

Looking under the Hood of Stochastic

Machine Learning Algorithms

for Parts of Speech Tagging

Jana Diesner Kathleen M. Carley
July 2008

CMU-ISR-07-131

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

 Center for the Computational Analysis of Social and Organizational Systems

CASOS technical report.

This work was supported in part by the National Science Foundation under grants: No. ITR/IM IIS-0081219,

NSF 0201706 doctoral dissertation award, and NSF IGERT 9972762 in CASOS. Additional support was

provided by CASOS and ISRI at Carnegie Mellon University. The views and conclusions contained in this

document are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the National Science Foundation, or the U.S. government. We are grateful to Alex

Rudnicky from CMU for providing the training data to us and to Yifen Huang, CMU, for discussing the project

with us.

ii

Keywords: Part of Speech Tagging, Hidden Markov Models, Viterbi Algorithm, AutoMap

iii

Abstract

A variety of Natural Language Processing and Information Extraction tasks, such as question

answering and named entity recognition, can benefit from precise knowledge about a words‟

syntactic category or Part of Speech (POS) (Stolz, Tannenbaum et al. 1965; Church 1988;

Rabiner 1989). POS taggers are widely used to assign a single best POS to every word in text

data, with stochastic approaches achieving accuracy rates of up to 96 to 97 percent (Jurafsky

and Martin 2000). When building a POS tagger, human beings needs to make a set of

decisions, some of which significantly impact the accuracy and other performance aspects of

the resulting engine. In this paper we provide an overview of these decisions and empirically

determine their impact on POS tagging accuracy. We envision the gained insights to be a

valuable contribution for people who want to design, implement, modify, fine-tune, integrate,

or simple reasonably use a POS tagger. Based on the results presented herein we built and

integrated a POS tagger into AutoMap, a tool that facilitates Natural Language Processing and

relational text analysis, as a stand-alone feature as well as an auxiliary for other tasks.

iv

v

Table of Contents

1. Introduction ... 1

2. Method .. 2

3. Data ... 5

4. Experiment .. 6

4.1 Dissembling Viterbi ... 6

4.2 Handling Noise .. 7

4.3 Smoothing and Handling of Unknown Data Points ... 9

4.4 Aggregating Hidden States .. 10

5. Results ... 11

5.1 Dissembling Viterbi ... 12

5.2 Handling Noise .. 13

5.3 Handling Unknowns .. 14

5.4 Aggregation of Hidden States .. 17

6. Integration of Parts of Speech Tagging into AutoMap ... 19

7. Limitations and Conclusions ... 24

vi

1

1. Introduction

Part of Speech Tagging (POST) assigns a single best part of speech (POS), such as noun,

preposition or personal pronoun, to every word in a text or text collection. What is the

knowledge about words‟ lexical category useful for? First, a large variety of Natural

Language Processing (NLP) and Information Extraction (IE) tasks benefit from accurate

knowledge about words‟ lexical categories, such as:

- Stemming (conversion of terms into their morphemes) (Krovetz, 1995; Porter, 1980)

- Named Entity Extraction (identification of relevant types of information that are

referred to by a name, such as people, organizations, and locations) (Bikel, Schwartz,

& Weischedel, 1999)

- Anaphora resolution (conversion of personal pronouns into the actual entities that

those pronouns refer to) (Lappin & Leass, 1994)

- Creation of positive (thesaurus) and negative (delete list) filters (Diesner & Carley,

2004)

- Ontological text coding (classification of relevant types of information according to an

ontology or taxonomy) (Diesner & Carley, 2008)

Second, POS are often used as one feature for machine learning tasks that involve text data

(Arguello & Rose, 2006; Bikel et al., 1999).

What is the challenge in POST? While many words can be unambiguously associated with

one tag, e.g. computer with noun, other words match multiple tags, depending on the context

that they appear in. Wind, for example, can be a noun in the context of weather, and can be a

verb that refers to coiling something. DeRose (DeRose, 1988) for example reports that in the

Brown corpus, which is part of the data set that we use in this study, over 40% of the words

are syntactically ambiguous. This example illustrates the fact that ambiguity resolution is the

key challenge in POST.

At the Center for Computational Analysis of Social and Organizational Systems (CASOS) at

Carnegie Mellon University (CMU) we have developed AutoMap, a tool that facilitates the

extraction of relational data from texts (Diesner & Carley, 2004; McConville, Diesner, &

Carley, 2008). A variety of NLP and IE routines, such as those listed above, are part of that

process. Therefore, a highly accurate POS Tagger is a crucial auxiliary for multiple routines

in AutoMap. Furthermore, we envision a high-quality tagger to serve as a helpful stand-alone

functionality in AutoMap.

What computational approach to use for building a POS tagger for AutoMap? Taggers can be

divided into rule-based, stochastic and transformation-based systems (Manning & Schütze,

1999). For this project we focus on stochastic taggers, which exploit the power of

probabilities and machine learning techniques in order to disambiguate and tag sequences of

2

words (Bikel et al., 1999; Stolz, Tannenbaum, & Carstensen, 1965). One widely and

successfully applied approach to statistical modeling of natural language data are Hidden

Markov Models (HMM) (Baum, 1972). In the domain of speech recognition for instance,

HMM has become the favored model (Rabiner, 1989). HMM are also used for POST, where

the most accurate systems achieve errors rates of less than four percent (Jurafsky & Martin,

2000). Most of the existent HMM-based POS taggers are trained with labeled data (e.g.

(DeRose, 1988; Weischedel, Meter, Schwartz, Ramshaw, & Palmucci, 1993)), while fewer

ones use unlabeled data in order to train a model based on expectation maximization (EM)

(e.g.(Kupiec, 1992). Given the performance rates that others have achieved with HMM-based

stochastic POS taggers we decided to deploy this approach for building a POS tagger for

AutoMap.

The next two sections explain some of the most crucial decisions that need to be made when

implementing a POS Tagger. By looking under the hood of HMM-based stochastic POST we

learnt that some of these decisions significantly impact the resulting accuracy rates. The main

contribution of this report is to quantify and explain the change in tagging accuracy due to the

design and implementation decisions that human beings needs to make when building a

stochastic POS tagger. We envision the knowledge about the sensitivity of the resulting

engine and its part to be valuable information for creators and users of who build or apply off-

the-shelve or self-made taggers.

2. Method

Markov Models (MM) model the probabilities of non-independent events in a linear sequence

(Rabiner, 1989). Applying this idea to natural language empowers us to model language as an

interactive system in which words and their underlying features are not discrete events, but do

impact each other. Applying MM to POST means aiming to find the most likely sequence of

POS in a given sequence, typically a sentence, for all sequence (sentences) in a text or corpus

(Baum, 1972; DeRose, 1988; Stolz et al., 1965).

MM are based on a set of assumptions: First, HMM assume a limited horizon into the past.

This means that given a present element in a sequence, future elements are conditionally

independent of past elements, which implies that present elements depend only on themselves

and a few predecessors. The number of predecessors considered equals the order of the

HMM. If one decides to look at only the most recent data point (word) from the past, then a

first-order HMM is applied. The vast majority of HMM practical applications deploy first-

order models. This seems counterintuitive if one follows the idea that higher-order HMM

could lead to more accurate predictions than lower order models, because state sequences

might depend not only on one (first-order HMM), but multiple predecessors (e.g. in

Department of Labor). A time horizon of greater than one, however, results in less and sparser

training data due to the lack of local histories for the beginning of sequences (Manning &

Schütze, 1999). This constraint translates into a serious disadvantage if sentences in the

3

training data are rather short, or if comas are used as delimiters instead of sentence marks.

Because a shift from a first-order HMM to a second-order HMM reduces the amount of

training data available and the numerical stability of the constructed model we decided to

work with a first-order HMM. While the limited horizon assumption enables us to account for

the fact that the words in a sentence may depend on each other, especially in the case of

meaningful bigrams such as human rights, it excludes the consideration of long-range

dependencies (Diesner & Carley, 2008). Long-range dependencies are not meaningful N-

grams whose elements co-occur next to each other, but elements that interact without being

collocated (such as personal pronouns that refer back to a social entity mentioned earlier in

the text). This limitation has been shown to be a serious constrain if relevant data points are

sparsely scattered across the data. Since in POST training data every word has a tag, this

limitation does not apply to POST.

Second, the time invariance assumption means that probabilities are stationery (invariant over

time). This assumption can be related to the idea of generalizability of models that are trained

on a specific data set and are later on being applied to new and unseen data. The time

invariance assumption is a theoretical one only. In reality, language is a dynamic system, in

that rules (syntax) and elements (vocabulary) emerge and vanish over time, and across places

and people.

Relating the made assumptions to POST enables us to combine and exploit every word‟s

probability and fairly local context as given by a word‟s predecessor(s) - if available in the

training data. HMM, a probabilistic function of MM, brings these two pieces of information

together by computing the tag sequence P(tag1-end) that maximizes the likelihood of the

product of word probability P(wordi|tagj) and tag sequence probability P(tagj| previous n

tagsj-N).

In practical POST applications, the true sequence of POS that underlies an observed sequence

(piece of text data) is unknown, thus forming the hidden states. A POS tagger aims to find the

sequence of hidden states that most probably has generated the observed sequence. This task

is referred to as decoding, which means that given a set of observations X (words in

sentences) and a model μ (the result of supervised learning) we want to reveal the underlying

Markov chain of tags that is probabilistically linked to the observed states. Model μ consists

of three parameters:

1. Initial state probabilities π. This is a vector that quantifies the probability of the tag of
first hidden state in a sentence. Why is that needed? When POST is performed on the
sentence level (the classical approach), the first word in the sequence has no
predecessor. In order to decode this token, it is typically assumed that the most
frequently observed tag for this token across the data set is the most likely tag for this
token.

2. State transition probabilities aij, stored in a transition matrix, quantify the likelihood of
observing a certain hidden state given the previous hidden state.

3. State emission probabilities bij, stored in a confusion or emission matrix, specify the

4

probabilities of observing a particular state (word) while the HMM is in a certain
hidden state.

When training a POS tagger in a supervised fashion, the parameters of model μ are computed

from the training data. Therefore, the process of estimating parameters during model training

is a visible Markov process, because the surface pattern (word sequence) and underlying MM

(POS sequence) can be fully observed. In contrast to that, applying the trained model to tag

new and unseen data truly represents a hidden MM, because the tag sequence is hidden

underneath the surface pattern and will be revealed using previously gathered empiric

evidence (model μ).

Different algorithms for implementing a HMM exist. A widely used one in the NLP domain is

the Viterbi algorithm (Viterbi in the following) (Viterbi, 1967). The solution that a POS

tagger will suggest is contained in the search space of the applied algorithm or technique. A

search space describes and confines the room of possible solutions. For Viterbi, the search

space can be represented as a trellis. A trellis is a field composed of a chain of words (the

length of the chain depends on the number of tokens per sequence) and a related matrix of all

hidden states that were empirically observed during model construction by the probabilistic

connections (transitions) between the hidden states. The chain of observed states and the

matrix of hidden state transitions are probabilistically connected via the empirically observed

emission probabilities for a word by the full set of tags. Viterbi‟s basic idea and main

advantage are the reduction of the complexity of examining every full path through a trellis

(all possible combinations of tag transitions and word emissions in a sequence) by recursively

finding partial probabilities δ for the most likely path from one state to the next throughout

each sequence. Viterbi requires three steps for searching and identifying one complete and the

most probable route through the trellis.

Viterbi Algorithm, Goal:

Finding the sequence of hidden states that generates the maximum partial probability (t)
j

 of

possible state combination while moving through the trellis:

) | j = X O, P(X, max = (t) t

X
j

where

j… index of potential state

t…index in the sequence of observations

X = X1 … Xt-1 …sequence of (hidden) states

O = O1 … O t-1 …sequence of observations

The following steps will be executed in order to achieve the goal:

5

1. Initialization Nj1, = (1) j
j

2. Induction Nj1 ,b a (t) max = 1)(t otijij

Ni1

jj

Store backtrace Nj1 ,b a max arg = 1)+(t otijij

Ni1

j
j

where (t) j = storage of node of incoming arc to most probable

path

3. Termination and path (most likely tag sequence) readout (by backtracking)

1)(T max arg ˆ
 i

Ni1

1

 TX

1)+(t ˆ
1 ˆ TXtX

1)(T max)ˆ(i

Ni1

XP

In summary, the supervised, sequential, stochastic machine learning technique described

herein (machine learners are systems that improve their performance (here, POS tagging

accuracy) with experience) constructs a model μ that for each sequence of (x,y), where x are

the words in a sentence and y the corresponding POS tags, predicts an entity sequence y =

μ(x) for any sequence of x, including new and unseen text data. Since HMM estimate a joint

probability (the one of words and tags) they are a member of the family of generative models

(Dietterich, 2002). The tag sequence that results from applying model μ to new data may not

necessarily be the correct one, but it will be the most likely one given the model and the new

data. It is for this reason that careful and informed design and implementation of a tagger are

key to success.

3. Data

The data set used for training and validation in this project is the tagged version of the Penn

Treebank 3 (PTB) corpus (M. P. Mitchell, Marcinkiewicz, & Santorini, 1993; P. M. Mitchell,

Santorini, Marcinkiewicz, & Taylor, 1999)Error! Reference source not found.. The PTB

ollection contains 2,499 texts from differenet sources such as over three years of news

coverage from the Wall Street Journal (1989-1992) and a tagged version of the Brown corpus

(1961). Every word in the corpus is annotated with at least one out of 36 possible tags (see the

Appendix for a list of tags and their meaning). The PTB figu is stored in 500 data files, which

are organized in 15 folders.

In cases where the human coders who annotated the PTB texts with POS were uncertain about

the best POS for a word, e.g. when a word was syntactically ambiguous, multiple tags were

assigned in a non-standardized order (Klein & Manning, 2002). For example, England-

born/NNP/VBN means that England-born might be a singular proper noun as well as past-

participle verb. There is a total of 121 such cases of tag indeterminacy in PTB. We performed

several qualitative checks (human reasoning about the best out of the offered tags) on

6

randomly drawn instances of this issue from PTB, which convinced us of the random order of

multiple tags per word.

4. Experiment

We conducted series of experiments was in order to identify the impact of several

independent variables, which we explain in detaiin this section, on the dependent variable of

interest: the accuracy of tagging new data by using the constructed model. What can the

outcome of this exercise be useful for? First, we need such detailed knowledge in order to

construct the best POST model for AutoMap (for machine learning problems, the best model

is typically the most concise one that generalizes with highest accuracy to new data). Second,

we envision creators and users of HMM implementations to use this kind of knowledge in

order to build or reasonably apply such systems.

4.1 Dissembling Viterbi

In section 2 we described the different computational steps that are involved in the Viterbi

algorithm. How much accuracy gain can be attributed to each of these steps? In order to

answer this question we isolated each step and ran experiments in order to quantify the partial

accuracy gain that the application of the following computational steps accounts for:

1. Probabilities of words in isolation

2. Emission and Transition Probabilities

3. Partial probabilities δ and back pointers ψ

4. Backtracing

Step 1 enables us to isolate and measure the accuracy achieved by using emission

probabilities only. This procedure disregards the impact the POS of the proceeding word on

the subsequent word‟s POS, thus not making use of a words‟ historical context (a “zero-order

HMM”). As a result, the tag that has been observed most frequently for the word under

consideration during training will be selected and returned. This step resembles the

initialization stage as well as the computation of the initial state probabilities as described in

section 2. In HMM and Viterbi, probabilities of words in isolation are used for tagging the

first word in every sentence as well as for one-word sentences. We further on refer to this

approach as the Unigram Model (UM in the following). We use the UM as our baseline

performance measure.

Step 2 represents a regular HMM (HMM in the following). That is the product of emission (of

a word by a tag) probabilities and transition (from POS to POS) probabilities as computed

during the induction stage of Viterbi. The difference in accuracy rates between step 1 and 2

allows us to isolate and quantify the impact of transition probabilities on tagging accuracy. A

HMM performs a local search. This means that the model decides upon the most likely tag for

each token (by choosing the POS that maximized the product of the possible transition and

7

emission probabilities between the current and preceding words and their POS) prior to

moving on to the next word.

Step 3 is the heart of Viterbi. It combines partial probabilities as computed in step 2 with a

forward search for the best (a complete and the most probable) path through the trellis. At

each step while moving through the sequence for which the hidden states need to be

determined and for each possible hidden state the algorithm computes partial probabilities.

These partial probabilities are the product of the emission probability of the potential state, the

highest transition probability from the previous possible states and the partial probability of

the previous state that generated the highest transition probability. Hence this algorithm

considers the emissions, transitions and the globally optimal sequences of hidden states that

are determined while moving through each step in the trellis. In the following we refer to this

step as VitF (Viterbi Forward). The difference in accuracy between steps 2 and 3 represents

the difference between global forward search and local search.

Step 4 not only computes all possible forward paths through a trellis (as done in step 3) from

start to end, but after completing the forward search it determines the final partial probability

of the last state, which represents the globally optimal solution and backtraces the most

probable path through the trellis from the last to the first token. In the following we refer to

this step as VitB (Viterbi with backtracing).

In summary, the difference between points 1 and 2 versus points 3 and 4 represents the

difference between a globally versus locally maximized solution. An actual implementation of

the Viterbi algorithm requires all four points. Each of these points and in the order as they are

outlined here includes the previous point(s) (if applicable), thus furthermore adding to

Viterbi‟s time and space complexity. This increase in computational complexity is because

each step, in the presented order, increases the amount of information or empiric evidence that

is comprised in the process of making a decision about the best tag sequence. For this reason

we hypothesize that the POS accuracy increases from each step to the next.

4.2 Handling Noise

Typically, text data includes various types of noise in varying quantity. What precisely

qualifies as noise and how much of it will be normalized or eliminated depends on the goal,

resources, and researcher. For this project, tagged tokens are not considered as noise if and

only if they are composed of or tagged as an arbitrarily long sequence of any of the following:

- Characters from a or A to z or Z (regular words)

- Numbers from 0 to 9 (numbers)

- Sentence markers (digits and end of sentences)

- Ampersands (used e.g. in corporation names such as John Wiley & Sons)

- Dollar symbols (mainly used to denote monetary values)

- Hyphens (often used to denote genitive markers)

8

- Dashes (often used in compound words such as long-term)

All tagged tokens that are or comprise any symbol not listed above are considered as noise

herein. The set of noise terms for this project contains for example tokens whose tag resemble

the token (e.g. :/:) or most (99.84 percent) tokens that are tagged as symbol (SYM). Commas

are part of the SYM set. Only 0.01 percent of the tokens tagged as list markers (LS) qualified

as noise, while most list markers are actual words or numbers.

For other projects, the tokens and tags that we consider as noise terms might be valuable

signals. For data that is stored as coma separated values, for instance, commas would serve as

the sequence delimiter. The following example shows an excerpt from a POS-tagged PTB

data file in that we printed the tagged elements that we consider as noise in red and bolt font.

Any word-tag tuple in which one or both elements qualify as noise can be removed prior to

learning and model evaluation or not. Table 1 shows the transition probabilities for the

example given in Figure 1 with and without symbol performing removal. The transitions that

both versions differ in are printed in bold and red font. This example shows that when noise is

not removed, more and a higher variety of transitions will be learnt.

Why do we think that determining the impact of removing noise prior to learning on POS

results could matter? For practical POST applications, people are typically not interested in

predicting tags for symbols, but only for what is typically considered as content. From a

computational as well as practical standpoint, decoding noise requires resources (space and

time), which one might not want to spend. We hypothesize that POST results will be more

accurate when learning and evaluating are based on clean instead of noisy data.

Figure 1: Excerpt from PTB Data Table 1: Impact of Noise Definition on Transitions

Publication/NN

and/CC

distribution/NN

:/:

Volume/NN 1/CD

(/((/(

A[fj]/SYM

)/) of/IN

the/DT seventh/JJ edition/NN

Transitions before

symbol removal

Transitions after

symbol removal

NN - CC

CC - NN

NN - :

: - NN

NN – CD

CD – (

(- (

(- SYM

SYM – IN

IN – DT

DT – JJ

JJ - NN

NN - CC

CC – NN

NN – NN

NN – CD

CD - IN

IN – DT

DT – JJ

JJ - NN

9

4.3 Smoothing and Handling of Unknown Data Points

Any HMM implementation requires cautious handling of small numbers and zero

probabilities at various points: first, multiplying and propagating partial probabilities in the

induction stage can lead to number underflows. Since UM and HMM disregard partial

probabilities, this issue only applies to Viterbi. This problem can be avoided by using the

natural logs of the transition and emission probabilities, and translating the respective

multiplications into summations.

Second, words and state sequences that have not been observed in the training data, but do

occur in the evaluation data, will cause:

- Zero probability in the induction step of Viterbi. As a result, an entire vertical column

in the trellis (all δ for step i) would have zero probabilities, so that the propagation of

any path would break.

- Accuracy loss for UM, HMM, VitF, and VitB during model evaluation. This is

because tokens that did not occur in the training data but are observed in the

evaluation or any other new data will have a zero probability of being emitted by any

tag as well as a zero probability of being involved in any tag transition. In such cases,

the unknown tag is typically initially assigned to these words. Practically, unknown

never matches the best tag for a word, and therefore contributes to an increase in the

tagging error rate. Depending on the algorithm used, unknowns on average account for

up to 28 percent of all tokens when a model trained on one portion of PTB data and is

applied to another portion of PTB (detail on that in section 4.4). Accuracy loss due to

not handling unknowns cannot be solved by increasing the amount of training data

used: even models trained on humongous training sets are likely to encounter new

words when being applied to unseen data. The issue represents the downside of the

time-invariance assumption made for MM: language is a continuously changing

system with words emerging and vanishing across time and places, e.g. in the cases of

new names of people, places, or products.

We empirically test the impact of handling unknowns on POST accuracy. The following

unknown handling strategy is used: Zero probabilities for emissions are prevented by adding

tokens newly encountered during evaluation to the emission matrix, tagging them as

”UNKNOWN”, and assigned a minimum probability to them. This intervention prevents the

multiplication by zero in the development of the trellis. Zero probabilities for transitions that

involve the UNKNOWN tag (P(t|t=UNKNOWN, P(t=UNKNOWN| t))) and that have not

been observed a priori are caught by assigning a minimum probability to them as well.

Initially, we chose a minimum probability that equaled the smallest empirically observed

probability in the learning data set. This solution resembles the Adding One strategy (Church,

1988), which in addition to linear interpolation is a frequently applied smoothing technique in

tagging (Kupiec, 1992). Later on we realized that in some cases our minimum probability

equaled empirically observed probabilities. In cases of ties between any tag and the unknown

10

tag, our engine makes a random choice, which can give an empirically observed small

probability (EP) the same weight as the artificially assigned minimum probability (AP). In

order to weight EPa higher than APs we decided to first find the smallest EP in the data,

dividing it by 100 (we ran multiple tests in order to find an appropriate value), and using this

value as the AP. We found that for handling emission probabilities involving unknowns this

strategy leads to major, positive changes in accuracy rates, especially for VitF and VitB. For

taking care of transitions that comprise the unknown tag, this strategy does not lead to

significant changes in POST accurate rates, but it does suppress the detection of unknowns to

a degree where they become unlikely to ever be selected. However, in some cases we want to

maintain the unknown tag in order to be able to send it to a post-processor, as explained in the

text paragraph. It is for this reason that we choose the weight EP deterministically higher than

APs only for emissions, but not for transitions.

After zero probabilities for emission and transition have been converted to minimum

probabilities lower than empirical probabilities words tagged as UNKNOWN are passed to a

post-processor that applies a set of rules in order to re-label unknown words with an actual

POS. The best-performing unknown-word resolution techniques in tagging use information

about the word‟s spelling (DeRose, 1988; Viterbi, 1967). We built upon this idea. The

construction of the post-processor is described in section 5.3.. We hypothesize that post-

processing of unknown words will further increase the POST accuracy results, because an

actual tag is more likely to match the best tag for a word than the unknown tag.

4.4 Aggregating Hidden States

PTB uses a set of 48 unique tags. 36 of them are regular POS, and the other 12 are symbols

(#,$,.,,,:,(,),",',",',"). The Appendix lists the regular POS them along with the total frequency of

their occurrence in PTB. Section 4.2. explained how we handle the symbols. For many real-

world applications, this categorization is too fine grained. When analyzing newspaper articles

for instance, people might be interested in using POST to support the identification of terms

that refer to the who, what, where, when, why and how of what is reported in text data. For

identifying the who (one or multiple people) for instance, a category named agents might be

more appropriate than classifying singular proper nouns and plural proper nouns separately.

As a second example, for finding all words that indicate an action and therefore can be

thought of representing the what category, one might want to collect all verbs in one category,

regardless of whether they are a base form verb, a present participle or gerund verb, a present

tense not 3rd person singular verb, a present tense 3rd person singular verb, a past participle

verb, or a past tense verb (six categories). We aggregated the regular POS from the PTB tag

set into twelve categories as shown in Table 2.

Table 2: Aggregation of PTB Categories

11

Aggregated Tag Meaning Number of

Categories in PTB

Instances in PTB

IRR Irrelevant term 16 409,103

NOUN Noun 2 217,309

VERB Verb 6 166,259

ADJ Adjective 3 81,243

AGENT Agent 1 62,020

ANA Anaphora 1 47,303

SYM Noise 8 36,232

NUM Number 1 15,178

MODAL Modal verb 1 14,115

POS Genetive marker 1 5,247

ORG Organization 1 1,958

FW Foreign Word 1 803

The consolidated set consists of personal singular noun (AGENT), personal plural noun

(ORG), verbs (VERB), modal verbs (MODAL), nouns (NOUN), adjectives (ADJ), personal

pronouns (ANA), genitive markers (POS), non-content beating words (IRR), symbols

(NOISE), numbers (NUM), and foreign words (FW). Seven of the aggregated categories map

to only one PTB category, while the other categories are represented by up to 16 different

categories in PTB. The rows in Table 2 are sorted by decreasing frequency of the cumulative

occurrence of each category in PTB (last column in Table 2) in order to illustrate the fact that

the number of words per tag category varies widely (for details see the Appendix).

Our aggregation is one possible solution. For other text sets, domains, or projects, other

consolidations might be more appropriate. We hypothesize that aggregation will lead to more

accurate POST results, because the classifier needs to pick one best POS out of a smaller pool

of choices.

5. Results

The impact of each independent variable or routine described in the previous section on POST

accuracy was empirically tested. For these tests, we performed ten ten-fold cross validations

per variable. In order to perform ten-fold cross validations, the corpus was randomly split

(500 files, about one million words) into ten partitions for every single run. Nine folds (450

files) were used for training and generating model μ. From the remaining tenth fold (50 files),

all tags were removed, μ was applied to this fold in order to tag the data, and the assigned tags

were compared to the original labeling of the tenth fold. Every deviation was recorded as an

error. This procedure was repeated nine more times. The reported error rates result from

averaging the errors rates of ten consecutive runs.

Typically, taggers are evaluated by running the Gold Standard test and/ or by comparing the

results to a Unigram Baseline test (Jurafsky & Martin, 2000)Error! Reference source not

ound.. In this paper, we use both tests: The Gold Standard measures performance by

12

identifying the portion of tags that the tagger and a human-labeled validation set agree upon.

We apply this test during model evaluation. The Unigram Baseline test is the same as the UM

model already described in this paper.

5.1 Dissembling Viterbi

How much partial accuracy can be attributed to the different steps involved in Viterbi? Our

findings as shown in Table 3 and 4 indicate that on average the baseline model (UM) tags

86.82 of the words in the evaluation set correctly. Upgrading from UM to HMM leads to a

significant accuracy increase of 5.16 percent (significance statement based on a paired, two–

sided t-test with a 95% confidence interval). This insight suggests that the consideration of

transitions only among hidden, not among observed states in a linear chain improves

predictive power substantially. Further enhancing the implementation to VitF results in a 0.3

percent accuracy gain. VitB, which out of the algorithms tested exploits the most empiric

evidence, achieves another significant 1.06 increase in accuracy; confirming that backtracing

does improve Viterbi. The standard deviations (0.49 percent at the most), which decrease by

algorithm, suggest that the results are fairly robust across different portions of the data set.

Table 3: Impact of Algorithm on Accuracy

Column1 UM HMM VitF VitB

Average 86.82% 91.99% 92.29% 93.35%

Min 85.99% 91.49% 91.81% 92.89%

Max 87.36% 92.40% 92.65% 93.67%

Std Dev 0.49% 0.36% 0.33% 0.30%

Table 4: Difference between Algorithms

From To Difference Significance

UM HMM 5.16% 0.000**

HMM VitF 0.30% 0.000**

VitF VitB 1.06% 0.000**

Overall, our findings suggest that the baseline algorithm, which only considers emission

probabilities, is a powerful prediction method. The efficiency of this simple approach has

already been recognized by (Atwell, 1987). Moreover we can confirm our hypothesis that

global search outperform local search. However, we showed that the difference between

HMM and VitF is fairly small (0.3 percent) and smaller than all other differences between

algorithms. One possible explanation for this observation is the following chain of thoughts:

HMM weight transition and emission probabilities about equally strong, while Viterbi (both

versions of it) weights transitions higher than emissions. VitF enables very small and

occasionally meaningless transition probabilities – an effect that VitB partially corrects for,

with the tradeoff being that VitB weights transitions even stronger than emissions. VitF

outperforming HMM only slightly suggests that once transitions between hidden states that

are probabilistically linked to a surface pattern are considered, one needs to go the extra mile

13

of searching through a web of probabilistic connections among underlying states back and

forth in order to achieve a substantial gain from global search over local search. Searching

through the space of possible solutions not only into one direction, but into two, has a greater

(in our case about more than three times greater) impact than considering connections

amongst underlying patterns at all.

5.2 Handling Noise

Is it worthwhile cleaning the data from symbols that do not need to be predicted for practical

POS applications? For generating the results shown on the previous page we did not remove

any symbols. These numbers will now serve as our control case. Not considering any token-

tag tuple that contains any element which is not a letter, number, ampersand, dollar symbol,

hyphen, or dash for neither learning nor evaluating leads to the accuracy rates shown in Table

5.

Table 5: Impact of Handling Noise on Accuracy

Dataset Accuracy Measure UM HMM VitF VitB

Clean Average 85.66% 91.35% 91.55% 92.59%

Min 85.15% 91.01% 91.17% 92.38%

Max 86.29% 91.79% 91.99% 92.85%

Std Dev 0.39% 0.24% 0.25% 0.16%

Noisy Average 86.82% 91.99% 92.29% 93.35%

Noisy to Clean Difference in Average -1.16% -0.63% -0.74% -0.76%

Significance of Difference 0.000** 0.000** 0.000** 0.000**

The results show that keeping noise in the data consistently and significantly improves

accuracy rates. This observation contradicts with our hypothesis that learning and evaluating

with clean data would lead to more accurate results than working with noisy data. Why did we

observe the opposite? Looking further into the data revealed that most of the noise signals are

not ambiguous. A comma, for instance, is hardly ever assigned to anything other than comma.

Due to the resulting strong and unambiguous emission probability for noise symbols, we

predict noise with very high accuracy.

What does that imply for modeling? Accuracy rates significantly benefit from data that

contains certain entities classes that occur frequently and that are easier to predict than other

categories because they are less ambiguous (not much to anyone‟s surprise). For boosting

tagging accuracy, keeping noise in the data is beneficial. However, as for any other machine

learning application as well, special attention needs to be paid to cross-validating a model on

new data prior to making generalizations. In order to build POST models that do not overfit to

the prediction of noise by overly adjusting themselves to this idiosyncrasy, noise needs to be

removed from the data. One might argue that real data are likely to contain the sort of noise

that was eliminated for this project. That is true. However, not removing noise prior to

14

learning reduced the empiric evidence that can be gathered on transitions of tags other than

noise while increasing the information learnt about transitions between noise and tags of

interest, thus limiting the predictive capabilities for practical applications where correct

tagging of content is favored over tagging noise.

5.3 Handling Unknowns

Applying a POS tagger to new data can result in two types of errors: misclassification of

words that the model has prior knowledge about (algorithmic failure), and failure to find the

right class label for a word that has not been observed by the model during training (failure in

handling unknowns). Some of the newly encountered words will be correctly resolved by the

algorithm by exploiting transition probabilities, while others will still be misclassified. In

order to figure out if it is worthwhile to resolve unknowns after evaluating the model and

prior to outputting the results we first need to understand the distribution of the two error

types introduced in this section across the algorithms that we test herein.

Table 6: Error Types per Algorithm (clean data)

Error Type UM HMM VitF VitB

Unknowns 28.2% 6.0% 9.8% 1.8%

Algorithmic 71.8% 94.0% 90.2% 98.2%

Table 6 shows that for all algorithms, the vast majority of errors is due to algorithmic failures.

The baseline model by far has the greatest potential for benefitting from unknown resolution.

For HMM and VitF, an accuracy increase of up to 6 and 9.8 percent, respectively, due to

handling unknowns correctly is theoretically possible. For VitB we cannot expect a major

accuracy improvement from unknown handling – the algorithm accomplishes most of the

unknown handling by itself; the remaining errors due to unknowns might be data-artifacts.

This insight suggests that the more an automated solution exploits empiric evidence the less it

can be further improved by man-made post-processing strategies. For machinery that makes

decisions on its own by strongly relying on its computational power and by trying to resolve

uncertainties rather than admitting them careful and well-informed engine construction is

crucial since posteriori interventions cannot improve functionality. For UM, HMM and VitB,

all of which exploit less empiric evidence than VitB does, a combination of an initial

automated solution with hand-crafted heuristics has a potential for outperforming fully-

automated approaches. Such algorithms that are less decisive and declare more uncertainties

allow for posterior intervention. It is the engineer in the first place who determines how much

uncertainly shall be disclosed by the engine (as for instance described in section 2 where we

reason about the minimum probability for transitions and missions for the case of unknowns).

 In order to develop post-processing rules for unknown handling in a data driven fashion we

started by collecting the outputs from the ten cross-fold validations that we ran on clean data.

From these data we parsed out all cases where any of the four algorithms assigned “unknown”

to a word after trying to solve unknowns algorithmically and prior to making a decision for

15

the best tag for this word. This resulted in 19,202 unique words that were mistagged as

unknown. We found that no algorithm made any mistake on unknowns that the UM would not

make. Therefore we further worked with the set of unknowns that the UM detected. Next we

systematically examined the unknown words for regularities in their association with certain

POS. Table 7 provides details on this process. The insights gained from this analyzed were

formalized and implemented as the following orthographic rules for tagging unknown words:

1. Words containing a digit are tagged as numbers (CD).

2. Capitalized words ending with –s are tagged as proper plural nouns (NNPS).

3. Capitalized words are tagged as proper singular nouns (NNP).

4. Words ending with -ant, -able, -al, -ory, -ent, -ful, -ian, -ible, -ic, -ish, -less, -oid, -ory,

or -ous are tagged as adjectives (JJ).

5. Words ending with –s are tagged as common plural nouns (NNS).

6. Words ending with -ing are tagged as present participle or gerund verbs (VBG).

7. Words ending with –ed are tagged as past participle verbs (VBN).

8. Words ending with -ly are tagged as adverbs (RB).

9. Words ending with –ize are tagged as verbs (VB).

10. Words ending with -est are tagged as adjective, superlative (JJS).

11. Words ending with -er are tagged as adjective, comparative (JJR).

12. All remaining unknowns are labeled as singular or mass noun (NN).

Next we tested these rules in the order presented above. After evaluating a rule (let‟s call this

rule A) we kept rule A applied for evaluating the subsequent rule (rule B for now) if and only

if A caused more harm than damage. Testing the impact of unknown handling on clean data

led to the results shown in Table 7 and 8.

Table 7: Rule Evaluation (on clean data)

16

ID If token is

unknown

Then Other

rules

applied

Total Algorith-

mic

Unknown Tokens

impacted

by rule

Success Failure

False

Positives

Failure

False

Negative

s1 contains digi t CD 369 62.6% 37.4% 141 126 15 12

2 capita l i zed

and ends with

-s

NNPS 1 107 43.9% 56.1% 264 54 210 6

3 capita l i zed NNP 1 2217 29.1% 70.9% 2016 1561 455 10

4 ends with any

of *

JJ 1,3 1550 67.9% 32.1% 546 379 167 119

5 ends with -s NNS 1,3,4 678 48.4% 51.6% 431 334 97 16

6 ends with -ing VBG 1,3-5 280 67.1% 32.9% 119 92 27 0

7 ends with -ed VBN 1,3-6 789 89.4% 10.6% 171 83 88 1

8 ends with -ly RB 1,3-7 867 93.0% 7.0% 63 60 3 1

9 ends with -i ze VB 1,3-8 1247 96.5% 3.5% 5 5 0 39

10 ends with -est JJS 1,3-9 51 84.3% 15.7% 9 8 1 0

11 ends with -er JJR 1,3-10 133 94.7% 5.3% 53 7 46 0

12 remainder NN 1,3-10 3207 86.8% 13.2% 599 422 177 0

* -ant, -able, -a l , -ory, -ent, -ful , -ian, -ible, -ic, -i sh, -less , -oid, -ory, -ous

** cases in which fa i lure exceeds success are marked with gray background

Rules Impact of applying rule(s)Types of errors in detecting tag

Table 8: Rule Evaluation (on clean data)

ID If token is

unknown

Then Other

rules

applied

UM HMM VitF VitB UM HMM VitF VitB

0 and nothing

else happens

error 4100 511 892 140 NA NA NA NA

1 contains digi t CD 3959 508 889 140 0.117% 0.003% 0.003% 0.000%

2 capita l i zed and

ends with -s

NNPS 1 3695 445 797 130 0.050% 0.001% 0.001% 0.000%

3 capita l i zed NNP 1 1943 126 193 3 1.397% 0.154% 0.401% 0.071%

4 ends with any

of *

JJ 1,3 1397 123 149 3 0.351% 0.003% 0.016% 0.000%

5 ends with -s NNS 1,3,4 966 93 101 3 0.310% 0.003% 0.013% 0.000%

6 ends with -ing VBG 1,3-5 847 76 84 3 0.085% 0.013% 0.013% 0.000%

7 ends with -ed VBN 1,3-6 676 25 29 1 0.077% 0.009% 0.014% 0.000%

8 ends with -ly RB 1,3-7 613 12 16 0 0.056% 0.011% 0.011% 0.001%

9 ends with -i ze VB 1,3-8 608 12 16 0 0.005% 0.000% 0.000% 0.000%

10 ends with -est JJS 1,3-9 599 12 16 0 0.007% 0.000% 0.000% 0.000%

11 ends with -er JJR 1,3-10 546 9 11 0 0.006% 0.000% 0.000% 0.000%

12 remainder NN 1,3-10 0 0 0 0 0.385% 0.000% 0.003% 0.000%

* cases which resulted in no accuracy ga in are marked with dark gray background, cases which resulted in

accuracy ga ins greater than zero and smal ler than 0.05% are marked with l ight gray background

Rules Number of unknowns Change in accuracy from previous rule(s)*

We decided to keep only those rules that caused more success (correct resolution due to

application of rule(s) as shown in 3
rd

 column from the left in Table 7) than harm (false

positives and negatives as shown in last two columns in Table 7) in our test scenario. This

policy led to the following modification of our rule set:

- Dropping the rule that capitalized words ending with –s get tagged as proper plural

nouns. 60 percent of the false negatives that resulted from applying this rule turned out

17

to be proper singular nouns, which have a high probability for getting solved with the

subsequent rule, and 30 percent were common plural nouns.

- Dropping the rule that words ending with -er are tagged as comparative adjectives.

This rule correctly resolved all of the remaining seven comparative adjectives, but also

converted 42 tags that belonged into other tag classes into comparative adjectives.

- Converting words ending with –ed caused slightly more misclassifications than correct

resolutions. However, this rule tabbed into the past tense verb, and since we plan on

aggregating all different verb classes into one general verb class later on we decided to

keep this rule.

We assume the final set of rules to be not just corpus-specific, but of general applicability for

POST. Our results (Table 9) show that the rules which we designed and implemented are

capable of resolving between 5.6 and 10.6 percent of the unknowns. But only for algorithms

that effectively allow for hybrid strategies (UM, HMM, VitF), unknown handling via post-

processing rules leads to significant accuracy increases (0.3 to 3 percent), while for algorithms

that maxes out on unknown handling algorithmically (VitB), only a small and insignificant

increase was achieved. Even after UM, HMM and VitB significantly increased in accuracy,

VitB still outperforms every single one of them.

Table 9: Impact of Unknown Handling on Tagging Accuracy

Data Measure UM HMM VitF VitB

Handle Unknowns Average 88.65% 91.69% 92.14% 92.75%

Min 88.26% 91.21% 91.73% 92.37%

Max 88.86% 92.24% 92.56% 93.18%

Std Dev 0.18% 0.32% 0.28% 0.26%

Percent of Unknowns

correctly resolved
10.61% 5.59% 6.03% 9.32%

Clean to Difference in Average 2.99% 0.33% 0.59% 0.16%

Handle Unknowns Significance of Difference 0.000** 0.018** 0.000** 0.113

In summary, data-driven derivation of post-processing rules as well as rule testing is a time-

consuming process that requires the allocation of trained human resources. In summary, our

findings suggest that if one does not make such an investment, spending resources instead on

building algorithms that handle uncertainties on their own without confessing to the end-user

that they behave in this way will lead to the even better performance.

5.4 Aggregation of Hidden States

The tests on tag aggregation were run on clean data in which unknowns are handled as

described in the previous section. Consolidating the tag classes as defined in PTB (total of 36)

into fewer (12), user-defined classes that are tailored to the end-user‟s analytical needs led

across all algorithms tested to the highest accuracy rates and the highest gain in accuracy

across the independent variables tested herein (Table 10, Figures 3 and 4).

18

Table 10: Accuracy Rates per Algorithm and Independent Variable

Independent Variables applied UM HMM VitF VitB

Baseline 86.82% 91.99% 92.29% 93.35%

Clean Data (CD) 85.66% 91.35% 91.55% 92.59%

CD + Handle Unknowns (HU) 88.65% 91.69% 92.14% 92.75%

CD + HU + Aggregate Tag Classes 94.30% 93.07% 94.07% 94.25%

Table 11: Difference between Algorithms (clean data, unknowns handled, aggregation applied)

From To Difference Significance

UM HMM 1.06% 0.000**

UM VitB 1.04% 0.330

HMM VitF 0.61% 0.000**

VitF VitB 0.18% 0.004**

When the POST model is learnt and evaluated on clean data, only aggregated tag classes are

used, and unknown handling is applied during evaluation, the simple UM model outperforms

all other algorithms. The difference between UM and VitB, however, is not statistically

significant. Therefore, we decided to use the latter for AutoMap.

Figure 2: Impact of Independent Variable on POST Accuracy

Figure 3: Impact Algorithm on POST Accuracy

85%

87%

89%

91%

93%

95%

Baseline Clean Data (CD) CD + Handle
Unknowns (HU)

CD + HU +
Aggregate Tag

Classes

P
O

ST
 A

cc
u

ra
cy

Independent Variable

UM HMM VitF VitB

19

In summary, our results on aggregation suggest that an informed, needs-driven and user-

defined consolidation of available choices can lead to performance improvements that

consistently across various algorithm of different complexity can have a greater positive

impact than eliminating prominent error sources such as noise and unknown data. We

therefore emphasize the design of analytical solutions that enable end-users to interact with

tools or human beings on the developmental side of solutions in such a way that customer

needs can be elicited and considered for the sake of performance improvements.

6. Integration of Parts of Speech Tagging into AutoMap

Based on the insights gained by testing the impact of various independent variables on the

accuracy of four different POST algorithms (the difference between the algorithms

themselves being one of the variables) we decided to build a POS tagger that:

Is based on th Viterbi algorithm with backtracing implementation.

Is enhanced it with unknown-handling heuristics.

Uses the aggregated tag set shown in Table 2.

We implemented and integrated this tagger into AutoMap as follows: First, we trained the

POS model on the full PTB set (not only 90 percent of it), output the emission and transition

matrices as data files, and added these data to AutoMap. When a user clicks the “Tag texts”

button in the AutoMap GUI or activates the “Tag Texts” command in the batch mode version,

first the untagged texts will be split into sentences by using a sentence splitter (Piao, n.d.).

Given the data per sentence, the initialization vector will be constructed. Using the

initialization vector as well as the states as represented in the emission and transition matrices

85%

87%

89%

91%

93%

95%

UM HMM VitF VitB

P
O

ST
 A

cc
u

ra
cy

Algorithm

Baseline Clean Data (CD)

CD + Handle Unknowns (HU) CD + HU + Aggregate Tag Classes

20

a trellis will be built for every sentence in the data. These trellises are used to find a complete

and the most likely sequence of POS per words per sentence. Users can use the POS tagger in

the GUI or batch mode version of AutoMap in three ways:

Stand-alone feature: when the “Tag Texts” option is selected, AutoMap performs POST and

displays each word along with the POS that the tagger predicted for it. The user can store the

POS annotated corpus. For the sample text shown in Figure 4, AutoMap generated the POS

annotated text shown in Figure 5.

Output a table (coma separated values format) that lists all words in a corpus in the first

column and the respective POS that the model has identified for that word in the following

column. If more than one POS was predicted for a word, the word-tag tuples will be placed in

multiple rows. Tables 12 and 13 show that list for the sample text given in Figure 4.

Figure 4: Raw text loaded into AutoMap

Figure 5: Integration of POS Tagger as stand-alone routine in AutoMap

21

22

Table 12: POS per Word (part1) Table 13: POS per Word (part2)

Word Tag Frequency Word Tag Frequency

. . 4 needs verb 1

a irr 4 of irr 5

about irr 1 on irr 1

accuracy noun 1 one num 1

and irr 2 other adj 2

appear verb 1 performance noun 1

are verb 1 pos modal 1

aspects noun 1 precise adj 1

assign verb 1 processing verb 1

associated verb 1 resulting verb 1

be verb 1 set verb 1

beings noun 1 significantly irr 1

benefit verb 1 single adj 1

best adj 1 some irr 1

building noun 1 syntactic adj 1

can modal 2 tag noun 1

category noun 1 tagger irr 1

context noun 1 taggers verb 1

data noun 1 tags noun 1

decisions noun 1 tasks noun 1

depending verb 1 text noun 1

engine noun 1 that irr 1

every irr 1 the irr 4

extraction irr 1 they ana 1

from irr 1 to irr 3

human adj 1 unambiguously irr 1

impact noun 1 used verb 1

in irr 2 variety noun 1

information noun 1 when irr 1

knowledge noun 1 which irr 1

language noun 1 while irr 1

make verb 1 widely irr 1

many adj 1 with irr 1

match verb 1 word noun 1

multiple adj 1 words noun 3

natural adj 1

Besides supporting a variety of NLP and IE routines, AutoMap‟s main purpose is to facilitate

content analysis as well as the extraction of one- or multi-modal relational data from texts

(Diesner & Carley, 2004, 2006; McConville et al., 2008). When relational data is extracted

with AutoMap, outputs can be stored as DyNetML files (DyNetML is an XML derivate

designed for graph representation (Carley, Diesner, Reminga, & Tsvetovat, 2007). DyNetML

23

files represent one or multiple graphs that comprise vertices and edges. The nodes and edges

can hold attributes. POS are one possible node attribute. ORA (Carley et al., 2007), a software

for relational data analysis, can read DyNetML files and run several reports that consider POS

in the computation of network analytic measures.

Internally, AutoMap uses POST as one out of multiple decision support features for:

1. Named Entities Extraction, which identifies relevant types of information that are

referred to by a name, such as people, organizations, and locations.

2. Anaphora Resolution, which converts personal pronouns into the actual social entities

that those pronouns refer to.

How can users exploit POST for text analysis projects? We envision a variety of potential

usages:

1. Data reduction: Deleting non-content bearing words from texts: Though it ultimately

depends on the user and application domain what the “non-content” set of words

entails, such concepts often belong to one of categories that we aggregated in the

NOISE class. Users can output the word-POS tuple table and add the words that are

classified as IRR to a delete list. When applying a delete list, AutoMap searches the

texts that are currently loaded for the words specified in the delete list and removes

any matches by either dropping them completely or inserting a placeholder at the

position where a word was removed (this choice is made by the user).

2. Data reduction: In order to remove noise that does not occur in word form, words

being associated with the SYM can also be added to the delete list.

3. Named Entity Extraction: the AGENT class collects instances of individual agents

from the user‟s data, and the ORG class comprises instances of organizations or

mentions of multiple people. Retrieving these entities and performing network text

analysis on them in AutoMap can help people to explore the social network(s)

represented in their data. Since POST operates on a word-by-word basis, the

identification of agents or organizations that occur as N-grams (e.g. Henry Ford or

Occupational Safety and Health Administration) the user would need to parse the texts

after POST for sequences in which the agent or organization tag are collocated.

4. Identification of social structure: One application of AutoMap is the approximation of

the organizational structure that is represented in text data. Revealing and further

analyzing such structure helps people in going beyond the identification of the social

network configuration by also answering questions like: Who is located where, and

what people or groups have access to what resources, tasks, and knowledge? Further

analysis such information helps people to understand the benefits or risks that result

for an organization from the revealed structure. For such projects, the words in the

VERB class could serve as an initial list of events or tasks, the list of nouns can be

screened for resources, and the MODAL group might serve as node attributes.

24

5. Identification of node attributes: AutoMap supports the extraction of two types of

relational data: one-mode networks (in which all nodes are of the same type) and

multi-mode networks (where nodes can be associated with different node-classes). By

default, all nodes in a one-mode network belong to the node class knowledge, while in

multi-mode networks, nodes can belong to one or multiple of the classes agent,

organization, task/event, resource, knowledge, location, and time. One-mode network

extraction has been used to reveal mental models of (groups of) people. Mental

models are considered to represent the reality that people have in their minds and use

to make sense of their surroundings, or the cognitive constructs that reflect people‟s

knowledge and information about a certain topic. Multi-mode network extraction

serves the exploration of network configuration as described in the previous point.

People are not bound to those categories, but can

use their own ontologies or taxonomies in AutoMap (Diesner & Carley, 2008).

Whether using the default or self-defined node classification schemata, and whether

extracting one- or multi-mode networks, people can also extract attributes on nodes.

The ADJ class might be an appropriate candidate for providing suggestions for words

that qualify as node attributes.

7. Limitations and Conclusions

We have shown how design decisions about computational solutions for common NLP tasks,

here POST, can significantly impact the behavior of the resulting engine. The empirical

comparison of four POS algorithms, which all are integral parts of the Viterbi algorithm,

confirmed our assumption that an increase in the empirical evidence that an algorithm

identifies and exploits causes increases in accuracy rates. Therefore, the upgrade from local

search to global search leads to improvements in accuracy at the expense of higher

computational complexity. This investment pays off most if the search space is traversed

through for the best solution not only in a forward fashion, but with a bidirectional search.

Removing noise from the training data prior to learning a model leads to significant decreases

in accuracy rates while the amount and numerical stability of the learnt probabilities for the

tags of interest increase. We argue that the generalizability of the model benefits from the

decision to remove noise.

Across all algorithms tested, the majority of errors was caused by algorithmic failures, while a

lower portion was due to not labeling words newly encountered in the evaluation data. People

who build POS taggers can impact the ratio of algorithmic errors to errors caused by seeing

new words during evaluation only slightly, but can also develop post-processing rules for

handling new words. The process of constructing and testing unknown handling rules is fairly

cumbersome. The more an algorithm is designed to admit uncertainties rather than resolving

them on its own the more hybrid strategies of initial algorithmic solutions plus manually

constructed post-processing heuristics can improve accuracy.

25

Across all independent variables tested in this project we observed the strongest performance

improvement when the tag set was aggregated into less categories that are tailored towards

our needs. We therefore advocate the development of models and tools that allow end-users to

specify or participate in the consolidation of categories out of a predefined pool of choices

according to their needs.

We conclude that error rates reported on POS taggers and obtained by users who work with

such tools highly depend on the decisions made during the design and implementation stage

of a tagger. Therefore, the variables that significantly impact a tagger‟s performance need to

be identified and their effect on the tagger needs to be measured and reported so that everyone

– developers and users – can learn about the sensitivity of the engine.

Several limitations apply. First, model training and evaluation were performed by using

separate portions of one data set. Even though this corpus contains more than a million data

points, it still reflects a certain time period, style (journalistic writing) and range of domains

(news paper articles). Applying the model to data that differs in these respects is likely to

result in accuracy rates lower than the ones achieved herein. Second, we did not test MM of a

higher order. For data sets with lengthy sentences, e.g. academic writing, or for data in that N-

grams of size larger than size two are crucial and occur often, using a MM of a higher order

might further improve tagging accuracy while also increasing computational complexity.

Finally, all algorithms tested are stochastic taggers, so that a comparison to accuracy rates

achieved with rule- or transformation-based systems could be valuable.

The POST algorithms that we implemented and tested for this project performed reasonably

well on tagging texts unseen during model training. What does reasonably well mean? If for

instance our tagger (trained on clean data, performing unknown handling, not using

aggregated tag set) was used to tag a 20 word sentence, it would mislabeled two to three

(precisely 2.3 words) words when using UM, and one to two words when using HMM (1.7),

VitF (1.6) or VitB (1.5). If beyond the given configuration above the model was also trained

on and using the aggregated tag set, it would mislabel about one (1.1 for UM, 1.4 for HMM,

1.2 for VitF and VitB) word in a 20-word sentence. Using the same tagger configuration, the

probability that all words in 20 word sentence would get tagged correctly is 31% for UM and

VitB, 24% for HMM, and 29% for VitF. Overall, our results do not match, but closely

approximate the best accuracy rates reported for HMM- and Viterbi-based taggers (96% to

97%), as well as for Baseline taggers (90% to 91%) (Jurafsky & Martin, 2000).

References

Arguello, J., & Rose, C. P. (2006). Museli: A Multi-source Evidence Integration Approach to Topic

Segmentation of Spontaneous Dialogue. Proceedings of the North American Chapter of the Association

for Computational Linguistics (short paper).

Atwell, E. (1987). Constituent-likelihood grammar. In R. Garside, G. Sampson & G. Leech (Eds.), The

computational analysis of English: a corpus-based approach. London: Longman.

26

Baum, L. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic

functions of a Markov process. Inequalities, 3, 1-8.

Bikel, D., M. , Schwartz, R., & Weischedel, R., M. . (1999). An Algorithm that Learns What„s in a Name,

Machine Learning (Vol. 34, pp. 211-231): Kluwer Academic Publishers.

Carley, K. M., Diesner, J., Reminga, J., & Tsvetovat, M. (2007). Toward an interoperable dynamic network

analysis toolkit. Decision Support Systems. Special Issue on Cyberinfrastructure for Homeland

Security, 43(4), 1324-1347.

Church, K. (1988). A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. Paper presented

at the 2nd Conference on Applied Natural Language Processing, Austin, TX.

DeRose, S. (1988). Grammatical category disambiguation by statistical optimization. Computational Linguistics,

14, 31-39.

Diesner, J., & Carley, K. M. (2004). AutoMap1.2 - Extract, analyze, represent, and compare mental models from

texts: Carnegie Mellon University, School of Computer Science, Institute for Software Research

International, Technical Report CMU-ISRI-04-100o. Document Number)

Diesner, J., & Carley, K. M. (2006). Revealing Social Structure from Texts: Meta-Matrix Text Analysis as a

novel method for Network Text Analysis. In V. K. Narayanan & D. J. Armstrong (Eds.), Causal

Mapping for Information Systems and Technology Research: Approaches, Advances, and Illustrations

(pp. 81-108). Harrisburg, PA: Idea Group Publishing.

Diesner, J., & Carley, K. M. (2008). Conditional Random Fields for Entity Extraction and Ontological Text

Coding. Journal of Computational and Mathematical Organization Theory.

Dietterich, T. G. (2002). Machine Learning for Sequential Data: A Review. Paper presented at the Joint IAPR

International Workshops SSPR 2002 and SPR 2002, August 6-9, 2002,, Windsor, Ontario, Canada.

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech Recognition: Prentice Hall PTR.

Klein, D., & Manning, C. D. (2002). Conditional structure versus conditional Estimation in NLP models. Paper

presented at the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP-02),

Philadelphia, USA.

Krovetz, B. (1995). Word sense disambiguation for large text databases. University of Massachusetts, Amherst.

Kupiec, J. (1992). Robust part-of-speech tagging using a hidden Markov model. Computer Speech and

Language, 6, 225-242.

Lappin, S., & Leass, H. J. (1994). An algorithm for pronominal anaphora resolution. Comput. Linguist., 20(4),

535-561.

Manning, C., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge, MA:

MIT Press.

McConville, E., Diesner, J., & Carley, K. M. (2008). Software demonstration of AutoMap. Paper presented at the

XXVIII Sunbelt Social Network Conference.

Mitchell, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a Large Annotated Corpus of English:

The Penn Treebank Computational Linguistics, 19(2), 313-330.

Mitchell, P. M., Santorini, B., Marcinkiewicz, M. A., & Taylor, A. (1999). Advances Treebank 3: Linguistic

Data Consortium, Philadelphiao. Document Number)

Piao, S. S. (n.d.). English sentence breaker. http://text0.mib.man.ac.uk:8080/scottpiao/sent_detector.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130−137.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.

Proc. IEEE 77, 2, 257-285.

Stolz, W. S., Tannenbaum, P. H., & Carstensen, F. V. (1965). Stochastic Approach to the Grammatical Coding

of English. Communications of the ACM, 8, 399–405.

Viterbi, A. J. (1967). Error bounds for convolutional codes and asymptotically optimal decoding algorithm.

IEEE Transactions on Information Theory, 13, 260-269.

http://text0.mib.man.ac.uk:8080/scottpiao/sent_detector

27

Weischedel, R., Meter, M., Schwartz, R., Ramshaw, L., & Palmucci, J. (1993). Coping with ambiguity and

unknown words through probabilistic models. Computational Linguistics, 19(2), 359-382.

28

Appendix: PTB Tagset

PTB Tag Meaning Aggregated Tag Instances in PTB

NN noun, common, s ingular or mass NOUN 161397

IN prepos i tion or conjunction, subordinating IRR 136714

DT determiner IRR 116454

JJ adjective or numeral , ordina l ADJ 76586

NNP noun, proper, s ingular AGENT 62020

NNS noun, common, plura l NOUN 55912

RB adverb IRR 52037

PRP pronoun, personal ANA 47303

VBD verb, past tense VERB 46684

CC conjunction, coordinating IRR 38097

VB verb, base form VERB 36887

VBN verb, past participle VERB 29435

TO to as prepos i tion or infini tive marker IRR 26135

VBZ verb, present tense, 3rd person s ingular VERB 21627

VBG verb, present participle or gerund VERB 17255

PRP$ pronoun, possess ive IRR 16918

CD numeral , cardina l NUM 15178

VBP verb, present tense, not 3rd person s ingular VERB 14371

MD modal auxi l iary MODAL 14115

: : SYM 10917

'' '' SYM 9201

`` `` SYM 8838

POS genitive marker POS 5247

WDT WH-determiner IRR 4990

WP WH-pronoun IRR 4732

WRB Wh-adverb IRR 4625

JJR adjective, comparative ADJ 2914

)) SYM 2506

((SYM 2477

EX exis tentia l there IRR 2224

NNPS noun, proper, plura l ORG 1958

RBR adverb, comparative IRR 1901

JJS adjective, superlative ADJ 1743

RP particle IRR 1630

SYM symbol SYM 1268

UH interjection IRR 883

FW foreign word FW 803

RBS adverb, superlative IRR 784

PDT pre-determiner IRR 728

$ $ SYM 579

LS l is t i tem marker SYM 446

WP$ WH-pronoun, possess ive IRR 251

