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Abstract 
 

 The Waldo framework offers one method for determining subcellular protein 

location patterns. The framework operates by gathering data from many different 

protein databases. Waldo builds a model from proteins with observed location 

patterns, clustering them by their locations under specific conditions. This creates 

clusters whose labels are effectively consensus location patterns. These consensus 

patterns serve as starting points for proteins whose location patterns under the 

conditions of interest are unknown. Under the assumption that similar proteins 

localize similarly, the unobserved proteins are compared against those that are 

clustered, identifying a cluster whose constituent members have structure and 

sequence closest to that of the protein of interest. By associating a known protein 

of closest match to the unknown protein, the location pattern of the known protein 

provides a point estimate for the unobserved location pattern. Using the Z-score 

and percent identity resulting from the homology comparison, a confidence can 

then be placed on the point estimate of the location pattern. 

 

 

 

 

 

 



 



1 Introduction

The problem of protein subcellular localization is multifaceted: proteins must
be identified (e.g. by GFP-tagged fluorescence microscopy), monitored over dis-
crete or continuous time points, and observed in specific cellular compartments.
Furthermore, proteins can be subjected to variable conditions (e.g. a cancerous
cell [1]) which may have the effect of altering their locations within the cell.
Particularly in the Murphy lab, the primary methods of determining protein
locations under differing conditions have been through automated image analy-
sis [2] and text mining [3].

By virtue of proteins appearing in multiple locations under differing conditions,
we use the phrase ”location pattern” to describe the distribution over cellular
compartments in which proteins are found. The goal of the Murphy lab has
been to locate and identify all proteins under all conditions, such as the filaman
protein illustrated in Figure 1. The Waldo framework, an approach which relies
heavily on data that has been gathered in previous proteomics research, is but
one of many approaches to reach this goal.

An important aspect to protein localization is the biochemistry involved, includ-
ing the structure and sequence of the protein. The approach employed by Waldo
makes use of the assumption that similar proteins will express similar localiza-
tion behavior. This approach depends on a measure of both protein similarity
and localization similarity. In addressing the former, there are already numer-
ous methods in place to quantitatively discern a measure of similarity between
proteins, from double dynamic programming [4] to structural distance matrix
alignment [5, 6]. BLAST [7], a local alignment tool, is yet another option which
locally aligns protein sequences to determine peptide similarity.

2 The Waldo Framework

2.1 Phase I: Data Gathering and Waldo Architecture

Waldo is written in Python, and is a standalone application that can be deployed
on any system running Python 2.6 or greater (requires packages Amara and
SQLAlchemy). The first step in using Waldo to infer protein location is the
aggregation of a significant amount of data published with previous research.
At this time, the data sources used by Waldo consist of five separate protein
databases. The names and number of distinct proteins available from each data



Fig. 1. A-431 cell line of HPA protein with associated Antibody identifier 2925. This
is an alpha filamen A, seen here localizing as the green fluorescent antibody in the
cytoplasm and cytoskeletal actin filaments. (http://www.proteinatlas.org/show im-
age.php?image id=200004293&channel= blue red green)



source are listed in Table 1. As Waldo initializes itself, this data is downloaded
from each source and normalized as it is saved, enabling comparison of the data
from different research databases.

Database URL Entries

LOCATE[8] http://locate.imb.uq.edu.au/ 122,765
MGI[9] http://www.informatics.jax.org/ 34,162
eSLDB[10] http://gpcr.biocomp.unibo.it/esldb/ 80,220
UniProt[11] http://www.uniprot.org/ 516,081
HPA[12] http://www.proteinatlas.org/ 10,100

Table 1. The total number of unique entries (with the exception of HPA: the im-
munofluorescence data has three entries per antibody, one for each cell line) from each
data source that is tracked by Waldo is indicated in the third column.

Data normalization involves two separate processes. First, Waldo internally con-
verts each database-specific identifier (a Uniprot accession, for example) to a
global namespace: for the current iteration, each database-specific identifier was
translated to a matching Ensembl Gene identifier. This conversion allows for the
comparison of proteins regardless of their data source of origin. Most databases
already provided this identifier within the annotations of the data. For those
which only supplied a database-specific identifier, or which provided only an En-
sembl Peptide (such as eSLDB), the Synergizer service [13] was used to translate
the identifiers between namespaces.

The second aspect of data normalization involves structuring the data properly.
A specific database schema (for storing the data locally) and an accompanying
web-based interface together provide a means for querying and visualizing the
stored information in such a way that allows side-by-side comparison of infor-
mation such as subcellular protein location, GO terms, accompanying citations,
and other annotations. Some data from each source (such as UniProt comments
not related to protein location) was not needed in the most recent iteration, so
it was not captured in the normalization process.

As mentioned, Waldo can be used as a proxy for each protein database it cap-
tures, providing a web front-end for users (shown in Figure 2) to query by any
identifier with which Waldo is familiar: any assimilated data source, in addi-
tion to any Ensembl identifier. A command-line batch interface is also provided
for users interested only in the location patterns for proteins from any of the
assimilated databases.



Fig. 2. Web-based interface of the latest Waldo iteration. This will be changed soon
to a single query field which accepts all identifier types, as the ability to dynamically
recognize a specific identifier is already implemented in the latest version of Waldo.

2.2 Phase II: Building an Inference Model from Labeled Data

The majority of the data captured by Waldo does not have condition information
associated with it. As such, no assumptions are made regarding the condition of
the recorded protein. Only HPA data provides this information in the form of
discrete cell lines. These different cell lines, in which each protein has an observed
location pattern, are used in the next step of the framework as training data to
build the predictive model. This model, in combination with tools to measure
protein similarity, are used to predict the location patterns under these three
conditions, or cell lines, of unobserved proteins. This process can be generalized
to any conditions for which there is training data available; however, these con-
ditions must be made explicit to the model, as learning them in an unsupervised
way is beyond the scope of Waldo.

The HPA data set (a few entries of which are shown in Table 2) consists of HPA-
specific identifiers associated with a cell line and ensuing location pattern. The
representation of the location pattern is an 18-dimension binary vector, where
each dimension is indicative of a different cellular compartment of interest (e.g.



Nucleus, ER, Golgi). The bit in each of the vector’s elements indicates whether
or not the protein was observed in that specific compartment.

Antibody Cell line Nucleus Cytoplasm Mitochondria ER Golgi ...

0609 A-431 0 0 0 1 0 ...
4799 U-2 OS 1 1 0 0 0 ...
3536 U-251MG 0 0 1 0 0 ...

Table 2. Partial location pattern vectors for three different HPA antibodies. For each
antibody, there are three separate cell lines, though for brevity only one cell line of
each is shown. If the binary vector value is ”on” at a specific position, this indicates
the protein was observed at the corresponding location.

HPA constitutes the entirety of labeled data for training, exactly 10,100 obser-
vations over all three cell lines. Since each protein is observed three times, once
for each condition, this equates to 2,969 distinct proteins, each with three loca-
tion profiles, or vectors. As stated, the cell line attribute is synonymous with a
specific condition on the protein, simulating the effect of a drug or mutation to
observe the change, if any, in subcellular protein localization.

To construct a predictive model from this information, the data is preprocessed
to remove any proteins for which all three location profiles consisted exclusively
of zeros, indicating a protein which was unobserved. After preprocessing, the
number of distinct and fully observed proteins decreased to 2,770. This formed
the primary data set for building the model.

In the next step, these data points were clustered. Each of the three location
profiles for every protein were concatenated to generate a single 54-dimensional
binary vector, describing the protein’s location across all three conditions. Since
the attributes for clustering are binary, the Hamming distance metric was used
(as it satisfies the Triangle Inequality) to calculate distances between protein
location profiles and generate groups, making explicit a certain edit distance
between clusters of proteins with similar location patterns across all three con-
ditions. The Bayesian Information Criterion (BIC) was used to determine the
ideal K number of clusters, which ranged from 2 up to 100. The BIC equation
followed in the form of the Schwartz Criterion, as

BIC(Mj) = l̂j(D)− pj
2

logR (1)



where l̂j(D) is the log-likelihood of the data from the j th model, and pj is the
number of parameters (or clusters) in model Mj [14]. The log-likelihood function
can be written as a sum of likelihoods over each of the centroids. Therefore, the
likelihood of each centroid, given the subset of points Dn from the total points
D that has µn as their centroid, is given by the following equation:

l̂(Dn) = −|Dn|
2

log (2π)− |Dn|M
2

log (σ̂2)− |Dn| −K
2

+ |Dn|(log |Dn| − log |D|)
(2)

where |Dn| is the number of points assigned to the nth cluster, |D| is the total
number of points, σ̂2 is the maximum likelihood estimate for the variance in the
nth cluster under the assumption of normally distributed data, and M is the
dimensionality of the data (in this case, M = 54). This produces a BIC curve
which must be maximized.

As indicated in Figure 3, the BIC for the given K initially increases before
reaching a point at which it merely begins oscillating. While the global maximum
of this function with respect to the number of clusters is found at K = 61,
the function remains qualitatively steady across a large interval of K, posing a
question of tradeoffs in terms of model complexity and goodness of fit; a lower
value of K, while not conferring the largest BIC, would create a less complex and
possibly more generalizable model of clusterings. Therefore, in order to further
illuminate the effects of increasing K on the BIC, the variance of the BIC was
plotted against K as two separate functions, the results of which are shown in
Figure 4. One curve shows the amount of variance in the BIC plot up to the
specific K, while the other shows the amount of variance in the BIC plot after
the specific value of K.

By determining the smallest value for K at which the difference between the
two curves is greatest, that value of K represents the simplest and most gener-
alizable model for which the maximum amount of overall variance is captured,
theoretically leading to a model which is most effective at capturing relationships
between clusters. This point occurs at K = 46, which is the global maximum
of the blue curve, representing the amount of variance already captured by the
specific K. This value also correlates with a local minimum of the second curve,
which is very close to the curve’s global minimum.

Once the clusterings of proteins based on location pattern is built, it can be
queried. Within the parameters of the assumption that similar proteins have
similar location patterns, an unobserved query protein is presented to the model
in an attempt to determine its location profile based on sequence and structure



Fig. 3. Plot of the calculated BIC vs 2,770 data points given a number K of clusters. As
the data within each cluster is assumed to follow a normal distribution, the likelihood
in the BIC equation is the sum of squares [14].

homology. The query protein is compared to representative proteins from each
cluster using the DALI pairwise distance matrix alignment [5, 15]. In comparing
the PDB structures of the two proteins, a Z-score and percent identity alignment
is generated. From these metrics, a best-fit cluster is determined for the query
protein. The highest Z-score and the protein which yielded it are then used to
construct a confidence assignment. The observed protein’s location profile is used
as a point estimate for the query protein’s location profile, with a confidence level
that is proportional to the Z-score.

A second batch of trials was also run, using BLAST as the similarity metric
instead of DALI. In this case, the alignments producing the lowest E-value were
used.



Fig. 4. The red line plots Var(BIC) for all k ≥ K, whereas the blue line shows the
variance for all k ≤ K. The point at which the difference of these two functions reaches
its maximum indicates the K at which the maximum Var(BIC) has already occurred,
and the variance that remains is minimal. This provides a way of selecting the smallest
K that still captures the majority of the BIC variance, and thereby the majority of
the clustering information.

3 Discussion

To use the DALI alignment tool, proteins required an associated PDB identifier.
Out of the 2,770 HPA proteins, 809 contained PDB information. Therefore, in
using 10-fold cross-validation to test the model, each test fold consisted exclu-
sively of proteins drawn from the 809 with PDB identifiers. 46 clusters were
constructed for each iteration, and for each iteration the proteins of the test
set were compared to representatives of each of the 46 clusters. When a closest
match (highest Z-score) was found, the query protein was tentatively assigned
the location profile of the closest matching protein with a confidence proportional
to the percent identity of the two peptides.

In order to test the accuracy of the clustering and homology mechanism for
inferring location, the percent identity of the query-observed combinations were
plotted against the Hamming distance of the observed protein’s location profile
from that of the query protein in the test fold. The results are shown in Figure 5.



Type Antibody Partial Location Profile Z-score % Id H-Dist

Query 3303 0 1 0 0 0 1 1 0 0 0 1 0 25 0.41 2
Match 2831 0 0 1 0 0 1 1 0 0 1 1 1 – – –

Query 4177 0 0 1 0 1 0 0 1 0 0 0 1 58 0.83 7
Match 3282 1 1 1 1 1 1 0 1 1 1 1 1 – – –

Table 3. Shows partial location profiles of two query peptides and the observed match-
ing proteins (as determined by PDB comparison yielding the largest Z-score and per-
cent identity). Match proteins indicate peptides on which the model was trained; Query
proteins are ”unobserved” testing peptides to gauge model accuracy.

As is qualitatively apparent in Figure 5, there is not a statistically significant
correlation between PDB structure alignment and the Hamming distance of the
location profiles. Had the initial assumption of similar proteins localizing simi-
larly been apparent in the data, the scatter plot would have shown a correlation
roughly from the top left of the graph sloping to the bottom right. Table 3 il-
lustrates part of the problem: while there are certainly protein pairings which
exhibit behavior consistent with the initial assumption, many others – even with
relatively high Z-scores and percent identities - localize very differently under the
same conditions. The plot shows similar discrepancies: while a qualitative argu-
ment could be made for the number of proteins with a relatively low Hamming
distance as percent identity increases, the results are nevertheless not statisti-
cally significant due primarily to a large amount of noise and an orthogonal lack
of data, as only 226 points appear in Figure 5, even though each fold constituted
81 test points (one fold with 80) for a total of 809 data points over all 10 folds.

While the initial assumption is theoretically well-grounded in broad proteomics
research, the approach taken here was unable to show any significant correlation
of protein similarity with similarity of subcellular location profile. Table 4 reflects
a portion of the confusion matrix for all the test folds. Overall accuracy across
all 226 points, according to the full confusion matrix, was a mere 3.5%.

The results of the BLAST iterations were very similar. Like the DALI approach,
a conversion between identifier namespaces was required, this time to Uniprot
accession numbers. The E-scores, or likelihood of seeing a particular hit at ran-
dom, were used to gauge the quality of the matching and to choose the best.
As seen with DALI in Table 3, high-quality E-values did not correlate particu-
larly well with point estimate location patterns. With both DALI and BLAST,
consensus location profiles were constructed from a logical disjunction of each
constituent location profile, creating a vector which essentially indicated all pos-
sible locations to which proteins in the cluster would localize under all conditions.
Using these consensus profiles, the Hamming distance was again calculated be-
tween the query protein and both the consensus of the cluster to which DALI /



Fig. 5. Plot of hamming distance between query-match proteins vs percent identity
as indicated by DALI. Each point represents a best-match pairing of a query protein
with a corresponding observed protein using DALI as the criterion, and is plotted to
show the relationship of the matching’s percent identity (proxy for Z-score) with the
Hamming distance (in units of distance of the bit vectors) of the two peptides’ location
profiles.

BLAST indicated the closest match, and to all other cluster consensus profiles
to determine which was the true closest cluster. Results are shown in Figure 6.

4 Conclusion

Presented here is a method for comparing proteins and discerning localization
profiles under conditions of interest. This framework relies on the core assump-
tion that proteins of similar structure and sequence will behave similarly, or have
similar location profiles. Waldo provides the means for downloading this data,
normalizing it, allowing the user to query it, and forms the basis for inferring the
locations of proteins for which we do not have location data under predefined
conditions.



0 1 0 0 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. A portion of the full confusion matrix, showing the first 15 clusters. Diagonal
entries, indicating where proteins that belonged to a certain cluster were assigned to
that cluster as part of a test fold, are bolded.

Waldo has its shortcomings, the most egregious of which is a lack of compre-
hensive data. Much of this problem can be attributed to limitations in the tools
used. The DALI database for comparing PDB structures, while indexing all 809
of the available PDB data points, does not contain pairwise comparison data for
every possible pairing of the 809 proteins, leaving more than half of each test
fold unpaired – only 226 of the original 809 proteins could be paired for compar-
ison – thereby creating results highly susceptible to noise. Furthermore, the 809
proteins with PDB data are but a subset of the available data from HPA: a total
of 2770 proteins, nearly 70% for which the Harvard Synergizer could not identify
any corresponding PDB data. This contributes to incredible data sparsity, given
its 54-dimensional location profiles. The methods presented here also implicitly
assume that all location profiles are equally likely, when this is almost assuredly
not the case: a qualitative observation will reveal that the majority of location
profiles have very few ”on” bits. Taking the specific properties of the location
profiles account when building the model may yield better initial clustering.

Alternatively, it is also possible that the format of the location profiles is simply
inappropriate for this sort of by-proxy inference. While the location profiles yield
very sparse data, their binary nature makes constructing location distributions
difficult, particularly without a much larger amount of data.

Nevertheless, there are numerous ways by which the methods described here
could be improved to show more definitively whether the initial assumptions are
correct. One possibility would be examine several different methods of quan-



Fig. 6. The blue line plots Hamming distance between query-match proteins, while the
red line plots Hamming distance of the query proteins and their true closest match in
terms of location profile. Each point on the horizontal axis represents a different query
protein. This shows that BLAST / DALI did not perform particularly well as a means
for predicting protein location by protein similarity score, as in almost every single case
the nearest cluster was not the predicted one, or even close to the predicted one.

tifying protein homology for determining matches: rather than a distance ma-
trix alignment, double dynamic programming methods or hierarchical alignment
methods could be explored and compared, ideally allowing more of the original
HPA data to be used in training and testing. BLAST would be an ideal tool for
performing local alignments between two proteins.

Another method for improvement would entail building two separate clustering
models. One model would consist of the Hamming distance K -means clusterings
as illustrated here, while the other would be a clustering of the same proteins
on homology distance. From these two clustering models, overlap of clusters and
constituent members could gauge directly whether similar proteins (as defined
by the parameters of the homology clustering) group closely with proteins whose
localization profiles are also similar.

Yet another method involves leaving clustering behind and estimating location
profiles directly. Since the location profiles are binary, the system could be set
up as a series of boolean expressions, and a SAT solver used to correlate location
profiles with conditions, or expression solutions. In order to determine the rela-



tionships between conditions and the ensuing location profiles, a linear system
could be established consisting of matrices Oi whose rows consist of proteins un-
der a specific condition i, and their subsequent location profiles as the columns.
These observed matrices would be a linear function of some unobserved ”perfect”
protein localization profile U, multiplied by a location-to-location coefficient ma-
trix C, producing the observed mappings. Solving for the unobserved patterns
would allow a significant level of generalization for introducing new conditions
into the system.

It is important to emphasize that Waldo serves as a starting point, in which any
of the above directions could potentially be implemented.
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