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Abstract

Given the ever-growing prevalence of online social services, leveraging massive datasets
has become an increasingly important challenge for businesses and end-users alike. Online
services capture a wealth of information about user behavior and platform interactions,
such as who-follows-whom relationships in social networks and who-rates-what-and-when
relationships in e-commerce networks. Since many of these services rely on data-driven
algorithms to recommend content to their users, authenticity of user behavior is paramount
to success. But given anonymity on the internet, how do we know which users and actions
are real or not? This thesis focuses on this problem and introduces new techniques to
e�ectively and e�ciently discern anomalous and fraudulent behavior in online social graphs.
Speci�cally, we work on three thrusts: plain graphs, dynamic graphs and rich graphs.

Firstly, we focus on plain graphs, in which only static connectivity information is known.
We detail several proposed algorithms spanning the topics of spectral fraud detection in a
single graph, blame attribution between graph snapshots, and structurally diverse graph
summarization. Our fBox algorithm in [SBGF14] identi�es link fraudsters in social networks
with over 93% precision and identi�es hundreds of thousands of fake accounts, many of
which were yet unsuspended.

Next, we broaden our scope to dynamic graphs, in which we leverage connectivity
information over a span of time. Many online interactions are timestamped, and thus
time and interarrival time between user actions are powerful features which can be used
to discern abnormal behavior. We describe multiple relevant works which describe how
to identify and summarize anomalous temporal graph structures, model interarrival time
patterns in user queries to �nd anomalous search behavior, and identify “group” anomalies
comprising of users acting in lockstep. Our FLOCK approach in [Sha17] is the �rst to tackle
the viewbot problem on livestreaming platforms, and �nds astroturfed broadcasts and views
with over 90% precision and near-perfect recall.

Lastly, we expand our reach to rich graphs, in which connectivity information is supple-
mented by other attributes, such as time, rating, number of messages sent, etc. Rich graphs
are common in practice, as online services routinely track many aspects of user behavior to
gain multifaceted insights. Multimodal views of data are useful in identifying various types
of anomalies in di�erent subspaces. To this end, we propose works which focus on ranking
anomalies in edge-attributed graphs, and characterizing multimodality of online link fraud.
Our EdgeCentric approach in [SBH+16] uncovers rating patterns in e-commerce datasets
and pinpoints fake reviewers with 87% precision at Flipkart.

The techniques described in this thesis span various disciplines including data mining,
machine learning, network and social sciences and information theory and are practically
applicable to a number of real-world fraud and general anomaly detection scenarios. They are
carefully designed to attain high precision and recall in practice and scale to massive datasets,
including social networks, telecommunication networks, e-commerce and collaboration
networks with up to millions of nodes and billions of edges.
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Chapter 1

Introduction

1.1 Thesis Overview and Contributions

Mining large datasets has become an especially notable focal point in computer science research
in recent years due to the ever-increasing scale and complexity of online systems – an estimated
2.5 exabytes of new data is generated every day1 from commercial transactions, social networks,
system log data, electronic sensors and more. This heavily motivates the development of e�ec-
tive and scalable approaches for extracting patterns from large data sources. In reality, many
data sources can be construed as graphs, which represent interactions between entities such as
humans or computers. Graphs enable modelling of complex phenomena including interactions
between users (who-follows-whom on Twitter), product impressions (who-rates-what on Ama-
zon) and email tra�c �ow (who-emails-whom in a corporate network). While graph analysis
can give us insights on common interaction patterns such as how users follow each other on a
social network, or how they rate and review products on an e-commerce network, it can also
be a powerful tool for identifying uncommon anomalous behavior including fake or fraudulent
nodes and links used to arti�cially boost popularity, sockpuppets aiming to spread rumors and
misinformation, and other types of disingenuous cyberattackers. These attackers typically hide
behind the guise of anonymity in order to skew public perception of entities for monetary or
political bene�t. Discerning them in a time-e�ective manner and successfully preventing and
mitigating their actions is therefore an important task. However, there are many associated
challenges with this task which involve usefully leveraging the right kinds of information: How
can we identify anomalous behavior when only structural graph connectivity is known? How
can we additionally leverage temporal information for the same? Furthermore, how can we
also integrate more complex and multifaceted features to enable a holistic approach to anomaly
detection in graphs? This thesis tackles such problems. Our main thesis statement is as follows:

1https://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
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Modeling complex facets of social graph interactions such as interconnectivity, temporality
and contextual information can enhance our ability to discern malicious and otherwise
abnormal behavior online.

In this thesis, we develop new means for anomaly detection in graphs in three major thrusts:
mining plain graphs, dynamic graphs and rich graphs. Each of these tasks involves leveraging
di�erent facets of information which re�ect various components of user behavior, such as who
they choose to connect with on a social network, how often they make connections and take
actions, and which (if any) contextually abnormal features they exhibit.

1.1.1 Plain Graphs

In some cases, practitioners and data scientists are equipped with only a plain graph, which
describes structural connectivity information between objects in a static snapshot, and must
use this limited amount of information to �nd anomalous behavior. This task is common in
industrial datasets made available to academics (in which rich features and personally identi�able
information are often stripped for privacy or security reasons), as well as in certain types of
graphs which inherently represent simple phenomena or are the result of limited observational
power. Moreover, plain graph analysis provides the �rst stepping stone for more sophisticated
analysis on more complex graphs. In this thesis, we detail a number of approaches which can
intelligently utilize this sparse information to identify both abnormal individual and group
connectivity patterns.

Link fraud, in which botnet operators create and use hordes of sockpuppet accounts to in�ate
customer popularity (Twitter follows, Facebook page-likes, etc.) is one of the most damaging
types of online fraud, due to its ability to skew public perception and hinder recommendation
algorithms. Traditional approaches to link fraud detection aim to �nd large synchronized
groups of malicious behavior through matrix factorization algorithms, like Singular Value
Decomposition, applied to the social graph. In Chapter 3, we theoretically and empirically
demonstrate the limits of such algorithms in detecting stealthy attacks that manifest below the
factorization rank (see Figure 1.1a). We further propose the fBox algorithm which �nds many
previously uncaught link fraudsters on Twitter. Figures 1.1b and 1.1c give a visual depiction of
fBox’s reconstruction error plot and one example fraudulent account that was found by our
approach.

Often times, abnormal and suspicious behavior is di�cult to detect within a single graph
snapshot. In such cases, a commonly encountered problem is identifying the individual culprits
responsible for drastic change between two snapshots: for example, failure points given two
snapshots of a computer network, or users with abnormal e-mail activity given two snapshots of
an e-mail network. In Chapter 4, we introduce DeltaCon-Attr, a fast and e�ective approach for
attributing blame to nodes and edges. DeltaCon-Attr measures a node’s culpability according
to the change in in�uence with respect to neighboring nodes and thus identi�es culprits that
match with human intuition.

Complementing the previous chapters which focus on individual anomalies, Chapter 5 shifts fo-
cus to identifying interesting group-wise structures in a plain graph by means of summarization.
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(a) Traditional SVD provably
misses fraud attacks below a
certain size

(b) fBox’s Spectral Reconstruction Map
catches suspicious fraudsters that SVD
misses on Twitter

(c) Real Twitter pro�le of
a link-fraudster which fBox
catches

Figure 1.1: fBox catches stealthy link fraudsters. (a) shows the minimum scale of “dense-
subgraph” fraud attacks that traditional methods like SVD can catch based on model rank –
undetectable attack sizes are shaded in red. Notice that even at a considerable factorization
rank k = 25, SVD still misses a 960× 960 attack. (b) shows how fBox separates stealthy link
fraudsters (circled red) from honest users using reconstruction error. (c) shows spammy Tweets
from one such previously uncaught fraudster who had been operating for years, unbeknownst
to Twitter.

Our proposed ConDeNSe approach harnesses the power of traditional graph clustering and de-
composition approaches paired with an information theoretic paradigm, and e�ciently produces
concise, compressed summaries of large graphs using structures interesting to practitioners
(such as cliques, stars, bipartite cores) which often represent unusual node interactions.

Contributions

• Detecting Stealthy Link-fraud Attacks: In Chapter 3, we characterize the limits of tra-
ditional fraud detection approaches and propose the complementary fBox algorithm. Our
algorithm attains 93% precision on Twitter users and �nds tens of thousands of previously
undetected suspicious accounts.

• Cross-Graph Blame Attribution: In Chapter 4, we introduce DeltaCon-Attr for
pinpointing nodes and edges most responsible for change between graph snapshots. Our
blame attribution approach obeys intuitive principles which competitors violate and
demonstrates practical e�ectiveness on real e-mail network data.

• Improved Summarization for Large Graphs: In Chapter 5, we propose the ConDeNSe
framework for summarizing static graphs, which creates approximate, concise and non-
redundant descriptions of large graphs. ConDeNSe produces only 10% as many structures
as competitors with a 30-50% lower compression rate.

Impact

• fBox (Chapter 3) was featured in keynotes at WWW 2014, SIAM CSE 2015, ICML 2016,
and HotSoS 2016.
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• fBox (Chapter 3) was included in the Multimedia Databases and Data Mining (15-826)
course at Carnegie Mellon University and at a KDD 2015 tutorial on Graph-Based User
Behavior Modeling.

1.1.2 Dynamic Graphs

In domains in which graph objects represent users, such as in e-commerce and social networks,
interactions are often represented as a dynamic graph which changes over time. This stems from
the reality that humans themselves behave di�erently over time. For example, a who-rates-what
e-commerce graph typically grows over time, as users purchase and rate more products. Similarly,
a social network also changes over time as users follow and unfollow each other depending on
changing interests. Temporal information provides a powerful signal for discerning between
authentic and inauthentic user behavior (for example, a user who rates products consistently 5
seconds apart is likely not behaving normally, and is likely scripted). Our work provides insights
into modeling and incorporating dynamism in graphs to identify abnormal behavior.

In Chapter 6, we study a similar graph summarization problem as in Chapter 5, but in a dynamic
context. Understanding and decomposing the general behavioral makeup of dynamic graphs
is central to both graph understanding and more complex tasks such as individual link predic-
tion and group behavior forecasting. We propose TimeCrunch, an information theoretically
grounded approach to concisely summarize large dynamic graphs using a lexicon of common,
interesting temporal structures like bursty cliques, constant stars, etc. TimeCrunch is able to
extract coherent temporal structures which match human intuition across a variety of real
datasets and can also be used for graph compression. Figure 1.2 shows several such examples
across a variety of real datasets.

Given that temporal recurrence patterns are themselves complex and poorly understood, we
narrow our focus in the next two chapters to primarily leveraging temporal behavior with
limited focus on connectivity.

Search queries are one of the most common online actions taken by users everyday. The
conventional assumption for queries is that they are submitted independently and thus follow a
constant rate as in a Poisson process. In Chapter 7, we argue that this assumption is false, and
show that users’ query interarrival times are in fact bimodal, corresponding to in-session and
take-o� behaviors re�ecting whether the user is in the midst of a search session, or just starting
one. We propose the Camel-Log distribution to model bimodal user interarrival times and show
that it achieves better model �t than competitors. Furthermore, we propose Meta-Click to jointly
model Camel-Log parameters and demonstrate how it can be used to detect anomalous querying
behavior and search bots.

Lastly, we shift our focus to link fraud in the livestreaming domain. Livestreaming platforms
provide channels for streamers to freely broadcast their content to viewers across the world, in-
centivizing popularity and high viewership. Unfortunately, this incentive drives the viewbotting
business, in which bot providers give streamers access to tools to generate fake views to their
own channels. In Chapter 8, we provide the �rst characterization of the viewbotting problem in
livestreaming, and propose the multi-level FLOCK algorithm for identifying fake views. FLOCK
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(a) 40 users of Yahoo! Messen-
ger forming a constant near clique
with unusually high 55% density,
over 4 weeks in April 2008.

(b) 111 callers in a large phonecall
network, forming a periodic star,
over the last week of December
2007 – note the heavy activity on
holidays

(c) 43 collaborating biotechnol-
ogy authors forming a ranged
near clique in the DBLP network,
jointly publishing through 2005-
2012.

Figure 1.2: TimeCrunch �nds coherent, interpretable temporal structures. We show
the reordered subgraph adjacency matrices, over the timesteps of interest, each outlined in gray;
edges are plotted in alternating red and blue, for discernibility.

builds a behavioral model of temporal viewership metrics across many past broadcasts, and
accurately identi�es viewbotted broadcasts and constituent fake views by penalizing deviance
from model �t.

Contributions

• Interpretable Dynamic Graph Summarization: In Chapter 6, we tackle the graph
summarization problem in dynamic graphs. Our proposed TimeCrunch approach is the
�rst capable of extracting general temporal graph patterns, and demonstrates successful
pattern extraction and graph compression on several real datasets.

• Modeling Interarrival Times in Web Searches: In Chapter 7, we propose a new user-
level model for interarrival times, and a group-level anomaly detection model to �nd users
with irregular behavior. Our M3A approach better models 78% of AOL search users over
the next best competitor and detects abnormally active search bots.

• Catching FakeViews in Livestreaming Platforms: In Chapter 8, we introduce FLOCK,
the �rst approach for combating fake views on livestreaming platforms. FLOCK achieves
98% precision in detecting viewbotted broadcasts and over 90% precision and 95% recall in
detecting fake views in synthetic attacks.

Impact

• TimeCrunch (Chapter 6) was used for pattern discovery in gene-gene interaction networks
in order to model tumor progression [WPK+17].

• TimeCrunch (Chapter 6) was included in the Mining Large-Scale Graph Data (EECS 598)
course at the University of Michigan and the Topics in Data Mining (CS69000-DM1) course
at Purdue University. Furthermore, TimeCrunch was featured in the 2016 Carnegie
Mellon University CyLab Partners Conference, the 2017 Army Research Lab Network
Science bootcamp and an SDM 2017 tutorial on Summarizing Large-Scale Graph Data:
Algorithms, Applications and Open Challenges.
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• The recording of our TimeCrunch (Chapter 6) KDD 2015 presentation has been viewed
over 100 times on YouTube.

• M3A (Chapter 7) is used in production at Google to identify search spammers and abnormal
search behaviors.

• FLOCK (Chapter 8) is used in production at Twitch.tv to combat view astrotur�ng.

1.1.3 Rich Graphs

Most online services track very rich information about their users to improve user experience
and the quality of user recommendations for products and other users. For example, e-commerce
networks often maintain detailed information about the types of products their users like,
transaction cost, time spent viewing product pages, and product ratings and review text. Similarly,
social networks have information on how often users view each others pages, exchange messages,
endorse each others’ pro�le statuses and so on. In the presence of rich graphs which capture
several types of details about interactions, we tackle the commensurate challenges of integrating
a multitude of signals to inform our detection algorithms as well as identifying di�erent types
of anomalies.

Conventional unsupervised graph-based anomaly detection approaches have often focused on
identifying densely connected subgraphs, or individuals with abnormal connectivity behavior
given a plain graph. However, leveraging rich information for unsupervised anomaly detection
is still an open problem. In Chapter 9, we devise an information theoretically motivated metric
for ranking the abnormality of nodes based on their adjacent edge-attributes. Our metric o�ers
intuitive scores, in terms of bits required to explain a node’s behavior in terms of edge-attributes
such as ratings, timestamps, etc. We demonstrate strong performance in detecting fraudulent
raters on e-commerce platforms.

When some domain knowledge is available, fraud detection methods often focus on a single
fraudulent pattern to catch – some approaches look for users forming cliques, others for users
forming bipartite cores, and still others focus on users with a speci�c abnormality in attribute
values. In Chapter 10, we use honeypots to empirically study fraudster connectivity and attribute
behavior in the rich Twitter ecosystem, and characterize the habits of several di�erent types of link
fraud regimes. We further propose novel discriminative features based on �rst-order follower
attributes for detecting malicious accounts and show near-ideal classi�cation performance on
our ground-truth dataset. Figure 1.3 shows di�erences across network structure and attribute
behavior of genuine and (two discovered modes of) fraudulent users.

Contributions

• Ranking Anomalies in Edge-Attributed Graphs: In Chapter 9, we devise a general
abnormality ranking function for nodes in graphs which leverages categorical and numer-
ical edge attributes. Our EdgeCentric ranking algorithm is scalable and attains over 90%
precision in detecting fraud over top-ranked users on Flipkart ratings data.

• Characterizing theMultimodality of Link Fraud: In Chapter 10, we identify and char-
acterize the multiple major regimes of link fraud on Twitter using honeypots, and devise
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Gen. users Pre. fraud Fre. fraud

(a) Visualization (b) Visualization (c) Visualization

(d) Diverse attribute behavior
(e) Adjacency (f) Adjacency (g) Adjacency

Figure 1.3: The many faces of fraud: We discover multiple link fraud behaviors, dubbed
freemium (Fre) and premium (Pre), which have di�erent local network and attribute features
compared to genuine users. Nodes are colored by modularity class, and sized proportional to
in-degree in (a)-(c). The associated, reordered adjacency matrices are shown in (e)-(g) – the
vertical line in each spyplot indicates the the central node. Notice the block community structure
in genuine followers compared to the star structure for premium and near-clique structure
for freemium followers. (d) shows di�erences in attribute entropy over the various behaviors,
showing how fraud patterns skew these distributions away from genuine ones.

discriminative entropy-based features which attain near-ideal classi�cation performance
in discerning genuine from fraudulent users.

Impact

• EdgeCentric (Chapter 9) is used in production at Flipkart to identify ratings fraud.
• EdgeCentric (Chapter 9) and our work on link fraud multimodality (Chapter 10) were

both presented at the 2017 Army Research Lab Network Science panel.

1.2 Thesis Organization

We now describe the organization for the rest of the document. Chapter 2 provides basic
background information for commonly used ideas and techniques in this thesis, which may
be helpful for the uninformed or forgetful reader. The next 3 parts (I, II and III) correspond to
works in the plain, dynamic and rich graph themes respectively. Each chapter begins with a
short summary of the motivation and direction of the contained content.

Part I contains works for identifying suspicious link behavior (Chapter 3), cross-graph blame
attribution (Chapter 4), and reducing large graphs to small supergraphs (Chapter 5).
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Part II encompasses works focusing on interpretable dynamic graph summarization (Chapter
6), modeling interarrival times in web searches (Chapter 7), and astrotur�ng in livestreaming
platforms (Chapter 8).

Part III is composed of two works which tackle ranking anomalies in edge-attributed graphs
(Chapter 9) and characterizing multifacetedness of link fraud behaviors (Chapter 10).

Finally, Part IV concludes (Chapter 11) and discusses avenues for future work (Chapter 12).
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Chapter 2

Background

Below, we provide brief refreshers/precursors for some key concepts discussed in this thesis.
Further necessary details for understanding these concepts contextually will be presented as
needed throughout the document.

2.1 Graphs

Graphs are the core data structure used to describe social interactions in this dissertation. They
are also called networks – we use these terms interchangeably. Graphs are commonly used
to model connectivity between entities, and typically consist of nodes (also known as vertices)
connected to each other with edges. Nodes represent entities, like humans and computers. Edges
represent actions taken between nodes – for example, edges on the Twitter social network
between users indicate that one user follows another. Graphs are typically denoted G, with
the set of nodes V and edges E . Below, we discuss several relevant de�nitions that are used
often.

Bipartite Graph: The number of parts of a graph refers to the number of independent sets into
which the nodes can be split. That is, every edge in the graph must touch di�erent parts, and no
edges exist between nodes in the same part. A bipartite graph is thus a graph in which there are
two such parts V1 and V2. Formally, E ⊆ {(u, v)|u ∈ V1, v ∈ V2}. Some examples of real-world
bipartite graphs include the user-likes-page graph on Facebook, and the user-watches-video graph
on Youtube.

Undirected Graph: In many cases, edges merely represent a mutually established relationship
between two nodes. In such cases, we say that a graph is undirected, by which we mean that the
edges lack directionality. Formally, E ⊆ {(u, v)|u ∈ V , v ∈ V}, and (u, v) ∈ E ↔ (v, u) ∈ E .
Common examples of real-world undirected graphs include mutual friendship networks such
as Facebook, and bipartite (and more generally k-partite) networks in which directionality is
unimportant.

Directed Graph: In some cases, edges represent a directed relationship between two nodes,
in which the existence of an edge (u, v) does not necessitate the existence of (v, u). Formally,
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(u, v) ∈ E ⇔/ (v, u) ∈ E . Some well-known examples of these graphs are friendship networks
which do not mandate friend “approval,” such as Instagram and Twitter’s who-follows-whom
graph, or a mobile provider’s who-calls-whom graph.

Multigraph: Above, we have limited our discussions to simple graphs, in which an edge between
two nodes either exists, or does not. In some cases, it is appropriate to de�ne a multigraph
in which edge multiplicity is not boolean, but rather some value in N0. Formally, we denote
a multigraph with G(V , E ,m) where m : E → {(u, v)|u ∈ V , v ∈ V} (m maps each edge to
the pair of nodes it connects). Multigraphs are commonly useful for representing counts of
interactions, such as the user-messages-user graph on Facebook, where each edge between two
users represents a di�erent message.

Hypergraph: When dealing with rich, multimodal data, we are often concerned with complex
interactions that are not restricted to two nodes. A hypergraph generalizes the concept of a graph
to allow for edges between more than two nodes. Formally, we can denote a hypergraph in the
same fashion as a graph, but with the edge set E containing arbitrarily-sized subsets re�ecting
many-node interactions. In this work, we are primarily interested in “limited” hypergraphs
with only k-node edges that re�ect connectivity between k parts, or independent sets of nodes
V1 . . .Vk. Formally, E ⊆ {(u1 . . . uk)|u1 ∈ V1 . . . uk ∈ Vk}. This structure is useful when
representing multi-aspect (especially temporal) data such as user-watches-video-at-time, or
user-messages-user-at-time.

Subgraph: Sometimes, we are interested in the edges between a particular subset of nodes
V1 ⊆ V rather than those of the whole graph. We denote the induced subgraph as G1(V1, E1)
where E1 is the set of relevant edges {(u, v) ∈ E|u ∈ V1, v ∈ V∞}. Subgraph analysis is used
when studying small portions of a network – one of the most famous types of subgraphs is
called the egonet, which is de�ned on the nodes adjacent to a central node, or ego.

Matrix Representation: For mathematical convenience, graphs are commonly described using
their adjacency matrices. Formally, a simple graphG can be described using a |V|×|V| adjacency
matrix A, where (u, v) ∈ E ↔ Au,v = 1 and (u, v) /∈ E ↔ Au,v = 0. That is, the corresponding
matrix entry is only nonzero if u and v are incident. If G is a multigraph, the value of Au,v

instead re�ects the count of edges between u and v. If G is a k-partite hypergraph, as described
above, A re�ects a k-dimensional tensor (multi-dimensional matrix), and A can be subscripted
with k indices to re�ect k-node interactions. For example, the value Au,v,w in a user-watches-
video-at-time hypergraph might re�ect the number of times user u watched video v at time
w.

2.2 Clustering

Clustering is a common data mining task with rich prior literature – [AR13] provides an excellent
and thorough overview. The high-level goal of clustering algorithms is to group or partition a
set of n items {i1 . . . in} into some number of k clusters. In some scenarios, each item is meant
to be associated only to a single cluster – this is known as hard clustering. For example, in
unsupervised anomaly detection, we might be interested in classifying a sample as either part
of a “good” cluster or a “bad” cluster, without the possibility for a sample to be mostly good
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but somewhat bad. Alternatively, sometimes soft clustering (also known as fuzzy clustering) is
more appropriate, in which each item can be associated with one or more clusters. For example,
if we tried to cluster individuals based on their left-leaning and right-leaning political beliefs,
we may �nd it more appropriate to allow each individual to partially belong to the left-leaning
cluster and partially to the right-leaning cluster, due to di�erences in political alignment (though
some individuals may still fully belong to the left-leaning and right-leaning clusters with no
involvement in the other). Below, we brie�y discuss some preliminaries regarding graph and
feature clustering approaches which are discussed in this thesis.

Graph Clustering: In some applications, we are interested in clustering nodes in a graph. For
example, if we know that a social graph is composed of 2 underlying communities or friend
groups, graph clustering can reveal the approximate group memberships by grouping nodes
according to an appropriate criterion. In fact, many algorithms exist for exactly this goal of
community detection [MV13], and use a variety of similarity metrics as criteria for grouping.
Some examples of commonly used criteria for grouping nodes include modularity [PSS+10],
graph cut [KK00], compression cost [CPMF04], and random walk-based similarity [PARS14].
METIS [KK00], Girvan-Newman [NG04], Louvain [BGLL08] and spectral clustering [AKY99]
are some of the most commonly used algorithms in this space. It is useful to mention that
some of these are hard clustering approaches which involve unique assignment of each node
to a single partition, whereas others are soft clustering approaches which allow a node to be
involved in numerous clusters. We give further background on these as necessary throughout
the thesis.

Feature Clustering: Many times, we are interested in grouping items with arbitrary features,
or attributes without any graph-based context. These problems are often motivated by the
need to �nd similar items to a given item, or to infer underlying structure of item types. For
example, if we were interested in recommending similar Twitter users to each other, we might
describe each user u with a d-dimensional vector which serves as a compressed representation
of his/her interests, and cluster users together who have a high similarity (or equivalently low
distance) to one another. The most widely used algorithms for general feature clustering are
the traditional k-means algorithm [Llo82], and it’s adaptations including minibatch k-means
[Scu10] and k-means++ [AV07]. These algorithms are simple and interpretable, well-studied and
reasonably scalable in practice. They traditionally aim to minimize the squared-error loss

k∑
i=1

∑
u∈Ci

|u− wi|2

where Ci denotes the set of points in the ith of k clusters, and wi denotes the centroid of the ith
cluster. Typically, the objective is minimized using an alternating optimization approach which
involves �xing centroids and updating cluster assignments, and vice versa (note that this is a hard
clustering). It can be shown this procedure converges to a local minimum. One of the biggest
challenges in the use of k-means type approaches is their requirement of the user-speci�ed
parameter k. Often, practitioners are not aware what the “right” value of k should be, and
resort to heuristics such as the rule-of-thumb, the elbow method, Silhouette coe�cient and more
[KM13]. Unfortunately, these methods typically require manual inspection and testing over
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many k-means executions with varying k, which is often not viable in practice on large datasets.
Alternative approaches such as X-means [PMO00] and G-means [HEO03] use more principled
heuristics (information theoretic and statistical test-based, respectively) and iterative splitting
procedures to learn the value of k automatically. It has been shown that such approaches tend
to arrive at qualitatively good clusterings and well-approximate the “right” number of clusters
in appropriate scenarios. A similar analogue exists in the soft clustering space, one of the most
popular approaches involves modeling data as the mixture of k Gaussian distributions (known
as Gaussian Mixture Modeling [XZC01]) and learning parameters for the Gaussian means and
covariances using expectation-maximization [CG10] – in such cases, [Ras00, BJ+06] provide
non-parametric alternatives for also learning k.

2.3 Singular Value Decomposition

Occasionally, it is of interest to represent a high-dimensional matrix with an “approximate” lower
dimensional one. This is a common task in feature extraction [PWWB09] and high-dimensional
clustering [SFŚ+04], and as we shall see later in the thesis, for anomaly detection. One of the
most common approaches for this task is known as the singular value decomposition (SVD),
which in its fullest form factorizes a general m× n matrix A into three matrices U, Σ and V
such that

A = UΣVT

The full-rank decomposition implies that that U is of size m × k, Σ of size k × k, and V of
size n× k, where k is equal to the rank of A. U and V are unitary matrices, and known as the
left and right singular vectors of A, respectively. Σ is a diagonal matrix which contains the
non-negative real singular values of A, which are also the square-roots of the eigenvalues of
AAT and ATA.

When k < rank(A), we have a truncated SVD, where

Ak = UΣVT

and Ak is a k-rank approximation (generally known as a low-rank approximation) of A. The
SVD has many useful theoretical properties, but the most famous one is a consequence of the
Eckart-Young-Mirsky theorem [EY36], which states that ‖ A −Ak ‖2

F≤‖ A −B ‖2
F for any

k-rank matrix B. This states that the k-rank approximation Ak obtained via SVD on A is the
best low-rank approximation in terms of di�erence in Frobenius norm to the original matrix A.
This optimality, combined with e�cient methods to compute the SVD, make it a top-contender
for the dimensionality reduction task.

The SVD can also be interpreted as representing the original matrix A as a weighted sum of
rank-1 matrices:

A =

rank(A)∑
i=1

σiuivi
T

where ui is the ith column of U, vi is the ith column of V, and σi is the ith singular value
(“weight”). The resemblance to the original A increases with increasing number of terms (latent
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factors) of the sum, and rank of the intermediate result. The above equality is exact when the
decomposition is full-rank, and approximate when it is truncated.

In practice, these latent factors have shown to be useful in extracting communities, or dense
blocks from the input matrix [PSS+10, JCB+14a]. Intuitively, items that project very strongly to
a latent factor are often connected. SVD can help us interpret meaning in large, and complex
matrices. For example, if we consider a matrix of users-purchase-items, we might see that the
�rst latent factor corresponds to sports enthusiasts who purchase sporting goods, the second
corresponds to gamers who purchase video games and consoles, and so on. In this way, SVD
tries to “explain” as much of the matrix as possible given a budget on matrix rank.

2.4 Minimum Description Length

There are several ways in which one can determine whether one model is a better �t to some
data than another. Model selection principles generally aim to trade-o� between the �t and
complexity of the model. Model �t refers to the extent to which the model is able to accurately
describe a certain set of data, whereas model complexity refers to the cost of expressing the model
itself (i.e. in terms of the number of parameters). Various commonly used selection principles
include the Akaike Information Criterion, Bayesian Information Criterion [Kuh04], and the
Minimum Description Length (MDL) principle [Ris78].

In this thesis, we use MDL with some frequency. MDL is driven by the insight is that “any
regularity in a given set of data can be used to compress the data, i.e. to describe it using fewer
symbols than needed to describe the data literally” [Grü05]. In fact, it is a practical version of
Kolmogorov complexity, which refers to the shortest possible description of a string in some
�xed language (and is also unfortunately uncomputable) [Nan10]. MDL provides an information
theoretic perspective on model selection, in which both a model and the model’s description of
some data are seen as a sequence of bits. Informally, the model which gives the shortest possible
description is the best model. Formally, the principle states that given a family of modelsM
(typically, a parametric family), the best model M ∈M for data D is given by

arg min
M∈M

L(M) + L(D|M)

where L(M) refers to the cost in bits of encoding the model (complexity), and L(D|M) is the
cost in bits of encoding the data given the model (�t). Together, the two terms establish a basis
for losslessly reconstructing D – MDL uses a lossless compression paradigm to enforce fairness
in comparing models.
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Part I

Mining Plain Graphs
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Chapter 3

fBox: Identifying Suspicious Link

Behavior

Exploiting subspace project error to identify
abnormally connected link fraudsters.

Based on content published in [SBGF14].

How can we discern whether the links or connections of a user in an online social network
are honestly or dishonestly incentivized? Online link fraud hurts the authenticity of social
platforms and paints a deceptive picture about the true popularity of users and products.
Targeting dense subgraphs in the social graph is a common approach to identifying link
fraud, but techniques like spectral decomposition which are commonly employed for this
task are unfortunately biased to detecting only large attacks given the limited expressivity
of low-rank representations. In this chapter, we take an adversarial approach to show the
detection limits of such approaches and propose fBox, a complementary algorithm which
targets a separate class of smaller scale “stealth attacks.” Our method is highly scalable and
shows high e�cacy in pinpointing many tens of thousands of suspicious accounts on the
Twitter platform.

3.1 Introduction

In an online network, how can we distinguish honest users from deceptive ones? Since many
online services rely on machine learning algorithms to recommend relevant content to their users,
it is crucial to their performance that user feedback be legitimate and indicative of true interests.
“Fake” links via the use of sockpuppet/bot accounts can enable arbitrary (frequently spammy or
malicious) users and products of varying nature seem credible and popular, thus degrading the
online experience of users. Unsurprisingly, numerous sites such as buy1000followers.co,
boostlikes.com and buyamazonreviews.com exist to provide services such as fake
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Detects stealth attacks Camou�age resistant O�ers visualization

SpokEn 8 8 4

Spectral subspace plotting 8 4 4

CopyCatch 8 4 8

OddBall 8 8 8

fBox 4 4 4

Table 3.1: Qualitative comparison between fBox and other link fraud detection methods.

Twitter followers, Facebook page-likes and Amazon product reviews for typically just a few
dollars per one-thousand fake links.

Here we focus exactly on the link-fraud problem. We take an adversarial approach to illustrate
when and how current methods fail to detect fraudsters and design a new complementary
algorithm, fBox, to spot attackers who evade these state-of-the-art techniques. Figure 3.1
showcases several suspicious accounts spotted by fBox– we elaborate on three of them, marked
using the triangle, square and star glyphs. All three are identi�ed as outliers in the fBox Spectral
Reconstruction Map (SRM) shown in Figure 3.1b. The corresponding Twitter pro�les are shown
in Figure 3.1c, and further manual inspection shows that all three accounts exhibit suspicious
behavior:

• triangle: it has only 2 tweets but over 1000 followers
• square: it is part of a 50-clique with suspicious names
• star: it posts tweets advertising a link fraud service

Our main contributions are the following:

1. Theoretical analysis: We prove limitations of the detection range of spectral-based
methods.

2. fBox algorithm: We introduce fBox, a scalable method that boxes-in attackers, since it
spots small-scale, stealth attacks which evade spectral methods.

3. E�ectiveness on real data: We apply fBox to a real, 41.7 million node, 1.5 billion edge
Twitter who-follows-whom social graph from 2010 and identify many still-active accounts
with suspicious follower/followee links, spammy Tweets and otherwise strange behavior.

Reproducibility: Our code is available athttp://www.cs.cmu.edu/~neilshah/code/.
The Twitter dataset is also publicly available as cited in [KLPM10].

3.2 Background and Related Work

We begin by reviewing in detail several of the current state-of-the-art methods in web fraud and
spam detection. Table 3.1 shows a qualitative comparison between various link fraud detection
methods.
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(a) Spectral subspace plot
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(b) Proposed ISRM
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Figure 3.1: fBox catches stealth attacks which are missed by spectral methods. (a) shows
a spectral subspace plots on the Twitter social graph which identi�es blatant attacks (circled
in black) but ignores stealth attackers (circled in red, near the origin). (b) portrays how the
proposed fBox ISRM (In-link Spectral Reconstruction Map) can describe these users by their
reconstruction degree and identi�es several with improbably poor reconstruction. (c) shows their
suspicious pro�les with matching glyphs (see text for details).

3.2.1 Spectral methods

We classify techniques that analyze the latent factors produced in graph-based eigenanalysis
or matrix/tensor decomposition as spectral methods. These algorithms seek to �nd patterns in
the graph decompositions to extract coherent groups of users or objects. Prakash et al’s work
on the EigenSpokes pattern [PSS+10] and Jiang et al’s work on spectral subspaces of social
networks [JCB+14b] are two such approaches that we will primarily focus on and which have
been employed on real datasets to detect suspicious link behavior. [YWB11] uses a similar
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analysis of spectral patterns, but focuses on random link attacks (RLAs), which have di�erent
properties than link fraud and therefore produce di�erent patterns.

These works utilize the Singular Value Decomposition (SVD) of the input graph’s adjacency
matrix in order to group similar users and objects based on their projections. Recall that the
SVD of a u× o matrix A is de�ned as A = UΣVT, where U and V are u×u and o× o matrices
respectively containing the left and right singular vectors, and Σ is a u × o diagonal matrix
containing the singular values of A. Both papers note the presence of unusual patterns (axis-
aligned spokes, tilting rays, pearl-like clusters, etc.) when plotting the singular vectors Ui and
Uj for some i, j ≤ k, where k is the SVD decomposition rank, indicative of suspicious lockstep
behavior between similar users. The authors use these patterns to chip out communities of
similar users from input graphs.

Beyond directly searching for suspicious behavior, spectral methods have been used for a variety
of applications. [MWP+14] builds o� the above work to use tensor decomposition for network
intrusion detection. [BMFS14] proposes a robust collaborative �ltering model that clusters
latent parameters to limit the impact of fraudulent ratings from potential adversaries. [NJW01]
and [HYJT08] propose using eigenvectors of graph decompositions for graph partitioning and
community detection.

Although spectral methods have shown promise in �nding large communities and blatantly
suspicious behavior in online networks, they are universally vulnerable given knowledge of the
decomposition rank k used in a given implementation. All techniques operating on large graphs
use such a parameter in practical implementations given that matrix decompositions are very
computationally expensive [KMPF14]. Previous spectral methods have generally chosen small
values of k < 100 for purposes of computability. As we will show in Section 3.3, knowledge of
k or the associated singular value threshold (inferrable from sample datasets online) enables an
intelligent adversary to engineer attacks to fall below the detection threshold.

3.2.2 Graph-traversal based methods

A wide variety of algorithms have been proposed to directly traverse the graph to �nd or stop
suspicious behavior. [SMR08] o�ers a random walk algorithm for detecting RLAs. [GVK+12]
proposes a PageRank-like approach for penalizing promiscuous users on Twitter, but is unfortu-
nately only shown to be e�ective in detecting already caught spammers rather than detecting new
ones. [PCWF07] uses belief propagation to �nd near-bipartite cores of attackers on eBay.

However, most similar in application is Beutel et al’s CopyCatch algorithm to �nd suspicious
lockstep behavior in Facebook Page Likes [BXG+13]. CopyCatch is a clustering method that
seeks to �nd densely connected groups in noisy data through restricted graph traversal, motivated
with the intuition of fraud taking the form of naïvely created bipartite cores in the input graph.
The algorithm uses local search in the graph to �nd dense temporally-coherent near-bipartite
cores (TNBCs) given attack size, time window and link density parameters.

Clustering methods like CopyCatch are able to avoid detection problems caused by camou�age
(connections created by attackers to legitimate pages or people for the purposes of appearing
like honest users) given that they ignore such links if the attacker is party to any TNBC. How-
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ever, identifying the appropriate “minimal attack” parameters is nontrivial. Non-conservative
parameter estimates will result in many uncaught attackers whereas excessively conservative
estimates will result in numerous false positives. From an adversarial point-of-view, we argue
that the cost of incurring false positives and troubling honest users is likely not worth the added
bene�t of catching an increased number of attackers after some point. Therefore, an alternative
approach to catch stealth attacks falling below chosen thresholds is necessary.

3.2.3 Feature-based methods

Spam and fraud detection has classically been framed as a feature-based classi�cation problem,
e.g. based on the words in spam email or URLs in tweets. However, [TGSP11] focuses on
malicious Tweets and �nds that blacklisting approaches are too slow to stem the spread of
Twitter spam. OddBall [AMF10] proposes features based on egonets to �nd anomalous users
on weighted graphs. [DDS+04] and [LM05] take a game theoretic approach to learning simple
classi�ers over generic features to detect spam. While related in the adversarial perspective,
these approaches focus on general feature-based classi�cation as used for spam email, rather
than graph analysis as is needed for link fraud detection.

3.3 An Adversarial Analysis – Our Perspective

In this section, we examine the exploitability of state-of-the-art methods from an adversarial
point-of-view and present lemmas and theorems detailing the limitations of these methods.
Particularly, we demonstrate through theoretical analysis that existing methods are highly
vulnerable to evasion by intelligent attackers. Table 3.2 contains a comprehensive list of symbols
and corresponding de�nitions used in our paper.

Fraudsters

Honest
users

Honest
objects

Customers

(a) Naïve attack

Fraudsters

Honest
users

Honest
objects

Customers

(b) Staircase attack

Fraudsters

Honest
users

Honest
objects

Customers

(c) Random attack

Figure 3.2: Figures 3.2(a)-(c) show the di�erent types of adversarial attacks we charac-

terize. Note the distinctions between how the fraudulent links would be distributed in the
relevant attack subgraphs.

Given knowledge of the detection threshold used by a certain service, how can an attacker
engineer smart attacks on that service to avoid detection by fraud detection methods?

Formally, we pose the following adversarial problem:
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Symbol De�nition

u and o Number of user and object nodes described by the input graph
U and P Sets of indexed rows and columns corresponding to user and object

nodes in the input graph
A u × o input graph adjacency matrix where Ax,y = 1 if a link exists

between user node x and object node y
f and c Number of attacker and customer nodes described by the attack graph
s Number of fraudulent actions each customer node has paid commission

for in the attack graph
F and C Sets of indexed rows and columns corresponding to attacker nodes and

customer nodes in the attack graph
S f × c attack graph adjacency matrix where Sx,y = 1 if a link exists

between attacker node x and customer node y
k Decomposition rank parameter used by spectral methods
λk and σk kth largest eigenvalue and singular value of a given matrix (largest

values for k = 1)
m, n and p Bipartite core size and edge probability parameters used by clustering

methods

Table 3.2: Frequently used symbols and de�nitions

Problem 3.1: Stealth Attack Engineering

Given an input graph adjacency matrix A, with rows and columns corresponding to users
and objects, engineer a stealth attack which falls just below the minimum sized attack
detectable by spectral methods.

As previously described, most detection methods focus on �nding fairly blatant bipartite cores
or cliques in the input graph. Therefore, if an adversary knows the minimum size attack that
detection methods will catch, he can carefully engineer attacks to fall just below that threshold.
For clustering approaches like CopyCatch, this threshold is clearly set based on input parameters,
and the attacker can simply use fewer accounts than speci�ed to avoid detection. In this setting,
the practitioner will try to set n, m and p as strictly as possible and an adversary will attempt
to add as many edges as possible without creating a detectable temporally coherent bipartite
core.

However, for spectral methods like SpokEn, the possible attack size for an adversary is unclear.
We argue that from an adversarial perspective, these spectral methods have a detection threshold
based on the input graph’s singular values. For a rank k SVD used in these methods, this threshold
is governed by the kth largest singular value, σk. In practice, an adversary could estimate σk
from the results of various experimental attacks conducted at distinct scales, or by conducting
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analysis on publicly available social network data. Once an adversary has such an estimate, we
show that it is easy to conduct attacks on the graph adjacency matrix A that will necessarily lie
below this threshold and avoid detection.

To analyze what type of attacks can evade detection by spectral methods, let us consider that
there are c customers who have each commissioned an attacker with f nodes in his botnet
for s fraudulent actions (page likes, followers, etc.), where s ≤ f . This type of attack can be
considered as an injected submatrix S of size f × c, where rows correspond to attacker nodes
(controlled by a single fraudulent operator) in the set of users (F ⊂ U ) and the columns represent
customers in the set of objects (C ⊂ P). In this formulation, the desired in-degree of all nodes in
S is s.

As described earlier, an attack will only be detected by a spectral algorithm if it appears in the
top k singular values/vectors. Therefore, our goal as an adversary becomes to understand the
spectral properties of our attacks and ensure that they do not project in the rank k decomposition.
We can consider the spectral properties of S in isolation from the rest of the graph, as it is well
known that the spectrum of a disconnected graph is the union of the spectra of its connected
components. From this, we deduce that it is su�cient to consider only the representation of
S and ignore the remainder of A when trying to minimize the leading singular value that the
attack contributes to the singular spectrum of A. Therefore, an attack S with leading singular
value σ′ will go undetected by spectral methods if σ′ < σk, where σk is the kth largest singular
value computed for the adjacency matrix A.

Having reduced the problem of adversarial injection to distributing some amount of fraudulent
activity over the f × c matrix S, we next consider several distinct patterns of attack which
characterize types of fraudulent behavior discovered in the analysis of prior work. Speci�cally,
we explore three fraud distribution techniques: naïve, staircase and random graph injections.
Figure 3.2 gives a pictorial representation of each of these types of attacks. We evaluate the
suitability of each attack for an adversary on the basis of the leading singular value that the
pattern generates.

3.3.1 Naïve Injection

This is the most notable attack pattern considered in prior work. The naïve injection distributes
the sc total fraudulent actions into an s× c submatrix of S. Thus, only s of the f attacker nodes
perform any fraudulent actions, and all fraudulent actions are distributed between these s nodes.
In graph terms, this is equivalent to introducing a s× c complete bipartite core. The leading
singular value characterization of such an attack is as follows:
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Theorem 3.1: Naïve Attack Singular Value

The leading singular value of an s× c bipartite core injection is σ1 =
√
cs.

Proof. Since S is a full block, where Si,j = 1 for all i ≤ s, j ≤ c, SST must be an s×smatrix
where SST

i,j = c for all i, j ≤ s. By the Perron-Frobenius Theorem for non-negative
matrices, the leading eigenvalue of SST λ1 is bounded by

min
∑
j

SST
i,j ≤ λ1 ≤ max

∑
j

SST
i,j for i ≤ s

Given that the row sums are equal to cs, λ1 = cs for SST. Since the singular values of S
are equal to the square roots of the eigenvalues of SST by de�nition, it follows naturally
that the leading singular value is σ1 =

√
cs for S. �

Such an attack corresponds to attackers naïvely linking the same set of s nodes to each of the
c customers, producing a full block in A. Figure 3.2a shows a visual representation of such an
attack.

3.3.2 Staircase Injection

The staircase injection (discovered in [JCB+14b]) evenly distributes cs fraudulent actions over
f attacker nodes. However, unlike in the naïve method, where each node that performs any
fraudulent actions does so for each of the c customers, the staircase method forces di�erent
subsets of nodes to associate with di�erent subsets of customers. A characterization of the
leading singular value of such an attack is as follows:

24



Theorem 3.2: Staircase Attack Singular Value

The leading singular value of an s, c, f staircase injection is σ1 = s
√
c/f .

Proof. The staircase injection is approximately equivalent (row-sum-wise) to a random
graph-injection of f × c with edge probability p = s/f . The reduction is as follows:
Consider that the in degree of each customer is s by construction of the pattern. Next, note
that by de�nition of the staircase pattern, the starting row index of a sequence of existing
links (denoted by 1s in cells of the matrix) in a column given the column index ci (0-indexed)
is cis mod f . Then, it is apparent that the periodicity of the pattern of starting indices is
t = lcm(s, f)/s and the out degree of each fraudster per f × t block can be calculated as
st/f . Given that t|c, it follows that starting indices are uniformly distributed, ensuring that
the out degree is uniform and equal to (st/f)(c/t) = cs/f . Note that if f = c (for square
S), the out degree, like the in degree is also equal to s. Also note that the uniformity of in
degrees and out degrees means that each node will have s out of a possible f in-degree
and sc/f out of a possible c out-degree. Since s/f = sc/(fc), it follows that the staircase
injection can be construed as a random graph injection of f × c with edge probability
p = s/f . Such a random graph injection has singular value p

√
fc = s

√
c/f (proof given

in Section 3.3.3). �

This distribution results in the S matrix looking like a staircase of links. Figure 3.2b shows a
visual representation of such an attack.

We restrict our analysis here to staircase injections in which all users have equal out degrees o
and equal in degrees i, though o need not equal i. When out degrees and in degrees are not equal,
users and objects do not have uniform connectivity properties which complicates calculations.
In particular, we assume that the periodicity of the staircase pattern, given by t = lcm(s, f)/s
is such that t|c to ensure this criteria. However, for large values of c/t, σ1 ≈ s

√
c/f given

LLN.

3.3.3 Random Graph Injection

The random graph injection bears close resemblance to the near-bipartite core with density p
attack noted in [BXG+13]. The random graph injection distributes ≈ sc fraudulent actions over
the f attacker nodes approximately evenly. Figure 3.2c shows a visual representation of such an
attack. This approach assigns each node a �xed probability p = sc/cf = s/f of performing a
fraudulent operation associated with one of the c customers. Given LLN, the average number of
fraudulent operations per customer will be close to the expected value of s, and as a result the
total number of fraudulent actions will be close to sc. A characterization of the leading singular
value of such an attack is as follows:
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Theorem 3.3

The leading singular value of an s, c, f directed random bipartite graph is σ1 ∼ s
√
c/f .

Proof. Given that probability of an edge between an attacker node and a customer is
p = s/f , it is apparent that

E(SST
i,j) = p2c for i, j ≤ f

since the value of each cell in the f × f matrix SST will be a result of the inner product
of the corresponding row and column vectors of length c with probability p of a nonzero
entry at any i ≤ c. Since each row in SST has f entries,

E(
∑
j

SST
i,j) = p2cf for i ≤ f

By the Perron-Frobenius theorem for non-negative matrices, the leading eigenvalue λ1 of
SST will be bounded by

min
∑
j

SST
i,j ≤ λ1 ≤ max

∑
j

SST
i,j for i ≤ f

Given that the row sums are all approximately equal to p2cf = cs2/f (exactly equal to
cs2/f if edges in S are perfectly uniformly distributed), the leading eigenvalue is λ1 ≈ cs2/f
for SST. Since the singular values of S are equal to the square roots of the eigenvalues of
SST, it follows naturally that the leading singular value is σ1 = s

√
c/f for S. �

The random graph injection is similar to the Erdös-Rényi model de�ned by G(n, p) [ER59],
except we consider a directed graph scenario with cf possible edges. However, as Erdös and
Rényi studied the asymptotic behavior of random graphs, their results are applicable here as
well.

3.3.4 Implications and Empirical Analysis

Thus far, we have discussed three di�erent types of potential attack patterns for a �xed number
of fraudulent actions and theoretically derived expressions concerning the leading singular value
that they contribute to the singular spectrum of A. Two of the attack patterns, the staircase
and random graph injections, produce leading singular values σ1 of exactly and approximately
s
√
c/f respectively. Conversely, naïve injection results in a leading singular value of σ1 =

√
cs.

Given these results, it is apparent that naïve injection is the least suitable for an adversarial
use, since it will necessarily produce a larger singular value than the other two methods given
that s ≤ f . This result is intuitive: the leading eigenvalue of a matrix is a measure of e�ective
connectivity, and packing fraudulent actions into a full block matrix results in higher connectivity
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Figure 3.3: Skewed singular value distribution in real networks — spectral (k-rank SVD)

approaches su�er from stealth attacks. (a), (b), (c) and (d) show distributions for corre-
sponding networks which allow stealth attacks capable of signi�cantly impacting local network
structure to go undetected.

than spreading the actions out over a large, sparse matrix. Our results beget two important
conclusions:

1. Fraud detection tools must consider modes of attack other than naïve injection — more
intelligent and less detectable means of attack exist and are being used.

2. Given knowledge of the e�ective singular value threshold σk used by spectral detection
methods, or m, n, p parameter choice for clustering based methods, attackers can easily
engineer attacks of scale up to just below the threshold without consequence.

To demonstrate that this leaves a signi�cant opening for attackers, we analyze the distribution
of singular values for a variety of real world graphs and show just how easy it is to construct
attacks which slip below the radar. In particular, we compute the SVD for six di�erent real world
graphs: Twitter’s who-follows-whom social graph, Amazon’s bipartite graph of user reviews for
products, Net�ix’s graph of user reviews for movies, Epinions’s network of who-trusts-whom,
Slashdot’s friends/foe social graph, and Wikipedia’s bipartite graph of votes for administrators.
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Graph Nodes Edges

Twitter [KLPM10] 41.7 million 1.5 billion
Amazon [ML13] 6m users & 2m products 29 million
Net�ix [Net06] 480k users & 17k videos 99 million

Epinions [LHK10] 131,828 841,372
Slashdot [LHK10] 82,144 549,202

Wikipedia [LHK10] 8274 114,040

Table 3.3: Graphs used for empirical analysis

For each graph, we turn it into a binary bipartite graph and compute the SVD for a �xed rank.
The properties of the datasets can be seen in Table 3.3 and the results can be seen in Figure
3.3.

In Figure 3.3a we observe the top k = 50 singular values for the Twitter graph. We see that the
largest singular value is over 6000, but as k increases the singular values begin to settle around
1000, with σ50 = 960.1. Theorem 3.1 implies that an attacker controlling 960 accounts could
use them to follow 960 other accounts and avoid projecting onto any of the top 50 singular
vectors. Note that Theorem 3.1 also implies that an attacker could add 92 thousand followers to
10 lucky accounts and also go undetected. These are very large numbers of followers that could
signi�cantly shift the perception of popularity or legitimacy of accounts. Common spectral
approaches would fail to detect such attacks.

A similar analysis can be made for the other graphs. Figure 3.3b shows that σ50 = 141.6 in the
Amazon review graph. Therefore, attackers could add 140 reviews for 140 products without
projecting onto the top 50 singular vectors. Considering the average product has 12.5 reviews
and a product in the 99th percentile has 187 reviews, 140 reviews is su�ciently large to sway
perception of a product on Amazon.

As seen in Figure 3.3c, we �nd that σ50 = 309.7 and σ100 = 243.4 for the Net�ix ratings graph.
Therefore, attackers could naïvely add an injection of 240 ratings to 240 videos from 240 accounts
and avoid detection in the top 100 singular vectors.

For the Epinions network, we see in Figure 3.3d that σ50 = 31.4. Although this value is much
smaller than that for other graphs, the Epinions network is small and sparse, with the average
user having an in-degree of 6.4. Based on this singular value, an attacker adding 30 edges
(statements of trust or distrust) to 30 users would signi�cantly in�uence the external view of
those users.

In Slashdot’s friend vs. foe graph, σ50 = 23.9, as seen in Figure 3.3d. This means that attackers
could add 23 ratings for 23 users while avoiding spectral detection. Considering that the average
in-degree for accounts in this network is 6.7, adding 23 edges would signi�cantly impact the
perception of a user.

Lastly, we examine the graph of 2794 administrative elections on Wikipedia. As shown in Figure
3.3d, σ50 = 17.5. This implies that 17 users could for 17 elections all vote together and avoid
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No Camou�age Camou�age

Blatant Attacks
SpokEn;
CopyCatch

Spectral subspace plotting;
CopyCatch

Stealth Attacks (proposed) fBox (proposed) fBox

Table 3.4: Types of attacks and suitable detection techniques

detection. In fact, 31% of elections were settled by 17 votes or less. An attacker could also
modify the shape of the attack such that 5 users would each receive 57 votes, enough to win 72%.
Given an attack of this scale, a small group of accounts could cooperate to unfairly rig election
outcomes.

From these examples across a variety of networks, we see that using spectral approaches for
catching fraud leaves a wide opening for attackers to manipulate online graphs.

3.4 Proposed Framework for Fraud Behaviors

As demonstrated in Section 3.3, current detection methods are e�ective in catching blatant
attacks, but drop in e�cacy as the attack size decreases. Though the scale of attacks detected is
de�ned di�erently for various datasets given distinct decomposition rank k, such a detectability
cross-over point necessarily exists given the well-de�ned nature of the singular value produced
by common types of attacks. In this section, we give a broader overview of possible attack
modes and the capabilities of current methods in dealing with them. Table 3.4 illustrates how
current techniques �t into our classi�cation of suitable defenses against four di�erent attack
types and how the proposed fBox algorithm can �ll in the remaining holes to provide a more
holistic framework for fraud detection.

The four types of attacks we broach in this work are classi�ed based on two dichotomies — the
scale of attack and the presence of camou�age. The scale of attack concerns whether an attack of
some size de�ned in terms of the aforementioned s, c and f parameters in the context of a given
dataset (and decomposition rank k for spectral methods), is detectable or not. The attack could
be staged using any of the fraud distribution patterns discussed in Section 3.3. In the context of
clustering methods, scale is more formally de�ned by the minimal attack size parameters used.
Camou�age refers to uncommissioned actions conducted by attackers in order to appear more
like honest users in the hopes of avoiding detection. For example, camou�age on Twitter is most
commonly seen as attackers following some honest users for free in addition to paid customers.
Attacks with camou�age are more di�cult to detect than those without, given the increased
likelihood of a practitioner to overlook suspicious actions.

3.4.1 Blatant Attack/No Camou�age

Of the four types, blatant attacks without camou�age are the easiest to spot. Blatant attacks
whose singular values are above the threshold σk and thus appear in the rank-k decomposition
of spectral methods produce spoke-like patterns and can be identi�ed using SpokEn. It is
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worth noting that SpokEn is a method to chip out large communities from graphs, and not
necessarily attackers. Veri�cation of the blatant lockstep behavior as fraudulent is required in
this case.

3.4.2 Blatant Attack/Camou�age

Naturally, blatant attacks with camou�age are more di�cult to spot than without. Though the
singular values of the attacks are above the threshold σk and the associated singular vectors
appear in the rank-k decomposition of spectral methods, Jiang et al. showed that rather than
axis-aligned spokes, the spectral subspace plots showed tilting rays. CopyCatch is also e�ective
in detecting blatant attacks with camou�age (provided that the parameter choices are su�ciently
large to limit the rate of false positives), given that camou�age is ignored in the case that an
m, n, p near-bipartite core is found for a subset of U and P for a �xed snapshot of the input
graph.

3.4.3 Stealth Attack/No Camou�age

As concluded in Section 3.3, current detection schemes are highly vulnerable to stealth attacks
engineered to fall below parameter thresholds of σk for spectral methods orm, n, p for clustering
methods. To the best of our knowledge, no previous technique has been able to successfully
and e�ectively identify users involved in these types of attacks. Though stealth attacks may be
individually of lesser consequence to detect than larger cases of fraud, they have the insidious
property of being able to achieve the same number of fraudulent actions in a more controlled and
less detectable manner at the cost of simply creating more fraud-related accounts. In response
to this threat, we propose the fBox algorithm for identifying such attacks in Section 3.5 and
demonstrate its e�ectiveness in Section 3.6.

3.4.4 Stealth Attack/Camou�age

Given that identifying small scale attacks has thus far been an open problem in the context of
fraud detection, the problem of identifying these with camou�age has also gone unaddressed.
The di�culty in dealing with camou�age is particularly apparent when considering user accounts
with few outgoing or incoming links, as is typically the case with smaller attacks. From the
perspective of a practitioner, it may appear that a truly fraudulent account is mostly honest
but with a few suspicious or uncharacteristic links (insu�cient to mark as fraudulent) or
infrequently/unsavvily used due to the small number of total links. We demonstrate in Section 3.6
that fBox is robust to such smart attacks with moderate amounts of camou�age on real social
network data.

3.5 Proposed Algorithm

Thus far, we have seen how existing state-of-the-art techniques have �rm e�ective detection
thresholds and are entirely ine�ective in detecting stealth attacks that fall below this threshold.
Given this problem, it is natural to consider the following question — how can we identify
the many numerous small scale attacks that are prone to slipping below the radar of existing
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techniques? In this section, we formalize our problem de�nition and propose fBox as a suitable
method for addressing this problem.

Algorithm 3.1: fBox algorithm pseudocode
Input: Input graph adjacency matrix A,

Decomposition rank k,
Threshold τ

1: userCulprits = {}
2: objectCulprits = {}
3: outDegrees = rowSum(A)
4: inDegrees = colSum(A)
5: [U,Σ,V] = svd(A, k)
6: for each row i in UΣ do

7: recOutDegs = ‖(UΣ)i‖2
2

8: end for

9: for each row j in VΣ do

10: recInDegs = ‖(VΣ)j‖2
2

11: end for

12: for each unique od in outDegrees do
13: nodeSet = find(outDegrees == od)
14: recOutDegSet = recOutDegs(nodeSet)
15: recThreshold = percentile(recOutDegSet, τ)
16: for each node n in nodeSet do
17: if recOutDegs(n) ≤ recThreshold then

18: userCulprits = userCulprits + n
19: end if

20: end for

21: end for

22: for each unique id in inDegrees do
23: nodeSet = find(inDegrees == id)
24: recInDegSet = recInDegs(nodeSet)
25: recThreshold = percentile(recInDegSet, τ)
26: for each node n in nodeSet do
27: if recInDegs(n) ≤ recThreshold then

28: objectCulprits = objectCulprits + n
29: end if

30: end for

31: end for

32: return userCulprits,
objectCulprits
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3.5.1 Problem Formulation

We identify the major problem to be addressed as follows:

Problem 3.2: Stealth Attack Detection

Given an input graph adjacency matrix A, with rows and columns corresponding to users
and objects (could be pages, articles, etc. or even other users), identify stealth attacks
which are undetectable given a desired decomposition rank-k for A (undetectable in that
their singular values fall below the threshold σk).

Note that Problem 3.2 is an exact foil to Problem 3.1. In this paper, we primarily focus on
smart attacks which fall below a practitioner-de�ned spectral threshold, given that a number
of previous works mentioned have tackled the problem of discovering blatant attacks. Given
that this body of work is e�ective in detecting such attacks, we envision that the best means
of boxing in attackers is a complementary approach to existing methods, as our analysis in
Section 3.4 is indicative of the lack of suitability of a one-size-�ts-all technique for catching all
attackers.

3.5.2 Description

As per the problem formulation, we seek to develop a solely graph-based method, which will be
able to complement existing fraud detection techniques by discerning previously undetectable
attacks. In Section 3.3, we demonstrated that smaller attacks are particularly characterized by
comparatively low singular values (below σk), and thus do not appear in the singular vectors
given by a rank k decomposition. Assuming an isolated attack which has been engineered to
fall below the detection threshold, the users/objects comprising the attack will have absolutely
no projection onto any of the top-k left and right singular vectors respectively. In the presence
of camou�age, projection of the culprit nodes may increase slightly given some nonzero values
in the corresponding indices in one or more of the vectors. In either case, we note that nodes
involved in these attacks have the unique property of having zero or almost-zero projections
in the projected space. Given this observation, two questions naturally arise: (a) how can we
e�ectively capture the extent of projection of a user or object? and (b) is there a pattern to how
users or objects project into low-rank subspaces?

In fact, we can address the �rst question by taking advantage of the norm-preserving property of
SVD given below, which states that the row vectors of a full rank decomposition and associated
projection will retain the same l2 norm or vector length as in the original space. That is, for
k = rank(A),

‖Ai‖2 = ‖(UΣ)i‖2 for i ≤ u

In the same fashion, one can apply the norm-preserving property to decomposition of AT to
show

‖AT
j‖2 = ‖(VΣ)j‖2 for j ≤ o
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(b) ISRM for Twitter idols

Figure 3.4: SRMs show correlation between the reconstruction degree and suspicious-

ness of nodes. (a) and (b) show the SRMs produced from analysis on the Twitter social graph.

Since the l2 norms are preserved in a full rank decomposition, it is obvious that the sum of squares
of components are also preserved. Note that for the 0-1 adjacency matrix A we consider here,
the sum of squares of components of the ith row vector corresponds to the out-degree of user i
and the sum of squares of components of the jth column vector corresponds to the in-degree
of object j — given these considerations, we de�ne the degree of a node in a given subspace
as the squared l2 norm of its link vector in that subspace. Thus, for a full rank decomposition,
the out-degree given by ‖Ai‖2

2 and reconstructed out-degree given by ‖(UΣ)i‖2
2 of user i are

equal. The same can be said for the in-degree and reconstructed in-degree of object j. For rank k
decompositions where k < rank(A) (guaranteed in practical use of spectral methods), we can
show that the true degrees upper bound the reconstructed degrees as follows:

Theorem 3.4: l2-norm Bound for Reconstruction Degree

The reconstruction degree of any node (row) i in a k-rank projection of A, Aproj is upper
bounded by the true degree of the same node (row) i in A.
Proof. It is su�cient to show that the respective l2 norms of row i in Aproj is upper bounded
by the l2 norm of the same row in A, or that Aproji ≤ Ai. First, observe that when the
projection rank k = rank(A), the reconstruction degree and true degree for row i are
equal – that is, ‖Aproji‖2 = ‖Ai‖2. Since U and V are unitary, we can rewrite the SVD
formulation Aproj = UΣVT as AprojV = AV = UΣ and observe that RHS has the same
l2 norm as LHS given the norm-preserving property of unitary matrices. Next, note that a
(k + 1)-rank decomposition has the same �rst k columns as a k-rank decomposition by
the uniqueness (up to sign) of SVD, and thus the same l2 norm for the ith row over the
k-length row vector formed over the �rst k entries in the row. Then, any nonzero element
in the (k + 1)th column and ith row will increase the l2 norm of row i as it will contribute
a positive term under the square-root. If the element in the (k + 1)th column and ith row
is 0, then the l2 norm of row i remains the same. In either case, the l2 norm of row i is
non-decreasing with increasing rank, and thus cannot exceed the l2 norm of a full-rank
decomposition. �
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Thus, we can capture the extent of projection of a user by the tuple of his true out-degree and
reconstructed out-degree, and we can capture the extent of projection of an object by the tuple
of its true in-degree and reconstructed in-degree.

We conjecture that due to the di�erent graph connectivity patterns of dishonest and honest
users as well as dishonest and honest objects, their projections in terms of reconstructed degrees
should also vary. Intuitively, dishonest users who either form isolated components or link to
dishonest objects will project poorly and have characteristically low reconstruction degrees,
whereas honest users who are well-connected to real products and brands should project more
strongly and have characteristically higher reconstruction degrees. In fact, we �nd that in
real data, users and objects have certain ranges in which they commonly reconstruct in the
projected space. Figure 3.4 shows the OSRM (Out-link Spectral Reconstruction Map) and ISRM
(In-link Spectral Reconstruction Map) for a large, multi-million node and multi-billion edge social
graph from Twitter, where we model follower (fan) and followee (idol) behavior. The data is
represented in heatmap form to indicate the distribution of reconstructed degrees for each true
degree. The SRMs indicate that for each true degree, there is a tailed distribution with most
nodes reconstructing in a common range and few nodes reconstructing as we move away from
this range in either direction. Most notably, there are a large number of nodes with degrees
up to the hundreds with an almost-zero reconstruction, depicted by a well separated point
cloud at the bottom of both SRMs. For higher true degree values in the thousands, nodes are
more sparse and rarely project as poorly as for lower true degrees, but many points at these
degree values reconstruct several degrees of magnitude lower than the rest. These observations
serve to substantiate our conjecture that poorly reconstructing nodes are suspicious, but what
about the well reconstructing nodes? Interestingly, we �nd that nodes which reconstruct on
the high range of the spectrum for a given degree have many links to popular (and commonly
Twitter-veri�ed) accounts. We do not classify such behavior as suspicious in the OSRM context,
as it is common for Twitter users to follow popular actors, musicians, brands, etc. We do not
classify such behavior as suspicious in the ISRM context either, as popular �gures tend to more
commonly be followed by other popular �gures. At the bottom of the reconstruction spectrum,
however, we most commonly �nd accounts which demonstrate a number of notably suspicious
behaviors in the context of their followers/followees and the content of their Tweets — more
details are given in Section 3.6.

Based on our intuitive conjecture and empirical veri�cation, we focus our fBox algorithm on
identifying nodes with characteristically poor reconstructed degree in comparison to other
nodes of the same true degree as suspicious. Speci�cally, we mark the bottom τ percent of nodes
per �xed degree for both users and objects as culprit nodes. We outline the high-level steps of
fBox in Algorithm 3.1.

3.6 Experiments

3.6.1 Datasets

For our experiments we primarily use two datasets: the who-follows-whom Twitter graph and
the who-rates-what Amazon graph. The Twitter graph was scraped by Kwak et al. in 2010
and contains 41.7 million users with 1.5 billion edges [KLPM10]. We showed the distribution
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Figure 3.5: (a) and (b) show fBox’s strong predictive value and low false-discovery rate

in identifying suspicious accounts.

of singular values in Figure 3.3a. The Amazon ratings graph was scraped in March 2013 by
McAuley and Leskovec [ML13] and contains 29 million reviews from 6 million users about 2
million products. The distribution of singular values can be seen in Figure 3.3b. Our analysis is
conducted both directly and via synthetic attacks.

3.6.2 fBox on real Twitter accounts

To show our e�ectiveness in catching smart link fraud attacks on real data, we conducted a
classi�cation experiment on data from the Twitter graph. Speci�cally, we collected the culprit
results for suspicious fans and idols with degree at least 20 (to avoid catching unused accounts)
for seven di�erent values of the detection threshold τ , at 0.5, 1, 5, 10, 25, 50 and 99 percentile.
For each combination of τ value and user type (fan or idol), we randomly sampled 50 accounts
from the “culprit-set” of accounts classi�ed as suspicious by fBox and another 50 accounts from
the remainder of the graph in a 1:1 fashion, for a total of 1400 accounts. We randomly organized
and labeled these accounts as suspicious or honest (ignoring foreign and protected accounts)
based on several criteria — particularly, we identi�ed suspicious behavior as accounts with some
combination of the following characteristics:

• Suspension by Twitter since data collection
• Spammy or malicious tweets (links to adware/malware)
• Suspicious username, or followers/followees have suspicious usernames (with common

pre�xes/su�xes)
• Very few tweets (<5) but numerous (>20) followees who are themselves suspicious
• Sparse pro�le but numerous (>20) followees who are themselves suspicious

Figure 3.5 shows how the performance of fBox varies with the threshold τ for Twitter fans
and idols. As evidenced by the results, fBox is able to correctly discern suspicious accounts
with 0.93+ precision for τ ≤ 1 for both fans and idols. And as expected, increasing τ results
in lower precision. As with many informational retrieval and spam detection problems, there
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are an unbounded number of false negatives, making recall e�ectively impossible to calculate.
Rather, we use the negative precision and observe that it increases as we increase τ . Ultimately,
because fBox is meant to be a complementary method to catch new cases of fraud, we do not
believe that missing some of the attackers already caught by other methods is a major concern.
With these considerations, we recommend conservative threshold values for practitioner use.
On Twitter data, we found roughly 150 thousand accounts classi�ed as suspicious between the
SRMs for τ = 1.

3.6.3 Complementarity of fBox

As mentioned before, fBox is complementary to spectral techniques and is e�ective in catching
smart attacks that adversaries could engineer to avoid detection by these techniques. We
demonstrate this claim using both synthetically formulated attacks on the Amazon network as
well as comparing the performance of both fBox and SpokEn on the Twitter network. In the
�rst experiment, we inject random attacks of scale 100 (100× 100) and 400 (400× 400), each
with density p = 0.5 into the Amazon graph and compare the e�ectiveness of spectral subspace
plots and SRMs in spotting these attacks. Figure 3.6a shows the spectral subspace plot for the
1st and 15th components of the SVD, corresponding to one naturally existing community and
the blatant attack, respectively. The plot clearly shows nodes involved in the blatant attack as a
spoke pattern, but groups the nodes involved in the small attack along with many honest nodes
that reconstruct poorly in these components at the origin point. However, in Figure 3.6b, we see
that the smaller injection is identi�ed as clearly suspicious with distinct separation from other
legitimate behavior.

We additionally tested both fBox and SpokEn on a number of injections sizes, each random
attacks with p = 0.5. Figure 3.6c shows the fraction of the attacking fans caught by each
algorithm. As seen in the �gure, the two methods are clearly complementary, with fBox catching
all attacks that SpokEn misses. This veri�es the analysis in Section 3.3 and substantiates fBox’s
suitability for catching stealth attacks that produce leading singular value σ′ < σk.

(a) Spectral subspace plot (b) ISRM
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Figure 3.6: fBox and SpokEn are complementary, with fBox detecting smaller stealth

attacks missed by SpokEn. (a) shows how spectral subspace plots identify blatant attacks but
ignore smaller ones. (b) shows the ISRM plot for the same injections, clearly identifying the
suspiciousness of the smart attack. (c) depicts the complementary nature of fBox and spectral
methods in detecting attacks at various scales.
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In our second experiment, we compared the performance of both fBox and SpokEn on a sample
of 65743 accounts selected from the Twitter graph. For each of these accounts, we queried the
Twitter API to collect information regarding whether the account was suspended or had posted
Tweets promoting adware/malware (checked via Google SafeBrowsing), and if so we marked
the account as fraudulent. This ground truth marking allows us to unbiasedly measure the
complementarity of fBox and SpokEn in catching users that are surely malicious. Of these users,
4025 were marked as fraudulent via Twitter (3959) and Google SafeBrowsing (66). For rank
k = 50, SpokEn produced 8211 suspicious accounts whereas fBox (with τ = 1) produced 149899.
The user sets identi�ed by both methods were found to be completely distinct, suggesting that
the methods are indeed complementary. Furthermore, fBox identi�ed 1133 suspicious accounts
from the sampled dataset, of which only 347 were caught via Twitter and Google SafeBrowsing,
suggesting that roughly 70% of fBox-classi�ed suspicious accounts are missed by Twitter.
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Figure 3.7: (a), (b) and (c) show fBox’s robustness to moderate amounts of camou�age

for attack sizes of 100, 250 and 500.

3.6.4 fBox in the face of camou�age

One key point in dealing with intelligent attackers is ensuring that fBox is robust in detecting
attacks with moderate amounts of camou�age. To measure our performance in such a setting,
we ran fBox on a variety of attack sizes in our target range and for each attack varied the amount
of camou�age added. In our model, we include camou�age by following honest accounts at
random. For a random attack of size n× n and edge probability p, we vary the percent of idols
of fraudulent fans that are camou�age: for 0% camou�age each fan follows the pn customers
only and for 50% camou�age each attacker node follows pn customers and pn random honest
idols — in general, the percent of camou�age r for g camou�age links is de�ned as 100g

g+pn
. We ran

this test for attacks of size 100, 250, and 500 (all below the σ25 = 1143.4 detection threshold)
with p = 0.5 on the Twitter graph.

Figure 3.7 demonstrates fBox’s robustness — for all con�gurations of attack size and camou�age,
we catch all customer idols and over 80% of fraudulent fans. As attack size increases, increased
camou�age is less impactful (intuitively, larger attacks are more �agrant), with fBox catching
over 90% of the fraudulent fans even with 50% camou�age.

Analysis on fame, where customers buying links also have honest links was not conducted.
Customer fame is the analog of attacker camou�age. However, we expect similar results in
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detection of accounts in the presence of fame given the symmetry of SVD and fBox’s disjoint
user/object reconstruction. However, the presence of fame is less realistic in many applications
— for example, in the Twitter context, it is di�cult for a spammy account to get honest fans
whereas fraudulent fans can follow real idols at will.
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Figure 3.8: fBox scales linearly on the size of input data.

3.6.5 Scalability of fBox

The running time of fBox is dominated by the (linear) large matrix-vector multiplication per
iteration of the Lanczos algorithm to compute SVD for large, sparse matrices. Figure 3.8 depicts
the linear runtime of fBox for k = 25 while varying number of non-zeros.

3.7 Conclusions

In this work, we approached the problem of distinguishing dishonest attackers and their cus-
tomers from honest users in the context of online social network or web-service graphs using a
graph-based approach (using the adjacency matrix representing user/object relationships). Our
main contributions are:

1. Theoretical analysis: We examine several state-of-the-art fraud detection methods from
an adversarial point-of-view and provide theoretical results (Theorems 3.1-3.3) pertaining
to the susceptibility of these methods to various types of attacks.

2. fBox algorithm: We detail fBox, a method motivated by addressing the blind-spots
discovered in theoretical analysis, for detecting a class of stealth attacks which previous
methods are e�ectively unable to detect.

3. E�ectiveness on real data: We apply fBox to a large Twitter who-follows-whom dataset
from 2010 and discover many tens of thousands of suspicious users with over 93% precision
whose accounts remain active to date.

Our experiments show that our method is scalable, e�ective in detecting a complementary range
of attacks to existing methods and robust to a reasonable degree of camou�age for small and
moderately sized stealth attacks.
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Chapter 4

DeltaCon-Attr: Cross-Graph

Blame Attribution

Identifying culprits of connectivity change
between graph snapshots using
in�uence-based similarity.

Based on content published in [KSV+15].

How are two graphs di�erent? Which nodes and edges are responsible for the changes
between them? Detection and ranking of changes in graphs is a problem which arises in
numerous settings related to pinpointing anomalous behavior. Notable examples include
tracking physical network interconnectivity and analyzing behavior of users in communica-
tion networks. In this work, we propose DeltaCon-Attr, a complement to the DeltaCon
graph similarity algorithm, for the change detection and ranking task. DeltaCon-Attr is
principle and agrees with human intuition, scalable and demonstrates practical e�ectiveness.

4.1 Introduction

Graphs arise naturally in numerous situations; social, tra�c, collaboration and computer net-
works, images, protein-protein interaction networks, brain connectivity graphs and web graphs
are only a few examples. A problem that comes up often in all those settings is the following:
how much do two graphs or networks di�er in terms of connectivity, and which are the main
node and edge culprits for the di�erence?

In this work, we tackle this problem on graphs with known node-correspondence (�xed node-set
across graphs). The main focus of this chapter is on the latter problem (blame attribution), in
which the aim is to identify the culprit nodes and edges which are most responsible for the largest
changes in graph structure. The intuition behind our approach is that nodes and edges which are
most culpable for di�erences between graphs are the ones which most heavily in�uence changes
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in connectivity. To this end, we leverage the DeltaCon algorithm for computing graph similarity
as it is scalable, principled and considerate of connectivity di�erences [KVF+13].

Change detection and blame attribution is a particularly important problem in anomaly detection
scenarios such as detecting changes in the connectivity of a computer network, the behavior of
users in communication networks, or even identifying spammers and bad actors in social media.
Tracking changes in networks over time, spotting anomalies and detecting events is a research
direction that has attracted much interest in previous literature [CBWG11, Nob03, WPT11,
WTPP14]. However, blame attribution is still an open problem as the list of requirements
constantly increases: the exponential growth in graphs, both in number and size, calls for
methods that are not only accurate, but also scalable to graphs with billions of nodes.

In this chapter, we introduce the following contributions:

1. Algorithm: We propose DeltaCon-Attr, a scalable and principled approach for node
and edge-based blame attribution between graphs.

2. Experiments: We detail a number of experiments on synthetic and real datasets and
show that DeltaCon-Attr gives results that agree with human intuition of culpability
and is faster while maintaining comparable accuracy to the prior state-of-the-art.

The rest of this chapter is organized as follows: Section 4.2 includes background on the DeltaCon
approach, Section 4.3 discusses the proposed DeltaCon-Attr approach for blame attribution,
Section 4.4 details experiments on synthetic and real datasets, Section 4.5 surveys prior work
and Section 4.6 concludes.

4.2 Background: DeltaCon

In this section, we detail our previously proposed DeltaCon [KVF+13] approach for graph
similarity, which DeltaCon-Attr leverages. While the graph similarity problem is not the
main focus in this chapter, the intuition, motivating properties and algorithmic details are highly
relevant for future discourse and are thus included here for the reader’s bene�t. Most detailed
proofs have been omitted in this chapter for relevance reasons, but are available in the full-text
of [KSV+15].

4.2.1 DeltaCon: Intuition

How can we �nd the similarity in connectivity between two graphs or, more formally, how can
we solve the following problem?
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Symbol Description

G graph
V , n set of nodes, number of nodes
E ,m set of edges, number of edges
sim(G1, G2) similarity between graphs G1 and G2

d(G1, G2) distance between graphs G1 and G2

I n× n identity matrix
A n× n adjacency matrix with elements aij
D n× n diagonal degree matrix, dii =

∑
j aij

L = D−A laplacian matrix
S n× n matrix of �nal scores with elements sij
S′ n× g reduced matrix of �nal scores
~ei n× 1 unit vector with 1 in the ith element
~s0k n× 1 vector of seed scores for group k
~si n× 1 vector of �nal a�nity scores to node i
g number of groups (node partitions)
ε = 1/(1 + maxi (dii)) positive constant (< 1)

encoding the in�uence between neighbors
DC0, DC DeltaCon, DeltaCon0

Table 4.1: Symbols and De�nitions. Bold capital letters: matrices, lowercase letters with arrows:
vectors, plain font: scalars.

Problem 4.1: DeltaConnectivity

Given (a) two graphs, G1(V , E1) and G2(V , E2) with the same node set1, V , but di�erent
edge sets E1 and E2, and (b) the node correspondence, �nd a similarity score, sim(G1, G2) ∈
[0, 1], between the input graphs. Similarity score of value 0 means totally di�erent graphs,
while 1 means identical graphs.

The obvious way to solve this problem is by measuring the overlap of their edges.

Why does this often not work in practice? It turns out that this measure weights every edge
equally in terms of importance. But, clearly, from the aspect of information �ow, a missing edge
from a clique does not play as important role in the graph connectivity as a missing bridge.
So, could we instead measure the di�erences in the 1-step away neighborhoods, 2-step away
neighborhoods etc.? If yes, with what weight? It turns out that our method does exactly this in
a principled way.

1If the graphs have di�erent, but overlapping, node sets, V1 and V2, we assume that V = V1 ∪ V2, and the extra
nodes are treated as singletons.
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4.2.1.1 Fundamental Concept

The �rst conceptual step of our proposed method is to compute the pairwise node a�nities in the
�rst graph, and compare them with the ones in the second graph. For notational compactness,
we store them in a n× n similarity matrix2 S. The sij entry of the matrix indicates the in�uence
node i has on node j. For example, in a who-knows-whom network, if node i is, say, republican
and if we assume homophily (i.e., neighbors are similar), how likely is it that node j is also
republican? Intuitively, node i has more in�uence/a�nity to node j if there are many, short,
heavily weighted paths from node i to j.

The second conceptual step is to measure the di�erences in the corresponding node a�nity
scores of the two graphs and report the result as their similarity score.

4.2.1.2 How to Measure Node A�nity?

Pagerank [BP98], personalized Random Walks with Restarts (RWR) [Hav03], lazy RWR [AF02],
and the “electrical network analogy” technique [DS84] are only a few of the methods that
compute node a�nities. We could have used Personalized RWR: [I − (1 − c)AD−1]~si =
c ~ei,where c is the probability of restarting the random walk from the initial node, ~ei the
starting (seed) indicator vector (all zeros except 1 at position i), and ~si the unknown Personalized
Pagerank column vector. Speci�cally, sij is the a�nity of node j with respect to node i. For
reasons that we explain next, we chose to use a more recent and principled method, the so-called
Fast Belief Propagation (FaBP) [KKK+11], and speci�cally a simpli�ed form of it given by:

[I + ε2D− εA]~si = ~ei (4.1)

where ~si = [si1, ...sin]T is the column vector of �nal similarity/in�uence scores starting from
the ith node, ε is a small constant capturing the in�uence between neighboring nodes, I is the
identity matrix, A is the adjacency matrix and D is the diagonal matrix with the degree of node
i as the dii entry.

An equivalent, more compact notation, is to use a matrix form, and to stack all the ~si vectors
(i = 1, . . . , n) into the n× n matrix S. We can easily prove that

S = [sij] = [I + ε2D− εA]−1 . (4.2)

4.2.1.3 Why use Belief Propagation?

The reasons we choose BP and its fast approximation with Equation 4.2 are: (a) it is based on
sound theoretical background (maximum likelihood estimation on marginals), (b) it is fast (linear
on the number of edges), and (c) it agrees with intuition, taking into account not only direct
neighbors, but also 2-, 3-, and k-step-away neighbors, with decreasing weight. We elaborate on
the last reason, next:

2In practice, we don’t measure all the a�nities (see Section 4.2.2.2 for an e�cient approximation).
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Intuition 4.0: Attenuating Neighboring In�uence

By temporarily ignoring the term ε2D in (4.2), we can expand the matrix inversion and
approximate the n× n matrix of pairwise a�nities, S, as

S ≈ [I− εA]−1 ≈ I + εA + ε2A2 + . . . .

As we said, our method captures the di�erences in the 1-step, 2-step, 3-step etc. neighborhoods
in a weighted way; di�erences in long paths have a smaller e�ect on the computation of the
similarity measure than di�erences in short paths. Recall that ε < 1, and that Ak has information
about the k-step paths. Notice that this is just the intuition behind our method; we do not use
this simpli�ed formula to �nd matrix S.

4.2.1.4 Which properties should a similarity measure obey?

Let G1(V , E1) and G2(V , E2) be two graphs, and sim(G1, G2) ∈ [0, 1] denote their similarity
score. Then, we want the measure to obey the following axioms:

• A1. Identity property: sim(G1, G1) = 1
• A2. Symmetric property: sim(G1, G2) = sim(G2, G1)
• A3. Zero property: sim(G1, G2)→ 0 for n→∞, where G1 is the complete graph (Kn),

and G2 is the empty graph (i.e., the edge sets are complementary).

Moreover, the measure must be:

(a) intuitive It should satisfy the following desired properties:

P1. [Edge Importance] For unweighted graphs, changes that create disconnected components
should be penalized more than changes that maintain the connectivity properties of the graphs.
P2. [Edge-“Submodularity”] For unweighted graphs, a speci�c change is more important in a
graph with few edges than in a much denser, but equally sized graph.
P3. [Weight Awareness] In weighted graphs, the bigger the weight of the removed edge is, the
greater the impact on the similarity measure should be.

We also introduce an additional, informal, property:
IP. [Focus Awareness] “Random” changes in graphs are less important than “targeted” changes
of the same extent.

(b) scalable The huge size of the generated graphs, as well as their abundance require a
similarity measure that is computed fast and handles graphs with billions of nodes.

In [KSV+15], we formalize the properties and discuss their satis�ability by our proposed simi-
larity measure theoretically. They are excluded here, as they are not relevant to the main focus
of this chapter.
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4.2.2 DeltaCon: Details

Now that we have described the high level ideas behind the DeltaCon method, we move on to
the details.

4.2.2.1 Algorithm Description

Let the graphs we compare be G1(V , E1) and G2(V , E2). If the graphs have di�erent node sets,
say V1 and V2, we assume that V = V1 ∪ V2, where some nodes are disconnected. As mentioned
before, the main idea behind our proposed similarity algorithm is to compare the node a�nities
in the given graphs. The steps of our similarity method are:

Step 1 By Equation 4.2, we compute for each graph the n× n matrix of pairwise node a�nity
scores (S1 and S2 for graphs G1 and G2 respectively).

Step 2 Among the various distance and similarity measures (e.g., Euclidean distance (ED),
cosine similarity, correlation) found in the literature, we use the root Euclidean distance (RootED,
a.k.a. Matusita distance3)

d = RootED(S1,S2) =

√√√√ n∑
i=1

n∑
j=1

(
√
s1,ij −

√
s2,ij)2. (4.3)

We use the RootED distance for the following reasons:

1. it is very similar to the Euclidean distance (ED), the only di�erence being the square root
of the pairwise similarities (sij),

2. it usually gives better results, because it “boosts” the node a�nities4 and, therefore, detects
even small changes in the graphs (other distance measures, including ED, su�er from high
similarity scores no matter how much the graphs di�er), and

3. satis�es the desired properties P1-P3, as well as the informal property IP .

Step 3 For interpretability, we convert the distance (d) to a similarity measure (sim) via the
formula sim = 1

1+d
. The result is bounded to the interval [0,1], as opposed to being unbounded

[0,∞).

Notice that the distance-to-similarity transformation does not change the ranking of results in a
nearest-neighbor query.

The straightforward algorithm, DeltaCon0 (Algorithm 4.1), is to compute all the n2 a�nity
scores of matrix S by simply using Equation 4.2. We can do the inversion using the Power
Method or any other e�cient method.

3Using pth root instead of square root gives consistent results (for small values of p). Without loss of generality,
we use the Matusita distance, which corresponds to p = 2.

4The node a�nities are in [0, 1], so the square root makes them bigger.
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Algorithm 4.1: DeltaCon0

INPUT: edge �les of G1(V , E1) and G2(V , E2), i.e., A1 and A2

// V = V1 ∪ V2, if V1 and V2 are the graphs’ node sets
S1 = [I + ε2D1 − εA1]−1 // s1,ij : a�nity/in�uence of
S2 = [I + ε2D2 − εA2]−1 //node i to node j in G1

d(G1, G2) =RootED (S1,S2)
return sim(G1, G2) = 1

1+d(G1,G2)

4.2.2.2 Speeding up: DeltaCon

Unfortunately, DeltaCon0 is quadratic (n2 a�nity scores sij are computed by using the power
method for the inversion of a sparse matrix) and thus not scalable. Thus, we look for means to
speed up the algorithm.

We present a faster, linear algorithm, DeltaCon (Algorithm 4.2), which approximates DeltaCon0

and di�ers in the �rst step. We still want each node to become a seed exactly once in order to
�nd the a�nities of the rest of the nodes to it; but, here, we have multiple seeds at once, instead
of having one seed at a time. The idea is to randomly divide our node-set into g groups, and
compute the a�nity score of each node i to group k, thus requiring only n× g scores, which
are stored in the n× g matrix S′ (g � n). Intuitively, instead of using the n× n a�nity matrix
S, we add up the scores of the columns that correspond to the nodes of a group, and obtain
the n × g matrix S′ (g � n). The score s′ik is the a�nity of node i to the kth group of nodes
(k = 1, . . . , g).

Thus, we compute g �nal scores per node, which denote its a�nity to every group of seeds,
instead of every seed node that we had in Equation 4.2. With careful implementation, DeltaCon
is linear on the number of edges and groups g – it takes ∼ 160sec, on commodity hardware,
for a 1.6-million-node graph. Once we have the reduced a�nity matrices S′1 and S′2 of the two
graphs, we use the RootED, to �nd the similarity between the n× g matrices of �nal scores,
where g � n. The pseudocode of DeltaCon is given in Algorithm 4.2.

In an attempt to see how our random node partitioning algorithm in the �rst step fares with
respect to more principled partitioning techniques, we used METIS [KK95]. Essentially, such
an approach �nds the in�uence of coherent subgraphs to the rest of the nodes in the graph –
instead of the in�uence of randomly chosen nodes to the latter. We found that the METIS-based
variant of our similarity method gave intuitive results for most small, synthetic graphs, but not
for the real graphs. This is probably related to the lack of good edge-cuts on sparse real graphs,
and also the fact that changes within a group manifest less when a group consists of the nodes
belonging to a single community than randomly assigned nodes.

Next we give the time complexity of DeltaCon, as well as the relationship between the similarity
scores of DeltaCon0 and DeltaCon.
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Algorithm 4.2: DeltaCon
INPUT: edge �les of G1(V , E1) and G2(V , E2), i.e., A1 and A2, and

g (groups: # of node partitions)
{Vj}gj=1 = random_partition(V , g) //g groups
// estimate a�nity vector of nodes i = 1, . . . , n to group k
for k = 1→ g do
~s0k =

∑
i∈Vk ~ei

solve [I + ε2D1 − εA1]~s′1k = ~s0k

solve [I + ε2D2 − εA2]~s′2k = ~s0k

end for

S′1 = [~s′11 ~s
′
12 . . . ~s

′
1g]; S′2 = [~s′21 ~s

′
22 . . . ~s

′
2g]

// compare a�nity matrices S′1 and S′2
d(G1, G2) =RootED (S′1,S

′
2)

return sim(G1, G2) = 1
1+d(G1,G2)

Lemma 4.1: Linear Time Complexity of DeltaCon

The time complexity of DeltaCon, when applied in parallel to the input graphs, is linear
on the number of edges in the graphs, i.e., O(g ·max{m1,m2}).

Proof. By using the Power Method [KKK+11], the complexity of solving Equation 4.1 is
O(mi) for each graph (i = 1, 2). The node partitioning needs O(n) time; the a�nity
algorithm is run g times in each graph, and the similarity score is computed in O(gn)
time. Therefore, the complexity of DeltaCon is O((g + 1)n+ g(m1 +m2)), where g is a
small constant. Unless the graphs are trees, |Ei| < n, so the complexity of the algorithm
reduces to O(g(m1 +m2)). Assuming that the a�nity algorithm is run on the graphs in
parallel, since there is no dependency between the computations, DeltaCon has complexity
O(g ·max{m1,m2}). �

[KSV+15] contains more details about the relationships between DeltaCon and DeltaCon0

scores. Speci�cally, one can use the Cauchy-Swartz inequality to show that DeltaCon upper
bounds DeltaCon0 given �xed input graphs G1 and G2. Intuitively, grouping the nodes blurs
the in�uence information and makes the nodes seem more similar than originally. The proofs are
excluded here as they are not relevant to this chapter’s main focus. Summarily, DeltaCon is a
faster version of DeltaCon0 which computes node-to-group instead of node-to-node in�uences
in order to speed up the computation to linear from quadratic complexity.
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4.3 DeltaCon-Attr: Blame Attribution for Nodes and

Edges

Thus far, we have broached the intuition and decisions behind developing DeltaCon for calcu-
lating graph similarity. Next, we show how this approach can be leveraged for the purposes of
node and edge-based blame attribution. Practically, this equates to �nding out why the graph
changed the way it did and which changes were most important.

Equipped with this information, we can draw conclusions with respect to how certain changes
impact graph connectivity and apply this understanding in a domain-speci�c context to assign
blame. The resulting �ndings could also be useful for practitioners to instrument measures to
prevent such changes in the future. Additionally, such a feature can be used to measure changes
which have not yet happened in order to �nd information about which nodes and/or edges
are most important for preserving or destroying connectivity (useful for stopping the spread
of viruses on a network). In this section, we propose DeltaCon-Attr as a complementary
approach to DeltaCon which enables node and edge-based blame attribution for this very
purpose.

4.3.1 Algorithm Description

4.3.1.1 Node Attribution

Our �rst goal is to �nd the nodes which are mostly responsible for the di�erence between the
input graphs. Let the a�nity matrices S′1 and S′2 be precomputed. Then, the steps of our node
attribution algorithm (Algorithm 4.3) can be summarized to:

Step 1 Intuitively, we compute the di�erence between the a�nity of node v to the node groups
in graph A and the a�nity of node v to the node groups in graph A2. To that end, we use the
same distance, RootED, that we applied to �nd the similarity between the whole graphs.

Given that the vth row vector (v ≤ n) of S′1 and S′2 re�ects the a�nity of node v to the remainder
of the graph, the RootED distance between the two vectors provides a measure of the extent to
which that node is a culprit for change — we refer to this measure as the impact of a node. Thus,
culprits with comparatively high impact are ones that are most responsible for change between
graphs.

More formally, we quantify the contribution of each node to the graph changes by taking
the RootED distance between each corresponding pair of row vectors in S′1 and S′2 as wv for
v = 1, . . . , n per Equation 4.4.

wv = RootED(S′1,v,S
′
2,v) =

√√√√ g∑
j=1

(
√
s′1,vj −

√
s′2,vj)

2. (4.4)

Step 2 We sort the scores in the n× 1 node impact vector ~w in descending order and report
the most important scores and their corresponding nodes.
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Algorithm 4.3: DeltaCon-Attr: Node Attribution
INPUT: a�nity matrices S′1, S′2

edge �les of G1(V , E1) and G2(V , E2), i.e., A1 and A2

for v = 1→ n do

// If an edge adjacent to the node has changed, the node is responsible:
if

∑
|A1(v, :)−A2(v, :)| > 0 then

wv = RootED(S′1,v,S
′
2,v)

end if

end for

[~wsorted, ~wsortedIndex] = sortRows(~w, 1, ‘descend’) // sort rows of vector w on column index 1
//(node impact score) by descending value

return [~wsorted, ~wsortedIndex]

In reality, a practitioner might only want a partial ranking (the topmost in�uencers) from the
entire node set. This can be achieved by using a simple energy-based heuristic (i.e.: reporting
the top 80% of changes as per Fukunaga’s heuristic [Fuk90]. In practice, we �nd that impact
distributions in real graphs are skewed (although the distribution need not be 80-20).

4.3.1.2 Edge Attribution

Complementarily to the node attribution approach, we also developed an edge attribution method
which ranks edge changes (additions and deletions) with respect to the graph changes based on
the a�nity scores. The steps of our edge attribution algorithm (Algorithm 4.4) are:

Step 1 We assign each changed edge incident to at least one node in the culprit set an impact
score. This score is equal to the sum of impact scores for the nodes that the edge connects or
disconnects.

Our goal here is to assign edges impact according to the degree that they a�ect the nodes that
they touch. Since even the removal or addition of a single edge does not necessarily impact
both incident nodes equally, we choose the sum of both nodes’ scores as the edge impact metric.
The intuition is that edges which touch two nodes of moderately high impact would be ranked
higher than those which touch one node of high impact but another of low impact.

Step 2 We sort the edge impact scores in descending order and report the edges in order of
importance.

Analysis of changed edges can reveal important discrepancies from baseline behavior. Speci�-
cally, a large number of added edges or removed edges with individually low impact is indicative
of star formation or destruction, whereas one or a few added or removed edges with individually
high impact are indicative of community expansion or reduction via addition or removal of
certain key bridge edges.
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Algorithm 4.4: DeltaCon-Attr: Edge Attribution
INPUT: adjacency matrices A1, A2, culprit set of interest ~wsortedIndex,1 . . . index and node
impact scores ~w
for v = 1→ length(wsortedIndex,1 . . . index) do

srcNode = wsortedIndex,v
~r = A2,v −A1,v

for k = 1→ n do

destNode = k
if ~rk = 1 then

edgeScore = wsrcNode + wdestNode
append row [srcNode, destNode, ’+’, edgeScore] to E

end if

if ~rk = −1 then

edgeScore = wsrcNode + wdestNode
append row [srcNode, destNode, ’-’, edgeScore] to E

end if

end for

end for

Esorted = sortrows(E, 4, ’descend’) // sort rows of matrix E on column index 4 (edge impact
// score) by descending value

return Esorted

4.3.2 Scalability Analysis

Given precomputed S′1 and S′2 (precomputation is assumed since attribution can only be con-
ducted after similarity computation), the node attribution component of DeltaCon-Attr is
log-linear on the number of nodes, since n in�uence scores need to be sorted in descending
order. In practice, the linear term is generally more expensive for runtime than the sorting
operation, given the computational expense of calculating the Matusita distance between each
pair of node vectors.

With the same assumptions with respect to precomputed results, the edge attribution portion of
DeltaCon-Attr is also log-linear, but on the sum of edge counts, since m1 +m2 total possible
changed edges need to be sorted. In practice, the number of edges needing to be sorted should
be far smaller, as we only need to concern ourselves with edges which are incident to nodes in
the culprit set of interest. Speci�cally, the cost of computing impact scores for edges is linear on
the number of nodes in the culprit set k and the number of changed edges, but is again paired
with the sorting cost.

4.4 Experiments

In this section, we evaluate DeltaCon-Attr on several synthetic “toy” graphs to ascertain
obeyance of the properties proposed in subsubsection 4.2.1.4 as well as evaluate quantitative
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ranking and classi�cation performance with respect to a competing method. We additionally
report on DeltaCon-Attr’s qualitative performance on a real dataset.

4.4.1 Quantitative Results

Graph A Graph B

DeltaCon-Attr CAD

Propertiesedges nodes edges: δ for l = 5 nodes
K5 mK5 4 4 4 4

K5 m2K5 4 4 4 4 IP
B10 mB10 ∪ mmB10 4 4 4 4 P1, P2, IP
L10 mL10 ∪ mmL10 4 4 4 5,6,4 P1, IP
S5 mS5 4 4 4 1=5 P1 , P2
K100 mK100 4 4 4 4

K100 w5K100 4 4 4 4 P3
mK100 w5K100 4 4 4 4 P3
K100 m3K100 4 4 4 4 P3, IP
K100 m10K100 4 4 (80,82)=(80,88)=(80,92)* 80,30,88=92* P3, IP
P100 mP100 4 4 4 4 P1
w2P100 w5P100 4 4 4 4 P1, P3
B200 mmB200 4 4 4 4 P1
w20B200 m3B200 4 4 4 4 P1, P3, IP
S100 mS100 4 4 4 1=4 P1, P2
S100 m3S100 4 4 4 1,81=67=4 P1, P2, IP
wS100 m3S100 4 4 (1,4),(1,67),(1,81) 1,4=67,81 P1, P3, IP
Custom18 m2Custom18 4 4 (18,17),(10,11) 18,17,10,11 P1, P2
Custom18 m4Custom18b 4 4 4 5=6,17=18 P1, P3

Table 4.2: DeltaCon-Attr obeys all the required properties, while CAD does not. Each
row corresponds to a comparison between graph A and graph B, and evaluates the node and
edge attribution of DeltaCon-Attr and CAD. The right order of edges and nodes is marked in
Figures 4.1 and 4.2. We give the ranking of a method if it is di�erent from the expected one.

We �rst test DeltaCon-Attr on a number of synthetically created and modi�ed graphs, and
compare it to the state-of-the-art methods. We perform two types of experiments: The �rst
experiment examines whether the ranking of the culprit nodes by our method agrees with
intuition.

In the second experiment, we evaluate DeltaCon-Attr’s classi�cation accuracy in �nding cul-
prits, and compare it to the best-performing competitive approach, CAD5, which was introduced
by Sricharan and Das [SD14] concurrently, and independently from us. CAD uses the idea of
commute time between nodes to de�ne the anomalousness of nodes/edges. In a random walk,
the commute time is de�ned as the expected number of steps starting at i, before node j is visited
and then node i is reached again. We give a qualitative comparison between DeltaCon-Attr
and CAD in Section 4.5 (Node/Edge Attribution).

5CAD was originally introduced for �nding culprit nodes and edges without ranking them. We extended the
proposed method to rank the culprits.
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Figure 4.1: DeltaCon-Attr respects properties P1-P3, and IP. Nodes marked green are
identi�ed as the culprits for the change between the graphs. Darker shade corresponds to higher
rank in the list of culprits. Removed and weighted edges are marked red and green, respectively.

4.4.1.1 Ranking Accuracy

We extensively tested DeltaCon-Attr on a number of synthetically created and modi�ed
graphs, and compared it with CAD. We note that CAD was designed to simply identify culprits
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Figure 4.2: [continued]DeltaCon-Attr respects properties P1-P3, and IP.Nodes marked
green are identi�ed as the culprits for the change between the graphs. Darker shade corresponds
to higher rank in the list of culprits. Removed edges are marked red.

in time-evolving graphs without ranking them. In order to compare it with our method, we
adapted CAD so that it returns ranked lists of node and edge culprits: (i) We rank the culprit
edges in decreasing order of edge score ∆E; (ii) To each node v, we attach a score equal to the
sum of the scores of its adjacent edges, i.e.,

∑
u∈N(v) ∆E((v, u)), where N(v) are the neighbors

of v. Subsequently, we rank the nodes in decreasing order of attached score.

We give several of the conducted experiments in Table 4.2, and the corresponding graphs in
Figures 4.1 and 4.2. Each row of the table corresponds to a comparison between graph A and
graph B. The node and edge culprits that explain the main di�erences between the compared
graphs are annotated in Figures 4.1 and 4.2. The darker a node is, the higher it is in the ranked
list of node culprits. Similarly, edges that are adjacent to darker nodes are higher in the ranked
list of edge culprits than edges that are adjacent to lighter nodes. If the returned ranked list
agrees with the expected list (according to the formal and informal properties), we characterize
the attribution of the method correct (checkmark). If there is disagreement, we provide the
ordered list that the method returned. If two nodes or edges are tied, we use “=”. For CAD we
picked the parameter δ such that the algorithm returns 5 culprit edges and their adjacent nodes.
Thus, we mark the returned list with “*” if CAD outputs 5 culprits while more exist. For each
comparison, we also give the properties (last column) that de�ne the order of the culprit edges
and nodes.
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Observation 4.1: Adherence to Desiderata

DeltaCon-Attr re�ects the desired properties P1, P2, P3, and IP, while CAD fails to return
the expected ranked lists of node and edge culprits in several cases.

Next we explain some of the comparisons that we present in Table 4.2:

• K5-mK5: The pair consists of a 5-node complete graph and the same graph with one
missing edge, (3, 4). DeltaCon-Attr considers nodes 3 and 4 top culprits, with equal
rank, due to equivalent loss in connectivity. Edge (3, 4) is ranked top, and is essentially
the only changed edge. CAD �nds the same results.
• K5-m2K5: The pair consists of a 5-node complete graph and the same graph with two

missing edges, (3, 4) and (3, 5). Both DeltaCon-Attr and CAD consider node 3 the top
culprit, because two of its adjacent edges were removed. Node 3 is followed by 4 and 5,
which are tied since they are both missing one adjacent edge (Property IP). The removed
edges, (3, 4) and (3, 5), are considered equally responsible for the di�erence between the
two input graphs. We observe similar behavior in larger complete graphs with 100 nodes
(K100, and modi�ed graphs mK100, w5K100 etc.). In the case of K100 and m10K1006, CAD
does not return all 13 node culprits and 10 culprit edges because its parameter, δ, was set
so that it would return at most 5 culprit edges7.
• B10-mB10 ∪mmB10: We compare a barbell graph of 10 nodes to the same graph that

is missing both an edge from a clique, (6, 7), and the bridge edge, (5, 6). As expected,
DeltaCon-Attr �nds 6, 5 and 7 as top culprits, where 6 is ranked higher than 5, since 6
lost connectivity to both nodes 5 and 7, whereas 5 disconnected only from 6. Node 5 is
ranked higher than 7 because the removal of the bridge edge is more important than the
removal of (6, 7) within the second clique (Property P1). CAD returns the same results. We
observe similar results in the case of the larger barbell graphs (B200, mmB200, w20B200,
m3B200).
• L10-mL10 ∪mmL10: This pair of graphs corresponds to the lollipop graph, L10, and

the lollipop variant, mL10 ∩mmL10, that is missing one edge from the clique, as well
as a bridge edge. Nodes 6, 5 and 4 are considered the top culprits for the di�erence in
the graphs. Moreover, 6 is ranked more responsible for the change than 5, since 6 lost
connectivity to a more strongly connected component than 5 (Property P2). However,
CAD ranks node 5 higher than node 6 despite the di�erence in the connectivity of the
two components (violation of P2).
• S5, mS5: We compare a 5-node star graph, and the same graph missing the edge (1, 5).

DeltaCon-Attr considers 5 and 1 top culprits, with 5 ranking higher than 1, as the edge
6m10K100 is a complete graph of 100 nodes where we have removed 10 edges: (i) 6 of the edges were adjacent

to node 80—(80, 82), (80, 84), (80, 86), (80, 88), (80, 90), (80, 92); (ii) 3 of the edges were adjacent to node 30—
(30, 50), (30, 60), (30, 70); and (iii) edge (1, 4).

7The input graphs are symmetric. If edge (a, b) is considered culprit, CAD returns both (a, b) and (b, a), which
have the same anomalousness score.
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removal caused a loss of connectivity from node 5 to all the peripheral nodes of the star,
2, 3, 4, and the central node, 1. CAD considers nodes 1 and 5 equally responsible, ignoring
the di�erence in the connectivity of the components (violation of P2). Similar results are
observed in the comparisons between the larger star graphs–S100, mS100, m3S100, wS100.
• Custom18-m2Custom18: The ranking of node culprits that DeltaCon-Attr �nds is 11,

10, 18, and 17. The nodes 11 and 10 are considered more important than the nodes 18 and
17, as the edge removal (10, 11) creates a large connected component and a small chain of
4 nodes, while the edge removal (17, 18) leads to a single isolated node (18). Node 10 is
higher in the culprit list than node 11 because it loses connectivity to a denser component.
The reasoning is similar for the ranking of nodes 18 and 17. CAD does not consider the
di�erences in the density of the components, and leads to a di�erent ranking of the nodes.
• Custom18-m2Custom18: The ranking of node culprits that DeltaCon-Attr returns is

5, 6, 18, and 17. This is in agreement with properties P1 and P3, since the edge (5, 6) is
more important than the edge (17, 18). Node 5 is more responsible than node 6 for the
di�erence between the two graphs, as node 5 ends up having reduced connectivity to a
denser component. This property is ignored by CAD, which thus results in di�erent node
ranking.

As we observe, in all the synthetic and easily controlled examples, the ranking of the culprit
nodes and edges that DeltaCon-Attr �nds agrees with intuition.

4.4.1.2 Classi�cation Accuracy

To further evaluate the accuracy of DeltaCon-Attr in classifying nodes as culprits, we perform
a simulation-based experiment and compare our method to CAD. Speci�cally, we set up a
simulation similar to the one that was introduced in [SD14].

We sample 2000 points from a 2-dimensional Gaussian mixture distribution with four compo-
nents, and construct the matrix P ∈ R2000×2000, with entries p(i, j) = exp ||i− j||, for each pair
of points (i, j). Intuitively, the adjacency matrix P corresponds to a graph with four clusters
that have strong connections within them, but weaker connections across them. By following
the same process and adding some noise in each component of the mixture model, we also build
a matrix Q, and add more noise to it, which is de�ned as:

Rij =

{
0 with probability 0.95

uij ∼ U(0, 1) otherwise,

where U(0, 1) is the uniform distribution in (0, 1). Then, we compare the two graphs, GA

and GB , to each other, which have adjacency matrices A = P and B = Q + (R + R′)/2,
respectively. We consider culprits (or anomalous) the inter-cluster edges for which Rij 6= 0,
and the adjacent nodes. According to property P1, these edges are considered important (major
culprits) for the di�erence between the graphs, as they establish more connections between
loosely coupled clusters.

Conceptually, DeltaCon-Attr and CAD are similar because they are based on related meth-
ods [KKK+11] (Belief Propagation and Random Walk with Restarts, respectively). As shown in
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Figure 4.3: DeltaCon-Attr ties the state-of-the-art with respect to accuracy. Each plot
shows the ROC curves for DeltaCon-Attr and CAD for di�erent realizations of two synthetic
graphs. The graphs are generated from points sampled from a 2-dimensional Gaussian mixture
distribution with four components.

Figure 4.3, the simulation described above corroborates this argument, and the two methods
have comparable performance – i.e., the areas under the ROC curves are similar for various
realizations of the data described above. Over 15 trials, the AUC of DeltaCon-Attr and CAD
is 0.9922 and 0.9934, respectively.
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Observation 4.2: Accuracy on Graphs with Good Cuts

Both methods are very accurate in detecting nodes that are responsible for the di�erences
between two highly-clustered graphs (Property P1).

4.4.1.3 Runtime

The amount of time taken for DeltaCon-Attr is trivial even for large graphs, given that the
necessary a�nity matrices are already in memory from the DeltaCon similarity computation.
Speci�cally, node and edge attribution are log-linear on the nodes and edges, respectively, given
that sorting is unavoidable for the task of ranking.

To compare the runtime of DeltaCon-Attr with the runtime of CAD, we perform the runtime
experiment that the authors ran in [SD14]. Speci�cally, we generate sparse uniformly distributed
random and symmetric matrices of n = O(107) nodes, and sparsity level 1

n
. Over 10 trials, the

combined runtime of DeltaCon and DeltaCon-Attr is 4.01 minutes on average on a less
powerful machine8 than the one used in [SD14], while the reported time for CAD is 5 minutes
on average. Thus, our method is faster than CAD, while having comparable or better accuracy
on small and large synthetic datasets.

4.4.2 Qualitative Results

We employed DeltaCon-Attr to analyze the ENRON dataset, which consists of emails sent
among employees at ENRON over a span of more than two years. The dataset was introduced
in [KY04] and contains 36,692 nodes representing email addresses both internal and external
to Enron along with 367,662 edges representing e-mail communications. Of these, we ignored
e-mail addresses outside of the Enron corporate network, restricting our focus to employees. Fur-
thermore, we restrict application of DeltaCon-Attr to the months of May 2001 and February
2002, which are the most anomalous months according to DeltaCon applied on a month-to-
month scale. Based on the node and edge culprit rankings produced as a result, we drew several
real-world conclusions as listed below, involving key players in the ENRON �nancial scandal.

May 2001:
• Top In�uential Culprit: John Lavorato, the former head of Enron’s trading operations and

CEO of Enron America, connected to ∼50 new nodes in this month.
• Second Most In�uential Culprit: Andy Zipper, VP of Enron Online, maintained contact

with all those from the previous month, but also connected to 12 new people.
8The source code of [SD14] is not yet available, while we have implemented their naïve algorithm which is

cubic. To make a more fair comparison between the two methods, we reproduced the experiment that the authors
described, ran only our method, and compared the runtime of DeltaCon to the reported runtime of CAD. For this
experiment we used a 64-bit 2.8GHz single quad core AMD Opteron (tm) Processor 854 with 32GB RAM, while the
authors of CAD used a 64-bit 2.3 GHz dual quad core Dell Precision T7500 desktop with 32GB RAM.
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• Third Most In�uential Culprit: Louise Kitchen, another employee (President of ENRON
Online) lost 5-6 connections and made 5-6 connections. Most likely, some of the connec-
tions she lost or made were very signi�cant in terms of expanding/reducing her o�ce
network.

February 2002:
• Top In�uential Culprit: Liz Taylor lost 51 connections this month but made no new ones -

it is reasonable to assume that she likely quit the position or was �red.
• Second Most In�uential Culprit: Louise Kitchen (third culprit in May 2001) made no new

connections, but lost 22 existing ones.
• Third Most In�uential Culprit: Stan Horton (CEO of Enron Transportation) made 6 new

connections and lost none. Some of these connections are likely signi�cant in terms of
expanding his o�ce network.
• Fourth, Fifth and Sixth Most In�uential Culprits: Employees Kam Keiser, Mike Grigsby

(former VP for Enron’s Energy Services) and Fletcher Sturm (VP) all lost many connections
and made no new ones. Their situations were likely similar to those of L. Taylor and
L. Kitchen.

4.5 Related Work

We categorize relevant prior literature into two main areas: anomaly detection, and blame
attribution. We give the related work in each area, and mention what sets our method apart.

Anomaly Detection. Anomaly detection in static graphs has been studied using various data
mining and statistical techniques [ATK14, KC10, ACK+12, LKKF13, KLKF14]. Detection of
anomalous behaviors in time-evolving networks is more relevant to our work, and is covered
in the surveys [ATK14, RSK+15]. A non-inclusive list of works on temporal graph anomaly
detection follows. [MGF11], [KPF12] and [MWP+14] employ tensor decomposition to identify
anomalous substructures in graph data in the context of intrusion detection. Henderson et
al. propose a multi-level approach for identifying anomalous behaviors in volatile temporal
graphs based on iteratively pruning the temporal space using multiple graph metrics [HERF+10].
CopyCatch [BXG+13] is a clustering-based MapReduce approach to identify lockstep behav-
ior in Page Like patterns on Facebook. Akoglu and Faloutsos use local features and the node
eigen-behaviors to detect points of change – when many of the nodes behave di�erently –, and
also spot nodes that are most responsible for the change point [AF10]. Finally, [SD14] monitors
changes in the commute time between all pairs of nodes to detect anomalous nodes and edges in
time-evolving networks. All these works use various approaches to detect anomalous behaviors
in dynamic graphs, though they are not based on the similarity between graphs, which is the
focus of our work.

Blame Attribution. Some of the anomaly detection methods discover anomalous nodes, and
other anomalous structures in the graphs. In a slightly di�erent context, a number of techniques
have been proposed in the context of node and edge importance in graphs. PageRank, HITS
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[Kle99b] and betweenness centrality (random-walk-based [New05] and shortest-path-based
[Fre77]) are several such methods for the purpose of identifying important nodes. [TPER+12]
proposes a method to determine edge importance for the purpose of augmenting or inhibiting
dissemination of information between nodes. To the best of our knowledge, this and other
existing methods focus only on identifying important nodes and edges in the context of a single
graph. In the context of anomaly detection, [AF10] and [SD14] detect nodes that contribute
mostly to change events in time-evolving networks.

Among these works, the most relevant to ours are the methods proposed by [AF10] and [SD14].
The former –which is based on [IKIK04]– extracts node features, computes an “eigen”-behavior
per node, and spots changes each node’s behavior over time. Therefore, the method relies
on the selection of features (e.g., in-degree, out-degree, edge weights, number of triangles).
Moreover, because of the focus on local egonet features, it may not distinguish between small
and large changes in time-evolving networks, and it also tends to return a large number of false
positives [SD14]. At the same time, and independently from us, Sricharan and Das proposed
CAD [SD14], a method which de�nes the anomalousness of edges based on the commute
time between nodes. The commute time is the expected number of steps in a random walk
starting at i, before node j is visited and then node i is reached again. This method is closely
related to DeltaCon-Attr as Belief Propagation and Random Walks with Restarts (the core
idea behind CAD) are equivalent under certain conditions [KKK+11]. However, the methods
work in di�erent directions: DeltaCon-Attr �rst identi�es the most anomalous nodes, and
then de�nes the anomalousness of edges as a function of the outlierness of the adjacent nodes;
CAD �rst identi�es the most anomalous edges, and then de�nes all their adjacent nodes as
anomalous without ranking them. Our method does not only �nd anomalous nodes and edges
in a graph, but also ranks them in decreasing order of anomalousness (which can be used for
guiding attention to important changes).

4.6 Conclusion

In this work, we tackled the problem of node- and edge-based blame attribution between
two graphs with known node correspondence. To this end, we proposed DeltaCon-Attr,
an e�ective and scalable blame attribution approach which leverages the DeltaCon graph
similarity algorithm and adheres to a number of intuitive desiderata such as edge importance,
edge “submodularity,” weight awareness and focus awareness. Our approach meets these
criteria while other state-of-the-art competitors do not. We demonstrates intuitiveness and
adherence to the aforementioned properties on a variety of synthetic graphs, and further
demonstrate comparable anomaly detection performance to state-of-the-art approaches while
also maintaining a shorter runtime. Finally, we show some qualitative results and interesting
�ndings upon applying DeltaCon-Attr to the ENRON e-mail dataset which signal abnormal
changes in connectivity across key months of the ENRON scandal.
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Chapter 5

ConDeNSe: Reducing Large

Graphs to Small Supergraphs

Harnessing the power of various graph
decomposition methods for summarization.

Based on content published in [LSK15, LSSK]

Given the increasing size and scale of graphs, summarizing and routing attention to their
most important and relevant components is a key task. In this chapter, we propose a new
state-of-the-art graph summarization algorithm called ConDeNSe which summarizes an
input graph using approximate "super-graphs" conditioned on a set of diverse, prede�ned
structural patterns. Our method can incorporate a variety of summary-assembly methods
including traditional clustering and partitioning algorithms, e�ciently integrate and au-
tomatically annotate their outputs, and produce interpretable and sparse visualizations of
large graphs.

5.1 Introduction

In an era of continuous generation of large amounts of data, summarization techniques are
increasingly crucial as they abstract away noise, help uncover patterns, and hence inform
human decision processes. In this paper, we focus on the summarization of graphs, which
are powerful structures that capture a number of phenomena from communication between
people to interactions between neurons in our brains. Graph summarization methods lead to
the reduction of data volume, speedup of graph algorithms, improved storage and query time,
and interactive visualization. The graph mining community has mainly studied summarization
techniques for the structure of static, plain graphs [CKL+09, NRS08] and to a smaller extent,
methods for attributed or dynamic networks [SKZ+15].
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(a) Prior work [KKVF14a]. (b) Our method: ConDeNSe-Step.

Figure 5.1: AS-Oregon supergraphs: ConDeNSe generates simpler and more compact

supergraphs. Yellow, red, and green nodes for stars, cliques, and bipartite cores, respectively.

We focus on summarizing the structure of a given large-scale network by selecting a small set
of its most informative structural patterns. Inspired by recent work [NRS08, KKVF14a], we
formulate graph summarization as an information-theoretic optimization problem in search of
local structures that collectively minimize the description length of the graph.

We introduce ConDeNSe (CONditional Diversi�ed Network Summarization), a uni�ed, edge-
overlap-aware graph summarization method that summarizes a given graph with approximate
“supergraphs” conditioned on diverse, prede�ned structural patterns. An example is shown in
Figure 5.1, where the (super)nodes in sub�gure 5.1b correspond to sets of nodes in the original
graph. Speci�cally, the prede�ned patterns include structures that have well-understood graph-
theoretical properties and have been found in many real-world graphs [kle99a, AGMF14, FFF99,
PSS+10]: cliques, stars, bipartite cores, chains, and patterns with skewed degree distribution.
Our approach selects the patterns that minimize the description of the graph in terms of num-
ber of bits. Our work e�ectively addresses three main shortcomings of prior summarization
work [KKVF14a], namely: (i) heavy dependence on the structural pattern discovery method and
its intrinsic bias towards star-like structures; (ii) inability to handle edge-overlapping patterns
in the summary, leading to redundancy; and (iii) heuristic dependence on the order in which
structures are considered for inclusion in the summary. Our proposed uni�ed approach e�ec-
tively handles these issues and results in robust and compact summaries with 5− 10× fewer
structural patterns (or supernodes), up to 50% better compression and better node coverage of
the input graph.

ConDeNSe has three main modules that tackle the above-mentioned shortcomings: (i) A uni�ed
structural pattern discovery module leverages the strengths of various popular graph clustering
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methods (e.g., Louvain [BGLL08], METIS [KK99]) to address the structural biases that each
method introduce in the graph summary; (ii) A Minimum Description Length-based (MDL)
formulation with a penalty term e�ectively minimizes redundancy in edge coverage by the
structural patterns included in the summary, thereby promoting higher node coverage. This term
is paramount when the candidate structural patterns have signi�cant edge overlap, such as in
the case of our uni�ed structure discovery module; (iii) An iterative, multi-threaded, and divide-
and-conquer-based summary assembly module reduces even more bias during the summary
creation process by being independent of the order in which the candidate structural patterns
are considered. This parallel module is up to 53× faster than its serial version (on a 6-core
machine). Additionally, we show how ConDeNSe can be further used for visual interpretation
and summarization of large graphs with an approximate supergraph creation module which
depicts a large graph concisely using few structural (possibly overlapping) “supernodes” and
“superedges” between them.

Our contributions in this paper are as follows:

• Approach: We introduce ConDeNSe, an e�ective uni�ed, edge-overlap-aware graph sum-
marization approach with a powerful parallel summary assembly module (k-Step) that creates
compact and easy-to-understand graph summaries with high node coverage and low redun-
dancy.

• Novel Metric: We propose a way to leverage ConDeNSe as a proxy to compare graph
clustering methods with respect to their summarization performance on large, real-world
graphs, complementing the usual evaluation metrics in the related literature (e.g., modularity,
conductance).

• Experiments: We present a thorough empirical analysis on real networks to evaluate the
summary quality and runtime, and study the properties of seven clustering methods.

5.2 Related Work and Background

Our work is related to graph summarization methods, MDL, and graph clustering. We review
each of these topics in turn.

Graph Summarization. Most research e�orts focus on plain graphs and can be broadly
classi�ed as group-based [LT10, RGM03], compression-based [CKL+09, NRS08], simpli�cation-
based, in�uence-based, and pattern-based [CH94]. Dynamic graph summarization has been
studied to a much smaller extent [SKZ+15]. Most related to our work are the ideas of node
grouping and graph compression. Built on these ideas, two representative methods, MDL-
summarization [NRS08] and VoG [KKVF14a], are MDL-based summarization methods that
compress the graphs by �nding near-structures (e.g., (near-) cliques, (near-) bipartite cores).
MDL-summarization, which iteratively combines neighbors into supernodes as long as it helps
with minimizing the compression cost, includes mostly cliques and cores in the summaries,
and has high runtime complexity. On the other hand, VoG �nds structures by employing
SlashBurn [KF11a] (explained below) and hence is particularly biased towards stars. Moreover,
it creates summaries (i.e., lists of structures) using a greedy heuristic on a pre-ordered set of
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structures (cf. Section 5.4.3). Unlike these methods, ConDeNSe performs ensemble pattern
discovery, handles edge-overlapping structures, and its summary assembly is robust to the struc-
ture ordering. Thus, it leads to more compact and less biased summaries, creates approximate
and easy-to-understand supergraphs, and can be used as a proxy to evaluate clustering methods
in a novel way.

MDL in Graph Mining. Many data mining problems are related to summarization and pat-
tern discovery, and, thus, to Kolmogorov complexity [FM07], which can be practically imple-
mented by the MDL principle [Ris83]. Applications include clustering [CV05], community
detection [CPMF04], pattern discovery in static and dynamic networks [KKVF14a, SKZ+15],
and more.

Graph Clustering. Graph clustering and community detection are of great interest to many
domains, including social, biological, and web sciences [GN02, BKM+08, For10]. Here, we
leverage several graph clustering methods to obtain diversi�ed graph summaries, since each
method is biased toward certain types of structures, such as cliques and bipartite cores [BGLL08,
KK99, YL13] or stars [KF11a]. Unlike existing literature [LLM10] where clustering methods are
compared with respect to classic quality measures, we also propose to use ConDeNSe as a vessel
to evaluate the methods’ summarization power. We leverage seven decomposition methods,
which we compare quantitatively in Table 5.1:

• SlashBurn [KF11a] is a node reordering algorithm initially developed for graph compression.
It performs two steps iteratively: (i) It removes high-centrality nodes from the graph; (ii)
It reorders nodes such that high-degree nodes are assigned the lowest IDs and nodes from
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Overlapping

4 8 8 8 4 4 4
Clusters

Cliques Many Many Many Many Some Many Many
Stars Many Some Some Some Many Some Some
Bipartite Cores Some Few Many Some Some Few Few
Chains Few Few Few Few Few Few Few
Hyperbolic Few Few Few Few Many Few Few
Structures

Complexity O(t(m+ n log n)) O(n log n) O(m+ nk) O(m · k)
O(k(m+ h log h2

O(d · n · t) O(t(m+ n))
+hmh))

Summarization Excellent Very Good Good Good Poor Good Poor
Power

Table 5.1: Qualitative comparison of the graph clustering techniques included in ConDeNSe.
Symbols: n = number of nodes, m = number of edges, k = number of clusters/partitions, t =
number of iterations, d = average degree, h(mh) = number of nodes (edges) in hyperbolic
structure.
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disconnected components get the highest IDs. The process is repeated on the giant connected
component. We leverage this process by identifying structures from the egonet of each high-
centrality node, and the disconnected components, as subgraphs.

• Louvain [BGLL08] is a modularity-based partitioning method for detecting hierarchical
community structure. The method is iterative: (i) Each node is placed in its own community.
Then, the neighbors j of each node i are considered, and i is moved to j’s community if the move
produces the maximum modularity gain. The process is applied repeatedly until no further gain
is possible. (ii) A new graph is built whose supernodes represent communities, and superedges
are weighted by the sum of weights of links between the two communities. The algorithm
typically converges in a few passes.

• Spectral clustering refers to a class of algorithms that utilize eigendecomposition to identify
community structure. We utilize one such spectral clustering algorithm [Hes], which partitions
a graph by performing k-means clustering on the top-k eigenvectors of the input graph. The
idea behind this clustering is that nodes with similar connectivity have similar eigen-scores in
the top-k vectors and form clusters.

•METIS [KK99] is a cut-based k-way multilevel graph partitioning scheme based on multilevel
recursive bisection (MLRB). Until the graph size is substantially reduced, it �rst coarsens the
input graph by grouping nodes into supernodes iteratively such that the edge-cut is preserved.
Next, the coarsened graph is partitioned using MLRB, and the partitioning is projected onto the
original input graph G through backtracking. The method produces k roughly equally-sized
partitions.

• HyCoM [AGMF14] is a parameter-free algorithm that detects communities with hyperbolic
structure. It approximates the optimal solution by iteratively detecting important communities.
The key idea is to �nd in each step a single community that minimizes an MDL-based objective
function given the previously detected communities. The iterative procedure consists of three
steps: community candidates, community construction, and matrix de�ation.

• BigClam [YL13] is a scalable overlapping community detection method. It is built on the
observation that overlaps between communities are densely connected. By explicitly modeling
the a�liation strength of each node-community pair, the latter is assigned a nonnegative latent
factor which represents the degree of membership to the community. Next, the probability of
an edge is modeled as a function of the shared community a�liations. The identi�cation of
network communities is done by �tting BigClam to a given undirected network G.

• KCBC [LSK15] is inspired by the k-cores algorithm [GTV11] that unveils densely connected
structures. A k-core is a maximal subgraph for which each node is connected to at least k
other nodes. KCBC iteratively removes k-cores starting by setting k equal to the maximum core
number (max value k for which the node is present in the resulting subgraph) across all nodes.
Each connected component in the induced subgraphs is identi�ed as a cluster, and is removed
from the original graph. The process is repeated on the remaining graph.
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Other clustering methods that we considered (e.g., Weighted Stochastic Block Model or WSBM)
are not included in ConDeNSe due to scalability. For instance, WSBM took more than a week to
�nish on our smallest dataset.

5.3 ConDeNSe: Proposed Model

We formulate the graph summarization problem as a graph compression problem. Let G(V , E)
be a graph with n = |V| nodes andm = |E| edges, without self-loops. The Minimum Description
Length (MDL) problem, which is a practical version of Kolmogorov Complexity [FM07], aims to
�nd the best model M in a given family of modelsM for some observed data D such that it
minimizes L(M) + L(D|M), where L(M) is the description length of M in bits and L(D|M)
is the description length of D which is encoded by the chosen model M (see Chapter 2 for more
background on MDL). Table 5.2 provides the de�nitions of the recurrent symbols used in this
section.

We consider summaries in the model familyM, which consists of all possible permutations
of subsets of structural patterns in Ω. One option is to populate Ω with the frequent patterns
that occur in the input graph (in a data-driven manner), but frequent subgraph mining is NP-
complete and does not scale well. Moreover, even e�cient approximate approaches are not
applicable to unlabeled graphs and can only handle small graphs with a few tens or hundreds

Notation Description

G(V, E), A graph, and its adjacency matrix
V , n = |V| node-set and number of nodes of G, resp.
E , m = |E| edge-set and number of edges of G, resp.
k # of clusters or communities or patterns
t # of iterations
h,mh size of hyperbolic community, and # of edges in it, resp.
d average degree of nodes in G
hslash # of hub nodes to slash per iteration in SlashBurn
fc, bc, st, ch, hs full clique, bipartite core, star, chain, hyperbolic structure, resp.
|fc|, |bc|, |st|, |ch|, |hs| number of nodes in the corresponding structure
Ω prede�ned set of structural pattern types
M a model or summary for G
s structure in M
|S|, |s| cardinality of set S and number of nodes in s, resp.
||s||, ||s||′ # existing and non-existing edges of A that s describes
E error matrix, E = M ⊕A, where ⊕ is exclusive OR
O edge-overlap penalty matrix
L(G,M) # of bits to describe model M , and G using M
L(M), L(O), L(s) # of bits to describe M , the edge overlap O, and structure s

Table 5.2: Major symbols and de�nitions.
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of nodes. To circumvent this problem, we choose set Ω with �ve patterns that are common in
real-world static graphs [kle99a, AGMF14], correspond to interesting real behaviors, and can
(approximately) describe a wide range of structural patterns: stars (st), full cliques (fc), bipartite
cores (bc), chains (ch), and hyperbolic structures with skewed degree distribution (hs). Under
the MDL principle, any approximate structures (e.g., near-cliques) can be easily encoded as
their corresponding exact structures (e.g., fc) with some errors. Since many communities have
hyperbolic structure [AGMF14] and it cannot be expressed as a simple composition of the other
structural patterns in Ω, we consider it separately. Motivated by real-world discoveries, we focus
on structures that are commonly found in networks, but our framework is not restricted to them;
it can be readily extended to other, application-dependent types of structures as well.

Formally, we tackle the following problem:

Problem 5.1: Overlap-Aware Summarization

Given a graph G with adjacency matrix A and structural pattern types Ω, we seek to �nd
the model M that minimizes the encoding length of the graph and the redundancy in edge
coverage:

L(G,M) = L(M) + L(E) + L(O) (5.1)

where M is A’s approximation induced byM , E = M⊕A is the error matrix to correct for
edges that were erroneously described by M , ⊕ is exclusive OR, and O is the edge-overlap
matrix to penalize edges covered by many patterns.

Model M induces a supergraph with each s ∈M as an (approximate) supernode, and weighted
superedges between them. Before we further formalize the task of encoding the model, the
error matrix, and the edge-overlap penalty matrix, we provide a visual illustration of our MDL
objective.

An Illustrative Example. Figure 5.2 shows the original adjacency matrix A of an input graph,
which is encoded as (i) M (the matrix that is induced by the modelM ), and (ii) the error matrix E
(which captures additional/missing edges that are not properly described inM ). In this example,
there are 6 structures in the model (from the top left corner to the bottom right corner: a star, a large
clique, a small clique, a bipartite core, a chain, and a hyperbolic structure), where the cliques and
the bipartite core have overlapping nodes and edges.

5.3.1 Encoding the Model

To fully describe a model M ∈M for the input graph G, we encode it as L(M):

L(M) = LN(|M |+ 1) + log

(
|M |+ |Ω| − 1

|Ω| − 1

)
+
∑
s∈M

(
− log Pr(x(s) |M) + L(s)

)
(5.2)

where in the �rst two terms we encode the number of structural patterns in M using Rissanen’s
optimal encoding for integers [Ris83] and the number of patterns per type in Ω, respectively.
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Figure 5.2: An illustration of MDL encoding of a toy graph.

Then, for each structure s ∈M , we encode its type x(s) using optimal pre�x codes [CT06], and
its connectivity L(s). Next, we introduce the MDL encoding per type of structure in Ω.

• Stars: A star consists of a “hub” node connected to two or more “spoke” nodes. We encode it
as:

L(st) = LN(|st| − 1) + log2n+ log2

(
n− 1

|st| − 1

)
(5.3)

where we encode in order the number of spokes, the hub ID (we identify it out of n nodes using
an index over the combinatorial number system), and the spoke IDs.

• Cliques: A clique is a densely connected set of nodes with:

L(fc) = LN(|fc|) + log2

(
n

|fc|

)
(5.4)

where we encode its number of nodes followed by their IDs.

• Bipartite Cores: A bipartite core consists of two non-empty sets of nodes, L and R, which
have edges only between them, and L ∩R = ∅. Stars are a special case of bipartite cores with
|L| = 1. The encoding cost is given as:

L(bc) = LN(|L|) + LN(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
, (5.5)

where we encode the number of nodes in L and R followed by the node IDs in each set.

• Chains: A chain is a series of nodes that are linked consecutively–e.g. node-set {a, b, c, d} in
which a is connected to b, b is connected to c, and c is connected to d. Its encoding cost, L(ch),
is:
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L(ch) = LN(|ch| − 1) +

|ch|∑
i=1

log2(n− i+ 1) (5.6)

where we encode its number of nodes, followed by their node IDs in order of connection.

•Hyperbolic Structures: A hyperbolic structure or community [AGMF14] has skewed degree
distribution which often follows a power law with exponent between -0.6 and -1.5. The encoding
length of a hyperbolic structure hs is given as:

L(hs) = r + LN(|hs|) + log2

(
n

|hs|

)
+ log2(|A(hs)|) + ||hs||l1 + ||hs||′l0 (5.7)

where we �rst encode the power-law exponent (using Rissanen’s encoding [Ris83] for the
integer part, the number of decimal values, and the decimal part) with r bits, followed by the
number of nodes and their IDs. Then, we encode the number of edges in the structure (=|A(hs)|),
and use optimal pre�x codes, l0, l1, for the missing (||hs||′) and present (||hs||) edges, respectively.
Speci�cally, l1 = − log((||hs||/(||hs||+ ||hs||′)), and l0 is de�ned similarly.

5.3.2 Encoding the Errors

Given that M is a summary, and M is only an approximation of A, we also need to encode
errors of the model. For instance, a near-clique is represented as a full clique in the model, and,
thus, contributes some edges to the error matrix (i.e., the missing edges from the real data).
We encode the error E = M⊕A in two parts, E+ and E−, since they likely follow di�erent
distributions [KKVF14a]. The former encodes the edges induced by M which were not in the
original graph, and the latter the original edges that are missing in M :

L(E+) = log2(|E+|) + ||E+||l1 + ||E+||′l0 (5.8)
L(E−) = log2(|E−|) + ||E−||l1 + ||E−||′l0 (5.9)

where we encode the number of 1s in E+ (or E−), followed by the actual 1s and 0s using optimal
pre�x codes (as before).

5.3.3 Encoding the Edge-Overlap Penalty

Several of the graph decomposition methods that we consider (e.g., SlashBurn, KCBC in
Table 5.1) generate edge-overlapping patterns. The MDL model we have presented so far
naturally handles node overlaps—if two structures consist of the same large set of nodes, only
one of the them will be chosen during the encoding cost minimization process, because their
combination would lead to higher encoding cost. However, up to this point, the model considers
a binary state for each edge: that is, an edge is described by the model M , or not described by it.
This can lead to summaries with high redundancy in edge coverage and low node coverage, as
excessively repeated edge coverage is not penalized.

67



To explicitly handle extensive edge overlaps in the graph summaries, we add an extra penalty
term, L(O), in the optimization function in Equation (5.1). We introduce the matrix O, which
maintains the number of times each edge is described byM , i.e., the number of selected structures
in which the edge occurs. We encode the description length of O as:

L(O) = log2(|O|) + ||O||l1 + ||O||′l0 +
∑

o∈E(O)

LN(|o|) (5.10)

where we �rst encode the number of distinct overlaps, and then use the optimal pre�x code to
encode the number of the present and missing entries in O. As before, l0 and l1 are the lengths
of the optimal pre�x codes for the present and missing entries, respectively. Finally, we encode
the weights in O using the optimal encoding for integers LN [Ris83]. We denote with E(O) the
set of non-negative entries in matrix O.

The introduction of the overlap term in the optimization function inherently leads to better
node coverage of the graph. Intuitively, a new structure with high edge overlap to an existing
structure is commensurately penalized under this scheme for repeating some of the existing
structure’s edges. This results in choosing structures which explain di�erent regions of the
graph without excessively repeating edges, biasing the solution away from redundancy.

Our proposed edge-overlap aware encoding can e�ectively handle a model family M that
consists of subsets of node- and edge-overlapping structural patterns, and can choose a model
M that describes the input graph well, and also minimizes redundant modeling of nodes and
edges.

5.4 ConDeNSe: Our Proposed Algorithm

Based on the model from Section 5.3, we propose ConDeNSe, an ensemble, edge-overlap-aware
algorithm that summarizes a graph with a compact supergraph consisting of a diverse set
of structural patterns (e.g., fc, hs). ConDeNSe consists of four modules, which we give in
Algorithm 5.1 and describe in detail next.

5.4.1 Module A: Uni�ed Pattern Discovery Module

As we mentioned, earlier, in our formulation, we consider summaries in the model familyM,
which consists of all possible permutations of subsets of structural patterns in Ω (e.g., a summary
with 10 full cliques, 3 bipartite cores, 5 stars and 9 hyperbolic structures). Towards this goal,
the �rst step is to discover subgraphs in the input graph. These can then be used to build its
summary. To �nd the ‘perfect’ graph summary, we would need to generate all possible (2n)
patterns for a given graph G, and then, from all possible (22n) combinations of these patterns
pick the set that minimizes Equation (5.1). This is intractable even for small graphs. For example,
for n = 100 nodes, there are more than 2nonillion (1 nonillion = 1030) possible summaries. We
reduce the search space by considering patterns that are found via graph clustering methods,
and are likely to �t well the structural patterns in Ω.
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Algorithm 5.1: ConDeNSe
1: Input: graph G, parameters of clustering methods in Module A

2: // Module A: Pattern discovery: Discovery of a diverse set of patterns P .
3: P = SlashBurn (G, hslash) ∪ Louvain (G, τ ) ∪ Spectral (G, k) ∪METIS (G, k)
4: ∪ HyCoM (G) ∪ BigClam (G) ∪ KCBC (G) {discussion of parameters in Sec. 5.5}
5: //Module B: MDL-based structural pattern identi�cation as full cliques, bipartite cores, stars,
6: // chains and hyperbolic structures.
7: for g ∈ P
8: for ω ∈ Ω
9: // e.g., hub identi�cation in star structure ω=‘st’ (Section 5.4.2)

10: r(g, ω) = ‘best’ representation of g as structure type ω
11: // s: type of structure for pattern g using its best representation r(g, ω)
12: s = arg minω∈Ω Lr(g,ω)(g, ω) = arg minω∈Ω{L(ω) + L(E+

ω ) + L(E−ω )} {using Eq. (5.3)-(5.7)}
13: //Module C: Overlap-aware summary assembly by employing Step or its faster variants

(Section 5.4.3).
14: M = arg minL(G,M) = arg min{L(M) + L(E) + L(O)} {Eq. (5.1),(5.2),(5.8)-(5.10)}
15: // Module D: Approximate supergraph GS(VS , ES) creation conditional on the discovered

patterns
16: // (supernodes linked via weighted superedges).
17: VS = {s ∈M} {supernodes = structures in M }
18: ES = {(si, sj , wij) | wij = |{u, v}|, node u ∈ si, node v ∈ sj , i 6= j} {superedges}
19: return approximate supergraph GS(VS , ES) (summary M )

The literature is rich in graph clustering methods [BGLL08, KK99, YL13, KF11a]. However,
each approach is biased towards speci�c types of structures, which are most often cliques
and bipartite cores. Choosing a decomposition method to generate patterns for the summary
depends on the domain, the expected patterns (e.g., mainly clique- or star-like structures), and
runtime constraints. To mitigate the biases introduced to the summary by individual clustering
methods, and consider a diverse set of candidate patterns, we propose a uni�ed approach that
leverages seven existing clustering methods: SlashBurn, Louvain, Spectral, METIS, HyCoM,
BigClam, and KCBC (which we described in Sec. 5.2). In Table 5.1, we present the qualitative
advantages, disadvantages, and biases of the methods. Speci�cally, SlashBurn tends to provide
excellent graph coverage and biased summaries in which stars dominate. Conversely, most other
approaches produce primarily full cliques and stars, and some bipartite cores. HyCoM �nds
mainly hyperbolic communities with skewed degree distributions.

Our proposed uni�ed approach (Algorithm 5.1, lines 2-4) is expected to lead to summaries with
a better balanced set of structures (i.e., a good mix of exact and approximate cliques, bipartite
cores, stars, chains and hyperbolic structures), and lower encoding cost than any standalone
graph clustering method. At the same time, it is expected to take longer to generate all the
patterns (although the clustering methods can trivially run in parallel), and the search space
for the summary becomes larger—equal to the union of all the subgraphs that the clustering
methods generate.
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In the experimental evaluation, we use ConDeNSe to empirically compare the impact of these
methods on the summary quality and evaluate their summarization power.

5.4.2 Module B: Structural Pattern Identi�cation Module

This module (Algorithm 5.1, lines 5-12) identi�es and assigns an identi�er structural pattern in
Ω to all the subgraphs found in module A. In other words, this module seeks to characterize
each cluster with its best-suited pattern in Ω = {fc, st, bc, ch, hs}. Let g be the induced
graph of a pattern generated in Step 1, and ω be a pattern in Ω. Following the reasoning in
Section 5.3, we use MDL as a selection criterion. To model g with ω, we �rst model g with its
best representation as structure type ω (explained in detail next), r(g, ω), and de�ne its encoding
cost as Lr(g,ω(g, ω) = L(ω) +L(g|ω) = L(ω) +L(E+

ω ) +L(E−ω ), where E+
ω and E−ω encode the

erroneously modeled and unmodeled edges of g. The pattern type in ω that leads to the smallest
MDL cost is used as the identi�er of the corresponding subgraph g (lines 11-12 in Alg. 5.1).

Finding the best representation r(g, ω). Per pattern type ω, each pattern g can be represented by
a family of structures—e.g., we can represent g with as many bipartite cores as can be induced
on all possible permutations of g’s nodes into two sets L (left nodeset) and R (right nodeset) .
The only exception is the full clique (fc) pattern, which has a unique (unordered) set of nodes. To
make the problem tractable, we use the graph-theoretical properties of the pattern types in Ω in
order to choose the representation of g which minimizes the incorrectly modeled edges.

Speci�cally, we represent g as a star by identifying its highest-degree node as the hub and
all other nodes as spokes. Representing g as a bipartite core reduces to �nding the maximum
bipartite pattern, which is NP-hard. To scale-up the computation, we approximate it with
semi-supervised classi�cation with two classes L and R, and the prior information that the
highest-degree node belongs to L and its neighbors to R. For the classi�cation, we use Fast
Belief Propagation [KKK+11] with heterophily between neighbors. Similarly, representing g as
a chain reduces to �nding its longest path, which is also NP-hard. By starting from a random
node, we perform Breadth First Search two times, and end on nodes v1 and v2, respectively.
Then, we consider the path v1 to v2 (based on BFS), and perform local search to further expand
it. For the hyperbolic structures, we used power-law �tting (http://tuvalu.santafe.edu/
~aaronc/powerlaws/ by Clauset et al.). Lines 7-10 in Algorithm 5.1 succinctly describe the
search of the best representation r for every subgraph g and pattern type ω.

5.4.3 Module C: Structural Pattern Selection Module

This module is key for creating compact summaries and is described in lines 13-14 of Alg. 5.1.
Ideally, we would consider all possible combinations of the previously identi�ed structures and
pick the subset that minimizes the encoding cost in Equation (5.1). If |S| structures have been
found and identi�ed in the previous steps, �nding the optimal summary from 2|S| possibilities is
not tractable. For reference, we have seen empirically that graphs with about 100,000 nodes, have
over 50K structures. The optimization function is neither monotonic nor submodular, in which
case a greedy hill climbing approach would give a (1− 1

ε
)-approximation of the optimal.

Instead of considering all possible combinations of structures for the summary, prior work has
proposed GnF, a heuristic that considers the structures in decreasing order of “local” encoding
bene�t and includes in the model the ones that help further decrease the graph’s encoding
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cost L(G,M). The local encoding bene�t [KKVF14a] is de�ned as L(g, ∅) − L(g, ω), where
L(g, ∅) represents the encoding of g as noise (i.e., empty model). Although it is e�cient, its
output summary and performance heavily depend on the structure order. To overcome these
shortcomings and obtain more compact summaries, we propose a new structural pattern selection
method, Step, as well as a faster serial version and three parallel variants: Step-P, Step-PA, and
k-Step.

• Step. This method iteratively sifts through all the structures in S and includes in the summary
the structure that decreases the cost in Equation (5.1) the most, until no structure further
decreases the cost. Formally, if Si is the set of structures that have not been included in the
summary at iteration i, Step chooses structure s∗i s.t.

s∗i = argmin
s∈Si

L(G,Mi−1 ∪ {s})

where Mi−1 is the model at iteration i− 1, and M0 = ∅ is the empty model. ConDeNSe with
Step �nds up to 30% more compact summaries than baseline methods, but its quadratic runtime
O(|S|2) makes it less ideal for large datasets with many structures S produced by module A.
Therefore, we propose four methods that signi�cantly reduce Step’s runtime while maintaining
its summary quality.

• Step-P. The goal of Step-P is to speed up the computation of Step by iteratively solving
smaller, “local” versions of Step in parallel. Step-P begins by dividing the nodes of the graph
into p partitions using METIS. Next, each candidate structural pattern is assigned to the partition
with the maximal node overlap. Step-P then iterates until convergence, with each iteration
consisting of two phases:

1. Parallelize. In parallel, a process is spawned for each partition and is tasked with �nding the
structure that would lower the encoding cost in Eq. (5.1) the most out of all the structures
in its partition. For any given partition, there may be no structure that lowers the global
encoding cost.

2. Sync. From all structures returned in phase 1, the one that minimizes Equation (5.1) the
most is added to the summary. If no structure reduces the encoding cost, the algorithm has
converged. If not, phase 1 is repeated.

• Step-PA. In addition to parallelizing Step, we introduce the idea of “inactive” partitions,
which is an optimization designed to reduce the number of processes that are spawned by
Step-P. Step-PA di�ers from Step-P by designating every partition of the graph as active, then
if a partition fails x times to �nd a structure that lowers the cost in Equation (5.1), that partition
is declared inactive and is not visited in future iterations. Thus, the partitions with structures
not likely to decrease the overall encoding cost of the model get x chances (e.g. 3) before being
eventually ruled out, e�ectively reducing the number of processes spawned for each iteration of
Step-PA after the �rst x iterations.

• k-Step. The pseudocode of this variant is given in Algorithm 5.2. k-Step further speeds
up Step while maintaining high-quality summaries. This algorithm has two phases: the �rst
applies Step-P k times (lines 3-5) to guarantee that the initial structural patterns included in the
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summary are of good quality. The second expands the summary by building local solutions of
Step-P per active partition (lines 8-9). If a partition does not return any solution, it is �agged as
inactive (lines 10-11). For the partitions that returned non-empty solutions, the best structure
per partition is added into a temporary list (line 13), and a parallel “glocal” step applies Step-P
over that list and populates the summary (lines 14-16). We refer to this step as “glocal” because
it is a global step within the local stage. The local stage is repeated until no active partitions are
left.

Algorithm 5.2: k-Step
1: Input: graph G(V, E); list of structures S ; P partitions; k iterations
2: ActivePartitions = {1, . . . , P} {all partitions are active}
3: // Stage 1: Global

4: for i = 1 : k
5: run Step-P () {summary of k structures}
6: // Stage 2: Local Stage

7: repeat:
8: for p ∈ ActivePartitions: {2.1: Local sub-stage }
9: s = run Step-P-Parallelize() {s = best structure in p}

10: if s = ∅ {no structure returned}
11: ActivePartitions.remove(p) {partition p is inactive}
12: else

13: bestStructs.add(s) {s is candidate for M }
{p remains active}

14: repeat: {in parallel, add structures to M }
15: run Step-P-Sync(bestStructs) {2.2: Glocal sub-stage }
16: until bestStructs = ∅ or Eq. (5.1) is minimized
17: until ActivePartitions = ∅
18: return M

5.4.4 Module D: Approximate Supergraph Creation Module

In the empirical analysis (Section 3.6), we show that Step results in graph summaries with up
to 80-90% fewer structures than the baselines, and thus can be leveraged for tractable graph
visualization. The last and fourth module of ConDeNSe (Algorithm 5.1, lines 15-18), instead
of merely outputting a list of structures, creates an “approximate” supergraph which gives a
high-level but informative view of large graphs. An exact supergraph, GS(VS, ES), of a graph
G(V , E) consists of a set of supernodes VS = P (V) which is a power set (i.e., family of sets)
over V and a set of superedges ES . The superweight is often de�ned as the sum of edge weights
between the supernodes’ constituent nodes.

Unlike most prior work, ConDeNSe creates “approximate,” yet powerful supergraphs: (i) the
supernodes do not necessarily correspond to a set of nodes with the same connectivity, but to rich
structural patterns (including hyperbolic structures and chains); (ii) the supernodes may have
node overlap, which helps to pinpoint bridge nodes (i.e., nodes that span multiple communities);
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(iii) the supernodes may show deviations from the perfect corresponding structural patterns
(i.e., they correspond to near-structures).

De�nition 5.1: ConDeNSe Approximate Supergraph

A ConDeNSe approximate supergraph of G is a supergraph with supernodes that cor-
respond to possibly-overlapping structural patterns in Ω. These patterns are approximations
of clusters in G.

In other words, the ConDeNSe supergraphs consist of supernodes that are fc, st, ch, bc, and hs.
To obtain an approximate supergraph, we map the structural patterns returned in module C to
approximate supernodes. Then, for every pair of supernodes, we add a superedge if there were
edges between their constituent nodes in V and set its superweight equal to the number of such
(unweighted) edges, as shown in line 18 of Algorithm 5.1.

To evaluate the edge overlap in the summaries, and hence the e�ectiveness of our overlap-
aware encoding, we use the normalized overlap metric. The normalized overlap between two
supernodes is their Jaccard similarity. It is 0 if the supernodes do not share any nodes, and
close to 1 if they share many nodes compared to their sizes. Although it is not the focus of the
current paper, the ConDeNSe supergraphs can be used for visualization and potentially for
approximation of algorithms on large networks (without speci�c theoretical guarantees, at least
in the general form).

5.4.5 ConDeNSe: Complexity Analysis

We discuss the complexity of ConDeNSe by considering each module separately:

The �rst module has complexity O(m + nk), which corresponds to Spectral. However, in
practice, HyCoM is often slower than Spectral, likely due to implementation di�erences (JAVA
vs. MATLAB). The complexity of this module can be lowered by selecting the fastest methods.
Module B is linear on the number of edges of the discovered patterns. Given that they are
overlapping, the computation of L(G,M) is done in T = O(|M |2 + m), which is O(m) for
real graphs with |M |2 << m. In module C, Step has complexity O(|S|2 × T ), where S is the
set of labeled structures. Step-P and Step-PA are O(t × |S|

2

p
× T ), where p is the number of

METIS partitions (‘active’ partitions for Step-PA) and t is the number of iterations. k-Step is a
combination of Step-P and a local stage, so it runs inO(K× |S|

2

p
×T+tlcl×( |S|

2

pactive
+p2

active)×T ),
where tlcl is the iterations of its local stage. Finally, the supergraph (module D) can be generated
in O(m).

5.5 Empirical Analysis

We conduct thorough experimental analysis to answer three main questions:
• How e�ective is ConDeNSe?
• Does it scale with the size of the input graph?
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Name Nodes Edges Description

EUmail [LK14] 265,214 420,045 EU uni. email comm.
Enron [LK14] 80,163 288,364 Enron email comm.
AS-Caida [LK14] 26,475 106,762 BGP routing table
AS-Oregon [LK14] 13,579 37,448 Router connections
Choc 2,899 5,467 Co-editor wiki graph

Table 5.3: Summary of graphs used in our experiments.

• How do the clustering methods compare in terms of summarization power?

Setup. We ran experiments on the real graphs given in Table 5.3. As far as the parameter setting
for the clustering methods is concerned, for SlashBurn, we choose the number of hub nodes to
slash per iteration hslash = 2 in order to achieve better granularity of clusters. For Louvain,
we choose resolution τ = 0.0001 as it generates comparable number of clusters with other
clustering methods for all our datasets. For Spectral and METIS, the number of clusters k
are set to

√
n/2 according to a rule of thumb [SMO+03], where n is the number of nodes in

the graph. As for other clustering methods, they are parameter-free hence no need to set up
parameters. Unless otherwise speci�ed, we followed the same rule of thumb for setting the
number of input METIS partitions p for all the Step variants. In subsections 5.5.1 and 5.5.2, we
set the number of chances x = 3 for Step-PA.

5.5.1 E�ectiveness of ConDeNSe

Ideally, we want a summary to be: (i) concise, with a small number of structures/supernodes;
(ii) minimally redundant, i.e., capturing dependencies such as overlapping supernodes, but
without overly encoding overlaps; and (iii) covering in terms of nodes and edges. Our proposed
method, ConDeNSe, constitutes an (almost) unbiased way of analyzing the structure of a given
graph. How does it fare in terms of these properties? To answer the question, we perform
experiments on the real data in Table 5.3.

Baselines. The �rst baseline is VoG [KKVF14a], which we describe in Section 5.2. For our ex-
periments, we used the code that is online at https://github.com/GemsLab/VoG_Graph_
Summarization. The second baseline is our proposed method, ConDeNSe, combined with the
GnF heuristic (described in Section 5.4.3) from prior literature.

A1. Conciseness. In Table 5.4, we compare our proposed method (for di�erent selection
methods) and the baselines with respect to their compression rates, i.e., the percentage of bits
needed to encode a graph with the composed summary over the number of bits needed to encode
the corresponding graph with an empty model/summary (that is, all the edges are in the error
matrix). In parentheses, we also give the total number of structures in the summaries. We see
that compared to the baselines, ConDeNSe with the Step variants gives signi�cantly more
compact summaries, with 30%-50% lower compression rate and about 80-90% fewer structures.
The Step variants give comparable results in summarization power.
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Dataset VoG [KKVF14a]

ConDeNSe ConDeNSe with Step Variants

GnF Step Step-P Step-PA k-Step

Choc 88%(101) 88%(101) 56%(24) 56%(24) 56%(21) 56%(22)
AS-Oregon 71%(400) 69%(379) 35%(41) 35%(41) 35%(35) 35%(36)
AS-Caida - 71%(572) 42%(51) 42%(51) 42%(46) 44%(60)
Enron 75%(2330) 74%(2044) - 26%(50) 25%(201) 25%(218)
EUmail - 65%(1440) - - - 59%(15a)

Table 5.4: ConDeNSe: Compression rate with respect to the empty model. In parentheses,
number of structures in the corresponding summary. A “-” means that the corresponding
method was terminated after 4 days. Notice that ConDeNSe with Step variants achieves better
graph compression with even fewer structures than alternatives.

aIn the interest of time, the summary size was limited to 15.

Dataset VoG [KKVF14a] ConDeNSe

Choc 900 (0.04) 74 (0.029)
AS-Oregon 15875 (0.047) 126 (0.026)
AS-Caida - 382 (0.018)
Enron 447052 (0.02) 509 (0.015)
EUmail - 0

Table 5.5: Overlapping supernode pairs and average similarity in parentheses. A “-” means
that the corresponding method was terminated after 4 days. Notice that ConDeNSe produces
structures with less overlap, leading to better visualization and interpretability.

A2. MinimalRedundancy. In Figures 5.1 and 5.3, we visualize the supergraphs forAS-Oregon
and Choc, which are generated from the selected structures of VoG and ConDeNSe-Step. It
is clear that the ConDeNSe supergraphs are signi�cantly more compact. In Table 5.5, we also
provide information about the number of overlapping supernode pairs and their average Jac-
card similarity, as an overlap quanti�er (in parentheses). For brevity, we only give results for
k-Step, since the results of the rest Step-series are similar. We observe that ConDeNSe has
signi�cantly fewer supernode overlaps, and the overlaps are smaller in magnitude. We also note
that the overlap encoding module achieves 10-20% reduction in overlapping edges, showing its
e�ectiveness for minimizing redundancy.

A3. Coverage. We give the summary node/edge coverage (as a ratio of the original) for di�erent
assembly methods in Figure 5.4. We observe that the baselines have better edge coverage
than the Step variants, which is expected as they include signi�cantly more structures in their
summaries. However, in most cases, k-Step and Step-PA achieve better node coverage than the
baselines. Taking into account the desired property for summary conciseness, ConDeNSe with
Step variants has better performance, balancing coverage and summary size well.
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(a) Original graph (b) VoG [KKVF14a] (c) ConDeNSe-Step

Figure 5.3: ConDeNSe-Step generates more compact supergraphs. b-c: The full super-
graphs of Choc by VoG-GnF, and ConDeNSe-Step, respectively. Yellow for stars, red for cliques,
green for bipartite cores. The edge weights correspond to the number of inter-supernode edges.

Figure 5.4: Step variants have better node coverage over alternatives, and handle the

summary coverage-conciseness trade-o� well. Marker size corresponds to the graph size.

What other properties do the various summaries have? What are the main structures found in
di�erent types of networks (e.g., email vs. routing networks)? In Table 5.6, we show the number
of in-summary structures per type. We note that no chains and hyperbolic structures were
included in the summaries of the networks that we show here (although some were found by
the pattern discovery module, and there are synthetic examples in which they are included in
the �nal summaries). This is possibly because stars are extreme cases of hyperbolic structures,
and the encoding of (approximate) hyperbolic structures is of the same order, yet often more
expensive than the encoding of stars with errors. As for chains, they are not ‘typical’ clusters
found by popular clustering methods, but rather by-products of the decomposition methods
that we consider. Moreover, given that the chain encoding considers the sequence of node IDs,
and errors in the real data increase the encoding cost, very often encoding them in the error
matrix yields better compression. One observation is that Step gives less biased summaries than
the baselines. For email networks, we see that stars are dominant (e.g., users emailing multiple
employees that do not contact each other, administrators sending e-mails to large mailing lists,
etc.), with several of cliques and bipartite cores too. For routing networks (AS-Caida and
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Dataset VoG [KKVF14a] ConDeNSe-GnF

ConDeNSe with Step Variants

Step Step-P Step-PA k-Step

Choc [0,101,0] [1,100,0] [21,3,0] [21,3,0] [20,1,0] [21,1,0]
AS-Oregon [1,399,0,] [19,355,5] [27,13,1] [27,13,1] [26,9,0] [26,10,0]
AS-Caida - [2,557,13] [38,7,6] [38,7,6] [37,5,4] [43,12,5]
Enron [2,2323,5] [160,1676,208] - [45,2,3] [60,108,33] [61,124,33]
EUmail - [0,1261,179] - - - [15,0,0]

Table 5.6: ConDeNSe: Number of structures per type in the summaries in the format [fc, st, bc],
for VoG we have [fc + nc, st, bc + nb], where nc is near-clique and nb is near-bipartite core.
The ConDeNSe summaries are more balanced, without a speci�c pattern type dominating in
all the graphs. In the interest of time, we �nd the top-50 and top-15 structures for Enron and
EUmail, respectively. A “-” means that the corresponding method was terminated after 4 days.

AS-Oregon), we mostly see cliques between communities of autonomous systems, and a few
stars and bipartite cores. In collaboration networks, cliques are the most common structures.
VoG and ConDeNSe-GnF are biased towards stars, which exceed the other structures by an
order of magnitude. Overall, ConDeNSe fares well with respect to the desired properties for
graph summaries.

5.5.2 Runtime Analysis of ConDeNSe

We give the runtime of pattern discovery and the Step methods in Figure 5.5. “Discovery”
represents the maximum time of the clustering methods, and “Disc.-Fast” corresponds to the
slowest among the fastest methods (KCBC, Louvain, METIS, BigClam). We ran the experiment
on an Intel(R) Xeon(R) CPU E5-1650 at 3.50GHz, and 256GB memory.

We see that the fast uni�ed discovery is up to 80× faster than the original one. As expected,
Step is the slowest method. The parallel variants Step-P, Step-PA, and k-Step are more scalable,
with k-Step being the most e�cient. Taking into account the similarity of the heuristics in
both conciseness and coverage, Figure 5.5 further suggests that k-Step is the best-performing
heuristic given that it exhibits the shortest runtime.

Figure 5.5: Runtime vs. # of edges: k-Step is more e�cient than the other methods,

and scales to larger graphs.
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Dataset Step-P Step-PA k-Step

Choc 1 0.9886 0.9667
AS-Oregon 1 0.9704 0.9285
AS-Caida 1 0.9865 0.8238
Enron 1 0.5012∗ 0.446a

Table 5.7: Agreement of Step and its variants. They approximate Step quite well.
aAgreement based on the top-50 structures for e�ciency reasons.

5.5.3 Sensitivity Analysis of ConDeNSe: Agreement between Step

and Step-variants

Our analysis so far has shown that k-Step leads to the best combination of high compression and
low runtime compared to the other methods. But how well does it approximate Step in terms of
the generated summary? To answer this question, we evaluate the “agreement” between the
generated summaries, which in this section we view as ordered lists of structures based on the
iteration they were included in the �nal summary (which de�nes the rank of each structure).
Since popular rank correlation measures, such as Spearman’s ρ, Kendall’s τ , only work on
permuted lists or lists of the same length, while the generated summaries can have di�erent
constituent structures and lengths, we propose AG as a measure of agreement. This measure
e�ectively handles summaries of di�erent lengths, and penalizes with di�erent, adaptive weights
‘rank’ disagreement between structures included in both summaries, and disagreement for
missing structures from one summary. Let M1 and M2 be the two summaries, and rank(s,Mi)
be the ranking of structure s in summary Mi (i.e., the order in which it was included in the
summary while minimizing Eq. (5.1)). We de�ne the agreement of the two summaries as:

AG(M1,M2) = 1− 1/Z[αD + (1− α/2)D1 + (1− α/2)D2]

where D =
∑

s∈M1∩M2
|rank(s,M1) − rank(s,M2)| is the rank disagreement for structures

that are in both summaries, D1 =
∑

s∈M1∩M ′2
|(|M2| + 1) − rank(s,M1)| is the disagreement

for structures in M1 but not in M2, D2 is de�ned analogously to capture structures in M2

but not in M1. Finally, Z is a normalization factor that guarantees that AG is in [0, 1]: Z =

(1 − α
2 )
∑

s∈M1
|(|M2| + 1) − rank(s,M1)| +

∑
s∈M2

|(|M1| + 1) − rank(s,M2)|. AG = 1 means
identical summaries, while 0 completely di�erent summaries. In order to penalize more the
structures that appear in one summary but not in the other, we set α = 0.3 (the results are
consistent for other values of α). In Table 5.7, we give the agreement between Step and its faster
variants. As a side note, the agreement with VoG is almost 0 in all the cases. As expected, Step-P
produces the same summaries as Step, while Step-PA and k-Step preserve the agreement
well.
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5.5.4 Sensitivity to the number of partitions

All parallel variants of Step take p METIS partitions as input. To analyze the e�ects of varying
p on runtime and agreement, we ran k-Step and increased p from 12 to 96 in increments of
12.

We only give the results on AS-Oregon, since other datasets lead to similar results. We observe
that while agreement is robust, runtime decreases as p increases and especially so with the
smaller values of p. This observation is consistent with our motivation for parallelizing Step:
by decreasing the number of structures in any given partition, the “local” subproblems of Step
become smaller and thus less time-consuming. Figure 5.6a shows the e�ect of the number of
partitions on runtime and agreement, both averaged over three trials.

5.5.5 Sensitivity of Step-PA

We also experimented with varying the number of “chances” allowed for partitions in the Step-PA
variant. Step-PA speeds up Step-P by forcing partitions to drop out after not returning structures
for a certain number of attempts (x). However, while giving partitions fewer chances can speed
up the algorithm, smaller values of x can compromise compression and agreement.

In Figure 5.6b, we give the agreement and runtime of Step-PA on Choc and AS-Oregon
setting x = {1, 2, 3, 4, 5}. We found that both runtime and agreement increased with x, and
plateaued after x = 3. This suggests that forcing partitions to drop out early, while better
for runtime, can lead to the loss of candidate structures that may be useful for compression
later.

5.5.6 ConDeNSe as a Clustering Evaluation Metric

Given the independence of Step from the structure ordering, we use ConDeNSe to evaluate the
di�erent clustering methods and give their individual compression rates in Table 5.8. For number
and type of structures we give our observations based on AS-Oregon (Figure 5.7), which is
consistent with other datasets. As we see in the case of AS-Oregon, SlashBurn mainly
�nds stars (136 out of 138 structures); Louvain, Spectral, KCBC, and BigClam reveal mostly
cliques (9/9, 15/17, 9/9, and 28/29, respectively); METIS has a less biased distribution (18 cliques,
12 stars), and HyCoM, though looks for hyperbolic structures, tends to �nd structures more
concisely described as cliques in our experiments (45 out of 52 structures). Also, SlashBurn

Dataset

Clustering Methods

SlashBurn Louvain Spectral METIS HyCoM BigClam KCBC

Choc 88% 99% 99% 100% 100% 87% 78%

AS-Oregon 76% 94% 82% 85% 98% 83% 65%

AS-Caida 70% 100% 100% 98% 98% 91% 74%

Table 5.8: ConDeNSe as an evaluation metric: Compression rate of clustering methods with
respect to the empty model (i.e., percentage of bits for encoding the graph given the chosen
model vs. the empty model).
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(a) AS-Oregon: Runtime and agreement vs. number of partitions.

(b) Choc + AS-Oregon: Runtime and agreement vs. number of chances (x).

Figure 5.6: The agreement is robust to the number of partitions and chances, while

runtime decreases with more partitions and is una�ected by number of chances.

and BigClam discover more structural patterns than other methods, which partially explains
their good compression rate in Table 5.8. One notable takeaway from these results is that
decomposition methods traditionally do not �nd chains and hyperbolic structures, which is
likely both a function of traditional notions of “community” behavior as well as a re�ection on
the di�culty of identifying such structures automatically.

We perform an ablation study to evaluate the graph clustering methods in the context of
summarization. Speci�cally, we create a leave-one-out uni�ed model for each clustering method
and evaluate the contribution of each clustering method to the �nal summary. The results are
shown in Table 5.9. We see that Louvain appears to be the most important method: when
included, it contributes the most; and when dropped, the compression rate reduces (worse). When
KCBC is dropped, SlashBurn gets to the top, but Louvain also has considerable contribution. In
the missing-Louvain case, the contribution gets redistributed among other clustering methods
to make up for it, this e�ect di�ers by dataset, e.g., METIS gets boosted for AS-Oregon, while
it is Spectral for Choc.
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Figure 5.7: Number of structures found by various clustering methods for AS-Oregon.
Transparent/solid rectangles for before/after the structure selection step. Notation: fc: full
clique, st: star, ch: chain, bc: bipartite core, hs: hyperbolic structure.

Clustering Compression Contribution per Method

Method Rate SlashBurn Louvain Spectral METIS HyCoM BigClam KCBC

SlashBurn 22% - 63% 10% 7% 7% 0 13%
Louvain 30% 30% - 16% 45% 0 3% 7%
Spectral 22% 32% 51% - 3% 0 0 14%
METIS 22% 34% 46% 5% - 2% 0 12%
HyCoM 22% 35% 48% 3% 3% - 0 13%
BigClam 22% 34% 46% 2% 2% 2% - 12%
KCBC 25% 50% 35% 6% 2% 2% 6% -

Table 5.9: Ablation study for AS-Oregon. Louvain and SlashBurn contribute most to the
ConDeNSe summaries.

In terms of runtime, for modules A and B (pattern discovery and identi�cation), Spectral and
HyCoM take the longest time, while KCBC, Louvain, METIS, and BigClam are the fastest
ones, with SlashBurn falling in the middle. For Module C (summary assembly), the trade-o�
between runtime and candidate structures is given in the complexity analysis (Appendix 5.4.5).
In practice, HyCoM usually takes the longest time, followed by Spectral and SlashBurn.

5.6 Conclusion

In this work we proposed ConDeNSe, a method that summarizes large graphs as small, ap-
proximate and high-quality supergraphs conditioned on diverse pattern types. ConDeNSe
features a new selection method, Step, which generates summaries with high compression and
node coverage. However, this comes at the cost of increased runtime, which we addressed by
introducing faster parallel approximations to Step. We provided a thorough empirical analysis of
ConDeNSe, and contributed a novel evaluation of clustering methods in terms of summarization
power, complementing the literature that focuses on classic quality measures. We showed that
each clustering approach has its strengths and weaknesses and make di�erent contributions to
the �nal summary. Moreover, ConDeNSe leverages their strengths, handles edge-overlapping
structures, and shows results superior to baselines, including signi�cant improvement in the
bias of summaries with respect to the considered pattern types.
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Ideally without the constraint of time, we naturally recommend the application of as many
clustering methods in Module A of ConDeNSe. On the other hand, to deal with the additional
complexity of having more structures, we recommend choosing faster clustering methods or
a mixture of fast and “useful” methods (depending on the application at hand) that contribute
good structures, as shown in our analysis.
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Part II

Mining Dynamic Graphs
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Chapter 6

TimeCrunch: Interpretable

Dynamic Graph Summarization

Identifying temporal structures and
recurrence patterns in dynamic graphs
with a compression paradigm.

Based on content published in [SKZ+15].

Many real-world occurrences can be aptly represented as dynamic graphs which represent
interactions over time. While many previous works tackle the problem of extracting structure
from static graphs via clustering or partitioning, few such tools exist in the dynamic case.
In this chapter, we propose TimeCrunch, an unsupervised method which aims to concisely
summarize dynamic graphs using a lexicon of temporal structures which describe recurrence
patterns and graph connectivity. TimeCrunch scalably extracts interpretable temporal
structures from real-world graphs with millions of nodes and edges and demonstrates that
such graphs do in fact exhibit rich temporal structures.

6.1 Introduction

Given a large phonecall network over time, how can we describe it to a practitioner with
just a few phrases? Other than the traditional assumptions about real-world graphs involving
degree skewness, what can we say about the connectivity? For example, is the dynamic graph
characterized by many large cliques which appear at �xed intervals of time, or perhaps by
several large stars with dominant hubs that persist throughout? Our work aims to answer these
questions, and speci�cally, we focus on constructing concise summaries of large, real-world
dynamic graphs in order to better understand their underlying behavior.

This problem has numerous practical applications. Dynamic graphs are ubiquitously used
to model the relationships between various entities over time, which is a valuable feature in
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(a) 40 users of Yahoo! Messen-
ger forming a constant near clique
with unusually high 55% density,
over 4 weeks in April 2008.

(b) 111 callers in a large phonecall
network, forming a periodic star,
over the last week of December
2007 – note the heavy activity on
holidays

(c) 43 collaborating biotechnol-
ogy authors forming a ranged
near clique in the DBLP network,
jointly publishing through 2005-
2012.

Figure 6.1: TimeCrunch �nds coherent, interpretable temporal structures. We show
the reordered subgraph adjacency matrices, over the timesteps of interest, each outlined in gray;
edges are plotted in alternating red and blue, for discernibility.

almost all applications in which nodes represent users or people. Examples include online social
networks, phone-call networks, collaboration and coauthorship networks and other interaction
networks.

Though numerous graph algorithms suitable for static contexts such as modularity-based com-
munity detection, spectral clustering, and cut-based partitioning exist, they do not o�er direct
dynamic counterparts. Furthermore, the traditional goals of clustering and community detection
tasks are not quite aligned with the endeavor we propose. These algorithms typically produce
groupings of nodes which satisfy or approximate some optimization function. However, they do
not o�er characterization of the outputs – are the detected groupings stars or chains, or perhaps
dense blocks? Furthermore, the lack of explicit ordering in the groupings leaves a practitioner
with limited time and no insights on where to begin understanding his data.

In this work, we propose TimeCrunch, an e�ective approach to concisely summarizing large,
dynamic graphs which extend beyond traditional dense and isolated “cavemen” communities.
Our method works by leveraging MDL (Minimum Description Length) in order to identify and
appropriately describe graphs over time using a lexicon of temporal phrases which describe
temporal connectivity behavior. Figure 6.1 shows several interesting results found from applying
TimeCrunch to real-world dynamic graphs.

• Figure 6.1a shows a constant near-clique with 55% density of 40 users in the Yahoo!
messaging network over 4 weeks in April 2008. These users are likely bots messaging
each other in an e�ort to appear normal and avoid suspension.

• Figure 6.1b depicts a periodic star of 111 callers in the phone-call network of a large,
anonymous Asian city during the last week of December 2007. Notice that the star behavior
oscillates over time – speci�cally, odd-numbered timesteps have stronger star structure
than the even-numbered ones. Furthermore, the appearance of the star is strongest on
Dec. 25th and 31st, corresponding to major holidays.
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• Lastly, Fig. 6.1c shows a ranged near clique of 43 authors in the DBLP network who jointly
published in biotechnology journals such as Nature and Genome Research from 2005-2012,
agreeing with intuition as works in this �eld typically have many co-authors. The �rst
and last timesteps serve only to demarcate the range of activity.

In this work, we seek to answer the following informally posed problem:

Problem 6.1: (Informal) Dynamic Graph Summarization

Given a dynamic graph, �nd a set of possibly overlapping temporal subgraphs to concisely
describe the given dynamic graph in a scalable fashion.

Our main contributions are as follows:

1. Problem Formulation: We show how to de�ne the problem of dynamic graph under-
standing in in a compression context.

2. E�ective and Scalable Algorithm: We develop TimeCrunch, a fast algorithm for dy-
namic graph summarization.

3. Practical Discoveries: We evaluate TimeCrunch on multiple real, dynamic graphs and
show quantitative and qualitative results.

Reproducibility: Our code for TimeCrunch is open-sourced atwww.cs.cmu.edu/~neilshah/
code/timecrunch.tar.

6.2 Related Work

The related work falls into three main categories: static graph mining, temporal graph mining,
and graph compression and summarization. Table 6.1 gives a visual comparison of TimeCrunch
with existing methods.

Static Graph Mining. Most works �nd speci�c, tightly-knit structures, such as (near-) cliques
and bipartite cores: eigendecomposition [SBGF14] (as we saw in Chapter 3, cross-associations [CPMF04],
modularity-based optimization methods [NG04, BGLL08]. Dhillon et al. [DMM03] propose in-
formation theoretic co-clustering based on mutual information optimization. However, these
approaches have limited vocabularies and are unable to �nd other types of interesting struc-
tures such as stars or chains. [KK00, KG10] propose cut-based partitioning, whereas [AKY99]
suggests spectral partitioning using multiple eigenvectors – these schemes seek hard clustering
of all nodes as opposed to identifying communities, and are not usually parameter-free. Sub-
due [CH94] and other fast frequent-subgraph mining algorithms [JWP+05] operate on labeled
graphs. Our work involves unlabeled graphs and lossless compression.

Temporal Graph Mining. [AY05] aims at change detection in streaming graphs using pro-
jected clustering. This approach focuses on anomaly detection rather than �nding recurrent
temporal patterns. GraphScope [SFPY07] uses graph search for hard-partitioning of temporal
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GraphScope[SFPY07] 4 4 8 4 8 8 8 4 4

Com2[APG+14] 4 4 4 4 4 8 8 4 8

VoG[KKVF14b] 8 8 8 4 4 4 4 4 4

Graph partitioning[KK00, KG10, AKY99] 8 8 8 4 8 8 8 4 8

Community detection[SBGF14, NG04, BGLL08] 8 8 8 4 8 8 8 ? ?

TimeCrunch 4 4 4 4 4 4 4 4 4

Table 6.1: Feature-based comparison of TimeCrunch with alternative approaches.

graphs to �nd dense temporal cliques and bipartite cores. Com2 [APG+14] uses CP/PARAFAC
tensor decomposition with MDL for the same. [FFL+08] uses incremental cross-association for
change detection in dense blocks over time, whereas [PJZ05] proposes an algorithm for mining
cross-graph quasi-cliques (though not in a temporal context). These approaches have limited
vocabularies and do not o�er temporal interpretability. Dynamic clustering [XKH11] aims to
�nd stable clusters over time by penalizing deviations from incremental static clustering. Our
work focuses on interpretable structures, which may not appear at every timestep.

Graph Compression and Summarization. SlashBurn [KF11a], as we previously discussed in
Chapter 5, is a recursive node-reordering approach which leverages run-length encoding for
graph compression. [TZHH11] uses structural equivalence to collapse nodes/edges to simplify
graph representation. These approaches do not compress the graph for pattern discovery, nor
do they operate on dynamic graphs. VoG [KKVF14b] uses MDL to label subgraphs in terms
of a vocabulary on static graphs, consisting of stars, (near) cliques, (near) bipartite cores and
chains. ConDeNSe (introduced in Chapter 5) improves upon VoG by reducing redundancy and
improving graph coverage, allowing for multiple graph decomposition algorithms and producing
more concise summaries. However, both these approaches only apply to static graphs and do
not o�er clear extension to dynamic graphs. Our work proposes a suitable lexicon for dynamic
graphs, uses MDL to label temporally coherent subgraphs and proposes an e�ective and scalable
algorithm for �nding them.

6.3 Problem Formulation

In this section, we give the �rst main contribution of our work: formulation of dynamic graph
summarization as a compression problem, using MDL. For clarity, see Table 6.2 for a reference
of the recurrent symbols used in this section.
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Symbol De�nition

G, A dynamic graph and adjacency tensor resp.
V , n node-set, # of nodes of G resp.
E ,m edge-set, # of edges of G resp.
Gx,Ax xth timestep, adjacency matrix of G resp.
Ex,mx edge-set and # of edges of Gx resp.
∆ set of temporal signatures
Ω set of static identi�ers
Φ lexicon, set of temporal phrases Φ = ∆× Ω
× Cartesian set product
M, s model M , temporal structure s ∈M resp.
|S| cardinality of set S
|s| # of nodes in structure s
u(s) timesteps in which structure s appears
v(s) temporal phrase of structure s, v(s) ∈ Φ
st, ch star, chain resp.
fc, nc full, near clique resp.
bc, nb full, near bipartite core resp.
o, c oneshot, constant resp.
r, p, f ranged, periodic, �ickering resp.
M approximation of A induced by M
E error matrix E = M⊕ E
⊕ exclusive OR
L(G,M) # of bits used to encode M and G given M
L(M) # of bits to encode M

Table 6.2: Frequently used symbols and de�nitions

The Minimum Description Length (MDL) principle aims to be a practical version of Kolmogorov
Complexity [LVV90], often associated with the motto Induction by Compression. MDL states
that given a model familyM, the best model M ∈M for some observed data D is that which
minimizes L(M) +L(D|M), where L(M) is the length in bits used to describe M and L(D|M)
is the length in bits used to describe D encoded using M . MDL enforces lossless compression
for fairness in the model selection process. Refer to Chapter 2 for more detail on MDL.

We focus on analysis of undirected dynamic graphs using �xed-length, discretized time intervals.
However, our notation will re�ect the treatment of the problem as one with a series of individual
snapshots of graphs, rather than a tensor, for readability purposes. We consider a dynamic
graph G(V , E) with n = |V| nodes, m = |E| edges and t timesteps, without self-loops. Here,
G = ∪xGx(V , Ex), where Gx and Ex correspond to the graph and edge-set for the xth timestep.
The ideas proposed in this work, however, can easily be generalized to other types of dynamic
graphs.
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For our summary, we consider the set of temporal phrases Φ = ∆× Ω, where ∆ corresponds
to the set of temporal signatures, Ω corresponds to the set of static structure identi�ers and ×
denotes Cartesian set product. Though we can include arbitrary temporal signatures and static
structure identi�ers into these sets depending on the types of temporal subgraphs we expect to
�nd in a given dynamic graph, we choose 5 temporal signatures which we anticipate to �nd in real-
world dynamic graphs [APG+14] : oneshot (o), ranged (r), periodic (p), �ickering (f ) and constant
(c), and 6 very common structures found in real-world static graphs [KKR+99, SBGF14] – stars
(st), full and near cliques (fc, nc), full and near bipartite cores (bc, nb) and chains (ch) . Summarily,
we have the signatures ∆ = {o, r, p, f, c}, static identi�ers Ω = {st, fc, nc, bc, nb, ch} and
temporal phrases Φ = ∆× Ω. We will further describe these signatures, identi�ers and phrases
after formalizing our objective.

In order to use MDL for dynamic graph summarization using these temporal phrases, we next
de�ne the model familyM, the means by which a model M ∈M describes our dynamic graph
and how to quantify the cost of encoding in terms of bits.

6.3.1 Using MDL for Dynamic Graph Summarization

We consider models M ∈M to be composed of ordered lists of temporal graph structures with
node, but not edge overlaps. Each s ∈M describes a certain region of the adjacency tensor A
in terms of the interconnectivity of its nodes. We will use area(s,M,A) to describe the edges
(i, j, x) ∈ A which s induces, writing only area(s) when context for M and A is clear.

Our model familyM consists of all possible permutations of subsets of C, where C = ∪vCv
and Cv denotes the set of all possible temporal structures of phrase v ∈ Φ over all possible
combinations of timesteps. That is,M consists of all possible models M , which are ordered
lists of temporal phrases v ∈ Φ such as �ickering stars (fst), periodic full cliques (pfc), etc.
over all possible subsets of V and G1 · · ·Gt. Through MDL, we seek the model M ∈M which
best mediates between the encoding length of the model M and the adjacency tensor A given
M .

Our fundamental approach for transmitting the adjacency tensorA via the modelM is described
next. First, we transmit M . Next, given M , we induce the approximation of the adjacency tensor
M as described by each temporal structure s ∈M – for each structure s, we induce the edges in
area(s) in M accordingly. Given that M is a summary approximation to A, M 6= A most likely.
Since MDL requires lossless encoding, we must also transmit the error E = M⊕A, obtained
by taking the exclusive OR between M and A. Given M and E, a recipient can construct the
full adjacency tensor A in a lossless fashion.

Thus, we formalize the problem we tackle as follows:
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Problem 6.2: Minimum Dynamic Graph Description

Given a dynamic graph G with adjacency tensor A and temporal phrase lexicon Φ, �nd
the smallest model M which minimizes the total encoding length

L(G,M) = L(M) + L(E)

where E is the error matrix computed by E = M⊕A and M is the approximation of A
induced by M .

In the following subsections, we further formalize the task of encoding the model M and the
error matrix E.

6.3.2 Encoding the Model

To fully describe a model M ∈M, we have the following:

L(M) = LN(|M |+ 1) + log2

(
|M |+ |Φ| − 1

|Φ− 1|

)
+
∑
s∈M

(−log2P (v(s)|M) + L(c(s)) + L(u(s)))

We begin by transmitting the total number of temporal structures in M using LN, Rissanen’s
optimal encoding for integers greater than or equal to 1 [Ris78]. Next, we optimally encode
the number of temporal structures for each phrase v ∈ Φ in M . Then, for each structure s,
we encode the type v(s) for each structure s ∈ M using optimal pre�x codes [CT06], the
connectivity c(s) and the temporal presence of the s, consisting of the ordered list of timesteps
u(s) in which s appears.

In order to have a coherent model encoding scheme, we next de�ne the encoding for each phrase
v ∈ Φ such that we can compute L(c(s)) and L(u(s)) for all structures in M . The connectivity
c(s) corresponds to the edges in area(s) which are induced by s, whereas the temporal presence
u(s) corresponds to the timesteps in which s is present. We consider the connectivity and
temporal presence separately, as the encoding for a temporal structure s described by a phrase v
is the sum of encoding costs for the connectivity of the corresponding static structure identi�er
in Ω and its temporal presence as indicated by a temporal signature in ∆.

6.3.2.1 Encoding Connectivity

In this section, we describe how to compute the encoding cost L(c(s)) for the connectivity for
each type of static structure identi�er in our identi�er set Ω. The encoding costs are de�ned
similarly to Chapter 5, which focuses on summarizing plain graphs.
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Stars: A star is characteristic of a single “hub” node connected to a set of 2 or more “spoke”
nodes. We compute L(st) of a star st as follows:

L(st) = LN(|st| − 1) + log2n+ log2

(
n− 1

|st| − 1

)
First, we identify the number of spokes of the star. Next, we identify the hub out of n nodes
using an index over the combinatorial number system. Lastly, we identify the spokes from the
remainder.

Cliques: Cliques are comprised of densely connected sets of nodes. For a full clique fc, in
which all nodes are directly connected to all other nodes in the clique, we give the cost L(fc) as
follows:

L(fc) = LN(|fc|) + log2

(
n

|fc|

)
In this case, we encode the number of nodes in the clique followed by their ids. Note that as
M is an approximation of G, fc need not actually be a full clique in G. If only a few edges of
the full clique are not present in G, it may be worthwhile from a compression standpoint to
describe it as such. In this case, each falsely represented edge will add to the error cost E. Errors
in connectivity encoding will be elaborated on in Sec. 6.3.3.1.

Less dense near-cliques are still interesting from a graph understanding perspective, provided
they stand out from the background. For a near clique nc, we give L(nc) as follows:

L(nc) = LN(|nc|) + log2

(
n

|nc|

)
+ log2(|area(nc)|)

+||nc||ρ1 + ||nc||′ρ0

Here, we encode the number of nodes and their ids as in the full clique case. However, we addition-
ally encode the edges in the near clique by encoding the number of total edges in area(nc) by opti-
mal pre�x codes. We use ||nc|| and ||nc||′ to denote the counts for existing and non-existing edges
in area(nc). Then, ρ1 = −log(||nc||/(||nc||+ ||nc||′)) and ρ0 = −log(||nc||′/(||nc||+ ||nc||′))
represent the length of the optimal pre�x codes for the existing and non-existing edges respec-
tively. Intuitively, the more sparse or dense the near clique is, the cheaper its encoding becomes.
As the encoding in this case is exact, we do not add any edges to E.

Bipartite Cores: Bipartite cores consist of non-empty, non-intersecting node-sets L and R
for which there only exist edges from L and R, but not within L or R. Note that stars can be
construed as a �xed case of bipartite cores in which |L| = 1. The encoding cost L(bc) for a full
bipartite core bc is as follows:

L(fb) = LN(|L|) + LN(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
In this case, we encode the number of nodes in L and R followed by the node ids in each
set.
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As with near cliques, near bipartite cores are also interesting if they stand out from the back-
ground. In this case, encoding is given analogously as follows:

L(nb) = LN(|L|) + LN(|R|) + log2

(
n

|L|

)
+ log2

(
n

|R|

)
+log2(|area(nb)|) + ||nb||ρ1 + ||nb||′ρ0

Furthermore, as with near-cliques, encoding in this case is exact so we do not add any edges to
E.

Chains: A chain is characterized by series of nodes in which each node has an edge connecting
it to the next node – for example, consider the node-set {1, 2, 3, 4} in which 1 is connected to 2,
2 is connected to 3, and 3 is connected to 4. Given the right permutation, a perfect chain in an
undirected graph will have edges only along two diagonals of the adjacency matrix. For a chain
ch, we have the encoding cost L(ch) as follows:

L(ch) = LN(|ch| − 1) +

|ch|∑
i=1

log2(n− i+ 1)

We �rst encode the number of nodes in the chain, followed by their node ids in order of
connection.

While in this chapter, we only discuss the above set of basic graph structures, any arbitrary graph
pattern can be similarly handled provided that we carefully derive an expression to losslessly
encode its connectivity.

6.3.2.2 Encoding Temporal Presence

For a given phrase v ∈ Φ, it is not su�cient to only encode the connectivity of the underlying
static structure. We must also encode the temporal presence u(s), consisting of a set of ordered
timesteps in which s appears, for each structure. In this section, we describe how to compute
the encoding cost L(u(s)) for each of the temporal signatures in the signature set ∆.

We note that describing a set of timesteps u(s) in terms of temporal signatures in ∆ is yet another
model selection problem for which we can leverage MDL. As with connectivity encoding, labeling
u(s) with a given temporal signature may not be precisely accurate – however, any mistakes will
add to the cost of transmitting the error. Errors in temporal presence encoding will be further
detailed in Sec. 6.3.3.2.

Oneshot: Oneshot structures appear at only one timestep in G1 · · ·Gt – that is, |u(s)| = 1.
These structures represent graph anomalies, in the sense that they are non-recurrent interactions
which are only observed once. The encoding cost L(o) for the temporal presence of a oneshot
structure o can be written as:

L(o) = log2(t)

As the structure occurs only once, we only have to identify the timestep of occurrence from the
t observed timesteps.
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Ranged: Ranged structures are characterized by a short-lived existence. These structures appear
for several timesteps in a row before disappearing again – they are de�ned by a single burst of
activity. The encoding cost L(r) for a ranged structure r is given by:

L(r) = LN(|u(s)|) + log2

(
t

2

)
We �rst encode the number of timesteps in which the structure occurs, followed by the timestep
ids of both the start and end timestep marking the span of activity.

Periodic: Periodic structures are an extension of ranged structures in that they appear at �xed
intervals. However, these intervals are spaced greater than one timestep apart. As such, the
same encoding cost function we use for ranged structures su�ces here. That is, L(p) for a
periodic structure p is given by L(p) = L(r).

For both ranged and periodic structures, periodicity can be inferred from the start and end
markers along with the number of timesteps |u(s)|, allowing reconstruction of the original
u(s).

Flickering: A structure is �ickering if it appears only in some of the G1 · · ·Gt timesteps, and
does so without any discernible ranged/periodic pattern. The encoding cost L(f) for a �ickering
structure f is as follows:

L(f) = LN(|u(s)|) + log2

(
n

|u(s)|

)
We encode the number of timesteps in which the structure occurs in addition to the ids for the
timesteps of occurrence.

Constant: Constant structures persist throughout all timesteps. That is, they occur at each
timestepG1 · · ·Gt without exception. In this case, our encoding costL(c) for a constant structure
c is de�ned as L(c) = 0. Intuitively, information regarding the timesteps in which the structure
appears is “free,” as it is already given by encoding the phrase descriptor v(s).

6.3.3 Encoding the Errors

Given that M is a summary and the M induced by M is only an approximation of A, it is
necessary to encode errors made by M . In particular, there are two types of errors we must
consider. The �rst is error in connectivity – that is, if area(s) induced by structure s is not
exactly the same as the associated patch in A, we encode the relevant mistakes. The second is
the error induced by encoding the set of timesteps u(s) with a �xed temporal signature, given
that u(s) may not precisely follow the temporal pattern used to encode it.

6.3.3.1 Encoding Errors in Connectivity

We encode the error tensor E = M⊕A as two di�erent pieces – speci�cally, we encode E+

and E− where the former refers to the area of A which M models and M includes extraneous
edges not present in the original graph, and the latter consists of the area of A which M does
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not model and therefore does not describe. Our reasoning for encoding these two separately
is that they likely have di�erent error distributions. Given that near cliques and near bipartite
cores are encoded exactly per our model, we ignore the associated areas when encoding E+.
The encoding for E+ and E−, denoted as L(E+) and L(E−) respectively is as follows:

L(E+) = log2(|E+|) + ||E+||ρ1 + ||E+||′ρ0

L(E−) = log2(|E−|) + ||E−||ρ1 + ||E−||′ρ0

In both cases, we encode the number of 1s in E+ (or E−), followed by the actual 1s and 0s using
optimal pre�x codes.

6.3.3.2 Encoding Errors in Temporal Presence

For encoding errors induced by identifying u(s) as one of the temporal signatures, we turn
to optimal pre�x codes applied over the error distribution for each structure s. Given the
information encoded for each signature type in ∆, we can reconstruct an approximation ũ(s) of
the original timesteps u(s) such that |u(s)| = |ũ(s)|. Using this approximation, the encoding
cost L(eu(s)) for the error eu(s) = u(s)− ũ(s) is de�ned as:

L(eu(s)) =
∑

k∈h(eu(s))

(
log2(k) + log2c(k) + c(k)ρk

)
where h(eu(s)) denotes the set of elements with unique magnitude in eu(s), c(k) denotes the
count of element k in eu(s) and ρk denotes the length of the optimal pre�x code for k. For each
magnitude error, we encode the magnitude of the error, the number of times it occurs and the
actual errors using optimal pre�x codes. Using the model in conjunction with temporal presence
and connectivity errors, a recipient can �rst recover the u(s) for each s ∈M , approximate A
with M induced by M , produce E from E+ and E−, and �nally recover A losslessly through
A = M⊕ E.

Remark: For a dynamic graph G of n nodes, the search spaceM for the best model M ∈M is
intractable, as it consists of all permutations of all possible temporal structures over the lexicon
Φ, over all possible subsets over the node-set V and over all possible graph timesteps G1 · · ·Gt.
Furthermore,M is not easily exploitable for e�cient search. As a result, we propose several prac-
tical approaches for the purpose of �nding good and interpretable temporal models/summaries
for G.

6.4 Proposed Method: TimeCrunch

Thus far, we have described our strategy of formulating dynamic graph summarization as a
problem in a compression context for which we can leverage MDL. Speci�cally, we have detailed
how to encode a model and the associated error which can be used to losslessly reconstruct the
original dynamic graph G. Our models are characterized by ordered lists of temporal structures
which are further classi�ed as phrases from the lexicon Φ – that is, each s ∈M is identi�ed by
a phrase p ∈ Φ – over the node connectivity c(s) (an induced set of edges depending on the
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Algorithm 6.1: TimeCrunch
1: Generating Candidate Static Structures: Generate static subgraphs for each G1 · · ·Gt

using traditional static graph decomposition approaches.
2: Labeling Candidate Static Structures: Label each static subgraph as a static structure

corresponding to the identi�er x ∈ Ω which minimizes the local encoding cost.
3: Stitching Candidate Temporal Structures: Stitch the static structures from G1 · · ·Gt

together to form temporal structures with coherent connectivity behavior and label them
according to the the phrase p ∈ Φ which minimizes temporal presence encoding cost.
Populate the candidate set C.

4: Composing the Summary: Compose a model M of important, non-redundant temporal
structures which summarize G using the Vanilla, Top-10, Top-100 and Stepwise heuristics.
Choose M associated with the heuristic that produces the smallest total encoding cost.

static structure identi�er st, fc, etc.) and the associated temporal presence u(s) (ordered list
of timesteps captured by a temporal signature o, r, etc. and deviations) in which the temporal
structure is active, while the error consists of those edges which are not covered by M, or the
approximation of A induced by M .

Next, we discuss how we �nd good candidate temporal structures to populate the candidate set
C, as well as how we �nd the best model M with which to summarize our dynamic graph. The
pseudocode for our algorithm is given in Alg. 6.1 and the next subsections detail each step of
our approach.

6.4.1 Generating Candidate Static Structures

TimeCrunch takes an incremental approach to dynamic graph summarization. Our approach
begins by considering potentially useful subgraphs over static graphsG1 · · ·Gt. Sec. 6.2 mentions
several such algorithms for community detection and clustering including EigenSpokes, METIS,
SlashBurn, etc. Summarily, for each G1 · · ·Gt, a set of subgraphs F is produced.

6.4.2 Labeling Candidate Static Structures

Once we have the set of static subgraphs from G1 · · ·Gt, F , we next seek to label each subgraph
in F according to the static structure identi�ers in Ω that best �t the connectivity for the given
subgraph. That is, for each subgraph construed as a set of nodes L ∈ V for a �xed timestep,
does the adjacency matrix of L best resemble a star, near or full clique, near or full bipartite core
or a chain? To answer this question, we leverage the encoding scheme discussed in Sec. 6.3.2.1:
we try encoding the subgraph L using each of the static identi�ers in Ω and label it with the
identi�er x ∈ Ω which minimizes the encoding cost.

Consider the model ω which consists of only the subgraph L and a yet to be determined static
identi�er. In practice, instead of computing the global encoding cost L(G,ω) when encoding L
as each static identi�er in Ω to �nd the best �t, we compute the local encoding cost de�ned as
L(ω)+L(E+

ω )+L(E−ω ) where L(E+
ω ) and L(E−ω ) indicate the encoding costs for the extraneous

and unmodeled edges for the subgraph L respectively. This is done for purpose of e�ciency
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– intuitively, however, the static identi�er that best describes L is independent of the edges
outside of L.

The challenge in this labeling step is that before we can encode L as any type of identi�er, we
must identify a suitable permutation of nodes in the subgraph so that our model encodes the
correct edges. For example, if L is a star, which is the hub? Or if L is a bipartite core, how can
we distinguish the parts?

For stars, we identify the highest-degree node as the hub and all other nodes as spokes. For near
and full bipartite cores, �nding the right permutation can be reduced to �nding the maximum
bipartite subgraph, which is equivalent to �nding the maximum cut and is NP-hard. As a result,
we use a heuristic approach which formulates the problem as a two-class classi�cation task. To
this end, we initialize L to contain the highest-degree node in L, and R to contain its neighbors.
We then use Fast Belief Propagation [KKK+11] with heterophily (assuming connected nodes
belong to di�erent classes) to propagate the class labels and determine L and R. For near and
full cliques, any permutation is equally good. Lastly, for chains, �nding the right permutation is
equivalent to �nding the longest path, which is NP-hard. As a result, we again employ a heuristic
approach in which we select a node in L at random, use BFS to �nd the furthest node away, and
repeat with the resulting node while extending the chain through local search iteratively. For
both near cliques and bipartite cores, we do not encode E+

nc and E+
nb as L(nc) and L(nb) encode

the relevant edges exactly.

6.4.3 Stitching Candidate Temporal Structures

Thus far, we have a set of static subgraphs F over G1 · · ·Gt labeled with the associated static
identi�ers which best represent subgraph connectivity (from now on, we refer to F as a set of
static structures instead of subgraphs as they have been labeled with identi�ers). From this set,
our goal is to �nd meaningful temporal structures – namely, we seek to �nd static subgraphs
which have the same patterns of connectivity over one or more timesteps and stitch them
together. Thus, we formulate the problem of �nding coherent temporal structures in G as a
clustering problem over F . Though there are several criteria we could use for clustering static
structures together, we employ the following based on their intuitive meaning: two structures in
the same cluster should have (a) substantial overlap in the node-sets composing their respective
subgraphs, and (b) exactly the same, or similar (full and near clique, or full and near bipartite
core) static structure identi�ers. These criteria, if satis�ed, allow us to �nd groups of nodes that
share interesting connectivity patterns over time.

Conducting the clustering by naively comparing each static structure in F to the others will
produce the desired result, but is quadratic on the number of static structures and is thus
undesirable from a scalability point of view. Instead, we propose an incremental approach using
repeated rank-1 Singular Value Decomposition (SVD) for clustering the static structures, which
o�ers linear time complexity on the number of edges m in G.

We begin by de�ning B as the structure-node membership matrix (SNMM) ofG. B is de�ned to be
of dimensions |F| × |V|, where Bi,j indicates whether the ith row (structure) in F (B) contains
node j in its node-set. Thus, B is a matrix indicating the membership of nodes in V to each
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of the static structures in F . We note that any two equivalent rows in B are characterized by
structures that share the same node-set (but possibly di�erent static identi�ers). As our clustering
criteria mandate that we cluster only structures with the same or similar static identi�ers, in
our algorithm, we construct 4 SNMMs – Bst, Bcl, Bbc and Bch corresponding to the associated
matrices for stars, near and full cliques, near and full bipartite cores and chains respectively.
Now, any two equivalent rows in Bcl are characterized by structures that share the same-node
set and the same, or similar static identi�ers, and analogue for the other matrices. Next, we
utilize SVD to cluster the rows in each SNMM, e�ectively clustering the structures in F .

Recall that the rank-k SVD of an m × n matrix A factorizes A into 3 matrices – the m × k
matrix of left-singular vectors U, the k × k diagonal matrix of singular values Σ and the n× k
matrix of right-singular vectors V, such that A = UΣVT. A rank-k SVD e�ectively reduces
the input data into the best k-dimensional representation, each of which can be mined separately
for clustering and community detection purposes. However, one major issue with using SVD in
this fashion is that identifying the desired number of clusters k upfront is a non-trivial task. To
this end, [PSB13] evidences that in cases where the input matrix is sparse, repeatedly clustering
using k rank-1 decompositions and adjusting the input matrix accordingly approximates the
batch rank-k decomposition. This is a valuable result in our case – as we do not initially know
the number of clusters needed to group the structures in F , we eliminate the need to de�ne k
altogether by repeatedly applying rank-1 SVD using power iteration and removing the discovered
clusters from each SNMM until all clusters have been found (when all SNMMs are fully sparse
and thus de�ated). However, in practice, full de�ation is unneeded for summarization purposes,
as most “important” clusters are found in early iterations due to the nature of SVD. For each of
the SNMMs, the matrix B used in the (i+ 1)th iteration of this iterative process is computed
as

Bi+1 = Bi − IGi ◦Bi

where Gi denotes the set of row ids corresponding to the structures which were clustered
together in iteration i, IGi denotes the indicator matrix with 1s in rows speci�ed by Gi and
◦ denotes the Hadamard matrix product. This update to B is needed between iterations, as
without subtracting out the previously-found cluster, repeated rank-1 decompositions would
�nd the same cluster ad in�nitum and the algorithm would not converge.

Although this algorithm works assuming we can remove a cluster in each iteration, the question
of how we �nd this cluster given a singular vector has yet to be answered. First, we sort
the singular vector, permuting the rows by magnitude of projection. The intuition is that the
structure (rows) which projects most strongly to that cluster is the best representation of the
cluster, and is considered a base structure which we attempt to �nd matches for. Starting from
the base structure, we iterate down the sorted list and compute the Jaccard similarity, de�ned as
J(L1,L2) = |L1 ∩ L2|/|L1 ∪ L2| for node-sets L1 and L2, between each structure and the base.
Other structures which are composed of the same, or similar node-sets will also project strongly
to the cluster, and be stitched to the base. Once we encounter a series of structures which fail
to match by a prede�ned similarity criterion, we adjust the SNMM and continue with the next
iteration.
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Having stitched together the relevant static structures, we label each temporal structure using
the temporal signature in ∆ and resulting phrase in Φ which minimizes its encoding cost using
the temporal encoding framework derived in Sec. 6.3.2.2. We use these temporal structures to
populate the candidate set C for our model.

6.4.4 Composing the Summary

Given the candidate set of temporal structures C, we next seek to �nd the model M which
best summarizes G. However, actually �nding the best model is combinatorial, as it involves
considering all possible permutations of subsets of C and choosing the one which gives the
smallest encoding cost. As a result, we propose several heuristics that give fast and approximate
solutions without entertaining the entire search space. To reduce the search space, we associate
with each temporal structure a metric by which we measure quality, called the local encoding
bene�t. The local encoding bene�t is de�ned as the ratio between the cost of encoding the given
temporal structure as error and the cost of encoding it using the best phrase (local encoding
cost). Large local encoding bene�ts indicate high compressibility, and thus meaningful structure
in the underlying data. Our proposed heuristics are as follows:

Vanilla: This is the baseline approach, in which our summary contains all the structures from
the candidate set, or M = C.

Top-k: In this approach, M consists of the top k structures of C, sorted by local encoding
bene�t.

Stepwise: This approach involves considering each structure of C, sorted by local encoding
bene�t, and adding it to M if the global encoding cost decreases. If adding the structure to M
increases the global encoding cost, the structure is discarded as redundant or not worthwhile
for summarization purposes.

In practice, TimeCrunch uses each of the heuristics and identi�es the best summary for G as
the one that produces the minimum encoding cost.

6.5 Experiments

In this section, we evaluate TimeCrunch and seek to answer the following questions: Are
real-world dynamic graphs well-structured, or noisy and indescribable? If they are structured,
how so – what temporal structures do we see in these graphs and what do they mean? Lastly, is
TimeCrunch scalable?

6.5.1 Datasets and Experimental Setup

For our experiments, we use 5 real dynamic graph datasets – they are summarized in Table 6.3
and described below.

Enron: The Enron e-mail dataset is publicly available. It contains 20 thousand unique links
between 151 users based on e-mail correspondence, over 163 weeks (May 1999 - June 2002).
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Graph Nodes Edges Timesteps

Enron [SA04] 151 20 thousand 163 weeks
Yahoo-IM [Yah] 100 thousand 2.1 million 4 weeks

Honeynet 372 thousand 7.1 million 32 days
DBLP [dbl14] 1.3 million 15 million 25 years
Phonecall 6.3 million 36.3 million 31 days

Table 6.3: Dynamic graphs used for empirical analysis

Yahoo! IM: The Yahoo-IM dataset is publicly available. It contains 2.1 million sender-receiver
pairs between 100 thousand users over 5709 zip-codes selected from the Yahoo! messenger
network over 4 weeks starting from April 1st, 2008.

Honeynet: The Honeynet dataset is not publicly available. It contains information about
network attacks on honeypots (i.e., computers which are left intentionally vulnerable to attackers)
It contains source IP, destination IP and attack timestamps of 372 thousand (attacker and
honeypot) machines with 7.1 million unique daily attacks over a span of 32 days starting from
December 31st, 2013.

DBLP: The DBLP computer science bibliography is publicly available, and contains yearly
co-authorship information, indicating joint publication. We used a subset of DBLP spanning
25 years, from 1990 to 2014, with 1.3 million authors and 15 million unique author-author
collaborations over the years.

Phonecall: The Phonecall dataset is not publicly available. It describes the who-calls-whom
activity of 6.3 million individuals from a large, anonymous Asian city and contains a total of
36.3 million unique daily phonecalls. It spans 31 days, starting from December 1st, 2007.

In our experiments, we use SlashBurn for generating candidate static structures, as it is scalable
and designed to extract structure from real-world, non-“cavemen” graphs. We note that including
other graph decomposition methods can only improve results given MDL. Furthermore, when
clustering each sorted singular vector during the stitching process, we move on with the next
iteration of matrix de�ation after 10 failed matches with a Jaccard similarity threshold of 0.5 –
we choose 0.5 based on experimental results which show that it gives the best encoding cost
and balances between excessively terse and overlong (error-prone) models. Lastly, we run
TimeCrunch for a total of 5000 iterations for all graphs (each iteration uniformly selects one
SNMMs to mine, resulting in 5000 total temporal structures), except for the Enron graph which
is fully de�ated after 563 iterations and the Phonecall graph which we limit to 1000 iterations
for e�ciency.

6.5.2 Quantitative Analysis

In this section, we use TimeCrunch to summarize each of the real-world dynamic graphs from
Table 6.3 and report the resulting encoding costs. Speci�cally, evaluation is done by comparing
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Graph Original

TimeCrunch

(bits) Vanilla Top-10 Top-100 Stepwise

Enron 86, 102 89% (563) 88% 81% 78% (130)
Yahoo-IM 16, 173, 388 97% (5000) 99% 98% 93% (1523)
Honeynet 72, 081, 235 82% (5000) 96% 89% 81% (3740)
DBLP 167, 831, 004 97% (5000) 99% 99% 96% (1627)
Phonecall 478, 377, 701 100% (1000) 100% 99% 98% (370)

Table 6.4: TimeCrunch �nds temporal structures that can compress real graphs. Original
denotes the cost in bits for encoding each graph with an empty model. Columns under Time-
Crunch show relative costs for encoding the graphs using the respective heuristic (size of model
is parenthesized). The lowest description cost is bolded.

the compression ratio between encoding costs of the resulting models to the null encoding
(Original) cost, which is obtained by encoding the graph using an empty model.

We note that although we provide results in a compression context, compression is not our main
goal for TimeCrunch, but rather the means to our end for identifying suitable structures with
which to summarize dynamic graphs and route the attention of practitioners. For this reason,
we do not evaluate against other, compression-oriented methods which prioritize leveraging
any correlation within the data to reduce cost and save bits. Other temporal clustering and
community detection approaches which focus only on extracting dense blocks are also not
compared to for similar reasons.

In our evaluation, we consider (a) Original and (b) TimeCrunch summarization using the
proposed heuristics. In the Original approach, the entire adjacency tensor is encoded using the
empty model M = ∅. As the empty model does not describe any part of the graph, all the edges
are encoded using L(E−). We use this as a baseline to evaluate the savings attainable using
TimeCrunch. For summarization using TimeCrunch, we apply the Vanilla, Top-10, Top-100
and Stepwise model selection heuristics. We note that we ignore small structures of <5 nodes
for Enron and <8 nodes for the other, larger datasets.

Table 6.4 shows the results of our experiments in terms of encoding costs of various sum-
marization techniques as compared to the Original approach. Smaller compression ratios
indicate better summaries, with more structure explained by the respective models. For example,
Stepwise was able to encode the Enron dataset using just 78% of the bits compared to 89%
using Vanilla. In our experiments, we �nd that the Stepwise heuristic produces models with
considerably fewer structures than Vanilla, while giving even more concise graph summaries
(Fig. 6.2). This is because it is highly e�ective in pruning redundant, overlapping or error-prone
structures from the candidate set C, by evaluating new structures in the context of previously
seen ones.
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Figure 6.2: TimeCrunch-Stepwise summarizes Enron using just 78% of Original’s

bits and 130 structures, compared to 89% and 563 structures of TimeCrunch-Vanilla

by pruning unhelpful structures from the candidate set.

Observation 6.1: Structure in Dynamic Graphs

Real-world dynamic graphs are not unstructured. TimeCrunch gives better encoding cost
than Original, indicating the presence of temporal graph structure.

6.5.3 Qualitative Analysis

In this section, we discuss qualitative results from applying TimeCrunch to the graphs mentioned
in Table 6.3.

Enron: The Enron graph is characteristic of many periodic, ranged and oneshot stars and
several periodic and �ickering cliques. Periodicity is re�ective of o�ce e-mail communications
(e.g. meetings, reminders). Figure 6.3a shows an excerpt from one �ickering clique which
corresponds to the several members of Enron’s legal team, including Tana Jones, Susan Bailey,
Marie Heard and Carol Clair – all lawyers at Enron. Figure 6.3b shows an excerpt from a
�ickering star, corresponding to many of the same members as the �ickering clique – the center
of this star was identi�ed as the boss, Tana Jones (Enron’s Senior Legal Specialist). Note that
the satellites of the star oscillate over time. Interestingly, the �ickering star and clique extend
over most of the observed duration. Furthermore, several of the oneshot stars corresponds to
company-wide emails sent out by key players John Lavorato (Enron America CEO), Sally Beck
(COO) and Kenneth Lay (CEO/Chairman).

Yahoo! IM: The Yahoo-IM graph is composed of many temporal stars and cliques of all types,
and several smaller bipartite cores with just a few members on one side (indicative of friends
who share mostly similar friend-groups but are themselves unconnected). We observe several
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(a) 8 employees of the Enron le-
gal team forming a �ickering near
clique

(b) 10 employees of the Enron le-
gal team forming a �ickering star
with the boss as the hub

(c) 40 users in Yahoo-IM form-
ing a constant near clique with 55%
density over the observed 4 weeks

(d) 82 users in Yahoo-IM form-
ing a constant star over the ob-
served 4 weeks

(e) 589 honeypot machines were
attacked on Honeynet over 2
weeks, forming a ranged star

(f) 43 authors that publish to-
gether in biotechnology journals
forming a ranged near clique on
DBLP

(g) 82 authors forming a ranged
near clique on DBLP, with
burgeoning collaboration from
timesteps 18-20 (2007-2009)

(h) 111 callers in Phonecall
forming a periodic star appearing
strongly on odd numbered days,
especially Dec. 25 and 31

(i) 792 callers in Phonecall
forming a oneshot near bipartite
core appearing strongly on Dec.
31

Figure 6.3: TimeCrunch �nds meaningful temporal structures in real graphs. We show
the reordered subgraph adjacency matrices over multiple timesteps. Individual timesteps are
outlined in gray, and edges are plotted with alternating red and blue color for discernibility.

interesting patterns in this data – Fig. 6.3d corresponds to a constant star with a hub that
communicates with 70 users consistently over 4 weeks. We suspect that these users are part of a
small o�ce network, where the boss uses group messaging to notify employees of important
updates or events – we notice that very few edges of the star are missing each week and the
average degree of the satellites is roughly 4, corresponding to possible communication between
employees. Figure 6.3c depicts a constant clique between 40 users, with an average density
over 55% – we suspect that these may be spam-bots messaging each other in an e�ort to appear
normal.
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st fc ch

r 9 - -
p 93 7 1
f 3 1 -
c - - -
o 15 1 -

(a) Enron

st fc nc bc nb ch

r 147 43 - 1 45 6
p 59 25 - - 42 3
f 179 55 - 1 62 3
c 185 118 - - 66 -
o 295 129 1 2 56 -

(b) Yahoo-IM

st bc

r 56 -
p 125 1
f 39 -
c - -
o 3512 7

(c) Honeynet

st fc nb ch

r 43 80 - 5
p 19 26 - -
f 1 - - -
c - - - -
o 516 840 97 -

(d) DBLP

st fc nc bc

r 15 - - -
p 68 - - 1
f 88 - - -
c 5 - - -
o 187 4 1 1

(e) Phonecall

Table 6.5: Frequency of each temporal structure type discovered using TimeCrunch-Stepwise
for each dataset.

Honeynet: Honeynet is a bipartite graph between attacker and honeypot (victim) machines.
As such, it is characterized by temporal stars and bipartite cores. Many of the attacks only span
a single day, as indicated by the presence of 3512 oneshot stars, and no attacks span the entire 32
day duration. Interestingly, 2502 of these oneshot star attacks (71%) occur on the �rst and second
observed days (Dec. 31 and Jan. 1st) indicating intentional “new-year” attacks. Figure 6.3e shows
a ranged star, lasting 15 consecutive days and targeting 589 machines for the entire duration of
the attack.

DBLP: Agreeing with intuition, DBLP consists of a large number of oneshot temporal structures
corresponding to many single instances of joint publication. However, we also �nd numerous
ranged/periodic stars and cliques which indicate coauthors publishing in consecutive years or
intermittently. Figure 6.3f shows a ranged clique spanning from 2007-2012 between 43 coauthors
who jointly published each year. The authors are mostly members of the NIH NCBI (National
Institute of Health National Center for Biotechnology Information) and have published their work
in various biotechnology journals such as Nature, Nucleic Acids Research and Genome Research.
Figure 6.3g shows another ranged clique from 2005 to 2011, consisting of 83 coauthors who
jointly publish each year, with an especially collaborative 3 years (timesteps 18-20) corresponding
to 2007-2009 before returning to status quo.

Phonecall: The Phonecall dataset is largely comprised of temporal stars and few dense
clique and bipartite structures. Again, we have a large proportion of oneshot stars which occur
only at single timesteps. Further analyzing these results, we �nd that 111 of the 187 oneshot stars
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Figure 6.4: TimeCrunch scales near-linearly on the number of edges in the graph. Here,
we use several induced temporal subgraphs from DBLP, up to 14M edges in size.

(59%) are found on Dec. 24, 25 and 31st, corresponding to Christmas Eve/Day and New Year’s Eve
holiday greetings. Furthermore, we �nd many periodic and �ickering stars typically consisting
of 50-150 nodes, which may be associated with businesses regularly contacting their clientele, or
public phones which are used consistently by the same individuals. Figure 6.3h shows one such
periodic star of 111 users over the last week of December, with particularly clear star structure
on Dec. 25th and 31st and other odd-numbered days, accompanied by substantially weaker
star structure on the even-numbered days. Figure 6.3i shows an oddly well-separated oneshot
near-bipartite core which appears on Dec. 31st, consisting of two roughly equal-sized parts of
402 and 390 callers. Though we do not have ground truth to interpret these structures, we note
that a practitioner with the appropriate information could better interpret their meaning.

6.5.4 Scalability

All components of TimeCrunch are carefully designed to be linear or near-linear on the number
of nonzero edges. Figure 6.4 shows the near-linear runtime of TimeCrunch on several induced
temporal subgraphs (up to 14M edges) taken from the DBLP dataset at varying time-intervals.
Our experiments were conducted on a machine with 80 Intel Xeon(R) 4850 2GHz cores and
256GB RAM. We use MATLAB for candidate subgraph generation and temporal stitching and
Python for model selection heuristics.

Furthermore, much of the TimeCrunch pipeline (per-timestep summarization) is embarrassingly
parallelizable and can be easily split over nodes. Distributed eigensolver implementations also
exist in practice for the stitching component.

6.6 Conclusion

In this work, we tackle the problem of identifying signi�cant and structurally interpretable
temporal patterns in large, dynamic graphs. Speci�cally, we formalize the problem of �nding
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important and coherent temporal structures in a graph as minimizing the encoding cost of the
graph from a compression standpoint. To this end, we propose TimeCrunch, a fast and e�ective,
incremental technique for building interpretable summaries for dynamic graphs which involves
generating candidate subgraphs from each static graph, labeling them using static identi�ers,
stitching them over multiple timesteps and composing a model using practical approaches.
Finally, we apply TimeCrunch on several large, dynamic graphs and �nd numerous patterns
and anomalies which indicate that real-world graphs do in fact exhibit temporal structure.
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Chapter 7

M3A: Modeling Interarrival Time

in Web Searches

Modeling the temporal search behavior of
users and �nding inhuman abnormalities.

Based on content published in [JST+17].

How do real users use search platforms to look for content, and how often do they form new
queries? Can we characterize normal and abnormal user behavior on such platforms based
on their temporal usage habits? These are the questions we aim to answer in this chapter.
Speci�cally, we study multiple large query and online commenting logs and propose a
new, intuitive and empirically e�ective approach called M3A, which models inter-arrival
times (IATs) between individual user queries (Camel-Log) and group parameter distributions
(Meta-Click) and can be used for anomaly detection. M3A models real IATs more accurately
than existing approaches and discovers abnormal search behaviors in line with human
intuition.

7.1 Introduction

Say a user submits one web search every �ve minutes, for three hours in a row – is this normal?
How can we detect abnormal search behaviors amongst this user and other such users? Is there
any distinct pattern in these users’ search behaviors? These three questions serve as the major
motivations of this work.

Conventionally, each of a user’s queries is assumed (1) to be submitted independently and (2) to
follow a constant rate λ, which results in a simple and elegant model, Poisson process (PP). PP
generates independent and identically distributed (i.i.d.) inter-arrival time (IAT) that follows
an (negative) exponential distribution [FMH93]. In reality, however, does PP accurately model
search behavior?
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Figure 7.1: M3Amodels search patterns and detects anomalous behaviors.: (a) Histogram
of inter-arrival time (IAT) for a single user in linear scale. No prevailing patterns are shown.
(b) Logarithmic binning (equally-spaced in log-scale) of IAT with Camel-Log �t. A bi-modal
distribution can be seen:M1 at 5 minutes (typical inter-query time) andM2 at hours (typical
time between sessions). (c) illustrates group-level analysis with scatter plot of the ratio (in-
session/take-o� queries) vs. the median of in-session intervals. Anomalies are spotted: anomalies
(circled by red) cannot be detected by using only the marginal PDF of X-variable, whereas
anomalies (marked by the red rectangle) cannot be detected by using the Y-variable. (d) shows
an automated way of spotting anomalies through Meta-Click: the blue deviants (within red
circles/boxes) correspond to the outliers (in circles/boxes) in (c).

To answer this question, we investigate a large, industrial query log that contains more than 30
million queries submitted by 0.6 million users. Figure 7.1 illustrates the histogram of a user’s
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IAT. The temporal resolution is one second. As Figure 7.1(a) shows, this distribution has a
“heavy tail” as opposed to an (negative) exponential distribution whose tail decays exponentially
fast. In the logarithmic scale as Figure 7.1(b) shows, surprisingly, two distinct modes (denoted
asM1 andM2) with approximately symmetric shapes can be seen. This distribution (or a
mixture of distributions) clearly does not follow an (negative) exponential distribution, which
has a strictly right-skewed shape in logarithmic scale and therefore cannot depict such shapes.
This phenomenon suggests that the assumptions of PP rarely hold, since the arrival rate may
change, or certain queries may be submitted depending on the previous queries. For example,
in the query log, we found that a user �rst submitted a query (and clicked through) with the
terms “wedding theme,” and upon re�ning his/her previous query submitted a follow-up query
with terms “African jungle wedding theme.” These in-session query dependencies violate the
assumptions and thus invalidate the use of PP.

Furthermore, detecting abnormal user behaviors is also a critical task for analyzing web activities.
These anomalies—for example, frequently issuing queries with adverse clicks—may alter the
corresponding search results, which in turn reduces the quality of recommendations. To make
matter worse, this spam increases the load of datacenters, leading to extra operational expenses.
Consequently, a systematic framework to spot web anomalies is urgently required.

In this paper we aim at solving the following problems:
• P1: Pattern discovery and interpretation. Is there any pattern in individual user IATs?
• P2: Behavioral modeling. How can we characterize the marginal distribution of IATs?
• P3: Anomaly detection. Given many users’ IAT distributions, how can we determine

whether a given user’s IAT distribution is abnormal?

M3A’s contributions are exactly the answers to these proposed questions:
• A1: Pattern discovery and interpretation. We observe that search IAT is a bi-modal

(M1, M2) distribution (the superposition of two distributions) with M1 referring to
in-session, andM2 referring to take-o� (e.g., sleep time) queries.

• A2: Behavioral modeling. Speci�cally, we propose:
“Camel-Log1” to parametrically characterize individual user IATs by mixing two
heavy-tail distributions.
“Meta-Click” to describe the joint probability of two parameters of Camel-Log by
using a copula.

• A3: Anomaly detection. Camel-Log generates IATs with the same statistical properties
as in the real data shown in Figure 7.1(b), and Meta-Click can detect abnormal users in
line with human intuition as in Figure 7.1(c)(d).

• A4: Generality. We conduct analysis and model user behaviors from AOL logs [PCT06]
and show generality with respect to Reddit2 comment posting behavior.

The remainder of this chapter is organized as follows. Section 7.2 provides the problem de�nition.
Section 7.3 details the user-level model Camel-Log and Section 7.4 details the group-level

1The bi-modal distribution of a user’s IAT is analogous to a baktrian Camel’s back, in Log scale.
2www.reddit.com
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metamodel Meta-Click. Section 7.5 provides a guide to practical use of M3A. Section 7.6 surveys
previous work. Finally, Section 7.7 concludes the chapter.

7.2 Problem De�nition

In this work, we use a large-scale, industrial query log released by AOL [PCT06] and powered
by Google [BI07]. The basic statistics of this query log are provided here:

• Duration: three months, from March 1st to May 31st, 20063.
• 36 millions queries submitted from 657,000 users:

19 millions queries WITH click-through
(we refer to these as landed queries).
17 millions queries WITHOUT click-through
(we refer to these as orphan queries).

• The temporal resolution is 1 second.

7.2.1 Terminology and problem formulation

Table 7.1 provides the symbols and the corresponding de�nitions used throughout this paper.
By the convention in statistics, random variables are represented in upper-case (e.g., M ) and the
corresponding values (e.g., m) are in lower-case.

As mentioned in Section 7.1, we aim to solve the following three problems:

Problem 7.1: Pattern discovery and interpretation

Given each user ID and the time stamp of each query, �nd and interpret the most distinct
pattern su�cient to characterize the IAT distribution of each user.

Problem 7.2: Behavioral modeling

Given the pattern found in P1:

1. Design a model (and a metamodel) that matches the statistical properties of the
empirical data.

2. Estimate the parameters (and the hyper-parameters).

3Despite the datedness, the log faithfully re�ects how humans actually interface with search (active bursts,
sleep time, etc), as we will show later in this paper.
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Symbol De�nition
IAT Inter-arrival time
ti,j IAT between jth and (j + 1)th query submitted by user i.
FT (·) Cumulative distribution function (CDF) for: (a) the random variable T or (b) the

distribution T
fT (·) Probability density function (PDF) for: (a) the random variable T or (b) the

distribution T (e.g., fLL is the PDF of log-logistic)
LL Log-logistic distribution: a skewed (in linear scale), heavy-tail distribution
Camel-Log Proposed mixture of two log-logistic distribution: modeling marginal IAT
Meta-Click Proposed 2-d log-logistic distribution using Gumbel’s copula: metamodeling the

parameters of Camel-Log
Symbols used by Camel-Log

αin, βin Parameters: median and shape of log-logistic distribution (for modeling in-session
IAT)

αoff , βoff Parameters: median and shape of log-logistic distribution (for modeling take-o�
IAT)

θ Proportion parameter: θ ∈ [0,1] for in-session IAT, and (1− θ) for take-o� IAT
Symbols used by Meta-Click

R Random variable representing the ratio of in-session and take-o� IAT: R ,
θ/(1− θ)

M Random variable representing the log-median of in-session IAT: M , log(αin)
αR, βR Hyper-parameters: median and shape of log-logistic distribution (for modeling

R)
αM , βM Hyper-parameters: median and shape of log-logistic distribution (for modeling

M )
C(·, ·) Copula: Joint CDF of two random variables considering their dependency [0, 1]×

[0, 1]→ [0, 1]
η Parameter in Gumbel’s copula that captures correlations between random vari-

ables R and M

Table 7.1: Symbols and de�nitions

Problem 7.3: Anomaly detection

Given

1. The model (and metamodel) from P2.
2. The time stamp of each query from a user.

determine if her/his query behavior in terms of IAT is abnormal.
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Figure 7.2: Users with high proportion of “orphan” queries are suspicious (see the red

box). One user (circled by red) has submitted ≈ 130,000 queries, with the longest IAT of only 20
minutes (no sleep time).

7.2.2 Preliminary observations on non-landed “orphan” queries

In Figure 7.2, notice that certain users (marked by the red rectangle) have submitted more than
1,000 queries but clicked through very few (less than 100, or even zero!) of them, resulting in
abnormally-many of orphan queries. Another obvious evidence is: these orphan queries usually
submitted (a) consecutively and (b) with the same keyword, leading to a clear robotic behavior.
Therefore, we provide the following qualitative observation.

Observation 7.1: Orphan queries

Users who have submitted many (usually more than 1,000) queries but have clicked through
very few (less than 100) of them are abnormal.

Furthermore, one user (circled by red) in the upper-right corner of Figure 7.2 has submitted more
queries (by two orders of magnitude, ≈ 130,000) than typical users (≈ hundreds to thousands),
with the longest IAT of only 20 minutes (no sleep time). Clearly, this user is suspicious and
therefore an anomaly.

After being able to detect obvious anomalies with orphan queries, we again ask the major
motivating question (as mentioned in Section 7.1): How frequently does a given user submit a

112



web query and click through the search results? Starting immediately, we ignore orphan queries
and focus on the IATs of landed queries.

7.3 Single User Analysis: Camel-Log

In this section, we �rst detail the proposed Camel-Log distribution (Section 7.3.1), provide
validations (Section 7.3.2) and give comparisons with other well-known models (Section 7.3.3).
For convenience, we preview the mathematical form of Camel-Log here:

fCamel−Log(t) = θ · fLL(t;αin, βin) +

(1− θ) · fLL(t;αoff , βoff )

where t ≥ 0, fLL(·) stands for the probability density function (PDF) of the log-logistic (LL)
distribution as shown in Eq(7.2).

7.3.1 Camel-Log distribution

The main idea of Camel-Log is to use a mixture of two log-logistic (LL) distributions to model
the bi-modal pattern in Figure 7.1(b). LL is a skewed (in linear scale), power-law-like (heavy-tail)
distribution, and there are two reasons for the choice of LL: (a) it outperforms competitors (see
Section 7.3.3); (b) it has an intuitive explanation (the longer a person has waited, the longer (s)he
will wait). LL has been used successfully for modeling the IAT of the Internet communications
of humans, such as posts on web blogs and comments on Youtube4[dMFAL13]. LL is de�ned as
follows:

De�nition 7.1: Log-logistic distribution

Let T be a non-negative continuous random variable and T ∼ LL(t;α, β). The CDF of a
log-logistically distributed T is given as:

FLL(t;α, β) =
1

1 + (t/α)−β
(7.1)

where α > 0 is the median (or called scale parameter), and β > 0 is the shape parameter.
The support t ∈ [0,∞). The PDF of T is given as:

fLL(t;α, β) =
(β/α)(t/α)β−1

[1 + (t/α)β]2
(7.2)

With the knowledge of LL, we present the de�nition of the proposed Camel-Log distribu-
tion:

4www.youtube.com
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De�nition 7.2: Camel-Log distribution

Let T be a non-negative random variable following Camel-Log distribution. The probability
density function (PDF) can be written as:

fCamel−Log(t) = θ · fLL(t;αin, βin) +

(1− θ) · fLL(t;αoff , βoff ) (7.3)

where t ≥ 0, θ ∈ [0, 1], αin, βin, αoff , βoff > 0.

The proposed Camel-Log distribution has the following properties:
• A mixture of two LL (heavy-tail) distributions to qualitatively describe: in-session and

take-o� IAT.
• Five parameters to characterize a user’s search behavior:

θ controls the proportion of in-session and take-o� IAT.
αin represents the median of in-session IAT.
βin is the “concentration5” of in-session IAT.
αoff represents the median of take-o� IAT.
βoff is the concentration of take-o� IAT.

Camel-Log distribution seems to model the marginal distribution of IATs very well, at least for
the users shown in Figure 7.1(b), and also provides intuitive interpretations. Next, we aim to
answer the following questions:

• Is Camel-Log su�ciently general and accurate to model and interpret other users’ search
behavior?

• Even so, does LL outperform other famous “conceivable” distributions, like Exponential
or Pareto (power-law)?

The answers to both questions are yes, and the details are provided in the following two
sections.

7.3.2 Validation against empirical data

Figure 7.3 illustrates the empirical IAT from several “proli�c” users who have issued many queries.
Each sub-�gure shows the marginal distribution of IATs (in logarithmic binning) from a user, and
the red curve is depicted by �tting a Camel-Log distribution via expectation maximization (EM).
For brevity, we show the �ts for only 9 users, but most of the others had similar behavior (see
Figure 10(a), where the vast majority of users have very similar model parameters). Notice:

• The consistency of bi-modal behaviors. All the users have the distinct “in-session” and
“take-o�” modes.

5The reciprocal of βin represents (approximately) the standard deviation of LL.

114



10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

10
0

10
2

10
4

10
6

10
0

10
1

10
2

IAT (sec)

C
o

u
n

ts

Figure 7.3: Camel-Log captures consistently bi-modal search behaviors: in-session and

take-o�. Each sub-�gure shows the marginal distribution of IATs (in logarithmic binning)
from a user. The red curve is the Camel-Log �t, with parameters computed via expectation
maximization (EM).

• The generality of the proposed Camel-Log. Camel-Log is able to �exibly and accurately
model the marginal distribution of IATs across di�erent users. (Camel-Log also well-models
other datasets – see Section 7.3.4 for details.)

Also from Figure 7.3, we provide the following observation:
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Figure 7.4: Quantile-Quantile (QQ) plots show that Camel-Log closely �ts real data. 45◦
line is ideal: all quantiles of the empirical data match the corresponding quantiles of the �tted
samples. In each sub-�gure, the majority of quantiles are matched very well by the proposed
Camel-Log distribution.

Observation 7.2: In-session and take-o�

The median in-session IAT is about �ve minutes, whereas the median of take-o� IAT is
approximately seven hours.
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The median of in-session IAT is about 5 minutes, which approximately represents the duration
when a user is interested in the query results. On the other hand, the IAT of take-o� queries is
longer, ranging from tens of minutes (e.g., lunch break), hours (e.g., sleep time), to days (e.g.,
weekends). The median of take-o� IAT is approximately seven hours, which corresponds to
sleep time very well.

More validations are provided by Figure 7.4. For each user, Figure 7.4 provides the Quantile-
Quantile plot (Q-Q plot) between the empirical IAT and the samples drawn from the �tted
Camel-Log distribution. In each sub-�gure, X axis represents the IAT from a user and Y axis are
the samples randomly drawn from the �tted Camel-Log distribution. 45◦ line is ideal, meaning
that the empirical data and the �tted samples follow the same distribution. As evidenced by
the sub-�gures, the majority of quantiles are matched very well by the proposed Camel-Log
distribution.

Thus far, we have shown strong evidence supporting the goodness of �t for Camel-Log, but
we still need to answer the question: why not use a mixture of other well-known “named”
distributions, like Exponential or Pareto (power-law)?

7.3.3 Why not other well-known distributions?

We compare the goodness of �t among the following three candidates:
• A mixture of two Exponential distributions.
• A mixture of two Pareto distributions.
• The proposed Camel-Log distribution.

by using the following criteria:
• p-value reported by two-sample Kolmogorov-Smirnov (K-S) test.
• Data log-likelihood.
• Bayesian information criterion (BIC).

It turns out that Camel-Log outperforms other candidates in all three criteria. Note that for each
user, the candidate models are �tted by the training set (randomly drawn from her/his IAT),
whereas the p-value and log-likelihood are reported by using the testing set (data not in the
training set). Figure 7.5 provides the p-value reported by K-S test on each user, with the null
hypothesis (H0): the user’s IAT follows the �tted candidate distribution. IfH0 is true, the p-value
will follow a Uniform(0,1) distribution, depicted by the 45◦ straight line. From Figure 7.5, the
proposed Camel-Log is the candidate closest to the true model; exponential mixture �ts well but
not as close, whereas Pareto mixture does not �t at all (with very low p-values). We also provide
log-likelihoods to show Camel-Log better explains users’ behaviors. Table 7.2 presents %-of
users that Camel-Log explains better (achieves higher likelihood), compared to other candidates.
The proposed Camel-Log achieves a higher log-likelihood on 78% of the users (compared to
Exponential mixture), and more than 99% of the users (compared to Pareto mixture).
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Figure 7.5: Camel-Log outperforms competitors with respect to K-S tests. Sorted p-values
are reported from K-S tests on: the proposed Camel-Log (in red), Pareto mixture (in blue) and
Exponential mixture (in green). The 45◦ straight line represents the ideal (true) model: p-value
follows the Uniform(0,1) distribution. The proposed Camel-Log is the closest to the true model.

Log-likelihood (of the testing set)
Compared against: Exponential mix. Pareto mix.

Camel-Log 78% > 99%
Bayesian information criterion (BIC)

Compared against: Exponential mix. Pareto mix.
Camel-Log 66% > 99%

Table 7.2: Evaluation with log-likelihood and BIC: %-of users that Camel-Log explains better
(higher is better)

Furthermore, since each candidate model uses di�erent number of parameters: Camel-Log (�ve),
Exponential mixture (three), and Pareto mixture (three), we also evaluate the BIC that strongly6

penalizes using more parameters and therefore prefers a parsimonious model. Table 7.2 presents
the BIC scores: the proposed Camel-Log achieves a lower BIC7 on 66% of the users (compared to
Exponential mixture), and more than 99% of the users (compared to Pareto mixture).

6Compared to Akaike information criterion (AIC).
7Given any two estimated models, the model with the lower value of BIC is the one to be preferred.
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From the evaluation of p-value, log-likelihood and BIC among three candidate models, we
summarize:

• Exponential mixture �ts well, and the proposed Camel-Log �ts best.
• Camel-Log still performs best even if we penalize for model complexity (BIC).
• Pareto mixture performs very poorly.

Both qualitative (Section 7.3.2) and quantitative (this section) evidence favorably supports Camel-
Log’s goodness-of-�t. Now we ask: how general is Camel-Log? Does Camel-Log model other
Internet-based, human behaviors? The answer is yes: Camel-Log models the IAT between posts
on Reddit8 very well.

7.3.4 Generality of Camel-Log

Here, we evaluate the proposed Camel-Log on modeling the IAT from the Reddit dataset9.
Figure 7.6 shows 9 typical users behaviors and the Camel-Log �ts. Notice that (a) the Camel-
Log �ts the marginal distribution well, and (b) the consistency of the bi-modal (in-session,
take-o�) behaviors. Here, the median of in-session IAT is is approximately nine minutes,
whereas the median of take-o� IAT is around 10 hours. Recall in the Observation 7.2 (for web
queries), the median of in-session IAT is about �ve minutes, whereas the median of take-o�
IAT is approximately seven hours. This makes sense, since compared to web queries, (a) each
post/comment on Reddit requires few more minutes to compose (longer in-session IAT); (b)
people post on Reddit less frequently (longer take-o� IAT).

Figure 7.7 also shows that Camel-Log �ts the Reddit dataset well by Q-Q plot. Notice that the
majority of quantiles match very well. Therefore, the generality of the proposed Camel-Log is
demonstrated: Camel-Log �ts and explains diverse datasets (both Google queries and Reddit
posts).

Since Camel-Log characterizes each user’s search behavior by �ve parameters, we ask: how to
use these parameters, speci�cally the ratio (R) and the log-median (M ), to detect anomalies as
Figure 7.1(c) shows?

7.4 Group-level analysis: Meta-Click

Are there regularities in the parameters of all the users? It turns out that yes, some of the
parameters are in fact correlated. The two that show a stronger correlation are the ratioR (, θ

1−θ )
and the log-median M (, log(αIN)). Thus, our goal is to model the joint distribution.

Jumping ahead, given that both their marginals follow LL (see Section 7.4.1), how should we
combine them, to reach a joint distribution that models Figure 7.1(c)? The main idea is to use
a powerful statistical tool, Copulas (see Section 7.4.3). For convenience, the �nal CDF of the

8http://www.reddit.com/
9The dataset contains 16,927 unique users; for each user, we collect the timestamp of 500 his/her most recent

posts.
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Figure 7.6: Camel-Log �ts the Reddit dataset (marginal PDF). Each sub-�gure shows the
marginal distribution of IATs and the proposed Camel-Log �tting results (in red) for the 9 most
proli�c users. Notice that Camel-Log �ts well. Further notice the consistency of the bi-modal
(in-session, take-o�) behaviors.

proposed Meta-Click (details in Section 7.4.4) is provided here:

FMeta−Click(r,m; η, αR, βR, αM , βM)

= e−([log(1+(r/αR)−βR )]η+[log(1+(m/αM )−βM )]η)1/η

7.4.1 Marginal distribution of R andM
With the parameters extracted by Camel-Log (speci�cally, θ and αin for each user), we de�ne
two random variables that are particularly useful for anomaly detection:
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Figure 7.7: Camel-Log �ts the Reddit dataset (Q-Q plot). Each sub-�gure shows the Q-Q
plot (ideal: 45◦ line) between the real data (the same, 9 most proli�c users in Figure 7.6) and the
samples randomly drawn from the corresponding �tted Camel-Log distribution. Notice that the
majority of quantiles match very well.

• Ratio: R , θ/(1− θ) that represents how many “query and click”s are happening within
a search session (in-session) versus take-o�.

• Log-median: M , log(αin) represents the median of in-session IAT in log scale.

Intuitively, R and M represent an aggregate behavior, in terms of a statistical distribution of
parameters (speci�cally, θ and αin) used to characterize each user. Figure 7.8 illustrates the
marginal distribution of R in (a) and M in (d), respectively. Note that all the LL �ttings are
done by using Maximum Likelihood Estimate (MLE).
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Figure 7.8: Marginal distributions follow LL distributions: (a) Marginal distribution of the
ratio R and the LL �tting. (b) Q-Q plot between empirical R and �tted LL. (c) Odds Ratio (OR)
between empirical R and �tted LL. (d)(e)(f) provide the corresponding plots for the median
in-session IAT M . In (c), the OR of R is �tted by a line, indicating that its marginal distribution
follows a LL. The same statement also holds for (d). K-S tests for both R and M indicate that
the empirical data follows the �tted LL.

To better examine the distribution behavior both in the head and tail, we propose to use the
Odds Ratio (OR) function. Figure 7.8(c)(f) show the OR of R and M , respectively. For both
random variables, ORs seem to entirely follow the line. In fact, this follows from the following
lemma:
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Lemma 7.1: Odds Ratio

If T follows LL, then OR(t) behaves linearly with slope β and intercept (−β logα) in
logarithmic scale.
Proof. From the de�nition of OR function, we have:

OddsRatio(t) = OR(t) =
FT (t)

1− FT (t)
=

(
t

α

)β
(7.4)

⇒ logOR(t) = β log(t)− β logα

�

This evidences that R and M ’s marginal distributions follow LL. K-S tests for both R and M
show that under 95% con�dence level, we retain the null hypothesis: R (and M ) follow the �tted
LL.

Observation 7.3: Common user behavior

The mode of the ratio R is approximately three, which suggests a common user behavior:
“click-click-click−take o�−then click (new session).”

The marginals of R and M follow LL, but how about their two-dimensional joint distribution
(FR,M )? Can we use a multivariate normal (MVN) distribution to describe them?

7.4.2 Why not multivariate normal (MVN)?

Modeling multivariate distributions is a rather challenging task. One popular method is to use a
multivariate normal (MVN) distribution. However, we provide four reasons against the use of
MVN in modeling the joint distribution of R and M :

• Marginals are not Normal. As shown in Section 7.4.1, the marginals of R and M follow
LL, as opposed to MVN’s marginals being normally distributed.

• Contour of covariance is not an ellipsoid. As shown in Figure 7.1(c) and later in Fig 7.9(d),
the contour of R and M do not follow MVN’s ellipsoid contour.

• MVN models negative values. The support of MVN includes negative values whereas both
R and M are non-negative.

• Low log-likelihood. The log-likelihood of MVN is an order magnitude lower than the
log-likelihood achieved by the proposed Meta-Click distribution.

We ask: is there any other candidate that models a multivariate distribution, with marginals
following LL? The short answer is yes: the proposed Meta-Click by using the Gumbel Cop-
ula.
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7.4.3 A crash introduction to Copulas

In statistics, copulas are widely-used to model a multivariate, joint distribution considering the
dependency structures between random variables (e.g., R and M ). The main concept of copulas
is to associate univariate marginals (e.g., FR, FM ) with their full multivariate distribution. Below,
we refresh the reader on the mathematical de�nition of a copula:

De�nition 7.3: Copula

A copula C(u, v) is a dependence function de�ned as:

C : [0, 1]× [0, 1]→ [0, 1] (7.5)

Given two random variables R, M and their marginal CDFs FR, FM , a copula C(u, v)
generates a joint CDF FR,M(r,m) that captures the correlation between R and M :
FR,M(r,m) = C(FR(r), FM(m)).

In theory, copulas can capture any type of dependency between variables: positive, negative, or
independence. The existence of such a copula is guaranteed by Sklar’s Theorem10.

One type of copula is very popular in modeling joint distribution of random variables with
heavy tails: the Gumbel copula. The de�nition is as follows:

De�nition 7.4: Gumbel Copula

A Gumbel Copula is de�ned as:

C(u, v) = e−[φ(u)η+φ(v)η ]1/η (7.6)

where η ≥ 1 and φ(·) = − log(·).

Notice that C(u, v) = u · v when η = 1, indicating that u, v are independent.

With this tool, we are ready to describe the proposed Meta-Click.

7.4.4 Proposed Meta-Click

The goal of Meta-Click is to model the joint distribution of R and M . As the results presented
in Section 7.4.1, their marginals follow LL. By using a Gumbel copula, we present the de�nition
of the proposed Meta-Click here:

10The details of Sklar’s theorem can be found in [SS11].

124



De�nition 7.5: Meta-Click

Let R and M be non-negative random variables following Meta-Click distribution, the CDF
of their joint distribution is:

FMeta−Click(r,m; η, αR, βR, αM , βM)

= e−([log(1+(r/αR)−βR )]η+[log(1+(m/αM )−βM )]η)1/η (7.7)

where r,m ≥ 0, η ≥ 1, (αR, βR), (αM , βM ) are the hyper-parameters used in FLL(r) and
FLL(m), respectively.

In this work, η in Eq(7.7) is estimated by Kendall tau correlation [KKPF13]; the values of (αR, βR),
(αM , βM ) are estimated by using MLE as mentioned in Section 7.4.1. We now show that the
proposed Meta-Click distribution preserves the characteristics in the marginal distributions of
each random variable:

Lemma 7.2: Marginals of Meta-Click are LL

The marginals of Meta-Click are log-logistic distributions.
Proof. We take the limit of r to in�nity:

lim
r→∞

FMeta−Click(r,m)

= FM(m;αM , βM)

=
1

1 + (m/αM)−βM

Therefore, M ∼ LL (αM , βM ). We can show R ∼ LL(αR, βR) in a similar manner. �

Figure 7.9(a)(b)(c) illustrate three contour plots of the proposed Meta-Click with setting η to
various values, whereas Figure 7.9(d) provides the contour plot from the empirical data. The
contour plot in (b) seems to match the empirical data qualitatively well.

7.5 M3A: Practitioners’ Guide

We provide the step-by-step guide to apply the proposed M3A for behavioral modeling and
anomaly detection:

• Camel-Log at user level: given a user’s IAT, use Camel-Log to characterize their marginal
IAT distribution with �ve parameters (θ, αin, βin, αoff , βoff ) in Eq(7.3).

• Meta-Click at group level: given each user’s θ and αin from the previous step, convert
them into ratio R, log-median M and then use Meta-Click presented in Eq(7.7) to estimate
the copula parameter η for the two-dimensional heavy-tail distribution.
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(c) η = 1.3
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(d) Real data

Figure 7.9: Meta-Click matches real data. (a)-(c): contour plots for Meta-Click (with various
η). (d): real data. All plots are R v.s. M . In (b), η = 1.12, which is the value estimated from the
real data. Notice how well (b) matches (d).

• Anomaly detection: given a user’sR andM , calculate its likelihood by using Meta-Click.

Figure 7.10 presents the anomalies detected by M3A. Figure 7.10(b) provides “rank-weirdness”
plot: users are presented in a “least likely �rst” order, by using the likelihood of observing their
R and M calculated by Meta-Click. All users �t on a line, except the �rst seven users who have
tiny likelihoods. As a comparison, the green line shows a synthetic set of users by using Eq(7.5).
Notice that none of the “green” users exhibits such tiny likelihoods; further notice that those
seven users indeed correspond to outliers in (R, M ) space, where we enclose them in a red
box and two red ellipses for visual clarity in Figure 7.10(a). We examine the behaviors from
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Figure 7.10: M3A detects search anomalies. In (a), each dot represents a user characterized by
R and M extracted from the Camel-Log distribution. The anomalies spotted in (a) correspond
to the few users (marked in red) with the lowest likelihoods in (b). Notice that, compared to the
anomalies, the simulated samples with the corresponding ranks have much higher likelihoods
(by two orders of magnitude). (c) illustrates the marginal PDF of IAT from an abnormal user
detected by M3A. Notice the disproportion between in-session and take-o�: about 30 queries
per session, whereas typical users have 3 queries per session.

these users and �nd several of them constantly issuing identical queries, indicating a robotic,
abnormal behavior.

Figure 7.10(c) further illustrates an abnormally-active user detected by M3A. Notice the dispro-
portion between in-session and take-o� (the ratio R ≈ 30), which is ten times higher compared
to a typical user’s (around 3).

7.6 Related Work

Many prior papers have attempted to model the temporal, Internet-based activities of hu-
mans:

Internet-based, temporal data. Vaz de Melo et al. [dMFAL13, DAFL10] have proposed a
self-feeding process to generate IAT following LL distributions for modeling the Internet-based
communications of humans. Becchetti et al. [BCD+08] and Castillo et al. [CCD+08] have
proposed novel graph-based algorithms for Web spam detection. Meiss et al. [MMV05] have
demonstrated that client-server connections and tra�c �ows exhibit heavy-tailed probability
distributions lacking any typical scale. Münz et al. [MLC07] have presented a �ow-based
anomaly detection scheme based on the K-mean clustering. Gupta et al. [GGAH14] provides
a comprehensive survey on outlier detection for temporal data. Veca et al. [VMJS14] have
proposed a time-based collective factorization for monitoring news. Xing et al. [XPYW11] have
proposed to use local shapelets for early classi�cation on time-series data. Ratanamahatana et al.
[RLG+10] gives a high-level survey of time-series data mining tasks, with an emphasis on time
series representations. Furthermore, point processes, time series and inter-arrival time analysis
have attracted huge interests, with multiple textbooks (Keogh et al. [CSP+14]).
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Metrics Meiss et al.
[MMV05]

Münz et al.
[MLC07]

Vaz de
Melo et al.

[dMFAL13]

Liu et al.
[LWD10]

M3A

Heavy tail
√ √ √ √

Bi-modal
√ √

IAT modeling
√ √

User-level &
group-level
modeling

√

Fits multiple
datasets

√ √ √ √ √

Anomaly
detection

√ √ √ √ √

Generative
√ √ √

Interpretable
√ √ √ √ √

Table 7.3: Metrics of temporal data-mining approaches: M3A possesses all desired properties

Human activities. Shie et al. [SPT13] has proposed a new algorithm (IM-Span) for mining user
behavior patterns in mobile commerce environments. Saveski et al. [SG11] has adapted active
learning to model the web services. Barabasi [Bar05] models and explains human dynamics
with heavy-tail distributions. Liu et al. [LWD10] have provided a Weibull analysis of Web dwell
time, to discover human browsing behaviors. Sarma et al. [DPS14] provides a �ne tutorial
on personalized search. Jiang et al. [JHA14] and Mehrotra et al. [MBY16] focus on analyzing
task-based, online search behaviors, but not from the perspective of inter-arrival time.

Table 7.3 summarizes the comparison among several popular methods. As Table 7.3 shows, this
is the only work focusing on the surprising pattern of web query IAT: in-session and take-o�,
and proposing a new framework M3A to (a) match and explain this pattern, and (b) detect
anomaly. To the best of our knowledge, this is the �rst work to use log-logistic distributions and
the Copulas (as a metamodel) to describe the IAT of web queries.

7.7 Conclusion

In this paper, we answer the motivational questions mentioned in the Introduction: ‘Alice’ is
submitting one web search per �ve minutes, for three hours in a row−is it normal? How to
detect abnormal search behaviors, among Alice and other users? Is there any distinct pattern in
Alice’s (or other users’) search behavior?

We conclude this paper by bringing the answers to these questions:
• A1: Pattern discovery and interpretation. One key observation of IAT is provided: a

bi-modal distribution with the interpretation of in-session and take-o� behaviors.
• A2: Behavioral modeling. Speci�cally, we propose:
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“Camel-Log” to parametrically characterize Alice’s (or any person’s) IAT by mixing
two log-logistic distributions.
“Meta-Click” to describe the joint probability of two parameters of Camel-Log by
using Gumbel Copula.

• A3: Anomaly detection. Camel-Log generates IAT with the same statistical properties
as in the real data, and Meta-Click can detect abnormal users by examining their search
behaviors.

• A4: Generality. We conduct analysis and modeling on AOL logs, and additionally
generalize by showing similar characterization in Reddit posting behavior.

Finally, we provide a practitioners’ guide for M3A, and illustrate its power via “rank-weirdness”
plot as in Figure 7.10(b). M3A exactly pin-points the outliers that a human expert would spot:
the points in red circles/boxes, in Figure 7.10(a).
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Chapter 8

FLOCK: Astrotur�ng in

Livestreaming Platforms

Exploring the astrotur�ng environment on
livestreaming and detecting fake viewing
behavior.

Based on content published in [Sha17].

Livestreaming platforms have gained considerable popularity in recent years as a means of
communicating user-generated content. They allow streamers to connect with viewers in a
live fashion. This incentivizes streamers to arti�cially in�ate their live viewership with fake
viewers, called “viewbots.” In this chapter, we focus on the viewbot detection problem in
livestreaming. We present the �rst known characterization of the problem in literature and
propose FLOCK, an unsupervised approach which leverages temporal information about
aggregate viewership to discern fraudulent from honest viewing behavior. Our FLOCK
approach is scalable, demonstrates strong e�cacy in practice and is used in production at a
large, real-world livestreaming platform.

8.1 Introduction

In recent years, livestreaming platforms have risen to provide an unprecedented level of accessible
and open video content to internet users. Livestreaming services such as Twitch, Youtube Live,
and Ustream enable broadcasters to stream live video content of various types (often including
electronic sports gameplay and other creative content) to an interested viewerbase who can
both watch and interact with the broadcasters from their personal devices.

Given that livestreaming has become a popular social platform for many online communities, it
has simultaneously become a target for fraud by means of astrotur�ng, or arti�cially in�ating
viewership and internet popularity. As viewership is a popular target metric for recommendation
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(a) Viewbotting software

(b) Viewcount-deviance plot (c) Broadcast-behavior plot

Figure 8.1: FLOCK �nds botted broadcasts and their botted views. (a) shows a popular
user-controlled viewbotting tool used to manipulate broadcast viewcounts. Figure 8.1b shows our
proposed FLOCK viewcount-deviance plot, which plots each broadcast’s viewcount and model
deviance – note the red decision boundary which isolates abnormal broadcasts. Figure 8.1c
shows a FLOCK broadcast behavior plot for one such broadcast, which plots each view’s relative
start time and duration – notice the highly synchronized viewbot (colored, circled) behavior.

and a proxy for content quality, gaming this metric o�ers broadcasters numerous perceived
bene�ts including improved recommendation rankings, directory listings, monetary partnership
incentives, and hopes of a resulting larger authentic future audience. As such, it simultaneously
hinders the experience for viewers who are suggested synthetically boosted content, as well as
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honest broadcasters who are overlooked in favor of dishonest ones. Numerous websites such
as viewbot.net and streambot.com o�er competitively priced viewbots which can be
activated and deactivated on-demand to many customers (see Figure 8.1a) who wish to arti�cially
in�ate their “live” viewership.

For these very reasons, it is important for livestreaming service providers to tackle the major
issue of discerning inauthentic from authentic views. This is exactly the problem we focus
on in this work. While the astrotur�ng problem in the traditional social network (follower-
ship) setting has been explored in prior literature as an unsupervised dense-subgraph min-
ing [SBGF14, BXG+13, MWP+14] or supervised classi�cation [XFH15, Fre13] problem, the
livestreaming (viewership) setting manifests numerous new challenges. Firstly, the imper-
manence of viewbots with primarily customer-controlled (rather than operator-controlled)
parameters makes traditional dense-subgraph mining methods unsuitable – individual cus-
tomers control how many viewbots they want to use at a given time as well as when they should
start and stop, so attacks will generally not involve the same bots viewing the same channels at
the same times. Secondly, the lack of su�cient ground-truth labels and indicative view-based
features makes the classi�cation task challenging. These di�erences contribute towards making
the livestreaming astrotur�ng problem a distinct challenge from traditional settings.

In this work, to the best of our knowledge, we give the �rst known characterization, formulation
and proposed solution to the livestream astrotur�ng problem. We begin by describing prior
work on both livestreaming and astrotur�ng frontiers. We next describe the livestreaming astro-
tur�ng problem context and goals for practitioners looking to identify fraudulent behavior on
livestreaming platforms both informally and formally. We further build intuition for, and propose
FLOCK, an unsupervised, multi-step process for identifying viewbots in livestreaming settings
which circumvents the aforementioned challenges. Our FLOCK approach works by (a) modeling
broadcasts as aggregates of viewing behavior, (b) identifying anomalous (botted) broadcasts
(Figure 8.1b), and (c) identifying anomalous (botted) views from within these broadcasts (Figure
8.1). We next evaluate FLOCK on a large-scale, industrial livestreaming workload and show
experimental results demonstrating strong performance in practice as well as robustness against
synthetic, adversarial attacks. Lastly, we discuss means for leveraging the results from FLOCK
in practice and conclude. Summarily, our contributions are:

1. Problem formulation: We describe and formalize the problem of viewbot detection in
livestreaming settings.

2. Algorithm: We propose the FLOCK algorithm, an unsupervised and scalable approach
for �nding viewbots.

3. Practical e�cacy: We show that FLOCK achieves high precision/recall in practice and is
robust to various attack patterns.

8.2 Related Work

As the astrotur�ng problem on livestreaming platforms has not previously been studied, we
loosely categorize prior work into two main categories: livestreaming and astrotur�ng in social
media.
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Livestreaming: [VAM+02] empirically analyzes a livestreaming workload taken from internet-
accessible cameras in Brazil, and models client arrivals as a Poisson process and interest pro�les
as a Zipf distribution for use in a synthetic workload generation toolkit. [SMZ04] conducts
a larger-scale workload analysis using data from Akamai (a major content delivery network)
and additionally presents results on client diversity, lifetime and stream popularity. [WLR09]
studies performance of peer-to-peer (P2P) livestreaming systems using various queueing models.
[LJL+06] presents the design of a scalable P2P livestreaming service built using inter-overlay op-
timization. [LZSJ+08, HLR07] discuss performance metrics and bounds for measuring network-
quality in P2P livestreaming settings. [KSC+12] describes the prevalence of livestreaming of
electronic sports (video games) and presents models to predict stream performance and popular-
ity. [HGK14] studies the buildup and breakdown of individual and community behaviors on
Twitch streams of varying popularity.

Astrotur�ng in social media: [CSYP12, YKGF06] propose random-walk based methods which
aim to leverage abnormally sparse cuts between sybil and honest regions of undirected social
networks to identify sybil nodes. [PSS+10, SBGF14, JCB+14b, JCB+14a] leverage spectral de-
compositions (eigendecomposition and SVD, as we discussed in Chapter 3) to catch users in
social networks including Twitter and Weibo who form dense subgraphs or project abnor-
mally to low-rank subspaces. [BXG+13, CYYP14] detail local clustering methods on Facebook
page-likes and other user actions which aim to catch synchronized behavior in the form of
temporally-coherent bipartite cores in graphs. [AMF10] �nds anomalies in weighted graphs
by demonstrating power-law patterns in features of graph egonets. [SBH+16, HSB+15] detail
information theoretic and Bayesian approaches of identifying anomalous nodes and spammers
in edge-attributed networks (as we will discuss in Chapter 9). [PCWF07] �nds fraudulent sellers
and reviewers on eBay using belief propagation when few node labels are known. [Fre13] uses
a multinomial naive-Bayes classi�er on n-grams of account names and e-mail addresses to �nd
spammers on LinkedIn.

8.3 Background and Motivation

Livestreaming platforms connect streamers, or content broadcasters, with an audience of viewers.
Each streamer broadcasts live video on their personal channel at various times for various
durations, where one continuous stream is called a broadcast. Broadcasts are generally associated
with video games, music, television, podcasts and other creative works. Viewers can enjoy live
broadcasts by navigating to the streamer’s channel during the times which he or she is live, and
subsequently watching the broadcast.

While streaming content is just a hobby for most streamers, livestreaming platforms typically
o�er partner status exclusively to those who consistently stream and attain a large viewer-
ship. Partnership typically o�ers streamers numerous bene�ts including the ability to monetize
from ad-revenue and paid viewer subscriptions for bonus channel content. Streamers are thus
incentivized to in�ate their live viewership statistics by using viewbots to both satisfy require-
ments for gaining partnership status and making money, as well as to improve their rankings
in livestreaming directories which viewers can browse to �nd popular content. Su�ciently
successful streamers can make living wages just from streaming as a full-time job – very popular
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streamers can make hundreds of thousands of dollars or more per year by means of subscriptions,
donations and ad-revenue alone [Kar].

As views must be “live” when streamers are broadcasting, viewbot providers o�er streamers
full control with regards to (a) how many viewbots they would like to use (i.e choosing 47 from
0-100), and (b) how long the viewbots should continue to watch the stream. Upon streamer
command, IPs under control of the viewbot provider emulate real viewers by sending HTTP
requests for video to the livestreaming service until they are signaled to stop. Currently, a
rate limit (only allowed k concurrent views per IP) is in place, meaning viewbot providers
need access to n

k
IPs to successfully imitate n viewers. Given the size of the IP space from

which inauthentic views can come from and transient, anonymous and streamer-controlled
nature of viewbots, traditional unsupervised approaches to the astrotur�ng problem such as
dense-subgraph detection and tensor decomposition are not suitable. Furthermore, given that
ground-truth labels are di�cult to obtain and most features gleanable from HTTP requests can
be spoofed, supervised models for labeling individual views require constant monitoring due to
their short-lived use.

Livestreaming industry practitioners are thus faced with the di�cult problem of distinguishing
authentic human viewers from inauthentic viewbots. Addressing this problem o�ers numerous
bene�ts, most notably in preventing streamers who aim to cheat the system from becoming
partnered, as well as limiting the in�ation of perceived viewership and improving the authenticity
of recommended popular content.

8.4 Proposed Method: FLOCK

We �rst give the intuition behind our FLOCK approach, and subsequently describe the individual
steps in greater detail.

8.4.1 Intuition and Problem Formulation

As previously mentioned, labeling individual views as authentic or inauthentic from information
contained in HTTP requests is di�cult and adversarially error-prone. The intuition behind
FLOCK is to take an unsupervised, o�ine approach which enables us to focus on viewing
behaviors in aggregate and identify behaviors that stand out from some model of normal aggre-
gate behavior. Speci�cally, we start by building a model of normal broadcast behavior, where
broadcasts are considered aggregates of views. Next, we focus on a broadcast-level analysis
instead of a view-level analysis, where we examine the aggregate behavior for all viewers who
watch a given broadcast and determine whether or not the overall broadcast looks suspicious
– that is, we formulate the problem of identifying botted broadcasts as an outlier detection
problem. Broadcast-level analysis is useful, as it can account for multiple views simultaneously:
while a single view which starts at 1pm and ends at 3pm on a given broadcast is not particularly
suspicious, hundreds of such views are more suggestive of bot activity. We build from this
intuition and restrict our analysis to this set of botted broadcasts and try to �nd groups of similar
views that behave like bots by starting and stopping in lockstep. If removing such a group makes
the broadcast look less suspicious in accordance with our model, then we classify those views as
inauthentic.
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This hierarchical paradigm of broadcast-level and subsequent view-level analysis o�ers inter-
pretability and straightforward applications to both examining streamer broadcast history for
viewbotting when they apply for partnership, as well as identifying IPs commonly used for
viewbot tra�c.

We formally construe our available data as sets of views V and broadcasts B. For each view
v ∈ V , we have α(v), ω(v), and χ(v) which represent view start time, end time, and associated
broadcast identi�er. For each broadcast b ∈ B, we have α(b), ω(b), and ρ(b) which represent
broadcast start time, end time, and the set of constituent views {v ∈ V ‖ χ(v) = b}.

With this notation, we de�ne our problem as follows:

Problem 8.1: Viewbot identi�cation

Given the set of views V , broadcasts B and corresponding relations α(·), ω(·), χ(·) and
ρ(·), �nd the suspicious set of broadcasts

Bbotted ⊆ B

and suspicious set of views
Vbotted ⊆

⋃
b∈Bbotted

ρ(b)

This can be broken down into several steps, each with their own subproblem, which we describe
the methodology for below: (a) modeling broadcast behavior, (b) identifying botted broadcasts
and (c) identifying botted views. For clarity, please see Table 8.1 for reference of the recurrent
symbols we use in the remainder of the section.

8.4.2 Modeling Broadcast Behavior

As a means towards the goal of identifying suspicious from normal broadcasts, we must build
towards a model for what normal broadcast behavior looks like. Given the lack of ground-truth
labeled data, we focus on an unsupervised model. To build such a model, we must �rst identify
a set of relevant features. In this work, we avoid using descriptive (browser, country of origin,
etc.) and engagement-based (chat activity, means of website navigation, etc.) features due to
ease of manipulability and susceptibility to adversarial camou�age (engaging in actions that
authentic viewers might do to appear human). Instead, we focus on modeling broadcasts by the
temporal features of their constituent views.

8.4.2.1 Proposed Features

Speci�cally, for each view v in broadcast χ(v), we are interested in v’s start and end times, α(v)
and ω(v) respectively. Using view start time and duration is appealing, as these aspects of a view
are di�cult to spoof given the so-called “mission-constraints” of viewbot providers. Viewbots
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Symbol De�nition

V ,Vbotted set of views and botted views, resp.
B,Bbotted set of broadcasts and botted broadcasts, resp.
α(v), α(b) view v and broadcast b’s start time, resp.
ω(v), ω(b) view v and broadcast b’s end time, resp.
χ(v) broadcast which view v watched
ρ(b) views that watched broadcast b
β(b) bracket which broadcast b belongs to
ζ(t) set of broadcasts in bracket t
b̂ probability distribution for broadcast b
t̂ model probability distribution for bracket t
vstart, vstay start and stay feature representations for view v
1X,Y (v) indicator noting if v is in bin (X, Y )
H discretization parameter for broadcast duration
T discretization parameter for bracket duration
K IQR multiplier for broadcast decision boundary
DKL(p̂ ‖ q̂) KL divergence of q̂ from p̂
I set of lockstep instances for a given broadcast b

Table 8.1: Frequently used symbols and de�nitions.

must necessarily persist for a streamer-desired duration by their very purpose – to boost the
live concurrent viewers for an extended period of time.

Since a view must start during, and cannot persist longer than its corresponding broadcast
χ(v) respectively, it is intuitive to consider these features as fractional values rather than raw
timestamps. This is accomplished by de�ning the view start time and duration (“stay” time)
features (vstart and vstay respectively) as

vstart =
α(v)− α(χ(v))

ω(χ(v))− α(χ(v))

vstay =
ω(v)− α(v)

ω(χ(v))− α(χ(v))

For example, if a view begins halfway through a broadcast and lasts until three-quarters of
the way through, it has a vstart = 0.5 and vstay = 0.25. Note that this enforces the invariant
vstart + vstay ≤ 1.

8.4.2.2 Proposed Model

Given that each broadcast b has an associated set of constituent views ρ(b), we choose to model
each b as a random variable drawn from a joint probability distribution re�ecting the frequency
of empirically observed views. To simplify representation and alleviate sparsity issues for
broadcasts with small numbers of views, we discretize the otherwise continuous vstart and vstay
space over some number of H intervals each – H is tuned empirically. Thus, vstart and vstay
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Figure 8.2: Most broadcasts deviate from brackets predictably lowly, but outliers de-

viate abnormally highly. The plot shows each broadcast as a point with viewcount on the
x-axis and deviance between broadcast/bracket on the y-axis (area density denoted by color).
The red line indicates our decision boundary.

can each take on values from {1 . . . H}, so the post-discretization sample space has a total of
H(H+1)

2
outcomes (keeping in mind the invariant) – we will henceforth refer to vstart and vstay

as features de�ned on {1 . . . H}.

We can achieve this by modeling each b as a multinomial distribution b̂ with probability masses
de�ned by maximum-likelihood estimate (MLE) parameters. In this case, each view is treated as
a realization of the associated random variable. Formally, we have

b̂(vstart = X, vstay = Y ) =
∑
v∈ρ(b)

1X,Y (v)

|ρ(b)|

where X, Y ∈ {1 . . . H} and 1X,Y (v) is the indicator function which returns 1 if v belongs in
bin (X, Y ) and 0 otherwise. While we do not formally de�ne the indicator here in interest of
space, it follows naturally as a function of α(v), ω(v) and ω(b)− α(b).

Given this approach for modeling behavior of a single broadcast, we now aim to build a model for
what normal broadcast behavior looks like. In doing so, we build these models of normal behavior
for broadcasts with di�erent lengths separately, since viewers of di�erent-length broadcasts
are expected to behave di�erently. For example, views de�ned with vstart = 0 and vend = 1
(indicating a full broadcast duration view) are likely far more common for broadcasts lasting
10 minutes than they are for broadcasts lasting 10 hours. This is due to a number of factors
including time-constraints for the viewer, viewer endurance, etc. In order to group together
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similar-length broadcasts which we expect to be composed of similar patterns of viewer behavior,
we discretize the the broadcast durations observed in our dataset into intervals spanning T
minutes to alleviate sparsity issues – T is tuned empirically. We refer to these intervals as
broadcast brackets, and introduce the functions β(b) to denote b’s bracket, and ζ(t) to denote
the set of broadcasts in bracket t. Summarily, brackets are an abstraction which serve to help us
separately consider and model the behaviors of di�erent-length broadcasts.

To model the behavior for each broadcast bracket, we take a similar approach as for individual
broadcasts: we treat each bracket as a multinomial distribution again using MLE parameters
from the empirically observed views over all constituent broadcasts in the bracket. Formally, to
compute the model distribution t̂ for bracket t, we have

t̂(vstart = X, vstay = Y ) =
∑
b∈ζ(t)

∑
v∈ρ(b)

1XY (v)∑
b∈ζ(t)

|ρ(b)|


Note that the usefulness of such a model in capturing normal broadcast behavior is inherently
dependent on the broadcasts in our dataset. Our assumption is that most broadcasts are not
viewbotted, and that there are far more authentic views than inauthentic views. Over a large
number of views, we expect the bracket models will be su�ciently good estimates of authentic
behavior despite some viewbotted activity. Furthermore, while individual broadcasts may have
slightly di�erent viewer behaviors due to factors such as streamer quality, directory positioning,
etc., we expect that such di�erences will wash out over large numbers of views as well. The
associated bracket distributions serve to broadly describe viewer behavior and the relative
frequencies with which viewers start watching broadcasts of various lengths at di�erent times
and how long they typically watch for. Using the bracket distributions, we can answer questions
such as: “how likely is a view which starts within seconds of a short broadcast to last for the
whole duration?” and “how likely is the same phenomenon as broadcast duration increases?”
Further discussion about the characteristics of these distributions is excluded for privacy and
security reasons.

Now that we have a means for modeling both individual broadcasts and normal broadcast
behavior (in di�erent brackets), our next task is to discern which broadcasts are viewbotted.

8.4.3 Identifying Botted Broadcasts

We formulate the problem of di�erentiating authentic and viewbotted broadcasts as an outlier-
detection task in which our interest is to �nd broadcasts that are unusually abnormal with
respect to the associated bracket model. This intuition stems from the notion that if views in
a given broadcast are distributed very di�erently from the views in most other similar-length
broadcasts, they are likely botted as they they behave in an unusual and inhuman fashion. In
order to accomplish our di�erentiation task, we must (a) identify a way to measure deviance
between the broadcast distribution b̂ and its associated bracket distribution ˆβ(b), and (b) identify
a classi�cation threshold to set for the resulting deviance scores.

139



8.4.3.1 Measuring Deviance from the Model

There are a number of approaches for measuring statistical distance between two probability
distributions, including variational distance, Hellinger distance, Kullback-Leibler (KL) divergence
and others. Of these, we choose to use the KL divergence as our distance measure as it o�ers
nice information theoretic properties and interpretability. The KL divergence between two
distributions p̂ and q̂ is de�ned as

DKL(p̂ ‖ q̂) =
∑
i

(
p̂(i) · log

p̂(i)

q̂(i)

)
for each outcome i. The divergence is de�ned only if q̂(i) = 0 implies p̂(i) = 0 in which case
the summand is 0 in the limit, and is asymmetric in the sense that DKL(p̂ ‖ q̂) is generally not
equal to DKL(q̂ ‖ p̂). The KL divergence of q̂ from p̂ (as written above), denotes the expected
number of extra bits of information required to encode a sample from the empirically observed
p̂ distribution using a code optimized for the model q̂ distribution rather than a code optimized
for p̂, and is thus non-negative. It can also be interpreted as the expected log likelihood ratio
between p̂ and q̂ when p̂ is the actual distribution of observed data (see [EC06] for further detail).
Thus, the KL divergence of q̂ from p̂ is 0 when p̂ and q̂ are statistically indiscriminable, and large
when p̂ is highly unlike q̂. In our usecase, we consider DKL(b̂ ‖ ˆβ(b)) to be the appropriate
measure of deviance between a broadcast and its corresponding bracket distribution.

8.4.3.2 Thresholding for Classi�cation

Given this means for measuring deviance, we next turn our attention to identifying the right
threshold to set for discerning viewbotted from authentic broadcasts. While we expect that
viewbotted broadcasts will have unexpectedly high deviance from the bracket distributions,
choosing this threshold is important in practical implementations to limit false positives and
negatives. In doing so, we must also keep in mind that the range of observed deviance scores
will depend on the number of views for di�erent broadcasts. When viewcount is small, the
associated distribution b̂ will likely not be able to express the nuances of the associated bracket
distribution ˆβ(b) very well due to sparsity issues. Conversely, broadcasts with high viewcount
should be better at approximating the associated bracket distribution because of su�cient
numbers of samples. Thus, we expect high variance in the deviance scores for low viewcount
broadcasts, which should decline for higher viewcount broadcasts. Figure 8.2 demonstrates this
phenomenon – the heatmap shows a single point for each broadcast in our dataset, re�ecting
the viewcount and the corresponding deviance (KL divergence in bits) of the bracket from
the broadcast (colors indicate density as per the colorbar). Note that most broadcasts with a
certain viewcount commonly deviate from the associated bracket distributions in a predictably
shrinking range of high-density, but several broadcasts have uncharacteristically high deviance
as depicted in the sparse cloud of points violating the expected trend.

These broadcasts with abnormally high deviance are exactly those which we suspect are view-
botted. In order to automatically identify these broadcasts, we compute a moving threshold of
K multiples of the inter-quartile range (IQR) above the 75th percentile (3rd quartile) of samples
as the outlier “fence“ or decision boundary. While K = 1.5 is typically used for normally dis-
tributed data [HIT86], we observe that samples in each moving bin are not normally distributed
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– thus, K is tuned empirically in practice. Although a Kσ boundary above the mean could
also be used to similar e�ect, we use the 3rd quartile and IQR here as they are less sensitive to
outliers. In practice, we can also impose a threshold U on the minimum viewcount we enforce a
broadcast to have before we even suspect it of being viewbotted in order to avoid penalizing
broadcasts with abnormally high deviance due to sparsity issues – U is tuned empirically. These
broadcasts are also far less likely to be viewbotted due to their low viewcount. Figure 1 shows a
superimposed red line indicating such an outlier fence.

Equipped with a means of discerning viewbotted from authentic broadcasts, we next turn our
attention to identifying botted views.

8.4.4 Identifying Botted Views

Broadcasts which have been viewbotted are likely composed of both authentic and botted views.
Distinguishing between these is a crucial task for identifying abusive clients as well as gaining
better estimates for the amount of authentic tra�c.

In order to discern between botted and authentic views, we rely on the intuition that viewbot
activity results in unusually large deviance between the broadcast and bracket distributions,
whereas authentic viewing behavior is more or less distributed according to (or with small
deviance from) the bracket distributions. This follows naturally from the assumption that most
viewing behavior is authentic. Thus, it stands to reason that views which result in increased
deviance between the broadcast and bracket distributions are prime suspects for being botted. As
previously discussed in Section 8.4.1, marking individual views as botted or authentic is a highly
error-prone approach – as such, labeling individual views which result in higher deviance is a
risky approach. However, again we leverage the intuition that labeling an aggregate gives higher
con�dence than labeling the individual – essentially, if a similar group of views contributes to
increased deviance, we can consider the constituent views in the group to be botted. We de�ne
a “similar” group of views as a group whose members have temporal coherence and occur in
lockstep, or close synchrony. A number of previous works demonstrate that lockstep behavior is
a strong signal for bot activities [BXG+13, CYYP14, PSS+10] (also see Chapters 3 and 6).

Leveraging this intuition, our approach for identifying botted views is to �rst identify instances
of lockstep behavior (groups of similar views in a given broadcast), and mark these instances
as botted if pruning their constituent views from the broadcast results in a smaller deviance
between the pruned/altered broadcast and the associated bracket distribution. Formally, we aim
to solve the following optimization problem for each outlier broadcast b:

min
b′∈2I

DKL(b̂′ ‖ ˆβ(b))

where each of the |I| instances corresponds to an exclusive subset of views ρ(b) such that the
intersection between any two instances is the emptyset, 2I denotes the powerset of I (such that
each element corresponds to a subset of instances), and b′ and b̂′ are the pruned broadcast and
resulting empirical probability distribution formed by the views in the corresponding subset of
instances. Intuitively, I gives a hard partitioning of ρ(b) into |I| instances, and we are after the
most seemingly authentic combination of instances, where the objective function for authenticity
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is the KL divergence between the pruned broadcast and associated bracket distribution. This
problem has multiple associated challenges: (a) �rstly, we must identify a means of partitioning
the set of views ρ(b) into some number of |I| instances, and (b) secondly, as �nding the exact
solution once I is �xed is still a combinatorial minimization task, we must �nd an e�cient and
scalable means for tackling the problem.

8.4.4.1 Partitioning Views

For the �rst task, we can construe instances as clusters of views in the 2D space spanned by
vstart and vstay. Clustering of similar data is a common data mining task, and we can select
from a number of available clustering algorithms including hierarchical clustering, DBSCAN,
K-means and more (see [Ber06] for an overview). Of these, K-means is commonly chosen due
to its scalability and well-understood squared loss criterion. However, one notable caveat of
K-means is the requirement of a user-speci�ed number of clusters. Knowing this parameter a
priori is di�cult in our usecase and many others. Thus, we instead use an algorithm similar
to X-means [PMO00], which automatically infers a suitable number of clusters by aiming to
minimize the Bayesian Information Criterion (BIC), a function of log-likelihood penalized by
model complexity. The approach starts with all data points in a single cluster, and iteratively
splits clusters into smaller clusters if the split reduces the BIC. While the original X-means
uses traditional K-means in the inner-loop, we instead use a much faster minibatch variant
proposed in [Scu10] which is shown to give only marginally worse solutions than traditional
K-means. This approach outputs a hard-partitioning of the views into a suitable number of
instances. While the clustering approach is heuristic, an intuitively good clustering can generally
be achieved over a few initializations.

8.4.4.2 Solving the Optimization Problem

The next challenge is to actually choose the subset of I which minimizes the above objective. As
the task is to �nd the subset which has a minimum divergence over all the subsets, the problem
is clearly combinatorial and would require checking 2|I| subsets for a broadcast partitioned
into |I| instances. As this becomes computationally expensive quickly even for small values of
|I| and given that our objective is non-submodular, we resort to heuristics to approximate the
solution. Below, we propose several greedy heuristics for pruning the botted instances.

• PRUNE-TOPMOST – Rank each instance Ii in decreasing order according to the resulting
reduction in deviance if it is pruned from the original broadcast b. Prune out the single
instance which results in maximal reduction. If no such instance exists, stop.

• PRUNE-ITERATIVE – Rank each instance Ii in decreasing order according to the result-
ing reduction in deviance if it is pruned from the original broadcast b. Try to prune each of
the instances in that order, removing those which result in reduction from the current best.
A full pass over instances is considered 1 iteration. Repeat until convergence, starting
with the current best broadcast from the previous iteration. If no instance is removed
between the start of successive iterations, stop.

• PRUNE-STEPWISE – Rank each instance Ii in decreasing order according to the resulting
reduction in deviance if it is pruned from the original broadcast b. Prune out the single
instance which results in maximal reduction. Repeat until convergence, starting with the
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current best broadcast from the previous step. If no instance is removed between the start
of successive steps, stop.

Though the heuristics each o�er di�erent means of pruning botted views, they all start by
considering the full set of instances I as the initial “best” solution, and greedily removing
individual instances which result in an improvement in the objective function. Speci�cally,
at di�erent points in each heuristic, the test DKL(b̂current ‖ ˆβ(b)) − DKL(b̂proposed ‖ ˆβ(b)) is
conducted in the scenario that some instance is removed from the current best broadcast bcurrent
resulting in the candidate broadcast bproposed, and if the result is ≥ 0, the instance is removed
from bcurrent and the instances forming bproposed becomes the new best solution.

PRUNE-TOPMOST involves ranking the instances only once, and pruning the single instance
which improves the objective the most. This objective is motivated by the notion that most bot
behavior might be naive and viewbot attacks may typically only span one instance per broadcast.
PRUNE-ITERATIVE and PRUNE-STEPWISE both involve pruning multiple instances if doing
so improves the objective, but vary in the extent of greediness. PRUNE-ITERATIVE ranks the
set of remaining instances at the start of each iteration based on the current best broadcast at the
start of that iteration. However, in reality, as soon as an instance is pruned during an iteration,
the true ranking for the next best candidate instances to prune may change. It is furthermore
possible that the removal of an instance in one iteration may induce or preclude the removal of
another instance in a future iteration. The PRUNE-ITERATIVE heuristic does not dynamically
update the ranking upon each successful instance pruning but rather on an iteration-level, based
on the notion that this iteration-level ranking may be su�cient in practice. PRUNE-STEPWISE
conversely does dynamically update the ranking after each step, or successful pruning of an
instance. This way, the best candidate instance for pruning is chosen at each step at the cost of
more frequent ranking computations compared to PRUNE-ITERATIVE if multiple instances
are to be pruned. These heuristics have various expected trade-o�s in computational e�ciency
and objective minimization e�cacy. We examine their practical performance in Section 8.5.

In conjunction with previous tasks, this gives us a means of identifying both viewbotted broad-
casts and their botted views. See Algorithm 8.1 for pseudocode of our proposed FLOCK ap-
proach.

8.5 Experimental Results

In this section, we empirically evaluate our proposed FLOCK approach’s e�ectiveness in detecting
viewbots. Firstly, we brie�y describe the dataset used in the evaluation. Next, we describe several
experiments in order to (a) measure success in identifying viewbotted broadcasts, (b) evaluate
comparative performance of our view pruning heuristics, (c) demonstrate e�ectiveness in
reliably discerning authentic from botted views, and (d) consider implications in the presence of
a well-informed adversary. These are detailed in the below subsections.

8.5.1 Data Description

For the experiments below, we use data from a large, undisclosed livestreaming corporation
spanning an 8 hour timeframe from early May 2016. Our dataset consists of 92,044 broadcasts and
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Algorithm 8.1: FLOCK
1: Model Broadcast Behavior: Aggregate per-broadcast and per-bracket views and

transform into vstart, vstay space. Build viewership models b̂ and t̂ for each broadcast b and
bracket t according to empirically observed viewing behavior.

2: Identify Botted Broadcasts: Compute deviance of each broadcast’s bracket distribution
ˆβ(b) from the broadcast distribution b̂, and generate viewcount-deviance plot as in Figure

8.2. Generate decision boundary by binning viewcount logarithmically and computing a
Q3 +K · IQR fence per bin. Mark broadcasts with excessively high deviance as botted.

3: Identify Botted Views: For each broadcast b, partition b into a set of instances/clusters I .
Attempt to solve the minimization problem DKL(b̂′ ‖ ˆβ(b)) where b′ is chosen from the
powerset of instances 2I . Use the most suitable heuristic from PRUNE-TOPMOST,
PRUNE-ITERATIVE and PRUNE-STEPWISE.

(a) 76/89 broadcast views began soon after the start
and persisted for the full duration. Note that the
other 13 views are much sparser and shorter.

(b) 201/239 broadcast views are manifested in dense
clusters indicating bots in lockstep. The teal/blue
instances on the diagonal contain 50 views each.

Figure 8.3: Viewbots creates dense clusters of activity in the (vstart, vstay) space. Two
fraudulent broadcast behavior plots are shown with suspected botted instances and their con-
stituent views plotted in opaque color (also circled) and unsuspected authentic views in translu-
cent grey.

an associated 16,280,308 views. For each broadcast, we have information about the broadcasting
channel and the start and end times of the broadcast. For each view, we have information about
the client IP, start and end times and the destination channel. From these, we can associate
views with broadcasts.

8.5.2 Broadcast Classi�cation

The �rst important consideration for evaluating e�ectiveness is determining whether our in-
tuition that outlier broadcasts (the sparse cloud in Figure 8.2) are in fact viewbotted is correct.
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Original DKL

(avg. bits)

Pruned DKL

(avg. bits)

MAD

(bits)

MAPD

(% bits)

Runtime

(sec)

BASELINE 3.28 3.28 0 0 0
PRUNE-TOPMOST 3.28 2.87 0.408 12.26 1277.65
PRUNE-ITERATIVE 3.28 2.25 1.035 31.27 2655.51
PRUNE-STEPWISE 3.28 2.23 1.049 31.86 5119.04

Table 8.2: Quantitative evaluation of view pruning heuristics versus baseline (no pruning).

Unfortunately, calculating precision is di�cult given the lack of ground truth. In lieu of existing
labels, we resort to manual labeling. We randomly sample 100 broadcasts each from the outlier
and non-outlier regions according to the decision boundary, intermix them, and manually label
each broadcast using criteria based on our best judgment with respect to whether many tem-
porally similar views come from a limited subset of IP subnets or ASNs. In practice, this often
looks like 10-1000 views starting and stopping roughly at the same times, all coming from the
same subnet, (i.e 46.152.x.x.)

Several such examples of suspected viewbotted broadcasts with the associated suspected views
are depicted in Figure 8.3. In both cases, large fractions of broadcast views are concentrated
in tightly-knit clusters which upon further inspection were from a few subnets under poorly
known international ASNs. Figure 8.3a shows a rather simplistic type of viewbotting, in which
bots join incrementally and quickly soon after a broadcast begins, and persist until the end of
the broadcast. Conversely, Figure 8.3b shows a more complex type of viewbotting in which the
streamer is tuning the bot viewership over the duration of the broadcast as he or she desires.
Intuition suggests this might occur in three cases: (a) the streamer is experimenting with a
viewbot provider’s tool, (b) the streamer feels they have activated too many bots or too few
bots initially, but massages the number over time, (c) malfunctions on the viewbot provider’s
side. Retroactive analysis of the live concurrent viewers counter for this broadcast indicates
sharp spikes and drops (of 20 viewers at a time) as expected given the clustered behavior in the
plot.

The results of our labeling experiment indicate 98% positive and 99% negative precision. That
is, 98% of outlier broadcasts and 99% of non-outlier broadcasts were labeled viewbotted and
non-viewbotted respectively. Recall numbers can unfortunately not be calculated due to the
unbounded number of false negatives. These �gures suggest that our proposed decision boundary
and unsupervised classi�cation approach is able to make a highly accurate distinction between
viewbotted and non-viewbotted broadcasts. As in most threshold-based classi�cation settings,
theK (IQR multiplier used for computation of the decision boundary) can be increased to further
limit false positives while catching fewer true positives, or decreased with an inverted e�ect if
desired.
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Figure 8.4: FLOCK is accurate. The subplots show that our approach achieves high preci-
sion/recall in discerning synthetically botted views from authentic views in a variety of settings.
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8.5.3 View Pruning Heuristics

As previously discussed, the per-broadcast view pruning minimization task proposed in Sec-
tion 8.4.3 is combinatorial, so we propose the use of several greedy heuristics with varying
trade-o�s between presumed optimization performance and scalability. In this section, we
evaluate the heuristics in these terms. PRUNE-TOPMOST costs O(H2 · (|I|+ 1)) for ranking
the |I| instances and computing the KL divergence each time, and pruning a single instance.
PRUNE-ITERATIVE costs O(H2 · 2|I| · p) for p pruning iterations where each iteration in-
volves ranking and trying to prune each of the |I| instances (we �nd p is generally very small
in practice, ≤ 5). PRUNE-STEPWISE costs O(H2 · (I + 1) · s) for s pruning steps, each
of which involves running PRUNE-TOPMOST. Generally, PRUNE-STEPWISE is slower that
PRUNE-ITERATIVE, which is slower than PRUNE-TOPMOST. However, the heuristics have
inverse performance on the minimization task.

Table 8.2 gives empirical results which demonstrate these �ndings in comparison to a null
baseline, in which no pruning is performed. For each heuristic, we prune each outlier broadcast
in our dataset and measure the initial average deviance (DKL, in bits) from the broadcasts
and their associated bracket distributions. We next prune each of the broadcasts using the
various heuristics and measure the post-pruning average deviance per broadcast, mean abso-
lute (percentage) deviation (MAD and MAPD) and total runtime over all broadcasts (over 5
initializations). Note that here, higher is better for MAD and MAPD, indicating a larger drop in
the deviance DKL. Note that given DKL’s interpretation as a log likelihood ratio, an average
improvement of even 1 bit corresponds to doubling agreement between distributions. While min-
imization performance is inversely related to the computational performance of the heuristics,
the bene�t of PRUNE-ITERATIVE over PRUNE-TOPMOST is quite large (200%) compared to
PRUNE-STEPWISE over iterative (3%). Given the much worse scaling of PRUNE-STEPWISE
in situations where many instances are pruned, we choose to use PRUNE-ITERATIVE in
practical implementation as it minimizes the objective almost equally well.

8.5.4 View Classi�cation

As getting ground truth labels on a per-view basis is even more di�cult to obtain than on a
broadcast-level, we turn to synthetic experiments to evaluate FLOCK’s performance in discerning
botted views from authentic ones. To do so, we simulate botted broadcasts by varying numbers
of authentic views and botted views by sampling the two types from various distributions.
Speci�cally, we sample authentic views from an empirical bracket distribution and jitter them
with Gaussian noise. Then, for each broadcast, we sample the �rst botted view’s vstart and vstay
time uniformly over the feasible space, and subsequent botted view interarrival times (IAT) and
intertermination times (ITT) from a number of distributions which viewbot providers might use
to “space out” real attacks. As Figure 8.3 indicates that botted views are almost in lockstep and
delivered over a short amount of time, we arti�cially deliver and terminate these botted views in
accordance over 10% of broadcast duration respectively – we refer to this attack scale parameter
as ∆. Intuitively, ∆ = 0.1 indicates that botted views were delivered over a 10% timeframe, and
then all terminated in a di�erent 10% timeframe. This is a realistic setting from our observations.
We found results were not sensitive to ∆, indicating that delivering the bots slowly in a non
tightly-knit fashion still resulted in them being caught by our approach.
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Figure 8.4 summarizes precision and recall results from experiments on 96 combinations of the
following 3 parameters: authentic viewcount (chosen from 100, 1000 and 10000), proportion
of botted views (chosen from 0.25, 0.5 . . . 2.0 – functions as a multiplier on the number of
authentic views), and viewbot attack distribution (IAT and ITT chosen from uniform, Gaussian,
exponential and lognormal distributions). Precision and recall �gures were averaged over 5 runs
of each experiment. The results show consistently high (≥ 0.95) recall in almost all cases, and
high (≥ 0.9) precision for broadcasts with especially high levels of botted activity. The precision
tends to increase with higher numbers of botted views as the clustering process is better able
to separate the botted views from authentic ones and successfully prune them. Precision also
tends to be better for broadcasts with higher number of authentic views as the relative fraction
of authentic views captured in an instance of mostly botted views (false positive rate) is lower.
These results are especially promising for practical scenarios as in Figure 8.3 in which we observe
that a large fraction of total views are botted.

8.5.5 Adversarial Implications

In previous experiments, we operated from the assumption that botted views are delivered
in lockstep based on practical observations. But, what are the implications of our approach
in a setting with an adversary who has complete knowledge of the bracket distributions he
must emulate to appear normal? Note that this is a very strict, worst case setting – in order
to have the correct bracket distribution to sample from, the adversary must a priori know (a)
broadcast duration (b) internal records on viewerbase behavior. We do not expect this level of
sophistication from an attacker, as this information is not exposed to the public. However, it is a
useful thought experiment to consider the e�ectiveness of FLOCK in the face of an informed
adversary who can reliably blend in with normal viewer behavior.

We conduct an experiment in which the adversary acts to minimize risk of being caught by
sampling their views directly from the target bracket distribution (provably optimal, as DKL

between broadcast and bracket is 0 in the limit). Since adversaries are IP constrained, we aim
to evaluate the IP cost implications upon adopting this strategy. Speci�cally, we calculate how
many more IPs are required to reach the same live concurrent viewer count when using FLOCK
with a rate limit, compared to a standalone rate limit as described in Section 8.3. We estimate
this �gure by computing the expected value of a random variable with outcomes corresponding
to relative overhead in maximum number of IPs required for each approach on each bracket,
and probability corresponding to the empirical frequency of broadcasts in that bracket.

Our results indicate that using FLOCK with a rate limit incurs an expected 40% overhead in IP
addresses required to viewbot compared to naive rate limiting – intuitively, viewbot providers
need 40% more IPs to add “noise” resembling real views rather than simply activating bots in
lockstep like in Figure 8.3. Thus, we conclude that even against a knowledgeable adversary, our
approach signi�cantly increases the cost of viewbotting.

8.5.6 Scalability

FLOCK’s analysis phase begins by clustering each of the outlier broadcasts inBbotted. As X-means
has been shown to scale better than traditional K-means, we consider the time complexity for
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Figure 8.5: FLOCK scales linearly in the number of views.

clustering the views of each broadcast b to be at worst O(|ρ(b)| · |I| · d · c), for |ρ(b)| views,
|I| instances, d dimensions (2 in our case) and c clustering iterations. Upon clustering, we use
PRUNE-ITERATIVE to prune suspected botted instances and views from each broadcast – see
Section 8.5.3 for complexity analysis of the heuristics. Figure 8.5 shows the linear scaling of
FLOCK on a number of synthetically generated broadcasts with varying viewcount.

8.6 Discussion

FLOCK is an unsupervised, o�ine (post hoc) approach for detecting botted broadcasts and views
in livestreaming. In practice, the results can be leveraged in a number of ways. Firstly, FLOCK
can be used daily on newly collected view and broadcast data. Bracket models can be composed
over a longer time rather than a single day to account for changes in global viewer behavior over
time due to improved QoS, usability, etc. The results of these daily runs can provide history of a
streamer’s broadcasts as well as history of each seen IP’s previous views along with FLOCK’s
associated ruling of (in)authenticity. The former can be used to aid in making partnership
decisions by �ltering fraudulent applicants with a history of botted broadcasts. The latter can be
used to better estimate true past viewership, and adjust future live viewcounts using IP-based
penalties re�ecting the prevalence of previously botted activity from the IP. It can also be used
to identify viewbot browser, service provider and environment signatures decipherable from the
received HTTP requests and proxy ground “truth” for a supervised scheme.
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8.7 Conclusion

Online livestreaming has become a prevalent means for individuals to broadcast creative content
to the masses. Streamers have high incentive to gain viewership in order to promote their brand,
gain status and earn a living through ad revenue, donations and subscriptions. Our work is the
�rst to focus on the problem of astroturfed, or arti�cially in�ated viewership on livestreaming
platforms. We begin by characterizing the livestreaming context and formalizing the problem
setting for identifying fake views. To this end, we propose FLOCK, a principled and scalable
method for identifying botted broadcasts and views in an unsupervised fashion. FLOCK works by
�rst discerning broadcasts with highly abnormal and seemingly inhuman viewership behavior,
and next tries to prune out lockstep views from these broadcasts which make the broadcast
appear more genuine. Our approach achieves over 98% precision in identifying botted broadcasts
and over 90% precision/recall in identifying views in large viewbot attacks. Furthermore, we
�nd that even against an intelligent adversary aware capable of mimicking normal viewing
behavior, FLOCK forces viewbot providers to expend 40% more IP addresses to successfully
viewbot compared to existing rate-limiting schemes.
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Part III

Mining Rich Graphs
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Chapter 9

EdgeCentric: Anomaly Ranking

in Edge-attributed Graphs

Evaluating abnormality of nodes by
modeling their edge-attributes with a
compression paradigm.

Based on content published in [SBH+16].

How can we automatically identify anomalous behavior given a network with attributed
edges? Networks with edge attributes are commonplace in the real world in a variety of
settings, such as online product ratings, user friendships and other interaction networks.
The attributes on edges in such networks capture information about how adjacent nodes
interact with one another – for example, the rating that a user gives a product, or the time
at which the rating is given. In this chapter, we propose the EdgeCentric approach for
ranking suspiciousness of nodes in a network by leveraging edge attributes in a completely
unsupervised fashion, which lends well to the scarcity of ground-truth labels in practical
anomaly detection scenarios. Our approach is grounded in information theoretic principles,
is scalable and demonstrates practical e�cacy in identifying fraudulent and otherwise
anomalous behavior in real e-commerce networks.

9.1 Introduction

Given a graph with attributed edges, what can we say about the behavior of the nodes? For
example, in a user-product graph with a rating attribute (1-5 stars) on edges, how can we
discern which users rate (and which products are rated) normally or abnormally? Furthermore,
between two users with varying edge behavior, can we say which is more suspicious? These
are exactly the questions we address in this paper – more speci�cally, we focus on the problem
of leveraging edge-attributes in social and information graphs for anomaly detection and user
behavior modeling purposes. For practitioners, learning about their data in an unsupervised
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fashion when ground-truth is scarce or unavailable is an important setting, particularly in fraud
and anomaly detection usecases. Furthermore, answers to these questions are invaluable for
routing attention to the most anomalous behaviors in given data. Informally, our problem is as
follows:

Problem 9.1: (Informal) Edge-attributed Anomaly Detection

Given a static graph with possibly multiple numerical or categorical edge attributes, iden-
tify the nodes with most irregular (adjacent) edge behavior in a scalable fashion.

This problem has numerous applications – graphs with edge attributes are ubiquitous in the
real-world. Typically, these attributes take the form of numerical or categorical features which
describe details about the interactions between two connected nodes. For example, edges in
unipartite social graphs (e.g. Facebook, Twitter) may be attributed with temporal information
indicating the beginning of a friend or follower relationship. Similarly, in a who-calls-whom
phone-call network (e.g. Sprint, Verizon), each caller-callee edge can be attributed with a
timestamp and duration indicating when the call was made and how long it lasted. Edge
attributes allow for richer representations of interactions in heterogeneous (multi-partite, multi-
relational) graphs as well – for example, number-of-star ratings in user-product graphs (e.g.
Amazon, Yelp) or play counts in user-media networks (e.g. Youtube, Spotify).

In this work, we propose EdgeCentric, an e�ective information theoretic approach for general
node-based anomaly detection in edge-attributed graphs. Speci�cally, our method leverages
MDL (Minimum Description Length) to rank abnormality of nodes based on patterns of edge-
attribute behavior in an unsupervised fashion. Figure 9.1 shows one application of EdgeCentric
on the Flipkart e-commerce network, where it is able to spot fraudulent users giving too many
atypical rating values. Figure 9.1a shows a collapsed 2-dimensional subspace of users produced
from the original 5-dimensional rating space (users rate products from 1-5 stars) which spectral
algorithms or practitioners may examine in an e�ort to identify anomalous behavior. In this
space, we do not �nd any apparent, suspicious microclusters of abnormal users. However, Figure
9.1b shows that our EdgeCentric approach successfully identi�es (amongst others) highly
abnormal behaviors of users who give many ratings of only 5 stars (red) or 1 stars (green). These
behaviors deviate substantially from global user behavior, shown as the blue J-shape in Figure
9.1c.

The main contributions of our work are as follows:

1. Formulation: We formalize the problem of anomaly detection on edge-attributed graphs
using an information-theoretic approach.

2. Methodology: We develop EdgeCentric, an e�ective and scalable algorithm for the
same.

3. Practicality: We experiment with our EdgeCentric on multiple large, real-world graphs
and demonstrate its e�ectiveness and generality.
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(a) Two clusters (red and green) of
hard-to-discern fraudsters shown in
a collapsed 2D subspace, reduced
from the original 5D subspace over
user rating values (1-5).

(b) Our approach, EdgeCentric,
identi�es the users at the red and
green clusters as highly abnormal.
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(c) We �nd that the abnormal
users in the red cluster give
only 5 star ratings, whereas
users in the green cluster give
only 1 star ratings.

Figure 9.1: EdgeCentric spots abnormal users on real graphs. Applied on a dataset of 3
million Flipkart user-product ratings, EdgeCentric �nds users who greatly deviate from typical
behavior – the red and green clusters contain single-minded “enthusiastic” and “disgusted” users
who only give 5 star or 1 star reviews respectively, compared to the global (J-shape) behavior
shown in blue.

Reproducibility: Our code for EdgeCentric is open-sourced atwww.cs.cmu.edu/~neilshah/
code/edgecentric.tar.

9.2 Related Work

Prior work loosely falls into three categories: (a) mining plain graphs, in which analysis is
conducted using only connectivity information, (b) mining graphs with node attributes, and (c)
mining graphs with edge attributes. We describe the relevant work from each category next.
Table 9.1 gives a comparative analysis of existing methods, showing that none of the existing
works satis�es all the relevant criteria for our problem setting.

9.2.1 Mining unattributed graphs

Akoglu et al. [AMF10] identify power-law patterns in egonets and report deviating nodes as
anomalous. Tong et al. [TL11] present a non-negative residual matrix factorization method
to improve graph anomaly detection in low-rank subspaces. [SBGF14, JCB+14b, JCB+14a]
propose spectral methods to spot fraudulent behavior in low-rank subspaces of the Twitter and
Weibo social network graphs, as seen in Chapter 3. [GVK+12] proposes a modi�ed PageRank
measure which penalizes fraudsters based on social linking promiscuity and collusion. [PCWF07]
and [ACF13] use belief propagation to spot fraudsters, on eBay, and on product-review sites,
respectively. [YA15] proposes the network footprint score to spot opinion spammers, exploiting
self-similarity and neighborhood diversity.

Dense subgraph discovery is also relevant to the anomaly detection task. Numerous meth-
ods exist for graph partitioning, including the seminal metis algorithm [KK95] and spectral
methods [WS05, PSS+10] – more background on such methods is given in Chapter 5. Several

155

www.cs.cmu.edu/~neilshah/code/edgecentric.tar
www.cs.cmu.edu/~neilshah/code/edgecentric.tar


P
r
i
o
r
-
f
r
e
e

H
e
t
e
r
o
g
e
n
e
o
u
s

I
n
d
e
p
e
n
d
e
n
t
e
d
g
e
-
a
t
t
r
i
b
u
t
e
s

I
d
e
n
t
i
�
e
s
a
n
o
m
a
l
i
e
s

nfs [YA15] 4 4 8 4

fbox [SBGF14] 4 4 8 4

catchsync [JCB+14a] 4 8 8 4

copycatch [BXG+13] 4 4 ? 4

fraudeagle [ACF13] 8 4 ? 4

netprobe [PCWF07] 8 4 8 4

oddball [AMF10] 4 4 8 4

crossspot [JBC+15] 4 4 ? 4

birdnest [HSB+15] 8 4 ? 4

mimag [BGHS12], rmics [BGHS13] 4 8 4 8

metis [KK95], graclus [DGK05], eigenspokes [PSS+10] 4 8 8 8

EdgeCentric 4 4 4 4

Table 9.1: Feature-based comparison of EdgeCentric with alternative approaches (? indicates
limited support).

information-theoretic approaches additionally automate choosing the number of partitions,
including automatic cross-associations [CPMF04] and VoG [KKVF14b] for static and Time-
Crunch [SKZ+15] for dynamic graphs (introduced in Chapter 6).

9.2.2 Mining graphs with node attributes

[GLF+10] uni�es structural and attribute similarity and infers community and outliers using
hidden Markov random �elds. [PAIM14] introduces a “focused” clustering approach which iden-
ti�es clusters and cluster outliers given a set of seed nodes from which user interests are learned.
[NC03] proposes an MDL formulation for identifying common graph substructures.

[HZZ+02] proposes a variant of hierarchical linkage clustering for coupled analysis of attributed
gene expression and biological networks. [LZWY06] uses spectral clustering to group various
types of homogeneous node-attributed relational data. [GFB+10] introduces a pruning-based
algorithm to identify subspace clusters which also exhibit strong graph connectivity. [ATMF12]
proposes an MDL formulation for jointly reordering connectivity and feature matrices to identify
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attributed clusters. [ZCY09] proposes the use of a uni�ed distance measure to weight the
contributions of graph structure and node attribute similarity in clustering tasks.

9.2.3 Mining graphs with edge attributes

Signi�cant work has been done on the topic of mining general edge-attributed graphs. In some
cases, an edge attribute is construed as a weight, which can be used by some cut-based [AWO10]
and spectral clustering [LZWY06] approaches. In our problem setting, we rather consider each
edge as an interaction and each attribute as a feature describing the interaction, which can be
categorical or numerical and need not conform to the notion of edge weight.

A considerable number of works which fall into this category have stemmed from the analysis
of heterogeneous information networks (HINs), which are networks with multiple node types
and edge relations. [SHZ+09] was one of the �rst works in this area, which integrates ranking
and clustering of objects in HINs using a mixed-membership model, by which nodes have
unique ranks within each cluster. [SHY+11] further formalizes the de�nition of a HIN, and
also introduces the notable meta-path concept for capturing inter-entity relationships (for
example, author-cites-paper-cited by-author) in such networks. The authors propose a function
for computing inter-node similarity by the prevalence of such meta-paths between the nodes.
[YCSH12] proposes an in�uence propagation algorithm for predicting links between objects in
HINs. [SHAC12] extends the typical link-prediction problem by adding a temporality factor,
and aiming to forecast when a certain edge will form based on statistical models. Many of
these works more generally consider the problem of mining graphs which have multiple object
types and relations, but do not necessarily focus on the edge-attributes, as this work does.
[SH12, SLZ+17] cover a greater scope of research in HIN mining.

The recommendation systems community has also focused on learning models of graphs with
ratings [KBV09], and in some cases these models have been used to �nd outliers [BMFS14]. A
related line of research involves mining online reviews, which can be considered as textual edge
attributes [HL04]. Further work has focused on linguistic indicators of fraud in online reviews
[JL08]. [DAFL10] introduces a log-logistic model for call duration in phone-call networks.
[BXG+13] uses local graph search on the Facebook user-likes-page graph with temporal edge
features to �nd fraudulent subgraphs within �xed timespans. [BGHS12, BGHS13] propose
methods for mining dense subgraphs with similar attribute subspaces. [JBC+15] formulates
a related metric of suspiciousness but is based on Poisson distributions and thus limited to
simple count data. [HSB+15] also approaches the problem of modeling the distribution of
ratings and interarrival times from a Bayesian perspective. Our work di�ers in that it takes
a frequentist approach based on MDL and is designed to handle any set of edge-attributes on
complex heterogeneous graphs.

Overall, none of the existing works matches all the desirable features in Table 9.1. Our proposed
EdgeCentric approach (a) is unsupervised, and needs no priors or existing node labels, (b)
extends naturally to heterogeneous networks with multiple object and relation types, (c) supports
multiple, independent edge-attributes and (d) can identify and rank anomalies.
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9.3 Problem Formulation

In this section, we outline the �rst core contribution of our work: speci�cally, we formalize
the problem of detecting anomalous nodes using edge attributes by leveraging a compression
paradigm based on MDL. For clarity, see Table 9.2 for an overview of the recurrent symbols
used in future discourse.

9.3.1 Preliminaries

The Minimum Description Length (MDL) principle states that given a family of modelsM, the
best model M ∈ M for some observed data D is the one which minimizes the sum L(M) +
L(D|M), where L(M) is the description length in bits used to describe the model M , and
L(D|M) is the description length in bits used to describe the data D encoded using the given
model M . MDL enforces lossless encoding to fairly evaluate various models. In this paper,
rather than using MDL to �nd the best model for our given data, we instead use it to answer the
question of how well the data �ts a given model. The intuition behind our approach is that data
which �ts the model well enjoys high compression, while data which is ill-represented is more
costly to encode.

In our problem setting, we are given a static directed or undirected multigraph G(V , E ,m)
in which nodes are connected by (possibly multiple) edges (see Chapter 2 for details). As a
refresher, technically, m : E → {{u, v} | u, v ∈ V} assigns each edge e ∈ E to a pair of nodes.
Furthermore, we have object type and relation/edge type mapping functions Φ : V → B and
Ψ : E → R, where each node v ∈ V is characterized by an object type Φ(v) ∈ B and edge
e ∈ E is characterized by a relation type Ψ(e) ∈ R. Here, we de�ne an object type to re�ect a
node “role,” – for example, a user or product. A relation type re�ects the relationship between
two objects – for example, user-rates-product. R. When |B| = 1 and |R| = 1, the graph is
homogeneous; otherwise, it is heterogeneous. Furthermore, edges of each relation r ∈ R are
labeled with values corresponding to the same �nite subset of numerical or categorical attributes
chosen from attribute set A, given by the mapping Ω : R → 2A, where 2A denotes the power
set of A. In other words, the graphs we consider can have numerous relation types, and edges
of each relation type are characterized by a �xed number of the same attributes (at least 1). In
the remainder of the problem formulation, let us consider a simple, undirected user-product
graph, in which |B| = 2 (user objects, product objects) and |R| = 1 (user-rates-product, or
product-rated-by-user relation) for ease of explanation. Let us also assume that we have only
one attribute on the edges: say, rating of the product in terms of number of stars (1-5).

Then, our problem de�nition is as follows:

Problem 9.2: Edge-attributed Abnormality Ranking

Given a static multigraph G(V , E ,m) with ≥ 1 numerical or categorical edge attributes
chosen from A, devise an abnormality function δ(·) to score each node v ∈ V based on
its (adjacent) edge attribute behavior, and identify the most irregular nodes in a scalable

fashion.
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Symbol De�nition

G static input graph
V , |V| node-set, # of nodes of G resp.
E , |E| edge-set, # of edges of G resp.
m(·) function to realize the multi-graph
A, |A| attribute-set, # of total attributes across edges in E resp.
B,R set of object types and relation types resp.
Ψ(·) maps nodes in V to object types in B
Φ(·) maps edges in E to relation types inR
Ω(·) maps relation types inR to attribute sets in 2A

δ(·) uni�ed abnormality function, de�ned on nodes in V
U, P user, product resp.
C,C(i) global (model) dist. C , prob. mass of ith element resp.
Cu,r,w,j, Cp,r,w,k jth (kth) U (P ) model dist. on attr. w and rel. r resp.
ρu,r,w,j, ρp,r,w,k jth (kth) U (P ) cluster prop. on attr. w and rel. r resp.
Û , P̂ discrete prob. dist. (of ratings) for U and P resp.
fu,r, fp,r rating vectors for U and P on relation r resp.
H(·) Shannon entropy in bits, de�ned on discrete prob. dist.
KL(· ‖ ·) KL divergence in bits, de�ned on two discrete prob. dists.
M data model M
L(U,M) # of bits used to encode M and U ’s behavior given M
L(M) # of bits to encode M

Table 9.2: Frequently used symbols and de�nitions

9.3.2 Intuition

In order to see how we can leverage an information theoretic perspective and use MDL to inspire
the formulation of δ, we must �rst consider our model and data representations. In this regard,
to encode each user node, we must store information about the user’s associated interactions
through edges. In our running example, because each edge simply contains information about
a single categorical attribute value (1-5), we must encode the attribute value to losslessly
reconstruct the vector which describes the user’s rating behavior. Thus, for each user node, we
will encode a vector of rating values, e.g. [5, 5, 1, 2, 5, 3, . . .]. Likewise, to encode a product node,
we store information about the product’s associated interactions through edges. Thus, we store
the ratings that the product was given by various users: say, [1, 2, 1, 3, 2, 2, . . .].

To encode these individual user and product rating vectors, we �rst build a general model of
rating behavior over all users and products, respectively. Note that this can be construed as an
elementary user/product behavior model (we will relax the assumptions for a single model of
behavior later in the section). For example, presume that the general pattern of rating behavior
over all users follows the distribution [0.15, 0.1, 0.05, 0.3, 0.4] (total proportions of 1s, 2s, 3s, 4s
and 5s, respectively). Then, we can describe this model distribution C as a general trend that we
expect a given user U ’s edge-attribute (rating) value vector fu to obey, and describe the vector of
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|fu| rating values with respect to this model in our formulation. In doing so, our total encoding
length in bits for each user U with distribution Û is as follows:

L(U,M) = L(M) + L(U |M)

where
L(U |M) = |fu| ·

(
H(Û) +KL(Û ‖ C)

)
A similar cost could be written for each product. Following the earlier description of MDL, L(M)
is the cost to encode the overall model (in our case C), and L(U |M) is the cost to encode a �xed
user’s data given the model. Here the cost for encoding the user based on the model includes
the Shannon entropy H and the Kullback-Leibler divergence KL. While the Shannon entropy
re�ects the inherent information content of the distribution Û , the KL divergence captures the
extra information content between the user distribution Û and the model distribution C :

KL(U ‖ C) =
∑
i

U(i) log2

U(i)

C(i)

Here both U and C are distributions over a discrete set of outcomes, and U(i) and C(i) denote
the probability mass associated with outcome i. Given that H(Û) +KL(Û ‖ C) describes the
cost of encoding a single sample from the user distribution Û according to the model distribution
C , we multiply by |fu| to denote the cost of |fu| total samples from the user rating vector
fu.

Although the general construction described above is required for fully encoding and recon-
structing the rating vector given by a single user U (product P ) according to MDL, our goal is to
be able evaluate and compare the abnormality δ of two users (products) U1 and U2 according to
our data model, rather than evaluate the model itself. In this regard, the last components of the
above description, |fu1| ·KL(Û1 ‖ C) and |fu2| ·KL(Û2 ‖ C), are especially useful. Intuitively,
these terms measure the total number of extra bits required to encode the attribute behavior of
users U1 and U2 using a code optimized for the global model distribution C respectively. Note
that our interest in abnormality comparison neither necessitates the use of the model cost L(M),
nor the entropy term. This is because the former is a �xed constant, and the latter is a cost
associated with inherent information content rather the data model. As a result, by excluding
these terms, we are not measuring the total information content for a node, but rather the more
desirable information content with respect to the model. Though other distributional distance
measures such as the KS statistic or variational distance could also be used to similar e�ect, we
use KL divergence due to its principled information theoretic properties and interpretability.
Hence, we de�ne our initial formulation δbase as follows:

De�nition 9.1: Base Score

Given a single edge-attribute with model distribution C , the base abnormality scoring
function δbase for node v ∈ V is de�ned as

δbase(v) = |fv| ·KL(v̂ ‖ C)
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where |fv| gives the cardinality of the edge-attribute value vector fv produced from v’s neigh-
boring (outgoing) edges, v̂ gives the discrete probability distribution associated with node v
over the chosen attribute and C gives the global discrete probability distribution of the chosen
attribute over all edges.

This formulation admits two especially desirable properties:

Observation 9.1: Scale Sensitivity

Given two users U1 and U2 where KL(Û1 ‖ C) = KL(Û2 ‖ C) and KL(Û2 ‖ C) > 0, if
|fu1| > |fu2| > 0, then δbase(U1) > δbase(U2).

Observation 9.1 formalizes the intuition that given equal distributional deviation from the model,
the user with more actions is more surprising.

Observation 9.2: Contrast Sensitivity

Given two users U1 and U2 such that KL(Û1 ‖ C) > KL(Û2 ‖ C)) > 0 and |fu1| = |fu2|
and |fu2 | > 0, then δbase(U1) > δbase(U2).

Observation 9.2 formalizes the intuition that given an equal number of ratings, the user whose
distribution is more unlike the model is more surprising.

Note that De�nition 9.1 gives a base formulation δbase, for the elementary case in which we have
a relation with a single, global model distribution C for just a single edge-attribute. We next
relax these assumptions and discuss how to extend this formulation to more complex scenarios.
We �rst discuss extensions to scoring a multifaceted model in which we consider multiple model
distributions for a single attribute, and next broach the topic of building a joint scoring function
which can additionally incorporate multiple attributes. Finally, we touch upon expanding these
de�nitions to a uni�ed scoring scheme which can handle more complex, heterogeneous graph
structures with multiple relation types. Our end goal is to devise a formulation of δ which
accounts for all of these factors in ranking abnormality.

9.3.3 Handling multifaceted edge behavior

It is often the case that patterns in user behavior are more granular than singular, global trends.
For example, di�erent users may rate products in di�erent ways. Given that some users will be
less critical and more easily satis�ed than others, we may expect that some fraction of users give
generally positive ratings (4s and 5s) but very few negative or neutral ratings. Conversely, some
users will be very di�cult to please and will give mostly negative and neutral ratings. One can
consider that many such latent user (generally, node) behaviors may exist as a result of distinct
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preferences, response bias and a number of other factors. For example, some fraudsters may
slander a product by giving it all 1-star ratings, whereas other fraudsters may bolster the ratings
of a product by giving it all 5-star ratings. It can be useful to model these behaviors separately,
as the single global distribution may actually be a mixture of behaviors of varying prevalence
that nodes exhibit. As a motivating example, consider a global distribution of 50% ratings as
1-star and 50% as 5-star. This can actually be comprised of 3 latent user behaviors: only 1-star
raters, only 5-star raters, and a small fraction of combined 1 and 5-star raters. The base model
will penalize the latter group the least as they perfectly match the global distribution, but in
reality this might be the most abnormal (rarest) group of users.

Figure 9.2: EdgeCentric can handle multifaceted edge behaviors. Depicted is a toy
example in which a user v’s multifaceted weighted abnormality score is computed with respect
to clusters C1 . . . C3 and their respective, varying proportions ρ1 . . . ρ3. Notation is simpli�ed
for illustration purposes given the “user” context.

In fact, δbase can be extended to incorporate such multifaceted behaviors without much compli-
cation. The base formulation assumes the existence of a single, global model C which describes
the attribute distribution over all edges. In the user-rates-product scenario, we can consider C to
be a discrete probability distribution de�ned over the 1-5 rating values. To capture the notion of
multiple models of rating (and without loss of generality, attribute) behavior, we introduce the
notation Cu,j and Cp,k to denote the jth model distribution for user ratings and the kth model
distribution for product ratings1, where j ∈ {1 . . . s} and k ∈ {1 . . . t} given s total user rating
distributions and t total product rating distributions. We can consider these as clusters which
describe various modes of rating behavior. In addition to the cluster distributions, we also de�ne
their proportions ρu,j and ρp,k as the fraction of user and product nodes which belong to the jth
and kth clusters respectively – here, we consider that a user U belongs to a cluster j if the L2

distance from Û is smaller to the distribution Cu,j than for all other clusters {1 . . . s} \ {j}. The
analogous de�nition applies to a product P and cluster k. Note that with the introduction of
such a multifaceted model, our model distribution C is de�ned separately for user and product

1In general, we have for each object type b ∈ B corresponding cluster distributions Cb,i.
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ratings – this is in contrast to the de�nition when we considered a single, global model. The
distinguishing factor is that in considering multiple clusters, the patterns in how users rate and
how products are rated can actually di�er depending on the speci�c edge structure of G.

In this case, we face the problem of identifying abnormality as a function of multiple clusters
rather than just a single one. The abnormality of a node should also re�ect to what extent its
behavior �ts with these various cluster distributions – for instance, even if there are two clusters
of user rating behavior, if one cluster is more widespread and characteristic of general user
rating behavior than the other, this factor should be intuitively accounted for in the scoring. To
account for this concept, we introduce the following de�nition of the multifaceted abnormality
scoring function δmf :

De�nition 9.2: Multifaceted Score

Given a single edge attribute and h cluster distributions of type b ∈ B indicated by Cb,g
where g ∈ {1 . . . h}, the multifaceted abnormality scoring function δmf for a node v ∈ V
with Ψ(v) = b is de�ned as

δmf (v) = |fv| ·
h∑
g=1

(
ρb,g ·KL(v̂ ‖ Cb,g)

)
where |fv| gives the cardinality of the edge-attribute value vector fv produced from v’s neigh-
boring (outgoing) edges, v̂ gives the discrete probability distribution associated with node v
over the chosen attribute, and Cb,g and ρb,g give the gth model distribution and proportion of
the gth cluster respectively.

This scoring function intuitively gives the expected number of extra bits required to encode the
behavior of v on a single edge attribute with respect to multiple cluster distributions. To see this,
observe that δmf is in fact the expectation over a discrete random variable X with probability
mass function de�ned by the cluster proportions ρb,g for g ∈ {1 . . . h}, and outcomes de�ned by
δbase(v) for v ∈ V and cluster distribution Cb,g – a visual depiction is given in Figure 9.2. This
extension to the base formulation admits yet another desirable property:

Observation 9.3: Prevalence Sensitivity

Given two cluster distributions Cu,1 and Cu,2 with proportions such that ρu,1 > ρu,2 and
users U1 and U2 such that Û1 = Cu,1 and Û2 = Cu,2, if KL(Û1 ‖ Cu,2) = KL(Û2 ‖ Cu,1)

and KL(Û2 ‖ Cu,1) > 0 and |fu,1| = |fu,2| and |fu,2| > 0, then δmf (U1) < δmf (U2).

Observation 9.3 formalizes the intuition that if two users have no deviation from their own
cluster distributions and equal deviations from the other cluster’s distribution, and otherwise
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give an equal number of ratings, then the user who belongs to the smaller cluster is more
surprising.

Note that by incorporating multiple patterns of edge behavior in this way, the multifaceted model
inherently allow for the possibility of capturing abnormal behavior as part of the model itself. In
fact, we may �nd groups of users who form their own clusters based on abnormal rating patterns
as a result of fraud or suspicious activity. However, by computing the expectation over clusters
using the cluster proportions as probabilities, we can still robustly identify abnormal users
assuming they make up a small fraction of all users, given that they will deviate substantially
from the rest of the data. The intuition is because although they may cost few bits to encode
with respect to their own abnormal cluster distribution, they will still cost many bits to store
with respect to the other cluster distributions, which are weighted much more substantially due
to their larger constituency in the data.

9.3.4 Handling multiple edge-attributes

We now broach the topic of building a joint abnormality function which incorporates the pres-
ence of multiple edge attributes in addition to multifaceted models on each of the individual
attributes. This is particularly useful in practical applications, where service providers collect a
variety of information about each interaction. For example, in the user-rates-product scenario,
practitioners may also collect auxiliary information about the rating interaction included times-
tamp, rating/review text, or veri�cation information (indicating whether a purchase occurred
or not). Each of these attributes collects information about a di�erent aspect of the interaction
which may indicate fraudulent, suspicious or otherwise anomalous but simply interesting be-
havior. For example, consider a user whose given rating distribution was not itself atypical,
but had a consistent inter-arrival time (IAT) of 5 seconds between ratings, meaning that each
subsequent rating was given 5 seconds after the previous – it is apparent in such a case that this
reviewer’s abnormality would not be well-indicated on the rating attribute, but would appear
strongly on the temporal attribute

There are a number of strategies we could employ for incorporating multiple attributes into
the ranking context. One strategy is to consider ranking in a subspace formulation, where
we consider abnormality with respect to various subspaces of edge attributes. However, this
approach introduces an intractable number of subspaces along with sparsity issues, especially
for high-dimensional data.

A second strategy is to consider abnormality additively over each of the attributes, assuming
independence. In this approach, we compute the δmf score for each user over each attribute
and simply sum the scores together. We �nd that this approach o�ers numerous comparative
advantages over the previously mentioned joint subspace method. Firstly, instead of focusing
on the combinatorial number of underlying subspaces, we focus on just a single space. This
gives us a single abnormality ranking in which the top-ranking users are those who score
highly in abnormality on many or all attributes. Furthermore, de�ning an additive measure of
abnormality o�ers an attractive interpretation from the compression perspective – it can be
interpreted as the expected number of extra bits to encode a node’s actions with respect to a
joint (but independent) model over all edge attributes. values for that given attribute, the sum
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represents the expected number of extra bits to encode a user’s values with respect to a joint
model (though formulated independently) over all edge attributes. The summed abnormality
scores are thus naturally weighted by the deviation in terms of information content (in bits)
from their respective attribute models.

We slightly modify our existing notation from the multifaceted (multiple clusters per attribute)
model to distinguish cluster distributions between attributes w ∈ {1 . . . y} on a single relation.
Now, instead of Cu,j and Cp,k to denote the jth cluster distribution for user ratings and kth
cluster distribution for product ratings, we write Cu,w,j and Cp,w,k to denote the jth user cluster
distribution and kth product cluster distribution for attribute w, respectively. Similarly, we write
proportions as ρu,w,j and ρp,w,k for the proportion of the jth user cluster and kth product cluster
for the wth attribute, respectively. Additionally, each attribute w may have a di�erent number of
user and product clusters so we write j ∈ {1 . . . sw} and k ∈ {1 . . . tw} where sw and tw denote
the total number of user and product cluster distributions for the wth attribute, respectively.
Thus, we de�ne δma as follows:

De�nition 9.3: Multi-attribute Score

Given multiple edge attributes w ∈ Ω(r) de�ned on a single relation r ∈ R, with hw
cluster distributions of type b ∈ B respectively indicated by Cb,w,g where g ∈ {1 . . . hw},
the multi-attribute abnormality scoring function δma for node v ∈ V with Ψ(v) = b is
de�ned as

δma(v) = |fv| ·
∑

w∈Ω(r)

( hw∑
g=1

(
ρb,w,g ·KL(v̂w ‖ Cb,w,g)

))

where |fv| gives the cardinality of the edge-attribute value vector fv produced from v’s neigh-
boring (outgoing) edges, v̂w gives the discrete probability distribution associated with node v
over attribute w, and Cb,w,g and ρb,w,g give the gth model distribution and proportion of the gth
cluster on the wth attribute respectively.

9.3.5 Handling multi-relational graphs

Thus far, we have built up δma as an abnormality scoring function which handles multiple
edge attributes with multifaceted models indicating various clusters of node behavior. Now, we
brie�y discuss how to extend this scoring function to more complex heterogeneous schemas
with multiple relation types (|R| > 1). Handling multiple relation types is yet another factor
which can enable richer anomaly detection. For example, consider that in our running user-
rates-product scenario, we additionally incorporate a new object type of seller, and introduce
a new relation user-rates-seller. Now, one can envision a similarly motivated scenario for the
multi-attribute formulation – however, instead of a user giving typical rating values with atypical
IATs, the user could now give typical rating values even with typical IATs for products but
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not for sellers. Thus, considering only the user-rates-product relation for the user, we might
not be able to identify a user as abnormal using the δma score. However, incorporating the
secondary user-rates-seller relation, we are able to appropriately penalize the user’s atypical
behavior.

Fortunately, extending the formulation to handle multiple relations per object follows a very
similar argument to the multi-attribute scenario where we consider handling multiple attributes
per relation. We now de�ne a joint model on the object type which incorporates multiple
relations per object, and multiple attributes per relation. Given such a model, users who behave
atypically on multiple types of interactions will be considered the most abnormal. We can
again devise an additive formulation with a minor modi�cation to notation – given that a user
may have rated a di�erent number of products than sellers, we use the notation fu,r for user
U ’s vector for relation r, and |fu,r| for the size of the attribute vector. Similarly, we write fp,r
and |fp,r| for product P ’s vector and the associated size for relation type r. Then, we de�ne
the uni�ed heterogeneous, multi-attribute and multifaceted abnormality scoring function δ as
follows:

De�nition 9.4: Uni�ed Score

Given multiple edge attributes w ∈ Ω(r) de�ned on multiple relations r ∈ R, with hw
cluster distributions of type b ∈ B respectively indicated by Cb,r,w,g where g ∈ {1 . . . hw},
the uni�ed abnormality scoring function δ for a node v ∈ V with Ψ(v) = b is de�ned as

δ(v) =
∑
r∈R

( ∑
w∈Ω(r)

(
|fv,r| ·

hw∑
g=1

(
ρb,r,w,g ·KL(v̂w ‖ Cb,r,w,g)

)))

where |fv,r| gives the cardinality of the edge-attribute value vector fv,r produced from v’s
neighboring (outgoing) edges of type r. Formally, fv,r = {e ∈ E | v ∈ m(e) ∧ Ψ(e) = r}.
Furthermore, v̂w gives the discrete probability distribution associated with v over attribute w,
and Cb,r,w,g and ρb,r,w,g give the gth model distribution and proportion of the gth cluster on the
rth relation type respectively.

Note that the de�nition of δ given in De�nition 9.4 is the �nal formulation of the abnormality
scoring function. From a compression perspective, it gives the expected number of extra bits
required to encode a given node’s edge-attribute vectors with respect to a joint model over
multiple relations, multiple attributes and multiple per-attribute clusters. In the user-product-
seller scenario, we can consider that for each user, we compute deviation with respect to a joint
model over the user-rates-product and user-rates-seller relations, each of which has multiple
attributes (rating value, IAT, etc.) and various clusters representing patterns of behavior. The
de�nition is general, and extends to various node types with various numbers of relations and
attributes.
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Algorithm 9.1: EdgeCentric
Input: graph G
Output: sorted abnormality score vector for each node type in G

1: For each node in G, aggregate attribute values from outgoing edges per-relation-type.
2: Based on attribute type and range of values, discretize the space categorically for

categorical attributes, and linearly or logarithmically for numerical attributes. Bin the
per-node aggregated attribute values accordingly and normalize to construct probability
mass functions.

3: For each node-type and attribute, cluster the vectors describing the per-attribute probability
mass functions associated with each relation.

4: For each node-type, compute the abnormality score δ for all nodes over associated relations
and attribute clusters.

5: For each node-type, sort (descending) the resulting abnormality scores and return with
node indices.

9.4 Proposed Method: EdgeCentric

Thus far, we have built up both intuition and formalization for the use of δ as an abnormality
score for nodes in edge-attributed graphs. We next describe our EdgeCentric algorithm, which
draws the attention of the analyst/practitioner to the nodes with the most surprising behavior
in the given network. The pseudocode for EdgeCentric is given in Algorithm 9.1 – we describe
the �ve associated key steps below.

Step 1 – Aggregation: For each node-type in G, we aggregate the attribute values over the
outgoing edges from each node for each associated relation-type. In our user-rates-products
scenario, we have two node-types (users and products) connected by a relation with two attribute
types: ratings (categorical) and timestamps (numerical). Since our relation is undirected, for
each node we aggregate the attribute values for the adjacent edges, thereby collecting a vector
of rating values for the user (product) as well as a vector of associated timestamps.

Step 2 – Discretization: Given the attribute types and ranges, we discretize the value space
of each attribute in a principled manner. Categorical data is by de�nition discrete and thus
does not need further processing. For numerical attributes, the discretization process requires
more sophistication. We propose an adaptive binning approach as follows: if the maximum
value of the attribute is an order of magnitude larger than the minimum, we space the bin
markers logarithmically into d bins (d = 20 in our experiments). Otherwise, we space the bins
linearly. Logarithmic binning addresses issues associated with sparsity and scale insensitivity
in large-ranged data. In smaller ranges, linear binning tends to be su�cient. For temporal
data, instead of binning timestamps, we bin the inter-arrival times (IATs) instead to re�ect time
between actions.

Step 3 – Clustering: After binning the per-node attribute values and normalizing to construct
the appropriate probability mass functions, we cluster the vectors describing the probability
masses as a number of d-dimensional points. Though any clustering algorithm could be used
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Graph Nodes Edges

Flipkart [�i] 1.1M users, 545K products 3.3M ratings
SWM [ACF13] 964K users, 15K applications 1.1M ratings
AmazonHPC [MPL15] 1.8M users, 252K products 3.0M ratings

Table 9.3: Datasets used for empirical analysis

for this purpose, we use X-means [PMO00], as it automatically chooses the number of clusters
in a principled manner by optimizing Bayesian Information Criterion (BIC). The centers of the
resulting clusters are d-dimensional probability mass functions themselves, which we use as
the cluster distributions. We can then compute cluster proportions by empirically assigning the
input points to clusters by smallest `2 distance.

Step 4 – Scoring: Given the cluster distributions across all attributes and node-types over the
respective relations, we now compute the abnormality score δ(v) for each node v ∈ V according
to De�nition 9.4. For each node-type, and over each of the attributes on associated relations, we
additively compute the abnormality score in terms of the expected cost in extra bits with respect
to the attribute cluster distributions.

Step 5 – Ranking: Finally, we sort the scores for each node-type in a descending fashion and
return the ranking with associated node indices to the practitioner. This e�ectively routes
practitioner attention to the most abnormal nodes for each of the node-types in the graph (users,
products, etc.), with respect to encoding cost over a joint model composed of independent
edge-attribute models. This information can then be leveraged for further investigation.

Note that while EdgeCentric is motivated by the utilization of edge-attributes in interaction
networks, it can also be applied in non-network settings given attribute distributions for each
object in an object set are known.

9.5 Experimental Analysis

In this section, we evaluate EdgeCentric and aim to answer the following questions: what
kinds of edge-attribute behavior do we observe in real graphs? Is EdgeCentric e�ective in
�nding abnormally-behaving nodes by leveraging this information? Finally, is EdgeCentric
scalable?

9.5.1 Datasets and Experimental Setup

For our evaluation, we apply EdgeCentric to 3 real-world graphs with various edge-attributes.
The datasets are summarized in Table 9.3 and described in further detail below.

Flipkart: The Flipkart dataset contains information about reviews and ratings in the Flipkart
e-commerce network which provides a platform for sellers to market products to customers. It
contains roughly 3.3 million ratings given by 1.1 million users to 545 thousand products from
Aug. 2011 to Jan. 2015.
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Figure 9.3: Discovered popular user-rating patterns. Here, we show several cluster distri-
butions and associated probability masses for user ratings on the Flipkart dataset – bins
correspond to 1-5 stars.

Software Marketplace: The SWM dataset contains information about purchases in an online
marketplace which allows customers to purchase software applications. The data for this
marketplace was originally collected in [ACF13]. It contains over 1.1 million ratings given by 964
thousand users to 15 thousand applications over the timespan of Apr. 2008 to June 2012.

Amazon Health and Personal Care: The AmazonHPC dataset is publicly available. It con-
tains information about online purchases of health products on the Amazon e-commerce network.
It contains roughly 3.0 million ratings given by 1.8 million users to 252 thousand products over
the timespan of May 1996 to July 2014.

Our code for EdgeCentric is primarily implemented in Python. For experiments, we use a
machine with 32 Intel Xeon 8837 CPU cores @ 2.67GHz and 1TB RAM.

9.5.2 Findings on Flipkart
In our analysis on the Flipkart dataset, we constructed a single relation (user-rates-product)
on which we had one categorical attribute (rating from 1-5) and one temporal numerical attribute
(UNIX timestamp). Thus, we ranked abnormality of users with respect to their rating and IAT
behavior.

Figures 9.3 and 9.4 show the probability mass functions corresponding to several of the prevalent
distributions that we found as a result of clustering the user edge-attribute data. Figure 9.3
shows several interesting rating patterns we discovered from the process: polarized, negative
and enthusiastic users. We characterize these patterns as follows:

• Polarized users give mostly 1 star and 5 star ratings, with very few middle-ground ratings
– this can correspond to the natural tendency to either love or hate a product, or result
from fraudulent users who aim to popularize all the products of a single seller, and defame
the competitors.
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Figure 9.4: Discovered popular rating frequency (IAT) patterns. Here, we show sev-
eral cluster distributions and associated probability masses for IATs between ratings on the
Flipkart dataset – bins correspond to logarithmically discretized interarrival times (the �rst
few bins span IATs from several seconds to just a few minutes).

• Negative users give mostly 1 or 2 star ratings – we conjecture this is mostly a consequence
of response bias, where users are sharing their opinions only because they are especially
displeased with a product.

• Enthusiastic users give only 5 star ratings and none others – this is suggestive of strong
response bias or blatantly fraudulent behavior (especially when the user gives many such
ratings).

We additionally �nd isolated clusters for users who give only ratings of a single star outcome (1-5)
– these single-minded individuals are particularly prevalent in the data, given the large number of
low-activity users who rated only one or a few products since inception. The presence of these
behaviors in various proportions of the data then informs the computation of the abnormality
scores and EdgeCentric rankings for individual users.

Figure 9.4 shows several IAT patterns (indicating rating frequency), selected from clusters
produced from the X-means process. The bins are discretized logarithmically, so that the span
of the �rst few bins corresponds to IATs between 0 seconds to roughly 10 minutes, whereas the
latter bins span from 10 minutes to several years (normally the case for users who rate only a
few products in total, with a large gap between subsequent uses of the Flipkart platform). We
found several interesting IAT patterns, including those of rapid-�re, sporadic and bimodal users.
We characterize these as follows:

• Rapid-�re users are the most blatantly suspicious – these users almost exclusively give
ratings with just a few seconds or minutes between subsequent ones. This type of behavior
is almost guaranteed to be fraudulent and does not correspond with any intuition of real
human behavior.

• Sporadic users’ behavior is far more in-line with human intuition. These users mostly give
ratings several days, weeks and months apart. Few ratings are given with very short IATs,
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Figure 9.5: EdgeCentric �nds fraudulent accounts on Flipkart with high precision.

Here, we show the precision@k for various values of k ranging from 1 to 250, based on hand-
labeled data from domain experts at Flipkart.

indicating that the users do not rate many items in a single purchase, and purchase only
sporadically (grocery products, birthday presents, holiday gifts, etc.)

• Bimodal users occasionally spend weeks to months without rating a product, but often
have periods of frequent activity on the order of multiple ratings (purchases) in days to
weeks. Notice that the probability mass for the users in this cluster is distributed across
almost all orders of IAT, with most of the mass concentrated on the orders of days to
weeks, suggesting that the users are engaged with the Flipkart service and give ratings
frequently (presumably because they also purchase products frequently). However, a
non-trivial amount of the mass is distributed between shorter timeframes of seconds to
minutes, indicating that the users rate multiple products in a single sitting (likely due to
the purchase and resulting receipt of several products at the same time).

Upon applying EdgeCentric to this dataset, we provided a list of the 250 most abnormal accounts
to domain-experts at Flipkart who investigated and labeled these users individually according to
various criteria involving the user’s review-text, rating distributions and frequencies. Figure 9.5
shows the precision at k (P@k) for a spread of k values over this range of 250 users, indicating
positive results of 90% precision over the top 50 users, and over 70% precision over the top
250 users – recall results are incalculable given unbounded false negatives and lack of ground-
truth labels. These are substantial �ndings for Flipkart – given previously unsophisticated
fraud detection approaches, most fraudsters did not have to resort to distributed attacks (the
fraudulent users had each committed hundreds to thousands of actions). One common pattern
found by domain-experts was that most fraudsters either spammed 4/-5 star ratings to multiple
products from a single seller (boosting seller ratings), or spammed 1/2-star ratings to products
from another seller (defaming competition). We further found that the most abnormal user had
given 3692 5-star ratings with an average IAT of just a few seconds.
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Figure 9.6: EdgeCentric scales linearly. Here, we show EdgeCentric’s runtime on induced
subgraphs of the Flipkart dataset.

9.5.3 Findings on SWM
On the SWM dataset, we constructed a single relation (user-rates-application) on which we had
one categorical attribute (rating from 1-5). Thus, we ranked abnormality of users with respect
to their rating behavior. We do not show the clustered rating behavior in interest of space,
but note that similar behaviors can be observed in this dataset in terms of polarized raters,
“single-minded” raters, etc. as in Figure 9.3.

We �nd that the users with the highest scores according to our EdgeCentric approach have
spammy behavior. The most abnormal user in this dataset had given 186 5-star ratings to a single
application. The accompanying reviews had very high textual similarity and included quotes
like

“Awesome!!!,Get this app now and earn points for a $10 gift card.”
“Try the app today and you will be amazed of how much money you can make with
it......”
“Awesome App!!!! FREE money ,The app is great to earn points for FREE money. Get it
today!”

Another of the highly-ranked users had given 107 5 star ratings to a single application, spamming
the following review:

“Great app,Just great! Enter code: [redacted] To win even more points!!!!!!!!!!!!!!!!!!!!”

In fact, the top-ranked 20 users according to EdgeCentric often posted repetitive, spammy text
in addition to highly skewed ratings. Usually, the review text promoted the application, included
personalized codes which the reviewers claimed would give customers free money/points, or
were generally characteristic of information-free content. We additionally found correspon-
dences between the codes reviewers asked customers to use and the reviewer’s own usernames,
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suggesting that the code gave the reviewer an associated perk rather than the customer. It
stands to reason that the associated applications incentivized existing customers to attract more
potentials. Unfortunately, we are unable to check for ground-truth with service providers.

9.5.4 Findings on AmazonHPC
For the AmazonHPC dataset, we constructed a single relation (user-rates-product) on which we
have one categorical attribute (rating in stars from 1-5) and one temporal numerical attribute
(UNIX timestamp of rating). Thus, we ranked abnormality of users with respect to their rating
and IAT behavior. Clustered rating behavior is not shown in interest of space limitations, but
we �nd similar overarching patterns as in Figures 9.3 and 9.4.

In the AmazonHPC dataset, we observe that the top 5 users with the highest scores are in fact
reviewers with high-status badges who review products which they receive free of charge in
return for positive rating and review. Good evaluations from these reviewers are seen as a status
symbol for the product.

The most abnormal user according to EdgeCentric had rated 348 products with 317 of the
ratings being 4/5-stars. A quick look at his Amazon review pro�le shows many similar reviews
including the statement

“Note: sample unit provided for reviewing purposes.”

Another abnormal user ended almost all of her reviews with

“[Seller] provided [Product] for evaluation and review.”

At the time of data collection, the user had rated 285 products with 262 4/5 star reviews, of which
almost 80% were 5 stars. Interestingly, reviewers who receive products for evaluation tend to
give abnormally many more positive ratings than others and appear disingenuous.

Several of the other top reviewers have similar badges, indicators, and review styles – 2 of the
top 5 have Vine Voice badges, indicating that the reviewer is a member of the invitation-only
Amazon Vine Voice program which gives customers advance access to unreleased products for
the purpose of writing reviews. [NPR] provides further details from one such top-reviewer who
details his experiences in having received thousands of dollars of free products from Amazon
sellers over the years for evaluation purposes.

It is comparatively di�cult to make claims about the legitimacy of products. This is both because
products have inherent di�erences in quality and frequency of purchase, and also spammers
rating the product very highly or poorly do not necessarily imply the illegitimacy of a product
or its seller. Interestingly, the most abnormal product was a digital weighing scale from the
EatSmart product line, with 19,593 reviews of which over 80% are 5-star. This is an unusually
strongly rated product in comparison with others in the dataset, and also rated with very
high frequency (short IAT). Several of the other highly abnormal products are �tness products
including the BlenderBottle and FitBit, which have 91% and 85% 4/5 star ratings over 10 thousand
reviews each. The distributional deviance is unusually high and done in large-scale, suggesting
suspicious activity.
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9.5.5 Scalability

Finally, we show that EdgeCentric is scalable on real-world graphs. Figure 9.6 shows the linear
runtime in seconds on various induced subgraphs from Flipkart. The time-complexity of
EdgeCentric is roughly O(|E|d + |V|kdi) for a single attribute, where |V| and |E| are the
number of nodes and edges inG, d is the attribute dimensionality, k is the number of clusters and
i the number of clustering iterations. The former term re�ects the cost of binning the attributes,
whereas the latter term re�ects the cost of clustering points using naïve Lloyd’s k-means. The
time complexity of X-means is ill-de�ned given its inherent dependence on the number of
underlying clusters in the data, but is empirically shown to scale better than k-means due to the
diminishing size of the clustering problem in each iteration.

9.6 Conclusion

In this work, we broach the issue of detecting anomalies in large, edge-attributed real-world
graphs, which are commonplace in modern e-commerce platforms, social networks and other web
services. Speci�cally, we �rst formalize the problem of detecting anomalous nodes in graphs as an
unsupervised ranking problem, in which we aim to score nodes based on the abnormality of their
edge behavior. To this end, we �rst build up the intuition of using information theoretic principles
to quantify deviation from typical behavior in a data-driven fashion, and extend this formulation
in the presence of multiple user behaviors, multiple edge-attributes and complex heterogeneous
graphs. We then introduce the EdgeCentric approach to leverage this formulation. Finally, we
show substantiating results including high precision (87% over the top 100 users) on the Flipkart
e-commerce platform, practical scalability and interesting observations on typical and atypical
user behaviors gleaned from applying our method to several large, real-world networks.
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Chapter 10

The Many Faces of Link Fraud

Characterizing the multimodality of
link-fraud using honeypots.

Based on content published in [SLBF17].

Most prior work on social network link fraud detection tries to separate genuine users from
fraudsters, implicitly assuming that there is a single “pattern” of fraudulent behavior. But is
this assumption true? And, in either case, what are the characteristics of such fraudulent
behaviors? Characterizing and understanding fraudulent behavior and motives is crucial to
building algorithms resistant to evolving fraudsters. In this chapter, we focus on exactly this.
We set up honeypots, or “dummy” social network accounts on which we solicit fraudulent
links, or followers. We report the signs of such behaviors, including oddities in honeypot
local network connectivity, account attributes, and similarities and di�erences between
various fraud providers. We detail our careful approach for data collection, discover and
study multimodal fraud patterns, and give surprising insights into their behaviors and
strategies. Finally, we propose a new class of features based on attribute entropy over
�rst-order account followers, which we show gives near-ideal classi�cation performance.

10.1 Introduction

What are the characteristics of fraudulent accounts in online social networks? Understanding
the behavior and actions of fraudsters is paramount to building e�ective anti-fraud algorithms.
While previous works in social network fraud detection have primarily focused on leveraging
signature properties of fraudsters including temporally synchronized behavior [BXG+13], exces-
sively dense [PSS+10] and oddly distributed [SBGF14] graph connectivity, uncommon account
names [Fre13] and spammy links [GTPZ10], our work focuses on establishing the veracity and
applicability of these assumptions. In doing so, we ask: do all fraudsters share the same signature
behavior, or are there multiple signatures? Since fraud detection is an adversarial setting in
which fraudsters are constantly adapting to in-place detection mechanisms, it is important
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to constantly monitor and evaluate the strategies that fraudsters are employing to pro�tably
perform ingenuine actions to better inform future detection mechanisms.

We focus on one particular setting of social network fraud called link fraud which involves
the use of fake, sockpuppet accounts to create links, or graph connections, which represent
followership or support of target, customer entities. Fake links arti�cially in�ate the follower
count of customer accounts, making them appear more popular than they actually are. These
fake links are deceptive to authentic users and hinder the performance of machine learning
algorithms which rely on authentic user input to recommend relevant and useful content to
their userbase.

To study the behavior of these fake follower accounts, we employ the use of honeypots, or
dummy accounts on which we solicit fake Twitter followers sourced from various fraud service
providers. Honeypots enable us to have an clear signal of fake follower activity which is not
tainted by follows from real accounts. Upon setting up the honeypot accounts and purchasing
fake followers, we instrument a number of carefully engineered tracking scripts which poll
Twitter API to store details including account relationships and attributes over a period of time.
This allows us to collect a rich representation of the fraudster ecosystem which we subsequently
analyze.

In this work, we make and explore the following key observation:

Observation 10.1: Fraud Multimodality

There are multiple types of link fraud which exhibit notably di�erent network structures
and patterns in account attribute settings.

Speci�cally, we focus on studying and characterizing the network connectivity properties and
attribute distributions which are exhibited by fake followers involved in these di�erent types
of fraud. We detail a number of further observations on how these types of behavior induce
di�erent, odd network structures and suspicious patterns in account attributes. Figure 10.1
shows the contrast in follower connectivity of a genuine account versus two distinct types of
fraudsters. Through our analysis, we additionally engineer strong features which enable us to
discriminate these fraudulent users from genuine ones using novel (�rst-order) follower entropy
features.

Summarily, our work o�ers the following notable contributions:
• Instrumentation: We detail our experimental setup and data scraping tools which gather

a wealth of Twitter user information while respecting API rate limits.
• Observations on Fraud Multimodality: We discover that link fraud is not unimodal

and instead has multiple types, and identify and characterize two such types: freemium
and premium, with the possibility of more.
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Gen. users Pre. fraud Fre. fraud

(a) Visualization (b) Visualization (c) Visualization

(d) Diverse attribute behavior
(e) Adjacency (f) Adjacency (g) Adjacency

Figure 10.1: Freemium (Fre) and premium (Pre) fraud types have di�erent local network

structure and account attributes compared to genuine behavior. Nodes are colored by
modularity class, and sized proportional to in-degree in (a)-(c). The associated, reordered
adjacency matrices are shown in (e)-(g) – the vertical line in each spyplot indicates the the
central node. Notice the block community structure in genuine followers compared to the star
structure for premium and near-clique structure for freemium followers. (d) shows di�erences
in attribute (language and follower) entropy over the various behaviors, showing how fraud
patterns skew attribute distributions away from genuine ones.

• Features: Based on the above observations, we carefully engineer novel, entropy-based
features which allow us to accurately discern fraudsters from genuine users in our ground-
truth Twitter dataset with near-perfect F1-score.

10.2 Related Work

We categorize related work into two categories: underground market studies and fraud detection
approaches.

Underground Markets: Prior works have shown the use of fake accounts for followers in
social media [TMG+13], phone-veri�ed email accounts [TIB+14], Facebook likes [BXG+13],
etc. These accounts are often used to spread spam [GTPZ10, GHW+10] and misinformation
[GLK13, GLKJ13]. [Per13] estimates that the fake follower market produces $360 million per
year. Recently, several works have studied the existence of underground online markets where
these fraudulent actions can be purchased – [WWZ+12, MLK+10] explore underground markets
providing fake content, reviews and solutions to security mechanisms. [TMG+13] studies
several fraud providers over time and describes trends in pricing, account names and IP diversity.
[SWE+13] compares growth rates of accounts with legitimate and fraudulent followers. [AK15]
observes the varying retention and reliability of various fraud providers. Comparatively, our
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Service Type Cost
Followers

bought

Followers

delivered

Followers

remaining

fastfollowerz Premium $19 1000 1060 1059
1060 1059

intertwitter Premium $14 1000 1099 977
1102 974

devumi Premium $19 1000 1360 1358
1354 1354

twitterboost Premium $12 1000 1361 1361
1350 1350

plusfollower Freemium £9.99 1000 1094 748
1078 737

hitfollow Freemium £9.99 1000 926 623
937 638

newfollow Freemium £9.99 1000 884 600
883 589

bigfolo Freemium £9.99 1000 872 594
865 577

Table 10.1: Honeypot account summaries (two honeypots per service).

work is the �rst to identify major social graph di�erences between fraud types and across
providers, and propose novel entropy-based features for capturing these behaviors.

Fraud Detection: [BMRA10, LCW10] use pro�le features to detect spammers on Twitter.
[SKV10] passively analyzes accounts with promiscuous following behavior and builds a classi�er
using pro�le and messaging features. [CJ12, YKGF06] aim to �nd fake accounts in social networks
via a generative stochastic model and a random-walk based method respectively – both assume
small cuts between fake and genuine nodes. [BXG+13, CYYP14] use graph-traversal based
methods to �nd users with temporally synchronized actions on Facebook. [SBGF14, JCB+14a,
PSS+10] propose spectral methods which identify dense or odd graph structures indicative of
fraud.

10.3 Know Thy Enemy: Characterizing Link Fraud

In this section, we discuss some preliminaries about instrumentation, data collection and relevant
metrics, and next illustrate numerous insights about network connectivity and account attributes
of link fraudsters.

10.3.1 Setup and Data Collection

We �rst discuss how we identi�ed and purchased followers from target fraud service providers,
and next detail the scraping task, followed by preliminaries.

10.3.1.1 Purchasing Fake Followers

There are a number of di�erent fraud service providers easily accessible and available on the
web. We begin by identifying these services so we can purchase fake followers from them. To
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identify these services, we used Google search and queried using keywords such as “buy Twitter
followers.” Combining the search results, we obtained a list of websites which claim to provide
these services.

From surveying the websites on this list, we notice there are several prevalent models of service
– we categorize these into two frameworks: premium and freemium. Premium services o�er
customers multiple tiers of follower counts (1K, 5K, 10K, etc.) for various amounts of money and
ask only for the customer’s Twitter username and a form of payment. Freemium services o�er
both a paid option as in premium services, but additionally o�er a free option which does not
ask the user for money, but instead requires the user to provide their Twitter login details to the
service. In return for these details, the services promise to direct a small number of followers to
the account.

We next setup a pool of honeypot accounts by repeating the Twitter account creation process a
number of times using monikers from online screenname generators. We found that to create a
sizeable pool of honeypots, we needed to distribute the account creation over several IPs in order
to avoid phone veri�cation prompts. Upon setting up the pool of honeypots, we purchased basic
follower packages from several premium and paid freemium services, avoiding rarely used ones
with low Alexa rank. Summarily, we bought 1K followers from 8 di�erent services (4 freemium,
4 premium) to 2 honeypot accounts per service. We chose to purchase 2 honeypot accounts
per service instead of only 1 in order to examine the overlap dynamics of fake links to multiple
customers. The �nal list of the services we used, service types, costs and their follower counts
are summarized Table 10.1. Honeypots were created on the same day, and follower purchases
were all done at the same time. Furthermore, the honeypots attracted no followers by themselves
prior to the purchases. As a result, we posit that all followers of the honeypots are fake.

10.3.1.2 Instrumentation Details

Reproducibility: Code available at https://goo.gl/qMBWim.

We use the REST API to scrape data relevant to our operation from Twitter. As the API heavily
rate-limits various data resource types, it is only feasible to extract a limited amount of infor-
mation as an end-user. Prior to purchasing fake followers, we start a number of Python scripts
which poll the API and insert data into a Postgres database:

Honeypot account details: Every hour, we collect public details for each honeypot Twitter
account including number of friends and followees, number of favorites, number of Tweets,
language, etc.

Honeypot account follower IDs: Every 12 hours, we collect the list of follower IDs for each
honeypot. Since the honeypots were created with empty pro�les, we can safely assume that all
followers to these accounts were fraudulent and purchased.

Honeypot account follower details: Every day, we extract public details for each of the
accounts in the honeypot follower list.
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Honeypot account followers’ friends/followers IDs: Every day, we collect the list of friend
and follower IDs of the honeypot followers to examine their other connectivity.

Honeypot account followers’ friends/followers details: Every 3 days, we extract public
details for each of the friends and followers of the honeypot followers to gain more information
about them.

Account details requests are limited to 15 requests per 15 minute window, and each request
returns details for up to 100 accounts. Similarly, ID list requests are limited to 180 requests per
15 minute window, and each request returns up to 5000 account IDs. Hence, it is relatively easy
to scrape the �rst-order honeypot account follower IDs and details without exceeding the rate
limit, but collecting details for the second-order followers is a bottleneck. Since the number of
nodes to collect information for can explode substantially even at the second-order, we limit
collection to <100K friends and followers for each of the given follower of the honeypot account.
We determine periodicity values empirically using back-of-the-envelope calculations. While
this data could be collected slowly using a single Twitter API key, we speed up the process by
using multiple keys and cycling keys upon resource exhaustion.

10.3.1.3 Preliminaries

In the remainder of our work, we conduct analysis on two types of networks: the ego network
and boomerang network.

Ego network: An ego network (or egonet) traditionally consists of a central node called the
ego, as well as the neighboring nodes and the relationships (edges) between them. Egonets
can essentially be considered as a local graphical representation of a node within the context
of the broader, global graph and depict how the surrounding nodes are connected. For our
purposes, we examine per-service egonets, where we consider the union of the individual egonets
of both honeypot accounts per service. Thus, in our case, each per-service egonet is actually
comprised by 2 egos (the honeypot accounts), the union of both honeypots’ neighboring nodes
(the purchased, fake followers) and the relationships between them. The per-service egonet
representation allows us to both individually study the per-honeypot egonets as well as any
interactions between them. That is, if the two honeypots for each service have distinct sets of
neighboring nodes, then their per-honeypot egonets will also be distinct. Conversely, if any
nodes are neighbors of both honeypots, the associated per-honeypot egonets will be conjoined.
Various levels of overlap suggest di�erences with regards to how services reuse accounts to
deliver fake links.

Boomerang network: Drawing conclusions from per-service egonet analysis can be deceiving
in the sense that while it does give insights into the internal relationships between the fake
followers and honeypots, it does not consider the external relationships formed by the fake
followers. As such, it is unable to give us a full perspective on the utilization of these fake
followers. In order to gain the requisite perspective, we conduct analysis of the proposed
boomerang network. We de�ne the per-service boomerang network to be comprised of the
per-service egonet in addition to the out-links of the follower nodes – the structure is reminiscent
of a boomerang, in that it is comprised of the nodes “1 step back and 1 step forward” with respect

180



to the honeypot account. Thus, the per-service boomerang network gives us an additional layer
of information on top of the per-service egonet: connections to the other accounts followed by
the honeypot’s fake followers.

We further use the density, bipartite density, transitivity and reciprocity metrics to summarize
and describe network structure, and overlap coe�cient and multiple systems estimation (MSE) to
characterize network overlap.

Density: We de�ne density as

#edges

#nodes · (#nodes − 1)

Density represents the fraction of existing to possible total edges, with density 1 indicating a
complete graph.

Bipartite density: We de�ne bip. density between sets A and B as

#edges between A and B
(#nodes in A) · (#nodes in B)

Bipartite density captures the fraction of existing to possible edges between two sets of nodes,
with bipartite density 1 indicating a complete bipartite graph.

Transitivity: We de�ne transitivity as

3 · #triangles

#connected triples

Transitivity denotes the degree of triadic closure, with transitivity 1 indicating that all connected
triples of nodes are also triangles.

Reciprocity: We de�ne reciprocity as

#bidirectional edges

#edges

Reciprocity conveys the relative frequency of bidirectional edges, with reciprocity 1 indicating
that all edges are bidirectional.

Overlap coe�cient: We de�ne overlap coef. between A and B as

|A ∩ B|
min(|A|, |B|)

Overlap coe�cient indicates the proportion of members that overlap between sets, with overlap
coe�cient 1 indicating that A ⊆ B or B ⊆ A and 0 indicating A ∩ B = ∅.
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(a) fastfollowerz (b) intertwitter (c) devumi (d) twitterboost

(e) plusfollower (f) newfollow (g) hitfollow (h) bigfolo

Figure 10.2: Premium fraudsters (top) form overlapping stars whereas freemium ones

(bottom) form dense, near-cliques. Subplots show per-service egonets with honeypots in
dark-red – darker color and larger size indicates higher in-degree.

Multiple systems estimation: We use MSE to estimate population size from two randomly
sampled sets A and B as

|A| · |B|
|A ∩ B|

Intuitively, if A and B have low overlap, the total population size is much larger than if they
have high overlap.

Upon shifting our discussion to account attributes distributions, we use entropy as a means to
capture distributional skew.

Entropy: We de�ne entropy for a distribution X with n outcomes (x1 . . . xn) as

−
n∑
i=1

P (xi) · log2 P (xi)

Entropy measures the unpredictability of a distribution in bits of information, with entropy of 0
bits indicating concentration of 100% probability on a single outcome, and entropy of log2 n bits
indicating uniform distribution of probability between n outcomes.
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10.3.2 Network Observations

We �rst focus on studying the local network properties of fraudulent accounts. Targeting oddities
in network connectivity is a central theme in many link fraud detection approaches, as the
mission constraints of delivering fake links to customers necessarily a�ects graph structure. But
what are these changes? In this section, we leverage social network analysis tools to characterize
e�ects of fraud on the surrounding network structure, and show the similarities and di�erences
between premium and freemium fraud. We detail analyses on two types of induced subgraphs:
the ego network and more expansive boomerang network.

10.3.2.1 Ego Network Patterns

Figure 10.2 shows the per-service egonets for each of the 8 providers, with increased node size
and darkness corresponding to higher in-degree. The honeypots (egos) are the two large and dark
orange colored nodes in each sub�gure. Cursory analysis reveals a notable di�erence in egonet
network structure between freemium and premium providers. We see that the premium egonets
(�rst row) have a star/bipartite structure: each honeypot node is the hub of a star, and the satellite
nodes overlap and are disconnected. Conversely, freemium egonets have denser, near-clique
type structure which suggests denser connectivity between the neighboring nodes.

The statistics for premium service egonets in Table 10.2 (top) further lend credence to the visual
di�erences we observe from Figure 10.2, giving us the following insight:

Observation 10.2: Egonet Sparsity

Premium fake followers rarely follow each other, resulting in sparse egonet structure.
Freemium fake followers have dense egonet structure.

This is substantiated by the low density and node to edge ratios across premium providers.
Of these, fastfollowerz and intertwitter have an order of magnitude greater density than
devumi and twitterboost. This is substantiated by the 1:2 node to edge ratio in the former
2 providers as compared to the near 1:1 ratios of the latter 2. fastfollowerz and intertwitter
also have marginally higher transitivity values compared to the 0 transitivity of devumi and
twitterboost, indicating that the former 2 have few triangles between the fake follower nodes
whereas the latter 2 have none. We also observe no reciprocal links in these providers, indicating
only one-way relationships.

Conversely, the freemium statistics in Table 10.2 (bottom) support that freemium fake followers
have dense egonet structures. Freemium providers are an order of magnitude denser than the
densest premium egonets – all 4 providers have 6-7% density. While not shown in interest
of space, the per-honeypot egonets were each found to have an even higher 11-14% density
individually. The 1:50 node to edge ratios substantiate this high density. We also notice that
transitivity values are much higher for freemium providers, suggesting that an unusually high
28-30% of wedges are also triangles. Given that density and transitivity are equal in random
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Service # Nodes # Edges Density Transitivity Reciprocity

Pr
em

iu
m fastfollowerz 1,066 2,289 .002 .001 .000

intertwitter 1,051 2,003 .002 .00006 .000
devumi 2,681 2,712 .0003 .000 .000
twitterboost 2,680 2,711 .0004 .000 .000

Fr
ee

m
iu

m plusfollower 920 51,868 .061 .288 .411
newfollow 755 37,052 .065 .294 .408
hitfollow 782 41,879 .068 .305 .416
bigfolo 749 36,043 .064 .294 .413

Table 10.2: Egonet summary statistics.

graphs, the freemium egonets do not appear to be random, but are likely composed of dense
subregions which are themselves sparsely connected. The link structure re�ects how freemium
providers trade follows between accounts (random partitions, biased selection, account similarity,
etc.) Furthermore, all 4 providers have similar, high reciprocity of 40-42% suggesting frequent
“follow-back” behavior.

Rationale: The freemium services accumulates a pool of free accounts, and hence trading
follows enables each free user to gain some followers. As a result, such behavior creates a denser
subgraph, but are also used by providers to deliver the follower demands of paid customers and
turn a pro�t. Comparatively, premium providers are unable to use free users’ accounts and must
create fake accounts.

These insights pose an interesting question: as we expect fraudsters to act in a manner that
maximizes pro�t, what motivates the di�erences in structure between freemium and premium
providers? We propose an answer: If we consider that each account has a budget of edges it can
create without being suspended, it seems that premium providers greatly underutilize accounts
compared to freemium ones. This is because for fraudsters, delivering more links while avoiding
suspension is strictly better as it means that they can either serve more customers or arti�cially
in�ate their own popularity.

10.3.2.2 Boomerang Network Patterns

Figure 10.3 shows 2 boomerang networks, one for bigfolo and twitterboost, each representative
of a di�erent fraud strategy. Again, honeypot accounts are amongst the large, dark nodes with
high in-degree, and the lighter, smaller nodes are fake followers or their friends. Note that
the layout clusters nodes based on similar linkage, so groups of nodes visually close share
connectivity properties. As with egonets, we again see a stark contrast in the boomerang
structure of these two providers. Figure 10.3a shows the dense internal connectivity of bigfolo’s
fake followers (as we saw in Figure 10.2h), in conjunction with the sparser and less compact
external connectivity to friends. Conversely, Figure 10.2d shows sparse internal connectivity
between twitterboost’s fake followers on the left, but dense near-bipartite external connectivity
to the customers (including honeypots) on the right.
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Service # Nodes # Edges Bip. Density

Pr
em

iu
m fastfollowerz 40,486 491,458 .012

intertwitter 176,921 2,383,251 .013
devumi 67,893 2,495,586 .014
twitterboost 68,297 2,474,759 .014

Fr
ee

m
iu

m plusfollower 646,901 1,352,253 .002
newfollow 616,824 1,221,574 .003
hitfollow 558,100 1,172,248 .003
bigfolo 574,823 1,157,672 .003

Table 10.3: Boomerang network summary statistics.

Table 10.3 (top) gives summary statistics about premium boomerang networks, which substanti-
ate the following:

Observation 10.3: Boomerang Density

Premium fake followers are frequently reused to follow customers, resulting in dense
external connectivity in the boomerang network. Freemium fake followers are less reused
to follow customers, and hence have sparse external connectivity.

Interestingly, we see that the relative values of these statistics are inverted for the boomerang
networks from the egonets – unlike for egonets where the density metric was an order of
magnitude higher for freemium providers, the bipartite density in boomerang networks is
instead an order of magnitude higher for the premium providers.Note that the premium providers’
bipartite density indicates that nearly 1-2% (a huge amount) of all possible edges between the fake
followers and their combined set of friends exists. The node to edge ratios are also much higher
for premium providers – fastfollowerz and intertwitter are 1:14, and devumi and twitterboost
are roughly 1:37 compared to only 1:2 for the freemium providers.

The freemium boomerang network statistics in Table 10.3 (bottom) again establishes the second
part of the insight. This is further substantiated by the observation that freemium providers
have an order of magnitude lower bipartite density than premium ones. We also observe that
freemium boomerang networks have higher number of nodes than the premium counterpart.
This is intuitive as freemium followers are otherwise genuine accounts, they have an expansive
set of true friends, whereas premium fake followers are all synthetic accounts.

10.3.2.3 Network Overlap Patterns

In our analysis thus far, we noticed that various providers have di�erent levels of evident overlap
in the fake followers they deliver between their 2 honeypots. How extensive is this overlap? Do
these providers reuse accounts in the same ways? Furthermore, is there any overlap between
the followers across providers? Here, we shed light on these questions.
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(a) bigfolo (fre.) (b) twitterboost (pre.)

Figure 10.3: Freemium followers have dense internal and sparse external connectivity

(left), and vice versa for premium followers (right). Subplots show boomerang networks,
with darker node color and larger size indicating higher in-degree.

Service # Nodes Overlap Est. Pool # Nodes

Pr
em

iu
m fastfollowerz 1,064 .996 1,064

intertwitter 1,049 .953 1,051
devumi 2,679 .024 55,719
twitterboost 26,78 .024 55,677

Fr
ee

m
iu

m plusfollower 918 .815 954
newfollow 753 .765 798
hitfollow 780 .802 814
bigfolo 747 .774 791

Table 10.4: Fraud providers have varying account reuse habits.

Intra-Network Patterns First, we study intra-network overlap, describing overlap between
the fake follower nodes within each service. Table 10.4 shows the overlap coe�cients between
the honeypot followers for each service. Assuming the followers for each honeypot are randomly
sampled from the service’s account pool, we additionally compute the estimated total number
of fake accounts currently in the fraud provider’s hands using MSE.

The various degrees of overlap and commensurate estimates of pool size suggest the following
insight:
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Observation 10.4: Varying Delivery Structure

Service providers have varying methods for account reuse in e�orts to to distribute suspicion
across their account pools.

We observe that the freemium providers tend to have a high, 0.8 overlap which results in an
estimated pool size slightly larger than either of the two sets of honeypot followers. However, the
premium providers have an interesting split which reveals that fastfollowerz and intertwitter
have very high, near 1.0 overlap, resulting in the pool size being roughly equal to each set
of followers. This indicates that the pool is reused almost exactly for multiple customers.
Conversely, devumi and twitterboost have near 0 overlap. As a result, we estimate that the
pool size is quite large, containing over 55K total fake accounts.

While we cannot be certain without further investigation, these providers likely have di�erent
means of selecting and shifting the pool of active fake followers. For example, the pools used
in fastfollowerz and intertwitter may cycle between a number of di�erent “sub-pools” based
on time, customer account features, or random choice. Conversely, the evidently much larger
estimated pool size for devumi and twitterboost suggests that they may each have a single, large
�xed pool of usable accounts from which followers are sampled regardless of other factors.

Inter-Network Patterns Thus far, we have established that providers reuse multiple follower
accounts across customers in order to turn a better pro�t. But how far does this reuse go?
Are any accounts responsible for delivering fake links to customers from di�erent providers?
To answer these questions, we study the pairwise inter-network overlap of followers between
providers.

Table 10.5 shows an 8× 8 matrix with the pairwise overlap coe�cients. Given the number of
nonzero entries, we draw the following surprising insight:

Observation 10.5: Collusion

Service providers seem to collaborate with and draw from each other to commit fraudulent
actions.

We notice that there is substantial overlap within the freemium and premium providers. While
fastfollowerz and intertwitter share no accounts with the other premium providers, devumi
and twitterboost have a .07 overlap. Comparatively, all 4 freemium providers have a large
0.6-0.7 overlap, indicating that most of their fake accounts are the same. Furthermore, the set of
followers for freemium and premium providers have 0 overlap, substantiating that followers
in freemium providers are otherwise real accounts whereas those in premium providers are
synthetic.
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Pr
em

iu
m fastfollowerz 1.0 0 0 0 0 0 0 0

intertwitter 0 1.0 0 0 0 0 0 0
devumi 0 0 1.0 .07 0 0 0 0
twitterboost 0 0 .07 1.0 0 0 0 0

Fr
ee

m
iu

m plusfollower 0 0 0 0 1.0 .65 .69 .64
newfollow 0 0 0 0 .65 1.0 .64 .63
hitfollow 0 0 0 0 .69 .64 1.0 .63
bigfolo 0 0 0 0 .64 .64 .63 1.0

Table 10.5: Fraud providers share follower accounts.

Nonzero overlap between providers is an interesting �nding – it is indicative of either a willing-
ness to share follower accounts between fraud providers, or commonality in leaked or hijacked
accounts. Upon further inspection, we notice a number of suggestive �ndings:

• Overlapping providers shared domain WHOIS protectors.
• Overlapping premium providers use the same Yoast SEO plugin and stylesheets.
• All freemium providers have two-column sites, advertised up to 30K followers, and priced

from £9.99.
• All freemium providers contained the line: “[service] is Not A�liated With OR Endorsed By
Twitter.com.”

10.3.3 Attribute Observations

In this section, we study the similarities and di�erences in account attributes of fake followers.
Table 10.6 shows per-service, per-attribute entropy in bits for a variety of user attributes. The
account attributes include creation year, default pro�le and pro�le image booleans, favorites
count, followers count, friends count, lists count, statuses count, geolocation enabled boolean,
language identi�er, protected statuses boolean, UTC timezone, and a Twitter veri�cation boolean
which corresponds to high-pro�le, “famous” accounts. These attributes have varying outcome
spaces. Creation date has 11 possible years (2006-2016), since Twitter was founded in 2006.
Booleans have 2 possible outcomes (T,F). We encountered 35 di�erent language identi�ers and
39 UTC timezone settings. For count features, we logarithmically discretized the space into 32
bins from 1 to 1M to capture the wide range of activity levels. For each service, we aggregate
attribute values and compute the entropy over the outcomes. The table shows the actual sample
entropy in addition to the maximum possible (uniform) entropy. As previously mentioned, lower
entropy indicates high synchronicity between followers. Note that a di�erence in entropy of 1
bit corresponds to twice the predictability.

The most striking insight from Table 10.6 is as follows:
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Pr
em

iu
m fastfollowerz 1.37 .63 .01 3.65 2.73 2.73 2.99 3.8 .00 .06 .00 1.04 .00

intertwitter 2.99 .82 .94 4.04 3.54 2.63 2.53 4.31 .67 2.55 .56 1.97 .18
devumi 1.13 .97 .02 1.05 1.54 1.17 2.49 1.18 .00 .00 .00 1.42 .00
twitterboost 1.13 .97 .03 1.05 1.56 1.16 2.51 1.15 .00 .00 .00 1.41 .00

Fr
ee

m
iu

m plusfollower 1.82 .93 .73 4.18 3.76 3.38 2.73 4.40 .54 2.04 .30 1.70 .00
newfollow 1.68 .90 .75 4.20 3.70 3.32 2.64 4.37 .55 1.99 .28 1.62 .00
hitfollow 1.78 .93 .73 4.14 3.76 3.32 2.72 4.37 .52 2.01 .30 1.70 .00
bigfolo 1.88 .92 .75 4.20 3.74 3.34 2.72 4.40 .56 2.05 .32 1.71 .00

Max Entropy: 3.46 1.00 1.00 5.00 5.00 5.00 5.00 5.00 1.00 5.13 1.00 5.29 1.00

Table 10.6: Per-service entropy (in bits) over account attribute distributions.

Observation 10.6: Entropy Gap

Premium service providers deliver followers with low entropy, high regularity attributes,
whereas freemium service providers have more attribute disparity.

We notice that the premium providers have substantially lower entropy values in many attributes
versus freemium providers, and even near 0 entropy in other attributes like geolocation. We
elaborate on the speci�c di�erences next.

10.3.3.1 Account Creation

devumi, twitterboost and fastfollowerz have very low creation year entropy compared to
freemium providers. While both freemium and premium accounts tend to be created more
recently (perhaps because of higher suspension rate in older accounts), premium providers have
a heavy bias towards recently created accounts (>2014).

10.3.3.2 Pro�le Defaults

fastfollowerz has a much lower entropy than other providers in terms of default pro�le – we
found that >84% of these accounts did not have a default pro�le, whereas default pro�les are
actually more common than not in freemium accounts. Surprisingly, fastfollowerz, devumi and
twitterboost also have near 0 entropy for pro�le image compared to the much higher entropy
for freemium providers. We �nd that premium followers almost always set a custom image,
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suggesting that the information was fabricated or stolen from real users. Conversely, default
pro�le images are common for freemium service accounts – this is intuitive, most real users do
not fully customize their pro�les.

10.3.3.3 Action Counts

devumi and twitterboost have much lower entropy for action counts (favorites, followers,
friends, lists and statuses) compared to freemium providers. fastfollowerz also exhibits lower
entropy. As Figure 10.1d shows, there is even more variation between premium providers.
Figure 10.1d shows that intertwitter (P1 “smart”) follower counts are disparate and closer to
genuine users’ entropy, unlike other premium fraudsters (P2 “naïve”) who behave robotically.
Comparatively, freemium followers have lower follower count entropy compared to genuine ones,
which is intuitive as while the freemium follows are real accounts, their follower counts are not
independent from each other due to the follows traded between themselves. Figure 10.4 shows the
rank-frequency plots for follower counts for various follower types. The plots substantiate our
observations on entropy, and also show that di�erent user types exhibit di�erences with regards
to power-law �t, which is expected for skewed distributions on social networks. While entropy
values in this paper are computed empirically using the samples from Table 10.2, accounts on
real networks have varying follower counts, leading to di�erent entropy estimates even when
drawn from the same distribution. Fortunately, we can intimately relate sample size and entropy
of a power-law distribution in a closed form using the Euler-Maclaurin formula as below:

Lemma 10.1: Power-Law Entropy

The entropy H of a size |V | sample from a PL distribution P (r) = C · r−a is given by:

H ≈ −C · log2(C) · (|V |1−α − 1)

1− α
+
α · C · (−|V |1−α · ((α− 1) · ln(|V |) + 1) + 1)

(α− 1)2 · ln(2)

Proof.

H = −
|V |∑
r=1

Cr−α · log2C · r−α

≈ −
∫ V

1

C · r−α · log2Cdr + α · C
∫ V

1

r−α · log2 rdr

≈ −C · log2C · r1−α

1− α

∣∣∣V
1

+ α · C
(
−r1−α ((α− 1) · ln(r) + 1)

(α− 1)2 · ln(2)

∣∣∣V
1

)
≈ −C · log2(C) · (|V |1−α − 1)

1− α
+

α · C · (−|V |1−α · ((α− 1) · ln(|V |) + 1) + 1)

(α− 1)2
�

where C = 1/H|V |,α (inverse of the V th harmonic number of order α).
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This estimate enables us to gauge how close varying-sized samples are to the original power-law.
This is especially useful for practitioners aiming to gauge what the entropy of an account’s
followers’ attributes theoretically should be according to the number of followers assuming a
given power-law �t, versus the empirical estimate. If these are not close, one can deduce that
the account’s followers do not obey the expected power-law �t and therefore may be suspicious.
This procedure is computationally more e�cient and likely more accurate than �tting a separate
power-law for each of the attributes across followers of each account.

We noticed similar patterns in entropy for status and favorite counts as well. The lower entropy
of action counts characteristic of premium providers stems from the variety of options premium
providers have for Twitter engagement – in addition to fake followers, the premium providers
also o�er fake retweets and favorites services. Thus, premium providers are incentivized to
reuse accounts for multiple types of fraud, and when done naïvely result in high synchrony in
“serviceable” attributes.

10.3.3.4 User Settings

fastfollowerz, devumi and twitterboost all have near 0 geolocation, language, and tweet
protection entropy. Of these, all devumi and twitterboost accounts use the US English language
setting, have geolocation disabled and do not protect tweets. fastfollowerz has a slightly higher
language entropy of .06, but we found that all fastfollowerz accounts were either using US or
GB English, suggesting a heavy premium bias for English accounts. We also found that premium
followers almost entirely have USA timezones. “Smart” intertwitter followers’ high language
entropy from Figure 10.1d suggests an aim to better camou�age user attributes compard to
the “naïve” providers. Given that intertwitter also has some veri�ed accounts, we hypothesize
that the accounts may be hijacked ones. This is in contrast with freemium providers, which
have much higher frequency of enabled geolocation, variance in language and protected tweets.
Figure 10.1d also shows that freemium followers tend to appear similar to genuine ones as
they are otherwise real user accounts. However, we �nd that freemium followers have higher
language entropy than genuine ones, as freemium followers are spread over many languages
whereas genuine followers tend to disproportionately speak their followee’s language (i.e. if a
user speaks Spanish, most of his followers speak Spanish).

Furthermore, all 4 freemium providers and twitterboost/devumi have extremely similar at-
tribute entropy over their fake followers respectively, further substantiating Insight 10.5.

In addition to the attributes reported in Table 10.6, we also studied the 160-character user
description �eld. The description �eld essentially contains the high-level summary of what the
user aims to appear as to other Twitter users, and is thus interesting to analyze. We ask: what, if
any, are the di�erences between freemium and premium follower descriptions?

Figure 10.5 shows two wordclouds, aggregated over description text across all premium and
freemium followers respectively. Font size corresponds to relative frequency in the text. For
clarity, we remove common stopwords. We arrive at the following insight:
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(a) Gen. follow count (b) Fre. follow count

(c) P1 (“smart”) follow count (d) P2 (“naïve”) follow count

Figure 10.4: Rank-frequency plots reveal di�erent patterns in follower counts of var-

ious follower types. Note that genuine follower counts in (a) re�ect traditional power-law
behavior with a common exponent (∼ 1.2) and are linear in log-log scale. Freemium counts in (b)
�t similarly, despite with a slightly lower exponent (∼ 1.15). Comparatively, “smart” premium
counts in (c) �t a power law but with much higher exponents (∼ 1.66). Interestingly, we �nd
that “naïve” premium followers do �t a power law, but have unnaturally low exponents (∼ .148)
due to their low entropy and highly concentrated, robotic behavior.

Observation 10.7: Clout vs. About

Freemium followers tend to have descriptions focusing on social media clout, whereas
premium followers tend to talk about themselves.

Figure 10.5a (premium), has words like “musician,” “lover,” “writer” and “sports”, corresponding to
descriptive personal details – these are likely copied from genuine users. Conversely, Figure 10.5b
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(a) Premium (b) Freemium

Figure 10.5: Freemium followers have social media (Facebook, Instagram, Snapchat) fo-

cused descriptions (right), whereas premium followers have wordy descriptions (left).

(freemium) has terms like “snapchat,” “youtube,” and “instagram”, as these users try to increase
clout by advertising their other, real social media pages, i.e., “follow me on snapchat.”

Figure 10.6: Leveraging all features together gives the best detection performance.

10.4 AssessingDiscriminative Power of Entropy Features

Thus far, we have highlighted a number of distributional di�erences between fraudulent and
genuine users. Can we leverage these di�erences to discriminate user behaviors? In this
section, we evaluate a number of attribute features on their discriminative power in a supervised
setting.
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We classi�ed the engineered entropy features from Table 10.6 into the following groups based
on feature type:

• Connection: # Followers, # Friends
• Activity: # Statuses, # Lists, # Favorites
• Pro�le: Default Pro�le (and Image), Veri�ed, Created
• Geography: Language, UTC
• All: the union of all above features

Note that while we nominally refer to these features as above, they refer to the entropy of the
feature over account followers, rather than raw values of the account itself.

We evaluate these features using binary classi�cation (genuine vs. fraudulent) as is traditionally
done in practice. We use a Support Vector Machine (SVM) with radial basis function (RBF) kernel
and 10-fold cross validation as the classi�er of choice, but any out-of-box classi�cation method
could be used. Our carefully assembled ground-truth dataset consists of 307 fraudulent users and
200 genuine users, whose features are computed over their followers. The fraudulent accounts
are a combination of premium and freemium honeypots as well as accounts whose pro�les have
been listed on freemium providers’ websites as users of the service. We de�ne our fraudulent set
over this multitude of account types with various properties in order to demonstrate generality.
The genuine accounts belong to well-known academics in machine learning and data mining.
We avoid using randomly sampled Twitter users, as previous works have shown a non-trivial
amount of fake accounts on Twitter which may excessively corrupt our ground-truth genuine
set. In practice, getting additional ground-truth labels is a very costly endeavor and requires
careful manual inspection for each individual case.

Figure 10.6 shows the relative performance of our feature groups in terms of overall precision
and recall. We notice that Connection features perform comparatively poorly, Pro�le and Activity
features perform better, Geography performs even better, and the combination All performs
near-ideal with .98 precision and .95 recall (much higher recall than supervised approaches
which use raw account features for Twitter spam classi�cation [MC11]). Thus, we conclude that
our proposed entropy features are highly reliable in discerning genuine from fraudulent users.
The added bene�t of using the entropy-based features is that it is much harder to control for
from the fraudster’s perspective – this is because while the fraudster has signi�cant control over
his own account’s properties, he has limited ability to in�uence who follows him.

10.5 Discussion

The analysis in this work has a number of important implications on fraud detection in practice.
We detail these below.

Multimodal Detection: Using individual signatures to �nd one type of fraud tends to be at
the expense of �nding other types. For example, clique detection primarily focuses on freemium
fraud, whereas bipartite core detection focuses on premium fraud. Using complementary
methods is a promising strategy.
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Importance of Time: Varying account reuse policies makes temporal granularity an important
consideration in graph-based fraud detection. While analysis on a low granularity graph can
reveal dense fraudulent structure in frequent reuse regimes, it may never do so for low reuse
regimes. Higher granularity can be useful in these cases.

Deceptive Account Attributes: Using individual account attributes to label fraudsters is of
limited use. Our work suggests that most freemium fraudsters are actually real users with real
pro�le attributes – they may be resistant to such detection schemes. Conversely, leveraging an
account’s follower’s attributes shows promise in bridging this gap.

Total vs. Partial Fraud: Di�erent types of fraud may call for di�erent penalties. While the
implication “has one fake link→ has all fake links” seems true for premium fraudsters, it is not
for freemium ones. Removing fake links vs. suspending fake accounts is a promising way to
penalize such fraudsters and minimize false positives.

The need for multimodal anti-fraud mechanisms suggests a shift in the detection paradigm from
drawing a two-class boundary between genuine and “one-hat-�ts-all” fraudulent users, to a
more complex multiclass boundary between genuine, premium fraudulent, freemium fraudulent,
and other fraud types which may be discovered in the future.

10.6 Conclusion

In this work, we aimed to study the nature of modern link fraud regimes. To this end, we
setup honeypot accounts on Twitter, purchased fake followers for them from a variety of
fraud-providing services, and carefully instrumented a data scraping process to capture their
behaviors. Speci�cally, we studied the local network connectivity of fake followers via the
egonet and proposed boomerang networks, as well as attribute distributions over pro�le features
and account actions. Our analyses showed that there are multiple types of link fraud (we discover
at least two: freemium and premium) with varying behaviors regarding internal and external
network connectivity, disparity in attribute homogeneity across followers, and di�erences in
descriptive word-usage in Twitter bios. Furthermore, we found fascinating evidence that service
providers have varying types of account-reuse policies and seem to collude with each other on a
number of fronts. Furthermore, we proposed the use of �rst-order entropy features taken across
account followers’ attributes to discern fraudulent from genuine accounts, and showed that
these features were able to attain near-perfect F1 score on our ground-truth dataset. Holistically,
our work o�ers several implications for practical fraud detection including multimodality of
fraud behaviors, the importance of temporally sensitive algorithms, usefulness of follower
rather than raw account features, and disadvantages of account-based versus link-based fraud
targeting.
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Chapter 11

Conclusions

In this thesis, we have taken a graph-based approach to anomaly detection in large online
social networks. The constituent works target both algorithmic and application-driven problems
encountered in practical scenarios. Together, these works advance the state of anomaly detection
by building models for, and identifying outliers in interconnectivity patterns, temporal behavior
and rich, attributed information. Below, we recapitulate the contributions and impacts of this
body of work.

11.1 Contributions

11.1.1 Plain Graphs

In Part I, we focus on discerning abnormal behaviors in node interconnectivity and graph
structure.

• Detecting Stealthy Link-fraud Attacks: Chapter 3 outlines the theoretical limits of
traditional factorization-based link-fraud detection methods, and introduces fBox, a com-
plementary algorithm which detects fraudsters that prior work cannot. We demonstrate
e�ectiveness on Twitter, where fBox identi�es hundreds of thousands of suspicious users.

• Cross-Graph Blame Attribution: Chapter 4 proposes DeltaCon-Attr, a scalable and
e�ective method for pinpointing the culprits responsible for change in connectivity be-
tween two snapshots of a graph with known node correspondence. DeltaCon-Attr
obeys principles aligning with human intuition and �nds qualitatively interesting �ndings
on the ENRON e-mail network.

• Improved Summarization for Large Graphs: Chapter 5 improves upon the prior state-
of-the-art with ConDeNSe, a graph summarization approach which generates more
compact and interpretable summaries which have only 10% as many structures as other
methods and up to 50% better compression rate.
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11.1.2 Dynamic Graphs

In Part II, we further leverage information about time and temporal habits of users to identify
anomalous behavior in individuals and groups.

• Interpretable Dynamic Graph Summarization: Chapter 6 builds upon similar princi-
ples as in Chapter 5, and proposes TimeCrunch, the �rst general dynamic graph sum-
marization approach capable of �nding and labeling a variety of temporal structures. We
demonstrate TimeCrunch’s e�ectiveness in pattern extraction on 5 real-world dynamic
graphs.

• Modeling Interarrival Times inWeb Searches: Chapter 7 shows that Poisson assump-
tions for query times hardly hold in real-world data – in fact, user interarrival times
(IATs) are bimodal. The chapter proposes the Camel-Log distribution which better models
IATs of 78% of users over the next competitor in a large AOL dataset, and the associated
Meta-Click model which is used to �nd search bots and spammers.

• Catching Fake Views in Livestreaming Platforms: Chapter 8 is the �rst to character-
ize the problem of fake viewership in livestreaming platforms in literature, and proposes
the FLOCK algorithm for combating fake views. We show that FLOCK achieves 98%
precision in detecting astroturfed broadcasts and over 90% precision and recall in detecting
fake views.

11.1.3 Rich Graphs

In Part III, we expand our focus to incorporating rich, attributed information and identifying
abnormality in multiple feature spaces.

• Ranking Anomalies in Edge-Attributed Graphs: Chapter 9 derives an information
theoretically grounded ranking function for the abnormality of nodes based on their
adjacent edge attributes, and proposes the EdgeCentric algorithm to compute it. Edge-
Centric attains 87% precision over top-ranked users on Flipkart data.

• Characterizing the Multimodality of Link Fraud: Chapter 10 discovers and discusses
the multifaceted nature of link fraud on Twitter via honeypots, and proposes entropy
features based on follower attributes to discriminate fraudsters from real users.

11.2 Impact

In addition to the above contributions, the work in this thesis o�ers notable impact on the
academic, industrial and code-release fronts which we highlight below.

11.2.1 Academic Impact

• fBox (Chapter 3) was included in the Multimedia Databases and Data Mining (15-826)
course at Carnegie Mellon University and at a KDD 2015 tutorial on Graph-Based User
Behavior Modeling.

• TimeCrunch (Chapter 6) was invited to appear in the 2017 Data Engineering Bulletin on
Graph Systems.
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• TimeCrunch (Chapter 6) was included in the Mining Large-Scale Graph Data (EECS 598)
course at the University of Michigan and the Topics in Data Mining (CS69000-DM1) course
at Purdue University. Furthermore, TimeCrunch was featured in the 2016 Carnegie Mellon
University CyLab Partners Conference, the 2017 Army Research Lab Network Science
panel and an SDM 2017 tutorial on Summarizing Large-Scale Graph Data: Algorithms,
Applications and Open Challenges.

11.2.2 Industrial Impact

• FLOCK (Chapter 8) is used in production at Twitch.tv to combat view astrotur�ng.
• M3A (Chapter 7) is used in production at Google to identify search spammers and abnormal

search behaviors.
• EdgeCentric (Chapter 9) is used in production at Flipkart to identify ratings fraud.

11.2.3 Code-release Impact

• fBox (Chapter 3) has been open-sourced, and downloaded 24 times since March 2017.
• TimeCrunch (Chapter 6) has been open-sourced, and downloaded 28 times since March

2017.
• EdgeCentric (Chapter 9) has been open-sourced, and downloaded 24 times since March

2017.
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Chapter 12

Future Directions

Despite the breadth of work discussed in this thesis, future avenues for anomaly detection are
plentiful. Even in the simplest cases, successful anomaly detection requires a sound understand-
ing of relevant data generating processes, concise and accurate models that re�ect them, and
�rm de�nitions about what constitutes anomalous behavior. In the most di�cult scenarios,
anomaly detection is an adversarial, cat-and-mouse game which requires continuous work in
thwarting increasingly intelligent and sophisticated adversaries who will continue behaving
maliciously as long as it remains pro�table. There are a number of future directions upon which
this thesis has touched upon, but not yet fully developed. The breadth of directions is itself
staggering in scope, and requires considerable attention. Below, we outline several key areas
which would greatly bene�t from further work.

12.1 Adversarial Fraud Detection

In recent years, many works have been proposed for detecting and combating various types
of fraudulent behaviors. However, given that comparing and contrasting these works and
reproducing their results is challenged by the use of di�erent datasets, limited ground truth,
privacy concerns, di�erent data sources leveraged and more, how the spectrum of works
complement each other, succeed and fail is poorly understood. Adversarial thinking in the
spirit of “what could an adversary do?” can guide us towards answers to these questions, and
more: What is the best detection method to use in each scenario, and to what extent should we
employ di�erent policies for di�erent types of fraud? Can we engineer attacks that existing
methods will not be able to catch, and if so, how can we adapt our algorithms to catch those
attacks? How should we set parameters in our algorithms to be sensitive and aware of real-
world resource constraints and interests? Answering the �rst two questions o�ers promise
in autonomously building better detection algorithms, and maintaining a lead on adversaries.
The third question is crucial in pushing fraud detection to its utmost potential in industrial
practice – we must be aware that the decisions of our algorithms motivate real-world actions,
and these actions translate to pro�ts and losses. Carefully tailoring fraud detection algorithms
to be aware of this information can guide us to better choices for algorithmic parameters, more

203



advantageous precision/recall tradeo�s for �ltering suspicious users while still being amenable
to business growth, and generally improved business viability.

12.2 Complex Behavioral Signals

Given the intimate relationship between modeling normal behavior and detecting anomalous
behavior, we must strive towards understanding more sophisticated signals which are harder to
spoof from the fraudster perspective. The more complex signals we model and look to for judging
normalcy, the harder fraudsters have to work to satisfactorily simulate the relevant, “normal”
data generating process. In recent years, recommendation systems has worked to incorporate
implicit feedback from users such as time spent on pages, scrolling behavior, lingering of
mouse movement and more [OK+98]. Analagously, incorporating implicit user behavior for
anomaly detection also has exciting prospects. [MR00, KM09] have already shown that keystroke
dynamics, or users’ timing habits in entering their passwords, is a strong signal for the veracity
of authentication attempts. Similar implicit signals such as device canvas �ngerprinting [MS12],
mobile movement and accelerometer readings, and typographical error habits are all complex
and interesting behavioral signals to aim to understand. Emulating such complex signals in
order to dupe detection algorithms incurs further cost on fraudsters, making their actions less
and less pro�table.

12.3 Feature Selection and Extraction

As with most machine learning tasks, performance is fundamentally only as good as the quality
of the features used. With ever-growing amounts and types of behavioral data collected, anomaly
detection too faces the curse of dimensionality. Anomalies in d-dimensional data could manifest
in any of the 2d − 1 subspaces. Which features are the most useful for anomaly detection?
How can we automatically �nd these in an e�cient way? Exact solutions are combinatori-
ally exhaustive, but �nding good-enough approximate solutions and heuristics to guide our
algorithms into the correct subspaces is essential. Dimensionality reduction techniques o�er
promise in this space, and works such as [PSS+10] have shown that reduced representations
can lend well to anomaly detection purposes. In recent years, deep learning methods such
as autoencoders have gained particular popularity for generating compact, low-dimensional
representations of a variety of data sources (text, graphs, etc.) useful for clustering and similarity
tasks [PARS14, GL14]. Such tools o�er promise for anomaly detection usecases.

12.4 Heterogeneous and Higher-Order Dependency Net-

works

Traditional network science and graph research has focused on homogeneous networks with
uniformly represented nodes and edges. Conversely, heterogeneous information networks o�er
the capacity to represent rich, multi-typed node and edge interactions such as citation networks
(interactions between papers, authors, venues, institutions, etc.) or e-commerce networks
(interactions between users, products, sellers, etc.) with varying relation types (paper-cites-paper,
author-writes-paper, user-rates-product, seller-sells-product, etc.) Previous work on heterogeneous
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information networks has demonstrated the use of meta-paths between nodes of di�erent types
for similarity computation [SHY+11], classi�cation [KYDW12], recommendation [LYGS14] and
more. Heterogeneous representations and meta-path logic also o�ers attractive avenues for
detecting complex, anomalous interactions between multiple node types.

Traditional networks also make �rst-order dependency assumptions in which complex interac-
tions which might latently involve several nodes are distilled into pairwise edges in the graph.
For example, if Alice sends an e-mail to Bob, who sends that e-mail to Charlie, this information is
represented in a traditional network with an edge from Alice to Bob, and Bob to Charlie, missing
the higher-order dependency structure present in the underlying interactions. Higher-order
networks create conditional versions of each node to account for nth-order dependency structure,
and preserve greater information for subsequent analysis. This more accurate representation of
underlying interactions lends well to interpretable and more accurate anomaly detection.

12.5 Extensions to Additional Domains

Anomaly detection has broad applications beyond social networks and online graph data. For
example, in the education and massive online open courses (MOOC) domain, can we infer when
and why a student is struggling, and how he or she can be helped? In healthcare informatics, can
we automatically discern fraudulent insurance claims, spot incongruent or odd medical histories,
and detect nascent disease outbreaks? In transportation networks, can we automatically detect
anomalous passenger routing and infer accidents or road closures? Leveraging domain-speci�c
knowledge and incorporating relevant information into domain-speci�c anomaly detection
algorithms o�ers promising avenues towards building the best possible solutions for domain
practitioners.
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