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Abstract

We study methods of efficiently leveraging massive textual corpora through n-gram statistics.
Specifically, we explore algorithms that use a database of frequency counts for sequences of tokens
in a teraword Web corpus to correct spelling mistakes and to extract a list of instances of some cat-
egory given only the name of the target category. For spelling correction, we use a novel correction
algorithm and demonstrate high accuracy in correcting both real-word errors and non-word errors.
For category extraction, we show promising preliminary results for a variety of categories. We
conclude that n-gram statistics provide an efficient way to use information contained in a massive
corpus of text using relatively simple algorithms. The report ends with a reflection on problems
encountered, possible solutions, and future work.





1 Introduction
Massive textual corpora such as the World Wide Web hold great amounts of information. How-
ever, extracting machine-interpretable representations of that information is a challenge. Without
a vast number of processors working in parallel, it is not currently feasible to run expensive al-
gorithms over every web page. For example, running light-weight natural language processing
(NLP) methods, such as part-of-speech (POS) tagging or noun phrase chunking, was estimated to
take hundreds of days on a modern machine for a 1TB corpus, and running a syntactic parser on
such a corpus would take nearly 400 years [17]. However, for some problems it has been shown
that simple algorithms, given enough training data, can provide a good trade-off between computa-
tion time and accuracy [2, 17]. This report explores methods of efficiently leveraging such massive
textual corpora through n-gram statistics, specifically, the n-gram data set released by Google in
2006 [3]. The data collection gives the number of times an ordered sequence of tokens occurs in
a collection of public web pages containing one trillion words. Frequency counts for sequences of
lengths one, two, three, four, and five are reported.

We present algorithms that use this database of frequency counts for sequences of tokens to
correct spelling mistakes and to extract a list of instances of a category given only the name of the
target category. For spelling correction, we use a novel correction algorithm and demonstrate high
accuracy in correcting both real-word errors and non-word errors. For category instance extraction,
we show promising preliminary results.

Details and analysis of the data set are presented in Section 2. Our methods and experiments
for the spelling correction problem are discussed in Section 3. Preliminary work on category
instance extraction is presented in Section 4. Finally, conclusions and discussion of future work
are presented in Section 5.

2 Data Set
Our methods explore using a massive corpus of text through statistics derived from that corpus.
For this work, we chose the Google n-gram data set [3]. The data set was released in 2006, and is
available through the Linguistic Data Consortium. The data collection gives the number of times an
ordered sequence of tokens occurs in a collection of public web pages containing over one trillion
words. Sequences of lengths one, two, three, four, and five are reported. The data was tokenized
in a manner similar to that used in the Penn Treebank corpus [14]. Punctuation is generally split
into a single token, with the exception of apostrophes, which start a new token, but letters after
them are kept intact (e.g. they’re becomes they ’re). Some deviations were made from the Penn
Treebank conventions, such as keeping URLs or e-mail addresses as single tokens. The text was
split into sentences, and the tokens ‘<S>’ and ‘</S>’ were added at the start and end of sentences,
respectively.

The n-grams reported were thresholded to limit the size of the data set. Specifically, tokens that
occurred fewer than 200 times were replaced by the token ‘<UNK>’, and n-grams that occurred
fewer than 40 times are not reported. Punctuation and capitalization are preserved in the data
set. This data set is 87GB on disk, without any database indexes. To enable fast queries for our
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experiments, we loaded the data set into a MySQL database and indexed each table, which brought
the total size of the database up to roughly 250GB.

A sample of the raw text in the distribution of the data set is:

environment is protected to 62
environment is protected while 75
environment is provided , 516
environment is provided . 1048
environment is provided ; 43
environment is provided </S> 157

2.1 Data Representation
2.1.1 Database Tables

The n-gram data that we have is well suited for storage in a database. Each set of n-grams corre-
sponds to a separate table, where the first n fields store the n tokens of the n-gram, and the last field
stores the frequency of that n-gram in the teraword Web corpus. As such, we have five separate
tables to store the n-grams, one for each size of n.

To efficiently store the n-gram data, we represent each token in the corpus with an integer,
because the 4-byte storage size is less than the average size of storing a variable-length string (the
average length of which is 8.2 characters). As such, our tables have n 32-bit integer columns
(where n is the size of the n-gram), and a 64-bit integer column to store the number of times this
n-gram occurred in the teraword corpus. This has a number of advantages, namely that the size of
a record is a small, fixed width that makes it ideal for indexing in something like a B+ Tree. The
size of a 5-gram record is only 5 ∗ 4 + 8 = 28 bytes.

2.1.2 Database Indexes

There are many n-grams that start with the same first few tokens. As such, indexes over multiple
columns are especially important. Five rows of the 5-gram table are shown in Table 1. Observe
that the first four tokens are the same (because they have the same integer token ID values). It
might seem that the first token of the n-gram would be good enough to support efficient index
usage, but as an example of why this is not so, consider the following. For even an uncommon
token like ‘burlesque’, there are 498 3-grams that are started with this token. For common tokens
like ‘Microsoft’, the problem gets worse— it appears at the beginning of over 87,000 3-grams. As
a more extreme case, the token ‘the’ begins 16,658,607 distinct 3-grams, and 34,686,019 distinct
5-grams.

Without indexes, this data takes up approximately 87GB. With a single B+tree index on each
table (where the index covers all the columns of the table), the on-disk size grows to over 216GB.

The spelling correction algorithm uses exact match queries for every n-gram size, so the exact
match indexes on each table will allow these queries to be executed efficiently. The category
extraction algorithm uses queries where completions of some prefix are required, so indexing the
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token1 token2 token3 token4 token5 frequency
11168801 12903446 4147 37240 9558928 69
11168801 12903446 4147 37240 9588371 97
11168801 12903446 4147 37240 9704735 464
11168801 12903446 4147 37240 9878974 52
11168801 12903446 4147 37240 10003468 179

Table 1: Content of table 5grams

tables with the first token, then the second, then the third, etc. allows these queries to be executed
efficiently.

2.2 Analysis
There are a total of 13,588,391 distinct tokens in the data set, which are combined into 314,843,401
unique 2-grams, 977,069,902 3-grams, 1,313,818,354 4-grams, and 1,176,470,663 5-grams.

Not surprisingly, the n-grams appear to follow power-law distributions. That is, a small per-
centage of the n-grams account for a large percentage of the text on the web. Figure 1 shows
power law plots for the 1- through 5-grams. The effects of the thresholding are clearly visible—
not reporting n-grams that occurred fewer than 40 times appears to cut off a very large number of
n-grams.

3 Spelling Correction

3.1 Introduction
In this section, we apply memory-based learning techniques to the problem of correcting spelling
mistakes in text, using a very large database of token n-gram occurrences in web text as training
data. Our approach uses the context in which a word appears to select the most likely candidate
from words which might have been intended in its place, as determined by the sequence of words
most frequently observed in the n-gram training data. Our novel correction algorithm extends
previous work by considering each possible position where the word in question can occur in an
n-gram and selecting the most discriminative position.

We evaluate the performance of our algorithm on both real-word errors and non-word errors.
Real-word errors are lexically valid words that are not noticed by conventional dictionary-based
spelling correction packages when used incorrectly (e.g. using piece instead of peace). We exceed
the accuracy of previous memory-based approaches to this task for both newswire and general
English text. Non-word errors are errors where a word not found in a dictionary was used instead
of an intended dictionary word. We show that our algorithm can accurately recommend corrections
for non-word errors by re-ranking a list of spelling suggestions from a widely used spell-checking
package. The correct word is usually selected by our algorithm.
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(a) 1-grams (b) 2-grams

(c) 3-grams (d) 4-grams

(e) 5-grams

Figure 1: Count-Frequency plot of n-grams, n ∈ [1, 5]
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The rest of the section is organized as follows. Section 3.2 discusses related work. Section 3.3
describes our methodology, while Section 3.4 presents results of applying that methodology on
various data sets. We discuss probabilistic models used and a possible future direction of using
statistical language models in Section 3.5. We present our conclusions in Section 3.6.

3.2 Related Work
Approaches to finding real-word errors have frequently taken as input a list of confusion sets,
where a confusion set is a set of dictionary words that are often incorrectly used in place of one
another. Typical types of confusion sets include homophones (e.g. piece and peace), words with
low edit distance (e.g. form and from), and words like among and between where the correct word
is determined by the rules of grammar. When correcting spelling errors in an input text, whenever
a member of a confusion set occurs in the text, the problem is to decide if a different member of
that confusion set was intended in its place.

Banko and Brill [2] use a memory-based learning approach to select the correct member of
a confusion set by collecting n-gram statistics from training data and choosing the member most
frequently observed in the context of the word before and word after the target word. They show a
roughly log-linear improvement in accuracy relative to the size of the training corpus. Their largest
corpus has 109 words, three orders of magnitude smaller than the Google n-gram corpus. We report
higher accuracy than their results, in line with their observed log-linear trend in improvement.

Liu and Curran [13] build a 10 billion word corpus from a web crawl and use the memory-
based learner approach of Banko and Brill. They also give results using the Gigaword corpus, a 2
billion word corpus of relatively “clean” text from newswire and similar sources. They achieve the
highest reported accuracies for true cross-domain experiments where the training data is not drawn
from the same distribution as the test data. Our methods use much more training data than these
previous memory-based methods, and a more sophisticated algorithm which chooses the most
discriminative context to select the correct word, to exceed the previously stated best performance.

Golding and Roth explore a discriminative classification-based approach to this problem [10].
Given text that demonstrates correct usage of the words, classifiers are trained to discriminate
the intended member of a confusion set from the context words near a member of that confusion
set, their part-of-speech tags, and conjunctions of those features. Their work applies mistake-
based classification algorithms to this problem, which can be relatively expensive to train and
require large amounts of memory for the large feature spaces used. Later work explores methods
of pruning features to avoid some of these problems [5]. Our work uses simpler methods with
much more training data, and training our models consists of simply counting n-gram statistics in
a corpus. Additionally, their approaches tend to perform poorly on true cross-domain experiments,
where the training data differs significantly in domain from the test data. We train on a general
Web corpus and evaluate on two domains, giving a more realistic evaluation of our system.

Church and Gale present an approach to correcting non-word errors using a noisy channel
model to predict a probable intended word given a misspelled word [6]. Their use of contextual
information from n-gram statistics showed a small improvement in accuracy. They found that
simple MLE-based approaches to using the n-gram statistics actually degraded performance. We
find that a simple MLE-based algorithm for estimating probabilities of intended words from their
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context works very well. Their work used much less training data (about 100 million words versus
our 1 trillion), which explains why our simpler approach works well.

An alternative method of using web-scale data for natural language tasks is to use search engine
counts, which removes the need to store a large database of aggregated data. Lapata and Keller
used this approach with results from the search engine Altavista on the task of spelling correction
[12]. However, Liu and Curran showed that this approach gives much lower accuracy than using
accurate counts from a collection of web pages. This is because hit counts returned by search
engines are typically estimates, and not well-suited for use in NLP systems.

3.3 Methods
Our method for context-sensitive spelling correction chooses the most likely word from a list of
candidates, given the context of adjacent words from the sentence in which the word in question
appears. This requires us to determine which sequence of words (the context, with each of the
candidates substituted in turn) is most probable. To estimate these probabilities we use the Google
n-gram corpus previously described. Our procedure is described generally in Section 3.3.1, and
specifically for correcting real-word errors and non-word errors in Sections 3.3.2 and 3.3.3.

3.3.1 General Methodology

Our general algorithm takes as input a set of candidate words C = {c1, c2, ..., ck}, a database of
n-gram statistics for sizes 1 to m, and context words less than m words to the left and right of the
target word being corrected, where w−i is the ith word before, and wj is the jth word after. For
example, C could be {peace, piece}, m could be 2, and the context words could be w−1 = a and
w1 = of. Our algorithm recommends a word c ∈ C using the procedure:

Consider each position in which each candidate word c could appear within an n-gram of size
m. Select the position with the highest ratio between the highest count and the second highest
count, and return the word c that corresponds to the highest count. If all queries had counts of
zero, decrement the maximum n-gram size and repeat the procedure. In our example, we would
consider the 2-grams a peace, a piece, peace of, and piece of. If no matches were found any of
those 2-grams, we would then consider the 1-grams peace and piece and select the more frequent
word.

Only n-grams that occurred at least 40 times were reported in the training data, so if we do not
find a match for a query, we optimistically assume a count of 39.

In some cases, we do not have enough context words. We use only context from within the
same sentence, so when the candidates appear near the beginning or the end of a sentence, we
might not have a full set of context words. In this case, we restrict the positions in which a word
can appear to those with sufficient context.

It should also be noted that the actual query issued to the database might not always directly
line up with the context words. This is caused by tokenization issues, namely the fact that a word
like “they’re” becomes two separate tokens, “they” and “’re”, to match the tokenization used in the
Google n-gram database. In this case, one of the tokens from the context will be ignored, as the
word with the apostrophe takes up two words in the n-gram query.
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3.3.2 Real-Word Error Methodology

One application of this methodology is to correct real-word errors where a real word was used
while a different word was intended. Sets of such words are called confusion sets, and include
sets of words such as {they′re, their, there}, and {hear, here}. The application of our method
to this problem is straightforward. Given some text to correct, whenever we find a word that is a
member of a (pre-defined) confusion set, we use the method described in Section 3.3.1 to choose
the correct word from the confusion set given its context.

In this setting, the left and right context are the sets of words appearing before and after the
word that belongs to a confusion set, and the set of candidate words are those words that belong to
the same confusion set. E.g. if we were presented with “Johnny is going to their house for dinner
tonight”, the left context would be “Johnny is going to”, the right context would be “house for
dinner tonight”, and the set of candidate words would be {their, they′re, there}.

We tested this method on the Brown corpus, which is a collection of American English drawn
from a variety of sources, and the Wall Street Journal corpus, a collection of articles from the Wall
Street Journal. Both corpora are subsets of the text from the Penn Treebank corpus. Since these are
widely used corpora, we were concerned that their text might occur enough on the web to bias the
results, as the n-gram data came from web pages. However, we tested many queries and found only
one complete copy of the Brown corpus and a few excerpts from each corpus online. We believe
that the threshold of 40 occurrences used in the n-gram data is enough to prevent these pages from
biasing the results. For each corpus, we looked for any occurrence of a word in a confusion set in
the text. We assumed that the text was grammatical, meaning that the word used in the sentence
was the correct member of the confusion set, and tested whether our method predicted the same
member of the confusion set as being correct. This same methodology was used on the same
corpus in the results reported by Liu and Curran [13], which we compare to in Section 3.4.1.

3.3.3 Non-Word Error Methodology

A second application of this method is towards re-ranking suggestions made by a spell checking
program when a word not found in the dictionary is accidentally used instead of a dictionary word.
Spell checkers are often used to correct such errors, but it’s not always clear what word is the
correct replacement for a mis-typed word. For instance, should someone type “funn”, should this
be interpreted as “fun”, “funny”, “funk”, or something else? To handle this, spell checkers often
present users with a list of choices of correctly spelled words from which to choose. This list
is typically generated based on edit distance from the non-word typed by the user without take
context into account. Our goal is to choose the correct word from this list presented by a spell
checker using the context in which the error occurs.

To test this approach, we took a novel (Fame and Fortune, by Horatio Alger) that had not
previously been indexed by Google, and as such our results would not be biased by the text showing
up in search engines. An e-book of this novel was released by Project Gutenberg on May 28, 2007,
well after the release date of the n-gram data set. Searching Google for a number of phrases from
the book returned zero results. Our goal then was to introduce errors into the text, and see if we
could use our method, in conjunction with a spell checker, to correct these errors.
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We introduced three types of errors into the text - we added characters, deleted characters, and
substituted characters. Each of these errors was introduced into a word with probability 0.05. In
the case of added characters, we chose a number of characters by sampling from a Normal(0,.3)
and taking the ceiling of its absolute value as the number of characters to insert. For each of
these characters, we chose a position for insertion (defined as the position before which to insert a
letter, including the “end” position). We then inserted a character that was “close” to the following
character. We did this by creating a distance mapping from each character to each other character,
where the distance roughly approximates the L-1 distance on a standard U.S. keyboard (roughly
L-1 in the sense that we used an exception for keys that are only one diagonal space apart, which
we said have a distance of 1). We then choose a “close” key by choosing a distance by sampling a
Normal(0,4) distribution, and again taking the ceiling of its absolute value, and then selecting one
of the keys with this distance randomly.

We also deleted characters from words. The number of deletions was calculated in the same
manner as the number of additions, and the specific characters to be deleted were selected uni-
formly at random. Finally, we introduced substitution errors into the text, where again the number
of substitutions was calculated in the same way as the number of additions was calculated, the
specific positions where errors were to be introduced were selected uniformly at random, and the
character to substitute was chosen according to the same “closeness” metric as described in addi-
tion of characters.

For each word into which we introduced an error, we used GNU Aspell [1], an open source
spell checking library, to generate candidates for spelling corrections. If the correct word did not
appear within the first ten candidates, we ignored the instance and moved on to the next. (This
often occurred when too severe an error, or combination of errors, was introduced.) We then used
our method to determine which of the candidates was the correct suggestion. The left and right
context were the (un-perturbed) words surrounding the word in which the error was introduced,
and the candidate set was the set of words suggested by Aspell. We calculated both the rank of the
correct word in the list returned by Aspell, as well as the rank produced by our method.

This method of introducing errors created 3,373 misspelled words where the correct word
was present among the top 10 suggestions. 943 of these words were the result of a character
deletion only, 1,410 were the result of a character insertion only, 938 were the result of a character
substitution only, and the rest were the result of multiple types of errors.

3.4 Results
3.4.1 Real-Word Error Correction

Our experiments for real-word error correction, where we choose the member of a confusion set
that best fits a given context, aim to answer the following questions: Does using a very large corpus
improve accuracy, and does considering each possible position where the target word can occur to
select the most discriminative position help?

In the experiments that follow, “N-grams (limit 3)” gives results for training on the Google n-
gram data with the same algorithm as Banko and Brill [2] (considering the 3-gram centered on the
target word). “N-grams (fixed)” gives results for using 5-grams centered on the target word. “N-
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Weighted
Test Average Average

Training Data Corpus Accuracy Accuracy
Gigaword Brown 90.7 94.6
Web corpus Brown 91.8 95.4
N-grams (limit 3) Brown 92.6 95.6
N-grams (fixed) Brown 94.2 96.3
N-grams (sliding) Brown 95.2 96.8
Gigaword WSJ 93.7 96.1
Web corpus WSJ 93.3 95.1
N-grams (limit 3) WSJ 93.4 95.4
N-grams (fixed) WSJ 94.3 95.9
N-grams (sliding) WSJ 95.8 96.7

Table 2: Comparison to previous results for correcting real-word spelling errors on Brown and
WSJ corpora. Highest accuracies are in boldface.

grams (sliding)” gives results for the full algorithm, where we consider all possible positions in the
5-gram window for the target word. Comparing to results from Liu and Curran [13], “Gigaword”
gives results for the Banko and Brill algorithm on a 2 billion word corpus of newswire text, and
“Web corpus” gives results from 10 billion words worth of web page text.

“Average accuracy” reports the accuracy averaged over the 21 confusion sets used in the ex-
periments. “Weighted average accuracy” is the per-token accuracy, where confusion set accuracies
are weighted proportional to their frequency in the test corpus.

Table 2 compares the accuracy of our method to previous results. Our full method achieves
higher accuracy on both the Brown and Wall Street Journal corpora than previous work using
memory-based learners. The other rows in the table give results reported by Liu and Curran on
the same test data with the same confusion sets. Our accuracy using 3-grams exceeds their results
for the Brown corpus, and does not quite match on the Gigaword/WSJ combination. However,
the WSJ and Gigaword corpora are both from the newswire domain, which probably helps perfor-
mance significantly. These results show that using the larger corpus does indeed improve accuracy.

The previous work, when tested on the WSJ data after having been trained on the “web corpus”
falls behind the fixed 5-gram method. When we add in the sliding window approach, where we no
longer require that the n-grams be centered on the word in question, but rather use the positioning
that is most discriminative, our accuracy increases to the point where we have the highest average
accuracy on the Brown corpus by a 3.4% margin, and our average accuracy on the WSJ corpus
exceeds previous work by 2.1%. We conclude that using larger n-grams improves performance
significantly. Considering all possible positions for the target word appears to be an additional
source of improvement.

Table 3 gives percentage accuracy for spelling correction on the Brown corpus on a per-
confusion set level. The Confusion Set Average is the average accuracy across the confusion sets,
and the Weighted Average is the average accuracy on a per-token level. We see that some confu-
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N-gram types used
Confusion 3-gram 5-gram 5-gram
Set Examples (fixed) (fixed) (sliding)
accept, except 253 96.4 97.2 97.2
affect, effect 249 97.6 97.6 98.8
among, between 1099 82.9 86.1 87.4
amount, number 643 78.2 87.6 89.9
begin, being 805 97.0 97.8 97.8
cite, sight, site 160 73.8 82.5 88.1
country, county 500 92.8 93.0 94.0
its, it’s 2158 95.4 95.8 96.3
lead, led 264 87.1 90.2 88.6
fewer, less 478 94.6 94.6 94.4
maybe, may be 592 97.5 97.8 98.0
I, me 6347 98.9 99.0 99.0
passed, past 442 93.4 93.9 95.2
peace, piece 331 91.2 92.7 95.5
principal, principle 201 89.1 93.0 95.0
quiet, quite 358 96.4 96.1 98.3
raise, rise 155 94.2 94.2 95.5
than, then 3175 95.5 95.7 97.3
their, there, they’re 5576 97.5 98.0 97.2
weather, whether 361 97.0 97.2 98.1
your, you’re 1072 97.2 97.4 98.6
Confusion Set Average 92.6 94.2 95.2
Weighted Average 95.6 96.3 96.8

Table 3: Test accuracies by confusion set for correcting real-word errors on the Brown corpus for
various n-gram types.

sion sets have lower accuracy than others— it is hard to distinguish between among and between,
and relatively easier to distinguish between affect and effect. This seems sensible because affect
and effect are likely to have different types of words nearby in the text, since affect is a verb and
effect is usually a noun. Among and between share the same part of speech, and the local context
in the text might not be informative about which is correct.

3.4.2 Non-Word Error Correction

Figure 2 shows the accuracy of our method for re-ranking suggestions from a spell checker for
words where errors have been introduced by inserting, substituting, or deleting characters. Inser-
tion errors are the easiest to recover from. Aspell ranks the correct word first 43.1% of the time,
while our method using 1-grams and 5-grams ranks the correct word first 79.1% and 92.4% of
the time, respectively. For deletion errors, Aspell ranks the correct word first 33.1% of the time,
compared to 60.1% and 84.9% for our method with 1-grams and 5-grams. Accuracy on substitu-
tion errors is similar, with Aspell ranking the correct word first 30.9% of the time, and our method
67.4% and 86.4% of the time for 1- and 5-grams, respectively.

10



Figure 2: Results of re-ranking spell checker suggestions for non-word errors per error type.

The accuracy using word frequency alone (1-grams) is better than what Aspell produces, and
the addition of context yields an improvement in accuracy of roughly 10-25%, depending on error
type. However, as Figure 2 also shows, the improvement between 3-grams and 5-grams is much
smaller. It may be worth using only 3-grams to save space, as they offer the best trade-off between
space and accuracy.

Because spelling correction systems return a ranked list of suggestions, we also evaluate how
often the correct word is ranked among the top k words. Figure 3 shows the “recall at k” for Aspell,
1-grams, and 5-grams, for k from 1 to 10 (recall that we discarded instances when the correct word
did not appear in the top 10 results, hence all methods converge to 100% at k=10). Here, we see
that the method using 5-grams usually has the target word in the top 2 or 3 ranked slots. The re-
ranking using 1-grams is a significant improvement over Aspell, but often has candidates ranked
fourth or fifth. The ranking given by Aspell is much worse than our methods, with a significant
number of examples ranked in the lower half of the recommendations.

3.5 Probabilistic Models
This section gives a probabilistic justification for the sliding window method, as well as a discus-
sion of how we might use statistical language models to combine evidence from multiple n-grams.

3.5.1 Probabilistic Justification for the Sliding Window Method

Modeling the Probability of an n-gram The sliding window method uses a separate multino-
mial model of the probability of observing a specific value of an n-gram for each size n. Parameters
for those models are estimated from the n-gram data using maximum likelihood estimates:

P̂ (w1, w2, . . . , wn) =
1

Zn

count(w1, w2, . . . , wn)
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Figure 3: Recall at k for re-ranking the top 10 recommendations made by GNU Aspell for non-
word errors using 1-grams and 5-grams.
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where Zn =
∑

w1,w2,...,wn
count(w1, w2, . . . , wn) is a normalizing constant and the count function

gives the number of times a sequence of tokens was observed in the n-gram training text.

The Sliding Window Method The sliding window method chooses the value of a target token,
denoted by t, from a candidate set of tokens, denoted by S = {s1, s2, . . . , sn} (for example, {
peace, piece } ). It is given K different contexts, c1, . . . , cK (for example, ‘like a ’, ‘a of’, and
‘ of cake’, where the blank indicates the place where the candidate token should be inserted).
The method chooses the candidate token si where i is chosen as

arg max
i

max
k
P (t = si|ck, t ∈ S)

That is, we choose the candidate token and context that maximize the conditional probability of
that token given the context and given that the target token is a member of the candidate set S. We
use the estimate P̂ for the distribution P :

arg max
i

max
k
P̂ (t = si|ck, t ∈ S) = arg max

i
max

k

P̂ (t = si, ck, t ∈ S)

P̂ (ck, t ∈ S)

= arg max
i

max
k

count(si, ck)∑
j count(sj, ck)

where count(s, c) is the n-gram frequency count for the n-gram formed when s is inserted into the
blank in the context c.

Because maximizing a probability is equivalent to maximizing the odds of that probability, we
can equivalently maximize the odds of the conditional probability:

arg max
i

max
k
P̂ (t = si|ck, t ∈ S) = arg max

i
max

k

P̂ (t = si|ck, t ∈ S)

1− P̂ (t = si|ck, t ∈ S)

= arg max
i

max
k

P̂ (t = si|ck, t ∈ S)∑
j 6=i P̂ (t = sj|ck, t ∈ S)

= arg max
i

max
k

count(si, ck)∑
j 6=i count(sj, ck)

For cases where the candidate set S has two members, this is exactly what the sliding window
method does. For cases where the set has more than two members, the sliding window method
finds the highest ratio between the highest count and the second highest count for members of the
candidate set. This is similar to, but not equal to, the method described here. However, it is rare
to have a case where more than two candidates have high counts in the same context, so the two
methods have similar behavior in practice.

Note that the sliding window method treats each position of the window as if it were an inde-
pendent context, does not estimate the density of sequences with length greater than five (since this
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is the maximum n-gram size in our data set), and cannot combine evidence from n-grams of differ-
ent sizes. The next subsection discusses an approach based on language modeling, which provides
an estimate of the joint density of longer sequences of tokens, and can address these shortcomings
of the sliding window method.

3.5.2 An Alternative to the Sliding Window: Language Models

We could alternatively model the joint probability of the sequence of observed tokens with each
candidate substituted for the token in question, and then choose the candidate token that maximizes
this joint probability. Models of the joint probability of a sequence of tokens are commonly called
language models. Such an approach would combine evidence from several different windows,
rather than choosing one window for its decision as the sliding window method does.

If the target token is the jth token, then we choose token si from the candidate set S by choosing
i according to

arg max
i

P (w1, w2, . . . , wj−1, si, wj+1, . . . , wN)

If we assume that the tokens are generated by a fourth-order Markov process, so that the distri-
bution of a token only depends on the four tokens before it, then we can write this as:

= arg max
i

P (w1)P (w2|w1)P (w3|w2, w1)P (w4|w3, w2, w1)P (w5|w4, w3, w2, w1) . . .

×P (si|wj−1, wj−2, wj−3, wj−4)P (wj+1|si, wj−1, wj−2, wj−3)P (wj+2|wj+1, si, wj−1, wj−2)

×P (wj+3|wj+2, wj+1, si, wj−1)P (wj+4|wj+3, wj+2, wj+1, si) . . .

×P (wN |wN−1, wN−2, wN−3, wN−4)

In the maximization, we can ignore all terms that do not depend on i:

= arg max
i

P (si|wj−1, wj−2, wj−3, wj−4)P (wj+1|si, wj−1, wj−2, wj−3)P (wj+2|wj+1, si, wj−1, wj−2)

×P (wj+3|wj+2, wj+1, si, wj−1)P (wj+4|wj+3, wj+2, wj+1, si)

Estimating Parameters of the Model Using a language model that assumes that tokens are
generated by a fourth-order Markov process requires that we estimate the probability of observing
a token given the four tokens preceding it. We can obtain the maximum likelihood estimates those
parameters from training data as

P̂ (w5|w1, w2, w3, w4) =
count(w1, w2, w3, w4, w5)

count(w1, w2, w3, w4)

where the count function gives the number of times a sequence was observed in a corpus of training
text. We can use the n-gram data for these counts, but because of the 40 occurrence threshold in the
n-gram data set, these are not exactly equal to the MLE estimates for the conditional probabilities.
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These counts are often zero, which results in zero or undefined probability estimates. Various
techniques to smooth such estimates using smaller n-grams have been considered in the language
modeling literature. Exploring these techniques is left as an item for future work. The most
immediately promising method is the Stupid Backoff method [4], which estimates unnormalized
conditional probabilities using a very simple backoff method. If the conditional probability of
some token given the previous m tokens in estimated to be 0, then a backoff estimate of some
constant α times the estimate using only the previous m − 1 tokens is used instead, recursively.
This method yielded good performance on statistical machine translation tasks given a large corpus
of training data.

3.6 Conclusions
We have shown that using a massive database for spelling correction with memory-based learning
techniques yields high accuracy at correcting both real-word errors and non-word errors. Addition-
ally, we extended previous approaches by considering each possible position where the spelling
error could occur inside the n-grams and demonstrated that it improved accuracy.

4 Extracting Instances of a Category

4.1 Introduction
In this section, we consider the problem of creating a list of instances of some category. For
example, for the category fabrics, we would want to create a list including instances such as ‘silk’,
‘cotton’, and ‘suede’, among others. We consider an approach that extracts instances of a category
from a large corpus of text using n-gram statistics given only the name of the category and a set
of generic patterns. Solutions to this problem are useful because instances of a category can be
used to improve performance on tasks such as named entity recognition, where, for example, lists
of instances of a category (referred to as gazetteers) are commonly used to identify geographical
locations, names of months, people, and so on. Of most interest to the authors, the most confident
extracted instances for a category can be used as input to a semi-supervised learning system which
uses a small set of high-confidence examples.

This problem is well-suited to solutions using a large database of n-gram statistics because
methods exist that exploit lexico-syntactic patterns of local context (e.g. “cities such as Chicago”
indicates that the instance ‘Chicago’ is a member of the category city). Methods exploiting these
patterns have computed confidence scores for extractions using frequency-based methods, so that
if Chicago occurs in contexts that indicate cities often, we are more confident that it is indeed a
city. Using n-gram statistics allows one to see that “cities such as Chicago” occurs, for example,
3802 times in the Google teraword Web corpus, without having to crawl thousands of Web pages
or send a query to an external search engine (which typically offer a limited quota of queries per
day, and have a limit of one query per second).
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4.2 Related Work
Hearst pioneered the use of lexico-syntactical patterns to extract hyponym relations from text [11].
This work used patterns like “category such as NP ” to infer that NP is a hyponym of category.

The work of Hearst inspired the development of the KnowItAll system [9], which applied
similar techniques to the Web. Occurrences of the lexico-syntactic patterns were retrieved using
a search engine, and a redundancy-based ranking algorithm, along with unsupervised assessment
techniques based on co-occurrence with the category name, were used to rank extractions,

The OntoSyphon system [15] used similar pattern-based extraction methods to populate an
ontology. This work considered several different redundancy-based ranking methods, and their
conclusions inspired our methods.

Pantel et al. extract is-a relations from a large (15GB) corpus [17]. They find that pattern-based
methods, similar to those that we use in this work, are more scalable and yield better results than
slower methods that use more syntactically sophisticated analysis.

4.3 Methods
Given a category c and a set of patterns P , we search for occurrences of the patterns to find
instances i. Our set of patterns P consists of the patterns “c such as i”, “such c as i”, “c {,}
including i”, and “c {,} especially i”, where {,} indicates an optional comma, c is the plural form
of the category (a single noun), and i is the instance to be extracted. The other patterns suggested
in the Hearst work, “i and other c” and “i or other c”, are not used by our current method, because
the database indexes present on our tables do not support suffix-oriented queries.

To assess the confidence of each extracted instance, we use a score that takes into account the
number of times the instance was extracted by a pattern, and the number of times the instances
occurs in any context. Specifically, we score each extracted instance i from those patterns with:

Scorestr−norm−thresh(i, c) =

∑
p∈P hits(i, c, p)

max(hits(i), Hit25)

where hits(i, c, p) is the frequency count for the n-gram with instance i and category c filling the
slots in pattern p, hits(i) is the frequency count for instance i occurring on its own, and Hit25 is
the 25th percentile hit count for all instances i extracted for category c. This prevents extremely
rare instances from having very high scores, which frequently results in typographical errors being
highly ranked. This method has been shown to be an effective ranking method [15].

4.3.1 Filtering the Extracted Instances

Using the methods for extracting and ranking instances mentioned above results in some unde-
sirable instances being extracted. Much of this is the result of prefixes of multi-token instances
being extracted. For example, for the category metals, the instance ‘stainless’ might be extracted
because the 4-gram “metals such as stainless” occurs many times on the Web. However, if we also
extract the instances ‘stainless steel’, we can deduce that ‘stainless’ is a prefix and filter it from the
extracted instances. Our method filters these instances that are prefixes of other instances.
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In other cases, we might extract an instance ‘tarnished’ for the category metals, because “metals
including tarnished” might occur many times. We can filter out such extraction by using a part-
of-speech tagger to tag the extracted instances. Based on this reasoning, in our method, we filter
out any instances that have tokens tagged as non-nouns. We also ignore any instances that use the
special tokens that indicate an unknown word or a sentence boundary.

Since the data set is case-sensitive, we often extract the same instance with different capital-
izations. In this case, our method merges these extractions into one instance by summing all of
the counts and selecting the most frequently extracted version. For example, if both ‘apples’ and
‘Apples’ are extracted, we use the more frequently extracted version (in this case, ‘apples’), and
sum the number of times the two versions were extracted.

4.4 Results
To evaluate our method, we extracted instances for 27 different categories. Many of the categories
were taken from Hearst’s original paper, which gave examples of hyponym relations found in
Grolier’s, an electronic encyclopedia. Others were chosen with the aim of making a broad set
of categories with both very specific and very general ones. Table 4 shows the top 10 ranked
extractions for each of the 27 categories. The results are mixed, but generally most categories have
accurate top 10 extractions.

In many cases, the results are a mix of named entities and subclasses that are hyponyms of the
category. For example, agencies has both ‘Centrelink’ and ‘police departments’, and both ‘Frosted
Flakes’ and ‘oatmeal’ are extracted as cereals. The desirability of these results depends on the
application.

In the case of the category people, the extractions ‘pornography producer’ and ‘puddle months’
both come from Web spam (nonsense text that tries to boost search engine rankings). These phrases
do not occur very often on the Web, so they have falsely inflated rankings. Such phrases might be
combated by detecting Web spam before extracting n-grams, or by using a scoring function that
takes into account how many different patterns extract an instance, and favors instances that are
extracted by multiple patterns.

Our filtering methods require instances to be tagged with POS tags that start with the prefix
‘NN’. This filters out many valid years and dates which have numeric tokens, because the POS
tags for these types of tokens do not start with ‘NN’. This helps to explain the poor results for the
years and dates categories.

Table 5 gives the number of instances extracted for each category. There is a very high variance
in this number across the categories.

Figure 4 shows precision-recall curves for the categories countries, cereals, and fabrics. These
curves show the precision at various levels of recall. Figure 4(a) shows that the highest ranked
countries are quite accurate. It is possible to extract roughly 80% of the countries with nearly 90%
precision. Figure 4(b) shows that the top ranked cereals are correct, with an incorrect extraction
only occurring far down in the ranked list of extractions. Results for fabrics are shown in Fig-
ure 4(c). To extract all 58 fabrics, we would have a precision of about 70%. The top ranked fabrics
are more accurate, but precision drops fairly quickly.
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Category Top 10 Extractions
agencies theGeneral.com, Centrelink, UNICEF, police departments, credit bureaus, Ogilvy, AusAID, HIPPA, WFP,

Equifax
amphibians salamanders, frogs, toads
antibiotics erythromycin, penicillins, tetracycline, ampicillin, vancomycin, streptomycin, telithromycin, clar-

ithromycin, ciprofloxacin, clindamycin
bivalves mussels, clams, oysters
cereals oatmeal, sorghum, Frosted Flakes, wheat, Cheerios, oats, maize, rye, millet, bran
cities Chicago, Beijing, San Francisco, Los Angeles, London, Netrate Discount Hotels, Atlanta, Boston, Paris,

Seward
companies Visto, computer jobs, Alamo Cheap Car, airtours, wager works, Sainsburys, automobile manufacturers,

Alamo Cheap Hire, Alamo Cheap Rental, Alamo Car Hire
continents Antarctica, Brisbane, BMW, geography, North America, Citibank, Africa, Brazil, South America, Atlantis
countries Russia, Brazil, Japan, Iran, France, Germany, Thailand, Indonesia, Egypt, Argentina
dates birthdays, weekends, wedding, London, baby, quarter start, reception times, dates, December, Brighton
dyes auramine, rhodamine, thiazole, methylene blue, trypan, SYBR Green, propidium iodide, acridine, ethidium

bromide, fluorescein
fabrics silk, cotton, wool, linen, mohair, nylon, velvet, stripes, satin, Coolmax
flatworms no extractions
fruits apples, oranges, bananas, grapes, strawberries, peaches, mangoes, mango, peach, pineapple
fungi email directories, Chlamydia species, Beauveria bassiana, Pythium, Aspergillus, yeasts, Rhizoctonia,

Stachybotrys, Alternaria, Candida albicans
governments Britain, school districts, counties, Saudi Arabia, Tribal governments, cities, municipalities, Egypt, Aus-

tralia, Jordan
hydrocarbons ethane, benzene, toluene, hexane, methylene chloride, pentane, aromatics, benzo, dichloromethane, cy-

clopentane
ideologies socialism, communism, Marxism, fascism, liberalism, nationalism, Nazism, transhumanism, Bolshevism,

conservatism
industries telecommunications, agriculture, mining, chemicals, electronics, textiles, pharmaceuticals, biotechnology,

tourism, finance
infections pneumonia, tuberculosis, colds, bronchitis, meningitis, MRSA, chlamydia, influenza, thrush, athlete
institutions community colleges, orphanages, pension funds, research centres, Historically Black, money remitters,

credit unions, science museums, nursing homes, parliaments
legumes alfalfa, lentils, soybeans, clover, peanuts, peas, chickpeas, soybean, kidney beans, vetch
liqueurs sloe gin, Amaretto, Grand Marnier, Benedictine, lemon, Harvey, orange
locations airports, Orlando, hotels, Brisbane, schools, restaurants, India, addresses, London, New York
minerals pyrite, magnetite, Vitamins A, monazite, magnesium, titanium dioxide, calcite, Orotates, biotite, kaolinite
months October incidents, leap years, renewals, monsoon, collaborators, HBO, Showtime, carrots, VAT, proposals
organisms fungi, humans, algae, Coliform bacteria, E. coli, mammals, Salmonella, yeast, yeasts, viruses
organizations Cisco Partners, Mustang Survival, National Fire, Amnesty International, transit systems, Big Brothers,

Ducks Unlimited, auxiliaries, labor unions, MoveOn.org
people MA Urbina, pornography producer, Pinckwerts, puddle months, Farhad Wadia, Craig Carman, Thomas

Highs, Stuart Eisenstadt, Bill Merriam, judge magistrates
phenomena earthquakes, Metroid, lightning, El Niño, hurricanes, clairvoyance, El Nino, telepathy, floods, fire
planets Hoth, Mars, Jupiter, Geonosis, Yavin IV, Venus, Mercury, Saturn, Pluto, sci
protozoa giardia lamblia, Cryptosporidium
rivers tributaries, Helen, water
rocks limestone, granite, sandstone, basalt, granites, shale, sandstones, gneiss, gabbro, shales

Table 4: Top 10 extractions for a variety of categories, sorted in descending order of confidence
score.
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Category Extractions Category Extractions
agencies 474 liqueurs 7
amphibians 3 locations 377
antibiotics 46 minerals 143
bivalves 3 months 35
cereals 17 organisms 168
cities 525 organizations 842
companies 1945 people 869
continents 20 phenomena 222
countries 469 planets 16
dates 26 protozoa 2
dyes 12 rivers 3
fabrics 84 rocks 23
flatworms 0 seabirds 7
fruits 79 species 706
fungi 27 students 250
governments 74 substances 339
hydrocarbons 39 teams 143
ideologies 14 times 61
industries 449 towns 153
infections 178 waterfowl 7
institutions 393 years 272
legumes 20

Table 5: Number of extractions for each category.
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Figure 4: Precision-Recall curves for three categories.
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4.5 Future Work
In future work, we might want to further filter the extracted instances for each category, by using
additional patterns to check them. The KnowItAll system uses a similar approach for its assess-
ment [9].

We could use a pattern learning approach to bootstrap off of the initially extracted instances,
and discover additional patterns that indicate members of the category.

A fundamental limit of extracting category instances from n-gram data is the limit of the size
of the token sequences. It can be difficult to tell if an instance is actually a prefix of some longer
prefix. A possible method to check instances for completeness is searching for the instances in the
context of the extraction patterns from the n-gram data, retrieving the Web pages that match, and
checking to see if the noun phrases are complete, given the full context from the Web page.

5 Conclusions and Future Work
We have shown that n-gram statistics from a very large corpus can provide high accuracy with rel-
atively simple algorithms for spelling correction. Additionally, pattern-based methods can extract
high-quality instances of categories in far less time than would be required if each document were
to be processed individually.

Here we summarize some conclusions and questions for future work.

5.1 Conclusions
• The n-gram data is a good source of information. We have shown the usefulness of the

data for two different applications, and it has already been shown to be useful for machine
translation [4].

• Simple approaches to spelling correction work well, given lots of training data. A simple
memory-based learning method was shown to yield state-of-the-art results on spelling dis-
ambiguation tasks given a massive training corpus.

• Working with large amounts of data takes time. Building the database from the raw n-gram
data took roughly a week on a machine with adequate disk space and 4 GB of RAM. Once
the database was created and the tables were indexed, building new applications that use the
database was easy, but there was a large startup investment.

• Web data is noisy. A prime example is the phrase ‘species such as anchovyto’ which is a
typographical error, and appears on nearly 500 pages on the same web site. This caused it to
have an misleadingly high frequency count in our data set. Special techniques are needed to
deal with these inconsistencies, such as duplicate detection. Also, numerous other category
instance extractions came from Web spam sites, which had misleading nonsense text that
was generated to seem like English text.
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5.2 Questions for Future Work
• What other applications are there for n-gram-based methods, and do we also see good per-

formance on those applications? Many other applications are well-suited to algorithms that
use n-gram data, such as machine translation (which drove the creation of the data set), topic
detection and tracking, Web spam detection, and named entity recognition, just to name a
few.

• Are there other types of summary statistics that would be useful? Cooccurrence statistics
have been shown to be very useful in assessing the semantic similarity of two words or
phrases. These can in fact be calculated from n-gram models, but could be very useful to have
precalculated for fast semantic similarity calculations. For example, to assess the semantic
similarity of the pair of words ‘apple’ and ‘eat’, we could compute the ratio between the
estimated probability of the two words occurring together within a 5-token window and the
probability that we would estimate for this event if we assumed that occurrences of ‘apple’
and ‘eat’ were independent events. To compute this, we must sum the frequency counts for
all n-grams that contain both ‘apple’ and ‘eat’, which could require the database to access
many millions of records.

• How can we avoid the issues that token-based n-gram models have with noun phrase bound-
aries? In our experiments with category extraction, we found that we often extracted incom-
plete instances (e.g. ‘newspapers such as the New York Times’ would be truncated since it
is 7 tokens long). One solution to this problem is to preprocess the corpus before counting
the n-grams, and combining multi-token named entities into single tokens [8]. The detection
of multi-token named entities can actually make good use of the n-gram statistics by looking
at the tendency of multi-word expressions to occur together [7].

• What impact did the thresholding have? N-grams that occurred fewer than 40 times were
not reported in the data. This could have positive effects, as it filters out spurious token
sequences, but it also could have negative effects, leaving out useful information. Find-
ing the right trade-off between database size and such thresholds seems like an important
consideration. We could study the effect of higher thresholds than 40 by setting our own
higher threshold, ignoring records below this threshold, and observing the effect on spelling
correction accuracy.

• Could we supplement the n-gram data with other annotations? Supplementing the n-gram
data with part-of-speech tags, named entity designations, and other annotations seems useful.
For example, part-of-speech tags have been shown to be useful in the spelling correction
task [10].

• Can we create standard tools to lower the barrier to entry in large-scale research? The
Google n-gram data set was a good start to answering this question. The data set needed a
large cluster of machines to compute, but can be stored on a single PC with a few hundred
GB of disk. However, the general barrier to entry for large-scale computing is still high. Re-
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searchers such as Pantel have started to discuss standard processing frameworks for scaling
up to huge corpora [16].
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