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Abstract

Logic is a powerful tool for analyzing and verifying systems, including programs, discrete sys-
tems, real-time systems, hybrid systems, and distributed systems. Some applications also have a
stochastic behavior, however, either because of fundamental properties of nature, uncertain envi-
ronments, or simplifications to overcome complexity. Discrete probabilistic systems have been
studied using logic. But logic has been chronically underdeveloped in the context of stochastic hy-
brid systems, i.e., systems with interacting discrete, continuous, and stochastic dynamics. We aim
at overcoming this deficiency and introduce a dynamic logic for stochastic hybrid systems. Our
results indicate that logic is a promising tool for understanding stochastic hybrid systems and can
help taming some of their complexity. We introduce a compositional model for stochastic hybrid
systems. We prove adaptivity, càdlàg, and Markov time properties, and prove that the semantics
of our logic is measurable. We present compositional proof rules, including rules for stochastic
differential equations, and prove soundness.





1 Introduction
Logic has been used very successfully for verifying several classes of system models, includ-
ing programs [Pra76], discrete systems, real-time systems [Dut95], hybrid systems [Pla10a], dis-
tributed systems, and distributed hybrid systems [Pla10b]. This gives us confidence in the power
of logic. Not all aspects of real systems can be represented faithfully by these models, however.
Some systems are inherently uncertain, either because of fundamental properties of nature, be-
cause they operate in an uncertain environment, or because deterministic models are simply too
complex. Such systems have a stochastic dynamics. Nondeterministic overapproximations may be
too inaccurate for a meaningful analysis, e.g., because a worst-case analysis would let bad envi-
ronment actions happen always, which is very unlikely. Discrete probabilistic systems have been
studied using logic. Yet, complex systems are driven by joint discrete, continuous, and stochastic
dynamics. Logic has been chronically underdeveloped in the context of these stochastic hybrid
systems.

Classical logic is about boolean truth and yes/no answers. That is why it is tricky to use
logic for systems with stochastic effects. Logic has reached out into probabilistic extensions at
least for discrete programs [Koz81, Koz85, FH84] and for first-order logic over a finite domain
[RD06]. Logic has been used for the purpose of specifying system properties in model checking
finite Markov chains [YKNP06] and probabilistic timed automata [KNSW07]. Stochastic hybrid
systems, instead, are a domain where logic and especially proof calculi have so far been more
conspicuous by their absence. Given how successful logic has been elsewhere, we want to change
that.

Stochastic hybrid systems [BL06, CL06, HLS00] are systems with interacting discrete, con-
tinuous, and stochastic dynamics. There is not just one canonical way to add stochastic behavior
to a system model. Stochasticity might be restricted to the discrete dynamics, as in piecewise de-
terministic Markov decision processes, restricted to the continuous and switching behavior as in
switching diffusion processes [GAM97], or allowed in many parts as in so-called General Stochas-
tic Hybrid Systems; see [BL06, CL06] for an overview. Several different forms of combinations
of probabilities with hybrid systems and continuous systems have been considered, both for model
checking [FTE10, KR08, CL06] and for simulation-based validation [MS06, ZPC10].

We develop a very different approach. We consider logic and theorem proving for stochastic
hybrid systems1 to transfer the success that logic has had in other domains. Our approach is
partially inspired by probabilistic PDL [Koz85] and by barrier certificates for continuous dynamics
[PJP07]. We follow the arithmetical view that Kozen identified as suitable for probabilistic logic
[Koz85].

Classical analysis is provably inadequate [KP10] for analyzing even simple continuous stochas-
tic processes. We heavily draw on both stochastic calculus and logic. It is not possible to present
all mathematical background exhaustively here. But we provide basic definitions and intuition and
refer to the literature for details and proofs of the main results of stochastic calculus [KS91, Øks07,
KP10].

1Note that there is a model called Stochastic Hybrid Systems [HLS00]. We do not mean this specific model in the
narrow sense but refer to stochastic hybrid systems as the broader class of systems that share discrete, continuous, and
stochastic dynamics.
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Our most interesting contributions are:

1. We present the new model of stochastic hybrid programs (SHPs) and define a compositional
semantics of SHP executions in terms of stochastic processes.

2. We prove that the semantic processes are adapted, have almost surely càdlàg paths, and that
their natural stopping times are Markov times.

3. We introduce a new logic called stochastic differential dynamic logic (SdL) for specifying
and verifying properties of SHPs.

4. We define a semantics and prove that it is measurable such that probabilities are well-defined
and probabilistic questions become meaningful.

5. We present proof rules for SdL and prove their soundness.

6. We identify the requirements for using Dynkin’s formula for proving properties using the
infinitesimal generator of stochastic differential equations.

SdLmakes the rich semantical complexity and deep theory of stochastic hybrid systems accessible
in a simple syntactic language. This makes the verification of stochastic hybrid systems possible
with elementary syntactic proof principles.

2 Preliminaries: Stochastic Processes
We fix a dimension d ∈ N for the Euclidean state space Rd equipped with its Borel σ-algebra B,
i.e., the σ-algebra generated by all open subsets. A σ-algebra on a set Ω is a nonempty set F ⊆ 2Ω

that is closed under complement and countable union. We axiomatically fix a probability space
(Ω,F , P ) with a σ-algebra F ⊆ 2Ω of events on space Ω and a probability measure P on F (i.e.,
P : F → [0, 1] is countable additive with P ≥ 0, P (Ω) = 1). We assume the probability space has
been completed, i.e., every subset of a null set (i.e., P (A) = 0) is measurable. A property holds
P -almost surely (a.s.) if it holds with probability 1. A filtration is a family (Ft)t≥0 of σ-algebras
that is increasing, i.e., Fs ⊆ Ft for all s < t. Intuitively, Ft are the events that can be discriminated
at time t. We always assume a filtration (Ft)t≥0 that has been completed to include all null sets
and that is right-continuous, i.e., Ft =

⋂
u>tFu for all t. We generally assume the compatibility

condition that F coincides with the σ-algebra F∞ := σ
(⋃

t≥0Ft
)
, i.e., the σ-algebra generated by

all Ft.
For a σ-algebra Σ on a setD and the Borel σ-algebra B on Rd, function f : D → Rd is measur-

able iff f−1(B) ∈ Σ for all B ∈ B (or, equivalently, for all open B ⊆ Rd). An Rd-valued random
variable is an F-measurable function X : Ω→ Rd. All sets and functions definable in first-order
logic over real arithmetic are Borel-measurable. A stochastic process X is a collection {Xt}t∈T
of Rd-valued random variables Xt indexed by some set T for time. That is, X : T × Ω→ Rd is a
function such that for all t ∈ T ,Xt = X(t, ·) : Ω→ Rd is a random variable. ProcessX is adapted
to filtration (Ft)t≥0 ifXt isFt-measurable for each t. That is, the process does not depend on future
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events. We consider only adapted processes (e.g., using the completion of the natural filtration of
a process or the completion of the optional σ-algebra for F [KS91]). A process X is càdlàg iff its
paths t 7→ Xt(ω) (for each ω ∈ Ω) are càdlàg a.s., i.e., right-continuous (lims↘tXs(ω) = Xt(ω))
and left limits (lims↗tXs(ω)) exist.

We further need an e-dimensional Brownian motion W (i.e., W is a stochastic process starting
at 0 that is almost surely continuous and has independent increments that are normally distributed
with mean 0 and variance equal to the time difference). Brownian motion is mathematically ex-
tremely complex. Its paths are almost surely continuous everywhere but differentiable nowhere
and of unbounded variation. Intuitively, W can be understood as the limit of a random walk. We
denote the Euclidean vector norm by |x| and use the Frobenius norm |σ| :=

√∑
i,j σ

2
ij for matrices

σ ∈ Rd×e.

3 Stochastic Differential Equations
We consider stochastic differential equations [Øks07, KP10] to describe stochastic continuous
system dynamics. They are like ordinary differential equations but have an additional diffu-
sion term that varies the state stochastically. Stochastic differential equations are of the form
dXt = b(Xt)dt+ σ(Xt)dWt. We consider Itō stochastic differential equations, whose solutions
are defined by the stochastic Itō integral [Øks07, KP10], which is again a stochastic process. Like
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1

2

Figure 1: Sample paths with
b = 1 (top) and b = 0 (bot-
tom), σ = 1

in an ordinary differential equation, the drift coefficient b(Xt) de-
termines the deterministic part of how Xt changes over time as a
function of its current value. As a function of Xt, the diffusion co-
efficient σ(Xt) determines the stochastic influence by integration
with respect to the Brownian motion process Wt. See Fig. 1 for
two sample paths. Ordinary differential equations are retained for
σ = 0. We focus on the time-homogenous case, where b and σ are
time-independent, because time could be added as an extra state
variable.

Definition 1 (Stochastic differential equation) A stochastic process
X : [0,∞)× Ω→ Rd solves the (Itō) stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (1)

withX0 = Z, ifXt = Z +
∫
b(Xt)dt+

∫
σ(Xt)dWt, where

∫
σ(Xt)dWt is an Itō integral process

[Øks07, KP10].

For simplicity, we always assume b : Rd → Rd and σ : Rd → Rd×e to be measurable and locally
Lipschitz-continuous:

∀N∃C∀x, y : |x|, |y| ≤ N ⇒ |b(x)− b(y)| ≤ C|x− y|, |σ(x)− σ(y)| ≤ C|x− y|

As an integral of an a.s. continuous process, solution X has almost surely continuous paths
[Øks07]. A.s. continuous solution X is pathwise unique [KP10, Ch 4.5]. Process X is a strong
Markov process for each initial value x [Øks07, Theorem 7.2.4].
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4 Stochastic Hybrid Programs
As a system model for stochastic hybrid system, we introduce stochastic hybrid programs (SHPs).
SHPs combine stochastic differential equations for describing the stochastic continuous system
dynamics with program operations to describe the discrete switching, jumps, and discrete stochas-
tic choices. These primitive dynamics can be combined programmatically in flexible ways. All
basic terms in stochastic hybrid programs and stochastic differential dynamic logic are polyno-
mial terms built over real-valued variables and rational constants. Our approach is sound for more
general settings, but first-order real arithmetic is decidable [Tar51].

4.1 Syntax
Stochastic hybrid programs (SHPs) are formed by the following grammar (where xi is a variable,
x a vector of variables, θ a term, b a vector of terms, σ a matrix of terms, H is a quantifier-free
first-order real arithmetic formula, λ, ν ≥ 0 are rational numbers):

α ::= xi := θ | xi := ∗ | ?H | dx = bdt+ σdW &H | λα ⊕ νβ | α; β | α∗

Assignment xi := θ deterministically assigns term θ to variable xi instantaneously. Random as-
signment xi := ∗ randomly updates variable xi, but unlike in classical dynamic logic [Pra76], we
assume a probability distribution for x. As one example for a probability distribution, we consider
uniform distribution in the interval [0,1], but other distributions can be used as long as they are
computationally tractable, e.g., definable in first-order real arithmetic.

Most importantly, dx = bdt+ σdW &H represents a stochastic continuous evolution along a
stochastic differential equation, restricted to the evolution domain region H , i.e., the stochastic
process will not continue when it leaves H . We assume that dx = bdt+ σdW satisfies the as-
sumptions of stochastic differential equations according to Def. 1. In particular, the dimensions of
the vectors x, b, matrix σ, and (vectorial) Brownian motion W fit together and b, σ are globally
Lipschitz-continuous (which is first-order definable for polynomial terms and, thus, decidable by
quantifier elimination [Tar51]).

Test ?H represents a stochastic process that fails (disappears into an absorbing state) if H is
not satisfied yet continues unmodified otherwise. Linear combination λα ⊕ νβ evolves like α in
λ percent of the cases and like β otherwise. We simply assume λ+ ν = 1. Sequential composition
α; β and repetition α∗ work similarly to dynamic logic [Pra76], except that they combine SHPs.

4.2 Stochastic Process Semantics
The semantics of a SHP is the stochastic process that it generates. The semantics [[α]] of a SHP
α consists of a function [[α]] : (Ω→ Rd)→ ([0,∞)× Ω→ Rd) that maps any Rd-valued ran-
dom variable Z describing the initial state to a stochastic process [[α]]Z together with a function
(|α|) : (Ω→ Rd)→ (Ω→ R) that maps any Rd-valued random variable Z describing the initial
state to a stopping time (|α|)Z indicating when to stop [[α]]Z . Often, an F0-measurable random
variable Z or deterministic state is used to describe the initial state. We assume independence of Z
from subsequent stochastic processes like Brownian motions occurring in the definition of [[α]]Z .
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For an Rd-valued random variable Z, we denote by Ẑ the stochastic process

Ẑ : {0} × Ω→ Rd; (0, ω) 7→ Ẑ0(ω) := Z(ω)

that is stuck at Z. We write x̂ for the random variable Z that is a deterministic state Z(ω) := x for
all ω ∈ Ω. We write [[α]]x and (|α|)x for [[α]]Z and (|α|)Z then.

In order to simplify notation, we assume that all variables are uniquely identified by an index,
i.e., the only occurring variables are x1, x2, . . . , xd. We write Z(ω) |= H if state Z(ω) satisfies
first-order real arithmetic formula H and Z(ω) 6|= H otherwise. In the semantics we will use
a family of random variables {Ui}i∈I that are distributed uniformly in [0, 1] and independent of
other Uj and all other random variables and stochastic processes in the semantics. Hence, U sat-
isfies P ({ω ∈ Ω : U(ω) ≤ s}) =

∫ s
−∞ I[0,1]dt with the usual extensions to other Borel subsets. To

describe this situation, we just say that “U ∼ U(0, 1) is i.i.d. (independent and identically dis-
tributed)”, meaning that U is furthermore independent of all other random variables and stochastic
processes in the semantics. We denote the characteristic function of a set S by IS , which is defined
by IS(x) := 1 if x ∈ S and IS(x) := 0 otherwise.

Definition 2 (Stochastic hybrid program semantics) The semantics of SHP α is defined by

[[α]] : (Ω→ Rd)→ ([0,∞)× Ω→ Rd);Z 7→ [[α]]Z = ([[α]]Zt )t≥0

and
(|α|) : (Ω→ Rd)→ (Ω→ R);Z 7→ (|α|)Z

These functions are inductively defined for random variable Z by

1. [[xi := θ]]Z = Ŷ where Y (ω)i = [[θ]]Z(ω) and Yj = Zj for all j 6= i. Further, (|xi := θ|)Z = 0.

2. [[xi := ∗]]Z = Û where Uj = Zj for all j 6= i and Ui ∼ U(0, 1) is i.i.d. and F0-measurable.
Further, (|xi := ∗|)Z = 0.

3. [[?H]]Z = Ẑ on the event {Z |= H} and (|?H|)Z = 0 (on all events ω ∈ Ω). Note that [[?H]]Z

is not defined on the event {Z 6|= H}.

4. [[dx = bdt+ σdW &H]]Z is the process X : [0,∞)× Ω→ Rd that solves the (Itō) stochas-
tic differential equation dXt = [[b]]Xtdt+ [[σ]]XtdBt with X0 = Z on the event {Z |= H},
where Bt is a fresh e-dimensional Brownian motion if σ has e columns. We assume that Z is
independent of the σ-algebra generated by (Bt)t≥0.
Further, (|dx = bdt+ σdW &H|)Z = inf{t ≥ 0 : Xt 6∈ H}. Note that X is not defined on
the event {Z 6|= H}.

5. [[λα ⊕ νβ]]Z = IU≤λ[[α]]Z + IU>λ[[β]]Z =

{
[[α]]Z on the event {U ≤ λ}
[[β]]Z on the event {U > λ}

(|λα ⊕ νβ|)Z = IU≤λ(|α|)Z + IU>λ(|β|)Z

where U ∼ U(0, 1) is i.i.d. and F0-measurable.
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6. [[α; β]]Zt =

[[α]]Zt on {t < (|α|)Z}

[[β]]
[[α]]Z

(|α|)Z

t−(|α|)Z on {t ≥ (|α|)Z}
and (|α; β|)Z = (|α|)Z + (|β|)[[α]]Z

(|α|)Z

7. [[α∗]]Zt = [[αn]]Zt on the event {(|αn|)Z > t} and (|α∗|)Z = lim
n→∞

(|αn|)Z

where α0 ≡ ?true, α1 ≡ α, and αn+1 ≡ α;αn.

For Case 7, note that (|αn|)Z is monotone in n, hence the limit (|α∗|)Z exists and is finite if the
sequence is bounded. The limit is ∞ otherwise. Note that [[α∗]]Zt is independent of the choice
of n on the event {(|αn|)Z > t} (but not necessarily independent of n on the event {(|αn|)Z ≥ t},
because α might start with a jump after αn). Observe that [[α∗]]Zt is not defined on the event
{∀n (|αn|)Z ≤ t}, which happens, e.g., for Zeno executions violating divergence of time. It would
still be possible to give a semantics in this case, e.g., at t = (|αn|)Z , but we do not gain much from
introducing those technicalities.

In the semantics of [[α]]Z , time is allowed to end. We explicitly consider [[α]]Zt as not defined for
a realization ω if a part of this process is not defined, because of failed tests in α. The process may
be explicitly not defined when t > (|α|)Z . Explicitly being not defined can be viewed as being in a
special absorbing state that can never be left again, as in killed processes. The stochastic process
[[α]]Z is only intended to be used until time (|α|)Z . We stop using [[α]]Z after time (|α|)Z .

A Markov time (a.k.a. stopping time) is a non-negative random variable τ such that {τ ≤ t} ∈ Ft
for all t. For a Markov time τ and a stochastic process Xt, the following process is called stopped
process Xτ

Xτ
t := Xtuτ =

{
Xt if t < τ

Xτ if t ≥ τ
where t u τ := min{t, τ}

A class C of processes is stable under stopping if X ∈ C implies Xτ ∈ C for every Markov time
τ . Right continuous adapted processes, and processes satisfying the strong Markov property are
stable under stopping [Dyn65, Theorem 10.2].

Most importantly, we show that the semantics is well-defined. We prove that the natural stop-
ping times (|α|)Z are actually Markov times so that it is meaningful to stop process [[α]]Z at (|α|)Z

and useful properties of [[α]]Z inherit to the stopped process [[α]]Ztu(|α|)Z . Furthermore, we show that
the process [[α]]Z is adapted (does not look into the future) and càdlàg, which will be important to
define a semantics for formulas. We give a proof of the following theorem in Appendix A.1.

Theorem 1 (Adaptive càdlàg process with Markov times) For each SHP α and any Rd-valued
random variable Z, [[α]]Z is an a.s. càdlàg process and adapted (to the completed filtration (Ft)t≥0

generated by Z and the constituent Brownian motion (Bs)s≤t and uniform U processes) and (|α|)Z
is a Markov time (for (Ft)t≥0). In particular, the end value [[α]]Z(|α|)Z is again F(|α|)Z -measurable.

Note in particular, that the event {(|αn|)Z ≥ t} is Ft-measurable, thus, by [KS91, Prop 1.2.3], the
event {(|αn|)Z > t} in Case 7 of Def. 2 is Ft-measurable. As a corollary to Theorem 1, [[α]]Z is
progressively measurable [KS91, Prop 1.1.13].
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5 Stochastic Differential Dynamic Logic

0 ≡ I∅
1 ≡ IRd
¬f ≡ 1− f

A ∧B ≡ AB

A ∨B ≡ A+B − AB
A→ B ≡ 1− A+ AB

if(H) {α}else{β} ≡ 1

2
(?H;α) ⊕ 1

2
(?¬H; β)

while(H) {α} ≡ (?H;α)∗; ?¬H
[α]f ≡ ¬〈α〉¬f

Figure 2: Common SdL and
SHP abbreviations

For specifying and analyzing properties of
SHPs, we introduce stochastic differential dy-
namic logic SdL.

5.1 Syntax
Function terms of stochastic differential dy-
namic logic SdL are formed by the gram-
mar (F is a primitive measurable function de-
finable in first-order real arithmetic, e.g., the
characteristic function IS of a measurable set
S definable in first-order real arithmetic, B
is a boolean combination of such characteris-
tic functions using operators ∧,∨,¬,→ from
Fig. 2, λ, ν are rational numbers):

f, g ::= F | λf + νg | Bf | 〈α〉f

These are for linear (λf + νg) or boolean product (Bf ) combinations of terms. Term 〈α〉f rep-
resents the supremal value of f along the process belonging to α. The syntactic abbreviations in
Fig. 2 can be useful. Formulas of SdL are simple, because SdL function terms are powerful. SdL
formulas express equational and inequality relations between SdL function terms f, g. They are of
the form:

φ ::= f ≤ g | f = g

5.2 Measurable Semantics
The semantics of classical logics maps an interpretation to a truth-value. This does not work for
stochastic logic, because the state evolution of SHPs contained in SdL formulas is stochastic, not
deterministic. Instead, we define the semantics of an SdL function term as a random variable.

Definition 3 (SdL semantics) The semantics [[f ]] of a function term f is a function

[[f ]] : (Ω→ Rd)→ (Ω→ R)

that maps any Rd-valued random variable Z describing the current state to a random variable
[[f ]]Z . It is defined by

1. [[F ]]Z = F `(Z), i.e., [[F ]]Z(ω) = F `(Z(ω)) where function F denotes F `

2. [[λf + νg]]Z = λ[[f ]]Z + ν[[g]]Z

3. [[Bf ]]Z = [[B]]Z ∗ [[f ]]Z , i.e., multiplication [[Bf ]]Z(ω) = [[B]]Z(ω) ∗ [[f ]]Z(ω)

7



4. [[〈α〉f ]]Z = sup{[[f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z}

When Z is not defined (results from a failed test), then [[f ]]Z is not defined. To avoid partiality, we
assume the convention [[f ]]Z := 0 when Z is not defined.

If f is a characteristic function of a measurable set, then [[〈α〉f ]]Z corresponds to a random
variable that reflects the supremal f value that α can reach at least once during its evolution
until stopping time (|α|)Z when starting in a state corresponding to random variable Z. Then
P ([[〈α〉f ]]Z = 1) is the probability with which α reaches f at least once and E([[〈α〉f ]]Z) is the
expected value, given Z. This includes the special case where Z is a deterministic state Z(ω) := x
for all ω ∈ Ω. But first, we prove that these quantities are well-defined probabilities at all. Note
that well-definedness of the definition in case 4 uses Theorem 1.

Cases 1–3 of Def. 3 are as in [Koz85] with the notable exception of case 4, which we define
as a supremum, not an integral. The reason is that we are interested in probabilistic worst-case
verification, not in average-case verification. For discrete programs, it is often sufficient to consider
the input-output behavior, so that Kozen did not need to consider the temporal evolution of the
program over time, only its final (probabilistic) outcome [Koz85]. In stochastic hybrid systems,
the temporal evolution is highly relevant, in addition to the stochastic behavior. When averaging
over time, the system state may be very probably good (the integral of the error is small). But,
still, it could be very likely that the system exhibits a bug at some state during a run. In this case,
we would still want to declare such a system as broken, because, when using it, it will very likely
get us into trouble. Stochastic average-case analysis is interesting for performance analysis. But
for safety verification, supremal stochastic analysis is more relevant, because a system that is very
probably broken at some time, is still too broken to be used safely. We thus consider stochastic
dynamics with worst-case temporal behavior, i.e., our semantics performs stochastic averaging (in
the sense of probability) among different behaviors, but considers supremal worst-case probability
over time. The logic SdL is intended to be used (among other things) to prove bounds on the
probability that a system fails at some point at all.

A car that, on average over all times of its use, has a low crash rate, but still has a high proba-
bility of crashing at least once during the first ride would not be safe. This is one example where
stochastic hybrid systems exhibit new interesting characteristics that we do not see in discrete
systems.

We show that the semantics is well-defined. We prove that [[f ]]Z is, indeed, a random variable,
i.e., measurable. Without this, probabilistic questions about the value of formulas would not be
well-defined, because they are not measurable with respect to the probability space (Ω,F , P ) and
the Borel σ-algebra on R.

Theorem 2 (Measurability) For any Rd-valued random variable Z, the semantics [[f ]]Z of func-
tion term f is a random variable (i.e., F-measurable).

We give a proof of this theorem in Appendix A.2.

Corollary 1 (Pushforward measure) For any Rd-valued random variable Z and function term
f , probability measure P induces the pushforward measure

S 7→ P (([[f ]]Z)−1(S)) = P ({ω ∈ Ω : [[f ]]Z(ω) ∈ S}) = P ([[f ]]Z ∈ S)
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which defines a probability measure on R. Hence, for each Borel-measurable set S, the probability
P ([[f ]]Z ∈ S) is well-defined.

We say that f ≤ g is valid if it holds for all Rd-valued random variables Z:

� f ≤ g iff for all Z, [[f ]]Z ≤ [[g]]Z , i.e., ([[f ]]Z)(ω) ≤ ([[g]]Z)(ω) for all ω ∈ Ω

Validity of f = g is defined accordingly, hence, � f = g iff � f ≤ g and � g ≤ f . As consequence
relation on formulas, we use the (global) consequence relation that we define as follows (similarly
when some of the formulas are fi = gi):

f1 ≤ g1, . . . , fn ≤ gn � f ≤ g

iff � f1 ≤ g1, . . . ,� fn ≤ gn implies � f ≤ g

Also f1 ≤ g1, . . . , fn ≤ gn � f ≤ g holds pathwise if it holds for each ω ∈ Ω.

6 Stochastic Calculus
In this section, we review important results from stochastic calculus [KS91, Øks07, KP10] that
we use in our proof calculus. To indicate the probability law of process X starting at X0 = x
a.s., we write P x instead of P . By Ex we denote the expectation operator for probability law
P x. That is Ex(f(Xt)) :=

∫
Ω
f(Xt(ω))dP x(ω) for each Borel-measurable function f : Rd → R.

A very important concept is the infinitesimal generator that captures the average rate of change of
a process.

Definition 4 (Infinitesimal generator) The (infinitesimal) generator of an a.s. right continuous
strong Markov process (e.g., solution from Def. 1) is the operatorA that maps a function f : Rd → R
to function Af : Rd → R defined as

Af(x) := lim
t↘0

Exf(Xt)− f(x)

t

We say that Af is defined if this limit exists for all x ∈ Rd. The generator can be used to compute
the expected value of a function when following the process until a Markov time without solving
the SDE.

Theorem 3 (Dynkin’s formula [Øks07, Theorem 7.4.1],[Dyn65, p. 133]) Let Xt an a.s. right
continuous strong Markov process (e.g., solution from Def. 1). If f ∈ C2(Rd,R) has compact
support and τ is a Markov time with Exτ <∞, then

Exf(Xτ ) = f(x) + Ex

∫ τ

0

Af(Xs)ds

Dynkin’s formula is very useful, but only if we can compute the generator and its integral. The
generator A gives a stochastic expression. It has been shown, however, that it is equal to a deter-
ministic expression called the differential generator under fairly mild assumptions:
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Theorem 4 (Differential generator [Øks07, Theorem 7.3.3]) For a solution Xt from Def. 1, if
f ∈ C2(Rd,R) is compactly supported, then Af is defined and

Af(x) = Lf(x) :=
∑
i

bi(x)
∂f

∂xi
(x) +

1

2

∑
i,j

(σ(x)σ(x)∗)i,j
∂2f

∂xi∂xj
(x)

A stochastic process Y that is adapted to a filtration (Ft)t≥0 is a supermartingale iffE|Yt| <∞
for all t ≥ 0 and

E(Yt | Fs) ≤ Ys for all t ≥ s ≥ 0

Proposition 1 (Doob’s maximal martingale inequality [KS91, Theorem I.3.8]) If f(Xt) is a càdlàg
supermartingale with respect to the filtration generated by (Xt)t≥0 and f ≥ 0 on the evolution do-
main of Xt, then for all λ > 0:

P

(
sup
t≥0

f(Xt) ≥ λ | F0

)
≤ Ef(X0)

λ

7 Proof Calculus
Now that we have a model, logic, and semantics for stochastic hybrid systems, we investigate
reasoning principles that can be used to prove logical properties of stochastic hybrid systems.
First we present proof rules that are sound pathwise, i.e., satisfy the global consequence relation
pathwise for each ω ∈ Ω. By t we denote the binary maximum operator. It can either be added
into the language or approximated conservatively by + as in rule 〈;〉. Operator t coincides with
∨ for values in {0,1}, e.g., built using operators ∧,∨,¬, 〈α〉 from characteristic functions. As a
supremum, 〈α〉B only takes on values {0,1} if B does.

Theorem 5 (Pathwise sound) The proof rules in Fig. 3 are globally sound pathwise.

For a proof see Appendix B.1. For 〈;〉′, β is a.s. continuous at 0 if, on all paths, the first primitive
operation that is not a test is a stochastic differential equation, not a (random) assignment. Our
rules generalize to the case of probabilistic assumptions. Note that formula H → f ≤ λ in mon′ is
equivalent toHf ≤ Hλ but easier to read. If f is continuous, rule mon′ is sound when replacing the
topological closureH (which is computable by quantifier elimination) byH , because the inequality
is weak.

Next we show proof rules that do not hold pathwise, but still in distribution.

Theorem 6 (Sound in distribution) Rule 〈⊕〉 is sound in distribution.

P (〈λα ⊕ νβ〉f ∈ S) = λP (〈α〉f ∈ S) + νP (〈β〉f ∈ S) (〈⊕〉)
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〈x := θ〉f = f θx if admissible substitution replacing x with θ (〈:=〉)
〈?H〉f = Hf (〈?〉)
〈α; β〉f ≤ 〈α〉(f t 〈β〉f)

(
≤ 〈α〉(f + 〈β〉f) if 0 ≤ f

)
(〈;〉)

〈α; β〉f ≤ 〈α〉〈β〉f if � f ≤ 〈β〉f or β continuous at 0 a.s. (〈;〉′)
〈α〉(λf) = λ〈α〉f (〈〉λ)

〈α〉(λf + νg) ≤ λ〈α〉f + ν〈α〉g (〈〉+)
0 ≤ B = BB ≤ 1 if B boolean from characteristic functions (I)
0 ≤ f � 0 ≤ 〈α〉f (pos)
f ≤ g � 〈α〉f ≤ 〈α〉g (mon)

H → f ≤ λ � 〈dx = bdt+ σdW &H〉f ≤ λ (λ ∈ Q) (mon′)
〈α〉g ≤ g � 〈α∗〉g ≤ g (ind)

Figure 3: Pathwise proof rules for SdL

For a proof see Appendix B.2. How to prove properties about random assignment xi := ∗ depends
on the distribution for the random assignment. For a uniform distribution in [0,1], e.g., we obtain
the following proof rule that is sound in distribution:

P (〈xi := ∗〉f ∈ S) =

∫ 1

0

I〈xi:=r〉f∈Sdr (〈∗〉)

The integrand is measurable for measurable S by Corollary 1. The rule is applicable when f has
been simplified enough using other proof rules such that the integral can be computed after using
〈:=〉 to simplify the integrand.

Theorem 7 (Soundness for stochastic differential equations) If function f ∈ C2(Rd,R) has com-
pact support onH (which holds for all f ∈ C2(Rd,R) ifH represents a bounded set), then the proof
rule 〈′〉 is sound for λ > 0, p ≥ 0

(〈′〉)
〈α〉(H → f) ≤ λp H → f ≥ 0 H → Lf ≤ 0

P (〈α〉〈dx = bdt+ σdW &H〉f ≥ λ) ≤ p

Proof: Since f has compact support on H , it has a C2(Rd,R) modification with compact support
on Rd that still satisfies the premises of 〈′〉, because all properties of f in the premises assumeH . To
simplify notation, we write f(x) for [[f]]x. LetXt be the stochastic process [[dx = bdt+ σdW &H]]Z .
Let X̌t be Xt restricted to H , i.e., the stopped process X̌t := Xtu(|dx=bdt+σdW &H|)Z , which is
stopped at a Markov time by Theorem 1. The stopped process X̌t, thus, inherits càdlàg and strong
Markov properties from Xt; see, e.g., [Dyn65, Theorem 10.2]. If Af is defined and continuous
and bounded on H [Dyn65, Ch 11.3][Kus67, Ch I.3,I.4], then the infinitesimal generator of X̌t

agrees with the generator ofXt onH (and is zero otherwise). This is the case, since f ∈ C2(Rd,R)
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has compact support (thus bounded as continuous), because Af is then defined and Af = Lf by
Theorem 4, hence, Lf is continuous, because b, σ are continuous by Def. 1.

All premises of rule 〈′〉 still hold when assuming the topological closure H instead of H ,
because the functions f and Lf are continuous and the conditions are weak inequalities, thus,
closed. Consider any x ∈ Rd and any time s ≥ 0. The deterministic time s is a (very simple)
Markov time with Exs = s <∞. Since f is compactly supported, Theorem 3 is applicable and
implies that

Exf(X̌s) = f(x) + Ex

∫ s

0

Af(X̌r)dr (2)

Now Lf ≤ 0 on H by the third premise. Hence, Af ≤ 0 on H , because Lf = Af (on H) by Theo-
rem 4, as f ∈ C2(Rd,R) has compact support. BecauseX and X̌ have a.s. continuous paths and are
not defined on the event {Z 6|= H}, we know that X̌s stays in the closure H a.s. Thus, Af(X̌s) ≤ 0
a.s., hence,

∫ s
0
Af(X̌r)dr ≤ 0 a.s., thus, Ex

∫ s
0
Af(X̌r)dr ≤ 0. Then (2) implies Exf(X̌s) ≤ f(x)

for all x.
Because the filtration is right-continuous and f ∈ C(Rd,R) is compactly supported (hence

bounded), the strong Markov property [KS91, Prop 2.6.7] for X̌t implies for all t ≥ s ≥ 0 that
P x-a.s.: Ex(f(X̌t)|Fs) = EX̌sf(X̌t−s) ≤ f(X̌s). The inequality holds, since Exf(X̌s) ≤ f(x) for
all x, s. Thus, f(X̌t) is a supermartingale with respect to X̌t, because it is adapted to the filtration
of X̌t (as f ∈ C2(Rd,R)) and Ex|f(X̌t)| <∞ for all t since f ∈ C2(Rd,R) has compact support.
Further, f(X̌t) inherits continuity from X̌t (which follows from Xt), since f is continuous.

Thus, by the second premise, Proposition 1 is applicable. Consider any initial state Y := [[α]]Zt
for X̌ . Thus, P

(
supt≥0 f(X̌t) ≥ λ | F0

)
≤ Ef(Y )

λ
by Proposition 1 (filtration at X̌0 is F0). On event

{Y 6|= H}, X̌ is not defined and nothing to show. On {Y |= H}, f(Y ) ≤ λp is valid where relevant
by the first premise. This implies the conclusion, as [[〈dx = bdt+ σdW &H〉f]]Y = supt≥0 f(X̌t).

�
The implications in the premises can be understood like that in mon′. Let H be given by first-order
real arithmetic formulas. If f is polynomial and, thus, f ∈ C2(Rd,R), then the second and third
premise of 〈′〉 are in first-order real arithmetic, hence decidable. Note that our proof rules can be
generalized to probabilistic assumptions by the rule of partition and then combined.

The proof shows that it is enough to assume the first premise holds only a.s. From the proof
we see that it would be sufficient to replace the third premise of 〈′〉 with

∫ s
0
Lf(Xr)dr ≤ 0. This

is a weaker condition, because it does not require Lf ≤ 0 always, but only “on average”. But this
condition is computationally more involved, because the integral needs to be computed first. For
polynomial expressions, this is not too difficult, but still increases the polynomial degree.

A simple two-dimensional example is the following for H ≡ x2 + y2 < 10:

P (〈?x2+y2≤1

3
;x :=

x

2
; dx =

−x
2
dt− ydW, dy =

−y
2
dt+ xdW &H〉x2+y2≥1) ≤ 1

3

which can be proven easily using 〈;〉′, 〈;〉 〈?〉, 〈:=〉, 〈′〉, since f ≡ x2 + y2 ≥ 0 and

Lf =
1

2

(
−x ∂f

∂x
− y ∂f

∂y
+ y2 ∂

2f

∂x2
− 2xy

∂2f

∂x∂y
+ x2 ∂

2f

∂y2

)
≤ 0
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This implies the second and third premise of 〈′〉. In order to see why the first premise holds and
how the property can be concluded, we first look at a simpler example.

P (〈?x2 + y2 ≤ 1

3
; dx = −x

2
dt− ydW, dy = −y

2
dt+ xdW &H〉x2 + y2 ≥ 1) ≤ 1

3

The second and third premise of 〈′〉 continue to hold for this simpler example. We conclude the
first premise of 〈′〉 using 〈?〉

〈?x2 + y2 ≤ 1

3
〉(H → f) =

(
H → x2 + y2 ≤ 1

3

)
(x2 + y2) ≤ 1 ∗ 1

3

Hence, 〈′〉 is applicable implying the conclusion

P (〈?x2 + y2 ≤ 1

3
; dx = −x

2
dt− ydW, dy = −y

2
dt+ xdW &H〉x2 + y2 ≥ 1)

Using 〈;〉′ inside the probability, this expression is ≤ the following

P (〈?x2 + y2 ≤ 1

3
〉〈dx = −x

2
dt− ydW, dy = −y

2
dt+ xdW &H〉x2 + y2 ≥ 1) ≤ 1

3

In the same way, we can prove the original property:

P (〈?x2 + y2 ≤ 1

3
; x :=

x

2
; dx = −x

2
dt− ydW, dy = −y

2
dt+ xdW &H〉x2 + y2 ≥ 1) ≤ 1

3

The only change is as follows. By 〈;〉 we conclude

〈?x2 + y2 ≤ 1

3
; x :=

x

2
〉(H → f) ≤ 〈?x2 + y2 ≤ 1

3
〉
(
(H → f) t 〈x :=

x

2
〉(H → f)

)
which, by 〈:=〉, is ≤ the following, because x := x

2
makes the f-value drop (and ?x2 + y2 ≤ 1

3

implies H even after x := x
2
):

〈?x2 + y2 ≤ 1

3
〉(H → f) =

(
H → x2 + y2 ≤ 1

3

)
(x2 + y2) ≤ 1 ∗ 1

3

The arithmetic is easily decidable by quantifier-elimination in real-closed fields.

8 Related Work
Our approach is partially inspired by the work of Kozen, who studied 3 semantics of programs
with random number generators [Koz81] and probabilistic PDL [Koz85]. We generalize from
discrete systems to stochastic hybrid systems. To reflect the new challenges, we have departed
from probabilistic PDL. Kozen uses a measure semantics. We choose a semantics that is based on
stochastic processes, because the temporal behavior of SHPs is more crucial than that of abstract
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discrete programs. SdL further uses a supremal semantics that is more interesting for stochastic
worst-case verification than the integral semantics assumed in [Koz85].

The comparison to a first-order dynamic logic for deterministic programs with random num-
ber generators [FH84] is similar. They axiomatize relative to first-order analysis with arithmetic,
enriched with frequencies and random number generators. They do not show how this logic could
be handled (incompletely).

Our approach for stochastic differential equations is inspired by barrier certificates [PJP07]. We
extend this work by identifying the assumptions that are required for soundness of using Dynkin-
type arguments for stochastic differential equations. They propose to use global generators for
switching diffusion processes (which cannot reset variables). We use logic and compositional
proofs for SHPs.

Probabilities and logic have also been used in AI, e.g., [RD06]. Markov logic networks are
a combination of Markov networks and first-order logic and resembles logic programming with
weights for probabilities. They are restricted to finite domains, which is not the case in stochastic
hybrid systems.

Model checking has been used for discrete probabilistic systems like finite Markov chains, e.g.,
[YKNP06], and probabilistic timed automata [KNSW07]. Assume-guarantee model checking is a
challenge for discrete probabilistic automata, with recent successes for finite automata assumptions
[KNPQ10]. We use a compositional proof approach based on logic and consider stochastic hybrid
systems.

Statistical model checking has been suggested for validating stochastic hybrid systems [MS06]
and later refined for discrete-time hybrid systems with a probabilistic simulation function [ZPC10]
based on corresponding discrete probabilistic techniques [YKNP06]. They did not show mea-
surability and do not support stochastic differential equations [ZPC10]. Validation by simulation
is generally unsound, but the probability of giving a wrong answer can sometimes be bounded
[YKNP06, ZPC10].

Fränzle et al. [FTE10] show first pieces for continuous-time bounded model checking of prob-
abilistic hybrid automata (no stochastic differential equations).

Bujorianu and Lygeros [BL06] show strong Markov and càdlàg properties for a class of systems
known as General Stochastic Hybrid Systems. They also study an interesting concatenation opera-
tor. For an overview of model checking techniques for various classes of stochastic hybrid systems,
we refer to [CL06]. Most verification techniques for stochastic hybrid systems use discretizations,
approximations, or assume discrete time, bounded horizon [KR08, CL06, APLS08, HLS00]. We
consider the continuous-time behavior and develop compositional logic and theorem proving.

9 Conclusions
We introduce the first verification logic for stochastic hybrid systems along with a compositional
model of stochastic hybrid programs. We prove theoretical properties that are important for well-
definedness and measurability and we develop a compositional proof calculus. Our logic makes the
complexity of stochastic hybrid systems accessible in logic with simple syntactic proof principles.
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Our results indicate that SdL is a promising starting point for the study of logic for stochastic
hybrid systems. Extensions include nondeterminism.

Acknowledgments. I thank the anonymous referees of the conference version [Pla11] for their
good comments. I also want to thank Steve Marcus and Sergio Pulido Niño for helpful discussions.
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A Proofs for Semantics
In the appendices, we provide proofs for the results in this paper. In this appendix, we provide
proofs for the semantics and its well-definedness.

A.1 Proof of Adaptive Càdlàg Process with Markov Times
Proof(of Theorem 1): We prove càdlàg, adaptedness, and Markov time properties simultaneously
by induction on the structure of α. These parts partially depend on each other, so we prove them
together not separately. To simplify notation, we shift time so that processes start at time 0.

1–3. Deterministic times (|xi := θ|)Z = (|xi := ∗|)Z = (|?H|)Z = 0 are trivial Markov times. Fur-
thermore, the process [[xi := θ]]Z is adapted to the filtration generated by Z. Process [[?H]]Z

is also adapted if it is defined (otherwise there is nothing to show). Similarly, [[xi := ∗]]Z is
adapted to the filtration generated by Z and the u.i.i.d. random variable ([[xi := ∗]]Z0 )i = Ui.
Process [[?H]]Z is càdlàg (even constant) if it is defined, otherwise there is no continuity
question (can be considered stuck at absorbing state). Processes [[xi := θ]]Z and [[xi := ∗]]Z
are trivially càdlàg (even continuous) as the time domain is {0}.

4. (|dx = bdt+ σdW &H|)Z = inf{t ≥ 0 : Xt 6∈ H} is a Markov time when H is any Borel
set [Øks07, Ex 7.2.2][Dyn65, Vol. II, 4.5.C.e], since we complete the filtration to include
all null sets. Here Xt is the process [[dx = bdt+ σdW &H]]Z . More generally, for pro-
gressively measurable processes like right-continuous adapted processes, the hitting time
of a measurable set is a Markov time by the (deep) début theorem [Øks07]. Solutions of
stochastic differential equations are adapted to the filtration generated by (Ws)s≤t and Z
[Øks07, Th 5.2.1][KP10, Ch 4.5] and have almost surely continuous paths by a consequence
of Kolmogorov’s continuity theorem [Øks07, Th 2.2.3].

5. By induction hypothesis, (|α|)Z is a Markov time, hence IU≤λ(|α|)Z is a Markov time, since
the filtration includes U and the indicator function only takes on values 0 (where 0 is a stop-
ping time) or 1 (where 1(|α|)Z is a Markov time). Similarly IU>λ(|β|)Z is a Markov time. As
the sum of two Markov times, (|λα ⊕ νβ|)Z is a Markov time [KS91, Lem 1.2.9]. Because
càdlàg functions form an algebra (Skorokhod space), the linear combination [[λα ⊕ νβ]]Z is
càdlàg by induction hypothesis for every outcome of U . This linear combination is adapted,
because, by induction hypothesis, the parts are adapted and the choice U generates the filtra-
tion.

6. By induction hypothesis, [[α]]Z is adapted to and (|α|)Z a Markov time for the filtration (F ′t)t≥0

generated by Z and the constituent Brownian motion and uniform processes during α. Es-

pecially, [[α]]Z(|α|)Z is a random variable. By induction hypothesis,
(

[[β]]
[[α]]Z

(|α|)Z

t

)
t≥0

is, thus,

adapted to and (|β|)[[α]]Z
(|α|)Z a Markov time for the filtration (F ′′t )t≥0 generated by [[α]]Z(|α|)Z

and the constituent Brownian motion and uniform processes during β. With a time shift
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by −(|α|)Z ,
(

[[β]]
[[α]]Z

(|α|)Z

t−(|α|)Z

)
t≥(|α|)Z

is then adapted to the filtration (F ′′
t−(|α|)Z )t≥(|α|)Z . Especially,

(Ft)t≥0 already includes (F ′t)t≥0 and the time-shifted (F ′′
t−(|α|)Z )t≥(|α|)Z . Note that random

variable [[α]]Z(|α|)Z does not contribute to this filtration, because it is already F(|α|)Z -measurable
by induction hypothesis. Consequently, [[α; β]]Z is adapted to (Ft)t≥0, because both of its

cases, [[α]]Z and [[β]]
[[α]]Z

(|α|)Z

t−(|α|)Z , are adapted and the condition which case applies is an event of a

Markov time. Similarly, (|α; β|)Z = (|α|)Z + (|β|)[[α]]Z
(|α|)Z is a sum of two Markov times and,

thus, a Markov time [KS91, Lem 1.2.9].

By induction hypothesis, [[α; β]]Z is càdlàg on [0, (|α|)Z) and on ((|α|)Z ,∞), because the
constituent fragments are. At (|α|)Z , process [[α; β]]Z is càdlàg, by construction (it is defined
in terms of β on the left-closed interval [(|α|)Z ,∞), hence càdlàg even if there is a jump
before β starts).

7. Because (|αn|)Z are increasing, (|α∗|)Z = limn→∞ (|αn|)Z = supn≥1 (|αn|)Z , which is a Markov
time [KS91, Lem 1.2.11], since, by induction hypothesis, the (|αn|)Z are Markov times. Pro-
cess [[α∗]]Z is adapted, because for each t, the constituent process [[αn]]Zt is adapted on each
event {(|αn|)Z > t} by induction hypothesis. Note that [[α∗]]Z is not defined if this never
happens, i.e., on the event {∀n (|αn|)Z ≥ t}. Since the value [[α∗]]Zt is defined on an n that
satisfies the open event {(|αn|)Z > t}, the process is càdlàg as long as it is defined.

�

A.2 Proof of Measurability
Proof(of Theorem 2): We need to show that [[f ]]Z is measurable as a function of ω ∈ Ω. We
prove this by induction on the structure of f .

1. [[F ]]Z = F `(Z) is a random variable, becauseZ is measurable and F ` is Borel(!)-measurable.
Thus, the composition F `(Z) is measurable (the σ-algebras in the composition are compati-
ble).

2. [[λf + νg]]Z = λ[[f ]]Z + ν[[g]]Z is a linear combination, hence, measurable by induction
hypothesis, because measurable functions form an algebra.

3. [[Bf ]]Z = [[B]]Z ∗ [[f ]]Z is a product, hence, measurable by induction hypothesis, because
measurable functions form an algebra.

4. [[〈α〉f ]]Z = sup{[[f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} is measurable for the following reason. By The-
orem 1, [[α]]Zt is measurable (adapted). By induction hypothesis, [[f ]][[α]]Zt is measurable for
each t. We need to show that the supremum is still measurable. Unfortunately, suprema of
measurable functions over uncountable sets are generally not measurable. Yet, the (point-
wise) supremum of a countable sequence of measurable functions is measurable [Wal95,
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§9.9]. Consider a rational mesh π := {t1, t2, . . . , tn} ⊂ Q with times 0 ≤ t1 ≤ · · · ≤ tn.
By induction hypothesis, [[f ]][[α]]Zt is measurable for each t ∈ π. Hence, the (finite) count-
able supremum sup{[[f ]][[α]]Zt : t ∈ π, t ≤ (|α|)Z} is measurable (as a pointwise function of
ω ∈ Ω). Unlike the set of infinite sequences in Q, the set of finite sequences in Q is count-
able. Thus, the countable supremum sup{[[f ]][[α]]Zt : t ≤ (|α|)Z , t ∈ π for a rational mesh π}
is measurable, because the set of rational meshes is countable. In general, however, this lat-
ter supremum does not coincide with the supremum defining [[〈α〉f ]]Z . But since [[α]]Z is also
càdlàg a.s. by Theorem 1, they do coincide (each path is a.s. right-continuous). Note that
either left or right continuity would be sufficient to ensure that there is a convergent sequence
of rational meshes whose values converge to the value at each real point in the interval. Note,
however, that this only gives us information about the supremum on 0 ≤ t < (|α|)Z for a right
continuous process, because (|α|)Z could be irrational and no convergent sequence of rational
points ti ≥ (|α|)Z from the right is in the interval. But, when taking the (binary) pointwise

supremum of [[f ]]
[[α]]Z

(|α|)Z and the above supremum, we obtain the desired equality.

�

B Soundness Proofs
In this appendix, we provide proofs for the soundness theorems.

B.1 Proof of Pathwise Global Soundness
Proof(of Theorem 5): We prove that the rules are globally sound pathwise (which coincides with
locally sound if they have no assumptions) by showing that they hold for any Rd-valued random
variable Z pathwise, i.e., on every path for every ω ∈ Ω.

〈:=〉 Soundness of rule 〈:=〉 is similar to classical dynamic logic [Pra76]. That is, [[〈x := θ〉f ]]Z =

[[f ]][[x:=θ]]
Z
0 = [[f θx ]]

Z deterministically (for all ω ∈ Ω). Note that the supremum disappears,
because of (|x := θ|)Z = 0.

〈?〉 [[Hf ]]Z = [[H]]Z ∗ [[f ]]Z is equal to

[[〈?H〉f ]]Z = sup{[[f ]][[?H]]Zt : 0 ≤ t ≤ (|?H|)Z} =

{
[[f ]]Z on event {Z |= H}
0 on event {Z 6|= H}

because (|?H|)Z = 0 (on all events) and our convention evaluates all function terms f to 0 in
undefined states (on the event that ?H fails by {Z 6|= H}).

〈;〉 [[〈α; β〉f ]]Z = sup{[[f ]][[α;β]]Zr : 0 ≤ r ≤ (|α; β|)Z = (|α|)Z+(|β|)[[α]]Z
(|α|)Z }. Also [[〈α〉(f t 〈β〉f)]]Z =

sup{[[f t 〈β〉f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z}. The latter equals sup
{

[[f ]][[α]]Zt t sup{[[f ]][[β]]
[[α]]Zt
s : 0 ≤
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s ≤ (|β|)[[α]]Zt } : 0 ≤ t ≤ (|α|)Z
}

. With these expansions, [[〈α; β〉f ]]Z ≤ [[〈α〉(f t 〈β〉f)]]Z

holds as follows. For each path, the values of [[f ]][[α;β]]Zr on the event {r ≥ (|α|)Z} are included
in the nested supremum for [[〈α〉(f t 〈β〉f)]]Z by choosing t := (|α|)Z , s := r − (|α|)Z . The
values of [[f ]][[α;β]]Zr on the event {r < (|α|)Z} are included in the nested supremum by choos-
ing t := r and the left side of the maximum [[f ]][[α]]Zt t . . . in the expression. Note that the two
sides are generally not equal, because α has to run to completion before β starts in 〈α; β〉f ,
but α can stop early in 〈α〉(f t 〈β〉f) and β can then start already.

If, in addition, � 0 ≤ f , then � 0 ≤ 〈β〉f by pos. Hence, mon implies by the semantics of t
that � 〈α; β〉f ≤ 〈α〉(f t 〈β〉f) ≤ 〈α〉(f + 〈β〉f).

〈;〉′ If � f ≤ 〈β〉f , then 〈;〉′ follows from 〈;〉 directly. If, instead, [[β]]Y is continuous at 0 a.s.,
then the proof for 〈;〉 does not need ft. It can use t := r, s := 0 on the event {r < (|α|)Z},
because the process for β a.s. will not change the value of f at time 0 (a.s. continuity). The
proof of 〈;〉 for event {r ≥ (|α|)Z} does not use ft and carries over to 〈;〉′ directly.

〈〉λ [[〈α〉(λf)]]Z = sup{[[λf ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} = sup{λ[[f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} =
λ[[〈α〉f ]]Z .

〈〉+ [[〈α〉(λf + νg)]]Z = sup{[[λf + νg]][[α]]Zt : 0 ≤ t ≤ (|α|)Z}. This is equal to sup{λ[[f ]][[α]]Zt +

ν[[g]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} ≤ λ[[〈α〉f ]]Z + ν[[〈α〉g]]Z . The two sides are not equal if the
suprema [[〈α〉f ]]Z and [[〈α〉g]]Z are at different times.

I B is a Boolean combination of characteristic functions of measurable sets. Characteristic
functions only take on the values 0 or 1, for which I holds. Boolean combinations preserve
this property.

pos Rule pos is derivable from mon and 〈〉λ. By mon, 0 ≤ f � 〈α〉0 ≤ 〈α〉f . By mon, 〈α〉0 = 〈α〉(0 ∗ 0) = 0〈α〉0 = 0.

mon Let � f ≤ g, i.e., [[f ]]Y ≤ [[g]]Y for all Y . Hence, by Theorem 1, for random variable Y := [[α]]Zt ,
we get [[f ]][[α]]Zt ≤ [[g]][[α]]Zt . Since t is arbitrary, this implies

[[〈α〉f ]]Z = sup{[[f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} ≤ sup{[[g]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} = [[〈α〉g]]Z

Hence, [[〈α〉f ]]Z ≤ [[〈α〉g]]Z , which implies mon since Z was arbitrary.

ind Assume � 〈α〉g ≤ g, which implies � 〈α;α〉g ≤ 〈α〉(g t 〈α〉g) = 〈α〉g ≤ g by 〈;〉. By in-
duction, � 〈αn〉g ≤ g. Since n ∈ N was arbitrary, we get � 〈α∗〉g ≤ g.

?? Assume � 0 ≤ f and � 0 ≤ f + 〈α〉g ≤ g. First note that � 0 ≤ f + 〈α〉g ≤ g directly im-
plies � 0 ≤ g, which implies 0 ≤ 〈α〉g by pos, which implies � f ≤ g using � 0 ≤ f + 〈α〉g ≤ g.
Therefore, mon implies � 〈α∗〉f ≤ 〈α∗〉g. Now, � 0 ≤ f and � 0 ≤ f + 〈α〉g ≤ g together
imply � 〈α〉g ≤ g. Hence, ind implies � 〈α∗〉g ≤ g. Together with � 〈α∗〉f ≤ 〈α∗〉g, this
implies � 〈α∗〉f ≤ g.
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mon′ Assume � H → f ≤ λ. Let Xt be the stochastic process [[dx = bdt+ σdW &H]]Z . Let X̌t

beXt restricted toH , i.e., X̌t := Xtu(|dx=bdt+σdW &H|)Z , which is stopped at a Markov time by
Theorem 1. Because X (and, thus, X̌) have a.s. continuous paths and are not defined on the
event {Z 6|= H}, we know that X̌s stays in the closure H a.s. Thus, X̌t[t] |= H a.s. for all t.
Hence, by assumption [[f ]]X̌t ≤ λ for all t. Then [[〈dx = bdt+ σdW &H〉f ]]Z ≤ λ = [[λ]]Z .

�

B.2 Proof of Soundness in Distribution
Proof(of Theorem 6): [[〈λα ⊕ νβ〉f ]]Z = sup{[[f ]]IU≤λ[[α]]Zt +IU>λ[[β]]Zt : 0 ≤ t ≤ (|λα ⊕ νβ|)Z},
with (|λα ⊕ νβ|)Z = IU≤λ(|α|)Z + IU>λ(|β|)Z . This expression splits into two disjoint events, one
with {U ≤ λ} and one with {U > λ}. Thus, by additivity for disjoint events:

P ([[〈λα ⊕ νβ〉f ]]Z ∈ S)

= P (U ≤ λ, sup{[[f ]][[α]]Zt : 0 ≤ t ≤ (|α|)Z} ∈ S)

+ P (U > λ, sup{[[f ]][[β]]Zt : 0 ≤ t ≤ (|β|)Z} ∈ S) σ-additive

= P (U ≤ λ, [[〈α〉f ]]Z ∈ S) + P (U > λ, [[〈β〉f ]]Z ∈ S)

= P (U ≤ λ)P ([[〈α〉f ]]Z ∈ S) + P (U > λ)P ([[〈β〉f ]]Z ∈ S) independent

= λP ([[〈α〉f ]]Z ∈ S) + νP ([[〈β〉f ]]Z ∈ S) λ+ µ = 1

�
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