
 Inferring Regulatory Networks Using a Hierarchical
Bayesian Graphical Gaussian Model

Fan Li, Yiming Yang, Eric Xing

November 2006
CMU-ML-06-117

Inferring regulatory networks using a
hierarchical Bayesian graphical Gaussian

model

Fan Li Yiming Yang Eric Xing
November 2006

CMU-ML-06-117

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

In this paper, we propose a new formalism based on graphical Gaussian model (GGM) to infer
genetic regulatory networks. A hierarchical Bayesian prior for the precision matrix of the GGM
is introduced to impose a bias toward sparse graph structure. We show that the MAP estimation
of the undirected graph can be readily obtained by a variant of the well-known Lasso regression
algorithm. Then we integrate the estimated graph with the “CHIp-Chip” protein-binding loca-
tion data to infer the regulatory networks using a post-processing algorithm. Compared to extant
Bayesian network (BN) models for similar tasks, our formalism captures statistical dependencies
among genes that are more prevalent and plausible in the biological system. Our approach is
also capable of modeling partial correlations between mRNA levels and therefore goes beyond
clustering-based approaches. We applied our method to an expression microarray data (more than
6000 genes) together with a genome-wide location analysis data (more than 100 TFs). Evaluated
on the consistency with the GO annotations, our method achieves a significantly better performance
than clustering and BN learning algorithms in discovering genetic regulatory modules.

Keywords: Lasso, structure learning, graphical Gaussian model

1 Background

A gene regulatory network usually refers the ensemble of DNA segments (e.g., genes, motifs) and
proteins in a cell and the causal schemes (e.g., regulatory dependencies) according these elements
interacting with each other and with other substances in the cell, thereby governing the rates at
which genes in the network are transcribed into mRNA (Fig. 1). Automated induction of large
genetic regulatory networks has been an open challenge in machine learning and computational
biology. In recent years, advances in microarray technology have made possible the simultaneous
monitoring of the mRNA levels of tens of thousands of genes from the entire genome under various
conditions. If two genes are co-regulated by the same Transcriptional Factors (TFs), they will tend
to have similar patterns of mRNA levels in different conditions. Thus it is possible to infer the
structure of the gene regulatory network from microarray data if we treat each gene as a variable
and treat the expression levels of all studied genes under a single condition as a (multivariate)
sample.

Clustering-based algorithms are widely applied in microarray data analysis. The two most pop-
ular clustering methods, hierarchical clustering algorithm ([5]) and K-means clustering algorithm
([6]), have been used to find biologically meaningful gene clusters from expression data by many
previous researchers. [2] and [17] have developed more advanced clustering-based approaches to
discover genetic regulatory networks from multiple data sources.

Although clustering analysis is effective and straightforward, it has several limitations. It is of-
ten tricky to determine the number of clusters and the partial correlation (conditional independence
relationship) between mRNA levels of genes cannot be modeled.

One solution to overcome this is to use a Bayesian network (BN), which is defined as a di-
rected acyclic graph associated with local conditional distributions, as the model of gene network
([8], [11], [3]). Each node in a BN represents a gene and each directed edge represents an interac-
tion between two genes. Several algorithms (usually called ”structure learning algorithms”), like
Sparse Candidate Hill Climbing and Grow-Shrinkage algorithm, have been developed to learn the
structures of BNs with thousands of nodes from data.

One problem of modeling a regulatory network as a BN lies on the fact that the protein levels
are unobservable from microarray data (Fig. 1). Most BNs proposed so far only include mRNA
levels of genes as nodes, but not protein levels. While the mRNA levels of co-regulated genes
are often correlated, the mRNA levels of the regulated genes and regulator genes may not always
correlate to each other because the mRNA expression levels of regulator genes are not always
good indicators of their protein levels and activities. Even when the mRNA levels of regulator
genes and regulated genes do correlate, the mRNA levels of co-regulated genes are generally not
conditionally independent to each other given the mRNA levels of the regulator genes. Generally
speaking, there are two kinds of dependencies among mRNA levels of genes in microarray data.
One is the dependency between regulator genes and regulatee genes. The other is the dependency
among co-regulated genes. A BN directly inferred from mRNA profiles may confound these two
kinds of dependencies.

[11] and [3] have used genome wide location analysis data 1 as priors to constrain the structures

1Location analysis identifies physical interactions between regulators and motifs on the regulatory regions of the

1

of BNs so that the edges corresponding to the dependencies of co-regulated genes are filtered
out. Such an approach implicitly assumes the presence of (relatively strong) correlations between
mRNA levels of the regulator genes and the regulated genes, whereas ignores the dependencies
among genes that are co-regulated, which are often the strongest signals in microarray data and
may be very useful.

In this paper, we integrate the microarray data and location analysis data in a different way.
Our approach learns the genetic regulatory network in two steps. In the first step, instead of di-
rectly modeling the regulator-regulatee dependencies as in BNs, we only attempt to model the
dependencies among co-regulated genes using graphical Gaussian model (GGM). Each edge of
the undirected graph encoded by the GGM corresponds to the dependencies between a pair of co-
regulated genes. Fig 2 shows an example of such a model. We have proposed a novel hierarchical
Bayesian prior for the GGM so that the MAP estimation of the undirected graph has a sparse struc-
ture and can be learned efficiently by adjusted Lasso regression from microarray data. Of course in
practice our algorithm can not completely exclude edges that may correspond to the dependencies
between regulators and regulatees. In this case, we rely on the location analysis data to distinguish
the two kinds of edges in the next stage. In the second step, we take the learned undirected graph
together with a genome-wide location analysis dataset (i.e., the ChIp-ChIp data) as the input. A
post-processing algorithm is developed to calculate the probability that genes connected in the
estimated undirected graph have some shared TF set in location analysis data by chance. If this
probability is less than a p-value threshold, we would infer these genes be regulated by the shared
TF set.

The advantage of our approach lies on the fact that the dependencies among co-regulated genes
are often much stronger and more robust than the dependencies between regulator genes and reg-
ulatee genes in microarray data. Thus by exploiting the co-regulation dependency information,
which is not used in BNs, we may discover more regulatory patterns and we no longer need to
assume the presence of detectable statistical correlations between mRNA levels of regulator genes
and regulated genes.

2 Related work in structure learning for undirected graphs

Graphical Gaussian model ([12]) defines a joint distribution associated with a set of variables
related in accordance to an undirected graphical model. Let P be the number of nodes in the graph.
Then in GGM, the vector of the P nodesX = (x1, ..., xP) is assumed to follow multivariate normal
distribution with covariance matrix Σ. An edge between two nodes (variables) in the undirected
graph encoded by the GGM implies that the two variables are NOT conditionally independent to
each other given the rest variables. Matrix Ω = Σ−1 is often called the precision matrix. The
non-zero entries in matrix Ω correspond to the edges of the undirected graph.

There are two basic categories of approaches for structure learning: score-based approaches
and constraint-based approaches. Score based approaches perform a search through the space of

genes. However, physical binding is not equivalent to regulatory interaction. Furthermore, location analysis itself is
also very noisy. Thus, by combining these two data sources, we may recover modules more accurately than using
either one alone.

2

Unobserved

protein level A

mRNA lelve of gene A mRNA lelve of gene E

Unobserved

protein level X

mRNA lelve of gene B mRNA lelve of gene C mRNA lelve of gene D

Figure 1: A typical sample of gene regulatory network

possible structures and attempt to identify the most probable graph given the data and the prior
knowledge. When the graph is not decomposable, the space of possible structures that needs to
be explored is super exponential to the number of nodes. Thus directly learning a GGM 2 with
thousands of nodes in this way is very difficult. For decomposable graphs (such as BNs), several
large scale score-based structure learning algorithms (like Sparse Candidate Hill Climbing) are
already available. Constraint-based approaches use conditional independence tests to tell whether
an edge between two variables exists or not. When the sample size is small (which is always the
case in microarray data), it is difficult to test the partial correlation between two variables given
all the other variables. Several possible solutions to circumvent this problem have been proposed.
For example, [21] used GGM to model gene networks and used order-limited significance tests to
identify edges (only first order partial correlations are considered). [16] proposed multiple testing
procedures to identify edges in GGM. While constraint-based approaches are easy to implement,
they lack an explicit objective function and do not try to directly find the GGM with maximal
likelihood. Therefore, they are unable to directly produce a consistent joint distribution of the data.

Several studies have also used regression-based approaches to identify structures of undirected
graphs. The idea is to apply regression analysis for each variable on the rest variables and the re-
gression coefficients with relatively large absolute values correspond to edges in the graph. Lasso
regression ([20]) is often preferred because it gives exactly zero regression coefficients to most
irrelevant or redundant variables (thus leading to a sparse graph structure). Furthermore, theoret-
ical analysis in [15] and [14] shows that using L1 regularization, the sample complexity (i.e., the
number of training examples required to learn ”well”) grows only logarithmically in the number of
irrelevant features. These results suggest that L1 regularized Lasso regression can be effective even
if there are exponentially many irrelevant features as there are training examples (which is exactly
the case in microarray data). [14] used Lasso regression to estimate undirected graph structures

2In this paper, when we say ”learn a GGM” or ”learn a DAG”, we mean learning the parameters of a GGM
(precision matrix) or a DAG (regression coefficients). The graph structures are encoded by these parameters. The
non-zero entries in the precision matrix correspond to the edges in the undirected graph and the non-zero regression
coefficients correspond to the edges in the DAG.

3

mRNA lelve of gene A mRNA lelve of gene E

mRNA lelve of gene X

mRNA lelve of gene B

mRNA lelve of gene C mRNA lelve of gene D

Figure 2: An undirected graph learned in our approach corresponding the regulatory network in Fig 1. The
dot-lined boxes represent modules of co-regulated genes. The gene connecting to a module encodes the TF
that regulates the genes in that module.

and [10] used similar approaches to recover large scale transcriptional regulatory network from
expression microarray data. It is worth noting that the networks estimated using ad hoc regression
approaches usually do not correspond to a likelihood-based estimator of the GGM. From extant
approaches based on the Lasso regressions, to our knowledge, there have been few attempts to ex-
plicitly identify the exact global objective function underlying the algorithm and the probabilistic
underpinning of such objectives. Indeed, our analysis in the sequel suggests that an ad hoc Lasso
regression will not lead to a consistent estimation of the GGM (i.e., the regression coefficient of
variable i on j may be zero while the regression coefficient of variable j on i is non-zero).

Recently, [4] proposed an alternative way to learn GGM by using score based approach, mo-
tivated by the following well-known facts about GGM. For any undirected graph whose variables
(nodes) follow a joint multivariate Gaussian distribution, there must be a directed acyclic graph
(DAG) whose variables have exactly the same joint distribution (because a multivariate Gaussian
distribution can be always decomposed into a set of one-dimensional conditional Gaussian distri-
butions using chain rule). Thus, instead of learning the undirected graph directly, one can first
learn a DAG with the largest posterior probability. Once this DAG is found, the joint multivariate
Gaussian distribution of the variables in this DAG and its associated precision matrix follow suite.
This precision matrix will be exactly the one in the GGM we are trying to learn. To favor sparsity,
[4] introduced a prior penalizing the number of edges in the DAG and used a heuristic search to
find the MAP estimations of the DAG parameters. Our work follows this basic idea (learning GGM
through DAGs) but uses a very different, arguably more natural and consistent strategy, to achieve
a sparse estimation of the precision matrix in GGM.

Notice that since our ultimate goal is to learn a sparse undirected graph and DAG learning is
only an intermediate step, there are some important differences between our way learning the DAG
and the standard Bayesian network (BN) learning algorithms.

• There is no simple mapping between the sparsity of an undirected graph and the sparsity

4

of its corresponding DAGs. An undirected graph corresponds to many DAGs with different
variable orders, some may be sparse and some may be dense. Thus the topology of undi-
rected graphs and their corresponding DAGs may be very different (the relationship is shown
in formula 1). In fact, some undirected graphs only have corresponding DAGs with many
more edges, no matter which variable order we use (a loop with more than three nodes is
a simple example). Thus, conceptually, it is NOT necessarily the best idea to enforce spar-
sity on the corresponding DAGs in order to achieve the sparsity of the undirected graph. A
more natural way is to define a unified sparsity prior for the precision matrix and derive the
corresponding DAG priors, rather than define the DAG priors directly.

We propose an Automatic Relevance Determination (ARD) style Wishart prior for the precision
matrix Ω of the GGM. This kind of ARD priors have been introduced in [7] in a single regression
model. In this paper, we extend it with the addition of an exponential hyper prior for the Wishart
parameters and apply it to structure learning of a graph. We show that such a hierarchical prior
leads to a proper prior for the regression coefficients that define the DAG subject to sparsity bias,
which is skin to but richer than the Laplace priors corresponding to the Lasso regression algorithm.
The MAP estimation of the precision matrix of GGM under this setting can be found efficiently by
solving (a modified version of) Lasso regressions using fast grafting algorithm (proposed in [18]).
Our approach produces a consistent probabilistic model over a high-dimensional variable space
and naturally leads to a bias toward sparse topology of the corresponding undirected graphical
model. It also enjoys the robustness and computational efficiency due to the Lasso regression
procedure. Another important merit of using 1-norm regularizer (implied by Lasso regression
in our approach) compared to the zero-norm regularizer scheme (implied by the term penalizing
the number of edges in the DAG) is that, in each regression model in our approach, the solution
space is convex and we can find the global optimal point efficiently, while the solution space in
the zero-norm regularizer case is very bumpy. We further designed a method to discover genetic
regulatory networks with more than 6000 nodes from real biological data based on our undirected
graph learning algorithm. Evaluated on the basis of GO annotations, our results are significantly
better than the state-of-art baseline results.

3 Hierarchical Bayesian learning of the GGM

3.1 The model

We attempt to learn the GGM with maximal posterior probability from training data. For simplic-
ity, we assume that all the variables have been preprocessed and each of them follows a standard
normal distribution. Thus the joint distribution of all the variables is a multivariate normal distri-
bution. Since the topology of the undirected graph encoded by the GGM is completely determined
by the precision matrix of the corresponding multivariate normal distribution, structural learning
of a GGM is equivalent to learning the precision matrix of the multivariate normal distribution. In
particular, we seek to learn the precision matrix that maximize the product of its prior probability
and the probability of the training data under the GGM.

5

Given an ordering of the variables to be modeled, using chain rule, any high-dimensional multi-
variate distribution can be factored into a sequence of conditional distributions (i.e., P (x1, x2, . . . , xn) =
P (x1)P (x2|x1)P (x3|x2, x1) . . .), and therefore can be equivalently represented by a DAG built on
edges from the parental nodes (corresponding to the variables been conditioned on) to the children
nodes (corresponding to the conditioning nodes) induced by the variable ordering and the chain
rule. In presence of conditional independences between certain variables, such a DAG may be
sparse. Since learning a high-dimensional precision matrix of the GGM directly may be hard,
especially when certain bias (e.g., sparsity) is to be introduced, it is possible and potentially ad-
vantageous to solve the structural learning problem for GGM indirectly by first learning its corre-
sponding DAGs and then recover the precision matrix of the GGM. In the following, we formalize
these ideas.

For any DAG, there is a specific ordering of variables, which we take here for discussion as
simply 1, 2, . . . , p without loss of generality. For any variable xi, only variables whose indexes
are larger than i could be considered as xi’s parents. We use X(i+1):p to represent these variables.
Let’s use β to represent the regression coefficients of the DAG. Notice once β is known, the DAG
is determined. The probability of data given the DAG parameter β is

p(X|β) =

p
∏

i=1

P (xi|X(i+1):p), β).

For each xi, we can have
xi =

∑

j=(i+1):p

βjixj + εi,

where εi ∼ N(0, ψi). This can be further summarized in a matrix form

X = ΓX + ε and ε ∼ Np(0, ψ).

Where ε = (ε1, ..., εp)
′, ψ = diag(ψ1, ..., ψp) and Γ is the p × p upper triangular matrix with zero

diagonal elements and upper triangular, non-diagonal entries Γij = βji, (j > i).
It is easy to show that the joint distribution of variables in this DAG is a Gaussian distribution

with precision matrix

Ω = (I − Γ)′ψ(I − Γ). (1)

Notice this precision Ω is just the precision matrix of the undirected graph we are trying to learn
and it encodes the structure of the undirected graph.

3.2 Hierarchical Bayesian priors for GGM and connections to Bayesian re-
gression

Now our goal reduces to estimating the DAG parameters β so that P (β|Data) ∝ P (Data|β)P (β)
is maximized. Notice that covariance matrix Σ (or precision matrix Ω) together with an ordering of
the variables determines the regression parameter β in the DAG (and of course, β also determines

6

the Σ and Ω). Thus a prior over Σ (or Ω) also translates to a consistent prior on any regression
parameters βji|j > i.

Here, for precision matrix Ω, we define a Wishart prior Ω ∼ Wp(δ, T) with δ degrees of
freedom and diagonal scale matrix

T = diag(θ1, ..., θp)

The reason we want to use a diagonal matrix as the scale matrix is that we want to encourage a
sparse precision matrix. In other words, without seeing the data, we assume the off-diagonal ele-
ments of the precision matrix are all zeros, which means that there are no edges between different
nodes. Furthermore, we introduce an exponential hyper-prior for the Wishart parameters θi:

P (θi) =
γ

2
exp(

−γθi

2
). (2)

This type of hyper prior distributions have been suggested by [7] in a single regression model.
Let’s use βi to represent the (p − i) × 1 matrix βi = (β(i+1)i, ...βpi)

′. Let’s use Ti to represent
the sub-matrix of T corresponding to variables X(i+1):p. From the derivations in [9] 3, we obtain
the marginal prior for βi (which is a row in the Γ matrix in Eq. (1)):

P (βi|ψi, θ(i+1):p) = Np−i(0, Tiψi). (3)

Thus

P (βji|ψi, θj) = N(0, θjψi). (4)

Also following [9], we can derive the prior for ψi:

P (ψ−1
i |θi) = Gamma(

δ + p− i

2
,
θ−1

i

2
). (5)

As done in [7], we can integrate out the hyper parameter θ from prior distribution of βji and
get

P (βji|ψi) =

∫ ∞

0

P (βji|ψi, θj)P (θj)dθj

=
1

2

√

γ

ψi

exp(−
√

γ

ψi

|βji|). (6)

Now, given K samples {x1, . . . , xK}, and let xki represents the value of the ith variable in
the kth sample. Using the Bayes rule, we can derive the posterior distribution of the regression
coefficients and the variance of each regression function:

P (βi|ψi, X) ∝ P (xi|X(i+1):p, βi, ψi)P (βi|ψi)

∝ exp(−
∑

k(xki −
∑p

j=(i+1) βjixkj)
2 +

√
γψi

∑p

j=i+1 |βji|
ψi

).

(7)
3Notice the different notations in this paper and in [9]. The scale matrix T in this paper is detonated as T −1 in their

work. The second parameter in normal distribution represents the covariance matrix in this paper and precision matrix
in their work.

7

and

P (ψ−1
i |θi, βi, X) =

Gamma(
δ + p− i+K

2
,
θ−1

i +
∑

k(xki −
∑p

j=i+1 βjixkj)
2

2
).

(8)

These regression functions determine the conditional Gaussian distributions defined on the DAG.

3.3 The adjusted Lasso regression

From Eq. (7), we see the MAP estimation of βi is

β̂i = arg min
∑

k(xki −
∑p

j=(i+1) βjixkj)
2

+
√
γψi

∑p

j=(i+1) |βji|. (9)

Thus β̂i is the solution of a Lasso regression.
However, we cannot solve Eq. (9) using a standard Lasso regression. The reason is that ψi

with different i values are generally not the same. Thus the regularization parameter
√
γψi can not

be treated as a single parameter. In order to estimate βi using Lasso regression, we need to first
estimate the regularization parameter

√
γψi. Thus we refer to the regression problem defined by

Eq. (9) as ”adjusted Lasso regression”.
Eq. (7) provides the posterior distribution of βi conditioned on ψi while Eq. (8) provides

the posterior distribution of ψi conditioned on βi. This essentially defines a fixed point for our
Bayesian regression problem Eq. (9). Note that θi in Eq. (8) could be numerically integrated out
by sampling method 4. An iterative procedure is used to estimate β̂i and ψ̂i. We start from an initial
guess ψ̂i = 0. Using this ψ̂i value, we can estimate β̂i. Then using the estimated β̂i, we estimate
ψ̂i again. This procedure is iterated until the estimation ψ̂i and β̂i converge. Once ψ̂i and β̂i are
known, we can estimate Ω using formula 1 easily. Thus the graph structure is learned.

In the real implementation, we incorporate the iterative procedure into the fast grafting algo-
rithm that is used to solve Lasso regression. Fast grafting is a kind of stage-wise gradient descent
algorithm. It uses the sparseness property of Lasso regression to accelerate the optimization. The
algorithm starts with two feature sets: free feature set F and fixed zero feature set Z. Then it
gradually moves features from Z to F while training a predictor model only using features in F .
The details of this algorithm are referred to [18]. In order to incorporate the iterative procedure ad-
justing the regularization parameter into the fast grafting algorithm, our implementation is a little
different from [18]. We initialize ψi as zero value. In the end of each iteration in the fast grafting
algorithm, ψi and the regularization parameter are re-estimated based on the current regression
coefficients βi. With the fast grafting algorithm, the computational cost for graph learning can be
significantly reduced.

4Ideally, we’d like to multiply Eq. (2) and Eq. (8) and analytically integrate out θi. However, it’s unclear to us
whether θi can be integrated out in a close form. Thus we just sample θi values under the distribution in Eq. (2) and
use these values to simulate the integration operation. Since θi (with different i values) all follow the same distribution
in Eq. (2), the sampled θi values can be used repeatedly with different i values.

8

3.4 More on the hyper parameter γ

In Lasso regressions, most variables would be assigned zero weights (i.e., βji = 0). In particular,
for the ith adjusted Lasso regression model defined in Eq. 9, for an arbitrary variable xq that q > i,
the solution of Lasso regression would satisfy: (For details, see [18].)

2|
∑

k

(xki −
p

∑

j=i+1

βjixkj)xkq| ≤
√

γψi,

where equality only holds when variable xq has a non-zero weight.
Let rki = xki −

∑p

j=i+1 βjixkj , We treat r1i, r2i, ..., rKi to be samples of random variable ri

(representing the residual of variable i). Similarly, we treat x1q, ..., xKq to be samples of random
variable fq (representing variable q). Notice that all the variables have been preprocessed so that
they all follow standard normal distribution. We use cor(a, b) to represent the correlation coeffi-
cient between variable a and b. Thus we have

cor(ri, fq) ≤
√
γ

2K
,

where again equality only holds for variable xq’s with non-zero weights.
This implies that, given the non-zero weighted variables, the correlation coefficient between

left (zero weighted) variables and the residue is no larger than
√

γ

2K
. This gives us an intuitive way

when we want to decide the value of the hyper prior γ.

4 Identifying regulators and co-regulated modules from GGM

So far, we have learned an undirected graph encoded by the GGM from microarray data. The
edges in the undirected graph are supposed to correspond to the co-regulated gene pairs. In this
section, we outline a method to identify the regulator genes and the modules of co-regulated genes
from the estimated GGM with the help of genome-wide location analysis data (i.e., the ChIp-ChIp
data).

Location analysis identifies physical interactions between regulators and motifs on the regula-
tory regions of the genes. It consists of a matrix whose rows are all the possible regulatee genes
and columns are all the possible regulators. The elements of the matrix are the P -values reflecting
the chance that a physical interaction happens between the regulator and regulatee gene.

For any gene xi, let’s assume there are K genes connecting to it in the previously estimated
undirected graph. Let’s suppose in these K genes, there are L genes that share some regulator set
with gene xi in the location analysis data. We use R to represent the shared regulator set. Now
we want to calculate the probability that the L + 1 genes (L genes plus gene xi itself) share the
same regulator set R by chance. In this paper, we use a binomial distribution to approximate this
probability.

Let’s use N to represent the total number of genes. Let’s use M to represent the number of
genes which are possibly regulated by the regulator set R in the location analysis data. Then, the
probability of a randomly selected gene being regulated by regulator set R is M

N
.

9

Thus, in the K + 1 genes (K genes connecting to gene xi plus gene xi itself), the probability
that L + 1 or more than L+ 1 genes share the same regulator set R by chance is

score =
K+1
∑

j=L+1

(K + 1)!

(K + 1 − j)!j!
(
M

N
)j(1 − M

N
)K+1−j. (10)

If this score is lower than a pre-defined p-value threshold (we use 0.05 in this paper), we will
infer regulator-regulatee dependencies between regulator set R and these L + 1 genes.

The pseudo code of the post-processing algorithm is shown as Algorithm 1.

Algorithm 1 Pseudo code of the post-processing algorithm

1. For each gene xi

(a) Get all the genes connecting to gene xi in the estimated undirected graph. Use Neighbor(xi) to
represent this gene subset. Suppose the size of Neighbor(xi) is K.

(b) From the protein-binding location analysis data, find all the TFs that are shared by xi and one
or more genes in Neighbor(xi). For each shared TF set R

i. Suppose there are N genes in total. Suppose there are M genes regulated by TF setR. Sup-
pose in Neighbor(xi), there are L genes regulated by TF setR. Use S(R,Neighbor(xi)) to
represent these L genes. Use formula 10 to calculate a p-value. If this p-value is less than
a p-value threshold, then we would infer that the gene xi and genes in S(R,Neighbor(xi))
form a co-regulated module, which is regulated by genes in TF set R

5 The algorithm

Our approach discovers regulatory networks in two steps. In the first step we infer an undirected
graph from microarray data using the adjusted Lasso regression approach for hierarchical Bayesian
learning of GGM . Each edge in the learned undirected graph represents a co-regulated gene pair.
We first use the heuristic search described in [4] to find an order for the DAG. Then we use adjusted
Lasso regressions described in section 3.3 to estimate the DAG parameters. With these estimated
DAG parameters, the precision matrix, which encodes the structure of the undirected graph, can be
calculated using Eq. 1. In the second step we take the estimated undirected graph together with the
protein-binding location analysis data as the input, and use post-processing algorithm to identify
the regulators and the modules of co-regulated genes from the estimated undirected graph.

The overall pseudo code of our approach is given as following:

6 Experiments

We applied our method on the Yeast Saccharomyces cerevisiae dataset. The expression microarray
data we used comes from [19]. The mRNA expression levels of 6177 genes are measured under

10

Algorithm 2 Overall pseudo code

1. Use a heuristic search to find an order for the DAG

2. Estimate the regression coefficients β and the variances ψ in the DAG using adjusted Lasso regres-
sions in formula 9.

3. Calculate the MAP estimation of the precision matrix according to formula 1, which encodes the
undirected graph structure.

4. Use the post-procession algorithm in section 4 to infer the co-regulated gene modules and their TFs.

76 conditions. The location analysis data we used comes from [13]. It gives the p-values of genes
regulated by each of the 106 TFs. When a p-value is lower than 0.05, we would assume it is
possible that the gene is regulated by the TF.

In our experiment, the value of the hyper-prior γ is assigned to be 2.31 so that the correlation
coefficients between zero weighted variables and the regression residue are no larger than 0.01.
Another parameter is the p-value threshold of the post-processing algorithm, which can be used to
control the number of output gene modules. Here we also set the p-value threshold to be 0.05.

Directly evaluating the estimated gene regulatory network is difficult because the true gene net-
work is usually unknown. One possible solution is that, instead of directly evaluating the estimated
gene regulatory network, we evaluate the gene regulatory modules in the estimated gene network.
A gene regulatory module is defined to be a set of co-regulated genes sharing the same set of reg-
ulator genes. Genes in the same module are likely to attend the same cellular processes and have
similar biological functions. Most yeast genes have been annotated with certain cellular processes
or functions in GO database([1]). Thus it is possible to use this information as an external evidence
to evaluate the estimated gene regulatory modules. In fact, such evaluation strategies have been
widely used in recent years ([17]).

The details of the evaluation strategy are summarized as following. For each gene module
and each GO annotation, we calculated the fraction of genes in that module associated with that
GO annotation and used the hypergeometric distribution to calculate a p-value for this fraction
(which can be done using SGD Term Finder Toolkit([1]), and took p-value< 0.05 to be significant.
We compared the enrichment of modules for GO annotations between results achieved by our
undirected graph structure learning algorithm and results achieved by other baseline algorithms.
In this paper, we only consider GO annotations in ”Process” category.

6.1 Co-regulated gene modules recovered by our method

We list the regulatory modules found by our approach with at least 2 TFs and five regulated genes
in table 1.

Each line in table 1 represents a regulatory module found by our approach. The first column
gives the regulator set of this module. The second column gives the number of regulated genes with
annotations in GO database VS the number of all the regulated genes in this module. The third

11

Figure 3: This is an undirected graph that is corresponding to all the gene regulatory modules(whose sizes
are required to be no less than five) found by our algorithm. Each node represents a gene and each edge
represents a co-regulated relationship between two genes. Each regulatory module corresponds to a clique.
Notice that one gene can be in multiple regulatory modules. That’s why many cliques are connected in the
figure. The graph clustering coefficient is 0.433.

column gives the previous reference of the interactions among regulator genes in this module. The
last column gives the GO annotations of processes shared by the regulated genes in this module (the
names of the regulated genes are not shown to save space). We also give the P-values for these GO
annotations, which are calculated by SGD Gene Ontology Term Finder Toolkit([1]). This value
reflects the probability that the genes in the module share the GO annotation by chance. Since there
are generally multiple GO annotations shared by a gene cluster, we only show the GO annotation
with the smallest P-value for each module in the last column. We can see many of the co-regulators
in our recovered modules have already been reported as co-TFs or have interactions by previous
references. Some well studied co-TFs like (MBP1, SWI6) and (FKH2, MCM1, NDD1) can also
be found in table 1.

There are a lot of other interesting patterns found by our approach that are not listed in table 1.
For example, our approach found the module with regulator set (CAD1,PHO4) and the regulated
gene set (CUP1-1,CUP1-2). This small module corresponds to the process ”response to copper
ion” on a significance level with pvalue = 3.02e − 07 (both CUP1-1 and CUP1-2 belong to this
process, while in all of the 7276 annotated genes in the GO database, only 4 genes belong to this
process).

In figure 3, we plot the undirected graph that is corresponding to all the gene regulatory mod-
ules(whose sizes are required to be no less than five) found by our algorithm. There are 957 nodes
in this figure. Each node represents a gene and each edge represents a co-regulated relationship be-
tween two genes. Thus each regulatory module corresponds to a clique. Notice that one gene can

12

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

450

Degrees of nodes

Figure 4: This is the histogram that shows the distribution of node degrees in figure 3. The X axis represents
the degree of nodes. The Y axis shows the number of nodes with such degrees in each bin. We can see that
the histogram approximately follows power law distribution.

Table 1: modules with multiple regulators and more than 5 regulated genes.
regulator set annotated/ALL reference of co-regulators common processes or function of regulated genes
ACE2,SWI5 6/6 4/6 cell proliferation, p=0.023
ASH1,FKH2 4/5 2/4 cell wall organization and biogenesis, p=0.002
ASH1,SWI4 5/5 3/5 cell organization and biogenesis(p=5.94e-05),
CIN5,MET4 6/8 2/6 copper ion import, p=0.0002
DIG1,STE12 10/10 functional and physical 10/10 cellular process(p=1.45e-05),
FHL1,RAP1 100/100 share motif(Davide et al) 100/100 structural constituent of ribosome, p < 1e − 4

FKH1,FKH2 4/5 co-TFs(Kato et al 2004) 2/4 covalent chromatin modification, p=0.0003
FKH2,MCM1,NDD1 12/12 co-TFs(CYGD) 6/12 cell proliferation, p=0.01
GAT3,RGM1 3/13 2/3 telomerase-independent telomere maintenance, p=9.56e-06
GCR1,GCR2,RAP1 6/6 6/6 energy pathways, p=1.65e-08
HIR1,HIR2 6/6 co-TFs(Spector et al 1997) 6/6 chromatin assembly or disassembly, p=1.23e-14
HSF1,MSN4 6/8 co-TFs(Jeffrey et al, 2002) 4/6 response to stress, p=9.62e-05
INO2,INO4 6/7 co-TFs(BRIAN et al 1995) 2/6 translation elongation factor activity, p=4.76e-05
MAL13,MSN4,RGM1 5/7 3/5 telomerase-independent telomere maintenance, p=1.05e-6
MBP1,SWI4 8/8 3/8 microtubule cytoskeleton organization and biogenesis, p=0.005
MBP1,SWI6 32/37 functional and physical interaction(CYGD) 21/32 cell cycle, p=4.74e-17
MET31,MET4 8/8 in the same complex(Pierre-Louis et al 1998) 6/8 sulfur metabolism, 9.78e-11
MET4,RAP1 6/6 6/6 macromolecule biosynthesis, p=4.24e-06
NDD1,SKN7 5/5 5/5 cell organization and biogenesis, p=9.35e-05
NDD1,SWI4 5/5 2/5 cytoskeleton organization and biogenesis, p=0.012
SWI4,SWI6 15/19 functional and physical interaction (CYGD) 7/15 cell cycle p=3.57e-05

be in multiple regulatory modules. That’s why many cliques are connected. The graph clustering
coefficient is also given in figure 3. In figure 4, we plot the histogram that shows the distribution
of node degrees for the undirected graph in figure 3. We can see that the histogram approximately
follows power law distribution.

6.2 Comparison between our approach and other approaches

[2] has used GRAM algorithm, which can be thought as a kind of clustering algorithms, to extract
gene regulatory modules from expression microarray data and location analysis data. In particular,
they have used the same genome-wide location analysis data as the one we used. However, their
expression microarray data is over 500 experimental conditions and our microarray data, with 76
conditions, is only a subset of theirs. 5 We will use their result as a baseline result.

5[2] combined several microarray data sources in different conditions to get a big microarray data over 500 condi-
tions in their paper. Thus the cell cycle microarray data from [19], which we used in our paper, is a only a subset of
it.

13

0 10 20
0

5

10

15

20

−lo
g(

pv
alu

e)
 fo

r o
ur

 m
et

ho
d

−log(pvalue) for Hie, K=50
0 10 20

0

5

10

15

20

−lo
g(

pv
alu

e)
 fo

r o
ur

 m
et

ho
d

−log(pvalue) for Hie, K=100
0 10 20

0

5

10

15

20

−lo
g(

pv
alu

e)
 fo

r o
ur

 m
et

ho
d

−log(pvalue) for Hie, K=600

0 10 20
0

5

10

15

20

−lo
g(

pv
alu

e)
 fo

r o
ur

 m
et

ho
d

−log(pvalue) for Kmeans, K=50
0 10 20

0

5

10

15

20

−lo
g(

pv
alu

e)
 fo

r o
ur

 m
et

ho
d

−log(pvalue) for Kmeans, K=100
0 10 20

0

5

10

15

20

−lo
g(

pv
alu

e)
 fo

r o
ur

 m
et

ho
d

−log(pvalue) for Kmeans, K=600

Figure 5: Comparison between our approach and Hierarchy clustering (in the first row) and K-means clus-
tering (in the second row), with k=50 (first column), 100 (second column), 600 (third column) respectively.
In the up left figure, there are 109 dots on the Y axis and 22 dots on the X axis. In the up middle figure there
are 121 dots on the Y axis and 19 dots on the X axis. In the up right figure, there are 91 dots on the Y axis
and 22 dots on the X axis. In the down left figure, there are 119 dots on the Y axis and 29 dots on the X
axis. In the down middle figure, there are 112 dots on the Y axis and 27 dots on the X axis. In the down
right figure, there are 92 dots on the Y axis and 39 dots on the X axis.

We set the requirement that the size of a gene module should be no less than five. The p-value
threshold of our post-processing algorithm, which can be used to control the number of output
gene modules, is set to be 0.04 so that the number of output gene modules is 106, which is exactly
the same as the number of gene modules in the results reported by [2]. In this way, we can compare
our results with [2] conveniently.

We also compared our results to the results achieved by hierarchical clustering and k-means
clustering algorithms. Since the number of clusters is a parameter that needs to be pre-defined in
these two clustering algorithms, we tried several settings (k=50, 100, and 600) for this parameter.
For the Hierarchical clustering method, we used the agglomerative average linkage version. For
the K-means clustering method, we tried 5 random restarts and only reported the best result. Notice
that clustering algorithms can be only applied on expression microarray data to group correlated
genes. They cannot make use of location analysis data themselves. In order to be fair in comparing
our method with these two clustering methods, we need some post-processing algorithms that can
combine the clustering results with location analysis data. In fact, we can simply treat the clustering
results as a disjoint undirected graph. Genes in same clusters form complete sub-graphs and genes
in different clusters are disconnected with each other. Thus we can directly use the post-processing
algorithm we described before to post-process clustering results. In order to be fair in comparing
the two module extraction methods using this evaluation strategy, the number of gene regulatory
modules found by these two methods should be the same. Thus for the two clustering methods, we
tuned the p-value threshold of the post-processing algorithm so that it also returns 106 modules. In
this way, we can give a fair comparison.

14

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

−
lo

g
(p

va
lu

e
)

fo
r

o
u

r
m

e
th

o
d

−log(pvalue) for GRAM algorithm

Figure 6: Comparison between our method and Gram algorithm in GRAM algorithm. There are 93 dots on
the Y axis and 61 dots on the X axis.

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

−
lo

g
(p

va
lu

e
)

fo
r

o
u

r
m

e
th

o
d

−log(pvalue) for BN learning

Figure 7: Comparison between our method and BN learning algorithm. There are 88 dots on the Y axis
and 29 dots on the X axis.

We further compared our approach with the BN learning approaches that used the location
analysis data as priors to constrain the BN structures. We used sparse candidate hill climbing as
the search algorithm for BN learning and only allow edges from a regulator gene to a regulatee
gene when the p-value between these two genes is lower than 0.05 in location analysis data. We
tune the weight of the penalizer for the number of edges in the BN so that it will also generate 106
regulatory modules.

The results are shown in figure 5, 6 and 7. In these figures, each dot represents a GO annotation.
If it is on the Y-axis, it means that the GO annotation has been enriched in our results but not in
the baseline results. If it is on the X-axis, it means that the GO annotation has been enriched in the
baseline results but not in our results. We can see that there are many more dots on the Y-axis than
on the X-axis in figure 5, 6 and 7, which implies our method achieved a much better performance.
Notice the microarray data used in [2] contains richer information than our data, but their results
are still not as good as ours, as reflected in figure 6.

15

7 Conclusions

In this paper, we proposed a new formalism based on graphical Gaussian models to learn regu-
latory networks from microarray data and location analysis data. By introducing a hierarchical
Bayesian prior for the precision matrix of the GGM, the MAP estimation of the precision matrix,
which encodes the undirected graph structure to be inferred, is sparse and can be solved efficiently
by adjusted Lasso regressions. Then in the second stage, a post-processing algorithm is used to
identify the regulators and the co-regulated gene modules from the estimated GGM, with the help
of location analysis data. Overall, our approach provides an efficient and biological more informa-
tive and comprehensible (i.e., yielding sparse network and gene modules) solution to the problem
of gene network inference, doing so in a well-founded statistical framework that provides easy-
to-understand global cost function (i.e., data likelihood) and consistent joint distribution of the
data. We applied our approach to a real microarray dataset and a protein-binding location analy-
sis dataset. An evaluation on the basis of consistency with the GO annotations shows our results
significantly better than the results of clustering-based methods and BN learning methods.

References

[1] M. Ashburner, CA. Ball, JA. Blake, D. Botstein, and H. Butler. Gene ontology: tool for the
unification of biology. Nature Genetics, 25:25–29, 2000.

[2] Z. Bar-Joseph, GK. Gerber, T. Lee, and NJ. Rinaldi. Computational discovery of gene module
and regulatory networks. Nature Biotechnology, 21(11):1337–42, 2003.

[3] A. Bernard and AJ. Hartemink. Informative structure priors: Joint learning of dynamic regu-
latory networks from multiple types of data. In Pacific Symposium on Biocomputing, Hawaii,
2005.

[4] A. Dobra, C. Hans, B. Jones, J.R. Nevins, G. Yao, and M. West. Sparse graphical models for
exploring gene expression data. J. Mult. Analysis, 90:196–212, 2004.

[5] Brown PO. Eisen MB., Spellman PT. and Botstein D. Cluster analysis and display of genome-
wide expression patterns. Proc. Nat. Acad. Sci., 95:14863–14868, 1998.

[6] Tavazoie et al. Systematic determination of genetic network architecture. Nat Genetics,
22:281–285, 1998.

[7] M. Figueiredo and AK. Jain. Bayesian learning of sparse classifiers. In CVPR, pages 35–41,
2001.

[8] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using bayesian network to analyze ex-
pression data. Jounnal of Computational Biology, 7(2002):175–186, 1996.

[9] D. Geiger and D.Heckerman. Parameter priors for directed acyclic graphical models and the
characterization of several probability distributions. Annals of Statistics, 5:1412–1440, 2002.

16

[10] M. Gustafsson, M. Hornquist, and A. Lombardi. Large-scale reverse engineering by the lasso.
In ICSB 2003 Poster, 2003.

[11] AJ. Hartemink, DK. Gifford, TS. Jaakkola, and RA. Young. Using graphical models and
genomic expression data to statistically validate models of genetic regulatory networks. In
Pacific Symposium on Biocomputing, Hawaii, 2001.

[12] S. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.

[13] TI. Lee, NJ. Rinaldi, FD Robert, and DT Odom. Transcriptional regulatory networks in
saccharomyces cerevisiae. Science, 298:799–804, 2002.

[14] N. Meinshausen and P. Buhlmann. Consistent neighbourhood selection for sparse high-
dimensional graphs with lasso. Technical Report Seminar for statistic, ETH 123, Institute
for the Study of Learning and Expertise, 2004.

[15] A. Ng. Feature selection, l1 vs l2 regularization, and rotational invariance. In ICML, 2003.

[16] J. Schafer and K. Strimmer. An empirical bayes approach to inferring large-scale gene asso-
ciation networks. Bioinformatics in press, 2004.

[17] E. Segal, R. Yelensky, and D. Koller. Genome-wide discovery of transcriptional modules
from dna sequence and gene expression. Bioinformatics, 19:273–82, 2003.

[18] P. Simon, L. Kevin, and T. James. Grafting: Fast,incremental feature selection by gradient
descent in function space. JMLR, pages 1333–1356, 2003.

[19] PT. Spellman, G. Sherlock, MQ. Zhang, and VR. Iyer. Compehensive identification of cell
cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization.
molecular. Biology of the Cell, 9:3273–3297, 1998.

[20] R. Tibshirani. Optimal reinsertion:regression shrinkage and selection via the lasso.
J.R.Statist, Soc. B(1996), 58,No.1:267–288, 1996.

[21] A. Wille, P. Zimmermann, E. Vranov, and A. Frholz. Sparse graphical gaussian modeling of
the isoprenoid gene network in arabidopsis thaliana. Genome Biology, 5:92, 2004.

17

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

