) = normal, Total’ will
be set equal to Total + Value(p)(t qy): Otherwise, Total” will remain unchanged by the

n+1% event. Since by inductive hypothesis RunningPhase and ExecMode are the same
in both automata, and since p is the same in both automata since it is part of the n+1%
event and consequently has a value that is independent of the state of the automata, the
condition under which Total’ will be updated by the n+1% event is the same in both
automata. Also, since Total and Value are the same in both automata by inductive
hypothesis, and p and t, ., ae both part of the n+ 1% event, the computed value
assigned to Total’ isidentical in both automata.

Value: in both automata, Valu€e'(p) is unconditionally set to v; in each automaton, p and
v are the same since they are part of the n+1% event and have values that are
independent of the state of the automaton. Since Value had been the same in both
automata after n events were accepted and since both automata set Value (p) = v, Value
isthe samein both.

ExecClock: in both automata, ExecClock'(p) is unconditionally set to Lexpected: in each

34This property is maintained through an entire history because both automata accept deadline-ordered histories if there are no
overload conditions, and a deadline-ordered schedule will be guaranteed to meet all of the deadlines if there are sufficient processing

cyclesavailable.

80 Scheduling Dependent Real-Time Activities

automaton, p and texpected A€ the same since they are part of the n+1% event and have
values that are independent of the state of the automaton. Therefore, ExecClock'(p) is
the same in both automata.

In addition, both automata conditionally set ExecClock (RunningPhase); the
conditional test used by both automata is the same, as are the values of RunningPhase
(by inductive hypothesis) and p (as part of the n+1% event) used when performing the
test. Therefore, either both or neither of the automata will perform the assignment to
ExecClock(RunningPhase). Furthermore, the value assigned is the same for both
automata since ExecClock(RunningPhase) and ResumeTime(RunningPhase) are the
same in both automata according to the inductive assumption, t, . is the same since it

is part of the n+1% event, and the expression used to determine the new value for

ExecClock(RunningPhase) is the same for both automata and depends on only these
values.

Since ExecClock had been the same in both automata after n events were accepted and
since both automata set ExecClock'(p) and ExecClock' (RunningPhase) identically,
ExecClock' isthe same in both.

ExecMode: in both automata, ExecMode (p) is unconditionally set to normal; in each
automaton, p is the same since it is part of the n+1% event and has a value that is
independent of the state of the automaton. Since ExecMode had been the same in both
automata after n events were accepted and since both automata set
ExecMod€ (p) = normal, ExecMode isthe samein both.

ResumeTime: in both automata, ResumeTime (RunningPhase) is conditionally set to
taent 1he condition under which this is done is the same for both automata and
depends only on the values of RunningPhase and p which are the same for each
automata by inductive hypothesis and as part of the n+1% event, respectively.
Therefore, either both or neither automaton sets the value. Since ty, . is the same for
both automata, they will both assign the same value to ResumeTime (RunningPhase) if
they perform the assignment. Since ResumeTime had been the same in both automata
after n events were accepted and since both automata set ResumeTime (RunningPhase)
identically for the n+1% event, ResumeTime' is the samein both.

Thus, if LBESA accepts any of these event types as the n+ 1% event in a history, so will DASA/ND, and the
significant state components of each automaton will be the same at that point.

Therefore, by induction, DASA/ND, and hence DASA itself, accepts any history accepted by LBESA under
the conditions outlined in the theorem statement. Furthermore, because the state component Total will be
the same in both automata after accepting a history, both will yield the same value for any history that they

EndOfProof

accept.

4.3.2.4. Proof: With Overloads, DASA May Exceed LBESA

The preceding section showed that the bAsa Scheduling Automaton performed well when there were no
overloads. In this section, it is shown that, when there are overloads, the DAsA Scheduling Automaton may
accept histories that yield higher values for the application than any history that may be accepted by the
LBESA Scheduling Automaton. The reason for this has been mentioned previously in Sections 4.3.2.1 and
4.3.2.2: dthough both algorithms use similar value density metrics, they construct schedules in different
ways, potentially resulting in situations where LBESA sheds some phases unnecessarily.

Analytic Results 81

Once again, for the sake of simplicity, since no dependencies are involved, the DASA/ND Scheduling
Automaton, rather than the DAsA Scheduling Automaton, is use in the following proof. The result,
however, appliesto the DAsA Scheduling Automaton as well.

Theorem 3. Consider (1) a set of independent activities each comprising a single computational phase
that is characterized by a simple time-value function —— a step function with a positive value before a
designated critical time and a value of zero after that time (that is, each phase has a hard deadline) ——
where (2) there are insufficient processor cycles to alow all of the phases to meet their deadlines. The
DASA/ND Scheduling Automaton may accept a history with a greater value than any history the LBESA
Scheduling Automaton can accept involving the same phases and the same scheduling parameters (time-
value functions and required computation times).

Proof. This proof is carried out by constructing an example.

Intuitively, LBESA constructs a complete schedule by considering each phase in order of its deadline,
nearest deadline first. As each phase is considered, an estimate is performed to determine whether there is
an overload situation. In that case, it discards the phases with the lowest value densities until a feasible
schedule is obtained. In the process, it may discard some phases unnecessarily. DASA/ND also constructs a
schedule from scratch; however, it begins with the phase having the greatest value density and considers
subsequent phases in decreasing order of value density. Each phase is included in the schedule in order of
its deadline if the schedule —— including that phase —— is feasible. Since this approach includes as many
high value density phases as possible and only discards those phases that cannot be added to the schedule,
rather than those that have lower value densities than one that must be discarded, it avoids the problem that
LBESA encounters.

An example of DASA/ND accepting a history with a greater value than LBESA will accept can be
constructed using phases with the following parameters:

Phase Deadline Required Value
Computation Time
pl 2t, t,+1 vl
p2 2t, t, v2
p3 2t,-1 t,-1 v3

Let t,>1 and v1,v2,v3>0. Also, let vl/(t,+1)>v2/t >v3/(t,-1) indicate the initial relationship of the
value densities of the three phases, p1, p2, and p3, respectively. Now consider the following history, H:

82 Scheduling Dependent Real-Time Activities

t,=0" request-phase(step(vl, 2t,), t,+1) pl
t,=0 request-phase(step(vz, 2t,), t,) p2
t;=0 request-phase(step(v3, 2t-1), t-1) p3
t,=0" resume-phase(p3) S

to=t;1 request-phase(step(0, «), 0) p3
tg = (t;1)* resume-phase(pl) S

t,=2t, request-phase(step(0, «), 0) pl

This history is accepted by the DASA/ND automaton and has a value of v1+v3, but is not accepted by the
LBESA automaton. In fact, the only histories that LBESA accepts with only these three phases and the same
scheduling parameters have value v1 or less. The following sections demonstrate each of these facts in
turn.

DASA/ND Automaton Accepts History H;. By following the DASA/ND automaton through the state
changes accompanying the acceptance of each individual event in the history, this section will demonstrate
that history H, is accepted by DASA/ND. For reference, the DASA/ND automaton was defined in Section
4322

According to the automaton definition, initially:

Total =0

RunningPhase = nullphase
PhaseElect = <normal, nullphase>
PhaseList = @

The following labeled steps demonstrate the acceptance of each event in history H; and detail the changes
in state component values that accompany each event.

Eventl: t,=0" request-phase(step(v1, 2t,), t+1) pl
event parameters:

te'vent = tl =0

v =step(vl, 2t)

t@(pected = ta+1

p=pl

precondition: true

Analytic Results

postconditions:

Value (pl) = step(vl, 2t,)
ExecClock' (pl) =t +1
AbortClock'(pl) =0
ExecModé€ (p1) = normal
PhaseList' = @ O {p1} ={p1}
PhaseElect’ = SdlectPhase({ p1})

(since Lexpected > 0)

83

Since the precondition is true, the event is accepted. The changes indicated by the postconditions
take effect as a consequence of accepting the event.

Event2: t,=0 request-phase(step(vz, 2t,), t,)

p2

event parameters:

precondition:
postconditions:

te'\/ent = t2 =0
v =step(v2, 2t,)
texpected = ta
p=p2

true

Value (p2) = step(v2, 2t,)
ExecClock' (p2) =t,
AbortClock' (p2) =0

ExecModé€ (p2) = normal

PhaselList' = {p1} O {p2} ={pl, p2}
PhaseElect’ = SelectPhase({ p1, p2})

(since texpected > 0)

Since the precondition is true, the event is accepted. The changes indicated by the postconditions
take effect as a consequence of accepting the event.

Event3: t;=0 request-phase(step(v3, 2t,-1), t-1)

p3

event parameters:

precondition:
postconditions:

te'\/ent = t3 =0

v =step(v3, 2t,-1)
texpected = ta_l
p=p3

true

Value (p3) = step(v3, 2t,~1)

ExecClock' (p3) =t,-1

AbortClock' (p3) =0

ExecModé (p3) = normal

PhaseList' = {p1, p2} O {p3} ={p1, p2, p3}
PhaseElect’ = SelectPhase({ p1, p2, p3})

(since texpected > 0)

Scheduling Dependent Real-Time Activities

Since the precondition is true, the event is accepted. The changes indicated by the postconditions
take effect as a consequence of accepting the event.

Evaluating SelectPhase({ p1, p2, p3}) . ..
SelectPhase({p1, p2, p3}) =
pickone(mustfinishby(DLg;,(mpplist), Py pequiedd PL: P2, p3})))
where
mpplist = tobescheduled(Pg o 1eq({ PL: P2, P3}))

Pocheduledd PL: P2, P3}) = PreagibielPscheduted({ P1, P2}) O {p3})
(since Pigagpy({ PL, P2, p3}) = {p3})

Pscheduledd PL: P2}) = Proasinie(Pscheduied P1}) O {P2}) (since Pygogpy({ P1, P2}) = {p2})

Pocheduledd P1) = Preasinie(Pscheduied(® O {p1}) (since Pigogpy({P1}) = {p1})
= Preasibe(@ 0 {p1})
= Preaginie{ P1})
={p1}, if feasible({p1})

feasible({ p1}) =true,
iff (OY)[(t=tg,eqy) — timerequiredby(mustfinishby(t, {pl})) < (t-t

event)]

Fort=tyey - - -
mustfinishby(t, { p1})

o, if mustcompleteby(t, { p1}) = @
<normal, p> | p L mustcompleteby(t, { p1})},

otherwise
mustcompl eteby(t, { p1}) .
={p|[pO{p1} ODeadline(p)<t]}
=1 o ift < Deadling(pl) = 2t,
{p1}, ift > Deadling(pl) = 2t
Therefore . ..
mustfinishby(t, { p1})
{<normal, p> | pO{pl}}, otherwise
{<normal, p1>}, otherwise

timerequiredby(mustfinishby(t, { p1})) =

:{ timerequiredby(@), ift <2t
timerequiredby({ <normal, p1>}), ift = 2t,

:{ 0, ift<ot,
ExecClock(pl) = t,+1, ift > 2t

Analytic Results 85

Noticethat for t > t, o =0, whent < 2t,
timer equiredby(mustfinishby(t, {pl})) =0 < (t-t
asrequired for feasibility.
Andwhent > 2t,
timerequiredby(mustfinishby(t, { p1})) = t,+1 < 2t, < (ttgqy)
asrequired for feasibility.
Therefore . . .

feasible({ p1}) = true - Py peqeq P1}) = {p1}
Continuing . ..

Pscheduied{ P1: P2})
= Preasible(Pschedutea{P1}) O {p2})
= PreasipedP1} O {p2})
= Preasipe{P1, p2})
To evaluate Py gpc{P1, p2}) ...
feasible({ p1, p2}) = true, iff (OY[(t2tye)
- timerequiredby(mustfinishby(t, { p1, p2})) < (t-t

event)

event)]
Fort=tyey - - -
mustfinishby(t, {pl p2})

= if mustcompleteby(t, {pl, p2}) =@
{<normaJ p> | p 0 mustcompleteby(t, { p1, p2})},
otherwise

mustcompleteby(t, { p1, p2})
={p|[pU{p1, p2} O Deadline(p)<t]}

o if t < Deadling(pl) = Deadline(p2) = 2t,
{p1, p2}, ift > Deadling(pl) = Deadling(p2) = 2t,
Therefore . ..
mustfinishby(t, { p1, p2})
0 ift<2t,

{<normal, p>|pU{pl, p2}}, otherwise

¢, ift<2t,
{<normal, p1>, <normal, p2>}, otherwise

timerequiredby(mustfinishby(t, { p1, p2})) =

:{ timerequiredby(), ift<2t,
timerequiredby({ <normal, p1>, <normal, p2>}),
ift > 2t
= (0} ift< 2t
ExecClock(pl) + ExecClock(p2) = 2t +1,
|ft 22ty

Notice that for t = 2t
timerequiredby(mustfinishby(t, { p1, p2})) = 2t,+1 > 2t = (t-ty o)

86

Scheduling Dependent Real-Time Activities

This violates the requirement for feasibility. Therefore . ..
feasible({ p1, p2}) =false

= Praasinled PL P2}) = Preagie{ P1}) (since Pigogpy({ PL, P2}) ={p2})
={p1} (as shown above)
- Poheduled{PL P2}) ={p1} (since Pgyoqyed{ PL, P2}) = Pragnie{ PL, P2}))
Continuing . . .
Pseheduled(PL, P2, P3})

= Preasible(Pscheduiea({ P1, P2}) O {p3}) (as shown above)
= Preasipe{P1} O {p3})
= Preasipe{P1, p3})
To evaluate Py {1, p3}) ...
feasible({ p1, p3}) = true, iff (O)[(t=>ty,qy)
— timerequiredby(mustfinishby(t, { p1, p3})) < (t-tg,e)]
Fort=tyey - --
mustfinishby(t, { p1, p3})

:{ 0} if mustcompleteby(t, {pl, p3}) = @
{<normal, p> | p O mustcompleteby(t, { p1, p3})},

otherwise
mustcompleteby(t, { p1, p3}) _
={p|[pU{p1, p3} O Deadline(p)<t]}
o, ift < Deadling(p3) = 2t -1
{p3}, if Deadlineg(p3) = 2t -1 < t
= < Deadline(pl) = 2t,
{pL, p3}, ift > Deadling(pl) = 2t,
Therefore . ..
mustfinishby(t, { p1, p3})
= {<normal, p> | pO{p3}}, if2t-1<t<2t,
{<normal, p>|pO{pl, p3}}, if2t <t
= {<normal, p3>}, if2t-1<t<2t,
{<normal, p1>, <normal, p3>}, if2t, <t

timerequiredby(mustfinishby(t, { p1, p3}))
{ timerequiredby(q), ift<2t-1

timerequiredby({ <normal, p3>}), if 2t -1 < t<2t,
timer equiredby({ <normal, p1>, <normal, p3>}),

if2t, <t
0, ift<2t-1
= ExecClock(p3) =t,-1, if2t-1<t<2t,
ExecClock(pl) + ExecClock(p3) = 2t,,

if2t, <t

Analytic Results 87

Noticethat fort > t, =0, whent<2t -1 ...
timer equiredby(mustfinishby(t, { p1, p3})) =0 < (t-t
asrequired for feasibility.
When2t -1 <t<2t, ...
timerequiredby(mustfinishby(t, { p1, p3})) = t,—1 < 2t -1 < (t-t
asrequired for feasibility.
Andwhent > 2t, ...
timerequiredby(mustfinishby(t, { p1, p3})) = 2t, < (t-t
asrequired for feasibility.
Therefore . ..
feasible({ p1, p3}) =true
- Preasibied PL, p3}) = {p1, p3}
- Phedued P P2, p3}) = {p1, p3}
S0 Py pequied{ PL, P2, p3}), the set of phases that can feasibly be executed so that each will meet its
deadline while contributing the maximum value to the system for the investment of a given amount of
time, has now been determined. Next, the individual phase from this set that will be executed first
must be determined.

mpplist = tobescheduled(Pg o1 PL: P2, P3}))
= tobescheduled({ p1, p3})
={<normal, p1>, <normal, p3>}

event)
event)

event)

DLﬁrst(mppIist)Z: Dll-first({ <normal, p1>, <normal, p3>})
=2t -

a

mustfinishby(DLg;, 4 (mMpplist), Popeguied PL: P2, p3}))
= mustfinishby(2t-1, { p1, p3})

{<normal, p> | p 0 mustcompleteby(2t,-1, { p1, p3})}

(assuming mustcompleteby(2t, -1, {pl, p3}) # ¢)
{<normal, p>| pO{pl, p3} [Deadline(p)<2t,-1}
={<normal, p>|pO{p3}} (notethat mustcompleteby(2t-1, {pl, p3}) # @)
={<normal, p3>}

Finaly ...

PhaseElect’ = Sel ectPhase({ pl, .p2, p3}) .
= pickone(mustfinishby(DL;,(mpplist), P yequiedd PL: P2, P3})))
= pickone({ <normal, p3>})
=<normal, p3>

Event4: t,=0" resume-phase(p3) S

event par ameters:
te'\/ent = t4 =0
p=p3

88 Scheduling Dependent Real-Time Activities

precondition:

(RunningPhase = nullphase) O (Phase(PhaseElect) = p3)
O (Phase(PhaseElect) # nullphase) O (Mode(PhaseElect) = normal)

(RunningPhase = nullphase) O (Phase(<normal, p3>) = p3)
O (Phase(<normal, p3>) # nullphase) O (Mode(<normal, p3>) = normal)

true
postconditions.
ResumeTime (p3) = 0*
RunningPhase’ = Phase(PhaseElect) = Phase(<normal, p3>) = p3

Since the precondition is shown to be true, the event is accepted and the postconditions cause the
indicated changes in the state components.

Event 5:

to=t;1 request-phase(step(0, «), 0) p3

event parameters:

tovent = 5= 1571

v = step(0,)
t@(pe(:ted =0
p=p3

precondition: true
postconditions:

Total' = 0+Value(p3)(t,~1) (since RunningPhase=p3 [ExecMode(p3)=normal)
= step(v3, 2t,-1)(t,-1)
=v3
Valu€e'(p3) = step(0, o)
ExecClock'(p3) =0
AbortClock' (p3) =0
ExecMod€ (p3) = normal
Phaselist’ ={p1, p2, p3} —{p3} ={pl, p2}
PhaseElect’ = SelectPhase({ p1, p2})
RunningPhase’ = nullphase

(since texpected =0)

(since p3 = RunningPhase)
Since the precondition is true, the event is accepted. The changes indicated by the postconditions
take effect as a consequence of accepting the event.

Evaluating SelectPhase({p1, p2}) ...

SelectPhase({ p1, p2}) = pickone(mustfinishby(DL, (mpplist), Py equied{ PL P2})))
where

mpplist = tobescheduled(Pg o4 1eq({ PL: P2}))

Pocheduled T PL: P2}) = Preasinie(Pscheduied P1}) T {P2}) (since Pygogpy({ PL, P2}) = {p2})

Analytic Results

Pscheduled{P1}) = Preaginie(Pscheduied(® U {P1})
= Preasie(@ 0 {p1})
= Preaginie{ P1})
={pl}, iffeasible({ p1})

feasible({ p1}) = true,

iff (O)[(t2tg) — timerequiredby(mustfinishby(t, {p1})) < (t-t

Asbefore, fort = tg o =
mustfinishby(t, {p1})

tL ...

=4 O
{<normal, p> | p O mustcompl eteby

mustcompleteby(t, { p1})
={p|[p0{p1} ODeadline(p)=t]}

= (pl
{p1},
Therefore . ..
mustfinishby(t, { p1})
= (py

{<normal, p>|pO{p1}},

{'<normal, p1>},

timer equiredby(mustfinishby(t, { p1}))
=J timerequiredby(y),
timerequiredby({ <normal, p1>}),

_J 0,
_{ ExecClock(pl) = t,+1,
Noticethat fort > t, ., =t,~1, whent<2t, ...
timer equiredby(mustfinishby(t, {p1})) =0 < (t-t
asrequired for feasibility.
Andwhent > 2t, ...

timerequiredby(mustfinishby(t, { p1})) =t,+1 < (t-t

asrequired for feasibility.
Therefore . ..

feasible({pl}) = true - Pgyeqyeq{P1}) ={p1}
Continuing . ..

Pschedulea{ PL: PZ})
= Preasible(Pschedutead{P1}) U {P2})
= Preasime{P1} O {p2})
= Preasibie{P1, p2})

feasible({ pL, p2}) = true, iff (OO[(t=t

event)

- timerequiredby(mustfinishby(t, {p1, p2})) < (t-t

event)

(since Pigagp({P1}) = {P1})

event)]

if mustcompleteby(t, {p1}) = @

(t. {p1})},

otherwise

ift < Deadling(pl) = 2t
ift > Deadling(pl) = 2t

a

ift<2t,
otherwise

ift< 2t,
otherwise

ift<2t,
ift > 2t,

ift<2ta
ift > 2t,

event)

(as shown above)

event)]

89

20 Scheduling Dependent Real-Time Activities

Asbefore, fort =ty oy - - -
mustfinishby(t, {p1, p2})

o, if mustcompleteby(t, {pl, p2}) =@
<normal, p> | p 0 mustcompleteby(t, { p1, _p2})} .

otherwise

mustcompleteby(t, { p1, p2})

={p|lp0{p1, p2} O Deadline(p)<t]}

=< ¢ if t < Deadling(pl) = Deadling(p2) = 2t,

{p1 p2}, ift > Deadline(pl) = Deadline(p2) = 2t,
Therefore . ..

mustfinishby(t, { p1, p2})

= Q, ift< Zta

{<normal, p> | pO{pL, p2}}, otherwise

= 0 ift< Zta
{<normal, p1>, <normal, p2>}, otherwise

timer equiredby(mustfinishby(t, { p1, p2}))

:{ timerequiredby(@), ift <2t
timer equiredby({ <normal, p1>, <normal, p2>}),
ift > 2t,
:{ 0, ift<2t,
ExecClock(pl) + ExecClock(p2) = 2t_+1,
ift > 2t,

Noticethat fort=2t_ ...
timerequiredby(mustfinishby(t, { p1, p2})) = 2t,+1 > t+1 = (t-t
This violates the requirement for feasibility. Therefore . ..
feasible({ p1, p2}) = false

= Praasinled PL, P2}) = Proagie{ P1}) (since Pygogpy({P1, P2}) = {p2})
={pl} (as shown above)

- Pohedquied{PL, P2}) ={p1} (since Pyyequedd Pl P2}) = Praaginie({ P1, P2}))
Once again, the set of phases that can feasibly be placed in a schedule based on current knowledge
has been determined. Now a single phase must be selected to executefirst . . .

mpplist = tobescheduled(Pg o1 PL P2}))
= tobescheduled({ p1})
={<normal, p1>}

event)

DLf|r5[(mpp“$) = DLﬁl’i({ <normal, p1>})

=2t,

mustfinishby(DLg; . (mpplist), Popequiedd PL: P2}))
= mustfinishby(2t,, { p1})
={<normal, p> | p 0 mustcompleteby(2t,, { p1})}
(assuming mustcompleteby(2t,, {pl}) # ¢)
={<normal, p>|p0{q|[q0{pl} ODeadling(q)<2t]}}
={<normal, p> | pO{p1}} (note that mustcompleteby(2t,, { p1}) # @)
={<normal, p1>}

Analytic Results

91
Finaly ...
PhaseElect’ = SelectPhase({ p1, p2})

= pickone(mustfinishby(DLy;, & (mpplist), Py pequied PL P2})))
= pickone({ <normal, p1>})
=<normal, p1>

Event6: t5=(t;-1)" resume-phase(pl)

event parameters:

tevent = 16 = (ta_l)+
p=pl

precondition:

(RunningPhase = nullphase) O (Phase(PhaseElect) = pl)
O (Phase(PhaseElect) # nullphase) O (Mode(PhaseElect) = normal)

(RunningPhase = nullphase) O (Phase(<normal, p1>) = pl)
O (Phase(<normal, p1>) # nullphase) [0 (Mode(<normal, p1>) = normal)

true

(so the event is accepted)
postconditions:

ResumeTime (pl) = (t,~1)*
RunningPhase’ = Phase(PhaseElect) = Phase(<normal, p1>) = p1

Event7: t,=2t, request-phase(step(0, «), 0) pl

event parameters:

tevent = t7 = 2ta

v = step(0,)
texpected =0
p=pl

precondition: true

92

postconditions:

Scheduling Dependent Real-Time Activities

Total" = v3 + Value(pl)(2t,)
(since RunningPhase = p1 [0 ExecMode(pl) = normal)
=v3 + step(vy, 2t,)(2t,)
=v3+vl
Valu€e'(pl) = step(0, o)
ExecClock'(pl) =0
AbortClock'(pl) =0
ExecMod€ (p1) = normal

PhaseList' ={p1, p2} - {pl} ={p2} (since Loxpected = 0)
PhaseElect’ = SdlectPhase({p2})
RunningPhase’ = nullphase (since p1 = RunningPhase)

Since the precondition is true, the event is accepted. The changes indicated by the postconditions
take effect as a consequence of accepting the event.

Therefore, the history is accepted by the DASA/ND automaton and has a total value of Total=v1+v3.

LBESA Automaton Does Not Accept History H,. The first two events are accepted in the same way as
they were for DASA/ND. Also, al of the state components, with the possible exception of ‘ PhaseElect,” are
the same for both automata after the first two events. After that, LBESA behaves differently than DASA/ND.
The following development shows the behavior of LBESA in detail. (Refer to Section 4.3.2.1 for the
definition of the LBESA automaton.)

According to the automaton definition, initially:

Total =0
RunningPhase =

nullphase

PhaseElect = <normal, nullphase>

PhaselList = @

The following labeled steps demonstrate the acceptance of the first few eventsin history H,; and detail the
changes in state component values that accompany each event.

Eventl: t,=0" request-phase(step(v1, 2t,), t+1) pl
event parameters:

te'vent = tl =0

v =step(vl, 2t)

t@(pe(:ted = ta"':l'

p=pl

precondition: true

Analytic Results

postconditions:

Value (pl) = step(vl, 2t,)
ExecClock' (pl) =t +1
AbortClock'(pl) =0
ExecMode (p1) = normal
PhaseList' = @ O {p1} ={p1}
PhaseElect’ = SdectPhase({ p1})

Since the precondition is true, the event is accepted.
postconditions take effect as a consequence of accepting the event.

93

(since Lexpected > 0)

The changes indicated by the

Event2: t,=0 request-phase(step(vz, 2t,), t,)

p2

event parameters:

precondition:
postconditions:

te'\/ent = t2 =0

v =step(v2, 2t,)
texpected = ta
p=p2

true

Value (p2) = step(v2, 2t,)
ExecClock' (p2) =t,
AbortClock' (p2) =0

ExecMod€ (p2) = normal

PhaselList' = {p1} O {p2} ={pl, p2}
PhaseElect’ = SelectPhase({ p1, p2})

Since the precondition is true, the event is accepted.
postconditions take effect as a consequence of accepting the event.

(since texpected > 0)

The changes indicated by the

Event3: t;=0 request-phase(step(v3, 2t,-1), t-1) p3
event parameters.
te'\/ent = t3 =0

precondition:
postconditions:

v = step(v3, 2t,-1)

texpected =tg1
p=p3

true

Value (p3) = step(v3, 2t,~1)

ExecClock' (p3) =t,-1

AbortClock' (p3) =0

ExecModé (p3) = normal

PhaseList' = {p1, p2} O {p3} ={p1, p2, p3}
PhaseElect’ = SelectPhase({ p1, p2, p3})

(since texpected > 0)

94 Scheduling Dependent Real-Time Activities

Since the precondition is true, the event is accepted. The changes indicated by the
postconditions take effect as a consequence of accepting the event.
Evaluating SelectPhase({p1, p2, p3}) ...

SelectPhase({p1, p2, p3})
= pickone(mustfinishby(DL;,(mpplist), Pgpequiedd PL: P2, P3})))

where
mpplist = tobescheduled(Pg o 1eq({ PL: P2, P3}))

Pschedutea PL. P2, p3})
= PreasiblelPscheduted({ P1, P3}) O {p2})(since Py 4p ({PL, p2, p3}) = {p2})

Pscheduiea{ P1, P3})

= Preasible(Pscheduea{P3}) U {p1}) (since Py og4p ({1, p3}) ={p1})
Pscheduled{P3})

= Preasible(Pscheduled(® O {P3}) (since Py gp ({P1}) ={p1})

= Preasie(@ 0 {p3})

= Preagniel{ P3})

={p3}, if feasible({p3})

feasible({ p3}) =true,
iff (OY[(t=tg,eqy) — timerequiredby(mustfinishby(t, {p3})) < (t-t

event)]
Fort=ty gy - - -

mustfinishby(t, { p3})

o, if mustcompleteby(t, { p3}) = @
<normal, p> | p 0 mustcompleteby(t, { p3})},

otherwise
mustcompleteby(t, { p3}) _
={p|[pU{p3} O Deadline(p)<t]}
=J o ift < Deadling(p3) = 2t,-1
{p3}, ift > Deadling(p3) = 2t-1
Therefore . ..
mustfinishby(t, { p3})
{<normal, p> | pO{p3}}, otherwise
= 0 ift< Zta—l
{<normal, p3>}, otherwise

timer equiredby(mustfinishby(t, { p3}))
:{ timerequiredby(@), ift<2t,-1
timerequiredby({ <normal, p3>}), ift = 2t -1

:{ 0, ift<2t,-1
ExecClock(p3) =t,-1, ift>2t-1

Analytic Results 95

Noticethat fort > t, =0, whent<2t -1 ...

timerequiredby(mustfinishby(t, { p3})) =0 < (t-tg o)
asrequired for feasibility.
Andwhent > 2t -1 ...
timerequiredby(mustfinishby(t, { p3})) = t,-1 < 2t,-1 < (t-tgqy)
asrequired for feasibility.
Therefore . . .

feasible({ p3}) = true — Py eq({P3}) ={P3}
Continuing . ..
Pecheduled({PL, P3})
= Preasible(Pscheduiedd P3}) B {p1}) (as shown above)
= Preasipe{P3} O {p1})
= Preasinie P1, P3})
feasible({pl, p3}) = true, iff (OO[(t=tg gy
— timerequiredby(mustfinishby(t, { p1, p3})) < (t—tgen)]
Fort=tyey - - -
mustfinishby(t, { p1, p3})

=1 o if mustcompleteby(t, {pl, p3}) = @
[{<normal, p> | p 0 mustcompleteby(t, { p1, p3})},
otherwise

mustcompleteby(t, { p1, p3})
={p|Ip0O{p1, p3} 0 Deadline(p)<t]}

o, ift < Deadling(p3) = 2t,-1
B {p3}, if Deadling(p3) = 2t -1 < t
= < Deadline(pl) = 2t,
{pL, p3}, ift > Deadling(pl) = 2t,
Therefore . ..
mustfinishby(t, { p1, p3})
{ ?, ift<2t-1
= {<normal, p> | pO{p3}}, if2t-1<t<2t,
{<normal, p>|pO{pl, p3}}, if2t, <t
{ 0} ift<2t-1
= {<normal, p3>}, if2t-1<t<2t,
{<normal, p1>, <normal, p3>}, if2t, <t

96

Scheduling Dependent Real-Time Activities

timerequiredby(mustfinishby(t, { p1, p3}))
{ timerequiredby(q), ift<2t-1

timerequiredby({ <normal, p3>}), if2t -1 < t< 2t
timerequiredby({ <normal, p1>, <normal, p3>}),
if2t, <t
a

0, ift<2t-1
= ExecClock(p3) =t,-1, if2t-1<t<2t,

ExecClock(pl) + ExecClock(p3) = 2t,,
if2t, <t
Noticethat for t > t . =0, whent <2t -
timerequiredby(mustfinishby(t, { p1, p3})) =0 < (t-t
asrequired for feasibility.
When 2t,-1 < t<2t,
timerequiredby(mustfinishby(t, { p1, p3})) =t,-1 < 2t -1 < (t-t
asrequired for feasibility.
Andwhent > 2t
timer equiredby(mustfinishby(t, { p1, p3})) = 2t, < (t-ty e
asrequired for feasibility.
Therefore . ..
feasible({ p1, p3}) =true
- Praasipied PL, p3}) ={p1, p3}
- PgheduieaPL P3}) = {p1, p3}
Continuing . ..

Pecheduledd PL: P2, p3})
= Preasible(Pscheduiea({ P1, P3}) O {p2}) (as shown above)
= Preagipe{PL, p3} O {p2})
= Preasiniel{ PL, P2, p3})
To evaluate Py gp({P1, P2, p3}) ...

feasible({p1, p2, p3}) = true, iff (O)[(t=>ty o)
- timerequiredby(mustfinishby(t, { p1, p2, p3})) < (t-t

event)

event)

event)]
Fort=tyqy - --
mustfinishby(t, {pl p2, p3})
_ if mustcompleteby(t, { p1, p2, p3}) = @
{<norma| p> | p O mustcompleteby(t, { p1, p2, p3})},
otherwise
mustcompleteby(t, { p1, p2, p3}) _
={p[[pU{p1, p2, p3} UDeadline(p)<t]}

(0} ift < Deadling(p3) = 2t,-1
B {p3}, if Deadling(p3) = 2t -1 < t
= < Deadline(pl) = 2t,

{p1, p2, p3}, ift > Deadlineg(pl) = 2t,

Analytic Results 97

Therefore . . .
mustfinishby(t, { p1, p2, p3})

) ift<2t-1

= {<normal, p> | pOd{p3}}, if2t-1<t<2t
{<normal, p>|pO{pl, p2, p3}},if2t, <t
) ift<2t-1

= {<normal, p3>}, if2t-1<t<2t,
{<normal, p1>, <normal, p2>, <normal, p3>},

if2t, <t

timer equiredby(mustfinishby(t, { p1, p2, p3}))
timerequiredby(q), ift<2t-1

={ timerequiredby({ <normal, p3>}), if2t-1 < t <2t
timerequiredby({ <normal, p1>, <normal, p2>, <normal, p3>}),

if2t, <t
0, ift<2t-1
= ExecClock(p3) =t,-1, if2t-1<t<2t,
ExecClock(pl) + ExecClock(p2) + ExecClock(p3) = 3t,,
if2t, <t

Noticethat fort=2t, ...
timerequiredby(mustfinishby(t, { p1, p2, p3})) = 3t, > 2t, = (t-ty o)
This violates the requirement for feasibility. Therefore . ..
feasible({ p1, p2, p3}) = false
= Praasinled PL, P2, P3}) = Preagi e PL, P2})
(since Pyggpy({ P1, P2, p3}) = {p3})
To evaluate Py gpe({P1, p2}) ...
feasible({ pl, p2}) = true, iff (OY[(t=ty g
- timerequiredby(mustfinishby(t, { p1, p2})) < (t-tgen)]
Fort=tygy - -
mustfinishby(t, {p1, p2})

o, if mustcompleteby(t, {pl, p2}) =@
<normal, p> | p 0 mustcompleteby(t, { p1, p2})},
otherwise

mustcompleteby(t, { p1, p2})
={p|[pU{p1, p2} 0 Deadline(p)=<t]}

=< & if t < Deadling(pl) = Deadling(p2) = 2t,
{p1 p2}, ift > Deadline(pl) = Deadline(p2) = 2t,

98

Therefore . ..
mustfinishby(t, { p1, p2})

= (py
{<normal, p>|pO{pl, p2}},

= (py
{<normal, p1>, <normal, p2>},

timer equiredby(mustfinishby(t, { p1, p2}))
=J timerequiredby(y),

Scheduling Dependent Real-Time Activities

ift<2t,
otherwise

ift<2t,
otherwise

ift<2t,

timerequiredby({ <normal, p1>, <normal, p2>}),

Jo

Noticethat fort=2t, ...

ExecClock(pl) + ExecClock(p2) =

ift 2,

ift<2t,

2t +1,

ift > 2t

timerequiredby(mustfinishby(t, { p1, p2})) = 2t,+1 > 2t, = (t-tg ey

This violates the requirement for feasibility. Therefore
feasible({ p1, p2}) = false
= Praasinled PL, P2}) = Proagpe{ P1})
To evaluate Py gp({P1}) ...
feasible({ p1}) =true,

iff (OY[(t=1tg,qy) — timerequiredby(mustfinishby(t, {pl})) < (t-t

Fort > tovent - - -
mustfinishby(t, { p1})

mustcompleteby(t, { p1})
={p|[pU{p1} O Deadline(p)<t]}

=4 &
{p1},
Therefore . ..
mustfinishby(t, { p1})
=4 &

{<normal, p>|pO{pl}},

= (py
{<normal, p1>},

timer equiredby(mustfinishby(t, { p1}))
={ timerequiredby(q),
timerequiredby({ <normal, p1>}),
:{ 01
ExecClock(pl) =t +1,

(py
<normal, p> | p O mustcompl eteby

(since Pygagp({PL, p2}) = {p2})

event)]

if mustcompleteby(t, {pl}) = @

(t, {p1})},

otherwise

ift < Deadling(pl) = 2t
ift > Deadling(pl) = 2t

ift< 2ta
otherwise

ift<2t,
otherwise

ift<2t,
ift > 2t

ift<2t,
ift > 2t,

Analytic Results 99

Noticethat fort > t, ., =0, whent<2t, ...

timer equiredby(mustfinishby(t, {p1})) =0 < (t-t
asrequired for feasibility.
Andwhent > 2t, ...
timerequiredby(mustfinishby(t, { p1})) = t,+1 < 2t, < (t-t
asrequired for feasibility.
Therefore . . .
feasible({ p1}) = true - P gy P1}) ={pl}
Putting this together . . .
Pscheduled{ PL: P2, P3}) = Preaginie{ PL, P2, p3})
= Preasinie{P1, p2})
(since feasible({ p1, p2, p3}) = false [Pjg,qp\({ P1, P2, p3}) = {p3})
= Preagpie{ P1})

(since feasible({ p1, p2}) = false 0P, ,4p/({ PL, P2}) ={p2})
={p1} (as shown above)

At this point, the set of phases that can be feasibly executed has been determined. Now to

event)

GVEI’]t)

decide which phase to be executed first . . .

mpplist = tobescheduled(Pg oy 1eq({ PL, P2, P3}))
= tobescheduled({ p1})
={<normal, p1>}

DLy, 4(mpplist) = DLg;, o({ <normal, p1>})
=2t

mustfinishby(DLg;, (Mpplist), Py pequiedd PL: P2, P3}))
= mustfinishby(2t,, { p1})
={<normal, p> | p 0 mustcompleteby(2t,, { p1})}
(assuming mustcompleteby(2t,, { p1}) # @)
{<normal, p>|pO{q|[q0{pl} ODeadline(q)<2t,]}}
={<normal, p> | pO{p1}} (note that mustcompleteby(2t,, { p1}) # @)
={<normal, p1>}

Finally . ..

PhaseElect’ = Se!ectPhase({ pl, .p2, p3}) .
= pickone(mustfinishby(DLy;,(mpplist), Pgyequiedd PL: P2, P3})))
= pickone({ <normal, p1>})
=<normal, p1>

Event4. t,=0" resume-phase(p3) S

event par ameters.
te'\/ent = t4 =0
p=p3

100 Scheduling Dependent Real-Time Activities

precondition:

(RunningPhase = nullphase) O (Phase(PhaseElect) = p3)
O (Phase(PhaseElect) # nullphase) O (Mode(PhaseElect) = normal)

(RunningPhase = nullphase) O (Phase(<normal, p1>) = p3)
O (Phase(<normal, p1>) # nullphase) O (Mode(<normal, p1>) = normal)

(RunningPhase = nullphase) O (p1 = p3)
O(pl # nullphase) O (normal = normal)

false, (sincepl # p3)
Since the precondition is not satisfied, the event cannot be accepted.

Therefore, history H, is not accepted by the LBESA automaton.

LBESA cannot accept any history that begins with Events (1)-(3) and that has only those three phases,
with the already specified time-value functions and computation time requirements, that will yield a total
value greater than v1.

This proof will be carried out by identifying all of the histories that LBESA can accept under these
circumstances. The total value resulting from each of these histories will then be examined to demonstrate
that none is greater than v1.

To begin to identify the histories that are accepted by LBESA, notice that, given Events (1)-(3), LBESA will
behave exactly as described in the preceding analysis. Therefore, after accepting Event (3), the third event
in this sequence, the only events whose preconditions are satisfied are;

1. any ‘request-phase’
2. ‘resume-phase(pl)’

Examine the first possibility —— any ‘request-phase’ event — more closely. Let p, denote the phase
originating a ‘request-phase’ event. If p, O {pl, p2, p3}, then p, is a new phase. But this violates the
assertion that the only histories being considered consist solely of events associated with phases pl1, p2, and
p3. Therefore, p, must be amember of {p1, p2, p3}.

Also, notice that after accepting Events (1)-(3), RunningPhase = nullphase, which is not a member of
{p1, p2, p3}. Consequently, the postconditions of the event ‘request-phase(v,, t,) p,’ are:

Analytic Results 101

Valué (p,) = v,

ExecClock (p,) =t,

AbortClock' (p,) =0

ExecModé (p,) = normal

Phaselist’ = PhaseList [0 {p,} or Phaselist—{p,}
PhaseElect’ = SdlectPhase(Phaselist')

These postconditions serve only to alter or reiterate the scheduling parameters of the already defined
phases (possibly removing one of the phases from consideration from scheduling at the same time and
potentially selecting a new PhaseElect to reflect these changes). If the scheduling parameters are atered,
this violates the assertion that the automaton will consider only the time-value functions and expected
computation times already specified for the three phases by the first three events. Consequently, the only
‘request-phase’ events that LBESA can accept at this point reiterate the scheduling parameters for p, O {p1,
p2, p3}. (Hereafter, ‘request-phase’ events that serveto reiterate previously defined scheduling parameters
may be referred to as reiterative ‘request-phase’ events) Furthermore, notice that although such
‘request-phase’ events do not alter the scheduling parameters for a phase —— they merely reiterate them ——
there is a potential effect of these events on the automaton state component PhaseElect, which is set equal
to SelectPhase(Phaselist') as a postcondition of each ‘request-phase’ event. The function SelectPhase() is

dependent on't which increases during the course of any history.

event’

To examine the effect of a ‘request-phase’ on PhaseElect consider first the effect on the value of

Pocheduied{ PL P2, p3}) as a function of t, .. Of course, tg,, >0 since only legal histories are under

consideration here, and the third event occurred at time t, = 0. With that in mind, expand the value of
Pocheduied{ PL P2, p3}) asfollows:
Pscheduled{PL P2, P3}) = Preagpie(Pecheduted({ PL P3}) U {p2})
(since Pogp, ({P1, P2, p3}) ={p2})
= Preasible(Preasible(Pscheduiea({ P3}) U {p1}) U {p2})
(since Pigp ({P1, p3}) = {p1})
= Preasible(Preasible(Preasible(Pscheduiea(® U {p3}) U {p1}) U {p2})
(since P, {P3}) ={p3})
= Preasible(Preasible(Preasibie®@ 0 {P3}) O {p1}) O {p2})
= Preasible(Preasible(Preasibie{ P3}) U {p1}) U {p2})

. = 3}, if feasible({ p3
Prasnep2h) ={ {3 f feasibie((p3))
Several feasibility conditions like this will have to be evaluated in the following section of the proof.

Therefore, a general result will be derived here that can be applied to any of the simple cases that follow.

Consider a phase p with automaton state components:
Value(p) = step(v, tp,)
ExecClock(p) = b equired

AbortClock(p) =0
ExecMode(p) = normal

Notice that pl, p2, and p3 al satisfy this profile at this point in the automaton’s examination of any
history that it accepts. Then . ..
feasible({ p}) = true, iff (OY)[(t=t o) — timerequiredoy(mustfinishby(t, {p})) < (t-t

event)]

102 Scheduling Dependent Real-Time Activities

Fort>t

overt - -
timer equiredby(mustfinishby(t, { p}))
=J timerequiredby(y), if mustcompleteby(t, {p}) =@
timerequiredby({ <normal, g> | g 0 mustcompleteby(t, { p})}),
otherwise

mustcompleteby(t, {p}) = {q | [qU{p} 0 Deadline(q)<t]}

=d & ift<ty
{p}, ift >ty
Therefore,
timer equiredby(mustfinishby(t, { p}))
:{ timerequiredby(q), ift <ty
timerequiredoy({ <normal, p>}), ift >ty

:{ 0, ift<ty,
ExecClock(p), ift >ty

If feasible({ p}) = true, then, by definition, forany t > t
timerequiredby(mustfinishby(t, {p})) < (ttgye)
For the cases where t <ty , this relation is trividly satisfied since the left-hand side of the relation is
equal to zero and the right-hand side is greater than or equal to zero by definition
(t = tyey » (t—tyey) = 0). Forthecaseswheret >ty ...

ExecClock(p) < t=tq oy
- toent < t=ExecClock(p)

Applying this general result to each of the three phases under consideration when (a)
ExecClock(p) = b equired that is, the phase has not yet begun to execute —— and (b) t =t yields:
» feasible({p1}) =true, iff t <2t-(tFl)=t-1

event " *

event =
» feasible({ p2}) = true, iff t, o < 2t,-t, =1,
» feasible({p3}) = true, iff ty o < (2t,-1) - (t,-1) =1,

Using thisinformation in the previously derived expression for Py, ({P3}) yields . ..
Preasible{ P3})

=J {p3}, if feasible({p3})
o, otherwise

=J {p3}, ifO<tyer <ty
o, ifta < tevent

Pscheduledd PL: P2, p3})

={ PreinelProsiel(P3} 0 {PL) 0 (02, 10 g <1,
Preasible(Preasible@ 0 {P1}) T {p2}), ity < toey

={ Preasible(Preasiblel{ PLP3}) U {p2}), if0 < tyoy <ty
Preasibie(Preasinie{ P1}) U {P2}), ift, < oo

Analytic Results 103

For t < toyet - -

Pscheduled{ PL, P2, p3})
= Preasible(Preasipie{ P1}) U {p2})

= Preasiel@ 0 {p2}) (since feasible({ p1}) = false for t, <ty o)
= Preasinie{P2})
=@ (since feasible({ p2}) = false for t, <ty o)

Consider the other casein the derivation of Pgy . eq({ P, P2, p3}), where 0 < t

Pscheduled{ PL. P2, p3})
= Preasible(Preasibie{ PL, p3}) U {p2})

{ Preasible({P1, P3} U {p2}), if toyen = 0

et S Lo - -

(since Prgagip e PL, P3}) = {p1, p3})
Preasible(Preasibie({PL}) U {P2}), 110 < foey < 1,
(Since Prgagipie PL, P3}) = Prgagipe{ P1}))

Preasible({ P1, P2, p3}), I oen =0
) Pronsi P10 {p2}), if0 <ty < to1
- (since feasible({ p1}) = trueiff t, o < t,-1)
Preasibie(®@ 0 {p2}), ift=1 <tyen Sty
Pteasioie{ PL, P2, p3}), if toyent = O
= Pfeasible({ p1, p2}), if0 < taent < t371
Pfeasible({ p2}), ifta_l < tovent = g
{ Presyc{PL, P2, P3}), ift 0 =0
_ I:)feasible({ p1}), if0 < tovert < 1371
B (since Prgagiped PL, P2}) = Prgagipel{ P1}))
Pfeasible({ p2}), ifta_l < tovent = 3
{ {p1}, if g =0 (as shown previously)
{p1}, if0 <ty < t,-1
- (since feasible({ p1}) = trueiff t, o < t,-1)
{p2}, ift,-1 < tyey < L,

(since feasible({ p2}) = trueiff t, o <t.)

Putting it al together . . .
Pocheduledd PL: P2, p3})
{p1}, ?fO < toyent S 871
= {p2}, ITta~1 < loyert <t
¢, Ifta < tevent
Remember that, by definition:

SelectPhase({ p1, p2, p3}) = pickone(mustfinishby(DL;,(Mpplist), Py pequiedd PL: P2, P3})))
where

mpplist = tobeschedul ed(P o0 P1, P2, P3}))

104 Scheduling Dependent Real-Time Activities

As a consequence of these last two facts:
SelectPhase({ p1, p2, p3})

<normal, p1>, ifO < tyen S t71
= <normal, p2>, ift=1 <tyen Sty
<normal, nullphase>, ift, < toent

The outcome of this portion of the analysis is that any number of ‘request-phase’ events can occur to
reiterate scheduling parameters of the three phases of concern. These events will be accepted by the LBESA
automaton and the PhaseElect state component will have its value changed as indicated above for
PhaseElect = SelectPhase({ p1, p2, p3}). The (possibly empty) sequence of scheduling parameter
reiterations may be terminated by a‘resume-phase’ event for phase PhaseElect at any time.

This ‘resume-phase’ event may be followed by any number of reiterative ‘request-phase’ events for the
two phases that are not executing. Once again, these ‘request-phase’ events may change the value of the
PhaseElect state component3®. However, the value of PhaseElect as a function of toyent Will still be the
same as was concluded by the preceding analysis.

Although the SelectPhase() evaluation yields the same value as a function of t, ., as before, there is one
additional consideration that was not present earlier: that is, once a phase has begun execution, its
ExecClock state component is updated each time a ‘request-phase’ event is accepted. Specificaly, the
ExecClock state component is decreased, resulting in an increase in that phase’s PVD() metric. This
increase does not change the outcome of the scheduling decision because only the executing phase’s

potential value density changes and:

1. if phase pl is executing, its PVD() was already higher than those of the other two phases, so
any further increase makes no difference in the rankings used by LBESA, which only consider
whether one PVD() islarger than another, not how much larger.

2. if phase p2 is executing, its PVD() could exceed that of pl. The earlier analysisindicated that
p2 could only execute when pl could no longer feasibly execute. In fact, if p1 completes
execution successfully, it is impossible to complete p2. Therefore, the fact that p2 is ever
able to begin execution indicates that pl did not, and cannot, successfully complete
execution.

Whenever a scheduling decision is made after p2 has begun execution, p3 will first be
considered for inclusion in a tentative schedule since it has the nearest deadline. If
completing p3 is not feasible — and completing pl is not feasible — then only p2 can
possibly complete and contribute value to the accepted history. If, on the other hand, p3 can
feasibly complete, then the other two phases are considered for inclusion into the tentative
schedule, with the phase with the higher PVD() considered first. If the PVD() of p2 does
surpass that of pl, the order in which they are considered will change. However, since pl
cannot be scheduled feasibly, it will trigger the elimination of (at least) the phase with the
lowest PVD() from the schedule. This is p3, and it will be eliminated no matter if pl
precedes or follows p2.

Since it is difficult to follow a narrative description of all of the potential histories that may be accepted

33n fact, the first ‘request-phase’ event occurring after the ‘resume-phase’ may cause a change in value in PhaseElect, thus
potentially triggering a preemption. Thiswill be explained shortly.

Analytic Results 105

by LBESA, the following approach is taken36. Consider the diagram shown in Figure 4-9, where each
labeled item is an event, "E*" indicates one or more occurrences of the expression "E", and "E™" indicates
zero or more occurrences of the expression "E". (The labels "(Case X)" are merely used in the ensuing
discussion to refer to specific branches of the diagram.)

To use the diagram to trace an individual history accepted by LBESA, begin with the first event, E,, which
appears on the top line, and proceed down one line at atime. Each line may add events to the history.
Where there are branches, choose one path or the other and continue to move down through the diagram.
The history may be terminated at any time3’

To demonstrate that the diagram is correct, that is, that it incorporates all of the legal histories that LBESA
will accept, consider the following.

Aswas discussed earlier, a‘request-phase’ event may be accepted at any time, aslong as it serves only to
reiterate the already established scheduling parameters for a phase. As a result, the diagram indicates that

such events, labeled [E, e]*, may occur between any other two eventsin a history.

reiterat

As was also shown earlier, an examination of the preconditions of the various potential events indicates
that the only event that may be accepted after E;, E,, E5, and any other reiterative ‘request-phase’ eventsis
a ‘resume-phase’ event to start the execution of the phase that is currently designated PhaseElect (as long
as PhaseElect is not the nullphase). Hence, E, can only be a‘resume-phase’ event.

There are two possible courses that may be followed after E,: (8) the phase may be preempted (Case I) or
(b) it may complete execution (Case Il). In the latter case, if the phase runs to completion, then it will
originate a ‘request-phase’ event to signa that circumstance. This event will always be accepted because
its precondition is simply true. In Case I, examination of the precondition for a ‘preempt-phase’ event
indicates that a preemption can only occur if RunningPhase is not the same as PhaseElect and is not the
nullphase. The postconditions of event E, guarantee that RunningPhase is not the nullphase. Hence, if a
‘request-phase’ event following E, yielded a value of PhaseElect different from RunningPhase, then,
according to the previous analysis of SelectPhase({pl, p2, p3}), the only possibilities are:

1. E, resumed p1, and PhaseElect subsequently becomes either p2 or nullphase, or

2. E, resumed p2, and PhaseElect subsequently becomes the nullphase
Currently, the assumption is made that the required computation time for a phase is known exactly.
Whenever the phase designated by PhaseElect is resumed immediately after a‘request-phase’ event, it will
be able to meet its deadline if it runs uninterrupted because a test of feasibility was carried out that verified
exactly that fact. However, if time is allowed to elapse between the ‘request-phase’ and the

36 examining all possible histories that LBesA will accept, a number of histories that would seem to be nonsense are considered.
They are artifacts of the forma model, rather than indications of anticipated scheduler behavior. In al likelihood, any actual LBEsA
implementation, when scheduling this collection of computational phases, would run pl as soon as possible (that is, at time 0).
Neither of the other phases would ever execute.

37At any time after the third event, that is. By definition, the only histories being considered are those that begin with events E, E,
and E,, in that order.

106 Scheduling Dependent Real-Time Activities
E,
E
Es
[Ereiterate]*
E,
[EreitTrate]
(Ca|se) (Casell)
+
[Ereiterate] .
EG . [Ereiterate]
[Ereiterate]
E;
[Ereiterate]
(Caselll) (Cas|eIV)
+
[Ereiterate] E8 .
E9 . [Ereiterate]
[Ereiterate]
where
E;: t,=0 request-phase(step(vl, 2t,), t,+1) pl
E,: t,=0 request-phase(step(v2, 2t,), t,) p2
Eg t;=0 request-phase(step(v3, 2t-1), t-1) p3
Eu ty resume-phase(p;;,) S
Es: tg request-phase(step(0, «), 0) Prirst
Eg: te preempt-phase(py;,.o) S
E;: t, resume-phase(Pecong) S
Eg: tg request-phase(step(0, «), 0) Psecond
Eo: ty preempt-phase(Pgsong)
E diterae F€0Uest-phase’ reiterating scheduling parameters for

a phase other than RunningPhase

Figure 4-9: Histories Accepted by LBESA

Analytic Results 107

‘resume-phase’ events, it is possible that it is no longer feasible to execute PhaseElect by the time it is
actually initiated8. Subsequent ‘request-phase’ events serve to indicate that fact by selecting a PhaseElect
other than RunningPhase, thereby setting the stage for a preemption.

Consider the next non-‘request-phase’ event to be accepted by LBESA under Case Il in the diagram. If the
first phase to execute, py;,4, completes execution, it signals this fact by originating event E. Then the
subsequent evaluation of either PhaseElect = SelectPhase({ p2, p3}) (in the case where py;, o was pl) or
PhaseElect = SelectPhase({ p1, p3}) (in the case where Prirst was p2) yields
PhaseElect = <normal, nullphase>. Therefore, no subsequent ‘ resume-phase’ event can be accepted by the
automaton since the necessary precondition cannot be satisfied. Also, since RunningPhase = nullphase
following E;, no new ‘preempt-phase’ event can be accepted either. So, except for reiterative
‘request-phase’ events, no further events can be accepted in these particular histories.

In Case |, where the first phase to execute was preempted, this fact was indicated by event Eg. As one of
its postconditions, Eg set RunningPhase = nullphase. The next event in any history accepted by LBESA,
other than reiterative ‘request-phase’ events, cannot be another ‘ preempt-phase’ event because that would
require RunningPhase# nullphase. Therefore, if any event other than a reiterative ‘request-phase’ event is
to be accepted by LBESA, it must be a ‘resume-phase’. In order to have such an event occur, PhaseElect
must, as a precondition, be non-nullphase. This can result from a reiterative ‘request-phase’ event
according to an analysis similar to the one done above.

Finally, if E;, a‘resume-phase’ event, is accepted in a history, then the situation and analysis is amost
identical to the one that was examined after event E,, the previous ‘resume-phase’. Once again, the
resumed phase, Pg,.,q iN this case, can either be preempted (Case I11) or run to completion (Case V), and
the circumstances for each of these outcomes is exactly analogous to those given earlier for E,. However,
the earlier examination of SelectPhase({ pl, p2, p3}) shows that there is no possible successor phase to
execute following either Eg or Ey. In both cases, this is due to the fact that pg,,,,qy Must be p2 and
PhaseElect = SelectPhase({ p1, p2, p3}) and PhaseElect = SelectPhase({ p1, p3}) both yield
PhaseElect = <normal, nullphase>, which will not permit a subsegquent ‘resume-phase’ event to be
accepted by LBESA.

While the above arguments demonstrate that the earlier diagram incorporates all of the legal histories that
may be accepted by LBESA, they do not reveal all of the factors involved in making the histories acceptable.
In particular, there are constraints on the times at which certain events occur, above and beyond those that
apply to any legal history, that must be satisfied to obtain certain histories. For instance, depending on the
timing of events, there is the possibility of executing zero, one, or two phases during the course of a history.
The following list specifies the time constraints that must be satisfied by various events to obtain given
histories:

38 ntuitively, this can be thought of as reflecting a latency issue. In effect, the scheduler determines what can be feasibly completed
in the available time from the instant at which a scheduling decision is made. However, if the latency encountered in actually
dispatching the next phase is large enough, then, by the time it has dispatched the phase, the set of phases that is feasible has changed.
Notice that it is possible to specify this latency and apply certain restrictions to histories in order to model and accommodate the
latency. Also, it is possibleto alter the algorithm embedded in the automaton to handle this latency when it is determining PhaseElect.
In fact, thisis done for basa in the simulation experiments reported in Sections 5.3 and 5.4.

108 Scheduling Dependent Real-Time Activities

1. If the history includes event E,, then py; 4 may be either pl or p2; if it isto be p1, then t, o
for the ‘request-phase’ immediately preceding E, must satisfy:

0 <tyen St1
for the ‘request-phase’ immediately preceding E, must satisfy:
tl<t

If pg;, iSto be p2, then ty, o

event s ta
2. If the history includes event Eg (Case 1), then either:

a Psi¢ = P1 —inthis case, t,,, thetime at event which E, occurred, must have satisfied:
t-1<t,
b. psi, = P2 ——inthis case, t,, the time at event which E, occurred, must have satisfied:
<ty
3. If the history includes event E (Case 1), then either3:
a Psig = P1 —inthis case, tg, thetime at event which Eg occurs, must satisfy:
t=t, + (t,+1)
since required computation time is known accurately.
b. psi,« = P2 —— inthis case, t;, the time at event which Eg occurs, must satisfy:
te=t,+t,
since required computation time is known accurately.

4. If the history includes event E,, then py; ¢ must be pl and pg,.,,q Must be p2. In addition,
for the ‘request-phase’ immediately preceding E7 must satisfy:

1<t

tevent
event s ta
5. If the history includes event Eg (Case 1V), then tg, the time at event which Eg occurs, must
satisfy0:
lg=t7+1t,
since required computation time is known accurately.
6. If the history includes event Eg (Case I11), then, since py;, = P2, t7, thetime at event which E,
occurred, must have satisfied:

t,<ty

Once all of the histories that are accepted by LBESA have been enumerated, their respective values can
also be enumerated. To that end, the table shown in Figure 4-10 puts all of the preceding pieces of the
argument together. It lists all of the histories accepted by LBESA that start with events E;, E,, and E;, along
with their corresponding values.

39This is actually a requirement of any legal history. It is explicitly listed here since it does point out an important time constraint
for the history that otherwise might be forgotten.

4°0Once again, thisis actually arequirement of any legal history and is only included here for the sake of completeness.
“The value at this point will be: (a) v1, if Prirg = PLandt, < t-1, (b) v2,if p; = p2andt, < t, or (c) O, inal other cases.
42Same conditions as in the previous case determine the actual value.
23 T . .

The value at this point will be: (a) v2,if t, < t,, or (b) O, otherwise.

4same conditions as in the previous case determine the actual value.

Analytic Results 109

History Value

B, [E,E, 0

El [EZIES mEreiterate]) 0

El |EZ‘:EE3 mEreiterate] ’ |:EE4 0

El [EZEES mEreiterate] ’ |:E4[I-:Ereiteratte] ’ 0

B |:|£2|:E3 mEreiterate] ’ |:|£4[1:Ereiterate] ’ |:ES 0,v1, or v2*

B |:EZ‘:EE3 mEreiterate]) ‘E4[|;Ereiterate]) IES [l:Ereiterate]) 0,v1, or v2*¥

El [EZEE3 mEreiterate]) [E4[[Ereiterate]) [DErei terate] * 0

El [EZIES mEreiterate]) |:EE4[|;Ereiterar[e]) [DErei terate] ’ [E6 0

El |EZ‘:EE3 mEreiterate] ’ |:EE4[I-:Ereiterate]) [DErei terate] ’ DE6[]L]Erei teraIJ) 0

El [EZEES mEreiterate] ’ |:E4[I-:Ereiteratte] ’ |:l-]Erei terate] ’ [E6[DErei teraIJ) [EY 0

B |:EZ‘:E3 mEreiterate] ’ |:|£4[1:Ereiterate] ’ |:EErei terate] ’ [EemErei teratd) [E; [DErei terate] ’ 0

E |:EZ‘:EE3 mEreiterate]) ‘E4[|;Ereiterate]) |:DErei terate] * [E6mErei teraIJ) [E; [DErei terate] ’ [Es Oorv2®

El [EZEE3 mEreiterate]) [E4[EEreiterate]) [DErei terate] * [EG[DErei teratJ) [E7 [DErei terate]) [ES Oorv2*
[EEreiterate]

El [EZIES [l]Ereiterate]) |:EE4[|;Ereiterate]) [DErei terate] ’ [E6[DErei teratJ) [E7 [DErei terate]) 0
[[Ereiterate] *

El [EZIES mEreiterate]) |:EE4[|;Ereiterar[e] ’ [DErei terate] ’ [E6[DErei teraid) [E7 [DErei terate]) 0
[[Ereiterate] ’ |:EE9

El IEZIES mEreiterate]) |:EE4[I;Ereiterate]) [DErei terate] ’ [E6[DErei teraIJ) DE7 [DErei terate]) 0
[[Ereiterate] * |:EE9 [[Ereiterate])

Figure 4-10: Histories Accepted by LBESA Beginning with E,[B,[E,

The maximum total value of any history accepted by LBESA is max(0, v1, v2). Since v1 and v2 are both
greater than zero, this is equal to max(vl, v2). Also, from the initial value density relations, it is known
that:

VUt +1 > V21t

Therefore,

V1, > v2((t +1) (note that t, > 0)

V2L, +1) = v2IL, + v2 > v2[, (sincev2 > 0)
V1 > v2[(t,+1) > v2i,

vl >v2
Consequently, the maximum total value for any of the historiesin the table is max(vl, v2) = v1.

110 Scheduling Dependent Real-Time Activities

As shown in the first section of this proof, DASA/ND accepts a history with value (v1+v3) starting with
these three events, while the maximum value for a history accepted by LBESA isvl. Therefore, there exists
a case in which DASA/ND accepts a history with greater value than LBESA, and there is no transformation of
that history or alternate history dealing with the same phases and scheduling parameters that allows LBESA

to obtain an equal or greater value than DASA/ND.
EndOfProof

Since the DASA/ND Scheduling Automaton is equivalent to the bAsSA Scheduling Automaton when there
are no dependency considerations, the result extends to the DASA Scheduling Automaton as well.

4.3.3. Algorithm Tractability

This section examines the computational complexity of the DAsa scheduling algorithm. Specifically, the
amount of time and space required for the DASA algorithm to select a phase to execute is derived. Of
course, the lower the complexity of a computation, the more feasible it is perform. In general, problems
that have exponential complexity are deemed intractable, while those that have a low polynomial
complexity are considered tractable.

4.3.3.1. Procedural Version of DASA

It is possible to use the definition of the SelectPhase() function presented in Section 3.2.1.3 to investigate
the computational complexity of the algorithm. However, it seems to be somewhat easier to analyze a
procedural definition of the function.

Figure 4-11 shows a procedural definition of the bAsA scheduling algorithm.

Where possible, the variable names in the procedural definition are taken from the corresponding state
components in the bAsA Scheduling Automaton.

The language employed for the definition is similar to Algol or Pascal. The control statements
(if-then-else, for, and while) may delimit blocks of code and are explicitly terminated (with endif, endfor,
and endwhile, respectively) to avoid any ambiguity. The for statement is used to step through an ordered
list, one entry at atime. The variables in the for statement take on the values dictated by the current
element inthelist. The exitfor statement causes control to pass to the statement following the innermost for
loop enclosing the exitfor statement.

The following simple functions are used in the algorithm definition:

1. Insert(element, orderedlist, key)
inserts element in list orderedlist at the position indicated by key; if there
are dready entries in the list with key value key, insert element before
them.

2. Remove(element, orderedlist, key)
removes element from list orderedlist at the position indicated by key; if
element is not present at that position in the list, the function takes no
action.

Analytic Results

111

Sel ectPhaseProc(PhaseList) {
; variable declarations
schedule Sched, TentSched
red TotalTime, TotalValue, CurrentDeadline, DL
phase P, NextP, PriorP, CurrentPhase
ordered list of phase PhaseL ist, SortedList
mode SchedMode, Mode

; create an initially empty schedule
Sched = emptyschedule
; construct the dependency list and determine PVD for each phase
for Pin PhaseList
if (ExecMode(P) = normal) then
Total Time = ExecClock(P)
TotalValue=Va(P)
DependencyList(P) = emptylist
NextP = Owner(ResourceRequested(P))
SchedMode = normal
; follow chain of dependencies
while (NextP # nullphase) [(SchedMode # abort))
if (ExecMode(NextP) = normal) O (ExecClock(NextP) < AbortClock(NextP))) then
; update dependency list and adjust accumulated value and time
DependencyList(P) = DependencyListi<normal, NextP>
Total Time = Tota Time + ExecClock(NextP)
TotalValue = TotalValue + Val (NextP)
else
DependencyList(P) = DependencyListi<abort, NextP>
Total Time = Total Time + AbortClock(NextP)
; hote: ‘TotalValue' remains unchanged
SchedMode = abort
endif
; advance to next phase in dependency list
NextP = Owner(ResourceRequested(NextP))
endwhile
Potential ValueDensity(P) = TotalValue/Total Time
else
; if aborting phase, there is no value to be gained directly
Potential VaueDensity(P) = 0
endif
endfor
; forma sorted list of phases according to potential value density
; (highest PVD firstin list; lowest PVD last)
SortedList = SortByPV D(PhaseList)

11

16

26

31

36

41

Figure4-11: Procedura Definition of DASA Scheduling Algorithm

112 Scheduling Dependent Real-Time Activities

; look at each phasein turn
for Pin SortedList
; if it has any potential value, attempt to add it to schedule
if (PotentiaVValueDensity(P) > 0) then
; only add completion if it has not already been scheduled
if (<normal, P> 0O Sched) then
; get a copy of the schedule for tentative changes
TentSched = Sched
; tentatively add P’ and its dependency list to the schedule
Insert(<normal, P>, TentSched, Deadline(P))
CurrentDeadline = Deadling(P)
CurrentPhase =P
; tentatively add phases in dependency list to schedule
for <Maode, PriorP> in DependencyList(P)
if (<Mode, PriorP> [0 TentSched) then
; seeif the phase is scheduled soon enough
DL = Lookup(<Mode, PriorP>, TentSched)
if (DL < CurrentDeadline) then
; itis; nothing else to do so exit the loop
exitfor
else
Remove(<Mode, PriorP>, TentSched, DL)
endif
endif
if (Mode = normal) then
CurrentDeadline = Min(CurrentDeadline, Deadline(PriorP))
else
; ‘CurrentDeadline’ remains unchanged
endif
; tentatively add phase to schedule
Insert(<Mode, PriorP>, TentSched, CurrentDeadline)
endfor
; future optimizations of tentative schedule may be added here

; test the feasibility of the tentative schedule
if (Feasible(TentSched)) then
; incorporate all of the tentative changes into the schedule
Sched = TentSched
else
; *Sched’ remains unchanged
endif
endif
endif
endfor
; select first phase to execute
return(First(Sched))

46

51

56

61

66

71

76

81

86

Figure4-11: Procedural Definition of DASA Scheduling Algorithm, continued

Analytic Results 113

3. Lookup(element, orderedlist)
returns the key value associated with the first occurrence of element in list
orderedlist.

4. First(orderedlist) returnsthe first element in list orderedlist.

5. SortByPV D(phaselist)
returns alist of phases ordered by decreasing PVD; if two or more phases
have the same PVD, then the phase or phases with the greatest required
execution time (ExecClock) appear before any others with the same PVD.

6. Feasible(orderedlist)
returns a boolean value (true or false) indicating whether the schedule
represented by orderedlist, an ordered list of mode-phase pairs,
constitutes a feasible schedule, as defined previously (by the function
feasible() in Section 3.2.1.3).

7. Min(x, y) returns the minimum of x and y.

Briefly, the procedure consists of four stages. First, each phase is examined to determine its potential
value density and to construct its dependency list. Second, the phases are sorted and placed into an ordered
list ranked by their PVD. Next, a scheduleis constructed by attempting to add each phase, along with all of
the other phases in its dependency list, to the evolving schedule. If this addition produces a feasible
schedule, then the phase is included in the schedule; otherwise, it is not. (Some simplifications of the
evolving schedule occur at this point as well.) Finally, after all of the phases have been considered for
inclusion in the tentative schedule, the schedul€’ sfirst element is selected for immediate execution.

The schedule created by the SelectPhaseProc() procedure is an ordered list of mode-phase pairs, each
placed according to the deadline it must meet. So, for instance, a phase that must meet a deadline at time
t = 1 will precede a phase that must meet a deadline at time t = 2 in the schedule. If more than one phase
must meet a single deadline, then the mode-phase pair that was added to the schedule last will be executed
first.

Notice that the deadline a mode-phase pair must meet is not necessarily the deadline associated with that
phase. In fact, the phase may need to meet an earlier deadline in order to enable another phase to meet its
time constraint. Whenever a phase is considered for insertion in the tentative schedule (line 47 of Figure
4-11), it is scheduled to meet its own time constraint. However, all of the mode-phase pairs in its
dependency list must execute before it can execute, and, therefore, must precede it in the schedule.

The variable CurrentDeadline is used in SelectPhaseProc() to keep track of this type of scheduling
consideration. Initialy, it is set to be the deadline of the phase to be tentatively added to the schedule.
Thereafter, any mode-phase pair that has a later time constraint than CurrentDeadline is required to meet
CurrentDeadline. If, however, a mode-phase pair has a tighter deadline than CurrentDeadline, then it is
scheduled to meet the tighter deadline, and CurrentDeadline is advanced to that time since al of the
mode-phase pairs left in the dependency list must complete by then.

The major data structures used by SelectPhaseProc() are:

1. a Phase Control Block (PCB) for each phase to be scheduled —- it contains a phase id, the
necessary scheduling parameters (ExecMode, ExecClock, AbortClock, Deadline, Value, the

114 Scheduling Dependent Real-Time Activities

names of any currently requested or held shared resources, a reference to a dependency list,
and areference to another phase that is used to chain PCBs together to form the PhaseL.ist;

2. PhaseList is simply areference to the first phase in the list; subsequent phases in the list are
found by following the phase reference field in the PCBs,

3. SortedList is simply an ordered list of references to the PCBs,
4. dependency lists are linked lists of mode-phase pairs, each of which refersto a specific PCB;

5. schedules are ordered lists of mode-phase pairs; although many data structures may be
sufficient, assume a balanced binary tree is used here® (for example, a 2-3 tree as defined in
[AHU 74]); then insert, remove, lookup and find minimum operations can all be done in
O(log N) time and O(N) space for a set of N phases.

4.3.3.2. Proof: Procedural Version of bAasa IsPolynomial in Space and Time

Given the definition of SelectPhaseProc(), it is possible to demonstrate that the space and time that are
required to select a phase for execution are bounded by the problem size — that is, the number of phases
requesting to be scheduled — raised to a constant power.

Theorem 4: Given N phases to be scheduled using the bAsa scheduling algorithm, SelectPhaseProc()
will determine the first phase to execute in O(N? log N) time.

Proof. To determine the time required by SelectPhaseProc(), examine the amount of time required for

each of its component steps:
1. Create an initially empty schedule (lines 9-10): O(1), this requires constant time for virtually
any list structure.

2. Construct the dependency list and determine PV D for each phase (lines 11-40): O(N?), since:
a. the for loop beginning at line 12 is executed N times, once for each phase;

b. if the ExecMode of the phase is not normal, then the loop body takes O(1) time to
execute (it is a single assignment statement, lines 37-38); however, if the ExecMode is
normal, then loop body takes O(N) to execute since:

i. lines 14-18 require O(1) time;
ii. because there are no deadlocks, there can be no circular dependency lists;
therefore, the while loop at line 20 will be executed less than N times, and each

time lines 21-33 require O(1) time; hence the entire while loop requires O(N)
time to execute in the worst case;

iii. line 35 requires O(1) time;

3. Form a sorted list of phases according to potential value density (lines 41-43): O(NlogN) if
any of a number of standard sorting algorithms are used (for example, heap sort as defined in
[AHU 74] or any other standard text on algorithms);

4. Tentatively add each phase in turn to the schedule (lines 44-87): O(NZ log N), since:
a. the body of the for loop at line 45 will be executed N times, once for each phase;

b. the loop body takes O(1) time to execute if the phase’s PVD is less than or equa to
zero or if the completion of the phase has aready been scheduled; otherwise, it
requires O(N log N) because:

“SGiven a specific type of application, experience may indicate that there are better data structures for schedules. For example, if
there are typically only a few phases ready to execute, then a simple linear, linked list may be sufficient. The tree structure was
selected for generality and because it will accommodate large numbers of phases and dependencies gracefully.

Analytic Results 115

.copying the schedule (lines 50-51) can be done in O(N) time in a
straightforward manner;

ii. inserting the completion of the phase into the schedule (lines 52-53) can be
done in O(log N) time since there are at most 2N mode-phase pairs in the
schedule (corresponding to an abort and a normal completion for each of the N
phases);

iii. setting up some variables for bookkeeping (lines 54-55) requires O(1) time;

iv. the for loop (lines 56-75) requires O(N log N) time since the loop will be

executed fewer than N times and each execution will require O(log N) time to
perform insert, remove, and lookup operations on the tentative schedule;

v. testing the feasibility of the tentative schedule (lines 78-79) requires O(N log
N) time since it can be done by looking up each of the scheduled mode-phase
pairs in order, summing execution requirements, and comparing those
requirements to the actual available time; this requires N lookups, each
requiring O(log N) time;

vi. incorporating all of the tentative changes into the schedule (lines 80-81)
require O(N) time; this can be done by copying the N nodes that comprise the
tentative schedule over the existing schedule entries;

5. Select first phase to execute (lines 88-89): O(log N) time

Therefore, the overall time to execute SelectPhaseProc() is O(N? log N).

EndOfProof

The preceding proof uses straightforward data structures and algorithms. An actual implementation may
be able to improve on these. For instance, a number of the calculations performed to compute the PVD for
each phase could be avoided if it was noted that many phases and their dependency lists do not change
between executions of SelectPhaseProc(). This optimization trades storage for speed. Similar
optimizations may bring additional savings.

Theorem 5: Given N phases to be scheduled using the basa scheduling algorithm, SelectPhaseProc()
will determine the first phase to execute using O(N?) space.

Proof. The space required for SelectPhaseProc() consists of:
1. aPCB for each phase to be scheduled —— this requires O(N) space;

2. two schedules, Sched and TentSched, each of which is a balanced binary tree with at most 2N
nodes —— this requires O(N) space;

3. space for SortByPVD() to sort the phases (actualy, it will sort a set of keys that refer to
individual PCBs) —— this requires O(N) space;

4. space for each phase's DependencyList — this requires O(N) space for each phase in the
worst case, thereby requiring O(N2) space overall in the worst case®;

5. various scratch variables —— this requires O(1) space.

4This would truly be unusual. In order to have very long dependency lists for each phase, the system would have to be nearly
deadlocked and every phase would have to be close enough to completing its normal execution that it would take longer to abort than
to let it complete normally.

116 Scheduling Dependent Real-Time Activities

Putting these requirements together, it is seen that, in the worst case, SelectPhaseProc() may require
O(N?) space.

Notice that there is no mention of the storage required to track the ownership and state of each of the
shared resources in the system. Thisisignored because it is information that is always maintained by the
system for any resource management or scheduling algorithm. No additional cost is imposed by the bAsa

EndOfProof

algorithm.

4.4. Noteson Algorithm

The proofs presented in this chapter have allowed the behavior of the bAsA scheduling algorithm to be
witnessed under specific circumstances, providing more understanding of the algorithm. This, coupled
with the agorithm’s formal definition, may suggest situations where DASA may exhibit unusua or
unexpected behavior.

Each of the following sections discusses one such situation and the attendant algorithm behavior. Where
appropriate, methods for handling the situation are also mentioned.

4.4.1. Unbounded Value Density Growth

While value density and potential value density are appealing because they alow the application to make
the best use of the processor time consumed by each phase, they also display an interesting behavior when
the required computation time to complete a phase approaches zero: the value density, which is value
divided by regquired computation time, becomes unboundedly large.

This can have some unexpected effects, since —— given a sufficiently short required computation time ——
DASA will favor executing a phase with a very low actual value over a phase with an extremely high actual
value that requires more time. In fact, this is arguably the proper decision to make, given that the
scheduler’s objective is to maximize total value to the application, not to execute the phase with the
greatest value.

When assigning values to phases, an application designer may wish to ensure that, under any
circumstances, a given phase will be selected for execution over another phase. In order to do this, the
designer must make certain that the value density of the desired phase is always the greater of the two value
densities. However, if the value density can grow unboundedly large, then, in general, there is no way to
guarantee that the value density of one phase will always be greater than that of another phase.

Fortunately, a few facts mitigate this problem. For one thing, the required computation time for a phase
will never reach zero because if it did the phase would be done and would not be involved in scheduling
decisions. Therefore, there is a limit on how small the required computation time can be. Hence there is

Analytic Results 117

also a bound on how large a value density can grow. The application designer can use this bound to assign
values appropriately.

If that bound is deemed to be too large, then a smaller bound can be imposed by specifying a minimum
amount of computation time that may be requested for completing a phase. If arequired computation time
parameter should ever be smaller than this minimum, then the minimum value should be used in its place
when applying the DAsA scheduling algorithm.

Evaluating the value density associated with a phase only once, at the time of the phase’s initiation,
would also have the effect of avoiding the practically unbounded growth of value densities. The basic
information encoded into the value density metric would remain the same and would be captured
effectively. However, the benefit that arises from evaluating the value density for each scheduling decision
would be lost — that is, there would no longer be a rising value density to indicate that for a relatively
small investment of processor cycles, alarge return in application value could be realized.

4.4.2. ldle Intervals During Overload

DASA is not optimal. It is a heuristic that does well according to important metrics for the class of
real-time supervisory control applications. However, there are overload situations where it can be less
effective than other scheduling algorithms.

DASA constructs a schedule by successively adding activities that have the highest PVDs. |n this way,
each time an activity, along with any other activities on which it depends, is added to the tentative schedule,
DASA is getting the greatest amount of value for the processing cycles that are then reserved for those
activities. (If any other activity could yield more value for those processor cycles, it would —— by
definition —— have ahigher PVD. But al of the activities with a higher PVD that can be feasibly scheduled
have already been added to the tentative schedule.)

LBESA adds activities to a schedule according to the nearness of their deadlines; and, in case of an
overload, it sheds the activities with the lowest PVDs until a feasible activity is obtained. As shown in
Section 4.3.2.4, LBESA may shed some activities that can be included in a schedule. This can result in
LBESA utilizing fewer processor cycles than DASA in agiven situation.

The factors discussed in the previous paragraphs can collectively yield a situation where LBESA can
produce a schedule representing a higher value to an application than can DASA. For instance, consider an
application consisting of three activities, each of which has only a single phase. The phases are designated
Py, Py, and ps, respectively. Furthermore, assume that at time t = O the following conditions hold (using the
notation for the scheduling automata):

118 Scheduling Dependent Real-Time Activities

Deadline(p,) < Deadline(p,) < Deadline(ps)
PVD(p,) > PVD(p,) > PVD(p,)
ExecClock(p,) < Deadline(p,)
ExecClock(p,) > Deadline(p,)
ExecClock(py) < Deadline(py)

ExecClock(p,) + ExecClock(py) > Deadline(p,)

Among other things, these conditions indicate that phase p, cannot be completed by its deadline, even if
no other phases are executed. Also, either phase p, or phase ps, but not both, can meet their deadlines.

When DASA is presented with this situation, it constructs a tentative schedule by examining each phase in

order of decreasing PVD. Consequently, it will:
1. add phase p, to the (initially empty) tentative schedule, determine that the schedule is not
feasible, and shed phase p,

2. add phase p, to the tentative schedule and determine that the schedule is feasible

3. add phase p; to the tentative schedule, determine that the schedule is not feasible, and shed
phase p;

Thisresultsin atentative schedule that contains only phase Math[p;].

When LBESA is presented with this situation, it constructs a tentative schedule by examining each phasein

order of increasing deadline. Consequently, it will:

1. add phase p; to the (initially empty) tentative schedule and determine that the schedule is
feasible

2. add phase p, to the tentative schedule, determine that the schedule is not feasible, shed phase
p;, determine that the schedule is still not feasible, and shed phase p, (leaving an empty
tentative schedule)

3. add phase p; to the tentative schedule and determine that the schedule is feasible
Thisresultsin atentative schedule that contains only phase ps.

Comparing the results, whenever the value associated with phase p; is greater than that associated with
phase p;, then LBESA will accrue a higher value than DAsA. In addition, thisimplies:

Value(p;) > Value(p,)

- ExecClock(pg) x PVD(pg) > ExecClock(p;) x PVD(p;)

ExecClock(p,)

~ ExecCiock(py) © © /P(P9) > PVD(py) [> PVD(py). from above]

— ExecClock(p,) > ExecClock(p,)

For the DAsA-produced schedule, the processor is idle for Deadline(pg) — ExecClock(p,) units of time,

Analytic Results 119

while for the LBESA-produced schedule, the processor is idle for Deadling(p;) — ExecClock(ps) units of
time. Therefore, the schedule produced by DASA has more idle time than the one produced by LBESA ——
even though there is an overload and two of three phases that were known to the scheduler were shed.
Consequently, by executing an activity with a lower value density for along enough time, while the bAsA
scheduler is forced to leave the processor idling, LBESA can accrue a greater value than DASA for an
application.

DASA could be atered to detect relatively long idle periods during overload. Then, whenever such a
period was found, DASA could employ a specia-purpose scheduling strategy. For instance, it could add
phases to the tentative schedule in decreasing order of value, rather than decreasing order of potential value
density. In the future, variations in the algorithm along those lines may be explored, as indicated in the
brief discussion in Section 7.4.3.

The simulation results in the next chapter demonstrate the effects of idle intervals during overloads and
show that these intervals occur infrequently for the simulated workloads. In particular, Section 5.2.3.2
explicitly addresses this topic.

4.4.3. Cleverness and System Dynamics

The applications of interest for this research are by nature dynamic. A scheduler must be able to react
dynamically in order to produce effective schedules for these applications.

Yet there is a balance to be struck. The more information that is used to make scheduling decisions, the
better-informed the decisions are. This typically results in better scheduling decisions. On the other hand,
each decision is made based on the best information available at the time of the decision. At any point
thereafter, circumstances may change —— a new request may be made for a shared resource or new activities
may arrive to be scheduled — demanding that new scheduling decisions be made, possibly resulting in
undoing some previously accomplished work.

Intuitively, the more dynamic and unpredictable an application is, the less appropriate clever (read
"time-consuming") scheduling schemes are. The actual dividing line for this decision is not clear in
general. The simulations in the following chapter demonstrate DASA’s performance in various situations
and take into account the amount of time required to make scheduling decisions. In fact, the simulator
could be used to determine the effectiveness of the DAsA scheduling algorithm compared to another
algorithm for any application.

120 Scheduling Dependent Real-Time Activities

Chapter 5

Simulation Results

The previous chapter employed formal analysis techniques to demonstrate that the DAsa algorithm
possesses desirable properties. However, the formal analysis could not compare DASA to every other
algorithm of interest in arbitrary situations. Nor could it quantify the gains that could be realized by using
DASA to schedule specific workloads. Simulations were performed to examine these issues, and the
simulation results are described in this chapter.

Section 5.1 discusses the design and implementation of the simulator used to evaluate DASA and other
scheduling algorithms.

Sections 5.2, 5.3, and 5.4 present results generated with the simulator to evaluate the performance of the
DASA scheduling algorithm. These results demonstrate that dependency, importance, and urgency data are
used by DAsA to schedule a processor more effectively than any of the other algorithms tested when there
are shared resources and high processor loads. In fact, DASA degrades gracefully as processor load
increases, becoming more effective relative to the other algorithms at higher load levels. The simulations
account for the amount of time that is spent making scheduling decisions for each algorithm, and identify
the point at which the time spent executing the DAsA algorithm becomes counterproductive. Further
simulations show that DASA can meet more deadlines and accrue more value on behalf of the application by
issuing aborts in order to free previously allocated resources in certain situations, but this effect is fairly
small.

Finally, Section 5.5 hypothetically characterizes two real-time applications, identifying their salient real-
time characteristics and outlining how simulation results similar to those presented here could be applied to
determine the effectiveness of using DASA to schedule these applications.

5.1. Simulator Design and I mplementation

The first part of this section outlines the set of requirements that the simulator had to meet. The rest of
the section describes the design that was adopted and discusses significant implementation issues.

121

122 Scheduling Dependent Real-Time Activities
5.1.1. Requirements

Fundamentally, the simulator must allow DASA to schedule a variety of workloads. In fact, there are a
number of ways in which this may be accomplished. Therefore, to guide the simulator development, the

following general requirements were adopted:

1. support a variety of workloads conforming to the computational model presented earlier ——
that is, the simulated workload represents a real-time supervisory control application, which
is composed of a number of activities, each of which may have one or more computational
phases. The activities may share resources as outlined previously in thiswork. And al of the
assumptions concerning the information that is available to the scheduler, such as the amount
of computation time to complete each phase, continue to hold. The set of applications that
can be run must berich in order to allow a significant range of applications to be explored.

2. offer standard statistical distributions for use by the application —— to examine the behavior of
a scheduler under general conditions, it is often convenient to assume that events occur
temporally according to a standard statistical distribution, such as a norma or a Poisson
distribution.

3. incorporate useful metrics and gather statistics —— the metrics are intended to aid in the
evaluation of scheduler performance. For instance, the number of time constraints satisfied,
the number not satisfied, and the total application-specific value accrued are all
straightforward examples of useful metrics that the ssmulator should support.

4. allow evaluation of multiple scheduling agorithms and resource management policies —— the
primary objective of the simulations isto compare the performance of DASA with that of other
algorithms. Therefore, the simulator must accommodate a set of well-known scheduling
algorithms, including priority, deadline, and best-effort schedulers. In addition, since DASA
also makes al of the shared resource management decisions, the simulator must provide
several alternative resource management policies, including FIFO and deadline queueing for
shared resources that are not available.

5. provide a trace of the scheduling events and decisions made during a simulation — this
information is useful for at least three reasons: (1) it allows a detailed inspection of scheduler
behavior to identify specific beneficial or detrimental decisions, (2) it makes available raw
data that may be processed to generate other meaningful statistics for any specific scheduler,
and (3) during the initial implementation or subsequent modification of a scheduling
algorithm, the event trace can be examined by hand or by machine to demonstrate correct
behavior.

6. possess the flexibility to adapt to changing requirements or to augment the initial capabilities
of the simulator —— since the simulator is used to examine agorithms under a wide range of
circumstances and the appropriate metrics are not necessarily known in advance, flexibility is
desirable. In addition, if the simulator is to be useful over time, it will have to be able to
accommodate new algorithms that will be developed, which may or may not resemble those
that already exist. By choosing internal interfaces carefully, this is not too demanding a
requirement.

The simulator developed meets all of these requirements, as explained in the following sections.

5.1.2. Design

The simulator design compartmentalized major functions so that different workloads and scheduling
algorithms could be accommodated. As shown in Figure 5-1, the simulator features several independent

parts:
1. aset of shared resources,

Simulation Results 123

2. aset of application activities, each potentially comprising a sequence of computational phases
governed by atime-value function, that may access the shared resources,

3. a Simulated Operating System, including an Integrated Scheduler —— that is, a scheduler that
not only manages processor cycles, but also controls accessto all shared resources, and

4. an Activity Generator that adds new activities to the application.

Shared Resources

O O OO0

Application Activities

Activity
Generator ¢ 0o
\ Simulated Application

Simulated OS
Integrated Scheduler

Figure5-1: Logica Structure of Simulator

5.1.2.1. Activitiesand the Activity Generator

The Activity Generator initiates the application by creating the first activity or activities. It may
subsequently create others while the simulated application is executing.

The activities comprising an application may either be chosen from alibrary of existing activities or they
may be written specifically for the application. In thisway, any activity can be included in an application.

In addition, customized Activity Generators can be written to initiate these activities at any time, obeying
any constraints imposed by the actual application being simulated. Therefore, this scheme will support
arbitrary workloads.

The activities may mimic computations performed by real applications or they may consume processor
cycles and access shared resources in patterns similar to actual or potential applications.

124 Scheduling Dependent Real-Time Activities

Whenever necessary, an activity will interact with the Simulated Operating System to acquire specific
services. The requests made to the Integrated Scheduler, such as requesting the start of a new
computational phase or requesting access to a shared resource, are of particular interest for this research.

5.1.2.2. Integrated Scheduler

The interface to the Integrated Scheduler conforms to the interface described in Section 2.3.2 for the
General Scheduling Automaton Framework, incorporating scheduling events that are concerned with both
processor cycle management and shared resource management.

Scheduling algorithms are embodied in Integrated Schedulers, and different scheduling algorithms can be
compared by executing the same application using various Integrated Schedulers.

The requests made of the Integrated Scheduler can naturally be divided into two groups. (1) those that
deal fundamentally with phase execution (that is, ‘request-phase,’ ‘abort-phase,’ ‘preempt-phase,’ and
‘resume-phase’) and (2) those that deal fundamentally with resource management (that is, ‘request’ and
‘grant’). Traditionaly, these two groups of requests have been handled by two different entities —— the
scheduler and the resource manager, respectively. The simulator design at the highest (interface) level
hides that distinction. Internally, however, for typical scheduling algorithms requests are routed to the
scheduler or the resource manager.

On the other hand, DASA is an integrated scheduling algorithm in this sense, and so all of the requests
originating from application activities are directed to the DASA scheduling module.

5.1.3. Implementation

Given a design, the implementation of the simulator raises several new issues, including the selection of
the tools to build the simulator, the languages to be used, the interface presented to the experimenter, and
the structure of the implementation. Some of the more interesting aspects of these issues are discussed in
the following paragraphs.

5.1.3.1. Approach: Build from Scratch or Adapt an Existing Simulator

There are several different approaches that may be used to produce the simulator described above, and
selecting one of them is the first major implementation issue to be resolved. For example, the simulator
may be custom-built from scratch. This approach alows the simulator to be precisely tailored to meet the
goals of this investigation. On the other hand, if an existing smulator could be found that is similar in
purpose to the desired simulator, then it might be modified to satisfy the present goals. Possibly, this could
be done quickly to generate useful results.

In fact, the approach used — writing the simulator using SIMSCRIPT 11.5, a programming language
intended for simulations — falls between those two extremes. It builds on previous work, while alowing a
large degree of customization.

Simulation Results 125

SIMSCRIPT provides a basic framework and a number of useful libraries, including a random number
generator and a full complement of probability distributions. Using SIMSCRIPT obviates the need to
reimplement and debug these features for a simulator. In addition, SIMSCRIPT provides a programming
abstraction called a process that is well-suited to model an activity. These processes may control their own
(virtual) execution, as well as that of other SIMSCRIPT processes. The code that comprises the Integrated
Scheduler is executed by processes when they initiate a scheduling event. The scheduling agorithm
dictates the resulting outcome: either the executing process will continue to run or it will block itself while
unblocking its successor. Programming constructs exist to consume (virtual) execution time, and
SIMSCRIPT manages the advancement of virtual time.

SIMSCRIPT also supports a programming abstraction called a resource to embody shared resources.
However, this abstraction, although providing the services of atypical resource manager, was not flexible
for the purposes of this work, where the resource management decisions are more closely tied to scheduling
decisions. Therefore, some of the resource features of SIMSCRIPT were superceded for these smulations.

The use of a simulation programming language provided sufficient freedom so that the Integrated
Scheduler could be implemented in the modular fashion described in the design discussion. If an existing
simulator had been chosen as the vehicle for this work rather than a simulation language, then the
organizational structure imposed by the simulator might have precluded this possibility.

5.1.3.2. Sour ce of DASA Implementation

The version of the DASA scheduling algorithm that was included in the simulator was adapted from the
procedural version of the algorithm presented in Section 4.3.3.1. A procedural version had to be used since
SIMSCRIPT is a procedura language. A straightforward translation converted the Section 4.3.3.1 version
into a SIMSCRIPT version.

There were two differences in the simulator version of DASA, compared to the procedural version
presented earlier. Specifically:

1. Feasibility testing is dlightly different. In the procedural version in Section 4.3.3.1, a
schedule is only feasible if all phases that execute normally (as opposed to aborting) meet
their deadlines. This may be an unnecessarily strict definition of feasibility. For instance, if
the only reason a given phase is executed is to allow it to release a shared resource that is
needed for a second phase, and it is quicker to complete the phase normally that it is to abort
it, then scheduling its norma completion is perfectly reasonable under the model that has
been presented in thisthesis. Thisistrue even if the phase can no longer meet its deadline®’.

In the simulator code, each time a phase p and the members of its dependency list are added
to the tentative schedule, phase p's deadline must be met or the tentative additions will be
removed from the schedule. However, the phases in the dependency list do not necessarily
have to meet their deadlines. They are tentatively placed in the schedule so that if they can
feasibly meet their deadlines, they will. But even if they cannot meet their deadlines they will
remain in the schedule if phase p does.

4TAs stated, this makes sense under the model presented here. In some real-time systems, completing a phase late could result in
some problems, implying that executing such a phase normally is a mistake if it cannot complete on time. In other real-time systems,
it is not possible to abort an arbitrary phase at any time, implying that aborts cannot aways be performed to release an allocated
resource. Thereis no clear action that will work for all systems. Experience gathered using time-driven scheduling techniques will
help resolve this question in the future.

126 Scheduling Dependent Real-Time Activities

All subsequent feasibility tests continue to test the feasibility of each of the deadlines that
have been designated as critical, as explained in the previous paragraph.

2. Asdefined in Section 4.3.3.1, if DASA determines that there is no phase that can feasibly meet
its deadline, it will allow the processor to idle, rather than run a phase that cannot satisfy its
time constraint. Thisis unusual behavior for a scheduler, but it makes sense under the model
presented.

There is one situation in which executing a phase would be more desirable than idling, even
though no phase can meet its deadline: if one of the infeasible phases is holding one or more
shared resources. The processor cycles that would otherwise be spent idling could instead be
used to free these resources. This can save time in the future since the processor cycles will
have to be spent to free the resources once a request has been made by a phase that can satisfy
its time constraint.

Based on this rationale, the simulator’s version of DASA will select a phase that is holding
shared resources and execute it (in either ‘normal’ or ‘abort’ mode, whichever requires fewer
processor cycles) if there is nothing to feasibly execute.

5.1.3.3. Single Scheduler for Simulation

The simulator uses only a single scheduling algorithm (and associated resource queueing discipline) for a
given simulation run. The simulator alows the arrival of new activities and phases to be regenerated
exactly for specified simulation runs. Therefore, comparing two scheduling algorithms requires two
different simulation runs, one for each of the algorithms. Both runs present identical input to the
scheduling algorithms. A subsequent examination of the statistical metrics and the scheduler performance
for each run can then reveal which algorithm was more effective in the simulated situation.

5.1.3.4. Smulator Display M essages

By default, the simulator displays al of the key information regarding a simulation run to the
experimenter. This includes a timestamped message announcing the arrival of each new computational
phase that must be scheduled, along with its time constraint, required execution time, value, the number
and identity of the shared resources that it will require, and the time interval between each pair of shared
resource acquisitions (in terms of actual execution time, not real time). Notice that although the simulator
prints information about shared resource needs of a phase at its outset, this information is not available to
the scheduling algorithms when the phase is initially presented to the scheduler. Rather, each new resource
request is made by the phase at the moment the resource is needed. Only at that point is the scheduler
made aware of the need for that particular resource. The information about all of a phase's resource
requirements is printed out when the phase initially arrives only as a minor user convenience —— it alows
all of the requirements information for the phase to be presented together in one place.

Other time-stamped messages are displayed to the experimenter each time a resource is requested or
granted or a phase is preempted, resumed, or aborted.

Additionally, a simulation profile is printed that identifies the scheduling algorithm and resource
gueueing discipline employed, the number of shared resources available, and other workload specific
statistics, such as the average interarrival time between phases or the average required execution time for
each type of phase.

Simulation Results 127

Finally, a statistical summary of the ssimulation is displayed at the conclusion of the run. It prints general
statistics including the total number of phases, the number that met their time constraints, the total value
represented by all of the phases*®, and the value actually accrued by the scheduler during the simulation.
Other statistics that are of interest for a specific scheduler®® or workload can also be displayed at the
conclusion of the simulation.

All of the messages displayed to the experimenter can be redirected to a file to record the simulation
results for later analysis. In this case, the experimenter is offered a summary of the simulation in addition
to thelog file.

5.1.3.5. Modifications

There are a number of modifications that may be made to the existing simulator, and these modifications
can be divided into two groups. First, there are the changes that the simulator was designed to
accommodate, for instance, the addition of a new scheduling algorithm or a new resource queueing
discipline. Second, there are changes that may be anticipated, but were not specifically provided for in the
simulator. Extending the simulator to handle multiprocessor scheduling is an example of the latter type of
change.

Provisions have been made to facilitate the anticipated modifications of adding new scheduling and
resource queueing policies. To add a new policy, a set of routines must be written, one routine to handle
each scheduling event. These routines are named according to an existing convention. The name of the
policy is added to the menu of policies available to the experimenter. And finaly, the new routines are
compiled and linked with the existing simulator.

Since the information required or the data structures used by different scheduling policies may vary
significantly, new data fields and structures may be associated with each activity or computational phase.
Once again, a naming convention has been adopted for labeling these fields and structures to avoid
conflicts with existing fields and structures.

The simulator has been structured carefully so that modifications that could not be anticipated precisely
can be handled gracefully. There is no single point in the simulator where all statistics may be gathered
and processed. As new statistics are defined, it is likely that at least some of them will have to be inserted
in code at locations determined strictly by the scheduling algorithm being examined.

Preparations have been made for some other potential modifications. Some data structures have been
defined to be more general than necessary for the purpose at hand. For instance, the number of application

“Notice that it may not be possible to attain this value, even with complete knowledge of the phases and their requirements.
Attaining this total value may be impossible due to insufficient processing cycles or resource availability for some portion of the
simulation. It does serve as a clear upper bound on the value that may be obtained by any scheduler.

“SAverage |ateness, indicating the amount by which phases miss deadlines, is only of interest for some schedulers. In particular, it
is not informative for either bAsa or LBEsA since they both shed excess load and do not generally bother to complete any phase that
cannot meet its deadline. For them, once an overload occurs, the average lateness becomes infinite.

128 Scheduling Dependent Real-Time Activities

processors that are being scheduled is a variable and there is an array containing the relevant state for each
of the currently executing activities. Of course there is only one executing activity under the model being
investigated by this work. However, in the future the simulator framework may be able to accommodate
multiprocessor scheduling. At that time, many, if not all, of the scheduling algorithms will have to be
modified to handle multiprocessor scheduling and to use the simulator’s data structures in a more general
way. Thiswill probably require a significant amount of work, but the existing simulator framework should
prove useful in minimizing the overall effort.

5.2. Evaluation of DASA Decisions

This section evaluates the decisions that DASA makes compared to the decisions made by other
scheduling algorithms and resource queueing disciplines.

The experiments described in this section assume that scheduling decisions are made instantly. This
affords an opportunity to measure the improvement in decision quality that results from using additional
information when making scheduling decisions. (Sections 5.3 and 5.4 both report experimental results that
take into account the amount of time required to make scheduling decisions. They indicate behavior that
could be witnessed in actual implementations.)

A general, parameterized workload is used to exercise the simulator with varying degrees of processor
utilization and varying numbers of shared resources.

5.2.1. Methods of Evaluation

The utility of a scheduling algorithm may be demonstrated in a number of different ways. The following
paragraphs deal with four major approaches that correspond to four different workload sources.

5.2.1.1. Execute Existing Applications

Perhaps the most compelling method would be to employ the algorithm in an instrumented, production
system and compare the system performance directly to its performance using other algorithms. Using this
approach would yield the most direct, relevant information regarding the applicability of the scheduler for a
given application.

There are three major problems with this direct approach. First, although it definitely evaluates the
performance of the scheduler for a specific application, it is not clear that the information gathered can be
applied to any other applications, and if can, under what circumstances. Since this work is addressing a
general problem, the ability to make statements that apply to ageneral class of applicationsis desirable.

If awide range of existing applications can be executed directly, this problem can be eliminated and more
genera results can be derived. However, since many rea-time systems today are till custom-designed
with customized or proprietary operating systems, finding a large number of real applications that execute

Simulation Results 129

under the same operating system may be difficult. Alternatively, modifying the schedulers of severa
different operating systems may be very difficult logistically.

The second mgjor problem with the direct approach is more specific to the DASA agorithm: the
algorithm is significantly different than those that are used in practice today, and it expects that the
application will provide the scheduler with more information than is normally the case. (Specificaly, the
scheduler should be given an estimate of the required computation time needed to execute each new
computational phase.)) Although this information is often known to application designers and
implementers, it is not communicated to the scheduler. As a result, the interface to the scheduler that the
application sees is different for the DASA agorithm than for traditional algorithms. This requires that
every application used must be altered to provide that additional information to the scheduler, possibly long
after the people who knew the information are no longer available or able to provideit.

The final major problem results from the fundamental difference in philosophy between traditional
real-time systems and the more dynamic systems that could employ a scheduling algorithm such as DASA.
Traditionally, many real-time systems are designed to be quite specialized with minimal overhead resulting
from operating system functions. In fact, the designers of these systems attempt to eliminate operating
system functions insofar as possible, often either reducing the operating system to the point where it is
more correctly termed an executive (see the discussion in Section 1.2) or eliminating it entirely by having
the application perform all required functions.

In such real-time systems, not only are operating system functions limited, but the information supplied to
the operating system is minimal. For example, the computational and timing requirements of a given set of
activities may be sufficiently studied so that it is possible to replace a priority scheduler, for example, with
a list scheduler or a rate-group scheduler. Neither the list scheduler nor the rate-group scheduler display
dynamic behavior —— at predetermined times they dispatch predetermined activities. All timing and
dependency considerations have already been taken into account by the system designers, and the real-time
system is unaware of any of thisinformation®.

As aresult, the implementations of real-time systems traditionally distort the application’s structure. For
example, often physical processes are modeled as periodic, even if they are not, in order to simplify
scheduling and increase system predictability. Or shared data is accessed directly (without using an access
control mechanism such as a lock) because the activities have been designed and placed in a sufficiently
static schedule that it can be demonstrated that no conflicts can occur.

The philosophy underlying DASA resides at the opposite end of the spectrum: in order to handle dynamic
applications today and to effectively accommodate application modifications tomorrow, the system always
decides which activities should be run, relying on key information supplied by the application. Rather than

500ne of the most unfortunate aspects of such systems becomes evident when they must be modified —— perhaps to implement a
new function or to add an improved device. Then all of the timing and dependency analyses must be performed again. In fact,
modifying such systems may cost as much as, or more than, the original implementation. [Hatley 86] points out that not only do
changes cost agreat deal, but they may also affect (logically) unrelated parts of the system.

130 Scheduling Dependent Real-Time Activities

changing the application in order to restrict the information passed to the operating system in the hope of
reducing the run-time computation performed by the system —— rendering the application difficult to adapt
along the way —— the application is encouraged to provide the system with as much relevant information as
possible, thereby potentially allowing the system to make better decisions on behalf of the application.

Unfortunately, this philosophical difference implies that the same application designed and implemented
according each philosophy will produce very different code. Once again, this limits the ability to validate
the effectiveness of DAsA by ssimply using it to schedule existing applications. It is quite possible, for
example, that an existing application employs shared memory but, as mentioned above, never issues any
requests for access to the shared resource because an appropriately restrictive schedule makes it
unnecessary. It is extremely unlikely that DAsA could demonstrate improved performance under such
congtraints.

5.2.1.2. Modifying or Reimplementing Existing Applications

The preceding discussion emphasizes the difficulties involved in using existing applications directly to
evaluate DASA.

Two of the problems mentioned above —— DASA requiring more information than is traditionally supplied
to a scheduler and implementations that hide application structure and information from the operating
system —— can be addressed by modifying existing implementations or by reimplementing them. The new,
resulting implementations could then be executed using several different schedulers to evaluate the relative
effectiveness of each scheduling algorithm. However, in order to justify any results gained by this
approach, the new implementations would have to be verified in some manner. Specifically, they would
have to be demonstrably equivalent to the original implementations in all important respects. For real
applications, which are often large and complex, this vague-sounding requirement could be arbitrarily
difficult to satisfy.

5.2.1.3. Modeling Existing Applications

Creating skeletal applications that represent real applications reduces the amount of work required to
produce each application, but complicates the problem of proving that an abstracted application
corresponds to the real application in all important ways since, by definition, some details of the application
will have been discarded. Justifying that the selection of which details should be retained and which should
be eliminated or how all or part of the application should be modeled is once again a vague requirement
that would have to addressed in an ad hoc manner for each application in all likelihood.

As with each of the preceding approaches to providing a workload to use to evaluate the bAsA scheduling
algorithm, this method is only capable of providing information concerning the specific workloads used.
There is no guarantee that those applications are representative of real-time supervisory control applications
in general, and these limitations must be addressed.

Simulation Results 131

5.2.1.4. Simulating the Execution of a Parameterized Application

The final potential approach to evaluate DASA, and the one actually used, employs a parameterized
application or set of applications. The execution of these applications can then be simulated under various
scheduling algorithms and performance measured. By selecting useful parameters and varying them over
ranges of values more general results can be obtained from this workload than could be drawn from a
specific set of applications.

Furthermore, the simulator built for this evaluation can be given an arbitrary application (workload). This
allows an experimenter to model a potential application with any desired amount of detail, simulate the
application’s execution using various schedulers, and decide whether the application can benefit from the
use of the DASA scheduling algorithm.

Short of building an application model for execution on the simulator, useful information is still available
to allow people with real-time applications to decide if DASA may be of interest to them. The simulation
results that follow span a significant portion of the space of real-time supervisory control applications,
based on the variation of a few key metrics. If necessary, additional simulations could be performed in the
future to extend these results to other regions of the space or to accommodate new metrics. Given the
existence of these data, an application designer or implementer can either profile an existing application or
create a thumbnail sketch of a new application to determine where the application lies in the supervisory
control space and whether any benefit may accrue if the bAasa scheduler is used.

This method —— simulating the execution of parameterized applications —— was chosen to investigate the
utility of the DASA scheduling algorithm because of its ability to evaluate the algorithm over a wide range
of situations, rather than just a few specific applications. At the same time, it is able to give generaly
useful information to real-time application designers and implementers for various conditions and then
allows them to investigate their application to any desired degree of detail by means of a specific model for
their application. This model can be evaluated using the DAsA scheduler, as well as a number of other
schedulers of general interest. Once again, new schedulers can be added to enrich the simulator if needed
or desired.

Thumbnail sketches of real applications that may benefit from the use of the DAsA scheduler are
presented in Section 5.5.

5.2.2. Workload Selection

The workload used to gather the simulation results that follow featured one basic type of activity that was
tailored according to a number of parameters.

In this workload, each activity consisted of only a single phase. However, this should not result in aloss
of generality sinceit is possible to model an activity comprising multiple phases as a sequence of activities,
each of which has asingle phase. Then as one single-phase activity completes, the next one begins.

132 Scheduling Dependent Real-Time Activities

5.2.2.1. Arrival Times, Required Computation Times, and Values

The arrival times of the activities could be drawn from any of a number of probability distributions, and
the key parameters that define each distribution — such as the mean and standard deviation for a hormal
distribution, the minimum and maximum for a uniform distribution, or the mean for a Poisson or an
exponential distribution —— were specified by the experimenter.

Upon its arrival, the time remaining until a phase’s deadline is also drawn from a specified probability
distribution. By design, this deadline must be in the future. Once the deadline has been selected, the
phase's required computation time is determined by multiplying the time remaining until the deadline by a
fraction drawn from a uniform probability distribution on the interval (0, 1). Hence, the initia required
computation time can never exceed the amount of time between the phase’ s arrival and its deadline.

As aresult, any single activity constructed in this way and executed in a system with no other activities
would meet its time constraint. Therefore, any unsatisfied time constraints occur because of the
interactions among multiple concurrent activities.

Workload parameters governing the arrival times and required computation times of activities may
generate sequences of activities that cannot possibly satisfy al of the activities' deadlines. Thisis clearly
the case if the parameters specify a condition where the system is chronically overloaded —— for instance, if
the average required computation time for an activity exceeds the average interarrival time between
activities. However, even in situations where, on average, there is a significant amount of idle time, there
may be transient overload conditions due to the probabilistic nature of the workload source.

The value that is accrued when a computational phase’s deadline is met is also drawn from a specified
probability distribution. The distribution actually used for these experimentsis specified in Section 5.2.3.1.

5.2.2.2. Shared Resources

The experimenter specifies the number of shared resources for a set of simulations. It is possible to
specify that there are no shared resources.

Whenever there are shared resources, each activity probabilistically determines how many of these
resources it must acquire to successfully complete its sole computational phase. Once the number of
resources has been decided, the exact identities of the shared resources that will be needed are chosen
randomly.

During the execution of a phase, these resources are requested sequentially. Each time a resource is
acquired, a fraction of the computation time remaining in the phase passes before the next resource is
requested. This fraction is drawn from a uniform probability distribution on the interval (0,1). Any
number of resources can be requested by a phase in this fashion since timeis continuous.

For each shared resource, the experimenter may specify the amount of computation time that must be
spent to return the resource to a consistent, usable state should a phase holding the resource be aborted. If

Simulation Results 133

the experimenter does not specify these undo times, they are assumed to be infinite. During execution,
each time aresource is acquired by a phase, the amount of time required to abort the phase is incremented
by the undo time associated with the newly acquired resource.

Although the resources required by a phase are selected randomly, the actual resource requests are
ordered to avoid deadlocks (since deadlocks are not a primary focus of this investigation). Each resourceis
associated with a unique key, and a total ordering exists over these keys. Each phase issues its resource
requests in increasing order of resource key value. Consequently, deadlock cannot occur since it is
impossible for any phase to both (a) hold a shared resource that is needed by another phase and (b) need a
shared resource already held by the same phase.

All shared resources held by a phase are released once the phase has completed execution successfully or
been aborted (as specified by the formal scheduling model).

5.2.3. Examination of DASA Behavior

A series of experiments were performed to determine the effectiveness of the DAsA scheduling algorithm
relative to several other algorithms of interest. The following section describes the workload parameters
that were used for these experiments and the metrics that were used to evaluate the experimental results.
These results are presented and analyzed in Sections 5.2.3.2 and 5.2.3.3. (Subsequent sections will
investigate the effects of scheduling overhead on these algorithms and study the use of aborts to reduce
latencies utilizing the same workload.)

5.2.3.1. Workload Parameters and Metrics

These experiments, which used the parameterized workload described in the previous section, can be
divided into two groups. These groups are distinguished by the probability distributions that described
activity arrivals and selected deadlines for phase executions.

In the first group of experiments, which are analyzed in Section 5.2.3.2, the time between successive
activity arrivals, known as the interarrival time, was drawn from a uniform distribution over a specified
interval. The deadline for each activity was also drawn from a uniform probability distribution. Because
these experiments used uniform distributions to generate these parameters for each phase, they are referred
to as the U/U Distribution experiments.

The second group of experiments, which are analyzed in Section 5.2.3.3, are characterized by
exponentially distributed activity interarrival times and exponentially distributed phase deadlines.
Consequently, these experiments are referred to as the M/M Distribution experiments.

Simulator Metrics and Information Sources. A straightforward load metric is employed for all of the
simulations presented here: load is defined to be the expected time required to complete an activity (the
required computation time) divided by the expected activity interarrival time. Whenever the load is less
than 1.0, the average activity can be executed before the next activity is expected to arrive. So while there

134 Scheduling Dependent Real-Time Activities

may be transient overloads, it should still be possible to complete most of the work that arrives. On the
other hand, whenever the load is greater than 1.0, the average activity cannot be completed before the next
activity is expected to arrive. Thislatter situation resultsin along-term overload.

The experiments utilize processor loads from 0.125 (a fairly light load) to 2.0 (where twice as many
cycles are required as are available, on average). Of course, the peak load actually exceeds 2.0 in the latter
experiments, but the experiments are of sufficient duration that the 2.0 average captures the conditions
adequately.

The information gathered by the simulator includes a few key metrics: the number of deadlines that were
met®!, the total value represented by all of the activities, and the value that was actually accrued by the
application during the smulation. These are subsequently reduced to percentages indicating the fraction of
deadlines that were met and the fraction of the available value that was obtained.

In addition, the simulator generates an event log that can be consulted when analyzing interesting
scenarios and eval uating decisions made by various scheduling agorithms.

Time Units. All timesthat are used in the experiments are expressed in terms of Time Units (TUS).

There are two reasons for referring to times in terms of TUs, rather than seconds, milliseconds, or
microseconds. First of all, different real-time applications have time constraints that cover a wide range of
absolute times. Industrial supervisory control applications typically have time constraints that are
measured in seconds or hundreds of milliseconds. Simulators and many military applications may have
time constraints that are on the order of tens or hundreds of milliseconds. And lower-level control systems
can have even tighter time constraints. By using TUs, this work is not arbitrarily associated with a single
class of application. Rather, it seems reasonable to expect that, in the future, these scheduling algorithms
can be applied to progressively more demanding real-time applications as processor speeds increase and
improved real-time computer architectures are devised.

TUs were also used to allow the results presented here to be reevaluated as technology does change. In
particular, the overhead that is incurred by using relatively complex scheduling algorithms can be
expressed in terms that reflect the technology of the time, such as the time required to perform a
multiplication or division operation or the time required to sort alist. Astechnology changes, the overhead
changes aswell.

This can be contrasted with the real-time application being scheduled. Often, the time constraints that
must be met are dictated by the application itself — area world physical process that is subject to the laws

S1phases that fail to meet their deadlines can be divided into two groups: those that finish executing late and those that never finish.
Each individual scheduling algorithm determines the disposition of these phases. For instance, static priority and deadline schedulers
will eventually execute every phase they encounter. So they will finish al of these phases late. However, basa and LBESA will
generally not execute a phase that will missits deadline. Instead, these phases will not be scheduled and will never finish. (In areal
system, phases that miss deadlines should probably be aborted. This is briefly discussed again in Section 5.2.3.2, where LBESAS
performance with shared resources is analyzed.)

Simulation Results 135

of physics for example. Improved computer technology does not affect these time constraints, although it
typicaly affects the application by reducing the amount of processor time that is required to execute any
given piece of code. So while the time constraints for a specific physical process remain fixed, the absolute
time required to execute both the application and its scheduling algorithm are reduced as technology
progresses. Thiswill tend to increase the domain in which complex schedulers may be used in the future.

By expressing both the time constraints and the scheduling overhead in terms of TUs, it is possible to
determine what range of time constraints is appropriate for a given scheduling algorithm. To do this, a
conversion from real time units (such as milliseconds) to TUs can be computed by noting the time required
to perform the basic operations that dominate the scheduling algorithm in question, and therefore are most
responsible for its overhead. Using this conversion factor, the application time constraints can be expressed
in terms of TUs. Then, a simulation that directly mimics the application in question, including scheduling
overhead, can be run, or a more general set of simulations that take scheduling overhead into account can
be consulted to determine the applicability of a given scheduling algorithm. (An analysis of overheads for
various scheduling algorithmsiis presented in Section 5.3.)

Phase Values. The values associated with the phases varied uniformly from one to ten®2. A minimum
value of zero was not used since that could be interpreted as a worthless process, hence one that need not be
scheduled.

Shared Resources. A fixed number of shared resources was used for each set of simulations. The
experiments featured zero, one, five, and ten shared resources. Since DASA was the only algorithm that
could abort specific phases, the undo times for the shared resources were defined to be (essentially) infinite.
In that way, DASA would not schedule aborts, and its behavior would be more comparable to that of the
other algorithms under consideration. (A look at the behavior of DASA with and without aborts is presented
in Section 5.4.)

Shared resource management for each scheduler (except DASA) is handled quite simply: if a requested
resource is available, it is immediately allocated to the activity requesting it. Otherwise, the activity is
entered in a FIFO (first-in, first-out) queue for that particular shared resource. When aresource is freed at
the completion of a computational phase, the first activity entered in its waiting queue is removed from the
gueue, given access to the shared resource, and made ready to run. The scheduler may subsequently
resume its execution. (Notice that while activities are blocked waiting for a shared resource, they are not
considered by any scheduling algorithm other than DASA.)

Scheduling Algorithms. Three other scheduling algorithms were chosen to compare with DASA: DL, a
simple deadline scheduler; sPRI, a static priority scheduler; and LBESA, Locke's Best Effort Scheduling
Algorithm.

52preliminary simulations using wider ranges of values chosen from a uniform distribution demonstrate scheduler behavior that is
very similar to that shown in this chapter.

136 Scheduling Dependent Real-Time Activities

These algorithms illustrate a number of points. DL and SPRI apply only urgency or only importance
information, respectively, while LBESA and DASA consider both types of information. From another point
of view, DL represents the simplest type of deadline scheduler — it simplies dispatches activities in order
of increasing deadline. If thereisan overload, rather than shedding some activities, it continues to schedule
all activities in deadline order. LBESA provides an advanced load-shedding capability in a deadline-based
scheduler. And DASA continues to extend this load-shedding by considering more activities for execution
than the other algorithms. Finally, sPRI must be included since it is the algorithm that is actually used by a
large number of supervisory control applications.

Experimental Parameters. In each experiment, the parameters for phase deadline generation remained
fixed. Then for each combination of activity interarrival time parameters, number of shared resources, and
scheduling algorithm, a series of ten simulations were performed. In each simulation, 100 activities were
generated and scheduled.

The information described earlier in this section was gathered for each experiment. The following
sections provide the analysis of thisinformation.

5.2.3.2. Scheduler Performance Analysis: U/U Distribution

The U/U Distribution experiments feature activities that have interarrival times drawn from a uniform
probability distribution. In fact, for this series of experiments, the activity interarrival time always lies
between zero and a designated maximum value. This maximum value is varied to examine scheduler
behavior under different processor loads.

The deadline for each activity is a'so drawn from a uniform probability distribution on the interval from
zero to 200,000 time units (TUs).

As outlined in Section 5.2.3.1, the load metric is simply the expected time required to complete an
activity divided by the expected time between successive activity arrivals. For the U/U Distribution
experiments, the expected activity interarrival time is half of the maximum activity interarrival time.
Similarly, the expected time remaining until deadline when an activity arrivesis half of the maximum time
remaining until deadline. In this case, this is 100,000 TUs. The required computation time for a given
activity is expected to be half of the time remaining until its deadline, or 50,000 TUs.

By selecting maximum activity interarrival times from 800,000 to 50,000 TUs, the range of processor
loads that can be examined extends from 0.125 to 2.0, respectively. The specific interarrival times and the
corresponding processor |oads are shown in the following table.

Simulation Results 137

Maximum Expected
Interarrival Time Interarrival Time Processor

(x 1000 TUs) (x 1000 TUs) Load
800 400 0.125
400 200 0.25
200 100 0.5
150 75 0.67
100 50 1.0
75 375 133
50 25 20

The results of the U/U Distribution experiments are shown in Figures 5-2 through 5-9. (All of the figures
for this chapter have been collected together and are presented at the end of the chapter. Thisisintended to
make the chapter easier to read, given the large number of full page figures used to display simulation
results.)

Figures 5-2 through 5-5 show the percentage of total available value that was actually obtained and the
percentage of all deadlines that were actually met when there were zero, one, five, and ten shared resources,
respectively, under each processor load. In these figures, the geometric mean ([CRC 87]) for each
scheduling algorithm’ s performance is plotted as a function of processor load.

All of the scheduling algorithms perform well under small loads if there are no shared resources.
Furthermore, all but LBESA perform well under small loads when there are shared resources. So the exact
scheduling algorithm has little effect on performance when the supply of processing cycles greatly exceeds
the demand for them.

As processor load increases, al of the algorithms become less effective and the differences among them
become more apparent. Of course, for loads greater than 1.0, it is impossible to complete all of the
activitieson time. There are smply not enough processor cycles to satisfy demand. Even for loads that are
less than 1.0, there are usualy intervals that represent momentary (transient) overloads —— that is, short
intervals of time where it is not possible to complete all of the activities on time —— due to the stochastic
nature of the workload. (Consequently, obtaining 100% of the available value or meeting 100% of the
deadlines for a simulation is often impossible. Nonetheless, it serves as an absolute upper bound on the
performance of the scheduling algorithms.)

DL drops most rapidly in performance, primarily due to the fact that it continues to execute phases in
deadline order even when it is failing to meet deadlines. DL does not shed load and displays one extreme
type of behavior for deadline-based schedulers. LBESA and DASA represent another extreme since they
generate schedules that are deadline-ordered and only depart from deadline-ordered schedules when
overloads are detected. As shown in Figure 5-2, even when there are sufficient processor cycles, on
average, it is still difficult to meet many deadlines using the DL scheduler.

138 Scheduling Dependent Real-Time Activities

DL does not degrade appreciably with different numbers of shared resources because the poor overload
behavior just described dominates its performance. Since it was aready missing most deadlines, adding
more constraints by requiring phases to acquire resources does not cause the application to miss many more
deadlines.

SPRI degrades smoothly asload increases. As more shared resources are added, increasing the interaction
of the activities, its performance decreases more rapidly as a function of load.

LBESA exhibits a few noteworthy tendencies. First of al, when there are no shared resources, it performs
almost exactly the same as DASA, surpassing both DL and sPRI under medium and high loads while
degrading gracefully. In fact, the lines plotting the performance of the two schedulers overlap and are
almost indistinguishable in both graphsin Figure 5-2.

When there are shared resources, LBESA performs quite differently. It typically performs much worse
than any of the other agorithms at relatively low processor loads. This results from a particularly
unfortunate interaction between LBESA and the shared resource manager.

As was pointed out in Section 1.1.1, the actions of the shared resource manager —— blocking executing
activities that request currently allocated resources and subsequently determining the order in which these
activities are again made ready to run (thus becoming visible to the scheduler again) —— constitute indirect
scheduling decisions.

The problem with LBESA and the resource manager arises when an activity requests a shared resource that
has previously been allocated to another activity. The requesting activity is then blocked and placed in a
FIFO queue to await its turn to access the resource. Later, the resource is allocated to the activity and the
activity is added to the ready list for the scheduler. However, if the activity fails to complete its current
phase — either because there is insufficient time to complete it by its deadline or because it is shed in
response to an overload — it will hold the resource indefinitely. Therefore, all activities that subsequently
require access to that resource will fail to meet their deadlines.

While the preceding scenario does not result every time an allocated shared resource is requested, it does
happen occasionally even at low processor |oads.

DL and SPRI are not susceptible to this particular interaction because they never shed load. They
eventually execute every activity that arrives. Consequently, any activity that acquires a shared resource
will later complete execution of its current phase and release the resource. Only algorithms that shed load
must be concerned about the fact that activities that are shed may be holding shared resources®3.

53_BEsa has been extensively modified to execute in the Alpha Operating System ([Northcutt 87, Alpha 88, Alpha 90]). Several
adaptations were necessary to use the algorithm in Alpha. For instance, the Alpha programming model treats unsatisfied time
constraints and communication failures, among others, as exceptions. When an exception is encountered, an associated handler is
executed. This handler restores system data structures to acceptable states and offers the application programmer the opportunity to
do the same for application data structures and activity state. This offers the opportunity to free shared resources in practice after an
unsatisfied time constraint, even though the LBesa model does not address shared resources.

Simulation Results 139

In Figures 5-2 through 5-5, for any given scheduler operating with a specified number of resources, the
graph showing the mean value obtained as a function of processor load has a similar profile to the graph
showing the mean number of deadlines met. And typically, if one scheduler acquires more value at a
specific processor load than another scheduler, it also meets more deadlines. However, it is sometimes
possible to observe that schedulers place different emphasis on acquiring value and satisfying time
congtraints. For example, at a processor load of 1.33 with either five or ten shared resources, LBESA, which
is explicitly concerned with time constraints, meets more deadlines than the value-driven spri scheduler,
but accrues less value.

DASA also degrades gracefully as processor load increases, managing to accrue more value and meet more
deadlines then any of the other algorithms in these simulations. Even with aload of 2.0, DASA obtains, on
average, around 60 percent or more of the available value —— almost 20 percent more value than any of the
other algorithms. (There is one exception. When there are no shared resources, DASA and LBESA exhibit
almost identical performance.)

DASA is not subject to an unfortunate interaction with the shared resource manager since it manages the
resources itself. Like LBESA, it will recognize that some activities holding shared resources cannot meet
their deadlines and so will not schedule them. However, unlike LBESA, DASA will realize when another
activity that can still meet its deadline needs the previoudly allocated resource and will attempt to execute
the activity holding the resource in order to enable continued progress by the application. In this way,
processor cycles are not consumed to free allocated resources unless there is an immediate need for the
resources. This is in keeping with the general philosophy that the system should aways perform the
activities that will be most valuable to the system at any time —— processor cycles are not expended to free
allocated resources unless there is value in doing so (or unless thereis literally nothing else to be done).

In Section 4.3.2.4, it was shown that if there were no shared resources DASA could accrue more value than
LBESA during overloads because LBESA could shed some activities unnecessarily. However, it would be
difficult, if not impossible, to prove anaytically how often the conditions that are necessary for this
behavior to occur would arise during the execution of any given application. Fortunately, simulations of
general workloads or of specific applications can be used to gauge the magnitude of these behavioral
differences between DASA and LBESA.

The simulation results presented in Figure 5-2 show that this effect is quite small for this particular
workload. DASA and LBESA behave amost identically for all processor loads. In fact, for processor loads
of 0.5 or less, they perform identically. At loads of 1.0 or more, DASA outperforms LBESA by a narrow
margin — from 0.01% to 0.17%. At a processor load of 0.67, LBESA acquires 0.01% more available value
than DAsSA. Thisisdue to the fact that DASA is unable to utilize enough processor cycles during an overload
to justify using potential value density as the primary metric for ordering activities as they are added to the
tentative schedule. Under such circumstances, LBESA can utilize processor cycles (that were freed when it
unnecessarily shed some activities during overload) to run an activity with alower potential value density
than DAsA will run. If the activity selected by LBESA runs for a sufficiently long time, while DAsA has
nothing left to execute after finishing the activities with higher potential value densities, LBESA can acquire
more value than DAsA. (This scenario was outlined in Section 4.4.2.)

140 Scheduling Dependent Real-Time Activities

Figures 5-6 through 5-9 display more information concerning the U/U Distribution experiments. Where
Figures 5-2 through 5-5 plotted the geometric mean for each scheduling algorithm under various loads with
differing numbers of shared resources, Figures 5-6 through 5-9 show the range of values obtained and
deadlines met in each of these situations. In addition, the arithmetic mean is shown as a box placed along
the range; the geometric mean is shown as a star; and the harmonic mean is shown as a diamond. (The
definitions of the various means can be found in any standard statistical reference, such as[CRC 87].) As
always for nontrivial data sets, the arithmetic mean is greater than the geometric mean, which is grester
than the harmonic mean, for each case. However, the means are often so close that their symbols appear
superimposed in the figures.

In these figures, the x-axis again represents the nominal processor load. A group of four vertical lines
appears for each indicated load level, one line corresponding to each of the scheduling algorithms under
consideration. The groups are separated from one another by vertical dotted lines. The key, which appears
in each figure, indicates the line segment that corresponds to each scheduling algorithm within a group.
Specifically, the leftmost line segment displays the results for the deadline scheduler. To itsright, are the
results for the static priority scheduler, then those for the LBESA scheduler, and finally the bAsA scheduler
results. The top of the line segment for a given scheduler indicates the highest value obtained for the
displayed metric for any simulation run (at that processor load), and the bottom of the line segment
indicates the lowest value for the metric.

Once again, at low loads with no shared resources, all of the scheduling algorithms perform well,
displaying a fairly small variation in performance over multiple smulations. The introduction of shared
resources has a marked effect on LBESA’s performance, even at low loads — it may perform as well as the
others or it may perform much worse (for reasons that were explained earlier in this section).

As load increases, each algorithm displays more variability across multiple simulations. Like LBESA at
lower loads, DL’ s performance falls off sharply as load increases with a great deal of variability.

At higher loads, DAsA’s performance is superior to the others. In fact, in several cases, the worst
performance by DASA for a given set of simulations is superior to the best performance of any of the other
algorithms. Furthermore, looking at individual simulations of high loads, bAsA always performs as well as
any of the others, usually outperforming them.

5.2.3.3. Scheduler Performance Analysis: M/M Distribution

The M/M Distribution experiments feature activities that have interarrival times drawn from an
exponential probability distribution, where the experimenter specifies the mean interarrival time for any
given set of simulations. The mean interarrival time is varied to examine scheduler behavior under
different processor loads.

The deadline for each activity is aso drawn from an exponential probability distribution with a mean
deadline of 100,000 TUs after activity arrival. This is the same expected time until deadline used for the
U/U Distribution experiments.

Simulation Results 141

Once again, the load metric is the expected time required to complete an activity divided by the expected
activity interarrival time. For the M/M Distribution experiments, the expected activity interarrival time is
specified directly by the experimenter. The expected time until its deadline for any newly arrived activity
is 100,000 TUs. As before, the actual amount of this time that is expected to be required by the activity is
50,000 TUs.

By selecting mean activity interarrival times from 400,000 to 25,000 TUs, processor loads from 0.125 to
2.0, respectively, can be examined. The specific mean activity interarrival times and the corresponding
processor loads are shown in the following table.

Mean
Interarrival Time Processor
(x 1000 TUS) Load
400 0.125
200 0.25
100 05
75 0.67
50 1.0
375 1.33
25 20

The results of the M/M Distribution experiments are shown in Figures 5-10 through 5-17.

Figures 5-10 through 5-13 show the percentage of total available value that was actually obtained and the
percentage all deadlines that were actually met when there were zero, one, five, and ten shared resources,
respectively, under each processor load. In these figures, the geometric mean for each scheduling
algorithm’ s performance is plotted as a function of processor load.

Overadll the simulation results are similar to those of the U/U Distribution experiments. Each individual
scheduler displays the same type of behavior under similar processor loads and numbers of shared
resources in both the M/M and U/U Distribution experiments. Their relative performance is also very
similar. The actual mean value obtained or the mean number of deadlines met differs only dightly from the
U/U Distribution experiments. And their behavior with respect to one another has also remained the same.

Figures 5-14 through 5-17 illustrate the most noticeable: the variance, as suggested by the minimum and
maximum values in the graphs, is almost always larger in the M/M Distribution experiments than it wasin
the U/U Distribution experiments.

Once again, the relative performance ranges of the different schedulers are very similar to those observed
for the U/U Distribution experiments. DASA performs significantly better than all of the other schedulers
when there are shared resources to be considered, and it performs as well as LBESA —— and significantly
better than all of the others — when there are no shared resources.

142 Scheduling Dependent Real-Time Activities

Since the M/M Distribution experiments do exhibit a greater variance than the U/U Distribution
experiments, the M/M Distribution parameters were selected for use in the following experiments where
the amount of time spent making scheduling decisions is included in the simulations (Section 5.3) and the
benefit of issuing abortsto reduce the time required to free an allocated resource is analyzed (Section 5.4).

5.3. Evaluation of DASA With Scheduling Overhead

The analysis of DAsA to this point has only evauated the quality of decisions that can be made by
utilizing al of the information that is available to DAsSA. That is, the simulation results presented thus far
have assumed that each of the scheduling agorithms under investigation made its decisions
instantaneously.

In fact, each scheduler must consume resources —— in both time and space —— when making decisions.
Furthermore, complex schedulers, like DASA and LBESA, will require more time than simpler schedulers,
such as sPRI and DL.

In order to assess the efficacy of employing DAsSA in a real system, the time spent executing the
scheduling algorithm, which is referred to as the scheduling overhead, must be factored into the analysis
along with the time spent executing the application’s activities. The simulator can estimate the scheduling
overhead required for each individual decision made by each scheduler, and it can simulate the passage of
that amount of time as the simulation progresses.

Although the schedulers are different, they al spend a considerable amount of their execution time
performing a number of fundamental operations. These operations include list manipulations, arithmetic
operations, and entering and exiting the scheduler (or operating system). Consequently, the following
fundamental operations are monitored by the simulator as each scheduling algorithm executes:

« AddSubTime — the amount of time required to add or subtract two floating point numbers;
* MultTime —— the amount of time required to multiply two floating point numbers;
 DivTime —— the amount of time required to divide one floating point number by another;

« SortFactor —— an amount of time that is used as a scaling factor when calculating the total time
to sort alist. For example, if a data structure and sort algorithm that require O(N log N) time to
sort a list of N elements are used, the actua time consumed to sort an N element list is:
SortFactor * N * (log N);

« InsDelFactor —— an amount of time that is used as a scaling factor when calculating the total
time to insert an element into or delete it from a sorted list. For example, if a data structure
and insert algorithm that require O(log N) time to insert an element into an ordered list of N
elements are used, the actual time consumed to insert the new element is: InsDelFactor * (log

N);

* FixedOverheadTime —— the amount of time required to enter and exit the scheduler to execute
its selection algorithm.

The time the scheduler consumes executing these operations is totaled by the simulator to yield the
scheduling overhead associated with any given scheduling decision.

By supplying values for each of these overhead parameters, the total overhead can be measured and its

Simulation Results 143

effects noted. As mentioned earlier (see Section 5.2.3.1), by having separate overhead parameters for these
fundamental scheduler operations, the effects of using different hardware support for schedulers or faster
implementations over time can be investigated.

One of the primary reasons to investigate the effects of scheduling overhead is to identify situations in
which the increased overhead incurred by using DASA isjustified and aso to identify those situations where
using DASA isimpractical, given that the scheduler is executed on the same processor as the application.

Experiments were performed to investigate these issues. Once again, the M/M Distribution parameters
were used as a source for the simulation workload. This time only DASA, LBESA, and SPRI are compared.
(oL performed badly enough when overhead was not considered. Its performance only decreases when
overhead isincluded and so it is not an interesting algorithm at this stage.)

Experimentation led to the identification of three significant sets of values for the scheduling overhead
parameters. These sets of values differ by an order of magnitude from one to the next and correspond to

low, medium, and high overhead cases. Theterms"low," "medium,” and "high" are intended to denote the
fraction of the total available processor cycles that is spent executing DASA scheduler code. The time spent
executing DASA code is determined by severa factors, including the quality of the bAsa implementation,
the arrival rate of activities and their component phases, and the rate at which resource requests are made.
The effect of processor speed on the time taken to execute DASA code is accounted for in terms of the time
taken to execute each of the fundamenta scheduling operations (expressed in TUs) when making a given

scheduling decision.

The experimenta results, which will be presented in detail below, show that, under low overhead
conditions, DASA performs very nearly as well asit did in the experiments presented in Section 5.2, where
there was no overhead. When each fundamental scheduling operation is ten times more expensive, relative
to the time constraints governing the phases being scheduled, bAsa still performs well, although the
additional overhead does degrade its performance somewhat. When the fundamental scheduling operations
are made ten times more expensive again, a point is reached at which nearly all of the processor’s cycles
are spent executing DASA, leaving few cycles for the application. (At the end of this section, these
overhead cases will be interpreted in terms of today’ s technology.)

The values used for each fundamental scheduling operation parameter in each of the three overhead cases
are shown in the following table. Their relative values are meant to be suggestive of which operations
require more time, but are not intended to be extremely precise since great precision would be
implementation-dependent.

54To a great extent, this framework for expressing scheduling overhead is based on the use of traditional processors as execution
engines for scheduling algorithms. Other possibilities exist, including the use of special-purpose scheduling processors. Various
scheduler optimizations for basa are discussed further in Section 7.3.1.

144 Scheduling Dependent Real-Time Activities

Parameter Low (TUs) Medium (TUs) High (TUs)
AddSubTime 0.5 5 50
MultTime 1 10 100
DivTime 2 20 200
SortFactor 2 20 200
InsDel Factor 2 20 200
FixedOverheadTime 5 50 500

The following sections describe the results of the low, medium, and high overhead experiments,
respectively.

5.3.1. Low Overhead

Figures 5-18 through 5-25 display the results of the low overhead experiments. The first set of figures,
Figures 5-18 through 5-21, show the mean value obtained and mean number of deadlines met for these
experiments. The second set of figures, Figures 5-22 through 5-25, show the range of values spanned for
these metrics during the course of the experiments. As before, the arithmetic (box), geometric (star), and
harmonic (diamond) means are al indicated, athough they are often overlapping in the figures.

With low scheduling overhead, the experiments yield aimost identical results to the case where there was
assumed to be no overhead (see Section 5.2.3.3). Performance by all of the algorithms s reduced by only a
few percent when overhead is included.

An examination of some additional statistics gathered during the simulations provides insight into the
nature of the overhead incurred by each scheduler. In every experiment, al of the schedulers typically
perform about the same number of scheduling operations —— that is, they each make roughly the same
number of scheduling decisions. However, DASA sometimes consumes fifteen times as many processor
cycles as SPRI to make these decisions. As demonstrated by the simulation results, at low overhead levels,
this does not seem to be significant.

5.3.2. Medium Overhead

Figures 5-26 through 5-33 display the results of the medium overhead experiments. The first set of
figures, Figures 5-26 through 5-29, show the mean value obtained and mean number of deadlines met for
these experiments. The second set of figures, Figures 5-30 through 5-33, show the range of values spanned
for these metrics during the course of the experiments. As before, the arithmetic (box), geometric (star),
and harmonic (diamond) means are all indicated, although they are often overlapping in the figures.

With medium levels of scheduling overhead, DASA begins to suffer. It still outperforms SPRI in every
case, but the margin between the two schedulers is reduced significantly —— by as much as 20 percent in

Simulation Results 145

some cases under heavy processor load. Most of the difference in the relative performance of these
schedulers is due to a decline by DASA. sPRI suffers only a dlight loss in performance at this level of
scheduling overhead.

The reason that DASA is able to surpass sPRI is that: (1) under low processor load, there are sufficient
processor cycles to alow DASA to run without affecting the application’s activities to any great extent, and
(2) under high processor loads, there is a definite benefit to be gained by investing time in the scheduler,
thereby allowing it to carefully select what can feasibly be executed.

LBESA aso declines dlightly under medium levels of scheduling overhead, but not nearly as much as
DASA relative to its performance with low scheduling overhead. Thisis because, when shared resources are
involved, its behavior is dominated by its poor interaction with the resource manager. Therefore, athough
its relative performance is fairly good as overhead levels increase from low to medium levels, its absolute
performance is not nearly so good.

5.3.3. High Overhead

Figures 5-34 through 5-41 display the results of the high overhead experiments. The first set of figures,
Figures 5-34 through 5-37, show the mean value obtained and mean number of deadlines met for these
experiments. The second set of figures, Figures 5-38 through 5-41, show the range of values spanned for
these metrics during the course of the experiments. As before, the arithmetic (box), geometric (star), and
harmonic (diamond) means are all indicated, although they are often overlapping in the figures.

With high scheduling overhead levels, it becomes impractical to execute DASA on the same processor as
the application. Thisisdueto the fact that alarge portion of the total processing time is spent executing the
scheduling algorithm, rather than the application’s activities. In fact, at high processor loads, in excess of
90 percent of the total processor time may be spent executing the scheduling algorithm. As a result, in
overload, when processor cycles are aready in great demand, almost no cycles are available for the
application. Even at lower processor loads, the time spent executing the scheduling algorithm may be
around 20 percent of the total cycles actually needed to run the application.

5.3.4. Summary

The preceding simulation results demonstrate that DAsSA performs well and is preferred when there is low
to medium scheduling overhead in a uniprocessor system.

To put this into perspective, consider today’s technology. The time required to perform the arithmetic
scheduling operations is on the order of microseconds and the list manipulation scaling factors are on the
order of tens of microseconds. Also, assume that DASA becomes impractical at overhead levels just beyond
those of the medium overhead experiments. Then, by consulting the table of scheduling overhead
parameters presented in Section 5.3, it is seen that a TU is, according to today’s technology, somewhere
between 0.1 and 1.0 microsecond. Looking a the M/M Distribution parameters and U/U Distribution

146 Scheduling Dependent Real-Time Activities

parameters, it can be estimated that DASA is suitable for scheduling activities that have deadlines on the
order of tens or hundreds of milliseconds, even when each of these activities may require a substantial
portion of the available resources in that period of time. While this is certainly too slow for a number of
real-time applications, it is fast enough for a large number of supervisory control real-time applications, the
problem domain of interest for this work.

5.4. Evaluation of DASA Abort Usage

The concept of aborting a computational phase was included in the model for this research for two
reasons. (1) real supervisory control applications, as defined earlier, would need to be able to abort
computational phases in some situations —— to resolve a deadlock for instance®®; and (2) some facilities,
particularly an atomic transaction facility designed to operate in a real-time environment, would regard the
ability to abort a phase as a primitive operation that is available to the facility.

Once the necessity of providing aborts is recognized, the possibility of further using them to the
application’s advantage in making scheduling decisions invites investigation. On the one hand, it seems
clear that aborting phases that hold shared resources reduces the length of time other phases must wait for
access to the resources. If the waiting phases are sufficiently time critical or valuable to the application,
then this reduced latency may be beneficial.

On the other hand, all of the processing cycles that had been consumed by an aborted phase have
effectively been wasted. They produced no vaue for the application®. And, if the aborted phase's
deadline may still be met, the phase may be reinitiated, consuming more processing cycles. Even if the
phase subsequently completes successfully, it will have consumed more cycles than it would have if there
were no aborts, contributing to a higher effective processor load.

DASA attempts to use aborts in a "greedy” manner, much like that just outlined to reduce the latency to
access a previoudy allocated resource. If a phase requires access to a resource held by another phase, DASA
will schedule the phase holding the resource so that it releases the resource as quickly as possible, based on
the information available to the scheduler at that time. Therefore, if it is quicker to abort a phase than to
complete it normally, an abort will be scheduled.

A series of experiments were performed to determine whether the reduced access latency, obtained at the
expense of reexecuting portions of some computational phases, resulted in an increase in accrued value for

55An unsatisfied time constraint provides another example where a real supervisory control system could benefit from the ability to
issue an abort. Whenever a phase's deadline is missed, it has only partially completed its task. This may produce a potentially
inconsistent computational state, possibly mirrored by an inconsistent set of actions taken in the physical world. While these problems
can be ignored in a simulated system, in an actual implementation, steps would have to be taken to ensure that computational and
physical resources were in acceptable states before they could be used again. An abort mechanism provides a straightforward method
to accomplish the necessary actions to restore order to the affected resources.

%6Under the model presented in this thesis, aborted phases produce no value for the application. There are situations, however,
where this may not be the case. For example, if iterative solution techniques are used to solve a problem, an aborted computation
could yield a partial result that does contribute some value to the application. The present model may be enhanced to encompass such
possibilities in the future.

Simulation Results 147

the application. These simulations, like many of the previous experiments presented in this chapter, used
the M/M Distribution parameters. In addition, the experiments were done for each of the three levels of
scheduling overhead investigated in Section 5.3. Thus, the results should represent behavior in realistic
scenarios.

Only the bAsA scheduler is used in these experiments, since it is the only algorithm that may issue aborts.
For each simulation, two different scenarios were used. The DAsSA algorithm is exactly the same in both
cases. In the first case, each shared resource is assigned an undo time that is (essentially) infinite.
Consequently, it will never be quicker to abort a phase than to complete it normally, and no aborts will be
issued. In the second case, each shared resource is assigned an undo time of 100 TUs. Thisis sufficiently
low, compared to the time constraints the activities must satisfy, to allow the scheduler to occasionally
abort a phase.

The results of the experiments are shown in Figures 5-42 through 5-50. The first three figures show the
performance for DASA when there is a single shared resource under low, medium, and high levels of
scheduling overhead, respectively. The second set of three figures presents the same type of information
when there are five shared resources. And the last three figures display the results of experiments utilizing
ten shared resources.

No simulations were done for scenarios where there were no shared resources, since, without resource
conflicts, there is no opportunity to abort phases.

In general, the use of aborts benefits the application when scheduling overhead is at low or medium
levels. In these cases, the application accrues more value and meets more deadlines when DASA issues
aborts than when it does not.

The benefits gained from issuing aborts are more pronounced at higher processor utilization levels and
also with greater numbers of shared resources. (Remember that, given the experimental workload, an
increase in the number of shared resources brings with it a substantial increase in the number of shared
resource requests.) At low processor loads and low scheduling overhead, an application may accrue a few
percent more value by employing aborts. At higher processing loads and medium scheduling overhead, a
benefit of ten percent or more may result from the use of aborts by the scheduler.

For completeness, results are shown for simulations featuring high levels of scheduling overhead. The
use of aborts provides no great difference in these situations. DASA performs poorly in either case and is
not appropriate for use in such circumstances.

An examination of the event logs of these simulations yields a few noteworthy observations. First of al,
aborted computational phases, although they are always restarted, are often never completed successfully.
Usually, they are too close to their deadline to successfully meet it or have a lower potentia value density
than other candidate phases. Second, despite the fact that many of the aborted phases never complete
successfully, some do. In fact, there were simulations in which a phase was aborted twice, blocked on
entry each time it was restarted, and preempted by another phase before it completed, meeting its deadline.

148 Scheduling Dependent Real-Time Activities

Finally, if the set of phases that complete successfully for a simulation where DASA issues aborts is
compared to the set of phases that complete successfully when it does nat, it is not unusua to observe
significant differences. While there is aways a substantial overlap in these sets, the actual identities of the
completed phases differs more than the experimental results may imply. For example, if issuing aborts
results in meeting three percent more deadlines than not issuing aborts for a given simulation, the two sets
of completed phases may share only 85 or 90 percent of their members. Put another way, they may differ
in 10 to 15 percent of their membership.

5.5. Interpreting Simulation Results for Specific Applications

To complete this chapter, this section looks at two supervisory control applications for which DASA may
be useful. While they are indicative of classes of applications that might be of interest, they do not touch
on many other possibilities, such as simulators and military platform management.

These applications are discussed for two reasons. First of all, they give a flavor of some other
applications (in addition to those presented in Chapter 1). The characteristics that make these applications
particularly amenable to the use of the bAsA scheduling algorithm are noted where appropriate.

Secondly, they offer a chance to use real applications to study how the metrics used for the simulation
results can be initialy estimated from a knowledge of the application. Of course, the applications are
presented briefly here and better statistics could be carefully gathered by researchers or real-time system
professionals who were interested in investigating alternate scheduling agorithms for a specific
application.

Each application is outlined briefly, roughly indicating the types of time constraints involved, the
processing requirements, and the number and types of shared resources. Application details are provided to
explain how supervisory control system requirements are shaped by the physical world. However, the
descriptions are necessarily brief since too many details would obscure the important information
concerning application structure and requirements.

5.5.1. Telephone Switching

The telephone company typically creates a dedicated circuit to handle each telephone call. This circuit is
actually composed of a number of shorter circuits that are connected by computer-controlled switches.
These switches handle the routing of the call from the originator to the receiver.

Each time acal isinitiated, a circuit must be set up to complete the call. At each routing switch along the
way, signals must be sent and acknowledged in amoderately short period of time —— often on the order of a
second.

Because there is ho way to associate a priority with acall, it is generaly impossible to distinguish urgent
calls from less important calls. Therefore, a certain portion of the circuit capacity of the phone company is

Simulation Results 149

often held in reserve, even during periods of peak demand, in order to service critica calls in case of an
emergency. As a result, this capacity is unavailable for general service and is wasted (in a sense) when
there are no emergency calls.

This application could almost certainly benefit by using a scheduling agorithm such as bAsA. For
instance, the application could be restructured so that each call had an associated priority®’. As indicated
earlier, each call aso has a series of time constraints that must be met in order to properly control the
switches needed to complete the call. So the simple time-value functions used in this research can be
applied directly in this application to capture both the importance and the urgency of each cal in the
system. So an activity can be assigned to handle each call.

The shared resources in the system are the circuits and switch connections. To complete a call a number
of these shared resources must be acquired. At the completion of the call, they may be released.

In addition, no circuits must be reserved exclusively for emergency calls. Therefore, the overall capacity
for telephone calls available to telephone company subscribers can be increased. This is due to the
behavior of DAsA under overload conditions.

Under normal conditions, where there are sufficient resources exist to satisfy demands in a timely
manner, all of the calls are completed and activities are scheduled essentialy in order of their respective
deadlines regardless of their relative priorities. When demand exceeds the supply of shared resources (even
within a single switch), some calls cannot be completed. In that case, a call’s priority would be considered
when making scheduling decisions so that more important calls receive shared resources at the expense of
less important calls. In fact, DAsA would abort less important calls that are holding shared resources in
order to free circuits and switches to complete new, higher priority calls®8.

The transition from overload to norma (non-overload) processing would be as graceful as the
transformation into the overload case, where most parties are likely to be uneffected while emergency
traffic acquires the resources it needs.

There are a wealth of statistics available to the telephone companies describing the frequency at which
calls arrive throughout a day, profiling various days (weekends, weekdays, Mother’s Day, and so on), the
computational requirements to route a call and to make the necessary connections, and the numbers and
types of the shared resources in the system (circuits, switch connections, logs, and databases for instance).

57This priority could be associated with the physical phone line on which the call originates or it could be associated with the type
of call being made (emergency numbers or signals could have high priorities, for example).

8While aborting any calls is unfortunate — they represent a disruption of service to customers —— these aborts will not entail
serious damage. More likely, an abort will result in a disgruntled caller and callee. And since humans are involved in virtually every
call, they are capable of taking appropriate steps following an aborted call —— perhaps redialing immediately, maybe waiting awhile
before redialing, or maybe just waiting for a more opportune time if the call was not at all urgent. The actual abort processing presents
the telephone company with an opportunity to make the abort in a fairly painless way. As the connection is broken, each party in the
call could be informed that the call had to be aborted in favor of an urgent call. Furthermore, the affected parties could be given some
compensation for their inconvenience such as an account credit or afree call at alater date. The processing requirements for this type
of abort processing could be associated with the acquisition of circuits and switch connections and is accommodated by the abort
model for this research, which allows a resource-dependent amount of processing time to be reserved in case an abort occurs.

150 Scheduling Dependent Real-Time Activities

These statistics would be used to consult the ssmulation charts presented in this chapter or others derived
for this specific application.

Although this example discussed the public telephone system, the use of a priority switching service
seems to have even greater potential in other applications, both industrial and military, where dedicated
communication networks can be employed.

5.5.2. Process Control: A Steel Mill

A stedl mill provides a number of supervisory control applications that could benefit from advantageous
real-time scheduling. This section returns to the example that was originally introduced in Sections 1.1.2
and 1.4, focusing on a computer system that controls a number of furnaces supplying steel with specific
chemical compositions to a pair of continuous casters, which cast the molten steel into dabs. (This is
similar to the supervisory control system described in [DEI 85].)

First, consider some of the time constraints for this application.

Each caster continuously produces a slab that is cut to specified lengths to fill orders. The slab lengths
typicaly vary between twenty and forty feet, and each time a new slab is cut, a new slab record has to be
generated and stored.

The caster speed varies — if it moves too quickly, the metal will not have solidified sufficiently by the
time it emerges from the caster; if it moves too slowly, productivity will be unnecessarily low. The caster
is operated at the maximum speed at which solid steel can be produced. This speed is determined by the
temperature and chemistry of the steel being cast, the water temperature and spray rates of cooling nozzles
located along the length of the caster, and severa other factors. Typically, a new foot of steel emerges
from the caster every six to twelve seconds.

Each time a new foot of steel is cast, a record must be created to document the chemistry of the foot and
other information that is used to track the metal through the mill. If this information is lost or is not
recorded on time, the chemistry of the slab cannot be adequately certified for customers with strict product
quality requirements, and the slab cannot be sold to them. The processing that occurs as each foot of steel
iscast is quite complex and requires a second or two of processing time.

The furnace has fewer tight time constraints than the caster. The furnaces produce steel in units called
"heats." A heat typically requires between thirty and forty-five minutes to produce. During that time, the
chemistry of the steel is calculated several times by a complex analytical model. The chemistry is also
measured directly by a chemistry laboratory. Even after the heat is produced the steel’s composition may
be adjusted at a liquid metallurgy facility. Near the conclusion of a heat, oxygen is blown through the
molten metal to reduce the carbon content of the steel. It isimportant to produce steel with afairly precise
carbon content because of the extent to which carbon content affects the physical properties of steel. The
oxygen is blown through the steel under the direction of the supervisory control computer, and it must be

Simulation Results 151

shut off at a precise time after it has started. Thistime is determined by the supervisory control computer
based on the analytic model and the measured chemical composition of the steel. Missing this deadline can
be costly.

Next, consider the shared resources in this example.

Each hest is tracked as it makes its way through the mill from the furnace to the caster and beyond. The
primary database for this tracking is called the heat log. An entry in the heat log is initialy made as the
furnace begins a heat. The record may be modified by the liquid metallurgy facility or a holding station or
even one of the casters. Information arrives for the heat log asynchronously. There is typically, for
example, no guaranteed response time for the chemistry laboratory to return an anaysis; heats are not
produced periodicaly, athough they are produced regularly; and the order in which heats are cast can
change on very short notice.

There are a number of other databases in this example. All are shared among multiple activities.
Usually, most of these activities are cooperating to produce steel, while others perform maintenance tasks,
such as calculating the lifetime of furnace linings and cutting torches or monitoring the inventory of scrap
metal and critical ingredients. All of these activities require access to the databases.

Often activities cooperate to carry out the various application tasks. These tasks, perhaps fifty or sixty in
number, make extensive use of signals to communicate with one another. Typically, a number of activities
cannot proceed until one or more other activities have properly gathered and prepared the necessary data or
until some external event has occurred. Signals are an efficient communication mechanism in such
systems.

Devices are aso shared in this application. The communication channels to the lower-level process
control computers, to the higher-level production control computers, and to human operators that oversee
production are of particular interest.

Notice that this application fits the model outlined in thisthesis. The mill exists to make steel, which has
avery definite monetary value. It is possible to place corresponding values on the steps taken to produce
the steel, making the use of time-value functions feasible for this application.

Furthermore, it is a supervisory control application with deadlines that are on the order of seconds, well
within the range of DASA’s capabilities.

For a number of reasons, overloads are not unusual in these systems. First of al, the physical processes
being managed proceed asynchronously, and the processor utilization is sufficiently high that some
transient overloads will occur. In addition, failures in portions of the supervisory control system or alarm
conditions from the lower-level process control computers can also add unanticipated load to the
supervisory control system for a generally unspecified length of time. Finally, queries and commands from
human operators also contribute to the processing load. They arrive asynchronously and typically must be
serviced within a matter of seconds. Their arrival may occasionally cause atransient overload.

152 Scheduling Dependent Real-Time Activities

Although at any given time there may only be around ten or so very active database records (for the heats
and dlabs currently in production), there are usually dozens of phases that are waiting on a fairly small
number of signals that indicate new events. During overloads, DASA’s ability to recognize and schedule
those phases that can make the best use of the limited processor cycles and shared resources can greatly
benefit the application.

In summary, experimental results based on simulations have demonstrated that the bAasa scheduling
algorithm can benefit supervisory control applications, even taking into account the amount of processor
time that is spent evaluating the algorithm when making scheduling decisions. Two sample hypothetical
applications have been outlined that have the structure, time constraints, and shared resources for which
DASA was designed. These examples were primarily intended to tie the abstract model of supervisory
control systems presented in this thesis to a more concrete reference.

Simulation Results

153

= _ — © DASA
: 100 %% %:2 oESs
- tat
Sl e FLE gy
& %‘ ~ N —
T 80F K B
< . N —~—.
8 2l N, %
) *
@) "
s oor T
S ~.
> 50t ~. -
40 | *
30|
20 1 .
10} e
...... "
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
= _ — < DASA
§ 100 %% T T3 e
- Static Priori
s 90} ‘s\s\ fﬁkl- Do
g or) T
\, ~.
g 70} % \'\g}
S N
T 60} N
()
Q *
50 | "~
40} *.
-“ S~. -
30 . T~
20 .
10}k e
...... 4
0 1 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-2: Average Performance: No Resources, U/U Distribution

Scheduling Dependent Real-Time Activities

Value Obtained (Percent)

Deadlines Met (Percent)

100 ~ &O— — © DASA
Rz, %— -+ =X LBESA
%\\ X¥— - —% Static Priority
90 kL WS ~o D LCLEE -+ Deadline
— b,
80 - N \K s ~
70 | .. k- ~
%N, o
ol N
N SN
50} \9'6 ~. = X
Y \ -~
40 | it ~x
30
20| *...
10} T
__________ 4
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
100 &— — © DASA
% ¥— -- =X LBESA
%\ ¥— - —% Static Priority
90 | S ~o . -+ Deadline
80 |- >kX\\i’\ \\0\\
. \‘:. o
70 - .. % -~ ~
. -
60 L N7 % . ©
Y \’ \x- = ..
50 | PR N t—
N
40 .
30t T~
. *
20 | .
10} e
"""" ~+
0 L !
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-3: Average Performance: One Resource, U/U Distribution

Simulation Results 155

TE\ 100 O— — © DASA
Sl TR o
; . tal
$ 90t N - T Daadine ™
ie] 80 I N\ ~
g RO
g R T~
5 OF e =~
@) X . K \’ ~ <
S R VR S I
2 .
> 50L \ ;K . ~
* "‘-- > \:
40 | K wk\—--—--—)(
“I ’ \ -~
301 T
20} .
10} +
........... +
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
= _ — < DASA
o 100 R <>>; .- j LBESA
o %\ *¥— - —% Static Priority
&) 90 |- % R ELLCE -+ Deadline
= Sy, e
o 80 % ~
= 3 oo
8 70b % T ~oe
= 0y -~
T 60 T~ A T~
& XA\
50 NI
a0} Y \.\\"x_ ———
30t *~.
.
20 - *. Tk
10 T
___________ n
0 1 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-4: Average Performance: Five Resources, U/U Distribution

156

Scheduling Dependent Real-Time Activities

2 100, &— — © DASA
s % ¥— -- =X LBESA
3 %‘\ H— - —% Static Priority
5 9 L s B Lt -+ Deadline
& N N
s gol T~
g N e
I X ~
= 70 A o —
e} ‘.‘ \ ~ - —
g 60 L)\ \ \ -~
3 .
> sl N %
% N,
401 . N
Mo k. _
30t e T N
3 ~——x
20 .
10} T,
___________ +
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
=) — DASA
= 1001 o ST D
S %\ *¥— - —% Static Priority
5 o9l < Heeean- -+ Deadline
& Ry N
o 80} . ~
S X ~
o) S~
QO 70 Y ~
% 60 .\ = T ~ <
g - X L ~>
S 5 N W
- . “‘ \
x .
abL . N ‘ *\
20 RV S
L o S . \' — e - X
T~
20 - 3
10} Tl
_________ 4
0 L '
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure 5-5: Average Performance: Ten Resources, U/U Distribution

Simulation Results

157

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

_$¢??§*+??é

0.125 0.25 0.5 0.67 1.0 1.33 2.0

Value Obtained (Range)

Load

0.125 0.25 0.5 0.67 1.0 1.33 2.0

Deadlines Met (Range)

Load

Key

DL
SPRI
LBESA
DASA

Key

DL
SPRI
LBESA
DASA

Figure5-6; Performance Range: No Resources, U/U Distribution

158 Scheduling Dependent Real-Time Activities

LT

Value Obtained (Percent)
® ©
S o
1 1
N
+
+

% i é é Key
60 L : : :

40

30 |

DL
SPRI
LBESA
DASA

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

AL FIRT S B
o ! H|' Wz
: ¥ iTh

? : ? Key
60 I $: : :

sof i i i i i RN

Deadlines Met (Percent)

DL
SPRI
LBESA
DASA

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-7: Performance Range: One Resource, U/U Distribution

Simulation Results

159

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

"y

0.125

* $?+ t ¢

0.25 0.5 0.67 1.0

Value Obtained (Range)

y

1.33

2.0
Load

0.125

0.25 0.5 0.67 1.0

Deadlines Met (Range)

1.33

2.0
Load

Key

DL
SPRI
LBESA
DASA

Key

DL
SPRI
LBESA
DASA

Figure5-8: Performance Range: Five Resources, U/U Distribution

160 Scheduling Dependent Real-Time Activities

100

te

[N N A T S O S .G

(e}
(&
1
—
—
——
—
-5

60 |-

Value Obtained (Percent)
(o4
S
1
+
+

YN O T O B O N I T A

S
DL
SPRI
LBESA
DASA

< s s s
20t 2|
of $

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

(L1211 TR I

S : : : : :
I O A I ey
a0k H H H H H H H

</ S U R O R A I L ST

Deadlines Met (Percent)

SPRI
LBESA
DASA

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-9: Performance Range: Ten Resources, U/U Distribution

Simulation Results 161

= 100 - &— — © DASA
2 [% X e
N - tat
S ool RS _ Fon T gt proiy
% ..‘* *_\.$
80} . ——)
IS x T
s 70t LRI
) K
.g 60 " \~.ﬂg
T T~
> 50k '~
40| >
30} *+,
20+
10} e .
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
P Te et g
s -
o k ¥— - —% Static Priority
é 90 |- KM\ - Heeeaaan -+ Deadline
g sor NE, T
[N “‘lr %
Q 70 - .
£ X,
S 60} N,
o} KN
Q %
50 |- . 9le\ .
-
40| *~.
30+ *, S~
20+
10} e +
0 1 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-10: Average Performance: No Resources, M/M Distribution

162

Scheduling Dependent Real-Time Activities

E? 100 O— — © DASA
) »— -- =X LBESA
2 % ~ ¥— - —% Static Priority
s 90t “ S e -+ Deadline
QZ KN o~ ~
s g ~ ~
Q - XN *\ =~ 5 —
£ P DY —_———
£ 7} N @
o R
v 60f Tk
S e
N Nk
. \ -
40 ~-—y
30+ LN
20})
10} e
Heee L 4
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100 &= — © DAsA
8 %ﬁ\ a|>: :(k lé‘lfat;fgﬁriority
s 9} S R ELLCE -+ Deadline
%., K:’g. O -
g %or a x \"+‘% V=~ 5 —
s ol NN -,
S > *
T 60f JEVEN
o) .
Q ‘. \.X\ Tt —X - — — —_
50 LR x
40} ' N,
* .
\ -
30 |- + - ~
T~
20 |
10} e
_______ n
0 L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-11:

Average Performance: One Resource, M/M Distribution

Simulation Results

163

E? 100 O— — © DASA
@ »— -- =X LBESA
o % ¥— - —% Static Priority
s 90t %&\ e -+ Deadline
& LS
0 \G\
T 80t N -
kS *\ e -
g 70 | X ~o— _ _
O N ——-
v 60f X .
3 . Ny
= 50F O\ N,
\ -
kL T X H .
A -
X — i ¢ — e s —X
gy
30 | Y 2
20 |
10+ B S -+
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
S 100 &= — © DASA
8 % 9|>: :(K lé‘lfat;gﬁr'ority
Y - 1 T
s 9} %\ R ELLCE -+ Deadline
& AR
T 80} BN
E \."k‘ =~ \<>\
g 70k K- ~
IS N O~ —
3 | ‘ ——=
§ 60 ’(\
50\ X\\
s *
wl TR NS
e e N e — e — e —X
30} Y N _
. -
20 Tk
10+ "’4- +
0 1 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-12: Average Performance: Five Resources, M/M Distribution

Scheduling Dependent Real-Time Activities

T 100 - &— — © DASA
3 — -+ =X LBESA
o % H— - —% Static Priority
5 9ok %\ 4o -+ Deadline
= NN
§ 80 | N, S
g 7 Y e
5 = “x ~
S s &~ —_
g 60 |- \ —~ - -
T >§ AN
> 50f N EN
N
40 - \X. - “ * * .
30 } =" "*“'—"F_
* K
20
10}
L +
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
:E\ 100 ~ H— — © DASA
3 — -+ =X LBESA
Q % ¥— - —¥ Static Priority
T 90k % RO -+ Deadline
Q N
—~ " %
(0] 80 |- ‘Q, \&
S ,’:k ~
§ 70 - * S -
S & ~
15 — ~
o) N -
Q A
50F ~ N\
\
40 - . - “‘ X. ~
30} X\.X/../‘tf('\..*\,__.._.-—-x
*. T~
20 * . T~ *
10} R
________ +
0 L !
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-13: Average Performance: Ten Resources, M/M Distribution

Simulation Results

165

Value Obtained (Percent)

Deadlines Met (Percent)

100

©
(=]

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

S

%

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Key

DL
SPRI
LBESA
DASA

Key

DL
SPRI
LBESA
DASA

Figure5-14: Performance Range: No Resources, M/M Distribution

166 Scheduling Dependent Real-Time Activities

©
S
T

o | LTS

50

e

Value Obtained (Percent)
(o4
S
1
o=
——

Key

RN

40 |- []

DL
SPRI
LBESA
DASA

30} : : : ¥

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

B

©
S
T

ool b P e L]
o 0 LT g g U

40 +

Deadlines Met (Percent)

DL
SPRI
LBESA
DASA

30} i i i P

20

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-15: Performance Range: One Resource, M/M Distribution

Simulation Results 167

©
S
T

L

70l é é é é é % :
T : 8 : : : P | Key

60 F

Value Obtained (Percent)

i A I O IR R N AL (IR AR AR R 1

SPRI
LBESA
DASA

I I A U A O O AR O I

20

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

My

80 |

70 |-

Key

AR O T N C THE L I R A ¥
I O IR T T e ey

. Jt
w0l : 3

Deadlines Met (Percent)

DL
SPRI
LBESA
DASA

30}

0l : : : : : $
0 H H H H H H

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-16; Performance Range: Five Resources, M/M Distribution

168 Scheduling Dependent Real-Time Activities

100

80 |-

70

60 |-

Value Obtained (Percent)

SR I I R A AR N R e R (RN

=1

LBESA

Sk
™
o=
DL
SPRI
DASA

30t : : I

20

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

80 |

70 |-

: : 5'% % éKey
SR R TL O T

60 |-

Deadlines Met (Percent)

50

1=
=

o |3 it

=
1=

W

=)

T
DL
SPRI
LBESA
DASA

20

10} : : : : : $
0 H H H H H H

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-17: Performance Range: Ten Resources, M/M Distribution

Simulation Results 169

T 100
= _

_ DASA
§ 3t:£*‘- 2:---:% LBESA
&) 9 |- *\ M\ - ¥— - —¥ Static Priority
Q . *- %.\.

E 80 |- ~N .&“‘..\\\--
£ * =
S 70 :
3 B ~.
o *
E 60 |- ~. .
\ T~
> 50 | RN
.
40} ¥
30}
20}
10}
0 L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100
= _
) 32: &— — © DASA
o B %— -+ =X LBESA
s 9} ¥— - —¥ Static Priority
& S S
T 80} N s
s i R
a 70 %\~ Y
§ 60 | N
AN
Q
50 | *\
N
40 | *~.
-
30} S~k
20}
10}
L 1
0.00 1.00 2.00

Load

Deadlines Met (Mean)

Figure5-18: Average Performance: No Resources, M/M Distribution, Low Overhead

170 Scheduling Dependent Real-Time Activities

T 100
= _

_ DASA
§ %:€%~\\ 2:---:2 LBESA
&) 9 |- K < - ¥— - — Static Priority
N— M ~

N ~
R R N TN
g o} N N T T =9
RS \X N
o . .
2 60 |- RV - E
§ 5 TN
_\.
40} \-*
30}
20}
10}
0 L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100
% [S— — © DASA
s 9 &< = UK Staicpriorty
() - - atic Priori
oy N S~ _
o 80} X \ *>\\
o 70} N —-——s
S T~ X
AS) o
I 60 |- X..\
8 N =
50 | K X
a0t N
*.
30} ~. -
T~
20}
10}
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-19: Average Performance: One Resource, M/M Distribution, Low Overhead

Simulation Results 171

T 100
3 B &— — © DASA
o X — - =X LBESA
s 90 %\ S¥— - — Static Priority
S LS
E so kL \9|e S -
£ N\ >
I 70 - * =~ ~o—
8 *. —~ — —_
o 60| X N, ©
2 § Ny
= 50L \ >,
— .
40 - A . . -
i O S,
30} ~.x
20}
10}
0 L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100
§ i &= — ¢ Dasa
%— -- =X LBESA
s 9} % S - ¥— - —¥ Static Priority
< N s
§ 80 - AN S
. ~
g 70} K o
3 T =
g o N ¢
soF \ N
¢ *
40 |- x-_._x\. N
e L e e e —X
30| e _
-
20} ~x
10}
L 1
0.00 1.00 2.00

Load

Deadlines Met (Mean)

Figure5-20: Average Performance: Five Resources, M/M Distribution, Low Overhead

172

Scheduling Dependent Real-Time Activities

T 100
3 B &— — © DASA
S wof N IS e
- - I T10171i
él; %\ atic Priority
heo 80 L ‘\ N
) &
£ EN ~ -
I ot &
Q * \\
@) . S
v 60} AN -~ —
3 ' —o
I X N\
> 50 |1 . *\
N
40 \><-\ % .
X % ~.
30} N T e = X
*
20}
10}
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100
§ [~ PN DASA
¥— -- =X LBESA
s 9} % X ¥— - —¥ Static Priority
a *\\\Q
T 80} . ~
S N s
§ 70 b X \&\
3) S
S 60} —
[\ \w
Q X .
50F . AN
\
ol M A
30 X\X/../X-\..*__.._ —x
i
20 '_*
10}
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-21: Average Performance: Ten Resources, M/M Distribution, Low Overhead

Simulation Results

173

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

*éé;

0.125

poe

0.25 0.5 0.67 1.0

Value Obtained (Range)

1.33

2.0
Load

0.125

0.25 0.5 0.67 1.0

Deadlines Met (Range)

1.33

2.0
Load

Key

SPRI
LBESA
DASA

Key

SPRI
LBESA
DASA

Figure 5-22: Performance Range: No Resources, M/M Distribution, Low Overhead

174 Scheduling Dependent Real-Time Activities

©
(=)
1

80 |- g

70

60'%
ot L DT |

Value Obtained (Percent)
——

1

SPRI
LBESA
DASA

30 |

20+

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

I

70 |-

60t s s A s s s
of b L st g s | I

40 +

Deadlines Met (Percent)
i

SPRI
LBESA
DASA

30}

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-23: Performance Range: One Resource, M/M Distribution, Low Overhead

Simulation Results 175

100

(e}
(&)
1
——
——
+
+

70

60 | i

Value Obtained (Percent)
(o4
S
1
——
+

Key

PN B R I N R AR IR AR A E N R

SN

40

20+

SPRI
LBESA
DASA

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

©
S
T

100 + +

70 |-

Key

U I S A I R U AL R AR R O

. Jt
w0l : 3

Deadlines Met (Percent)

W

=)

T
SPRI
LBESA
DASA

20

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-24. Performance Range: Five Resources, M/M Distribution, Low Overhead

176 Scheduling Dependent Real-Time Activities

100

70 |- : : : : : : :
: : : : : : i | Key
60 : : : : : 8 : :
m : : : : : :
x : : : : : : | | |

Value Obtained (Percent)
(o4
S
1

40+ K i)

%
SPRI
LBESA
DASA

30t : : L

20+

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

L

80 |

70 |-

? ? ? ? ? ? P key
60} : : : : . 3 :
U S S S T O O P S R S O

40 : L

Deadlines Met (Percent)

VX=1
K
&

W

=)

T
SPRI
LBESA
DASA

20

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure 5-25: Performance Range: Ten Resources, M/M Distribution, Low Overhead

Simulation Results

177

T 100 -
@ F~ &— — © DASA
o ﬁé:§v %— .- =X LBESA
s 90 T ¥— - —¥ Static Priority
Q: . * > _ ~.. -
T 8ot ~ O~ e
E *\ \Q\ - . —
© . ~
5 OF N, T
o * ©
© 60| ~.
G % .
= 50} =~
.
40 e
30 |
20 |-
10
1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100~ &= — < DASA
§ ﬁ:ek\x ¥— -- =X LBESA
s 90 " ¥— - —¥ Static Priority
g” K. \.2& - ~—x
o 80} ~ K
g \%\ \0\\\ .
% 70 - ‘* -~ - \\ - ~x
S . T -9
§ 60 |- N,
AN
Q
50 N
\ -~
40 - * .
\ -~
\ -~
~
30 |- - %
20 |
10 |-
1 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-26: Average Performance: No Resources, M/M Distribution, Medium Overhead

178

Scheduling Dependent Real-Time Activities

T 100 -
) &— — © DASA
Q K %— -- =X LBESA
3 90t %\ < $— - —% Static Priority
N— h ~N
S g0l N Y -
2 SN ~- _
g b N e _
O Y . N =~ < -
o 60} "~ >* ~©
S - .
§ XN e
50 o -. _— -
\ -
40} ~. -
30}
20}
10}
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100 -
g [& et)
s 9} & ~ ¥— - —¥ Static Priority
g N S
3 80} ’
= x\>< *K \\“G\
8 70k ~ . =~
£ o ~ ¥ ~ -
E 60 ‘e * =~ ~
g - > ., ~
S 50 N e
*\. - =%
40k N
*.
30} ~.
3
20}
10}
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-27: Average Performance: One Resource, M/M Distribution, Medium Overhead

Simulation Results

179

Value Obtained (Percent)

Deadlines Met (Percent)

100 &— — © DASA
¥— -- =X LBESA
9 |- &\ ¥— - —¥ Static Priority
80| \?&
~
70 | S
~
60 |- N &\\
. * \\
50F \ N ~s
40k X .
— X — e (e — i s — X
30} ~.y
20 |
10}
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
100 &= — < DASA
¥— -- =X LBESA
90 |- % ¥— - —¥ Static Priority
S
80 | "IN
70l ol ~
&\
60 | AN
. -~
50F N T~
Xe— .. *
40 | X\.. ~.
— X e N s e e — X
30t *‘\.\
-
20 | ~x
10}
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-28: Average Performance: Five Resources, M/M Distribution, Medium Overhead

180 Scheduling Dependent Real-Time Activities

T 100 -
) &— — © DASA
o R %— - =X LBESA
s 90 % ¥— - — Static Priority
< ~
3T 80t AN
S
IS 720}k %Kxig‘\
3 * s
o 60 N ~
S B . \\\Q
S LA N ~-
.‘\ * . - ~ ~ -
40+ X Tk ~
-)
N —Xe T~
30 - .X/ " - — _a\..—)(
=%
20 -
10}
0 L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100 -
: ap)
s 9} % ¥— - —¥ Static Priority
a ﬁi\\
< 80f \ \\@
§ 70 - X TN g
s 60 I QXK \9\\
3 X \ ~ ~
Q .
50F . \ S~ -
\ ' S~
40 % \& - ~
-.X\ X% \.\
30 S .._gg______ —x
20 | e %
10}
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-29: Average Performance: Ten Resources, M/M Distribution, Medium Overhead

Simulation Results

181

90

80

70

60

Value Obtained (Percent)

50

40

30

20

10

100

90

80

70

60

Deadlines Met (Percent)

50

40

30

20

10

100

e

0.125

+$$§

0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

O

0.125

0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Key

SPRI
LBESA
DASA

Key

SPRI
LBESA
DASA

Figure 5-30: Performance Range: No Resources, M/M Distribution, Medium Overhead

182 Scheduling Dependent Real-Time Activities

100 * *

b g0]
e

70

(e}
(&)
1
—5—
—5—
$
—

I A N A

Value Obtained (Percent)

1

SPRI
LBESA
DASA

30 |

20+

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

Wl 4 d +¢ *

8oL @

70 - :% H H H H H
' I T L I R

601 % : : :
L R R AT R A

40 +

Deadlines Met (Percent)

SPRI
LBESA
DASA

30}

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-31: Performance Range: One Resource, M/M Distribution, Medium Overhead

Simulation Results 183

100

©
(&)
T
——
——
+
——

70

60 |-

Value Obtained (Percent)
(o4
S
1
+
+

AT S U TR U RS SN L

U O R I N R AR IR AR AN E A

=]
o
Ol

40

SPRI
LBESA
DASA

20+

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

©

(=}

T
——

80 |

70 |-

Key

U S S I I U S R E A I O

40 +

Deadlines Met (Percent)

W
(=)
1
a1
o=
=
SPRI
LBESA
DASA

20

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure 5-32: Performance Range: Five Resources, M/M Distribution, Medium Overhead

184

Scheduling Dependent Real-Time Activities

100

90-++§ ++

70

60 |-

Value Obtained (Percent)
(o4
S
1
+

40

30 |

Key

SPRI
LBESA
DASA

20+

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

ol | 0T *
70

Key

60 = m

Deadlines Met (Percent)

40 : 3

SPRI
LBESA
DASA

20

10}

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-33: Performance Range: Ten Resources, M/M Distribution, Medium Overhead

Simulation Results 185

T 100 -
8 E X e
&t) 90 % % ¥— - — Static Priority
N— -
3 sof & *
£ ® S
g oL N\ X
KS) N
e \ N,
o 60} \ ES
3 Y N
] .
N B >~
50 \ Sk I~
N
40 | \<>\ X
N 3
30} N
®
20 Sa
>
10} - o
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100 -
S X B
E) 90+ K ¥— - —% Static Priority
N—
5 8ok X *\
DS ¥ ON%
8 70k \ ;'\,X .
S \ X N
g 6o} \ NS
8 X> Q\ ~ X
50 | ~.
\\ *\ -~) \ -~
40} X N, ~..
N * . ~. ~
30 | N ~. -
20 e ~ - 3
N e
10} Ty
L 1
0.00 1.00 2.00

Deadlines Met (Mean)

Figure5-34: Average Performance: No Resources, M/M Distribution, High Overhead

186 Scheduling Dependent Real-Time Activities

T 100
3 B &— — © DASA
S ol & U X Stave priority
[} - - atic Friori
< N
S 80k X N
£ AN
T * .
g 70 - 3\\\ 9K
v 60} N N
3 \.><)
N 50 1 >>\\ N
. .
~ .. - *
. -
a0l XX RESUREE
30} N —%
20} \0\\
o—
10} —-——5
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
= 100
% [S— — © DASA
o X— -- =X LBESA
s 90F ¥— - —¥ Static Priority
< BN
3 80F X
s Ny N
3 \ S
[60 |- *
8 \’X \‘
50| §>\\ \
\%__,__;§§~
40 | c\ .
N =
30 | \ .\.\. ~x
\~
20} A ~
S—
10+ \\Q
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure 5-35: Average Performance: One Resource, M/M Distribution, High Overhead

Simulation Results 187

=
§ 100 G— — © DASA
¥— -- =X LBESA
s 90k K ¥— - —¥ Static Priority
g N
§ 80F R N
3 AN
— 70 - Q .
Q9
o \ *
o 60} X \ N
3) .
S s0F N *\
. §> N
40 |- =~ .. ﬁ(\ . * .
-~ \ -
30 - X\ \'\
\\'F--—x-__ S
20 + - ..
&\\$ X
10} —— _
— w
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
=
% 100 - S— — © DASA
o ¥— .- =X LBESA
S 90 Kk ¥— - —¥ Static Priority
= N
g 80F X .
a 70 v
g OF] X
T eof X X
Q . \ \
Q ' .
50\ \ N
ol kel X %,
*..\6 ~
30} N Ny
\\..% - _X-\\'__\ N
20| T —
&\\ *
10} S —
— w
L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-36: Average Performance: Five Resources, M/M Distribution, High Overhead

188 Scheduling Dependent Real-Time Activities

T 100
§ i G— — © DASA
¥— -- =X LBESA
o 9k K ¥— - —¥ Static Priority
a
S 8otk
2 <>\\ \
T
g 70 | <§ K}k
3 60 | \\ N
3 .
= 50t X‘ \ N\
40 \x &\ > ~.
~
0l .x.‘@\\ \%_\.
% ~x
20} ‘\G\\ ~—i
\\(}‘
10- \\\
-
L 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
T 100
% [S— — © DASA
o ¥— .- =X LBESA
s 90 * ¥— - —¥ Static Priority
a
N
8 80} .
s K \
g ok W
IS R %,
T 60} \ N
8 \ \
50 . >§ .
§ \ \
w0k \ & '
X \ ™
~. % N,
%or .X' \\ \'*\
T - B -
20} ~N - ~-—.
<k~\\ \%--__..____=="*
10} \0~~\\\~®
0 L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Figure5-37: Average Performance: Ten Resources, M/M Distribution, High Overhead

Simulation Results 189

100

60 |-

Value Obtained (Percent)

Key

SPRI
LBESA
DASA

30 |

20+

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

TH]

80 |

ISR E RS S I % T
: : : : : : : Key

o1 O e T I O I
. ¥ 1N

40 +

Deadlines Met (Percent)

SPRI
LBESA
DASA

30}

0l : : : : : : 4;
0 H H H H H H H

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure 5-38: Performance Range: No Resources, M/M Distribution, High Overhead

190 Scheduling Dependent Real-Time Activities

100

(e}
(&)
1
&
——

80 |- ;;

70| .
60k :

Value Obtained (Percent)

Key

PN B 7 SN YRR G IR A NI

SPRI
LBESA
DASA

30 |

20+

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100 - :
90 + § +
80 - %
o | &
60k :

Key

A TEI | T I Y

Deadlines Met (Percent)

50

40 +

SPRI
LBESA
DASA

30}

0l : : : : : : $
0 H H H H H H H

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-39: Performance Range: One Resource, M/M Distribution, High Overhead

Simulation Results 191

100

©
Q
T
——
——

70 - 1]
L : : : : : L[key

60 |-

Value Obtained (Percent)
(o4
S
1

PN O T S I I N O S A O R

40

=
ole

SPRI
LBESA
DASA

30 |

20+

10} : : é : : : $
0 : : : : : : :

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

80 |

©
(=}
T
——
+

70 |-

Key

Deadlines Met (Percent)

=1

SPRI
LBESA
DASA

20

10} : : : : : : é
0 : : : : : : :

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure 5-40: Performance Range: Five Resources, M/M Distribution, High Overhead

192 Scheduling Dependent Real-Time Activities

100

4] 4

701 A 5

60 |-

Value Obtained (Percent)
(o4
S
1

Key

poo : : : : : :
* : : : : : : |

a0t P

Sk
=
O
SPRI
LBESA
DASA

30t i P4

20+

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Value Obtained (Range)

100

80 |

70 - 3

60 - : : : : : : :
¥ : : : : : : |||
S0 : : : : : : :

40 : 0

Deadlines Met (Percent)

W

=)

T
SPRI
LBESA
DASA

10} : : : : : : $
0 H H H H H H H

0.125 0.25 0.5 0.67 1.0 1.33 2.0
Load

Deadlines Met (Range)

Figure5-41: Performance Range: Ten Resources, M/M Distribution, High Overhead

Simulation Results

193

Value Obtained (Percent)

Deadlines Met (Percent)

100
90
80 |
70 |-
60 |-
50 |-
40 +
30 |-
20 +

10} RO -+ with aborts

100
90
80 |
70 |-
60 |-
50 |-
40
30 |-
20 +

10} RO -- with aborts

0
0.00

without aborts

G- —

1.00

1
2.00
Load

0
0.00

Value Obtained (Mean)

without aborts

G- —

1.00

1
2.00
Load

Deadlines Met (Mean)

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

e

without aborts
with aborts

0.125

025 05 067 1.0 133 20
Load

Value Obtained (Range)

(44

without aborts
with aborts

0 H
0.125

025 05 067 1.0 133 20
Load

Deadlines Met (Range)

Figure5-42: Abort Usage: One Resource, M/M Distribution, Low Overhead

194

Scheduling Dependent Real-Time Activities

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

0
0.

0
0.

_ T 100
Sy S
| . s 90
%s% e
N . 3 80
W £
| \¢h<.“ S 70
- Q
\\,g; @)
| o 60
=
<
| > 50
| 40
| 30
| 20
&— — © without aborts
= B S -+ with aborts 10
]] 0
00 1.00 2.00
Load
Value Obtained (Mean)
_ T 100
[0
&Q\ N
- N q')
% e
N ‘%\ g 80
o, =
.. 0
= \th_ o 70
Q"\n_ E
i % § 60
)
Q
| 50
| 40
| 30
| 20
&— — © without aborts
= B S -+ with aborts 10
| 1
00 1.00 2.00
Load

Deadlines Met (Mean)

_**§+¥§¥¥§

SR

without aborts
with aborts

90 |-

0.125 025 05 0.67 1.0 133 20
Load

Value Obtained (Range)

b

without aborts
with aborts

0 H H H H H H H
0.125 025 05 0.67 10 133 20

Load

Deadlines Met (Range)

Figure 5-43: Abort Usage: One Resource, M/M Distribution, Medium Overhead

Simulation Results

195

Value Obtained (Percent)

Deadlines Met (Percent)

100
90}
80 R
70 |-
60 |
50 |
40t
30}
20+

10

&— — © without aborts
D LCLLE -+ with aborts

0
0.00

1
2.00
Load

Value Obtained (Mean)

100
90+
80 KR
70
60 |-
50}
40t
30}
20t

10

&— — © without aborts
D LCLLE -+ with aborts

o

._\$

0
0.00

1.00

1
2.00
Load

Deadlines Met (Mean)

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

without aborts
with aborts

0.125 025 05 0.67 1.0 133 20
Load

Value Obtained (Range)

without aborts
with aborts

0 :
0.125 025 05 067 10 133 20

Load

Deadlines Met (Range)

Figure 5-44. Abort Usage: One Resource, M/M Distribution, High Overhead

196

Scheduling Dependent Real-Time Activities

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

0
0.

&— — € without aborts
n B S -+ with aborts

L 1
00 1.00 2.00
Load

Value Obtained (Mean)

100

90

80

70

60

50

40

30

20

10

0
0.

&— — € without aborts
n B S -+ with aborts

L 1
00 1.00 2.00
Load

Deadlines Met (Mean)

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

s

without aborts
with aborts

0.125 025 05 0.67 1.0 133 20
Load

Value Obtained (Range)

without aborts
with aborts

0 H H H H H H H
0.125 025 05 0.67 10 133 20

Load

Deadlines Met (Range)

Figure 5-45: Abort Usage: Five Resources, M/M Distribution, Low Overhead

Simulation Results

197

Value Obtained (Percent)

Deadlines Met (Percent)

100
90 -Q‘Q\
80 | \?}\“&..._
Tk,
70t S
N N)
60 |-
~ o - 4
50 ~
40 |
30 |-
20
&— — € without aborts
10} RO -+ with aborts
O 1 1
0.00 1.00 2.00

Load

Value Obtained (Mean)

100
90 -Q\tb\
80 - \2‘5\4&
&.'".{.
N e
70 S
60 S
50 b > ~ -
n ~
40 |
30 |-
20
&— — € without aborts
10} RO -- with aborts
0]]
0.00 1.00 2.00

Load

Deadlines Met (Mean)

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

P,
——
+
+
+

without aborts
with aborts

0.125 025 05 0.67 1.0 133 20
Load

Value Obtained (Range)

without aborts
with aborts

0 H H H H H H H
0.125 025 05 067 10 133 20

Load

Deadlines Met (Range)

Figure5-46: Abort Usage: Five Resources, M/M Distribution, Medium Overhead

198 Scheduling Dependent Real-Time Activities

= 100 T 100 . .
CD 1) H H
Ny N : :
2 90 &— — © without aborts 2 90 | |
~ e -+ with aborts ~ : :
T 80FR s sof : :
S S :
© T
= 70 | XR = 70 | fg
¢ \ O <&
v 60 \ v 60} 5 &
S S IS
3 ! 3 NN £s
> 50 L \‘ > 50k E E E S =
& P iad

40 |- \ 40 |- : : :

30} & 0L i : :

A\
20+ \3\ 20F : : :

10} e I L L S
b : : : : : : $:
0 . X 0 : : : : : : :
0.00 1.00 2.00 0.125 025 05 067 1.0 133 20
Load Load
Value Obtained (Mean) Value Obtained (Range)
T 100 - T 100 -
) [0
N N
& 90 S— — € without aborts & 90 - | |
~ e -+ with aborts ~
T 80 3 80}
S S
g 70} &Q g 70k 2
S - S Se
§ 60F \ R 60f 58
)) Q
S ! 8 £s
50| % 50 s s
& 33
40} " 40}
30k \%\ 30 : :

N S SN
20+ e 200 2l ig®l
10} e A A AL A 4

~b : : : : : : :
0 . X 0 : : : : : : :
0.00 1.00 2.00 0.125 025 05 067 1.0 133 20
Load Load
Deadlines Met (Mean) Deadlines Met (Range)

Figure5-47: Abort Usage: Five Resources, M/M Distribution, High Overhead

Simulation Results

199

Value Obtained (Percent)

Deadlines Met (Percent)

100
90 -%
80 | \<>\'+
70 - X
60 - -
50|
40 |-

30 |-

20

&— — © without aborts
10 - B S -+ with aborts

0 L 1
0.00 1.00 2.00
Load

Value Obtained (Mean)

100
90 -&%;

80 N

70 - & e
60 | S~
50|
40+

30 |-

20

&— — © without aborts
10 D LCLLE -+ with aborts

0 L 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

—a—
-
—&—
——
+
+

without aborts
with aborts

0.125 025 05 0.67 1.0 133 20
Load

Value Obtained (Range)

A

T
S

without aborts
with aborts

0 H H H H H H H
0.125 025 05 067 10 133 20

Load

Deadlines Met (Range)

Figure 5-48: Abort Usage: Ten Resources, M/M Distribution, Low Overhead

200

Scheduling Dependent Real-Time Activities

Value Obtained (Percent)

Deadlines Met (Percent)

100
90 -&25\
Sd
N
- &
B N . "y
60 f AN
[N T
50 N
N
N
40 | ©
30 |-
20
&— — € without aborts
10} RO -+ with aborts
0 1 1
0.00 1.00 2.00
Load
Value Obtained (Mean)
100
o0 S,
80 - \&’ﬂh.
70 | & N +~
NN
60 |- \Q\ N
50 A ~ e
S
40 |- ~ ©
30 |-
20
&— — € without aborts
10} RO -- with aborts
0 1 1
0.00 1.00 2.00
Load

Deadlines Met (Mean)

Value Obtained (Percent)

Deadlines Met (Percent)

100

90

80

70

60

50

40

30

20

10

100

90

80

70

60

50

40

30

20

10

S

without aborts
with aborts

0.125 025 05 0.67 1.0 133 20
Load

Value Obtained (Range)

o

S

without aborts
with aborts

0 H H H H H H H
0.125 025 05 0.67 10 133 20

Load

Deadlines Met (Range)

Figure5-49: Abort Usage: Ten Resources, M/M Distribution, Medium Overhead

Simulation Results 201

< 100 - T 100 -
) (0]
N N
& 90 S— — € without aborts & 90 - | |
~ e -+ with aborts ~
3 80r& T 80t
iS \ iS :
T [:
2 7OF k’ﬂ 5 OF R g
¢ O : RS
g 60 \ g 60 § E
S 50 | \ S 50 | §§
40+ & a0k
30 %\ < A B A 4 G N A
\-, : : : : : : :
20 20 : : : : : : :
\21;\\ : : : : : : :
10} el wof bbb i gt
T : : : : : : :
0 . ¥ 0 : : : : : : :
0.00 1.00 2.00 0.125 025 05 067 1.0 133 20
Load Load
Value Obtained (Mean) Value Obtained (Range)
T 100 - T 100 - . .
CD 1) H H
Ny N : :
2 90 &— — © without aborts 2 90 | |
~ e -+ with aborts ~ : :
T 80 -<;(T 80} : :
N s N : : :
0 | 1] B ' 0
.g 70 % g 70 % _§ Y
® 60\ R 60} 58
S \ S £
50| \ 50 s s
40} % 40}
301 \$\ 0F : : : :
2 N 20 : : : : : : :
' pe o T
10l W I R A AR N
R : : : : : : :
0 . ! 0 : : : : : : :
0.00 1.00 2.00 0.125 025 05 067 1.0 133 20
Load Load
Deadlines Met (Mean) Deadlines Met (Range)

Figure 5-50: Abort Usage: Ten Resources, M/M Distribution, High Overhead

202 Scheduling Dependent Real-Time Activities

Chapter 6
Related Work and Current Practice

There has been a great deal of research done on scheduling agorithms, in general, and scheduling
algorithms for real-time systems, in particular, through the years. This chapter explains where this thesis
research belongs within this overall context.

Most of the basic scheduling algorithms are covered in text books on scheduling [Baker 74, French 82] or
on operating systems[Janson 85, Peterson 85]. Each algorithm possesses certain properties that
differentiate it from others. For instance, round-robin isfair, while shortest processing time first maximizes
throughput. While many of these properties have no intrinsic value in real-time systems, these texts also
contain some scheduling algorithms that are useful in real-time systems.

Real-time systems can be large and complex, possibly comprising several processors that embody a
hierarchically-structured system. Each level of the system may be characterized by different requirements
and capabilities. For instance, at the lowest level, programmable controllers may periodically monitor
sensors and adjust actuators to maintain desired set points for physical processes, while at the next higher
level, supervisory control computers coordinate the actions of the programmable controllers, handle
exception conditions, and attempt to satisfy higher-level goals. In the case of programmable controllers,
the workload is regular — it occurs at specific intervals and involves fixed computations on known sets of
data. For supervisory control systems, the workload is more dynamic —— exceptions occur irregularly and
the programmable controllers operate asynchronously with respect to one another, but stringent response
time requirements may still be placed on its actions. Higher level systems typically operate under fewer,
|l ess restrictive time constraints and handle long-range planning and monitoring functions®®.

The differing real-time requirements and workload characteristics of these hierarchical levels suggest that
different scheduling methods may be appropriate for each level. For instance, simple list schedulers may
be well-suited for the lowest system levels; schedulers capable of handling more dynamic real-time loads,
such as DASA, may be most appropriate for the supervisory control level; and the strategic scheduling
performed at the highest system levels may employ large, complex models like those used in operations
research. Unfortunately, the literature often refers to "real-time systems' or "real-time scheduling
algorithms" without explicitly specifying which level in the real-time system hierarchy is being addressed.

590f course, the meaning of "long-range” is determined by the nature of the application. It might mean anything from minutes to
hours, or even longer.

203

204 Scheduling Dependent Real-Time Activities

The following discussion examines a number of real-time scheduling algorithms and describes their
applicability within the real-time system hierarchy outlined above. Particular attention is paid to the use of
algorithms for supervisory control scheduling.

Real-time scheduling algorithms can be categorized in a number of ways. For the following discussion,
they are divided into three groups. priority-based, deadline-based, and time-driven. Briefly, priority-based
algorithms make scheduling decisions according to a single value that is assigned to each activity in the
system. This value generally indicates the overall functional importance of the activity to the application.
Deadline-based algorithms also make scheduling decisions based on a single value. In this case, the value
isthe activity’ s deadline, which indicates the urgency of the activity. Time-driven algorithms consider both
the functional importance and the urgency of each activity when making scheduling decisions.

The discussion of these three groups of scheduling algorithms is followed by a section devoted to other
algorithms that are of interest in establishing the context for this research, but are not properly part of these
three groups.

6.1. Priority-Based Scheduling

Most of the real-time systems currently in service employ a static priority scheduler of one type or
another. In these systems, component activities are assigned static priorities, and the systems are tuned so
that they will typically meet their time constraints. There is also a large body of literature that has
investigated priority-based scheduling algorithms beyond this current practice. In[Liu 73], a method for
static priority assignment was presented for periodic real-time activities. The scheduling discipline that has
grown from this work is called rate monotonic scheduling. This basic approach has been elaborated and
expanded upon since (see for instance [Sha 86] and [Sha 90]), but the applications for which it is intended
are always those where most, if not all, of the activities are periodic, and where the periodic activities are
nearly always the most important activities in the system. While there are systems that fit this description,
the family of supervisory control systems that are of interest in this thesis do not.

A second class of priority-based scheduling algorithms has dealt explicitly with some of the scheduling
difficulties that arise as a result of the dynamic interaction of activities. Some operating systems (for
example, VM S [KB 84]) implement priority adjustment schemes to refine the simple static priority model,
and other schemes have been proposed in the literature as well ([Sha 87]). [Rajkumar 89] addresses the
synchronization of periodic activities within a rate monotonic framework, attempting to put upper bounds
on the length of time that alower priority activity may block a higher priority activity as a consequence of a
resource conflict. All of these schemes address problems in which a lower priority activity that shares a
resource with a higher priority activity can block the higher priority activity for an arbitrarily long time.
The solution, roughly speaking, allows the lower priority activity to assume a higher priority for at least
long enough to complete its access to the shared resource, thereby allowing the higher priority activity to
resume. This approach does solve some problems that are associated with simple priority-based scheduling
algorithms, but it does not come to grips with the fundamental shortcoming of all of the priority-based
schemes: priorities are unable to adequately capture the critical scheduling information for activities.

Related Work and Current Practice 205

Specifically, an individual activity’s importance to the overall application and its urgency are two
independent factors: an activity is not urgent just because it is very important, and it is not important just
because it is urgent. This distinction is lost in static priority scheduling schemes where both importance
and urgency must be reflected in a single quantity, the activity’s priority.

6.2. Deadline-Based and Time-Driven Scheduling

This section discusses both deadline-based and time-driven scheduling since they both use time as a
primary criterion for making scheduling decisions, and since time-driven scheduling algorithms evolve
naturally from deadline-based scheduling algorithms®.

Deadline-based and time-driven agorithms seem well-suited for use in real-time systems since they
explicitly take into account activities' time constraints, and they do not typicaly require that all activities
be periodic. Deadline schedulers have been in use in operating systems at least since the 1960s, and [Liu
73] demonstrated the optimality of deadline scheduling under one computational model. Unfortunately, the
basic deadline scheduling algorithm becomes unstable whenever an overload occurs; it acts to minimize the
maximum job lateness and maximum job tardiness([Conway 67]). This may be the desired action, but
often it is not. Consequently, a great deal of work has been done to modify the behavior of deadline
scheduling in overload situations. Some work that does not consider dependency requirements includes:
[Martel 82], which presents an algorithm that will complete all of the (independent) activities while
minimizing the maximum lateness of any individual activity; [Moore 68], which uses a scheme that also
completes all of the independent activities while minimizing the maximum deferral cost associated with
any activity; and [Locke 86], which does not necessarily execute all of the activities, but does attempt to
maximize the value acquired by completing those that are executed. In each case, these schemes do not
consider dependencies, but do address the issue of overload handling, which is one of the main interests of
thisthesis.

Historically, there has been a great deal of emphasis placed on being able to guarantee that deadlines can
be met. In simple systems that have been built, this has been possible, or has at least appeared to be
possible. As systems have grown, this has become increasingly more difficult to do. In large, dynamic
systems, it is rapidly becoming impossible. Nonetheless, guaranteeing that deadlines can be met is often
considered a prime requirement for so called hard rea-time systems, and much work has been done in this
area. (In ahard real-time system, missing even a single deadline means that the entire system has failed.)
For simple systems where all of the activities need to be scheduled periodically and have fixed execution
time requirements, [Liu 73] and others allow an off-line analysis to guarantee the schedulability of a set of
activities under certain assumptions. In more dynamic cases where less emphasis is placed on periodic
activities, work similar to [Ramamritham 84] attempts to provide the same type of guarantee. However, it
is not obvious that attempting to offer true guarantees is wise in a dynamic system because honoring a
guarantee may result in an inability to schedule a new activity that is clearly more important and more

801n some of the management and operations research literature, deadlines are referred to as due dates.

206 Scheduling Dependent Real-Time Activities

urgent than the previously guaranteed activity. In addition, the guarantees that are offered are not absolute.
Receiving a guarantee indicates that adequate resources have been reserved to complete an activity by the
desired time. If resources are subsequently lost — due to a processor or a power failure, for example ——
the guarantees made cannot always be honored.

There is also a body of literature that explicitly deals with dependencies in deadline-based scheduling
algorithms. It should be noted that what is termed a dependency consideration in this thesis encompasses
both the notion of a precedence constraint (where, for instance, activity A; must complete before activity A,
may begin) and the notion of a resource requirement (where, for example, activity A, requires exclusive use
of resource R for time T during its execution). In the literature, these two types of dependencies are often
treated separately. [Blazewicz 77], for instance, deals only with precedence constraints and provides an
algorithm that will allow activities with different arrival times and known, fixed precedence constraints to
be scheduled in a hard real-time system. This algorithm can be thought of as a deadline inheritance
algorithm, whereby an activity is scheduled as if it had a deadline "close" to that possessed by another
activity that both depends on it and has a nearer deadline.5! Unfortunately, these precedence constraints are
fixed, making a straightforward extension to handle resource requirements difficult. Also, no effort is
made to handle overload cases, since, by Blazewicz's definition, a missed deadline means that the entire
system has failed.

[Cheng 86] looks only at precedence constraints, while [Zhao 87] looks at both precedence constraints
and resource requirements. In both cases, these represent extensions of [Ramamritham 84] and share the
same shortcomings —— they attempt to make guarantees to run specific activities at the possible expense of
more urgent or more important activities that may arrive later, and the guarantees are not truly guarantees
since unanticipated problems can prevent their fulfillment. In addition, although [Zhao 87] presents a more
dynamic, less restrictive model than that presented in most of the work in this area, knowledge of the
specific resource requirements of any activity to be runis still assumed to be known in advance.

[Lawler 73] deals with precedence constraints when scheduling a group of activities on a single machine
and presents an algorithm that uses a monotone cost function to derive a schedule that minimizes the
maximum of the incurred costs. However, the activities to be scheduled have no deadlines, nor do they
have any resource requirements. [Elsayed 82] presents heuristics to schedule a set of activities that share
resources to complete a project. Once again, there are no deadlines associated with any of the activities.

Some of the previous references deal with uniprocessor scheduling, and some deal with multiprocessor or
multiple processor scheduling. This distinction was not made previousy because the number of
processors, athough certainly an important consideration®?, is of secondary concern for the work at hand.

611 n fact, one view of the pasa algorithm to be examined in the thesiswork is exactly this. It incorporates the idea that the activities
on which some activity depends must be dealt with before the activity’s deadline, as must the activity itself. However, in addition, the
agorithm assesses the situation to decide if there is currently an overload, and if so, selects the subset of activities to be run according
to ameaningful metric.

62Note, for instance, that a scheduling algorithm that is optimal for a uniprocessor may not be optimal for a multiprocessor. A
simple deadline scheduler with no overloads demonstrates this fact.

Related Work and Current Practice 207

The primary issues being addressed when comparing and contrasting those efforts with this one are:
whether or not time constraints are dealt with explicitly, the amount and type of information on which
scheduling decisions are based, and the fundamental nature of applications (whether they are static or
dynamic, periodic or aperiodic; whether overloads can occur and if so how they are handled). And,
although a great deal of work has touched on various aspects of the thesis problem, none of this work has
addressed al of the key issues at once.

6.3. Other Related Work

The computational model presented in this thesis provides for the abortion of an activity. Thisisdone for
two reasons. First of all, in any application, if an activity that manipulates shared resources is to be
terminated, unless specific steps are taken there is a danger that the shared resources will either be
unavailable for use by other activities or left in an inconsistent state. The abort mechanism addresses this
problem by allowing the shared resources to be returned to an acceptable state for later use. Secondly, an
abort mechanism similar to that just mentioned can be used to support an atomic transaction
facility [Eswaran 76]. The ability to include such a powerful facility in real-time systems isinviting®, and
the work presented here can assist in making this feasible at some point.

Some work has aready been done to provide atomic transactions in real-time systems. Often, this has
involved changing the concurrency control features found in traditional database transaction managers
([Liskov 83, McKendry 85, Sha 85]). Other work has examined the problem of scheduling transactions
using the standard concurrency control rules. However, some of the models chosen for work in this area
([Liu 88], for example) require detailed prior knowledge of the precise resource requirements and exact
access and release timings for each resource in each transaction.

A few researchers have addressed a more dynamic model, similar to that employed in this thesis.
[Stankovic 88] presents a set of rules that control access to shared data by concurrent transactions.
However, these rules are not tied to the scheduling algorithm for the processor, and they only determine
which of two competing transactions should be allowed to execute —— they do not consider a more global
view of scheduling that involves all of the transactions, perhaps involving feasibility testing of the
anticipated schedule. The scheduling rules assign a value to each competing transaction based on various
weighted factors such as time remaining until deadline, functiona criticality, computation time expended
on the transaction, and so forth. Different choices of weighting factors will result in different behaviors,
but there islittle analysisin this paper to aid in the selection of these factors.

[Abbott 87] discusses various scheduling agorithms that may be used for real-time transactions,
including Locke's Best Effort scheduling algorithm. 1t does not discuss concurrency control rules that are
separate from the scheduling algorithm that is used to assign the processor to transactions. [Abbott
89] continues this work but does not use time-value functions or Locke's algorithm when comparing

83n fact, [Jensen 76b] suggests using transactions not only for real-time applications, but also within a decentralized operating
system that supports these applications.

208 Scheduling Dependent Real-Time Activities

scheduling algorithms and concurrency control rules. In case of overload, the stated goal of the system is
to minimize the number of missed deadlines.

[HIPAC 88] reports on a project where database system researchers explore approaches to resolve
time-constrained data management problems. Their approach models transactions and the situations that
trigger their execution in order to provide efficient triggering mechanisms. Time-value functions and
time-driven scheduling congtitute one of the approaches for scheduling activities that they propose to
explore and perhaps modify.

Finally, a few other research directions should be mentioned to put this work in its proper context. An
underlying assumption of this work is that dependencies among component activities are a natural product
of complex, dynamic real-time systems. There is some work that attempts to approach the construction of
applications from other points of view. [Herlihy 88] explores an approach that would eliminate the need for
any activity to wait on other activities when accessing resources. However, this approach does not allow
the maintenance of mutually consistent resources, which is often important in real-time systems. [Birman
88, Joseph 88] outline portions of a scheme that allows application-specific consistency constraints to be
satisfied by utilizing a set of communication and replication mechanisms. How to specify the behavior of
objects that have been composed in this way so that large applications can be constructed using a modular
design methodology is an important open question with respect to this approach.

Chapter 7
FutureWork

The preceding chapters have demonstrated that the DAsA algorithm, operating under the specified
assumptions, can benefit supervisory control applications. This chapter discusses some of the directions
that further work in the future may take —— to adapt DASA for use in real-time operating systems, to study
its performance for various applications, and to expand the domain in which it may be employed.

7.1. Loosening Assumptions

The model within which DAsA was formulated embodied a set of fundamental assumptions. These
assumptions, discussed in Chapters 1 and 2, were made to reduce supervisory control scheduling to a
tractable research problem focused on afew key issues.

While these assumptions seem valid for a significant number of real-time supervisory control
applications, they may not hold for some other interesting applications. Each of the following sections
addresses one possible assumption that could be explored in the future. In each case, bAsSA could almost
certainly be applied to more applications if the specified assumption could be removed or loosened.

7.1.1. Known Computation Timefor Phase

It has been assumed for the purposes of this research that, at the start of a given computational phase for
an activity, the amount of processor execution time that will be required to complete that phase is
accurately known. While thisis not a particularly unreasonable assumption for many real-time systems, it
would be desirable to investigate the effect on the scheduler’s effectiveness if the required computation
time were not known accurately.

In some real-time systems, especially low-level control systems, the required computation time is known
precisely. The code has been written so that there is little or no variability in execution time from one
execution to the next, and the relevant code and data are always in memory when they are needed.

In other systems, it seems plausible that the operating system could be instrumented to measure the
amount of time required to execute each computational phase. As the application runs, the operating
system could form a fairly accurate profile of the required computation time for each phase. This
information could then be used by the scheduler as the phases initiate subsequent executions.

209

210 Scheduling Dependent Real-Time Activities

For a number of reasons, it would seem to be advantageous to loosen the constraints placed on such
implementations. For instance, if the required computation time can vary significantly depending on the
values of specific data items, then supplying a single estimate as the required computation time to the
scheduler will necessarily be wrong some, if not al, of thetime.

Or, in a large supervisory control system, it may be impossible to guarantee that al of the application
code and data that may be needed can be memory-resident. Instead, some of it may reside in secondary
storage until it isneeded. The time required to transfer the necessary code and data into main memory will
affect the required computation time, assuming the time required to access and load the information is
"charged" to the computational phase requesting it. These paging effects could make an otherwise fixed
required computation time highly variable.

The existing simulator could be used to study the sensitivity of the DAsSA scheduling algorithm to the
accuracy of required run-time estimates. The workloads that were previously used, as well as any new
workloads, could be modified to (intentionally) supply the scheduler with arbitrarily inaccurate
information. The same metrics that have been used in this research would be appropriate to measure the
effects of this loss of accurate information®4,

7.1.2. Exclusive Access to Shared Resour ces

All activities access shared resources in a mutually exclusive manner in the research presented in this
document.

For some shared resources, thisis fine. For example, signals between pairs of activities are held by the
signaler until it istime to send the signal. Then the shared resource is released, alowing the signal receiver
to access the resource, and, hence, receive the signal. No richer set of access modesis required for such an
application.

Similarly, serialized access to a device, which may be gained by possessing an associated shared
resource, seems to be adequately addressed by mutually exclusive semantics for the acquisition and
possession of the shared resource.

Nonetheless, there are many situations where a richer set of access modes for shared resources would be
desirable. Although a signal from one phase to a set of other phases could be implemented by a set of
shared resources, each coordinating the signal sender with one signal recipient, this seems to be inefficient
and it requires the signal sender to know how many recipients there are (or may be). The ability to have all
of the recipients gain concurrent access to the shared resource once the signaler has released it would
provide a better facility to address this application need.

64_ocke performed a sensitivity analysis of this sort in his thesis({ [Locke 86]) and found that his algorithm was not strongly affected
by poor required computation time estimates. A similar result might hold for basa.

Future Work 211

Certainly, in the case of shared data, a richer set of access modes would be advantageous. Concurrent
access to shared data and, to a lesser extent, shared devices is provided in many systems. When users
request access to a shared resource, they specify an access mode to the resource manager. When the
request can be satisfied without conflicting with any other outstanding resource accesses, it is granted. (See
[Date 86] for adiscussion of thistopic.) Since DASA subsumes the functions of the resource manager, then
it must be able to handle multiple access modes.

Adapting DASA to embody a more complex set of access modes to shared resources should be fairly
straightforward. Perhaps the most interesting design questions will arise when weighing the —— potentially
complex —— access requirements of various phases in light of the ability of the scheduler to issue aborts.
Consequently, the number of tentative schedules that may be considered when selecting a phase to execute
may increase, relative to the number considered when there is only a single access mode for shared
resources. For instance, when resources are accessed in a mutually exclusive manner, it is only necessary
to abort or complete a single phase to free a resource for use by another phase. When it is possible for
multiple phases to concurrently access a resource with possibly different access modes, then it may be
necessary to abort or complete several phasesto free asingle resource. Furthermore, it may be necessary to
complete or abort a (somewhat) different set of phases to free the same resource for another phase that
happens to be requesting a different access mode.

Advanced facilities to serve applications provide another reason to explore the use of a richer set of
access modes. This research is intended, in part, to lay a foundation upon which a rea-time atomic
transaction facility can be built. Such a facility will demand a richer set of access modes similar to those
provided by non-real-time transaction facilities ([Date 86]), including at least a concurrent read access
mode.

7.1.3. Simple Time-Value Functions

This research focused on phases characterized by simple time-value functions. In fact, all of the time-
value functions were step functions.

Jensen proposed a much wider range of time-value functions ([Jensen 75]), and others have explored this
concept ([Locke 86, Northcutt 87]). DASA could be modified to handle a wider range of functions. The
motivation for this change should come from the applications to be supported by DAsA. If they need more
complex functions to describe their time constraints and values, then DASA must provide them.

[Locke 86] used five parameters to describe a time-value function® and was given the mean and
standard deviation of the expected computation time for the phase. Numerical integrations were then
performed to determine the expected value that each phase could add to the schedule being constructed. In
theory, these same extensions can be made to DASA. However, in practice, this may well be too time-
consuming.

55There were two of these time-value function 5-tuples for each phase to be scheduled: one specified the phase’s value before a
critical time, and the other specified its value after that time.

212 Scheduling Dependent Real-Time Activities

The adaptation of Locke's work that was incorporated in Release 1.0 of the Alpha Operating System
([Northcutt 87]) used time-value functions that were described as a sequence of piecewise linear segments.
These segments could easily be integrated to yield approximate results of sufficient accuracy.

Formalizing this piecewise linear approximation in the context of DASA might be the most promising
direction to explore in order to enrich the set of time-value functions that an application may specify.

7.2. Generalizing the M odel

The previous section described work that could be done if some of the assumptions that were made for
this research were changed. This section deals with similar considerations. However, rather than loosening
restrictions that were made within the model outlined in Chapters 1 and 2, this section expands the model
itself — allowing DASA to be utilized in other, related domains.

The following discussion focuses on functional generalizations that can be made to the model: scheduling
multiprocessors and nesting phases for example. Due to this focus, the tools that can be used to perform
these generalizations are not always mentioned explicitly. Consequently, it is appropriate to mention at the
outset that the formal model that was used to express and analyze DASA may prove useful as the basis for
any future work, as well. Certainly, an appropriately modified version of the forma model should allow
functional generalizations to be defined precisely. Later, as work progresses it will become possible to
determine if useful analytic proofs can be performed. Perhaps the behavior of new algorithms can be
compared to DASA under restricted conditions, much as DASA was compared to LBESA under restricted
conditions in this thesis. This would provide some assurance that the new agorithms behaved well under
known circumstances.

7.2.1. Multiprocessor Scheduling

DASA is a uniprocessor scheduling agorithm. Multiprocessors —— that is, multiple processors that share
primary memory —— are becoming more and more common. Unfortunately, scheduling for multiprocessors
is not the same as scheduling for uniprocessors.

It is provable that a deadline-ordered schedule is optimal for a uniprocessor, provided that there are
sufficient processor cycles to meet al of the deadlines([Liu 73]). If this same deadline scheduler were
used in a multiprocessor system, where each processor invoked the scheduler each time it needed to make a
scheduling decision, then the resulting scheduler behavior would not necessarily be optimal ([Baker
74, Conway 67]).

Consequently, if DASA isto be effective in scheduling multiprocessors, changes should be explored that
take into account the number of available processors when generating tentative schedules. Once again, this
will result in alarger space of tentative schedules to examine since each phase could potentialy be run on
any of anumber of processors.

Future Work 213

Section 5.3 showed that, under many circumstances, the scheduling overhead that results from the relative
complexity of DASA is acceptable on a uniprocessor — that is, that even though DASA consumes
considerably more processor cycles than other algorithms, it alows the application to accrue a higher value
than the other algorithms. Nonetheless, DASA is an expensive algorithm to execute.

Inthislight, it is possible that an appropriately adapted DAsA algorithm would benefit from executing in a
multiprocessor environment. If DASA could schedule several processors at once, its cost, relative to the
amount of application work that is executed, would be reduced.

7.2.2. Multiple Node Scheduling

Once multiprocessor scheduling has been examined (or even before it has), attention can be given to
employing DASA in a distributed environment composed of multiple nodes (uniprocessors or
multiprocessors) that do not share memory. Since many supervisory control systems are, or could be,
distributed, thisis a useful topic to study.

In order to have reasonable reliability and responsiveness, each node should have a local scheduler. Of
course, a any instant, each node has only localized or approximate knowledge of the overall system state.
Acquiring system-wide agreement from all of the local schedulers in order to make scheduling decisions
based on global state information would be prohibitively expensive. Therefore, a more limited form of
coordination and information-sharing among local schedulers must be explored when extending DASA into
the distributed domain.

If computational phases may span nodes, the situation is further complicated. In that case, the processing
requirements of a given phase must be satisfied by two or more nodes and scheduled by two or more
schedulers. More information will probably have to be passed to the scheduler in order to adequately
define the processor requirements for each processor that is involved with the phase. [Maynard 91] is
examining these issues in the same general context in which this research was performed, athough not
specifically for DASA.

7.2.3. Grouped Resour ce Requests

Resources are requested and granted individually according to the model adopted for this thesis research.
This convention was adopted because it covers the most conservative case: the number and identities of the
shared resources that are required for a phase need not be known in advance.

The ability to request access to multiple resources by issuing a single request to the scheduler might
permit the scheduler to better meet the needs of the application. Currently, even if it was known that a
phase required a given set of resources to complete successfully, it could not effectively communicate this
information to the scheduler. Instead, the phase would have to request the resources one at a time, never
abletoindicate that other requests would follow.

214 Scheduling Dependent Real-Time Activities

If the scheduler could anticipate the future resource requirements of a phase it could avoid certain pitfalls.
For instance, suppose a phase needed two resources, both of which are already allocated to other phases,
and, no matter which is requested first, the scheduler will determine that there is sufficient time to acquire
the resource from the phase currently holding it and still let the requesting phase complete. Then when the
first resource is requested, the scheduler will arrange to free it, allocate it to the requesting phase, and allow
that phase to execute until it requests the second resource. At that point it may determine that there is not
enough time to free that resource and allow the requesting phase to complete. Therefore, the scheduler will
not attempt to satisfy the request for the second resource. Consequently, not only were the processor cycles
that were consumed by the requesting phase wasted, but more cycles will be wasted when the phase must
be aborted to release the first resource it requested.

If the scheduler knew that the phase needed both resources in the first place, then it may have been
possible to recognize immediately that the phase could never free both resources in time to meet its
deadline. In that case, it would not have been scheduled and the processor cycles that it might otherwise
have consumed would be available for other phases.

This example demonstrates how some additional knowledge about the phase’ s needs could be applied in a
straightforward manner to allocate the processor’s cycles more effectively than bAsa can. Using this
additional information would, once again, increase the complexity of the scheduling algorithm. In this
case, a phase may depend on several other phases, rather than on a single phase. Determining a tentative
schedule that satisfies al of these dependencies would be more complex than it is using DASA.

Additional work would need to be done to characterize the circumstances under which the application of
this additional knowledge would benefit the application.

7.2.4. Release of Shared Resour ces

The model of application activities specified for this research defined each activity to be composed of a
sequence of computational phases. During each phase, shared resources may be acquired. At the
conclusion of each phase, these resources are released.

This model of resource acquisition and release fits some applications quite well, including the
conventional structure that is employed by atomic transaction facilities.

However, not all applications may follow such stylized conventions for the release of shared resources.
For example, a phase might finish with a resource before it has completed al of itswork. In order to alow
another phase to acquire the resource, potentialy increasing concurrency for the application, the phase
might release the resource as soon as possibl 56,

86|f this were done, the author of the phase must realize that the phase could still be aborted prior to its successful completion. If
the phase would need the shared resource in order to properly abort, then it would almost certainly be a mistake to release it prior to
the completion of the phase. However, if the phase would not need access to that shared resource in order to abort, then releasing the
resource early may well be advantageous.

Future Work 215

On the other hand, an activity might wish to hold a shared resource past the completion of a phase. This
seems possible since, in the model employed here, phases correspond to time constraints that are typically
imposed by the external world. Certain tasks must be accomplished while satisfying those time constraints,
and shared resources may be acquired to complete those tasks. However, there seems to be no inherent
requirement that a task cannot require the use of a resource while having to satisfy two or more sequential
time constraints, which correspond to two or more computational phases.

In the future, exploring the issues that arise from decoupling the acquisition and release of resources from
the imposition of individual time constraints might be address the needs of a broader group of applications.

7.2.5. Nested Phases

This thesis has defined activities to be composed of a sequence of computational phases. It has not dealt
with the possibility of nesting phases.

Nested phases would correspond to nested time constraints since phases are used in the model to capture
time constraints. Nested time constraints seem to exist in a number of applications. For instance, suppose
that an object must be moved from one place to another by a mechanical arm in a certain time. This move
then is governed by atime constraint. In addition, several component actions that comprise the entire move
may also be constrained by time: perhaps signals that are sent to and received from the manipulator on the
mechanical arm must be acknowledged or answered within a certain time in order to guarantee smooth,
accurate movement. These would constitute time constraints, too. And they are properly viewed as time
constraints that are nested within the larger time constraint governing the total movement.

If the application is composed of a number of software modules, where some modules are in charge of
controlling actuators and others are in charge of attaining higher-level goals, time constraints may arise
from both high-level and low-level functions, as indicated above. The controllers may have time
constraints imposed on them by the interfaces to the actuators, while the higher-level modules may be
governed by time constraints arising from more strategic requirements and the need to coordinate the
lower-level actions. There is no requirement that lower-level time constraints be tighter than higher-level
time constraints, but both must be satisfied if the system is to function correctly. The application’s
activities then execute the code contained in these modules, encountering the time constraints dynamically
in anested fashion.

In this document, it was assumed that if nested time constraints were desired, they could be modeled
approximately as a sequence of time constraints of duration and value derived from the actual time
constraints.

This crude approach is fine for this early work, but in practice, nested time constraints will probably be
necessary. Expanding the model to include nested time constraints would be useful if it produced a method
that determined the effective time-value function that resulted when two complex time-value functions,
describing two time constraints, are nested.

216 Scheduling Dependent Real-Time Activities

Release 1.0 of the Alpha Operating System ([Northcutt 87]) adapted Locke's Best-Effort Scheduling
Algorithm for use in area system. Among the changes made was the addition of nested time constraints.
In this case, whenever time constraints are nested, the tightest time constraint is aways used for scheduling
purposes. Looser constraints are set aside until the tighter constraints are no longer in effect. Similar
changes could be made to DAsA, but far more benefit might result from a better model of time-value
function composition.

7.3. Transitioning DASA into Practice

This thesis has studied DASA using an analytic model and methods, and it has also examined DAsA by
means of simulation experiments.

The true test for the algorithm is its performance in real supervisory control systems. And the first step
that must be taken to prepare for this test is the implementation of DASA in afunctioning operating system.

Much of the previous discussion in this chapter has dealt with extensions or modifications to DASA or the
scheduling model that would be interesting and useful. Many of these issues should be addressed when
transitioning DASA into practice. Specificaly, the following items that were raised earlier should be
addressed when adapting DASA for usein areal operating system:

« aricher set of access modes for shared resources could be provided;

« awider range of time-value functions should be supported;

« multiprocessor scheduling adaptations, if required for the target environment, should be made;
» multiple node scheduling adaptations, if required for the target environment, should be made;

* nested phases (time constraints) must be allowed.

These items have al been discussed earlier, and no more will be said about them here. At the same time,
the other issues that were presented earlier in the chapter but do not appear in the list above should be
mentioned. These are all useful and interesting, but do not seem to be absolutely required to place a
functional DASA scheduler, offering a basic set of resource and time management services, into a system.
Nonetheless, any of this work that is done in preparation for use in an operating system will indeed be
beneficial. For instance, any facilities that would be developed to measure the length of time required to
execute a computational phase and to refine estimates of required computation time as an application
progresses would be quite useful.

7.3.1. Efficient Scheduler Execution

An implementation of DASA could benefit from increased efficiency, which may be pursued in a number
of ways. Applying optimizations to the existing algorithm would produce some improvement.
Approximating the algorithm or restructuring it might be productive. Defining and developing
architectural support would also be advantageous. Brief examples of each of these changes follow.

The current implementation of DASA computes the potential value density for each phase that may be

Future Work 217

scheduled each time DASA executes its phase selection routine. While, according to the algorithm
definition, this method yields the correct PVDs, it should be possible to eliminate a number of the PVD
calculations. Since PVD is defined as the value that can be obtained by successfully completing the phase
divided by the amount of time required to complete the phase, most of the PVDs do not change between
successive algorithm executions. In fact, the executing phase is the only phase whose required execution
time to complete its phase changes between successive evauations. No phase has its value change when
the time-value functions are simple step functions. So only the currently executing phase and any phases
that depend on it for a resource will have different PV Ds the next time the algorithm evaluates them. Only
calculating the changed PV Ds, rather than all of them, could result in a substantial time savings for each
DASA execution. Similarly, most dependency lists do not change between successive scheduler executions
and so could be remembered, rather than regenerated, for an additional saving.

Possibly other information could be remembered between executions, as well. A list of phases sorted by
PVD could be stored and atered since the phases whose PV Ds changed would be known. Or even partial
schedules could be remembered or the feasibility of certain phase combinations could be cached. The exact
amount of optimization that can be performed is not clear, but it does seem that substantial savings could be
obtained, extending the range of applications that DASA can schedule and improving its performance on all
applications by reducing the amount of scheduling overhead.

The second general category of changes would approximate or restructure DASA. For example, currently
DASA generates a tentative schedule based on its knowledge of all phases, their scheduling parameters, and
their known shared resource requirements in order to select the next phase to execute. The phase selection
algorithm could be run less frequently if this tentative schedule was made available and consulted
whenever the processor has completed its current phase. The selection algorithm might be run each time an
entirely new phase arrived or a new resource requested was issued, but not each time a phase completed
execution. If the phase selection algorithm was run even less frequently, then the scheduler’s behavior
would only approximate DASA’s defined behavior. The effects on scheduler behavior could be studied
through simulations or from instrumenting real systems.

Architectural support for the phase selection algorithm constitutes the final category of changes that may
improve the efficiency of DASA execution. After the programming optimizations described above have
been implemented, it should be possible to analyze the computationally demanding portions of the
algorithm and to devise architectural components to improve their performance. Fast floating point
arithmetic units would seem beneficial. Perhaps some special purpose units to support operations on
ordered lists — insertions, deletions, feasihility tests, and so forth — could be designed. One extreme
possibility would be to develop a dedicated function device that embodied the algorithm. Alternatively, in
a multiprocessor, one or more processors —— either general-purpose or special-purpose processors —— could
schedule the remaining processors. The savings to be had in this area are uncertain, but it is an area worthy
of investigation.

218 Scheduling Dependent Real-Time Activities
7.3.2. Deadlock Detection and Resolution

DASA has not yet dealt with the problem of deadlock detection and resolution in detail. However, any
implementation of DASA will have to handle deadlock situations.

There is a large body of work dealing with deadlocks. ([BHG 87] and [Knapp 87] provide good
coverage of relevant work.) Fortunately, DASA places no unusual requirements on techniques that detect
deadlocks. Any method that identifies a cyclic set of dependencies will suffice as a deadlock detection
algorithm for bAsA. It would be invoked as shown in the DASA algorithm outline of Section 3.1.2.1.

Once a deadlock has been detected, it may be resolved by choosing a phase to abort —— thereby breaking
the cyclic chain of dependencies. For the uniprocessor case studied in this thesis, a single "victim" phase
could be chosen for abortion. In a multiprocessor or multiple node case, more than one phase could be
aborted concurrently, if that would be advantageous for the application.

There are a number of ways that could be used to select a phase for abortion. For example, the phase that
has the lowest value density, calculated by ignoring all dependencies, could be aborted since that would
probably result in the least loss of value to the application. Or, the phase with the highest value density,
again calculated when all dependencies are ignored, could be selected for execution since it would yield the
best value to the application in the short-term, implying that the phase on which it depends should be
aborted. Or, the phase that could be aborted most quickly could be selected since it would alow some
currently deadlocked phase to resume execution most quickly. Or, the phase that has consumed the least
amount of computation time so far could be aborted since that would represent the least amount of wasted
work to the application.

Neither of the last two options deal with the urgency of pending time constraints directly. Nor do they
consider what phases would yield the most value to the application if they were selected for execution.
Consequently, they are not compatible with DASA, which emphasizes exactly those factors.

The second option outlined above, which attempts to deliver the most value to the application in the
short-term, seems most in keeping with the philosophy embodied in the bAasa algorithm. To choose among
these, and potentially other, contending approaches for resolving deadlocks, simulations or actual
implementations should be compared.

Two final points should be made concerning deadlocks. First of al, it is possible that some phases cannot
be aborted because they require an infinite amount of time to abort. For instance, a phase that will signal
another phase after it completes its computation will specify that an (effectively) infinite length of
processing time will be required for an abort. Otherwise, the signal could be issued as a result of an abort,
causing the signaled phase to believe that work had been completed, when in fact, it had not. Of course,
the signaler can aways be run to completion, rather than aborted, but this choice will not resolve any
deadlock that exists.

The simple approaches outlined earlier can account for the fact that some phases cannot be aborted. For

Future Work 219

instance, the potential value density for each phase could be calculated based on its parameters and those of
the members of its dependency list, just as it is for bDAsA. However, the dependency list for each
deadlocked phase could be redefined to contain only phases that cannot be aborted. The dependency list
were be terminated as soon as a phase that could be aborted was encountered. Then the deadlocked phase
with the highest potential value density could be identified, and the phase that is preventing it and its
dependencies (as just defined) from executing could be aborted. In the event that no phase can be aborted,
perhaps an entire activity would have to be aborted.

The second point deals with the frequency at which deadlocks may be encountered. Deadlocks may
occur less frequently than might be expected. Thisis due to the fact that DAsA will aways abort a phase on
which another phase depends if that is quicker than waiting for it to complete execution normally. As a
result, even if there is a set of phases which depend on one another, there is no deadlock unless all of the
phases can be completed at least as quickly as they can be aborted. Otherwise, DASA will always chose to
abort a phase when forming the dependency lists for the phases, rather than forming circular dependency
lists for each phase. (It is possible that one phase will have a circular dependency list. This is the phase
that the other phases chose to abort. It may not be able to identify any other phase to abort.) Then DASA’s
normal phase selection algorithm can break the cycle without considering deadlock processing.

For any algorithm that does not consider the possibility of aborting phases as a matter of course, any
circular set of dependencies constitutes a deadlock. Therefore, some situations that would result in the
initiation of deadlock processing under other scheduling and resource management agorithms will not
constitute deadlocks when DASA is employed.

7.3.3. Prior Experience and Future Plans

While the issues outlined in this section represent a substantial amount of work that must be performed to
transition DASA into an operating system, some experience has been gained in addressing many of these
issues previoudly.

LBESA was adapted as the scheduler for Release 1.0 of the Alpha Operating System ([Northcutt 87]).
The issues addressed in implementing it included the addition of nested time constraints, operation in a
distributed (multiple node) environment, and exception handling to process missed time constraints.

It is anticipated that DASA will be incorporated in a future release of Alpha and the experience gained
from the implementation of LBESA will benefit the implementation of DAsA.

220 Scheduling Dependent Real-Time Activities

7.4. Exploring Algorithmic Variations

Asdiscussed in Section 3.1.1, DASA was designed to possess certain properties. Some properties, such as
explicitly accounting for dependencies, must be possessed by any algorithm of interest for the supervisory
control scheduling domain. Other properties may be optional or may be provided in a number of different
ways. Consequently, DASA represents one algorithm possessing the desired properties; but perhapsit is not
the only such algorithm. And, there are amost certainly related algorithms possessing somewhat different
properties than DASA that are worthy of attention.

The following sections provide examples of algorithmic variations that may be considered. In each case,
alternative algorithms could be devised and tested through simulations or actual scheduler implementations.

7.4.1. Dependency List Variations

When constructing dependency lists, DASA uses aborts in order to minimize the length of time that a
blocked phase may have to wait to obtain a alocated shared resource. Since an abort always renders the
aborted phase’s previous effort useless, a study of alternative methods to construct dependency lists may
prove fruitful. One alternative would never consider issuing an abort (except to resolve a deadlock). This
would yield the same behavior as DAsA when all of the estimates of required abort time are infinite.

Another alternative might attempt to construct a schedule without issuing any aborts until an overload
was detected. At that point, it might examine each phase in the tentative schedule that may be aborted. If,
by aborting a given phase in the schedule, more time constraints could be satisfied, then an abort would be
issued for that phase. After all such phases had been examined, construction of the tentative schedule could
continue as usual — that is, attempting to add more phases to the tentative schedule in decreasing order of
potential value density —— until the next overload was detected.

7.4.2. Value Metric Variations

DASA uses potential value density as the primary metric to determine which phases are most valuable at
any given time. Other metrics that attempt to capture this type of information are also possible.

For example, an alternative value metric that reflected the fact that a specific phase was holding a
resource that a number of other phases needed might be meaningful. This metric might also reflect the
aggregate value represented by all the phases waiting on the resource. In fact, each phase could be
assigned a figure of merit based on the total value of all of the phases waiting on resources it currently
holds. A tentative schedule could then be constructed in a manner similar to DASA, except phases would be
added to the tentative schedule in decreasing order of this figure of merit, rather than in decreasing order of
potential value density.

Future Work 221
7.4.3. Overload Variations

DASA aways constructs a tentative schedule by adding phases in decreasing order of potentia value
density. Under overload, if al, or at least most, of the available processor cycles can be utilized by the
resulting tentative schedule, this approach is profitable. However, in some cases, there are periods during
overload where the processor is idle (since the scheduler has determined that anything that could be run
would be unable to satisfy its time constraint). It is possible that the application could accrue more total
value by executing a phase with a lower potential value density for a longer time. This situation was
explained in Section 4.4.2.

DASA could be altered to test its tentative schedule for relatively long idle periods during overloads, and if
any are detected, it could try a few alternative schedules to see if the total value it expects to accrue from
the tentative schedule could be increased.

Based on the results of the simulations performed thus far, long idle periods during overloads are rare
events. Nonetheless, it might be possible to improve DASA’ s behavior under those rare circumstances.

7.5. Analyzing DASA for Specific Applications

The simulations performed for this thesis have dealt with statistically generated artificial workloads.
There are a number of other workloads that could be pursued in the future to further characterize bAsa’s
behavior and applicability in various situations.

7.5.1. Further Simulations

Of course, simulations utilizing other artificial workloads could be performed. These might provide some
new insights.

Alternatively, future simulations may be run using profiles of actual supervisory control applications.
These would provide a different type of information than the artificial workloads, since they would reflect
the structure and dynamic behavior of real systems. The results should allow the cases in which DASA
performs well to be identified. More importantly, they will also identify casesin which it performs poorly,
providing an opportunity for improving the algorithm.

When actual applications are used, they may be taken from existing systems or they may be written with
DASA’S support in mind. This is an important distinction, since many applications today attempt to
minimize the use of shared resources in order to minimize the opportunity for scheduling problems. The
resulting applications do not necessarily display the same structure they would if shared resources were not
aconcern.

DASA permits, and possibly encourages, applications to use shared resources, rather than to avoid them.
This could allow more maintainable software to be written. Some simulations could investigate this

222 Scheduling Dependent Real-Time Activities

possibility by testing two different versions of a single application: one that avoids shared resources and
one that uses them freely.

7.5.2. Real Applications

The use of DASA in an operating system to schedule a supervisory control application constitutes the real
test of DASA’s usefulness. As noted in the previous section, applications can be altered to use shared
resources more frequently in order to make use of DASA’s unique capabilities.

Beyond exploring DASA’s behavior in real situations, some fundamental assumptions on which DASA is
based may be tested.

First, the use of time-value functions to describe the urgency and importance of computations can be
tested. In limited tests to date, they have been useful. ([CMUGD 90] presents a good example.) Also,
more complex forms of time-value functions than step functions have been needed. More experience will
determine whether time-value functions are descriptive enough to capture all of the information a
sophisticated scheduler needs.

Second, the effects of maximizing the value accrued for an application could be investigated. DAsA
attempts to maximize this value, under the assumption that the application designer can define time-value
functions so that the system behaves best when the accrued value is maximized. As stated in Section 1.4.1,
there is reason to believe that this can be done when there is a common standard by which various activities
can measured. The standard may be expressed in terms of money that is saved or logt, lives that are saved
or lost, or some combination of these factors. Real applications will alow the efficacy of this approach to
be tested.

Chapter 8

Conclusions

Scheduling activities in supervisory control systems in order to benefit the application, even during
overloads, has proven difficult in practice. The thesis explored here asserts that by taking time constraints,
functional importance, and dependencies between activities into consideration, supervisory control systems
can be effectively scheduled. This has been demonstrated by both formal analysis and simulation results.
In particular, the smulation experiments have taken into account the fact that the bAsA agorithm is
complex, and hence more expensive to execute, than many of the alternate scheduling algorithms. For the
workloads presented, empirical anaysis alows the effective domain of DASA to be identified, and this
domain extends to activities that have deadlines on the order of tens or hundreds of milliseconds, which
includes many real-time supervisory control systems.

The remainder of this chapter briefly describes the contributions of this research to the field of computer
science and indicates the some of the potential benefits to supervisory control systems if the DASA
algorithm were to be used in practice.

8.1. Contributions

This thesis makes severa contributions to the area of real-time supervisory control systems. Some of

these contributions are conceptual, while others are more concrete. Specifically:

1. This research has formulated a model of real-time supervisory control applications and a
formalized framework within which scheduling algorithms can be expressed and compared.
The scheduling automata presented in Chapters 3 and 4 for DASA, DASA/ND, and LBESA
demonstrate that relatively complex scheduling algorithms can be expressed succinctly within
this framework, and the proofs that utilized these automata to illustrate properties of DASA
show that meaningful comparisons can be made within the framework. Other scheduling
automata can be devised to pursue further analytic results. Certainly, the formal framework
can be used to concisely capture the essential similarities and differences among the future
generations of algorithms like DASA.

2. This thesis extends the domain of time-driven scheduling into the resource management
arena. The shared resources cover shared memory, shared devices, and signals passed
between activities. Thus, shared resources may represent both resource conflicts and
precedence constraints among activities. In addition, resource management decisions are
explicitly integrated with other scheduling decisions.

3. The DAsA agorithm itself constitutes a contribution. It has been shown to behave well under
avariety of circumstances, particularly during overloads.

4. In particular, simulations have shown that the time spent executing the bAasa algorithm can be

223

224 Scheduling Dependent Real-Time Activities

justified in many situations. Under low processor loads, there are usually enough excess
processor cycles to support the algorithm without missing application time constraints. And,
under high processor loads, there is a significant benefit to be gained from expending some
processor cycles to use a complex scheduling algorithm like DASA. The simulation results
allow application designers to determine whether DAsSA will be of potential interest for
specific applications. In cases where the simulation results presented here do not cover the
desired application parameters, relevant simulations can be performed.

5. The simulator used to exercise DASA and other algorithms may be used for further research in
thisarea. It can be used to study other general workloads or specific applications comparing
DASA to the existing alternate algorithms. In addition, other agorithms can be added as
needed, and the simulator can evolve to explore a number of the extensions mentioned in
Chapter 7, such as scheduling for multiprocessors or supporting a richer set of resource
sharing semantics.

All of the preceding contributions can be demonstrated by tangible results. There are a number of other
potential contributions of this work that are less tangible, but worth noting.

Potential Improvements in Industrial Systems. DASA represents an enabling technology. It allows
designers and implementers to pursue more modern, modular, and dynamic approaches in designing
systems to solve their problems.

Currently, many industrial supervisory control systems ([Baker 86]) are implemented using modern
software engineering practices. A team of designers and programmers cooperatively produce the activities
comprising the application. The application may be quite modular and access to shared resources may be
well-controlled. However, the time constraints that must be satisfied are not explicitly included in the
application’s code, even if they are included in the system’s requirements specification. Furthermore,
shared resources are managed by resource managers, rather than an integrated scheduler.

When these supervisory control systems are initialy installed, they seldom manage to meet many of their
time constraints®’. Consequently, one or more real-time "wizards' are employed to improve the system’s
real-time performance. These improvements are typically achieved by adjusting the relative priority levels
of the application’s activities, locking specific, critical data and code in memory at al times, expanding the
amount of main memory to reduce paging and swapping activity, or atering the application —— either
reimplementing critical portions of code or reducing the number or type of functions offered. The systems
are sufficiently large that it is extremely difficult to determine exactly why any particular activity is not
performing as expected. Often, subtle dependencies exist among activities that the application designers
did not fully appreciate.

Eventually, the wizards reach the point where the system satisfies its time constraints most or al of the
time. Unfortunately, whenever the system is significantly modified in later years, the wizards must once
again tuneit.

A DAsA scheduler, along with other operating system facilities like it, could greatly simplify this process.

67This fact is noted by the behavior of the application, not by means of any scheduling metrics.

Conclusions 225

In particular, it could eliminate most or al of the priority shuffling and handle the complex dependencies
among activities more gracefully for the application. Consequently, it could greatly reduce the role of the
wizards in producing working supervisory-control systems, while avoiding unnecessary functiona
reductions in the target applications.

The priority shuffling is necessary because a priority-based scheduler forces the application to map all of
the scheduling information for an activity into a single number. A single number cannot distinguish
between the functional importance and the urgency of an activity. Some of the priority shuffling is devoted
to finding the single priority for an activity that will best capture thisinformation in the typical case.

The complex interactions among activities that can result from the assigned priorities and from the
sharing of resources can be dealt with explicitly and dynamically by DAsSA. Simpler schedulers lack the
information to recognize the dependencies, let alone resolve them in a manner that is advantageous to the
application. Thisis particularly critical during overloads, where DASA performs best.

Fundamental Support for Real-Time Transactions. Aswas pointed out in Section 2.1, DASA forms a
basis which can be extended (as described in Section 7.1.2) to support areal-time transaction facility. Such
a transaction facility would be lock-based and would depend on the scheduler to coordinate access to locks
according to the time constraints under which the activities executing the transactions operate.

Despite the fact that DASA must be extended to support a richer set of access modes before a real-time
transaction facility can be implemented, DASA does provide the cornerstone for the implementation.

Exemplar of Algorithm for Reliable Real-Time Systems. In general, different algorithms are
developed to satisfy different requirements. Jensen ([Jensen 88]) has identified one characteristic that
many reliable, real-time systems operating in dynamic environments display that non-real-time systems do
not: they may spend more time handling the most common cases than their non-real-time counterparts in
order to provide improved performance under exceptional conditions. Put another way, non-real-time
systems (along with some systems intended for real-time applications) are optimized to execute the most
common cases most quickly, possibly at the expense of rarer cases.

As demonstrated by the simulation results, an application scheduled by DAsSA can be expected to exhibit
the desired real-time behavior. DAsA will impose a relatively high overhead when compared to other
scheduling algorithms. Under lower loads, this may result in the application’s activities performing slightly
slower than they would if a simpler scheduling algorithm were used (due to the higher scheduling overhead
of DASA). However, under higher loads, the overall value accrued by the application should increase when
DASA is employed, relative to other schedulers, and the application should degrade more gracefully.

226 Scheduling Dependent Real-Time Activities

8.2. Summary

This research has made a number of tangible contributions to the field of computer science, including a
model within which to analyze real-time scheduling algorithms; the DAsa scheduling algorithm, which
integrates resource management with standard scheduling functions in a time-driven manner; results that
demonstrate the efficacy of DAsSA in a variety of situations; and a simulator that can aid in future
investigations in this area. In addition, this work may help improve the current practices employed in
designing and constructing supervisory control systems by encouraging the use of modern software
engineering methodologies and reducing the amount of optimization and tuning that are required to
produce systems that meet their real-time constraints —— while providing improved scheduling, graceful
degradation, and more freedom and ease in modifying the system over time.

Appendix A
Derivation of DASA/ND Scheduling Automaton

When there are no dependency considerations —— as when comparing the DAsSA algorithm to LBESA ——
some simplifications can be made to the formulae that define DASA. These simplifications aid in allowing
direct comparisons to be made between algorithms. The following derivation points out and justifies these
simplifications. The simplified automaton is known as the DASA/ND scheduling automaton. The results
derived in this appendix are summarized in Section 4.3.2.2.

In each simplification that follows, the origina formula to be simplified is taken directly from the
description of the bAsA algorithm, shown in Figures 3-3 through 3-5 and Figure 3-6.

A.1l. The Simplified Definition of SelectPhase()

The functiona definition of SelectPhase() can be simplified considerably. Each of the following steps
describes one of the simplifications.

Simplification (1). By definition, the fact that there are no dependencies means that there is no interaction
or cooperation among phases through shared resources. (Otherwise, there would be a risk of a
dependency arising.) Inthe model presented here, this situation is represented by:

(Op)ResourceRequested(p) = nullresource

Simplification (2). Simplification (1) allows the definition of Dep() to be transformed from . ..

nullphase, if ResourceRequested(p)
Dep(p) = = nullresource,
Owner (ResourceRequested(p)), otherwise

to ...
Dep(p) = nullphase

Simplification (3). Simplification (2) leads directly to the transformation of the definition of the function
dependencylist() from . ..

Q, if Dep(p) = nullphase
dependencylist(Dep(p)) O { <normal, Dep(p)>},

dependencylist(p) = if AbortClock(D ExecClock(D
{<abort, Dep(p)>}, 'o nbor ort OC(ep(p)) = ExecClock(Dep(p))

to ...
dependencylist(p) = @

227

228 Scheduling Dependent Real-Time Activities

Simplification (4). Simplification (2) also leads to the transformation of the function PVD() from . ..

{ 0} Val(p) + PV(Den(p)) if ExecMode(p) = abort
_ p) + PV(Dep(p :
PVD(D) = | BxecCiock(p) + PT(Dep(p))’ otherwise

to ...
0, if ExecMode(p) = abort
PVD(p) ={ & otherwise
ExecClock(p)’
since Dep(p) = nullphaseand . ..
0, if p=nullphase
PV(p) = 0, if AbortClock(p) < ExecClock(p)
Val(p) + PV(Dep(p)), otherwise
0, if p = nullphase
PT(p) = AbortClock(p), if AbortClock(p) < ExecClock(p)
ExecClock(p) + PT(Dep(p)), otherwise
Simplification (5). Applying Simplification (3) transforms . . .
tobescheduled(P) ={ @ ifP=q
obescheduled(P) { {<normal, p>} 0 dependencylist(p) [tobescheduled(P—{p}),
ifp0OP

to ...

tobescheduled(P) =4 & s
ODESC! u () { {<n0rrna], p>} O tobeSChedLﬂed(P—{ p})'
ifp0OP

which is further simplified (by means of an inductive proof on the number of elementsinP) to . ..

tobescheduled(P) =4 ¢ if P=q
obescheduled(P) { {<normal, p> | p0 P}, otherwise

andfinally to ...
tobescheduled(P) = {<normal, p> | pO P}

Simplification (6). Consider the definition of mustcompleteby():

mustcompleteby(t, P) = & if t<tgent
{p | [<normal, p> [tobescheduled(P) [0 Deadline(p) <t]},
otherwise

Substituting the definition of tobescheduled() that was derived in Simplification (5) yields . ..

mustcompleteby(t, P) = @ ift<toent
{p|[<normal, p>O{<normal, g> | qOP} ODeadline(p)<t]},
otherwise

whichisequivaentto ...

mustcompleteby(t, P) =¢ & if t<teyent
{p|pCOP ODeadling(p)<t}, otherwise

Derivation of DASA/ND Scheduling Automaton 229

Simplification (7). Again, applying Simplification (3) allows ...

mustfinishby(t, P) =4 @ if P=@ [t<ty oy 0 mustcompleteby(t, P)=¢
reduce(t, P, {<normal, p>} O dependencylist(p) O mustfinishby(t, P-{p})),
if p 0 mustcompleteby(t, P)

to become . ..

mustfinishby(t, P) =¢ @ if P=g O t<t o 0 mustcompleteby(t, P)=¢
reduce(t, P, {<normal, p>} O mustfinishby(t, P—{p})),
if p 0 mustcompl eteby(t, P)

A proof by induction concerning mustfinishby() whent > t, . Will simplify matters further.

Theorem: In cases in which there are no dependency considerations and for which t >t .
mustfinishby() never returns a set that includes a mode-phase pair for which the mode is abort. That is,
prove that:

(OP)(mpp O mustfinishby(t, P) -~ Mode(mpp) # abort)

Proof. This is proven by induction on i, the number of elements in P, the set of phases for which
mustfinishby() is being evaluated.

Basis. i =0. Inthiscase, P = ¢. Therefore, mustfinishby(t, P) = @, and the claim istrivially true.

Inductive Step. Assume that the inductive hypothesis holds for al sets of phases with i or fewer
elements. Show that it also holds for al sets of phases with i+ 1 elements.

Let P denote a set of phases with i+1 elements. According to the definition of mustfinishby() given
above:

mustfinishby(t, P) =4 @ if P=@ [t<ty oy 0 mustcompleteby(t, P)=¢
reduce(t, P, {<normal, p>} O mustfinishby(t, P-{p})),
if p 0 mustcompl eteby(t, P)

Itisgiventha t > ty oy, and sincei+1 >0, P # @. Consequently, which of the two cases in the above
definition appliesis determined solely by the value of mustcompleteby(t, P).

If mustcompleteby(t, P) = ¢, then mustfinishby(t, P) = ¢, too, and once again the inductive hypothesis is
trivialy true.

Otherwise, mustcompleteby(t, P) # @. Inthat case, let p,,,. [l mustcompleteby(t, P).
As shown in Simplification (6), mustcompleteby() is defined as:

mustcompleteby(t, P) =¢ @ ift<toent
{p|pCOP ODeadling(p)<t}, otherwise

Since p,,. [0 mustcompleteby(t, P) and p,,,. @, then ...
Prmc U {p | pOP O Deadline(p) <t}
Therefore, since al of the elementsin this set are membersof P . . .
PmcUP
This allows the value of mustfinishby(t, P) to bewrittenas . . .
mustfinishby(t, P) = reduce(t, P, {<normal, p,.>} O mustfinishby(t, P-{p.}))
Reduce() is defined as:

O <abort, p> O mustfinishby(t™, P)

reduce(t, P, MPP-{<abort, p>}), if <abort, p>, <normal, p> [MPP
reduce(t, P, MPP) =
MPP, otherwise

230 Scheduling Dependent Real-Time Activities

It is given that P has i+1 elements, and it has been proven that p,,. is one of them. Consequently,
P-{pc} hasi elements and the inductive hypothesis assertsthat . . .

mpp O mustfinishby(t, P-{p,.}) -~ Mode(mpp) # abort

Also, since Mode(<normal, p,,.>) #abort, the entire argument passed to the function reduce() contains
no mode-phase pairs for which the mode is abort. Therefore, the second case in the definition of
reduce() applies, and reduce() acts as an identity function for this particular set of arguments . . .

reduce(t, P, { <normal, p,.>} O mustfinishby(t, P-{p,.}))
={<normal, p,.>} O mustfinishby(t, P-{p,})
Inserting this fact into the earlier expression for mustfinishby(t,P) yields . . .
mustfinishby(t, P) = {<normal, p,,.>} 0 mustfinishby(t, P-{p,.})
Assume mpp O mustfinishby(t, P). Using the definition for mustfinishby(t, P) that was just presented . . .
mpp O {<normal, p,.>} O mustfinishby(t, P-{p,})
or equivalently ...
mpp O {<normal, p,.>} Ompp O mustfinishby(t, P—{p,.})
As was noted earlier, the set of phases P-{p_...} hasi elements, so the inductive hypothesis holds and
asserts ...
mpp O mustfinishby(t, P-{p.}) -~ Mode(mpp) # abort
Yet ...
mpp O mustfinishby(t, P-{p,.})
- mpp O{<normal, p,.>}
- mpp = <normal, p,.>
- Mode(mpp) # abort

Applying the following identity from formal logic, where the symbol "=" denotes logical equivaence
and the symbol " = " denotes logical negation:;

(A-B)O(-A-B)=B

rn;}

to the last two implications — in which A is "mpp O mustfinishby(t, P-{p,})" and B is
"Mode(mpp) # abort" —— leads to the conclusion that:
Mode(mpp) # abort

This conclusion —— that Mode(mpp) # abort —— was derived by assuming mpp O mustfinishby(t, P). A
second rule of formal logic, the Deduction Theorem ([Margaris 67]), states:

IfA,A-B,thenA-A - B

The terms to the left of the symbol "~ represent the set of assumptions that are made when proving the
expression to the right of the symbol. The Deduction Theorem, then, states that a statement, A, can be
removed from the set of assumptions if it is added as the antecedent of a conditional. Applying the
Deduction Theorem where A is"mpp O mustfinishby(t, P)" and B is"Mode(mpp) # abort" proves that:

mpp O mustfinishby(t, P) — Mode(mpp) # abort
Therefore, the inductive hypothesis holds for all sets of phases P with i+1 members, whether or not

mustcompleteby(t, P) is empty.
EndOfProof

Applying this result to the definition of mustfinishby(), once again noting that reduce() will always act as
an identity function since . . .

(OP)(mpp O mustfinishby(t, P) — Mode(mpp) # abort)

Derivation of DASA/ND Scheduling Automaton 231

yields . ..

mustfinishby(t, P) =4 @ if P=@ [t<ty oy 0 mustcompleteby(t, P)=¢
{<normal, p>} O mustfinishby(t, P-{p})),
if p 0 mustcompleteby(t, P)

Finally, a simple induction on the size of the set P will yield . ..

mustfinishby(t, P) =4 @ if P=g@ O t<t oy 0 mustcompleteby(t, P)=¢
{<normal, p> | p 0 mustcompleteby(t, P)},
otherwise

Simplification (8). In the formulation of the DAsA scheduling algorithm, the function timerequiredby() is
only evaluated with a result from mustfinishby() (ignoring the recursive evaluations that are part of the
definition of timerequiredby()). As a short inductive proof would indicate, in that case timerequiredby()
can be simplified since (as shown in Simplification (7)) mustfinishby() returns no mode-phase pairs that
have an abort mode. Therefore, timerequiredby() never receives an argument containing a mode-phase
pair of the form <abort, p>, and it can be simplified from . ..

0, if MPP=
. . ExecClock(p) + timerequiredby(MPP—-{<normal, p>}),
timerequiredoy(MPP) = ® e(iqf<norr¥lal, >D{MPP h

AbortClock(p) + timerequiredby(MPP—{ <abort, p>}),
if <abort, p>0O MPP

to ...

i i =J 0 if MPP=
timerequiredoy(MPF) { ExecClock(p) + timerequiredby(M P(E’—{ <normal, p>}),
if <normal, p>0MPP
Simplification (9). Pickone() is aso only evaluated for an argument that is a result returned by evaluating

mustfinishby(). Once again, since mustfinishby() never returns a set containing an element that is a
mode-phase pair with an abort mode, pickone() can be simplified from . ..

<normal, p>, if <normal, p> 0 MPP ODep(p) = nullphase
. _ <abort, p>, if <abort, p>OMPP 0O - ()
pickone(MPP) = <normal, >0 MPP 0 Dep(q) = nullphase)
<normal, nullphase>, otherwise
to ...
i =J <normal, p>, if <normal, p>OMPP OD = nullphase
pickone(MPP) { <normal, ﬁullphase>, otherwise P *(P) P
Since, according to Simplification (2), (Cp)Dep(p) = nullphase . ..
' =4 <normal, p>, if <normal, p>0MPP
pickone(MPP) { <normal, ﬁullphase>, otherwise ’
Finally, this function can be rewritten as . . .
ickone(MPP) =d <normal, nullphase>, iftMPP =@
pickone() { <normal, p> | <normal, p> [MPP,
otherwise

Simplification (10). Asshown in Simplification (4) above . ..

if ExecMode(p) = abort

01
Val(p) otherwise

PVO®) = || ExecCiockp)

232 Scheduling Dependent Real-Time Activities

As shown in Simplification (9), pickone() will never return a mode-phase pair as a result whose mode is
abort. As a result, the precondition for accepting an ‘abort-phase’ event for the DASA automaton will
never be satisfied. Since the postconditions of ‘abort-phase’ are the only way that ExecMode can be
changed to abort for any phase, then . ..

(Op)ExecMode(p) = normal
Thisallows the first case in the definition of PVD() to be dropped, yielding . . .

Val(p)

PVD(P) = ErecClock(p)

A.2. The Simplified Definition of the Automaton

There are also a set of simplifications that can be made to the automaton itself when there are no
dependencies to consider. Each of these simplifications are discussed in turn.
Simplification (1). Aspointed out before, al of the simplifications stem from the fact that . . .
(Op)ResourceRequested(p) = nullresource
Consider the postconditions defined for a‘request’ event:
ExecClock'(p) = ExecClock(p) - (t, — ResumeTime(p))

ResourceRequested'(p) =r ; indicate p is resource-waiting
PhaseElect’ = SelectPhase(PhaseL.ist)
RunningPhase = nullphase ; give up processor until ‘grant’ ed resource

They necessarily include an assignment to ResourceRequested for some phase, it must be the case that no
‘request’ event can be accepted by the ssimplified DAsA automaton. Therefore, the precondition for the
acceptance of a‘request’ event isfalse, and the event can be eliminated from the automaton.

Simplification (2). Similarly, consider the precondition for the acceptance of a‘grant’ event:

(RunningPhase = nullphase) O (Phase(PhaseElect) = p) O (r # nullresource)
0 (Resour ceRequested(Phase(PhaseEl ect)) = r) [0 (Mode(PhaseElect) = normal)

Since it includes as conjuncts (Resour ceRequested(Phase(PhaseElect)) =r) and (r # nullresource), this
precondition can never be satisfied because (Op)ResourceRequested(p) = nullresource. Therefore, this
precondition will always be false, a‘grant’ event can never be accepted, and the event can be eliminated
from the simplified DASA automaton.

Simplification (3). Consider the precondition for the acceptance of a‘resume-phase’ event:

(RunningPhase = nullphase) 0 (Phase(PhaseElect) = p) O (Phase(PhaseElect) # nullphase)
0 - ResourceWaiting(Phase(PhaseElect)) [0 (Mode(PhaseElect) = normal)

In particular, consider the conjunct - ResourceWaiting(Phase(PhaseElect)), remembering that, by
definition . ..

ResourceWaiting(p) = () (ResourceRequested(p)=r O # nullresource 0 Owner(r) Zp)

ResourceWaiting() must be false for al phases, implying that — ResourceWaiting(p) must be true for all
phases p. Therefore, the precondition for the acceptance of a‘resume-phase’ event may be smplified to:

(RunningPhase = nullphase) [(Phase(PhaseElect) = p) O (Phase(PhaseElect) # nullphase)
O (Mode(PhaseElect) = normal)

Simplification (4). The postconditions associated with a‘request-phase’ event include:

;release the resources acquired during the phase
for r in ResourcesHeld(p)

Owner'(r) = @

ResourcesHeld'(p) = @

Derivation of DASA/ND Scheduling Automaton 233

ResourcesHeld isinitially set to @ and is only altered by the postconditions accompanying the acceptance
of a‘grant’ event. Since it was shown in simplification 2, that there can be no ‘grant’ events, then these
actions concerning ResourcesHeld in the postconditions for a ‘request-phase’ have no effect.
Furthermore, Owner isinitially set to nullphase and is only changed as aresult of the postconditions that
accompany the acceptance of a‘grant’ event. Consequently, all of the postconditions listed immediately
above can be eliminated from the simplified basa automaton without ill-effect. In fact, the state
components Owner, ResourcesHeld, and ResourceRequested can all be eliminated from the automaton as
well.

Simplification (5). Consider the precondition for the acceptance of an ‘abort-phase’ event:

(RunningPhase = nullphase) [(Phase(PhaseElect) = p) 0 (Mode(PhaseElect) = abort)
In particular, consider the conjunct (Mode(PhaseElect) = abort). PhaseElect always receivesits value as
aresult of the following evaluation:

PhaseElect’ = SelectPhase(Phaselist')
and ...

SelectPhase(P) = pickone(mustfinishby(DLy;, (mpplist), Py equied(P))s

where
mpplist = tobeschedul ed(P cquieq(P))

ickone(MPP) =4 <normal, nullphase>, if MPP =@
prkone(MPe) { <normal, p> | <normal, p> [MPP,
otherwise

Under no circumstances will this return a mode-phase pair with a mode indicating abort. Therefore, the
conjunct (Mode(PhaseElect) = abort) will always be false and the entire precondition is aways false.
Consequently, the entire ‘abort-phase’ portion of the bDASA automaton may be omitted in the simplified
version.

Simplification (6). Simplification (10) of Section A.1 shows that:
(Op)ExecMode(p) = normal
Thisfact can be applied to the postconditions of the ‘request-phase’ event to transform;

if (ExecMode(RunningPhase) = normal) then
ExecClock’ (RunningPhase)
= ExecClock(RunningPhase) - (t

avent - RESUMeTime(RunningPhase))

else
AbortClock’ (RunningPhase)

= AbortClock(RunningPhase) - (t ResumeTime(RunningPhase))

event -
endif
into:
ExecClock’ (RunningPhase)
= ExecClock(RunningPhase) - (tg o - ResumeTime(RunningPhase))

Simplification (7). This time the fact that ExecMode(p) is always normal is applied to the postconditions
of the * preempt-phase’ event to transform:

if (ExecMode(p) = normal) then

ExecClock’ (p) = ExecClock(p) - (t

else
AbortClock’ (p) = AbortClock(p) - (t
endif

avent - RESUMeTime(p))

avent - RESUMETime(p))

into:

ExecClock’ (p) = ExecClock(p) - (t - ResumeTime(p))

event

234

Scheduling Dependent Real-Time Activities

References 235

Refer ences

[Abbott 87] Abbott, R. and Garcia-Molina, H.
Scheduling Real-Time Transactions.
Technical Report CS-TR-129-87, Princeton University, Department of Computer
Science, Princeton, NJ, 1987.

[Abbott 89] Abbott, R. and Garcia-Molina, H.
Scheduling Real-Time Transactions with Disk Resident Data.
Technical Report CS-TR-207-89, Princeton University, Department of Computer
Science, Princeton, NJ, 1989.

[AHU 74] Aho, A. V., Hopcroft, J. E. and Ullman, J. D.
Addison-Wesley Seriesin Computer Science and Information Processing: The Design
and Analysis of Computer Algorithms.
Addison-Wesley Publishing Company, 1974.

[Alpha88] Northcutt, J. D. and Clark, R. K.
The Alpha Operating System: Programming Model.
Technical Report Archons Project Technical Report TR #38021, Carnegie Mellon
University, Department of Computer Science, Pittsburgh, PA, 1988.

[Alpha90] Trull, J., Northeutt, J. D., Maynard, D. P. and Clark, R. K.
The Alpha Operating System: Scheduler Evaluation Experiments.
Technical Report Archons Project Technical Report TR #90021, Carnegie Mellon
University, Department of Computer Science, Pittsburgh, PA, 1990.

[Bach 86] Bach, M. J.
The Design of the UNIX Operating System.
Prentice-Hall, Inc., 1986.

[Baker 74] Baker, K. R.
Introduction to Sequencing and Scheduling.
John Wiley & Sons, 1974.

[Baker 86] Baker, J. M.
Structured Systems Development for Real-Time Systems.
In National Conference and Workshop on Methodol ogies and Tools for Real-Time
Systems. The National Institute for Software Quality and Productivity, March, 1986.

[Bennett 88] Bennett, S.
Prentice Hall International Seriesin Systems and Control Engineering: Real-Time
Computer Control: An Introduction.
Prentice Hall, 1988.

[BHG 87] Bernstein, P. A., Hadzilacos, V. and Goodman, N.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley Publishing Company, 1987.

236

[Birman 88]

[Blazewicz 77)

[Cheng 86]

[CMUGD 90]

[Conway 67]

[CRC 87]

[Date 86]

[DEI 85]

[DLRK 81]

[Elsayed 82]

[Eswaran 76]

Scheduling Dependent Real-Time Activities

Birman, K. P. and Joseph, T. A.

Exploiting Replication.

Technical Report TR 88-917, Cornell University, Department of Computer Science,
Ithaca, NY, June, 1988.

Thisisapreprint of material that will appear in the collected lecture notes from ’Arctic
88, An Advanced Course on Operating Systems', Tromso, Norway, July 5-14, 1988.
The lecture notes will appear in book form later this year.

Blazewicz, J.

Scheduling Dependent Tasks with Different Arrival Timesto Meet Deadlines.

Modelling and Performance Evaluation of Computer Systems.

North-Holland Publishing Company, 1977.

Proceedings of the International Workshop organized by the Commission of the
European Communities, Joint Research Centre, | spra Establishment, Department A,
Ispra (Varese), Italy, October 4-6, 1976.

Cheng, S., Stankovic, J. A. and Ramamritham, K.

Dynamic Scheduling of Groups of Tasks with Precedence Constraints in Distributed
Hard Real-Time Systems.

In Proceedings of the Real-Time Systems Symposium, pages 166-174. December, 1986.

Maynard, D. P., Clark, R. K., Northcutt, J. D., Shipman, S. E., Kegley, R. B., Keheler,

P. J., Zimmerman, B. A. and Jensen, E. D.

The Alpha Operating System: An Example Command, Control, and Battle Management
Application.

Technical Report Archons Project Technical Report, Carnegie Mellon University,
Department of Computer Science, Pittsburgh, PA, To appear: 1990.

Conway, R. W., Maxwell, W. L. and Miller, L. W.
Theory of Scheduling.
Addison-Wesley Publishing Company, 1967.

Chemical Rubber Company.
CRC Sandard Mathematical Tables, 28th Edition.
CRC Press, 1987.

Date, C. J.

Addison-Wesley Systems Programming Series. Volumel: An Introduction to Database
Systems, Fourth Edition.

Addison-Wesley Publishing Company, 1986.

Dravo Engineers, Inc.

USS Gary Works Level 2 Computer Control System: System Design Document, VVolumes
landIl.

Technical Report, Dravo Engineers, Incorporated, Pittsburgh, PA, July/August, 1985.

Dempster, M. A. H., Lenstra, J. K. and Rinnooy Kan, A. H. G. (editors).

Deterministic and Stochastic Scheduling.

D. Reidel Publishing Company, 1981.

Proceedings of the NATO Advanced Study and Research Institute on Theoretical
Approaches to Scheduling Problems, held in Durham, England, July 6-17, 1981.

Elsayed, E. A.
Algorithms for Project Scheduling with Resource Constraints.
International Journal of Production Research 20(1):95-103, January/February, 1982.

Eswaran, K. P., Gray, J. N., Lorie, R. A. and Traiger, I. L.
The Notions of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.

References

[French 82]

[GD 80]

[Gittins 81]

[Hatley 86]

[Herlihy 87]

[Herlihy 88]

[HIPAC 88]

[Janson 85]

[Jensen 75]

[Jensen 76a]

[Jensen 760

[Jensen 88

237

French, S.
Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop.
John Wiley & Sons, 1982.

Genera Dynamics.

Computer Program Product Specification for the System Function Processor
Operational Flight Program for the F-16 Multinational Staged | mprovement
Program, Block 30.

Technical Report CPCI 7175-1A00, General Dynamics Corporation, December, 1980.

Gittins, J. C.

Forwards Induction and Dynamic Allocation Indices.

In Deterministic and Sochastic Scheduling: Proceedings of the NATO Advanced Sudy
and Research Institute on Theoretical Approaches to Scheduling Problems, pages
125-156. July, 1981.

Hatley, D. J.

Structured Methods for Large Avionics Systems.

In National Conference and Workshop on Methodol ogies and Tools for Real-Time
Systems. The National Institute for Software Quality and Productivity, March, 1986.

Herlihy, M.
Concurrency versus Availability: Atomicity Mechanisms for Replicated Data.
ACM Transactions on Computer Systems 5(3):249-274, August, 1987.

Herlihy, M. P.

Impossibility and Universality Results for Wait-Free Synchronization.

Technical Report CMU-CS-88-140, Carnegie Mellon University, Computer Science
Department, Pittsburgh, PA, May, 1988.

Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U., Hsu, M., Ledin, R.,
McCarthy, D., Rosenthal, A., Sarin, S. Carey, M. J., Livny, M. and Jauhari, R.
The HiPAC Project: Combining Active Databases and Timing Constraints.
ACM S GMOD Record 17(1):51-70, March, 1988.

Janson, P. A.
Operating Systems: Sructures and Mechanisms.
Academic Press, 1985.

Jensen, E. D.
Time-Value Functions for BMD Radar Scheduling.
Technical Report, Honeywell Systems and Research Center, June, 1975.

Jensen, E. D.

Distributed Processing in a Real-Time Environment.
Infotech Sate of the Art Report on Distributed Systems.
Infotech International Ltd., 1976, pages 304-318.

Jensen, E. D.
Decentralized Operating Systems.
In Workshop on Distributed Processing. Brown University, August, 1976.

Jensen, E. D.

Alpha Objectives and Requirements.

Part of Alpha Preview: A Briefing and Technology Demonstration for DoD.
March, 1988

238

[Joseph 88]

[KB 84]

[Knapp 87]

[Lawler 73]

[Liskov 83]

[Liu 73]

[Liu 8]

[Locke 86]

[Mach 86]

[MacLaren 80]

[Margaris 67]

[Martel 82]

[Maynard 91]

[McKendry 85]

Scheduling Dependent Real-Time Activities

Joseph, T. A. and Birman, K. P.

Reliable Broadcast Protocols.

Technical Report TR 88-918, Cornell University, Department of Computer Science,
Ithaca, NY, June, 1988.

Thisisapreprint of material that will appear in the collected lecture notes from ’Arctic
88, An Advanced Course on Operating Systems', Tromso, Norway, July 5-14, 1988.
The lecture notes will appear in book form later this year.

Kenah, L. J. and Bate, S. F.
VAX/VMS Internals and Data Structures.
Digital Press, 1984.

Knapp, E.
Deadlock Detection in Distributed Databases.

ACM Computing Surveys 19(4):303-328, December, 1987.

Lawler, E. L.
Optimal Sequencing of a Single Machine Subject to Precedence Constraints.
Management Science 19(5):544-546, January, 1973.

Liskov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

Liu, C. L. and Layland, J. W.
Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment.
Journal of the Association for Computing Machinery 20(1):46-61, January, 1973.

Liu, J. W. S, Lin, K. J. and Song, X.

Scheduling Hard Real-Time Transactions.

The Fifth Workshop on Real-Time Software and Operating Systems :112-116, May,
1988.

Locke, C. D.
Best-Effort Decision Making for Real-Time Scheduling.
PhD thesis, Carnegie Mellon University, May, 1986.

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young,
M.

Mach: A New Kernel Foundation for UNIX Development.

In Proceedings of Summer Usenix. July, 1986.

MacLaren, L.

Evolving Toward Adain Rea-Time Systems.

ACM SIGPLAN Notices 15(11):146-155, November, 1980.

This issue was al so the Proceedings of the ACM-SIGPLAN Symposium on the Ada
Programming Language, Boston, MA; December 9-11, 1980.

Margaris, A.
First Order Mathematical Logic.
Xerox College Publishing, 1967.

Martel, C.
Preemptive Scheduling with Release Times, Deadlines, and Due Dates.
Journal of the Association for Computing Machinery 29(3):812-829, July, 1982.

Maynard, D. P.
Time-Driven Scheduling of Composite Real-Time Activities.
PhD thesis, Carnegie Mellon University, To appear: 1991.

McKendry, M. S.
Ordering Actions for Visibility.
Transactions on Software Engineering (IEEE) 11(6):509-519, June, 1985.

References

[Moore 68]

[Northcutt 87]

[Peterson 85]

[Rajkumar 89]

239

Moore, J. M.
An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late Jobs.
Management Science 15(1):102-109, September, 1968.

Northeutt, J. D.

Per spectivesin Computing Series. Volume 16: Mechanisms for Reliable Distributed
Real-Time Operating Systems: The Alpha Kernel.

Academic Press, 1987.

Peterson, J. L. and Silberschatz, A.
Operating System Concepts, Second Edition.
Addison-Wesley Publishing Company, 1985.

Rajkumar, R.
Task Synchronization in Real-Time Systems.
PhD thesis, Carnegie Mellon University, August, 1989.

[Ramamritham 84]

Ramamritham, K. and Stankovic, J. A.
Dynamic Task Scheduling in Hard Real-Time Distributed Systems.
|EEE Software 1(3):65-75, July, 1984.

[Rauch-Hindin 87]

[Ritchie 74]

[Sha 85]

[Sha 86]

[Sha87]

[Sha 90]

[Stadick 83]

[Stankovic 88]

[Ullman 75]

Rauch-Hindin, W. B.
UNIX Overcomes Its Real-Time Limitations.
UNIX World 4(11):64-78, November, 1987.

Ritchie, D. M. and Thompson, K.
The UNIX Time-Sharing System.
Communications of the ACM 17(7):365-375, July, 1974.

Sha, L.

Modular Concurrency Control and Failure Recovery --- Consistency, Correctness and
Optimality.

PhD thesis, Carnegie Mellon University, 1985.

Sha, L., Lehoczky, J. P. and Rajkumar, R.
Solutions for Some Practical Problemsin Prioritized Preemptive Scheduling.
In Proceedings of the Real-Time Systems Symposium, pages 181-191. December, 1986.

Sha, L., Rajkumar, R. and Lehoczky, J. P.

Priority Inheritance Protocols: An Approach to Real-Time Synchronization.

Technical Report CMU-CS-87-181, Carnegie Mellon University, Computer Science
Department, Pittsburgh, PA, December, 1987.

Sha, L. and Goodenough, J. B.
Real-Time Scheduling Theory and Ada.
|EEE Computer 23(4):53-62, April, 1990.

Stadick, E. M.

A Real-Time Control System Implementation Sudy Using the Ada Programming
Language.

Technical Report NSWC TR-83-213, Naval Surface Weapons Center, 1983.

Stankovic, J. A. and Zhao, W.
On Real-Time Transactions.
ACM S GMOD Record 17(1):4-18, March, 1988.

Ullman, J. D.
NP-Complete Scheduling Problems.
Journal of Computer and System Sciences 10(3):384-393, June, 1975.

240 Scheduling Dependent Real-Time Activities

[Zhao 87] Zhao, W., Ramamritham, K., and Stankovic, J. A.
Scheduling Tasks with Resource Requirements in Hard Real-Time Systems.
|EEE Transactions on Software Engineering SE-13(5):564-577, May, 1987.

Table of Contents

Table of Contents

1. Introduction

1.1. Problem Definition
1.1.1. Dependencies
1.1.2. Real-Time Systems
1.2. Schedulersand Scheduling I nformation
1.3. Scheduling Example
1.4. Mativation for Using Application-Defined Values
1.4.1. Accrued Value
1.4.2. Time-Value Functions
1.5. Technical Approach
1.5.1. Define M odel
1.5.2. Devise Algorithms
1.5.3. Prove Properties Analytically
1.5.4. Simulate Algorithm

2. The Scheduling M odel

2.1. Informal Model and Rationale
2.1.1. Applications, Activities, and Phases
2.1.2. Shared Resour ces
2.1.3. Phase Preemption
2.1.4. Phase Abortion
2.1.5. Events
2.1.6. Histories
2.1.7. Scheduling Automata
2.1.7.1. General Structure
2.1.7.2. Specific Scheduling Automata
2.2. Assumptions and Restrictions of M odel
2.3. Formal Model
2.3.1. Notation and Definitions
2.3.1.1. Naming Conventions
2.3.1.2. Mode-Phase Pairs
2.3.1.3. Time-Value Functions
2.3.2. The General Scheduling Automaton Framework (GSAF)
2.3.2.1. Applicationsand Activities
2.3.2.2. Eventsand Histories
2.3.2.3. Operations
2.3.2.4. Computational Phases of Activities
2.3.2.5. Shared Resour ces
2.3.2.6. Phase Preemption and Resumption
2.3.2.7. Event Terminology and Notation
2.3.2.8. Definitions and Properties of Histories
2.3.2.9. Automaton State Components
2.3.2.10. Operations Accepted by GSAF with Preconditions and Postconditions
2.3.2.11. Active Phase Selection

ii Scheduling Dependent Real-Time Activities

2.3.3. Notes
2.3.3.1. Manifestation of Assumptionsand Restrictions
2.3.3.2. Manifestation of Interrupts
2.3.3.3. Atomic Nature of ‘Request-Phase’ Events
2.4. Observations on the M odel

3. The DASA Algorithm

3.1. Dependent Activity Scheduling Algorithm
3.1.1. Heuristicsand Rationale
3.1.2. Informal Definition of DASA
3.1.2.1. Dependency Scheduling
3.1.2.2. Deadlock Resolution
3.2. Formal Definition of DASA
3.2.1. The Formal Definition
3.2.1.1. bAsA Automaton State Components
3.2.1.2. Operations Accepted by bAsA Automaton
3.2.1.3. SelectPhase() Function for DASA Automaton
3.2.2. Observations on the Definition
3.2.2.1. Manifestation of Desirable Properties
3.2.2.2. Nondeter minism in Definition
3.2.2.3. Explicit Appearance of Time
3.3. Scheduling Example Revisited

4. Analytic Results

4.1. Requirementsfor Scheduling Algorithms
4.2. Strategy for Demonstrating Requirement Satisfaction
4.3. Proofs of Properties
4.3.1. Algorithm Correctness
4.3.1.1. Proof: Selected Phases May Execute Immediately
4.3.2. Algorithm Value
4.3.2.1. LBESA Scheduling Automaton
4.3.2.2. DASA/ND Scheduling Automaton
4.3.2.3. Proof: If No Overloads, DASA and LBESA Are Equivalent
4.3.2.4. Proof: With Overloads, DAsSA May Exceed LBESA
4.3.3. Algorithm Tractability
4.3.3.1. Procedural Version of DASA
4.3.3.2. Proof: Procedural Version of DASA I's Polynomial in Space and Time
4.4. Notes on Algorithm
4.4.1. Unbounded Value Density Growth
4.4.2. 1dle Intervals During Overload
4.4.3. Cleverness and System Dynamics

5. Simulation Results

5.1. Simulator Design and | mplementation
5.1.1. Requirements
5.1.2. Design
5.1.2.1. Activitiesand the Activity Generator
5.1.2.2. Integrated Scheduler
5.1.3. Implementation
5.1.3.1. Approach: Build from Scratch or Adapt an Existing Simulator
5.1.3.2. Sour ce of DASA Implementation
5.1.3.3. Single Scheduler for Simulation
5.1.3.4. Simulator Display M essages
5.1.3.5. Modifications
5.2. Evaluation of DASA Decisions
5.2.1. Methods of Evaluation

128

Table of Contents

5.2.1.1. Execute Existing Applications
5.2.1.2. Modifying or Reimplementing Existing Applications
5.2.1.3. Modeling Existing Applications
5.2.1.4. Simulating the Execution of a Parameterized Application
5.2.2. Workload Selection
5.2.2.1. Arrival Times, Required Computation Times, and Values
5.2.2.2. Shared Resour ces
5.2.3. Examination of DASA Behavior
5.2.3.1. Workload Parametersand Metrics
5.2.3.2. Scheduler Performance Analysis: U/U Distribution
5.2.3.3. Scheduler Performance Analysis: M/M Distribution
5.3. Evaluation of bAsA With Scheduling Overhead
5.3.1. Low Overhead
5.3.2. Medium Overhead
5.3.3. High Overhead
5.3.4. Summary
5.4. Evaluation of DASA Abort Usage
5.5. Interpreting Simulation Resultsfor Specific Applications
5.5.1. Telephone Switching
5.5.2. Process Control: A Stedl Mill

6. Related Work and Current Practice

6.1. Priority-Based Scheduling
6.2. Deadline-Based and Time-Driven Scheduling
6.3. Other Related Work

7. FutureWork

7.1. Loosening Assumptions
7.1.1. Known Computation Timefor Phase
7.1.2. Exclusive Access to Shared Resour ces
7.1.3. Smple Time-Value Functions
7.2. Generalizing the M odel
7.2.1. Multiprocessor Scheduling
7.2.2. Multiple Node Scheduling
7.2.3. Grouped Resour ce Requests
7.2.4. Release of Shared Resour ces
7.2.5. Nested Phases
7.3. Transitioning DASA into Practice
7.3.1. Efficient Scheduler Execution
7.3.2. Deadlock Detection and Resolution
7.3.3. Prior Experience and Future Plans
7.4. Exploring Algorithmic Variations
7.4.1. Dependency List Variations
7.4.2.ValueMetric Variations
7.4.3. Overload Variations
7.5. Analyzing DASA for Specific Applications
7.5.1. Further Simulations
7.5.2. Real Applications

8. Conclusions
8.1. Contributions
8.2. Summary
Appendix A. Derivation of DASA/ND Scheduling Automaton

A.1l. The Simplified Definition of SelectPhase()
A.2. The Simplified Definition of the Automaton

128
130
130
131
131
132
132
133
133
136
140
142
144
144
145
145
146
148
148
150

203

204
205
207

209

209
209
210
211
212
212
213
213
214
215
216
216
218
219
220
220
220
221
221
221
222

223

223
226

227

227
232

iv Scheduling Dependent Real-Time Activities

References 235

List of Figures

Figure 1-1:
Figure 1-2:
Figure 2-1:
Figure 2-2;
Figure 2-3:
Figure 2-4:
Figure 2-5;
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure4-1:
Figure4-2:

Figure4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:

Figure4-7:
Figure4-8:
Figure 4-9:
Figure 4-10:
Figure4-11:
Figure5-1:
Figure5-2:
Figure5-3:
Figure5-4:
Figure5-5:
Figure 5-6:
Figure5-7:
Figure5-8:
Figure 5-9:
Figure 5-10:
Figure5-11:

List of Figures

Examples of Time-Value Functions
Execution Profilesfor Priority and Deadline Schedulers
Format of Scheduler Events
An Observer Monitoring the Scheduler Interface
Scheduling Automaton
Scheduling Automaton Structure
Operation Typesand Originators
State Components of General Scheduling Automaton Framework
Operations Accepted by General Scheduling Automaton
Organizations of Scheduling Functions
Simplified Procedural Definition of DASA Scheduling Algorithm
State Components of DASA Scheduling Automaton
‘RequestPhase’ Operation Accepted by DASA Scheduling Automaton
Other Phase Operations Accepted by DASA Scheduling Automaton
Resour ce Operations Accepted by DAsA Scheduling Automaton
Functional Form of DAsA Algorithm
Execution Profilesfor DASA Scheduler with and without Aborts
State Components of LBESA Scheduling Automaton
‘Request-Phase’ Operation Accepted by LBESA Scheduling
Automaton
Other Operations Accepted by LBESA Scheduling Automaton
Functional Form of LBESA Algorithm
State Components of DASA/ND Scheduling Automaton
‘Request-Phase’ Operation Accepted by DASA/ND Scheduling
Automaton
Other Operations Accepted by DASA/ND Scheduling Automaton
Functional Form of DASA/ND Algorithm
Histories Accepted by LBESA

Histories Accepted by LBESA Beginning with E, [E,[E,

Procedural Definition of DASA Scheduling Algorithm
Logical Structure of Simulator
Aver age Performance: No Resour ces, U/U Distribution
Average Performance: One Resource, U/U Distribution
Aver age Performance: Five Resour ces, U/U Distribution
Average Performance: Ten Resour ces, U/U Distribution
Performance Range: No Resour ces, U/U Distribution
Performance Range: One Resource, U/U Distribution
Performance Range: Five Resour ces, U/U Distribution
Performance Range: Ten Resour ces, U/U Distribution

Aver age Performance: No Resources, M/M Distribution

Aver age Performance: One Resource, M/M Distribution

11
21
21

23
28
33

41
46
47
50
51
52
56
63

70

71
72
73
74

75

106
109
111
123
153

155
156
157
158
159
160
161
162

Figure5-12:
Figure5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:
Figure5-19:
Figure 5-20:
Figure5-21.
Figure 5-22:
Figure 5-23:
Figure 5-24.
Figure5-25:
Figure 5-26:
Figure5-27:
Figure5-28:
Figure 5-29:
Figure 5-30:
Figure5-31:
Figure 5-32:
Figure5-33:
Figure 5-34.
Figure 5-35:
Figure5-36:
Figure 5-37:
Figure 5-38:
Figure 5-39:

Figure 5-40:

Scheduling Dependent Real-Time Activities

Aver age Performance: Five Resources, M/M Distribution
Average Performance: Ten Resources, M/M Distribution
Performance Range: No Resour ces, M/M Distribution
Performance Range: One Resource, M/M Distribution
Performance Range: Five Resources, M/M Distribution
Performance Range: Ten Resources, M/M Distribution

Aver age Performance: No Resour ces, M/M Distribution, Low
Overhead

Aver age Performance: One Resource, M/M Distribution, L ow
Overhead

Aver age Performance: Five Resources, M/M Distribution, Low
Overhead

Average Performance: Ten Resources, M/M Distribution, Low
Overhead

Performance Range: No Resour ces, M/M Distribution, L ow
Overhead

Performance Range: One Resource, M/M Distribution, Low
Overhead

Performance Range: Five Resources, M/M Distribution, Low
Overhead

Performance Range: Ten Resources, M/M Distribution, L ow
Overhead

Aver age Performance: No Resources, M/M Distribution, Medium
Overhead

Average Performance: One Resource, M/M Distribution, Medium
Overhead

Aver age Performance: Five Resources, M/M Distribution, Medium
Overhead

Aver age Performance: Ten Resources, M/M Distribution, Medium
Overhead

Performance Range: No Resour ces, M/M Distribution, Medium
Overhead

Performance Range: One Resource, M/M Distribution, Medium
Overhead

Performance Range: Five Resources, M/M Distribution, Medium
Overhead

Performance Range: Ten Resources, M/M Distribution, Medium
Overhead

Average Performance: No Resour ces, M/M Distribution, High
Overhead

Aver age Performance: One Resource, M/M Distribution, High
Overhead

Aver age Performance: Five Resources, M/M Distribution, High
Overhead

Average Performance: Ten Resources, M/M Distribution, High
Overhead

Performance Range: No Resources, M/M Distribution, High
Overhead

Performance Range: One Resource, M/M Distribution, High
Overhead

Performance Range: Five Resources, M/M Distribution, High
Overhead

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

191

List of Figures

Figure 5-41.

Figure5-42:
Figure 5-43:
Figure 5-44:
Figure 5-45:
Figure 5-46:
Figure 5-47:
Figure5-48:
Figure 5-49:
Figure 5-50:

Performance Range: Ten Resources, M/M Distribution, High

Overhead

Abort Usage: One Resource, M/M Distribution, Low Overhead
Abort Usage: One Resource, M/M Distribution, M edium Overhead
Abort Usage: One Resource, M/M Distribution, High Over head
Abort Usage: Five Resources, M/M Distribution, L ow Overhead

Abort Usage
Abort Usage
Abort Usage
Abort Usage
Abort Usage

. Five Resour ces, M/M Distribution, M edium Over head
. Five Resour ces, M/M Distribution, High Overhead

: Ten Resources, M/M Distribution, Low Overhead

: Ten Resources, M/M Distribution, Medium Overhead
: Ten Resour ces, M/M Distribution, High Overhead

Vii

192

193
194
195
196
197
198
199
200
201

viii Scheduling Dependent Real-Time Activities

List of Abbreviations

List of Abbreviations

Abbreviation Meaning
DASA Dependent Activity Scheduling Algorithm
DASA/ND Dependent Activity Scheduling Algorithm/No Dependencies
DL Deadline Scheduling Algorithm
FIFO First-In/First-Out
GSAF General Scheduling Automaton Framework
LBESA Locke' s Best Effort Scheduling Algorithm
M Exponential Probability Distribution
PVD Potential Value Density
SPRI Static Priority Scheduling Algorithm
U Uniform Probability Distribution
VD Value Density

Scheduling Dependent Real-Time Activities

List of Symbols

List of Symbols

Symbol

Meaning

Ar-B
(a b)

Logical And

Logical Or

Logical Negation

Logica Equivalence

Logical Implication

B can be derived given assumptions A

open interval extending from ‘a to ‘b’

Xii Scheduling Dependent Real-Time Activities

