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Abstract
This thesis explores scalable methods for adaptive decision making under un-

certainty in stateless environments, where the goal of an agent is to design an ex-
periment, observe the outcome, and plan subsequent experiments so as to achieve a
desired goal. Typically, each experiment incurs a large computational or economic
cost, and we need to keep the number of experiments to a minimum. Many of such
problems fall under the bandit framework, where the outcome of each experiment
can be viewed as a reward signal, and the goal is to optimise for this reward, i.e. find
the design that maximises this reward. A common use case for bandits, pervasive in
many industrial and scientific applications, is hyperparameter tuning, where we need
to find the optimal configuration of a black box system by tuning the several knobs
which affect the performance of the system. Some applications include statistical
model selection, materials design, optimal policy selection in robotics, and maxi-
mum likelihood inference in simulation based scientific models. More generally,
bandits are but one class of problems studied under the umbrella of adaptive deci-
sion making under uncertainty in stateless environments. Problems such as active
learning and design of experiments are other examples of adaptive decision making,
but unlike bandits, progress towards a desired goal is not made known to the agent
via a reward signal.

With increasingly expensive experiments and demands to optimise over complex
input spaces, bandit optimisation tasks face new challenges today. At the same time,
there are new opportunities that have not been exploited previously. We study the
following questions in this thesis so as to enable the application of bandit and more
broadly adaptive decision making methods to modern real world applications.
- Conventional bandit methods work reliably in low dimensional settings, but scale

poorly with input dimensionality. Scaling such methods to high dimensional do-
mains requires addressing several computational and statistical challenges.

- In many applications, an expensive experiment can be cheaply approximated.
We study techniques that can use information from these cheap lower fidelity
approximations to speed up the overall optimisation process.

- Conventional bandit methods are inherently sequential. We study parallelisation
techniques so as to deploy several experiments at the same time.

- Typical methods assume that a design can be characterised by a Euclidean vector.
We study bandit methods on graph-structured spaces. As a specific application,
we study neural architecture search, which optimises for the structure of the neu-
ral network by viewing it as a directed graph with node labels and node weights.

- Current methods for adaptive data collection are designed for specific tasks, and
have limited applicability in problems with complex and application specific goals.
We study a general framework for sequential design of experiments which allows
one to specify their goal and incorporate other domain expertise.



We first delve into the above topics in the bandit framework and then study
how they can be extended to broader decision making problems. We develop meth-
ods with theoretical guarantees which simultaneously enjoy good empirical perfor-
mance. As part of this thesis, we also develop an open source Python framework for
scalable and robust bandit optimisation.
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4.11 (a): the functions used in the Bad Currin Exponential experiment where f (1) = −f (2).
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4.12 The performance of MF-GP-UCB for different choices of fixed threshold values γ(1).
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4.13 Results on the real experiments. The first three figures are hyperparameter tuning tasks
while the last is an astrophysical maximum likelihood problem. The title states the
experiment, dimensionality (number of hyperparameters or cosmological parameters)
and the number of fidelities. For the three hyperparameter tuning tasks we plot the best
cross validation error (lower is better) and for the astrophysics task we plot the highest
log likelihood (higher is better). For the hyperparameter tuning tasks we obtained the
lower fidelities by using smaller training sets, indicated by ntr in the figures and for
the astrophysical problem we used a coarser grid for numerical integration, indicated
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4.15 g : Z × X → R is a function defined on the product space of the fidelity space Z
and domain X . The purple line is f(x) = g(z•, x). We wish to find the maximiser
x? ∈ argmaxx∈X f(x). The multi-fidelity framework is attractive when g is smooth
across Z as illustrated in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.16 Results on 6 synthetic problems where we plot the simple regret S(Λ) (lower is better)
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ofX . The curves for the multi-fidelity methods start mid-way since they have not queried
at z• up until that point. All curves were produced by averaging over 20 experiments and
the error bars indicate one standard error. . . . . . . . . . . . . . . . . . . . . . . . 74

4.17 Results on the supernova (a) and news group experiments (b). We have plotted the
maximum value (higher is better) against wall clock time. Both curves were produced
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5.1 An illustration of the synchronous (left) and asynchronous (right) settings using M = 3

workers. The short vertical lines indicate when a worker finished its last evaluation.
In the synchronous setting the grey shaded regions indicate idle time after a worker
finishes its job. The horizontal location of a number indicates when the worker started
its next evaluation while the number itself denotes the order in which the evaluation was
dispatched by the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Results on the synthetic experiments. The title states the function used, its dimensional-
ity d, the number of workers M and the distribution used for the time. All distributions
were constructed so that the expected time for one evaluation was one time unit (for e.g.,
in the half normal HN (ζ2) in Table 5.1, we used ζ =

√
π/2 ). The dotted lines depict

synchronous methods while the solid lines are for asynchronous methods. The error bars
indicate one standard error. All figures were averaged over at least 15 experiments. . . . 121

5.3 The first five panels are results on synthetic experiments. See caption under Figure 5.2
for more details. The last panel compares seqTS, synTS, and asyTS against the number
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5.4 Cross validation results on the Cifar-10 experiment. The figure plots the best validation
error (lower is better) vs time for each method. We have excluded some methods which
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mental set up. The results presented are averaged over 9 experiments. Error bars indicate
one standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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6.1 An illustration of some CNN architectures. In each layer, i: indexes the layer, followed
by the label (e.g conv3), and then the number of units (e.g. number of filters). The input
and output layers are pink while the decision (softmax) layers are green.
From Chapter 6.2: The layer mass is denoted in parentheses. The following are the
normalised and unnormalised OTMANN distances d, d̄ . All self distances are 0, i.e.
d(G,G) = d̄(G,G) = 0. The unnormalised distances are, d(a, b) = 175.1, d(a, c) =

1479.3, d(b, c) = 1621.4. The normalised distances are, d̄(a, b) = 0.0286, d̄(a, c) =

0.2395, d̄(b, c) = 0.2625. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 An example of 2 CNNs which have d = d̄ = 0 distance. The OT solution matches the

mass in each layer in the network on the left to the layer horizontally opposite to it on the
right with 0 cost. For layer 2 on the left, its mass is mapped to layers 2 and 3 on the left.
However, while the descriptor of these networks is different, their functional behaviour
is the same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3 Two dimensional t-SNE embeddings of 100 randomly generated CNN architectures
based on the OTMANN distance (top) and its normalised version (bottom). Some net-
works have been indexed a-n in the figures; these network architectures are illustrated in
Figure 6.4. Networks that are similar are embedded close to each other indicating that
the OTMANN induces a meaningful topology among neural network architectures. . . . 151

6.4 Illustrations of the nextworks indexed a-n in Figure 6.3. . . . . . . . . . . . . . . . . 152
6.5 Each point in the scatter plot indicates the log distance between two architectures (x axis)

and the difference in the validation error (y axis), on the Indoor, Naval and Slice datasets.
We used 300 networks, giving rise to ∼ 45K pairwise points. On all datasets, when the
distance is small, so is the difference in the validation error. As the distance increases,
there is more variance in the validation error difference. Intuitively, one should expect
that while networks that are far apart could perform similarly or differently, networks
with small distance should perform similarly. . . . . . . . . . . . . . . . . . . . . . 153

6.6 Initial pool of CNN network architectures. The first 3 networks have structure similar
to the VGG nets [228] and the remaining have blocked feed forward structures as in He
et al. [91]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.7 Initial pool of MLP network architectures. . . . . . . . . . . . . . . . . . . . . . . 160
6.8 Cross validation results for neural architecture search. In all figures, the x axis is time.

The y axis is the mean squared error (MSE) in the first 6 figures and the classification
error in the last. Lower is better in all cases. The title of each figure states the dataset
and the number of parallel workers (GPUs). All figures were averaged over at least 5

independent runs of each method. Error bars indicate one standard error. . . . . . . . . 162
6.9 We compare NASBOT for different design choices in our framework. (a): Comparison

of NASBOT using only the normalised distance e−βd̄, only the unnormalised distance
d−βd, and the combination e−βd + e−β̄d̄. (b): Comparison of NASBOT using only the
EA modifiers which change the computational units (top 4 in Table 6.2), modifiers which
only change the structure of the networks (bottom 5 in Table 6.2), and all 9 modifiers.
(c): Comparison of NASBOT with different choices for p and p̄. In all figures, the x
axis is the number of evaluations and the y axis is the negative maximum value (lower is
better). All figures were produced by averaging over at least 10 runs. . . . . . . . . . . 164
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6.11 Optimal network architectures found with EA on the Cifar10 dataset. . . . . . . . . . . 170
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7.1 A screenshot of the Dragonfly repository on Github, availabe at dragonfly.github.io.
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7.2 Comparison of using individual acquisitions such as GP-UCB, GP-EI, TTEI, TS, PI, and
Add-GP-UCB versus the ensemble method as described in Chapter 7.1.1. We have also
shown random sampling (RAND) for comparison. The ensemble approach is typically
able to perform almost as well as the single best acquisition on each individual problem.
We plot the simple regret (1.1), so lower is better. Error bars indicate one standard error.
All curves were produced by averaging over 10 independent runs. . . . . . . . . . . . 181

7.3 Comparison of using only maximum likelihood (ML), only posterior sampling (PS) and
the ensemble method (ML+PS) as described in Chapter 7.1.2. We have also shown ran-
dom sampling (RAND) for comparison. The combined ensemble approach is able to
perform as well as or better than the best choice for the given problem. We plot the
simple regret (1.1), so lower is better. Error bars indicate one standard error. All curves
were produced by averaging over 10 independent runs. . . . . . . . . . . . . . . . . 183

7.4 An illustration of GP sample paths drawn from the exponential decay kernel [242] con-
ditioned on being positive. They are suitable for representing the validation accuracy
along a fidelity dimension in machine learning applications where, for e.g. validation
accuracy tends to increase as we use more data and/or train for more iterations. . . . . . 186
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7.7 Comparison of Dragonfly with other algorithms and BO packages on functions with
noiseless evaluations defined on Euclidean domains. We plot the simple regret (1.1) so
lower is better. The title states the name of the function, and its dimensionality. All
curves were produced by averaging over 20 independent runs. Error bars indicate one
standard error. The legend for all curves is available in the first figure. . . . . . . . . . 196

7.8 Comparison of Dragonfly with other algorithms and BO packages on functions with
noiseless evaluations defined on high dimensional Euclidean domains. We plot the sim-
ple regret (1.1) so lower is better. SMAC’s initialisation procedure did not work in di-
mensions larger than 40 so it is not shown in the respective figures. Spearmint is not
shown on all figures since it was too slow to run on high dimensional problems. See
caption under Figure 7.7 for more details. . . . . . . . . . . . . . . . . . . . . . . . 197

7.9 Comparison of Dragonfly with other algorithms and BO packages on functions with
noisy evaluations defined on Euclidean domains. We plot the simple regret (1.1) so
lower is better. The title states the name of the function, and its dimensionality. See
caption under Figure 7.7 for more details. . . . . . . . . . . . . . . . . . . . . . . . 198

7.10 Comparison of Dragonfly with other algorithms and BO packages on functions with
noisy evaluations defined on Euclidean domains. We plot the simple regret (1.1) so
lower is better. SMAC’s initialisation procedure did not work in dimensions larger than
40 so it is not shown in the respective figures. Spearmint is not shown on all figures
since it was too slow to run on high dimensional problems. See caption under Figure 7.7
for more details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.11 Comparison of Dragonfly with other algorithms and BO packages on synthetic functions
with noiseless evaluations defined on non-Euclidean domains. We plot the maximum
value, so higher is better. The x-axis shows the expended capital, which was chosen
so that a single fidelity method would perform exactly 200 evaluations. The title states
the name of the function, and its dimensionality (number of variables). We do not state
the dimensionality for the synthetic CNN function since the dimensionality of a space
of CNN architectures is not defined. See dragonfly.github.io for a description of
these functions and the approximations for the multi-fidelity curves. All curves were
produced by averaging over 20 independent runs. Error bars indicate one standard error.
The legend for all curves is available in the first figure. We do not compare Spearmint,
HyperOpt, SMAC, and GPyOpt on the synthetic CNN functions since they do not sup-
port optimising over neural architectures. . . . . . . . . . . . . . . . . . . . . . . . 201

7.12 Comparison of Dragonfly with other algorithms and BO packages on synthetic functions
with noisy evaluations defined on non-Euclidean domains. We plot the maximum value,
so higher is better. See caption under Figure 7.13 for more information on the figures. . 202
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7.13 Comparison of Dragonfly with RAND and EA on synthetic functions with constraints
on the domain. We plot the maximum value, so higher is better. We perform experi-
ments on three different synthetic functions where the left column is when the function
evaluations are noiseless, and the right column is when noise is added to the evaluations.
The title states the name of the function, and its dimensionality (number of variables).
See github.com/dragonfly/dragonfly/tree/master/demos synthetic for a descrip-
tion of these functions and the approximations for the multi-fidelity curves. All curves
were produced by averaging over 20 independent runs. Error bars indicate one standard
error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.14 Results on the maximum likelihood estimation problem on the luminous red galaxies
dataset [244]. The x-axis is the number of evaluations and the y-axis is the highest
likelihood found so far (higher is better). All curves were produced by averaging over
10 independent runs. Error bars indicate one standard error. . . . . . . . . . . . . . . 204

7.15 Results on the maximum likelihood estimation problem on the Type Ia supernova dataset [50].
The x-axis is time and the y-axis is the highest likelihood found so far (higher is better).
We do not compare PDOO, HyperOpt and Spearmint because they do not provide an
API for optimising over time. All curves were produced by averaging over 10 indepen-
dent runs. Error bars indicate one standard error. . . . . . . . . . . . . . . . . . . . 205

7.16 Results on the SALSA model selection problem comparing Dragonfly to other pack-
ages.The x-axis is wall clock time and the y-axis is the regression error (lower is better).
We do not compare HyperOpt and Spearmint because they do not provide an API for
optimising over time. All curves were produced by averaging over 10 independent runs.
Error bars indicate one standard error. . . . . . . . . . . . . . . . . . . . . . . . . . 206

7.17 Results on the random forest regression and gradient boosted regression problems com-
paring Dragonfly to other packages.The title states the method, the data set used and the
dimensionality of the problem. The x-axis is wall clock time and the y-axis is the regres-
sion error (lower is better). We do not compare HyperOpt and Spearmint because they
do not provide an API for optimising over time. All curves were produced by averaging
over 10 independent runs. Error bars indicate one standard error. . . . . . . . . . . . . 207

7.18 Results on the neural architecture search experiments. In all figures, the x-axis is time.
The y axis is the mean squared validation error (lower is better). The title of each figure
states the dataset. In all cases, we used a parallel set up of two asynchronous workers,
where each worker is a single GPU training a single model. We used a one dimensional
fidelity space where we chose the number of batch iterations from 4000 to 20,000 (z• =

20, 000). All figures were averaged over 5 independent runs. Error bars indicate one
standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.19 Visuals of the apparatus used in the electrolyte design task. (a): A picture of the experi-
mental set up. (b): Dragonfly is interfaced with the LabVIEW software to communicate
experimental configurations and measurements. (c): Ingredients are chosen according to
specifications from Dragonfly. (d)- (f): Various stages of taking a measurement. (g):
The conductivity (and other measurements) are measured and fed back to Dragonfly.
The entire video can be viewed at https://youtu.be/XUPWv1J DX4. These experi-
ments were conducted by researchers at the Scott Institutute for Energy at CMU. Willie
Neiswanger put together the video. . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xx

https://github.com/dragonfly/dragonfly/tree/master/demos_synthetic
https://youtu.be/XUPWv1J_DX4


7.20 Experimental results comparing Dragonfly to EA and RAND for optimising a real time
streaming system where data was streamed through a Spark/Kafka pipeline and written
to a Redis database. The left figure shows when the best latency values found by each
method (lower is better) when the throughput was fixed at 20K while the right figure
shows the same when the throughput was fixed to 10K. Hai Pham was primarily respon-
sible for these experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.21 Comparison of multi-objective optimisation methods implemented in Dragonfly (UCB
Tch and TS Tch) with other methods for MOO on the Locality Sensitive Hashing and
Viola and Jones problems described in Chapter 7.4. The y-axis is the Tsebychev simple
regret for MOO (see (7.1) and Paria et al. [190]) and the x-axis is the number of evalu-
ations. Biswajit Paria was responsible for these experiments and these results are taken
directly from Paria et al. [190]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.22 An example options file in Dragonfly. In this file, --acq specifies the list of acquisitions
to use in the ensemble method, and --budget indicates the budget of evaluations. . . . 213

8.1 Results on the synthetic active learning experiments in Chapter 8.1.4 comparing all meth-
ods on the squared error reward. The title states the model and the dimensionality. In
all figures, the x axis is the number of experiments n. In the left figures, the y axis is
the final negative reward −λ(θ?, n) at the nth iteration. In the right figures, it is the cor-
responding negative cumulative reward −Λ(θ?, n). Lower is better in both cases. The
legend is given in the left figures. All curves were averaged over 20 runs, and error bars
indicate one standard error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

8.2 Results on the synthetic active learning experiments in Chapter 8.1.4 comparing all meth-
ods on the log likelihood reward. In all figures, the x axis is the number of experiments
n. In the left figures, the y axis is the final negative reward −λ(θ?, n) at the nth iteration.
In the right figures, it is the corresponding negative cumulative reward −Λ(θ?, n). See
caption under Figure 8.1 for more details. . . . . . . . . . . . . . . . . . . . . . . . 225

8.3 Results on the real experiments. The first row is for the posterior estimation problem,
the second row is for the level set estimation problem, and the third row is for the com-
bined objective problem, all of which are described in Chapter 8.1.4. In the left figures,
the y axis is the negative reward −λ(θ?, Dn) and in the right figures, it is the negative
cumulative reward −Λ(θ?, Dn) for the corresponding experiment. The legend is given
in the left figures. See caption under Figure 8.1 for more details. . . . . . . . . . . . . 227

8.4 (a) depicts the uncertainty for the log joint probability via samples g drawn from the GP.
(b) illustrates the induced uncertainty model Fθ|Xobs

for the posterior via the exponenti-
ated and normalised samples f = exp g/

∫
exp g. . . . . . . . . . . . . . . . . . . . 231

8.5 An illustration of the NED utility. θ+ is a candidate for the next evaluation. pB, pR, pG
denote values for p+ = logP (θ+,Xobs) sampled from the GP. We add them as halluci-
nated points and rebuild our GP and generate samples (second step). These samples are
exponentiated and normalised (third step) and then its KL divergence with the estimate
is computed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
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8.6 (a): Samples drawn from the GP in the log joint probability space. (b): The same samples
after exponentiation. High variance in the low likelihood regions are squashed and low
variances in the high likelihood regions are blown up. This is the key insight that inspires
our methods and the EV utility in particular. . . . . . . . . . . . . . . . . . . . . . . 234

8.7 The first column shows the log joint probability and the corresponding posterior. In the
second column we have estimates of the log joint and the posterior for uniformly spaced
points. In the third column we have the same except that more points were chosen in
high likelihood regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.8 (a) and (b) are the true log joint probability and joint probability in blue. Assume that we
have already queried at the brown crosses and let the red circles (x) and (y) be candidates
for the next query. In BAPE we would be interested in querying (y) but not (x). In AGPR
we would be interested in both (x) and (y) whereas in BO we would be keen in neither. . 236

8.9 (a), (b): Comparison of NED/EV against MCMC-DE, ABC, MCMC-R and RAND for
the 1D and 2D synthetic experiments respectively. The x-axis is the number of queries
and the y-axis is the KL divergence between the truth and the estimate. All figures were
obtained by averaging over 60 trials. . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.10 The 100 points chosen in order by NED for the 2D experiment. The green contours
are the true posterior. Initially the algorithm explores the space before focusing on high
probability regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.11 The first row is for the functionals T1, T2 in d = 5 dimensions and the second for is for
the functionals T3, T4. The last twoape rows are the same four functionals for d = 15.
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for d = 5 and 3200 queries for d = 15. All figures were obtained by averaging over 30
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8.12 (a): Comparison of NED/EV against MCMC-DE, ABC, Emcee, MCMC-R and RAND

on the Type Ia Supernovae dataset. For all regression methods we show results for up
to 1600 queries and up to 4 times as many for MCMC and ABC. For evaluation, KL
was approximated via numeric integration on a (100)3 grid. Note that MCMC and ABC
require several queries before a nontrivial KL with the truth is obtained. All curves
were obtained by averaging over 30 runs. (b): Projections of the points selected by EV
(bottom row) and the marginal distributions (top row). . . . . . . . . . . . . . . . . . 242

8.13 The projections of the first 6000 points queried by RAND MCMC, and EV respectively
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8.14 Comparison of EV against MCMC-R and RAND. We use up to 12000 queries for all
methods. The y-axis is the mean squared reconstruction error. The curves were obtained
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Chapter 1

Introduction

Artificial intelligence and machine learning have made great strides in the recent past, achieving
human or super-human level performance in tasks requiring prediction from data. However, an
agent becomes intelligent only when it goes beyond supervised learning; it should be able to
assimilate information from past experience and plan actions so as to acquire new information
and achieve a desired goal. For instance, when presented with data on several electrolytes tested
on a battery design problem, a learning agent can only predict the properties of a new electrolyte.
However, an intelligent agent will be able to use this data and suggest new electrolytes to test so
as to discover a previously unknown high performing electrolyte for a given application.

Such problems are typically studied under the umbrella of decision making under uncertainty,
where, an agent, tasked with achieving a certain goal, interacts with a system by taking actions
and observing the result of said action. Once it has this observation, the agent is able to learn
something about the system and make a more informed choice the next time it takes an action.
A fundamental tension that arises in such problems is that of learning system characteristics vs
achieving the desired goal, commonly known in the literature as the exploration-exploitation
trade-off. An extensive exploration of system characteristics can be inefficient as it might require
collecting an unnecessarily large amount of data; however, developing some understanding of
the system is paramount to achieving the desired goal. For instance, in electrolyte discovery,
the agent’s goal is to find an electrolyte with desirable conductivity, viscosity and solubility
properties. However, it will not be able to find such an electrolyte without developing some
understanding of the relationships between these properties and design parameters such as salt
concentrations, solvent fractions, and process conditions. Hence, it will need to conduct some
exploratory experiments with the intention of learning such system characteristics.

Paradigms for Decision Making Under Uncertainty

To contextualise the work in this thesis, we identify two dichotomies in adaptive decision making
problems. We draw these distinctions primarily to identify the settings for this thesis, and note
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Explicit Reward Implicit Reward

Stateless
Environment

Bandits
Active learning, Adaptive

design of experiments

Stateful
Environment

Reinforcement
learning

System identification,
Dynamic model learning

}
This thesis.

Table 1.1: A summary of various paradigms for adaptive decision making under uncertainty. In this
thesis, we focus exclusively on stateless systems/environments. Chapters 3-7 study scalability topics in
stateless explicit reward (i.e. bandit) settings and Chapter 8 is on stateless implicit reward settings.

that different authors may draw these delineations differently. We will use the terms system and
environment interchangeably to denote the external environment an agent is interacting with.

Stateless vs Stateful Environments: The first is on stateless vs stateful environments/systems.
In the former, the available set of actions do not change over time, and an agent’s actions do not
change how the system responds to future actions. In stateful systems, either of these may be
true. Electrolyte design, where each action is a specific design of an electrolyte that the agent
chooses to test, is an example of a stateless system. The set of available designs do not change
throughout the entire experimentation process and the properties of a given design do not depend
on the order in which it was tested. An example of the latter is a game of chess, where, between
actions (moves) by an agent, the available actions can change and the opponent’s moves can
change depending on the order of the agent’s moves.

Explicit vs Implicit Reward: The second distinction is explicit reward vs implicit reward prob-
lems. In the former, progress towards the desired goal is made explicitly known to the agent via
a, possibly noisy, reward signal. In the latter, the agent receives feedback from the system, but
this feedback does not directly inform the agent of its progress; instead, the agent needs to learn
an implicitly defined reward function from the action-observation pairs it has collected. For in-
stance, assume that our goal in the above electrolyte design example is to find an electrolyte with
high conductivity, and that the experiment for each design measures the conductivity. This is an
explicit reward problem as the agent can use the feedback (measured conductivity) as a reward
that needs to be maximised. A game of chess is a stateful explicit reward problem, since, at the
end of the game, the agent receives a reward signal indicating whether it won (1), drew (1/2) or
lost (0). An example of implicit reward problems is active learning, where, say, an agent needs
to choose which data points to label so as to learn a regression function g. The agent’s goal is
to minimise the error ‖g − ĝ‖ between the true regression function and an estimate ĝ. However,
this error is not made known explicitly nor can it be computed from the available data since g is
unknown. An example of a stateful implicit reward task is system identification, where we wish
to learn the control dynamics of a statful system, such as a robot or an industrial apparatus. As
we will see in Chapter 8 of this thesis, implicit reward systems are, in general, more difficult than
explicit reward systems as the agent needs to learn the reward function, while simultaneously
working to maximise it.

We have summarised the above paradigms in Table 1.1. The majority of the decision making
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literature focuses on explicit reward settings, where the stateless versions of this paradigm are
studied in the bandit framework, and stateful versions in the reinforcement learning framework.

This thesis exclusively focuses on stateless systems, and in particular, developing scalable meth-
ods for such decision making problems in real world applications. In Chapters 3 to 7 of this
thesis, we will delve deep into such scalability topics in the bandit setting. In Chapter 8, we
develop methods for stateless implicit reward systems. In Chapter 9, we discuss how many of
the scalability ideas from bandits can be extended to other stateless decision making settings.
We then present some thoughts on extending these techniques to stateful environments. Next,
we present an overview of these stateless paradigms in the next two sections.

1.1 Stochastic Optimisation under Bandit Feedback

Many problems in stateless adaptive decision making can be cast as the optimisation of a black-
box function f : X → R over a discrete or continuous domain X , where each experiment is
an evaluation of f . In bandit optimisation, f is accessible only through possibly noisy point
evaluations, is potentially non-convex and has no gradient information. In typical applications,
each evaluation is expensive, incurring a large computational or economic cost. Hence, the goal
is to maximise f using as few evaluations as possible. A common use case for such noisy zeroth
order optimisation problems is hyperparameter tuning, where we need to tune the several knobs
of a black-box system which affect its performance for a given problem. Some applications for
hyperparameter tuning include statistical model selection, materials design, configuring indus-
trial systems, scientific studies, optimal policy selection in robotics, and maximum likelihood
inference in simulation based scientific models [77, 99, 159, 170, 191].

Historically, the bandit framework was studied in settings where we maximise the cumulative
sum of all evaluations to f as opposed to just finding the maximum. Let x? = argmaxx∈X f(x)
be a maximiser of f . Suppose we evaluate f at x1, . . . , xn in n time steps. The goal of a bandit
algorithm is typically to achieve small value for either the simple regret Sn or the cumulative
regret Rn defined below.

Sn = f(x?)− max
t=1,...,n

f(xt), Rn =
n∑
t=1

(
f(x?)− f(xt)

)
. (1.1)

Both notions of regret are closely related since any algorithm with sub-linear cumulative regret,
i.e. Rn/n→ 0, also has vanishing simple regret, i.e. Sn → 0. In an adaptive sequential strategy,
at time t, we will have queried f at t − 1 points x1, . . . , xt−1 and observed y1, . . . , yt−1, where
E[yi] = f(xi) for i = 1, . . . , t − 1. A bandit method is a strategy to determine the next point xt
for evaluation using knowledge of f acquired via previous query-observation pairs {(xi, yi)}t−1

i=1.
Below, we list two applications each for simple and cumulative regret.

Model selection in statistics/machine learning [103, 232]: Statistical models require tuning
hyperparameters for good empirical performance, e.g. kernel parameters in support vector ma-
chines. Typically, these hyperparameters are chosen by maximising a validation set accuracy.
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We can cast this as a bandit optimisation problem where each evaluation requires training and
validating the algorithm for given values x of the hyperparameters in a space of values X . A per-
tinent example in today’s context is deep learning which has recently been successful in many
applications. Most deep learning models have a number of hyperparameters for the architecture
and regularisation. Currently, they are manually tuned by domain experts which is cumbersome
as training a deep model can be time consuming. Hence, smart techniques for model selection
have become particularly relevant today.

Computational astrophysics [50, 121]: Given astronomical observations Zobs, we wish to infer
the cosmological parameters (e.g. Hubble constant, Baryonic density). For a given choice of
these parameters x, cosmological simulators can produce simulations of a cosmological process
(e.g. galaxy formation or supernova) which can be compared to the observations. Physicists
wish to find the maximum likelihood estimate of Zobs. The task at hand is to maximise the
likelihood f(x) = P (Zobs|x), whose computation for a given set of values x for the cosmological
parameters can be noisy and requires an expensive simulation of a cosmological process.

Online advertising [34]: A popular use case for cumulative regret is online advertising. At each
time step, we need to choose an ad from a large pool to display on a web page; the goal is to
maximise the cumulative number of clicks over all ads displayed within a specified period. This
translates to identifying ads with the highest click through rate and displaying them most of the
time. Here, X is a finite discrete set of ads and f is the expected number of clicks for each ad
within a specified period. When we display an ad x, we incur the opportunity cost for our choice
and observe a noisy estimate of f(x).

Realtime tuning of industrial/technological systems [83, 251]: In many real world applica-
tions, we wish to find the optimal configuration of a system by experimenting with it when the
system is running. For example, one wishes to find the optimal configuration of a stream pro-
cessing system while it is serving traffic. Similarly, one wishes to find the optimal parameters
of an industrial system, such as a tokamak nuclear reactor, while making sure that the system is
stable and that the output is not adversely affected. As in online advertising, in these settings,
an agent tries a new configuration and is rewarded with the cumulation of how well the system
performed over time, as opposed to finding the single best configuration. Here, X is the space of
possible configurations of the system, and f is a performance criterion that we are interested in.

1.2 Other Examples of Stateless Decision Making Under Un-
certainty

As we will see in this thesis, there exist a plethora of stateless decision making settings outside
of the bandit framework, each of which will require its own formalism. Instead of attempting a
formal description of each individual setting here, we will provide some examples to demonstrate
that the bandit formalism alone would not suffice for many problems.

Active Learning: Consider applications where we wish to perform usual machine learning tasks,
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such as regression, classification or posterior distribution estimation, when data is expensive.
The goal is to design actions, i.e. obtain labels, at regions which are most critical to the de-
sired learning objective. For instance, in the computational astrophysics application described
above, sometimes astrophysicists are interested in estimating the entire posterior distribution of
the cosmological parameters, instead of just finding the maximum likelihood estimate [121].

Materials Design: In the electrolyte design example above, a chemist wishes to choose actions,
i.e. test electrolyte designs, so that she can optimise for conductivity while simultaneously learn-
ing the relationship between the design parameters and electrolyte properties such as viscosity
and solubility [71]. In this example, we wish to do both optimisation and active learning on
different properties of the electrolyte. Similarly, in alloy design, one wishes to conduct experi-
ments to identify phase transitions in the crystal structure of an alloy as the composition of the
individual metals changes [28].

In the examples above, there is no explicit reward feedback to the decision maker on the progress
it is making towards the goal. Chapter 8 describes a general framework for stateless decision
making from a design of experiments standpoint, which includes the settings above. Precisely,
we demonstrate that when the implicit reward is a function of the unknown system characteristics
and the data collected, the decision making problem is still tractable and practical.

1.3 Thesis Outline & Summary of Contributions

In this thesis, we develop techniques for scaling up bandit and other stateless settings for adaptive
decision making under uncertainty. We will study different notions of scalability, many of them
motivated by practical challenges and opportunities arising in modern applications. On each
topic, we strive to achieve the following two goals.

1. Theoretically quantify the difference between our methods and vanilla bandit methods via
an appropriate notion of regret for the setting.

2. Empirically demonstrate that our algorithms outperform such unadorned versions on prac-
tical applications.

To that end, we believe that this thesis supports the following claim.

Thesis Statement: Adaptive decision making under uncertainty in stateless paradigms can be
made scalable and practical for modern applications, both in theory and practice.

Next, we summarise the main contributions of this thesis. Chapters 3-6 describe specific scal-
ability paradigms for bandit methods, chapter 7 describes an open source software platform for
scalable bandit optimisation that integrates the above (and other) techniques, and Chapter 8 de-
scribes a general and flexible framework for adaptive decision making under uncertainty that
subsumes the bandit setting among many others.
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Chapter 3: High Dimensional Bandits

Problem & Motivation: We study techniques for bandit optimisation on Euclidean domains
X ⊂ [0, 1]d when d is large. High dimensional bandit problems occur in several applications
where we need to tune several hyperparameters, such as statistical model selection, astrophysics,
and tuning industrial systems. While there have been many successes for bandits in low di-
mensions, scaling it to high dimensions has been notoriously difficult. Prior work on this topic
were under very restrictive assumptions. Making progress in this front requires making structural
assumptions on the problem which hold water in practice.

Solution: In Kandasamy et al. [120], we overcome the statistical and computational challenges
in high dimensional bandits by assuming an additive structure for f . This setting is substantially
more expressive and contains a richer class of functions than previous work. We prove that, for
additive functions the regret of classical bandit techniques (e.g. GP-UCB) has only linear depen-
dence on d even though f depends on all d dimensions. Moreover, we propose Add-GP-UCB,
which can leverage the additive structure in a computationally efficient manner. Via synthetic
examples, an astrophysical maximum likelihood problem and a statistical model selection prob-
lem, we demonstrate that our method outperforms naive methods on additive functions and on
several examples where the function is not additive.

Chapter 4: Multi-fidelity Bandits

Problem & Motivation: Traditionally, the bandit literature assumes a single source of function
evaluations or experimental outcomes, where querying this source can be expensive. However,
in many cases, cheap approximations to this source may be available. For instance, the cross
validation curve of an expensive machine learning algorithm can be approximated by cheaper
training routines using less data and/or fewer iterations. Similarly, the expensive real world
behaviour of a robot can be approximated by a cheap computer simulation. In such settings, it
is natural to ask if one could leverage these cheap sources to learn about the expensive function
and speed up the optimisation process.

Solution: We formalise this task as a multi-fidelity bandit problem. We study variants of the
classical K-armed bandit and the GP bandit where a decision-maker can query either a desired
experiment, or an available cheap approximation. In all settings, we theoretically prove and em-
pirically demonstrate that our methods use the cheap approximations to eliminate bad regions
in X and deploy the expensive evaluations in a small promising region to speedily identify the
optimum. Consequently, they achieve better regret than naive strategies which ignore the ap-
proximations.

In Kandasamy et al. [125], we first analyse the K-armed bandit setting, where, at each time step
the decision-maker may choose to play one of K arms at any one of M fidelities. The high-
est fidelity (desired outcome) expends cost λ(M). The mth fidelity (an approximation) expends
λ(m) < λ(M) and returns a biased estimate of the highest fidelity. We develop MF-UCB, a novel
upper confidence bound procedure for this setting and prove that it naturally adapts to the se-
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quence of available approximations and costs, thus attaining better regret than naive strategies
which ignore the approximations. We complement this result with a lower bound and show that
MF-UCB is nearly minimax optimal under standard regularity conditions.

We then extend this algorithm and analysis to the GP setting, where we study multi-fidelity
Bayesian optimisation when we have access to a finite number of approximations in Kandasamy
et al. [123, 124], and a continuous spectrum of approximations in Kandasamy et al. [127]. We
develop MF-GP-UCB for the former setting and BOCA for the latter, both based on upper con-
fidence bound techniques. In our theoretical analysis, we demonstrate that they achieve better
simple regret than strategies which ignore multi-fidelity information. Empirically, MF-GP-UCB
and BOCA outperform such naive strategies and other multi-fidelity methods on several simula-
tions and real world tasks in model selection and astrophysics.

Chapter 5: Parallel Bandits

Problem & Motivation: The bandit literature has predominantly focused on the sequential set-
ting where the algorithm has to wait for an evaluation to the function to complete before pro-
ceeding to the next. However, in many applications, we are able to execute multiple evaluations
in parallel. For example, in model selection, we may have the computing infrastructure to train
multiple models in parallel with different hyperparameter configurations. In materials design and
drug discovery, we now have high throughput screening equipment that can test several hundred
materials/drugs at the same time.

Solution: In Kandasamy et al. [129], we design and analyse variations of the classical Thomp-
son sampling (TS) procedure for bandits where function evaluations are expensive but can be
performed in parallel. Our theoretical analysis shows that a direct application of the sequential
Thompson sampling algorithm in either synchronous or asynchronous parallel settings yields a
surprisingly powerful result: making n evaluations distributed among M workers is essentially
equivalent to performing n evaluations in sequence. Further, by modelling the time taken to
complete a function evaluation, we show that, under a time constraint, asynchronous parallel TS
achieves asymptotically lower regret than both the synchronous and sequential versions. These
results are complemented by an experimental analysis, showing that asynchronous TS outper-
forms a suite of existing parallel bandit algorithms in simulations and in a hyperparameter tuning
application. In addition to these, the proposed procedure is computationally cheaper than existing
work for parallel bandit optimisation, scaling only linearly in the number of workers.

Chapter 6: Bandits on Graph-structured Domains

Problem & Motivation: Traditionally, bandit methods have been studied on “simple” domains,
such as a set of K discrete arms, or discrete/compact Euclidean spaces. In the context of model
selection in statistics and machine learning, this only permits tuning scalar hyperparameters of
machine learning algorithms. However, with the surge of interest in deep learning, there is an
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increasing demand to tune neural network architectures. This motivates studying bandit methods
in more complex and structured graphical spaces.

Solution: In Kandasamy et al. [130], we develop NASBOT, a Gaussian process based bandit
framework for neural architecture search. To accomplish this, we develop OTMANN, a distance
metric in the space of neural network architectures which can be computed efficiently via an
optimal transport program. We demonstrate that NASBOT outperforms other alternatives for
architecture search in several cross validation based model selection tasks on multi-layer per-
ceptrons and convolutional neural networks. The OTMANN distance might be of independent
interest to the deep learning community as it may find applications outside of architecture search.
Moreover, we believe that the techniques used in NASBOT can be extended to handle the opti-
misation of other graph structured objects such as chemical molecules and crystal structures.

Chapter 7: An Open Source Library for Scalable Bandit Optimisation

Problem & Motivation: One of the main challenges for the bandit and black-box optimisation
research is the large disconnect between theoretical and methodological developments and the
availability of practical tools that can be deployed in real world problems. Existing software are
usually not able to handle complex problems well. For example, they suffer in high dimensions,
cannot optimise over complex domains, and do not have functionality to handle variants of the
bandit framework such as multi-fidelity optimisation or multi-objective optimisation. Moreover,
most model based bandit methods tend to be quite sensitive to the choice of the model which can
severely limit their usefulness in practice.

Solution: In Kandasamy et al. [133], we develop Dragonfly, a Python library for scalable ban-
dit optimisation which integrates the scalability ideas in the previous chapters into one software
framework. Dragonfly uses ensemble strategies which combine multiple models to decide the
next recommendation which are more robust than existing model-based techniques which rely
on a single model throughout the entire optimisation process. In addition, we have implemented
functionality for multi-objective optimisation from some of our other work [190]. Dragonfly
is implemented in a modular and extensible fashion which allows users to seamlessly integrate
new algorithms and bandit formalisms. Empirically, we demonstrate that Dragonfly either out-
performs or is competitive with several other tools for bandits in a variety of synthetic and real
world tasks. We have released Dragonfly open source under the MIT license which we hope will
be a useful tool for practitioners and foster future research in scalable bandit methods.

Chapter 8: Beyond Bandits, Adaptive Decision Making in Stateless Environments

Problem & Motivation: In this chapter, we take a step back from bandits and analyse more
general settings for sequential decision making under certainty in stateless environments. In these
problems, as in the bandit setting, an agent takes an action, observes the result of the action, and
proceeds sequentially to fulfil a certain goal. This setting subsumes the bandit framework where
the agent directly observes a reward for the associated action. However, in general, such a reward
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may not be available and the agent needs to learn this reward signal from past observations while
simultaneously working to maximise it. Such problems are pervasive in many industrial and
scientific applications where we need to carry out very application-specific goals such as those
described in Chapter 1.2.

Solution: In Kandasamy et al. [131, 132], we design a new Bayesian myopic strategy for a wide
class of sequential design of experiment (DOE) problems, where the goal is to collect data in
order to fulfil a certain problem specific goal. Our approach, Myopic Posterior Sampling (MPS),
is inspired by the Thompson sampling algorithm for multi-armed bandits and leverages the flexi-
bility of probabilistic programming and approximate Bayesian inference to address a broad set of
problems. The MPS framework is general enough to incorporate domain expertise when avail-
able, and flexible enough to encompass a variety of goals that typically arise in DOE tasks. On
the theoretical side, we leverage ideas from adaptive submodularity and reinforcement learning
to derive conditions under which MPS achieves sublinear regret against myopic and globally
optimal oracle policies which know the characteristics of the environment. Empirically, this
general-purpose strategy is competitive with more specialised methods in a wide array of DOE
tasks in astrophysics and materials science. More importantly, it enables addressing complex
DOE goals where no existing method seems applicable.

In Kandasamy et al. [121, 128], we delve deeper into one such DOE task, active posterior es-
timation, developing specialised algorithms for this setting. This problem finds applications in
settings where the likelihood of a Bayesian model is expensive to evaluate, such as in astrophysics
where computation of the likelihood might involve an expensive cosmological simulation. Ex-
isting techniques for posterior estimation are based on generating samples representative of the
posterior, which do not consider efficiency in terms of likelihood evaluations. In order to be
query efficient, we treat posterior estimation in an active regression framework and propose two
myopic query strategies to choose where to evaluate the likelihood. Via experiments on a series
of synthetic and real examples we demonstrate that our approach is significantly more query
efficient than existing techniques and other heuristics for posterior estimation.

Finally, we mention that many of the scalability ideas in chapters 3-7 can be extended to the
general decision making framework of chapter 8. We discuss this in more detail and provide
concrete suggestions in our conclusion in Chapter 9.

1.4 Thesis Organisation

In Chapter 2, we briefly review some relevant background material on Gaussian processes and
bandits. Chapters 3–8 present the main technical contributions on individual topics. In each
chapter or sub-chapter, we usually begin with an introduction to the topic and discuss related
work. We then formalise the problem set up. Next, we present the main methodological con-
tributions and relevant theoretical results. Finally, we conclude with experimental results. The
proofs of theoretical results for each chapter are typically found at the end of the chapter. Chap-
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ter 9 concludes with some high level thoughts and directions for future work. Appendices A
and B respectively summarise the notation and abbreviations used throughout this thesis. Ap-
pendix C lists and provides links to software released with this thesis.

1.5 Other Remarks

Collaborators

This thesis is based on work with multiple collaborators. My advisors Jeff Schneider and
Barnabás Póczos were collaborators on all chapters. In addition to this, Chapter 4 was joint
work with Gautam Dasarathy and Junier Oliva. Chapter 5 was joint work with with Akshay Kr-
ishnamurthy. Chapter 6 was joint work with with Willie Neiswanger and Eric Xing. Chapter 7
was joint work with with Karun Raju Vysyaraju, Willie Neiswanger, Biswajit Paria, Christo-
pher Collins, and Eric Xing. Chapter 8 was joint work with with Willie Neiswanger, Akshay
Krishnamurthy, and Reed Zhang.

This manuscript only describes the work where I was primarily responsible for the conception
of the idea, derivation of theorems, and practical implementation. However, in the interest of
completeness, I make the following three exceptions.

• Akshay Krishnamurthy derived the theoretical results for exponential delays in Chap-
ter 5.5.3, specifically Lemma 60, Theorem 62, Theorem 63, and Theorem 64.

• The methods for multi-objective optimisation in Dragonfly is based on joint work with
Biswajit Paria who was the lead author of that paper [190]. These methods were incorpo-
rated into Dragonfly and are described briefly in Chapter 7.3.5.

• Dragonfly has been used in a variety of applications by some research groups. Some of
them are highlighted at the end of Chapter 7.4, in order to demonstrate real world appli-
cations for methods developed in this thesis. While I assisted said groups in setting up
Dragonfly, I was not responsible for planning and executing those experiments.

Excluded Research

The following are some of my lead authored PhD research that have been excluded from this
manuscript as they do not fall within the scope of this thesis.

• Nonparametric estimation of information theoretic functionals [118, 119].

• Kernel methods for high dimensional nonparametric regression [117].

• Estimation of hidden Markov models with nonparametric emission probabilities [122].

• Improving neural conversation models using deep reinforcement learning [126].
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Chapter 2

Background Material

To facilitate the discussion in the forthcoming chapters, we briefly review some background
material including Gaussian processes, Bayesian optimisation, and K-armed bandits. The last
sub-chapter presents some theoretical results used frequently in our proofs.

2.1 A Review of Gaussian Processes (GPs)

In this thesis, we will mostly, albeit not entirely, rely on Gaussian processes (GP) [203] to model
the pay-off function f in the bandit framework. They are popularly used in practice and known to
perform well empirically [232]. Moreover, their theoretical properties are well understood [235].
We begin with a brief review of GPs. However, it is important to keep in mind, that most of the
underlying ideas in this thesis are orthogonal to GPs and apply straightforwardly to other models.

A Gaussian Process (GP) over a space X is a random process from X to R. GPs are typically
used as a prior for functions in Bayesian nonparametrics. A GP is characterised by a mean
function µ : X → R and a covariance function (or kernel) κ : X 2 → R. If f ∼ GP(µ, κ), then
f(x) is distributed normally N (µ(x), κ(x, x)) for all x ∈ X . Two popular kernels of choice are
the squared exponential (SE) kernel κσ,h and the Matérn kernel κν,h. Writing z = ‖x−x′‖2, they
are defined as

κσ,h(x, x
′) = σ exp

(
− z2

2h2

)
, κν,ρ(x, x

′) =
21−ν

Γ(ν)

(√
2νz

ρ

)ν

Bν

(√
2νz

ρ

)
,

respectively. Here σ, h, ν, ρ > 0 are parameters of the kernels and Γ, Bν are the Gamma and
modified Bessel functions. A convenience the GP framework offers is that posterior distributions
are analytically tractable.

Suppose that we are given n observations Dn = {(xi, yi)}ni=1 from this GP, where xi ∈ X ,
yi = f(xi) + εi ∈ R and εi ∼ N (0, η2). Then the posterior process f |Dn is also a GP with mean
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f(x) ϕt = µt−1 + β
1/2
t σt−1

xt
x

f(x)

xt

Figure 2.1: An illustration of GPs and BO. The first figure shows the function of interest f (black line)
before any observations and illustrates a GP that represents the prior uncertainty. The shaded region rep-
resents a 99% confidence region for f and the coloured lines are samples from the GP. The second figure
shows some noisy observations (black ×’s) of f and the posterior GP conditioned on the observations.
The confidence region has shrunk around the observations. In the third figure, we illustrate GP-UCB when
we have to pick the next point xt given observations as shown in the second figure. The GP-UCB acquisi-
tion ϕt upper bounds f . At time t we choose the maximiser of ϕt for evaluation, i.e xt = argmaxx ϕt(x).
In the last figure, we illustrate Thompson sampling, where we first sample a function g from the posterior
GP and choose its maximiser for evaluation, i.e xt = argmaxx g(x).

µn and covariance κn given by,

µn(x) = k>(K + η2In)−1Y, κn(x, x′) = κ(x, x′)− k>(K + η2In)−1k′. (2.1)

Here Y ∈ Rn is a vector with Yi = yi, and k, k′ ∈ Rn are such that ki = κ(x, xi), k
′
i = κ(x′, xi).

In is the n × n identity matrix. The Gram matrix K ∈ Rn×n is given by Ki,j = κ(xi, xj).
We have illustrated the prior and posterior GPs in Figure 2.1. We refer the reader to Chapter 2
of Rasmussen and Williams [203] for more on the basics of GPs and their use in regression.

2.2 A Review of Gaussian Process Bandit (Bayesian) Optimi-
sation

Bayesian Optimisation (BO) refers to a suite of methods for bandit optimisation in the Bayesian
paradigm which use a prior belief distribution for f . At time t, BO methods use the posterior for
f conditioned on the previous observations {(xi, yi)}t−1

i=1 to determine where to evaluate f next.
Typically, this is done by first constructing an acquisition function ϕt : X → R which captures
the value of performing an experiment at any given x ∈ X ; then it maximises the acquisition
to determine the next point, xt = argmaxx∈X ϕt(x). In many cases, the ancillary optimisation
procedure for the acquisition ϕt can be nontrivial. However, since ϕt is analytically available, it

12



is usually assumed that the effort for optimising ϕt is negligible when compared to an evaluation
of f which requires executing an expensive black box experiment.

While there are several choices for the prior, the most popular option is to use a Gaussian Process.
One of the common choices for such acquisition based BO methods is the Gaussian process upper
confidence bound (GP-UCB) method of Srinivas et al. [235], where ϕt is defined as,

ϕt(x) = µt−1(x) + β
1/2
t σt−1(x). (2.2)

ϕt forms an upper confidence bound for f . Here µt−1 is the posterior mean of the GP after
t − 1 observations and is our current estimate of f . The posterior standard deviation, σt−1, is
the uncertainty associated with this estimate. The µt−1 term encourages an exploitative strategy
– in that we want to query regions where we already believe f is high – and σt−1 encourages an
exploratory strategy – in that we want to query where we are uncertain about f lest we miss high
valued regions which have not been queried yet. βt, which is typically increasing with t, controls
the trade-off between exploration and exploitation. Algorithm 1 below, summarises GP-UCB.

Algorithm 1 GP-UCB from Srinivas et al. [235]
Input: kernel κ.
• D0 ← ∅, (µ0, σ0)← (0, κ1/2).
• for t = 1, 2, . . .

1. xt ← argmaxx∈X ϕt(x)
2. yt ← Query f at xt.
3. Perform Bayesian posterior updates to obtain µt, σt. See (2.1).

Another common BO strategy is Thompson sampling (TS) [246], which stipulates that we sam-
ple xt according to the posterior probability that it is the optimum. That is, xt is drawn from
the posterior density px?(·|Dt) whereDt = {(xi, yi)}t−1

i=1 is the history of query-observation pairs
up to step t. For GPs, this allows for a very simple and elegant algorithm. Observe that we
can write px?(x|Dt) =

∫
px?(x|g) p(g|Dt)dg, and that px?(·|g) puts all its mass at the maximiser

argmaxx g(x) of g. Therefore, at step t, we draw a sample g from the posterior for f condi-
tioned on our past observations {(xi, yi)}t−1

i=1, and set xt = argmaxx g(x) to be the maximiser
of g. We then evaluate f at xt. Here, the drawing of the sample encourages exploration and the
maximisation incentivises exploitation. Algorithmically, this is equivalent to replacing step 1 in
Algorithm 1 with xt ← argmaxx∈X g(x) where g is drawn from the posterior GP. TS has been
previously explored for BO [15, 222], and some recent theoretical advances have characterised
the performance of TS [6, 42, 135, 211, 213]. We have illustrated GP-UCB and TS in Figure 2.1.

Summary of Theoretical Results for BO

For what follows, we summarise some theoretical results for BO when X is a Euclidean space.
We begin by defining the Maximum Information Gain (MIG) which characterises the statistical
difficulty of GP bandits.
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Definition 1. (Maximum Information Gain [235]) Let f ∼ GP(0, κ). Consider any A ⊂ Rd

and let A′ = {x1, . . . , xn} ⊂ A be a finite subset. Let fA′ , εA′ ∈ Rn such that (fA′)i = f(xi)
for i = 1, . . . , n and (εA′)i ∼ N (0, η2). Let yA′ = fA′ + εA′ . Denote the Shannon Mutual
Information by I . The Maximum Information Gain of the set A is

Ψn(A) = max
A′⊂A,|A′|=n

I(yA′ ; fA′).

The MIG depends on the kernel and the set A. It is known that for the SE kernel, Ψn([0, 1]d) ∈
O(dd(log(n))d+1) and for the Matérn kernel with parameter ν [203], Ψn([0, 1]d) ∈ O(n

d(d+1)
2ν+d(d+1)

log(n)) [216, 235]. For a given kernel it typically scales with the volume of A, i.e. Ψn(A) ∝
Ψn([0, 1]d)vol(A). Next, when X is a Euclidean subset, we will need the following regularity
condition on the kernel. It is satisfied for four times differentiable kernels such as the SE kernel
and Matérn kernel when ν > 2 [72].

Assumption 1. Let f ∼ GP(0, κ), where κ : [0, r]d × [0, r]d → R is a stationary kernel [203].
The partial derivatives of f satisfy the following condition. There exist constants a, b > 0 s.t.

for all J > 0, and for all i ∈ {1, . . . , d}, P
(

sup
x

∣∣∣∂f(x)

∂xi

∣∣∣ > J

)
≤ ae−(J/b)2

.

For simplicity, our presentation will mostly focus on the simple regret Sn (1.1) in this manuscript.
In all cases, this bound is obtained by first bounding the cumulative regret Rn and then using the
bound Sn ≤ 1

n
Rn, which follows from the fact that the minimum is smaller than the average.

Theorem 1 below states a high probability regret bound for GP-UCB. Theorem 2 states an ex-
pected regret bound for GP-UCB and TS.

Theorem 1. (Theorems 1 and 2 in [235]) Let f ∼ GP(0, κ), f : X → R and the kernel
κ satisfies Assumption 1). At each query, we have noisy observations y = f(x) + ε where
ε ∼ N (0, η2). Denote C1 = 8/ log(1 + η−2). Pick a failure probability δ ∈ (0, 1). The following
bounds on the simple regret Sn hold with probability > 1− δ for all n ≥ 1.
• If X is a finite discrete set, run GP-UCB with βt = 2 log (|X |t2π2/6δ). Then,

for all n ≥ 1, Sn ≤
√
C1βnΨn(X )

n

• If X ⊂ [0, 1]d, run GP-UCB with βt = 2 log
(

2π2t2

3δ

)
+ 2d log

(
t2bdr

√
4ad
δ

)
. Then,

for all n ≥ 1, Sn ≤
√
C1βnΨn(X )

n
+

2

n

Theorem 2. (Proposition 5 in [211], Theorem 11 in [129]) Assume the same conditions and
quantities as in Theorem 1. Assume βt is set for GP-UCB for the discrete and continuous
settings as described below. If we run either GP-UCB or TS we have the following bounds on
the simple regret Sn which holds in expectation for all n ≥ 1.
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• If X is a finite discrete set, let βt = log(t2|X |/
√

2π). Then,

for all n ≥ 1, E[Sn] ≤
√
C1βnΨn(X )

n

• Let X ⊂ [0, 1]d be compact and let βt = 4(d+ 1) log(n) + 2d log(dab
√
π). Then

for all n ≥ 1, E[Sn] ≤
√
C1βnΨn(X )

n
+

4

n

It is worth noting that while the regret can be bound for GP-UCB both in high probability and in
expectation, for TS only bounds in expectation are possible. This is typical of bandit analyses in
the Bayesian setting. However, note that GP-UCB requires setting the parameter βt which might
depend on unknown problem-dependent constants. In contrast, the bound in Theorem 2 holds
for TS for any sequence {βt}t≥0 such that |f − µt−1| ≤ β

1/2
t σt−1 holds for all t ≥ 1.

We finally note that Bayesian optimisation has also been studied using a variety of other tech-
niques such as expected improvement (GP-EI), probability of improvement, and entropy search [27,
94, 113, 176].

2.3 A Review of K-armed Bandits

Since the seminal work by Robbins [207], the multi-armed bandit problem has been studied
extensively in the K-armed setting. We briefly review the problem set up and describe the UCB
algorithm, which has inspired the plurality of the bandit literature, including GP-UCB.

In theK-armed bandit, we have a setX = {1, . . . , K} ofK arms where each k ∈ K corresponds
to a probability distribution θk with Eθk [X] = µk. At time step t, the decision-maker selects an
arm xt ∈ X and observes yt ∼ θk. This model is consistent with our formalism above where
f(k) = µk and upon playing arm xt, the decision maker observes f(xt) + ε where E[ε] = E[yt−
f(xt)] = 0. Let x? ∈ argmaxk∈X µk be an optimal arm and µ? = maxk∈X µk be the optimal
value. In typical applications, the goal of the decision-maker is to devise an adaptive strategy for
playing each arm at each time step so as to minimise the cumulative regret Rn =

∑n
t=1 µ? − µk.

Assume that the distributions of each arm satisfied a sub-Gaussian condition of the form P(|µk−
Y | > ε) ≤ νe−σε

2 . In the UCB algorithm, at each time step we maintain an upper confidence
bound Bk,t−1 for arm k which is defined as follows.

µ̂k,t−1 =
1

Tk(t− 1)

∑
j:xj=k

yj, Bk,t−1 = µ̂k,t−1 +

√
ρ log(t)

Tk(t− 1)
.

Here Tk(t− 1) denotes the number of times we have already played arm k in the first t− 1 steps,
µ̂k,t−1 is an estimate of the sample mean of arm k at time t, and Bk,t−1 is the upper confidence

15



bound. ρ is a parameter of the algorithm. As in GP-UCB, the UCB algorithm for K-armed
bandits suggests that we play the arm with the highest upper confidence bound at time t, i.e.
xt = argmaxk∈K Bk,t−1.

The following theorem upper bounds the cumulative regret for UCB in expectation. We will
denote ∆k = µ? − µk.

Theorem 3 (Regret of UCB [10, 25]). Assume that the reward distributions are σ-sub-Gaussian
and that ρ > 2. Then, the regret for UCB satisfies,

E[Rn] ≤
∑

k:∆k>0

(
ρ

4σ2

∆k

+
ρ

ρ− 2

)
.

Note that unlike Theorems 1 and 2, this is not a Bayesian bound and the regret depends on
parameters of the problem, such as ∆k.

2.4 Some Useful Theoretical Results

We state some common theoretical results that are used repeatedly in our proofs.

Results on Gaussian Processes

The first is a standard result on Gaussian concentration.

Lemma 4 (Gaussian Concentration). Let Z ∼ N (0, 1). Then P(Z > ε) ≤ 1
2

exp(−ε2/2).

The next result is an expression for the Information Gain in a GP from Srinivas et al. [235].

Lemma 5 (Mutual Information in GPs, Lemma 5.3 [235]). Let f ∼ GP(0, κ), f : X → R and
we observe y = f(x) + ε where ε ∼ N (0, η2). Let A be a finite subset of X and fA, yA be the
function values and observations on this set respectively. Using the basic Gaussian properties it
can be shown that the mutual information I(yA; fA) is,

I(yA; fA) =
1

2

n∑
t=1

log(1 + η−2σ2
t−1(xt)).

where σ2
t−1 is the posterior GP variance after observing the first t− 1 points.

The following two results are on the supremum of a Gaussian process when f ∼ GP(0, κ) and
κ is well behaved. The first states that the supremum of a GP is bounded in expectation; it is
satisfied when κ is twice differentiable. The second assigns positive probability to the event that
the supremum of a GP in a bounded domain is smaller than any given ε > 0.
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Lemma 6 (Adler [4]). Let f ∼ GP(0, κ) have continuous sample paths. Then, E‖f‖∞ = Ξ <
∞.

Lemma 7 (Theorem 4 in [72]). Let X = [0, r]d and f ∼ GP(0, κ). Let κ : X × X d → R be
continuous. Then, for all ε > 0, there exists Q(ε) > 0 such that,

P
(

sup
x∈X
|f(x)| < ε

)
> Q(ε).

Some Information Theoretic Results

The following result is a version of Pinsker’s inequality.

Lemma 8 (Pinsker’s inequality). LetX,Z ∈ X be random quantities and f : X → [0, B]. Then,∣∣E[f(X)]− E[f(Z)]
∣∣ ≤ B

√
1
2
KL(P (X)‖P (Z)).

The next, taken from Russo and Van Roy [213], relates the KL divergence to the mutual infor-
mation for two random quantities X, Y .

Lemma 9 (Russo and Van Roy [213], Fact 6). For random quantities X,Z ∈ X ,
I(X;Z) = EX [KL(P (Y |X)‖P (Y ))].

The next result is a property of the Shannon mutual information.

Lemma 10. LetX, Y, Z be random quantities such that Y is a deterministic function ofX . Then,
I(Y ;Z) ≤ I(X;Z).

Proof. Let Y ′ capture the remaining randomness in X so that X = Y ∪ Y ′. Then, since condi-
tioning reduces entropy, I(Y ;Z) = H(Z)−H(Z|Y ) ≤ H(Z)−H(Z|Y ∪ Y ′) = I(X;Z).

Sub-Gaussian and Sub-exponential Random Variables

We first introduce the notion of sub-Gaussianity, which characterises one of the stronger types of
tail behaviour for random variables.

Definition 2 (Sub-Gaussian Random Variables). A zero mean random variable is said to be τ
sub-Gaussian if it satisfies, E[eλX ] ≤ e

τ2λ2

2 for all λ ∈ R.

It is well known that Normal N (0, ζ2) variables are ζ sub-Gaussian and bounded random vari-
ables with support in [a, b] are (b − a)/2 sub-Gaussian. For sub-Gaussian random variables, we
have the following important and well known result.

Lemma 11 (Sub-Gaussian Tail Bound). LetX1, . . . , Xn be zero mean independent random vari-
ables such that Xi is σi sub-Gaussian. Denote Sn =

∑n
i=1Xi and σ2 =

∑n
i=1 σ

2
i . Then, for all
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ε > 0,

P (Sn ≥ ε) ≤ exp

(−ε2
2σ2

)
, P (Sn ≤ ε) ≤ exp

(−ε2
2σ2

)
.

The following result shows that Lipschitz functions of Gaussian random variables are sub-
Gaussian, see Theorem 5.6 in Boucheron et al. [19].

Lemma 12 (Gaussian Lipschitz Concentration [19]). Let X ∈ Rn such that Xi ∼ N (0, ζ2) iid
for i = 1, . . . , n. Let F : Rn → R be an L-Lipschitz function, i.e. |F (x) − F (y)| ≤ L‖x − y‖2

for all x, y ∈ Rn. Then, for all λ > 0, E[expλF (X)] ≤ exp
(
π2L2ζ2

8
λ2
)

. That is, F (X) is πLζ
2

sub-Gaussian.

We next introduce Sub-exponential random variables, which have a different tail behavior.

Definition 3 (Sub-exponential Random Variables). A zero mean random variable is said to be
sub-exponential with parameters (τ 2, b) if it satisfies, E[eλX ] ≤ e

τ2λ2

2 for all λ with |λ| ≤ 1/b.

Sub-exponential random variables are a special case of Sub-Gamma random variables (See Chap-
ter 2.4 in Boucheron et al. [19]) and allow for a Bernstein-type inequality.

Proposition 13 (Sub-exponential tail bound [19]). LetX1, . . . , Xn be independent sub-exponential
random variables with parameters (σ2

i , bi). Denote Sn =
∑n

i=1Xi and σ2 =
∑n

i=1 σ
2
i and

b = maxi bi. Then, for all ε > 0,

P

(∣∣∣Sn − n∑
i=1

µi

∣∣∣ ≥ √2σ2t+ bt

)
≤ 2 exp(−t).
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Chapter 3

High Dimensional Bandits

In this chapter we consider settings where X is a compact subset of Rd. While bandit tech-
niques such as Bayesian optimisation have been successful in many applications, they have been
used mostly in low dimensional (typically d < 10) settings [264]. Expensive high dimensional
functions occur in several fields such as computer vision [277], antenna design [99], computa-
tional astrophysics [191] and biology [77]. Scaling BO methods to high dimensions for practical
problems has been challenging. Even current theoretical results suggest that BO is exponentially
difficult in high dimensions without further assumptions [27, 235]. To the best of our knowledge,
the only approach to date has been to perform regular BO on a low dimensional subspace. This
works only under strong assumptions.

In Kandasamy et al. [120], we identify two key challenges in scaling BO to high dimensions. The
first is the statistical challenge in estimating the function. Nonparametric regression is inherently
difficult in high dimensions with known lower bounds depending exponentially in d [87]. This
sample complexity for regression is invariably reflected in the regret bounds for BO. The second
is the computational challenge in maximising ϕt. Commonly used global optimisation heuristics
used to maximise ϕt themselves require computation exponential in dimension. We show that
we can overcome both challenges by modeling f as an additive function. The contributions of
this chapter are as follows.

1. We propose using additive models for f to combat the curse of dimensionality in high
dimensional BO. Theoretically, we show that the simple regret for GP-UCB has only linear
dependence on the dimension d when f is additive.

2. We propose the Add-GP-UCB algorithm for Bayesian optimisation when f is additive; the
Add-GP-UCB acquisition function is easy to optimise in high dimensions. Empirically
we demonstrate that Add-GP-UCB outperforms naive BO on synthetic experiments, an
astrophysical simulator and the Viola and Jones face detection problem. Critically, Add-
GP-UCB does well on several examples when the function is not additive.
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Related Work

Prior to our work in Kandasamy et al. [120], most literature for BO in high dimensions are in
the setting where the function varies only along a very low dimensional subspace [37, 53, 264].
In these works, the authors do not encounter either the statistical or computational challenge as
they perform BO in either a random or carefully selected lower dimensional subspace. However,
assuming that the problem is an easy (low dimensional) one hiding in a high dimensional space is
often too restrictive. Indeed, our experimental results confirm that such methods perform poorly
on real applications when the assumptions are not met. While our additive assumption is strong
in its own right, it is considerably more expressive. It is more general than the setting in Chen
et al. [37]. Even though it does not contain the settings in Djolonga et al. [53], Wang et al. [264],
unlike them, we still allow the function to vary along the entire domain.

Using additive structure is standard in high dimensional regression[54, 88, 117, 204]. Using
an additive model has several advantages even if f is not additive. It is well understood that
when we only have a few samples, using a simpler model to fit our data may give us a better
trade off for estimation error against approximation error. This observation is crucial: in many
applications for bandit optimisation we are forced to work in the low sample regime since calls to
the black box are expensive. Though the additive assumption is biased for non-additive functions,
it enables us to do well with only a few samples. Finally, we mention that several follow up work
on high dimensional BO (e.g. [69, 153, 209, 257]) has built on our ideas here.

3.1 Additive Models for High Dimensional Bandits

Key structural assumption: In order to make progress in high dimensions, we will assume that
f decomposes into the following additive form,

f(x) = f (1)(x(1)) + f (2)(x(2)) + · · ·+ f (M)(x(M)). (3.1)

Here each x(j) ∈ X (j) = [0, 1]pj are lower dimensional components. We will refer to the X (j)’s
as groups and the grouping of different dimensions into these groups {X (j)}Mj=1 as the decompo-
sition. The groups are disjoint – i.e. if we treat the coordinates as a set, x(i) ∩ x(j) = ∅. We are
primarily interested in the case when d is very large and the group dimensionality is bounded:
pj ≤ p � d. Paranthesised superscripts index the groups and a union over the groups denotes
the reconstruction of the whole from the groups (e.g. x =

⋃
j x

(j) and X =
⋃
j X (j)).

In keeping with the BO literature, we will assume that each f (j) is sampled from a GP, GP(0, κ(j))
where the f (j)’s are independent. Here, κ(j) : X (j) × X (j) → R is the covariance for f (j). This
implies that f itself is sampled from a GP with an additive kernel κ(x, x′) =

∑
j κ

(j)(x(j), x(j)′).
We will call a kernel such as κ(j) which acts only on p variables a pth order kernel. A kernel
which acts on all the variables is a dth order kernel.
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3.1.1 Algorithms

A natural first inclination given (3.1) is to try GP-UCB with an additive kernel. Since an additive
kernel is simpler than a dth order kernel, we can expect statistical gains. We formalise this via the
theorem below which provides a better bound for the MIG for additive kernels.

Theorem 14 (Kandasamy et al. [120]: MIG for additive kernels). Let f satisfy (3.1).

1. If each κ(j) is an at most pth order SE kernel, then Ψn([0, 1]d) ∈ O(dpp(log n)p+1).

2. If each κ(j) is an at most pth order Matérn kernel, then Ψn([0, 1]d) ∈ O(d2pn
p(p+1)

2ν+p(p+1) log(n)).

However, the main challenge in directly using GP-UCB is that optimising ϕt in high dimensions
can be computationally prohibitive in practice. For example, using any grid search or branch
and bound method, maximising a function to within ζ accuracy, requires O(ζ−D) calls to ϕt.
To circumvent this, in Kandasamy et al. [120] we proposed Add-GP-UCB which exploits the
additive structure in f to construct an alternative acquisition function. For this we first describe
inferring the individual f (j)’s using observations from f .

Inference in Additive GPs: Suppose we are given observations Y = {y1, . . . , yn} at X =
{x1, . . . , xn}, where yi = f(xi) + ε and ε ∼ N (0, η2). For Add-GP-UCB, we will need the
distribution of f (j)(x

(j)
∗ ) conditioned on X, Y , which can be shown to be the following Gaussian.

f (j)(x(j)
∗ )|x∗, X, Y ∼ N

(
k(j)>(K + η2In)−1Y (3.2)

κ(j)(x(j)
∗ , x

(j)
∗ )− k(j)>(K + η2In)−1k(j)

)
where k(j) ∈ Rn are such that k(j)

i = κ(j)(x, xi). In is the n × n identity matrix. The Gram
matrix K ∈ Rn×n is given by Ki,j = κ(xi, xj) =

∑
j κ

(j)(xi, xj).

Add-GP-UCB1: We define the Add-GP-UCB acquisition ϕt as,

ϕt(x) =
M∑
j=1

µ
(j)
t−1(x(j)) + β

1/2
t σ

(j)
t−1(x(j)). (3.3)

ϕt can be maximised by maximising µ(j)
t−1 + β

1/2
t σ

(j)
t−1 separately on X (j). As we need to solve

M at most p dimensional optimisation problems, it requires only O(Mp+1ζ−p) calls in total
to optimise within ζ accuracy – far more favourable than maximising ϕt. We summarise the
resulting procedure below in Algorithm 2.

3.1.2 Practical Considerations

Our practical implementation differs from the above description in the following aspects.
1Theorem 5 in Kandasamy et al. [120] states that Add-GP-UCB achieves essentially the same regret as GP-UCB

with an additive kernel. However, post publication we discovered a mistake in our analysis.
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Algorithm 2 Add-GP-UCB from Kandasamy et al. [120]
Input: Kernels κ(1), . . . , κ(M), Decomposition (X (j))Mj=1

• D0 ← ∅,
• for j = 1, . . . ,M , (µ

(j)
0 , κ

(j)
0 )← (0, κ(j)).

• for t = 1, 2, . . .
1. for j = 1, . . . ,M , x

(j)
t ← argmaxz∈X (j) µ

(j)
t−1(z) + β

1/2
t σ

(j)
t−1(z).

2. xt ←
⋃M
j=1 x

(j)
t .

3. yt ← Query f at xt.
4. Dt = Dt−1 ∪ {(xt,yt)}.
5. Obtain posterior for µ(j)

t , σ
(j)
t for j = 1, . . . ,M conditioned on Dt. See (3.2)

Choice of βt: βt as specified by Theorem 1, usually tends to be conservative in practice [235].
For good empirical performance a more aggressive strategy is required. In our experiments, we
set βt = 0.2p log(2t) which offered a good tradeoff between exploration and exploitation.

Data dependent prior: Our analysis assumes that we know the GP kernel of the prior. In reality
this is rarely the case. In our experiments, we choose the hyperparameters of the kernel by
maximising the GP marginal likelihood [203] periodically.

Initialisation: Marginal likelihood based kernel tuning can be unreliable with few data points.
This is a problem in the first few iterations. Following the recommendations in Bull [27] we
initialise Add-GP-UCB (and GP-UCB) using 50 points selected uniformly at random.

Decomposition and non-additive functions: If f is additive and the decomposition is known,
we use it directly. But it may not always be known or f may not be additive. Then, we could treat
the decomposition as a hyperparameter of the additive kernel and maximise the marginal likeli-
hood w.r.t the decomposition. However, given that there are d!/p!MM ! possible decompositions,
computing the marginal likelihood for all of them is infeasible. We circumvent this issue by
randomly selecting a few (O(d)) decompositions and choosing the one with the largest marginal
likelihood. Intuitively, if the function is not additive, with such a “partial maximisation” we
can hope to capture some existing marginal structure in f . At the same time, even an exhaustive
maximisation will not do much better than a partial maximisation if there is no additive structure.
Empirically, we found that partially optimising for the decomposition performed slightly better
than using a fixed decomposition or a random decomposition at each step. We incorporate this
procedure for finding an appropriate decomposition as part of the kernel hyperparameter learning
procedure.

In all the experiments in this chapter, we keep d fixed and demonstrate Add-GP-UCB for different
values of d. In Chapter 7, we describe more robust choices for tuning the additive decomposition,
along with othe hyperparameters of the kernel which we used in Dragonfly.
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Figure 3.1: An illustration of Add-GP-UCB on a two dimensional function f (2) = f (1)(x(1))+f (2)(x(2))
where x(1) = {x1} and x(2) = {x2}. Suppose we have already evaluated at the points shown via ×. We
construct posteriors for f (1) and f (2) separately (illustrated via the coloured samples). Then we maximise
the individual upper confidence bounds on each f (j) and combine them to obtain the next point xt.

3.2 Experiments

To demonstrate the efficacy of Add-GP-UCB over BO we optimise the acquisition function un-
der a constrained budget. Following, Brochu et al. [23] we use DiRect to maximise ϕt, ϕ̃t. We
compare Add-GP-UCB against GP-UCB, random querying (RAND) and DiRect2. On the real
datasets we also compare it to the Expected Improvement (GP-EI) acquisition function which is
popular in BO applications and the method of Wang et al. [264] which uses a random projection
before applying BO (REMBO). We have multiple instantiations of Add-GP-UCB for different
values for (p,M). We provide results for both the simple regret ST and the time averaged cumu-
lative regret RT/T . We use SE kernels for each additive kernels and use the same scale σ and
bandwidth h hyperparameters for all the kernels. Every 25 iterations we maximise the marginal
likelihood with respect to these 2 hyperparameters in addition to the decomposition.

Synthetic High Dimensional Experiments

First we demonstrate our technique on a series of synthetic examples. For this we construct addi-
tive functions for different values for the maximum group size p′ and the number of groups M ′.
We use the prime to distinguish it from Add-GP-UCB instantiations with different combinations

2There are several optimisation methods based on simulated annealing, cross entropy and genetic algorithms.
We use DiRect since its easy to configure and known to work well in practice.
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of (d,M) values. The p′ dimensional function fp′ is,

fd(x) = log

(
0.1

1

hp
′

p′

exp

(
‖x− v1‖2

2h2
p′

)
+ 0.1

1

hp
′

p′

exp

(
‖x− v2‖2

2h2
p′

)

+ 0.8
1

hp
′

p′

exp

(
‖x− v3‖2

2h2
p′

))
(3.4)

where v1, v2, v3 are fixed p′ dimensional vectors and hp′ = 0.01p′0.1. Then we create M ′ groups
of coordinates by randomly adding p′ coordinates into each group. On each such group we use
fp′ and then add them up to obtain the composite function f . Precisely, f(x) = fp′(x

(1)) + · · ·+
fp′(x

(M)). The remaining D − p′M ′ coordinates do not contribute to the function. Since fp′ has
3 modes, f will have 3M

′ modes.

In the synthetic experiments we use an instantiation of Add-GP-UCB that knows the decompo-
sition – i.e. (p,M) = (p′,M ′) and the grouping of coordinates. We refer to this as Add-?. For
the rest we use a (p,M) decomposition by creating M groups of size at most p and find a good
grouping by partially maximising the marginal likelihood as described previously. We refer to
them as Add-p/M . For non-additive BO methods, we allocate a budget of b = min(5000, 100D)
DiRect function evaluations to optimise the acquisition function. For all Add-p/M methods, we
maximise each group under a budget b/M so as to allow a fair comparison.

The results are given in Figures 3.2-3.4. We refer to each example by the configuration of the
additive function–its (D, p′,M ′) values. In the (10, 3, 3) example Add-? does best since it knows
the correct model and the acquisition function can be maximised within the budget. However
Add-3/4 and Add-5/2 models do well too and outperform GP-UCB. Add-1/10 performs poorly
since it is statistically not expressive enough to capture the true function. In the (24, 11, 2),
(40, 18, 2), (40, 35, 1), (96, 29, 3) and (120, 55, 2) examples Add-? outperforms GP-UCB. How-
ever, it is not competitive with the Add-p/M for small p. Even though Add-? knew the correct
decomposition, there are two possible failure modes since p′ is large. The kernel is complex and
the estimation error is very high in the absence of sufficient data points. In addition, optimising
the acquisition is also difficult. This illustrates our previous argument that using an additive ker-
nel can be advantageous even if the function is not additive or the decomposition is not known.
In the (24, 6, 4), (40, 5, 8) and (96, 5, 19) examples Add-? performs best as p′ is small enough.
But again, almost all Add-p/M instantiations outperform GP-UCB. In contrast to the small D
examples, for large D, GP-UCB and Add-p/M with large d perform worse than DiRect. This is
probably because our budget for maximising ϕt is inadequate to optimise the acquisition func-
tion to sufficient accuracy. For some of the large D examples the cumulative regret is low for
Add-GP-UCB and Add-p/M with large d. This is probably since they have already started ex-
ploiting where as the Add-p/M with small d methods are still exploring. We posit that if we run
for more iterations we will be able to see the improvements.
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Figure 3.2: Results on the synthetic datasets for high dimensional Bandits. In all figures the x-axis
is the number of queries and the y-axis is the regret in log scale. We have indexed each experiment by
their (p, p′,M ′) values. The first column is the simple regret Sn for the experiments with (p, p′,M ′) set
to (10, 3, 3), (24, 6, 4), and (24, 11, 2). The second column is RT /T for the same experiments. In some
figures, the error bars are not visible since they are small and hidden by the bullets. All figures were
produced by averaging over 20 independent runs.
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Figure 3.3: Results on the synthetic datasets for high dimensional Bandits. See caption in Figure 3.2
for details. The first column is the simple regret Sn for the experiments with (p, p′,M ′) set to (40, 5, 8),
(40, 18, 2), and (40, 35, 1). The second column is RT /T for the same experiments.
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Figure 3.4: Results on the synthetic datasets for high dimensional Bandits. See caption in Figure 3.2 for
details. The first column is the simple regret Sn for the experiments with (p, p′,M ′) set to (96, 5, 19),
(96, 29, 3), and (120, 55, 2). The second column is RT /T for the same experiments.
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Figure 3.5: Results on the Astrophysical experiment (a) and the Viola and Jones dataset (b). The x-axis
is the number of queries and the y-axis is the maximum value. All figures were produced by averaging
over atleast 15 runs.

SDSS Astrophysical Dataset

Here we used Galaxy data from the Sloan Digital Sky Survey (SDSS). The task is to find the
maximum likelihood estimators for a simulation based astrophysical likelihood model. Data and
software for computing the likelihood are taken from Tegmark et al [244]. The software itself
takes in only 9 parameters but we augment this to 20 dimensions to emulate the fact that in
practical astrophysical problems we may not know the true parameters on which the problem is
dependent. This also allows us to effectively demonstrate the superiority of our methods over
alternatives.

We have shown the Maximum value obtained over 400 iterations of each algorithm in Fig-
ure 3.5(a). Note that RAND outperforms DiRect here since a random query strategy is effectively
searching in 9 dimensions. Despite this advantage to RAND all BO methods do better. More-
over, despite the fact that the function may not be additive, all Add-p/M methods outperform
GP-UCB. Since the function only depends on 9 parameters we use REMBO with a 9 dimen-
sional projection. Yet, it is not competitive with the Add-p/M methods. Possible reasons for this
may include the scaling of the parameter space by

√
d in REMBO and the imperfect optimisation

of the acquisition function. Here Add-5/4 performs slightly better than the rest since it seems to
have the best tradeoff between being statistically expressive enough to capture the function while
at the same time be easy enough to optimise the acquisition function within the allocated budget.

Viola & Jones Face Detection

The Viola & Jones (VJ) Cascade Classifier [254] is a popular method for face detection in com-
puter vision based on the Adaboost algorithm. The K-cascade has K weak classifiers which
outputs a score for any given image. When we wish to classify an image we pass that image
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through each classifier. If at any point the score falls below a certain threshold the image is clas-
sified as negative. If the image passes through all classifiers then it is classified as positive. The
threshold values at each stage are usually pre-set based on prior knowledge. There is no reason
to believe that these threshold values are optimal. In this experiment we wish to find an optimal
set of values for these thresholds by optimising the classification accuracy over a training set.

For this task, we use 1000 images from the Viola & Jones face dataset containing both face and
non-face images. We use the implementation of the VJ classifier that comes with OpenCV [22]
which uses a 22-stage cascade and modify it to take in the threshold values as a parameter. As
our domain X we choose a neighbourhood around the configuration given in OpenCV. Each
function call takes about 30-40 seconds and is the the dominant cost in this experiment. We use
1000 DiRect evaluations to optimise the acquisition function for GP-UCB, GP-EI and REMBO
and 900 for the Add-p/M instantiations. Since we do not know the structure of the function
we use REMBO with a 5 dimensional projection. The results are given in Figure 3.5(b). Not
surprisingly, REMBO performs worst as it is only searching on a 5 dimensional space. Bar-
ring Add-1/22 all other instantiations perform better than GP-UCB and GP-EI with Add-6/4
performing the best. Interestingly, we also find a value for the thresholds that outperform the
configuration used in OpenCV.

3.3 Proofs of Theoretical Results

We prove Theorem 14 from Chapter 3.1. For this we will use the following result taken from Seeger
et al. [216].

Theorem 15. (Bound on Information Gain, [216]) Suppose that X is compact and κ is a kernel
on d dimensions satisfying Assumption 1. Choose any τ > 0, and let Nn = C9n

τ log(n) where
C9 = 4p + 2. For any n∗ ∈ {1, . . . ,min(n,Nn)}, let Bκ(n∗) =

∑
s>n∗

λs. Here (λi)i∈N are the
eigenvalues of κ w.r.t the uniform distribution over X . Then,

Ψn ≤ inf
τ

( 1/2

1− e−1
· max
r∈{1,...,n}

(
n∗ log(rNn/η

2) + C9η
2(1− r/n)(nτ+1Bκ(n∗) + 1) log n

)
+O(n1−τ/p)

)
.

Proof of Theorem 14-1 (Additive SE Kernel)

Proof. We will use bounds on the eigenvalues for the simple squared exponential kernel given in
[216]. It was shown that the eigenvalues {λ(i)

s } of κ(i) satisfied λ(i)
s ≤ cpBs1/pi whereB < 1 (See

Remark 1). Since the kernel is additive, and x(i) ∩ x(j) = ∅ the eigenfunctions corresponding
to κ(i) and κ(j) will be orthogonal. Hence the eigenvalues of κ will just be the union of the
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eigenvalues of the individual kernels, i.e. {λs} =
⋃M
j=1{λ

(j)
s }. As B < 1, λ(i)

s ≤ cpBs1/p . Let
n+ = bn∗/Mc and α = − logB. Then,

Bκ(n∗) =
∑
s>n∗

λs ≤Mc
∑
s>n+

Bs1/p ≤ cpM

(
Bn

1/p
+ +

∫ ∞
n+

exp(−αx1/p)

)
dx

≤ cpM
(
Bn

1/p
+ + pα−pΓ(p, αn

1/p
+ )
)
≤ cpMe−αn

1/p
+

(
1 + p!pα−p(αn

1/p
+ )p−1

)
.

The last step holds true whenever αn1/p
+ ≥ 1. Here in the second step we bound the series by an

integral and in the third step we used the substitution y = αx1/p to simplify the integral. Here
Γ(s, x) =

∫∞
x
ts−1e−tdt is the (upper) incomplete Gamma function. In the last step we have used

the following identity and the bound for integral s and x ≥ 1

Γ(s, x) = (s− 1)!e−x
s−1∑
k=0

xk

k!
≤ s!e−xxd−1.

By using τ = p and by using n∗ ≤ (M + 1)n+, we use Theorem 15 to obtain the following
bound on Ψn,

Ψn ≤
1/2

1− e−1
max

r∈{1,...,T}

(
(M + 1)n+ log(rNn/η

2)+

C9η
2(1− r/n) log n

(
1 + cpMe−αn

1/p
+ np+1

(
1 + p!pα−p(αn

1/p
+ )p−1

)))
. (3.5)

Now we need to pick n+ so as to balance these two terms. We will choose n+ =
(

log(nNn)
α

)p
which is less than min(n,Nn)/M for sufficiently large n. Then e−αn

1/p
+ = 1/nNn. Then the first

term S1 inside the paranthesis is,

S1 = (M + 1) logp
(
nNn

α

)
log

(
rNn

η2

)
∈ O (M (log(nNn))p log(rNn))

∈ O
(
M
(
log(np+1 log n)

)p
log(rnp log n)

)
∈ O

(
Mpp+1(log n)p+1 +Mpp(log n)p log(r)

)
.

Note that the constant in front has exponential dependence on d but we ignore it since we already
have dd, (log n)d terms. The second term S2 becomes,

S2 = C9η
2(1− r/n) log n

(
1 +

cpM

nNn

np+1
(
1 + p!pα−p(log(nNn)p−1

)))
≤ C9η

2(1− r/n)

(
log n+

cpM

C9

(
1 + p!pα−p(log(nNn)p−1

)))
≤ C9η

2(1− r/n)
(
O(log n) +O(1) +O(p!pp(log n)p−1)

))
∈ O

(
(1− r/n)p!pp(log n)p−1

)
.
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Since S1 dominates S2, we should choose r = n to maximise the RHS in (3.5). This gives us,

Ψn ∈ O
(
Mpp+1(log n)p+1

)
∈ O

(
Dpp(log n)p+1

)
.

Proof of Theorem 14-2 (Additive Matérn Kernel)

Proof. Once again, we use bounds given in [216]. It was shown that the eigenvalues {λ(i)
s } for

κ(i) satisfied λ(i)
s ≤ cps

−
2ν+pj
pj (See Remark 1). By following a similar argument to above we

have {λs} =
⋃M
j=1{λ

(j)
s } and λ(i)

s ≤ cps−
2ν+p
p . Let n+ = bn∗/Mc. Then,

Bκ(n∗) =
∑
s>n∗

λs ≤Mcp
∑
s>n+

s−
2ν+p
p

≤Mcp
(
n
− 2ν+p

p

+ +

∫ ∞
n+

s−
2ν+p
p

)
≤ C82pMn

1− 2ν+p
p

+ .

where C8 is an appropriate constant. We set n+ = (nNn)
p

2ν+p (log(TNn))−
p

2ν+p and accordingly
we have the following bound on Ψn as a function of n+ ∈ {1, . . . ,min(n,Nn)/M},

Ψn ≤ inf
τ

(
1/2

1− e−1
max

r∈{1,...,n}

(
(M + 1)n+ log(rNn/η

2)+ (3.6)

C9η
2(1− r/n) (log n+ C82pMn+ log(nNn))

)
+O(n1−τ/p)

)
.

Since this is a concave function on r we can find the optimum by setting the derivative w.r.t r to
be zero. We get r ∈ O(n/2p log(nNn)) and hence,

Ψn ∈ inf
τ

(
O
(
Mn+ log

(
nNn

2p log(nNn)

))
+O (M2pn+ log(nNn)) +O(n1−τ/p)

)
∈ inf

τ

(
O
(
M2p log(nNn)

(
nτ+1 log(n)

(τ + 1) log(n) + log log n

) p
2ν+p

)
+O(n1−τ/p)

)
∈ inf

τ

(
O
(
M2p log(nNn)n

(τ+1)p
2ν+p

)
+O(n1−τ/p)

)
∈ O

(
M2pn

p(p+1)
2ν+p(p+1) log(n)

)
.

Here in the second step we have substituted the values for n+ first and then Nn. In the last step
we have balanced the polynomial dependence on n in both terms by setting τ = 2νp

2ν+p(p+1)
.
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Remark 1. The eigenvalues and eigenfunctions for the kernel are defined with respect to a base
distribution on X . In the development of Theorem 15, Srinivas et al. [235] draw Nn samples
from the uniform distribution on X . Hence, the eigenvalues/eigenfunctions should be w.r.t the
uniform distribution. The bounds given in Seeger et al. [216] are for the uniform distribution
for the Matérn kernel and a Gaussian Distribution for the Squared Exponential Kernel. For the
latter case, Srinivas et al. [235] argue that the uniform distribution still satisfies the required tail
constraints and therefore the bounds would only differ up to constants.
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Chapter 4

Multi-fidelity Bandits

Traditionally, the bandit framework and Bayesian optimisation methods have only been studied
at “single fidelity” settings. It is assumed that the decision maker has access to just a single
expensive function f which needs to be maximised by repeatedly obtaining noisy evaluations. In
many practical problems however, cheap approximations to f might be available. These “lower
fidelity” approximations can be used to discard regions in X with low function value. We can
then reserve the expensive evaluations for a small promising region.

For instance, when tuning hyperparameters of learning algorithms, the goal is to maximise a cross
validation score on a training set, which can be expensive if the training set is large. However
validation curves tend to vary smoothly with training set size; therefore, we can train and cross
validate on small subsets to approximate the validation accuracies of the entire dataset. For a con-
crete example, consider kernel density estimation (KDE), where we need to tune the bandwidth
h of a kernel when using a dataset of size 3000. Figure 4.1 shows the average cross validation
likelihood against h for a dataset of size n = 3000 and a smaller subset of size n = 300. Since
the cross validation performance of a hyperparameter depends on the training set size [252], we
can obtain only a biased estimate of the cross validation performance with 3000 points using a
subset of size 300. Consequently, the two maximisers are also different. That said, the curve
for n = 300 approximates the n = 3000 curve quite well. Since training and cross validation
on small n is cheap, we can use it to eliminate bad values of the hyperparameters and reserve
the expensive experiments with the entire dataset for the promising hyperparameter values (for
example, boxed region in Figure 4.1).

In the conventional treatment for online advertising, each query to f is, say, the public display

n=300
n=3000

Figure 4.1: Average cross validation log likelihood on
datasets of size 300 and 3000 on a synthetic kernel den-
sity estimation task. The crosses are the maxima. The
maximisers are different since optimal hyperparameters
depend on the training set size. That said, the curve for
n = 300 approximates the n = 3000 curve quite well.
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of an ad on the internet for a certain time period. However, we could also choose smaller experi-
ments by, say, confining the display to a small geographic region and/or for shorter periods. The
estimate is biased, since users in different geographies are likely to have different preferences,
but will nonetheless be useful in gauging the all round performance of an ad. In optimal policy
search in robotics and autonomous driving, vastly cheaper computer simulations are used to ap-
proximate the expensive real world performance of the system [48, 250]. Scientific experiments
can be approximated to varying degrees using less expensive data collection, analysis, and com-
putational techniques [191]. In this chapter, we study techniques which can leverage these cheap
approximations

Related Work

There has been some interest in multi-fidelity methods for optimisation in many applied do-
mains of research such as hyperparameter tuning and industrial design [60, 100, 139, 197, 241].
However, these works do not formalise or analyse notions of regret in the multi-fidelity setting.
Multi-fidelity methods are used in the robotics community for reinforcement learning tasks by
modeling each fidelity as a Markov decision process [48]. Zhang and Chaudhuri [279] study
active learning with a cheap weak labeler and an expensive strong labeler. The objective of these
papers however is not to handle the exploration-exploitation trade-off inherent to the bandit set-
ting. Some work has studied multi-fidelity methods for hyperparameter tuning [5, 154, 214].
While some of the above tasks can be framed as optimisation problems, the methods themselves
are specific to the problem considered. Our methods here are more general as they apply to any
bandit optimisation task. Bogunovic et al. [17] study a version of BO where an algorithm might
use cheap, noisy, yet unbiased approximations to a function f ; but as we will see shortly, this
is different to the multi-fidelity problem where the approximations can only provide biased ap-
proximations. A line of work on budgeted multi-armed bandits [249, 272] study a variant of the
K-armed bandit where each arm has a random reward and cost and the goal is to play the arm
with the highest reward/cost ratio as much as possible. This is different from our setting where
each arm has multiple fidelities which serve as an approximation.

This chapter describes our line of work [123, 124, 125, 127] on this topic, where we studied
multi-fidelity problems under various bandit settings. To the best of our knowledge, this is
the first line of work that theoretically formalises and analyses this problem. Following this,
some work has extended our ideas here to develop multi-fidelity methods in other settings, both
Bayesian [234] and otherwise [217, 218]. This chapter is broken down into three main parts.
In Chapter 4.1, we study multi-fidelity bandits with a finite number of approximations in the
K-armed setting, in Chapter 4.2, we study Bayesian optimisation with a finite number of ap-
proximations, and in Chapter 4.3, we study Bayesian optimisation with a continuous spectrum
of approximations. The proofs of the theoretical results in each sub-chapter above is given in
Chapters 4.4, 4.5, and 4.6 respectively.
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4.1 Multi-fidelity K-armed Bandits

Since the seminal work of Robbins [207], the multi-armed bandit has become an attractive
framework for studying exploration-exploitation trade-offs inherent to tasks arising in online
advertising, finance and other fields. As described in Chapter 2.3, in its most basic form we
have a set X = {1, . . . , K} of K arms (e.g. K ads in online advertising). At each time step
t = 1, 2, . . . , an arm is played and a corresponding reward is realised. The well known (UCB) al-
gorithm [10], achieves regretO(K log(n)) after n plays (ignoring mean rewards) and is minimax
optimal [151].

In this chapter, we study the multi-fidelity version on this problem, where we associate a cost to
playing each arm. Moreover, we allow the decision maker to play any arm at a lower cost and
obtain a cheap approximation of the desired outcome. For instance, in on-line advertising the
goal is to maximise the cumulative number of clicks over a given time period. Conventionally, an
arm pull maybe thought of as the display of an ad for a specific time, say one hour. However, we
may approximate its hourly performance by displaying the ad for shorter periods. This estimate
is biased (and possibly noisy), as displaying an ad for longer intervals changes user behaviour. It
can nonetheless be useful in gauging the long run click through rate. We can also obtain biased
estimates of an ad by displaying it only to certain geographic regions or age groups.

We will refer to such approximations as fidelities. Consider a 2-fidelity problem where the cost
at the low fidelity is λ(1) and the cost at the high fidelity is λ(2). We will present a cost weighted
notion of regret for this setting for a strategy that expends a capital of Λ units. A classical
K-armed bandit strategy such as UCB, which only uses the highest fidelity, can obtain at best
O(λ(2)K log(Λ/λ(2))) regret [151]. In contrast, this paper will present multi-fidelity strategies
that achieve O

(
(λ(1)K + λ(2)|Xg|) log(Λ/λ(2))

)
regret. Here Xg is a (typically) small subset of

arms with high expected reward that can be identified using plays at the (cheaper) low fidelity.
When |Xg| < K and λ(1) < λ(2), such a strategy will outperform the more standard UCB al-
gorithms. Intuitively, this is achieved by using the lower fidelities to eliminate several of “bad”
arms and reserving expensive higher fidelity plays for a small subset of the most promising arms.
We formalise the above intuitions in the sequel. Our main contributions in this section are,

1. A novel bandit formalism when one has access to multiple fidelities for each arm, with
each successive fidelity providing a better approximation to the most expensive one.

2. A new algorithm that we call Multi-Fidelity Upper Confidence Bound (MF-UCB) that
adapts the classical Upper Confidence Bound (UCB) strategies to our multi-fidelity setting.
Empirically, we demonstrate that our algorithm outperforms naive UCB on simulations.

3. A theoretical characterisation of the performance of MF-UCB that shows that the algo-
rithm (a) uses the lower fidelities to explore all arms and eliminates arms with low expected
reward, and (b) reserves the higher fidelity plays for arms with rewards close to the optimal
value. We derive a lower bound on the regret and demonstrate that MF-UCB is near-optimal
on this problem.
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4.1.1 Problem Formalism

We now present our formalism for multi-fidelity bandits in the K-armed setting. Recall that in
the classical setting, each arm k ∈ X = {1, . . . , K} is associated with a real valued distribution
θk with mean µk. Let X? = argmaxk∈X µk be the set of optimal arms, k? ∈ X? be an optimal arm
and µ? = µk? denote the optimal mean value. A bandit strategy would play an arm It ∈ X at each
time step t and observe a sample from θIt . Its goal is to maximise the sum of expected rewards
after n time steps

∑n
t=1 µIt , or equivalently minimise the cumulative pseudo-regret

∑n
t=1 µ?−µIt

for all values of n. In other words, the objective is to be competitive, in expectation, against an
oracle that plays an optimal arm all the time.

In the multi-fidelity set up, we differ from the usual bandit setting in the following aspect. For
each arm k, we have access toM−1 successively approximate distributions θ(1)

k , θ
(2)
k , . . . , θ

(M−1)
k

to the desired distribution θ(M)
k = θk. We will refer to these approximations as fidelities. Clearly,

these approximations are meaningful only if they give us some information about θ(M)
k . In what

follows, we will assume that the mth fidelity mean of an arm is within ζ(m), a known quan-
tity, of its highest fidelity mean, where ζ(m), decreasing with m, characterise the successive
approximations. That is, |µ(M)

k − µ
(m)
k | ≤ ζ(m) for all k ∈ X and m = 1, . . . ,M , where

ζ(1) > ζ(2) > · · · > ζ(M) = 0 and the ζ(m)’s are known. It is possible for the lower fidelities
to be misleading under this assumption: there could exist an arm k with µ(M)

k < µ? = µ
(M)
k?

but
with µ(m)

k > µ? and/or µ(m)
k > µ

(m)
k?

for any m < M . In other words, we wish to explicitly ac-
count for the biases introduced by the lower fidelities, and not treat them as just a higher variance
observation of an expensive experiment. This problem of course becomes interesting only when
lower fidelities are more attractive than higher fidelities in terms of some notion of cost. Towards
this end, we will assign a cost λ(m) (such as advertising time, money etc.) to playing an arm at
fidelity m where λ(1) < λ(2) · · · < λ(M).

Notation: In this section and Chapter 4.4, T (m)
k,t denotes the number of plays at arm k, at

fidelity m until t time steps. T (>m)
k,t is the number of plays at fidelities greater than m. Q(m)

t =∑
k∈X T

(m)
k,t is the number of fidelity m plays at all arms until time t. X

(m)

k,s denotes the mean of s
samples drawn from θ

(m)
k . Denote ∆

(m)
k = µ?−µ(m)

k −ζ(m). When s refers to the number of plays
of an arm, we will take 1/s = ∞ if s = 0. A denotes the complement of a set A ⊂ K. While
discussing the intuitions in our proofs and theorems we will use �,.,& to denote equality and
inequalities ignoring constants.

Regret in the multi-fidelity setting: A strategy for a multi-fidelity bandit problem, at time t,
produces an arm-fidelity pair (It,mt), where It ∈ K and mt ∈ {1, . . . ,M}, and observes a
sample Xt drawn (independently of everything else) from the distribution θ(mt)

It
. The choice of

(It,mt) could depend on previous arm-observation-fidelity tuples {(Ii, Xi,mi)}t−1
i=1. The multi-

fidelity setting calls for a new notion of regret. For any strategy A that expends Λ units of the
resource, we will define the pseudo-regret R(Λ,A) as follows. Let qt denote the instantaneous
pseudo-reward at time t and rt = µ?−qt denote the instantaneous pseudo-regret. We will discuss
choices for qt shortly. Any notion of regret in the multi-fidelity setting needs to account for this
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instantaneous regret along with the cost of the fidelity at which we played at time t, i.e. λ(mt). In
particular, we will view the means of the arms µ(m)

k and consequently the instantaneous reward qt
as being the reward per unit cost expended. Moreover, we should receive no reward (maximum
regret) for any unused capital. These observations lead to the following definition,

R(Λ,A) = Λµ? −
N∑
t=1

λ(mt)qt =

(
Λ−

N∑
t=1

λ(mt)

)
µ?︸ ︷︷ ︸

r̃(Λ,A)

+
N∑
t=1

λ(mt)rt︸ ︷︷ ︸
R̃(Λ,A)

. (4.1)

Above, N is the (random) number of plays within capital Λ by A, i.e. the largest n such that∑n
t=1 λ

(mt) ≤ Λ. To motivate our choice of qt we consider an online advertising example where
λ(m) is the advertising time at fidelity m and µ(m)

k is the expected number of clicks per unit time.
While we observe from θ

(mt)
It

at time t, we wish to reward the strategy according to its highest
fidelity distribution θ

(M)
It

. Therefore regardless of which fidelity we play we set qt = µ
(M)
It

.
Here, we are competing against an oracle which plays an optimal arm at any fidelity all the time.
Note that we might have chosen qt to be µ(mt)

It
. However, this does not reflect the motivating

applications for the multi-fidelity setting that we consider. For instance, a clickbait ad might
receive a high number of clicks in the short run, but its long term performance might be poor.
Furthermore, for such a choice, we may as well ignore the rich structure inherent to the multi-
fidelity setting and simply play the arm argmaxm,k µ

(m)
k at each time. There are of course other

choices for qt that result in very different notions of regret; we discuss this briefly towards the
end of the chapter.

The distributions θ(m)
k need to be well behaved for the problem to be tractable. We will assume

that they satisfy concentration inequalities of the following form. For all ε > 0,

∀m, k, P
(
X

(m)

k,s − µ(m)
k > ε

)
< νe−sψ(ε), P

(
X

(m)

k,s − µ(m)
k < −ε

)
< νe−sψ(ε). (4.2)

Here ν > 0 and ψ is an increasing function with ψ(0) = 0 and is at least increasing linearly
ψ(x) ∈ Ω(x). For example, if the distributions are sub-Gaussian, then ψ(x) ∈ Θ(x2).

The performance of a multi-fidelity strategy which switches from low to high fidelities can be
worsened by artificially inserting fidelities. Consider a scenario where λ(m+1) is only slightly
larger than λ(m) and ζ(m+1) is only slightly smaller than ζ(m). This situation is unfavourable
since there isn’t much that can be inferred from the (m + 1)th fidelity that cannot already be
inferred from the mth by expending the same cost. We impose the following regularity condition
to avoid such situations.

Assumption 2. The ζ(m)’s decay fast enough such that
∑m

i=1
1

ψ(ζ(i))
≤ 1

ψ(ζ(m+1))
for all m < M .

Assumption 2 is not necessary to analyse our algorithm, however, the performance of MF-UCB
when compared to UCB is most appealing when the above holds. In cases where M is small
enough and can be treated as a constant, the assumption is not necessary. For sub-Gaussian
distributions, the condition is satisfied for an exponentially decaying (ζ(1), ζ(2), . . . ).
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Our goal is to design a strategy A0 that has low expected pseudo-regret E[R(Λ,A0)] for all
values of (sufficiently large) Λ, i.e. the equivalent of an anytime strategy, as opposed to a fixed
time horizon strategy, in the usual bandit setting. The expectation is over the observed rewards
which also dictates the number of plays N . From now on, for simplicity we will write R(Λ)
when A is clear from context and refer to it just as regret.

4.1.2 The Multi-Fidelity Upper Confidence Bound (MF-UCB) Algorithm

As the name suggests, the MF-UCB algorithm maintains an upper confidence bound correspond-
ing to µ(m)

k for each m ∈ {1, . . . ,M} and k ∈ K based on its previous plays. Following UCB
strategies [9, 10], we define the following set of upper confidence bounds,

B(m)
k,t (s) = X

(m)

k,s + ψ−1
(ρ log t

s

)
+ ζ(m), for all m ∈ {1, . . . ,M} , k ∈ K

Bk,t = min
m=1,...,M

B(m)
k,t (T

(m)
k,t−1). (4.3)

Here ρ is a parameter in our algorithm and ψ is from (4.2). Each B(m)
k,t (T

(m)
k,t−1) provides a

high probability upper bound on µ(M)
k with their minimum Bk,t giving the tightest bound (see

Chapter 4.4). Similar to UCB, at time t we play the arm It with the highest upper bound
It = argmaxk∈X Bk,t.
Since our setup has multiple fidelities associated with each arm, the algorithm needs to determine
at each time t which fidelity (mt) to play the chosen arm (It). For this consider an arbitrary
fidelity m < M . The ζ(m) conditions on µ(m)

k imply a constraint on the value of µ(M)
k . If, at

fidelity m, the uncertainty interval ψ−1(ρ log(t)/T
(m)
It,t−1) is large, then we have not constrained

µ
(M)
It

sufficiently well yet. There is more information to be gleaned about µ(M)
It

from playing the
arm It at fidelity m. On the other hand, playing at fidelity m indefinitely will not help us much
since the ζ(m) elongation of the confidence band caps off how much we can learn about µ(M)

It

from fidelity m; i.e. even if we knew µ
(m)
It

, we will have only constrained µ(M)
It

to within a±ζ(m)

interval. Our algorithm captures this natural intuition. Having selected It, we begin checking at
the first fidelity. If ψ−1(ρ log(t)/T

(1)
It,t−1) is smaller than a threshold γ(1) we proceed to check the

second fidelity, continuing in a similar fashion. If at any point ψ−1(ρ log(t)/T
(m)
It,t−1) ≥ γ(m), we

play It at fidelity mt = m. If we go all the way to fidelity M , we play at mt = M . The resulting
procedure is summarised below in Algorithm 3.

Algorithm 3 MF-UCB from Kandasamy et al. [125]
• for t = 1, 2, . . .

1. Choose It ∈ argmaxk∈X Bk,t. (See equation (4.3).)
2. mt = minm {m | ψ−1(ρ log t/T

(m)
It,t−1) ≥ γ(m) ∨ m = M} (See equation (4.4).)

3. Play X ∼ θ
(mt)
It

.
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Choice of γ(m): In our algorithm, we choose

γ(m) = ψ−1

(
λ(m)

λ(m+1)
ψ
(
ζ(m)

))
(4.4)

To motivate this choice, note that if ∆
(m)
k = µ? − µ(m)

k − ζ(m) > 0 then we can conclude that
arm k is not optimal. Step 2 of the algorithm attempts to eliminate arms for which ∆

(m)
k & γ(m)

from plays above the mth fidelity. If γ(m) is too large, then we would not eliminate a sufficient
number of arms whereas if it was too small we could end up playing a suboptimal arm k (for
which µ(m)

k > µ?) too many times at fidelity m. As will be revealed by our analysis, the given
choice represents an optimal tradeoff under the given assumptions.

4.1.3 Theoretical Analysis

We will be primarily concerned with the term R̃(Λ,A) = R̃(Λ) from (4.1). r̃(Λ,A) is a residual
term; it is an artefact of the fact that after the N + 1th play, the spent capital would have exceeded
Λ. For any algorithm that operates oblivious to a fixed capital, it can be bounded by λ(M)µ? which
is negligible compared to R̃(Λ). Accordingly, we have the following expressions for R̃(Λ):

R̃(Λ) =
∑
k∈X

∆
(M)
k

(
M∑
m=1

λ(m)T
(m)
k,N

)
, (4.5)

Central to our analysis will be the following partitioning of X . First denote the set of arms
whose fidelity m mean is within η of µ? to be J (m)

η = {k ∈ X ; µ? − µ
(m)
k ≤ η}. Define

X (1) , J (1)

ζ(1)+2γ(1) = {k ∈ X ; ∆
(1)
k > 2γ(1)} to be the arms whose first fidelity mean µ(1)

k is at
least ζ(1) + 2γ(1) below the optimum µ?. Then we recursively define,

X (m) , J (m)

ζ(m)+2γ(m) ∩
(m−1⋂

`=1

J (`)

ζ(`)+2γ(`)

)
, ∀m≤M − 1,

X (M) , X? ∩
(M−1⋂

`=1

J (`)

ζ(`)+2γ(`)

)
. (4.6)

Observe that for all k ∈ X (m), ∆
(m)
k > 2γ(m) and ∆

(`)
k ≤ 2γ(`) for all ` < m. For what follows,

for any k ∈ X , JkK will denote the partition k belongs to, i.e. JkK = m s.t. k ∈ X (m). We
will see that X (m) are the arms that will be played at the mth fidelity but can be excluded from
fidelities higher than m using information at fidelity m. See Figure 4.2 for an illustration of these
partitions.

Regret Bound for MF-UCB

Recall that N =
∑M

m=1Q
(m)
N is the total (random) number of plays by a multi-fidelity strategy

within capital Λ. Let nΛ = bΛ/λ(M)c be the (non-random) number of plays by any strategy that
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K(2)K(2)

K(1)K(1)

K(4)K(4)

K(3)K(3)

K⇤K⇤

J (2)

⇣(2)+2�(2)J (2)

⇣(2)+2�(2)

J (3)

⇣(3)+2�(3)J (3)

⇣(3)+2�(3)

J (1)

⇣(1)+2�(1)J (1)

⇣(1)+2�(1)

Figure 4.2: Illustration of the partition
X (m)’s for a M = 4 fidelity problem.
The sets J (m)

ζ(m)+2γ(m) are indicated next to

their boundaries. X (1),X (2),X (3),X (4) are
shown in yellow, green, red and purple re-
spectively. The optimal arms X? are shown
as a black circle.

operates only on the highest fidelity. Since λ(m) < λ(M) for all m < M , N could be large for
an arbitrary multi-fidelity method. However, our analysis reveals that for MF-UCB, N . nΛ

with high probability. The following theorem bounds R for MF-UCB. The proof is given in
Chapter 4.4.2. For clarity, we ignore the constants but they are fleshed out in the proofs.

Theorem 16 (Regret Bound for MF-UCB). Let ρ > 4. There exists Λ0 depending on λ(m)’s such
that for all Λ > Λ0, MF-UCB satisfies,

E[R(Λ)]

log(nΛ)
.

∑
k/∈X?

∆
(M)
k · λ(JkK)

ψ(∆
(JkK)
k )

�
M∑
m=1

∑
k∈X (m)

∆
(M)
k

λ(m)

ψ(∆
(m)
k )

Let us compare the above bound to UCB whose regret is E[R(Λ)]
log(nΛ)

�∑k/∈X? ∆
(M)
k

λ(M)

ψ(∆
(M)
k )

. We will

first argue that MF-UCB does not do significantly worse than UCB in the worst case. Modulo the
∆

(M)
k log(nΛ) terms, regret for MF-UCB due to arm k is Rk,MF-UCB � λ(JkK)/ψ(∆

(JkK)
k ). Consider

any k ∈ X (m), m < M for which ∆
(m)
k > 2γ(m). Since

∆
(M)
k ≤ ∆

(JkK)
k + 2ζ(JkK) . ψ−1

(λ(JkK+1)

λ(JkK) ψ(∆
(JkK)
k )

)
,

a (loose) lower bound for UCB for the same quantity is Rk,UCB � λ(M)/ψ(∆
(M)
k ) & λ(M)

λ(JkK+1)

Rk,MF-UCB. Therefore for any k ∈ X (m),m < M , MF-UCB is at most a constant times worse
than UCB. However, whenever ∆

(JkK)
k is comparable to or larger than ∆

(M)
k , MF-UCB outperforms

UCB by a factor of λ(JkK)/λ(M) on arm k. As can be inferred from the theorem, most of the cost
invested by MF-UCB on arm k is at the JkKth fidelity. For example, in Fig. 4.2, MF-UCB would
not play the yellow arms X (1) beyond the first fidelity (more than a constant number of times).
Similarly all green and red arms are played mostly at the second and third fidelities respectively.
Only the blue arms are played at the fourth (most expensive) fidelity. On the other hand UCB
plays all arms at the fourth fidelity. Since lower fidelities are cheaper MF-UCB achieves better
regret than UCB.

It is essential to note here that ∆
(M)
k is small for arms in in X (M). These arms are close to the

optimum and require more effort to distinguish than arms that are far away. MF-UCB, like UCB
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, invests log(nΛ)λ(M)/ψ(∆
(M)
k ) capital in those arms. That is, the multi-fidelity setting does not

help us significantly with the “hard-to-distinguish” arms. That said, in cases where K is very
large and the sets X (M) is small the bound for MF-UCB can be appreciably better than UCB.

Lower Bound

Since, N ≥ nΛ = bΛ/λ(M)c, any multi-fidelity strategy which plays a suboptimal arm a polyno-
mial number of times at any fidelity after n time steps, will have worse regret than MF-UCB (and
UCB). Therefore, in our lower bound we will only consider strategies which satisfy the following
condition.

Assumption 3. Consider the strategy after n plays at any fidelity. For any arm with ∆
(M)
k > 0,

we have E[
∑M

m=1 T
(m)
k,n ] ∈ o(na) for any a > 0 .

For our lower bound we will consider a set of Bernoulli distributions θ(m)
k for each fidelity m and

each arm k with mean µ(m)
k . It is known that for Bernoulli distributions ψ(ε) ∈ Θ(ε2). To state

our lower bound we will further partition the set X (m) into two sets X (m)
3 ,X (m)

7 as follows,

X (m)
3 = {k ∈ X (m) : ∆

(`)
k ≤ 0 ∀` < m}, X (m)

7 = {k ∈ X (m) : ∃ ` < m s.t. ∆
(`)
k > 0}.

(4.7)

For an arm k ∈ X (m), our lower bound, given below, is different depending on whether k belongs
to X (m)

3 or X (m)
7 .

Theorem 17 (Lower bound for R(Λ)). Consider any set of Bernoulli reward distributions with
µ? ∈ (1/2, 1) and ζ(1) < 1/2. Then, for any strategy satisfying Assumption 3 the following holds.

lim inf
Λ→∞

E[R(Λ)]

log(nΛ)
≥ c ·

M∑
m=1

 ∑
k∈X (m)

3

∆
(M)
k

λ(m)

∆
(m)
k

2 +
∑

k∈X (m)
7

∆
(M)
k min

`∈Lm(k)

λ(`)

∆
(`)
k

2

 (4.8)

Here c is a problem dependent constant. Lm(k) = {` < m : ∆
(`)
k > 0}∪ {m} is the union of the

mth fidelity and all fidelities smaller than m for which ∆
(`)
k > 0.

Comparing this with Theorem 16 we find that MF-UCB meets the lower bound on all arms
k ∈ X (m)

3 , ∀m. However, it may be loose on any k ∈ X (m)
7 . The gap can be explained as

follows. For k ∈ X (m)
7 , there exists some ` < m such that 0 < ∆

(`)
k < 2γ(`). As explained

previously, the switching criterion of MF-UCB ensures that we do not invest too much effort
trying to distinguish whether ∆

(`)
k < 0 since ∆

(`)
k could be very small. That is, we proceed to

the next fidelity only if we cannot conclude ∆
(`)
k . γ(`). However, since λ(m) > λ(`) it might

be the case that λ(`)/∆
(`)
k

2
< λ(m)/∆

(m)
k

2
even though ∆

(m)
k > 2γ(m). Consider for example

a two fidelity problem where ∆ = ∆
(1)
k = ∆

(2)
k < 2

√
λ(1)/λ(2)ζ(1). Here it makes sense to
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Figure 4.3: An illustration of the means of the arms used the simulation problems. The top row are the
Gaussian reward problems with (K,M) equal to (500, 3), (500, 4) while the second row are the Bernoulli
rewards with (200, 2), (1000, 5) respectively.

distinguish the arm as being suboptimal at the first fidelity with λ(1) log(nΛ)/∆2 capital instead
of λ(2) log(nΛ)/∆2 at the second fidelity. However, MF-UCB distinguishes this arm at the higher
fidelity as ∆ < 2γ(m) and therefore does not meet the lower bound on this arm. While it might
seem tempting to switch based on estimates for ∆

(1)
k ,∆

(2)
k , this idea is not desirable as estimating

∆
(2)
k for an arm requires log(nΛ)/ψ(∆

(2)
k ) samples at the second fidelity; this is is exactly what

we are trying to avoid for the majority of the arms via the multi-fidelity setting. We leave it as an
open problem to resolve this gap.

4.1.4 Experiments

We compare UCB against MF-UCB on a series of synthetic problems which were generated as
follows. Denote ~ζ = (ζ(1), ζ(2), . . . , ζ(M)) and ~λ = (λ(1), λ(2), . . . , λ(M)).

1. Gaussian: M = 500, M = 3, ~ζ = (0.2, 0.1, 0), ~λ = (1, 10, 1000).
The high fidelity means were chosen to be a uniform grid in (0, 1). The Gaussian distribu-
tions had standard deviation 0.2.

2. Gaussian: M = 500, M = 4, ~ζ = (1, 0.5, 0.2, 0), ~λ = (1, 5, 20, 50).
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Figure 4.4: Simulations results on the synthetic problems. The first four figures compares UCB against
MF-UCB on four synthetic problems. The title states K,M and the costs λ(1), . . . , λ(M). The first two
used Gaussian rewards and the last two used Bernoulli rewards. The last two figures show the number of
plays by UCB and MF-UCB on a K = 500,M = 3 problem with Gaussian observations (corresponding
to the first figure).
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The high fidelity means were sampled from aN (0, 1) distribution. The Gaussian distribu-
tions had standard deviation 1.

3. Bernoulli: M = 200, M = 2, ~ζ = (0.2, 0), ~λ = (1, 10).
The high fidelity means were chosen to be a uniform grid in (0.1, 0.9). The Gaussian
distributions had standard deviation 1.

4. Bernoulli: M = 1000, M = 5, ~ζ = (0.5, 0.2, 0.1, 0.05, 0), ~λ = (1, 3, 10, 30, 100).
The high fidelity means were chosen to be a uniform grid in (0.1, 0.9). The Gaussian
distributions had standard deviation 1.

Figure 4.3 illustrates the mean values of these arms. In all cases above, the lower fidelity means
were sampled uniformly within a ±ζ(m) band around µ(M)

k . In addition, for the Gaussian distri-
butions we modified the lower fidelity means of the optimal arm µ

(m)
k?
,m < M to be lower than

the corresponding mean of a suboptimal arm. For the Bernoulli rewards, if µ(m)
k fell outside of

(0, 1) its value was truncated. Figure 4.3 illustrates the mean values of these arms.

The results are given in Figure 4.4. Note that MF-UCB outperforms UCB on all these problems.
Critically, note that the gradient of the curve is also smaller than that for UCB – corroborating
our theoretical insights. We have also illustrated the number of plays by MF-UCB and UCB at
each fidelity for one of these problems in the last row. The arms are arranged in increasing order
of µ(M)

k values. As predicted by our analysis, most of the very suboptimal arms are only played
at the lower fidelities. As lower fidelities are cheaper, MF-UCB is able to use more higher fidelity
plays at arms close to the optimum than UCB.

4.2 Multi-fidelity GP Bandits with a Finite Number of Ap-
proximations

In this section, we study the Gaussian process (Bayesian Optimisation) version of the multi-
fidelity bandit problem. Recall, that in BO settings, we wish to optimise a function f : X → R
by sequentially querying it at some x ∈ X and obtaining a possibly noisy evaluation of f(x). We
will refer to conventional methods which assume access to only this single expensive function
of interest as single fidelity methods. In contrast, in our setting, we will have access to cheap
approximations to f which can be queried by the decision maker to speed up the optimisation
process. Our contributions in this section are as follows.

1. We present a formalism for multi-fidelity bandit optimisation using Gaussian process (GP) as-
sumptions on f and its approximations. We develop a novel algorithm, Multi-Fidelity Gaus-
sian Process Upper Confidence Bound (MF-GP-UCB) for this setting.

2. Our theoretical analysis proves that MF-GP-UCB explores the space X at lower fidelities and
uses the high fidelities in successively smaller regions to converge on the optimum. As lower
fidelity queries are cheaper, MF-GP-UCB has better regret than single fidelity strategies which
have to rely on the expensive function to explore the entire space.
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3. We demonstrate that MF-GP-UCB outperforms single fidelity methods and other alternatives
empirically, via a series of synthetic examples, three hyperparameter tuning tasks and one
inference problem in astrophysics.

4.2.1 Problem Formalism & Challenges

Recall that we wish to maximise a function f : X → R. For simplicity, we will assume that
X is a finite discrete or compact subset of [0, r]d. Here r > 0 and d is the dimension of X . If
x? ∈ argmaxx∈X f(x) is a maximiser of f , and f(x?) = f(x?) is the maximum value, the goal in
bandit optimisation is to achieve small simple regret Sn = mint=1,...,n f(x?)− f(xt) (see (1.1)),
after n queries to f . Here xt ∈ X is the point queried at time t by a sequential procedure.

Our primary distinction from the usual setting is that we have access to M − 1 successively
accurate approximations f (1), f (2), . . . , f (M−1) to the function of interest f = f (M). We refer to
these approximations as fidelities. The multi-fidelity framework is attractive when the following
two conditions are true about the problem.

1. The approximations f (1), . . . , f (M−1) approximate f (M). To this end, we will assume a uni-
form bound for the fidelities, ‖f (M) − f (m)‖∞ ≤ ζ(m) for m = 1, . . . ,M , where the bounds
ζ(1) > ζ(2) > · · · > ζ(M) = 0 are known.

2. The approximations are cheaper than evaluating at f (M). We will assume that a query at
fidelity m expends a cost λ(m) of a resource, such as computational effort or money. The costs
are known and satisfy 0 < λ(1) < λ(2) < · · · < λ(M).

Therefore, as the fidelitym increases, the approximations become better but are also more costly.
An algorithm for multi-fidelity bandits is a sequence of query-fidelity pairs {(xt,mt)}t≥0, where
at time n, the algorithm chooses (xn,mn) using information from previous query-observation-
fidelity triples {(xt, yt,mt)}n−1

t=1 . Here yt = f (mt)(xt) + εt where, the εt values are independent
at each time step t and E[εt] = 0.

The Generative Process for Multi-fidelity Optimisation

In keeping with the above framework, we assume the following generative model for the func-
tions f (1), . . . , f (M). A generative mechanism is given constants ζ(1), . . . , ζ(M−1). It then gener-
ates the functions as follows.

Step 1. Sample f (m) ∼ GP(0, κ) for m = 1, . . . ,M . (A1)
Step 2. Check if ‖f (M) − f (m)‖∞ ≤ ζ(m) for all m = 1, . . . ,M − 1. If true, then deliver

f (1), . . . , f (M). If false, go back to Step 1. (A2)

In addition to this, we will also assume that upon querying f (m) at xt we observe f (m)(xt) + ε
where ε ∼ N (0, η2) is Gaussian noise with variance η2.

Condition A2 characterises the approximation conditions for the lower fidelities. Lemma 18
shows that A2 is satisfied with positive probability when f (1), . . . , f (M) are sampled from a GP.
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Hence this is a valid generative process since A2 will eventually be satisfied. Moreover, in
Chapter 4.2.2 we argue that while A2 renders the computation of the true posterior of all GPs
inefficient via closed form equations such as in (2.1), it is still possible to derive an efficient
algorithm that uses (2.1) to determine future points for evaluation.

We note that other natural approximation conditions can be used to characterise the cheaper
fidelities. We choose a uniform bound condition because it provides a simple way to reason
about one fidelity from the others, hence keeping the analysis tractable while ensuring the model
is interesting enough so as to yield reasonable results in practice. That said, we believe that
the intuitions in this work can be used to develop other upper confidence based multi-fidelity
BO algorithms for other approximation conditions. In fact, the approximation conditions in our
follow up work in Kandasamy et al. [127], are of a Bayesian flavour via a kernel on the fidelities.
The algorithm, BOCA, builds on the key insights developed here.

It is worth mentioning that while our theoretical results are valid for arbitraryM and λ(m) values,
it is instructive to think of M as being a small fixed value and of λ(1) as being comparable
to λ(M). For instance, in many practical applications of multi-fidelity optimisation, while an
approximation may be cheaper than the real experiment, it could itself be quite expensive and
hence require an intelligence procedure, such as Bayesian optimisation, to choose the next point.
This is the regime the current paper focuses on, as opposed to asymptotic regimes whereM →∞
and/or λ(1) → 0. Moreover, very large values of M are better handled by the formalism in our
follow up work in Kandasamy et al. [127].

Finally, we note that Assumption A1 can be relaxed to hold for different kernels and noise vari-
ances for each fidelity, i.e. different κ(m), η(m) for m = 1, . . . ,M , with minimal modifications
to our analysis but we use the above form to simplify the presentation of the results. In fact, our
practical implementation uses different kernels.

Simple Regret for Multi-fidelity Optimisation

Our goal is to achieve small simple regret S(Λ) after spending capital Λ of a resource. We
will aim to provide any-capital bounds, meaning that we will assume that the game is played
indefinitely and will try to bound the regret for all (sufficiently large) values of Λ. This is similar
in spirit to any-time analyses in single fidelity bandit methods as opposed to fixed time horizon
analyses. Let {mt}t≥0 be the fidelities queried by a multi-fidelity method at each time step. Let
N be the random quantity such that N = max{n ≥ 1 :

∑n
t=1 λ

(mt) ≤ Λ}, i.e. it is the number
of queries the strategy makes across all fidelities until capital Λ. Only the optimum of f = f (M)

is of interest to us. The lower fidelities are useful to the extent that they help us optimise f (M)

with less cost, but there is no reward for optimising a cheaper approximation. Accordingly,
we set the instantaneous reward qt at time t to be −∞ if mt 6= M and f (M)(xt) if mt = M .
If we let rt = f(x?) − qt denote the instantaneous regret, we have rt = +∞ if mt 6= M and
f(x?)−f (M)(xt) ifmt = M . For optimisation, the simple regret is simply the best instantaneous
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Figure 4.5: An illustration of the challenges in multi-fidelty optimisation. See main text for explanations.

regret, S(Λ) = mint=1,...,N rt. Equivalently,

S(Λ) = min
t=1,...,N

rt =


min

t= 1,...,N
t :mt=M

f(x?)− f (M)(xt) if we have queried at the M th fi-
delity at least once,

+∞ otherwise.
(4.9)

The above reduces to Sn (1.1) when we only have access to f (M) with n = N = bΛ/λ(M)c.
Before we proceed, we note that it is customary in the bandit literature to analyse cumulative
regret. The definition of cumulative regret depends on the application at hand [125] and our
results can be extended to to many sensible notions of cumulative regret. However, both to
simplify exposition and since our focus in this paper is optimisation, we stick to simple regret.

Challenges: We conclude this section with a commentary on some of the challenges in multi-
fidelity optimisation using Figure 4.5 for illustration. For simplicity, we will focus on 2 fidelities
when we have one approximation f (1) to an expensive function f (2). For now assume that (un-
realistically) f (1) and its optimum x

(1)
? are known. Typically x

(1)
? is suboptimal for f (2). A

seemingly straightforward solution might be to search for x? in an appropriate subset, such as a
neighborhood of x(1)

? . However, if this neighborhood is too small, we might miss the optimum x?
(green region in Figure 4.8(a)). A crucial challenge for multi-fidelity methods is to not get stuck
at the optimum of a lower fidelity. While exploiting information from lower fidelities, it is also
important to explore sufficiently at higher fidelities. In our experiments, we demonstrate that
naive strategies which do not do so could get stuck at the optimum of a lower fidelity. Alterna-
tively, if we pick a very large subset (Figure 4.8(b)) we might not miss x?; however, it defeats the
objectives of the multi-fidelity set up where the goal is to use the approximation to be prudent
about where we query f (2). Figure 4.5(c) displays a seemingly sensible subset, but it remains to
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be seen how it is chosen. Further, this subset might not even be a neighborhood as illustrated in
Figure 4.5(d), where f (1), f (2) are multi-modal and the optima are in different modes. In such
cases, an appropriate algorithm should explore all such modes. On top of the above, an algorithm
does not actually know f (1). A sensible algorithm should explore f (1) and simultaneously iden-
tify the above subset, either implicitly or explicitly, for exploration at the second fidelity f (2).
Finally, it is also important to note that f (1) is not simply a noisy version of f (2); this setting is
more challenging as an algorithm needs to explicitly account for the bias in the approximations.

4.2.2 The Multi-fidelity Gaussian Process Upper Confidence Bound
(MF-GP-UCB) Algorithm

We now propose MF-GP-UCB, which extends GP-UCB to the multi-fidelity setting. Like GP-
UCB, MF-GP-UCB will also maintain a UCB for f (M) obtained via the previous queries at all
fidelities. Denote the posterior GP mean and standard deviation of f (m) conditioned only on the
previous queries at fidelity m by µ(m)

t , σ
(m)
t respectively (2.1). Then define,

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m), ∀m, ϕt(x) = min

m=1,...,M
ϕ

(m)
t (x). (4.10)

For appropriately chosen βt, µ
(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) will upper bound f (m)(x) with high prob-

ability. By A2 and (4.10), ϕ(m)
t (x) upper bounds f (M)(x) for all m. We have M such bounds,

and their minimum ϕt(x) gives the best upper bound for f (M). Following UCB strategies such
as GP-UCB, our next query is at the maximiser of this UCB, xt = argmaxx∈X ϕt(x).

Next we need to decide which fidelity to query at. Consider any m < M . The ζ(m) constraints
on f (m) restrict the value of f (M) – the confidence band β

1/2
t σ

(m)
t−1 for f (m) is lengthened by

ζ(m) to obtain confidence on f (M). If β1/2
t σ

(m)
t−1(xt) for f (m) is large, it means that we have not

constrained f (m) sufficiently well at xt and should query at the mth fidelity. On the other hand,
querying indefinitely in the same region to reduce the uncertainty β1/2

t σ
(m)
t−1 at the mth fidelity in

that region will not help us much as the ζ(m) elongation caps off how much we can learn about
f (M) from f (m); i.e. even if we knew f (m) perfectly, we will only have constrained f (M) to
within a ±ζ(m) band. Our algorithm captures this simple intuition. Having selected xt, we begin
by checking at the first fidelity. If β1/2

t σ
(1)
t−1(xt) is smaller than a threshold γ(1), we proceed to the

second fidelity. If at any stage β1/2
t σ

(m)
t−1(xt) ≥ γ(m) we query at fidelity mt = m. If we proceed

all the way to fidelity M , we query at mt = M . The choices for γ(m), which we discuss in detail
in Chapters 4.2.3 and 4.2.4, should account for the trade-off between the cost λ(m) expended at
fidelity m and the information obtainable via the approximation. We summarise the resulting
procedure in Algorithm 4.

Before we proceed, we make an essential observation. The posterior for any f (m)(x) condi-
tioned on previous queries at all fidelities

⋃M
`=1D

(`)
t is not Gaussian due to the ζ(m) constraints

(A2). However, |f (m)(x) − µ(m)
t−1(x)| < β

1/2
t σ

(m)
t−1(x) holds with high probability, since, by con-

ditioning only on queries at the mth fidelity we have Gaussianity for f (m)(x). (See Lemma 33,
Chapter 4.5.2).
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Figure 4.6: The 6 panels illustrate an execution of MF-GP-UCB in 2 fidelities at times t = 6, 8, 10,
11, 14, 50. In each panel, the top figure illustrates the upper bounds and selection of xt while the bottom
figure illustrates the selection of mt. We have initialised MF-GP-UCB with 5 random points at the first
fidelity. In the top figures, the solid lines in brown and blue are f (1), f (2) respectively, and the dashed
lines are ϕ(1)

t , ϕ
(2)
t . The solid green line is ϕt = min(ϕ

(1)
t , ϕ

(2)
t ). The small crosses are queries from 1 to

t − 1 and the red star is the maximiser of ϕt, i.e. the next query xt. x?, the optimum of f (2) is shown in
magenta. In the bottom figures, the solid orange line is β1/2

t σ
(1)
t−1 and the dashed black line is γ(1). When

β
1/2
t σ

(1)
t−1(xt) ≤ γ(1) we play at fidelity mt = 2 and otherwise at mt = 1. The cyan region in the last

panel is the good set Xg described in Chapter 4.2.3.
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Algorithm 4 MF-GP-UCB from Kandasamy et al. [123, 124]
Inputs: kernel κ, bounds {ζ(m)}Mm=1, thresholds {γ(m)}Mm=1.
• For m = 1, . . . ,M : D(m)

0 ← ∅, (µ
(m)
0 , σ

(m)
0 )← (0, κ1/2).

• for t = 1, 2, . . .
1. xt ← argmaxx∈X ϕt(x). See (4.10) for ϕt and Chapters 4.2.3, 4.2.4 for βt.
2. mt = min {m |β1/2

t σ
(m)
t−1(xt) ≥ γ(m) or m = M}.

3. yt ← Query f (mt) at xt.
4. Update D(mt)

t ← D(mt)
t−1 ∪ {(xt, yt)}. Obtain µ(mt)

t , σ
(mt)
t conditioned on D(mt)

t (2.1).
Set D(m)

t ← D(m)
t−1 , µ(m)

t ← µ
(m)
t−1, σ(m)

t ← σ
(m)
t−1 for m 6= mt.

An Illustration of MF-GP-UCB: Figure 4.6 illustrates MF-GP-UCB via a simulation on a 2–
fidelity problem. At the initial stages, MF-GP-UCB is mostly exploring X in the first fidelity.
β

1/2
t σ

(1)
t−1 is large and we are yet to constrain f (1) well to proceed to m = 2. At t = 10, we have

constrained f (1) sufficiently well at a region around the optimum. β1/2
t σ

(1)
t−1(xt) falls below γ(1)

and we query at mt = 2. Notice that once we do this (at t = 11), ϕ(2)
t dips to change ϕt in that

region. At t = 14, MF-GP-UCB has identified the maximum x? with just 4 queries to f (2). The
region shaded in cyan in the last figure is the “good set”Xg, which we alluded to in Chapter 4.2.1.
We will define it formally and explain its significance in the multi-fidelity set up shortly. Our
analysis predicts that most second fidelity queries in MF-GP-UCB will be be confined to this set
(roughly) and the simulation corroborates this claim. For example, in the last figure, at t = 50,
the algorithm decides to explore at a point far away from the optimum. However, this query
occurs in the first fidelity since we have not sufficiently constrained f (1)(xt) in this region and
β

1/2
t σ

(1)
t−1(xt) is large. The key idea is that it is not necessary to query such regions at the second

fidelity as the first fidelity alone is enough to conclude that it is suboptimal. In addition, observe
that in a large portion of X , ϕt is given by ϕ(1)

t except in a small neighborhood around x?, where
it is given by ϕ(2)

t .

Next we present our main theoretical results. We wish to remind the reader that a table of
notations is available in Appendix A.

4.2.3 Theoretical Results

First and foremost, we will show that condition A2 occurs with positive probability when we
sample the functions from a GP. The following lemma shows that PGP(A2) = ξA2 > 0 which
establishes that the generative mechanism is valid. The proof is given in Chapter 4.5.

Lemma 18. Let f (1), . . . , f (M) be sampled from GP(0, κ) and A2 denote the event {‖f (M) −
f (m)‖∞ ≤ ζ(m),∀m ≤M − 1}. Then,

PGP(A2) = ξA2 ≥ Q

(
ζ(M−1)

2

)
·
M−1∏
m=1

Q

(
ζ(m)

2

)
(4.11)
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Here Q is from Lemma 7. ξA2 > 0 since each of the terms in the product are positive.

We are now ready to present our theoretical results. We begin with an informal yet intuitive
introuduction to our theorems in M = 2 fidelities.

A Preview of our Theorems

We begin an informal yet intuitive introduction to our theorems in M = 2 fidelities. In this
subsection, we will ignore constants and polylog terms when they are dominated by other terms.
.,&,� denote inequality and equality ignoring constants. When A ⊂ X , we will denote its
complement by A.

Fundamental to the 2-fidelity problem is the good set Xg = {x ∈ X ; f(x?) − f (1)(x) ≤ ζ(1)}.
Xg is a high-valued region for f (2)(x): for all x ∈ Xg, f (2)(x) is at most 2ζ(1) away from the
optimum. If a multi-fidelity strategy were to use all its second fidelity queries only in Xg, then,
by Theorem 1, the regret will only have Ψn(Xg) dependence after n high fidelity queries. In
contrast, a strategy that only operates at the highest fidelity, such as GP-UCB, will have Ψn(X )
dependence. When ζ(1) is small, i.e. when f (1) is a good approximation to f (2), Xg will be much
smaller than X . Then, Ψn(Xg) � Ψn(X ), and the multi-fidelity strategy will have significantly
better regret than a single fidelity strategy. Alas, achieving this somewhat ideal goal is not possi-
ble without perfect knowledge of the approximation. However, with MF-GP-UCB we can come
quite close. As we will show shortly, most second fidelity queries will be confined to the slightly
inflated good set X̃g,ρ = {x ∈ X ; f(x?)− f (1)(x) ≤ ζ(1) + 3γ(1)}. The following lemma bounds

the number of first and second fidelity evaluations in X̃g,ρ and its complement X̃g,ρ. We denote
the number of queries at the mth fidelity in a set A ⊂ X within the first n time steps by T (m)

n (A).

Lemma 19 (Informal, Bounding the number of evaluations for M = 2). Let X ⊂ [0, r]d. Con-
sider MF-GP-UCB after n total evaluations at either fidelity. Let T (m)

n (A) denote the number of
fidelity m queries in some set A ⊂ X in n steps. Then,

T (1)
n

(
X g

)
. polylog(n) · Π(X̃g,ρ), T (1)

n (X̃g,ρ) .
polylog(n)

γ(1)2 · Π(X̃g,ρ),

T (2)
n

(
X g

)
. τn · Π

(
X g

)
, T (2)

n (X̃g,ρ) � n.

Here Π(A) = |A| for discrete A and Π(A) = vol(A) for continuous A. The bound for T (2)
n

(
X g

)
holds for any sublinear increasing sequence {τn}n≥1

The above lemma will be useful for two reasons. First, the bounds on T (2)
n (·) show that most

second fidelity queries are inside X̃g,ρ; the number of such expensive queries outside X̃g,ρ is
small. This strong result is only possible in the multi-fidelity setting. From the results of Srinivas
et al. [235], we can infer that the best achievable bound on the number of plays for GP-UCB
inside a suboptimal set is � n1/2 for the SE kernel and even worse for the Matérn kernel. For
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example, in the simulation of Figure 4.6, all queries to f (2) are in fact confined to Xg which is
a subset of X̃g,ρ. This allows us to obtain regret that scales with Ψn(X̃g,ρ) as explained above.
Second, we will use Lemma 19 to control N , the (random) number of queries by MF-GP-UCB
within capital Λ. Let nΛ = bΛ/λ(2)c be the (non-random) number of queries by a single fidelity
method operating only at the second fidelity. As λ(1) < λ(2), N could be large for an arbitrary
multi-fidelity method. However, using the bounds on T (1)

n (·) we can show that N is � nΛ when
Λ is larger than some value Λ0. Below, we detail the main ingredients in the proof of Lemma 19.

• T (1)
n (X̃g,ρ): By the design of our algorithm, MF-GP-UCB will begin querying f (1). To

achieve finite regret we need to show that we will eventually query f (2). For any region
in X̃g,ρ the switching condition of step 2 in Algorithm 4 ensures that we do not query that
region indefinitely. That is, if we keep querying a certain region, the first fidelity GP uncer-
tainty β1/2

t σ
(m)
t−1 will reduce below γ(1) in that region. We will discuss the implications of the

choice of γ(1) at the end of this subsection and in Chapter 4.2.4.

• T (1)
n

(
X g

)
: For queries to f (1) outside X̃g,ρ, we use the following reasoning: as f (1) is small

outside X̃g,ρ, it is unlikely to contain the UCB maximiser and be selected in step 1 of Algo-
rithm 4 several times.

• T (2)
n

(
X g

)
: We appeal to previous first fidelity queries. If we are querying at the second

fidelity at a certain region, it can only be because the first fidelity confidence band is small.
This implies that there must be several first fidelity queries in that region which in turn
implies that we can learn about f (1) with high confidence. As f (1) alone would tell us that
any point in X̃g,ρ is suboptimal for f (2), the maximiser of the UCB is unlikely to lie in this
region frequently. Hence, we will not query outside X̃g,ρ often.

It follows from the above that the number of second fidelity queries in X̃g,ρ scales T (2)
n (X̃g,ρ) � n.

We can now invoke techniques from Srinivas et al. [235] to control the regret using the MIG.
However, we can use the MIG of X̃g,ρ since most second fidelity evaluations are in X̃g,ρ. This
allows us to obtain a tighter bound on R(Λ) of the following form.

Theorem 20 (Informal, Regret of MF-GP-UCB for M = 2). Let X ⊂ [0, r]d. Then there exists
Λ0 depending only on γ(1), λ(1) and the approximation f (1) such that, for all Λ > Λ0 the following
holds with high probability.

S(Λ) .

√
βnΛ

ΨnΛ
(X̃g,ρ)

nΛ

It is instructive to compare the above rates against that for GP-UCB in Theorem 1. By dropping
the common and sub-dominant terms, the rate for GP-UCB is Ψ

1/2
nΛ (X ) whereas for MF-GP-UCB

it is Ψ
1/2
nΛ (X̃g,ρ). Therefore, whenever the approximation is very good (vol(X̃g,ρ) � vol(X ))

the rates for MF-GP-UCB are very appealing. When the approximation worsens and Xg, X̃g,ρ
become larger, the bound decays gracefully. In the worst case, MF-GP-UCB is never worse than
GP-UCB up to constant terms for Λ ≥ Λ0. The Λ0 term is required since at the initial stages,
MF-GP-UCB will be exploring f (1) before proceeding to f (2), at which stage its regret will still
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Figure 4.7: Illustration of the partition
H(m)’s for a M = 4 fidelity problem. The
setsJ (m)

ζ(m) are indicated next to their bound-

aries. The sets H(1),H(2),H(3),H(4) are
shown in green, blue, yellow and red re-
spectively. Most of the capital invested at
points inH(m) will be due to queries to the
mth fidelity function f (m).

be +∞. The costs λ(1), λ(2) get factored into the result via the Λ > Λ0 condition. If λ(1) is large,
for fixed γ(1), a larger amount of capital is spent at the first fidelity, so Λ0 will be large.

Now let us analyse the effect of the parameter γ(1) on the result. At first sight, large γ(1) seems
to increase the size of X̃g,ρ which would suggest that we should keep it as small as possible.
However, smaller γ(1) also increases Λ0; intuitively, if γ(1) is too small, then one will wait for a
long time in step 2 of Algorithm 4 for β1/2

t σ
(1)
t−1 to decrease without proceeding to f (2). As one

might expect, an “optimal” choice of γ(1) depends on how large a Λ0 we are willing to tolerate;
i.e. how long we are willing to wait investigating the cheap approximation. Moreover, if the
approximation is extremely cheap, it makes sense to use very small γ(1) and learn as much as
possible about f (2) from f (1). However, it also depends on other problem dependent quantities
such as Xg. In Chapter 4.2.3 we describe a choice for γ(1) based on λ(1), λ(2) and ζ(1) that
aims to balance the cost spent at each fidelity. In our experiments however, we found that more
aggressive choices for these threshold values γ(m) perform better in practice. We describe one
such technique Chapter 4.2.4.

For general M , we will define a hierarchy of good sets, the complement of which will be elimi-
nated when we proceed from one fidelity to the next. At the highest fidelity, we will be querying
mostly inside a small subset of X informed by the approximations f (1), . . . , f (M−1). We will
formalise these intuitions in the next two subsections.

Discrete X

We first analyse the case when X is a discrete subset of [0, r]d. Denote ∆(m)(x) = f(x?) −
f (m)(x) − ζ(m) and J (m)

η = {x ∈ X ; ∆(m)(x) ≤ η}. Note that ∆(m) > 0 for all m by our
assumptions. Central to our analysis will be the partitioning (H(m))Mm=1 of X . First define
H(1) = J (1)

3γ = {x : f (1)(x) < f(x?) − ζ(1) − 3γ(1)} to be the arms whose f (1) value is at least
ζ(1) + 3γ(1) below the optimum f(x?). Then recursively define,

H(m) = J (m)

3γ ∩
(
m−1⋂
`=1

J (`)
3γ

)
for 2 ≤ m ≤M − 1, H(M) =

M−1⋂
`=1

J (`)
3γ . (4.12)
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In addition to the above, we will also find it useful to define the sets “above” H(m) as Ĥ(m) =⋃M
`=m+1H(`) and the sets “below”H(m) as Ĥ(m) =

⋃m−1
`=1 H(`). Our analysis reveals that most of

the capital invested at points inH(m) will be due to queries to themth fidelity function f (m). Ĥ(m)

is the set of points that can be excluded from queries at fidelitiesm and beyond due to information
from lower fidelities. Ĥ(m) are points that will be queried at fidelities higher thanm several times.
In the 2 fidelity setting described in Chapter 4.2.3, X̃g,ρ = H(2) and X̃g,ρ = H(1) = Ĥ(2). We
have illustrated these sets in Figure 4.7.

Recall that nΛ = bΛ/λ(M)c is the number of queries by a single-fidelity method; it is a lower
bound on N , the number of queries by a multi-fidelity method. Similarly, nΛ = bΛ/λ(1)c will
be an upper bound on N . We will now define two quantities Λ1,Λ2 where Λ1 < Λ2. We will
show improved simple regret over GP-UCB when the capital Λ is larger than these quantities,
with the Λ > Λ2 regime being better by an additive log(λ(M)/λ(1)) factor over the Λ > Λ1 case.
Formally, we define Λ1 to be the smallest Λ satisfying the following condition,

M∑
m=2

λ(m)|H(m−1)| +
M−1∑
m=1

λ(m)|H(m) ∪ Ĥ(m)|
⌈

η2

γ(m)2βnΛ

⌉
≤ Λ

2
, (4.13)

and Λ2 to be the smallest Λ satisfying the following condition,

λ(M)|X | + λ(M)

M−1∑
m=1

|H(m) ∪ Ĥ(m)|
⌈

η2

γ(m)2βnΛ

⌉
≤ Λ

2
. (4.14)

We can find such Λ1,Λ2, since for fixed γ(m)’s, in both cases, the right side is linear in Λ and
the left is logarithmic since βn � O(log(n)) and nΛ � Λ. Since {H(m)}Mm=1 form a partition of
X and λ(1) < · · · < λ(M), we see that Λ1 < Λ2. Recall that at the initial stages, MF-GP-UCB
has infinite simple regret since the evaluations are at lower fidelities. Λ > Λ1 indicates the phase
where Θ(nΛ) evaluations have been made inside H(M), but the total number of evaluations N
could be much larger. When Λ > Λ2, we have reached a phase where N is also in Θ(nΛ).

Moreover, note that when the approximations are good, i.e. the sets H(m) are small, both Λ1

and Λ2 are small. Λ1 is also small when the approximations are cheap, i.e. λ(m)’s are small.
Therefore, the cheaper and better the approximations, we have to wait less time (for fixed γ(m))
before MF-GP-UCB starts querying at the M th fidelity and achieves good regret.

We now state our main theorem for discrete X . To simplify the analysis, we will introduce an
additional condition in the fidelity selection criterion in step 2 of Algorithm 4. We will always
evaluate f (m) at xt only if xt has been evaluated at all lower fidelities, 1, . . . ,m−1; precisely, that
mt = minm{m |β1/2

t σ
(m)
t−1(xt) ≥ γ(m) or m = M or T

(m)
n (xt) = 0}. Both this condition, and

the dependence of Λ2 on |X | in (4.14) are an artefact of our analysis. They arise only because we
do not account for the correlations between the arms in our discrete analysis; doing so requires
us to make assumptions about the locations of the arms in [0, r]d. We will not need this condition
or have Λ2 depend on |X | for the continuous case.

54



Theorem 21. Let X be a discrete subset of [0, r]d. Let f (m) ∼ GP(0, κ) for all m. Assume
that f (m)’s satisfy assumptions A1, A2 and κ satisfies Assumption 1. Pick δ ∈ (0, 1) and run
MF-GP-UCB (Algorithm 4) with βt = 2 log

(
M |X |π2t2/(3ξA2δ)

)
. Then, we have the following

bounds on S(Λ) with P-probability greater than 1− δ.

for all Λ > Λ1, S(Λ) ≤
√

2C1βnΛ
ΨnΛ

(H(M))

nΛ

for all Λ > Λ2, S(Λ) ≤
√

2C1β2nΛ
ΨnΛ

(H(M))

nΛ

Here C1 = 8/ log(1 + η2) is a constant, nΛ = bΛ/λ(M)c, nΛ = bΛ/λ(1)c, and ξA2 is from (4.11).

The difference between the two results is the βnΛ
dependence in the former setting and βnΛ

in the
latter; the latter bound is better by an additive log(λ(M)/λ(1)) term, but we have to wait for longer.
Dropping constant and polylog terms and comparing to the result in Theorem 1 reveals that we
outperform GP-UCB by a factor of

√
ΨnΛ

(H(M))/ΨnΛ
(X ) �

√
vol(H(M))/vol(X ) asymptoti-

cally. The setH(M) from (4.12) is determined by the ζ(1), . . . .ζ(M−1) values, the approximations
f (1), . . . , f (M−1) and the parameters γ(1), . . . , γ(M−1). The better the approximations, the smaller
the set H(M) and there is more advantage over single fidelity strategies. In Figure 4.8, we have
shown the ratio vol(H(2))/vol(X ) for a two fidelity problem as ζ(1) decreases—the figure cor-
roborates our claim that the rates improve as the ζ(m) values decrease. As the approximations
worsen, the advantage to multi-fidelity optimisation diminishes as expected, but we are never
worse than GP-UCB up to constant factors.

A few remarks are in order. First, note that the dependence on nΛ (or equivalently Λ) is the same
for both GP-UCB and MF-GP-UCB. In fact, one should not expect multi-fidelity optimisation to
yield “rate” improvements since such

√
1/n dependencies are typical in the bandit literature [26,

223]. The multi-fidelity framework allows us to find a good region, i.e. H(M), where the optimum
exisits, and as such, we should expect the improvements to be in terms of the size of this set,
relative to X . Second, the bound is given in terms of H(M) which, as illustrated by Figure 4.8,
gives us insight into the types of gains we can expect from multi-fidelity optimisation. However,
H(M) is a random quantity and obtaining high probability bounds on its volume could shed more
light on the gains of our multi-fidelity optimisation framework; this is an interesting avenue for
future work.

Choice of γ(m). It should be noted that an “optimal” choice of γ(m) depends on the available bud-
get, i.e. how long we are willing to wait before achieving non-trivial regret. If we are willing to
wait long, we can afford to choose small γ(m) and consequently have better guarantees on the re-
gret. This optimal choice also depends on several unknown problem dependent factors – such as
the sizes of the setsH(m). In Kandasamy et al. [125], the choice γ(m) = ζ(m)

√
λ(m)/λ(m+1) was

used which ensures that for an arm x ∈ H(m), the cost spent at lower fidelities 1, . . . ,m−1 is not
more than the cost spent at fidelity m. Beyond this intuitive property, this choice further achieves
a lower bound on the K-armed multi-fidelity problem. The same choice for γ(m) here ensures
that the cost spent at the lower fidelities is not more than an upper bound on the cost spent at
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Figure 4.8: Empirically computed values for the ratio vol(H(2))/vol(X ) for a one dimensional (left)
and two dimensional (right) 2-fidelity problem. For this, the samples f (1), f (2) were generated using the
generative mechanism of Chapter 4.2.1, under the stipulated value for ζ(1). In both cases, we used an SE
kernel with bandwidth 1 and scale parameter 1. The y-axis is the mean value for the ratio over several
samples and the x-axis is ζ(1). In both cases, we used γ(1) = ζ(1)/3, and approximated the continuous
domain with a uniform grid of size 104. The figure indicates that as the approximation improves, i.e. ζ(1)

decreases, the ratio decreases and consequently, we get better bounds.

fidelity m – we have elaborated more in Remark 3 after our proofs. We have empirically demon-
strated the effect of different choice of γ(m) values via an experiment in Figure 4.12. Building
on these ideas, an explicit prescription for the choice of γ(m) is bound to be a fruitful avenue of
research, and we leave this to future work. In the meanwhile, in Chapter 4.2.4, we describe a
heuristic for adaptively choosing γ(m) adaptively which worked well in our experiments.

Continuous and Compact X

We define the sets H(m), Ĥ(m) for m = 1, . . . ,M as in the discrete case. Let {νn}n≥0 be any
sublinear sequence such that νn →∞. Let

H(m)
τ,n =

{
x ∈ X : B2

(
x, r
√
d/ν

1
2d
n

)
∩ H(m)

τ 6= ∅ ∧ x /∈ Ĥ(m)
}

to be a νn-dependent L2 dilation of H(m)
τ,n by r

√
d/ν

1
2d
n . Here, B2(x, ε) is an L2 ball of radius ε

centred at x. Notice that as n→∞,H(m)
τ,n → H(m)

τ . Similar to the discrete case, we define Λ1 to
be the smallest Λ satisfying the following the condition,

λ(M)νnΛ
+ Cκη

2βp+1
nΛ

M−1∑
m=1

λ(m) vol(H(m)
nΛ ∪ Ĥ(m))

γ(m)2p ≤ Λ

2
, (4.15)

and Λ2 to be the smallest Λ satisfying the following condition,

λ(M)νnΛ
+ Cκη

2βp+1
nΛ

λ(M)

M−1∑
m=1

vol(H(m)
nΛ ∪ Ĥ(m))

γ(m)2p ≤ Λ

2
. (4.16)
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Here p = 1/2 for the SE kernel and p = 1 for the Matérn kernel. Cκ is a kernel dependent
constant elucidated in our proofs; for the SE kernel, Cκ = 22+d/2(dκ0/h

2)d/2 where κ0, h are
parameters of the kernel. Via a reasoning similar to the discrete case we see that Λ1 < Λ2. Our
main theorem is as follows.

Theorem 22. Let X ⊂ [0, r]d be compact and convex. Let f (m) ∼ GP(0, κ) ∀m, and satisfy
assumptions A1, A2. Let κ satisfy Assumption 1 with some constants a, b. Pick δ ∈ (0, 1) and
run MF-GP-UCB (Algorithm 4) with

βt = 2 log

(
Mπ2t2

2ξA2δ

)
+ 4d log(t) + max

{
0 , 2d log

(
brd

√
log

(
6Mad

ξA2δ

))}
.

Then, we have the following bounds on S(Λ) with P-probability greater than 1− δ.

for all Λ > Λ1, S(Λ) ≤

√
2C1βnΛ

ΨnΛ
(H(M)

nΛ )

nΛ

+
π2

3nΛ

for all Λ > Λ2, S(Λ) ≤

√
2C1β2nΛ

ΨnΛ
(H(M)

nΛ )

nΛ

+
π2

3nΛ

Here C1 = 8/ log(1 + η2) is a constant, nΛ = bΛ/λ(M)c, and nΛ = bΛ/λ(1)c.

Note that the sets H(M)
τ,nΛ depend on the sublinear increasing sequence {νn}n≥0 – the theorem is

valid for any such choice of νn. The comparison of the above bound against GP-UCB is similar
to the discrete case. The main difference is that we have an additional dilation of H(M)

τ to H(M)
τ,nΛ

which occurs due to a covering argument in our analysis. Recall thatH(m)
τ,nΛ → H(m)

τ as Λ→∞.
The bound is determined by the MIG of the set H(M)

τ,nΛ , which is small when the approximations
are good.

4.2.4 Implementation Details

We describe implementation details for MF-GP-UCB and other BO methods that were used in
the experiments in the next subsection. In addition to some standard techniques in the Bayesian
optimisation literature, we describe the heuristics used to set the γ(m), ζ(m) parameters of our
method.

Initialisation: Following recommendations in Brochu et al. [23] all GP methods were initialised
with uniform random queries using an initialisation capital Λ0. For single fidelity methods, we
used it at the M th fidelity, whereas for multi-fidelity methods we used Λ0/2 at the first fidelity
and Λ0/2 at the second fidelity.

Kernel: In all our experiments, we used the SE kernel. We initialise the kernel by maximising the
GP marginal likelihood [203] on the initial sample and then update the kernel every 25 iterations
using marginal likelihood.
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Choice of βt: βt, as specified in Theorems 1, 22 has unknown constants and tends to be too
conservative in practice. Following Kandasamy et al. [120] we use βt = 0.2d log(2t) which
captures the dominant dependencies on d and t.

Maximising ϕt: We used the DiRect algorithm [112].

Choice of ζ(m)’s: Algorithm 4 assumes that the ζ(m)’s are given with the problem description,
which is hardly the case in practice. In our implementation, instead of having to deal with
M − 1, ζ(m) values we will assume ‖f (m) − f (m−1)‖∞ ≤ ζ . This satisfies assumption A2 with
(ζ(1), ζ(2), . . . , ζ(M−1)) = ((M − 1)ζ, (M − 2)ζ, . . . , ζ). This allows us to work with only one
value of ζ . We initialise ζ to a small value, 1% of the range of initial queries. Whenever we query
at any fidelity m > 1 we also check the posterior mean of the (m − 1)th fidelity. If |f (m)(xt) −
µ

(m−1)
t−1 (xt)| > ζ , we query again at xt, but at the (m−1)th fidelity. If |f (m)(xt)−f (m−1)(xt)| > ζ ,

we update ζ to twice the violation.

Choice of γ(m)’s: The role of the γ(m) values at each fidelity is to ensure that we do not spend
too much effort at the lower fidelities, where if γ(m) is too small, MF-GP-UCB spends a large
number of queries at fidelity m to reduce the variance below γ(m). This might cause MF-GP-
UCB to spend an unnecessarily large number of evaluations at fidelity m. Hence, we start with
small values for all γ(m). However, if the algorithm does not query above the mth fidelity for
more than λ(m+1)/λ(m) iterations, we double γ(m). All γ(m) values were initialised to 1% of the
range of initial queries.

Whilst the first four choices are standard in the BO literature [23, 232], our methods for selecting
the ζ(m) and γ(m) parameters are heuristic in nature. We obtained robust implementations of
MF-GP-UCB with little effort in tweaking these choices. In fact, we found our implementation
was able to recover even from fairly bad approximations at the lower fidelities (see experiment in
Figure 4.11). We believe that other reasonable heuristics can also be used in place of our choices
here, and a systematic investigation into protocols for the same will be a fruitful avenue for future
research.

4.2.5 Experiments

We present experiments for compact and continuous X since it is the more practically relevant
setting. We compare MF-GP-UCB to the following baselines. Single fidelity methods: GP-
UCB; GP-EI: the expected improvement criterion for BO [113]; DiRect: the dividing rectangles
method [112]. Multi-fidelity methods: MF-NAIVE: a naive baseline where we use GP-UCB
to query at the first fidelity a large number of times and then query at the last fidelity at the
points queried at f (1) in decreasing order of f (1)-value; MF-SKO: the multi-fidelity sequential
kriging method from [100]. Previous works on multi-fidelity methods (including MF-SKO) had
not made their code available and were not straightforward to implement. We discuss this more
at the end of this section along with some other single and multi-fidelity baselines we tried but
excluded in the comparison to avoid clutter in the figures. We also detail some design choices
and hyperparameters for the baselines.
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Figure 4.9: The simple regret S(Λ) (4.9) against the spent capital Λ on the synthetic functions. The
title states the function, its dimensionality, the number of fidelities and the costs we used for each
fidelity in the experiment; for example, in the fourth panel, we used M = 3 fidelities, with costs
λ(1) = 1, λ(2) = 10, λ(3) = 100 on the 3 dimensional Hartmann function. All curves barring DiRect
(which is a deterministic), were produced by averaging over 20 experiments. The error bars indicate one
standard error. All figures follow the legend in the first figure for the Currin exponential function. The
last panel shows the number of queries at different function values at each fidelity for the Hartmann-3D
example.
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Figure 4.10: The performance of our imple-
mentation of MF-GP-UCB for different values
of λ(1) in the 2 fidelity Borehole experiment.
Our implementation uses the techniques and
heuristics described in Chapter 4.2.4. In all
experiments we used λ(2) = 1. We have also
shown the curve for GP-UCB for reference.

Synthetic Examples

We begin with a series of synthetic experiments, designed to demonstrate the applicability and
limitations of MF-GP-UCB. We use the Currin exponential (d = 2), Park (d = 4) and Borehole
(d = 8) functions in M = 2 fidelity experiments and the Hartmann functions in d = 3 and 6
with M = 3 and 4 fidelities respectively. The first three functions are taken from previous multi-
fidelity literature [274] while we tweaked the Hartmann functions to obtain the lower fidelities
for the latter two cases. At the end of this section, we provide the formulae for these functions
and the approximations used for the lower fidelities. We show the simple regret S(Λ) against
capital Λ in Figure 4.9. The number of fidelities and the costs used for each fidelity are also
given in Figure 4.9. MF-GP-UCB outperforms other baselines on all problems.

The last panel of Figure 4.9 shows a histogram of the number of queries at each fidelity after
184 queries of MF-GP-UCB, for different ranges of f (3)(x) for the Hartmann-3D function. Many
of the queries at the low f (3) values are at fidelity 1, but as we progress they decrease and the
second fidelity queries increase. The third fidelity dominates very close to the optimum but is
used sparingly elsewhere. This corroborates the prediction in our analysis that MF-GP-UCB uses
low fidelities to explore and successively higher fidelities at promising regions to zero in on x?.
(Also see Figure 4.6.)

A common occurrence with MF-NAIVE was that once we started querying at fidelity M , the re-
gret barely decreased. The diagnosis in all cases was the same: it was stuck around the maximum
of f (1) which is suboptimal for f (M). This suggests that while we have cheap approximations,
the problem is by no means trivial. As explained previously, it is also important to explore at
higher fidelities to achieve good regret. The efficacy of MF-GP-UCB when compared to single
fidelity methods is that it confines this exploration to a small set containing the optimum. In our
experiments we found that MF-SKO did not consistently beat other single fidelity methods. De-
spite our best efforts to reproduce MF-SKO, we found it to be quite brittle. We also tried another
multi-fidelity method and found that it did not perform as desired (See Chapter 4.2.5 for details).

Effect of the cost of the approximations: We now test the effect the cost of the approximation
on performance. Figure 4.10 shows the results when MF-GP-UCB was run on the 2-fidelity
Borehole experiment for different costs for the approximation f (1). We fixed λ(2) = 1 and varied
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Figure 4.11: (a): the functions used in the Bad Currin Exponential experiment where f (1) = −f (2). (b):
the simple regret for this experiment. See caption under Figure 4.9 for more details.

λ(1) between 0.01 to 0.5. As λ(1) increases, the performance worsens as expected. At λ(1) = 0.5
it is indistinguishable from GP-UCB as the overhead of managing 2 fidelities becomes significant
when compared to the improvements of using the approximation.

Bad Approximations: It is natural to ask how MF-GP-UCB performs with bad approximations
at lower fidelities. We found that our implementation with the heuristics suggested in Chap-
ter 4.2.4 to be quite robust. We demonstrate this using the Currin exponential function, but using
the negative of f (2) as the first fidelity approximation, i.e. f (1)(x) = −f (2)(x). Figure 4.11 illus-
trates f (1), f (2) and gives the simple regret S(Λ). Understandably, it loses to the single fidelity
methods since the first fidelity queries are wasted and it spends some time at the second fidelity
recovering from the bad approximation. However, it eventually is able to achieve low regret.

Effect of threshold values on MF-GP-UCB: We now demonstrate the effect of different choices
for γ(1) on MF-GP-UCB as described in Algorithm 4. We use the 3 dimensional Hartmann func-
tion in a 2 fidelity set up where ζ(1) ≈ 0.112, λ(1) = 1 and λ(2) = 10. The implementation
follows the description in Chapter 4.2.4, except that the true ζ(1) value is made known to MF-
GP-UCB and the threshold value γ(1) is kept fixed at values 0.03, 0.1, 0.3, 1.0. The result is shown
in Figure 4.12. We see that as γ(1) decreases the curves start later in the figure indicating that
MF-GP-UCB spends more time at the approximation f (1) before proceeding to f (2); however, the
simple regret is also generally better for smaller γ(1). Therefore, if we have a large computational
budget and are willing to wait longer, we can choose small γ(m) values and achieve better simple
regret.

Model Selection & Astrophysics Experiments

We now present results on three hyperparameter tuning tasks and a maximum likelihood infer-
ence task in Astrophysics. We compare methods on computation time since that is the “cost”
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Figure 4.12: The performance of MF-GP-
UCB for different choices of fixed threshold
values γ(1). The curves were averaged over 20
independent runs and in this figure, they start
when at least 10 of the 20 runs have queried at
least once at the top (second) fidelity. This ex-
periment was run on the 3−dimensional Hart-
mann function in the two fidelity set up where
ζ(1) ≈ 0.112. The true ζ(1) value was made
known to MF-GP-UCB.

in all experiments. We include the processing time for each method in the comparison (i.e. the
cost of determining the next query). The results are given in Figure 4.13 where MF-GP-UCB
outperforms other baselines on all tasks. The experimental set up for each optimisation problem
is described below.

Classification using SVMs (SVM): We trained a Support vector classifier on the magic gamma
dataset using the sequential minimal optimisation algorithm to an accuracy of 10−12. The goal
is to tune the kernel bandwidth and the soft margin coefficient in the ranges (10−3, 101) and
(10−1, 105) respectively on a dataset of size 2000. We set this up as a M = 2 fidelity experiment
with the entire training set at the second fidelity and 500 points at the first. Each query to f (m)

required 5-fold cross validation on the respective training sets.

Regression using additive kernels (SALSA): We used the SALSA method for additive ker-
nel ridge regression [117] on the 4-dimensional coal power plant dataset. We tuned the 6 hy-
perparameters –the regularisation penalty, the kernel scale and the kernel bandwidth for each
dimension– each in the range (10−3, 104) using 5-fold cross validation. This experiment used
M = 3 and 2000, 4000, 8000 points at each fidelity respectively.

Viola & Jones face detection (V&J): The Viola & Jones cascade face classifier [254], which
uses a cascade of weak classifiers, is a popular method for face detection. To classify an image,
we pass it through each classifier. If at any point the classifier score falls below a threshold,
the image is classified as negative. If it passes through the cascade, then it is classified as pos-
itive. One of the more popular implementations comes with OpenCV and uses a cascade of 22
weak classifiers. The threshold values in the OpenCV implementation are pre-set based on some
heuristics and there is no reason to think they are optimal for a given face detection problem.
The goal is to tune these 22 thresholds by optimising them over a training set. We modified the
OpenCV implementation to take in the thresholds as parameters. As our domain X we chose a
neighbourhood around the configuration used in OpenCV. We set this up as anM = 2 fidelity ex-
periment where the second fidelity used 3000 images from the Viola and Jones face database and
the first used just 300. Interestingly, on an independent test set, the configurations found by MF-
GP-UCB consistently achieved over 90% accuracy while the OpenCV configuration achieved
only 87.4% accuracy.
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Figure 4.13: Results on the real experiments. The first three figures are hyperparameter tuning tasks
while the last is an astrophysical maximum likelihood problem. The title states the experiment, dimen-
sionality (number of hyperparameters or cosmological parameters) and the number of fidelities. For the
three hyperparameter tuning tasks we plot the best cross validation error (lower is better) and for the astro-
physics task we plot the highest log likelihood (higher is better). For the hyperparameter tuning tasks we
obtained the lower fidelities by using smaller training sets, indicated by ntr in the figures and for the astro-
physical problem we used a coarser grid for numerical integration, indicated by “Grid”. MF-NAIVE is not
visible in the last experiment because it performed very poorly. All curves were produced by averaging
over 10 experiments. The error bars indicate one standard error. The lengths of the curves are different in
time as we ran each method for a pre-specified number of iterations and they concluded at different times.
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Type Ia Supernovae (Supernova): We use Type Ia supernovae data from Davis et al [50]
for maximum likelihood inference on 3 cosmological parameters, the Hubble constant H0 ∈
(60, 80), the dark matter fraction ΩM ∈ (0, 1) and the dark energy fraction ΩΛ ∈ (0, 1). Unlike
typical parametric maximum likelihood problems we see in machine learning, the likelihood is
only available as a black-box. It is computed using the Robertson–Walker metric Davis et al [50]
which requires a (one dimensional) numerical integration for each sample in the dataset. We set
this up as a M = 3 fidelity task. At the third fidelity, the integration was performed using the
trapezoidal rule on a grid of size 106. For the first and second fidelities, we used grids of size
102, 104 respectively. The goal is to maximise the likelihood at the third fidelity.

Some Implementation Details of other Baselines

For MF-NAIVE we limited the number of first fidelity evalutions to max
(

1
2

Λ
λ(1) , 500

)
where Λ

was the total budget used in the experiment. The 500 limit was set to avoid unnecessary com-
putation – for all of these problems, 500 queries are not required to find the maximum. While
there are other methods for multi-fidelity optimisation (discussed under Related Work) none of
them had made their code available nor were their methods straightforward to implement - this
includes MF-SKO.

A straightforward way to incorporate lower fidelity information to GP-UCB and GP-EI is to share
the same kernel parameters. This way, the kernel κ can be learned by by jointly maximising the
marginal likelihood. While the idea seems natural, we got mixed results in practice. On some
problems this improved the performance of all GP methods (including MF-GP-UCB), but on
others all performed poorly. One explanation is that while lower fidelities approximate function
values, they are not always best described by the same kernel. The results presented do not
use lower fidelities to learn κ as it was more robust. For MF-GP-UCB, each κ(m) was learned
independently using only the queries at fidelity m.

In addition to the baselines presented in the figures, we also compared our method to the follow-
ing methods. The first two are single fidelity and the last two are mutlti-fidelity methods.

• Querying uniformly at random at the highest fidelity and taking the maximum. On all prob-
lems this performed worse than other methods.

• A variant of MF-NAIVE where instead of GP-UCB we queried at the first fidelity uniformly
at random. On some problems this did better than querying with GP-UCB, probably since
unlike GP-UCB it was not stuck at the maximum of f (1). However, generally it performed
worse.

• The multi-fidelity method from Forrester, Alexander I. J. and Sóbester, András and Keane,
Andy J. [60] also based on GPs. We found that this method did not perform as desired: in
particular, it barely queried beyond the first fidelity.
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Description of Synthetic Experiments

The following are the descriptions of the synthetic functions used. The first three functions and
their approximations were taken from [274].

Currin exponential function: The domain is the two dimensional unit cube X = [0, 1]2. The
second and first fidelity functions are,

f (2)(x) =

(
1− exp

(−1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
,

f (1)(x) =
1

4
f (2)(x1 + 0.05, x2 + 0.05) +

1

4
f (2)(x1 + 0.05,max(0, x2 − 0.05))+

1

4
f (2)(x1 − 0.05, x2 + 0.05) +

1

4
f (2)(x1 − 0.05,max(0, x2 − 0.05)).

Park function: The domain is X = [0, 1]4. The second and first fidelity functions are,

f (2)(x) =
x1

2

(√
1 + (x2 + x2

3)
x4

x2
1

− 1

)
+ (x1 + 3x4) exp(1 + sin(x3)),

f (1)(x) =

(
1 +

sin(x1)

10

)
f (2)(x)− 2x2

1 + x2
2 + x2

3 + 0.5.

Borehole function: The second and first fidelity functions are,

f (2)(x) =
2πx3(x4 − x6)

log(x2/x1)
(

1 + 2x7x3

log(x2/x1)x2
1x8

+ x3

x5

) ,
f (1)(x) =

5x3(x4 − x6)

log(x2/x1)
(

1.5 + 2x7x3

log(x2/x1)x2
1x8

+ x3

x5

) .
The domain of the function is [0.05, 0.15; 100, 50K; 63.07K, 115.6K; 990, 1110; 63.1, 116; 700, 820;
1120, 1680; 9855, 12045]. We first linearly transform the variables to lie in [0, 1]8.

Hartmann-3D function: TheM th fidelity function is f (M)(x) =
∑4

i=1 αi exp
(
−∑3

j=1Aij(xj−
Pij)

2
)

where A,P ∈ R4×3 are fixed matrices given below and α = [1.0, 1.2, 3.0, 3.2]. For the
lower fidelities we use the same form except changing α to α(m) = α + (M − m)δ where
δ = [0.01,−0.01,−0.1, 0.1] and M = 3. The domain is X = [0, 1]3.

A =


3 10 30

0.1 10 35
3 10 30

0.1 10 35

 , P = 10−4 ×


3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 (4.17)

Hartmann-6D function: The 6-D Hartmann function takes the same form as the 3-D case except
A,P ∈ R4×6 are as given below. We use the same modifications as above to obtain the lower
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fidelities using M = 4.

A =


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , (4.18)

P = 10−4 ×


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381



4.3 Multi-fidelity GP Bandits with Continuous Approxima-
tions

In this section, we study multi-fidelity GP bandits with a continuous spectrum of approximations.
In addition to this generalisation, here we also consider approximation conditions of a more
Bayesian flavour different to the uniform bound conditions in Chapters 4.1 and 4.2.

To motivate this set up, consider tuning a classification algorithm over a space of hyperparameters
X by maximising a validation set accuracy. The algorithm is to be trained using Nmax data points
via an iterative algorithm for Tmax iterations. However, we wish to use fewer training points
N < Nmax and/or fewer iterations T < Tmax to approximate the validation accuracy. We can view
validation accuracy as a function g : [1, Nmax]× [1, Tmax]×X → R where evaluating g(N, T, x)
requires training the algorithm with N points for T iterations with the hyperparameters x. If
the training complexity of the algorithm is quadratic in data size and linear in the number of
iterations, then the cost of this evaluation is λ(N, T ) = O(N2T ). Our goal is to find the optimum
when N = Nmax, and T = Tmax, i.e. we wish to maximise f(x) = g(Nmax, Tmax, x).

In this setting, while N, T are technically discrete choices, they are more naturally viewed as
coming from a continuous 2 dimensional fidelity space, [1, Nmax] × [1, Tmax]. One might hope
that cheaper queries to g(N, T, ·) with N, T less than Nmax, Tmax can be used to learn about
g(Nmax, Tmax, ·) and consequently optimise it using less overall cost. Indeed, this is the case with
many machine learning algorithms where cross validation performance tends to vary smoothly
with data set size and number of iterations. Therefore, one may use cheap low fidelity exper-
iments with small (N, T ) to discard bad hyperparameters and deploy expensive high fidelity
experiments with large (N, T ) only in a small but promising region. The main theoretical result
of this section (Theorem 23) shows that our proposed algorithm, BOCA, exhibits precisely this
behaviour.

Continuous approximations also arise in simulation studies: where simulations can be carried out
at varying levels of granularity, on-line advertising: where an ad can be controlled by continuous
parameters such as display time or target audience, and several other experiment design tasks.

66



0

h = 0.05
h = 0.15
h = 0.5

Figure 4.14: Samples drawn from a GP with
0 mean and SE kernel with bandwidths h =
0.01, h = 0.15, 0.5. Samples tend to be smoother
across the domain for large bandwidths.

In fact, in many multi-fidelity papers, the finite approximations were obtained by discretising a
continuous space [100, 123]. Here, we study a Bayesian optimisation technique that is directly
designed for continuous fidelity spaces and is potentially applicable to more general spaces. Our
main contributions in this section are,

1. A novel setting and model for multi-fidelity optimisation with continuous approximations
using GP assumptions. We develop a novel algorithm, BOCA, for this setting.

2. A theoretical analysis characterising the behaviour and regret bound for BOCA.

3. An empirical study which demonstrates that BOCA outperforms alternatives, both multi-
fidelity and otherwise, on a series of synthetic problems and real examples in hyperparam-
eter tuning and astrophysics.

4.3.1 Problem Formalism

As before, for simplicity, we will take both X and Z to be compact Euclidean spaces. We begin
with a brief review of radial kernels, which are common choices for prior covariances in GPs.
Some examples are the squared exponential (SE) and Matérn kernels. Using a radial kernel
means that the prior covariance can be written as κ(x, x′) = κ0φ(‖x − x′‖) and depends only
on the distance between x and x′. Here, the scale parameter κ0 captures the magnitude f could
deviate from µ. The function φ : R+ → R+ is a decreasing function with ‖φ‖∞ = φ(0) = 1.
In this section, we will use the SE kernel in a running example to convey the intuitions in our
methods. For the SE kernel, φ(r) = φh(r) = exp(−r2/(2h2)), where h ∈ R+, called the
bandwidth of the kernel, controls the smoothness of the GP. When h is large, the samples drawn
from the GP tend to be smoother as illustrated in Figure 4.14. We will reference this observation
frequently in the text.

Continuous Approximations: In this set up, we will let f be a slice of a function g that lies
in a larger space. Precisely, we will assume the existence of a fidelity space Z and a function
g : Z × X → R defined on the cartesian product of the fidelity space and domain. The function
f which we wish to maximise is related to g via f(·) = g(z•, ·), where z• ∈ Z . For instance, in
the hyperparameter tuning example, Z = [1, Nmax] × [1, Tmax] and z• = [Nmax, Tmax]. Our goal
is to find a maximiser x? ∈ argmaxx f(x) = argmaxx g(z•, x). We have illustrated this setup in
Fig. 4.15. In the rest of the manuscript, the term “fidelities” will refer to points z in the fidelity
space Z . As before, we will impose the following smoothness/cost assumptions on the fidelities.
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Figure 4.15: g : Z × X → R is a function
defined on the product space of the fidelity space
Z and domain X . The purple line is f(x) =
g(z•, x). We wish to find the maximiser x? ∈
argmaxx∈X f(x). The multi-fidelity framework
is attractive when g is smooth across Z as illus-
trated in the figure.

1. There exist fidelities z ∈ Z where evaluating g is cheaper than evaluating at z•. To this end,
we will associate a known cost function λ : Z → R+. In the hyperparameter tuning example,
λ(z) = λ(N, T ) = O(N2T ). It is helpful to think of z• as being the most expensive fidelity,
i.e. maximiser of λ, and that λ(z) decreases as we move away from z•. However, this notion
is strictly not necessary for our algorithm or results.

2. The cheap g(z, ·) evaluation gives us information about g(z•, ·). This is true if g is smooth
across the fidelity space as illustrated in Fig. 4.15. As we will describe shortly, this smoothness
can be achieved by modelling g as a GP with an appropriate kernel for the fidelity space Z .

In the above setup, a multi-fidelity algorithm is a sequence of query-fidelity pairs {(zt, xt)}t≥0

where, at time t, the algorithm chooses zt ∈ Z and xt ∈ X , and observes yt = g(zt, xt)+εwhere
E[ε] = 0. The choice of (zt, xt) can of course depend on the previous fidelity-query-observation
triples {(zi, xi, yi)}t−1

i=1.

Multi-fidelity Simple Regret: We provide bounds on the simple regret S(Λ) of a multi-fidelity
optimisation method after it has spent capital Λ of a resource. As before, we will aim to provide
any capital bounds, meaning that an algorithm would be expected to do well for all values of
(sufficiently large) Λ. Say we have made N queries to g within capital Λ, i.e. N is the random
quantity such that N = max{n ≥ 1 :

∑n
t=1 λ(zt) ≤ Λ}. While the cheap evaluations at z 6= z•

are useful in guiding search for the optimum of g(z•, ·), there is no reward for optimising a
cheaper g(z, ·). Accordingly, we define the simple regret after capital Λ as,

S(Λ) =

 min
t∈{1,...,N}

s.t zt=z•

f(x?)− f(xt) if we have queried at z•,

+∞ otherwise.
(4.19)

This definition is similar in spirit to the definition in Chapter 4.2 and reduces to the single fidelity
definition (1.1) when we only query g at z•. It is also similar to the definition in Kandasamy et al.
[123], but unlike them, we do not impose additional boundedness constraints on f or g.

Assumptions: As we will be primarily focusing on continuous and compact domains and fidelity
spaces, going forward we will assume, without any loss of generality, that X = [0, 1]d and
Z = [0, 1]p. We discuss non-continuous settings briefly at the end of Chapter 4.3.2. In keeping
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with similar work in the Bayesian optimisation literature, we will assume g ∼ GP(0, κ) and
upon querying at (z, x) we observe y = g(z, x) + ε where ε ∼ N (0, η2). κ : (Z × X )2 → R is
the prior covariance defined on the product space. We will study κ of the following form,

κ([z, x], [z′, x′]) = κ0 φZ(‖z − z′‖)φX (‖x− x′‖). (4.20)

Here, κ0 ∈ R+ is the scale parameter and φZ , φX are radial kernels defined on Z,X respectively.
The fidelity space kernel φZ is an important component in this work. It controls the smoothness
of g across the fidelity space and hence determines how much information the lower fidelities
provide about g(z•, ·). For example, suppose that φZ was a SE kernel. A favourable setting for a
multi-fidelity method would be for φZ to have a large bandwidth hZ as that would imply that g is
very smooth across Z . We will see that hZ determines the behaviour and theoretical guarantees
of BOCA in a natural way when φZ is the SE kernel. To formalise this notion, we will define the
information gap as follows, ξ : Z → [0, 1].

ξ(z) =
√

1− φZ(‖z − z•‖)2. (4.21)

One interpretation of ξ(z) is that it measures the gap in information about g(z•, ·) when we query
at z 6= z•. That is, it is the price we have to pay, in information, for querying at a cheap fidelity.
Observe that ξ increases when we move away from z• in the fidelity space. For the SE kernel, it
can be shown1 ξ(z) ≈ ‖z−z•‖

hZ
. For large hZ , g is smoother across Z and we can expect the lower

fidelities to be more informative about f ; as expected the information gap ξ is small for large hZ .
If hZ is small and g is not smooth, the gap ξ is large and lower fidelities are not as informative.

Before we present our algorithm for the above setup, we will introduce notation for the posterior
GPs for g and f . LetDn = {(zi, xi, yi)}ni=1 be n fidelity, query, observation values from the GP g,
where yi was observed when evaluating g(zi, xi). We will denote the posterior mean and standard
deviation of g conditioned on Dn by νn and τn respectively (νn, τn can be computed from (2.1)
by replacing x← [z, x]). Therefore g(z, x)|Dn ∼ N (νn(z, x), τ 2

n(z, x)) for all (z, x) ∈ Z × X .
We will further denote

µn(·) = νn(z•, ·), σn(·) = τn(z•, ·), (4.22)

to be the posterior mean and standard deviation of g(z•, ·) = f(·). It follows that f |Dn is also a
GP and satisfies f(x)|Dn ∼ N (µn(x), σ2

n(x)) for all x ∈ X .

4.3.2 Bayesian Optimisation with Continuous Approximations (BOCA)

BOCA is a sequential strategy to select a domain point xt ∈ X and fidelity zt ∈ Z at time t based
on previous observations. At time t, we will first construct an upper confidence bound ϕt for the
function f we wish to optimise. It takes the form,

ϕt(x) = µt−1(x) + β
1/2
t σt−1(x). (4.23)

1Strictly, ξ(z) ≤ ‖z − z•‖/hZ , but the inequality is tighter for larger hZ . In any case, ξ is strictly decreasing
with hZ .
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Recall from (4.22) that µt−1 and σt−1 are the posterior mean and standard deviation of f using
the observations from the previous t − 1 time steps at all fidelities, i.e. the entire Z × X space.
We will specify βt in Theorems 23, 38. Following other UCB algorithms, our next point xt in
the domain X for evaluating g is a maximiser of ϕt, i.e. xt ∈ argmaxx∈X ϕt(x).

Next, we need to determine the fidelity zt ∈ Z to query g. For this we will first select a subset
Zt(xt) of Z as follows,

Zt(xt) =
{
z ∈ Z : λ(z) < λ(z•), τt−1(z, xt) > γ(z), ξ(z) > β

−1/2
t ‖ξ‖∞

}
, (4.24)

where γ(z) =
√
κ0 ξ(z)

(
λ(z)

λ(z•)

)q
.

Here, ξ is the information gap function in (4.21) and τt−1 is the posterior standard deviation of
g, and p, d are the dimensionalities of Z,X . The exponent q depends on the kernel used for
φZ . For e.g., for the SE kernel, q = 1/(p + d + 2). We filter out the fidelities we consider
at time t using three conditions as specified above. We elaborate on these conditions in more
detail in Chapter 4.3.2. If Zt is not empty, we choose the cheapest fidelity in this set, i.e. zt ∈
argminz∈Zt λ(z). If Zt is empty, we choose zt = z•.

We have summarised the resulting procedure below in Algorithm 5. An important advantage of
BOCA is that it only requires specifying the GP hyperparameters for g such as the kernel κ. In
practice, this can be achieved by various effective heuristics such as maximising the GP marginal
likelihood or cross validation which are standard in most BO methods. In contrast, MF-GP-UCB
of Kandasamy et al. [123] requires tuning several other hyperparameters.

Algorithm 5 BOCA from Kandasamy et al. [127]
Input: kernel κ.
• Set ν0(·)← 0, τ0(·)← κ(·, ·)1/2, D0 ← ∅.
• for t = 1, 2, . . .

1. xt ← argmaxx∈X ϕt(x). See (4.23)
2. zt ← argminz∈Zt(xt)∪{z•} λ(z). See (4.24)
3. yt ← Query g at (zt, xt).
4. Dt ← Dt−1 ∪ {(zt, xt, yt)}. Update posterior mean νt, and standard deviation τt for g

conditioned on Dt.

Fidelity Selection Criterion

We will now provide an intuitive justification for the three conditions in the selection criterion
for zt, i.e., equation (4.24). The first condition, λ(z) < λ(z•) is fairly obvious; since we wish to
optimise g(z•, ·) and since we are not rewarded for queries at other fidelities, there is no reason
to consider fidelities that are more expensive than z•.

The second condition, τt−1(z, xt) > γ(z) says that we will only consider fidelities where the pos-
terior variance is larger than a threshold γ(z) =

√
κ0ξ(z)(λ(z)/λ(z•))

q, which depends critically
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on two quantities, the cost function λ and the information gap ξ. As a first step towards pars-
ing this condition, observe that a reasonable multi-fidelity strategy should be inclined to query
cheap fidelities and learn about g before querying expensive fidelities. As γ(z) is monotonically
increasing in λ(z), it becomes easier for a cheap z to satisfy τt−1(z, xt) > γ(z) and be included
in Zt at time t. Moreover, since we choose zt to be the minimiser of λ in Zt, a cheaper fidelity
will always be chosen over expensive ones if included in Zt. Second, if a particular fidelity z
is far away from z•, it probably contains less information about g(z•, ·). Again, a reasonable
multi-fidelity strategy should be discouraged from making such queries. This is precisely the
role of the information gap ξ which is increasing with ‖z − z•‖. As z moves away from z•, γ(z)
increases and it becomes harder to satisfy τt−1(z, xt) > γ(z). Therefore, such a z is less likely
to be included in Zt(xt) and be considered for evaluation. Our analysis reveals that setting γ as
in (4.24) is a reasonable trade off between cost and information in the approximations available
to us; cheaper fidelities cost less, but provide less accurate information about the function f we
wish to optimise. It is worth noting that the second condition is similar in spirit to Kandasamy
et al. [123] who proceed from a lower to higher fidelity only when the lower fidelity variance is
smaller than a threshold. However, while they treat the threshold as a hyperparameter, we are
able to explicitly specify theoretically motivated values.

The third condition in (4.24) is ξ(z) > ‖ξ‖∞/β1/2
t . Since ξ is increasing as we move away from

z•, it says we should exclude fidelities inside a (small) neighbourhood of z•. Recall that if Zt is
empty, BOCA will choose z• by default. But when it is not empty, we want to prevent situations
where we get arbitrarily close to z• but not actually query at z•. Such pathologies can occur when
we are dealing with a continuum of fidelities and this condition forces BOCA to pick z• instead
of querying very close to it. Observe that since βt is increasing with t, this neighborhood is
shrinking with time and therefore the algorithm will eventually have the opportunity to evaluate
fidelities close to z•.

Extensions: While we have focused on continuous Z , many of the ideas here can be extended to
other settings. If Z is a discrete subset of [0, 1]p our work extends straightforwardly. We reiterate
that this will not be the same as the finite fidelity MF-GP-UCB algorithm as the assumptions
are different. In particular, Kandasamy et al. [123] are not able to effectively share information
across fidelities as we do. We also believe that Algorithm 5 can be extended to arbitrary fidelity
spaces Z provided that a kernel can be defined on Z . Our results can also be extended to discrete
domains X and various other kernels for φX by adopting techniques from Srinivas et al. [235].

4.3.3 Theoretical Analysis

We now present our main theoretical results for BOCA. In our analysis of BOCA we show that
most queries to g at fidelity z• will be confined to a small subset ofX which contains the optimum
x?. Precisely, for sufficiently large capital Λ, for any α ∈ (0, 1), we show there exists ρ > 0 such
that the number of queries outside the following set Xρ is less than nαΛ.

Xρ =
{
x ∈ X : f(x?)− f(x) ≤ 2ρ

√
κ0 ‖ξ‖∞

}
. (4.25)
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Here, ξ is from (4.21). While it is true that any optimisation algorithm would eventually query
extensively in a neighbourhood around the optimum, a strong result of the above form is not
always possible. For instance, for GP-UCB, the best achievable bound on the number of queries
in any set that does not contain x? is n1/2

Λ . The fact that Xρ exists relies crucially on the multi-
fidelity assumptions and that our algorithm leverages information from lower fidelities when
querying at z•. As ξ is small when g is smooth across Z , the set Xρ will be small when the
approximations are highly informative about g(z•, ·). For e.g., when φZ is a SE kernel, we have
Xρ ≈ {x ∈ X : f(x?)− f(x) ≤ 2ρ

√
κ0p/hZ}. When hZ is large and g is smooth across Z , Xρ

is small as the right side of the inequality is smaller. As BOCA confines most of its evaluations
to this small set containing x?, we will be able to achieve much better regret than GP-UCB.
When hZ is small and g is not smooth across Z , the set Xρ becomes large and the advantage of
multi-fidelity optimisation diminishes. One can similarly argue that for the Matérn kernel, as
the parameter ν increases, g will be smoother across Z , and Xρ becomes smaller yielding better
bounds on the regret. To simplify the ensuing discussion, we provide an informal statement of
our main theoretical result below. .,� denotes inequality and equality ignoring constant and
polylog terms. A formal statement is available in Theorem 38 in Chapter 4.6.

Theorem 23 (Informal, Regret of BOCA). Let g ∼ GP(0, κ) where κ satisfies (4.20). Choose
βt � d log(t/δ). Then, for sufficiently large Λ and for all α ∈ (0, 1), there exists ρ depending on
α such that the following bound holds with probability at least 1− δ.

S(Λ) .

√
ΨnΛ

(Xρ)
nΛ

+

√
ΨnαΛ

(X )

n2−α
Λ

In the above bound, the latter term vanishes fast due to the n−(1−α/2)
Λ dependence. When compar-

ing this with Theorem 1, we see that we outperform GP-UCB by a factor of
√

ΨnΛ
(Xρ)/ΨnΛ

(X ) �√
vol(Xρ)/vol(X ) asymptotically. If g is smooth across the fidelity space, Xρ is small and the

gains over GP-UCB are significant. If g becomes less smooth across Z , the bound decays grace-
fully, but we are never worse than GP-UCB up to constant factors. This bound also has similar-
ities to Theorems 21 and 22 in Chapter 4.2, where we demonstrate better bounds than GP-UCB
by showing that the regret is dominated by queries inside a good set which contains the opti-
mum. However, the characterisation of this set is different in both instances due to different
approximation conditions.

4.3.4 Experiments

We compare BOCA to the following four baselines: (i) GP-UCB, (ii) the GP-EI criterion in
BO [113], (iii) MF-GP-UCB from Chapter 4.2 which uses only a finite number of approxima-
tions, (iv) MF-SKO, the multi-fidelity sequential kriging optimisation method from Huang et al.
[100]. All methods are based on GPs and we use the SE kernel for both the fidelity space and
domain. The first two are not multi-fidelity methods, while the last two are finite multi-fidelity
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methods2. Kandasamy et al. [123] also study some naive multi-fidelity algorithms and demon-
strate that they do not perform well; as such we will not consider such alternatives here. In all our
experiments, the fidelity space was designed to be Z = [0, 1]p with z• = 1p = [1, . . . , 1] ∈ Rp

being the most expensive fidelity. For MF-GP-UCB and MF-SKO, we used 3 fidelities (2 ap-
proximations) where the approximations were obtained at z = 0.3331p and z = 0.6671p in Z .
Empirically, we found that both algorithms did reasonably well with 1-3 approximations, but did
not perform well with a large number of approximations (> 5); even the original papers restrict
experiments to 1-3 approximations. Implementation details for all methods are given in at the
end of this section.

Synthetic Experiments

The results for the synthetic experiments are given in Figure 4.16. The title of each figure states
the function used, and the dimensionalities p, d of the fidelity space and domain. To reflect
the setting in our theory, we add Gaussian noise to the function value when observing g at any
(z, x). This makes the problem more challenging than standard global optimisation problems
where function evaluations are not noisy. The functions g, the cost functions λ and the noise
variances η2 are given at the end of this section.

The first two panels in Figure 4.16 are simple sanity checks. In both cases, Z = [0, 1], X = [0, 1]
and the functions were sampled from GPs. The GP was made known to all methods, i.e. all
methods used the true GP in picking the next point. In the first panel, we used an SE kernel
with bandwidth 0.1 for φX and 1.0 for φZ . g is smooth across Z in this setting, and BOCA
outperforms other baselines. The curve starts mid-way as BOCA is yet to query at z• up until
that point. The second panel uses the same set up as the first except we used bandwidth 0.01
for φZ . Even though g is highly un-smooth across Z , BOCA does not perform poorly. This
corroborates a claim that we made earlier that BOCA can naturally adapt to the smoothness of
the approximations. The other multi-fidelity methods suffer in this setting.

In the next three figures, we use some standard benchmarks for global optimisation. We modify
them to obtain g and add noise to the observations. As the kernel and other GP hyperparameters
are unknown, we learn them by maximising the marginal likelihood every 25 iterations. We
outperform all methods on all problems except in the case of the Borehole function where MF-
GP-UCB does better.

The last synthetic experiment is the Branin function. We used the same set up as above, but use
10 fidelities for MF-GP-UCB and MF-SKO where the kth fidelity is obtained at z = k

10
1p in the

fidelity space. Notice that the performance of finite fidelity methods deteriorate. In particular, as
MF-GP-UCB does not share information across fidelities, the approximations need to be designed
carefully for the algorithm to work well. The more natural modelling assumptions in BOCA
prevent such pitfalls. We next present two real examples in astrophysics and hyperparameter

2To our knowledge, the only other work that applies to continuous approximations is Klein et al. [139] which
was developed specifically for hyperparameter tuning. Further, their implementation is not made available and is
not straightforward to implement.
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Figure 4.16: Results on 6 synthetic problems where we plot the simple regret S(Λ) (lower is better)
against the capital Λ. The title states the function used, and the fidelity and domain dimesions. For the
first two figures we used capital 30λ(z•), therefore a method which only queries at g(z•, ·) can make at
most 30 evaluations. For the third figure we used 50λ(z•), for the fourth 100λ(z•) and for the last 50λ(z•)
to reflect the dimensionality d of X . The curves for the multi-fidelity methods start mid-way since they
have not queried at z• up until that point. All curves were produced by averaging over 20 experiments and
the error bars indicate one standard error.
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Figure 4.17: Results on the supernova (a) and news group experiments (b). We have plotted the max-
imum value (higher is better) against wall clock time. Both curves were produced by averaging over 10
xperiments each. The error bars indicate one standard error.

tuning. We do not add noise to the observations, but treat it as optimisation tasks, where the goal
is to maximise the function.

Astrophysical Maximum Likelihood Inference

We use data on TypeIa supernova for maximum likelihood inference on 3 cosmological param-
eters, the Hubble constant H0 ∈ (60, 80), the dark matter fraction ΩM ∈ (0, 1) and dark energy
fraction ΩΛ ∈ (0, 1); hence d = 3. The likelihood is given by the Robertson-Walker metric,
the computation of which requires a one dimensional numerical integration for each point in
the dataset. Unlike typical maximum likelihood problems, here the likelihood is only accessible
via point evaluations. We use the dataset from Davis et al [50] which has data on 192 super-
novae. We construct a p = 2 dimensional multi-fidelity problem where we can choose between
data set size N ∈ [50, 192] and perform the integration on grids of size G ∈ [102, 106] via the
trapezoidal rule. As the cost function for fidelity selection, we used λ(N,G) = NG as the com-
putation time is linear in both parameters. Our goal is to maximise the average log likelihood at
z• = [192, 106]. For the finite fidelity methods we use three fidelities with the approximations
available at z = [97, 2.15 × 103] and z = [145, 4.64 × 104] (which correspond to 0.3331p and
0.6671p after rescaling as in the synthetic experiments). The results are given in Figure 4.17(a)
where we plot the maximum average log likelihood against wall clock time as that is the cost in
this experiment. The plot includes the time taken by each method to tune the GPs and determine
the next points/fidelities for evaluation.

Support Vector Classification with 20 news groups

We use the 20 news groups dataset [111] in a text classification task. We obtain the bag of words
representation for each document, convert them to tf-idf features and feed them to a support vec-
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tor classifier. The goal is to tune the regularisation penalty and the temperature of the rbf kernel
both in the range [10−2, 103]; hence d = 2. The support vector implementation was taken from
scikit-learn. We set this up as a 2 dimensional multi-fidelity problem where we can choose a
dataset size N ∈ [5000, 15000] and the number of training iterations T ∈ [20, 100]. Each evalu-
ation takes the given dataset of size N and splits it up into 5 to perform 5-fold cross validation.
As the cost function for fidelity selection, we used λ(N, T ) = NT as the training/validation
complexity is linear in both parameters. Our goal is to maximise the cross validation accuracy at
z• = [15000, 100]. For the finite fidelity methods we use three fidelities with the approximations
available at z = [8333, 47] and z = [11667, 73]. The results are given in Figure 4.17(b) where
we plot the average cross validation accuracy against wall clock time.

Implementation Details

We describe some of our implementation details of BOCA and other BO methods below.

Domain and Fidelity space: Given a problem with arbitrary domain X and Z , we mapped them
to [0, 1]d and [0, 1]p by appropriately linear transforming the coordinates.

Initialisation: Following recommendations in Brochu et al. [23] all GP methods were initialised
with uniform random queries with Λ/10 capital, where Λ is the total capital used in the exper-
iment. For GP-UCB and GP-EI all queries were initialised at z• whereas for the multi-fidelity
methods, the fidelities were picked at random from the available fidelities.

GP Hyperparameters: Except in the first two experiments of Figure 4.16, the GP hyperparam-
eters were learned after initialisation by maximising the GP marginal likelihood [203] and then
updated every 25 iterations. We use an SE kernel for both φX and φZ and instead of using one
bandwidth for the entire fidelity space and domain, we learn a bandwidth for each dimension
separately. We learn the kernel scale, bandwidths and noise variance using marginal likelihood.
The mean of the GP is set to be the median of the observations.

Choice of βt: βt, as specified in Theorem 23 has unknown constants and tends to be too con-
servative in practice [235]. Following intuitions described previously we set it to be βt =
0.5d log(2`t + 1). Here, ` is the effective L1 diameter of X and is computed by scaling each
dimension by the inverse of the bandwidth of the SE kernel for that dimension.

Maximising ϕt: We used the DiRect algorithm [112].

Fidelity selection: Since we only worked in low dimensional fidelity spaces, the set Zt was
constructed in practice by obtaining a finely sampled grid of Z and then filtering out those which
satisfied the 3 conditions in (4.24). In the second condition of (4.24), the threshold γ(z) can be
multiplied up to a constant factor, i.e cγ(z) without affecting our theoretical results. In practice,
we started with c = 1 but we updated it every 20 iterations via the following rule: if the algorithm
has queried z• more than 75% of the time in the last 20 iterations, we decrease it to c/2 and if
it queried less than 25% of the time we increase it to 2c. But the c value is always clipped
inbetween 0.1 and 20. In practice we observed that the value for c usually stabilised around 1
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and 8 although in some experiments it shot up to 20. Changing c this way resulted in slightly
better performance in practice.

Description of Synthetic Functions

The following are the synthetic functions used in the paper.

GP Samples: For the GP samples in the first two experiments of Figure 4.16 we used an SE
kernel with bandwidth 0.1 for φX . For φZ we used bandwidths 1 and 0.01 for the first and second
experiments respectively. The function was constructed by obtaining the GP function values on
a 50 × 50 grid in the two dimensional Z × X space and then interpolating for evaluations in
between via bivariate splines. For both experiments we used η2 = 0.05 and the cost function
λ(z) = 0.2 + 6z2.

Currin exponential function: The domain is the two dimensional unit cube X = [0, 1]2 and the
fidelity was Z = [0, 1] with z• = 1. We used λ(z) = 0.1 + z2, η2 = 0.5 and,

g(z, x) =

(
1− 0.1(1− z) exp

(−1

2x2

))(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
.

Hartmann functions: We used g(z, x) =
∑4

i=1(αi − α′i(z)) exp
(
−∑3

j=1Aij(xj − Pij)
2
)
.

Here α = [1.0, 1.2, 3.0, 3.2] and α′i was set as α′i(z) = 0.1(1 − zi) if i ≤ p for i = 1, 2, 3, 4. A
and P are as given in equations (4.17) and (4.18) for the 3 and 6 dimensional cases respectively.
We constructed the p = 4 and p = 2 Hartmann functions for the 3 and 6 dimensional cases
respectively this way. When z = z• = 1p, this reduces to the usual Hartmann function commonly
used as a benchmark in global optimisation. For the 3 dimensional case we used λ(z) = 0.05 +
(1 − 0.05)z3

1z
2
2 as the cost function and η2 = 0.01. for the 6 dimensional case we used λ(z) =

0.05 + (1− 0.05)z3
1z

2
2z

1.5
3 z1

4 and η2 = 0.05.

4.4 Proofs for Theoretical Results in Chapter 4.1

4.4.1 Proof Outline

We first outline our plan of attack for the proofs of both the upper and lower bounds.

Upper Bound - Theorem 16

First we analyse MF-UCB after n plays (at any fidelity) and control the number of plays of an arm
at various fidelities depending on which X (m) it belongs to. To that end we prove the following.
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Lemma 24. (Bounding E[T
(m)
k,n ] – Informal) After n time steps of MF-UCB for any k ∈ K,

T
(`)
k,n .

log(n)

ψ(γ(m))
, ∀ ` < JkK, E[T

(JkK)
k,n ] .

log(n)

ψ(∆
(JkK)
k /2)

, E[T
(>JkK)
k,n ] ≤ O(1).

The bounds above are illustrated in Table 4.1. Let R̃k(Λ) =
∑M

m=1 λ
(m)∆

(M)
k T

(m)
k,N be the regret

incurred due to arm k and R̃kn = E[R̃k(Λ)|N = n]. Using Lemma 24 we have,

R̃kn

∆
(M)
k log(n)

.
JkK−1∑
`=1

λ(`)

ψ(γ(m))
+

λ(JkK)

ψ(∆
(JkK)
k /2)

+ o(1) (4.26)

The next step will be to control the number of plays N within capital Λ which will bound
E[log(N)]. While Λ/λ(1) is an easy bound, we will see that for MF-UCB, N will be on the
order of nΛ = Λ/λ(M). For this we will use the following high probability bounds on T (m)

k,n .

Lemma 25. (Bounding P(T
(m)
k,n > · ) – Informal) After n time steps of MF-UCB for any k ∈ K,

P

(
T

(JkK)
k,n & x · log(n)

ψ(∆
(JkK)
k /2)

)
.

1

nxρ−1
, P

(
T

(>JkK)
k,n > x

)
.

1

xρ−2
.

We bound the number of plays at fidelities less than M via Lemma 25 and obtain n/2 >∑M−1
m=1 Q

(m)
n with probability greater than, say δ, for all n ≥ n0. By setting δ = 1/ log(Λ/λ(1)),

we get E[log(N)] . log(nΛ). The actual argument is somewhat delicate since δ depends on Λ.

This gives as an expression for the regret due to arm k to be of the form (4.40) where n is
replaced by nΛ. Then we we argue that the regret incurred by an arm k at fidelities less than JkK
(first term in the RHS of (4.40)) is dominated by λ(JkK)/ψ(∆

(JkK)
k ) (second term). This is possible

due to the design of the sets X (m) and Assumption 2. While Lemmas 24, 25 require only ρ > 2,
we need ρ > 4 to ensure that

∑M−1
m=1 Q

(m)
n remains sublinear when we plug-in the probabilities

from Lemma 25. ρ > 2 is attainable with a more careful design of the sets X (m). The Λ > Λ0

condition is needed because initially MF-UCB is playing at lower fidelities and for small Λ, N
could be much larger than nΛ.

Lower Bound - Theorem 17

First we show that for an arm k with ∆
(p)
k > 0 and ∆

(`)
k ≤ 0 for all ` < p, any strategy should

satisfy

Rk(Λ) & log(nΛ) ∆
(M)
k

[
min

`≥p,∆(`)
k >0

λ(`)

∆
(`)
k

2

]
where Rk is the regret incurred due to arm k. The proof uses a change of measure argument. The
modification has Bernoulli distributions with mean µ̃(`)

k , ` = 1, . . . ,M where µ̃(`)
k = µ

(`)
k for all
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X (1) X (2) X (m) X (M) X?
E[T

(1)
k,n] log(n)

ψ(∆
(1)
k )

log(n)

ψ(γ(1))
. . . log(n)

ψ(γ(1))
. . . log(n)

ψ(γ(1))

log(n)

ψ(γ(1))

E[T
(2)
k,n]

O(1)

log(n)

ψ(∆
(2)
k )

. . . log(n)

ψ(γ(2))
. . . log(n)

ψ(γ(2))

log(n)

ψ(γ(2))

...
E[T

(m)
k,n ]

O(1)

. . . log(n)

ψ(∆
(m)
k )

. . . log(n)

ψ(γ(m))

log(n)

ψ(γ(m))

...
E[T

(M)
k,n ] O(1) log(n)

ψ(∆
(M)
k )

Ω(n)

Table 4.1: Bounds on the expected number of plays for each k ∈ X (m) (columns) at each fidelity (rows)
after n time steps (i.e. n plays at any fidelity) in MF-UCB.

` < m. Then we push µ̃(`)
k slightly above µ?−ζ(`) from ` = m all the way toM where µ̃(M)

k > µ?.
To control the probabilities after changing to µ̃(`)

k we use the conditions in Assumption 3. Then

for k ∈ X (m) we argue that λ(`)∆
(`)
k

2
& λ(m)/∆

(m)
k

2
using, once again the design of the sets

X (m). This yields the separate results for k ∈ X (m)
3 ,X (m)

7 .

4.4.2 Proof of Upper Bound

We will repeatedly use the following result in the proof of the upper bound.

Lemma 26. For all u > 0,
∑∞

t=u+1 P(Bk?,t < µ?) ≤ Mν
ρ−2

1
uρ−2 .

Proof. The proof is straightforward using a union bound.

P(Bk?,t < µ?) = P(∃m ∈ {1, . . . ,M}, ∃ 1 ≤ s ≤ t− 1, B(m)
k?,t

(s) ≤ µ?) (4.27)

=
M∑
m=1

t−1∑
s=1

P
(
X

(m)

k?,s − µ
(m)
k?

< µ? − µ(m)
k?
− ζ(m) − ψ−1

(
ρ log(t)

s

))

≤
M∑
m=1

t−1∑
s=1

νt−ρ ≤ Mνt1−ρ

In the third step we have used µ? − µ(m)
k ≤ ζ(m). The result follows by bounding the sum with

the integral
∑∞

t=u+1 t
1−ρ ≤

∫∞
u
t1−ρ = u2−ρ/(ρ− 2).

We first prove Lemma 24, stated formally below.

Lemma 27. Let m ≤M and consider any arm k ∈ X (m). After n time steps of (γ, ρ)-MF-UCB
with ρ > 2 and γ > 0, we have the following bounds on E[T

(`)
k,n] for ` = 1, . . . ,M .

T
(`)
k,n ≤

ρ log(n)

ψ(γ(m))
+ 1, ∀ ` < m, E[T

(m)
k,n ] ≤ ρ log(n)

ψ(∆
(m)
k /2)

+ κρ, E[T
(>m)
k,n ] ≤ κρ.
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Here, κρ = 1 + ν
2

+ Mν
ρ−2

is a constant.

Proof. As n is fixed in this proof, we will write E[·],P(·) for E[·|N = n],P(·|N = n). Let
φ

(m)
t = b ρ log(t)

ψ(γ(m))
c. By design of the algorithm we won’t play any arm more than φ(m)

n + 1 times

at any m < M . To see this, assume we have already played φ(m)
n + 1 times at any t < n. Then,

ψ−1

(
ρ log(t)

T
(m)
k,t−1

)
< ψ−1

(
ρ log(t)

ρ log(n)
ψ(γ(m))

)
≤ γ(m),

and we will proceed to the (m+ 1)th fidelity in step 2 of Algorithm 3. This gives the first part of
the theorem. For any ` ≥ m we can avoid the 1

ψ(γ(m))
dependence to obtain tighter bounds.

For the case ` = m, our analysis follows usual multi-armed bandit analyses [9, 25]. For any
u ≤ n, we can bound T (m)

k,n via T (m)
k,n ≤ u +

∑n
t=u+1 Z

(m)
k,t,u where Z(m)

k,t,u = 1
{
mt = m ∧ It =

k ∧ T
(m)
k,t−1 ≥ u

}
. We relax Z(m)

k,t,u further via,

Z
(m)
k,t,u ≤ 1

{
T

(`)
k,t−1 > φ

(`)
t ∀` ≤ m− 1 ∧ u ≤ T

(m)
k,t−1 ≤ φ

(m)
t ∧ Bk,t > Bk?,t

}
≤ 1

{
T

(m)
k,t−1 ≥ u ∧ B(m)

k,t (T
(m)
k,t−1) ≥ µ?

}
+ 1

{
Bk?,t < µ?

}
≤ 1

{
∃u ≤ s ≤ t− 1 : B(m)

k,t (s) > µ?
}

+ 1
{
Bk?,t < µ?

}
.

This yields, E[T
(m)
k,n ] ≤ u+

∑n
t=u+1

∑t−1
s=u P(B(m)

k,t (s) > µ?) +
∑n

t=u+1 P(Bk?,t < µ?). The third
term in this summation is bounded by Mν/(ρ − 2) using Lemma 26. To bound the second,
choose u = dρ log(n)/ψ(∆

(m)
k /2)e. Then,

P(B(m)
k,t (s) > µ?) = P

(
X

(m)

k,s − µ(m)
k > µ? − µ(m)

k − ζ(m) − ψ−1
(ρ log(t)

s

))
≤ P(X

(m)

k,s − µ(m)
k > ∆

(m)
k /2) ≤ ν exp

(
− sψ

(∆
(m)
k

2

))
≤ νn−ρ (4.28)

In the second and last steps we have used ψ−1(ρ log(t)/s) < ψ−1(ρ log(t)/u) ≤ ∆
(m)
k /2 since

ψ−1 is increasing and u > ρ log(n)/ψ(∆
(m)
k /2). Since there are at most n2 terms in the summa-

tion, the second term is bounded by νn2−ρ/2 ≤ ν/2. Collecting the terms gives the bound on
E[T

(m)
k,n ].

To bound T (>m)
k,n we write T (>m)

k,n ≤ u+
∑n

t=u+1 Z
(>m)
k,t,u where

Z
(>m)
k,t,u = 1

{
mt > m ∧ It = k ∧ T

(>m)
k,t−1 ≥ u

}
≤ 1

{
T

(`)
k,t−1 > φ

(`)
t ∀` ≤ m ∧ Bk,t > Bk?,t ∧ T

(>m)
k,t−1 ≥ u

}
≤ 1

{
T

(m)
k,t−1 > φ

(m)
t ∧ B(m)

k,t (T
(m)
k,t−1) > µ?

}
+ 1
{
Bk?,t < µ?

}
≤ 1

{
∃φ(m)

t + 1 ≤ s ≤ t− 1 : B(m)
k,t (s) > µ?

}
+ 1
{
Bk?,t < µ?

}
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This yields, E[T
(>m)
k,n ] ≤ u +

∑n
t=u+1

∑t−1

s=φ
(m)
t +1

P(B(m)
k,t (s) > µ?) +

∑n
t=u+1 P(Bk?,t < µ?).

The inner term inside the double summation can be bounded via,

P(B(m)
k,t (s) > µ?) = P

(
X

(m)

k,s − µ(m)
k > µ? − µ(m)

k − ζ(m) − ψ−1
(ρ log(t)

s

))
≤ P(X

(m)

k,s − µ(m)
k > ∆

(m)
k − γ(m)) ≤ ν exp(−sψ(∆

(m)
k − γ(m)))

≤ ν exp

(
−ψ(∆

(m)
k − γ(m))

ψ(γ(m))
ρ log(t)

)
≤ νt−ρ (4.29)

The second step follows from s > φ
(m)
t > ρ log(t)/ψ(γ(m)) and the last step uses ψ(∆

(m)
k −

γ(m)) > ψ(γ(m)) when ∆
(m)
k > 2γ(m). To bound the summation, we use u = 1 and bound it

by an integral:
∑n

t=u+1 t
−ρ+1 ≤ 1/(2uρ−2) ≤ 1/2. Collecting the terms gives the bound on

E[T
(>m)
k,n ].

We now prove Lemma 25, stated formally below.

Lemma 28. Consider any arm k ∈ X (m). For (γ, ρ)-MF-UCB with ρ > 2 and γ > 0, we have
the following concentration results for ` = 1, . . . ,M for any x ≥ 1.

P

(
T

(m)
k,n > x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

))
≤

νκ̃
(m)
k,ρ

(x · log(n))ρ−1
+

ν

nxρ−1
.

P
(
T

(>m)
k,n > x

)
≤ Mν

ρ− 1

1

xρ−1
+

1

(ρ− 2)xρ−2

Here, κ̃(m)
k,ρ = M

ρ−1

(
ψ(∆

(m)
k /2)

ρ

)ρ−1

.

Proof. For the first inequality, we modify the analysis in Audibert et al. [9] to the multi-fidelity
setting. We begin with the following observation for all u ∈ N.

{∀ t : u+ 1 ≤ t ≤ n,B(m)
k,t (u) ≤ µ?} ∩ (4.30)

M⋂
m=1

{∀ 1 ≤ s ≤ n− u : B(m)
k?,u+s(s) > µ?} =⇒ T

(m)
k,n ≤ u

To prove this, consider s(m),m = 1, . . . ,M such that s(1) ≥ 1, s(m) ≥ 0,∀m 6= 1. For all
u+

∑M
m=1 s

(m) ≤ t ≤ n and for all ` = 1, . . . ,M we have

B(`)
k?,t

(s(`)) ≥ B(`)
k?,u+s(s

(`)) > µ? ≥ B(m)
k,t (u) ≥ B(m)

k,t (T
(m)
k,t−1).

This means that arm k will not be the Bk,t maximiser at any time u < t < n and consequently it
won’t be played more than u+ 1 times at the mth fidelity. Via the union bound we have,

P(T
(m)
k,n > u) ≤

n∑
t=u+1

P(B(m)
k,t (u) > µ?) +

M∑
m=1

n−u∑
s=1

P(B(m)
k?,u+s(s) < µ?).
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We will use u = dx(1 + ρ log(n)/ψ(∆
(m)
k /2))e. Bounding the inner term of the second double

summation closely mimics the calculations in (4.27) via which it can be shown P(B(m)
k?,u+s(s) <

µ?) ≤ ν(u+ s)−ρ. The second term is then bounded by an integral as follows,

M∑
m=1

n−u∑
s=1

P(B(m)
k?,u+s(s) < µ?) ≤M

n−u∑
s=1

ν(u+ s)−ρ ≤Mν

∫ n

u

t−ρ ≤ Mνu1−ρ

ρ− 1
≤

νκ̃
(m)
k,ρ

(x · log(n))ρ−1

The inner term of the first summation mimics the calculations in (4.28). Noting that s >

xρ log(n)/ ψ(∆
(m)
k /2) it can be shown P(B(m)

k,t (u) > µ?) ≤ νn−ρx which bounds the outer
summation by νn−ρx+1. This proves the first concentration result.

For the second, we begin with the following observation for all u ∈ N.

{∀ t : u+ 1 ≤ t ≤ n, B(m)
k,t (T

(m)
k,t−1) ≤ µ? ∨ T

(m)
k,t−1 ≤ φ

(m)
t } ∩ (4.31)

M⋂
m=1

{∀ 1 ≤ s ≤ n− u : B(m)
k?,u+s(s) > µ?} =⇒ T

(>m)
k,n ≤ u

To prove this first note that when T (m)
k,t−1 ≤ φ

(m)
t we will play at the mth fidelity or lower. Other-

wise, consider s(m),m = 1, . . . ,M such that s(1) ≥ 1 and s(m) ≥ 0,∀m. For all u+
∑M

m=1 s
(m) ≤

t ≤ n and for all ` = 1, . . . ,M we have

B(`)
k?,t

(s(`)) ≥ B(`)
k?,u+s(s

(`)) > µ? ≥ B(m)
k,t (T

(m)
k,t−1).

This means that arm k will not be played at time t and consequently for any t > u. After a
further relaxation we get,

P(T
(>m)
k,n > u) ≤

n∑
t=u+1

t−1∑
s=φ

(m)
t +1

P(B(m)
k,t (s) > µ?) +

M∑
m=1

n−u∑
s=1

P(B(m)
k?,u+s(s) < µ?)

The second summation is bounded via Mν
(ρ−1)uρ−1 . Following an analysis similar to (4.29), the

inner term of the first summation can be bounded by νt−ρ which bounds the first term by
u2−ρ/(ρ− 2). The result follows by using u = x in (4.31).

Proof of Theorem 16

We are now ready to prove the upper bound. We first establish the following Lemma.

Lemma 29 (Regret of MF-UCB). Let ρ > 4. There exists Λ0 depending on λ(1), λ(M) such that
for all Λ > Λ0, (γ, ρ)-MF-UCB satisfies,

E[R(Λ)] ≤ µ?λ
(M) +

K∑
k=1

∆
(M)
k

( [k]−1∑
`=1

λ(`)ρ(log(nΛ) + c)

ψ(γ(`))
+
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λ(JkK)ρ(log(nΛ) + c)

ψ(∆
(JkK)
k /2)

+ µ?κρλ
(M)

)
Here c = 1 + log(2) and κρ = 1 + ν

ρ−2
+ Mν

ρ−2
are constants.

Proof. Denote the set of arms “above” X (m) by K̂(m) =
⋃M
`=m+1X (`) and those “below” X (m)

by K̂(m) =
⋃m−1
`=1 X (`). We first observe,(

∀m ≤M − 1, ∀k ∈ X (m), T
(m)
k,n ≤ x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
∧ T

(>m)
k,n ≤ y

)
(4.32)

=⇒
M−1∑
m=1

Q(m)
n ≤ Ky +

M−1∑
m=1

∑
k∈X (m)

x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
+

M−1∑
m=1

|K̂(m)|
(

1 +
ρ log(n)

ψ(γ(m))

)
To prove this we first note that the LHS of (4.32) is reducible to,

∀m ≤M − 1, Q(m)
n ≤

∑
k∈K̂(m)

T
(m)
k,n +

∑
k∈X (m)

x

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
+
∑

k∈K̂(m)

(
1 +

ρ log(n)

ψ(γ(m))

)

The statement follows by summing the above fromm = 1, . . . ,M−1 and rearranging the T (>m)
k,n

terms to obtain,

M−1∑
m=1

∑
k∈K̂(m)

T
(m)
k,n =

M−1∑
m=1

m−1∑
`=1

∑
k∈X (`)

T
(m)
k,n =

M−2∑
m=1

∑
k∈X (m)

M−1∑
`=m+1

T
(`)
k,n ≤

M−2∑
m=1

∑
k∈X (m)

T
(>m)
k,n

≤ (K − |X (M−1) ∪ X (M) ∪ X?|)y ≤ Ky.

Now for the given Λ under consideration, define δΛ = 1
log(Λ/λ(1))

. In addition define,

xn,δ = max

(
1 ,

1

ρ

(
3 +

log(2νπ2K/(3δ))

log(n)

)
,

(
2π2KνM

3(ρ− 1)δ

) 1
ρ−1 ψ(∆

(m)
k /2)

ρ
n

2
ρ−1

)
.

yn,δ = max

(
1 ,

(
2π2KMν

3(ρ− 1)δ

) 1
ρ−1

n
2
ρ−1 ,

(
π2K

3δ

) 1
ρ−2

n
2
ρ−2

)
.

Now choose n0,Λ to be the smallest n such that the following holds for all n ≥ n0,Λ.

n

2
≥ Kyn,δΛ +

M−1∑
m=1

∑
k∈X (m)

xn,δΛ

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

)
+

M−1∑
m=1

∑
k∈K̂(m)

1 +
ρ log(n)

ψ(γ)
, (4.33)

For such an n0,Λ to exist, for a given Λ, we need both xn, yn sublinear. This is true since ρ > 4.
In addition, observe that n0,Λ grows only polylogarithmically in Λ since (4.33) reduces to np &
(log(Λ))1/2 where p > 0 depends on our choice of ρ.
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By (4.32), the RHS of (4.33) is an upper bound on the number of plays at fidelities lower than
M . Therefore, for all n ≥ n0,Λ,

P
(
Q(M)
n <

n

2

)
≤

M−1∑
m=1

∑
k∈X (m)

P
(
T

(m)
k,n > xn,δ

(
1 +

ρ log(n)

ψ(∆
(m)
k /2)

))
+ P

(
T

(>m)
k,n > yn,δ

)

≤
M−1∑
m=1

∑
k∈X (m)

ν

nρxn,δΛ−1 +
νκ̃

(m)
k,ρ

(xn,δΛ log(n))ρ−1
+

νM

(ρ− 1)yρ−1
n,δΛ

+
1

2yρ−2
n,δΛ

≤ K

(
4× 3δ

2Kn2π2

)
≤ 6δ

n2π2
. (4.34)

The last step follows from the fact that each of the four terms inside the summation in the second
line are ≤ 3δ/(2Kn2π2). For the last term we have used that (ρ− 2)/2 > 1 and that 3δ/(π2K)
is smaller than 1. Note that the double summation just enumerates over all arms in K.

We can now specify the conditions on Λ0. Λ0 should be large enough so that for all Λ ≥ Λ0,
we have bΛ/λ(M)c ≥ n0,Λ. Such an Λ0 exists since n0,Λ grows only polylogarithmically in Λ.
This ensures that we have played a sufficient numer of rounds to apply the concentration result
in (4.34).

Let the (random) expended capital after n rounds of MF-UCB be Ω(n). Let E = {∃n ≥ n0,Λ :

Ω(n) < nλ(M)/2}. Since Ω(n) ≥ λ(M)Q
(M)
n , by using the union bound on (4.34) we have

P(E) ≤ δΛ. Therefore,

P
(
N >

2Λ

λ(M)

)
= P

(
N >

2Λ

λ(M)

∣∣∣E)P(E)︸︷︷︸
≤ δΛ

+ P
(
N >

2Λ

λ(M)

∣∣∣Ec)︸ ︷︷ ︸
= 0

P(Ec) < δΛ

The last step uses the following reasoning: Conditioned on Ec, n > 2Ω(n)/λ(M) is false for n >
n0,Λ. In particular, it is true for the random number of plays N since Λ > Λ0 =⇒ N ≥ n0,Λ.
Now, clearly Λ > Ω(N) and therefore N > 2Λ/λ(M) is also false.

By noting that nΛ = Λ/λ(M) and that log(Λ/λ(1)) is always an upper bound on log(N), we have,

E[log(N)] ≤ log(2nΛ)P(N < 2nΛ) + log

(
Λ

λ(1)

)
P(N > 2nΛ) ≤ log(nΛ) + 1 + log(2)

(4.35)

Lemma 29 now follows by an application of Lemma 24. First we condition on N = n to obtain,

E[R(Λ)|N = n] ≤ µ?λ
(M) +

K∑
k=1

M∑
m=1

∆
(M)
k λ(m)T

(m)
k,n

≤ µ?λ
(M) +

K∑
k=1

∆
(M)
k

[k]−1∑
`=1

λ(`)ρ log(n)

ψ(γ(m))
+ λ(JkK) ρ log(n)

ψ(∆
(JkK)
k /2)

+ κρλ
(M)


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The theorem follows by plugging in the above in E[R(Λ)] = E[E[R(Λ)|N ]] and using the bound
for E[log(N)] in (4.35).

We can now bound the regret for MF-UCB.

Proof of Theorem 16. Recall that ψ(γ(m)) = λ(m)

λ(m+1)ψ(ζ(m)). Plugging this into Lemma 29 we
get

E[R(Λ)] ≤ µ?λ
(M) +

K∑
k=1

∆
(M)
k

(
[k]−1∑
`=1

λ(`+1)ρ(log(nΛ) + c)

ψ(ζ(`))

+ λ(JkK)ρ(log(nΛ) + c)

ψ(∆
(JkK)
k /2)

+ κρλ
(M)

)

≤ µ?λ
(M) +

K∑
k=1

∆
(M)
k · λ(JkK)ρ(log(nΛ) + c)

(
2

ψ(ζ(JkK−1))
+

1

ψ(∆
(JkK)
k /2)

)
+ ∆

(M)
k κρλ

(M)

The second step uses Assumption 2. The theorem follows by noting that for any k ∈ X (m) and
` < m, ∆

(m)
k = ∆

(`)
k + ζ(`) − ζ(m) + µ

(`)
k − µ

(M)
k + µ

(M)
k − µ

(m)
k ≤ 2γ(`) + 2ζ(`) ≤ 4ζ(`).

Therefore 1/ψ(∆
(m)
k ) > c1/ψ(ζ(`)) where c1 depends on ψ (for sub-Gaussian distributions, c1 =

1/16).

4.4.3 Proof of Lower Bound

The regret Rk incurred by any multi-fidelity strategy after capital Λ due to a suboptimal arm k is,

Rk(Λ) = ∆
(M)
k

M∑
m=1

λ(m)T
(m)
k,N ,

here N is the total number of plays. We then have, R(Λ) =
∑

k Rk(Λ). For what follows, for an
arm k and any fidelity m denote KL

(m)
k = KL(µ

(m)
k ‖µ? − ζ(m)). The following lemma provides

an asymptotic lower bound on Rk.

Lemma 30. Consider any set of Bernoulli reward distributions with µ? ∈ (1/2, 1) and ζ(1) <

1/2. For any k with ∆
(`)
k < 0 for all ` < p and ∆

(p)
k > 0, there exists a problem dependent

constant cp such that any strategy satisfying Assumption 3 must satisfy,

lim inf
Λ→∞

Rk(Λ)

log(nΛ)
≥ c′p ∆

(M)
k min

`≥p,∆(`)
k >0

λ(`)

∆
(`)
k

2
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Proof. For now we will fix N = n and consider any game after n rounds. Our proof we will
modify the reward distributions of the given arm k for all ` ≥ p and show that any algorithm
satisfying Assumption 3 will not be able to distinguish between both problems with high proba-
bility. Since the KL divergence is continuous, for any ε > 0 we can choose µ̃(p)

k ∈ (µ?−ζ(p), µ?−
ζ(p) + min`<p−∆

(`)
k ) such that KL(µ

(p)
k ‖µ̃

(p)
k ) < (1 + ε)KL(µ

(p)
k ‖µ? − ζ(p)) = (1 + ε)KL

(p)
k .

The modified construction for arm k, will also have Bernoulli distributions with means µ̃(1)
k ,

µ̃
(2)
k , . . . , µ̃

(M)
k . µ̃(p)

k will be picked to satisfy the two constraints above and for the remaining
fidelities,

µ̃
(`)
k = µ

(`)
k for ` < p, µ̃

(`)
k = µ̃

(p)
k + ζ(p) − ζ(`) for ` > p.

Now note that for ` < p, µ̃(M)
k − µ̃(`)

k = µ̃
(p)
k + ζ(p)− µ(`)

k < µ?− ζ(p)−∆
(`)
k + ζ(p)− µ(`)

k = ζ(`);
similarly, µ̃(M)

k − µ̃
(`)
k = µ̃

(p)
k + ζ(p) − µ

(`)
k > µ? − µ

(`)
k > µ

(M)
k − µ

(`)
k > −ζ(`). For ` > p,

µ̃
(M)
k −µ̃

(`)
k = ζ(`). Hence, the modified construction satisfies the conditions on the lower fidelities

laid out in Chapter 4.1.1 and we can use Assumption 3. Further µ̃(M)
k > µ?, so k is the optimal

arm in the modified problem. Now we use a change of measure argument.

Following Bubeck and Cesa-Bianchi [25], Lai and Robbins [151], denote the expectations, prob-
abilities and distribution in the original problem as E,P, P and in the modified problem as
Ẽ, P̃, P̃ . Denote a sequence of observations when playing arm k at by {Z(`)

k,t}t≥0 and define,

L
(`)
k (s) =

s∑
t=1

log

(
µ

(`)
k Z

(`)
k,t + (1− µ(`)

k )(1− Z(`)
k,t )

µ̃
(`)
k Z

(`)
k,t + (1− µ̃(`)

k )(1− Z(`)
k,t )

)
=

∑
t:Z

(`)
k,t=1

log
µ

(`)
k

µ̃
(`)
k

+
∑

t:Z
(`)
k,t=0

log
1− µ(`)

k

1− µ̃(`)
k

.

Observe that E[s−1L
(`)
k (s)] = KL(µ

(`)
k ‖µ̃

(`)
k ). Let A be any event in the σ-field generated by the

observations in the game.

P̃(A) =

∫
1(A)dP̃ =

∫
1(A)

M∏
`=p

( T
(`)
k,n∏
i=1

θ̃
(`)
k (Z

(`)
k,i )

θ
(`)
k (Z

(`)
k,i )

)
dP

= E
[
1(A) exp

(
−
∑
`≥p

L
(`)
k (T

(`)
k,n)

)]
(4.36)

Now let f (`)
n = C log(n) for all ` such that ∆

(`)
k < 0 and f (`)

n = 1
M−p

1−ε
KL(µ

(p)
k ‖µ̃

(p)
k )

log(n) other-

wise. (Recall that ∆
(`)
k < 0 for all ` < p and ∆

(p)
k > 0). C is a large enough constant that we will

specificy shortly. Define the following event An.

An =

{
T

(`)
k,n ≤ f (`)

n , ∀` ∧ L
(`)
k (T

(`)
k,n) ≤ 1

M − p(1− ε/2) log(n), ∀` : ∆
(`)
k > 0

}
By (4.36) we have P̃(An) ≥ P(An)n−(1−ε/2). Since k is the unique optimal arm in the modified
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construction, by Assumptions 3 we have ∀ a > 0,

P̃(An) ≤ P
(∑

m

T
(m)
k,n < Θ(log(n))

)
≤

E
[
n−∑m T

(m)
k,n

]
n−Θ(log(n))

∈ o(na−1)

By choosing a < ε/2 we have P(An) → 0 as n → ∞. Next, we upper bound the probability of
An in the original problem as follows,

P(An) ≥ P

(
T

(`)
k,n ≤ f (`)

n , ∀`︸ ︷︷ ︸
An,1

∧ max
s≤fn

L
(`)
k (s) ≤ 1

M − p(1− ε/2) log n,∀` : ∆
(`)
k > 0︸ ︷︷ ︸

An,2

)

We will now show that An,2 remains large as n→ 0. Writing An,2 =
⋂
`:∆

(`)
k >0

An,2,`, we have

P(An,2,`) = P

(
f

(`)
n (M − p)

(1− ε) log(n)
· 1

f
(`)
n

max
s≤f (`)

n

L
(m)
k (s) ≤ 1− ε/2

1− ε

)
.

As f (`)
n → ∞, by the strong law of large numbers 1

f
(`)
n

max
s≤f (`)

n
L

(m)
k (s) → KL(µ

(m)
k ‖µ̃

(m)
k ).

After substituting for f (`)
n and repeating for all `, we get limn→∞ P(An,2) = 1. Therefore,

P(An,1) ≤ o(1). To conclude the proof, we upper bound E[Rk(Λ)] as follows,

E[Rk(Λ)]

∆
(M)
k

≥ P(∃ ` s.t.T
(`)
k,N > f

(`)
N ) · E[Rk(Λ) | ∃ ` s.t.T

(`)
k,N > f

(`)
N ] ≥ P(An,1) ·min

`
f (`)
nΛ
λ(`)

≥ (1− o(1)) min
`≥p

(1− ε) log(nΛ)λ(`)

(M − p)KL(µ
(`)
k ‖µ̃

(`)
k )

≥ log(nΛ)

M − p (1− o(1))
1− ε
1 + ε

min
`>m

λ(`)

KL
(`)
k

Above, the second step uses the fact that N ≥ nΛ and log is increasing. In the third step, we
have chosen C > max`≥p λ

(`)∆
(M)
k /KL(µ

(`)
k ‖µ̃

(`)
k ) for ` < p large enough so that the minimiser

will be at ` ≥ p. The lemma follows by noting that the statements holds for all ε > 0 and that
for Bernoulli distributions with parameters µ1, µ2, KL(µ1‖µ2) ≤ (µ1 − µ2)2/(µ2(1− µ2)). The
constant given in the theorem is c′p = 1

M−p min`>p(µ? − ζ(`))(1− µ? + ζ(`)).

We can now use the above Lemma to prove Theorem 17.

Proof of Theorem 17. Let k ∈ X (m)
3 . We will use Lemma 30 with p = m. It is sufficient to

show that λ(`)/∆
(`)
k

2
& λ(m)/∆

(m)
k

2
for all ` > m. First note that

∆
(`)
k = µ? − µ(m)

k − ζ(m) + µ
(m)
k − µ? + µ? − µ(`)

k + ζ(m) − ζ(`)

≤ ∆
(m)
k + 2ζ(m) ≤ 2∆

(m)
k

√
λ(m+1)

λ(m)
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Here the last step uses that ∆
(m)
k > 2γ(m) =

√
λ(m)/λ(m+1)ζ(m). Here we have used ψ(ε) = 2ε2

which is just Hoeffding’s inequality. Therefore, λ(m)

∆
(m)
k

2 ≤ 4λ
(m+1)

∆
(`)
k

2 ≤ 4 λ(`)

∆
(`)
k

2 .

When k ∈ X (m)
7 , we use Lemma 30 with p = `0 = min{`; ∆

(`)
k > 0}. However, by repeating the

same argument as above, we can eliminate all ` > m. Hence, we only need to consider ` such
that `0 ≤ ` ≤ m and ∆

(`)
k > 0 in the minimisation of Lemma 30. This is precisely the set Lm(k)

given in the theorem. The theorem follows by repeating the above argument for all arms k ∈ K.
The constant cp in Theorem 17 is c′p/4 where c′p is from Lemma 30.

4.5 Proofs of Theoretical Results in Chapter 4.2

In this section, we present the proofs of our main theorems in Chapter 4.2. While it is self
contained, the reader will benefit from first reading the more intuitive discussion in Chapter 4.2.3.
Our goal in this section is to bound the simple regret S(Λ) given in (4.9).

4.5.1 Set Up & Notation

Recall that N is the random number of plays within capital Λ. While N ≤ bΛ/λ(1)c is a trivial
upper bound for N , this will be too loose for our purposes. In fact, we will show that after a
sufficiently large number of queries at any fidelity, the number of queries at fidelities smaller
than M will be sublinear in N . Hence N ∈ O(nΛ) where nΛ = bΛ/λ(M)c is the number of plays
by any algorithm that operates only at the highest fidelity.

We introduce some notation to keep track of the evaluations at each fidelity in MF-GP-UCB.
After n steps, we will have queried multiple times at any of the M fidelities. T (m)

n (x) denotes the
number of queries at x ∈ X at fidelity m after n steps. T (m)

n (A) denotes the same for a subset
A ⊂ X . D(m)

n = {(xt, yt)}t:mt=m is the set of query-value pairs at the mth fidelity until time n.

Roadmap: To bound S(Λ) in both the discrete and continuous settings, we will begin by study-
ing the algorithm after n evaluations at any fidelity and analyse the following quantity,

R̃n =
∑

t:mt=M
xt∈Z

(
f(x?)− f (M)(xt)

)
(4.37)

Readers familiar with the bandit literature will see that this is similar to the notion of cumulative
regret, except we only consider queries at the M th fidelity and inside a set Z ⊂ X . Z contains
the optimum and generally has high value for the payoff function f (M)(x); it will be determined
by the approximations provided via the lower fidelity evaluations. We will show that most of
the M th fidelity evaluations will be inside Z in the multi-fidelity setting, and hence, the regret
for MF-GP-UCB will scale with Ψn(Z) instead of Ψn(X ) as is the case for GP-UCB. Finally, to
convert this bound in terms of n to one that depends on Λ, we show that both the total number
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of evaluations N and the number of highest fidelity evaluations T (M)
N (X ) are on the order of nΛ

when Λ is sufficiently large. For this, we bound the number of plays at the lower fidelities (see
Lemma 19). Then S(Λ) can be bounded by,

S(Λ) ≤ 1

T
(M)
N (X )

R̃N .
1

nΛ

R̃nΛ
. (4.38)

Before we proceed, we will prove a series of results that will be necessary in our proofs of
Theorems 21 and 22. We first prove Lemma 18.

Proof of Lemma 18. Let A2′ =
{
‖f (M)‖∞ ≤ ζ(M−1)/2 ∩ ⋂M−1

m=1 ‖f (m)‖∞ ≤ ζ(m)/2
}

. It is

straightforward to see that A2′ ⊂ A2 since for any m ≤M − 1,

‖f (M) − f (m)‖∞ ≤ ‖f (M)‖∞ + ‖f (m)‖∞ ≤ ζ(M−1)/2 + ζ(m)/2 ≤ ζ(m).

Hence, PGP(A2) ≥ PGP(A2′). We can now bound,

PGP(A2′) = PGP
(
‖f (M)‖∞ ≤ ζ(M−1)/2

)
·
M−1∏
m=1

PGP
(
‖f (m)‖∞ ≤ ζ(m)/2

)
≥ ξA2.

Here the equality in the first step comes from the observation that the f (m)’s are independent
under the PGP probability. The last inequality comes from Lemm 7.

Remark 2. It is worth noting that the above bound is a fairly conservative lower bound on
ξA2 since A2′ essentially requires that all samples f (m) be small so as to make the differences
f (M) − f (m) small. We can obtain a more refined bound on ξA2 by noting that f (M) − f (m) ∼
GP(0, 2κ) and following proofs for bounding the supremum of a GP (e.g. Theorem 5.4 in Adler
[4], Theorem 4 in Ghosal and Roy [72]). This leads to smaller values for βt in Theorems 21
and 22 and consequently better constants in our bounds. However, this analysis will require ac-
counting for correlations when analysing multiple GPs which is beyond the scope and tangential
to the goals of this paper. Moreover, from a practical perspective it would not result in anything
actionable since many quantities in the expression for βt are already unknown in practice, even
for GP-UCB. It is also worth noting that the dependence of ξA2 on our regret bounds is mild since
it appears as a

√
log(1/ξA2) term.

Next, Lemma 31 provides a way to bound the probability of an event under our prior (A1 and
A2) using the probability of the event when the functions are sampled from a GP (A1 only).

Lemma 31. Let E be a PGP-measurable event. Then, P(E) ≤ ξ−1
A2 PGP(E).

Proof This follows via a straightforward application of Bayes’ rule, shown below. The last step
uses Lemma 18 and that the intersection of two sets is at most as large as either set.

P(E) = PGP(E|A2) =
PGP(E ∩ A2)

PGP(A2)
≤ 1

ξA2
PGP(E).
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For our analysis, we will also need to control the sum of conditional standard deviations for
queries in a subset A ⊂ X . We provide the lemma below, whose proof is based of a similar
result in Srinivas et al. [235].

Lemma 32. Let f ∼ GP(0, κ), f : X → R and each time we query at any x ∈ X we observe
y = f(x) + ε, where ε ∼ N (0, η2). Let A ⊂ X . Assume that we have queried f at n points,
(xt)

n
t=1 of which s points are in A. Let σt−1 denote the posterior variance at time t, i.e. after

t− 1 queries. Then,
∑

xt∈A σ
2
t−1(xt) ≤ 2

log(1+η−2)
Ψs(A).

Proof Let As = {z1, z2, . . . , zs} be the queries inside A in the order they were queried. Now,
assuming that we have only queried inside A at As, denote by σ̃t−1(·), the posterior standard
deviation after t− 1 such queries. Then,

∑
t:xt∈A

σ2
t−1(xt) ≤

s∑
t=1

σ̃2
t−1(zt) ≤

s∑
t=1

η2 σ̃
2
t−1(zt)

η2
≤

s∑
t=1

log(1 + η−2σ̃2
t−1(zt))

log(1 + η−2)

≤ 2

log(1 + η−2)
I(yAs ; fAs)

Queries outside A will only decrease the variance of the GP so we can upper bound the first
sum by the posterior variances of the GP with only the queries in A. The third step uses the
inequality u2/v2 ≤ log(1 + u2)/ log(1 + v2) with u = σ̃t−1(zt)/η and v = 1/η and the last step
uses Lemma 5 in Chapter 2.4. The result follows from the fact that Ψs(A) maximises the mutual
information among all subsets of size s.

4.5.2 Discrete X

Proof of Theorem 21. Without loss of generality, we can assume that MF-GP-UCB is run
indefinitely with different (xt,mt, yt) values at each time step t, but will analyse the queries
until capital Λ is spent. Let N denote the (random) number of queries within Λ, i.e. the quantity
satisfyingN = max{n ≥ 1;

∑n
t=1 λ

(mt) ≤ Λ}. Note that supp (N) ⊂ {n ∈ N : nΛ ≤ n ≤ nΛ}.
In our analysis, we will first analyse MF-GP-UCB after n steps and control the regret and the
number of lower fidelity evaluations.

Bounding the regret after n evaluations: We will need the following lemma to establish that
ϕt(x) upper bounds f (M)(x). The proof is given in Chapter 4.5.2.

Lemma 33. Pick δ ∈ (0, 1) and choose βt ≥ 2 log
(
M |X |π2t2

3ξA2δ

)
. Then, with probability at least

1− δ/2, for all t ≥ 1, for all x ∈ X and for all m ∈ {1, . . . ,M}, we have

∣∣f (m)(x)− µ(m)
t−1(x)

∣∣ ≤ β
1/2
t σ

(m)
t−1(x).
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First note the following bound on the instantaneous regret when mt = M ,

f(x?)− f (M)(xt) ≤ ϕt(x?)− (µ
(M)
t−1 (xt)− β1/2

t σ
(M)
t−1 (xt)) (4.39)

≤ ϕt(xt)− (µ
(M)
t−1 (xt)− β1/2

t σ
(M)
t−1 (xt)) ≤ 2β

1/2
t σ

(M)
t−1 (xt).

The first step uses that ϕ(m)
t (x) is an upper bound for f (M)(x) by Lemma 33 and the assumption

A2, and hence so is the minimum ϕt(x). The second step uses that xt was the maximiser of
ϕt(x) and the third step that ϕ(M)

t (x) ≥ ϕt(x). To control R̃n, we will use Z = H(M) in (4.37)
and invoke Lemma 44. Applying the Cauchy Schwarz inequality yields,

R̃2
n ≤ T (m)

n (H(M))
∑

t:mt=M
xt∈H(M)

(
f(x?)− f (M)(xt)

)2 ≤ T (m)
n (H(M))

∑
t:mt=M
xt∈H(M)

4βt(σ
(m)
t−1(xt))

2

≤ C1T
(m)
n (H(M))βnΨ

T
(m)
n (H(M))

(H(M)). (4.40)

Here C1 = 8/ log(1 + η−2).

Bounding the number of evaluations: Lemma 34, given below, bounds the number of evalu-
ations at different fidelities in different regions of X . This will allow us to bound, among other
things, the total number of plays N and the number of M th fidelity evaluations outside Z . The
proof of Lemma 34 is given in Chapter 4.5.2. Recall that T (m)

n (x) denotes the number of queries
at point x ∈ X at fidelity m. Similarly, we will denote T (>m)

n (x) to denote the number of queries
at point x at fidelities larger than m.

Lemma 34. Pick δ ∈ (0, 1) and set βt = 2 log
(
M |X |π2t2

3ξA2δ

)
. Further assume ϕt(x?) ≥ f(x?).

Consider any x ∈ H(m)\{x?} for m < M . We then have the following bounds on the number of
queries at any given time step n,

T (`)
n (x) ≤ η2

γ(m)2βn + 1, for ` < m,

P
(
T (m)
n (x) >

⌈
5
( η

∆(m)(x)

)2

βn

⌉)
≤ 3δ

2π2

1

|X |n2
,

P
(
T (>m)
n (x) > u

)
≤ 3δ

2Mπ2

1

|X |u.

First whenever ϕt(x?) ≥ f(x?), by using the union bound on the second result of Lemma 34,

P
(
∃n ≥ 1, ∃m ∈ {1, . . . ,M}, ∃x ∈ H(m)\{x?}, T (m)

n (x) >

⌈
5
( η

∆(m)(x)

)2

βn

⌉)
≤ δ

4
.

Here we have used
∑
n−2 = π2/6. The last two quantifiers just enumerates over all x ∈

X\{x?}. Similarly, applying the union bound for u = 1 on the third result, we have, for any
given n,

P
(
∃m ∈ {1, . . . ,M}, ∃x ∈ H(m), T (>m)

n (x) > 1
)
≤ 3δ

2π2
<
δ

4
.
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H(1) H(2) H(m) H(M)\{x?}
T

(1)
n (x) 5η2

∆(1)(x)
2βn + 1 η2

γ(1)2βn + 1 . . . η2

γ(1)2βn + 1 . . . η2

γ(1)2βn + 1

T
(2)
n (x)

1

5η2

∆(2)(x)
2βn + 1 . . . η2

γ(2)2βn + 1 . . . η2

γ(2)2βn + 1

...
...

...
T

(m)
n (x)

1

. . . 5η2

∆(m)(x)
2βn + 1 . . . η2

γ(m)2βn + 1

...
...

...
T

(M)
n (x) 1 5η2

∆(M)(x)
2βn + 1

Table 4.2: Bounds on the number of queries for each x ∈ H(m) (columns) at each fidelity (rows). The
bound for T (M)

n (x) inH(M) holds for all arms except the optimal arm x? (note ∆(M)(x?) = 0 ).

We will apply the above result for n = bΛ/λ(1)c and observe that T (>m)
n (x) is non-decreasing in

n. Hence,

P
(
∀n ≤ Λ/λ(1), ∀m ∈ {1, . . . ,M}, ∀x ∈ H(m), T (>m)

n (x) ≤ 1
)
> 1− δ

4
. (4.41)

The condition for Lemma 34 holds with probability at least 1−δ/2 (by Lemma 33), and therefore
the above bounds hold together with probability > 1 − δ. We have tabulated these bounds in
Table 4.2. We therefore have the following bound on the number of fidelity m (< M) plays
T

(m)
n (X ),

T (m)
n (X ) ≤ T (m)

n (Ĥ(m)) +
∑

x∈H(m)

⌈
5η2

∆(m)(x)
2βn

⌉
+ |Ĥ(m)|

⌈
η2

γ(m)2βn

⌉
≤ T (m)

n (Ĥ(m)) + |H(m) ∪ Ĥ(m)|
⌈

η2

γ(m)2βn

⌉
(4.42)

≤ |H(m−1)| + |H(m) ∪ Ĥ(m)|
⌈

η2

γ(m)2βn

⌉
(4.43)

The second step uses that ∆(m)(x) ≥ 3γ(m) for x ∈ H(m) and the last step uses the modification
to the discrete algorithm which ensures that we will always play an arm at a lower fidelity before
we play it at a higher fidelity. Hence, for an arm in H(m), the 1 play at fidelities larger than m
will be played at fidelity m+ 1.

Proof of first result: First consider the total cost Λ′(n) expended at fidelities 1, . . . ,M − 1 and
at the M th fidelity outside ofH(M) after n evaluations. Using (4.43), we have,

Λ′(n) =
M−1∑
m=1

λ(m)T (m)
n (X ) + λ(M)T (M)

n (Ĥ(M))

≤
M∑
m=2

λ(m)|H(m−1)| +
M−1∑
m=1

λ(m)|H(m) ∪ Ĥ(m)|
⌈

η2

γ(m)2βn

⌉
.
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Since N ≤ nΛ, we have for all n ∈ supp (N), Λ′(n) is less than the LHS of (4.13) and hence
less than Λ/2. Therefore, the amount of cost spent at the M th fidelity inside H(M) is at least
Λ/2 and since each such evaluation expends λ(M), we have T (M)

N (H(M)) ≥ nΛ/2. Therefore
using (4.40) we have,

S(Λ) ≤ 1

T
(M)
N (H(M))

R̃N ≤

√√√√C1βNΨ
T

(M)
N (H(M))

(H(M))

T
(M)
N (H(M))

≤
√

2C1βnΛ
ΨnΛ

(H(M))

nΛ

.

Here, we have used N ≤ nΛ and that nΛ ≥ T
(M)
N (H(M)) ≥ nΛ/2.

Proof of second result: Using (4.42), the total number of queries at fidelities less than M and
the number of M th fidelity queries outside ofH(M) can be bounded as follows,

M−1∑
m=1

∑
x∈X

T (m)
n (x) + T (M)

n (Ĥ(M)) ≤ |X | +
M−1∑
m=1

|H(m) ∪ Ĥ(m)|
⌈

η2

γ(m)2βn

⌉
. (4.44)

The first term of the RHS above follows via (4.41) and the following argument. In particular, this
does not use the additional condition on the discrete algorithm – we will use a similar argument
in the continuous domain setting.

M∑
m=1

∑
x∈Ĥ(m)

T (m)
n (x) =

M∑
m=1

m−1∑
`=1

∑
x∈H(`)

T (m)
n (x) ≤

M−1∑
m=1

∑
x∈H(m)

T (>m)
n (x) ≤ |X |. (4.45)

Let the LHS of (4.44) be A and the RHS be B when n = N . When Λ > Λ2, by (4.14) and
using the fact that N ≤ nΛ, we have B < nΛ/2 < N/2. Since N = A + T

(M)
N (H(M)), we have

T
(M)
N (H(M)) > N/2 > nΛ/2. Further, since the total expended budget after N rounds Λ(N)

satisfies Λ(N) ≥ T
(M)
N (H(M))λ(M) > λ(M)N/2, we also have N < 2nΛ. Putting these results

together we have for all Λ > Λ2,

S(Λ) ≤

√√√√C1βNΨ
T

(M)
N (H(M))

(H(M))

T
(M)
N (H(M))

≤
√

2C1β2nΛ
ΨnΛ

(H(M))

nΛ

.

Remark 3. Choice of γ(m): As described in the main text, the optimal choice for γ(m) depends
on the available budget and unknown problem dependent quantities. However the choice γ(m) =√
λ(m)/λ(m+1)ζ(m) ensures that for any x ∈ H(m), the bounds on the number of plays in Table 4.2

are on the same order for fidelities m and below. To see this, consider any ` < m. Then,

∆(m)(x) = ∆(`)(x)+ζ(`)−ζ(m) +f (`)(x)−f (M)(x)+f (M)(x)−f (m)(x) ≤ 3γ(`) +2ζ(`) ≤ 5ζ(`).

We therefore have,

λ(`) · η2

γ(`)2 = λ(`+1) η2

ζ(`)2 ≤ 5

(
λ(m) · 5η2

∆(m)(x)
2

)
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Above, by Table 4.2, the left most expression is an upper bound on the cost spent at fidelity `
and the term inside the parantheses is an upper bound on the cost spent at fidelity m. Hence,
the capital spent at the lower fidelities is within a constant factor of this bound. In the K-armed
setting [125], we showed a O(η2/∆(m)(x)

2
) lower bound on the number of plays at the mth

fidelity as well; such a result is not straightforward in the GP setting due to correlations between
arms.

Proof of Lemma 33

This is a straightforward argument using Gaussian concentration and the union bound. Consider
any given m, t, x.

P
(
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

)
=

1

ξA2
PGP

(
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

)
=

1

ξA2
EGP

[
EGP

[
1

{
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

} ∣∣∣ D(m)
t−1

]]
=

1

ξA2
EGP

[
EGP

[
1

{
|f (m)(x)− µ(m)

t−1(x)| > β
1/2
t σ

(m)
t−1(x)

} ∣∣∣ D(m)
t−1

]]
=

1

ξA2
EGP

[
PZ∼N (0,1)

(
|Z| > β

1/2
t

)]
≤ 1

ξA2
exp

(βt
2

)
=

3δ

M |X |π2t2
.

The first step uses Lemma 31. In the second step we have conditioned w.r.t D(m)
t−1 which allows

us to use Lemma 4. Recall that conditioning on all queries will not be a Gaussian due to the ζ(m)

constraints. The statement follows via a union bound over all m ∈ {1, . . . ,M}, x ∈ X and all t
and noting that

∑
t t
−2 = π2/6.

Proof of Lemma 34

First consider any ` < m. Assume that we have already queried
⌈
η2βn/γ

(m)2⌉ times at any
t ≤ n. Since the Gaussian variance after s observations is η2/s and that queries elsewhere
will only decrease the conditional variance we have, κ(`)

t−1(x, x) ≤ η2/T
(`)
t−1(x) < γ(m)2

/βn.

Therefore, β1/2
t σ

(`)
t−1(x) < β

1/2
n σ

(`)
t−1(x) < γ(m) and by the design of our algorithm we will not

play at the `th fidelity at time t for all t until n. This establishes the first result.

To bound T (m)
n (x) we first observe,

1
{
T (m)
n (x) > u

}
≤ 1

{
∃t : u+ 1 ≤ t ≤ n : ϕt(x) was maximum ∧
β

1/2
t σ

(`)
t−1(x) < γ(m), ∀ ` < m ∧ β

1/2
t σ

(m)
t−1(x) ≥ γ(m) ∧

T
(m)
t−1 (x) ≥ u

}
≤ 1

{
∃t : u+ 1 ≤ t ≤ n : ϕt(x) > ϕt(x?) ∧ T

(m)
t−1 (x) ≥ u

}
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≤ 1
{
∃t : u+ 1 ≤ t ≤ n : ϕ

(m)
t (x) > f(x?) ∧ T

(m)
t−1 (x) ≥ u

}
. (4.46)

The first line just enumerates the conditions in our algorithm for it to have played x at time t
at fidelity m. In the second step we have relaxed some of those conditions, noting in particular
that if ϕt(·) was maximised at x then it must be larger than ϕt(x?). The last step uses the fact
that ϕ(m)

t (x) ≥ ϕt(x) and the assumption on ϕt(x?). Consider the event {ϕ(m)
t (x) > f(x?) ∧

T
(m)
t−1 (x) ≥ u}. We will choose u = d5η2βn/∆

(m)(x)
2e and bound its probability via,

P
(
ϕ

(m)
t (x) > f(x?) ∧ T

(m)
t−1 (x) ≥ u

)
=

1

ξA2
PGP

(
µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m) > f(x?) ∧ T

(m)
t−1 (x) ≥ u

)
=

1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > f(x?)− f (m)(x)− ζ(m)︸ ︷︷ ︸

∆(m)(x)

−β1/2
t σ

(m)
t−1(x) ∧

T
(m)
t−1 (x) > u

)
≤ 1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > (

√
5− 1)β1/2

n σ
(m)
t−1(x)

)
≤ 1

ξA2
PZ∼N (0,1)

(
Z >

(
√

5− 1)2

2
β1/2
n

)
≤ 1

ξA2

1

2
exp

(
−3

4
βn

)
=

1

ξA2

1

2

(
3ξA2δ

M |X |π2

) 3
2

n−3 ≤ 1

2

3δ

M |X |π2
n−3

Above in the third step we have used, if u ≥ 5η2βn/∆
(m)(x)

2, then ∆(m)(x) ≥
√

5β
1/2
n σ

(m)
t−1(x)

and that βn ≥ βt. The fourth step uses Lemma 4 after conditioning on D(m)
t−1 , the fifth step uses

(
√

5 − 1)2 > 3/2 and the last step uses 3δ/|X |π2 < 1. Using the union bound on (4.46), we
get P(T

(m)
n (x) > u) ≤ ∑n

t=u+1 P(ϕ
(m)
t (x) > f(x?) ∧ T

(m)
t−1 (x) ≥ u). Now (4.46) implies that

P(T
(m)
n (x) > u) ≤∑n

t=u+1 P(ϕ
(m)
t (x) > f(x?) ∧ T

(m)
t−1 (x) ≥ u). The second inequality of the

lemma follows by noting that there are at most n terms in the summation.

Finally, for the third inequality we observe

P(T (>m)
n (x) > u) ≤ P

(
∃t : u+ 1 ≤ t ≤ n ; ϕ

(m)
t (x) > f(x?) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
.

(4.47)

As before, we have used that if x is to be queried at time t, then ϕt(x) should be at least larger than
ϕt(x?) which is larger than f(x?) due to the assumption in the theorem. The second condition
is necessary to ensure that the switching procedure proceeds beyond the mth fidelity. It is also
necessary to have β1/2

t σ
(`)
t−1(x) < γ(`) for ` < m, but we have relaxed them. We first bound the

probability of the event {ϕ(m)
t (x) > f(x?) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)}.

P
(
ϕ

(m)
t (x) > f(x?) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
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=
1

ξA2
PGP

(
ϕ

(m)
t (x) > f(x?) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
=

1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > ∆(m)(x)− β1/2

t σ
(m)
t−1(x) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
≤ 1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > 2γ(m) − β1/2

t σ
(m)
t−1(x) ∧ β

1/2
t σ

(m)
t−1(x) < γ(m)

)
≤ 1

ξA2
PGP

(
µ

(m)
t−1(x)− f (m)(x) > β

1/2
t σ

(m)
t−1(x)

)
≤ 1

ξA2
PZ∼N (0,1)

(
Z > β

1/2
t

)
≤ 1

ξA2

1

2
exp

(
−1

2
βt

)
=

1

ξA2

1

2

(
3ξA2δ

M |X |π2

)
t−2 ≤ 1

2

3δ

M |X |π2
t−2

Here, the second step uses that for all x ∈ H(m), ∆(m)(x) > 3γ(m) > 2γ(m) and the third step
uses the second condition. Using the union bound on (4.47) and bounding the sum by an integral
gives us,

P(T (>m)
n (x) > u) ≤

n∑
t=u+1

1

2

3δ

M |X |π2
t−2 ≤ 1

2

3δ

M |X |π2

∫ ∞
u

t−2dt

≤ 1

2

3δ

M |X |π2

1

u
.

4.5.3 Compact and Convex X

To prove theorem 22 we will require a fairly delicate set up for the continuous setting. Given a
sequence {νn}n≥0, at time n we will consider a r

√
d/(2ν

1/2d
n )-covering of the space X of size

ν
1/2
n . For instance, if X = [0, r]d a sufficient discretisation would be an equally spaced grid

having ν1/2d
n points per side. Let {ai,n}n

α
2

i=1 be the points in the covering, Fn = {Ai,n}n
α
2

i=1 be the
“cells” in the covering, i.e. Ai,n is the set of points which are closest to ai,n in X and the union of
all sets Ai,n in Fn is X . Next we will define another partitioning of the space similar using this
covering. First let F (1)

n = {Ai,n ∈ Fn : Ai,n ⊂ J (1)
max(τ,ργ)}. Next,

F (m)
n =

{
Ai,n ∈ Fn : Ai,n ⊂ J (m)

max(τ,ργ) ∧ Ai,n /∈
m−1⋃
`=1

F (`)
n

}
for 2 ≤ m ≤M − 1.

(4.48)

Note that F (m)
n ⊂ F

(m)
n . We define the following disjoint subsets {F (m)

n }M−1
m=1 of X via F (m)

n =⋃
Ai,n∈F

(m)
n

Ai,n. We have illustrated
⋃m−1
`=1 F

(`)
n with respect to H(m)

τ and H(m)
τ,n in Figure 4.18.

By observing that H(1)
τ,n = H(1) and that H(m)

τ,n ∪ Ĥ(m) ⊂ ⋃m−1
`=1 F

(`)
n (see Figure 4.18) we have
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Figure 4.18: Illustration of the sets {F (`)
n }m−1

`=1 with re-
spect to H(m)

τ . The grid represents a r
√
d/n1/(2d) cov-

ering of X . The yellow region is Ĥ(m)
τ . The area en-

closed by the solid red line (excluding Ĥ(m)
τ ) is H(m)

τ .
H(m)
τ,n , shown by a dashed red line, is obtained by dilating
H(m)
τ by r

√
d/nα/2d. The grey shaded region represents⋃m−1

`=1 F
(`)
n . By our definition,

⋃m−1
`=1 F

(`)
n contains the

cells which are entirely outsideH(m)
τ . However, the infla-

tionH(m)
τ,n is such that Ĥ(m)

τ ∪ H(m)
τ,n ∪

⋃m−1
`=1 F

(`)
n = X .

We further note that as n→∞,H(m)
τ,n → H(m)

τ .

the following,

∀m ∈ {1, . . . ,M}, T (m)
n (X ) ≤

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
+ T (m)

n (H(m)
τ,n ) + T (m)

n (Ĥ(m)). (4.49)

We are now ready to prove Theorem 22. We will denote the ε covering number of a set A ⊂ X
in the ‖ · ‖2 metric by Ω(ε)(A).

Proof of Theorem 22. As in the discrete case, we will first control the regret and the number of
lower fidelity evaluations by controlling each term in (4.49).

Bounding the regret after n evaluations: We will need the following lemma whose proof is
given in Chapter 4.5.2.

Lemma 35. For βt as given in Theorem 22, the following holds with probability > 1− 5δ/6.

∀m ∈ {1, . . . ,M}, ∀ t ≥ 1, ∆(m)(xt) = f(x?)− f (m)(xt) ≤ 2βtσ
(m)
t−1(xt) + 1/t2.

As in the discrete setting, we set Z = H(M)
τ,n in (4.37) to bound R̃n. Using m = M in Lemma 35

and using calculations similar to the discrete case yields,

R̃n ≤
∑
mt=M
xt∈Z

(
2β

1/2
t σ

(M)
t−1 (xt) +

1

t2

)
≤
√
C1T

(m)
n (H(M)

τ,n )βnΨ
T

(m)
n (H(m)

τ,n )
(H(m)

τ,n ) +
π2

6
. (4.50)

Here C1 = 8/ log(1 + η−2). We have also used the fact
∑

t>0 t
−2 = π2

6
.

Bounding the number of evaluations: The following lemma will be used to bound the number
of plays inH(m)

τ,n ∪ Ĥ(m). The proof is given in Chapter 4.5.3.

Lemma 36. Let f ∼ GP(0, κ), f : X → R and we observe y = f(x) + ε where ε ∼ N (0, η2).
Let A ⊂ X such that its L2 diameter diam(A) ≤ D. Say we have n queries (xt)

n
t=1 of which s
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points are in A. Then the posterior variance of the GP, κ′(x, x) at any x ∈ A satisfies

κ′(x, x) ≤
{

CSED
2 + η2

s
if κ is the SE kernel,

CMatD + η2

s
if κ is the Matérn kernel,

for appropriate kernel dependent constants CSE, CMat.

First consider the SE kernel. At time t consider any εn = γ(m)
√

8CSEβn
covering (Bi)

εn
i=1 of H(m)

τ,n ∪
Ĥ(m). The number of queries inside any Bi of this covering at time n will be at most

⌈
2η2

γ(m)2βn

⌉
.

To see this, assume we have already queried this many times inside Bi at time t ≤ n. By
Lemma 36 the maximum variance in Ai can be bounded by

max
x∈Ai

κ
(m)
t−1(x, x) ≤ CSE(2εn)2 +

η2

T
(m)
t (Ai)

≤ γ(m)2

βn
.

Therefore, β1/2
t σ

(m)
t−1(x) ≤ β

1/2
n σ

(m)
t−1(x) < γ(m) and we will not query inside Ai until time n. A

similar result is obtained for the Matérn kernel by setting εn = γ(m)2

4CMatβn
. Therefore we have,

T (m)
n (H(m)

τ,n ∪ Ĥ(m)) ≤ Ωεn(Ĥ(m) ∪ Ĥ(m))

⌈
2η2

γ(m)2βn

⌉
(4.51)

≤ Cκη
2βp+1

n

vol(H(m)
τ,n ∪ Ĥ(m))

γ(m)2p .

Here Cκ = 22+d/2(dCSE)
d
2 and p = 1/2 for the SE kernel while Cκ = 22+d(CMat)

ddd/2 and
p = 1 for the Matérn kernel. We have also used the fact that dke ≤ 2k for large enough k and
the following bound for a δ-packing in the Euclidean metric Ωδ(A) ≤ vol(A)dd/2/(2d/2δd).

Next, we will bound T (m)
n (H(m)

τ,n ∪ Ĥ(m)) by controlling. T (>m)
n (F (m)

n ). To that end we provide
the following Lemma whose proof is given in Chapter 4.5.3.

Lemma 37. Consider any Ai,n ∈ F (m)
n where F (m)

n is as defined in (4.48). Let βt be as given in
Theorem 22. Then for all n′ ≥ u ≥ (3η)−2/3 we have,

P(T
(>m)
n′ (Ai,n) > u) ≤ δ

π2
· 1

u

Using the above result with n′ = nΛ gives us the result for all n′ ≤ nΛ since T (>m)
n′ (Ai,n) is

nondecreasing with n. Setting u = max{(3η)−2/3, ν
1/2
n }, and applying the union bound over all

m ∈ {1, . . . ,M} and Ai,n ∈ F (m)
n , yields the following bound for all n′ ≤ nΛ,

P
(
∃m ∈ {1, . . . ,M}, T (>m)

n′ (F (m)
n ) > |F (m)

n |ν1/2
n

)
≤

M∑
m=1

P
(
T

(>m)
n′ (F (m)

n ) > |F (m)
n |ν1/2

n

)
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≤
M∑
m=1

∑
Ai,n∈F

(m)
n

P
(
T

(>m)
n′ (Ai,n) > ν1/2

n

)
≤

M∑
m=1

|F (m)
n |

δ

π2

1

ν
1/2
n

≤ |Fn|
δ

π2

1

ν
1/2
n

=
δ

π2
≤ δ

6
. (4.52)

Henceforth, all statements we make will make use of the bounds above and will hold with prob-
ability > 1− δ for all n ∈ supp (N).

Proof of first result: Consider the cost Λ′(n) spent at fidelities 1, . . . ,M − 1 and at the M th

fidelity outside ofH(M)
τ,n after n evaluations.

Λ′(n) =
M−1∑
m=1

λ(m)T (m)
n (X ) + λ(M)T (M)

n (H(M)
τ,n )

=
M∑
m=1

λ(m)

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
+

M−1∑
m=1

λ(m)T (m)
n (H(m)

τ,n ∪ Ĥ(m))

≤ λ(M)νn + Cκη
2βp+1

n

M−1∑
m=1

λ(m) vol(H(m)
τ,n ∪ Ĥ(m))

γ(m)2p

The second step uses (4.49). The third step uses (4.51), (4.52), and the following argument,

M∑
m=1

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
≤

M−1∑
m=1

T (>m)
n (F (`)

n ) ≤
M−1∑
m=1

|F (m)
n |ν1/2

n ≤ ν1/2
n |Fn| ≤ νn. (4.53)

The remainder of the proof follows similar to the discrete case. Noting that nΛ ≤ n ≤ nΛ

and that H(m)
τ,n is shrinking with n, we can conclude that Λ′(n) is less than the LHS of (4.16).

Therefore, T (M)
N (H(M)

τ,n ) ≥ nΛ/2 and hence,

S(Λ) ≤

√√√√C1βNΨ
T

(M)
N (H(m)

τ,n )
(H(m)

τ,n )

T
(M)
N (H(M)

τ,n )
+

π2

6T
(M)
N (H(M)

τ,n )
≤

√
2C1βnΛ

ΨnΛ
(H(M)

nΛ )

nΛ

+
π2

3nΛ

.

Proof of second result: As in the discrete case, we bound the number of queries at fidelity
m < M and the M th fidelity queries outsideH(M)

τ,n ∪H(M) as follows.

M−1∑
m=1

T (m)
n (X ) + T (M)

n (H(M)
τ,n ) ≤

M∑
m=1

(
m−1∑
`=1

T (m)
n (F (`)

n )

)
+

M−1∑
m=1

T (m)
n (H(m)

τ,n ∪ Ĥ(m))

≤ νn + Cκβ
p+1
n

M−1∑
m=1

vol(H(M)
τ,n ∪H(M))

γ(m)2p (4.54)
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The first step uses (4.49) while the second step uses (4.51) and (4.53). Once again, similar to the
discrete case we can argue that for all Λ > Λ2, the RHS B of (4.54) satisfies B < nΛ/2 < N/2,
the M th fidelity plays in H(M)

τ,n satisfies T (M)
N (H(M)

τ,n ) > N/2 > nΛ/2, and the number of plays
satisfies N ≤ 2nΛ. Combining this with (4.50) gives us the following for all n ≤ nΛ,

S(Λ) ≤

√√√√C1βNΨ
T

(M)
N (H(m)

τ,n )
(H(m)

τ,n )

T
(M)
N (H(M)

τ,n )
+

π2

6T
(M)
N (H(M)

τ,n )
≤

√
2C1β2nΛ

ΨnΛ
(H(M)

nΛ )

nΛ

+
π2

3nΛ

.

Proof of Lemma 35

The first part of the proof mimics the arguments in Lemmas 5.6, 5.7 of Srinivas et al. [235]. By
Assumption 1 for any given m ∈ {1, . . . ,M} and i ∈ {1, . . . , d} we have,

PGP

(∣∣∣∂f (m)(x)

∂xi

∣∣∣ > b

√
log
(6Mad

ξA2δ

) )
≤ ξA2δ

6Md

Then, by the union bound and Lemma 31 we have,

P
(
∀m ∈ {1, . . . ,M}, ∀ i ∈ {1, . . . , d}, ∀x ∈ X ,

∣∣∣∂f (m)(x)

∂xi

∣∣∣ < b

√
log
(6Mad

ξA2δ

))
≥ 1− δ

6
.

Now we construct a discretisation Ft of X of size (νt)
d such that we have for all x ∈ X , ‖x −

[x]t‖1 ≤ rd/νt. Here [x]t is the closest point to x in the discretisation. (Note that this is different
from the discretisation appearing in Theorem 22 even though we have used the same notation).
By choosing νt = t2brd

√
log(6Mad/(ξA2δ)) and using the above we have

∀x ∈ X , |f (m)(x)− f (m)([x]t)| ≤ b log(6Mad/δ)‖x− [x]t‖1 ≤ 1/t2 (4.55)

for all f (m)’s with probability > 1− δ/6.

Noting that βt ≥ 2 log(M |Ft|π2t2/2δ) for the given choice of νt we have the following with
probability > 1− δ/3.

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, ∀ a ∈ Ft, |f (m)(a)− µ(m)
t−1(a)| ≤ β

1/2
t σ

(m)
t−1(a). (4.56)

The proof mimics that of Lemma 33 using the same conditioning argument. However, instead of
a fixed set over all t, we change the set at which we have confidence based on the discretisation.
Similarly we can show that with probability > 1− δ/3 we also have confidence on the decisions
xt at all time steps. Precisely,

∀ t ≥ 1, ∀m ∈ {1, . . . ,M}, |f (m)(xt)− µ(m)
t−1(xt)| ≤ β

1/2
t σ

(m)
t−1(xt). (4.57)
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Using (4.55),(4.56) and (4.57) the following statements hold with probability > 1− 5δ/6. First
we can upper bound f(x?) by,

f(x?) ≤ f (m)(x?) + ζ(m) ≤ f (m)([x?]t) + ζ(m) +
1

t2
≤ ϕ

(m)
t ([x?]t) +

1

t2
. (4.58)

Since the above holds for all m, we have f(x?) ≤ ϕt([x?]t) + 1/t2. Now, using similar calcula-
tions as (4.39) we bound ∆(m)(xt).

∆(m)(xt) = f(x?)− f (m)(xt)− ζ(m)

≤ ϕt([x?]t) +
1

t2
− f (m)(xt)− ζ(m) ≤ ϕt(xt)− f (m)(xt)− ζ(m) +

1

t2

≤ ϕ
(m)
t (xt)− µ(m)

t−1(xt) + β
1/2
t σ

(m)
t−1(xt)− ζ(m) +

1

t2
≤ 2β

1/2
t σ

(m)
t−1(xt) +

1

t2
.

Proof of Lemma 36

Since the posterior variance only decreases with more observations, we can upper bound κ′(x, x)
for any x ∈ A by considering its posterior variance with only the s observations in A. Further
the maximum variance within A occurs if we pick 2 points x1, x2 that are distance D apart
and have all observations at x1; then x2 has the highest posterior variance. Therefore, we will
bound κ′(x, x) for any x ∈ A with κ(x2, x2) in the above scenario. Let κZ = κ(x, x) and
κ(x, x′) = κZφ(‖x − x′‖2), where φ(·) ≤ 1 depends on the kernel. Denote the gram matrix in
the scenario described above by ∆ = κZ11

> + η2I . Then using the Sherman-Morrison formula
on the posterior variance (2.1),

κ′(x, x) ≤ κ′(x2, x2) = κ(x2, x2)− [κ(x1, x2)1]>∆−1 [κ(x1, x2)1]

= κZ − κ2
Zφ

2(D)1>
[
κZ11

> + η2I
]−1

1

= κZ − κZφ2(D)1>

κZ
η2
I −

(
κZ
η2

)2

11>

1 + κZ
η2 s

1

= κZ − κZφ2(D)

κZ
η2
s−

(
κZ
η2

)2

s2

1 + κZ
η2 s


= κZ − κZφ2(D)

s
η2

κZ
+ s

=
1

1 + η2

κZs

(
κZ − κZφ2(D) +

η2

s

)
≤ κZ(1− φ2(D)) +

η2

s
.

For the SE kernel φ2(D) = exp
(
−D2

2h2

)2

= exp
(
−D2

h2

)
≤ 1− D2

h2 . Plugging this into the bound

above retrieves the first result with CSE = κZ/h
2. For the Matérn kernel we use a Lipschtiz
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constant LMat of φ. Then 1− φ2(D) = (1− φ(D))(1 + φ(D)) ≤ 2(φ(0)− φ(D)) ≤ 2LMatD.
We get the second result with CMat = 2κZLMat. Since the SE kernel decays fast, we get a
stronger result on its posterior variance which translates to a better bound in our theorems.

Proof of Lemma 37

First, we will invoke the same discretisation used in the proof of Lemma 35 via which we have
ϕt([x?]t) ≥ f(x?)− 1/t2 (4.58). (Therefore, Lemma 37 holds only with probability > 1− δ/6,
but this event has already been accounted for in Lemma 35.) Let bi,n,t = argmaxx∈Ai,n ϕt(x)
be the maximiser of the upper confidence bound in Ai,n at time t. Note that the discretisation
is fixed ahead of time and bi,n,t is deterministic given the data {(xt,mt, yt)}t−1

i=1 at time t. Now
using the relaxation xt ∈ Ai,n =⇒ ϕt(bi,n,t) > ϕt([x?]t) =⇒ ϕ

(m)
t (bi,n,t) > f(x?)− 1/t2 and

proceeding,

P(T
(>m)
n′ (Ai,n) > u) ≤ 1

ξA2
PGP

(
∃t : u+ 1 ≤ t ≤ n, ϕ

(m)
t (bi,n,t) > f(x?)− 1/t2 ∧

(4.59)

β
1/2
t σ

(m)
t−1(bi,n,t) < γ(m)

)
≤ 1

ξA2

n′∑
t=u+1

PGP
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > ∆(m)(bi,n,t)− β1/2

t σ
(m)
t−1(bi,n,t)− 1/t2 ∧

β
1/2
t σ

(m)
t−1(bi,n,t) < γ(m)

)
≤ 1

ξA2

n′∑
t=u+1

PGP
(
µ

(m)
t−1(bi,n,t)− f (m)(bi,n,t) > 2β

1/2
t σ

(m)
t−1(bi,n,t)− 1/t2

)
≤ 1

ξA2

n′∑
t=u+1

PZ∼N (0,1)

(
Z > β

1/2
t

)
≤

n′∑
t=u+1

1

ξA2

1

2
exp

(−βt
2

)

≤ 1

ξA2

1

2

(
2ξA2δ

Mπ2

) n′∑
t=u+1

t−2 ≤ δ

Mπ2

1

u

In the second step we have rearranged the terms and used the definition of ∆(m)(x). In the
third step, as Ai,n ⊂ J (m)

max(τ,ργ), we have ∆(m)(bi,n,t) > 3γ(m) > 3β
1/2
t σ

(m)
t−1(bi,n,t). The last

step bounds the sum by an integral. For the fourth step, we have used, t > u ≥ 1/(3η)2/3,

βt > 2 log(Mπ2t2/2δ) > (3/2)2, and σ(m)
t−1(bi,n,t) > η/

√
t to conclude,

t >
1

(3η)2/3
=⇒ 3t3/2

2
>

1

2η
=⇒ t3/2β

1/2
t >

1

2η
=⇒ 2β

1/2
t σ

(m)
t−1 >

1

t2
.
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4.6 Proofs of Theoretical Results in Chapter 4.3

We will first state a formal version of Theorem 23. Recall from the main text where we stated
that most evaluations at z• are inside the following set Xρ.

Xρ = {x ∈ X : f(x?)− f(x) ≤ 2ρ
√
κ0‖ξ‖∞}.

This is not entirely accurate as it hides a dilation that arises due to a covering argument in our
proofs. Precisely, we will show that after n queries at any fidelity, BOCA will use most of the z•
evaluations in Xρ,n defined below using Xρ.

Xρ,n =
{
x ∈ X : B2

(
x,
√
d/nα/2d

)
∩ Xρ,n 6= ∅

}
(4.60)

Here B2(x, ε) is an L2 ball of radius ε centred at x. Xρ,n is a dilation of Xρ by
√
d/nα/2d. Notice

that for all α > 0, as n → ∞, Xρ,n approaches Xρ at a polynomial rate. We now state our main
theorem below.

Theorem 38. Let Z = [0, 1]p and X = [0, 1]d. Let g ∼ GP(0, κ) where κ is of the form (4.20).
Let φX satisfy Assumption 1 with some constants a, b > 0. Pick δ ∈ (0, 1) and run BOCA with

βt = 2 log

(
π2t2

2δ

)
+ 4d log(t) + max

{
0 , 2d log

(
brd log

(
6ad

δ

))}
.

Then, for all α ∈ (0, 1) there exists ρ,Λ0 such that with probability at least 1− δ we have for all
Λ ≥ Λ0,

S(Λ) ≤
√

2C1β2nΛ
Ψ2nΛ

(Xρ,n)

nΛ

+

√
2C1β2nΛ

Ψ2nαΛ
(X )

n2−α
Λ

+
π2

6nΛ

.

Here C1 = 8/ log(1 + η2) is a constant and nΛ = bΛ/λ(z•)c. ρ satisfies ρ > ρ0 = max{2, 1 +√
(1 + 2/α)/(1 + d)}.

In addition to the dilation, Theorem 23 in Chapter 4.3.2 also suppresses the constants and polylog
terms. The next three subsections are devoted to proving the above theorem. In Chapter 4.6.1 we
describe some discretisations for Z and X which we will use in our proofs. Chapter 4.6.2 gives
some lemmas we will need and Chapter 4.6.3 gives the proof.

4.6.1 Set Up & Notation

Notation: Let U ⊂ Z × X . Tn(U) will denote the number of queries by BOCA at points
(z, x) ∈ U within n time steps. When A ⊂ Z and B ⊂ X , we will overload notation to denote
Tn(A,B) = Tn(A × B). For z ∈ Z , [> z] will denote the fidelities which are more expensive
than z, i.e. [> z] = {z′ ∈ Z : λ(z′) > λ(z)}.
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We will require a fairly delicate set up before we can prove Theorem 38. Let α > 0. All sets
described in the rest of this subsection are defined with respect to α. First define

H̃n = {(z, x) ∈ Z × X : f(x?)− f(x) < 2ρβ1/2
n

√
κ0ξ(z)},

where recall from (4.21), ξ(z) =
√

1− φ2
Z(‖z − z•‖) is the information gap function. We next

defineH′n to be an L2 dilation of H̃n in the X space, i.e.

H′n = {(z, x) ∈ Z × X : B2

(
x,
√
d/nα/2d

)
∪ H̃n 6= ∅}.

Finally, we defineHn to be the intersection ofH′n with all fidelities satisfying the third condition
in (4.24). That is,

Hn = H′n ∩
{

(z, x) ∈ Z × X : ξ(z) > ‖ξ‖∞/β1/2
n

}
. (4.61)

In our proof we will use the second condition in (4.24) to control the number of queries inHn.

To control the number of queries outside Hn we first introduce a
√
d

2n
α
2d

-covering of the space X
of size nα/2. If X = [0, 1]d, a sufficient covering would be an equally spaced grid having n

α
2d

points per side. Let {ai,n}n
α
2

i=1 be the points in the covering. Ai,n ⊂ X to be the points in X which
are closest to ai,n in X . Therefore Fn = {Ai,n}n

α
2

i=1 is a partition of X .

Now define Qt : 2X → 2Z to be the following function which maps subsets of X to subsets of
Z .

Qt(A) =
{
z ∈ Z : ∀x ∈ A, f(x?)− f(x) ≥ 2ρβ

1/2
t

√
κ0ξ(z)

}
. (4.62)

That is, Qt maps A ⊂ X to fidelities where the information gap ξ is smaller than (f(x?) −
f(x))/(2ρβ

1/2
t ) for all x ∈ A. Next we define θt : 2X → Z , to be the cheapest fidelity in Qt(A)

for a subset A ∈ X .

θt(A) = arginf
z∈Qt(A)

λ(z). (4.63)

We will see that BOCA will not query inside an Ai,n ∈ Fn at fidelities larger than θt(Ai,n) too
many times (see Lemma 42). That is, Tn([> θn(Ai,n)], Ai,n) will be small. We now define Fn as
follows,

Fn =
⋃

Ai,n⊂X\Xρ,n

[> θn(Ai,n)]× Ai,n. (4.64)

That is, we first choose Ai,n’s that are completely outside Xρ,n and take their cross product with
fidelities more expensive than θt(Ai,n). By design of the above sets, and using the third condition
in (4.24) we can bound the total number of queries as follows,

n = Tn(Z,X ) ≤ Tn({z•},Xρ,n) + Tn(Fn) + Tn(Hn)

We will show that the last two terms on the right hand side are small for BOCA and consequently,
the first term will be large. But first, we establish a series of technical results which will be useful
in proving theorem 38.
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4.6.2 Some Technical Lemmas

The first lemma proves that the UCB ϕt in (4.23) upper bounds f(xt) on all the domain points
{xt}t≥1 chosen for evaluation.

Lemma 39. Let βt > 2 log(π2t2/2δ). Then, with probability > 1− δ/3, we have

∀ t ≥ 1, |f(xt)− µt−1(xt)| ≤ β
1/2
t σt−1(xt).

Proof: This is a straightforward argument using Lemma 4 and the union bound. At t ≥ 1,

P
(
|f(x)− µt−1(x)| > β

1/2
t σt−1(x)

)
= E

[
E
[
|f(x)− µt−1(x)| > β

1/2
t σt−1(x)

∣∣∣ Dt−1

]]
= E

[
PZ∼N (0,1)

(
|Z| > β

1/2
t

)]
≤ exp

(−βt
2

)
=

2δ

π2t2
.

In the first step we have conditioned w.r.t Dt−1 = {(zi, xi, yi)}t−1
i=1 which allows us to use

Lemma 4 as f(x)|Dt−1 ∼ N (µt−1(x), σ2
t−1(x)). The statement follows via a union bound over

all t ≥ 0 and the fact that
∑

t t
−2 = π2/6.

Next we show that the GP sample paths are well behaved and that ϕt(x) upper bounds f(x) on a
sufficiently dense subset at each time step. For this we use the following lemma.

Lemma 40. Let βt be as given in Theorem 38. Then for all t, there exists a discretisation Gt of
X of size (t2brd

√
6ad/δ)d such that the following hold.

• Let [x] be the closest point to x ∈ X in the discretisation. With probability > 1− δ/6, we
have

∀ t ≥ 1, ∀ x ∈ X , |f(x)− f([x]t)| ≤ 1/t2.

• With probability> 1−δ/3, for all t ≥ 1 and for all a ∈ Gt, |f(a)−µt−1(a)| ≤ β
1/2
t σt−1(a).

Proof: The first part of the proof, which we skip here, uses the regularity condition for φX in
Assumption 1 and mimics the argument in Lemmas 5.6, 5.7 of Srinivas et al. [235]. The second
part mimics the proof of Lemma 39 and uses the fact that βt > 2 log(|Gt|π2t2/2δ).

The discretisation in the above lemma is different to the coverings introduced in Chapter 4.6.1.
The next lemma is about the information gap function in (4.21).

Lemma 41. Let g ∼ GP(0, κ), g : Z × X → R and κ is of the form (4.20). Suppose we have s
observations from g. Let z ∈ Z and x ∈ X . Then τt−1(z, x) < α implies σt−1(x) < α+

√
κ0ξ(z).

Proof: The proof uses the observation that for radial kernels, the maximum difference between
the variances at two points u1 and u2 occurs when all s observations are at u2 or vice versa.
Now we use u1 = (z, x) and u2 = (z•, x) and apply Lemma 43 to obtain τ 2

t−1(z•, x) ≤ κ0(1 −
φZ(‖z•− z‖))2 + η2/s

1+ η2

sκ0

. However, As τ 2
t−1(z, x) = η2/s

1+ η2

sκ0

when all observations are at (z, x) and

noting that σ2
t−1(x) = τ 2

t−1(z•, x), we have σ2
t−1(x) ≤ κ0(1−φZ(‖z•− z‖))2 + τ 2

t−1(z, x). Since
the above situation characterised the maximum difference between σ2

t−1(x) and τ 2
t−1(z, x), this
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inequality is valid for any general observation set. The proof is completed using the elementary
inequality a2 + b2 ≤ (a+ b)2 for a, b > 0.

We are now ready to prove Theorem 38. The plan of attack is as follows. We will analyse BOCA
after n time steps and bound the number of plays at fidelities z 6= z• and outside Xρ,n at z•.
Then we will show that for sufficiently large Λ, the number of random plays N is bounded by
2nΛ with high probability. Finally we use techniques from Srinivas et al. [235], specifically the
maximum information gain, to control the simple regret. However, unlike them we will obtain a
tighter bound as we can control the regret due to the sets Xρ,n and X \ Xρ,n separately.

4.6.3 Proof of Main Result

Let α > 0 be given. We invoke the sets Xρ,n,Hn,Fn in equations (4.60), (4.61), (4.64) for the
given α. The following lemma establishes that for any A ⊂ X , we will not query inside A at
fidelities larger than θt(A) (4.63) too many times. The proof is given in Chapter 4.6.3.

Lemma 42. LetA ⊂ X which does not contain the optimum. Let ρ, βt be as given in Theorem 38.
Then for all u > max{3, (2(ρ− ρ0)η)−2/3}, we have

P
(
Tn([> θt(A)], A) > u

)
≤ δ

π2

1

u1+4/α

To bound T (Fn), we will apply Lemma 42 with u = nα/2 on all Ai,n ∈ Fn satisfying Ai,n ⊂
X \ Xρ,n. Since Xρ ⊂ Xρ,n, Ai,n does not contain the optimum. As Fn is the union of such
sets (4.64), we have for all n (larger than a constant),

P(T (Fn) > nα) ≤ P
(
∃Ai,n ⊂ X \ Xρ,n, Tn([> θt(Ai,n)], Ai,n) > nα/2

)
≤

∑
Ai,n∈Fn

Ai,n⊂X\Xρ,n

P
(
Tn([> θt(Ai,n)], Ai,n) > nα/2

)
≤ |Fn|

δ

π2

1

nα/2+2
≤ δ

π2

1

n2

Now applying the union bound over all n, we get P(∀n ≥ 1, T (Fn) > nα) ≤ δ/6.

Now we will bound the number of plays in Hn using the second condition in (4.24). We begin
with the following Lemma. The proof mimics the argument in Lemma 11 of Kandasamy et al.
[123] who prove a similar result for GPs defined on just the domain, i.e. f ∼ GP(0, κ) where
f : X → R.

Lemma 43. LetA ⊂ Z×X and the L2 diameter ofA inX beDX and that inZ beDZ . Suppose
we have n evaluations of g of which s are in A. Then for any (z, x) ∈ A, the posterior variance
τ ′2 satisfies,

τ ′2(z, x) ≤ κ0(1− φ2
Z(DZ)φ2

X (DX )) +
η2

s
.
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Let λr = λmin/λ(z•) where λmin = minz∈Z λ(z). If the maximum posterior variance in a certain
region is smaller than γ(z), then we will not query within that region by the second condition
in (4.24). Further by the third condition, since we will only query at fidelities satisfying ξ(z) >

‖ξ‖∞/β1/2
n , it is sufficient to show that the posterior variance is bounded by κ0‖ξ‖2

∞λ
2q
r /βn at

time n to prove that we will not query again in that region. For this we can construct a covering
of Hn such that 1 − φ2

Z(DZ)φ2
X (DX ) < 1

2
‖ξ‖2

∞λ
2q
r /βn. For any A ⊂ Z × X , the covering

number, which we denote Ωn(A) of this construction will typically be poly-logarithmic in n

(See Remark 4 below). Now if there are 2βnη2

λ2q
r ‖ξ‖2∞κ0

+ 1 queries inside a ball in this covering,
the posterior variance, by Lemma 43 will be smaller than κ0‖ξ‖2

∞λ
2q
r /βn. Therefore, we will

not query any further inside this ball. Hence, the total number of queries in Hn is Tn(Hn) ≤
C2Ωn(Hn) βn

λ2q
r
≤ C3vol(Hn)polylog(n)

poly(λr)
for appropriate constants C2, C3. (Also see Remark 5).

Next, we will argue that the number of queries for sufficiently large Λ, is bounded by nΛ/2
where, recall nΛ = bΛ/λ(z•)c. This simply follows from the bounds we have for Tn(Fn) and
Tn(Hn).

Tn(Z \ {z•},X ) ≤ Tn(Fn) + Tn(Hn) ≤ nα +O(polylog(n)).

Since the right hand side is sub-linear in n, we can find n0 such that for all n0, n/2 is larger than
the right hand side. Therefore for all n ≥ n0, Tn({z•},X ) > n/2. Since our bounds hold with
probability > 1− δ for all n we can invert the above inequality to bound N , the random number
of queries after capital Λ. We have N ≤ 2Λ/λ(z•). We only need to make sure that N ≥ n0

which can be guaranteed if Λ > Λ0 = n0λ(z•).

The final step of the proof is to bound the simple regret after n time steps in BOCA. This uses
techniques that are now standard in GP bandit optimisation, so we only provide an outline. We
will need the following Lemma, whose proof is given in Chapter 4.6.3.

Lemma 44. Assume that we have queried g at n points, (zt, xt)
n
t=1 of which s points are in

{z•} × A for any A ⊂ X . Let σt−1 denote the posterior variance of f at time t, i.e. after t − 1
queries. Then,

∑
xt∈A,zt=z• σ

2
t−1(xt) ≤ 2

log(1+η−2)
Ψs(A). Here Ψs(A) is the MIG of φX after s

queries to A as given in Definition 1.

We now define the quantity Rn below. Readers familiar with the GP bandit literature might see
that it is similar to the notion of cumulative regret, but we only consider queries at z•.

Rn =
n∑
t=1
zt=z•

f(x?)− f(xt) =
∑
zt=z•
xt∈Xρ,n

f(x?)− f(xt) +
∑
zt=z•
xt /∈Xρ,n

f(x?)− f(xt). (4.65)

For any A ⊂ X we can use Lemmas 39, 40, and 44 and the Cauchy Schwartz inequality to
obtain, ∑

zt=z•
xt∈A

f(x?)− f(xt) ≤
√
C1Tn(z•, A)βnΨTn(z•,A)(A) +

∑
zt=z•
xt∈A

1

t2
. (4.66)

For the first term in (4.65), we set A = Xρ,n in (4.66) and use the trivial bound Tn(z•,Xρ,n) ≤ n.
For the second term we note that {z•}×(X\Xρ,n) ⊂ Fn and hence, Tn(z•,X\Xρ,n) ≤ Tn(Fn) ≤
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nα. AsA ⊂ B =⇒ Ψn(A) ≤ Ψn(B), we haveRn ≤
√
C1nβnΨn(Xρ,n)+

√
C1nαβnΨnα(X )+

π2/6. Now, using the fact that N ≤ 2nΛ for large enough N we have,

RN ≤
√

2C1nΛβ2nΛ
Ψ2nΛ

(Xρ,n) +
√

2αC1nαΛβ2nΛ
Ψ2nαΛ

(X ) +
π2

6
.

The theorem now follows from the fact that S(Λ) ≤ 1
N
RN by definition and that N ≥ nΛ. The

failure instances arise out of Lemmas 39, 40 and the bound on Tn(Fn), the summation of whose
probabilities are bounded by δ.

Remark 4 (Construction of covering for the SE kernel). We demonstrate that such a construction
is always possible using the SE kernel. Using the inequality e−x ≥ 1− x for x > 0 we have,

1− φ2
X (DX )φ2

Z(DZ) <
D2
X

h2
X

+
D2
Z

h2
Z

where DZ , DX will be the L2 diameters of the balls in the covering. Now let h = min{hZ , hX}
and choose

DX = DZ =
h

2

‖ξ‖∞
β

1/2
n

λqr,

via which we have 1 − φ2
Z(z)φ2

X (x) < 1
2
ξ(
√
p)2λ2q

r /βn as stated in the proof. Noting that
βn � log(n), using standard results on covering numbers, we can show that the size of this
covering will be log(n)

d+p
2 /λ

q(d+p)
r . A similar argument is possible for Matérn kernels, but the

exponent on log(n) will be worse.

Remark 5 (Choice of q for SE kernel). From the arguments in our proof and Remark 4, we have

that the number of plays in a set S ⊂ (Z × X ) is T (S) ≤ vol(S) log(n)
d+p+2

2

(
λ(z•)
λmin

)q(p+d+2)

.
However, we chose to work work λmin mostly to simplify the proof. It is not hard to see that
for A ⊂ X and B ⊂ Z if λ(z) ≈ λ′ for all z ∈ B, then Tn(B,A) ≈ vol(B × A) log(n)

d+p+2
2(

λ(z•)
λ′

)q(p+d+2)

. As the capital spent in this region is λ′Tn(A,B), by picking q = 1/(p+ d+ 2)

we ensure that the capital expended for a certain A ⊂ X at all fidelities is roughly the same, i.e.
for any A, the capital density in fidelities z such that λ(z) < λ(θt(A)) will be roughly the same.
Recall that in Chapter 4.4, we showed that doing so achieves a nearly minimax optimal strategy
for cumulative regret in K-armed bandits. While it is not clear that this is the best strategy for
optimisation under GP assumptions, it did reasonably well in our experiments. We leave it to
future work to resolve this.

Proof of Lemma 42

For brevity, we will denote θ = θt(A). We will invoke the discretisation Gt used in Lemma 40
via which we have ϕt([x?]t) ≥ f(x?) − 1/t2 for all t ≥ 1. Let b = argmaxx∈A ϕt(x) be the
maximiser of the upper confidence bound ϕt in A at time t. Now note that, xt ∈ A =⇒ ϕt(b) >
ϕt([x?]t) =⇒ ϕt(b) > f(x?)− 1/t2. We therefore have,

P
(
Tn([> θ], A) > u

)
≤ P

(
∃t : u+ 1 ≤ t ≤ n, ϕt(b) > f(x?)− 1/t2 ∧ τt−1(θ, b) < γ(θ))
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≤
n∑

t=u+1

P
(
µt−1(b)− f(b) > f(x?)− f(b)− β1/2

t σt−1(b)− 1/t2

∧ τt−1(θ, b) < γ(θ)
)

(4.67)

We now note that

τt−1(θ, b) < γ(θ) =⇒ σt−1(b) < γ(θ) +
√
κ0ξ(θ) ≤ 2

√
κ0ξ(θ) ≤

1

β
1/2
t ρ

(f(x?)− f(b)).

The first step uses Lemma 41. The second step uses the fact that

γ(θ) =
√
κ0ξ(θ)(λ(z)/λ(z•))

1/(p+d+2) ≤ √κ0ξ(θ)

and the last step uses the definition of Qt(A) in (4.62) whereby we have f(x?) − f(x) ≥
2ρβ

1/2
t

√
κ0ξ(θ). Now plugging this back into (4.67), we can bound each term in the summa-

tion by,

P
(
µt−1(b)− f(b) > (ρ− 1)β

1/2
t σt−1(b)− 1/t2

)
≤ PZ∼N (0,1)

(
Z > (ρ0 − 1)β

1/2
t

)
≤ 1

2
exp

(
(ρ0 − 1)2

2
βt

)
≤ 1

2

(
2δ

π2

)(ρ0−1)2

t−(ρ0−1)2(2+2d) ≤ δ

π2
t−(ρ0−1)2(2+2d). (4.68)

In the first step we have used the following facts, t > u ≥ max{3, (2(ρ−ρ0)η)−2/3}, π2/2δ > 1
and σt−1(b) > η/

√
t to conclude,

(ρ− ρ0)
η
√

4 log(t)√
t

>
1

t2
=⇒ (ρ− ρ0) ·

√
2 log

(
π2t2

2δ

)
· η√

t
>

1

t2

=⇒ (ρ− ρ0)β
1/2
t σt−1(b) >

1

t2
.

The second step of (4.68) uses Lemma 4, the third step uses the conditions on β1/2
t as given in

theorem 38 and the last step uses the fact that π2/2δ > 1. Now plug (4.68) back into (4.67).
The result follows by bounding the sum by an integral and noting that ρ0 > 2 and ρ0 ≥ 1 +√

(1 + 2/α)/(1 + d).

Proof of Lemma 44

Let As = {u1, u2, . . . , us} be the queries in {z•} × A in the order they were queried. Now,
assuming that we have queried g only inside {z•} × A, denote by σ̃t−1(·), the posterior standard
deviation after t− 1 such queries. Then,∑

t:xt∈A,zt=z•

σ2
t−1(xt) ≤

s∑
t=1

σ̃2
t−1(ut) ≤

s∑
t=1

η2 σ̃
2
t−1(ut)

η2
≤

s∑
t=1

log(1 + η−2σ̃2
t−1(ut))

log(1 + η−2)

≤ 2

log(1 + η−2)
I(yAs ; fAs).
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Queries outside {z•} × A will only decrease the variance of the GP so we can upper bound the
first sum by the posterior variances of the GP with only the queries in {z•} × A. The third step
uses the inequality u2/v2 ≤ log(1+u2)/ log(1+v2). The result follows from the fact that Ψs(A)
maximises the mutual information among all subsets of size s.
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Chapter 5

Parallel Bandits

Traditional methods for bandits and Bayesian optimisation are studied in the sequential setting,
where a decision maker needs to wait for the current evaluation (arm-pull) to finish before rec-
ommending the next evaluation. However, more often than not, in practical applications, one has
the ability to make multiple evaluations in parallel. For example, in hyperparameter tuning, with
modern computing infrastructures, we have the ability to evaluate several hundred hyperparam-
eters in parallel. The training time for each hyperparameter is influenced by a myriad of factors,
including contention on shared compute resources and the actual hyperparameter choices, so it
typically exhibits significant variability. Our goal is to find a set of hyperparameters that achieve
low validation error, in a short amount of time. Similarly, in drug discovery, each x characterises
a candidate drug and f(x) measures various qualities such as the potency, specificity, and sol-
ubility of the drug via an expensive in vitro or in vivo test. Today, high throughput screening
equipment can test several thousand candidate drugs at the same time.

Addressing this problem in the above and several other applications with parallel function evalua-
tions, we design and analyse new algorithms for parallel bandits and Bayesian optimisation. Our
algorithms are synchronous and asynchronous parallel versions of Thompson Sampling (TS),
which we call synTS and asyTS , respectively. These algorithms are conceptually simple, easy
to implement, and also scale to large number of parallel evaluations. In a departure from prior
work on parallel BO, we explicitly model evaluation times and study the relationship between
optimisation performance and time, in addition to the more standard relationship between opti-
misation and the number of function evaluations. Our main contributions in this chapter are,

1. A theoretical analysis demonstrating that both synTS and asyTS making n evaluations dis-
tributed among M workers is almost as good as if the n evaluations were made in sequence.

2. We introduce and analyse simple regret with time as a resource in parallel settings. Under this
definition, asyTS outperforms the synchronous and sequential versions up to constant factors.

3. Empirically, we demonstrate that TS significantly outperforms existing methods for parallel
BO in both the synchronous and asynchronous settings on several synthetic problems and a
hyperparameter tuning task.
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Related Work

There has been a flurry of recent activity in parallelising BO [43, 52, 73, 78, 107, 134, 221,
257, 261, 262, 270]. In comparison to this prior work, our approach enjoys one or more of the
following advantages.

1. Asynchronicity: The majority of work on parallel BO are in the synchronous (batch) setting.
To our knowledge, only [73, 107, 257] can handle asynchronous parallelisation.

2. Theoretical underpinnings: Most methods for parallel BO do not come with theoretical
guarantees, with the exception of some work using UCB techniques [43, 52, 134]. Crucially,
to the best of our knowledge, no theoretical guarantees are available for asynchronous meth-
ods.

3. Conceptual simplicity: All of the above methods either introduce additional hyperparam-
eters and/or ancillary computational subroutines. Some methods become computationally
prohibitive when there are a large number of workers and must resort to approximations [107,
221, 257, 270]. In contrast, our approach is conceptually simple – a direct adaptation of the
sequential TS algorithm to the parallel setting. Hence, it is robust in practice, especially with
a large number of workers. Further, unlike existing methods, its computationally complexity
does not increase with M and is exactly the same as the sequential version.

We mention that parallelised versions of TS have been explored to varying degrees in some
applied domains of bandit and reinforcement learning research [96, 104, 186]. However, to
our knowledge, we are the first to theoretically analyse parallel TS. More importantly, we are
also the first to develop and study TS in an asynchronous parallel setting. Besides BO, there
has been a line of work on online learning with delayed feedback (as we have in the parallel
setting) [114, 200]. In addition, Jun et al. [116] study a best-arm identification problem when
queries are issued in batches. But these papers only consider finite decision sets and do not model
evaluation times to study trade-offs when time is viewed as the primary resource.

5.1 Preliminaries

Recall that our goal is to maximise an unknown function f : X → R, by repeatedly obtaining
noisy evaluations of f . As before, for simplicity of exposition we assume a compact Euclidean
domain X ⊂ Rd. Similarly, we will assume that f is a sample from a Gaussian process [203]
and that the noise, ε ∼ N (0, η2), is i.i.d normal.

Our goal is to find the maximiser x? = argmaxx∈X f(x) of f through repeated evaluations. In
the BO literature, this is typically framed as minimising the simple regret, which is the difference
between the optimal value f(x?) and the best evaluation of the algorithm. Since f is a random
quantity, so is its optimal value and hence the simple regret. This motivates studying the Bayes
simple regret E[Sn], which is the expectation of the simple regret. Formally, we define the Bayes’
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Figure 5.1: An illustration of the synchronous (left) and asynchronous (right) settings using M = 3
workers. The short vertical lines indicate when a worker finished its last evaluation. In the synchronous
setting the grey shaded regions indicate idle time after a worker finishes its job. The horizontal location of
a number indicates when the worker started its next evaluation while the number itself denotes the order
in which the evaluation was dispatched by the algorithm.

simple regret as follows,

E[Sn] = E
[
f(x?)− max

j=1,...,n
f(xj)

]
. (5.1)

The expectation in E[Sn] is with respect to the prior f ∼ GP(0, κ), the noise in the observations
εj ∼ N (0, η2), and any randomness of the algorithm. We focus on simple regret here mostly to
simplify exposition; our proof also applies for the cumulative regret (1.1).

In many applications of BO, including hyperparameter tuning, the time required to evaluate the
function is the dominant cost, and we are most interested in maximising f in a short period of
time. Moreover, there is often considerable variability in the time required for different evalu-
ations, caused by inherent differences between points in the domain, randomness of the envi-
ronment, or other factors. For example, in the hyperparameter tuning application, unpredictable
factors such as resource contention, initialisation, etc., may induce significant variability in eval-
uation times.

To adequately capture these settings, we model the time to complete an evaluation as a random
variable, and measure performance in terms of the simple regret within a time budget, T . Specif-
ically, letting N = N(T ) denote the (random) number of evaluations performed by an algorithm
within time T , we define the simple regret S ′T as follows,

S ′T =

{
f(x?)−maxj≤N f(xj) if N ≥ 1

maxx∈X |f(x?)− f(x)| otherwise
. (5.2)

This definition is similar to (5.1), except, when an algorithm has not completed an evaluation
yet, its simple regret is the worst possible value. We similarly define the Bayes’ simple regret
with time as the resource as E[S ′T ], where the expectation now also includes the randomness in
the evaluation times in addition to the three sources of randomness in E[Sn]. In this work, we
will model evaluation times as random variables independent from f ; specifically we consider
uniform, half-normal, or exponential random variables. While the model does not precisely
capture all aspects of evaluation times observed in practice, we prefer it because (a) it is fairly
general, (b) it leads to a clean algorithm and analysis, and (c) the resulting algorithm has good
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performance on real applications, as we demonstrate in Chapter 5.4. Studying other models for
the evaluation time is an intriguing question for future work and is discussed further in Chapter 9.

To our knowledge, all prior theoretical work for parallel BO [43, 52, 134], measures regret in
terms of the total number of evaluations, i.e. Sn,E[Sn]. However, explicitly modeling evalu-
ation times and treating time as the main resource in the definition of regret is a better fit for
applications and leads to new conclusions in the parallel setting.

Parallel BO: We are interested in parallel approaches for BO, where the algorithm has access to
M workers that can evaluate f at different points in parallel. In this setup, we wish to differentiate
between the synchronous and asynchronous settings, illustrated in Fig. 5.1. In the former, the
algorithm issues a batch of M queries simultaneously, one per worker, and waits for all M
evaluations to be completed before issuing the next batch. In contrast, in the asynchronous
setting, a new evaluation may be issued as soon as a worker finishes its last job and becomes
available. In the parallel setting, N in (5.2) will refer to the number of evaluations completed by
all M workers.

Information accumulation vs worker utilisation: One of our goals in the theoretical analysis
will be to quantify the trade-offs between information accumulation and worker utilisation in
the sequential, synchronous parallel and asynchronous parallel settings. When comparing the
three settings purely in terms of the number of evaluations, i.e. E[Sn], the parallel settings are
naturally at a disadvantage: the sequential algorithm makes use of feedback from all its previous
evaluations when issuing a query, whereas a parallel algorithm could be missing up to M − 1
of them. As we will see however, for our TS algorithms, this difference is fairly small - the
bounds for the parallel algorithms are only slightly worse than for sequential variants. The ad-
vantage in the parallel setting however, is that we will be able to complete more evaluations
than a sequential version within an allotted time. One can make a similar argument to compare
the synchronous and asynchronous settings. When issuing queries, a synchronous algorithm has
more information about f , since all previous evaluations complete before a batch is selected,
whereas asynchronous algorithms always issue queries with M − 1 missing evaluations. For
example, in Fig. 5.1, when dispatching the fourth job, the synchronous version uses results from
the first three evaluations whereas the asynchronous version uses just the result of the first eval-
uation. However, in the synchronous setting, workers may sit idle for some time waiting for the
other workers to finish. Foreshadowing our results in Theorem 48, when there is significant vari-
ability in evaluation times, worker utilisation is more important than information accumulation,
and hence the asynchronous setting will enable better bounds on E[S ′T ]. Next, we present our
algorithms.

5.2 Thompson Sampling for Parallel Bayesian Optimisation

A review of sequential TS: We briefly review Thompson sampling [246] for GPs from Chap-
ter 2.2. At step j, TS samples xj according to the posterior probability that it is the optimum. In
GPs, this reduces to first drawing a sample g from the posterior for f conditioned onDj and then
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setting xj = argmaxx g(x) to be the maximiser of g. We then evaluate f at xj . The resulting
procedure is displayed in Algorithm 6.

Algorithm 6 seqTS from Thompson [246]
Require: Prior GP GP(0, κ).

1: D1 ← ∅, GP1 ← GP(0, κ).
2: for j = 1, 2, . . . do
3: Sample g ∼ GPj .
4: xj ← argmaxx∈X g(x).
5: yj ← Query f at xj .
6: Dj+1 ← Dj ∪ {(xj, yj)}.
7: Compute posterior GPj+1 = GP(µDj+1

, κDj+1
) conditioned on Dj+1. See (2.1).

8: end for

Asynchronous Parallel TS: For the asynchronously parallel setting, we propose a natural adap-
tation of the above algorithm. Precisely, when a worker finishes an evaluation, we update the
posterior with the query-feedback pair, sample g from the posterior, and re-deploy the worker
with an evaluation at xj = argmaxx g(x). The procedure, called asyTS, is displayed in Algo-
rithm 7. In the first M steps, when at least one of the workers have not been assigned a job yet,
the algorithm skips lines 6–19 and samples g from the prior GP, GP1, in line 6.

Algorithm 7 asyTS from Kandasamy et al. [129]
Require: Prior GP GP(0, κ).

1: D1 ← ∅, GP1 ← GP(0, κ).
2: for j = 1, 2, . . . do
3: Wait for a worker to finish.
4: Dj ← Dj−1 ∪ {(x′, y′)} where (x′, y′) are the worker’s previous query/observation.
5: Compute posterior GPj = GP(µDj , κDj).
6: Sample g ∼ GPj , xj ← argmax g(x).
7: Re-deploy worker to evaluate f at xj .
8: end for

Synchronous Parallel TS: To illustrate comparisons, we also introduce a synchronous parallel
version, synTS, which operates as follows. At any given time, we wait for allM workers to finish
their evaluations. Then, we update the posterior with the M query-feedback pairs, draw m sam-
ples {gm}Mm=1 and re-deploy all workers at the maxima of these samples, i.e. worker m evaluates
f at xj+m = argmaxx gm(x). The procedure, called synTS, is displayed in Algorithm 8.

We wish to highlight the main methodological differences of our algorithms with prior work for
parallel BO. Since existing methods select points using deterministic criteria such as UCB or
EI, they need to explicitly enforce diversity of query points so as to prevent the algorithm from
picking the same or similar points for all M workers. Consequently, such methods introduce ad-
ditional hyperparameters and/or potentially expensive computational routines. In contrast, asyTS
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Algorithm 8 synTS from Kandasamy et al. [129]
Require: Prior GP GP(0, κ).

1: D1 ← ∅, GP1 ← GP(0, κ).
2: for j = 1,M + 1, 2M + 1 . . . do
3: Wait for all workers to finish.
4: Dj ← Dj−M ∪ {(x′m, y′m)}Mm=1 where (x′m, y

′
m) are worker m’s query/observation.

5: Compute posterior GPj = GP(µDj , κDj).
6: Draw m samples gm ∼ GPj , for m = 1, . . . ,M . Let xj+m ← argmax gm(x).
7: Re-deploy worker m to evaluate f at xj+m.
8: end for

and synTS are essentially the same as their sequential counterpart and their computational com-
plexity does not increase with M . In addition to this computational advantage, this conceptual
simplicity results in robust empirical performance in practice. Our theoretical analysis shows that
a straightforward application of TS works because its inherent randomness is sufficient to avoid
redundant function evaluations when managing M workers in parallel. This phenomenon is con-
firmed by our experiments in Chapter 5.4, where we see that explicitly encouraging diversity
does not improve the performance of asyTS . We demonstrate this empirically by constructing
a variant asyHTS of asyTS which employs one such diversity scheme found in the literature.
asyHTS performs either about the same as or slightly worse than asyTS in the many experiments
we study in Chapter 5.4.

5.3 Theoretical Results

We now present our theoretical contributions. We analyse the performance of parallelised TS
both with the number of evaluations n and the time budget T as the resource. In particular,
we study how these rates change with the number of workers M and demonstrate that as M
increases, while E[Sn] worsens slightly for the parallel settings when compared to the sequential
setting, E[S ′T ] can improve dramatically. We provide theorem statements here to convey key
intuitions, with all formal statements and proofs deferred to Chapter 5.5. We use �,. to denote
equality/inequality up to constant factors that are common across all theorem statements.

Our first goal is to compare the simple regret E[Sn] after n evaluations for synTS and asyTS with
that of seqTS. Recall from Theorem 2, we have for seqTS, E[Sn] .

√
Ψn log(n)/n.

The first theorem of this chapter, presented below in Theorem 45, bounds E[Sn] for synTS.

Theorem 45 (Informal. E[Sn] for synTS). Let f ∼ GP(0, κ). Then, for synTS,

E[Sn] .
M
√

log(M)

n
+

√
Ψn log(n+M)

n
.
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A comparison of the sequential and synchronously parallel bounds for TS reveals that, for rea-
sons explained before in Chapter 5.1, seqTS outperforms synTS purely in terms of the number
of evaluations n. However, for large n, the first term in the bound for synTS vanishes faster than
the latter, and the dependence on M in the latter term is insignificant when n � M . Hence, the
difference between the sequential and synchronous parallel algorithms is small and negligible
for large n. We also note that the leading constant for the second term is the same as that in
Theorem 2. This implies a powerful conclusion: synTS with M parallel workers is almost as
good as the sequential version with as many evaluations.

To present the results for the asynchronous setting, we introduce the following quantity ξM ,
which bounds the information we can gain about f from the evaluations in progress. Assume
that we have completed n evaluations to f at the points in Dn and that there are q evaluations
in process at points in Aq. That is Dn, Aq ⊂ X , |Dn| = n and |Aq| = q < M . Then ξM > 0
satisfies the following for all n ≥ 1,

max
Aq⊂X ,|Aq |<M

I(f ; yAq |yDn) ≤ 1

2
log(ξM). (5.3)

Our next result is a bound on E[Sn] for asyTS.

Theorem 46 (Informal. E[Sn] for asyTS). Let f ∼ GP(0, κ). Then, for asyTS,

E[Sn] .

√
ξMΨn log(n)

n
.

Unfortunately, this bound depends on ξM which can be quite large under general conditions.
However, ξM is a well studied quantity in the GP literature; precisely, Desautels et al. [52], Krause
et al. [144] show that ξM can be bounded by a kernel dependent constant Cκ by initially querying
f using an uncertainty sampling procedure for γM samples. This sampling procedure, which
iteratively samples the points with the largest variance in the GP, is asynchronously parallelisable.
Desautels et al. [52] shows that for the Matérn kernel, with γM � poly(M), this procedure
guarantees Cκ ≤ ee, and for the SE kernel, with γM � Mpolylog(M), we can achieve any
constant Cκ > 1, depending on the order of the polylog term. These values for Cκ, γM are not
absolute – by picking a larger γM we can achieve smaller Cκ. In all cases however, γM is at most
polynomial inM and does not depend on n. We provide more details on the initialisation scheme
along with its theoretical properties in Chapter 5.5.2. By initialising asyTS with this sampling
scheme, we obtain the bound below.

Corollary 47 (Informal. E[Sn] for asyTS after initialisation). Let f ∼ GP(0, κ). By first initial-
ising asyTS with an uncertainty sampling scheme [52, 144], we have,

E[Sn] .
γM
n

+

√
CκΨn log(n)

n
.
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Distribution pdf p(x) seqTS synTS asyTS

Unif(a, b) 1
b−a for x ∈ (a, b) nseq = 2T

b+a
nsyn = M T (M+1)

a+bM
nasy = Mnseq (> nsyn)

HN (ζ2)
√

2
ζ
√
π
e
− x2

2ζ2 for x > 0 nseq = T
√
π

ζ
√

2
nsyn � Mnseq√

log(M)
nasy = Mnseq

Exp(λ) λe−λx for x > 0 nseq = λT nsyn � Mnseq

log(M)
nasy = Mnseq

Table 5.1: Descriptions of the random delay models analysed for the synchronous and asynchronous par-
allel set ups. The second column shows the probability density functions p(x) for the uniform Unif(a, b),
half-normal HN (ζ2), and exponential Exp(λ) distributions. The subsequent columns show the expected
number of evaluations nseq, nsyn, nasy for seqTS, synTS, and asyTS respectively with M workers. synTS
always completes fewer evaluations than asyTS. For example, in the exponential case, the difference could
be a log(M) factor.

Despite the dependence on the initialisation scheme and the constant term Cκ, Corollary 47 is
encouraging: since the first term in the bound vanishes faster than the latter, up to constant
factors, asyTS with M parallel workers is almost as good as seqTS.

That said, we believe that bounds similar to Theorem 45 should be obtainable for asyTS without
the additional constant Cκ and without the initialisation scheme. For instance, asyTS performs
very well in our experiments even though we do not use this initialisation scheme. We leave it to
future work to resolve this gap.

Now that we have bounds on the regret as a function of the number of evaluations, we can turn
to bounding E[S ′T ], the simple regret with time as the main resource. For this, we consider three
different random distribution models for the time to complete a function evaluation: uniform,
half-normal, and exponential. We choose these three distributions since they exhibit three dif-
ferent notions of tail decay, namely bounded, sub-Gaussian, and sub-exponential1. Table 5.1
describes these distributions and states the expected number of evaluations nseq, nsyn, nasy for se-
qTS, synTS, asyTS respectively with M workers in time T . The final theoretical result of this
chapter, presented below, bounds E[S ′T ] for the Thompson sampling variants.

Theorem 48 (Informal, Simple regret with time for TS). Let f ∼ GP(0, κ) and assume that for
asyTS, ξM is bounded by Cκ after suitable initialisation. Assume that the times taken for an eval-
uation are i.i.d random variables with either uniform, half-normal or exponential distributions.
Let nseq, nsyn, nasy be as given in Table 5.1. Then nseq ≤ nsyn ≤ nasy and E[S ′T ] can be upper
bounded by the following terms for seqTS, synTS, and asyTS.

seqTS:

√
Ψnseq log(nseq)

nseq
,

synTS:
M
√

log(M)

nsyn
+

√
Ψnsyn log(nsyn +M)

nsyn
,

1While we study uniform, half-normal and exponential, analogous results for other distributions with similar tail
behaviour are possible with the appropriate concentration inequalities. See Chapter 5.5.3.
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asyTS:
poly(M)

nasy
+

√
CκΨnasy log(nasy)

nasy
.

As the above bounds are decreasing with the number of evaluations and since nseq < nsyn < nasy,
the bound for E[S ′T ] shows the opposite trend to E[Sn]: asyTS is better than synTS which is
better than seqTS. While the difference between synTS and asyTS is only a constant factor for
the uniform distribution, it grows with the number of workers M for heavier tailed distributions;√

log(M) for the half-normal and log(M) for the exponential. Hence, as the number of workers
M increases, asyTS becomes increasingly attractive when compared to synTS. Intuitively, when
there is more variability in evaluations, workers may sit idle for longer in the synchronous setting
and hence synTS will complete fewer evaluations than asyTS.

Synopsis: The take-aways of our theoretical analysis can be summarised as follows. Theo-
rems 45 and 46 show that since the synchronous setting has more information than the asyn-
chronous setting, it achieves a better bound for E[Sn]. Therefore, if function evaluations deter-
ministically take the same amount of time, the synchronous algorithm may be preferred. Further,
in some applications, we are necessarily in the synchronous setting. For example, in pre-clinical
drug discovery, high throughput screening equipment can test a few thousand compounds in
parallel, but only in batches [102]. However, Theorem 48 contends that if there is significant
variability in evaluation times, then it is prudent to be asynchronous despite the lack of informa-
tion when compared to the synchronous setting.

5.4 Experiments

We compare parallelised TS with a comprehensive suite of parallel BO methods from the liter-
ature on a series of synthetic experiments and a hyperparameter tuning task on the CIFAR-10
dataset.

Methods: We compare asyTS to the following methods. Synchronous Methods: synRAND: syn-
chronous random sampling, synTS: synchronous TS, synBUCB from [52], synUCBPE from [43].
Asynchronous Methods: asyRAND: asynchronous random sampling, asyHUCB: an asynchronous
version of UCB with hallucinated observations [52, 73], asyUCB: asynchronous upper confi-
dence bound [235], asyEI: asynchronous expected improvement [113], asyTS: asynchronous TS,
asyHTS: asynchronous TS with hallucinated observations to explicitly encourage diversity. This
last method is based on asyTS but bases the posterior on Dj ∪ {(x, µDj(x))}x∈Fj in line 19 of
Algorithm 7, where Fj are the points in evaluation by other workers at step j and µDj is the pos-
terior mean conditioned on just Dj; this preserves the mean of the GP, but shrinks the variance
around the points in Fj . This method is inspired by [52, 73], who use such hallucinations for
UCB/EI-type strategies so as to discourage picking points close to those that are already in evalu-
ation. asyUCB and asyEI directly use the sequential UCB and EI criteria, since the asynchronous
versions do not repeatedly pick the same point for all workers. asyHUCB adds hallucinated obser-
vations to encourage diversity and is similar to [73] and is also an asynchronous version of [52].
While there are other methods for parallel BO, many of them are either computationally quite
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expensive and/or require tuning several hyperparameters which might affect performance. The
BO implementation for the TS and other methods follow the guidelines outlined in Chapter 4.3.4.

Synthetic Experiments

We first present results on a suite of benchmarks for global optimisation. To better align with our
theoretical analysis, we add Gaussian noise to the function value when querying. This makes the
problem more challenging than standard global optimisation where evaluations are not noisy.

We present results on a series of global optimisation benchmarks with different values for the
number of parallel workersM . The descriptions of these functions are available in, for e.g. [123].
To construct the high dimensional variants, we repeat the same function by cycling through dif-
ferent groups of coordinates and add them up. For e.g. the Hartmann12 function was constructed
as f(x1:12) = g(x1:6) + g(x7:12) where g is the Hartmann6 function. Similarly, for the Park2-16
function we used the Park2-function 4 times, for Hartmann18, we used Hartmann6 thrice, and
for CurrinExp-14 we used the Currin-exponential function 7 times.

In these synthetic experiments, we model the evaluation “time” as a random variable that is drawn
from either a uniform, half-normal, exponential, or Pareto2 distribution. Each time a worker
makes an evaluation, we also draw a sample from this time distribution and maintain a queue
to simulate the different start and finish times for each evaluation. The results are presented
in Figures 5.2, 5.3 where we plot the simple regret S ′T against (simulated) time T . The time
distributions are indicated on the top of each figure. In all cases, the time distributions were
constructed so that the expected time to complete one evaluation is 1 time unit. Therefore, for
e.g. in the Hartmann6 problem, an asynchronous version would use roughly 12 × 30 = 360
evaluations while a synchronous version would use roughly 12×30

log(8)
≈ 173 evaluations.

In the CurrinExp, Park1, and Park2 experiments, all asynchronous methods perform roughly
the same and outperform the synchronous methods. On most of the other problems, asyTS
performs best among the asynchronous methods and synTS among the synchronous methods.
asyHTS, which also uses hallucinated observations, performs about the same or slightly worse
than asyTS , demonstrating that there is no need to explicitly encourage diversity in TS. It is
worth emphasizing that the improvement of TS over other methods become larger asM increases
(e.g. M > 20). We believe that the ability to scale robustly with the number of workers is
primarily due to the conceptual simplicity of our approach.

In our final synthetic experiment, we corroborate the claims in Theorems 2, 45, and 46 by com-
paring the performance of seqTS, synTS, and asyTS in terms of the number of evaluations n
on the Park1 function. The results, displayed in the first panel of Figure 5.2, confirm that when
comparing solely in terms of n, the sequential version outperforms the parallel versions while
synchronous does marginally better than asynchronous.

2A Pareto distribution with parameter k has a pdf which decays p(x) ∝ x−(k+1).
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Figure 5.2: Results on the synthetic experiments. The title states the function used, its dimensionality
d, the number of workers M and the distribution used for the time. All distributions were constructed
so that the expected time for one evaluation was one time unit (for e.g., in the half normal HN (ζ2) in
Table 5.1, we used ζ =

√
π/2 ). The dotted lines depict synchronous methods while the solid lines are

for asynchronous methods. The error bars indicate one standard error. All figures were averaged over at
least 15 experiments.
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Figure 5.3: The first five panels are results on synthetic experiments. See caption under Figure 5.2 for
more details. The last panel compares seqTS, synTS, and asyTS against the number of evaluations n.
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Figure 5.4: Cross validation results on the
Cifar-10 experiment. The figure plots the best
validation error (lower is better) vs time for
each method. We have excluded some methods
which performed poorly in the synthetic exper-
iments due to the expensive nature of this ex-
perimental set up. The results presented are av-
eraged over 9 experiments. Error bars indicate
one standard error.

synBUCB synTS asyRAND asyEI asyHUCB asyTS
25.63± 0.002 22.83± 1.01 23.93± 1.78 19.49± 0.21 22.14± 1.12 19.53± 0.11

Table 5.2: Test sesults on the Cifar-10 experiment. The table gives the test error (lower is better) on an
independent test set of 10K images after training the best model chosen by each method for 80 epochs.
The results presented are averaged over 9 experiments.

Image Classification on Cifar-10

We experiment with tuning hyperparameters of a 6 layer convolutional neural network on an
image classification task on the Cifar-10 dataset [149]. The first 5 layers use convolutional filters
while the last layer is a fully connected layer. We use skip connections as in the Resnet [91]
between the first and third layers and then the third and fifth layers; when doing so, instead of
just using an indentity transformation φ(x) = x, we use a linear transformation φ(x) = Wx
as the number of filters could be different at the beginning and end of a skip connection. The
weights of W are also learned via back propagation as part of the training procedure. This
modification to the Resnet was necessary in our set up as we are tuning the number of filters at
each layer.

We tune the number of filters/neurons at each layer in the range (16, 256) resulting in a 6 dimen-
sional domain. Here, each function evaluation trains the model on 10K images for 20 epochs
and computes the validation accuracy on a validation set of 10K images. Our implementation
uses Tensorflow [2] and we use a parallel set up of M = 4 Titan X GPUs. The number of filters
influences the training time which varied between ∼ 4 to ∼ 16 minutes depending on the size of
the model. Note that this deviates from our theoretical analysis which treats function evaluation
times as independent random variables, but it still introduces variability to evaluation times and
demonstrates the robustness of our approach. Each method is given a budget of 2 hours to find
the best model by optimising accuracy on a validation set. These evaluations are noisy since
the result of each training procedure depends on the initial parameters of the network and other
stochasticity in the training procedure. Since the true value of this function is unknown, we
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simply report the best validation error achieved by each method. Due to the expensive nature of
this experiment we only compare 6 of the above methods. The results are presented in Fig. 5.4.
asyTS performs best on the validation error. The following are ranges for the number of evalua-
tions for each method over 9 experiments:
- synchronous: synBUCB: 56 - 68, synTS: 56 - 68.
- asynchronous: asyRAND: 93 - 105, asyEI: 83 - 92, asyHUCB: 85 - 92, asyTS: 80 - 88.

While 20 epochs is insufficient to completely train a model, the validation error gives a good
indication of how well the model would perform after sufficient training. In Table 5.2, we also
give the error on a test set of 10K images after training the best model chosen by each algorithm
to completion, i.e. for 80 epochs. asyTS and asyEI are able to recover the best models which
achieve an accuracy of about 80%. While this falls short of state of the art results on Cifar-10
(for e.g. [91]), it is worth noting that we use only a small subset of the Cifar-10 dataset and a
relatively small model. Nonetheless, it demonstrates the superiority of Thompson sampling as a
method for parallelising BO over other baselines.

5.5 Proofs of Theoretical Results

5.5.1 Notation & Set up

We will require some set up in order to unify the analysis for the sequential, synchronously
parallel and asynchronously parallel settings.

• The first is an indexing for function evaluations. This is illustrated for the synchronous and
asynchronous parallel settings in Figure 5.1. In our analysis, index j or step j will refer to
the j th function evaluation dispatched by the algorithm. In the sequential setting this simply
means that there were j − 1 evaluations before the j th . For synchronous strategies we index
the first batch from j = 1, . . . ,M and then the next batch j = M + 1, . . . , 2M and so on as
in Figure 5.1. In asynchronous settings, this might differ as each evaluation takes different
amounts of time. For example, in Figure 5.1, the first worker finishes the j = 1st job and
then starts the j = 4th, while the second worker finishes the j = 2nd job and starts the j = 6th.

• Next, we define Dj at step j of the algorithm to be the query-observation pairs (xk, yk) for
function evaluations completed by step j. In the sequential setting Dj = {(xk, yk) : k ∈
{1, . . . , j − 1}} for all j. For the synchronous setting in Figure 5.1, D1 = D2 = D3 = ∅,
D4 = D5 = D6 = {(xk, yk) : k ∈ {1, 2, 3}}, D7 = D8 = D9 = {(xk, yk) : k ∈
{1, 2, 3, 4, 5, 6}} etc. Similarly, for the asynchronous setting, D1 = D2 = D3 = ∅, D4 =
{(xk, yk) : k ∈ {1}}, D5 = {(xk, yk) : k ∈ {1, 3}}, D6 = {(xk, yk) : k ∈ {1, 2, 3}},
D7 = {(xk, yk) : k ∈ {1, 2, 3, 5}} etc.
Note that in the asynchronous setting |Dj| = j −M for all j > M . {Dj}j≥1 determines the
filtration when constructing the posterior GP at every step j.

• Finally, in all three settings, µA : X → R and σA : X → R+ will refer to the posterior mean
and standard deviation of the GP conditioned on some evaluations A, i.e. A ⊂ X × R is a
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set of (x, y) values and |A| <∞. They can be computed by plugging in the (x, y) values in
A to (2.1). For example, µDj , σDj will denote the mean and standard deviation conditioned
on the completed evaluations, Dj . Finally, when using our indexing scheme above we will
also overload notation so that σj−1 will denote the posterior standard deviation conditioned
on evaluations from steps 1 to j − 1. That is σj−1 = σA where A = {(xk, yk)}j−1

k=1.

5.5.2 Bounding the regret in terms of the number of evaluations

In the remainder of this section, βn ∈ R for all n ≥ 1 will denote the following value.

βn = 4(d+ 1) log(n) + 2d log(dab
√
π) � d log(n), (5.4)

Here d is the dimension, a, b are from Assumption 1, and nwill denote the number of evaluations.
Our first theorem below is a bound on the simple regret for synTS after n completed evaluations.

Theorem 49. Let f ∼ GP(0, κ) where κ : X 2 → R satisfies Assumption 1. Further, without loss
of generality κ(x, x′) ≤ 1. Then for synTS, the Bayes simple regret after n evaluations satisfies,

E[Sn] ≤ C1

n
+

(M − 1)β
1/2
M−1

n
+

√
C2βn+M−1Ψn

n
,

where Ψn is the MIG in Definition 1, βn is as defined in (5.4), ξM is from (5.3), and C1 =
π2/6 +

√
2π5/2/12, C2 = 2/ log(1 + η−2) are constants.

Proof. Our proof is based on techniques from Russo and Van Roy [211] and Srinivas et al. [235].
As part of analysis, we will discretise X at each step j of the algorithm. Our discretisation νj , is
obtained via a grid of τj = j2dab

√
π equally spaced points along each coordinate and has size

|νj| = τ dj . It is easy to verify that νj satisfies the following property: for all x ∈ X , ‖x− [x]j‖1 ≤
d/τj , where [x]j is the closest point to x in νj . This discretisation is deterministically constructed
ahead of time and does not depend on any of the random quantities in the problem.

For the purposes of our analysis, we define the Bayes cumulative regret after n evaluations as,

E[Rn] = E
[ n∑
j=1

f(x?)− f(xj)

]
.

Here, just as in (5.1), the expectation is with respect to the randomness in the prior, observations
and algorithm. Since the average is larger than the minimum, we have 1

n

∑
j f(x?) − f(xj) ≥

minj(f(x?)− f(xj)) = Sn; hence E[Sn] ≤ 1
n
E[Rn].

For the proof, we will use the following property of TS. The sampling distribution at time
step j is p(x?|Dj). While TS is a randomised strategy, this distribution itself is constructed
deterministically; the randomness comes from the algorithm. We will denote this external
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source of randomness at step j by Rj . Now denote Uj(·) = µDj(·) + β
1/2
j σDj(·) and Vj(·) =

µDj(·) + β
1/2
j+M−1σj−1(·). We begin by decomposing E[Rn] as follows.

E[Rn] =
n∑
j=1

E [f(x?)− f(xj)]

(a)
=

n∑
j=1

E
[
f(x?)− f([x?]j) + f([x?]j)− Uj([x?]j) + Uj([x?]j)− Vj([x?]j) + Vj([x?]j)

− Vj([xj]j) + Vj([xj]j)− f([xj]j) + f([xj]j)− f(xj)
]

=
n∑
j=1

E
[
f(x?)− f([x?]j)

]
︸ ︷︷ ︸

A1

+
n∑
j=1

E
[
f([xj]j)− f(xj)

]
︸ ︷︷ ︸

A2

+
n∑
j=1

E
[
f([x?]j)− Uj([x?]j)

]
︸ ︷︷ ︸

A3

+
n∑
j=1

E
[
Vj([xj]j)− f([xj]j)

]
︸ ︷︷ ︸

A4

+
n∑
j=1

E
[
Uj([x?]j)− Vj([x?]j)

]
︸ ︷︷ ︸

A5

+
n∑
j=1

E
[
Vj([x?]j)− Vj([xj]j)

]
︸ ︷︷ ︸

A6

.

In the first step we have added and subtracted f([x?]j), Uj([x?]j), Vj([x?]j), Vj([xj]j), and f([xj]j)
and in the second step we have separated the terms into the sumsA1, . . . , A6. We will first control
A5 and A6 using properties of TS.

By conditioning on Dj, {Rk}j−1
k=1 we argue that j th term in A6 vanishes, i.e. E

[
Vj([x?]j) −

Vj([xj]j)
]

= E
[
E[Vj([x?]j) − Vj([xj]j)|Dj, {Rk}k<j]

]
= 0. For this, first note that as xj is

sampled from the posterior distribution for x? conditioned on Dj , both xj|Dj and x?|Dj have
the same distribution. Since Rj /∈ {Rk}k<j and this randomness is independent of everything
else, x? and xj are equal in distribution conditioned on Dj, {Rk}k<j . Now observe that Vj is
deterministic conditioned on Dj, {Rk}k<j . This is because at step j, µDj is a function of past
query points and observations Dj , σDj depends only on past query points and σj−1 depends only
on past query points and those currently in evaluation; the latter is also deterministic since we
are conditioning on {Rk}k<j . Now, as the discretisation νj is fixed ahead of time, Vj([xj]j) and
Vj([x?]j) are also equal in distribution given Dj, {Rk}k<j . Therefore, both quantities are also
equal in expectation.

Now, let us boundA5. Noting that each term inside the summationA5 is E[Uj([x?]j)−Vj([x?]j)] =

E[β
1/2
j σDj([x?]j)− β1/2

j+Mσj−1([x?]j)] we have,

A5 =
M−1∑
j=1

β
1/2
j E[σDj([x?]j)] −

n∑
j=n−M+1

E[β
1/2
j+M−1σj−1([x?]j)] +
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n−M∑
j=M

β
1/2
j E

[
σDj([x?]j)− σj−M([x?]j)

]
≤ (M − 1)β

1/2
M−1‖κ‖1/2

∞ +
n−M∑
j=M

β
1/2
j E

[
σDj([x?]j)− σj−M([x?]j)

]
(5.5)

In the first step we have simply rearranged the terms and in the second step we have bounded the
first sum by it largest possible values and dropped the second sum. For the synchronous case, we
always have Dj ⊇ {(xk, yk) : k ≤ j −M}. Hence, σDj ≤ σj−M pointwise for all j and each
term is bounded above by 0. Finally, since we have assumed ‖κ‖∞ = 1, A6 ≤ (M − 1)β

1/2
M−1.

To bound A1, A2 and A3 we use the following Lemmas. The proofs are in Chapters 5.5.2
and 5.5.2.

Lemma 50. At step j, for all x ∈ X , E[|f(x)− f([x]j)|] ≤ 1
2j2

.

Lemma 51. At step j, for all x ∈ νj , E[1{f(x) > Uj(x)} · (f(x)− Uj(x))] ≤ 1
j2
√

2π|νj |
.

Using Lemma 50 and the fact that
∑

j j
−2 = π2/6, we have A1 +A2 ≤ π2/6. We bound A3 via,

A3 ≤ E
[ n∑
j=1

1{f([x?]j) > Uj([x?]j)} · (f([x?]j)− Uj([x?]j))
]

≤
n∑
j=1

∑
x∈νj

E
[
1{f(x) > Uj(x)} · (f(x)− Uj(x))

]
≤

n∑
j=1

∑
x∈νj

1

j2
√

2π|νj|
=

√
2π

12

In the first step we upper bounded A3 by only considering the positive terms in the summation.
The second step bounds the term for [x?]j by the sum of corresponding terms for all x ∈ νj . We
then apply Lemma 51.

Finally, we bound each term inside the summation of A4 as follows,

E[Vj([xj]j)− f([xj]j)] = E[µDj([xj]j) + β
1/2
j+Mσj−1([xj]j)− f([xj]j)] (5.6)

= E[µDj([xj]j) + β
1/2
j+Mσj−1([xj]j)− E[f([xj]j)|Dj, {Rk}k<j]]

= E[β
1/2
j+Mσj−1([xj]j)]

Once again, we have used the fact that µDj , σj−1 are deterministic givenDj, {Rk}k<j . Therefore,

A4

(a)

≤ β
1/2
n+ME

[
n∑
j=1

σj−1([xj]j)

]
(b)

≤ β
1/2
n+ME

[(
n

n∑
j=1

σ2
j ([xj]j)

)1/2
]

(c)

≤
√

2nβn+MΨn

log(1 + η−2)
(5.7)
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Here, (a) uses (5.6) and that βj is increasing in j (5.4). (b) uses the Cauchy-Schwarz inequality
and (c) uses Lemma 44. Putting the bounds for A1, . . . , A6 together we get, E[Rn] ≤ C1 +

(M − 1)β
1/2
M−1 +

√
C2nβnΨn. The theorem follows from the relation E[Sn] ≤ 1

n
E[Rn].

For our analysis of asyTS, we will need the following result from Desautels et al. [52]. Recall
that the posterior variance of a GP does not depend on the observations.

Lemma 52 (Lemma 1 (modified) in [52]). Let f ∼ GP(0, κ). Let A,B be finite subsets of
X . Let yA ∈ R|A| and yB ∈ R|B| denote the observations when we evaluate f at A and B
respectively. Further let σA, σA∪B : X → R denote the posterior standard deviation of the GP
when conditioned on A and A ∪B respectively. Then,

for all x ∈ X , σA(x)

σA∪B(x)
≤ exp

(
I(f ; yB|yA)

)
The proof exactly mimics the proof in Desautels et al. [52]. Lemma 52 implies σA(x) ≤
ξ

1/2
M σA∪B(x) where ξM is from (5.3).

The following result bounds the regret for asyTS in terms of the number of evaluations.

Theorem 53. Assume the same setting and quantities as in Theorem 49. Then for asyTS, the
Bayes simple regret after n evaluations satisfies,

E[Sn] ≤ C1

n
+

√
C2ξMβnΨn

n
.

Here, all quantities are as defined in Theorem 49.

Proof. We will first assume that the n evaluations completed are the the evaluations indexed
j = 1, . . . , n. Our proof will follow along the same lines as that for synTS, except we will use
Uj(·) = Vj(·) = µDj(·) + β

1/2
j σDj(·). The terms A1, A2, A3 are bound exactly the same way

yielding A1 + A2 + A3 ≤ C1. A6 can be shown to be zero by conditioning on Dj and using a
similar argument. A5 = 0 since Uj = Vj . Hence, the only thing left to bound is A4. Using a
similar reasoning to (5.6), we have E[Uj([xj]j)− f([xj]j)] = E[β

1/2
j σDj([xj]j)]. Then,

A4

(a)

≤ β1/2
n

n∑
j=1

E[σDj([xj]j)]
(b)

≤ β1/2
n ξ

1/2
M E

[
n∑
j=1

σj−1([xj]j)

]
(c)

≤ β1/2
n ξ

1/2
M E

[(
n

n∑
j=1

σ2
j ([xj]j)

)1/2
]

(d)

≤
√

2ξMnβnΨn

log(1 + η−2)
(5.8)

Here, (a) uses that βj is increasing in j (5.4). (c) uses the Cauchy-Schwarz inequality and (d)
uses Lemma 44. For (b), first we note thatDj ⊆ {(x(i), y(i))}j−1

i=1 . In the asynchronous setting we
will be missing up to M − 1 evaluations during the first M steps and exactly M − 1 evaluations
thereafter. In either case, letting A = Dj and B = {(x(i), y(i))}j−1

i=1\Dj in Lemma 52 we get,

for all x ∈ X , σDj(x) ≤ exp
(
I(f ; yB|yDj)

)
σj−1(x) ≤ ξ

1/2
M σj−1(x). (5.9)
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The last step uses (5.3) and that |B| < M .

Now consider the case where the n evaluations completed are not the first n dispatched. Since
A1, A2, A3 are bounded by constants summing over all n we only need to worry about A4. In
step (a) of (5.8), we have bounded A4 by the sum of posterior variances σj−1([xj]j). Since
σj′−1([xj]j) < σj−1([xj]j) for j′ > j, the sum for any n completed evaluations can be bound by
the same sum for the first n evaluations dispatched. The result follows accordingly.

Finally, we note that the bound for the sequential setting for Thompson sampling in Theorem 2
follows directly by setting M = 1 in Theorem 49. We state it formally below.

Corollary 54. Assume the same setting and quantities as in Theorem 49. Then for seqTS, the
Bayes’ simple regret after n evaluations satisfies,

E[Sn] ≤ C1

n
+

√
C2βnΨn

n
,

Proof of Lemma 50

Let L = supi=1,...,d supx∈X
∣∣∂f(x)
∂xi

∣∣. By Assumption 1 and the union bound we have P(L ≥ t) ≤
da exp−t

2/b2 . Let x ∈ X . We bound,

E[|f(x)− f([x]j)|] ≤ E[L‖x− [x]j‖1] ≤ d

τj
E[L] =

d

τj

∫ ∞
0

P(L ≥ t)dt

≤ d

τj

∫ ∞
0

aet
2/b2dt =

dab
√
π

2τj
=

1

2j2
.

The first step bounds the difference in the function values by the largest partial derivative and the
L1 distance between the points. The second step uses the properties of the discretisation νj and
the third step uses the identity EX =

∫
P(X > t)dt for positive random variables X . The last

step uses the value for τj specified in the main proof.

Proof of Lemma 51

The proof is similar to Lemma 2 in [211], but we provide it here for completeness. We will
use the fact that for Z ∼ N (µ, σ2), we have E[Z1(Z > 0)] = σ√

2π
e−µ

2/(2σ2). Noting that

f(x)− Uj(x)|Dj ∼ N (−β1/2
j σDj(x), σ2

Dj(x)), we have,

E[1{f(x) > Uj(x)} · (f(x)− Uj(x))|Dj] =
σDj(x)√

2π
eβj/2 ≤ 1√

2π|νj|j2
.

Here, the last step uses that σDj(x) ≤ κ(x, x) ≤ 1 and that βj = 2 log(j2|νj|).
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On the Initialisation for asynchronous parallel TS

Description of the initialisation scheme: The initialisation scheme [52, 144] is an uncertainty
sampling procedure designed to reduce the posterior variance throughout the domain X . Here,
we first pick the point with the largest prior GP variance, xinit

1 = argmaxx κ(x, x). We then iterate
xinit
j = argmaxx∈X κj−1(x, x) where κj−1 denotes the posterior kernel with the previous j − 1

evaluations. As the posterior variance of a GP does not depend on the observations, this scheme
is asynchronously parallelisable: simply pre-compute the evaluation points and then deploy them
in parallel.

Bounds on E[Sn] after initialisation: Desautels et al. [52] provide bounds for Cκ as a function
of γM for different kernels (see Chapter 5.3). During this initialisation phase the best bound we
can achieve on the instantaneous regret is E[f(x?)− f(xj)] ≤ 2 Ξ . Applying Theorem 53 after
initialisation, we have asyTS:

E[Sn] ≤ C1

n
+

2 Ξ γM
n

+

√
C2CκΨn log(n)

n
(5.10)

A more rigorous proof will simply replace the unconditional mutual information in the definition
of the MIG with the mutual information conditioned on the first γM evaluations.We conjecture
that asyTS will not need this initialisation and wish to resolve this in future work.

5.5.3 Proofs for Parallel TS with Random Evaluation Times

The goal of this section is to prove Theorem 48. In Section 5.5.3 we derive some concentration
results for uniform and half-normal distributes and their maxima. In Section 5.5.3 we do the
same for exponential random variables. We put everything together in Section 5.5.3 to prove
Theorem 48. We will use several results on sub-Gaussian and sub-exponential random variables
which are reviewd in Chapter 2.4.

Results for Uniform and Half-normal Random Variables

In the next two lemmas, let {Xi}Mi=1 denote a sequence of M i.i.d random variables and Y =
maxiXi be their maximum. We note that the results or techniques in Lemmas 55, 56 are not
particularly new.

Lemma 55. Let Xi ∼ Unif(a, b). Then EXi = θ and EY = θ + M−1
M+1

b−a
2

where θ = (a+ b)/2.

Proof. The proof for EXi is straightforward. The cdf of Y is P(Y ≤ t) =
∏M

i=1 P(Xi ≤ t) =
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( t−a
b−a)M . Therefore its pdf is pY (t) = M(t− a)M−1/(b− a)M and its expectation is

E[Y ] =

∫ b

a

tM(t− a)M−1/(b− a)Mdt

=
a+ bM

M + 1
= θ +

M − 1

M + 1

b− a
2

.

Lemma 56. Let Xi ∼ HN (ζ2). Then EXi = ζ
√

2/π and EY satisfies,

ζK
√

log(M) ≤ EY ≤ ζ
√

2 log(2M).

Here K is a universal constant. Therefore, EY ∈ Θ(
√

log(M))EXi.

Proof. The proof for EXi just uses integration over the pdf pY (t) =
√

2√
πζ2
e−

t2

2σ2 . For the second

part, writing the pdf of N (0, ζ2) as φ(t) we have,

E[eλXi ] = 2

∫ ∞
0

eλtφ(t)dt ≤ 2

∫ ∞
−∞

eλtφ(t)dt

= 2EZ∼N (0,ζ2)[e
λZ ] = 2eζ

2λ2/2.

The inequality in the second step uses that the integrand is positive. Therefore, using Jensen’s
inequality and the fact that the maximum is smaller than the sum we get,

eλE[Y ] ≤ E[eλY ] ≤
n∑
i=1

E[eλXi ] ≤ 2Meλ
2ζ2/2

⇐⇒ E[Y ] ≤ 1

λ
log(2M) +

ζ2λ

2
.

Choosing λ =

√
2 log(2M)

ζ
yields the upper bound.

The lower bound follows from Lemma 4.10 of Adler [4] which establishes a K
√

log(M) lower
bound for M i.i.d standard normals Z1, . . . , ZM . We can use the same lower bound since |Zi| ≥
Zi.

Lemma 57. Suppose we complete a sequence of jobs indexed j = 1, 2, . . . . The time taken for
the jobs {Xj}j≥1 are i.i.d with mean θ and sub-Gaussian parameter τ . Let δ ∈ (0, 1), and N
denote the number of completed jobs after time T . That is, N is the random variable such that
N = max{n ≥ 1;

∑n
j=1Xj ≤ T}. Then, with probability greater than 1− δ, for all α ∈ (0, 1),

there exists Tα,δ such that for all T > Tα,δ, N ∈
(

T
θ(1+α)

− 1, T
θ(1−α)

)
.

Proof. We will first consider the total time taken Sn =
∑n

i=1Xi after n evaluations. Let εn =

τ
√
n log(n2π2/(3δ)) throughout this proof. Using Lemma 11, we have P(|Sn − nθ| > εn) =
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6δ/(nπ2). By a union bound over all n ≥ 1, we have that with with probability greater than δ,
the following event E holds.

E = {∀n ≥ 1, |Sn − nθ| ≤ εn.} (5.11)

Since E is a statement about all time steps, it is also for true the random number of completed
jobs N . Inverting the condition in (5.11) and using the definition of N , we have

Nθ − εN ≤ SN ≤ T ≤ SN+1 ≤ (N + 1)θ + εN+1. (5.12)

Now assume that there exists Tα,δ such that for all T ≥ Tα,δ we have, εN ≤ Nαθ. Since εn is
sub-linear in n, it also follows that εN+1 ≤ (N+1)αθ. Hence,Nθ(1−α) ≤ T ≤ (N+1)θ(1+α)
and the result follows.

All that is left to do is to establish that such a Tα,δ exists under event E , for which we will once
again appeal to (5.12). The main intuition is that as εN �

√
N log(N), the condition εN ≤ Nαθ

is satisfied for N large enough. But N is growing with T , and hence it is satisfied for T large
enough. More formally, since N

εN
� N+1

εN+1
using the upper bound for T it is sufficient to show

T
εN+1

& 1
αθ

for all T ≥ Tα,δ. But since εN+1 �
√
N log(N) and the lower bound for T is T & N ,

it is sufficient if T√
T log(T )

& 1
αθ

for all T ≥ Tα,δ. This is achievable as the LHS is increasing with

T and the RHS is constant.
Our final result for the uniform and half-normal random variables follows as a consequence of
Lemma 57.

Theorem 58. Let the time taken X for completing an evaluation to f be a random variable.

• If X ∼ Unif(a, b), denote θ = (a+ b)/2, θM = θ + M−1
M+1

b−a
2

, and τ = (b− a)/2.

• If X ∼ HN (τ 2), denote θ = ζ
√

2/π, θM = θ ·Θ(
√

log(M)), and τ = ζπ/2.

Denote the number of evaluations within time T by sequential, synchronous parallel and asyn-
chronous parallel algorithms by Nseq, Nsyn, Nasy respectivey. Let δ ∈ (0, 1). Then, with proba-
bility greater than 1 − δ, for all α ∈ (0, 1), there exists Tα,δ such that for all T ≥ Tα,δ, we have
each of the following,

Nseq ∈
(

T

θ(1 + α)
− 1,

T

θ(1− α)

)
,

Nsyn ∈
(
M

[
T

θM(1 + α)
− 1

]
,

MT

θM(1− α)

)
,

Nasy ∈
(
M

[
T

θ(1 + α)
− 1

]
,

MT

θ(1− α)

)
.

Proof. We first show τ sub-Gaussianity of X and Y = maxj=1,...,M Xj when X,X1, . . . , XM

are either uniform or half-normal. For the former, both X and Y are τ = (b − a)/2 sub-
Gaussian since they are bounded in [a, b]. For the Half-normal case, we note that X = |Z|
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and Y = maxj=1,...,M |Zi| for some i.i.d. N (0, ζ2) variables Z, {Zi}Mi=1. Both are 1-Lipschitz
functions of Zi and (Zi1, . . . , ZiM) respectively and τ = ζπ/2 sub-Gaussianity follows from
Lemma 12.

Now in synchronous settings, the algorithm dispatches the kth batch with evaluation times {(Xk1,
. . . , XkM)}. It releases its (k + 1)th batch when all evalutions finish after time Yk = maxi=1,...,M

Xki. The result for Nsyn follows by applying Lemma 57 on the sequence {Yk}k≥1. For the
sequential setting, each worker receives its (k+1)th job after completing its kth evaluation in time
Xk. We apply Lemma 57 on the sequence {Xk}k≥1 for one worker to obtain that the number
of jobs completed by this worker is Nseq ∈

(
T

θ(1+α)
− 1, T

θ(1−α)

)
. In the asynchronous setting, a

worker receives his new job immediately after finishing his last. Applying the same argument as
the sequential version to all workers but with δ ← δ/M in Lemma 57 and the union bound yields
the result for Nasy.

Results for the Exponential Random Variable

The results here on exponential delays for function evaluations were primarily derived by Akshay
Krishnamurthy. They are included here for the sake of completeness.

In this section we derive an analogous result to Theorem 58 for the case when the completion
times are exponentially distributed. The main challenges stem from analysing the distribution of
the maxima of a finite number of exponential random variables. Much of the analysis is based
on results from Boucheron and Thomas [18] (See also chapter 6 of Boucheron et al. [19]).

In deviating from the notation used in Table 5.1, we will denote the parameter of the exponential
distribution as θ, i.e. it has pdf p(x) = θx−θx. The following fact about exponential random
variables will be instrumental.

Fact 59. Let X1, . . . , Xn ∼ Exp(θ) iid. Also let E1, . . . , En ∼ Exp(θ) iid and independent from
Xn

1 . If we define the order statistics X(1) ≥ X(2) ≥ . . . ≥ X(n) for X1, . . . , Xn, we have

(X(n), . . . , X(1)) ∼
(
En/n, . . . ,

n∑
k=i

Ek/k, . . . ,
n∑
k=1

Ek/k

)
.

Proof. This is Theorem 2.5 in [18] but we include a simple proof for completeness. We first
must analyse the minimum of n exponentially distributed random variables. This is a simple
calculation.

P[min
i
Xi ≥ t] =

n∏
i=1

P[Xi ≥ t] =
n∏
i=1

exp(−θt) = exp(−nθt)

This last expression is exactly the probability that an independent Exp(nθ) random variables is
at least t.
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This actually proves the first part, since En/n ∼ Exp(nθ). Now, using the memoryless property,
conditioning on X(n) = x and X(n) = Xi for some i, we know that for j 6= i

P[Xj ≥ x′ + x|X(n) = x,X(n) = Xi] = exp(−θx′).
Removing the conditioning on the index achieving X(n), and using the same calculation for the
minimum, we now get

P[X(n−1) ≥ x′ + x|X(n) = x] = exp(−(n− 1)θx′).

Thus we have that X(n−1) −X(n) ∼ Exp((n− 1)θ). The claim now follows by induction.
As before the first step of the argument is to understand the expectation of the maximum.

Lemma 60. Let Xi ∼ Exp(θ). Then EXi = 1/θ and EY = hM/θ where Y = maxi=1,...,M Xi is
the maximum of the Xi’s and hM =

∑M
i=1 i

−1 is the M th harmonic number.

Proof. Using the relationship between the order statistics and the spacings in Fact 59 we get

Emax
i
Xi = EX(1) = E

M∑
k=1

Ek/k =
M∑
k=1

1

kθ
=
hM
θ
.

Recall that hM � log(M) accounting for the claims made in Table 5.1 and the subsequent
discussion.

While obtaining polynomial concentration is straightforward via Chebyshev’s inequality it is
insufficient for our purposes, since we will require a union bound over many events. However,
we can obtain exponential concentration, although the argument is more complex. Our analysis
is based on Herbst’s argument, and a modified logarithmic Sobolev inequality, stated below in
Theorem 61. To state the inequality, we first define the entropy Ent[X] of a random variable X
as follows (not to be confused with Shannon entropy),

Ent[X] , E[X log(X)]− E[X] log(E[X]).

Theorem 61 (Modified logarithmic Sobolev inequality (Theorem 6.6 in [19])). Let X1, . . . , Xn

be independent random variables taking values in some space X , f : X n → R, and define
the random variable Z = f(X1, . . . , Xn). Further let fi : X n−1 → R for i ∈ {1, . . . , n}
be arbitrary functions and Zi = fi(X

(i)) = fi(X1, . . . , Xi−1, Xi+1, . . . , Xn). Finally define
τ(x) = ex − x− 1. Then for all λ ∈ R

Ent[eλZ ] ≤
n∑
i=1

E[eλZτ(−λ(Z − Zi))].

Application of the logarithmic Sobolev inequality in our case gives:

Lemma 62. Let X1, . . . , XM ∼ Exp(θ) iid, E ∼ Exp(θ) also independently and define Z =
maxi∈{1,...,M}Xi and µ = EZ. Define τ(x) = ex − x− 1 and ψ(x) = exp(x)τ(−x) = 1 + (x−
1)ex. Then for any λ ∈ R

Ent[exp{λ(Z − µ)}] ≤ E[exp{λ(Z − µ)}]× Eψ(λE),

Ent[exp{λ(µ− Z)}] ≤ E[exp{λ(µ− Z)}]× Eτ(λE).
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Proof. We apply Theorem 61 with Z = f(X1, . . . , XM) = maxiXi and Zi = fi(X
(i)) =

maxj 6=iXj . Notice that in this case, Zi = Z except when Xi is the maximiser, in which case
Zi = X(2) the second largest of the samples. This applies here since the maximiser is unique
with probability 1. Thus, Theorem 61 gives

Ent[exp{λZ}] ≤
M∑
i=1

E[exp{λZ}τ(−λ(Z − Zi))]

= E
[
exp{λZ}τ(−λ(X(1) −X(2)))

]
= E

[
exp{λX(2)} exp{λ(X(1) −X(2))}τ(−λ(X(1) −X(2)))

]
= E[expλX(2)]E[ψ(λE)] ≤ E[expλX(1)]E[ψ(λE)]

The first inequality is Theorem 61, while the first equality uses the definitions of fi and the fact
that Zi 6= Z for exactly one index i. The second equality is straightforward and the third uses
Fact 59 to write X(1) − X(2) as an independent Exp(θ) random variable, which also allows us
to split the expectation. Finally since X(2) ≤ X(1) almost surely, the final inequality follows.
Multiplying both sides by exp(−λµ), which is non-random, proves the first inequality, since
Ent(aX) = aEnt(X).

The second inequality is similar. Set Z = −maxiXi and Zi = −maxj 6=iXj and using the same
argument, we get

Ent[exp{−λX(1)}] ≤ E[exp{−λX(1)}τ(λ(X(1) −X(2)))]

= E

[
exp

{
−λ(E1 +

M∑
k=2

Ek/k)

}
τ(λE1)

]

Here the inequality follows from Theorem 61 and the identity uses Fact 59. We want to split the
expectation, and to do so, we use Chebyshev’s association principle. Observe that exp(−λE1) is
clearly non-increasing in E1 and that τ(λE1) is clearly non-decreasing in E1 for E1 ≥ 0 (E1 > 0
a.s.). Hence, we can split the expectation to get

Ent[exp{−λX(1)}] ≤ E[exp{−λX(1)}]× E[τ(λE)]

The second inequality follows now by multiplying both sides by exp(λµ).

Theorem 63. Let X1, . . . , XM ∼ Exp(θ) iid and define Z = maxiXi then Z − EZ is sub-
exponential with parameters (4/θ2, 2/θ).

Proof. We use the logarithmic Sobolev inequality, and proceed with Herbst’s method. Unfortu-
nately since our inequality is not in the standard form, we must reproduce most of the argument.
However, we can unify the two tails by noticing that we currently have for centered Y (e.g.,
Y = X(1) − EX(1) or Y = EX(1) −X(1)),

Ent[exp{λY }] ≤ E[exp{λY }]f(λ) (5.13)

135



for some differentiable function f , which involves either τ or ψ depending on the tail. We will
use such an inequality to bound the moment generating function of Y .

For notational convenience, define φ(λ) = logE exp{λY } and observe that

φ′(λ) =
1

λ

(
Ent[exp{λY }]
E exp{λY } + logE exp{λY }

)
Together with the inequality in Eq. (5.13), this gives

λφ′(λ)− φ(λ) =
Ent[exp{λY }]
E exp{λY } ≤ f(λ)

⇔ φ′(λ)

λ
− φ(λ)

λ2
≤ f(λ)/λ2, ∀ λ > 0

Observe now that the left hand side is precisely the derivative of the function G(λ) = φ(λ)/λ.
Hence, we can integrate both sides from 0 to λ, we get

φ(λ)

λ
≤
∫ λ

0

f(t)/t2dt.

This last step is justified in part by the fact that limt→0 φ(t)/t = 0 by L’Hopital’s rule. Thus we
have logE exp{λY } ≤ λ

∫ λ
0
f(t)/t2dt.

The upper tail: For the upper tail Z − EZ, we have f(t) = Eψ(tE) where E ∼ Exp(θ) and
ψ(x) = 1 + (x− 1)ex. By direct calculation, we have for t < θ

Eψ(tE) = 1 + EtE exp(tE)− E exp(tE)

= 1− θ

θ − t + t

∫ ∞
0

x exp(tx)θ exp(−θx)dx

= 1− θ

θ − t +
tθ

(θ − t)2
=

t2

(θ − t)2
.

Thus, we get

logE exp{λ(Z − EZ)} ≤ λ

∫ λ

0

1

(θ − t)2
dt =

λ2

θ(θ − λ)
.

If λ ≤ θ/2, this bound is 2λ2/θ2. Thus, according to definition 3, Z − EZ is sub-exponential
with parameters (4/θ2, 2/θ).

The lower tail: For the lower tail EZ − Z we need to control Eτ(tE) where E ∼ Exp(θ),
τ(x) = ex − x − 1. Direct calculation, using the moment generating function of exponential
random variables gives

Eτ(tE) =
t2

θ(θ − t)
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So the integral bound is

logE exp{λ(EZ − Z)} ≤ λ

∫ λ

0

1

λ(λ− t) =
λ

θ
log

(
θ

θ − λ

)
=
λ

θ

(
∞∑
i=1

(λ/θ)i/i

)

=
λ2

θ2

(
∞∑
i=1

(λ/θ)i−1/i

)

If λ/θ ≤ 1/2 the series inside the paranthesis is clearly bounded by 2. Thus EZ − Z is sub-
exponential with parameters (4/θ2, 2/θ) as before.

Now that we have established that the maximum is sub-Exponential, we can bound the number
of evaluations for the various methods. This is the main result for this section.

Theorem 64. Let the time taken X for completing an evaluation to f be a random variable that
is Exp(θ) distributed. Let δ ∈ (0, 1) and denote Nsyn and Nasy denote the number of evaluations
by synchronous and asynchronous algorithms with time T . Then with probability at least 1− δ,
for any α ∈ (0, 1) there exists Tα,δ such that for all T > Tα,δ,

Nseq ∈
(

Tθ

(1 + α)
− 1,

MTθ

(1− α)

)
,

Nsyn ∈
(
M

(
Tθ

hM(1 + α)
− 1

)
,

MTθ

hM(1− α)

)
Nasy ∈

(
M

(
Tθ

(1 + α)
− 1

)
,
MTθ

(1− α)

)

Proof. In the synchronous setting, the kth batch issues M jobs with lengths (Xk1, . . . , XkM) and
the batch ends after Yk = maxiXki. Since the sequence of random variables {Yk}k≥1 are all iid
and sub-exponential with parameters (4/θ2, 2/θ), in a similar way to the proof of Lemma 57,
with Sn =

∑n
k=1 Yk we get that

P

∃n; |Sn − ESn| ≥
√

8nθ−2 log(n2π2/(3δ)) +
2

θ
log(n2π2/(3δ))︸ ︷︷ ︸

,εn

 ≤ δ

This follows from Bernstein’s inequality (Proposition 13) and the union bound. As in Lemma 57
this means that:

NhM
θ
− εN ≤ SN ≤ T ≤ SN+1 ≤

(N + 1)hM
θ

+ εN+1.
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Here we also used the fact that EYk = hM/θ from Lemma 60. Now assuming there exists Tα,δ
such that for all T ≥ Tα,δ, we have εN ≤ NhMα/θ, we get

NhM
θ

(1− α) ≤ T ≤ (N + 1)hm
θ

(1 + α).

The existence of Tα,δ is based on the same argument as in Lemma 57. Re-arranging these in-
equalities, which gives a bound on the number of batches completed, leads to the bounds on the
number of evaluations for the synchronous case.

Applying the same argument to a single worker on the sequence {Xk}k≥1, we get

Nseq

θ
(1− α) ≤ T ≤ Nseq + 1

θ
(1 + α).

Repeating this argument for all M workers with δ ← δ/M and then taking a union bound yields
the result for Nasy.

Putting it altogether

Finally, we put the results in Theorems 49, 53, 58 and 64 together to obtain the following result.
This is a formal version of Theorem 48 in Chapter 5.3. Below, Ξ denotes the supremum of a GP
of X which is a well defined and finite value [4].

Theorem 65. Let f ∼ GP(0, κ) where κ : X 2 → R satisfies Assumption 1 and κ(x, x′) ≤ 1.
Then for all α > 0, the Bayes simple regret for seqTS, synTS and asyTS, satisfies the following
for sufficiently large T .

seqTS: E[S ′T ] ≤ C ′1
nseq

+

√
C2βnseqΨnseq

nseq
,

synTS: E[S ′T ] ≤ C ′1
nsyn

+
(M − 1)β

1/2
M−1

nsyn
+

√
C2βnsyn+MΨnsyn

nsyn
,

asyTS: E[S ′T ] ≤ C ′1
nasy

+
2 Ξ γM
nasy

+

√
C2CκβnasyΨnasy

nasy
.

Here, nseq, nsyn, and nasy are defined as follows.

nseq =
T

θ(1 + α)
− 1, nsyn = M

[
T

θM(1 + α)
− 1

]
, nasy = M

[
T

θ(1 + α)
− 1

]
.

Moreover, θ, θM are defined follows for the uniform, half-normal and exponential cases respec-
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tively.

Unif(a, b) : θ =
a+ b

2
, θM =

a+ bM

M + 1

HN (ζ2) : θ =
ζ
√

2√
π
, θM ∈ ζ ·Θ(log(M))

Exp(λ) : θ =
1

λ
, θM =

hM
λ

Further, Ψn is the MIG in Definition 1, βn is as defined in (5.4), Ξ is the expected supremum of
the GP from Lemma 6, ξM is from (5.3), and C1 = π2/6 +

√
2π/12 + 1, C2 = 2/ log(1 + η−2)

are constants.

Proof. We will prove the result for the asynchronous case and note that the other two results are
obta similar argument. Let V denote the event N ≥ M

[
T

θ(1+α)
− 1
]
, i.e. the random number of

plays has exceeded the given bound above. For any given δ ∈ (0, 1), Theorems 58 and 64 allow
us to control the probability of the event below δ. We will choose δ = 1

2 Ξnasy
where Ξ is the

expected supremum of the GP in Lemma 6. Since the randomness in the evaluation times are
independent of the prior, noise and the algorithm, we can decompose E[S ′T ] as follows and use
the result in (5.10) for E[Sn].

E[S ′T ] ≤ E[E[SN ]|V ]P(V) + E[E[SN ]|Vc]P(Vc)
≤ E[Snasy ] · 1 + 2 Ξ δ

Here we have used the definition of the Bayes simple regret with time in (5.2) which guarantees
that it is never worse than supx |f(x?) − f(x)| ≤ 2 Ξ . The theorem follows by plugging in
values for E[Sn] and δ. The “sufficiently large T ” requirement is because Theorems 58 and 64
hold only for T > Tα,δ = Tα, 1

2 Ξnasy
. Since the dependencies of δ on Tα,δ is polylogarithmic, and

as nasy is growing linearly with T , the above condition is equivalent to T & polylog(T ) which is
achievable for large enough T .
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Chapter 6

Bandits on Graph-structured Domains:
An Example in Neural Architecture Search

Bayesian optimisation methods have seen tremendous success in several optimisation problems
in optimal policy search, industrial design, and scientific experimentation, where function evalu-
ations are typically expensive. That said, the quintessential use case for BO in machine learning
is model selection [103, 232]. For instance, consider selecting the regularisation parameter λ and
kernel bandwidth h for an SVM. We can set this up as a zeroth order optimisation problem where
our domain is a two dimensional space of (λ, h) values, and each function evaluation trains the
SVM on a training set, and computes the accuracy on a validation set. The goal is to find the
model, i.e. hyperparameters, with the highest validation accuracy.

The majority of the bandit and BO literature has focused on settings where the domain X is
either Euclidean or categorical. This suffices for many tasks, such as the SVM example above.
However, with recent successes in deep learning, neural networks are increasingly becoming
the method of choice for many machine learning applications. A number of recent work have
designed novel neural network architectures to significantly outperform the previous state of
the art [91, 101, 228, 243]. This motivates studying model selection over the space of neural
architectures to optimise for generalisation performance. A critical challenge in this endeavour
is that evaluating a network via train and validation procedures is very expensive.

To motivate the ensuing discussion, recall that in its most unadorned form, a BO algorithm
operates sequentially, starting at time 0 with a GP prior for f ; at time t, it incorporates results
of evaluations from 1, . . . , t − 1 in the form of a posterior for f . It then uses this posterior to
construct an acquisition function ϕt, where ϕt(x) is a measure of the value of evaluating f at
x at time t if our goal is to maximise f . While we have encountered upper confidence bounds
and Thompson sampling as possible strategies for constructing ϕt frequently in this thesis, there
are several other examples as mentioned in Chapter 2.2. Accordingly, BO chooses to evaluate f
at the maximiser of the acquisition, i.e. xt = argmaxx∈X ϕt(x). There are two key ingredients
to realising this plan for GP based BO. First, we need to quantify the similarity between two
points x, x′ in the domain in the form of a kernel κ(x, x′). The kernel is needed to define the
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GP, which allows us to reason about an unevaluated value f(x′) when we have already evaluated
f(x). Secondly, we need a method to maximise ϕt.

These two steps are fairly straightforward in conventional domains. For example, in Euclidean
spaces, we can use one of many popular kernels such as Gaussian, Laplacian, or Matérn ; we
can maximise ϕt via off the shelf branch-and-bound or gradient based methods. However, when
each x ∈ X is a neural network architecture, this is not the case. Hence, our challenges in this
work are two-fold. First, we need to quantify (dis)similarity between two networks. Intuitively,
in Figure 6.1, network 6.1(a) is more similar to network 6.1(b), than it is to 6.1(c). Secondly, we
need to be able to traverse the space of such networks to optimise the acquisition function. Our
main contributions are as follows.

1. We develop a (pseudo-)distance for neural network architectures called OTMANN (Optimal
Transport Metrics for Architectures of Neural Networks) that can be computed efficiently via
an optimal transport program.

2. We develop a BO framework for optimising functions on neural network architectures called
NASBOT (Neural Architecture Search with Bayesian Optimisation and Optimal Transport).
This includes an evolutionary algorithm to optimise the acquisition function.

3. Empirically, we demonstrate that NASBOT outperforms other baselines on model selection
tasks for multi-layer perceptrons (MLP) and convolutional neural networks (CNN).

Related Work

Historically, evolutionary (genetic) algorithms (EA) have been the most common method used
for designing architectures [58, 138, 156, 173, 205, 237, 273]. EA techniques are popular as
they provide a simple mechanism to explore the space of architectures by making a sequence
of changes to networks that have already been evaluated. However, as we will discuss shortly,
EA algorithms, while conceptually and computationally simple, are typically not best suited for
optimising functions that are expensive to evaluate. A related line of work first sets up a search
space for architectures via incremental modifications, and then explores this space via random
exploration, MCTS, or A* search [46, 155, 178]. Some of the methods above can only optimise
among feed forward structures, e.g. Figure 6.1(a), but cannot handle spaces with arbitrarily
structured networks, e.g. Figures 6.1(b), 6.1(c).

The most successful recent architecture search methods that can handle arbitrary structures have
adopted reinforcement learning (RL) [12, 281, 282, 283]. However, architecture search is in
essence an optimisation problem – find the network with the highest function value. There is no
explicit need to maintain a notion of state and solve the credit assignment problem in RL [240].
Since RL is fundamentally more difficult than optimisation [109], these methods typically need
to try a very large number of architectures to find the optimum. This is not desirable, especially
in computationally constrained settings.

None of the above methods have been designed with a focus on the expense of evaluating a
neural network, with an emphasis on being judicious in selecting which architecture to try next.
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Bayesian optimisation (BO) techniques are well suited for expensive evaluations. They maintain
introspective models of the function and determine future points for evaluation via predictions
and uncertainty estimates from this model. Hence, BO usually consumes more computation to
determine future points than the methods above, but this pays dividends when evaluating f itself
is extremely expensive. However, most BO methods are designed for Euclidean or categorical
domains. Snoek et al. [232] and Jenatton et al. [108] use BO to design neural architectures, but
they can only handle feed forward structures.

One of the key technical contributions of this work is the OTMANN distance for neural archi-
tectures, which views a neural network as a graph and compares them via an optimal transport
(OT) program [253]. This distance is inspired by Wasserstein (earth mover’s) distances which
also have an OT formulation. As we will discuss shortly, while OTMANN has similarities to
Wasserstein, it is not a Wasserstein distance itself. There have also been prior work defining
various distances and kernels on graphs [68, 172, 255, 256]. We cannot directly apply them
in our setting because neural networks are more complex objects; in addition to the graphical
structure, neural networks are also defined by the type of operations performed at each layer, the
number of neurons, etc. Moreover, the computation of the above distances are more expensive
than OTMANN.

6.1 Problem Set Up

Our goal is to maximise a function f defined on a space X of neural network architectures.
When we evaluate f at x ∈ X , we obtain a possibly noisy observation y of f(x). In the context
of architecture search, f is the performance on a validation set after x is trained on the training
set. If x? = argmaxX f(x) is the optimal architecture, and xt is the architecture evaluated at
time t, we want the simple regret Sn = f(x?) − maxt≤n f(xt) to vanish fast as the number of
evaluations n→∞.

GP/BO in the context of architecture search: We will begin by contextualising GPs and BOs in
our domain X of neural architectures. Recall that the κ(x, x′) is a measure of similarity between
x and x′. If κ(x, x′) is large, then f(x) and f(x′) are highly correlated. Hence, the GP effectively
imposes a smoothness condition on f : X → R; i.e. since networks a and b in Figure 6.1 are
similar, they are likely to have similar cross validation performance. Moreover, recall that in BO,
when selecting the next point, we balance between exploitation, choosing points that we believe
will have high f value, and exploration, choosing points that we do not know much about so
that we do not get stuck at a bad optimum. For example, if we have already evaluated f(a), then
exploration incentivises us to choose c over b since we can reasonably gauge f(b) from f(a).
On the other hand, if f(a) has high value, then exploitation incentivises choosing b, as it is more
likely to be the optimum than c.
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Figure 6.1: An illustration of some CNN ar-
chitectures. In each layer, i: indexes the layer,
followed by the label (e.g conv3), and then the
number of units (e.g. number of filters). The in-
put and output layers are pink while the decision
(softmax) layers are green.
From Chapter 6.2: The layer mass is denoted in
parentheses. The following are the normalised
and unnormalised OTMANN distances d, d̄ . All
self distances are 0, i.e. d(G,G) = d̄(G,G) =
0. The unnormalised distances are, d(a, b) =
175.1, d(a, c) = 1479.3, d(b, c) = 1621.4.
The normalised distances are, d̄(a, b) = 0.0286,
d̄(a, c) = 0.2395, d̄(b, c) = 0.2625.

6.1.1 A Graph-theoretic Formalism for Neural Networks

Our formalism will view a neural network as a graph whose vertices are the layers of the network.
We will use the CNNs in Fig. 6.1 to illustrate the concepts. A neural network G = (L, E) is
defined by a set of layers L and directed edges E . An edge (u, v) ∈ E is a ordered pair of layers.
In Fig. 6.1, the layers are depicted by rectangles and the edges by arrows. A layer u ∈ L is
equipped with a layer label ``(u) which denotes the type of operations performed at the layer.
For instance, in Fig. 6.1(a), ``(1) = conv3, ``(5) = max-pool denote a 3 × 3 convolution and
a max-pooling operation. The attribute `u denotes the number of computational units in a layer.
In Fig. 6.1(b), `u(5) = 32 and `u(7) = 16 are the number of convolutional filters and fully
connected nodes.

In addition, each network has decision layers which are used to obtain the predictions of the net-
work. For a classification task, the decision layers perform softmax operations and output the
probabilities an input datum belongs to each class. For regression, the decision layers perform
linear combinations of the outputs of the previous layers and output a single scalar. All net-
works have at least one decision layer. When a network has multiple decision layers, we average
the output of each decision layer to obtain the final output. The decision layers are shown in
green in Fig. 6.1. Finally, every network has a unique input layer uip and output layer uop with
labels ``(uip) = ip and ``(uop) = op. It is instructive to think of the role of uip as feeding a data
point to the network and the role of uop as averaging the results of the decision layers. The input
and output layers are shown in pink in Fig. 6.1. We refer to all layers that are not input, output
or decision layers as processing layers.

The directed edges are to be interpreted as follows. The output of each layer is fed to each of its
children; so both layers 2 and 3 in Fig. 6.1(b) take the output of layer 1 as input. When a layer has
multiple parents, the inputs are concatenated; so layer 5 sees an input of 16+16 filtered channels
coming in from layers 3 and 4. Finally, we mention that neural networks are also characterised
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by the values of the weights/parameters between layers. In architecture search, we typically do
not consider these weights. Instead, an algorithm will (somewhat ideally) assume access to an
oracle that can minimise the loss function on the training set and find the optimal weights.

We next describe a distance d : X 2 → R+ for neural architectures. Recall that our eventual goal
is a kernel for the GP; given a distance d, we will aim for κ(x, x′) = e−βd(x,x′)p , where β, p ∈ R+,
as the kernel. Many popular kernels take this form. For e.g. when X ⊂ Rn and d is the L2 norm,
p = 1, 2 correspond to the Laplacian and Gaussian kernels respectively.

6.2 OTMANN: Optimal Transport Metrics for Architectures
of Neural Networks

To motivate this distance, note that the performance of a neural network is determined by the
amount of computation at each layer, the types of these operations, and how the layers are con-
nected. A meaningful distance should account for these factors. To that end, OTMANN is defined
as the minimum of a matching scheme which attempts to match the computation at the layers of
one network to the layers of the other. We incur penalties for matching layers with different types
of operations or those at structurally different positions. We will find a matching that minimises
these penalties, and the total penalty at the minimum will give rise to a distance. We first describe
two concepts, layer masses and path lengths, which we will use to define OTMANN.

6.2.1 Preliminaries

Layer masses: The layer masses `m : L → R+ will be the quantity that we match between
the layers of two networks when comparing them. `m(u) quantifies the significance of layer u.
For processing layers, `m(u) will represent the amount of computation carried out by layer u
and is computed via the product of `u(u) and the number of incoming units. For example, in
Fig. 6.1(b), `m(5) = 32 × (16 + 16) as there are 16 filtered channels each coming from layers
3 and 4 respectively. Assigning mass for the input, output, is not as straightforward since there
is no computation at these layers. However, they occupy a significant role in the architecture.
Hence, we use `m(uip) = `m(uop) = ζ

∑
u∈PL `m(u) where PL denotes the set of processing

layers, and ζ ∈ (0, 1) is a parameter to be determined. Intuitively, we are using an amount of
mass that is proportional to the amount of computation in the processing layers. Similarly, the
decision layers occupy a significant role in the architecture as they directly influence the output.
While there is computation being performed at these layers, this might be problem dependent
– there is more computation performed at the softmax layer in a 10 class classification problem
than in a 2 class problem. Following the same intuition as we did for the input/output layers, we
assign an amount of mass proportional to the mass in the processing layers. Since the outputs
of the decision layers are averaged, we distribute the mass among all decision layers; that is, if
DL are decision layers, ∀u ∈ DL, `m(u) = ζ

|DL|
∑

u∈PL `m(u). Our motivations for setting the
layer masses for the input, output, and decision layers using such heuristics primarily stem from
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practical performance considerations – we found that not assigning significant layer masses for
these layers tended to equate different architectures and consequently result in poor performance.
In all our experiments, we use ζ = 0.1. In Fig. 6.1, the layer masses for each layer are shown in
parantheses.

Path lengths from/to uip/uop: In a neural network G, a path from u to v is a sequence of layers
u1, . . . , us where u1 = u, us = v and (ui, ui+1) ∈ E for all i ≤ s − 1. The length of this path
is the number of hops from one node to another in order to get from u to v. For example, in
Fig. 6.1(c), (2, 5, 8, 13) is a path from layer 2 to 13 of length 3. Let the shortest (longest) path
length from u to v be the smallest (largest) number of hops from one node to another among
all paths from u to v. Additionally, define the random walk path length as the expected number
of hops to get from u to v, if, from any layer we hop to one of its children chosen uniformly at
random. For example, in Fig. 6.1(c), the shortest, longest and random walk path lengths from
layer 1 to layer 14 are 5, 7, and 5.67 respectively. For any u ∈ L, let δsp

op(u), δlp
op(u), δrw

op (u) denote
the length of the shortest, longest and random walk paths from u to the output uop. Similarly, let
δsp

ip (u), δlp
ip(u), δrw

ip (u) denote the corresponding lengths for walks from the input uip to u. As the
layers of a neural network can be topologically ordered1, the above path lengths are well defined
and finite. Further, for any s ∈ {sp,lp,rw} and t ∈ {ip,op}, δst (u) can be computed for all u ∈ L,
in O(|E|) time (see Chapter 6.3.3 for details).

6.2.2 Description of OTMANN

We are now ready to describe OTMANN. Given two networks G1 = (L1, E1),G2 = (L2, E2) with
n1, n2 layers respectively, we will attempt to match the layer masses in both networks. We let
Z ∈ Rn1×n2

+ be such that Z(i, j) denotes the amount of mass matched between layer i ∈ G1 and
j ∈ G2. The OTMANN distance is computed by solving the following optimisation problem.

minimise
Z

φlmm(Z) + φnas(Z) + νstrφstr(Z) (6.1)

subject to
∑
j∈L2

Zij ≤ `m(i),
∑
i∈L1

Zij ≤ `m(j), ∀i, j

The label mismatch term φlmm, penalises matching masses that have different labels, while the
structural term φstr penalises matching masses at structurally different positions with respect to
each other. If we choose not to match any mass in either network, we incur a non-assignment
penalty φnas. νstr > 0 determines the trade-off between the structural and other terms. The
inequality constraints ensure that we do not over assign the masses in a layer. We now describe
φlmm, φnas, and φstr.

Label mismatch penalty φlmm: We begin with a label penalty matrix M ∈ RL×L where L is
the number of all label types and M(x, y) denotes the penalty for transporting a unit mass from
a layer with label x to a layer with label y. We then construct a matrix Clmm ∈ Rn1×n2 with
Clmm(i, j) = M(``(i), ``(j)) corresponding to the mislabel cost for matching unit mass from

1A topological ordering is an ordering of the layers u1, . . . , u|L| such that u comes before v if (u, v) ∈ E .
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conv3 conv5 max-pool avg-pool fc

conv3 0 0.2 ∞ ∞ ∞
conv5 0.2 0 ∞ ∞ ∞
max-pool ∞ ∞ 0 0.25 ∞
avg-pool ∞ ∞ 0.25 0 ∞
fc ∞ ∞ ∞ ∞ 0

Table 6.1: An example label
mismatch cost matrix M . There
is zero cost for matching identi-
cal layers, < 1 cost for similar
layers, and infinite cost for dis-
parate layers.

each layer i ∈ L1 to each layer j ∈ L2. We then set φlmm(Z) = 〈Z,Clmm〉 =
∑

i∈L1,j∈L2

Z(i, j)C(i, j) to be the sum of all matchings from L1 to L2 weighted by the label penalty terms.
This matrix M , illustrated in Table 6.1, is a parameter that needs to be specified for OTMANN.
They can be specified with an intuitive understanding of the functionality of the layers; e.g. many
values in M are∞, while for similar layers, we choose a value less than 1.

Non-assignment penalty φnas: We set this to be the amount of mass that is unassigned in both
networks, i.e. φnas(Z) =

∑
i∈L1

(
`m(i) −∑j∈L2

Zij
)

+
∑

j∈L2

(
`m(j) −∑i∈L1

Zij
)
. This

essentially implies that the cost for not assigning unit mass is 1. The costs in Table 6.1 are defined
relative to this. For similar layers x, y, M(x, y)� 1 and for disparate layers M(x, y)� 1. That
is, we would rather match conv3 to conv5 than not assign it, provided the structural penalty for
doing so is small; conversely, we would rather not assign a conv3, than assign it to fc. This
also explains why we did not use a trade-off parameter like νstr for φlmm and φnas – it is simple to
specify reasonable values for M(x, y) from an understanding of their functionality.

Structural penalty φstr: We define a matrix Cstr ∈ Rn1×n2 where Cstr(i, j) is small if layers i ∈ L1

and j ∈ L2 are at structurally similar positions in their respective networks. We then set φstr(Z) =
〈Z,Cstr〉. For i ∈ L1, j ∈ L2, we let Cstr(i, j) = 1

6

∑
s∈{sp, lp, rw}

∑
t∈{ip,op} |δst (i) − δst (j)| be the

average of all path length differences, where δst are the path lengths defined previously. We
define φstr in terms of the shortest/longest/random-walk path lengths from/to the input/output,
because they capture various notions of information flow in a neural network; a layer’s input
is influenced by the paths the data takes before reaching the layer and its output influences all
layers it passes through before reaching the decision layers. If the path lengths are similar for
two layers, they are likely to be at similar structural positions. Further, this form allows us to
solve (6.1) efficiently via an OT program and prove distance properties about the solution. If we
need to compute pairwise distances for several networks, as is the case in BO, the path lengths
can be pre-computed in O(|E|) time, and used to construct Cstr for two networks at the moment
of computing the distance between them.

This completes the description of our matching program. Shortly, we will see how it can be
computed via an optimal transport scheme using efficient solvers [195]. Our theorem below,
shows that the solution of (6.1) is a pseudo-distance under some mild regularity conditions on
the label penalty matrix M which is under our control and easy to satisfy.

Theorem 66. Assume that the mislabel cost matrixM satisfies the triangle inequality; i.e. for all
labels x, y, z we have M(x, z) ≤ M(x, y) + M(y, z). Let d(G1,G2) be the solution of (6.1) for
networks G1,G2. Then d(·, ·) is a pseudo-distance. That is, for all networks G1,G2,G3, it satisfies,
d(G1,G2) > 0, d(G1,G2) = d(G2,G1), d(G1,G1) = 0 and d(G1,G3) ≤ d(G1,G2) + d(G2,G3).
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Figure 6.2: An example of 2 CNNs which have d =
d̄ = 0 distance. The OT solution matches the mass
in each layer in the network on the left to the layer
horizontally opposite to it on the right with 0 cost.
For layer 2 on the left, its mass is mapped to layers
2 and 3 on the left. However, while the descriptor of
these networks is different, their functional behaviour
is the same.

Some remarks are in order. First, observe that while d(·, ·) is a pseudo-distance, it is not a
distance; i.e. d(G1,G2) = 0 ; G1 = G2. For example, while the networks in Figure 6.2 have
different descriptors according to our formalism in Chapter 6.1.1, their distance is 0. However,
it is not hard to see that their functionality is the same – in both cases, the output of layer 1
is passed through 16 conv3 filters and then fed to a layer with 32 conv3 filters – and hence,
this property is desirable in this example. It is not yet clear however, if the topology induced
by our metric equates two functionally dissimilar networks. We leave it to future work to study
equivalence classes induced by the OTMANN distance. Second, despite the OT formulation,
this is not a Wasserstein distance. In particular, the supports of the masses and the cost matrices
change depending on the two networks being compared.

The normalised OTMANN distance: For what follows, define d̄(G1,G2) = d(G1,G2)/(tm(G1)+
tm(G2)) where tm(Gi) =

∑
u∈Li `m(u) is the total mass of a network. Note that d̄ ≤ 1. While d̄

does not satisfy the triangle inequality, it provides a useful measure of dissimilarity normalised
by the amount of computation. Our experience suggests that d puts more emphasis on the amount
of computation at the layers over structure and vice versa for d̄. Therefore, it is prudent to com-
bine both quantities in any downstream application. The caption in Fig. 6.1 gives d, d̄ values for
the examples in that figure when νstr = 0.5.

Some Remarks

We conclude this section with a couple of remarks.

Masses on the decision & input/output layers: It is natural to ask why one needs to model the
mass in the decision and input/output layers. For example, a seemingly natural choice is to use
0 for these layers. Using 0 mass, is a reasonable strategy if we were to allow only one decision
layer. However, when there are multiple decision layers, consider comparing the following two
networks: the first has a feed forward MLP with non-linear layers, the second is the same network
but with an additional linear decision layer u, with one edge from uip to u and an edge from u
to uop. This latter models the function as a linear + non-linear term which might be suitable for
some problems unlike modeling it only as a non-linear term. If we do not add layer masses for
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the input/output/decision layers, then the distance between both networks would be 0 - as there
will be equal mass in the FF part for both networks and they can be matched with 0 cost.

Connections to other distances: OTMANN shares similarities with Wasserstein (earth mover’s)
distances which also have an OT formulation. However, it is not a Wasserstein distance itself—
in particular, the supports of the masses and the cost matrices change depending on the two
networks being compared. Second, while there has been prior work for defining various dis-
tances and kernels on graphs, we cannot use them in BO because neural networks have additional
complex properties in addition to graphical structure, such as the type of operations performed at
each layer, the number of neurons, etc. The above work either define the distance/kernel between
vertices or assume the same vertex (layer) set [68, 141, 172, 230, 256], none of which apply in
our setting. While some methods do allow different vertex sets [255], they cannot handle layer
masses and layer similarities. Moreover, the computation of the above distances are more expen-
sive than OTMANN. Hence, these methods cannot be directly plugged into BO framework for
architecture search. We next describe the optimal transport reformulation of OTMANN.

6.2.3 Optimal Transport Reformulation

We begin with a review optimal transport. Throughout this section, 〈·, ·〉 denotes the Frobenius
dot product. 1n,0n ∈ Rn denote a vector of ones and zeros respectively.

A review of Optimal Transport [253]: Let y1 ∈ Rn1
+ , y2 ∈ Rn2

+ be such that 1>n1
y1 = 1>n2

y2. Let
C ∈ Rn1×n2

+ . The following optimisation problem,

minimise
Z

〈Z,C〉 (6.2)

subject to Z > 0, Z1n2 = y1, Z>1n1 = y2.

is called an optimal transport program. One interpretation of this set up is that y1 denotes the
supplies at n1 warehouses, y2 denotes the demands at n2 retail stores, Cij denotes the cost of
transporting a unit mass of supplies from warehouse i to store j and Zij denotes the mass of ma-
terial transported from i to j. The program attempts to find transportation plan which minimises
the total cost of transportation 〈Z,C〉.
OT formulation of (6.1): In addition to providing an efficient way to solve (6.1), the OT formu-
lation will allow us to prove the metric properties of the solution (Theorem 66). When computing
the distance between G1,G2, for i = 1, 2, let tm(Gi) =

∑
u∈Li `m(u) denote the total mass in Gi,

and n̄i = ni + 1 where ni = |Li|. y1 = [{`m(u)}u∈L1 , tm(G2)] ∈ Rn̄1 will be the supplies in our
OT problem, and y2 = [{`m(u)}u∈L2 , tm(G1)] ∈ Rn̄2 will be the demands. To define the cost
matrix, we augment the mislabel and structural penalty matrices Clmm, Cstr with an additional
row and column of zeros; i.e. C ′lmm = [Clmm 0n1 ;0>n̄2

] ∈ Rn̄1×n̄2; C ′str is defined similarly. Let
C ′nas = [0n1,n2 1n1 ;1>n2

0] ∈ Rn̄1×n̄2 . Now define C ′ = C ′lmm + C ′str + C ′nas. We show that (6.1) is
equivalent to the following OT program.

minimise
Z′

〈Z ′, C ′〉 (6.3)

subject to Z ′1n̄2 = y1, Z ′>1n̄1 = y2.
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One interpretation of (6.3) is that the last row/column appended to the cost matrices serve as
a non-assignment layer and that the cost for transporting unit mass to this layer from all other
layers is 1. The costs for mislabelling was defined relative to this non-assignment cost. The costs
for similar layers is much smaller than 1; therefore, the optimiser is incentivised to transport
mass among similar layers rather than not assign it provided that the structural penalty is not
too large. Correspondingly, the cost for very disparate layers is much larger so that we would
never match, say, a convolutional layer with a pooling layer. In fact, the ∞’s in Table 6.1 can
be replaced by any value larger than 2 and the solution will be the same. The following theorem
shows that (6.1) and (6.3) are equivalent.

Theorem 67. Problems (6.1) and (6.3) are equivalent, in that they both have the same minimum
and we can recover the solution of one from the other.

6.2.4 Some Illustrations of the OTMANN distance

We illustrate that OTMANN computes reasonable distances on neural network architectures via a
two-dimensional t-SNE visualisation [164] of the architectures. Given a distance matrix between
m objects, t-SNE embeds them in a d dimensional space so that objects with small distances are
placed closer to each other. Figure 6.3 shows the t-SNE embedding using the OTMANN distance
and its noramlised version. We have indexed 13 networks in both figures in a-n and displayed
their architectures in Figure 6.4. Similar networks are placed close to each other indicating that
OTMANN induces a meaningful topology among neural network architectures.

Next, we show that the distances induced by OTMANN are correlated with validation error per-
formance. In Figure 6.5 we provide the following scatter plot for networks trained for three dif-
ferent datasets, indoor location [247], naval propulsion [45], and slice localisation [84] datasets.
Each point in the figure is for pair of networks. The x-axis is the OTMANN distance between the
pair and the y-axis is the difference in the validation error on the dataset. In each figure we used
300 networks giving rise to 45K pairwise points in each scatter plot. As the figure indicates,
when the distance is small the difference in performance is close to 0. However, as the distance
increases, the points are more scattered. Intuitively, one should expect that while networks that
are far apart could perform similarly or differently, similar networks should perform similarly.
Hence, OTMANN induces a useful topology in the space of architectures that is smooth for val-
idaiton performance on real world datasets. This demonstrates that it can be incorporated in a
BO framework to optimise a network based on its validation error.

6.3 NASBOT: Neural Architecture Search with Bayesian Op-
timisation & Optimal Transport

We now describe NASBOT, our BO algorithm for neural architecture search. Recall that in order
to realise the BO scheme outlined above, we need to specify (a) a kernel κ for neural architectures
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Figure 6.3: Two dimensional t-SNE embeddings of 100 randomly generated CNN architectures based
on the OTMANN distance (top) and its normalised version (bottom). Some networks have been indexed
a-n in the figures; these network architectures are illustrated in Figure 6.4. Networks that are similar are
embedded close to each other indicating that the OTMANN induces a meaningful topology among neural
network architectures.
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#0 ip,
(100) [1]

#1 conv3, 16,
(16) [1]

#2 conv3, 16,
(256) [1]

#3 conv3, 32,
(512) [1]

#4 max-pool,
(32) [1]

#5 fc, 16,
(51) [2]

#6 softmax,
(100) [x]

#7 op,
(100) [x]

a
#0 ip,

(110) [1]

#1 res5, 16,
(16) [1]

#2 conv3, 9,
(144) [1]

#3 res3, 9,
(144) [1]

#4 avg-pool,
(16) [1]

#5 avg-pool,
(16) [1]

#6 conv3, 32,
(576) [1]

#8 fc, 20,
(128) [2]

#7 avg-pool,
(32) [1]

#9 fc, 18,
(36) [x]

#10 softmax,
(110) [x]

#11 op,
(110) [x]

b

#0 ip,
(113) [1]

#1 conv3, 18,
(18) [1]

#2 conv3, 18,
(324) [1]

#3 conv3, 32,
(576) [1]

#4 avg-pool,
(18) [1]

#5 max-pool,
(32) [1]

#6 fc, 14,
(70) [2]

#7 fc, 14,
(44) [2]

#8 fc, 16,
(51) [2]

#9 softmax,
(37) [x]

#10 softmax,
(37) [x]

#11 softmax,
(37) [x]

#12 op,
(113) [x]

c

#0 ip,
(284) [1]

#1 conv3, 18,
(18) [1]

#2 conv3, 20,
(20) [1]

#3 conv3, 18,
(324) [1]

#4 conv3, 41,
(738) [1]

#5 avg-pool,
(18) [1]

#6 conv3, 41,
(820) [1]

#7 max-pool,
(18) [1]

#8 avg-pool,
(18) [1]

#9 max-pool,
(41) [1]

#10 fc, 32,
(57) [2]

#12 fc, 32,
(172) [2]

#11 max-pool,
(41) [1]

#13 fc, 25,
(102) [2]

#19 fc, 22,
(125) [x]

#14 fc, 25,
(102) [2]

#15 fc, 25,
(80) [x]

#16 fc, 19,
(47) [x]

#17 fc, 22,
(55) [x]

#18 fc, 19,
(47) [x]

#20 softmax,
(71) [x]

#21 softmax,
(71) [x]

#22 softmax,
(71) [x]

#23 softmax,
(71) [x]

#24 op,
(284) [x]

#0 ip,
(459) [1]

#1 conv3, 16,
(16) [1]

#2 conv3, 16,
(16) [1]

#3 res5, 16,
(256) [1]

#4 conv3, 16,
(256) [1]

#5 avg-pool,
(16) [1]

#6 conv3, 16,
(256) [1]

#7 conv5, 32,
(512) [1]

#8 res3, 32,
(512) [1]

#9 conv3, 32,
(512) [1]

#18 fc, 36,
(288) [2]

#10 avg-pool,
(16) [1]

#11 conv3, 32,
(1024) [1]

#12 avg-pool,
(32) [1]

#13 avg-pool,
(32) [1]

#16 fc, 32,
(153) [2]

#14 avg-pool,
(32) [1]

#15 avg-pool,
(32) [1]

#17 fc, 36,
(115) [2]

#22 softmax,
(459) [x]

#19 fc, 36,
(129) [x]

#20 fc, 36,
(259) [x]

#21 fc, 36,
(129) [x]

#23 op,
(459) [x]

d
#0 ip,

(63764) [1]

#1 conv3, 56,
(56) [1]

#2 conv3, 56,
(3136) [1]

#3 max-pool,
(56) [1]

#4 conv3, 112,
(6272) [2]

#5 conv3, 128,
(14336) [2]

#6 max-pool,
(128) [2]

#7 conv3, 128,
(16384) [4]

#8 conv3, 128,
(16384) [4]

#9 conv3, 128,
(16384) [4]

#10 avg-pool,
(128) [4]

#11 conv3, 256,
(32768) [8]

#12 conv3, 256,
(65536) [8]

#13 max-pool,
(256) [8]

#14 conv3, 576,
(147456) [16]

#15 conv3, 512,
(294912) [16]

#16 max-pool,
(512) [16]

#17 fc, 128,
(6553) [32]

#18 fc, 256,
(3276) [x]

#19 fc, 512,
(13107) [x]

#20 softmax,
(63764) [x]

#21 op,
(63764) [x]

#0 ip,
(264) [1]

#1 conv3, 16,
(16) [1]

#2 conv3, 18,
(18) [1]

#3 conv3, 16,
(256) [1]

#4 conv3, 36,
(576) [1]

#5 max-pool,
(16) [1]

#6 conv3, 36,
(648) [1]

#7 max-pool,
(16) [1]

#8 avg-pool,
(16) [1]

#9 max-pool,
(36) [1]

#10 max-pool,
(36) [1]

#11 fc, 28,
(44) [2]

#13 fc, 28,
(134) [2]

#12 max-pool,
(36) [1]

#14 fc, 28,
(100) [2]

#15 fc, 28,
(100) [2]

#21 fc, 28,
(168) [x]

#16 fc, 28,
(100) [2]

#17 fc, 32,
(89) [x]

#18 fc, 32,
(89) [x]

#19 fc, 28,
(78) [x]

#22 softmax,
(66) [x]

#20 fc, 25,
(70) [x]

#23 softmax,
(66) [x]

#24 softmax,
(66) [x]

#25 softmax,
(66) [x]

#26 op,
(264) [x]

g
h

#0 ip,
(93661) [1]

#1 conv3, 64,
(64) [1]

#2 conv3, 64,
(4096) [1]

#3 max-pool,
(64) [1]

#4 conv5, 144,
(9216) [2]

#5 conv7, 144,
(20736) [2]

#6 conv7, 128,
(18432) [2]

#7 max-pool,
(144) [2]

#8 max-pool,
(144) [2]

#9 max-pool,
(128) [2]

#11 conv3, 128,
(34816) [4]

#10 conv3, 128,
(18432) [4]

#12 conv3, 128,
(16384) [4]

#13 conv3, 128,
(16384) [4]

#14 conv3, 128,
(16384) [4]

#15 conv3, 128,
(16384) [4]

#16 max-pool,
(128) [4]

#17 max-pool,
(128) [4]

#18 conv3, 256,
(32768) [8]

#19 conv3, 256,
(32768) [8]

#21 max-pool,
(544) [8]

#20 conv3, 288,
(73728) [8]

#22 conv3, 512,
(278528) [16]

#23 conv3, 512,
(262144) [16]

#24 max-pool,
(512) [16]

#25 conv5, 128,
(65536) [32]

#26 fc, 128,
(1638) [32]

#27 fc, 256,
(3276) [x]

#28 fc, 512,
(13107) [x]

#29 softmax,
(93661) [x]

#30 op,
(93661) [x]

i

#0 ip,
(76459) [1]

#1 conv3, 56,
(56) [1]

#2 conv3, 63,
(3528) [1]

#3 avg-pool,
(56) [1]

#4 max-pool,
(63) [1]

#5 conv3, 112,
(6272) [2]

#6 conv3, 112,
(7056) [2]

#7 conv3, 128,
(14336) [2]

#8 conv3, 128,
(14336) [2]

#9 max-pool,
(128) [2]

#10 max-pool,
(128) [2]

#13 conv3, 112,
(28672) [4]

#11 conv3, 128,
(16384) [4]

#12 conv3, 128,
(16384) [4]

#14 conv3, 112,
(12544) [4]

#15 avg-pool,
(112) [4]

#16 conv3, 256,
(28672) [8]

#17 conv3, 288,
(73728) [8]

#18 max-pool,
(288) [8]

#19 conv3, 648,
(186624) [16]

#20 conv3, 512,
(331776) [16]

#21 max-pool,
(512) [16]

#22 fc, 128,
(6553) [32]

#23 fc, 256,
(3276) [x]

#24 fc, 512,
(13107) [x]

#25 softmax,
(76459) [x]

#26 op,
(76459) [x]

j
#0 ip,

(8179) [1]

#1 conv7, 72,
(72) [1]

#2 conv5, 144,
(10368) [1, /2]

#3 conv3, 63,
(4536) [1, /2]

#4 conv3, 81,
(5832) [1]

#5 conv3, 71,
(5112) [1]

#6 avg-pool,
(72) [1]

#7 avg-pool,
(144) [2]

#8 fc, 79,
(1137) [2]

#9 max-pool,
(63) [2]

#10 max-pool,
(81) [1]

#11 max-pool,
(71) [1]

#12 avg-pool,
(72) [2]

#18 fc, 48,
(1036) [4]

#13 softmax,
(2726) [x]

#25 softmax,
(2726) [x]

#22 fc, 63,
(1839) [4]

#14 conv3, 110,
(8910) [2, /2]

#15 avg-pool,
(81) [2]

#16 conv3, 142,
(21584) [2]

#17 conv3, 126,
(8946) [2]

#27 op,
(8179) [x]

#19 conv3, 87,
(9570) [4]

#23 fc, 63,
(1304) [4]

#20 max-pool,
(142) [2]

#21 max-pool,
(126) [2]

#24 fc, 55,
(693) [4]

#26 softmax,
(2726) [x]

k

#0 ip,
(5427) [1]

#1 conv7, 64,
(64) [1]

#2 conv7, 128,
(8192) [1, /2]

#3 conv3, 56,
(3584) [1, /2]

#4 conv3, 64,
(4096) [1]

#5 conv3, 64,
(4096) [1]

#6 avg-pool,
(64) [1]

#7 avg-pool,
(64) [1]

#8 max-pool,
(128) [2]

#9 fc, 63,
(806) [2]

#10 max-pool,
(56) [2]

#11 avg-pool,
(64) [1]

#12 avg-pool,
(64) [1]

#13 max-pool,
(64) [1]

#14 avg-pool,
(64) [2]

#15 avg-pool,
(64) [2]

#24 fc, 56,
(1030) [4]

#16 softmax,
(1809) [x]

#27 softmax,
(1809) [x]

#26 fc, 64,
(2816) [4]

#17 conv3, 128,
(8192) [2]

#19 conv3, 128,
(16384) [2]

#18 max-pool,
(64) [2]

#21 max-pool,
(192) [2]

#20 res3, 56,
(3584) [4]

#28 op,
(5427) [x]

#22 fc, 64,
(409) [4]

#23 max-pool,
(128) [2]

#25 softmax,
(1809) [x]

m

#0 ip,
(28787) [1]

#1 conv3, 56,
(56) [1]

#2 max-pool,
(56) [1]

#3 max-pool,
(56) [1]

#4 conv5, 63,
(3528) [2, /2]

#5 avg-pool,
(56) [2]

#6 res5, 62,
(3906) [4]

#7 conv5, 56,
(3136) [4]

#8 conv5, 56,
(3136) [4]

#9 res7, 92,
(5704) [4]

#10 avg-pool,
(56) [4]

#11 avg-pool,
(56) [4]

#12 avg-pool,
(56) [4]

#13 res3, 128,
(11776) [4, /2]

#14 avg-pool,
(56) [8]

#20 res3, 224,
(41216) [8, /2]

#15 avg-pool,
(56) [8]

#16 res3, 128,
(16384) [8]

#17 conv3, 128,
(16384) [8]

#24 avg-pool,
(280) [16]

#18 avg-pool,
(56) [16]

#19 res3, 224,
(28672) [8, /2]

#21 fc, 448,
(2508) [32]

#22 res3, 256,
(57344) [16]

#23 res3, 256,
(57344) [16]

#25 softmax,
(9595) [x]

#26 max-pool,
(256) [16]

#27 max-pool,
(256) [16]

#28 fc, 448,
(12544) [32]

#32 op,
(28787) [x]

#29 fc, 448,
(22937) [32]

#30 softmax,
(9595) [x]

#31 softmax,
(9595) [x]

n

#0 ip,
(20613) [1]

#1 conv3, 56,
(56) [1]

#2 max-pool,
(56) [1]

#3 max-pool,
(56) [1]

#4 conv5, 63,
(3528) [2, /2]

#5 avg-pool,
(56) [2]

#6 max-pool,
(56) [2]

#7 res5, 62,
(3906) [4]

#8 conv5, 56,
(6272) [4]

#9 conv5, 56,
(3136) [4]

#10 res7, 92,
(5704) [4]

#11 max-pool,
(56) [4]

#12 avg-pool,
(56) [4]

#13 res3, 128,
(11776) [4, /2]

#14 avg-pool,
(56) [8]

#15 avg-pool,
(56) [8]

#16 res3, 128,
(16384) [8]

#17 conv3, 128,
(16384) [8]

#26 avg-pool,
(280) [16]

#18 avg-pool,
(56) [16]

#19 avg-pool,
(128) [8]

#20 res3, 224,
(28672) [8, /2]

#21 fc, 392,
(2195) [32]

#22 res3, 256,
(32768) [16]

#23 conv3, 224,
(50176) [16]

#24 softmax,
(6871) [x]

#25 max-pool,
(256) [16]

#31 op,
(20613) [x]

#27 fc, 448,
(11468) [32]

#28 fc, 448,
(12544) [32]

#29 softmax,
(6871) [x]

#30 softmax,
(6871) [x]

f
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Figure 6.4: Illustrations of the nextworks indexed a-n in Figure 6.3.
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Figure 6.5: Each point in the scatter plot indicates the log distance between two architectures (x axis)
and the difference in the validation error (y axis), on the Indoor, Naval and Slice datasets. We used 300
networks, giving rise to ∼ 45K pairwise points. On all datasets, when the distance is small, so is the
difference in the validation error. As the distance increases, there is more variance in the validation error
difference. Intuitively, one should expect that while networks that are far apart could perform similarly or
differently, networks with small distance should perform similarly.

and (b) a method to optimise the acquisition ϕt over these architectures.

6.3.1 The Kernel

As described in the main text, we use a negative exponentiated distance as our kernel. Precisely,
we use,

κ(·, ·) = αe−
∑
i βid

p
i (·,·) + ᾱe−

∑
i β̄id̄

p̄
i (·,·). (6.4)

Here, di, d̄i, are the OTMANN distance and its normalised counterpart developed in Chapter 6.2,
computed with different values for νstr ∈ {νstr,i}i. βi, β̄i manage the relative contributions of
di, d̄i, while (α, ᾱ) manage the contributions of each kernel in the sum. An ensemble approach
of the above form, instead of trying to pick a single best value, ensures that NASBOT accounts
for the different topologies induced by the different distances di, d̄i. In the experiments we report,
we used {νstr,i}i = {0.1, 0.2, 0.4, 0.8}, p = 1 and p̄ = 2. Our experience suggests that NASBOT
was not particularly sensitive to these choices expect when we used only very large or only very
small values in {νstr,i}i.

6.3.2 Optimising the Acquisition

We use a evolutionary algorithm (EA) approach to optimise the acquisition function. We begin
with an initial pool of networks and evaluate the acquisition ϕt on those networks. Then we
generate a set of Nmut mutations of this pool as follows. First, we stochastically select Nmut
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candidates from the set of networks already evaluated such that those with higher ϕt values are
more likely to be selected than those with lower values. Then we apply a mutation operator to
each candidate, to produce a modified architecture. Finally, we evaluate the acquisition on this
Nmut mutations, add it to the initial pool, and repeat for the prescribed number of steps.

Mutation Operator: To describe the mutation operator, we will first define a library of mod-
ifications to a neural network. These modifications, described in Table 6.2, might change the
architecture either by increasing or decreasing the number of computational units in a layer, by
adding or deleting layers, or by changing the connectivity of existing layers. They provide a sim-
ple mechanism to explore the space of architectures that are close to a given architecture. The
one-step mutation operator takes a given network and applies one of the modifications in Ta-
ble 6.2 picked at random to produce a new network. The k-step mutation operator takes a given
network, and repeatedly applies the one-step operator k times – the new network will have under-
gone k changes from the original one. One can also define a compound operator, which picks the
number of steps probabilistically. In our implementation of NASBOT, we used such a compound
operator with probabilities (0.5, 0.25, 0.125, 0.075, 0.05); i.e. it chooses a one-step operator with
probability 0.5, a 4-step operator with probability 0.075, etc. Typical implementations of EA in
Euclidean spaces define the mutation operator via a Gaussian (or other) perturbation of a chosen
candidate. It is instructive to think of the probabilities for each step in our scheme above as being
analogous to the width of the Gaussian chosen for perturbation.

Sampling strategy: The sampling strategy for EA is as follows. Let {zi}i, where zi ∈ X be
the points evaluated so far. We sample Nmut new points from a distribution π where π(zi) ∝
exp(g(zi)/σ). Here g is the function to be optimised (for NASBOT, ϕt at time t). σ is the
standard deviation of all previous evaluations. As the probability for large g values is higher,
they are more likely to get selected. σ provides normalisation to account for different ranges of
function values.

Since our candidate selection scheme at each step favours networks that have high acquisition
value, our EA scheme is more likely to search at regions that are known to have high acquisition.
The stochasticity in this selection scheme and the fact that we could take multiple steps in the
mutation operation ensures that we still sufficiently explore the space. Since an evaluation of ϕt
is cheap, we can use many EA steps to explore several architectures and optimise ϕt.

Considerations when performing modifications: The modifications in Table 6.2 is straight-
forward in MLPs. But in CNNs one needs to ensure that the image sizes are the same when
concatenating them as an input to a layer. This is because strides can shrink the size of the im-
age. When we perform a modification we check if this condition is violated and if so, disallow
that modification. When a skip modifier attempts to add a connection from a layer with a large
image size to one with a smaller one, we add avg-pool layers at stride 2 so that the connection
can be made (this can be seen, for e.g. in the second network in Fig. 6.10).

6.3.3 Implementation Details

We describe some implementation details for OTMANN and NASBOT.
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Operation Description
dec single Pick a layer at random and decrease the number of units by 1/8.

dec en masse First topologically order the networks, randomly pick 1/8 of the lay-
ers (in order) and decrease the number of units by 1/8. For networks
with eight layers or fewer pick a 1/4 of the layers (instead of 1/8)
and for those with four layers or fewer pick 1/2.

inc single Pick a layer at random and increase the number of units by 1/8.
inc en masse Choose a large sub set of layers, as for dec en masse, and increase

the number of units by 1/8.
dup path This modifier duplicates a random path in the network. Randomly

pick a node u1 and then pick one of its children u2 randomly. Keep
repeating to generate a path u1, u2, . . . , uk−1, uk until you decide to
stop randomly. Create duplicate layers ũ2, . . . , ũk−1 where ũi = ui
for i = 2, . . . , k−1. Add these layers along with new edges (u1, ũ2),
(ũk−1, uk), and (ũj, ũj+1) for j = 2, . . . , k − 2.

remove layer Picks a layer at random and removes it. If this layer was the only
child (parent) of any of its parents (children) u, then adds an edge
from u (one of its parents) to one of its children (u).

skip Randomly picks layers u, v where u is topologically before v and
(u, v) /∈ E . Add (u, v) to E .

swap label Randomly pick a layer and change its label.
wedge layer Randomly pick any edge (u, v) ∈ E . Create a new layer w with a

random label ``(w). Remove (u, v) from E and add (u,w), (w, v).
If applicable, set the number of units `u(w) to be (`u(u)+`u(v))/2.

Table 6.2: Descriptions of modifiers to transform one network to another. The first four change the
number of units in the layers but do not change the architecture, while the last five change the architecture.
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c3 c5 c7 mp ap fc sm

c3 0 0.2 0.3
c5 0.2 0 0.2
c7 0.3 0.2 0
mp 0 0.25
ap 0.25 0
fc 0
sm 0

Table 6.3: The label mismatch cost matrix M
we used in our CNN experiments. M(x, y) de-
notes the penalty for transporting a unit mass
from a layer with label x to a layer with la-
bel y. The labels abbreviated are conv3,
conv5, conv7, max-pool, avg-pool, fc, and
softmax in order. A blank indicates ∞ cost.
We have not shown the ip and op layers, but
they are similar to the fc column, 0 in the diag-
onal and∞ elsewhere.

Implementation Details for OTMANN

Computing path lengths δts: Algorithm 9 computes all path lengths in O(|E|) time. Note that
topological sort of a connected digraph also takes O(|E|) time. The topological sorting ensures
that δrw

op is always computed for the children in step 4. For δsp
op, δ

lp
op we would replace the averaging

of ∆ in step 5 with the minimum and maximum of ∆ respectively.

Algorithm 9 Compute δrw
op (u) for all u ∈ L in OTMANN, from Kandasamy et al. [130]

Require: G = (L, E), L is topologically sorted in S.
1: δrw

op (uop) = 0, δrw
op (u) = nan ∀u 6= uop.

2: while S is not empty do
3: u← pop last(S)
4: ∆← {δrw

op (c) : c ∈ children(u)}
5: δrw

op (u)← 1 + average(∆)
6: end while
7: Return δrw

op .

For δrw
ip we make the following changes to Algorithm 9. In step 1, we set δrw

ip (uip) = 0, in step 3,
we pop first and ∆ in step 4 is computed using the parents. δsp

ip , δ
lp
ip are computed with the same

procedure but by replacing the averaging with minimum or maximum as above.

Label Penalty Matrices: The label penalty matrices used in our NASBOT implementation,
described below, satisfy the triangle inequality condition in Theorem 66.

CNNs: Table 6.3 shows the label penalty matrix M for used in our CNN experiments with labels
conv3, conv5, conv7, max-pool, avg-pool, softmax, ip, op. convk denotes a k× k convolu-
tion while avg-pool and max-pool are pooling operations. In addition, we also use res3, res5,
res7 layers which are inspired by ResNets. A resk uses 2 concatenated convk layers but the
input to the first layer is added to the output of the second layer before the relu activation – See
Figure 2 in He et al. [91]. The layer mass for resk layers is twice that of a convk layer. The
costs for the res in the label penalty matrix is the same as the conv block. The cost between a
resk and convj is M(resk, convj) = 0.9 ×M(convk, convj) + 0.1 × 1; i.e. we are using a
convex combination of the conv costs and the non-assignment cost. The intuition is that a resk
is similar to convk block except for the residual addition.
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re cr <rec> lg ta lin

re 0 .1 .1 .25 .25
cr .1 0 .1 .25 .25

<rec> .1 .1 0 .25 .25
lg .25 .25 .25 0 .1
ta .25 .25 .25 .1 0
lin 0

Table 6.4: The label mismatch cost matrix
M we used in our MLP experiments. The
labels abbreviated are relu, crelu, <rec>,
logistic, tanh, and linear in order. <rec>

is place-holder for any other rectifier such as
leaky-relu, softplus, elu. A blank indi-
cates∞ cost. The design here was simple. Each
label gets 0 cost with itself. A rectifier gets 0.1
cost with another rectifier and 0.25 with a sig-
moid; vice versa for all sigmoids. The rest of
the costs are infinity. We have not shown the ip
and op, but they are similar to the lin column,
0 in the diagonal and∞ elsewhere.

MLPs: Table 6.4 shows the label penalty matrix M for used in our MLP experiments with labels
relu, crelu, leaky-relu, softplus, elu, logistic, tanh, linear, ip, op. Here the first
seven are common non-linear activations; relu, crelu, leaky-relu, softplus, elu rectifiers
while logistic and tanh are sigmoidal activations.

Other details: Our implementation of OTMANN differs from what is described in the main
text in two ways. First, in our CNN experiments, for a fc layer u, we use 0.1 × `m(u) ×
〈#-incoming-channels〉 as the mass, i.e. we multiply it by 0.1 from what is described in the main
text. This is because, in the convolutional and pooling channels, each unit is an image where
as in the fc layers each unit is a scalar. One could, in principle, account for the image sizes at
the various layers when computing the layer masses, but this also has the added complication of
depending on the size of the input image which varies from problem to problem. Our approach
is simpler and yields reasonable results.

Secondly, we use a slightly different form for Cstr. First, for i ∈ L1, j ∈ L2, we let Call
str (i, j) =

1
6

∑
s∈{sp, lp, rw}

∑
t∈{ip,op} |δst (i) − δst (j)| be the average of all path length differences; i.e. Call

str
captures the path length differences when considering all layers. For CNNs, we similarly con-
struct matrices Cconv

str , Cpool
str , C fc

str, except they only consider the convolutional, pooling and fully
connected layers respectively in the path lengths. For Cconv

str , the distances to the output (from
the input) can be computed by zeroing outgoing (incoming) edges to layers that are not convolu-
tional. We can similarly construct Cpool

str and C fc
str only counting the pooling and fully connected

layers. Our final cost matrix for the structural penalty is the average of these four matrices,
Cstr = (Call

str + Cconv
str + Cpool

str + C fc
str)/4. For MLPs, we adopt a similar strategy by comput-

ing matrices Call
str , C

rec
str , C

sig
str with all layers, only rectifiers, and only sigmoidal layers and let

Cstr = (Call
str + C rec

str + Csig
str )/3. The intuition is that by considering certain types of layers, we are

accounting for different types of information flow due to different operations.
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Implementation Details for NASBOT

Tuning GP Hyperparameters in BO: NASBOT, as described above has 11 hyperparameters
of its own; α, ᾱ, {(βi, β̄i)}4

i=1 and the GP noise variance η2. While maximising the GP marginal
likelihood is a common approach to pick hyperparameters, this might cause over-fitting when
there are many of them. Further, as training large neural networks is typically expensive, we
have to content with few observations for the GP in practical settings. Our solution is to start
with a (uniform) prior over these hyperparameters and sample hyperparameter values from the
posterior under the GP likelihood [232], which we found to be robust. While it is possible to
treat νstr itself as a hyperparameter of the kernel, this will require us to re-compute all pairwise
distances of networks that have already been evaluated each time we change the hyperparameters.
On the other hand, with the above approach, we can compute and store distances for different νstr,i

values whenever a new network is evaluated, and then compute the kernel cheaply for different
values of α, ᾱ, {(βi, β̄i)}i.
Initialisation: We initialise NASBOT (and other methods) with an initial pool of 10 networks.
These networks are illustrated in Fig. 6.6 for CNNs and Fig. 6.7 for MLPs. All initial networks
have feed forward structure. For the CNNs, the first 3 networks have structure similar to the
VGG nets [228] and the remaining have blocked feed forward structures as in He et al. [91]. We
also use blocked structures for the MLPs with the layer labels decided arbitrarily.

Domain: For NASBOT, and other methods, we impose the following constraints on the search
space. If the EA modifier (explained below) generates a network that violates these constraints,
we simply skip it.

• Maximum number of layers: 60

• Maximum mass: 108

• Maximum in/out degree: 5

• Maximum number of edges: 200

• Maximum number of units per layer: 1024

• Minimum number of units per layer: 8

Layer types: We use the layer types detailed in Chapter 6.3.3 for both CNNs and MLPs. For
CNNs, all pooling operations are done at stride 2. For convolutional layers, we use either stride
1 or 2 (specified in the illustrations). For all layers in a CNN we use relu activations.

Parallel BO: We use a parallelised experimental set up where multiple models can be evaluated
in parallel. We handle parallel BO via the hallucination technique in Ginsbourger et al. [73].

Acquisition: We use the GP-EI acquisition function [113].

Other details on the EA procedure: The EA procedure is also initialised with the same ini-
tial pool of feedforward networks in Figures 6.6, 6.7. In our NASBOT implementation, we
increase the total number of EA evaluations nEA at rate O(

√
t) where t is the current time step

in NASBOT. We set Nmut to be O(
√
nEA ). Hence, initially we are only considering a small
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Figure 6.6: Initial pool of CNN network architectures. The first 3 networks have structure similar to the
VGG nets [228] and the remaining have blocked feed forward structures as in He et al. [91].
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Figure 6.7: Initial pool of MLP network architectures.
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neighborhood around the initial pool, but as we proceed along BO, we expand to a larger region,
and also spend more effort to optimise ϕt.

6.4 Experiments

We now describe our experiments on NASBOT on several model selection tasks. Additionally,
we provide ablation studies on the NASBOT framework on synthetic examples.

Baselines: We compare NASBOT to the following baselines. RAND: random search; EA (Evo-
lutionary algorithm): the same EA procedure described above. TreeBO [108]: a BO method
which only searches over feed forward structures. Random search is a natural baseline to com-
pare optimisation methods. However, unlike in Euclidean spaces, there is no natural way to
randomly explore the space of architectures. Our RAND implementation, operates in exactly the
same way as NASBOT, except that the EA procedure is fed a random sample from Unif(0, 1)
instead of the GP acquisition each time it evaluates an architecture. Hence, RAND is effectively
picking a random network from the same space explored by NASBOT; neither method has an
unfair advantage because it considers a different space. While there are other methods for archi-
tecture search, their implementations are highly nontrivial and are not made available. We have
described some implementation details for these methods at the end of these section.

Datasets: We use the following datasets: blog feedback [29], indoor location [247], slice lo-
calisation [84], naval propulsion [45], protein tertiary structure [202], news popularity [57], Ci-
far10 [149]. The first six are regression problems for which we use MLPs. The last is a classifica-
tion task on images for which we use CNNs. Table 6.5 gives the size and dimensionality of each
dataset. For the first 6 datasets, we use a 0.6−0.2−0.2 train-validation-test split and normalised
the input and output to have zero mean and unit variance. Hence, a constant predictor will have
a mean squared error of approximately 1. For Cifar10 we use 40K for training and 10K each for
validation and testing.

Experimental Set up: Each method is executed in an asynchronously parallel set up of 2-4
GPUs, That is, it can evaluate multiple models in parallel, with each model on a single GPU.
When the evaluation of one model finishes, the methods can incorporate the result and immedi-
ately re-deploy the next job without waiting for the others to finish. For the blog, indoor, slice,
naval and protein datasets we use 2 GeForce GTX 970 (4GB) GPUs and a computational budget
of 8 hours for each method. For the news popularity dataset we use 4 GeForce GTX 980 (6GB)
GPUs with a budget of 6 hours and for Cifar10 we use 4 K80 (12GB) GPUs with a budget of 10
hours. For the regression datasets, we train each model with stochastic gradient descent (SGD)
with a fixed step size of 10−5, a batch size of 256 for 20K batch iterations. For Cifar10, we
start with a step size of 10−2, and reduce it gradually. We train in batches of 32 images for 60K
batch iterations. The methods evaluate between 70-120 networks depending on the size of the
networks chosen and the number of GPUs. We have described details on the training procedures
at the end of this section.

Results: Fig. 6.8 plots the best validation score for each method against time. In Table 6.5, we
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Figure 6.8: Cross validation results for neural architecture search. In all figures, the x axis is time. The y
axis is the mean squared error (MSE) in the first 6 figures and the classification error in the last. Lower is
better in all cases. The title of each figure states the dataset and the number of parallel workers (GPUs). All
figures were averaged over at least 5 independent runs of each method. Error bars indicate one standard
error.
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Method Blog
(60K, 281)

Indoor
(21K, 529)

Slice
(54K, 385)

Naval
(12K, 17)

Protein
(46K, 9)

News
(40K, 61)

Cifar10
(60K, 1K)

Cifar10
150K iters

RAND 0.780
± 0.034

0.115
± 0.023

0.758
± 0.041

0.0103
± 0.002

0.948
± 0.024

0.762
± 0.013

0.1342
± 0.002

0.0914
± 0.008

EA 0.806
± 0.040

0.147
± 0.010

0.733
± 0.041

0.0079
± 0.004

1.010
± 0.038

0.758
± 0.038

0.1411
± 0.002

0.0915
± 0.010

TreeBO 0.928
± 0.053

0.168
± 0.023

0.759
± 0.079

0.0102
± 0.002

0.998
± 0.007

0.866
± 0.085

0.1533
± 0.004

0.1121
± 0.004

NASBOT 0.731
± 0.029

0.117
± 0.008

0.615
± 0.044

0.0075
± 0.002

0.902
± 0.033

0.752
± 0.024

0.1209
± 0.003

0.0869
± 0.004

Table 6.5: The first row gives the number of samples N and the dimensionality D of each dataset in the
form (N,D). The subsequent rows show the regression MSE or classification error (lower is better) on
the test set for each method. The last column is for Cifar10 where we took the best models found by each
method in 24K iterations and trained it for 120K iterations. When we trained the VGG-19 architecture
using our training procedure, we got test errors 0.1718 (60K iterations) and 0.1018 (150K iterations).

present the results on the test set with the best model chosen on the basis of validation set per-
formance. On the Cifar10 dataset, we also trained the best models for longer (150K iterations).
These results are in the last column of Table 6.5. We see that NASBOT is the most consistent
of all methods. The average time taken by NASBOT to determine the next architecture to eval-
uate was 46.13s. For RAND, EA, and TreeBO this was 26.43s, 0.19s, and 7.83s respectively.
The time taken to train and validate models was on the order of 10-40 minutes depending on
the model size. Fig. 6.8 includes this time taken to determine the next point. Like many BO
algorithms, while NASBOT’s selection criterion is time consuming, it pays off when evaluations
are expensive.

Optimal Network Architectures We illustrate and compare the optimal neural network archi-
tectures found by different methods. In Figures 6.10-6.13, we show some optimal network ar-
chitectures found on the Cifar10 data by NASBOT, EA, RAND, and TreeBO, respectively. We
also show some optimal network architectures found for these four methods on the Indoor data,
in Figures 6.14-6.17, and on the Slice data, in Figures 6.18-6.21. A common feature among all
optimal architectures found by NASBOT was the presence of long skip connections and multiple
decision layers. In Figure 6.7, we show the initial pool of MLP network architectures, and in
Figure 6.6, we show the initial pool of CNN network architectures.

Finally, we note that while our Cifar10 experiments fall short of the current state of the art [155,
156, 282], the amount of computation in these work is several orders of magnitude more than
ours (both the computation invested to train a single model and the number of models trained).
Further, they use constrained spaces specialised for CNNs, while NASBOT is deployed in a very
general model space. We believe that our results can also be improved by employing enhanced
training techniques such as image whitening, image flipping, drop out, etc. For example, using
our training procedure on the VGG-19 architecture [228] yielded a test set error of 0.1018 after
150K iterations. However, VGG-19 is known to do significantly better on Cifar10. That said,
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Figure 6.9: We compare NASBOT for different design choices in our framework. (a): Comparison
of NASBOT using only the normalised distance e−βd̄, only the unnormalised distance d−βd, and the
combination e−βd + e−β̄d̄. (b): Comparison of NASBOT using only the EA modifiers which change
the computational units (top 4 in Table 6.2), modifiers which only change the structure of the networks
(bottom 5 in Table 6.2), and all 9 modifiers. (c): Comparison of NASBOT with different choices for p
and p̄. In all figures, the x axis is the number of evaluations and the y axis is the negative maximum value
(lower is better). All figures were produced by averaging over at least 10 runs.

we believe our results are encouraging and lay out the premise for BO for neural architectures.

Ablation Studies and Design Choices

We conduct experiments comparing the various design choices in NASBOT. Due to computa-
tional constraints, we carry them out on synthetic functions.

Combined distances: In Figure 6.9(a), we compare NASBOT using only the normalised dis-
tance, only the unnormalised distance, and the combined kernel as in (6.4). While the individual
distances performs well, the combined form outperforms both.

On the EA procedure: Next, we modify our EA procedure to optimise the acquisition. We
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execute NASBOT using only the EA modifiers which change the computational units (first four
modifiers in Table 6.2), then using the modifiers which only change the structure of the networks
(bottom 5 in Table 6.2), and finally using all 9 modifiers, as used in all our experiments. The
combined version outperforms the first two.

Choices for p, p̄: Finally, we experiment with different choices for p and p̄ in (6.4). As the
figures indicate, the performance was not particularly sensitive to these choices.

Synthetic Functions: Below we describe the three synthetic functions f1, f2, f3 used in our
synthetic experiments. f3 applies for CNNs while f1, f2 apply for MLPs. Here am denotes the
average mass per layer, degi is the average in degree the layers, dego is the average out degree,
δ is the shortest distance from uip to uop, str is the average stride in CNNS, frac conv3 is the
fraction of layers that are conv3, frac sigmoid is the fraction of layers that are sigmoidal.

f0 = exp(−0.001 ∗ |am− 1000|) + exp(−0.5 ∗ |degi − 5|) + exp(−0.5 ∗ |dego − 5|)+
exp(−0.1 ∗ |δ − 5|) + exp(−0.1 ∗ ||L| − 30|) + exp(−0.05 ∗ ||E| − 100|)

f1 = f0 + exp(−3 ∗ |str− 1.5|) + exp(−0.3 ∗ ||L| − 50|)+
exp(−0.001 ∗ |am− 500|) + frac conv3

f2 = f0 + exp(−0.001 ∗ |am− 2000|) + exp(−0.1 ∗ ||E| − 50|) + frac sigmoid

f3 = f0 + frac sigmoid

Additional Details on the Experiments

Baselines

RAND: Our RAND implementation, operates in exactly the same way as NASBOT, except that
the EA procedure is fed a random sample from Unif(0, 1) instead of the GP acquisition each time
it evaluates an architecture. That is, we follow the same schedule for nEA and Nmut as we did for
NASBOT . Hence RAND has the opportunity to explore the same space as NASBOT, but picks
the next evaluation randomly from this space.

EA: This is as described before except that we fix Nmut = 10 all the time. In our experiments
where we used a budget based on time, it was difficult to predict the total number of evaluations
so as to set Nmut in perhaps a more intelligent way.

TreeBO: As the implementation from Jenatton et al. [108] was not made available, we wrote our
own. It differs from the version described in the paper in a few ways. We do not tune for a
regularisation penalty and step size as they do to keep it line with the rest of our experimental
set up. We set the depth of the network to 60 as we allowed 60 layers for the other methods.
We also check for the other constraints given in above before evaluating a network. The original
paper uses a tree structured kernel which can allow for efficient inference with a large number of
samples. For simplicity, we construct the entire kernel matrix and perform standard GP inference.
The result of the inference is the same, and the number of GP samples was always below 120 in
our experiments so a sophisticated procedure was not necessary.
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Details on Training

Training: In all methods, for each proposed network architecture, we trained the network on the
train data set, and periodically evaluated its performance on the validation data set. For MLP
experiments, we optimised network parameters using stochastic gradient descent with a fixed
step size of 10−5 and a batch size of 256 for 20,000 iterations. We computed the validation set
MSE every 100 iterations; from this we returned the minimum MSE that was achieved. For CNN
experiments, we optimised network parameters using stochastic gradient descent with a batch
size of 32. We started with a learning rate of 0.01 and reduced it gradually. We also used batch
normalisation and trained the model for 60, 000 batch iterations. We computed the validation set
classification error every 4000 iterations; from this we returned the minimum classification error
that was achieved.

Validation: After each method returned an optimal neural network architecture, we again trained
each optimal network architecture on the train data set, periodically evaluated its performance
on the validation data set, and finally computed the MSE or classification error on the test data
set. For MLP experiments, we used the same optimisation procedure as above; we then com-
puted the test set MSE at the iteration where the network achieved the minimum validation set
MSE. For CNN experiments, we used the same optimisation procedure as above, except here the
optimal network architecture was trained for 120,000 iterations; we then computed the test set
classification error at the iteration where the network achieved the minimum validation error.

6.5 Proofs of Theoretical Results

We will first prove Theorem 67 as we will need the result for the proof of the distance properties.

Proof of Theorem 67

Proof. We will show that there exists a bijection between feasible points in both problems with
the same value for the objective. First let Z ∈ Rn1×n2 be a feasible point for (6.1). Let Z ′ ∈
Rn̄1×n̄2 be such that its first n1 × n2 block is Z and, Zn̄1j =

∑n1

i=1 Zij, Zin̄2 =
∑n2

j=1 Zij, and
Zn̄1,n̄2 =

∑
ij Zij . Then, for all i ≤ n1,

∑
j Z
′
ij = `m(j) and

∑
j Z
′
n̄1j
Z ′ij =

∑
j `m(j) −∑

ij Zij + Zn̄1,n̄2 = tm(G2). We then have, Z ′1n̄2 = y1 Similarly, we can show Z ′>1n̄1 = y2.
Therefore, Z ′ is feasible for (6.3). We see that the objectives are equal via simple calculations,

〈Z ′, C ′〉 = 〈Z ′, C ′lmm + C ′str〉+ 〈Z ′, C ′nas〉 (6.5)

= 〈Z,Clmm + Cstr〉+

n2∑
j=1

Z ′ij +

n1∑
i=1

Z ′ij

= 〈Z,Clmm〉+ 〈Z,Cstr〉+
∑
i∈L1

(
`m(i)−

∑
j∈L2

Zij
)

+
∑
j∈L2

(
`m(j)−

∑
i∈L1

Zij
)
.
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The converse also follows via a straightforward argument. For given Z ′ that is feasible for (6.3),
we let Z be the first n1 × n2 block. By the equality constraints and non-negativity of Z ′, Z is
feasible for (6.1). By reversing the argument in (6.5) we see that the objectives are also equal.

Proof of Theorem 66

We are now ready to prove the pseudo-distance properties of OTMANN.

Proof. We will use the OT formulation (6.3) in this proof. The first three properties are straight-
forward. Non-negativity follows from non-negativity of Z ′, C ′ in (6.3). It is symmetric since the
cost matrix for d(G2,G1) is C ′> if the cost matrix for d(G1,G2) is C and 〈Z ′, C ′〉 = 〈Z ′>, C ′>〉
for all Z ′. We also have d(G1,G1) = 0 since, then, C ′ has a zero diagonal.

To prove the triangle inequality, we will use a gluing lemma, similar to what is used in the proof
of Wasserstein distances [195]. Let G1,G2,G3 be given and m1,m2,m3 be their total masses. Let
the solutions to d(G1,G2) and d(G2,G3) be P ∈ Rn̄1×n̄2 and Q ∈ Rn̄2×n̄3 respectively. When
solving (6.3), we see that adding extra mass to the non-assignment layers does not change the
objective, as an optimiser can transport mass between the two layers with 0 cost. Hence, we can
assume w.l.o.g that (6.3) was solved with yi =

[
{`m(u)}u∈Li ,

(∑
j∈{1,2,3} tm(Gj)− tm(Gi)

)]
∈

Rn̄i for i = 1, 2, 3, when computing the distances d(G1,G2), d(G1,G3), d(G2,G3); i.e. the total
mass was m1 + m2 + m3 for all three pairs. We can similarly assume that P,Q account for
this extra mass, i.e. Pn̄1n̄2 and Qn̄2n̄3 have been increased by m3 and m1 respectively from their
solutions in (6.3).

To apply the gluing lemma, let S = Pdiag(1/y2)Q ∈ Rn̄1×n̄3 , where diag(1/y2) is a diagonal
matrix whose (j, j)th element is 1/(y2)j (note y2 > 0). We see that S is feasible for (6.3) when
computing d(G1,G3),

R1n̄3 = Pdiag(1/y2)Q1n̄3 = Pdiag(1/y2)y2 = P1n̄2 = y1.

Similarly, R>1n̄1 = y3. Now, let U ′, V ′,W ′ be the cost matrices C ′ in (6.3) when computing
d(G1,G2), d(G2,G3), and d(G1,G3) respectively. We will use the following technical lemma
whose proof is given below.

Lemma 68. For all i ∈ L1, j ∈ L2, k ∈ L3, we have W ′
ik ≤ U ′ij + V ′jk.

Applying Lemma 68 yields the triangle inequality.

d(G1,G3) ≤ 〈R,W ′〉 =
∑

i∈L1,k∈L3

W ′
ik

∑
j∈L2

PijQjk

(y2)j
≤
∑
i,j,k

(U ′ij + V ′jk)
PijQjk

(y2)j

=
∑
ij

U ′ijPij

(y2)j

∑
k

Qjk +
∑
jk

V ′jkQjk

(y2)j

∑
k

Pij

=
∑
ij

U ′ijPij +
∑
jk

V ′jkQjk = d(G1,G2) + d(G2,G3)
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The first step uses the fact that d(G1,G3) is the minimum of all feasible solutions and the third
step uses Lemma 68. The fourth step rearranges terms and the fifth step uses P>1n̄1 = Q1n̄3 =
y2.

Proof of Lemma 68. LetW ′ = W ′
lmm+W ′

str+W
′
nas be the decomposition into the label mismatch,

structural and non-assignment parts of the cost matrices; define similar quantities U ′lmm, U
′
str, U

′
nas,

V ′lmm, V
′

str, V
′

nas for U ′, V ′. Noting a ≤ b + c and d ≤ e + f implies a + d ≤ b + e + c + f , it is
sufficient to show the triangle inquality for each component individually. For the label mismatch
term, (W ′

lmm)ik ≤ (U ′lmm)ij + (V ′lmm)jk follows directly from the conditions on M by setting
x = ``(i), y = ``(j), z = ``(k), where i, j, k are indexing in L1,L2,L3 respectively.

For the non-assignment terms, when (W ′
nas)ik = 0 the claim is true trivially. (W ′

nas)ik = 1, either
when (i = n̄1, k ≤ n3) or (i ≤ n1, k = n̄3). In the former case, when j ≤ n2, (U ′nas)jk = 1 and
when j = n̄2, (V ′nas)n̄2 = 1 as k ≤ n3. We therefore have, (W ′

nas)ik = (U ′nas)ij + (V ′nas)jk = 1. A
similar argument shows equality for the (i ≤ n1, k = n̄3) case as well.

Finally, for the structural terms we note that W ′
str can be written as W ′

str =
∑

tW
′(t) as can

U ′(t), T ′(t). Here t indexes over the choices for the types of distances considered, i.e. t ∈
{sp, lp, rw} × {ip, op}. It is sufficient to show (W ′(t))ik ≤ (U ′(t))ij + (T ′(t))jk. This inequality
takes the form,

|δ(t)
1i − δ(t)

3k | ≤ |δ
(t)
1i − δ(t)

2j |+ |δ(t)
2j − δ(t)

3k |.

Where δ(t)
g` refers to distance type t in network g for layer s. The above is simply the triangle

inequality for real numbers. This concludes the proof of Lemma 68.
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Figure 6.10: Optimal network architectures found with NASBOT on the Cifar10 dataset.
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16: conv3, 512
(131072)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: max-pool
(512)

20: fc, 128
(6553)

21: fc, 256
(3276)

22: fc, 512
(13107)

23: softmax
(93762)

24: op
(93762)

0: ip
(119700)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: avg-pool
(128)

7: max-pool
(128)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: avg-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: max-pool
(256)

16: conv3, 512
(131072)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: max-pool
(512)

21: max-pool
(512)

22: fc, 128
(6553)

23: fc, 128
(6553)

24: fc, 512
(6553)

25: fc, 256
(3276)

26: softmax
(59850)

27: fc, 512
(13107)

29: op
(119700)

28: softmax
(59850)

0: ip
(127421)

1: conv3, 63
(63)

2: conv3, 72
(4536)

3: max-pool
(72)

4: conv3, 144
(10368)

5: conv3, 144
(20736)

6: max-pool
(144)

7: conv3, 128
(18432)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: res5 /2, 512
(262144)

20: conv3, 512
(262144)

21: max-pool
(512)

22: fc, 128
(6553)

23: fc, 256
(3276)

24: fc, 512
(13107)

25: softmax
(127421)

26: op
(127421)

0: ip
(93354)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: avg-pool
(64)

5: conv3, 128
(8192)

7: max-pool
(208)

6: conv3, 144
(18432)

8: conv3, 128
(26624)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: conv3, 256
(65536)

14: conv3, 256
(65536)

15: max-pool
(256)

16: conv3, 512
(131072)

17: conv3, 512
(262144)

18: conv3, 512
(262144)

19: max-pool
(512)

20: fc, 128
(6553)

21: fc, 256
(3276)

22: fc, 512
(13107)

23: softmax
(93354)

24: op
(93354)

Figure 6.11: Optimal network architectures found with EA on the Cifar10 dataset.
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0: ip
(126517)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: max-pool
(128)

12: conv3, 256
(32768)

13: res5, 256
(65536)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: conv3, 512
(262144)

21: max-pool
(512)

22: fc, 128
(6553)

23: fc, 256
(3276)

24: fc, 512
(13107)

25: softmax
(126517)

26: op
(126517)

0: ip
(58790)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: max-pool
(128)

10: conv5, 256
(32768)

11: conv3, 256
(65536)

12: max-pool
(256)

13: avg-pool
(256)

14: conv3, 512
(131072)

16: max-pool
(768)

15: conv3, 512
(262144)

17: max-pool
(512)

18: fc, 128
(9830)

19: fc, 128
(6553)

20: fc, 256
(3276)

21: softmax
(29395)

22: fc, 512
(13107)

24: op
(58790)

23: softmax
(29395)

0: ip
(95388)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: res5, 128
(16384)

6: conv5, 128
(16384)

7: conv3, 128
(16384)

8: max-pool
(128)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: conv3, 128
(16384)

12: max-pool
(128)

13: conv3, 256
(32768)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: conv3, 512
(262144)

19: conv3, 512
(262144)

20: max-pool
(512)

21: fc, 128
(6553)

22: fc, 256
(3276)

23: fc, 512
(13107)

24: softmax
(95388)

25: op
(95388)

0: ip
(86799)

1: conv3, 64
(64)

2: conv3, 64
(64)

3: conv3, 64
(4096)

4: conv3, 64
(4096)

5: max-pool
(64)

6: max-pool
(64)

7: conv3, 128
(8192)

8: conv3, 128
(8192)

9: conv3, 128
(32768)

10: max-pool
(128)

11: conv3, 128
(16384)

12: conv3, 128
(16384)

13: max-pool
(128)

14: conv3, 256
(32768)

15: conv3, 256
(65536)

16: max-pool
(256)

17: conv3, 512
(131072)

18: res5, 512
(262144)

19: conv3, 512
(262144)

20: max-pool
(512)

21: fc, 128
(6553)

22: fc, 256
(3276)

23: fc, 512
(13107)

24: softmax
(86799)

25: op
(86799)

Figure 6.12: Optimal network architectures found with RAND on the Cifar10 dataset.
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0: ip
(131815)

1: conv3, 72
(72)

2: conv3, 72
(5184)

3: max-pool
(72)

4: conv3, 144
(10368)

5: conv3, 162
(23328)

6: max-pool
(162)

7: conv3, 144
(23328)

8: conv3, 144
(20736)

9: conv3, 144
(20736)

10: max-pool
(144)

11: conv3, 252
(36288)

12: conv3, 256
(64512)

13: conv3, 256
(65536)

14: max-pool
(256)

15: conv3, 512
(131072)

16: conv5, 512
(262144)

17: conv3, 576
(294912)

18: conv3, 576
(331776)

19: max-pool
(576)

20: fc, 144
(8294)

21: fc, 288
(4147)

22: fc, 504
(14515)

23: softmax
(131815)

24: op
(131815)

0: ip
(128156)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv5, 128
(16384)

9: conv3, 128
(16384)

10: conv3, 128
(16384)

11: conv3, 128
(16384)

12: max-pool
(128)

13: conv3, 256
(32768)

14: conv3, 256
(65536)

15: conv3, 256
(65536)

16: conv3, 256
(65536)

17: max-pool
(256)

18: conv3, 512
(131072)

19: conv3, 512
(262144)

20: conv3, 512
(262144)

21: conv3, 512
(262144)

22: max-pool
(512)

23: fc, 128
(6553)

24: fc, 256
(3276)

25: fc, 512
(13107)

26: softmax
(128156)

27: op
(128156)

0: ip
(49833)

1: conv3, 63
(63)

2: conv3, 56
(3528)

3: max-pool
(56)

4: conv3, 112
(6272)

5: conv3, 112
(12544)

6: max-pool
(112)

7: conv3, 112
(12544)

8: conv3, 112
(12544)

9: max-pool
(112)

10: conv3, 256
(28672)

11: conv3, 196
(50176)

12: max-pool
(196)

13: conv3, 448
(87808)

14: conv3, 576
(258048)

15: max-pool
(576)

16: fc, 144
(8294)

17: fc, 256
(3686)

18: fc, 512
(13107)

19: softmax
(49833)

20: op
(49833)

0: ip
(104727)

1: conv3, 64
(64)

2: conv3, 64
(4096)

3: max-pool
(64)

4: conv3, 128
(8192)

5: conv3, 128
(16384)

6: max-pool
(128)

7: conv3, 128
(16384)

8: conv3, 128
(16384)

9: conv3, 128
(16384)

10: max-pool
(128)

11: conv3, 224
(28672)

12: conv3, 256
(57344)

13: conv3, 256
(65536)

14: max-pool
(256)

15: conv5, 448
(114688)

16: conv3, 448
(200704)

17: conv3, 512
(229376)

18: conv3, 512
(262144)

19: max-pool
(512)

20: fc, 128
(6553)

21: fc, 256
(3276)

22: softmax
(104727)

23: op
(104727)

Figure 6.13: Optimal network architectures found with TreeBO on the Cifar10 dataset.
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#0 ip, 64, (28891)

#1 crelu, 144, (144)

#2 softplus, 576, (82944)

#6 logistic, 256, (69632)

#9 linear, 256, (14445)

#3 leaky-relu, 72, (41472)

#4 logistic, 128, (73728)#5 elu, 64, (4608)

#7 logistic, 256, (16384)

#8 linear, 256, (14445)

#10 op, 512, (28891)

#0 ip, 64, (542390)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 logistic, 512, (131072)

#27 logistic, 512, (393216)

#29 linear, 512, (542390)

#4 crelu, 512, (262144)

#5 logistic, 512, (262144)

#6 logistic, 512, (262144)#7 crelu, 512, (262144)

#8 elu, 512, (262144)#9 crelu, 512, (262144)

#10 tanh, 512, (262144)#11 elu, 512, (262144)

#23 tanh, 324, (259200)

#12 softplus, 64, (32768)#13 tanh, 512, (262144)

#16 logistic, 72, (9216)

#14 softplus, 512, (262144)

#15 softplus, 64, (32768)

#17 relu, 128, (8192) #18 logistic, 128, (9216)

#19 tanh, 576, (73728) #20 relu, 128, (16384)

#21 leaky-relu, 576, (331776) #22 relu, 288, (36864)

#26 leaky-relu, 512, (589824)

#24 tanh, 648, (209952)

#25 leaky-relu, 576, (373248)

#28 logistic, 512, (262144)

#30 op, 512, (542390)

#0 ip, 64, (423488)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 linear, 512, (211744)

#25 tanh, 576, (700416)

#4 logistic, 512, (131072)

#21 tanh, 512, (262144)

#27 op, 512, (423488)

#5 logistic, 512, (262144)#6 logistic, 512, (262144)

#7 leaky-relu, 512, (262144)#8 leaky-relu, 512, (262144)

#9 leaky-relu, 576, (294912)

#10 tanh, 64, (32768)

#11 leaky-relu, 512, (262144)

#12 tanh, 512, (294912)

#20 crelu, 256, (81920)

#13 tanh, 512, (262144)

#14 tanh, 64, (32768)#15 relu, 64, (32768)

#16 relu, 64, (4096)

#17 relu, 128, (16384)

#18 logistic, 256, (32768)#19 logistic, 256, (32768)

#22 crelu, 512, (131072)

#23 elu, 504, (258048)

#24 tanh, 576, (290304)

#26 linear, 512, (211744)

#0 ip, 64, (206092)

#1 relu, 112, (112)#2 relu, 112, (112)#3 relu, 112, (112)

#4 relu, 224, (25088)

#20 logistic, 512, (417792)

#5 logistic, 448, (50176)

#8 linear, 512, (103046)

#6 logistic, 392, (87808)

#7 logistic, 441, (98784)#9 logistic, 496, (416640)

#10 leaky-relu, 62, (27342)

#22 op, 512, (206092)

#11 leaky-relu, 496, (246016)

#12 logistic, 512, (253952)

#19 logistic, 256, (192512)

#13 tanh, 128, (7936)

#14 leaky-relu, 64, (31744)

#18 softplus, 256, (159744)

#21 linear, 512, (103046)

#17 softplus, 128, (32768)

#15 tanh, 64, (4096)

#16 tanh, 128, (8192)

Figure 6.14: Optimal network architectures found with NASBOTon the indoor location dataset.

#0 ip, 64, (232665)

#1 relu, 128, (128)

#2 relu, 256, (32768)

#3 logistic, 512, (131072)

#14 crelu, 512, (262144)

#4 logistic, 512, (262144)

#5 elu, 512, (262144)

#6 elu, 512, (262144)

#13 crelu, 256, (196608)

#7 tanh, 576, (294912)

#8 tanh, 64, (36864)

#9 softplus, 64, (4096)

#10 softplus, 128, (8192)

#11 logistic, 128, (16384)

#12 logistic, 256, (32768)

#15 tanh, 512, (262144)

#16 tanh, 512, (262144)

#17 linear, 512, (232665)

#18 op, 512, (232665)

#0 ip, 64, (9121)

#1 leaky-relu, 128, (128)

#2 leaky-relu, 128, (128)#3 leaky-relu, 224, (28672)

#4 crelu, 126, (16128)#5 logistic, 64, (14336)

#9 linear, 256, (9121)

#6 logistic, 72, (4608)

#7 crelu, 126, (9072)

#8 crelu, 144, (18144)

#10 op, 256, (9121)

#0 ip, 64, (12209)

#1 relu, 144, (144)

#2 relu, 252, (36288)

#7 linear, 256, (12209)

#3 tanh, 72, (18144)

#6 logistic, 144, (54720)

#4 tanh, 64, (4608)

#5 leaky-relu, 128, (8192)

#8 op, 256, (12209)

#0 ip, 64, (30336)

#1 softplus, 128, (128)

#2 softplus, 128, (128)#3 softplus, 256, (32768)

#4 softplus, 256, (32768)#5 crelu, 160, (40960)

#8 tanh, 64, (20480)

#6 softplus, 64, (10240)

#7 softplus, 64, (4096)

#12 elu, 128, (24576)

#9 crelu, 64, (4096)

#10 tanh, 128, (8192)

#11 tanh, 128, (16384)

#13 elu, 112, (14336)

#14 elu, 256, (28672)

#15 elu, 256, (65536)

#16 linear, 256, (30336)

#17 op, 256, (30336)

Figure 6.15: Optimal network architectures found with EA on the indoor location dataset.
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#0 ip, 64, (7795)

#1 relu, 128, (128)

#2 relu, 256, (32768)

#7 linear, 256, (7795)

#3 logistic, 64, (16384)

#4 logistic, 64, (4096)

#5 crelu, 128, (8192)

#6 crelu, 128, (16384)

#8 op, 256, (7795)

#0 ip, 64, (133952)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#3 crelu, 512, (131072)

#4 crelu, 64, (32768)

#5 crelu, 64, (4096)

#6 crelu, 64, (4096)

#19 tanh, 256, (81920)

#7 logistic, 64, (4096)

#8 logistic, 64, (4096)

#9 logistic, 64, (4096)

#10 logistic, 128, (8192)

#11 logistic, 128, (16384)

#12 logistic, 128, (16384)

#13 leaky-relu, 128, (16384)

#14 leaky-relu, 128, (16384)

#15 leaky-relu, 128, (16384)

#16 leaky-relu, 256, (32768)

#17 leaky-relu, 256, (65536)

#18 leaky-relu, 256, (65536)

#20 tanh, 256, (65536)

#21 tanh, 256, (65536)

#22 tanh, 512, (131072)

#23 tanh, 512, (262144)

#24 tanh, 512, (262144)

#25 linear, 512, (133952)

#26 op, 512, (133952)

#0 ip, 64, (68428)

#1 relu, 128, (128) #2 relu, 128, (128)

#3 relu, 256, (32768) #4 leaky-relu, 64, (8192)

#10 linear, 512, (22809)

#5 leaky-relu, 512, (131072)

#11 leaky-relu, 64, (20480)

#13 tanh, 128, (49152)

#6 tanh, 128, (8192)

#7 logistic, 512, (262144) #8 softplus, 256, (32768)

#9 leaky-relu, 64, (32768)

#18 op, 512, (68428)

#12 tanh, 128, (8192)

#14 softplus, 256, (32768)

#15 softplus, 256, (65536)

#16 linear, 512, (22809)#17 linear, 512, (22809)

#0 ip, 64, (68006)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#15 linear, 512, (22668)

#3 elu, 512, (131072)

#4 logistic, 512, (262144)

#5 leaky-relu, 64, (32768)

#6 leaky-relu, 64, (32768) #7 leaky-relu, 64, (4096)

#8 tanh, 144, (9216) #9 tanh, 144, (9216)

#10 linear, 512, (22668)

#11 softplus, 288, (41472)#12 softplus, 288, (41472)

#16 op, 512, (68006)

#13 softplus, 288, (82944)#14 linear, 512, (22668)

Figure 6.16: Optimal network architectures found with RAND on the indoor location dataset.

#0 ip, 64, (19993)

#1 relu, 256, (256)

#2 logistic, 512, (131072)

#3 elu, 56, (28672)

#4 elu, 128, (7168)

#5 tanh, 256, (32768)

#6 linear, 256, (19993)

#7 op, 512, (19993)

#0 ip, 64, (15146)

#1 leaky-relu, 128, (128)

#2 leaky-relu, 216, (27648)

#3 leaky-relu, 256, (55296)

#4 softplus, 164, (41984)

#5 tanh, 81, (13284)

#6 relu, 162, (13122)

#7 linear, 256, (15146)

#8 op, 256, (15146)

#0 ip, 64, (100)

#1 softplus, 128, (128)

#2 linear, 256, (100)

#3 op, 256, (100)

#0 ip, 64, (632)

#1 leaky-relu, 56, (56)

#2 crelu, 112, (6272)

#3 linear, 256, (632)

#4 op, 256, (632)

Figure 6.17: Optimal network architectures found with TreeBO on the indoor location dataset.
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#0 ip, 64, (72512)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#11 linear, 512, (72512)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#5 leaky-relu, 64, (32768)

#10 elu, 224, (172032)

#6 leaky-relu, 64, (4096)

#7 logistic, 128, (8192)

#8 logistic, 128, (16384)

#9 elu, 256, (65536)

#12 op, 512, (72512)

#0 ip, 64, (425996)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#21 tanh, 512, (524288)

#23 linear, 512, (425996)

#5 leaky-relu, 512, (262144) #6 leaky-relu, 448, (229376)

#7 leaky-relu, 448, (229376)

#20 relu, 512, (524288)

#8 leaky-relu, 448, (200704)

#9 logistic, 512, (229376) #10 logistic, 512, (229376)

#11 softplus, 512, (524288)

#12 softplus, 64, (32768)

#13 tanh, 64, (4096)

#14 tanh, 128, (8192)

#15 crelu, 128, (16384)

#16 logistic, 256, (32768)

#19 relu, 512, (327680)

#17 logistic, 256, (65536)

#18 leaky-relu, 512, (131072)

#22 tanh, 512, (262144)

#24 op, 512, (425996)

#0 ip, 64, (192791)

#1 elu, 110, (110)

#2 elu, 448, (49280)

#3 tanh, 448, (200704)

#7 relu, 49, (24696)

#18 linear, 512, (192791)

#4 tanh, 448, (200704)

#5 tanh, 56, (25088)

#6 relu, 56, (28224)

#8 relu, 98, (4802)

#9 logistic, 128, (18816)

#17 tanh, 512, (570368)

#10 logistic, 128, (16384)

#11 logistic, 256, (32768)

#12 softplus, 256, (65536)

#13 softplus, 224, (57344)

#14 tanh, 504, (112896)

#15 tanh, 512, (258048)

#16 tanh, 512, (262144)

#19 op, 512, (192791)

#0 ip, 64, (136204)

#1 crelu, 128, (128)

#2 crelu, 288, (36864)

#13 tanh, 512, (458752)

#14 linear, 512, (136204)

#3 tanh, 512, (147456)

#4 tanh, 448, (229376)

#5 softplus, 448, (200704)

#6 tanh, 252, (112896)

#7 softplus, 64, (16128)

#8 logistic, 64, (4096)

#9 logistic, 128, (8192)

#10 elu, 128, (16384)

#11 elu, 256, (65536)

#12 tanh, 256, (65536)

#15 op, 512, (136204)

Figure 6.18: Optimal network architectures found with NASBOTon the slice localisation dataset.

#0 ip, 64, (7795)

#1 elu, 128, (128)

#2 logistic, 256, (32768)

#7 linear, 256, (7795)

#3 tanh, 64, (16384)

#4 tanh, 64, (4096)

#5 softplus, 128, (8192)

#6 softplus, 128, (16384)

#8 op, 256, (7795)

#0 ip, 64, (15180)

#1 softplus, 128, (128)

#2 softplus, 128, (128)#3 softplus, 256, (32768)

#4 softplus, 256, (32768)

#9 crelu, 128, (32768)

#5 logistic, 64, (16384)

#6 logistic, 64, (16384)#7 logistic, 64, (4096)

#8 crelu, 128, (16384)

#10 linear, 256, (15180)

#11 op, 256, (15180)

#0 ip, 64, (386265)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#3 tanh, 512, (131072)

#4 tanh, 512, (262144)

#5 relu, 512, (262144)

#6 relu, 512, (262144)#7 relu, 512, (262144)

#20 tanh, 512, (786432)

#8 elu, 512, (262144)

#9 logistic, 512, (262144)

#10 elu, 512, (262144)

#11 elu, 64, (32768)

#12 tanh, 64, (4096)

#13 tanh, 128, (8192)

#14 softplus, 128, (16384)

#15 softplus, 256, (32768)

#16 logistic, 256, (65536)

#17 logistic, 512, (131072)

#18 leaky-relu, 512, (262144)

#19 leaky-relu, 512, (262144)

#21 tanh, 512, (262144)

#22 linear, 512, (386265)

#23 op, 512, (386265)

#0 ip, 64, (10664)

#1 leaky-relu, 144, (144)

#2 leaky-relu, 256, (36864)

#3 tanh, 64, (16384)

#4 tanh, 64, (16384)#5 tanh, 64, (4096)

#6 elu, 128, (16384)

#7 elu, 128, (16384)

#8 linear, 256, (10664)

#9 op, 256, (10664)

Figure 6.19: Optimal network architectures found with EA on the slice localisation dataset.
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#0 ip, 64, (11096)

#1 leaky-relu, 112, (112)

#2 leaky-relu, 224, (25088)

#3 tanh, 56, (12544)

#4 elu, 128, (28672)#5 tanh, 64, (3584)

#7 elu, 128, (32768)

#6 tanh, 128, (8192)

#8 linear, 256, (11096)

#9 op, 256, (11096)

#0 ip, 64, (41432)

#1 tanh, 112, (112)

#2 crelu, 224, (25088)

#10 linear, 512, (41432)

#3 tanh, 512, (114688)

#8 tanh, 256, (90112)

#9 relu, 256, (122880)

#4 tanh, 64, (32768)

#5 elu, 64, (4096)

#6 logistic, 128, (8192)

#7 logistic, 128, (16384)

#11 op, 512, (41432)

#0 ip, 64, (371982)

#1 elu, 144, (144)

#2 elu, 288, (41472)

#21 tanh, 512, (335872)

#3 elu, 512, (147456)

#4 logistic, 512, (262144)

#5 logistic, 512, (262144)

#6 logistic, 512, (262144)

#7 relu, 512, (262144)

#8 relu, 64, (32768)

#9 relu, 64, (4096)

#10 tanh, 64, (4096)

#11 tanh, 128, (8192)

#12 tanh, 128, (16384)

#13 leaky-relu, 128, (16384)

#14 leaky-relu, 256, (32768)

#15 logistic, 256, (65536)

#23 tanh, 512, (393216)

#16 logistic, 512, (131072)

#17 logistic, 512, (393216)

#18 softplus, 512, (262144)

#19 softplus, 512, (262144)

#20 softplus, 512, (262144)

#22 tanh, 512, (262144)

#24 linear, 512, (371982)

#25 op, 512, (371982)

#0 ip, 64, (40153)

#1 relu, 128, (128)

#2 relu, 224, (28672)

#8 tanh, 256, (196608)

#3 logistic, 512, (114688)

#4 logistic, 64, (32768)

#5 crelu, 64, (4096)

#6 crelu, 128, (8192)

#7 tanh, 128, (16384)

#9 linear, 256, (40153)

#10 op, 512, (40153)

Figure 6.20: Optimal network architectures found with RAND on the slice localisation dataset.

#0 ip, 64, (8179)

#1 elu, 184, (184)

#2 tanh, 202, (37168)

#3 crelu, 220, (44440)

#4 linear, 256, (8179)

#5 op, 256, (8179)

#0 ip, 64, (15704)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#3 relu, 56, (14336)

#4 relu, 112, (6272)

#5 tanh, 126, (14112)

#6 elu, 216, (27216)

#7 tanh, 288, (62208)

#8 linear, 256, (15704)

#9 op, 512, (15704)

#0 ip, 64, (4361)

#1 elu, 193, (193)

#2 elu, 225, (43425)

#3 linear, 256, (4361)

#4 op, 256, (4361)

#0 ip, 64, (10908)

#1 crelu, 144, (144)

#2 crelu, 256, (36864)

#3 elu, 64, (16384)

#4 elu, 126, (8064)

#5 tanh, 126, (15876)

#6 tanh, 252, (31752)

#7 linear, 256, (10908)

#8 op, 512, (10908)

Figure 6.21: Optimal network architectures found with TreeBO on the slice localisation dataset.
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#0 ip, 64, (30430)

#1 elu, 112, (112)

#2 elu, 224, (25088)

#9 relu, 256, (94208)

#3 tanh, 448, (100352)

#4 crelu, 56, (25088)

#10 linear, 512, (30430)

#5 crelu, 56, (3136)

#6 softplus, 128, (7168)

#7 logistic, 128, (16384)

#8 relu, 256, (32768)

#11 op, 512, (30430)

#0 ip, 64, (19426)

#1 relu, 162, (162)

#2 relu, 365, (59130)

#6 tanh, 128, (45312)

#7 linear, 256, (19426)

#3 tanh, 81, (29565)

#5 crelu, 128, (54912)

#4 tanh, 64, (5184)

#8 op, 256, (19426)

#0 ip, 64, (28966)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#14 relu, 224, (107520)

#3 elu, 64, (16384)

#4 elu, 64, (4096)

#5 elu, 64, (4096)

#6 tanh, 64, (4096)

#7 tanh, 64, (4096)

#8 tanh, 128, (8192)

#9 tanh, 128, (16384)

#10 relu, 144, (18432)

#11 relu, 112, (16128)

#12 relu, 224, (32256) #13 relu, 224, (25088)

#15 linear, 256, (28966)

#16 op, 256, (28966)

#0 ip, 64, (12473)

#1 elu, 128, (128)

#2 elu, 256, (256)#3 elu, 256, (32768)

#6 crelu, 144, (47232)

#4 tanh, 72, (18432)

#5 tanh, 72, (5184)

#7 crelu, 144, (20736)

#8 linear, 256, (12473)

#9 op, 256, (12473)

Figure 6.22: Optimal network architectures found with NASBOTon the naval propulsion dataset.

#0 ip, 64, (64898)

#1 crelu, 84, (84)

#2 leaky-relu, 112, (9408)

#10 crelu, 256, (70656)

#3 leaky-relu, 288, (32256)

#4 logistic, 512, (147456)

#5 logistic, 512, (262144)

#6 softplus, 64, (32768)

#7 softplus, 64, (4096)

#8 tanh, 128, (8192)

#9 tanh, 128, (16384)

#11 crelu, 256, (65536)

#12 linear, 512, (64898)

#13 op, 512, (64898)

#0 ip, 64, (5944)

#1 softplus, 142, (142)

#2 softplus, 252, (35784)

#3 logistic, 56, (14112)

#6 linear, 256, (5944)

#4 crelu, 56, (3136)

#5 relu, 112, (6272)

#7 op, 256, (5944)

#0 ip, 64, (13576)

#1 leaky-relu, 112, (112)

#2 crelu, 168, (18816)

#7 linear, 256, (13576)

#3 leaky-relu, 224, (37632)

#4 logistic, 63, (14112)

#6 relu, 162, (57024)

#5 relu, 128, (8064)

#8 op, 256, (13576)

#0 ip, 64, (19731)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#3 crelu, 64, (16384)

#4 tanh, 64, (4096)

#13 leaky-relu, 224, (58240)

#14 linear, 256, (19731)

#5 logistic, 64, (4096)

#6 logistic, 64, (4096)

#7 logistic, 64, (4096) #8 logistic, 128, (8192)

#9 leaky-relu, 256, (16384) #10 leaky-relu, 112, (14336)

#11 leaky-relu, 112, (12544)

#12 leaky-relu, 196, (21952)

#15 op, 256, (19731)

Figure 6.23: Optimal network architectures found with NASBOTon the news dataset.
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#0 ip, 64, (268403)

#1 crelu, 128, (128)

#2 crelu, 256, (32768)

#3 crelu, 512, (131072)

#4 crelu, 512, (131072)

#17 tanh, 512, (655360)

#5 tanh, 512, (262144)

#19 tanh, 512, (524288)

#6 tanh, 576, (294912)

#7 tanh, 72, (41472)

#8 leaky-relu, 64, (4608)

#9 leaky-relu, 64, (4096)

#10 leaky-relu, 128, (8192)

#11 logistic, 144, (18432)

#12 logistic, 128, (18432)

#13 logistic, 256, (32768)

#14 relu, 256, (65536)

#15 relu, 256, (65536)

#16 relu, 512, (131072)

#18 tanh, 512, (262144)

#20 linear, 512, (268403)

#21 op, 512, (268403)

#0 ip, 64, (81548)

#1 elu, 128, (128)

#2 elu, 128, (128)

#3 elu, 128, (128)

#4 elu, 256, (32768)

#7 logistic, 512, (327680)

#5 elu, 256, (32768)

#14 linear, 512, (81548)

#6 logistic, 512, (262144)

#8 leaky-relu, 64, (32768)

#9 leaky-relu, 64, (4096)

#10 tanh, 128, (8192)

#11 tanh, 128, (16384)

#12 relu, 256, (32768)

#13 relu, 256, (65536)

#15 op, 512, (81548)

#0 ip, 64, (240460)

#1 elu, 128, (128)

#2 elu, 128, (128)#3 elu, 256, (32768)

#4 elu, 256, (32768)#5 elu, 512, (131072)

#20 linear, 512, (240460)

#6 tanh, 512, (262144)

#19 tanh, 512, (524288)

#7 tanh, 512, (262144)

#8 tanh, 64, (32768)

#18 tanh, 512, (524288)

#9 softplus, 64, (4096)

#10 softplus, 128, (8192)

#11 logistic, 128, (16384)

#12 logistic, 128, (16384)

#13 logistic, 256, (32768)

#14 crelu, 256, (65536)

#15 crelu, 256, (65536)

#16 tanh, 512, (131072)

#17 tanh, 512, (262144)

#21 op, 512, (240460)

#0 ip, 64, (67276)

#1 relu, 128, (128)

#2 leaky-relu, 192, (24576)

#3 relu, 256, (49152)

#13 crelu, 224, (68096)

#4 logistic, 512, (131072)

#5 logistic, 576, (294912)

#6 leaky-relu, 56, (28672)#7 leaky-relu, 56, (32256)

#14 linear, 512, (67276)

#8 leaky-relu, 56, (3136)#9 leaky-relu, 56, (3136)

#10 tanh, 112, (6272)#11 tanh, 112, (6272)

#12 tanh, 112, (25088)

#15 op, 512, (67276)

Figure 6.24: Optimal network architectures found with NASBOTon the protein structure prediction
dataset.

#0 ip, 64, (27046)

#1 relu, 128, (128)

#2 relu, 256, (32768)

#7 leaky-relu, 64, (12288)

#3 relu, 64, (16384)

#4 logistic, 64, (4096)

#5 relu, 64, (4096)

#6 tanh, 64, (4096)

#8 tanh, 128, (8192)

#13 softplus, 256, (49152)

#9 tanh, 128, (16384)

#10 tanh, 128, (16384)

#11 softplus, 128, (16384)

#12 softplus, 128, (16384)

#14 softplus, 288, (73728)

#15 linear, 256, (27046)

#16 op, 256, (27046)

#0 ip, 64, (38617)

#1 leaky-relu, 128, (128)

#2 leaky-relu, 256, (32768) #3 leaky-relu, 256, (32768)

#4 leaky-relu, 72, (18432) #5 leaky-relu, 72, (18432)

#11 elu, 288, (115200)

#6 tanh, 72, (10368)

#7 tanh, 128, (9216)

#9 elu, 144, (28800)

#8 tanh, 128, (16384)

#10 elu, 144, (20736)

#12 elu, 288, (82944)

#13 linear, 256, (38617)

#14 op, 256, (38617)

#0 ip, 64, (31142)

#1 elu, 128, (128)

#2 elu, 256, (32768)

#8 leaky-relu, 128, (32768)

#3 elu, 64, (16384)

#4 logistic, 64, (4096)

#12 relu, 256, (81920)

#5 logistic, 64, (4096)

#6 logistic, 128, (8192)

#7 logistic, 128, (16384)

#9 leaky-relu, 128, (16384)

#10 leaky-relu, 256, (32768)

#11 leaky-relu, 256, (65536)

#13 linear, 256, (31142)

#14 op, 256, (31142)

#0 ip, 64, (499328)

#1 softplus, 128, (128) #2 softplus, 128, (128)

#3 softplus, 256, (32768)

#4 softplus, 288, (36864)

#5 logistic, 512, (131072)

#6 logistic, 512, (147456)

#7 logistic, 576, (294912)

#8 crelu, 576, (294912)

#22 leaky-relu, 576, (589824)

#26 linear, 512, (499328)

#9 crelu, 576, (331776)

#10 tanh, 576, (331776)

#11 crelu, 576, (331776)

#13 tanh, 512, (589824)

#12 tanh, 576, (331776)

#14 elu, 512, (262144)

#15 elu, 64, (32768)

#16 logistic, 64, (4096)

#17 logistic, 128, (8192)

#18 relu, 128, (16384)

#19 relu, 256, (32768)

#20 tanh, 256, (65536)

#21 tanh, 512, (131072)

#23 leaky-relu, 576, (331776)

#24 logistic, 576, (331776)

#25 logistic, 576, (331776)

#27 op, 512, (499328)

Figure 6.25: Optimal network architectures found with NASBOTon the blog dataset.
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Chapter 7

Dragonfly: An Open Source Library for
Robust & Scalable Bandit Optimisation

Model-based Bayesian methods for bandits, such as Gaussian process bandits, provide a pow-
erful framework for optimising expensive black-box functions. They use introspective Bayesian
models of the function to reason about where to perform the next evaluation, and are conse-
quently more sample efficient than other methods for black-box optimisation. However, today
there is a large disconnect between theoretical and methodological developments and the avail-
ability of practical tools that can be deployed in real world problems.

In this chapter, which describes the work in Kandasamy et al. [133], we develop Dragonfly, an
open source Python platform for Bayesian optimisation. Our contributions in this chapter are as
follows.

1. We integrate our individual efforts on scalability in the previous chapters into one frame-
work which enables us to leverage opportunities and address challenges unique to modern
large scale problems.

2. We develop new ensemble methods for choosing between multiple acquisitions and mul-
tiple models. We demonstrate that the ensemble methods are more robust, working con-
sistenty better on a wider range of problems, than approaches which aim to make a single
best choice over the entire optimisation process.

3. We develop a series of methodological improvements that enable the application of Bayesian
optimisation in complex domains, including Euclidean, integral, discrete, discrete numeric
spaces and combinatorial spaces such as neural networks.

4. We compare Dragonfly to several other packages and algorithms for black-box optimi-
sation and demonstrate that we perform better or competitively in a variety of synthetic
benchmarks and real world tasks in computational astrophysics and model selection. Cru-
cially, Dragonfly is able to consistently perform well across a wide array of problems.

Dragonfly is released open source at dragonfly.github.io. It is compatible with Python 2
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Figure 7.1: A screenshot of the Dragonfly repository on Github, availabe at dragonfly.github.io.

and Python 3 and has been tested on Linux, Mac OS, and Windows platforms. We have released
Dragonfly under an MIT license which we hope will foster future research in bandit methods.

This chapter is organised as follows. Chapter 7.1 describes our ensemble methods for robust
Bayesian optimisation and Chapter 7.2 explains how we combine our different scalability ap-
proaches. Chapter 7.3 describes the implementation of various parts of the BO pipeline in Drag-
onfly. Chapter 7.4 contains the experiments while Chapter 7.5 provides details on the user API
for Dragonfly.

7.1 Robust Bayesian Optimisation in Dragonfly

We begin by describing our methods for robust GP based Bayesian optimisation in Dragonfly. We
favour randomised ensemble approaches which use multiple acquisitions and GP hyperparameter
values, which we found to be more robust as compared to making a single best choice.

7.1.1 Choice and Optimisation of Acquisition

Dragonfly implements several common acquisitions for BO such as GP-UCB, GP-EI, TTEI [199],
TS, Add-GP-UCB, and PI [150]. The general practice in the BO literature has been for a practi-
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Figure 7.2: Comparison of using individual acquisitions such as GP-UCB, GP-EI, TTEI, TS, PI, and
Add-GP-UCB versus the ensemble method as described in Chapter 7.1.1. We have also shown random
sampling (RAND) for comparison. The ensemble approach is typically able to perform almost as well as
the single best acquisition on each individual problem. We plot the simple regret (1.1), so lower is better.
Error bars indicate one standard error. All curves were produced by averaging over 10 independent runs.

tioner to pick their favourite acquisition, and use it for the entire optimisation process. However,
the performance of each acquisition can be very problem dependent, as demonstrated in Fig-
ure 7.2. Therefore, in Dragonfly, we adopt a randomised ensemble approach which chooses
different acquisitions at different iterations instead of attempting to pick a single best one.

Our ensemble routine maintains a list of m acquisitions `acq along with a weight vector wacq
t =

{wacq
t [α]}α∈`acq ∈ Rm. We set wacq

0 [α] = ωacq
0 for all α ∈ `acq. Suppose at time step t, we

chose acquisition θ and found a higher f value than the current best value. We then update
wacq
t+1[α]← wacq

t [α] + 1(θ = α); otherwise, wacq
t+1[α]← wacq

t [α]. At time t, we choose acquisition
θ ∈ `acq with probability wacq

t [θ]/
∑

αw
acq
t [α]. This strategy initially samples all acquisitions

with equal probability, but progressively favours those that perform better on the problem.

By default, we set `acq = {GP-UCB, GP-EI, TS, TTEI}; for entirely Euclidean domains, we also
include Add-GP-UCB. We do not incorporate PI since it consistently underperformed other ac-
quisitions in our experiments. As Figure 7.2 indicates, the ensemble approach is robust across
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different problems, either performing almost as good as the best acquisition on the given prob-
lem or outperforming all of them. Shahriari et al. [222] use an entropy based approach to select
among multiple acquisitions. This, however requires computing/optimising all of them which
can be computationally expensive. We found that our approach, while heuristic in nature, per-
formed well in our experiments.

Finally, we note that we do not implement entropy-search based acquisitions [94, 95, 259, 260]
since their computation, can, in general, be quite expensive.

7.1.2 GP Hyperparameters

One of the main challenges in GP based BO is that the selection of the GP hyperparameters1

themselves could be notoriously difficult. While a common approach is to choose them by max-
imising the marginal likelihood, in some cases, this could also cause overfitting in the GP, es-
pecially in the early iterations [232]. The most common strategy to overcome this issue is to
maintain a prior on the hyperparameters and integrate over the posterior [98, 167, 232]. How-
ever, this can be very computationally burdensome, and hence prohibitive in applications where
function evaluations are only moderately expensive. Instead, in this work, we focus on a dif-
ferent approach that uses posterior sampling. Precisely, at each iteration, one may sample a set
of GP hyperparameters from the posterior conditioned on the data, and us them for the GP at
that iteration. Intuitively, this is similar to a Thompson sampling procedure where the prior on
the hyperparameters specifies a prior on a meta-model, and once we sample the hyperparame-
ters, we use an acquisition of our choice. When this acquisition is TS, this procedure is exactly
Thompson sampling using the meta-prior.

Our experience suggested that maximising the marginal likelihood (ML) generally worked well in
settings where the function was smooth; for less smooth functions, sampling from the posterior
(PS) tended to work better. We speculate that this is because, with smooth functions, a few points
are sufficient to estimate the landscape of the function, and hence maximum likelihood does not
overfit; since it has already estimated the GP hyperparameters well, it does better than PS. On the
other hand, while ML is prone to overfit for non-smooth functions, the randomness in PS prevents
us from getting stuck at bad GP hyperparameters. As we demonstrate in Figure 7.3, either of
these approaches may perform better than the other depending on the problem.

Therefore, similar to how we handled the acquisitions, we adopt a randomised ensemble ap-
proach where we choose either maximum likelihood or sampling from the posterior at every
iteration. Precisely, our GP hyperparameter tuning strategy proceeds as follows. After every ncyc

evaluations of f , we fit a single GP to it via maximum likelihood, and also sample ncyc hyper-
parameter values from the posterior. At every iteration, the algorithm chooses either maximum
likelihood or sampling from the posterior in a randomised fashion. If it chooses the former, it
uses the single best GP, and if it chooses the latter, it uses one of the sampled values. For this, we
let whp

t = {whp
t [h]}h∈`hp ∈ R2 where `hp = {ML, PS} and choose strategy h ∈ `hp with probability

1“hyperparameters” here refer to those of the GP, and should not be conflated with the title of this thesis, where
“hyperparameter tuning” refers to the general practice of optimising a system’s performance.
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Figure 7.3: Comparison of using only maximum likelihood (ML), only posterior sampling (PS) and the
ensemble method (ML+PS) as described in Chapter 7.1.2. We have also shown random sampling (RAND)
for comparison. The combined ensemble approach is able to perform as well as or better than the best
choice for the given problem. We plot the simple regret (1.1), so lower is better. Error bars indicate one
standard error. All curves were produced by averaging over 10 independent runs.

whp
t [h]/(whp

t [ML] +whp
t [PS]). We update whp

t in a manner similar to wacq
t . Figure 7.3 demonstrates

that this strategy is usually able to do as well as if not better than the best of ML and PS on the
given problem. We also note that we fit GP hyperparameters only once every ncyc evaluations
due to computational reasons; regardless of the chosen hyperparameters, the GP posterior (2.1),
is computed using all the data collected up until the current iteration.

For maximum likelihood of continuous hyperparameters, we use either DiRect or PDOO; if dis-
crete hyperparameters are also present, we optimise the continuous parameters for all choices of
discrete values; this was feasible since there were only a handful of values for the discrete GP
hyperparameters we encountered. For posterior sampling of the GP hyperparameters, we impose
a uniform prior and use the following Gibbs sampling procedure. At every iteration, we iterate
through each of the hyperparameters in a randomised order; on each visit to a hyperparameter,
we fix the values of the rest of the hyperparameters, and sample a value of the current hyper-
parameter conditioned on the fixed values. For continuous hyperparameters, we do so via slice
sampling [177] and for discrete hyperparameters we do so via Metropolis-Hastings [89]. We
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use a burn-in of 1000 samples and collect a sample every 100 samples from thereon to avoid
correlation. Our implementations of slice sampling and Metropolis-Hastings are taken from the
PyMC3 library [215], and adapted to suit our setting. We also experimented with NUTS [97]
for continuous hyperparameters, and found it to be significantly more computationally expensive
but with no significant gains in performance over slice sampling.

7.2 Scalable Bayesian Optimisation in Dragonfly

In addition to the above techniques for robust BO, Dragonfly integrates the techniques developed
in earlier chapters of this thesis for scalable Bayesian optimisation. We describe them below,
along with modifications to facilitate the integration.

High Dimensions

In our original work [120], we used Add-GP-UCB as a single acquisition throughout the entire
BO process. Here, as described above in Chapter 7.1, we treat it as one of many acquisitions
that can be chosen from in the ensemble approach. Moreover, while the original version of
Add-GP-UCB used a fixed group dimensionality, in Dragonfly we treat the maximum group
dimensionality and the decomposition of the dimensions as GP kernel hyperparameters, that
need to be chosen. This can pose some computational concerns since the number of possible
decompositions grows combinatorially with dimension. We address these challenges, both for
maximising the marginal likelihood (ML) and sampling from the posterior (PS) as follows.

For the former, since a complete maximisation can be computationally challenging, we perform
a partial maximisation by first choosing an upper bound pmax for the maximum group dimension-
ality. For each group dimensionality p ∈ {1, . . . , pmax}, we select k different decompositions
chosen at random. For each such decomposition, we optimise the marginal likelihood over the
remaining hyperparameters, and choose the decomposition with the highest likelihood.

For sampling from the posterior, it is sufficient to specify a prior distribution to sample from for
our Gibbs sampling procedure. We use a uniform prior over the integral domain {1, . . . , pmax}
for the maximum group dimensionality p. We then randomly shuffle the coordinates {1, . . . , d}
to produce an ordering. Given a maximum group dimensionality p and an ordering, one can
uniquely identify a decomposition by iterating through the ordering and grouping them in groups
of size at most p. For example, in a d = 7 dimensional problem, p = 3 and the ordering
4, 7, 3, 6, 1, 5, 2 yields the decomposition {(3, 4, 7), (1, 5, 6), (2)} of three groups having group
dimensionalities 3, 3, and 1 respectively. It is straightforward to efficiently sample from this
distribution and is used as the prior in our slice sampling procedure.

Since the set of permutations forms a very large combinatorial space, a partial maximisation
for ML may not recover the true maximiser of the marginal likelihood. Similarly, for posterior
sampling, we might not be able to search this large combinatorial space properly with a small
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number of samples. However, in this work we adopt a pragmatic view of the additive model (3.1)
and treat it as a simpler statistical model to model f in the small sample regime, as opposed to
truly believing that f is additive. Under this view, with a partial maximisation we can hope to
capture some existing marginal structure in f and obtain a reasonable model for the data; at the
same time, even an exhaustive maximisation will not do much better than a partial maximisation
if there is no additive structure. Likewise, a few samples would serve the purpose of finding a
suitable additive model when sampling from the posterior. By default, Dragonfly uses pmax = 6
and k = 25 when using the Add-GP-UCB acquisition. Shortly, we will describe some additional
details when combining an additive model with multi-fidelity optimisation.

Other Additive Models in Dragonfly

Note that the additive model of (3.1) can be used with other acquisitions such as GP-UCB
and GP-EI; even though the acquisition might be difficult to maximise, one can still expect
to have statistical gains due to the simpler model. In instances where evaluation of f is very
expensive, maximising ϕt may not be a bottleneck allowing the use of other acquisitions. An-
other form of pth order additive model commonly used in the literature takes the form f(x) =∑

1≤i1<i2<···<ip≤d f
(j)(xi1 , xi2 , . . . , xip), where the summation is over all

(
d
p

)
combinations of p

coordinates [54, 117, 224]. While there is a combinatorial number of terms, an additive kernel
over this model can be computed using the Girard-Newton formula for elementary symmetric
polynomials [165]. Dragonfly has functionality to use group-additive and ESP style kernels in
the GP if necessary. However, they are not used by default.

Multi-fidelity Optimisation

Dragonfly implements functionality for multi-fidelity Bayesian optimisation, specifically the
BOCA framework of Chapter 4.3. We opt for BOCA over MF-GP-UCB since it can handle
more general approximations, and has fewer parameters to tune. As we did before, we assume
the existence of a function g : Z×X → R whereX is the domain andZ is the fidelity space. We
let g ∼ GP(0, κ) and upon querying at (z, x) we observe y = g(z, x) + ε where ε ∼ N (0, η2).
κ : (Z × X )2 → R is the prior covariance defined on the product space, which, as before, is
taken to be of the form. κ([z, x], [z′, x′]) = κ0 κZ(z, z′)κX (x, x′). Here, κ0 ∈ R+ is the scale of
the kernel and κZ , κX are kernels defined on Z,X such that ‖κZ‖∞ = ‖κZ‖∞ = 1. At time step
t, a multi-fidelity algorithm would choose a fidelity zt ∈ Z and a point xt ∈ X in the domain to
evaluate based on its previous fidelity, domain point, observation triples {(zi, xi, yi)}t−1

i=1.

A key property about the two-step fidelity selection criterion in BOCA (see Chapter 4.3.2 and
equation (4.24)) that we prove in Kandasamy et al. [127] is that is chooses a fidelity zt with
good cost to information trade-off, given that we are going to evaluate g at xt. In particular, it
applies to xt chosen in any arbitrary fashion, and not necessarily via an upper confidence bound.
Therefore, while our theoretical results in Chapters 4.3 and 4.6 hold only for the selection of xt
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Figure 7.4: An illustration of GP sample paths drawn
from the exponential decay kernel [242] conditioned on
being positive. They are suitable for representing the
validation accuracy along a fidelity dimension in ma-
chine learning applications where, for e.g. validation
accuracy tends to increase as we use more data and/or
train for more iterations.

via (4.23), in Dragonfly we adopt the two step procedure described above, but allow xt to be
chosen also via other common acquisitions.

In Kandasamy et al. [127], we choose the fidelity kernel κZ to be a radial kernel. This typi-
cally induces smoothness in g acros Z , which can be useful in many applications. However, in
many model selection problems we see in statistics and machine learning, the approximations
are obtained either by using less data and or less iterations in an iterative training procedure.
In such cases, as we move to the expensive fidelities, the validation performance tends to be
monotonic – for example, when the size of the training set increases, one expects the validation
accuracy to keep improving. Swersky et al. [242] demonstrated that an exponential decay kernel
κed : R+ × R+ → R of the following form can strongly support such sample paths,

κed(u, u
′) =

1

(u+ u′ + 1)α
.

We have illustrated such sample paths in Figure 7.4. In a p dimensional fidelity space, one can use
κZ(z, z′) =

∏p
i=1 κed(zi, z

′
i) as the kernel for the fidelity space if all fidelity dimensions exhibit

such behaviour. Unfortunately, the information gain ξ(z) is not defined for non-radial kernels. In
Dragonfly, we use ξ(z) = ‖z− z•‖ which is similar to the approximation of the information gain
for SE kernels. Intuitively, as z moves away from z•, the information gap increases as g(z, ·)
provides less information about g(z•, ·). The parameters of κZ are treated as hyperparameters of
the GP and are chosen in the same way described above.

Combining multi-fidelity with Add-GP-UCB: When using an additive kernel κX =
∑

j κ
(j)

for the domain X in multi-fidelity settings, the resulting product kernel also takes an additive
form, κ([z, x], [z′, x′]) =

∑
j κZ(z, z′)κ(x(j), x(j)′). When using Add-GP-UCB, in the first step

we choose x(j)
t = argmaxx(j)∈X (j) ν

(j)
t−1(z•, x

(j)) + β
1/2
t τ

(j)
t−1(z•, x

(j)) for all j to obtain the next
evaluation xt. Here ν(j)

t−1, τ
(j)
t−1 are the posterior GP mean and standard deviation of the j th function

in the above decomposition. Then we choose the fidelity zt as specified in Chapter 4.3.2.

Parallelisation

BO, as described in Chapter 2.2, is a sequential algorithm which determines the next query
after completing the previous queries. However, in many applications, we may have access to
multiple workers and hence carry out several evaluations simultaneously. As we demonstrated
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theoretically in Chapter 5, when there is high variability in evaluation times, it is prudent for
the algorithm to operate in the asynchronous setting, where a worker is re-deployed immediately
with a new evaluation once it completes its an evaluation. In contrast, if all evaluations take
roughly the same amount of time, it is meaningful to wait for all workers to finish, and incorporate
all their feedback before issuing out the next set of queries in batches.

In our implementations of all acquisitions except TS, we handle parallelisation using the hallu-
cination technique of Desautels et al. [52], Ginsbourger et al. [73]. Here, we pick the next point
exactly like in the sequential setting, but the posterior is based onDt∪{(x, µt−1(x))}x∈Ft , where
Ft are the points in evaluation by other workers at step t and µt−1 is the posterior mean condi-
tioned on justDt; this preserves the mean of the GP, but shrinks the variance around the points in
Ft. The hallucination technique explicitly discourages the algorithm from picking points close to
those that are in evaluation. However, in the case of Thompson sampling, as we demonstrated in
Chapter 5, the inherent randomness ensures that the points chosen for parallel evaluation are suf-
ficiently different [129]. Therefore, when using Thompson sampling, Dragonfly does not use hal-
lucinations. Finally, we note that while there are other techniques for parallelising BO, they either
require choosing additional parameters and/or are computationally expensive [78, 134, 221, 262].

Neural Architecture Search

Dragonfly implements the NASBOT algorithm of Chapter 6 for neural architecture search. Our
implementation follows the description of Chapter 6 but integrates the robustness and multi-
fidelity ideas into the framework. Specifically, we use a uniform prior on the 11 GP hyperpa-
rameters and sample them using slice sampling as described in Chapter 7.1.2. Moreover, we
combine the TTEI, GP-EI, TS, and UCB acquisitions as described in 7.1.1.

Multi-fidelity Neural Architecture Search: Like other model selection problems, in architec-
ture search, the cross validation performance can be approximated by training the model for
a fewer iterations. For this, we define a one dimensional fidelity space which is the number of
training iterations and use the exponential decay kernel on this space. We use the two-step BOCA
procedure as described in Chapter 7.2: first choose a network using a sampled acquisition, then,
choose the fidelity as described in Chapter 4.3.2.

7.3 Bayesian Optimisation Implementation in Dragonfly

We now describe our BO implementation in Dragonfly. These include some modest methodolog-
ical contributions in optimising the acquisition and defining kernels, in order to be able to handle
domains with different variable types and arbitrary constraints.
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7.3.1 Domains and Fidelity Spaces

We begin by describing the various variable types that can be used in Dragonfly. Next, we de-
scribe how one may specify constraints on these variables. The variable types and the constraints
will allow us to define domains and fidelity spaces over which we may optimise some function2.

• Euclidean domain: A d dimensional rectangular Euclidean domain is specified by pa-
rameters {(ai, bi)}di=1 where {ai}di=1 are the lower bounds and {bi}di=1 the upper bounds of
each dimension. Here, ai, bi ∈ R for all i. x ∈ Rd is in this domain if xi ∈ [ai, bi] for all i.

• Integral domain: A d dimensional rectangular Integral domain is specified by parameters
{(ai, bi)}di=1 where {ai}di=1 are the lower bounds and {bi}di=1 the upper bounds of each
dimension. Here, ai, bi ∈ Z for all i. x ∈ Zd is in this domain if xi ∈ [ai, bi] for all i.

• Discrete domain: A discrete domain is specified by a set of items A. We similarly define
a product discrete domain to be a set of set of items ×di=1Ai and any d-tuple x is in this
domain if xi ∈ Ai for all i. A special type of Discrete domain is the Boolean domain where
each Ai = {0, 1} is used to indicate if a variable of interest is either off (0) or on (1).

• Discrete numeric domain: Defined similarly as discrete domain and product discrete
domain except each item in the Ai’s is a real number.

• Discrete Euclidean Domains: This is similar to a discrete domain, but each element is a
Euclidean vector and all Euclidean vectors in the domain have the same dimensionality.

• Neural network domain: A neural network domain is used to define spaces over neu-
ral network architectures for neural architecture search. Such a domain is specified by
constraints on the following parameters.

max num layers, min num layers: The maximum and minimum number of layers
in the network.
max num units per layer, min num units per layer: The maximum and mini-
mum number of computational units in a layer.
max num edges: The maximum number of directed edges in the network, where an
edge is a connection from one layer to another.
max in degree: The maximum number of incoming edges into a layer.
max out degree: The maximum number of outgoing edges from a layer.
max mass, min mass: The maximum and minimum mass of a network, as defined by
the OTMANN distance [130].

• Cartesian product domain: This domain is used to specify Cartesian products of the
above domains. Specifically, a k-tuple x is said to be in a Cartesian product domain×ki=1Ai
if xi ∈ Ai for all i ∈ {1, . . . , k}. Here, each Ai could be of one of the above domain types
or a Cartesian product domain. In particular, a Cartesian product domain allows us to
combine different domains in order to obtain complex domain that we can optimise over.

2We will overload the term domain to mean i) the domain X over which a function may be optimised or ii) a set
of items which could either be a domain X or a fidelity space Z .
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1 {
2 "name": "domain_1",

3

4 "domain":{
5 "x0":{
6 "name":"x0",

7 "type":"int",

8 "min":0,

9 "max":14

10 },
11 "x1":{
12 "name":"x1",

13 "type":"discrete",

14 "items":"foo -bar"

15 },
16 "x2":{
17 "name":"x2",

18 "type":"discrete_numeric",

19 "items":"4-10-23-45-78-87.1-91.8-99-75.7-28.1-3.141593"

20 }
21 }
22

23 }

Figure 7.5: An example domain specification in Dragonfly in JSON format. The domain includes an
integral variable, a discrete variable, and a discrete numeric variable.

Domain Constraints

In addition to specifying a variable, one might wish to impose constraints on the allowable values
of these variables. These constraints can be specified in Dragonfly via an expression or a function
that returns a Boolean. For example, if we have a Euclidean variable a ∈ [−1, 1]2, a constraint
‖a‖ ≤ 1 ensures that function evaluations are constrained to inside the unit ball.

Specifying Domains in Dragonfly

The most straightforward way to specify a domain in Dragonfly is via a JSON file. We have
demonstrated them via two examples. First, Figure 7.5 presents a simple use case specifying a
domain having three variables. The first x0 is an integer taking values in [0, 14], the second x1 is
a discrete variable which can be one of foo or bar, and the third x2 is a discrete numeric variable
taking numeric but a discrete set of values specified by the items field.

Next, Figure 7.6 describes the optimisation space for a real world electrolyte design task where
one wishes to optimise for a variety of properties such as bulk conductivity and viscosity (see
Chapter 7.4. Here, we have a library of 5 lithium salts, LiPF6, LiCoO2, LiMnO2, LiNiO2,
LiAlO2, (we will refer to the last four as LiXO2), of which we can use a maximum of 3 in
each design. The xxx present Boolean variables indicating whether or not each salt is present.
We have used a Boolean variable for LiPF6 and a Boolean array of size 4 for the LiXO2 salts.
The max num salts constraint ensures that there are at most 3 salts. The xxx mol variables
indicate the molarity of each salt. The experimental apparatus can only add them in incre-
ments of 0.05 and hence they are added as discrete numeric variables with different ranges.
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1 {
2 "name": "electrolyte",

3

4 "domain" : {
5 "LiPF6_present" : {
6 "name":"LiPF6_present",

7 "type":"boolean"

8 },
9 "LiXO2_salts_present" : {

10 "name":"LiXO2_salts_present",

11 "type":"boolean",

12 "dim":4

13 },
14 "LiPF6_mol" : {
15 "name":"LiPF6_mol",

16 "type":"discrete_numeric",

17 "items":"0.0:0.05:3.5"

18 },
19 "LiXO2_salts_mol" : {
20 "name":"LiXO2_salts_mol",

21 "type":"discrete_numeric",

22 "items":"0.0:0.05:3.0",

23 "dim":4

24 },
25 "solvent_fractions" : {
26 "name":"solvent_fractions",

27 "type":"float",

28 "min":0,

29 "max":1,

30 "dim":3

31 }
32 },
33

34 "domain_constraints" : {
35 "constraint_1" : {
36 "name" : "max_num_salts",

37 "constraint": "LiPF6_present + sum(LiXO2_salts_present) <= 4"

38 },
39 "constraint_2" : {
40 "name" : "max_molarity",

41 "constraint": "LiPF6_present * LiPF6_mol + sum([a * b for (a, b) in zip(LiXO2

_salts_present, LiXO2_salts_mol)]) <= 7.8"

42 },
43 "constraint_3" : {
44 "name" : "solvent_fraction_constraint",

45 "constraint": "solvent_fraction_constraint.py"

46 }
47 }
48

49 "fidel_space" : {
50 "mixing_time": {
51 "name":"mixing_time",

52 "type":"int",

53 "min":60,

54 "max":300

55 }
56 },
57

58 "fidel_to_opt" : [300]

59

60 }

Figure 7.6: An example domain specification in Dragonfly in JSON format. The domain includes several
discrete and discrete numeric variables while the fidelity space consists of a Euclidean variable.
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The total salt concentration should be less than 7.8 to avoid crash out and this is indicated in the
max molarity constraint. The solvent can be composed of 4 ingredients: water, ethyl carbonate,
ethyl methyl carbonate, and dimethyl carbonate. We represent this space via the 3 dimensional
solvent fractions variable which represent the fractions of the last 3 ingredients. It is then
assumed that 1 minus their sum is the fraction of water present. The solvent fractions need to
satisfy a variety of constraints which cannot be specified via a string. They are specified via a
python function defined in solvent fraction constraint.py. Finally, the fidelity space con-
sists of one variable, the mixing time, which can be varied between 60 seconds and 300 seconds.
The longer the mixing, the more reliable the experimental readings, but they take more time to
complete. We wish to optimise for the desired properties when the solution is well mixed, i.e.
300 seconds, and this is specified by the fidel to opt field.

7.3.2 Kernels

Dragonfly implements the following kernels which enables defining GPs over the above domains.

• Squared Exponential (SE) Kernel: Let x, x′ ∈ Rd. The SE kernel, parametrised by a
bandwidth vector h ∈ Rd, and a scale parameter σ ∈ R+, takes the following form.

κσ,h(x, x
′) = σ exp

(
−

d∑
i=1

(xi − x′i)2

2h2
i

)
The SE kernel can be used on Euclidean, integral, discrete Euclidean, and discrete numeric
domains.

• Matérn Kernel: Let x, x′ ∈ Rd. The Matérn kernel, parametrised by a bandwidth vector
h ∈ Rd, a smoothness parameter ν ∈ R, and a scale parameter σ ∈ R+, takes the following
form.

κν,h(x, x
′) = σ

21−ν

Γ(ν)
(
√

2νz)νBν(
√

2νz), z2 =
d∑
i=1

(xi − x′i)2

2h2
i

HereBν is the modified Bessel function. The SE kernel can be used on Euclidean, integral,
discrete Euclidean and discrete numeric domains. Following recommendations in Snoek
et al. [232], we use the Matérn kernel with parameter ν = 2.5 as the default kernel for the
above domains.

• Hamming Kernel: Given x, x′ in some product of discrete domains×ki=1Ai, the Hamming
distance is a useful measure of similarity between x and x′. We implement the following
form of the Hamming kernel, parametrised by a scale parameter σ ∈ R+ and a weight
wector α ∈ Rk

+, such that
∑

i αi = 1.

κσ,α(x, x′) = σ

k∑
i=1

αi1(xi = x′i).

The Hamming kernel is used as the default kernel for discrete domains.

191



• OTMANN Kernel: The OTMANN distance and the derivative kernel, as described in [130],
is used as the default kernel for neural network domains.

• Additive Kernels: As described in Chapter 7.2, we implement a few additive kernels such
as the group additive kernel [120] and the ESP kernel [54, 117, 224].

• Exponential Decay Kernel: As described in Chapter 7.2, we implement the exponential
decay kernel which is useful for multi-fidelity optimisation for settings where we may
expect monotonic behaviour across the fidelity space, such as in model selection.

7.3.3 Optimising the Acquisition

To maximise the acquisition ϕt in purely Euclidean spaces with no constraints, we use the di-
viding rectangles algorithm [112] or the PDOO algorithm [86] by default, depending on the
dimensionality. In all other cases, we use an evolutionary algorithm. For this, we begin with an
initial pool of randomly chosen points in the domain and evaluate the acquisition at those points.
Then we generate a set of Nmut mutations of this pool as follows. First, we stochastically select
Nmut candidates from this set such that those with higher ϕt values are more likely to be selected
than those with lower values. Then we apply a mutation operator to each candidate. Finally,
we evaluate the acquisition on this Nmut mutations, add it to the initial pool, and repeat for the
prescribed number of steps.

We apply the following mutation operators to each individual variable of a given candidate point
to obtain the final mutation. For Euclidean variables, we sample from a Gaussian centred at the
current point. For integral, discrete numeric, and discrete Euclidean variables, we assign proba-
bilities to all points in the domain based on how far they are from the candidate – we then sample
using these probabilities. For discrete variables, we choose the same candidate with probability
0.5 or randomly choose another element in the domain with probability 0.5. In addition to this,
each time we generate a new candidate we test if they satisfy the constraints specified. If they do
not, we reject that sample and keep sampling until all constraints are satisfied. One disadvantage
to this rejection sampling procedure is that if the constrains only permit a small subset of the
entire domain, it could significantly slow down the optimisation of the acquisition.

7.3.4 Initialisation

Following recommendations in a line of BO work [23, 171], we bootstrap BO with ninit evalu-
ations. Assume that the domain to maximise f over is a product of K domains. We generate
ninit points from each of the individual domains and concatenate them to produce the ninit initial-
isation points. For individual Euclidean domains, these points were chosen via Latin hypercube
sampling; for neural network domains, we do so using ninit feed forward architectures; for re-
maining domain types, we choose them via uniformly random sampling. Moreover, as we did
in the optimisation of the acquisition, we use rejection sampling to test if the constraints on the
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domain are satisfied. In our implementation, by default, ninit is set to 5d where d is the total
dimensionality of the domain but is capped off at 0.075 of the total evaluation budget.

We have summarised the resulting procedure for Bayesian optimisation in Dragonfly in Algo-
rithm 10. q denotes the next query. In usual BO settings, it refers simply to the next point x ∈ X
in the domain, i.e. q = (x); in multi-fidelity settings it can also refer to a fidelity parameter z, i.e.
q = (z, x). acq(q), hp(q) refer to the acquisition and the choice of {ML, PS} for GP hyperparam-
eter selection. multinomial sample(`, w) samples an element from a list ` from the multinomial
distribution {wi/

∑
j wj}

|`|
i=1.

Algorithm 10 BO in Dragonfly with M asynchronous workers, from Kandasamy et al. [133]

Require: ninit, ncyc, `acq, `hp.
1: D0 ← Evaluate f at ninit points.
2: ymax ← maximum y value in D0.
3: wacq = ωacq

0 1|`acq|.
4: whp = ωhp

0 12.
5: for j = 0, 1, 2 . . . do
6: Wait for a worker to finish.
7: Dj ← Dj−1 ∪ {(q, y)} where (q, y) are the worker’s previous query and observation.
8: if mod (t, ncyc) = 0, then # updates for GP hyperparameters

9: ΘPS ← sample ncyc GP hyperparameter values.
10: θML ← maximise GP marginal likelihood to find best GP hyperparameter values.
11: end if
12: if y > ymax, then # update weights if new max-value was found

13: wacq[acq(q)] = wacq[acq(q)] + 1.
14: whp[hp(q)] = whp[hp(q)] + 1.
15: end if
16: θ ← multinomail sample([pop(Θ), θML], whp). # choose GP hyperparameters

17: α← multinomial sample(`acq, wacq). # choose acquisition

18: µt−1 ← Compute posterior GP mean given Dj using θ.
19: Compute hallucinated posterior GPt−1 ← GP(µt−1, κt−1;Dj ∪ {(x, µt−1(x))}x∈Ft , θ).
20: qt ← Determine next query for evaluation using acquisition α and GP GPt−1.
21: Re-deploy worker with an evaluation at qt.
22: end for

7.3.5 Multi-objective Optimisation

This sub-chapter describes work with Biswajit Paria on multi-objective optimisation, who was
primiarily responsible for the ideas, algorithms, and analysis. The methods were intergrated
into Dragonfly, where we incorporate many techniques, such as the ensemble approaches to GP
hyperparameter selection and acquisition, parallelisation, and high dimensions into the multi-
objective framework as well.
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In many practical applications, we are required to maximise multiple objectives, which typically
tend to be competing in nature. For instance, in drug discovery, a chemist wishes to find a
drug that has high solubility, high potency, and low toxicity. Drugs that are very potent are also
likely to be toxic, so these two objectives are typically competing. Formally, in multi-objective
optimisation (MOO) [51], we wish to optimise K functions f1, . . . , fK where fk : X → R for
all k ∈ {1, . . . , K}, where, it is generally not possible to optimise all of them simultaneously.
Hence, most MOO algorithms, aim to recover a set of Pareto optimal points (see Chapter 2, [21]).
A point x ∈ X is said to be Pareto optimal if no other point dominates x on all objectives, i.e.
for all x′ ∈ X/x, there exists k such that fk(x) > fk(x

′). Traditional algorithms for MOO
(e.g. [55, 93, 140, 196, 198, 245, 278, 280]) aim to recover the entire Pareto front of points in
X . In many applications however, it is not necessary, and often wasteful to recover the entire
Pareto front, especially when each experiment (evaluation of all functions) can be expensive.
For example, in the above drug discovery example, such an algorithm might still aim to find
drugs that are Pareto optimal, but are too toxic to administer to a patient. A chemist might be
more interested in finding Pareto optimal drugs, but with more acceptable toxicity levels.

In Paria et al. [190], we developed MOORS (Multi-objective Optimisation with Random Scalari-
sations), a randomised Bayesian multi-objective optimisation approach. When compared to other
approaches for MOO, it enjoys the following advantages.

1. Flexibility: MOORS allows a practitioner to flexibly explore Pareto optimal regions of
interest, and change the region during the course of experimentation if necessary. The
approach is flexible enough to recover the entire Pareto front when necessary.

2. Theoretical guarantees: Our approach seamlessly lends itself to analysis using a suitable
notion of regret, and achieves sub-linear regret bounds.

3. Computational simplicity: The computational complexity of our approach scales linearly
with the number of objectives K. This is in contrast to several other methods whose
complexity scales exponentially.

We now briefly describe MOORS. We begin by defining two notions of scalarisations for the K
objectives, linear and Tchebyhev. Let λ ∈ RK

+ . Then, they are respectively defined as,

glin(λ, x) =
K∑
k=1

λkfk, gtch(λ, x) = min
k∈{1,...,K}

1

λk
σk(fk(x)). (7.1)

Here, σk : R → R+ is a monotone function. Given a desired notion of scalarisation above, at
each iteration, MOORS first samples λ from a given distribution pλ, and then queries at some
x ∈ X so as to maximised the linearisation for the sampled λ. The specific strategy for choosing
x, given λ follows by applying an acquisition such as UCB or TS on the joint posterior of all
objectives. The flexibility of the approach comes from our ability to specify pλ, which can also
be changed during the optimisation procedure.
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7.4 Experiments

We now present our experimental results. We compare Dragonfly to the following algorithms
and packages for zeroth order optimisation. RAND: uniform random search of the domain;
EA: evolutionary algorithm; PDOO: Parallel Deterministic Optimistic Optimisation from Grill
et al. [86]; HyperOpt: hyperparameter optimisation package from Bergstra et al. [13]; SMAC:
Sequential Model based Algorithm Configuration from Hutter et al. [103]; Spearmint: a BO
package from Snoek et al. [232]; GPyOpt: a GP based BO package [11]. Of these PDOO is
a deterministic non-Bayesian algorithm specifically designed for Euclidean domains. SMAC,
Spearmint, and GPyOpt are model based Bayesian optimisation procedures, where SMAC uses
random forests as its main model, while Spearmint and GPyOpt use GPs. For EA, we use the
same procedure used to optimise the acquisition in Chapter 7.3.

7.4.1 Experiments on Synthetic Benchmarks

We begin with some experiments comparing Dragonfly to the above methods in a suit of standard
benchmarks for zeroth order optimisation. All functions are available in the Dragonfly repository
at dragonfly.github.io.

Euclidean Domains

Our first set of experiments are on a series of synthetic benchmarks in Euclidean domains. We
use the Branin (d = 2), Hartmann3 (d = 3), Park1 (d = 4), Park2 (d = 4), Hartmann6 (d = 6),
and Borehole (d = 8) benchmarks, and compare all methods on their performance over 200
evaluations. The results are given in Figure 7.7, where we plot the simple regret (1.1) against the
number of evaluations (lower is better). We do not compare EA in these experiments to avoid
clutter in the figures, since its performance was typically worse than all other BO methods.

Next, we construct high dimensional versions of the above benchmarks and compare all meth-
ods in Figure 7.8. The high dimensional forms were obtained via an additive model f(x) =
f ′(x(1)) + f ′(x(2)) . . . where f ′ is a lower dimensional function and the x(i)’s are coordinates
forming a low dimensional subspace. For example, in the Hartmann3x6 problem, we have an 18
dimensional function obtained by considering six Hartmann3 functions along coordinate groups
{1, 2, 3}, {4, 5, 6}, . . . , {16, 17, 18}. Spearmint is not shown on most of the problems since it
was too slow in high dimensional settings. SMAC’s initialisation procedure threw an error in
dimensions larger than 40 and is hence not shown in the corresponding experiments.

Next, we use the same test functions as above, but add noise to the function evaluations. As
before, we evaluate all methods on the simple regret argmax f − maxxt f(xt), which is now
more challenging since the true function value is never observed. For the Branin, Hartmann3,
Harmann6, Park1, and Hartmann6 functions we add Gaussian noise with standard deviation 0.1,
for the Park2 function, we add Gaussian noise with standard deviation 0.5, and for the Borehole
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Figure 7.7: Comparison of Dragonfly with other algorithms and BO packages on functions with noise-
less evaluations defined on Euclidean domains. We plot the simple regret (1.1) so lower is better. The title
states the name of the function, and its dimensionality. All curves were produced by averaging over 20
independent runs. Error bars indicate one standard error. The legend for all curves is available in the first
figure.
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Figure 7.8: Comparison of Dragonfly with other algorithms and BO packages on functions with noise-
less evaluations defined on high dimensional Euclidean domains. We plot the simple regret (1.1) so lower
is better. SMAC’s initialisation procedure did not work in dimensions larger than 40 so it is not shown
in the respective figures. Spearmint is not shown on all figures since it was too slow to run on high
dimensional problems. See caption under Figure 7.7 for more details.
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Figure 7.9: Comparison of Dragonfly with other algorithms and BO packages on functions with noisy
evaluations defined on Euclidean domains. We plot the simple regret (1.1) so lower is better. The title
states the name of the function, and its dimensionality. See caption under Figure 7.7 for more details.
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Figure 7.10: Comparison of Dragonfly with other algorithms and BO packages on functions with noisy
evaluations defined on Euclidean domains. We plot the simple regret (1.1) so lower is better. SMAC’s
initialisation procedure did not work in dimensions larger than 40 so it is not shown in the respective
figures. Spearmint is not shown on all figures since it was too slow to run on high dimensional problems.
See caption under Figure 7.7 for more details.
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function, we add Gaussian noise with standard deviation 5; the noise scales were determined
based on the range of the function. The results are given in Figure 7.9 for the low dimensional
benchmarks and in Figure 7.10 for the high dimensional benchmarks.

Take-aways: Spearmint and Dragonfly perform consistently well across all problems. Spearmint
perhaps performs slightly better on the low dimensional tasks, but is prohibitively expensive be-
yond 20 dimensions. Dragonfly outperforms other methods significantly in the higher dimen-
sional problems, except for the 50 dimensional Branin×25 function where GPyOpt does better.
Dragonfly is also fairly robust to noise in the evaluations unlike some other methods whose per-
formances appear to deteriorate under noise.

Non-Euclidean Domains

Next, we compare Dragonfly to the above baselines on non-Euclidean domains. For this, we
modify the above Euclidean benchmarks so that they can take non-Euclidean arguments. Specif-
ically, we use modified versions of the Borehole, Hartmann6, Park1 and Park2 functions. Addi-
tionally, we also construct a synthetic function defined on neural network domains. The results
are given in Figure 7.13. Since the true maximum of these functions are not known, we simply
plot the maximum value found against the number of evaluations (higher is better). We also
construct variations of these function which can take a fidelity argument. Hence, a strategy may
use these approximations to speed up the optimisation process. The x-axis in all cases refers to
the expended capital, which was chosen so that a single fidelity algorithm would perform ex-
actly 200 evaluations. We compare a multi-fidelity version of Dragonfly, which uses the BOCA
strategy [127], to choose the fidelities and points for evaluation.

Next, as before, we consider noisy versions of the above functions. As before, we add Gaussian
noise whose scale is determined by the range of the function. We wish to remind the reader that
these functions and the approximations are defined in the Dragonfly repository.

Take-aways: Dragonfly performs best on two out of the five cases in which we compare all
the methods, but more importantly is able to do consistently well across all problems. GPyOpt
and Dragonfly perform very well on some problems, but also perform poorly on others. In
addition, Dragonfly is also able to outperform the (fairly weak) EA and RAND baselines on the
synthetic neural architecture search task. It is interesting to note that the improvements due to
multi-fidelity optimisation are modest in some cases, and in the case of the Park1 3 function,
it performs worse than the single fidelity version. We believe this is due to two factors. First,
the multi-fidelity methods spends an initial fraction of its capital at the lower fidelities, and the
simple regret is ∞ until it queries the highest fidelity. Second, there is an additional statistical
difficulty in estimating, what is now a more complicated GP across the domain and fidelity space.
The combination of these factors undermines the advantages the cheaper approximations may
provide. However, the multi-fidelity version is able to do better in most cases. For example, on
the neural architecture search task where we have a complex domain, the multi-fidelity version
is able to do significantly better.
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Figure 7.11: Comparison of Dragonfly with other algorithms and BO packages on synthetic functions
with noiseless evaluations defined on non-Euclidean domains. We plot the maximum value, so higher is
better. The x-axis shows the expended capital, which was chosen so that a single fidelity method would
perform exactly 200 evaluations. The title states the name of the function, and its dimensionality (number
of variables). We do not state the dimensionality for the synthetic CNN function since the dimensionality
of a space of CNN architectures is not defined. See dragonfly.github.io for a description of these
functions and the approximations for the multi-fidelity curves. All curves were produced by averaging
over 20 independent runs. Error bars indicate one standard error. The legend for all curves is available
in the first figure. We do not compare Spearmint, HyperOpt, SMAC, and GPyOpt on the synthetic CNN
functions since they do not support optimising over neural architectures.
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Figure 7.12: Comparison of Dragonfly with other algorithms and BO packages on synthetic functions
with noisy evaluations defined on non-Euclidean domains. We plot the maximum value, so higher is better.
See caption under Figure 7.13 for more information on the figures.
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Figure 7.13: Comparison of Dragonfly with RAND and EA on synthetic functions with constraints on
the domain. We plot the maximum value, so higher is better. We perform experiments on three different
synthetic functions where the left column is when the function evaluations are noiseless, and the right
column is when noise is added to the evaluations. The title states the name of the function, and its dimen-
sionality (number of variables). See github.com/dragonfly/dragonfly/tree/master/demos synthetic

for a description of these functions and the approximations for the multi-fidelity curves. All curves were
produced by averaging over 20 independent runs. Error bars indicate one standard error.
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Figure 7.14: Results on the maximum likelihood
estimation problem on the luminous red galaxies
dataset [244]. The x-axis is the number of evalua-
tions and the y-axis is the highest likelihood found
so far (higher is better). All curves were produced
by averaging over 10 independent runs. Error bars
indicate one standard error.

Domains with Constraints

For the final set of experiments, we consider three optimisation tasks where we impose addi-
tional constraints on the domain variables. Specifically, we consider versions of the Hartmann3,
Park1 and Borehole functions. As an example, the Hartmann3 function is usually defined on the
domain [0, 1]3; however, we consider a constrained domain X =

{
x ∈ [0, 1]3 ; x2

1 + x2
2 ≤ 1/2

}
.

Descriptions of the other functions and domains are available in the Dragonfly repository. In
Figure 7.13, we compare Dragonfly to RAND and EA . We do not compare to other methods and
packages, since, to our knowledge, they cannot handle arbitrary constraints of the above form.
Figure 7.13 also presents results when function evaluations are noisy.

7.4.2 Experiments on Astrophysical Maximum Likelihood Problems

In this section, we consider two maximum likelihood problems in computational Astrophysics.

Luminous Red Galaxies: Here we used data on Luminous Red Galaxies (LRGs) for maxi-
mum likelihood inference on 9 cosmological parameters, spatial curvature Ωk ∈ (−0.01, 0.03),
dark energy fraction ΩΛ ∈ (0.7, 0.8), cold dark matter density ωc ∈ (0.1, 0.105), baryonic
density ωB ∈ (0.02, 0.3), scalar spectral index ns ∈ (0.5, 1.7), scalar fluctuation amplitude
As ∈ (0.65, 0.75), running of spectral index α ∈ (−0.02, 0.01), galaxy bias b ∈ (1.0, 2.0), and
a nonlinear correction factor Qnl ∈ (30, 31). The likelihood is computed via the galaxy power
spectrum which measures the distribution of temperature fluctuations as a function of scale. Soft-
ware and data were taken from Kandasamy et al. [121], Tegmark et al [244]. Each evaluation
here is relatively cheap, and hence we compare all methods on the number of evaluations in
Figure 7.14. We do not compare a multi-fidelity version since cheap approximations were not
available for this problem. Spearmint, GPyOpt, and Dragonfly do well on this task.

Type Ia Supernova: We use data on TypeIa supernova for maximum likelihood inference on
3 cosmological parameters, the Hubble constant H0 ∈ (60, 80), the dark matter fraction ΩM ∈
(0, 1) and dark energy fraction ΩΛ ∈ (0, 1). We use data from Davis et al [50] which has data
on 192 supernovae, and the likelihood is computed using the method described in [225]. This
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Figure 7.15: Results on the maximum likeli-
hood estimation problem on the Type Ia supernova
dataset [50]. The x-axis is time and the y-axis is the
highest likelihood found so far (higher is better). We
do not compare PDOO, HyperOpt and Spearmint
because they do not provide an API for optimising
over time. All curves were produced by averaging
over 10 independent runs. Error bars indicate one
standard error.

requires a one dimensional numerical integration for each point in the dataset. We construct
a p = 2 dimensional multi-fidelity problem where we can choose between data set size N ∈
[50, 192] and perform the integration on grids of size G ∈ [102, 106] via the trapezoidal rule. As
the cost function for fidelity selection, we used λ(N,G) = NG as the computation time is linear
in both parameters. Our goal is to maximise the average log likelihood at z• = [192, 106]. Each
method was given a budget of 4 hours on a 3.3 GHz Intel Xeon processor with 512GB memory.
The results are given in Figure 7.15 where we plot the maximum average log likelihood (higher
is better) against wall clock time. The plot includes the time taken by each method to determine
the next point for evaluation. We do not compare Spearmint and HyperOpt since they do not
provide an API for optimisation on a time budget.

7.4.3 Experiments on Model Selection Problems

We next provide experiments on three regression problems. In all cases, we plot the regression
error (lower is better) against wall clock time. Moreover, we set up a one dimensional fidelity
space where a multi-fidelity algorithm may choose to use a subset of the dataset to approximate
the performance when training with the entire training set. We do not compare Spearmint and
HyperOpt since they do not provide an API for optimisation on a time budget.

SALSA, Energy Appliances: We tune 30 parameters of the SALSA regression method [117]
on the energy appliances dataset [30]. These parameters are the additive order (integer), the type
of kernel (discrete), the kernel scale (float), and the bandwidths for the 27 dimensions (float).
The goal was to train the method on a training set of 8000 points and find the configuration with
the lowest error on a validation set of 2000 points. A multi-fidelity algorithm could approximate
the training procedure using a subset of the training set of size z ∈ (2000, 8000). As the cost
function, we use λ(z) = z3, since training time is cubic in the training set size. Each method
was given a budget of 8 hours on a 2.6 GHz Intel Xeon processor with 384GB memory. The
results are presented in Figure 7.16. In this example, SMAC does very well because its initial
value luckily landed at a good configuration.

Random forest regression, News popularity: We tune random forest regression (RFR) on the
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Figure 7.16: Results on the SALSA model selection
problem comparing Dragonfly to other packages.The
x-axis is wall clock time and the y-axis is the regres-
sion error (lower is better). We do not compare Hy-
perOpt and Spearmint because they do not provide
an API for optimising over time. All curves were
produced by averaging over 10 independent runs. Er-
ror bars indicate one standard error.

news popularity dataset [57]. We tune 6 parameters available in the Scikit-Learn implementation
of RFR which include the number of estimators (integer), criterion (discrete), tree depth (integer),
min samples split (float), min samples leaf, (float), and max features (float) parameters. The
goal was to train the method on a training set of 20000 points and find the configuration with the
lowest error on a validation set of 10000 points. A multi-fidelity algorithm could approximate
the training procedure using a subset of the training set of size z ∈ (5000, 20000). As the cost
function, we use λ(z) = z, since training time is linear in the training set size. Each method was
given a budget of 6 hours on a 3.3 GHz Intel Xeon processor with 512GB memory. The results
are presented in the left column of Figure 7.17.

Gradient Boosted Regression, Naval Propulsion: We tune 7 parameters of gradient boosted
regression (GBR) on the naval propulsion dataset [45]. The parameters in the Scikit-Learn
implementation of GBR include the number of estimators (integer), criterion (discrete), learn-
ing rate (float), tree depth (integer), subsample fraction (float), min samples split (float), and
min samples leaf (float). We used a training set of 9000 points, and a validation set of 2000
points. A multi-fidelity algorithm could approximate the training procedure using a subset of the
training set of size z ∈ (2000, 9000). As the cost function, we use λ(z) = z. Each method was
given a budget of 3 hours on a 2.6 GHz Intel Xeon processor with 384GB memory. The results
are presented in the right column of Figure 7.17.

Table 7.1 compares the final error achieved by all methods on the above three datasets at the end
of the respective optimisation budgets. In addition to the methods in Figure 7.17, we also show
the results for BO (with Dragonfly) at the lowest fidelity, random search at the lowest fidelity
and Hyperband [154], which is a multi-fidelity method which uses random search and successive
halving. For example, for BO and random search at the lowest fidelity on the RFR problem,
we performed the same procedure as RAND and Dragonfly, but only using 5000 points at each
evaluation. Interestingly, we see that for the GBR experiment, BO using only a fraction of the
training data, outperforms BO using the entire training set. We speculate that this is because, in
this problem, one can get good predictions even with 2000 points, and the lower fidelity versions
are able to do better since they are able to perform more evaluations within the specified time
budget than the versions which query the higher fidelity.
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Figure 7.17: Results on the random forest regression and gradient boosted regression problems compar-
ing Dragonfly to other packages.The title states the method, the data set used and the dimensionality of
the problem. The x-axis is wall clock time and the y-axis is the regression error (lower is better). We do
not compare HyperOpt and Spearmint because they do not provide an API for optimising over time. All
curves were produced by averaging over 10 independent runs. Error bars indicate one standard error.

Dataset Dragonfly Dragonfly
(lowest)

Dragonfly
+MF GPyOpt SMAC RAND RAND

(lowest) Hyperband

RFR (News)
0.6456
±0.08044

.6631
±0.0110

0.5203
±0.0805

0.5904
±0.0635

0.9802
±0.0291

0.9314
±0.0371

0.8501
±0.0563

0.6812
±0.0412

GBR (Naval)
5.82e−5
±1.52e−5

1.14e−5
±7.3e−7

3.00e−5
±1.00e−5

3.26e−4
±1.46e−5

1.97e−5
±5.27e−6

1.04e−3
±1.10e−5

1.31e−5
±2.34e−6

1.13e−5
±6.4e−7

SALSA (Energy)
0.0097
±0.0015

0.9950
±0.0033

0.0095
±0.0031

0.0105
±0.0022

0.0084
±0.0003

0.0634
±0.0019

0.9974
±0.0032

0.3217
±0.1032

Table 7.1: Final least squared errors in the regression problems of Chapter 7.4.3. In addition to the meth-
ods in Figure 7.17, we compare Dragonfly and random search at the lowest fidelity, as well as Hyperband.

Neural Architecture Search

In our final set of experiments, we compare Dragonfly to NASBOT on some neural architecture
search problems. Here, NASBOT is the vanilla implementation in Chapter 6, while the Dragonfly
version uses multi-fidelity approximations and also tunes for the learning rate. Each function
evaluation, trains an architecture x ∈ X with stochastic gradient descent (SGD) with a fixed
batch size of 256. We used the number of batch iterations in a one dimensional fidelity space, i.e.
Z = [4000, 20000] for Dragonfly while NASBOT always queried with z• = 20, 000 iterations.
As the cost function, we use λ(z) = z, since training time is linear in the number of iterations.

We test both methods in an asynchronously parallel set up of two GeForce GTX 970 (4GB) GPU
workers with a computational budget of 8 hours. On each run, both methods were initialised
with 10 feed-forward architectures, all evaluated at the highest fidelity; these initial networks are
illustrated in Figure 17 of Kandasamy et al. [130]. Additionally, we also impose the following
constraints on the space of architectures.
• Maximum number of layers: 60

207



0 2 4 6 8
Wall Clock Time (hours)

0.7

0.8

0.9

1

1.1
V
a
li
d
a
ti
o
n
E
rr
o
r

Blog Feedback, #workers = 2

NASBOT

Dragonfly+MF

0 2 4 6 8

Wall Clock Time (hours)

0.1

0.12

0.14

0.16

0.18

0.2

V
al
id
at
io
n
E
rr
or

Indoor Location, #workers = 2

0 2 4 6 8

Wall Clock Time (hours)

0.6

0.7

0.8

0.9

1

V
al
id
at
io
n
E
rr
or

Slice Localisation, #workers = 2

Figure 7.18: Results on the neural architecture search experiments. In all figures, the x-axis is time. The
y axis is the mean squared validation error (lower is better). The title of each figure states the dataset.
In all cases, we used a parallel set up of two asynchronous workers, where each worker is a single GPU
training a single model. We used a one dimensional fidelity space where we chose the number of batch
iterations from 4000 to 20,000 (z• = 20, 000). All figures were averaged over 5 independent runs. Error
bars indicate one standard error.

• Maximum mass: 108

• Maximum in/out degree: 5

• Maximum number of edges: 200

• Maximum number of units per layer: 1024

• Minimum number of units per layer: 8

We present the results of our experiments on the blog feedback [29], indoor location [247],
and slice localisation [84], datasets in Figure 7.18. Dragonfly outperforms NASBOT primarily
because it is able to use cheaper evaluations to approximate fully trained models, and additionally
since it tunes the learning rate and uses more robust techniques for selecting the acquisition and
GP hyperparameters.
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7.4.4 Dragonfly in Use Elsewhere

We conclude this section by stating some examples where Dragonfly has been used for various
optimisation tasks in different applications. They are presented separately as I was not primarily
responsible for these results.

Electrolyte Design

Chemists designing electrolytes for lithium-ion batteries, are interested in finding a suitable de-
sign for the use case. This is typically characterised by requiring that the bulk conductivity of
the electrolyte be maximised, while ensuring that the voltage stability and viscosity are at ac-
ceptable levels. When designing this electrolyte, the chemist can choose to include a few of
several salts and solvents from a large library. Once these salts and solvents are chosen, they also
need to choose the molarities of each salt and the amount of each solvent included in the design.
Moreover, there are other additional design constraints—for instance, the total salt concentration
should not exceed a pre-specified level in order to avoid saturation.

Figure 7.19 shows an automated experimental apparatus for measuring various electrolyte prop-
erties, used at the Scott Institute for Energy at Carnegie Mellon University. This apparatus was
interfaced with Dragonfly in order to measure various electrolyte properties, and design new elec-
trolytes in a feedback driven manner. The design space was similar to the example in Figure 7.6.
It included various Na and Li salts such as LiPF6, Na2SO4, and Na2NO3, and solvents such as
Ethyl Methyl Carbonate, Ethylene Carbonate, DiMethyl Carbonate, and water.

Optimising Computing Infrastructure

Computing infrastructure has become increasingly complex over the last few years, with several
hundreds or thousands of configuration parameters. For example, modern real time streaming
systems can have more than hundred knobs that need to be configured. Practitioners are inter-
ested in optimising for several criteria such as latency, CPU/memory footprints, and cost when
managing complex infrastructure systems, depending on the application at hand. These sys-
tems need to be optimised via trial and error, and moreover, since each experiment can be quite
expensive, we need to find optimal parameters in as few experiments as possible.

In Figure 7.20, we compare Dragonfly, RAND, and EA for optimising the latency of a real time
streaming system involving Spark, Kafka, and Redis database components. All methods were
deployed in a parallel set up of 10 workers, where each worker measured the latency on the Yahoo
streaming benchmark [1]. Each evaluation was executed on a t2.xlarge instance on AWS and
took approximately 10 minutes. The Figure shows the results for two fixed througput values,
and we see that Bayesian optimisation using Dragonfly is able to outperform other methods.
This work, led by Hai Pham, is part of a larger project which uses bandit methods to optimise
computing infrastructure systems.
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(a) (b)

(c) (d) (e) (f) (g)

Figure 7.19: Visuals of the apparatus used in the electrolyte design task. (a): A picture of the experimental
set up. (b): Dragonfly is interfaced with the LabVIEW software to communicate experimental configura-
tions and measurements. (c): Ingredients are chosen according to specifications from Dragonfly. (d)- (f):
Various stages of taking a measurement. (g): The conductivity (and other measurements) are measured
and fed back to Dragonfly. The entire video can be viewed at https://youtu.be/XUPWv1J DX4. These
experiments were conducted by researchers at the Scott Institutute for Energy at CMU. Willie Neiswanger
put together the video.
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Figure 7.20: Experimental results comparing Dragonfly to EA and RAND for optimising a real time
streaming system where data was streamed through a Spark/Kafka pipeline and written to a Redis
database. The left figure shows when the best latency values found by each method (lower is better)
when the throughput was fixed at 20K while the right figure shows the same when the throughput was
fixed to 10K. Hai Pham was primarily responsible for these experiments.
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Figure 7.21: Comparison of multi-objective optimisation methods implemented in Dragonfly (UCB Tch
and TS Tch) with other methods for MOO on the Locality Sensitive Hashing and Viola and Jones problems
described in Chapter 7.4. The y-axis is the Tsebychev simple regret for MOO (see (7.1) and Paria et al.
[190]) and the x-axis is the number of evaluations. Biswajit Paria was responsible for these experiments
and these results are taken directly from Paria et al. [190].

Multi-objective Optimisation

As stated in Chapter 7.3.5, Dragonfly implements Bayesian optimisation methods for multi-
objective optimisation. In this section, we compare the methods for the Tsebychev criterion (7.1)
using upper confidence bounds (UCB Tch) and Thompson sampling (TS Tch) implemented
in Dragonfly against the following methods for multi-objective optimisation: PESM [93], SM-
Sego [198], and ParEGO [140].

Locality Sensitive Hashing: Our first experiment is on Locality Sensitive Hashing (LSH) [8]
which is a randomised algorithm for computing k-nearest neighbours. We tune a number of
parameters in LSH, including the number of hash tables, the number of hash bits, and the number
of probes to make for each query. We wish to optimise three different performance criteria
for LSH: the average query time, precision and memory usage, which can be competing. For
instance, while increasing the number of hash tables results in smaller query times, it leads to
an increase in the memory footprint. Similarly, while increasing the number of probes leads to
a higher precision, it increases the query time. We run LSH on Glove word embeddings [192],
using the Glove Wikipedia-Gigaword dataset trained on 6B tokens with a vocabulary size of
400K and 300-d embeddings. Figure 7.21 compares UCB Tch and TS Tch to the other methods
listed above for optimising the three criteria listed above.

Viola Jones: The Viola Jones algorithm [254] is a fast stagewise face detection algorithm. At
each stage a simple feature detector is run over the image producing a real value. If the value is
smaller than a threshold the algorithm exits with a negative decision (i.e. “no face”), otherwise
the image is processed by the next stage and so on. The Viola Jones pipeline has 27 tunable
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thresholds. We treat these thresholds as inputs and optimize for sensitivity, specificity, and the
time per query. The results are presented in Figure 7.21.

7.5 User Interface and APIs

We conclude this chapter with some details on installing and using Dragonfly. A full documen-
tation and tutorials to get started are available at dragonfly.github.io.

Installation: The most straightforward way to install Dragonfly is via pip.

$ pip install numpy

$ pip install dragonfly -opt

Dragonfly can also be installed via source, after installing the required dependencies.

$ pip install numpy scipy future six

$ git clone https :// github.com/dragonfly/dragonfly

$ cd dragonfly

$ python setup.py install

Command line usage: To use Dragonfly via the command line, we need to specify the op-
timisation problem (i.e. the function to be maximised and the domain) and the optimisation
parameters. We have demonstrated these on the Branin function in the examples directory. The
domain, fidelity space (if applicable) and the function should be specified in JSON or protocol
buffer format, as illustrated in Figures 7.5 and 7.6. In these figures, the name field specifies the
name of the python file which contains the objective and it should be in the same directory as the
JSON file. The following command, executes Dragonfly on the branin function.

$ cd dragonfly/examples

$ dragonfly -script.py --config synthetic/branin/config.json --

options options_files/options_example.txt

Here, the options flag points to a text file which specifies the parameters for optimisation. We
have illustrated one such options file in Figure 7.22. The multi-fidelity version of this demo can
be run via the following command.

$ dragonfly -script.py --config synthetic/branin/config_mf.json

--options options_files/options_example.txt

Using Dragonfly in the Python shell: Using Dragonfly in the Python shell is similar to using
other libraries. Below, is one example.
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1 # Acquisition function type

2 --acq ttei-ei-ucb

3
4 # No. of initial samples to ignore during sampling

5 --gpb_post_hp_tune_burn 170

6
7 # The budget of evaluations

8 --budget 100

9
10 # For mimisiation , set the max_or_min flag to min

11 --max_or_min max

Figure 7.22: An example options file in Dragonfly. In this file, --acq specifies the list of acquisitions to
use in the ensemble method, and --budget indicates the budget of evaluations.

$ python

>>> from dragonfly import minimise_function

>>> min_val , min_pt , history = minimise_function(lambda x: x ** 4

- x**2 + 0.1 * x, [[-10, 10]], 100);

...

>>> min_val , min_pt

( -0.32122746026750953 , array ([ -0.7129672]))

Using Dragonfly in Python code: Dragonfly can be imported and used in Python as shown
below. We have given a bare bones example, but in general, func is the function to be maximised,
domain is a domain object, which can be loaded from a configuration file as specified above, and
budget indicates the budget available for optimisation.

from dragonfly import minimise_function , maximise_function

from dragonfly.exd.domains import EuclideanDomain

func = lambda x: lambda x: x ** 4 - x**2 + 0.1 * x

domain = EuclideanDomain ([[-10, 10]])

max_capital = 100

# Maximise the function

min_val , min_pt , history = minimise_function(func , domain , max_capital)

print(min_val , min_pt)

# Minimise the negative of the function

min_val , min_pt , history = maximise_function(lambda x: -func(x),

domain , max_capital)
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Chapter 8

Beyond Bandits: Adaptive Decision
Making in Stateless Environments

In this chapter, we take a step back from bandits and analyse more general settings for sequential
decision making under certainty. While bandit methods have seen great success in several hy-
perparameter tuning and optimisation problems, real world data collection tasks are more broad
and complex, In such problems, like in the bandit setting, an agent takes an action, obtains an
observation, and proceeds sequentially to choose the next action in order to achieve an applica-
tion specific-goal. The agent should use the results of the previous actions to plan actions so as
to achieve the desired goal in as few actions as possible. However, the problems we study in
this setting differ from the bandit framework in a crucial way: the reward of the action is not
directly observed by the agent. In typical applications, the reward of each action could depend
on past actions and observations, and moreover, on uknown system characteristics. This makes
is substantially more challenging than the bandit framework.

In Chapter 8.1, we first study a general design of experiments (DOE) framework for Bayesian
decision making under uncertainty in stateless settings, and propose a general-purpose algorithm
for such problems. Next, in Chapter 8.2, we analyse active posterior estimation, a special class
of DOE tasks and develop specialised algorithms for that setting.

8.1 A General Framework for Adaptive Goal Oriented De-
sign of Experiments

Many real world problems fall into the DOE framework, where one wishes to design a sequence
of experiments and collect data so as to achieve a desired goal. For example, in electrolyte design
for batteries, a chemist would like to conduct experiments that measure battery conductivity in
order to identify an electrolyte that maximises the conductivity. On a different day, she would
like to conduct experiments with different electrolyte designs to learn how the viscosity of the
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electrolyte changes with design. These two tasks, black-box optimisation and active learning,
fall under the umbrella of DOE and are pervasive in industrial and scientific applications.

While several methods exist for specific DOE tasks, real world problems are broad and complex,
and specialised approaches have limited applicability. Continuing with the electrolyte design
example, the chemist can typically measure both conductivity and viscosity with a single ex-
periment [71]. Since such experiments are expensive, it is wasteful to first perform a set of
experiments to optimise conductivity and then a fresh set to learn viscosity. It is preferable to
design a single set of experiments that simultaneously achieves both goals. Another example is
metallurgy, where one wishes to conduct experiments to identify phase transitions in an alloy as
the composition of metals changes [28]. Here and elsewhere, both the model and the goal of the
experimenter are very application specific and cannot be simply shoe-horned into formulations
like black-box optimisation or active learning. In addition, domain knowledge about the problem
may need to be considered in selecting experiments, as it may significantly reduce the number of
experiments needed to achieve the desired goal.

To address these desiderata, we develop a general and flexible framework for goal oriented DOE,
where a practitioner may specify her desired goal via a reward function λ. λ can depend on the
data collected during the DOE process and unknown system characteristics, and hence cannot
be directly computed by a decision-maker. We then develop an adaptive myopic strategy for
DOE, inspired by posterior (Thompson) sampling for multi-armed bandits [246], which uses re-
sults from past experiments to plan future experiments and achieve the goal, i.e. maximise λ.
Our approach has two key advantages. First, our Bayesian formulation allows one to straightfor-
wardly specify domain expertise. Moreover, modern tools for probabilistic programming enable
pratitioners to apply a Bayesian algorithm such as ours in a fairly straightforward manner. Sec-
ond, our myopic strategy is simple and computationally attractive in comparison with policies
that engage in long-term planning. Nevertheless, borrowing ideas from submodular optimisa-
tion and reinforcement learning, we derive natural conditions under which our myopic policy is
competitive with the globally optimal one. Our contributions in this chapter are:

1. We propose a flexible framework for DOE that allows a practitioner to describe their system
(via a probabilistic model) and specify their goal (via a reward function). We also derive an
algorithm, Myopic Posterior Sampling (MPS), for this setting.

2. In our theoretical analysis, we explore conditions under which MPS, which learns about the
system over time, is competitive with myopic and globally optimal strategies that have full
knowledge of the system. For this, we leverage ideas from Thompson sampling, reinforce-
ment learning, and adaptive submodularity.

3. Empirically, we demonstrate MPS performs favourably in a variety of synthetic and real world
DOE problems. Despite our general formulation, MPS is competitive with specialised meth-
ods designed for particular problems. More importantly, it enables DOE in non-standard
application-specific settings. Our Python implementation and experiments are available at
github.com/kirthevasank/mps.
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Related Work

The term DOE has been used to mean different things in different settings. Classically, the
focus has been on “learning” an unknown system, and as such, the objective has been framed as
maximising some notion of information gathered about the system. We will refer to these tasks as
L-DOE problems in order to differentiate it from our setting, which subsumes L-DOE. Classical
L-DOE focuses on discrete settings [41, 206] or linear models [7, 56]. Recently, there have been
several Bayesian approaches for L-DOE that adopt probabilistic programming in more complex
models [188, 201]. However, it is not clear if L-DOE approaches are efficient or appropriate
for maximising an arbitrary user-specified reward λ. A second difference is that many of these
approaches are non-adaptive, in that they aim to find an optimal batch of experiments beforehand
without incorporating feedback from completed experiments. While some do explore adaptive
approaches for L-DOE, they aim for globally optimal policies (e.g. Rainforth [201]), which can
be computationally prohibitive, except in the most trivial cases.

We focus on posterior sampling (PS) [246] as the bandit algorithm, since it has proven to be
quite general and admits a clean Bayesian analysis [212]. PS has been studied in a number of
bandit settings [80, 129, 136], and some episodic RL problems [79, 184, 185], where the agent
is allowed to restart. In contrast, here we study PS on a single long trajectory with no restarts.

Myopic/greedy policies, while computationally simple, are known to be near-optimal for sequen-
tial decision making problems with adaptive submodularity [74], which generalises submodu-
larity and formalizes a diminishing returns property. Adaptive submodularity has been used for
several adaptive DOE setups [38, 39, 40, 75]. However, in these work, the reward only de-
pends on the data collected and can be directly computed by the decision-maker. As we will
see shortly, in our setting, this translates to the agent knowing the system characteristics. As
such, these results are complementary to ours: adaptive submodularity controls the approxima-
tion error (the difference between myopic- and globally-optimal strategies, both of which know
the system), while we control the estimation error (how close our policy which needs to learn
about the system is to the myopic optimal policy that knows the system). As we show in The-
orem 73, with adaptive submodularity, MPS can also compete with the globally optimal policy.
In a similar vein, Frazier et al. [62], Wang and Powell [258] use knowledge gradient approaches
for information collection tasks which are framed as myopic adaptive submodular set maximi-
sation problems; but as before, the system is known to the decision-maker. Prior results for
learning in submodular environments are episodic and allow restarts [66, 67], which is unnatural
in the DOE setup. In addition to the above, several papers have developed Bayesian methods
for specific DOE applications such as black-box optimisation [61], active search [110], level set
estimation [81] and many more [121, 163, 187], some of which adopt myopic strategies.

Our theoretical analysis leverages ideas from reinforcement learning (RL) since at each round the
agent makes a decision (what experiment to perform) with the goal of maximising a long-term
reward. In that light, one goal of our work is to understand when myopic “bandit-like” strategies
perform well in RL environments with long-term temporal dependencies. There are two main
differences with prior work [106, 137, 158, 184, 238]: first, we make no explicit assumptions
about the complexity of the state and action space, instead placing assumptions on the reward
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structure and optimal policy, which is a better fit for our applications. More importantly, in our
setup, the true reward is never revealed to the agent, and instead it receives side-observations that
provide information about an underlying parameter governing the environment. Secondly, our
focus is on understanding when myopic strategies have reasonable performance rather than on
achieving global optimality.

8.1.1 Formalism

Let Θ denote a parameter space, X an action space, and Y an outcome space. We consider a
Bayesian setting where a true parameter θ? ∈ Θ is drawn from a prior distribution ρ0. A decision
maker repeatedly chooses an action X ∈ X , conducts an experiment at X , and observes the out-
come YX ∈ Y . We assume YX is drawn from a likelihood P(·|X, θ?), with known distributional
form. This process proceeds for n rounds, resulting in a data sequence Dn = {(Xj, YXj)}nj=1,
which is an ordered multiset of action-observation pairs. Unlike, classical formalisms for DOE,
we study a setting where we intend to achieve a desired goal, specified via a reward function
λ : Θ × D → R, that we wish to maximise. Here, D denotes the set of all possible data se-
quences. In particular, after n rounds, we focus on the following two criteria, depending on the
application:

(a) Λ(θ?, Dn) =
n∑
t=1

λ(θ?, Dt) (b) λ(θ?, Dn), (8.1)

Here, Dt = {(Xj, YXj)}tj=1 denotes the prefix of length t of the data sequence Dn collected by
the decision maker. The former notion is the cumulative sum of all rewards, while the latter
corresponds to the reward once all experiments are complete. Since λ depends on the unknown
true parameter θ?, the decision maker cannot compute the reward during the data collection
process, and instead must infer the reward from observations in order to maximise it. This is a
key distinction from existing work on reinforcement learning and sequential optimisation, and
one of the new challenges in our setting.

Example 1. A motivating example is Bayesian active learning [40]. Here, actions X correspond
to data points while YX is the label and P(y|x, θ) specifies an assumed discriminative model. We
may set λ(θ,Dn) = −‖β(θ) − β̂(Dn)‖2

2 where β is a parameter of interest and β̂ is a predeter-
mined estimator (e.g. via maximum likelihood). The true reward λ(θ?, Dn) is not available to
the decision maker since it requires knowing β(θ?).

Notation: For each t ∈ N, let Dt = {{(Xj, YXj)}tj=1 : Xj ∈ X , YXj ∈ Y} denote the set of all
data sequences of length t, so that D =

⋃
t∈NDt. Let D ] D′ denote the concatenation of two

sequences. D ≺ D′ and D′ � D both equivalently denote that D is a prefix of D′. Given a data
sequence Dt, we use Dt′ for t′ < t to denote the prefix of the first t′ action-observation pairs.

A policy for experiment design chooses a sequence of actions {Xj}j∈N based on past actions
and observations. In particular, for a randomised policy π = {πj}j∈N, at time t, an action is
drawn from πt(Dt−1) = P(Xt ∈ ·|Dt−1). Two policies that will appear frequently in the sequel
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are π?M and π?G, both of which operate with knowledge of θ?. π?M is the myopic optimal policy,
which, from every data sequenceDt chooses the actionX maximising the expected reward at the
next step: E[λ(θ?, Dt ] {(X, YX)})|θ?, Dt]. On the other hand π?G is the non-myopic, globally
optimal adaptive policy, which in state Dt with n− t steps to go chooses the action to maximise
the expected long-term reward: E[λ(θ?, Dt ] {(X, YX)} ]Dt+2:n) | π?G, θ?, Dt]. π?G may depend
on the time horizon n while π?M does not.

8.1.2 Myopic Posterior Sampling (MPS) for Design of Experiments

We present a simple and intuitive myopic strategy that aims to maximise λ based on the posterior
of the data collected so far. For this, first define the expected look-ahead reward λ+ : Θ × D ×
X → [0, 1], such that λ+(θ,D, x) is the expected reward at the next time step if θ ∈ Θ were the
true parameter, D was the current data sequence collected, and we were to take action x ∈ X .
Precisely,

λ+(θ,D, x) = EYx∼P(Y |x,θ)

[
λ
(
θ, D ] {(x, Yx)}

)]
. (8.2)

The proposed policy, presented in Algorithm 11, is called MPS (Myopic Posterior Sampling)
and is denoted πPS

M . At time step t, it first samples a parameter value θ from the posterior for θ?
conditioned on the data, i.e. θ ∼ P(θ?|Dt−1). Then, it chooses the action Xt that is expected to
maximise the reward λ by pretending that θ was the true parameter. It performs the experiment
at Xt, collects the observation YXt , and proceeds to the next time step.

Algorithm 11 MPS (πPS

M ) from Kandasamy et al. [131, 132]
Require: Prior ρ0 for θ?, Conditional P(Y |X, θ).

1: D0 ← ∅.
2: for t = 1, 2, . . . do
3: Sample θ ∼ ρt−1 ≡ P(θ?|Dt−1).
4: Choose Xt = argmaxx∈X λ

+
t−1(θ,Dt−1, x).

5: YXt ← conduct experiment at Xt.
6: Set Dt ← Dt−1 ∪ {(Xt, YXt)}.
7: end for

A natural quesion that may arise is the need to sample from the posterior ρt−1 for θ?, instead of
taking an expectation of λ+ over ρt−1. In fact, many policies for non-adaptive L-DOE take an
expectation over the posterior [188]. However, in adaptive settings where θ? is unknown, taking
the expecation may fail as it may not explore sufficiently. For example, in bandit problems,
which is a special case of our setting (Chapter 8.1.4), this amounts to choosing the maximum of
the posterior mean of the payoff function, which is known to fail spectacularly.

Computational considerations: It is worth pointing out some computational considerations
in Algorithm 11. First, sampling from the posterior in step 3 might be difficult, especially in
complex Bayesian models. Fortunately however, the field of Bayesian inference has made great
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strides in the recent past with the development of fast techniques for approximate inference
methods such as MCMC or variational inference [92, 181]. Moreover, today we have efficient
probabilistic programming tools [16, 31, 248] that allow a practitioner to intuitively incorporate
domain expertise via a prior and obtain the posterior given data. Secondly, the maximisation of
the look ahead reward in step 4 can also be non-trivial, especially since it might involve empiri-
cally computing the expectation in (8.2). This is similar to existing work in Bayesian optimisa-
tion which assume access to such an optimisation oracle [27, 235]. That said, in many practical
settings where experiments can cost significant time, money, and resources, these considerations
are less critical.

Despite these concerns, it is worth mentioning that myopic strategies are still computationally
far more attractive than policies which try to behave globally optimally. For example, extending
MPS to a k step look-ahead might involve an optimisation over X k in step 4 of Algorithm 11
which might be impractical for large values of k. Moreover, in many problems where system
characteristics θ? are known to the decision maker, myopic policies can be competitive with
globally optimal policies [74, 183, 266]. In Chapter 8.1.3, we identify conditions where πPS

M can
be competitive with the globally optimal policy π?G which knows θ?.

8.1.3 Theoretical Analysis

In this section we derive theoretical guarantees for πPS

M . Our emphasis is on understanding condi-
tions under which myopic algorithms which need to learn θ? can perform competitively with the
myopic optimal and the globally optimal oracles π?M, π

?
G which know θ? (see Chapter 8.1.2). Go-

ing forward, to simplify the exposition, we will assume that λ is bounded, i.e. λ : Θ×X → [0, 1].
Moreover, w.l.o.g, we will assume for all θ ∈ Θ, supD∈D λ(θ,D) = 1. This condition is mild
since for any other bounded reward λ′, we can set λ(θ,D)

∆
= 1 + λ′(θ,D)− supD∈D λ

′(θ,D).

For criterion (a), we are interested in upper bounding E[Λ(θ?, Dn)|Dn ∼ πPS

M ] in terms of
E[Λ(θ?, Dn)|Dn ∼ π?M], which yields a cumulative regret bound, and for criterion (b), we wish
to bound E[λ(θ?, Dn) | Dn ∼ πPS

M ] in terms of the analogous quantities for π?M, π
?
G, which serves

as a final regret bound. Note that a comparison with π?G on (a) is meaningless since it might take
low reward actions in the early stages in order to do well in the long run. In fact, our bounds for
(a) will hold when λ(θ?, D) is an ordered multi-set function in D, but for (b) when λ(θ?, D) is
a multi-set function, i.e. the ordering does not matter. We will aim to provide Bayesian regret
bounds, which hold in expectation over θ? ∼ ρ0.

The following proposition shows that without further assumptions, a non-trivial regret bound
is impossible. Such results are common in the RL literature, and necessitate several structural
assumptions [49, 106, 137]. Its proof is given in Chapter 8.3.

Proposition 69. For all policies π which do not know θ?, there exists a DOE problem where
Eθ?∼ρ0 [λ(θ?, D

?
n)− λ(θ?, Dn)|D?

n ∼ π?M, Dn ∼ π] ≥ 1/2 for all n ≥ 1.

Motivated by this lower bound, we impose the following condition on the parameter space and
reward structure, under which a policy can achieve sub-linear regret. For this, first note we can
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assume that, at all time steps, the observations Y ∼ P(·|x, θ?) are generated for all x ∈ X , but we
only observe those for the chosen Xt. With this in consideration, let EY,t+1:|θ denote expecation
over all observations generated from time t+ 1 onwards when θ? = θ.

Condition 70. Let θ, θ′ denote parameter values in Θ and πθM, π
θ′
M be the myopically optimal

policies when θ? = θ, and θ? = θ′ respectively. Let H denote a data sequence and Dn, D′n be the
data sequences collected by πθM and πθ

′
M respectively when starting from H . Then, there exists

sequences {εn}n≥1, {τn}n≥1 such that the following hold.

1. πθM achieves asymptotically similar reward ∀ θ ∈ Θ,

sup
θ,θ′∈Θ

sup
H∈D

{
EY,|H|+1:|θλ(θ,H ]Dn)− EY,|H|+1:|θ′λ(θ′, H ]D′n)

}
≤ εn.

2. The rate of convergence is better than O(1/
√
n). That is, letting

√
τn = 1 +

∑n
j=1 εj , we

have τn ∈ o(n).

The condition states that when we execute π?M, the myopically optimal policy which knows and
depends on the value of θ?, from any prefix H , it achieves asymptotically similar λ for all values
of θ?. It is worth emphasising that the condition involves executing πθM in the environment where
the true parameter θ? is θ. A condition of the above form seems necessary for any myopic
algorithm π that does not know θ? for the following reason. Assume that the myopic π?M can
quickly achieve large λ value when θ? ∈ Θg but is slow when θ? ∈ Θb. Since π does not
know θ? it needs to hedge against the “bad” situation, i.e. θ? ∈ Θb. However, in doing so, it
will necessarily perform poorly against π?M when θ? ∈ Θg as π?M can quickly achieve large λ.
Condition 70 prevents such situations. As we will see shortly, the regret for πPS

M will depend
on τn which dictates how differently π?M can behave for different values of θ?. In particular,
sublinearity of τn is necessary for sublinear regret with π?M.

In Chapter 8.3.3 we provide a more interpretable sufficient condition which implies Condition 70,
and demonstrate that it is satisfied with τn ∈ O(1) for bandit and black-box optimisation prob-
lems and τn ∈ O(log n) for an active learning problem. We also consider a setting where λ
has “state-like” structure; under assumptions similar to standard assumptions in reinforcement
learning with ergodic Markov decision processes, we are able to show that Condition 70 holds.
Finally we mention that if Condition 70 holds for two reward functions λ1, λ2, it is also true for
the sum, λ1 + λ2 and the product, λ1 · λ2, and can thus be applied to combined objective settings
such as, the electrolyte design example, we will see shortly in Chapter 8.1.4.

Before stating the main theorem, we introduce the maximum information gain, Ψn, which cap-
tures the statistical difficulty of the learning problem.

Ψn = max
Dn⊂Dn

I(θ?;Dn). (8.3)

Here I(·; ·) is the Shannon mutual information. Ψn measures the maximum information a set of n
action-observation pairs can tell us about the true parameter θ?. The quantity appears as a statisti-
cal complexity measure in many Bayesian adaptive data analysis settings [82, 162, 235]. Below,
we list some examples of common models which demonstrate that Ψn is typically sublinear in n.
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Example 2. We have the following bounds on Ψn for common models [235]:

1. Finite sets: If Θ is finite, Ψn ≤ log(|Θ|) for all n.

2. Linear models: Let X ⊂ Rd, θ ∈ Rd, and Yx|x, θ ∼ N (θ>x, η2). For a multi-variate
Gaussian prior on θ?, Ψn ∈ O(d log(n)).

3. Gaussian process: For a Gaussian process prior with RBF kernel over a compact domain
X ⊂ Rd, and with Gaussian likelihood, we have Ψn ∈ O(log(n)d+1).

We now state our main theorem for finite action spaces X .

Theorem 71. Let X be finite and assume Condition 70 holds. Let τn be as defined in Condi-
tion 70. Then,

E[Λ(θ?, π
?
M)− Λ(θ?, π

PS

M )] ≤
√
|X |nτnΨn

2
.

Theorem 71 establishes a sublinear regret bound for πPS

M against π?M when τnΨn ∈ o(n). The |X |
term captures the complexity of our action space, Ψn captures the complexity of the prior on θ?.
The
√
n dependence is in agreement with prior results for Thompson sampling [135, 213]. Thus,

under Condition 70, πPS

M is competitive with the myopic optimal policy π?M, with average regret
tending to 0.

We now compare πPS

M to the globally optimal policy π?G, when λ is a multi-set function, i.e. the
ordering in Dn does not matter. For this, we first introduce the notions of monotonicity and
adaptive submodularity.

Condition 72. (Monotonicity and Adaptive Submodularity [74]) Let EYx denote the expectation
over the likelihood Yx ∼ P(·|x, θ?). The following two statements are true for all θ ∈ Θ, D,D′ ∈
D, D ≺ D′, and x ∈ X . λ is a monotone, meaning that EYx [λ(θ,D ] {(x, Yx)})] ≥ λ(θ,D).
Moreover, λ is adaptive submodular, meaning that,

EYx [λ(θ,D ] {(x, Yx)})]− λ(θ?, D) ≥ EYx [λ(θ,D′ ] {(x, Yx)})]− λ(θ?, D
′).

Monotonicity states that adding more data increases the reward in expectation, while adaptive
submodularity formalises a notion of diminishing returns. That is, performing the same action is
more beneficial when we have less data. It is easy to see that some assumption is needed here,
since even in simple problems π?M can be arbitrarily worse than π?G. We now state the second
main result of this paper.

Theorem 73. Assume that λ satisfies conditions 70 and 72. Let τn be as defined in Theorem 71.
Then, for all γ < 1, we have

E[λ(θ?, Dn)|Dn ∼ πPS

M ] ≥ (1− γ)E[λ(θ?, D
?
γn)|D?

γn ∼ π?G]−
√
|X |τnΨn

2n
.

The theorem states that πPS

M in n steps is guaranteed to perform up to a 1− γ factor as well as π?G
executed for γn < n steps, up to an additive

√
τnΨn/n term. The result captures both approx-

imation and estimation errors, in the sense that we are using a myopic policy to approximate a
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globally optimal one, and we are learning a good myopic policy from data. In comparison, prior
works on adaptive submodular optimisation focus on approximation errors and typically achieve
1 − 1/e approximation ratios against the n steps of π?G. Our bound is quantitatively worse, but
focusing on a much more difficult task, and we view the results as complementary. Observe that
an analogous bound holds against π?M, since it is necessarily worse that π?G.

8.1.4 Examples & Experiments

In this section, we give some concrete examples of DOE problems that can be specified by
a reward function λ and present experimental results for these settings. We compare πPS

M to
random sampling (RAND), the myopically optimal policy π?M which assumes access to θ?, and
to specialised methods developed for the particular problem, when available. In the interest of
aligning our experiments with our theoretical analysis, we compare methods on both criteria
in (8.1), although in these applications, the final reward λ(θ?, Dn) is more relevant than the
cumulative one Λ(θ?, Dn). To better visualise the differences between the respective methods,
we plot the negative reward in a semilog plot. Our Python implementation and experimental set
up will be made available open source.

High-level Takeaways: Despite being a quite general, πPS

M outperforms, or performs as well as,
specialised methods. πPS

M is competitive, but typically worse than the non-realisable π?M. Finally
πPS

M enables effective DOE in complex settings where no prior methods seem applicable.

Active Learning

Problem: As described previously, we wish to learn some parameter β? = β(θ?) which is
a function of the true parameter θ?. Each time we query some X ∈ X , we observe a label
Y ∼ P(Y |X, θ?). We conduct two synthetic experiments in this setting. We use λ(θ?)

∆
= −‖β?−

β̂(Dn)‖2
2 as the reward where β̂ is a regularised maximum likelihood estimator. In addition to

RAND and π?M, we compare πPS

M to ActiveSetSelect of Chaudhuri et al. [36].

Experiment 1: We use the following logistic regression model: Yx|x, θ ∼ N (fθ(x), η2) where
fθ(x) = a

1+eb(x−c)
. The true parameter is θ? = (a, b, c, η2) and our goal is to estimate β? =

(a, b, c). The MLE is computed via gradient ascent on the log likelihood. In our experiments,
we used a = 2.1, b = 7, c = 6 and η2 = 0.01 as θ?. We used normal priors N (2, 1), N (5, 3)
and N (5, 3) for a, b, c respectively and an inverse gamma IG(20, 1) prior for η2. As the action
space, we used X = [0, 10]. For variational inference, we used a normal approximation for the
posterior for a, b, c and an inverse gamma approximation for η2. The results are given in the first
row of Figure 8.1.

Experiment 2: In the second example, we use the following linear regression model: Yx|x, θ ∼
N (fθ(x), 0.01) where fθ(x) =

∑16
i=1 θ∗iφ(x − ci). Here, φ(v) = 1√

0.2π
e−5‖v‖22 and the points

c1, . . . , c16 were arranged in a 4 × 4 grid within [0, 1]2. We set θ∗i = g(ci), with g(v) =
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Figure 8.1: Results on the synthetic active learning experiments in Chapter 8.1.4 comparing all methods
on the squared error reward. The title states the model and the dimensionality. In all figures, the x axis is
the number of experiments n. In the left figures, the y axis is the final negative reward −λ(θ?, n) at the
nth iteration. In the right figures, it is the corresponding negative cumulative reward −Λ(θ?, n). Lower is
better in both cases. The legend is given in the left figures. All curves were averaged over 20 runs, and
error bars indicate one standard error.

sin(3.9π((v1 − 0.1)2 + v2 + 0.1)). Our goal is to estimate β? = θ?. As the action space, we
used X = [0, 1]2. The posterior for θ? was calculated in closed form using a normal distribution
N (0, I16) as the prior. The results are given in the second row of Figure 8.1.

Alternative Problem Formalism: A common formalism for parameter estimation in discrimi-
native models [36, 63] is to maximise the expected likelihood of the data for a given sampling dis-
tribution Γ on X . Here, one wishes to maximise λ(θ?, Dn)

∆
= EX∼Γ,Y∼P(Y |X,θ?)[logP(Y |X, θ̂)],

where θ̂ is an estimator for θ obtained from Dn.

Experiments 3 & 4: We use the same models as in Experiment 1 & 2 but with the above reward
function. We let Γ be the uniform distribution on the respective domains and θ̂ be the maximum
likelihood estimator for θ. The results are given in Figure 8.2. In these experiments, in order to
compute the reward λ, we evaluate the expecation over X ∼ Γ, Y ∼ P(·|X, θ) empirically by
drawing 1000 (x, y) pairs; we first sample 1000 x values uniformly at random and then draw y
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Figure 8.2: Results on the synthetic active learning experiments in Chapter 8.1.4 comparing all methods
on the log likelihood reward. In all figures, the x axis is the number of experiments n. In the left figures, the
y axis is the final negative reward−λ(θ?, n) at the nth iteration. In the right figures, it is the corresponding
negative cumulative reward −Λ(θ?, n). See caption under Figure 8.1 for more details.

from the likelihood for the given θ value.

Posterior Estimation & Active Regression

Problem: Consider estimating a non-parametric function fθ? , which is known to be uniformly
smooth. An action x ∈ X queries fθ? , upon which we observe Yx = fθ?(x) + ε, where E[ε] = 0.
If the goal is to learn fθ? uniformly well in L2 error, i.e. with reward −‖fθ? − f̂(Dn)‖2, adaptive
techniques may not perform significantly better than non-adaptive ones [267]. However, if our
reward was λ(θ?, Dn)

∆
= −‖σ(fθ?) − σ(f̂(Dn))‖2 for some monotone superlinear function σ,

then adaptive techniques may do better by requesting more evaluations at regions with high fθ?
value. This is because, λ(θ?, Dn) is more sensitive to such regions due to the transformation σ.

A particularly pertinent instance of this formulation arises in astrophysical applications where
one wishes to estimate the posterior distribution of cosmological parameters, given some astro-

225



nomical data Q [191]. Here, an astrophysicist specifies a prior Ξ over the cosmological param-
eters Z ∈ X , and the likelihood of the data for a given choice of the cosmological parameters
x ∈ X is computed via an expensive astrophysical simulation. The prior and the likelihood
gives rise to an unknown log joint density1 fθ? defined on X , and the goal is to estimate the the
joint density p(Z = x,Q) = exp(fθ?(x)) so that we can perform posterior inference. Adopting
assumptions from Kandasamy et al. [121], we model fθ? as a Gaussian process, which is reason-
able since we expect a log density to be smoother than the density itself. As we wish to estimate
the joint density, λ takes the above form with σ = exp.

Experiment 5: We use data on Type I-a supernova from Davis et al [50]. We wish to estimate
the posterior over the Hubble constant H ∈ (60, 80), the dark matter fraction ΩM ∈ (0, 1) and
the dark energy fraction ΩE ∈ (0, 1), which constitute our three dimensional action space X .
The likelihood is computed via the Robertson-Walker metric. In addition to π?M and RAND, we
compare πPS

M to Gaussian process based exponentiated variance reduction (GP-EVR) [121] which
was specifically designed for this setting. We evaluate the reward via numerical integration. The
results are presented in the first row of Figure 8.3.

Level Set Estimation

Problem: In active level set estimation (LSE), one wishes to determine which regions of a space
X fall above or below a given level set of an expensive to evaluate function fθ? . An experiment
evaluates this function and returns Yx = fθ?(x) + ε, where E[ε] = 0. We adopt the setting
of Gotovos et al. [81], where a method for LSE returns its predictions for being above/below the
threshold on a pre-specified set of discrete points X ′ ⊂ X . The reward function λ is set to be
average prediction accuracy.

Experiment 6: Here we used data on Luminous Red Galaxies (LRGs) to compute the galaxy
power spectrum of 9 cosmological parameters: spatial curvature Ωk ∈ (−1, 0.9), dark energy
fraction ΩΛ ∈ (0, 1), cold dark matter density ωc ∈ (0, 1.2), baryonic density ωB ∈ (0.001, 0.25),
scalar spectral index ns ∈ (0.5, 1.7), scalar fluctuation amplitude As ∈ (0.65, 0.75), running
of spectral index α ∈ (−0.1, 0.1) and galaxy bias b ∈ (0, 3). Software and data were taken
from Kandasamy et al. [121], Tegmark et al [244]. We wish to find regions of the cosmological
parameter space, where the power spectrum is larger than a pre-specified threshold. Follow-
ing Gotovos et al. [81], we model the function as a Gaussian process. The function values vary
from approximately −1 × 1018 and −1 × 1015. We set the threshold to −3 × 1016 which is
approximately the 75th percentile when we randomly sampled the function value at several thou-
sand points. We compare πPS

M to random search, π?M, and the Gaussian process based level set
estimation (GP-LSE) method of Gotovos et al. [81]. Following Gotovos et al. [81], we model the
power spectrum as a GP, and define the reward function as described above where X ′ is a set of
∼ 20K points. The results are presented in the second row of Figure 8.3.

1 One should not conflate the prior over X specified with the astrophysics model, with prior over Θ assumed in
our set up.
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Figure 8.3: Results on the real experiments. The first row is for the posterior estimation problem, the
second row is for the level set estimation problem, and the third row is for the combined objective problem,
all of which are described in Chapter 8.1.4. In the left figures, the y axis is the negative reward−λ(θ?, Dn)
and in the right figures, it is the negative cumulative reward−Λ(θ?, Dn) for the corresponding experiment.
The legend is given in the left figures. See caption under Figure 8.1 for more details.
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Combined and Customised Objectives

Problem: In many real world problems, one needs to design experiments with multiple goals.
For example, an experiment might evaluate multiple objectives, and the task might be to opti-
mise some of them, while learning the parameters for another. Classical methods specifically
designed for active learning or optimisation may not be suitable in such settings. One advan-
tage to the proposed framework is that it allows us to combine multiple goals in the form of a
reward function. For instance, if an experiment measures two functions fθ?,1, fθ?,2 and we wish
to learn f1 while optimising f2, we can define the reward as λ(θ?, Dn) = −‖fθ?,1 − f̂1(Dn)‖2 +

maxXt,t≤n
(
fθ?,2(Xt) − maxx fθ?,2(x)

)
. Here f̂1 is an estimate for fθ?,1 obtained from the data,

‖ · ‖ is the L2 norm and maxXt,t≤n fθ?,2(Xt) is the maximum point of fθ?,2 we have evaluated so
far. Below, we demonstrate one such application.

Experiment 7: In battery electrolyte design, one tests an electrolyte composition under various
physical conditions. On an experiment at x ∈ X , we obtain measurements Yx = (Yx,sol, Yx,vis,
Yx,con) which are noisy measurements of the solvation energy fdissol, the viscosity fvis and the
specific conductivity fcon. Our goal is to estimate fdissol and fvis while optimising fcon. Hence,

λ(θ?, Dn) = α
(

max
Xt,t≤n

fcon(Xt)−max
x∈X

fcon(x))− β‖fdissol − f̂dissol(Dn)‖2

− γ‖fvis − f̂vis(Dn)‖2,

where, the parameters α, β, γ were chosen so as to scale each objective and ensure that none of
them dominate the reward. In our experiment, we use the dataset from Gering [71]. Our action
space X is parametrised by the following three variables: Q ∈ (0, 1) measures the proportion
of two solvents EC and EMC in the electrolye, S ∈ (0, 3.5) is the molarity of the salt LiPF6

and T ∈ (−20, 50) is the temperature in Celsius. We use the following prior which is based
off a physical understanding of the interaction of these variables. fcon : X → R is sampled
from a Gaussian process (GP), fvis(Q,S, T ) = exp(−aT )gvis(Q,S) where gvis is sampled from
a GP, and fdissol(Q,S, T ) = b+ exp(cQ− dS − eT ). We use inverse gamma priors for a, b, d, e
and a normal prior for c. For variational inference, we used inverse gamma approximations for
a, b, d, e, a normal approximation for c, and GP approximations for fcon and gvis. We use the
posterior mean of fdissol and fvis under this prior as the estimates f̂dissol, f̂vis. We present the
results in the third row of Figure 8.3 where we compare RAND, πPS

M and π?M. This is an example
of a customised DOE problem for which no prior method seems directly applicable.

Bandits & Bayesian Optimisation

Bandits and Bayesian optimisation are self-evident special cases of our formulation. Here,
θ? specifies a function fθ? : X → R. When we choose a point X ∈ X to evaluate the
function, we observe YX = fθ?(X) + ε where E[ε] = 0. In the bandit framework, the re-
ward is the instantaneous regret λ(θ?, Dn) = fθ?(Xn) − maxx∈X fθ?(x). In Bayesian opti-
misation, one is interested in simply finding a single value close to the optimum and hence
λ(θ?, Dn) = maxt≤n fθ?(Xt) − maxx∈X fθ?(x). In either case, πPS

M reduces to the Thompson
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sampling procedure as argmaxx∈X λ
+(θ?, Dt−1, x) = argmaxx∈X fθ(x), where fθ is a random

function drawn from the posterior. Since prior work has demonstrated that TS performs empir-
ically well in several real world optimisation tasks [35, 96, 129], we omit experimental results
for this example. One can also cast other variants of Bayesian optimisation, including multi-
objective optimisation [93, 190] and constrained optimization [70], in our general formulation.

Some Experimental Details

Specification of the prior: In our experiments, we use a fixed prior in all our applications. In
real world applications, the prior could be specified by a domain expert with knowledge of the
given DOE problem. In some instances, the expert may only be able to specify the relations
between the various variables involved. In such cases, one can specify the parametric form
for the prior, and learn the parameters of the prior in an adaptive data dependent fashion using
maximum likelihood and/or maximum a posteriori techniques [232].

Computing the posterior: Experiments 2 and 4 which use a Bayesian linear regression model
admit analytical computation of the posterior. So do experiments 5 and 6 which use a Gaus-
sian process model. For experiments 1, 3, and 7 we use the Edward probabilistic programming
framework [248] for a variational approximation of the posterior. The sample in step 3 is drawn
from this approximation.

Optimising λ+: In all our experiments, the look-ahead reward (8.2) is computed empirically
by drawing 50 samples from Y |X, θ for the sampled θ and a given x ∈ X . For experiments 1
and 3 which are one dimensional, we maximise λ+ by evaluating it on a fine grid of size 100
and choosing the maximum. Similarly, for experiments 2 and 4 which have two dimensional
domains, we use a grid of size 2500 and for experiments 5 and 7 which are three dimensional,
we use a grid of size 8000. Since experiment 6 is in nine dimensions, on each iteration, we
sample 4000 points randomly from the domain and choose the maximum.

8.2 Active Posterior Estimation

In this sub-chapter, we study the problem of active posterior estimation, when the likelihood of
a Bayesian model is expensive to compute. Computing the posterior distribution of parameters
given observations is a central problem in Bayesian statistics. We use the posterior distribution to
make inferences about likely parameter values and estimate functionals we are interested in. For
simple parametric models with conjugate priors we may obtain the posterior in analytic form.
In more complex models where the posterior is analytically intractable, we have to resort to
approximation techniques. In some cases, we only have access to a black box which computes
the likelihood for a given value of the parameters.

Our goal is an efficient way to estimate posterior densities when calls to this black box are
expensive. This work is motivated by applications in computational physics and cosmology.
Several cosmological phenomena are characterised by the cosmological parameters (e.g. Hubble
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constant, dark energy fraction). Given observations, we wish to make inferences about the pa-
rameters. Physicists have developed simulation-based probability models of the Universe which
can be used to compute the likelihood of cosmological parameters for a given observation. Many
problems in scientific computing have a similar flavour. Expensive simulators in molecular me-
chanics, computational biology and neuroscience are used to model many scientific processes.
Hence this work finds relevance in these fields as well.

Related Work

Practitioners have conventionally used sampling schemes [166] to approximate the posterior dis-
tributions. Rejection sampling and various MCMC methods are common choices. The advantage
of MCMC approaches is their theoretical guarantees with large sample sets [208] and thus they
are a good choice when likelihood evaluations are cheap. However, none of them is intended to
be query efficient when evaluations are expensive. Some methods spend most of their computa-
tion evaluating point likelihoods and then discard the likelihood values after doing an acceptance
test. This gives insight into the potential gains possible by retaining those likelihoods for use in
regression. Despite such deficiencies, MCMC remains one of the most popular techniques for
posterior estimation in experimental physics [59, 152, 191] and the other fields [157].

Approximate Bayesian computation (ABC) [168, 169] is a method of last resort for estimating
posteriors when a likelihood can not be computed. Unfortunately, it still requires the generation
of simulated data, which is expensive in our setup, and it does not address efficient selection of
parameter values to be tested at all. Nested sampling [229] is a technique commonly used is
Astrostatistics. Kernel Bayes’ Rule [65] is a non-parametric method of computing a posterior
based on the embedding of probabilities in an RKHS. Both these methods require sampling from
a distribution and do not address the question of which samples to choose if generating them is
expensive. The work in Bryan et al. [24] actively learns level sets of an expensive function and
derives confidence sets from the results. Gotovos et al. [81] also actively learn level sets via a
classification approach. Our work is more general since we estimate the entire posterior.

Our methods draw inspiration from Gaussian Process (GP) based active learning methods such
as Bayesian optimisation (BO) [175], Bayesian quadrature (BQ) [160], active GP Regression
(AGPR) [219] and several others [120, 121, 142, 161, 235]. These methods have a common
modus operandi to determining the experiment θt at time step t: construct a utility function ϕt
based on the posterior GP conditioned on the queries so far; then maximise ϕt to determine θt.
ϕt(θ) captures the value of performing an experiment at point θ. The key difference in such
methods is essentially in the specification of ϕt to determine the next experiment. In our work,
we adopt this strategy. The contributions of this sub-chapter are as follows.

1. We study posterior estimation in an active regression framework. We develop two query
strategies that can efficiently compute the posterior of an expensive likelihood model and
implement them using Gaussian processes.

2. Empirically, we demonstrate that our methods significantly outperform a suite of classical
methods and other heuristics for posterior estimation.
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Figure 8.4: (a) depicts the uncertainty for the log joint probability via samples g drawn from the GP. (b)
illustrates the induced uncertainty model Fθ|Xobs

for the posterior via the exponentiated and normalised
samples f = exp g/

∫
exp g.

8.2.1 Bayesian Active Posterior Estimation (BAPE)

Problem Setting: We formally define our posterior distribution estimation problem in a Bayesian
framework. Our notation in this sub-chapter will be different from Chapter 8.1. We have a
bounded continuous parameter space Θ for the unknown parameters (e.g. cosmological con-
stants). Let Xobs denote our observations (e.g. signals from telescopes). For each θ ∈ Θ we
have the ability to query an oracle for the value of the likelihood L(θ) = P (Xobs|θ). These
queries are expensive and possibly noisy. Assuming a prior Pθ(θ) on Θ, we have the posterior
Pθ|Xobs

.

Pθ|Xobs
(θ|Xobs) =

L(θ)Pθ(θ)∫
Θ
L(θ)Pθ(θ)

=
L(θ)Pθ(θ)

P (Xobs)
(8.4)

Our goal is to obtain an estimate P̂θ|Xobs
of Pθ|Xobs

using as few queries to the oracle.

Some smoothness assumptions on the problem are warranted to make the problem tractable. A
standard in the Bayesian nonparametrics literature is to assume that the function of interest is
a sample from a Gaussian Process. In what follows we shall model the log joint probability of
the cosmological parameters and the observations via a GP2. This is keeping in line with Adams
et al. [3] who use a similar prior for GP density sampling.

Uncertainty for the posterior via uncertainty for the log joint: Assume that we have queried
the likelihood oracle at n points, and for each query point θi the oracle provided us with Li ≈
P (Xobs|θi) answers. Let An = {θi,Li}ni=1 denote the set of these query value pairs. We build
our GP using Bn = {θi, log(LiPθ(θi))}ni=1 as the input output pairs. The GP automatically

2We work in the log joint probability space since log smoothes out a function and is more conducive
to be modeled as a GP. We also avoid issues such as non-negativity of P̂Am(θ|Xobs). M. Osborne and D.
Duvenaud and R. Garnett and C. Rasmussen and S. Roberts and Z. Ghahramani [160] also use a similar
log-transform before applying a GP.
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induces uncertainty on the log joint probability; let us denote the distribution of logP (Xobs, θ)
values at any θ ∈ Θ by L̃(θ). Moreover, if g is a sample from this GP, then f = exp g/

∫
exp g

denotes a sample from the induced uncertainty model Fθ|Xobs
for the posterior Pθ|Xobs

. A sample
from Fθ|Xobs

is a distribution over Θ. This is illustrated in Figure 8.4.

Finally, given any estimate P̂An (Xobs, θ) of the log joint probability constructed using a set An
of n parameter-likelihood pairs, the estimate of the posterior distribution is

P̂A
n (θ|Xobs) =

exp P̂An (Xobs, θ)∫
Θ

exp P̂An (Xobs, θ)
. (8.5)

Bayesian Active Posterior Estimation: We now describe the procedure to determine the point at
which we should query the likelihood. At time step t, we have already queried at t−1 points and
have the set At−1 of query value pairs. Our goal is to select the point θt for the next experiment
to evaluate the likelihood. We adopt a myopic strategy which picks the point that maximizes
a utility function ϕt. ϕt needs to capture a measure of divergence D(·‖·) between the true and
estimated distributions. A reasonable strategy would be to select θt to satisfy

θt = argmin
θ+∈Θ

D(Pθ|Xobs
‖ P̂At−1∪{(θ+,L(θ+))} ) (8.6)

where P̂At−1∪{(θ+,L(θ+))} is our estimate of the posterior using At−1 ∪{(θ+, L(θ+))}. Obviously,
this objective is not accessible in practice, since we know neither Pθ|Xobs

nor L(θ+). As sur-
rogates to this ideal objective in Equation (8.6), in the following subsections we propose two
utility functions for determining the next point: Negative Expected Divergence (NED) and Ex-
ponentiated Variance (EV). The first, NED adopts a Bayesian decision theoretic approach akin
to the expected error reduction criterion used in active learning [220]. Here, we choose the point
in Θ that yields the minimum expected divergence for the next estimate over the uncertainty
model. Unfortunately, as we will see in Section 8.2.1, the NED utility is computationally expen-
sive. Therefore, we propose a cheaper alternative, EV. In our experiments we found that both
strategies performed equally well – so EV is computationally attractive. That said, some cos-
mological simulations are very expensive (taking several hours to a day) so NED is justified in
such situations. We present our framework for BAPE using an appropriate utility function ϕt in
Algorithm 12.

Algorithm 12 BAPE from Kandasamy et al. [121, 128]
Given: Input space Θ, GP prior µ0, κ0.
For t = 1, 2, . . . do

1. θt = argmaxθt∈Θ ϕt(θ)
2. Lt ← Query oracle at θt.
3. Obtain posterior conditioned on (θi,LiPθ(θi))ti=1
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Figure 8.5: An illustration of the NED utility. θ+ is a candidate for the next evaluation. pB, pR, pG
denote values for p+ = logP (θ+,Xobs) sampled from the GP. We add them as hallucinated points and
rebuild our GP and generate samples (second step). These samples are exponentiated and normalised
(third step) and then its KL divergence with the estimate is computed.

Negative Expected Divergence (NED)

Equation (8.6) says that we should choose the point that results in the highest reduction in diver-
gence if we knew the likelihood and the true posterior at that point. In NED, we choose the point
with the highest expected reduction in divergence. For the next evaluation we choose the point
that minimizes the expected divergence between these models and the next estimate. Precisely,

uNED
t (θ+) = −Ep+∼L̃(θ+) Eh∼Fθ|Xobs

D(h ‖ P̂A∪{(θ+,p+)}
m+1 ). (8.7)

Here p+ ∈ R is sampled from L̃(θ+), the uncertainty of the log joing probability at θ+. The
density h is sampled from Fθ|Xobs

, the uncertainty model of the posterior obtained by adding
(θ+, p+) to the set of already available points At−1. Both L̃(θ+) and Fθ|Xobs

are induced from the
log joint GP as explained before. P̂A∪{(θ+,p+)}

m+1 denotes the estimate of the posterior obtained by
retraining the GP with (θ+, p+) as the tth point along with the t points already available. The first
expectation above captures our uncertainty over logP (θ+,Xobs) while the second captures our
remaining uncertainty over Pθ|Xobs

after observing L(θ+). Equation (8.7) says that you should
minimize the expected divergence by looking one step ahead.

We have illustrated NED in Figure 8.5. Assume we are considering the point θ+ for the next eval-
uation. Our GP over the log joint probability gives us uncertainty for logP (θ+,Xobs) – depicted
by pB, pR, pG in blue, green and red respectively. For pB, we add (θ+, pB) as a hallucinated point
to the t − 1 points we already have and obtain an estimate of the posterior P̂At−1∪(θ+,pB). Next,
we rebuild our GP using these t points. We draw samples from the new GP and exponentiate and
normalise them to obtain samples hi from the uncertainty model for the posterior Fθ|Xobs

. Then
we compute the divergence between hi and P̂At−1∪(θ+,pB). We repeat this for the blue and green
points and average all the divergences. The next evaluation point will be that with the lowest
expected one step ahead divergence.
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(a) (b)

Figure 8.6: (a): Samples drawn from the GP in the log joint probability space. (b): The same samples
after exponentiation. High variance in the low likelihood regions are squashed and low variances in the
high likelihood regions are blown up. This is the key insight that inspires our methods and the EV utility
in particular.

The expectations in the NED utility above are computationally intractable. They can only be
approximated empirically by drawing samples and require numerical integration (as Figure 8.5
suggests). For these reasons we propose an alternate utility function below. In our experiments
we found that both EV and NED performed equally well.

Exponentiated Variance (EV)

A common active learning heuristic is to choose the point that you are most uncertain about for
the next experiment. As before we use a GP on the log joint probability. At any given point in this
GP we have an associated posterior variance of the GP. However, this variance corresponds to the
uncertainty of the log joint probability whereas our objective is in learning the joint probability
– which is a multiplicative factor away from the posterior. See Figure 8.6. Therefore, unlike in
usual GP active learning methods [219], the variance of interest here is in the exponentiated GP.
By observing that an exponentiated Gaussian is a log Normal distribution, the EV utility function
is given by

uEV
t (θ+) = exp(2µt(θ+) + σ2

t (θ+))(exp(σ2
t (θ+))− 1) (8.8)

Here µt, σ2
t are the posterior mean and variances of the GP at time t. The exp(2µ(θ+)) will

squash high variances in the low likelihood regions and amplify low variances in the high like-
lihood regions. The expression for uEV

t (θ+) corresponds precisely to the variance of P (θ,Xobs)
according to the uncertainty model induced by the GP. We choose the point maximising the above
variance to determine the next query location.
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Figure 8.7: The first column shows the log joint probability and the corresponding posterior. In the
second column we have estimates of the log joint and the posterior for uniformly spaced points. In the
third column we have the same except that more points were chosen in high likelihood regions.

Discussion

We first argue that an active, i.e. an adaptive sequential, strategy will be useful for posterior
estimation. In particular, the work of Castro et al. [33] demonstrates that active learning does
not perform significantly better than passive strategies to estimate a uniformly smooth function
uniformly well. However, in our case we wish to learn the function well at high log probabilty
regions as they predominantly determine the shape of the posterior. To illustrate this we have
shown a synthetically created log joint probability and the corresponding posterior in the first
column of Figure 8.7. The high likelihood regions largely affect the shape of the posterior since
the variations in the low likelihood region are squashed after exponentiation. In the second
column we queried the likelihood at uniformly spaced points and obtained estimates of the log
joint probability and the posterior in green. In the third we have the same estimates in magenta,
except that we used more queries at at high likelihood regions. While the green estimate for the
log joint may be uniformly better than the magenta estimate, it is the opposite for posterior. This
is because after exponentation, the small errors in the high log probability regions have been
inflated after exponentiation for the green estimate, whereas for the magenta estimate the large
errors in the low probability regions have been diminished. Hence an active strategy, which uses
more queries at the high log probability regions is likely to do better than a passive strategy.
NED and EV do precisely this by attaching more emphasis to the uncertainties in the high log
probability regions.

Next, it is important to distinguish our objective in this work from similar active learning litera-
ture in the GP framework. In BO, the objective is to find the maximum of a function. This means
that once the active learner realises that it has found the mode of a function it has less incentive to

235



(5)(2)

(1) (3) (4)
(x)

(y) (6)

(7)

(a)

(5)(2)

(1) (3) (4)(x)

(y)

(6)

(7)

(b)

Figure 8.8: (a) and (b) are the true log joint probability and joint probability in blue. Assume that we
have already queried at the brown crosses and let the red circles (x) and (y) be candidates for the next
query. In BAPE we would be interested in querying (y) but not (x). In AGPR we would be interested in
both (x) and (y) whereas in BO we would be keen in neither.

explore around as it would not improve the current maximum values. For instance, consider the
log joint probability in Figure 8.8(a) and the joint probability in Figure 8.8(b). We have shown
the points where we have already queried at as brown crosses and the red circles (x) and (y) show
possible candidates for the next query. The shaded regions represent the uncertainty due to three
standard deviations in the GP. In BO, the active learner would not be interested in (y) as, by virtue
of points (5), (6) and (7) it knows that (y) is not likely to be higher than (6). On the other hand,
in BAPE we are keen on (y) as knowing it with precision will significantly affect our estimate
of the posterior (Fig 8.8(b)). In particular to know the posterior well we will need to query at
the neighborhood of modes and the heavy tails of a distribution. A BO utility is not interested
in such queries. On the other extreme, in AGPR the objective is to learn the function uniformly
well. This means in the same figures, AGPR will query point (x). However, given sufficient
smoothness, we know that the joint probability will be very low there after exponentiation due to
points (3) and (4). Therefore, the BAPE active learner will not be as interested in (x) as AGPR.
Observe that the uncerainty at (x) is large in the log joint probability space in comparison to the
uncertainty elsewhere; however, in the probability space this is smaller than the uncertainty at
the high probability regions. As Figure 8.7 indicates, while we model the log joint probability as
a GP we are more interested in the uncertainty model of the posterior/joint probability. Finally,
as a special case for BQ, [160] consider evaluating the model evidence–i.e. the integral under the
conditional. Their utility function uses approximations tailored to estimating the integral well.
Note that our goal of estimating the posterior well is more difficult than estimating an integral
under the conditional as the former implies the latter but not vice versa.

236



8.2.2 Experiments

We perform experiments on a series of low and high dimensional synthetic and real astrophysical
experiments. In our experiments the NED, EV utilities were maximised by evaluating them on
a grid of size 103 − 108 depending on the dimensionality and then choosing the point with
the maximum value. For numerical integration in NED, we use the trapezoidal rule. Further,
since the inner expectation in Equation (8.7) is expensive we approximate it using a one sample
estimate. NED is only tested on low dimensional problems since empirical approximation and
numerical integration is computationally expensive in high dimensions. In our experiments, EV
slightly outperforms NED probably since the EV utility can be evaluated exactly while NED can
only approximated.

We use a squared exponential kernel in all our experiments. The bandwidth for the kernel was set
to be 5n−1/d where n is the total number of queries and d is the dimension. This was following
several kernel methods (such as kernel regression) which use a bandwidth on the order O(n

−c1
c2+d )

[87]. The constant 5 was hand tuned by experimenting with a series of independent synthetic
experiments. The other GP hyperparameters, σ2

f and σ2
n were set via cross validation every

20 iterations. When we tried setting the bandwidth via cross validation too we found that it
had a tendency too choose a larger than required bandwidth in the early iterations and then
get stuck without decreasing. The consequence of this behaviour is that our method might not
sufficiently explore the space and hence miss out on certain regions of the likelihood. Such
a phenomenon has also been observed in Bayesian Optimisation and hence the bandwidth is
decreased artificially as a precautionary measure against insufficient exploration [264].

Baselines

We first list and describe some potential alternatives for posterior estimation which we use in our
empirical evaluation.

1. MCMC - Density Estimation (MCMC-DE): We implement MCMC with a Metropolis
Hastings (MH) chain and use kernel density estimation (KDE) on the accepted points to estimate
the posterior. When comparing MCMC against NED/EV we consider the total number of queries
and not just those accepted. There are several variants of the MH proposal scheme and several
tuning parameters. Comparing to all of them is nontrivial. We use MH in its basic form using
a fixed Gaussian proposal distribution. Practitioners usually adjust the proposal based on the
acceptance rate. Here, we chose the proposal manually by trying different values and picking
the one that performed best within the queries used. Note that this comparison is advantageous
to MCMC. In one experiment we test with Emcee [59], a popular package for Affine Invariant
MCMC which automatically fine tunes the proposal bandwidth based on acceptance rate [59].

2. MCMC - Regression (MCMC-R): Here, as in MCMC-DE we use a MH Chain to generate
the samples. However, this time we regress on the queries (not samples) to estimate the posterior.
We include this procedure since MCMC can be viewed as a heuristic to explore the parameter
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Figure 8.9: (a), (b): Comparison of NED/EV against MCMC-DE, ABC, MCMC-R and RAND for the
1D and 2D synthetic experiments respectively. The x-axis is the number of queries and the y-axis is the
KL divergence between the truth and the estimate. All figures were obtained by averaging over 60 trials.

space in high likelihood regions. We show that a principled query strategy outperforms this
heuristic.

3. Approximate Bayesian Computing (ABC): There are several variants of ABC [169, 194].
We compare with a basic form given in [168]. At each iteration, we randomly sample θ from the
prior and then sample an observation Xsim from the likelihood. If d(Xsim,Xobs) < ε we add θ
to our collection. Here d(·, ·) is some metric on a sufficient statistic of the observation and ε > 0
is a prespecified threshold. We perform a KDE on the collected samples to estimate the posterior.
The performance of ABC depends on ε: As for MCMC-DE we choose ε by experimenting with
different values and choosing the value which gives the best performance within the queries
used. We compare with total number of parameter values proposed and not just those retained.
We compare with ABC only in experiments where it is possible to sample from the likelihood
(in addition to evaluating the likelihood).

4. Uniform Random Samples (RAND): Here, we evaluate the likelihood at points chosen
uniformly on Θ and then regress on these points.

5. Active Gaussian Process Regression (AGPR): & 6. Bayesian Optimisation (BO-EI): On
our synthetic problems we also compare with the GP based active learning methods discussed in
Chapter 8.2.1. We choose points using the above criterion and then regress on these points.

Low Dimensional Synthetic Experiments

To illustrate our methods we have two simple yet instructive experiments. In the first, the pa-
rameters space is Θ = (0, 1) equipped with a Beta(1.2, 1) prior. We draw θ from the prior, and
then draw 500 samples from a Bernoulli (θ2 + (1− θ)2) distribution: i.e. Xobs ∈ {0, 1}500. The
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Figure 8.10: The 100 points chosen in order
by NED for the 2D experiment. The green con-
tours are the true posterior. Initially the algorithm
explores the space before focusing on high prob-
ability regions.

ambiguity on the true value of θ creates a bimodal posterior. Figure 8.9(a) compares NED/EV
against the other methods as a function of the number of queries. For ABC, we rejected if(∑

iXobs
(i) −∑iXsim

(i)
)
/
∑

iXobs
(i) > 0.02.

The second experiment is a 2D problem with Θ = (0, 1)2. We artificially created a 3-modal
log-joint posterior shown by green contours in Figure 8.10. Figure 8.9(b) compares all methods.
Figure 8.10 shows the points chosen by the NED query strategy in order. We have learned
the high log joint probability regions well at the expense of being uncertain at low log joint
probability areas. However, this does not affect the posterior significantly as they are very small
after exponentiation. ABC does not apply here since we artificially constructed the log posterior
and cannot sample from the likelihood.

Our methods outperform existing methods and other heuristics by orders of magnitude on these
simple experiments. Both MCMC-DE and ABC require a large number of samples before being
competitive with the methods using regression. This corroborates an earlier remark that using
the evaluated likelihood values in the estimate can be useful when the queries are expensive.
Note that the KL divergence for BO gets stuck without decreasing further. This is because after
a certain stage, most evaluations are centred near the maximum. As a consequence, the heavy
tails and other modes are not explored properly.

Higher Dimensional Synthetic Experiments

We test in d = 5 and 15 dimensions. We construct an artificial log likelihood so that the resulting
posterior is mixture of 2 Gaussians centred at 0 and 1. Both Gaussians had covariance σ2Id where
σ = 0.5

√
d. We evaluate performance by the ability to estimate certain linear functionals. The

exact value of these functionals can be evaluated analytically since we know the true posterior.
We use a uniform prior. Our log-likelihood, functionals and their true values are

`(θ) = log

(
0.5N

(
θ; 0,

d

4
Id

)
+ 0.5N

(
θ; 1,

d

4
Id

))
239



T1 = E

[
d∑
i=1

Xi

]
=
d

2
, T3 = E

[
d−2∑
i=1

X2
iXi+1

]
=
d− 1

2
(1 + σ2),

T2 = E

[
d∑
i=1

X2
i

]
=
d

2
(1 + 2σ2), T4 = E

[
d−2∑
i=1

XiXi+1Xi+2

]
=
d− 2

2

For MCMC-DE, we draw samples Z1, Z2, . . . from the true likelihood. To estimate Ti =
E[φi(X)] we use the empirical estimator T̂i = 1/N

∑
k φi(Zk). Here φ1 =

∑d
i=1Xi for T1 etc.

For MCMC-DE we experimented with Gaussian proposal distributions with For EV , MCMC-R
and RAND we first use the queried points to obtain an estimate of the log-likelihood by regress-
ing on the likelihood values as explained before. Then we run an MCMC chain on this estimate
to collect samples and use the empirical estimator for the functionals. Note that evaluating the
estimate, unlike the likelihood, is cheap. We did not try NED since numerical integration is
intractable in high dimensions. ABC does not apply in this experiment as we cannot sample
from the log likelihood. For the proposal distributions for MCMC-DE and MCMC-R methods
we used a Gaussian with standard deviations {0.25σ, 0.5σ, σ, 2σ, 4σ} and report the one that
performed best within the alotted queries. When applying MCMC on the regression estimates
in EV, MCMC-R and RAND we used a Gaussian proposal with standard deviation σ. The re-
sults are shown in Figure 8.11. They demonstrate the superiority of our query strategy over the
alternatives.

Type Ia Supernovae

We use supernovae data for inference on 3 cosmological parameters: Hubble Constant (H0 ∈
(60, 80), Dark Matter Fraction ΩM ∈ (0, 1) and Dark Energy Fraction ΩΛ ∈ (0, 1). The likeli-
hood for the experiment is given by the Robertson–Walker metric which models the distance to
a supernova given the parameters and the observed red-shift. The dataset is taken from [50]. The
parameter space is taken to be Θ = (0, 1)3 (For H0 we map it to (60, 80) using an appropriate
linear transform). We test NED/EV against MCMC-DE, ABC, MCMC-R, RAND and Emcee, a
popular python package for affine invariant MCMC. For ABC, sampling from the likelihood is
as expensive as computing the likelihood. Figure 8.12(a) compares all methods. Figure 8.12(b)
shows the points queried by EV and the marginals of the true posterior. As expected, most of
EV’s queries are concentrated around the modes and heavy tails of the posterior. The KL for
RAND decreases slowly since it accumulates points at the high likelihood region very slowly.
MCMC-R performs poorly since it has only explored part of the high likelihood region. For
NED/EV after an initial exploration phase, the error shoots down.

The likelihood evaluations in this experiment are quite cheap, taking only a fraction of a second
for each query. Determining the next point is more expensive in EV than methods such as
MCMC, ABC and RAND due to matrix inversion in GPs. However, we found that the latter
methods required up to 20-30 times the number of likelihood evaluations to be competitive with
EV in this experiment. Therefore, despite the fact that the EV query strategy is expensive it
performs better than other methods on wall clock time. This illustrates that principled adaptive
query strategies can reap great dividends in posterior estimation.
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Figure 8.11: The first row is for the functionals T1, T2 in d = 5 dimensions and the second for is for
the functionals T3, T4. The last twoape rows are the same four functionals for d = 15. The x-axis is the
number of queries and the y-axis is |T̂i − Ti|/|Ti|. We use 500 queries for d = 5 and 3200 queries for
d = 15. All figures were obtained by averaging over 30 trials.
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Figure 8.12: (a): Comparison of NED/EV against MCMC-DE, ABC, Emcee, MCMC-R and RAND on
the Type Ia Supernovae dataset. For all regression methods we show results for up to 1600 queries and up
to 4 times as many for MCMC and ABC. For evaluation, KL was approximated via numeric integration
on a (100)3 grid. Note that MCMC and ABC require several queries before a nontrivial KL with the truth
is obtained. All curves were obtained by averaging over 30 runs. (b): Projections of the points selected by
EV (bottom row) and the marginal distributions (top row).

Luminous Red Galaxies

Here we used data on Luminous Red Galaxies (LRGs) for inference on 8 cosmological parame-
ters: spatial curvature Ωk ∈ (−1, 0.9), dark energy fraction ΩΛ ∈ (0, 1), cold dark matter density
ωc ∈ (0, 1.2), baryonic density ωB ∈ (0.001, 0.25), scalar spectral index ns ∈ (0.5, 1.7), scalar
fluctuation amplitude As ∈ (0.65, 0.75), running of spectral index α ∈ (−0.1, 0.1) and galaxy
bias b ∈ (0, 3). The likelihood is obtained via the Galaxy Power spectrum which measures
the distribution of temperature fluctuations as a function of scale. We use software and data
from [244]. Our parameter space is taken to be (0, 1)8 by appropriately linear transforming the
range of the variables. Each query takes about 4-5 seconds. In EV, determining the next point
takes about 0.5-1 seconds with ≈ 2000 points and about 10-15 seconds with ≈ 10000 points.
In this regime, where the cost of the likelihood evaluation is more expensive or comparable to
the cost of determining the next point in EV, we significantly outperforms other methods on wall
clock time. We do not compare with NED due to the difficulty of high dimensional numerical
integration. We do not compare with ABC since the software only permits evaluation of the
likelihood and not sampling.

Figure 8.13 shows points queried by MCMC, RAND and EV projected on the first 2 dimen-
sions. MCMC has several high likelihood points but its queries are focused on a small region of
the space. RAND does not have many points at high likelihood regions. EV has explored the
space fairly well and at the same time has several queries at high likelihood regions. As numer-
ical integration in 8 dimensions is difficult, we cannot obtain ground truth for this experiment.
Therefore, we perform the following simple test. We queried 250, 000 points uniformly at ran-
dom from the parameter space to form a test set. We then run EV, MCMC-R and RAND for up
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Figure 8.13: The projections of the first 6000 points queried by RAND MCMC, and EV respectively on
to the first 2 dimensions in cyan. The points shown in red are queries at high likelihood (logP > −50)
points.
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The y-axis is the mean squared recon-
struction error. The curves were ob-
tained by averaging over 16 runs.

to 12, 000 queries to collect points and estimate the posterior. Performance is evaluated by the
mean squared reconstruction error of the exponentiated log joint probabilities (joint probabili-
ties). Figure 8.14 shows the results. The error for RAND and MCMC-R stay the same throughout
since the problem is difficult and they did not have sufficient number of high likelihood points
throughout the space.

8.3 Proofs of Theoretical Results in Chapter 8.1

We will begin with a proof of the lower bound in Proposition 69.

Proof of Lower Bound (Proposition 69). Consider a setting with uniform prior over two param-
eters θ0, θ1 with two actions X0, X1. Set λ(θi, D) = 1{Xi /∈ D}. If θ? = θ0, then π?M will
repeatedly choose X1 and achieve reward 1 on every time step, and similarly when θ? = θ1. On
the other hand, conditioned on any randomness of the decision maker (which is external to the
randomness of the prior and the observations), the first decision for the decision maker must be
the same for both choices of θ?. Hence, for one of the two choices for θ?, λ(θ?, Dn) = 0 for all
n. Since the prior is equal on both θ0, θ1, the average instantaneous regret is at least 1/2. �
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8.3.1 Notation and Set up

In this subsection, we will introduce some notation, prove some basic lemmas, and in general, lay
the groundwork for the proofs of Theorems 71 and 73. P,E denote probabilities and expectations.
Pt,Et denote probabilities and expectations when conditioned on the actions and observations
up to and including time t, e.g. for any event E, Pt(E) = P(E|Dt). For two data sequences
A,B, A ] B denotes the concatenation of the two sequences. When x ∈ X , Yx will denote the
random observation from P(Y |x, θ).

Let Jn(θ?, π) denote the expected sum of cumulative rewards for fixed policy π after n rounds
under θ?, i.e. Jn(θ?, π) = E[Λ(θ?, Dn)|θ?, Dn ∼ π] (Recall (8.1)). Let Dt ∈ Dt be a data
sequence of length t. Then, Qπ(Dt, x, y) will denote the expected sum of future rewards when,
having collected the data sequence Dt, we take action x ∈ X , observe y ∈ Y and then execute
policy π for the remaining n− t− 1 steps. That is,

Qπ(Dt, x, y) = λ(θ?, Dj ] {(x, y)}) + EFt+2:n

[ n∑
j=t+2

λ(θ?, Dj ] {(x, y)} ] Ft+2:j)

]
. (8.9)

Here, the action-observation pairs collected by π from steps t+2 to n are Ft+2:n. The expectation
is over the observations and any randomness in π. While we have omitted for conciseness, Qπ is
a function of the true parameter θ?. Let dtπ denote the distribution of Dt when following a policy
π for the first t steps. We then have, for all t ≤ n,

Jn(θ?, π) = EDt∼dtπ

[ t∑
j=1

λ(θ?, Dj)

]
+ EDt∼dtπ

[
EX∼π(Dt)[Q

π(Dt, X, YX)]
]
, (8.10)

where, recall, YX is drawn from P(Y |X, θ?). The following Lemma decomposes the regret
Jn(θ?, π

?
M)− Jn(θ?, π) as a sum of terms which are convenient to analyse. The proof is adapted

from Lemma 4.3 in Ross and Bagnell [210].

Lemma 74. For any two policies π1, π2,

Jn(θ?, π1)− Jn(θ?, π2) =
n∑
t=1

EDt−1∼dt−1
π1

[
EX∼π1(Dt−1) [Qπ2(Dt−1, X, YX)]− EX∼π2(Dt−1) [Qπ2(Dt−1, X, YX)]

]

Proof. Let πt be the policy that follows π1 from time step 1 to t, and then executes policy π2

from t+ 1 to n. Hence, by (8.10),

Jn(θ?, π
t) = EDt−1∼dt−1

π

[ t−1∑
j=1

λ(θ?, Dj)

]
+ EDt−1∼dt−1

π1

[
EX∼π1(Dt−1)[Q

π2(Dt−1, X, YX)]
]
,

Jn(θ?, π
t−1) = EDt−1∼dt−1

π

[ t−1∑
j=1

λ(θ?, Dj)

]
+ EDt−1∼dt−1

π1

[
EX∼π2(Dt−1)[Q

π2(Dt−1, X, YX)]
]
.

244



The claim follows from the observation, J(θ?, π1) − J(θ?, π2) = J(θ?, π
n) − J(θ?, π

0) =∑n
t=1 J(θ?, π

t)− J(θ?, π
t−1).

We will use Lemma 74 with π1 as the policy π?M which knows θ? and with π2 as the policy π
whose regret we wish to bound. For this, denote the action chosen by π when it has seen data
Dt−1 as Xt and that taken by π?M as X ′t. By Lemma 74 and equation (8.9) we have,

Eθ? [Jn(θ?, π
?
M)− Jn(θ?, π)] =

n∑
t=1

EDt−1

[
Et−1

[
Qπ?M(Dt−1, X

′
t, YX′t)−Qπ?M(Dt−1, Xt, YXt)

]]
= E

n∑
t=1

Et−1

[
qt(θ?, X

′
t, YX′t)− qt(θ?, Xt, YXt)

]
, (8.11)

where we have defined

qt(θ?, x, y) = Qπ?M(Dt−1, x, y). (8.12)

Note that the randomness in qt stems from its dependence on θ? and future observations.

8.3.2 Comparing πPS

M against π?M and π?G

We will let P̃t−1 denote the distribution of Xt given Dt−1; i.e. P̃t−1(·) = Pt−1(Xt = ·). The
density (Radon-Nikodym derivative) p̃t−1 of P̃t−1 can be expressed as p̃t−1(x) =

∫
Θ
p?(x|θ? =

θ)p(θ? = θ|Dt−1)dθ where p?(x|θ? = θ) is the density of the maximiser of λ given θ? = θ and
p(θ? = ·|Dt−1) is the posterior density of θ? conditoned on Dt−1. Note that p?(x|θ? = θ) puts
all its mass at the maximiser of λ+(θ,Dt−1, x). Hence, Xt has the same distribution as X ′t; i.e.
Pt−1(X ′t = ·) = P̃t−1(·). This will form a key intuition in our analysis. To this end, we begin
with a technical result, whose proof is adapted from Russo and Van Roy [213]. We will denote
by It−1(A;B) the mutual information between two variables A,B under the posterior measure
after having seen Dt−1; i.e. It−1(A;B) = KL(Pt−1(A,B)‖Pt−1(A) · Pt−1(B)).

Lemma 75. Assume that we have collected a data sequence Dt−1. Let the action taken by πPS

M

at time instant t with Dt−1 be Xt and the action taken by π?M be X ′t. Then,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)] =∑

x∈X

(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)
P̃t−1(x)

It−1(X ′t; (Xt, YXt)) =
∑

x1,x2∈X

KL(Pt−1(Yx1 |X ′t = x2)‖Pt−1(Yx1)) P̃t−1(x1)P̃t−1(x2)

Proof. The proof for both results uses the fact that Pt−1(Xt = x) = Pt−1(X ′t = x) = P̃t−1(x).
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For the first result,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)]

=
∑
x∈X

Pt−1(X ′t = x)Et−1[qt(θ?, X
′
t, YX′t)|X ′t = x] −∑
x∈X

Pt−1(Xt = x)Et−1[qt(θ?, Xt, YXt)|Xt = x]

=
∑
x∈X

Pt−1(X ′t = x)Et−1[qt(θ?, x, Yx)|X ′t = x]−
∑
x∈X

Pt−1(Xt = x)Et−1[qt(θ?, x, Yx)]

=
∑
x∈X

(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)
P̃t−1(x) .

The second step uses that the observation Yx does not depend on the fact that x may have been
chosen by πPS

M ; this is because πPS

M makes its decisions based on past dataDt−1 and is independent
of θ? given Dt−1. Yx however can depend on the fact that x may have been the action chosen by
π?M which knows θ?. For the second result,

It−1(X ′t; (Xt, YXt)) = It−1(X ′t;Xt) + It−1(X ′t;YXt |Xt) = It−1(X ′t;YXt |Xt)

=
∑
x1∈X

Pt−1(Xt = x1) It−1(X ′t;YXt |Xt = x) =
∑
x1∈X

P̃t−1(x1) It−1(X ′t;Yx1)

=
∑
x1∈X

P̃t−1(x1)
∑
x2∈X

Pt−1(X ′t = x2) KL(Pt−1(Yx1|X ′t = x2)‖Pt−1(Yx1))

=
∑

x1,x2∈X

KL(Pt−1(Yx1|X ′t = x2)‖Pt−1(Yx1)) P̃t−1(x1)P̃t−1(x2)

The first step uses the chain rule for mutual information. The second step uses that Xt is chosen
based on an external source of randomness and Dt−1; therefore, it is independent of θ? and
hence X ′t given Dt−1. The fourth step uses that Yx1 is independent of Xt. The fifth step uses
Lemma 9.

We are now ready to prove theorem 71.

Proof of Theorem 71: Using the first result of Lemma 75, we have,

Et−1[qt(θ?, X
′
t, YX′t)− qt(θ?, Xt, YXt)]

2

=

(∑
x∈X

P̃t−1(x)
(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

))2

(a)

≤ |X |
∑
x∈X

P̃t−1(x)2
(
Et−1[qt(θ?, x, Yx)|X ′t = x]− Et−1[qt(θ?, x, Yx)]

)2

(b)

≤ |X |
∑

x1,x2∈X

P̃t−1(x1)P̃t−1(x2)
(
Et−1[qt(θ?, x1, Yx1)]− Et−1[qt(θ?, x1, Yx1)|X ′t = x2]

)2
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(c)

≤ |X |
∑

x1,x2∈X

P̃t−1(x1)P̃t−1(x2)EYx1

[(
Et−1[qt(θ?, x1, y)|Yx1 = y] − (8.13)

Et−1[qt(θ?, x1, y)|X ′t = x2, Yx1 = y]
)2
]

(d)

≤ |X |
2

∑
x1,x2∈X

τn−tP̃t−1(x1)P̃t−1(x2)×

EYx1

[
KL(Pt−1(Yx1|X ′t = x2, Yx1 = y)‖Pt−1(Yx1|Yx1 = y))

]
(e)

≤ |X |
2

∑
x1,x2∈X

τn−tP̃t−1(x1)P̃t−1(x2)KL(Pt−1(Yx1 |X ′t = x2)‖Pt−1(Yx1))

(f)
=

1

2
|X |τnIt−1(X ′t; (Xt, YXt))

(g)

≤ 1

2
|X |τnIt−1(θ?; (Xt, YXt))

Here, step (a) uses the Cauchy-Schwarz inequality and step (b) uses the fact that the previous
line can be viewed as the diagonal terms in a sum over x1, x2. Step (c) conditions on Yx1 = y
and applies Jensen’s inequality. Step (e) uses the definition of conditional KL divergence. Step
(f) uses the second result of Lemma 75, and step (g) uses Lemma 10 and the fact that X ′t is a
deterministic function of θ? given Dt−1. For step (d), we use the version of Pinsker’s inequality
given in Lemma 8 in conjunction with Condition 70. Precisely, we let H in Condition 70 to be
Dt−1 ] {(x, y)}. Now using (8.12) and (8.9), and the fact that π?M is deterministic, we can write,

qt(θ1, x, y)− qt(θ2, x, y) = λ(θ1, Dt−1 ] {(x, y)})− λ(θ2, Dt−1 ] {(x, y)}) +
n∑
j=1

(
EY,t+1:n|θ1

[
λ(θ1, Dt−1 ] {(x, y)} ] Fj,1)

]
−

EY,t+1:n|θ2
[
λ(θ2, Dt−1 ] {(x, y)} ] Fj,2)

])
≤ 1 +

n−t∑
j=1

εj ≤
√
τn−t.

Here, Fn,i is the data collected by π?M when θ? = θi, having observed H , and Fj,i is its prefix
of length j. The last step uses Condtion 70. Hence, by Lemma 8, the term with the squared
paranthesis in (8.13) can be bounded by τn−tKL(Pt−1(Yx1|X ′t = x2)‖Pt−1(Yx1)).

Now, using (8.11) and the Cauchy-Schwarz inequality we have,

E[Jn(θ?, π
?
M)− Jn(θ?, π

PS

M )]2 ≤ n

n∑
t=1

1

2
|X |τnIt−1(θ?; (Xt, YXt)) =

1

2
|X |τnI(θ?;Dn)

Here the last step uses the chain rule of mutual information in the following form,∑
t

It−1(θ?; (Xt, YXt)) =
∑
t

I(θ?; (Xt, YXt)|{(Xj, YXj)}t−1
j=1) = I(θ?; {(Xj, YXj)}nj=1).

The claim follows from the observation, I(θ?;Dn) ≤ Ψn.
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Proof of Theorem 73

In this section, we will letD??
m be the data collected π?G inm steps andD?

n be the data collected by
π?M in n steps. We will use the following result on adaptive submodular maximisation from [74].

Lemma 76. (Theorem 38 in Golovin and Krause [74], modified) Under condition 72, we have
for all θ? ∈ Θ,

EY [λ(θ?, D
?
n)] ≥ (1− e−n/m)EY [λ(θ?, D

??
m )]

Lemma 10 controls the approximation error when we approximate the globally optimal policy
which knows θ? with the myopic policy which knows θ?. Our proof of theorem 73, combines the
above result with Theorem 71, to show that MPS can approximate π?G under suitable conditions.

Proof of Theorem 73. Let Dn be the data collected by πPS

M . By monotonicity of λ, and the fact
that the maximum is larger than the average we have E[λ(θ?, Dn)] ≥ 1

n

∑n
t=1 E[λ(θ?, Dt)] =

1
n
E[Λ(θ?, Dn)]. Using theorem 71 the following holds for all m,

E[λ(θ?, Dn)] ≥ 1

n

(
E [Λ(θ?, D

?
n)]−

√
|X |τnnΨn

2

)
=

1

n

n∑
t=1

Eθ? [EY [λ(θ?, D
?
t )]]−

√
|X |τnΨn

2n

≥ E[λ(θ?, D
??
m )]

1

n

n∑
t=1

(1− e−t/m)−
√
|X |τnΨn

2n

≥ E[λ(θ?, D
??
m )](1− m

n
e−1/m − 1

n
e−1/m)−

√
|X |τnΨn

2n
.

Here, the first step uses Theorem 71, the second step rearranges the expectations noting that λ
takes the expectation over the observations. The third step uses Lemma 76 for each t. The last
step bounds the sum by an integral as follows,

n∑
t=1

e−t/m ≤ e−1/m +

∫ ∞
1

e−t/mdt ≤ e−1/m +me−1/m.

The result follows by using m = γn.

8.3.3 On Conditions 70 and 72

The following proposition shows that when the myopic policy has value 1, and achieves this at a
fast enough rate, for all values of θ, we satisfy Condition 70. For this, let θ, θ′, πθM, π

θ′
M, Dn, D

′
n,EY,t+1:

be as defined in Condition 70.
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Proposition 77. (π?M has value 1). Let πθM denote the myopically optimal policy when θ? = θ.
Assume there exists a sequence {ε′n}n≥1 such that,

sup
θ∈Θ

sup
H∈D

(
1− EY,|H|+1[λ(θ,H ]Dn)]

)
≤ ε′n.

Then, Condition 70 is satisfied with εn = ε′n.

Proof. Let H ∈ D and θ, θ′ ∈ Θ. Then,

EY,|H|+1|θλ(θ,H ]Dn)− EY,|H|+1|θ′λ(θ′, H ]D′n)

=
(
EY,|H|+1|θλ(θ,H ]Dn)− 1

)
+
(

1− EY,|H|+1|θ′λ(θ′, H ]D′n)
)
≤ ε′n,

since the first term is always negative.

We next show two examples of DOE problems where the condition in Proposition 77 is satisfied.

Bandits & Bayesian Optimisation

In both settings, the parameter θ? specifies a function fθ? : X → R. When we choose a point
X ∈ X to evaluate the function, we observe YX = fθ?(X) + ε where E[ε] = 0. In the bandit
framework, we can define the reward to be λ(θ?, Dn) = 1 + fθ?(Xn)−maxx∈X fθ?(x) which is
equivalent to maximising the instantaneous reward. In Bayesian optimisation, one is interested in
simply finding a single value close to the optimum and hence λ(θ?, Dn) = 1+maxt≤n fθ?(Xt)−
maxx∈X fθ?(x).

In both cases, since π?M knows it will always choose argmaxx∈X fθ?(x) achieving reward 1. Thus
Proposition 77 is satisfied with εn = 0 and τn = 1.

An Active Learning Example

We describe an active learning task on a Bayesian linear regression problem, and outline how it
can be formulated to satisfy Condition 70. In this example, our parameter space is Θ = {θ =
(β, η2)|β ∈ Rk, η2 ∈ [a, b]} for some positive numbers b > a > 0. We will assume the following
prior on θ? = (β?, η

2
?),

β? ∼ N (0k,P
−1
0 ), η2

? ∼ Unif(a, b),

where P0 ∈ Rk×k is the non-singular precision matrix of the Gaussian prior for β?. Our domain
X = {x ∈ Rk; ‖x‖2 ≤ 1} is the unit ball in Rk and Y = R. When we query the model at x ∈ X ,
we observe Yx = β>x + ε where ε ∼ N (0, η2). Our goal in DOE is to choose a sequence of
experiments {Xt}t ⊂ X so as to estimate β well.

Given a dataset Dn = {(xj, yj)}nj=1, a natural quantity to characterise how well we have es-
timated β? in the Bayesian setting is via the entropy of the posterior for β. This ensures that
the data is sampled also considering the uncertainty in the prior. For example, if the prior
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covariance is small along certain directions, an active learning agent is incentivised to collect
data so as to minimise the variance along other directions. Specifically, in this example, we
wish to minimise Ent(β?|Dn = Dn, η

2
? = η2

?), the entropy of β? assuming we have collected
data Dn and the true η2

? value were to be revealed at the end. It is straightforward to see that,
P(β?|η2

?, Dn) = N (µn,P
−1
n ), where,

Pn = P0 +
1

η2
?

n∑
j=1

xjx
>
j , µn = Pn

n∑
j=1

yjxj.

The entropy of this posterior is

Ent(β?|Dn = Dn, η
2
? = η2

?) =
1

2
log det(2πeP−1

n ) =
k

2
log(2πe)− 1

2
log det Pn.

Minimising the posterior entropy can be equivalently formulated as maximising the following
reward function,

λ(θ?, Dn) = 1− 1

det Pn

= 1− 1

det
(
P0 + 1

η2
?

∑n
j=1 xjx

>
j

) . (8.14)

The reward depends on θ? due to the η2
? term, and an adaptive policy can be expected to do better

than a non-adaptive one since the observations {yj}nj=1 can inform us about the true value of η2
? .

Note that since λ(θ?, Dn) is a multi-set function, Dn can be viewed as a (non-ordered) mulit-set
and the ] operator is simply the union operator. We will now demonstrate that λ satisfies the two
conditions set out in Chapter 8.1.3.

Condition 70: We will show that it satisfies the condition in Proposition 77. Let c be the
smallest eigenvalue of P0. For a given data set H = {(xj, yj)}mj=1 of size m, denote PH

0 =
P0 + 1

η2
?

∑m
j=1 xjx

>
j . Moreover, assume that the points chosen by π?M in X are z1, z2, . . . . Note

that this is a deterministic sequence since π?M knows η2
? and the reward does not depend on the

observations.

Let PH
n = PH

0 + 1
η2
?

∑n
i=1 zjz

>
j and denote its eigenvalues by σ1 > σ2 > · · · > σk. Note that

since the myopic policy chooses actions to maximise the reward at the next step, it will choose
zn+1 = argmax‖z‖=1 det(PH

n + 1
η2
?
zz>). We therefore have,

det PH
n+1 = max

‖z‖=1
det
(

PH
n +

1

η2
?

zz>
)
≥
(
σ1 +

1

η2
?

) k∏
j=2

σj

Noting that PH
0 − cIk is positive definite, we have, via an inductive argument det PH

n ≥ ck−1(c+
nη−2

? ). Letting D?
n be the data collected by π?M, we have

1− λ(θ?, D
?
n) ≤ 1

ck−1(c+ nb)
∆
= ε′n,

as η2
? ≤ b. This leads to ε′n, εn ∈ O(1/n) and hence τn ∈ O(log n) in Proposition 77 and

Condition 70. We next look at the adaptive submodularity condition.

250



Condition 72 (Adaptive Submodularity): Let Dn = {(xj, yj)}nj=1 Dm = {(xj, yj)}mj=1 be
two data sets such that Dm ⊂ Dn and m < n. Let Qm = P0 + 1

η2
?

∑n
j=1 xjx

>
j and Qn =

P0 + 1
η2
?

∑m
j=1 xjx

>
j = Qm + 1

η2
?

∑n
j=m+1 xjx

>
j . Let (x, Yx) be a new observation. We then have,

E[λ(θ?, Dn ] {(x, Yx)})]− λ(θ?, Dn) =
1

det(Qn)
− 1

det(Qn + xx>)

=
det(Qn + xx>)− det(Qn)

det(Qn) det(Qn + xx>)
=

1 + x>Q−1
n x

det(Qn + xx>)
,

and similarly for Qm. Here the last step uses the identity det(A+uv>) = det(A)(1 + v>A−1u).
Submodularity follows by observing that Qm, Qn are positive definite and Qn − Qm is positive
semidefinite. Hence,

1 + x>Q−1
m x

det(Qm + xx>)
≥ 1 + x>Q−1

n x

det(Qn + xx>)
.

Rewards with State-like structure

Here, we will show that πPS

M can achieve sublinear regret with respect to π?M, when there is
additional structure in the rewards. In particular, we will assume that there exists a set of “states”
S and a mapping σ : Θ × D → S from parameter, data sequence pairs to states. Moreover,
λ takes the form λ(θ?, D) = λS(θ?, σ(θ?, D)) for some known function λS : Θ × S → [0, 1].
We will also assume that the state transitions are Markovian, in that for any S ∈ S, let DS =
{D ∈ D : σ(θ?, D) = S}. Then, for all x ∈ X , y ∈ Y and D,D′ ∈ DS , σ(θ?, D ∪ {(x, y)}) =
σ(θ?, D

′ ∪ {(x, y)}).

Now, for any policy π, define,

Vn(π,D; θ) =
1

n
E
[ n∑
j=1

λ(θ,D ]Dj)

∣∣∣∣ θ? = θ,D,Dn ∼ π

]
V (π,D; θ) = lim

n→∞
Vn(π,D; θ)

Vn is the expected sum of future rewards in n steps for a policy π when θ? = θ, and it starts
from a prefix D. The expectation is over the observations and any randomness in π. V is the
limit of Vn. A common condition used in reinforcement learning is that the associated Markov
chain mixes when starting from any state S ∈ S. Under this condition, V does not depend on
the prefix D and we will simply denote it by V (π; θ). We have the following result.

Proposition 78. Assume that there exists a sequence {νn}n≥1, such that νn ∈ o(1/
√
n), and the

following two statements are true.

1. V (πθM; θ) = V (πθ
′

M; θ′) for all θ, θ′ ∈ Θ.

2. For all θ, and all data sequences H,H ′, |Vn(πθM, H; θ)− V (πθM; θ)| ≤ νn.

Then Theorem 71 holds with
√
τn = 1 + 2nνn.
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The second condition is similar to the requirements in Definition 5 in [137]. While they only use
a thresholding behaviour, we assume a uniform rate of convergence, where our bounds depend
on this rate. However, while results for non-episodic RL settings are given in terms of the mixing
characteristics of the globally optimal policy, our results are in terms of the myopic policy.

Proof of Proposition 78. We will turn to our proof of Theorem 71, where we need to bound
qt(θ1, x, y)− qt(θ2, x, y). We will use Proposition 78 with H = Dt−1 ] {(x, y)} and have,

qt(θ1, x, y)− qt(θ2, x, y)

= λ(θ1, Dt−1 ] {(x, y)})− λ(θ2, Dt−1 ] {(x, y)}) +
n∑
j=1

(
EY,t+1:n|θ1

[
λ(θ1, Dt−1 ] {(x, y)} ] Fj,1)

]
−

EY,t+1:n|θ2
[
λ(θ2, Dt−1 ] {(x, y)} ] Fj,2)

])
≤ 1 + (n− t)

(
Vn(πθM, Dt−1 ] {(x, y)}; θ)− Vn−t(πθ

′

M, Dt−1 ] {(x, y)}; θ′)
)

≤ 1 + (n− t)
(
|Vn−t(πθM, Dt−1 ] {(x, y)}; θ)− V (πθM; θ′)| +

|Vn−t(πθ
′

M, Dt−1 ] {(x, y)}; θ′)− V (πθ
′

M; θ′)|
)

≤ 1 + 2(n− t)νn−t =
√
τn−1

Here, the second step uses that λ is bounded in [0, 1], the third step simply uses the first condition
in Proposition 78 along with the triangle inequality, and the fourth step uses the second condition.
The remainder of the proof carries through by applying Pinksker’s inequality with this bound
in (8.13).

Conditions of the above form are necessary in non-episodic undiscounted settings for RL [137],
and we show that under similar conditions, πPS

M achieves sublinear regret with π?M.
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Chapter 9

Conclusion

9.1 Summary

We studied bandits and other settings for sequential decision making under uncertainty in state-
less environments. Many tasks in science, engineering, and finance can be framed as such prob-
lems. With a few exceptions, we operated primarily in the Bayesian paradigm, which uses intro-
spective Bayesian models to ingest outcomes of past experiments and plan future experiments.
The goal of this thesis was to study techniques to address the challenges and exploit new oppor-
tunities when scaling up such decision making problems to large scale settings.

On the bandit side, our work on additive models for Bayesian optimisation scales gracefully with
the number of dimensions when compared to naive techniques. Multi-fidelity bandits allow us to
leverage cheap approximations of f to optimise f efficiently; it uses the cheap approximations
to discard poor regions of the domain and deploys the expensive evaluations only in a promising
region. Our methods for parallelising bandits allow us to determine prudent locations to manage
exploration and exploitation when conducting multiple experiments at the same time; compu-
tationally, they scale gracefully with the amount of parallelism while statistically, they perform
almost as well as if the evaluations were done in sequence. NASBOT allows us to optimise func-
tions defined on combinatorially structured spaces. A pertinent application for this framework
is neural architecture search, which optimises the architecture of a neural network for cross val-
idation error on a given problem. Our open source software platform, Dragonfly, integrates the
above techniques into a scalable and robust framework for Bandit optimisation.

We then took a step back from the bandit setting and studied a more general setting for stateless
decision making. The MPS framework allows a practitioner to specify the goal of experimen-
tation via a reward function. This finds applications in many problems where the goals of ex-
perimentation can be very application-specific. Moreover, it provides an intuitive mechanism to
incorporate domain expertise which is useful in applications where experiments are very expen-
sive and we need to rely on prior knowledge to reduce the sample complexity. Theoretically, we
see that it is competitive with globally optimal policies that know system characteristics under
natural regularity conditions.
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In almost all cases above, our methods come with theoretical underpinnings. Moreover, empiri-
cally they outperform vanilla bandit techniques and other baselines for the setting.

Next, we discuss some interesting questions for future research arising out of this thesis. We first
discuss short term questions that arise from the limitations in our work in individual chapters.
Then, we discuss applications where our work on scalable decision making has potential for
high impact. Finally, we conclude with thoughts and open questions on the topic of scalability
in decision making under uncertainty.

9.2 Future Work on Individual Chapters

High Dimensional Bandits

In its current form, Add-GP-UCB comes without any theoretical guarantees. While it performs
demonstrably better empirically due to reasons discussed in Chapter 3, theoretically identifying
conditions under which it has sublinear regret is an open problem. One could also study other
additive models for high dimensional bandits (e.g. [54, 117]) and more generally other structural
assumptions on f to statistically and computationally simplify high dimensional bandits.

Multi-fidelity Bandits

On the K-armed multi-fidelity bandit, an immediate question arising out of our work is to close
the gap between the upper and lower bounds on the regret. Another important question is to
study different notions of cumulative regret for the multi-fidelity setting. For example, consider a
mining robot where each high fidelity play is a real world experiment of the robot and incurs cost
λ(2). However, a vastly cheaper computer simulation which incurs cost λ(1) may approximate
a robot’s real world behaviour. In such applications, λ(1) � λ(2). However, lower fidelity
plays do not have any reward, since they are just simulations. As a different example, consider
clinical trials, where the regret due to a bad treatment at the highest fidelity would be catastrophic.
However, a bad treatment at a lower fidelity may not warrant a large penalty.

In the Gaussian process settings, we wish to extend our theoretical results to more general set-
tings. For instance, in BOCA, we believe a stronger bound on the regret might be possible if
φZ is a finite dimensional kernel. However, since finite dimensional kernels are typically not
radial [236], our analysis techniques will not carry over straightforwardly.

Another line of work, applicable to all settings above is to develop multi-fidelity methods with
theoretical guarantees for other acquisitions such as Thompson sampling or expected improve-
ment. Currently, Dragonfly uses the BOCA/MF-GP-UCB strategy of first using any given acqui-
sition to determine the next evaluation point, and then determining the fidelity by studying the
variance across fidelity space at the chosen domain point. However, this does not come with
theoretical guarantees.
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Parallel Bandits

One of the open theoretical questions in our work is to bound the regret for asyTS without the
initialisation procedure. Second, we are interested in other models for evaluation times, such
as to capture correlations between the evaluation time and the query point xj ∈ X that arise in
practice. For example, in neural architecture search, the time to evaluate a network depends on
the size of the network. We believe that in such problems, even sequential algorithms might be
different from the conventional methods. One could also consider models where some workers
are slower than the rest. Third, in the asynchronous setting, there might be instances where the
algorithm might choose to kill an evaluation in progress based on the result of a completed job.
The algorithm might also choose to wait for another evaluation to finish without immediately
deploying a free worker, so as to incorporate additional information.

Neural Architecture Search & Bandits on Graphs

In its current form, many of the parameters in the OTMANN distance are assumed fixed. Using
GP marginal likelihood based methods to learn these parameters as part of the optimisation
procedure will improve the performance of NASBOT when we have the computational budget
to evaluate many networks. Secondly, the current trend in architecture search, which has yielded
state of the art results, is to constrain the search space of architectures to cells which are repeated
throughout the network. While NASBOT’s search space, in its current form is very general, it
would be useful to see how well it performs in such constrained spaces.

At a higher level, an interesting question for future work is to extend the ideas in OTMANN and
NASBOT to optimisation of other graph-structured objects, such as drugs, chemical molecules,
crystal structures, and social networks. Developing theoretical guarantees for bandit methods on
such complex domains is also an intriguing line for future work.

Dragonfly

Many of the techniques employed to make Bayesian optimisation robust in Dragonfly, especially
those based on ensemble techniques, come without theoretical underpinnings. More generally,
in the author’s opinion, developing robust methods for selecting the GP hyperparameters is an
open problem in Bayesian optimisation [263].

One of the main challenges for the Bayesian optimisation community is that Gaussian processes
are not scalable for a very large number of experiments. In many practical problems, this is
not a serious bottleneck since evaluations can be quite expensive – hence, we usually cannot
afford a large number of experiments. However, we are fast reaching the point where we might
conceivably run several tens of thousands of experiments, at least in some applications. For
instance, with multi-fidelity methods we can carry out a large number of cheap approximations.
Moreover, with increasingly better computational capabilities, experiments that were historically
very expensive, can today be run significantly faster (e.g. [115, 227]). While other Bayesian
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models for the reward function have been explored [103, 233], GPs still remain the most effective
and popular method for BO. Combining BO with methods for scaling up GPs [231, 268, 269]
will enable the application of such methods to very large scale problems.

Going forward, we wish to continue development of Dragonfly, and integrate many other features
for scalable Bayesian optimisation, including those discussed above.

Bayesian Design of Experiments

A natural question arising out of our work is to study real life DOE tasks where conditions 70 and
72 hold and other conditions under which a myopic strategy such as MPS will work. Moreover,
similar to how MPS is inspired by Thompson sampling for bandits, it is worth asking if other
policies are possible, say inspired by upper confidence bound strategies or information theoretic
criteria [44, 118, 119, 145, 146]. It will also be interesting to study computationally efficient
methods for fully optimal policies, and those with k-step lookahead, which interpolate between
myopic policies and fully optimal ones. Analysing the trade-off of computation and optimality
for such k-step policies will also be an interesting question for theoretical study.

Finally, we should also mention that Chapter 8 only studies one class of problems for stateless
decision making, and aims to provide a general algorithm for this class. Studying if more efficient
algorithms can be developed for a subset of this class and developing new methods for other
classes of problems are both intriguing directions for future work.

9.3 Impactful Application Domains for Bandits & Stateless
Decision Making

We now discuss some potential applications for bandits and other stateless decision making tech-
niques. The thoughts here stem primarily from my understanding of the technological feasibility
and opportunity in the respective domains and the potential for commercial and social benefit.
The first three applications below have been classical motivations for studying bandit and design
of experiments formalisms. However, these methods have not seen widespread adoption due to
the large disconnect between theoretical innovations and practical challenges. In the last two
applications, bandit methods have been previously unexplored but where we believe they could
have significant impact in the modern economy.

For each application, I outline some unique challenges arising, elaborate how some of them can
be addressed by the work in this thesis, and discuss open questions that need to be solved to
make automated decision making technology feasible and realistic in said domain.

256



Materials Design

Materials design is a blanket term used to describe the process of developing new materials for
new applications. Traditionally, these tasks were primarily performed by experts who manually
tested out different designs and chose one that satisfied the required criteria the most. This
exercise is expensive for materials companies since it requires a materials scientist to use their
intuition and expertise in selecting the next design. Moreover, it is laborious for said materials
scientists as it requires digesting and reasoning with large high dimensional datasets. However,
recently, there has been a surge of interest in computational and data-driven methods in materials
science. This is in part driven by the rising popularity of machine learning as a field, and in
part, by the above challenges in the conventional modus operandi. In particular, many recent
work have begun viewing the design and discovery of new materials for new applications as
bandit and design of experiment tasks [85, 105, 193]. This includes the collaboration with the
Scott Institute for Energy at CMU, highlighted in Chapter 7.4.4, on using bandit methods for
electrolyte design.

That said, there are many unique challenges to applying such methods to materials design. For
example, domains tend to be quite high dimensional. Moreover, the types of experiments vary
from simple laboratory tests which take a few hours to real-world tests which can take several
days. Our work in Chapters 3 and 4 on high dimensional and multi-fidelity decision making are
relevant in such settings. Further, materials scientists are interested in a variety of tasks such
as multi-objective optimisation and active learning and wish to incorporate domain expertise in
their models – both of which are addressable by our work in Chapter 8 on design of experiments.

Drug Discovery

The average R&D cost for bringing a new drug to the market is estimated at more than $2
billion. Many pharmaceutical experts believe that the current approach to drug discovery, which
predominantly relies on chemists to design new drugs, should change drastically to reduce this
cost. One of the challenges in this space is that small molecules, which have been the traditional
focus of the industry, are not easily modelled computationally. However, recently, there has been
optimism in using biologics which are more amenable for computational methods.

From a design of experiments perspective, drug discovery shares many challenges to materials
design, including high dimensional domains and a need to incorporate domain expertise. One
notable difference though is the availability of high throughput screening infrastructure that can
be used to conduct hundreds, if not thousands of experiments in parallel [102], where, work on
parallel Bayesian optimisation in Chapter 5 is pertinent. One unsolved problem in this space
is developing good representations for drug molecules, which can be viewed as 3D graph-like
objects. There is some recent progress in this front (e.g. [76]), and we believe our ideas on
OTMANN in Chapter 6 can be used here as well.
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Online Tuning of Industrial Systems & Manufacturing Apparatuses

The performance of systems such as those found in industrial manufacturing facilities depend
on crucial configuration parameters. A crucial challenge in optimising such systems is that they
need to be tuned online, i.e. when the systems are running and being used for a real world
downstream application. Hence, bandit algorithms should be careful in choosing parameters to
control. For example, when optimising an industrial manufacturing apparatus [271], we should
be careful in which configurations we try out as bad configurations can reduce production and
result in losses. Similarly, consider tokamaks, which are devices using a magnetic field to confine
hot plasma in order to generate thermonuclear fusion energy. The stability and the total energy
generated by such devices are controlled by the power, energy fraction, and half energy fraction
of each beam in the tokamak [64]. Choosing bad configurations can result in unstable systems
and potentially lead to explosions. Hence, it is necessary to develop methods which can explore
the configurations safely [14, 239].

Another potential challenge in such systems is that the decision making may need to be done
very fast or in real-time. For example, when tuning tokamaks, new recommendations should
be provided in under 250ms. Many bandit methods are not computationally efficient, usually
requiring solving an NP-hard problem on each iteration. Hence, they can be quite slow especially
in large and complex domains. Developing efficient bandit methods for such problems is an
important and open unsolved problem.

Optimising Computing Infrastructure

Computing infrastructure has become increasingly complex over the last few years, with several
hundred, if not thousands of configuration parameters. For example; data storage and processing
tools can have hundreds of configuration knobs, modern JVMs have more than 700 tunable
parameters, and other containers, OS kernels, and VMs have dozens of settings. Practitioners are
interested in optimizing for several criteria such as latency, throughput, and cost when managing
complex infrastructure systems, depending on the application at hand. Today, in institutions
where performance of infrastructure systems are essential to the business, these configurations
are manually tuned by performance engineers, such as DevOps or site reliability engineers, who
sift through log files to study how different knob configurations affected the desired performance
criteria. With increasingly complex systems and an explosion in the number of such systems
deployed in an organization, this approach is not scalable any more.

Many of the methods developed in this thesis are relevant in this domain. For example, the
domains tend to be high dimensional, many experiments can be executed in parallel, and these
experiments can be approximated to various extents by running shorter lower fidelity versions
of relevant jobs. However, it also ushers in new challenges. For example, the performance of
these systems tend to depend on the hardware and the workload, whose characteristics may be
entirely or partly unknown. This will require new methodological developments in contextual
bandits [143]. Secondly, infrastructure systems are tuned in a staging environment and then
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deployed in production settings. Combining bandit methods with transfer learning [189] is nec-
essary to account for differences between staging and production.

Allocation of Computation in Modern Networks

Modern computing networks have become increasingly sophisticated, be it a small IoT network
which collects data from mobile devices and/or home appliances (edge) and communicates them
to a computer (core), or an enterprise network used for online retail which collects consumer
data from various geographic locations (edge) and communicates them to a central server (core).
An important problem that arises in such networks is the allocation of various computing tasks
to different parts of the network so as to optimise desired performance criteria.

Performing computation at the core allows us to synchronise data coming from various sources
and potentially leverage powerful computing resources. However, communicating data fre-
quently from the edge will induce undue stress on the network’s capacity. Moreover, due to
network latency, the data at the core is necessarily stale, i.e. not up to date with the data available
at the edge. In contrast, performing computation on edge devices will allow us to respond to
changes in the environment in real time or very fast. However, heavy computation might not be
possible and there might be limited availability of data from other nodes in the network.

Like many other applications we have seen above, not all characteristics of these systems can
be modeled analytically, and hence we need to resort to repeated experimentaton to optimise
these neworks. Moreover, similar to computing infrastructure systems, the performance of a
given design depends on the performance requirements (service level objectives), the properties
of the network, and the workload; some of this contextual information is observed, while some
are not. Similar to the computing infrastructure use case, we will require new methodological
innovations in contextual bandits and transfer learning. In addition, this will also require being
able to optimise over complex and structured domains.

9.4 Open Problems & Future Research Directions

In this section, I discuss some open problems and other research directions that need to be solved
so as to make data driven decision making systems more scalable and practical, both in stateless
and stateful environments. This discussion is motivated by the following question,

What other gaps need to be filled so that automated decision making methods can be used
pervasively in industrial, engineering, and scientific applications?

The thoughts here are both inspired and fashioned by my interactions with practitioners and
domain experts from potential application domains for this technology, both in academia and
industry. Some of the ideas here have already been alluded to in the previous section. To better
follow the discussion, I would like to draw the attention of the reader to Table 1.1 in Chapter 1,
which outlines various delineations in decision making.
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Stateless Decision Making

The scalability topics in this thesis has primarily, albeit not exclusively, focused on the bandit
setting. Many of these ideas will translate straightforwardly to general stateless decision making.
For example, I expect that using additive models in high dimensional settings, and posterior
sampling techniques for executing several experiments in parallel will apply with no or very
minimal modifications to design of experiment problems. However, extending our multi-fidelity
work will require more work; the intuition of proceeding to the higher fidelity once the lower
fidelity uncertainty has shrunk sufficiently might work for problems such as active learning, but
not in the specific way developed in Chapter 4. We hope that future research will flesh out these
ideas in the coming years. Next, we take look at other topics not covered in this thesis.

Interpretability: One of the main practical challenges in widespread adoption of automated de-
cision making systems is that many practitioners view these methods as “too black-box”. Devel-
oping systems that can provide interpretable recommendations might go a long way in alleviating
such concerns. For example, in addition to recommending a design for the next experiment, we
can also provide reasons as to why said design was recommended (e.g. we expect it to be an
optimum of the function or we expect to learn a certain aspect of the system).

Interaction with Practitioners: Developing autonomous systems that can interact with practi-
tioners will allow AI systems to work synergistically with human experts to achieve the desired
outcome. From a socio-economic perspective, it could also reduce the barrier to entry for adop-
tion by domain experts who might view such technologies as an entity that might replace them
as opposed to a tool that could be helpful to them. One setting for an expert-in-the-loop model
would allow an expert to score the suggestion by an algorithm or compare multiple sugges-
tions [275, 276]; the algorithm then re-evaluates whether or not it should still run the experiment.
Another setting would allow an expert to either entirely pass the suggestion or modify it before
running the experiment. A third setting would allow the expert to first suggest a design and
have the algorithm critique it. Exploring these and other models for expert interaction would be
interesting from a theoretical standpoint and have significant practical impact.

User-friendly and Robust Bayesian Inference Engines: Our work in Chapter 8 allows one to
incorporate domain expertise in the form of custom Bayesian models. To leverage such methods,
it is necessary to develop flexible tools to specify such models and perform posterior inference
on them. The field of probabilistic programming (PP) aims to do precisely this [16, 31, 248].
While there have been many strides in scalable black-box Bayesian inference in the recent
past [179, 180] and attempts to incorporate PP into Bayesian optimisation [182], this is still
far from a solved problem. Using available PP tools requires a fair amount of machine learn-
ing expertise. Moreover, inference tends to become slow and brittle when the complexity of the
model increases. This can be especially problematic in fields such as materials science, drug
discovery, and computing infrastructure where models can be large and complex. This is further
exacerbated by the fact that practitioners in their respective fields who use these tools may not
be familiar with machine learning, Bayesian inference, and related topics. Developing robust
and user-friendly inference engines that can be used by non-experts will facilitate widespread
adoption of these methods.
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Resource Management: Currently, we do not have good techniques for resource management
when conducting experiments, especially when they are available in parallel. For instance, as-
sume that we have a few parallel workers, but unlike the setting in Chapter 5, we are able to
combine them to execute the same experiment sooner. As an example, assume one is given four
GPUs to tune the parameters of a deep network. A straightforward solution is to treat this as a
parallel bandit optimisation algorithm with four different workers, as we have done in Chapter 5.
But suppose we had the option to combine all four GPUs to execute the same experiment and
obtain the result twice as fast. We receive feedback sooner and are consequently able to make
a better decision at the next instant. However, we lose throughput as we can now only com-
plete two experiments in the time that it took to complete four. Such trade-offs are ubiquitous in
several set ups where parallel computation is available, such as cosmological simulations in as-
trophysics and molecular dynamics or density functional theory calculations in materials science.
Developing strategies that can account for this trade-off between throughput and information ac-
cumulation when making decisions is an important open problem.

Contextual Decision Making: Many real world problems fall naturally into the contextual ban-
dit formalism, where we need to find the optimal design for different contexts. For example, in
personalised advertising, the optimal ad for one user (context) will be different from another’s
since user preferences are different. While contextual bandits is fairly well studied in settings
where this context is known [143, 147, 148], in many applications they are either unknown, partly
known, or known only after the action has been made, such as the computing infrastructure op-
timisation example above. Studying such new formalisms for contextual bandits and extending
our scalability techniques to the contextual case will be interesting avenues for future work.

Stateful Decision Making

The next step is of course extending many of these scalability ideas to the stateful setting. Rein-
forcement learning (RL) is presently a popular area of research [90, 126, 174, 226, 227, 240], but
has primarily been shown to be most successful in settings where an abundance of experiments
are possible. This limits in applicability in applications such as materials science and drug dis-
covery where each experiment can be expensive. On the other hand, many problems in decision
making have a notion of state where bandit methods are inadequate. Hence, it is necessary to
develop RL methods that can work well with few samples, even on complex domains.

Many of the ideas in this thesis can be applied to various extents in the RL paradigm. For
example, additive models and other similar simplifying structural assumptions on the feedback
model can help reduce the sample complexity and multi-fidelity methods in RL can help leverage
cheap approximations to an experiment (such as simulations) to speed up the optimisation pro-
cess. We also believe that RL methods based on Thompson sampling (e.g. [185]) can be easily
parallelised in a manner similar to our approach in Chapter 5 for the bandit case. Furthermore,
many of the challenges outlined above for stateless decision making, including interpretability,
resource management, and scalable models are challenges that need to be addressed.

Finally, we mention that stateful decision making paradigms exist outside of reinforcement learn-
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ing. A pertinent example that might find applications in many industrial settings is that of system
identification, where the goal is to learn how a black box system, such as a tokamak, responds
to inputs at different states. To our best knowledge, besides some work studying very simple
systems (e.g. where the output is a linear function of the input and the state [20]), there has been
no work studying such problems in their fullest generality. We believe that our work in Chapter 8
provides a good starting point towards solving such stateful decision making systems.

9.5 Final Thoughts

I would like to conclude this thesis with my thoughts on the current state of decision making
under uncertainty, and its readiness for real world applications. I make two high level take-aways
based on the discussions above.

1. More work needs to be done for stateless decision making, but it is ready-to-go for
many applications.
Bandit methods have already been tested and validated on real world applications such
as online advertising, content recommendations, and hyperparameter tuning. While they
have not been widely adopted, recent developments for high dimensional optimisation,
parallelisation, safe exploration, multi-fidelity methods, and contextual formalisms have
enabled their application for problems in different domains today. In addition to bandits,
the machine learning community has made significant progress in other stateless decision
making systems, such as active learning, design of experiments, and posterior estimation.
By engaging with different application domains, and applying these methods on real world
problems, we can also learn about new problem formalisms for theoretical study.

2. Stateful decision making is far from solved for the real world.
While there have been a few success stories for RL in the recent years, they have been
in simulated environments where several hundred thousand or more than a million exper-
iments have been possible. This severely limits their applicability in real world applica-
tions where experiments can be significantly more expensive. It is therefore necessary to
develop methods for sample-efficient RL and/or methods for leveraging information from
cheap approximations such as simulations. In addition, our progress in stateless decision
making in implicit reward settings (see Table 1.1) is still immature.
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Appendix A

Notation

This appendix summarises the notation used throughout this thesis. We first provide notation
common across all chapters and then the notation specific to each chapter or sub-chapter(s).
Note that some symbols may be overloaded, and differ from chapter to chapter.

General Notation

f : The payoff function to be maximised.

X : The domain over which we are optimising f .

x? : The optimum point of f , x? ∈ argmaxx∈X f(x).

f(x?) : The optimum value of f , f(x?) = maxx∈X f(x).

Dt : Unless otherwise specified, Dt is the set of all previous queries at time t
consisting of query-feedback pairs, i.e. Dt = {(xi, yi)}t−1

i=1.

µt−1 : The mean of the GP at time t conditioned on the previous queries.

σt−1 : The standard deviation of the GP at time t conditioned on the previous
queries.

βt : Unless otherwise specified, the coefficient trading off exploration and ex-
ploitation in the GP-UCB. See Theorem 1 and 2. May be overloaded in
other chapters.

xt : The point in the domain X queried at time t.

ϕt : Typically, the acquisition at time t used to decide the point for evaluation xt
in Bayesian optimisation, i.e. xt = argmaxx∈X ϕt(x).

Ψn : The maximum information gain in a Gaussian process, See Definition 1.
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δ : Typically, the failure probability for a theoretical statement. For example,
in Theorem 1, the bound holds with probability > 1− δ.

A : The complement of a set A ⊂ X . A = X\A.

|A| : The cardinality of a set A ⊂ X if it is countable.

∨,∧ : Logical Or and And respectively.

.,&,� : Inequalities and equality ignoring constant and polylog terms.

P,E : Probabilities and expectations. In Bayesian settings, unless otherwise spec-
ified, they are under the prior measure.

Ent, I,KL : The Shannon entropy, Shannon mutual information, and Kullback Leibler
Divergence [47]. In Bayesian settings, unless otherwise specified, they are
under the prior measure.

Chapter 3

{X (j)}Mj=1 : The decomposition of the domain X = [0, 1]d in the additive model where
X (j) is composed of pj dimensions.

M : The number of groups in the additive model.

x(j) : For given x ∈ X , x(j) denotes the coordinates of the dimensions in X (j).

f (j) : f (j) : X (j) → R is the function on the domain X (j) in the additive model.
f : X → R is given by f =

∑M
j=1 f

(j)

κ(j) : The kernel for the j th GP corresponding to function f (j).

µ
(j)
t−1 : The mean of the j th GP at time t conditioned on the previous queries.

See (3.2).

σ
(j)
t−1 : The standard deviation of the j th GP at time t conditioned on the previous

queries. See (3.2).

pj : The dimensionality of the j th group, X (j).

p : The maximum group size, p = maxj pj .

Chapters 4.1 & 4.4

X : All arms in the bandit problem, i.e. the domain. X = {1, . . . , K}.
M : The number of fidelities (approximations).
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θk, θ
(M)
k : The distribution from which the rewards are drawn for arm k ∈ X at the

highest fidelity.

θ
(m)
k : The distribution of the mth fidelity approximation of θ(M)

k .

µ
(m)
k : The mean of θ(m)

k .

ζ(m) : Bound on the maximum difference between µ(m)
k and µ(M)

k ,
|µ(M)
k − µ(m)

k | ≤ ζ(m).

X? : The set of optimal arms, argmaxk∈X µ
(M)
k .

It : It ∈ X is the arm pulled at time t.

mt : mt ∈ {1, . . . ,M} is the fidelity queried at time t.

Λ : Denotes the capital of some resource which is expended during the execu-
tion of the algorithm.

λ(m) : The cost, i.e. amount of capital expended upon one arm pull at fidelity m.

N : The random number of queries at any fidelity within capital Λ.
N = max{n ≥ 1 :

∑n
t=1 λ

(mt) ≤ Λ}
R(Λ) : The cumulative regret after spending capital Λ in the multi-fidelity setting.

See (1.1).

ν, ψ : Quantities which characterise the concentration of the stochastic rewards
around their mean, see (4.2).

T
(m)
k,t : The number of pulls of arm k at fidelity m in the first t steps.

Q
(m)
t : The number of pulls of all arms at fidelity m in the first t steps, Q(m)

t =∑
l T

(m)
k,t .

X
(m)

k,s : The mean of s samples drawn from θ
(m)
k .

∆
(m)
k : Denotes the quantity ∆

(m)
k = µ? − µ(m)

k − ζ(m).

B(m)
k,t : An upper confidence bound on the mean µ(m)

k of arm k at the mth fidelity at
time step t. See (4.3).

Bk,t : An upper confidence bound on µ(M)
k = µk at time step t which combines

{B(m)
k,t }Mm=1. See (4.3).

ρ : A parameter in the MF-UCB algorithm used in constructing the upper con-
fidence bounds. See (4.3).

γ(m) : The parameter in MF-UCB for switching from the mth fidelity to the (m +
1)th. See (4.4).
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J (m)
η : The set of arms whose fidelity m mean is within η of µ?, i.e J (m)

η = {k ∈
X ; µ? − µ(m)

k ≤ η}.
{X (m)}Mm=1 : A partitioning of the arms X =

⋃M
m=1X (m) where X (m) are the arms that

will be played at the mth fidelity by MF-UCB, but are mostly excluded from
higher fidelities using information at fidelity m. See (4.6) and Figure 4.2.

JkK : For an arm k ∈ X , JkK denotes the set in the partition {X (m)}Mm=1 that k
belongs to.

Λ0 : The minimum cost that needs to be expended before the bounds in Theo-
rem 16.

nΛ : nΛ = bΛ/λ(M)c. Number of plays by a strategy playing only at fidelity
M within capital Λ; also a lower bound on N , the number of plays by a
multi-fidelity strategy.

X (m)
3 ,X (m)

7 : A further partitioning of X (m) = X (m)
3 ∪ X (m)

7 where the lower bound in
Theorem 17 is tight in X (m)

3 and not in X (m)
7 . See (4.7).

Lm(k) : Lm(k) = {` < m : ∆
(`)
k > 0} ∪ {m} is the union of the mth fidelity and all

fidelities smaller than m for which ∆
(`)
k > 0. See Theorem 17.

R̃k(Λ), R̃kn : R̃k(Λ) =
∑M

m=1 λ
(m)∆

(M)
k T

(m)
k,N is the regret incurred by arm k within capi-

tal Λ and R̃kn = E[R̃k(Λ)|N = n].

φ
(m)
t : Denotes the quantity, φ(m)

t = b ρ log(t)

ψ(γ(m))
c.

P̃, Ẽ : Probabilities and expectations in the modified construction for the lower
bound.

Chapters 4.2 & 4.5

PGP ,EGP : Probabilities and expectations when f (1), . . . , f (M) are sampled from
GP(0, κ).

P,E : Probabilities and expectations under the prior, which includes condition A2
after f (1), . . . , f (M) are sampled from GP(0, κ).

ξA2 : A lower bound on the probability that condition A2 holds when
f (1), . . . , f (M) are sampled, see (4.11).

Q : The function which controls the probability on the supremum of a GP, see
Lemma 7.

M : The number of fidelities.

f (m) : The mth fidelity approximation of f (M) = f .
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Λ : Denotes the capital of some resource which is expended during the execu-
tion of the algorithm.

λ(m) : The cost, i.e. amount of capital expended, upon querying at fidelity m.

mt : mt ∈ {1, . . . ,M} is the fidelity queried at time t.

N : The random number of queries at any fidelity within capital Λ.
N = max{n ≥ 1 :

∑n
t=1 λ

(mt) ≤ Λ}
qt, rt : The instantaneous reward and regret respectively.

qt = f (M)(xt) if mt = M and −∞ if mt 6= M . rt = f(x?)− qt.
S(Λ) : The simple regret after spending capital Λ in the multi-fidelity setting.

S(Λ) = f(x?)−mint∈{1,...,N} mt=M f(xt). See (4.9).

ζ(m) : The bound on the maximum difference between f (m) and f (M),
‖f (M) − f (m)‖∞ ≤ ζ(m).

κ
(m)
t : The covariance of the mth fidelity GP f (m) conditioned on D(m)

t at time t.

σ
(m)
t : The standard deviatiation of the mth fidelity GP f (m) conditioned on D(m)

t

at time t.

xt, yt : The queried point and observation at time t.

mt : The queried fidelity at time t.

D(m)
n : The set of queries at the mth fidelity until time n {(xt, yt)}t:mt=m.

βt : The coefficient trading off exploration and exploitation in the UCB.
See Theorems 21 and 22.

ϕ
(m)
t (x) : The upper confidence bound (UCB) provided by themth fidelity on f (M)(x).

ϕ
(m)
t (x) = µ

(m)
t−1(x) + β

1/2
t σ

(m)
t−1(x) + ζ(m).

ϕt(x) : The combined UCB provided by all fidelities on f (M)(x).
ϕt(x) = minm ϕ

(m)
t (x).

γ(m) : The parameter in MF-GP-UCB for switching from the mth fidelity to the
(m+ 1)th.

R̃n : The M th fidelity cumulative regret after n rounds. See (4.37)

T
(m)
n (A) : The number of queries at fidelity m in subset A ⊂ X until time n.

T
(>m)
n (A) : Number of queries at fidelities greater than m in any subset A ⊂ X until

time n.

nΛ : nΛ = bΛ/λ(M)c. Number of plays by a strategy querying only at fidelity
M within capital Λ; also a lower bound on N , the number of plays by a
multi-fidelity strategy.
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nΛ : An upper bound on N , the number of plays by a multi-fidelity strategy
within capital Λ. nΛ = bΛ/λ(1)c.

Ψn(A) : The maximum information gain of a set A ⊂ X after n queries in A. See
Definition 1.

∆(m)(x) : ∆(m)(x) = f(x?)− f (m) − ζ(m).

J (m)
η : The points in X whose f (m) value is within ζ(m) + η of the optimum f(x?).

J (m)
η = {x ∈ X ; ∆(m)(x) ≤ η}.

H(m) : (H(m))Mm=1 is a partitioning of X . See Equation (4.12). The analysis of
MF-GP-UCB hinges on these partitioning.

Ĥ(m), Ĥ(m) : The arms “above”/“below” H(m). Ĥ(m) =
⋃M
`=m+1H(`), Ĥ(m) =⋃m−1

`=1 H(`).

H(m)
τ,n : An n-dependent dilation of H(m)

τ in the continuous setting. See Sec-
tion 4.2.3.

Ĥ(m)
τ , Ĥτ

(m) : The arms “above”/“below” H(m)
τ . Ĥ(m)

τ =
⋃M
`=m+1H

(`)
τ , Ĥτ

(m) =⋃m−1
`=1 H

(`)
τ .

Xg : The good set for M = 2 fidelity problems. Xg = {x ∈ X ; f(x?) −
f (1)(x) ≤ ζ(1)}.

X̃g,ρ : The inflated good set for MF-GP-UCB. X̃g,ρ = {x; f(x?) − f (1)(x) ≤
ζ(1) + 3γ}.

Ω(ε)(A) : The ε–covering number of a subset A ⊂ X in the ‖ · ‖2 metric.

Λ1,Λ2 : The minimum capitals that need to be expended before the bound on S(Λ)
hold in Theorems 21 and 22.

Chapters 4.3 & 4.6

Z : The fidelity space.

g : g : Z × X → R defined on the product of the fidelity space and domain
characterises the pay-off function and its connection to the approximations.

z• : z• ∈ Z is the fidelity of interest, i.e. the fidelity at which we wish to max-
imise g.

f : The pay-off function f : X → R, given by f(x) = g(z•, x).

λ : A known cost function λ : Z → R+ where, λ(z) is the cost of evaluating g
at fidelity z ∈ Z .

zt : The point in the fidelity space queried at time t.
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nΛ : nΛ = bΛ/λ(z•)c is the number of evaluations by a single fidelity method
within capital Λ.

S(Λ) : The simple regret after spending capital Λ in the multi-fidelity setting.
S(Λ) = f(x?)−mint∈{1,...,N} zt=z• f(xt). See (4.19).

φZ : φZ : R+ → R+ is a decreasing function with ‖φZ‖∞ = φZ(0) = 1 used to
characterise a radial kernel defined on the fidelity space.

ξ : The information gap for radial kernels defined on the fidelity space. ξ :
Z → [0, 1] is given by ξ(z) =

√
1− φZ(‖z − z•‖)2. See (4.21).

νn, τn : The posterior mean and standard deviation of the joint GP conditioned on n
past evaluations. See Chapter 4.3.1 and equation (4.22).

ϕt : The upper confidence bound in the multi-fidelity setting. See (4.23).

Zt : Zt(xt) is a subset of the fidelities chosen at time t based on xt which will be
considered for evaluation at time t. See (4.24).

Dt : All previous queries at time t consisting of fidelity, domain point, and feed-
back triples, Dt = {(zi, xi, yi)}t−1

i=1.

γ(z) : γ(z) is a threshold function used in defining Zt(xt) at time t. See (4.24).

q : The exponent for the cost ratios used in defining γ(z). See (4.24) and Re-
mark 5.

Ψn(A) : The maximum information gain of a set A ⊂ X after n queries in A. See
Definition 1.

Xρ,n : After n queries at any fidelity, BOCA will use most of its z• evaluations in
Xρ,n. See (4.60) for the definition.

Xρ : The limit of Xρ,n as n→∞. See (4.25).

Tn : For any U ⊂ Z × X , Tn(U) denotes the number of queries by BOCA in
U within the first n time steps. When A ⊂ Z and B ⊂ X , we will denote
Tn(A,B) = Tn(A×B).

[> z] : For z ∈ Z , [> z] will denote the fidelities which are more expensive than z,
i.e. [> z] = {z′ ∈ Z : λ(z′) > λ(z)}.

H̃n,H′n : Subsets of Z × X which are used in our analysis. See Chapter 4.6.1.

Hn : A subset of Z ×X at time n which is used to control the number of queries
at various parts of the space. See (4.61).

Fn : A partitioning of the compact continuous domain X at time step n, based
off a

√
d

2n
α
2d

-covering of X .
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Qt : Qt : 2X → 2Z maps subsets ofX to subsets ofZ . ForA ⊂ X ,Qt(A) are the
fidelities where the information gap is smaller than (f(x?)−f(x))/(2ρβ

1/2
t )

for all x ∈ A. See (4.62).

θt : θt(A) is the cheapest fidelity in Qt(A) for any A ⊂ X . See (4.63).

Fn : A subset of Z × X where we show BOCA does not spend too many high
fidelity queries. See (4.64).

λr : λr = λmin/λ(z•) where λmin = minz∈Z λ(z).

Chapter 5

M : The number of parallel workers, available in the synchronous or asyn-
chronous parallel setting.

S ′T : The simple regret after time T , when we analyse the regret with time as
the resource (instead of the number of evaluations) in the parallel setting.
See (5.2).

N : The (possibly random) number of evaluations completed by all workers
within time T by a method for parallel BO.

Dj : The data from previous evaluations when deploying the j th evaluation. In
sequential settings, |Dj| = j − 1, in asynchronous parallel settings, |Dj| =
j −M , and in synchronous parallel settings, j −M ≤ |Dj| ≤ j − 1.

ξM : A bound on the maximum mutual information between the function f and
M evaluations. See (5.3).

Cκ : A kernel dependent constant which bounds ξM after a suitable initialisation
scheme [52]. See Chapter 5.3.

γM : The number of evaluations required in the initialisation scheme so that ξM ≤
Cκ. γM � poly(M) for the SE kernel and γM � polylog(M) for the Matérn
kernel. See Chapter 5.3.

nseq : The expected number of evaluations for a sequential BO algorithm with one
worker in time T . See Table 5.1.

nsyn, nasy : The expected number of evaluations for synchronous and asynchronous par-
allel BO algorithms with M workers in time T . See Table 5.1.

Unif : Unif(a, b) denotes the uniform distribution on the continuous interval (a, b).
See Table 5.1.

HN : HN (ζ2) denotes the half-normal distribution with width parameter ζ2. See
Table 5.1.
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Exp : Exp(λ) denotes the exponential distribution with parameter λ. See Ta-
ble 5.1.

βn : A parameter used to construct an upper confidence bound for f at time step
n, which is used in the proof for TS. See (5.4).

νj, τj : In our analysis, we construct a discretisatin of the domain X of size |νj| =
τ dj . See Chapter 5.5.2.

[x]j : For any x ∈ X , [x]j denotes the closest point to x in the discretisation νj .

Uj : Uj = µDj + β
1/2
j σDj : X → R is an upper confidence bound for f when

conditioned on the data available at time j.

Vj : Uj = µDj + β
1/2
j σj−1 : X → R is a quantity used in our proof of parallel

TS.

Ξ : The expected supremum of a GP f ∼ GP(0, κ). See Lemma 6.

θ : In Chapter 5.5.3, θ denotes the expected time to complete a single evaluation
in any of the random evaluation models.

Tα,δ : In Chapter 5.5.3, Tα,δ is defined such that for all T > Tα,δ, the random
number of evaluations N concentrates in an interval around its expected
value with probability at least 1− δ. α determines the width of this interval.

Chapter 6

G, (L, E) : Typically, G = (L, E) represents the architecture of a neural network where
L are the layers of the network and E are its directed edges.

`` : For a layer u, ``(u) denotes its layer label, i.e. the type of operations per-
formed at the layer.

`u : For a layer u, `u(u) denotes the number of computational units, e.g. number
of computational filters, at the layer.

uip, uop : The input and output layers respectively for each network, which exist
uniquely for all neural network architectures. ``(uip) = ip and ``(uop) =
op.

d, d̄ : The OTMANN distance and its normalised version respectively. See Chap-
ter 6.2 and (6.1).

`m : For a layer u, `m(u) denotes the mass of the layer used in the computation
of the OTMANN distance.

ζ : ζ ∈ (0, 1) is a coefficient used to define the layer mass for input, output, and
decision layers relative to the total mass of the network.
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δsp
ip(u), δ

sp
op(u) : The shortest path length from the input layer uip to a layer u and the shortest

path length from u to the output layer uop respectively.

δlp
ip(u), δ

lp
op(u) : The longest path length from the input layer uip to a layer u and the longest

length path from u to the output layer uop respectively.

δrw
ip(u), δ

rw
op (u) : The random walk path length from the input layer uip to a layer u and the

random walk path length from u to the output layer uop respectively.

d, d̄ : The OTMANN distance and its normalised version used to quantify the
dissimilarity between two neural networks. See Chapter 6.2.

〈·, ·〉 : In Chapter 6, this typically refers to the Frobenius matrix inner product.

φlmm : The label mismatch penalty in OTMANN. See (6.1) and Chapter 6.2.

φstr : The structural penalty in OTMANN. See (6.1) and Chapter 6.2.

φnas : The non-assignment penalty in OTMANN. See (6.1) and Chapter 6.2.

M : The L × L label penalty matrix used to define φlmm in OTMANN, where L
is the number of label types. See Chapter 6.2.

Clmm : The label penalty matrix used to define φlmm in OTMANN. φlmm is given by
φlmm(Z) = 〈Z,Clmm〉, where Z is the matrix of matchings between the two
networks. See Chapter 6.2.

Cstr : The structral penalty matrix used to define φstr in OTMANN. φstr is given
by φstr(Z) = 〈Z,Cstr〉, where Z is the matrix of matchings between the two
networks. See Chapter 6.2.

Chapters 8.1 & 8.3

Θ : The parameter space. Any θ ∈ Θ specifies the system characteristics.

X : The action space. At each time step, the decision-maker chooses an experi-
ment/action x ∈ X .

Y : The outcome space. Upon conducting an experiment, the decision-maker
observes an outcome y ∈ Y .

θ? : The true parameter unknown to the decision-maker. θ? ∈ Θ.

ρ0 : The prior distribution from which θ? is drawn.

P(·|x, θ?) : The likelihood model for the outcomes. Upon making an action x ∈ X , the
decision-maker observes Yx ∼ P(·|x, θ?).

Dn : A data sequence n which is an ordered multiset of action-observation pairs
Dn = {(Xj, Yj)}nj=1 collected by the decision-maker after n rounds. For
t < n, Dt = {(Xj, Yj)}tj=1 is a prefix of length t of the data sequence Dn.
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Dn : The set of all data sequences of length n.

D : The set of all possible data sequences, D =
⋃n
t=1Dt.

λ : λ : Θ × D → R is the reward function. After n rounds, we wish to collect
a data sequence Dn to maximise λ(θ?, Dn).

Λ : Λ(θ?, Dn) =
∑n

t=1 λ(θ?, Dt) is the sum of rewards in the first n rounds.
See (8.1).

] : For two data sequences D,D′, D ]D′ denotes the concatenation of the two
sequences.

≺,� : For two data sequences D,D′, D ≺ D′ and D′ � both equivalently denote
that D is a prefix of D′.

π : Typically denotes a policy for adaptive goal oriented design of experiments.

π?M, π
?
G : The myopically optimal and globally optimal policies respectively, which

operate with knowledge of the true parameter θ?. See Chapter 8.1.1.

πPS

M : The myopic posterior sampling (MPS) policy. See Chapter 8.1.2 and Algo-
rithm 11.

Xt : The action taken by a decision-maker at time t.

Yx : The outcome when we take an action x ∈ X .

λ+ : λ+ : Θ×D×X → R, is the expected look-ahead reward, where, λ+(θ,D, x)
is the expected reward at the next time step if θ ∈ Θ were the true parameter,
D was the current data sequence collected, and we were to take action x ∈
X . See (8.2).

E[·|Dn ∼ π] : The expectation of some quantity (typically a function of the data sequence),
when the data sequence is collected by following policy π.

EY,t+1:|θ : The expectation over all observations generated from time t + 1 onwards,
when the true parameter is θ, i.e. θ? = θ.

πθM : The myopically optimal policy π?M when the true parameter is θ, i.e. θ? = θ.

εn, τn : Sequences which determine the rate of convergence of πPS

M . See Condi-
tion 70.

Ψn : The maximum information gain, defined with respect to θ?, i.e. Ψn =
maxDn⊂Dn I(θ?;Dn). See (8.3).

Pt,Et : Probabilities and expectations when conditioning on actions and observa-
tions up to and including time t, e.g. for any event E, Pt(E) = P(E|Dt).

Jn : Jn(θ?, π) = E[Λ(θ?, Dn)|θ?, Dn ∼ π] denotes the expected sum of cumula-
tive rewards for a fixed policy π after n rounds. See Chapter 8.3.1.

273



Qπ : Qπ(Dt, x, y) will denote the expected sum of future rewards when, having
collected the data sequence Dn, we take action x ∈ X , observe y ∈ Y and
then execute policy π for the remaining n− t− 1 steps. See (8.9).

qt : qt(θ?, x, y) = Qπ?M(Dt−1, x, y) is expected future rewards when we follow
π?M.

P̃t−1, p̃t−1 : P̃t−1 is the distribution of Xt given Dt−1; i.e. P̃t−1(·) = Pt−1(Xt = ·). p̃t−1

is the density (Radon-Nikodym derivative) of P̃t−1.

D?
n, D

??
n : The data collected by π?M and π?G respectively in n steps.

Chapter 8.2

Θ : The space of parameters where we can query the likelihood L(θ) for any
θ ∈ Θ.

Pθ : The prior distribution on Θ for the parameters.

L : The likelihood L(θ) = P(Xobs|θ).

Pθ|Xobs
: Pθ|Xobs

(θ|Xobs) is the posterior distribution for the parameters given the
observations Xobs. See (8.4).

P̂An (Xobs, θ) : Estimate of the log joint density obtained using a dataset An = {θi,Li}ni=1

of query and likelihood-value pairs.

P̂A
n (θ|Xobs) : Estimate of the posterior distribution obtained using a dataset An =

{θi,Li}ni=1 of query and likelihood-value pairs. See (8.5).

uNED
t , uEV

t : The negative exponentiated divergence and exponentiated variance utility
functions respectively for active posterior estimation. See (8.7) and (8.8)

D(·‖·) : A divergence between two distributions, used in uNED
t .
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Appendix B

Abbreviations

ABC : Approximate Bayesian Computing [168]
ActiveSel : Active Select [36]
AGPR : Active Gaussian Process Regression [219]
Add-GP-UCB : Additive Gaussian Process Upper Confidence Bound. See Algorithm 2.
asyEI : Asynchronous Expected Improvement
asyHTS : Asynchronous Thompson Sampling with Hallucinations
asyHUCB : Asynchronous Upper Confidence Bound with Hallucinations
asyRAND : Asynchronous Random Sampling
asyTS : Asynchronous Thompson Sampling. See Algorithm 7.
asyUCB : Asynchronous Upper Confidence Bound
BAPE : Bayesian Active Posterior Estimation. See Algorithm 12
BO : Bayesian Optimisation
BOCA : Bayesian Optimisation with Continuous Approximations. See Algo-

rithm 5.
DiRect : The DIviding RECTangles algorithm [112]
DOE : Design of Experiments
EA : Evolutionary Algorithm
ESP : Elementary Symmetric Polynomial [165]
EV : Exponentiated Variance. See Chapter 8.2.1.
GP-EI : (Gaussian Process) Expected Improvement [113]
GP-UCB : Gaussian Process Upper Confidence Bound [235]. See Algorithm 1.
GRID : Grid Search. Typically a policy which queries a Euclidean domain on a

uniform grid.
KDE : Kernel Density Estimation [265]
MCMC : Markov Chain Monte Carlo [32]
MCMC-DE : MCMC with Density Estimation. A heuristic for posterior estimation

which performs kernel density estimation on the points collected with
MCMC.
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MCMC-R : MCMC with Regression. A heuristic for posterior estimation which re-
gresses on the likelihood values on the points collected with MCMC.

MF-GP-UCB : Multi-fidelity Gaussian Process Upper Confidence Bound. See Algo-
rithm 4.

MF-NAIVE : A naive multi-fidelity method described in Chapter 4.2.5.
MF-SKO : Multi-fidelity Sequential Kriging Optimisation [100]
MF-UCB : Multi-fidelity Upper Confidence Bound. See Algorithm 3.
MOO : Multi-objective Optimisation
MOORS : Multi-objective Optimisation with Random Scalarisations [190]
MPS : Myopic Posterior Sampling. See Algorithm 11.
NASBOT : Neural Architecture Search with Bayesian Optimisation and Optimal

Transport. See Chaper 6.3.
NED : Negative Exponentiated Divergence. See Chapter 8.2.1.
OTMANN : Optimal Transport Metrics for Architectures of Neural Networks. See

Chaper 6.2.
PDOO : Parallel Deterministic Optimistic Optimisation [86]
RAND : Random Search. Typically a policy which queries the domain randomly.
REMBO : Random Embeddings for Bayesian Optimisation [264].
SE : Squared Exponential (in reference to the kernel)
seqTS : Sequential Thompson Sampling. See Algorithm 6.
synBUCB : Synchronous Batch Upper Confidence Bound [52]
synUCBPE : Synchronous Upper Confidence Bound with Pure Exploration [43]
synRAND : Synchronous Random Sampling.
synTS : Synchronous Thompson Sampling. See Algorithm 8.
TreeBO : Tree structured Bayesian Optimisation [108]
TS : Thompson Sampling, a sampling strategy for bandits first discussed

in Thompson [246].
UCB : Upper Confidence Bound, a bandit strategy first appearing in Auer [10].
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Appendix C

Open Source Software Released with this
Thesis

We state and provide links to open source software tools released as part of this thesis. Unless
otherwise specified, all software is released under the MIT License. The repositories also contain
links for downloading relevant datasets and/or code for generating data.

• add-gp-bandits: github.com/kirthevasank/add-gp-bandits

A matlab implementation of additive upper confidence bound methods in Gaussian process
bandits, as described in Chapter 3. Released under the GNU GPL v3 license.

• Dragonfly: dragonfly.github.io

A python library for scalable Bayesian optimisation, that integrates many of the methods
in this thesis. It provides an array of tools to scale up Bayesian optimisation. These include
the methods in Chapters 3, 4.3, 5, 6, and 7, among others.

• gp-parallel-ts: github.com/kirthevasank/gp-parallel-ts

A python implementation of parallelised Bayesian optimisation using Thompson sampling
as described in Chapter 5. We provide implementations of both the synchronous and asyn-
chronous versions along with experimental set ups in synthetic settings where the evalua-
tion time is modeled as a random variable.

• mf-gp-ucb: github.com/kirthevasank/mf-gp-ucb

A matlab implementation of the MF-GP-UCB method described in Chapter 4.2 for multi-
fidelity Bayesian optimisation with a finite number of approximations. Released under the
GNU GPL v3 license.

• mps: github.com/kirthevasank/mps

A python implementation of the MPS algorithm described in Chapter 8.1 for adaptive
Bayesian design of experiments.

• nasbot: github.com/kirthevasank/nasbot

A python implementation of NASBOT as described in Chapter 6. The library also provides
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code for tuning and training the architectures of convolutional neural networks and multi-
layer perceptrions.

Please see cs.cmu.edu/∼kkandasa/software.html for up-to-date information on the above
and other related software packages and relevant datasets.
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Estimation in Scientific Experiments via Bayesian Active Learning. Artificial Intelligence,
243:45–56, 2017. (document), 1.3, 12

[129] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabás Póczos.
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mensional bayesian optimization via restricted projection pursuit models. In Artificial
Intelligence and Statistics, pages 884–892, 2016. 3

[154] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.

289



Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. arXiv
preprint arXiv:1603.06560, 2016. 4, 7.4.3

[155] Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille,
Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. arXiv
preprint arXiv:1712.00559, 2017. 6, 6.4

[156] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. Hierarchical representations for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017. 6, 6.4

[157] Jun S. Liu. Monte Carlo strategies in Scientific computing. Springer, 2001. ISBN
0387952306. 8.2

[158] Yao Liu and Emma Brunskill. When simple exploration is sample efficient: Identifying
sufficient conditions for random exploration to yield pac rl algorithms. arXiv:1805.09045,
2018. 8.1

[159] Daniel Lizotte, Tao Wang, Michael Bowling, and Dale Schuurmans. Automatic gait op-
timization with gaussian process regression. In in Proc. of IJCAI, pages 944–949, 2007.
1.1

[160] M. Osborne and D. Duvenaud and R. Garnett and C. Rasmussen and S. Roberts and Z.
Ghahramani. Active Learning of Model Evidence Using Bayesian Quadrature. In Neural
Information Processing Systems (NIPS), 2012. 8.2, 2, 8.2.1

[161] Yifei Ma, Roman Garnett, and Jeff Schneider. Active Area Search via Bayesian Quadra-
ture. In International Conference on Artificial Intelligence and Statistics, 2014. 8.2

[162] Yifei Ma, Tzu-Kuo Huang, and Jeff G Schneider. Active search and bandits on graphs
using sigma-optimality. In UAI, pages 542–551, 2015. 8.1.3

[163] Yifei Ma, Dougal J. Sutherland, Roman Garnett, and Jeff G. Schneider. Active Pointil-
listic Pattern Search. In International Conference on Artificial Intelligence and Statistics,
AISTATS, 2015. 8.1

[164] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008. 6.2.4

[165] Ian Grant Macdonald. Symmetric functions and Hall polynomials. Oxford university
press, 1998. 7.2, B.1

[166] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, 2003. 8.2

[167] Gustavo Malkomes, Charles Schaff, and Roman Garnett. Bayesian optimization for au-
tomated model selection. In Advances in Neural Information Processing Systems, pages
2900–2908, 2016. 7.1.2

[168] Jean-Michel Marin, Pierre Pudlo, Christian P. Robert, and Robin J. Ryder. Approximate
Bayesian computational methods. Statistics and Computing, 22(6):1167–1180, 2012. 8.2,
8.2.2, B.1

[169] Paul Marjoram, John Molitor, Vincent Plagnol, and Simon Tavaré. Markov Chain Monte
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