

Constructing and Evaluating
Sensor-Based Statistical Models

of Human Interruptibility

James Anthony Fogarty
January 2006

CMU-HCII-06-100

Human Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Thesis Committee:
Scott E. Hudson (Chair)
Christopher G. Atkeson

Robert E. Kraut
Eric J. Horvitz, Microsoft Research

Submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy

Copyright © 2006 James A. Fogarty. All rights reserved.

This research was supported in part by the National Science Foundation under grants
CCR-03244770, IIS-0121560, IIS-0205219, IIS-0325351, IIS-0329090, IIS-9800597, and
IIS-9980013, by the NASA High Dependability Computing Program under cooperative agreement
NCC-2-1298, by the author’s internship at IBM Research, by the author’s National Science
Foundation Graduate Research Fellowship, by a collaborator’s National Defense Science and
Engineering Graduate Fellowship, and by a collaborator’s AT&T Labs Fellowship. This material
is based upon work supported by the Defense Advanced Research Projects Agency (DARPA)
under contract No. NBCHD030010.

ii

Keywords: Human interruptibility, interruptions, office workers, sensor-based statistical
models, Wizard of Oz sensor development, Subtle, AmIBusy Prompter, Whistle.

iii

Abstract
While people can typically make a rapid assessment of another person’s interruptibility,
current systems generally have no way to consider whether an interruption is appropriate.
Systems therefore tend to interrupt at inappropriate times or unduly demand attention.
Sensor-based statistical models of human interruptibility are one approach to addressing
this problem. In a series of studies, we examine the feasibility and robustness of
sensor-based statistical models of human interruptibility, creating models that perform
better than human observers. We then present a tool to enable non-expert development
of applications that use sensor-based statistical models of human situations.

Our first study collects audio and video recordings in the normal work environments
of several office workers. We measure their interruptibility by collecting interruptibility
self-reports via experience sampling. We then use a Wizard of Oz method to examine the
recordings and simulate many potential sensors. Building statistical models from these
simulated sensors, we are able to evaluate potential sensors without actually building
them. In our second study, human observers view the recordings and estimate the
interruptibility of the office workers. Statistical models based on our simulated sensors
perform better than these human observers. Our third study examines the robustness of
this result by implementing and deploying real sensors with a more diverse set of office
workers. While different sensors are more predictive for different types of office
workers, even a general model performs better than the human observers. Because these
first three studies are dominated by social engagement, our fourth study explicitly
examines task engagement. We show that low-level programming environment events
can be used to model when a programmer will choose to defer an interruption.

We then develop Subtle, a tool to enable further research into how human computer
interaction can best benefit from sensor-based statistical models of human situations.
With an extensible sensing library, fully-automated iterative feature generation, and
support for model deployment, Subtle enables non-expert development of applications
that use sensor-based statistical models of human situations. Subtle allows human
computer interaction researchers to focus on compelling applications and datasets, rather
than the difficulties of collecting appropriate sensor data and learning statistical models.

Finally, we present a summary of contributions and plans for future work.

iv

Acknowledgements
Many people have touched my life, my education, and my work. While I hope they
already know of the impact they have had, I want to explicitly thank some of the people
to whom I am most grateful.

Any success I have as a researcher should be largely attributed to those who have
guided and participated in my work. As my advisor, Scott Hudson has taught me to
choose compelling problems, given me the freedom to find my own answers, and shared
a chuckle when it became obvious why my initial answer was so completely wrong.
Beyond showing me how to conduct good research, Scott has taught me many life
lessons about being a good researcher. The other members of my committee have also
provided immeasurable guidance. Christopher Atkeson has shared a practical outlook on
how to work past various distractions to focus on the question at hand. Eric Horvitz has
helped to pique my interest in pursuing hard research problems that also have the
potential for a real impact on how we live. Robert Kraut has sought and helped to
provide clarity in my work, showing me how to break down and pursue complex
problems. I am also indebted to many co-authors and colleagues in my graduate career,
including Gregory Abowd, Carolyn Au, Htet Htet Aung, Daniel Avrahami, Ryan Baker,
Jim Christensen, Laura Dabbish, Jodi Forlizzi, Darren Gergle, Elspeth Golden, Jason
Hong, Pedram Keyani, Sara Kiesler, Andrew Ko, Jennifer Lai, Johnny Lee, Joonhwan
Lee, Brad Myers, Jack Mostow, Judith Olson, David Steck, Karen Tang, Sebastian
Thrun, and Jie Yang.

Any success I have as a mentor or an educator should be credited to the people who
shaped my own educational experience. In their role as undergraduate research advisors,
John Carroll and Mary Beth Rosson helped to develop my interest in human-computer
interaction, as did all of the students and staff in their research group. Sandra Birch was
an asset to every Computer Science undergraduate at Virginia Tech, and Sallie Henry
provided valuable advice throughout my time there. In my interaction with the
University Honors Program, Jack Dudley and Barbara Cowles helped to shape my
expectations of scholarship and society. I am also thankful for the many teachers who
contributed to my education in my childhood and my adolescence, especially Mrs. Wells.
She always said that I would eventually appreciate all the things she got me involved in,
and of course she was right.

v

Any success I have in life is largely due to my parents, James and Kathleen.
Whether it was camping, soccer, or schoolwork, my parents have always taken an interest
and made time for me. My father accidentally taught me the value of holding onto
monkey bars, and my mother taught me not to wander off in Kmart. While I am eternally
thankful to have been raised in such a loving and supportive environment, I am even
more grateful to now know my parents as friends. My relationship with my younger
brother, Tom, includes quite a bit of sibling rivalry, but we have always stood up for each
other when it mattered. If I have shown him anything, it is that playing tag with darts is
not exactly a brilliant idea.

Finally, any success I have in love is due entirely to Rebecca. I can wear down
anybody’s patience, but she never seems to tire of me. She has taught me to share, and
she calls my bluffs. She makes me laugh, and I smile at her when she’s not looking.
We giggle and fight like toddlers, and I am an infinitely better person for knowing her.
When I finally asked her to marry me, it caught her completely by surprise. But I am so
happy that she remembered to say yes.

vi

Table of Contents
Abstract iii

Acknowledgements iv

Table of Contents vi

List of Figures ix

1 Introduction 1
1.1 Motivation ..1
1.2 Research Summary and Components ...3
1.3 Dissertation Organization ...4

2 Related Work 7
2.1 Research on How People Perceive and Manage Interruptions7
2.2 Laboratory Studies of Interruptions in Controlled Environments11
2.3 Context-Aware Computing and Human Activity Recognition...........................15
2.4 Systems Related to Human Interruptibility ..19
2.5 Studies of Sensor-Based Models of Human Interruptibility...............................25
2.6 Methods and Tools Related to this Dissertation ...28

3 A Wizard of Oz Approach To Top-Down Sensor Development 30
3.1 Introduction ..30
3.2 Our Approach ...31
3.3 Benefits of Our Approach...34

3.3.1 Exposing the Tradeoff Between Complexity and Utility.........................34
3.3.2 Enabling the Iterative Exploration of Potential Sensors35
3.3.3 Inspecting Errors in a Sensor-Based Statistical Model36

3.4 Conclusion..36

4 A Wizard of Oz Study of Office Worker Interruptibility 37
4.1 Introduction ..37
4.2 Data Collection...38
4.3 Collected Data Overview..39
4.4 Wizard of Oz Sensor Simulation ..41
4.5 Potential Feature Development ..44
4.6 Statistical Model Development ..44
4.7 Examining the Selected Features..47
4.8 An Easy to Build Set of Sensors...49
4.9 Discussion...51

vii

5 A Study of Human Observers Estimating Office Worker Interruptibility 54
5.1 Introduction ..54
5.2 Methodology...55
5.3 Human Observer Strategies ..57
5.4 Human Observer Estimate Reliability ..58
5.5 Human Observer Confidence ...60
5.6 Recording Duration ..61
5.7 Discussion...62

6 A Robustness Study with Real Sensors and Diverse Office Workers 64
6.1 Introduction ..64
6.2 Data Collection...65

6.2.1 Sensor Installation..65
6.2.2 Participants...67

6.3 Collected Data Overview..68
6.4 A General Model of Office Worker Interruptibility ...70
6.5 Models of Different Office Workers and Environments74

6.5.1 A Model of Manager Interruptibility ...74
6.5.2 A Model of Researcher Interruptibility..76
6.5.3 A Model of Intern Interruptibility in Shared Offices79
6.5.4 Discussion ..81

6.6 Models Based on Only a Laptop Computer ...82
6.6.1 A General Laptop-Based Model of Interruptibility..................................83
6.6.2 A Laptop-Based Model of Manager Interruptibility85
6.6.3 A Laptop-Based Model of Researcher Interruptibility87
6.6.4 Discussion ..89

6.7 Discussion...89

7 A Study of Task Engagement in a Natural Programming Problem 92
7.1 Introduction ..92
7.2 Experimental Setup ..94

7.2.1 The Paint Program Primary Task...94
7.2.2 Mental Arithmetic Interruptions ..95

7.3 Exploratory Data Collection and Overview ...97
7.4 Wizard of Oz Sensor Exploration and Implementation......................................99
7.5 Primary Data Collection ...101
7.6 A Model of Programmer Interruptibility ..102
7.7 Discussion...105

8 Toolkit Support for Sensor-Based Statistical Models of Human Situations 107
8.1 Introduction ..107
8.2 Challenges Addressed by Subtle ..108

8.2.1 Providing Relevant Sensors ...108
8.2.2 Learning Appropriate Features ..109

viii

8.2.3 Accounting for Individual Differences and Unexpected Situations.......109
8.2.4 Managing Field Deployments ..109

8.3 Subtle Architecture ...110
8.4 Extensible Sensing Library...111

8.4.1 Ambient Audio Analyses ...111
8.4.2 Desktop Event Stream Analyses ..112
8.4.3 WiFi-Based Location Sensing..113
8.4.4 Sensing Library Extensibility Support ...114

8.5 Fully-Automated Iterative Feature Generation and Selection114
8.5.1 Operator Chains ...116
8.5.2 Potential Feature Filters ...116
8.5.3 Type-Based Operators..119
8.5.4 Extensibility ...122

8.6 Continuous Learning of Individual Models..123
8.7 Supporting Field Deployments...125
8.8 Subtle Validation ..126

8.8.1 Whistle ...127
8.8.2 AmIBusy Prompter ..129

8.9 Discussion...130

9 Conclusion and Future Work 132
9.1 Summary of Work and Specific Contributions ..132

9.1.1 A Wizard of Oz Approach to Top-Down Sensor Development133
9.1.2 A Wizard of Oz Study of Office Worker Interruptibility.......................134
9.1.3 A Study of Human Observers Estimating Office Worker Interruptibility134
9.1.4 A Robustness Study with Real Sensors and Diverse Office Workers ...135
9.1.5 A Study of Task Engagement in a Natural Programming Problem136
9.1.6 Toolkit Support for Sensor-Based Statistical Models of Human Situations137

9.2 Future Work..138
9.2.1 Conducting Studies with Subtle ...139
9.2.2 Using Implicit Labels in Models of Human Interruptibility139
9.2.3 Examining the Validity of Interruptibility Self-Reports140
9.2.4 Building Models with Data Collected from Many People141
9.2.5 Managing the Number of Potential Features Considered by Subtle142
9.2.6 Developing Human-Interpretable High-Level Features.........................143

9.3 Conclusion..144

Bibliography 146

ix

List of Figures
1 Introduction

2 Related Work
2.1 Latorella’s interruption management stage model (McFarlane and

Latorella 2002).. 8
2.2 McFarlane’s primary task, requiring continuous attention to

successfully bounce people to safety (McFarlane 1999; McFarlane
2002). .. 12

2.3 Adamczyk and Bailey found that participants are more receptive to
interruptions between subtasks high in a task hierarchy and that more
damage is caused by interruptions that occur during subtasks that are
deep in the hierarchy (Adamczyk and Bailey 2004). .. 14

2.4 A percent-active plot, showing the likelihood a person is active on
their computer by time of day (Begole et al. 2002; Begole et al.
2003). .. 17

2.5 Kern et al. distinguish between personal and social interruptibility
(Kern and Schiele 2003; Kern et al. 2004). ... 18

2.6 Horvitz discusses mixed-initiative user interfaces as the effective
coupling of direct manipulation and intelligent automation (Horvitz
1999). .. 20

2.7 An smart “out-of-office” response automatically generated based on
Priorities’s availability forecasting (Horvitz et al. 2002). 21

2.8 Fogarty et al. develop and study MyVine, a context-aware
communication client with a model of availability (Fogarty et al.
2004b). .. 23

2.9 Ho and Intille use wireless accelerometers to detect physical activity
transitions and measure their relationship to interruptibility (Bao and
Intille 2004; Ho and Intille 2005)... 27

2.10 An ROC curve illustrates the tradeoff between true and false
positives at every potential threshold. In this example, the curve is
marked at a threshold for p > 0.5, a common threshold for two-choice
problems. A curve entirely above the one shown would illustrate a
model that is clearly better, as it would generate more true positives
for the same number of false positives at every threshold. The area
under the curve, A', is a widely used measure of the quality of a
model... 29

x

3 A Wizard of Oz Approach To Top-Down Sensor Development
3.1 The seven steps in our approach the top-down development of

sensor-based statistical models... 31
3.2 Without information about a sensor’s utility, decisions can be based

only on the complexity of a sensor. ... 35
3.3 Our approach allows the consideration of both a sensor’s complexity

and it expected utility. .. 35

4 A Wizard of Oz Study of Office Worker Interruptibility
4.1 Two representative frames from our recordings.. 39
4.2 Distribution of interruptibility self-reports. We focus on

distinguishing “Highly Non-Interruptible” responses from the other
four possible responses... 40

4.3 Individual distributions of self-reports... 40
4.4 Frequency of various events during times when the office occupant

was present.. 41
4.5 The custom interface used in our Wizard of Oz simulation of

potential sensors.. 42
4.6 The reliability of a naïve Bayes model of human interruptibility

based on our simulated sensors. ... 46
4.7 The model’s reliability, indicated by A', jumps sharply with the first

features and grows more slowly as additional features are added. 47
4.8 The first seven features selected for the simulated sensor model

shown in Figure 4.6. ... 48
4.9 The reliability of a naïve Bayes model of human interruptibility

based on an easy to build set of sensors (Any Talk, Mouse,
Keyboard, Telephone, Time of Day). .. 50

4.10 The first seven features selected for the easy to build sensor model
shown in Figure 4.9. ... 51

5 A Study of Human Observers Estimating Office Worker Interruptibility
5.1 The custom interface used by our human observers to estimate the

interruptibility of the office workers. ... 56
5.2 Confusion matrix for our human observer estimates of office worker

interruptibility. .. 58
5.3 Confusion matrix for our human observers identifying “Highly

Non-Interruptible” situations.. 59

xi

5.4 Human observer responses to the Likert scale “I am confident in the
accuracy of my judgments.”... 60

5.5 Human observer responses to the Likert scale “The 15 second videos
were long enough for making judgments.”.. 61

6 A Robustness Study with Real Sensors and Diverse Office Workers
6.1 Distribution of interruptibility self reports. We focus on

distinguishing “Highly Non Interruptible” responses from the other
four possible responses... 68

6.2 Individual distributions of self-reports... 69
6.3 The reliability of a naïve Bayes model of human interruptibility

based our actual, implemented sensors. This model is built and
evaluated against data from all 10 office workers. .. 70

6.4 As in our initial Wizard of Oz feasibility study, the reliability of our
model based on real sensors jumps sharply with its first features and
grows more slowly as additional features are added. .. 71

6.5 The first seven features selected for the general model of office
worker interruptibility shown in Figure 6.3... 72

6.6 The reliability of a naïve Bayes model of the interruptibility of our
two manager participants.. 74

6.7 The first seven features selected for the model of manager
interruptibility shown in Figure 6.6. .. 75

6.8 The reliability of a naïve Bayes model of the interruptibility of our
five researcher participants... 76

6.9 The first seven features selected for the model of researcher
interruptibility shown in Figure 6.8. .. 77

6.10 The reliability of a naïve Bayes model of the interruptibility of our
three intern participants in shared offices. ... 79

6.11 The first seven features selected for the model of intern
interruptibility shown in Figure 6.10. .. 80

6.12 The reliability of a laptop-based naïve Bayes model of the
interruptibility of our six participants who use a laptop computer........................ 83

6.13 The first seven features selected for the laptop only model of six
participants shown in Figure 6.12. ... 84

6.14 The reliability of a laptop-based naïve Bayes model of the
interruptibility of our two managers who use a laptop computer. 85

6.15 The first seven features selected for the laptop only model of two
managers shown in Figure 6.14. .. 86

xii

6.16 The reliability of a laptop-based naïve Bayes model of the
interruptibility of our four researchers who use a laptop computer. 87

6.17 The first seven features selected for the laptop only model of four
researchers shown in Figure 6.16... 88

6.18 A summary of the reliability of the models in this chapter. All of our
models identify “Highly Non-Interruptible” situations significantly
better than human observers, and none of the laptop-only models are
significantly worse than the corresponding full sensor model. 90

7 A Study of Task Engagement in a Natural Programming Problem
7.1 The Paint program that participants modified during the task.............................. 94
7.2 The Eclipse development environment, with a pending interruption

flashing on the taskbar.. 96
7.3 A mental arithmetic interruption. Note that it obscures the entire

screen. ... 97
7.4 The 20 simulated sensors we used to examine our exploratory

recordings of programmers working on the Paint task.. 99
7.5 The reliability of a naïve Bayes model of the interruptibility of our

twenty programmer participants. ...102
7.6 As with models presented earlier in this dissertation, the reliability of

our model of programmer interruptibility jumps with its first features
and grows more slowly as additional features are added.103

7.7 The first seven features selected for the model of programmer
interruptibility shown in Figure 7.5. ..104

8 Toolkit Support for Sensor-Based Statistical Models of Human Situations
8.1 Overview of Subtle’s runtime architecture. ..110
8.2 Overview of Subtle’s fully-automated iterative feature generation

and selection algorithm...115
8.3 An automatically generated high-level feature to determine how

many of the previous 30 seconds were spent in Windows Media
Player. ...116

8.4 The number of features that pass each filter in each iteration of
Subtle’s model learner. This example is from the learner for the
programmer interruptibility model presented in Figure 7.5.118

8.5 While the strength of a WiFi connection and the value of a statistic
from an ambient audio analysis have very different meanings, both
can have operators applied based on the fact that they are numeric
values. ...119

xiii

8.6 Applying the same type-based operators to low-level sensors to
obtain high-level features with different meanings. The top feature
captures whether Windows Media Player was open for more than 5
of the past 15 minutes, while the bottom captures whether a person
was in range of a particular WiFi access point for 10 of the past 15
minutes..120

8.7 As additional labels are collected, Subtle continuously learns an
updated sensor based statistical model...123

8.8 Whistle addresses the problem that people often forget to mute or
unmute laptop computers. It collects a label each time a person
manually toggles the mute flag, learning a model of the relationship
between context and a person’s desired setting. ..128

8.9 AmIBusy Prompter learns individualized models of interruptibility,
allowing applications to consider a person’s interruptibility in just 6
lines of code. ...129

9 Conclusion and Future Work

 1

Chapter 1
1 Introduction

1.1 Motivation
People have developed a variety of conventions that defined what behavior is socially
appropriate in different situations (Barker 1968). In office working environments, social
conventions dictate when it is appropriate for one person to interrupt another. These
conventions, together with the reaction of the person who has been interrupted, allow an
evaluation of whether or not an interruption is appropriate. Social conventions
surrounding interruptions also allow the development of an a priori expectation of
whether or not an interruption would be appropriate (Hatch 1987). For example, a person
seeking a colleague’s attention is normally able to glance in an open office door and
quickly assess the colleague’s current interruptibility.

Current computer and communication systems are largely unaware of the social
conventions defining appropriate behavior, the social situations that surround the use of
an application, and the impact that an application’s actions have on social situations. For
example, mobile phones ring while their owners are in meetings and laptop computers
regularly interrupt presentations to announce that a new email has arrived or that the
laptop’s battery is fully charged. Current computer and communication systems
frequently create socially awkward interruptions or unduly demand attention because
they have no way to determine whether it is appropriate to interrupt. Because they have
no model of interruptions, it is impossible for these systems to develop an a priori

Chapter 1: Introduction 2

expectation of the impact their interruptions will have on users and the social situations
surrounding an application.

The general failure of current systems to consider our interruptibility can overwhelm
modern office workers. At any given point in time, a person might be notified of the
arrival of a new email, receive an instant message from a colleague, be reminded by a
handheld computer of an upcoming appointment, receive a phone call on their office or
mobile phone, and be involved in a face-to-face interaction with a colleague. Any one of
these demands for attention can be addressed relatively easily, but simultaneous or
repeated demands can quickly become disruptive. In a study of the perceptions of
interruptions held by managers in a research organization, Hudson et al. found that some
managers consider interruptions to be so disruptive that they physically move away from
their computers or even away from their offices in order to obtain uninterrupted working
time (Hudson et al. 2002). Perlow found that interruptions in the workplace can create a
self-perpetuating cycle, wherein workers in danger of missing a deadline interrupt other
workers with urgent requests, which then causes the interrupted workers to fall behind in
their own work, leading them to interrupt still more workers (Perlow 1999).

People who design or use current computer and communication systems can
generally adopt one of two strategies for managing the damage caused by inappropriate
interruptions. One strategy is to avoid building or using proactive systems, forcing
systems to be silent and wait passively until a user initiates interaction. This approach is
reasonable for many applications in a desktop environment, but many applications in
intelligent spaces or other ubiquitous computing environments could benefit from a
system being able to initiate interactions (Horvitz 1999). Even common desktop
applications sometimes need to initiate an interruption, as in the case of spreadsheet
applications that detect an error in a formula and need to notify the user (Robertson et al.
2004). A second strategy is to design and use systems that can be temporarily disabled
during potentially inappropriate time intervals. However, this approach can be
self-defeating. Turning off a mobile phone prevents unimportant interruptions, but it also
prevents interruptions that could have conveyed critically important information.
Because current systems generally do not have a mechanism for weighing the importance
of information against the appropriateness of an interruption, people are forced into
extremes of either allowing all interruptions or forbidding all interruptions. This problem
is amplified because people forget to re-enable systems after a potentially inappropriate

Chapter 1: Introduction 3

time interval has passed. In one study, Milewski and Smith found that people would
regularly set and then forget to clear a busy flag. Their colleagues thus began to ignore
the busy flag, because they learned that it was common for people to be shown as busy
when they actually were not (Milewski and Smith 2000).

If we could develop relatively robust models of human interruptibility, they might
support a variety of significant advances in human-computer interaction and
computer-mediated communication. Including a model of human interruptibility in an
application need not deprive people of control. For example, a phone could
automatically inform a caller that the person being called appears to be busy, then allow
the caller to consider their relationship with the person they are calling and the
importance of the call to decide whether to interrupt the apparently busy person or leave a
message instead (Schmidt et al. 2000). Email and messaging applications might delay
potentially disruptive auditory notifications for messages that seem relatively
unimportant, but never prevent delivery of the information. Information displays might
choose between several methods of conveying information according to the current
appropriateness of each method of presentation. Many other specific applications could
be designed for different domains. For example, information about interruptibility might
be combined with information on expertise and other relevant factors to automatically
route incoming technical support requests to the most appropriate member of a technical
support staff.

1.2 Research Summary and Components
This dissertation presents work to develop sensor-based statistical models of the
interruptibility of office workers in their normal work environments. Our work is based
on collecting data in realistic environments and directly measuring and modeling human
interruptibility. There are three major components to the research presented in this
dissertation:

First, a novel method is developed, applying a Wizard of Oz technique to inform
the top-down development of sensor-based statistical models.

Second, a series of studies are conducted, examining the feasibility and then the
robustness of sensor-based statistical models of human interruptibility.

Chapter 1: Introduction 4

Third, a software toolkit is created, enabling non-expert development of
applications that learn and use sensor-based statistical models of human
situations.

Interruptibility is an inherently abstract concept, so this dissertation explores models
based on two different approaches to measuring interruptibility. First, we use an
experience sampling technique to collect interruptibility self-reports from office workers
in their normal work environments. In a series of studies, we show that practical sensors
can support learned statistical models that identify situations that office workers report to
be “Highly Non-Interruptible” significantly better than human observers. We explore a
second measure of interruptibility by developing a controlled study to measure how long
people choose to defer a pending interruption. Informed by these studies, we develop
Subtle, a toolkit for Sensing User Behavior To Learn about the Environment. Subtle
enables the non-expert development of applications that learn and use sensor-based
statistical models of human situations by providing an extensible library of appropriate
sensors, fully-automated iterative feature generation and selection, continuous learning of
personalized models, privacy filtering of collected sensor logs, and support for field
deployments of applications. By making research on sensor-based statistical models of
human situations accessible to the wider human-computer interaction research
community, Subtle enables research into how such models can best be included in
applications.

1.3 Dissertation Organization
This chapter has motivated our investigation of sensor-based statistical models of human
interruptibility and provided a brief overview of the research we will present.

Chapter 2 presents a review of related work, ranging from laboratory studies of
interruptibility to deployed systems that model availability. In order to best illustrate how
our work is related to that of other researchers, we include our own work in this review.

Chapter 3 introduces the novel Wizard of Oz technique we will use throughout this
dissertation. Examining models based on simulated versions of potential sensors enables
effective top-down development of sensor-based statistical models of human situations.

Chapter 1: Introduction 5

Chapter 4 presents a Wizard of Oz analysis of audio and video recordings collected
in the normal work environments of four office workers. Using an experience sampling
technique to collect occasional self-reports of a person’s interruptibility, we simulate the
presence of many potential sensors and examine the feasibility of learning statistical
models to identify “Highly Non-Interruptible” situations.

Chapter 5 explores the reliability of our learned statistical models by comparing them
to the reliability of human observers. Using snippets of our collected audio and video
recordings to measure the reliability of human observers, we show that the previous
chapter’s learned statistical models based on simulated sensors can identify “Highly
Non-Interruptible” situations significantly better than human observers.

Chapter 6 extends this result by deploying actual, implemented sensors with a larger
and more diverse set of office workers. While different features are most useful for
different types of office workers, we show that a single model of our diverse office
workers can identify situations reported as “Highly Non-Interruptible” significant better
than human observers. We also show that a model built entirely from software-based
sensors for a typical laptop computer, including analyses of audio from a laptop’s built-in
microphone, can support models that identify “Highly Non-Interruptible” situations
significantly better than human observers.

Chapter 7 more carefully examines task engagement in sensor-based statistical
models of human interruptibility. While the results of our previous studies were largely
dominated by results related to social engagement, this chapter controls for social
engagement and examines programmers working on a natural programming task. We
start by using our Wizard of Oz technique to analyze screen capture recordings, then
develop a sensing plug-in to capture low-level events in the programmer’s development
environment. We then learn models that can identify situations in which a programmer
will choose to delay attending to a pending interruption.

Chapter 8 applies the results of our studies to the development of Subtle. Based on
the sensors and features proven effective in our studies of human interruptibility, Subtle
provides fully-automated iterative feature generation and selection with an extensible
sensing library appropriate for a typical laptop computer. Using Subtle, an application
developer can include a sensor-based statistical model of a human situation in as little as

Chapter 1: Introduction 6

16 lines of code. This allows human computer interaction researchers to focus on
compelling applications and datasets, rather than the difficulties of collecting appropriate
sensor data and learning statistical models.

Chapter 9 concludes this dissertation by summarizing some of the major research
contributions from each chapter and discussing several areas for future work.

Much of the work presented in this dissertation has previously been published in
other forums. Chapter 4’s initial Wizard of Oz feasibility study appears in (Hudson et al.
2003). A more complete analysis, together with Chapter 5’s study of human observers,
appears in (Fogarty et al. 2005b). Chapter 6’s study deploying actual, implemented
sensors with a larger and more diverse set of office workers appears in (Fogarty et al.
2004a). Chapter 7’s work using a development environment’s low-level event stream to
model programmer task engagement appears in (Fogarty et al. 2005c). We have updated
and clarified many aspects of the presentation of this previously published work.
Publications are currently being prepared for Chapter 3’s discussion of our Wizard of Oz
method and Chapter 8’s discussion of Subtle.

 7

Chapter 2
2 Related Work

This chapter, broken into six sections, provides a general overview of the state of
research around sensor-based statistical models of human interruptibility. The first
section discusses work examining how people currently perceive and manage
interruptions. The second section discusses laboratory studies of interruptions in
controlled environments. The third section discusses context-aware computing and
human activity recognition, including some research that has examined activity
recognition with a potential relationship to human interruptibility. The fourth section
discusses deployed systems that are related to interruptibility. The fifth section, which
includes the studies we present in this dissertation, discusses work to explicitly measure
and model human interruptibility using data collected in realistic environments. Finally,
the sixth section discusses a variety of methods and tools that are not directly related to
human interruptibility but are used in this dissertation. Related work is also discussed
throughout the dissertation as appropriate.

2.1 Research on How People Perceive and Manage Interruptions
McFarlane and Latorella review a variety of work motivating the study of interruptions in
human-computer interaction (McFarlane and Latorella 2002). They argue that further
research on interruptions is motivated by the increasing complexity of human-computer
systems and by the use of automated monitoring as a strategy to increase the amount of

Chapter 2: Related Work 8

information that a person can manage. McFarlane and Latorella focus on domains where
the costs of failure are very high, including interruptions of pilots and interruptions of
operators of the Aegis Combat System, but their discussion is intended to be more
general. As a basis for understanding and studying interruptions, they review Latorella’s
Interruption Management Stage Model, shown in Figure 2.1. This model provides an
organizing framework for examining how people respond to interruptions. For example,
Figure 2.1 shows four effects of interruptions (diversion, distraction, disturbance, and
disruption) and where these effects can occur in the process of an interruption.

Figure 2.1. Latorella’s interruption management stage model
(McFarlane and Latorella 2002).

Chapter 2: Related Work 9

McFarlane and Latorella also review McFarlane’s taxonomy of human interruption,
which describes eight major dimensions in the problem of human interruption: the
source of interruption, the individual characteristic of the person receiving the
interruption, the method of coordination, the meaning of the interruption, the method of
expression, the channel of conveyance, the human activity changed by the interruption,
and the effect of the interruption. In contrast to McFarlane and Latorella, this dissertation
is explicitly focused on the interruptibility of office workers. Although we recognize the
importance of the many dimensions of interruptions discussed by McFarlane and
Latorella, this dissertation is focused on how sensed context relates to the cost of
delivering an interruption.

Perlow studied the time usage of a group of 45 software engineers in a technology
corporation (Perlow 1999). She found a crisis mentality that creates a self-perpetuating
cycles of interruptions. In this cycle, a person up against a critical deadline feels free to
interrupt a colleague and request assistance. But this delays the scheduled work of the
interrupted colleague, thus causing the colleague to fall behind in their own work. The
colleague is then forced to interrupt yet another person. Perlow also found a lack of
management recognition for the people who respond to such requests for assistance, as
their managers recognized that they were behind on their work but did not appreciate that
this was because they had been assisting somebody else. In an attempt to help address
these issues, Perlow introduced scheduled quiet times into the working week of the
group. During these quiet times, the engineers were supposed to work alone and without
disturbing other members of the group. This did seem to improve group productivity, but
the effect was short-lived because there was no incentive for the engineers to abide by
quiet time and so the self-perpetuating cycle reemerged.

Hudson et al. use an experience sampling method and qualitative interviews to
examine how corporate research managers perceive and manage interruptions, finding a
tension between the value delivered by appropriate interruptions and the disruption
caused by inappropriate interruptions (Hudson et al. 2002). Among their findings,
Hudson et al. report that managers sometimes move away from their computer or even
away from their office in order to obtain uninterrupted working time. But they note that
managers reported taking such extreme measures for only part of a day, as their
availability to address interruptions is an important requirement of their work.

Chapter 2: Related Work 10

O’Conaill and Frohlich conducted an observational study of interruptions in the
workplace, analyzing video that Whittaker et al. previously collected by following two
office workers for a week (Whittaker et al. 1994; O'Conaill and Frohlich 1995).
Examining 125 naturally occurring interruptions, they found that the initiator of an
interruption benefited from 76% of interruptions while the person being interrupted
benefited from only 64% of interruptions. O’Conaill and Frohlich also found only 55%
of interruptions resulted in the interrupted person resuming the work they were doing
prior to the interruption (though they only consider immediate resumption, not whether
the interrupted work was later resumed).

Czerwinski et al. conducted a diary study examining how 11 participants interleave
multiple tasks amidst interruptions (Czerwinski et al. 2004). Among their findings,
participants reported using a conservative average of 1.75 documents per activity. They
found that 40% of reported task switches were self-initiated, 19% corresponded to
addressing an item on a physical or electronic to-do list, 14% were due to a phone call,
and 10% were due a meeting or appointment. These results inform the development of
GroupBar, a prototype taskbar enhancement that allows users to group and organize
documents and windows related to a task.

Mark et al. present a observational study of 24 information workers, examining their
work fragmentation by considering the length of time spent in an activity and the
frequency of interruptions (Mark et al. 2005). This observational approach used in this
work examined activities at a much finer granularity than the diaries collected by
Czerwinski et al. They consider both external and internal interruptions, defined by
Miyata and Norman as interruptions that are caused by an event in the environment
versus by an internal decision to stop working on a task (Miyata and Norman 1986).
Mark et al. found that people spend only short periods of time in a working sphere before
switching to another, perhaps because they are continually juggling their priorities
according to external workplace demands. They also found that 77% of interrupted work
was resumed at some point before the end of the same day. Based on these and other
findings, Mark et al. discuss requirements for supporting fragmented work. These are
that interruptions should match the current working sphere, making them of benefit
instead of a disruption, that one should be able to easily and seamlessly switch between
tasks, and that interrupted tasks should be easily resume by preserving the state of the
task when it was interrupted and by providing cues for reorienting to the task.

Chapter 2: Related Work 11

In the context of this dissertation, the field studies presented in this section help to
motivate the study of interruptions. Prior work has shown that interruptions are both
disruptive to work and critical to obtaining the information needed to work effectively. If
systems could deliver interruptions at more appropriate times, we might be able to obtain
the benefits provided by the information delivered in interruptions while minimizing the
cost of their delivery.

2.2 Laboratory Studies of Interruptions in Controlled Environments
A number of laboratory studies have examined the effects of interruptions in controlled
tasks, sometimes with the goal of understanding human memory or cognitive processes,
other times focusing on the development of guidelines for human-computer interaction.
These studies often provide valuable high-level insight into the design of applications,
but it can sometimes be difficult to apply this insight to a particular problem. In contrast,
this dissertation is focused on the development of sensor-based statistical models that can
be directly incorporated into applications.

Zeigarnik was the first to publish on the relationship between interruptions and
selective memory (Zeigarnik 1927/1938). In what has become known as the
Zeigarnik Effect, people can recall the details of interrupted tasks better than tasks that
have been completed, potentially due to a tension which persists only until the needs of
the interrupted task are satisified. Zeigarnik began to investigate this effect after
informally noticing that a waiter could recall large numbers of orders, but only those that
had not yet been completed.

Gillie and Broadbent present a series of studies using a computer to administer and
interrupt a text-based navigation and object collection task (Gillie and Broadbent 1989).
They examine the effect of the length of the interruption, the similarity of the interruption
to the main task, and the complexity of the processing demanded by the interruption.
Their findings suggest that the length of an interruption is not a major factor in whether
the interruption will be disruptive, but that even short interruptions are likely to be
disruptive if they are similar to the interrupted task or are complex enough to require
significant processing or memory storage.

Hess and Detweiler showed that the effects of an interruption can be strongly
influenced by expertise or training in handling the interruption (Hess and Detweiler

Chapter 2: Related Work 12

1994). Interruptions similar to a primary computer task were very disruptive in the first
two of three sessions, but they were significantly less disruptive in the third session. In
order to establish that the effect was not due to practice on the primary task, Hess and
Detweiler examined training for two sessions on the primary task without interruptions
and then introducing the interruptions in the third session. The introduction of the
interruptions was significantly harmful to the task, even though the participants were
highly trained on the task. This indicates that expertise or training in handling the
interruption is important, not just expertise or training in the primary task.

McFarlane tested four known methods for coordinating the delivery of interruptions:
immediate, negotiated, mediated, and scheduled (McFarlane 1999; McFarlane 2002).
Working at a computer, participants focused on a primary task modeled after the
Nintendo video game Fire, which requires the player manage jumpers across the screen
by bouncing each jumper three times at three different locations. Interruptions were
introduced by a secondary task requiring the participant to solve a matching problem.
McFarlane showed that the negotiated coordination of interruptions generally obtained
the best result, as long as small differences in the time taken to begin addressing an
interruption are not critical. But he also notes that the use of negotiated coordination
could result in an interruption being indefinitely delayed.

Figure 2.2. McFarlane’s primary task, requiring continuous attention to
successfully bounce people to safety (McFarlane 1999; McFarlane 2002).

Chapter 2: Related Work 13

Robertson et al. examine immediate and negotiated interruptions to help users debug
errors in formulas during end-user spreadsheet programming (Robertson et al. 2004).
They show that participants in the negotiated condition learned more about formula
propagation, were able to fix more bugs per minute, and had a better understanding of
whether they had fixed bugs. These differences were not due to a simple difference in
the time required to attend to immediate interruptions, but rather seem to be because the
different interruption styles led participants to pursue different debugging strategies.

Dabbish and Kraut examine interruption coordination in teams using a task similar to
McFarlane’s (Dabbish and Kraut 2004). A helper partner focuses on McFarlane’s task
while responding to occasional requests for information from the asking partner. The
asking partner has either a detailed display of the helper partner’s task, an abstract display
of the helper partner’s workload, or no awareness of the helper partner’s workload.
Dabbish and Kraut found that the abstract awareness display provided much of the
benefit of a detailed display while imposing less attentional cost on the interrupter. They
also found that the presence of a team reward structure was required before the asker
would consider the helper’s interruptibility.

In a series of studies, Czerwinksi, Cutrell, and Horvitz examine the effect of
interruptions due to notifications delivered during list searching tasks and simple office
productivity tasks (Czerwinski et al. 2000a; Czerwinski et al. 2000b; Cutrell et al. 2001).
They showed a harmful effect on overall task performance for notifications delivered
while a participant is typing, using buttons or menus, or evaluating search results. While
they found that interruptions delivered early in a task had less negative impact on the
overall time required to a complete a task, they also found that interruptions delivered
early in a task resulted in a more negative impact on participant memory of the
interrupted task.

Adamczyk and Bailey study interruptions at different points in a task hierarchy,
examining the relationship between predicted cognitive load and how a participant
perceives an interruption (Adamczyk and Bailey 2004). They start by eliciting
hierarchical models of how participants describe three office tasks: a document editing
task, a video summarization task, and a web search task. Different participants then
performed the tasks while being interrupted at different points in the task hierarchy, with
the expectation that the best time for an interruption will be between subtasks that are

Chapter 2: Related Work 14

high in the task hierarchy, while the worst time to interrupt will be during subtasks that
are deep in the task hierarchy. While they did not find differences in task time, subjective
questionnaires indicate that interruptions at the predicted best times produce less
annoyance, frustration, and time pressure, require less mental effort, and are deemed
more respectful of the primary task. Further, interruptions at the predicted worse times
result in responses that are worse than responses for random interruptions.

Iqbal et al. examine hierarchical task models using pupil dilation to measure mental
workload (Iqbal et al. 2005). Studying a route planning task and a document editing task,
they developed and validated GOMS models of the tasks. Because participants took
different lengths of time to complete the tasks, Iqbal et al. manually aligned their
recordings with the GOMS models, using screen recordings together with keyboard,
mouse, and gaze activity to track each participant’s progress through the task model.
They found that different types of subtasks imposed different workloads. For example, in
the route planning task, Reasoning subtasks induced more workload than Store or Recall
subtasks. They also showed that workload decreases at subtask boundaries, and that it
decreases more at boundaries higher in the task hierarchy (consistent with the results of
Adamczyk and Bailey). But they also found that mental workload is not predicted simply
by the subtask type or its level in the hierarchy, as tasks at the same level in the hierarchy
can have different workloads. Using this type of an approach to manage interruptions is
therefore likely to require measurement of workload, not just the specification of a task
model.

Figure 2.3. Adamczyk and Bailey found that participants are more
receptive to interruptions between subtasks high in a task hierarchy and

that more damage is caused by interruptions that occur during
subtasks that are deep in the hierarchy (Adamczyk and Bailey 2004).

Chapter 2: Related Work 15

In the context of this dissertation, the controlled studies of interruptibility presented
in this section serve two roles. One on hand, these studies show that significant
improvements can be obtained by carefully accounting for interruptibility in controlled
situations. This motivates our work to realize these benefits in realistic field
environments. On the other hand, the results of these controlled studies are only directly
applicable in the constrained and sometimes artificial situations in which the studies are
conducted. Our work aims to develop models of interruptibility that are practical for
real-world deployment. For example, this dissertation does not assume the availability of
detailed task models. Instead, we focus on modeling interruptibility in a random
sampling of situations experienced by typical office workers. It is therefore more
apparent how our results directly apply to deploying interruptibility models in office
environments.

2.3 Context-Aware Computing and Human Activity Recognition
While laboratory studies of interruptions can provide valuable insight into cognitive
processes or the design of applications, they cannot by themselves enable the
development of applications that adapt to human context. A variety of work has
examined the recognition of human activities, and reviewing all of it is beyond the scope
of this section. This section discusses some of the most relevant work on human activity
recognition, while later sections will discuss work that focuses on directly measuring and
modeling human interruptibility.

Horvitz et al. present Lumière, a system that reasons about the goals and needs of
users in order to provide intelligent assistance within an application (Horvitz et al. 1998).
Working from a model of likely goals within an application, Lumière monitors an
application’s event stream to infer what goals a person may be pursuing and whether the
person is likely to benefit from assistance. A personal competency profile, updated when
when a person views documentation or successfully completes tasks, is also considered in
deciding whether a person is likely to benefit from assistance. The likelihood that a user
needs assistance is compared to a user-adjustable threshold to determine whether the
system should attempt to provide assistance. Lumière’s knowledge of a person’s current
goals can also be used to inform the results of user-initiated help requests, as likely goals
can be considered together with the text of a query.

Chapter 2: Related Work 16

Schmidt introduces implicit interaction, discussing how a variety of contextual
information can trigger implicit changes in an interaction (Schmidt 2000). Dey et al.
define context as “any information that can be used to characterize the situation of
entities (i.e. whether a person, place or object) that are considered relevant to the
interaction between a user and an application, including the user and the application
themselves” and develop the Context Toolkit to support the investigation of research
challenges in the area of context-aware computing (Dey et al. 2001).

Location is widely considered an important piece of context that has prompted
significant research. The PlaceLab initiative is investigating privacy-appropriate
approaches to estimating a device’s location using existing radio beacons, such as WiFi
access points and mobile phone towers (Schilit et al. 2003; LaMarca et al. 2005).
Patterson et al. infer transportation-related activities, such as bus riding, from a stream of
GPS data (Patterson et al. 2003). Ashbrook and Starner use GPS data to infer significant
locations and patterns of movement across users (Ashbrook and Starner 2003). Liao et
al. recognize that a particular person’s location can be a strong indicator of that person’s
activity, using GPS data to recognize such activities as being at home, working,
shopping, and dining out (Liao et al. 2005).

Several advanced laboratories have been developed to recreate home environments
appropriate for studying human activity recognition. The Aware Home, at Georgia Tech,
includes ubiquitous computing technology to support a variety of research based on
human activity recognition (Abowd and Mynatt 2000). Informed by work on installing
large numbers of simple sensors into existing homes (Munguia Tapia et al. 2004), the
PlaceLab project, at MIT, is a living laboratory that enables data collection in support of
researchers developing context-aware and ubiquitous computing technologies (Intille et
al. 2005). Wilson and Atkeson instrument a home to examine work on simultaneously
tracking and recognizing the activities of occupants using simple, anonymous sensors like
motion detectors and contact switches (Wilson and Atkeson 2005).

Oliver et al. develop SEER, which used layered Hidden Markov Models to recognize
a set of activities related to human interruptibility (Oliver et al. 2002). Considering audio
and video analyses together with the desktop event stream, SEER classifies an office
situation into one of six categories: phone conversation, presentation, face-to-face
conversation, user present and engaged in some other activity, distant conversation

Chapter 2: Related Work 17

(outside the view of the camera), or nobody present. While work discussed in the next
section shows that recognizing these activities is useful in a model of human
interruptibility, Oliver et al. do not collect a measure of interruptibility or examine how
their recognized activities relate to interruptibility. Oliver and Horvitz explore selective
perception within Selective SEER, which enables or disables sensing subsystems based
on the expected value of the information delivered by that subsystem (Oliver and Horvitz
2003). Selective SEER is able to reason about whether the value provided by a sensing
subsystem justifies the computational cost of enabling the system. Subsystems with a
low computational cost might therefore always be enabled, while subsystems with a
relatively high computational cost (such as vision-based subsystems) might be enabled
only when they are likely to provide important information.

Begole et al. use minute-by-minute records of computer activity to visualize and
model patterns in a person’s presence at their computer (Begole et al. 2002; Begole et al.
2003). Figure 2.4 presents an example data visualization, showing that there are clearly
times when a particular person is more or less likely to be active on their computer. This
type of visualization could be directly incorporated in some applications, but other
applications may require the automated recognition of major trends. Using an
Expectation Maximization clustering algorithm (Dempster et al. 1977), Begole et al.
cluster periods of inactivity to model significant trends. They are able to detect such
patterns as recurring meetings and the length of a commute (the time between when a
telecommuter logs off a home computer until they log into a computer at work).

Avrahami and Hudson model responsiveness to instant messages: whether or not a
person is likely to respond to an attempt to initiate communication via an instant message
(Avrahami and Hudson 2006). Based on a history of a person’s computer activity and
whether or not they have previously responded to instant messages, Avrahami and
Hudson develop statistical models to predict whether a person is likely to respond to an

Figure 2.4. A percent-active plot, showing the likelihood a person is active
on their computer by time of day (Begole et al. 2002; Begole et al. 2003).

Chapter 2: Related Work 18

instant message from a person with whom they are not already in a conversation. Their
model is neither a model of presence (as with Begole et al.) nor a model of
interruptibility (as examined in this dissertation), as both of these factors contribute to
whether or not a person will respond. Instead, Avrahami and Hudson describe the
modeling of responsiveness as an example of modeling demonstrated availability.

Kern et al. propose the use of wearable sensors, including a microphone and
accelerometers, to model what they refer to as personal interruptibility and social
interruptibility (Kern and Schiele 2003; Kern et al. 2004). They define personal
interruptibility as “the interruptibility of the user” and social interruptibility as “the
interruptibility of the user’s environment,” providing the example that an audio
notification might be acceptable to a person who is currently bored but that same
notification might be very socially disruptive to the meeting they are attending. Kern et
al. directly model these concepts based on wearable sensors, but we include this work in
our discussion of activity recognition because they have conducted only limited analyses
of field data collected with their wearable system. Specifically, their initial work is based
on an assumed and untested relationship between specific contexts and interruptibility,
such as assuming that social interruptibility is high when walking on the street (Kern and

Figure 2.5. Kern et al. distinguish between personal
and social interruptibility (Kern and Schiele 2003; Kern et al. 2004).

Chapter 2: Related Work 19

Schiele 2003). Their later work asks participants to estimate the personal and social
interruptibility of different contexts, but is focused on participant evaluation of
interruptibility only in hypothetical situations (Kern et al. 2004). In contrast, the work
presented in the remainder of this chapter directly models interruptibility as measured in
field environments or during the execution of natural tasks.

In the context of this dissertation, the context recognition work presented in this
section demonstrates a variety of approaches to context-aware computing. We note that
typical context-aware systems either define direct mappings between contexts and how a
system should behave or directly model a single concrete concept, while this dissertation
will focus on the more abstract notion of modeling interruptibility. Part of the attraction
of this more abstract concept is the potential for generally useful interruptibility models
that can be applied in a variety of applications. This both means that it may not be
necessary to develop many different models and that programmers may not need to
directly manage many different pieces of sensed context. Instead, programs can be
written against a learned model of a person’s interruptibility.

2.4 Systems Related to Human Interruptibility
Horvitz presents the LookOut system in the context of discussing principles for the
design of mixed-initiative user interfaces (Horvitz 1999). While prior work generally
considered intelligent automation and direct manipulation to be different approaches to
human-computer interaction, Horvitz discusses mixed-initiative interfaces as an elegant
coupling of the two. Among other requirements, Horvitz argues that successful
mixed-initiative interfaces will consider uncertainty about a user’s goals, consider user
attention, employ dialog to resolve uncertainty, allow efficient direct invocation or
termination of intelligent automation, and design interactions that minimize the cost of
poor decisions by an intelligent system. He discusses these requirements in the context
of the LookOut system, providing such examples as automated recognition and support
for email messages related to calendar scheduling.

Horvitz et al. introduce Priorities in their discussion of attention-sensitive alerting
systems (Horvitz et al. 1999). This work examines automated reasoning about the
tradeoff between the value of the information gained by delivering a message versus the
cost of interrupting to deliver it. While the notion of this tradeoff is more general,

Chapter 2: Related Work 20

Horvitz et al. focus this work on assigning cost according to a sensor-based statistical
model of attentional status and estimating value through text analyses of incoming email.
They develop classifiers to estimate the criticality of incoming email messages and
suggest a variety of applications based on reasoning about the tradeoff between this
criticality and different paths of action. For example, Priorities can forward a critical
message to a mobile device, play different audio notifications for messages of different
criticality, and decide whether to automatically open and display a message. Priorities
also enables a smart out-of-office application, wherein the sender of a critical email can
be automatically notified that the recipient is currently unavailable and given an estimate
of when the recipient is likely to be available to read the message (Horvitz et al. 2002).

Horvitz et al. build upon the approach introduced in Priorities while developing the
Notification Platform, a multi-device system with an SDK for adding information sources

Figure 2.6. Horvitz discusses mixed-initiative user interfaces as the
effective coupling of direct manipulation and intelligent automation

(Horvitz 1999).

Chapter 2: Related Work 21

and devices (Horvitz et al. 2003b). An important aspect of the Notification Platform is
Coordinate, a core component for reasoning about the cost of interruption and the time
until a person is likely to be active on a device (Horvitz et al. 2002). Coordinate
considers computer activity, electronic calendar information, audio and video analyses,
and location information to reason about a person’s availability on multiple computing
devices. Using activity logs collected from multiple devices, Coordinate can reason
about how long a person is likely to remain available on a device or how long it may be
before a person becomes available on a device. Coordinate also conducts several
analyses of electronic calendar information, including explicit models of the likelihood
that a person will attend an event on their calendar and the cost of an interruption while
attending the event. These supervised calendar analyses are based on using forms to
collect user indications of whether they are likely to attend meetings and the likely cost of
an interruption during a meeting.

Further work by Horvitz et al. has examined the deployment of systems informed by
this work, including BestCom (Horvitz et al. 2003a; Gibbs 2005) and Bayesphone
(Horvitz et al. 2005). Built on Microsoft’s Enhanced Telephony prototype (Cadiz et al.
2004), BestCom monitors incoming phone calls and intelligently routes them after
considering a variety of criteria. For example, an incoming call from a family member or
supervisor might be immediately routed to a person’s phone. The response to other
callers can then be based on a person’s availability, giving callers an indication of when a
person is likely to be available or asking them to leave a message. Bayesphone enables
the integration of computationally-limited devices like mobile phones into systems like
BestCom. Bayesphone runs on a desktop computer, analyzing and pre-compiling

Figure 2.7. An smart “out-of-office” response automatically generated
based on Priorities’s availability forecasting (Horvitz et al. 2002).

Chapter 2: Related Work 22

policies for how a person’s mobile phone should behave during scheduled items on a
person’s electronic calendar. These pre-compiled policies are downloaded to the phone
as a part of regular data synchronization, allowing the computationally-limited device to
intelligently handle incoming calls. Bayesphone can also compile policies indicating
situations in which it will be useful to collect training data from a user, such as whether
or not a person is attending a particular event on their calendar. When the phone is next
synchronized with the full system, this targeted training data can be integrated into the
system’s model of a person’s availability.

Mynatt and Tullio discuss Ambush, a calendar system extension that uses a Bayesian
model to predict the likelihood of a person’s attendance at an event on their schedule
(Mynatt and Tullio 2001). While these estimates can be used as input to a variety of
higher-level inference problems (as in work by Horvitz et al.), they can also be directly
presented to users. Mynatt and Tullio explore a variety of methods for visualizing
confidence estimates in an electronic calendar, including manipulating the transparency
of a calendar entry and using feature maps to illustrate the features dominating a
prediction. Tullio et al. integrate this type of forecasting into Augur, a shared electronic
calendar system, and investigate how people use and react to the addition of intelligent
parsing and attendance forecasting (Tullio et al. 2002).

Shell et al. discuss attentive user interfaces, including the use of eye gaze to indicate
whether a person is currently attending to a computing device (Shell et al. 2003). They
use an IBM PupilCam to detect eye gaze, which uses computer vision to detect pupils and
determine whether people are looking at the sensor (Morimoto et al. 2000). They
demonstrate such applications as looking at a light and speaking “on” or “off.” While
these phrases would normally be ambiguous in a room containing more than one light,
eye gaze can be used to indicate what device a person wants to interact with.

McCrickard et al. examine the evaluation of notification systems, which deliver
information of interest in a parallel, multitasking approach that is extraneous or
supplemental to a user’s attention priority (McCrickard et al. 2003). They develop a
three-dimensional framework for comparing and categorizing notification systems, based
on interruption, reaction, and comprehension. This framework helps to focus notification
system work on understanding user goals surrounding the degree to which a primary task
is interrupted by a notification system, whether a notification system requires rapid and

Chapter 2: Related Work 23

accurate perceptual reaction to the onset of a notification, and whether notifications lead
to long-term comprehension of presented information.

Fogarty et al. develop and study MyVine, a context-aware communication client that
uses a person’s location, electronic calendar, detection of nearby conversations, and level
of computer activity to estimate availability for communication (Fogarty et al. 2004b).
This work raises an interesting tension over how people will interpret such context when
attempting to initiate communication, as an indication that a person is not interruptible
does not necessarily mean that colleagues will choose not to interrupt. After all, many
existing systems only provide indications of presence and so people are accustomed to
using context only to decide whether a person is present. Further, people who clearly
have a need to interrupt may not consider their particular interruption to be disruptive,
consistent with Perlow’s finding that engineers in her study felt they had no incentive to
abide by a quiet time policy (Perlow 1999).

Begole et al. develop Lilsys, which integrates work on sensor-based models of
availability into a previously-developed context-aware instant messaging client (Tang et
al. 2001; Begole et al. 2004). They provide a set of passive sensors for inferring
availability, but also provide such options as a manual override, allowing people to
specifically indicate that they are not available for a length of time. Consistent with prior
work indicating that people do not use or forget to set such manual indications of
availability (Milewski and Smith 2000), Begole et al. report that participants did not use
this manual override functionality. They also found that an indication a person was not
interruptible did not prevent colleagues from sending instant messages, but note that

Figure 2.8. Fogarty et al. develop and study MyVine, a context-aware
communication client with a model of availability (Fogarty et al. 2004b).

Chapter 2: Related Work 24

colleagues may have instead shaped their interruption differently. For example, a
colleague might send a message of the form “Can you call me when you’re free?”

Bailey et al. develop a task-monitoring framework based on PETDL, a Pattern-based
Event and Task Description Language (Bailey et al. 2005). They assume the availability
of high-level application events like those in plug-in architectures for some applications
and create tools for specifying tasks in terms of these events. At runtime, their
framework monitors events and maintains a list of tasks that may be in progress. One of
the more interesting characteristics of this framework is an explicit recognition of
multitasking. Rather than assuming that all of the events in a task will arrive in a single
sequence, Bailey et al. account for each incoming event by either assigning it to a task
already in progress, by starting a new task to account for it, or by ignoring it.

Avrahami and Hudson develop the QnA instant messaging extension, which
monitors incoming and outgoing instant messages to identify and provide salient
notifications for the incoming messages that are most likely to require attention
(Avrahami and Hudson 2004). QnA searches for the appearance of questions in instant
messages and keeps track of whether a user is expecting a response to a question they
previously asked. It alerts a user when they receive a non-trivial question in an instant
message or when a message is likely to be a response to a previous question. While
studies of QnA usage have not yet been presented, informal results suggest that QnA
addresses interruptions by allowing people to ignore unimportant messages that arrive
while they are busy. A busy person can respond to questions identified by QnA,
deferring other messages until a later time.

In the context of this dissertation, the interruptibility-related systems presented in this
section motivate our systematic examination of interruptibility models in field
environments. Given the difficulties inherent to developing and deploying systems, the
work presented in this section is often focused on technical hurdles or qualitative reports
of the results of deploying these systems. This dissertation focuses on systematic and
quantitative approaches to understanding the reliability of sensor-based statistical models
of human interruptibility.

Chapter 2: Related Work 25

2.5 Studies of Sensor-Based Models of Human Interruptibility
Within the context of prior work on context-aware computing and systems that model
concepts related to interruptibility, this dissertation and this section are explicitly focused
on studies to examine the reliability of sensor-based models of human interruptibility.

Our Wizard of Oz study of office worker interruptibility, presented in Chapter 4,
examines how a variety of potential sensors are related to interruptibility self-reports
(Hudson et al. 2003; Fogarty et al. 2005b). We measure interruptibility using an
experience sampling technique to collect occasional self-reports on a five-point scale
ranging from “Highly Non-Interruptible” to “Highly Interruptible.” Learning statistical
models from the simulated output of potential sensors, we show that models of human
interruptibility can identify “Highly Non-Interruptible” situations significantly better than
human observers. Among our findings is the importance of a sensor to detect whether
anybody in an office is currently talking, which is a strong indicator that an office worker
is not interruptible.

Horvitz and Apacible use a retrospective labeling approach with Dynamic Bayesian
Networks to model interruptibility in the Interruption Workbench, which considers audio
and video analyses, the desktop event stream, and analyses of a person’s electronic
calendar (Horvitz and Apacible 2003). After collecting five hours of audio and video
recordings from each of three participants, Horvitz and Apacible ask each participant to
review the recordings and label spans of time as having a High, Medium, or Low cost of
interruption. This research shares our motivation of directly modeling human
interruptibility, but differences in the data (our collection of occasional self-reports using
experience sampling over several weeks versus Horvitz and Apacible’s more fine-grained
analysis of a shorter period of time) make it inappropriate to attempt to compare model
performance. Among other findings, this work demonstrates the utility of electronic
calendars in sensor-based statistical models of human interruptibility. Even though their
models include analyses of audio and video input streams (which presumably capture
actual social engagement), the planned social engagement captured by electronic
calendars provided additional value in models of human interruptibility.

Our robustness study, presented in Chapter 6, deploys actual, implemented sensors to
examine models of the interruptibility of a set of office workers with more diverse
responsibilities and working environments (Fogarty et al. 2004a). Using the same

Chapter 2: Related Work 26

experience sampling technique as in our prior Wizard of Oz work, we show that a single
model of ten office workers with diverse responsibilities and working environments can
identify “Highly Non-Interruptible” situations significantly better than human observers.
We also show that different features are most useful for different types of office workers
and that a typical laptop computer can support robust models.

Horvitz et al. discuss BusyBody, which uses an experience sampling technique to
collect interruptibility self-reports to build personalized models of interruptibility
(Horvitz et al. 2004). Intended for data collection to support a general model of
interruptibility that could then be used in other applications, BusyBody provides such
functionality as allowing a person to configure the frequency of prompts for self-reports
and allowing a person to disable prompts for a length of time. It then uses dynamic
Bayesian networks to analyze the relationship between the collected self-reports and
sensors related to the desktop event stream, time of day, day of week, electronic calendar
events, a microphone-based conversation detection system, and WiFi-based location
estimates. In monitoring the desktop event stream, BusyBody considers such high-level
temporal concepts as the duration of dwells on windows and applications, the frequency
of focus switches between windows and applications during different time intervals, and
the overall level of activity in different time intervals. Horvitz et al. collect data from
four office workers and build models of interruptibility that have reliabilities that seem to
be comparable to those developed in our robustness study.

Nagel et al. use an experience sampling technique to study interruptibility in the
home, with a focus on modeling availability for communication with close friends and
family (Nagel et al. 2004). They investigate co-presence, location, and activity as
observable factors influencing availability, finding significant effects based on whether a
person is alone, in or around the kitchen, engaging in face-to-face conversation, watching
television or movies, playing games, managing personal/family information, or engaging
is miscellaneous leisure activities. These results suggest both the need to understand the
perceived source of an interruption in experience sampling studies and the possibility that
models of interruptibility might draw sharp distinctions between different locations.

Our study of task engagement, presented in Chapter 7, examines the use of low-level
event streams in a programmer’s development environment to automatically extract
features indicative of task engagement (Fogarty et al. 2005c). We measure

Chapter 2: Related Work 27

interruptibility by using a negotiated coordination of interruptions and timing how long a
programmer chooses to defer a pending interruption. The resulting models are an
important contribution because prior work has generally been dominated by results
related to social engagement or has considered task engagement only when high-level
application events are available, while this work shows that task engagement can be
captured using automatically generated features based on low-level event streams.

Ho and Intille use a wearable accelerometer-based activity recognition system to
examine whether people are more interruptible at physical activity transitions, studying
25 participants who each carried a fully-functional sensor-enabled device throughout a
single workday (Bao and Intille 2004; Ho and Intille 2005). They use an experience
sampling technique, requesting self reports both at random times and at times when the
activity recognition system detected a transition from sitting to walking, walking to
sitting, sitting to standing, or standing to sitting. They found that participants reported
being significantly more receptive to interruptions at physical activity transitions, though
the overall magnitude of the effect was somewhat small. They also describe qualitative
results indicating situations where this was definitely not true, including the example of a
doctor standing up to walk over to consult with a patient, then being interrupted.
Integrating this type of physical activity transition detection with other sensors should
prove practically significant and provide a model with the information needed to identify
situations where physical activity transitions alone are not a good indicator.

Figure 2.9. Ho and Intille use wireless accelerometers to detect physical
activity transitions and measure their relationship to interruptibility

(Bao and Intille 2004; Ho and Intille 2005).

Chapter 2: Related Work 28

2.6 Methods and Tools Related to this Dissertation
This section discusses some methods and tools that are not necessarily related to human
interruptibility but are used in this dissertation. We provide this information and these
references here so that the remainder of this dissertation can better focus on our work on
human interruptibility.

Wizard of Oz techniques have a long history in speech recognition and the
development of intelligent agents (Fraser and Gilbert 1991; Dahlbäck et al. 1993;
Maulsby et al. 1993). The techniques take their name from the classic movie in which an
impressive system is based entirely on a man behind a curtain. In a traditional Wizard of
Oz study, an application designer simulates the intelligence necessary to present an
interface to a participant. A designer might read from a script, or a prototyping tool like
SUEDE could be used to play pre-recorded responses (Klemmer et al. 2000). This allows
an application developer to iterate on a design or examine other qualities of an interface
without requiring the implementation of the speech recognition or other intelligent
aspects of a system. This dissertation applies a Wizard of Oz technique to simulating the
presence of sensors, but studies actual learned statistical models based on the simulated
output of these potential sensors.

The experience sampling method, sometimes referred to as ESM or a beeper study, is
a method commonly used to study human behavior in natural environments, or in situ
(Larson and Csikszentmihalyi 1983; Feldman-Barrett and Barrett 2001). At different
time intervals, a person is asked to respond to a questionnaire, with modern studies
generally using handheld devices or desktop software-based prompts. Experience
sampling is an attractive method because it avoids the recall biases and other validity
issues that can arise with diary studies or other retrospective approaches. Prompts are
generally delivered at random time intervals, as this removes any bias that might be
introduced by scheduling the delivery of prompts. But it can be difficult to use
completely random prompts to collect data about specific situations, so context-aware
experience sampling is sometimes of interest (Ho and Intille 2005).

Chapter 2: Related Work 29

Receiver Operating Characteristic (ROC) curve analysis is a technique with a long
history in signal detection (Green and Swets 1966) and medical diagnostics (Metz 1978;
Hanley and McNeil 1982) that has more recently drawn attention from the machine
learning and human-computer interaction research communities (Bradley 1997; Hand and
Till 2001; Fogarty et al. 2005a). An ROC curve analysis accounts for the fact that a
probability estimate or confidence indicator is typically compared to a threshold before
deciding what action to take. Using a lower threshold will reduce false negatives at the
cost of increasing false positives. Conversely, using higher threshold will reduce false
positives and but increase false negatives. While the relative cost of a false positive or a
false negative will vary across applications, an ROC curve plots the tradeoff at every
possible threshold. The area under this curve can then be used as a general indicator of
the quality of a model. Throughout this dissertation, we will use A', the area under an
ROC curve, to evaluate the reliability of sensor-based statistical models. Though this
dissertation will provide model accuracies where appropriate, we refer readers interested
in our statistical tests to the references provided in this paragraph.

Figure 2.10. An ROC curve illustrates the tradeoff between true and false
positives at every potential threshold. In this example, the curve is

marked at a threshold for p > 0.5, a common threshold for two-choice
problems. A curve entirely above the one shown would illustrate a

model that is clearly better, as it would generate more true positives for
the same number of false positives at every threshold. The area under

the curve, A', is a widely used measure of the quality of a model.

 30

Chapter 3
3 A Wizard of Oz Approach

To Top-Down Sensor Development

3.1 Introduction
Traditional bottom-up sensor development, wherein sensors are developed, deployed, and
evaluated, can be expensive and error-prone when applied to creating sensor-based
statistical models of human situations. The difficulty lies in the fact that a sensor must
meet two distinct requirements: it must reliably detect some piece of context and that
context must have a meaningful relationship to the concept being modeled. In the case of
human interruptibility, for example, an unreliable camera-based object tracker might
introduce noise that obscures a meaningful relationship between an object and a person’s
interruptibility. Conversely, a perfect camera-based object tracker is useless to statistical
model of human interruptibility if the tracked objects have no relationship to a person’s
interruptibility. Traditional bottom-up sensor development focuses on the first of these
requirements, but fails to account for the second. If a sensor has little or no relationship
to the concept being modeled, this will not be discovered until after the sensor has been
developed, deployed, and evaluated. By that point, significant time and resources have
likely been wasted on the sensor’s development and deployment.

This chapter discusses our novel top-down approach to developing sensor-based
statistical models of human situations. Our approach is based in using a Wizard of Oz
technique to simulate potential sensors from detailed recordings collected in realistic

Chapter 3: A Wizard of Oz Approach To Top-Down Sensor Development 31

environments. We then construct statistical models from the simulated sensors, allowing
an early and low-cost measurement of the utility of a potential sensor for modeling the
desired concept. A researcher can then weigh the expected utility of a sensor against the
time and resources that are likely to be required to develop and deploy the sensor. Our
approach is top-down because it focuses on determining what sensors are most
appropriate for a particular application, as opposed to building sensors and then testing
whether they are appropriate for the application.

The remainder of this chapter summarizes our approach in seven steps. This chapter
is intentionally organized as a high-level discussion, as we only intend to provide an
overview of the process that we will apply in later chapters. After introducing our
approach, this chapter discusses three explicit benefits. First, our approach exposes both
dimensions of a tradeoff between sensor complexity and the utility of a sensor in an
application. Second, our approach reduces the costs of developing sensor-based
statistical models by enabling iterative exploration of potential sensors. Third, our
approach allows a separate inspection of errors caused by a shortcoming in a sensor
implementation versus errors caused by a shortcoming in a statistical model.

3.2 Our Approach
Our approach to the top-down development of sensor-based statistical models can be
summarized in seven steps, shown in Figure 3.1. These steps are:

• Collect detailed recordings in realistic environments.
• Simultaneously collect a measure of the concept that will be modeled.
• Examine the recordings to develop ideas for sensors that might be

predictive of the collected measure.
• Systematically simulate potential sensors from the collected recordings.
• Learn statistical models from the simulated sensors and select potential

sensors based on the utility of their simulated versions and their
expected cost of implementation.

• Implement the selected sensors.
• Validate the implemented sensors in the deployment environment.

Figure 3.1. The seven steps in our approach the
top-down development of sensor-based statistical models.

Chapter 3: A Wizard of Oz Approach To Top-Down Sensor Development 32

Collect detailed recordings in realistic environments. In the most
straightforward case, our approach can be based on the collection of audio and
video recordings from cameras placed in the deployment environment. We will
also discuss the use of videos collected with computer screen capture software.
In separate work, we have applied our approach using logs containing low-level
audio features from microphone-based sensors (Fogarty et al. 2006). While our
approach can be based on a variety of types of recordings, the use of a Wizard of
Oz technique requires that people can reliably interpret the recordings.
Recordings that are difficult to interpret, such as extremely low-level event logs,
are likely inappropriate for use with our approach.

Simultaneously collect a measure of the concept that will be modeled.
Because we are interested in the supervised learning of sensor-based statistical
models, we pair the collection of detailed recordings with a simultaneous
collection of a measure of the concept we will be modeling. This dissertation
discusses two approaches to collecting measures of interruptibility. We first use
experience sampling to collect occasional interruptibility self-reports. We then
examine the introduction of controlled interruptions, measuring how long people
choose to defer a pending interruption.

Examine the recordings to develop ideas for sensors that might be predictive
of the collected measure. While intuition and existing theory may provide
many ideas for potential sensors, we have also found it useful to examine the
collected recordings to obtain new ideas for potential sensors. If a person can
view the recordings and determine what the output of a statistical model should
be, then ideas for potential sensors can be generated by examining what
information the person is using to make their decision.

Systematically simulate potential sensors from the collected recordings.
After deciding upon a set of potential sensors, we use a Wizard of Oz technique
to systematically simulate each potential sensor. Working from a definition of
each potential sensor, a human views the collected recordings and specifies the
value that would have been output by the sensor if it were present. Importantly,
this is not the same as specifying exactly what is taking place in an environment.

Chapter 3: A Wizard of Oz Approach To Top-Down Sensor Development 33

Instead, a sensor definition should indicate the expected limitations of the
potential sensor and these limitations should be included in the simulation.

Learn statistical models from the simulated sensors and select potential
sensors based on the utility of their simulated versions and their expected
cost of implementation. Using the collected labels and the results of systematic
Wizard of Oz sensor simulation, statistical models can be constructed and
analyzed to determine which simulated sensors provide the most predictive
value. For example, a potential sensor that would be very difficult to implement
might be found to have very little predictive value. Or it may be the case that a
much easier to implement sensor can provide most of the predictive value of a
more difficult sensor. Using the knowledge gained by analyzing statistical
models based on the simulated potential sensors, informed decisions can be made
about what sensors to actually develop.

Implement the selected sensors. Several potential issues are inherent to any
Wizard of Oz sensor simulation. The simulated sensor might be less noisy than
an implemented version, the definition of a simulated sensor might not exactly
match what can be implemented, or the person simulating a potential sensor
might have unintentionally introduced a systematic error. Because of these
potential issues, it is important to create actual implementations of sensors that
are found to be predictive.

Validate the implemented sensors in the deployment environment. After
implementing actual sensors, it is generally worthwhile to conduct deployments
that are larger or provide additional insight into the deployment environment.
We will discuss two such validation deployments. In the first, we implement
sensors based on the results of analyzing audio and video recordings from normal
office work environments. We then validate the implemented sensors using
office workers with more diverse responsibilities and work environments. In the
second, we implement software-based sensors based on the results of analyzing
screen capture recordings of programmer development environments. We then
validate the utility of low-level events in the development environment by
studying a larger set of programmers.

Chapter 3: A Wizard of Oz Approach To Top-Down Sensor Development 34

While this section has only provided an overview of the seven steps in our approach, later
chapters will present a detailed application of our approach to two problems. Chapters 4,
5, and 6 will discuss the use of environmental sensors to model the interruptibility of
office workers in their normal work environments. Chapter 7 will focus on task
engagement, using low-level events in a programming environment to develop a
sensor-based statistical model of programmer interruptibility. Though we will not
discuss it here, we have also begun to apply our approach to home activity recognition
using unobtrusive and low-cost microphone-based sensors (Fogarty et al. 2006).

3.3 Benefits of Our Approach
Applying our approach to the top-down development of sensor-based statistical models
has several benefits. This section explicitly discusses three: exposing the tradeoff
between complexity and utility, enabling the iterative exploration of potential sensors,
and inspecting the cause of errors in a sensor-based statistical model.

3.3.1 Exposing the Tradeoff Between Complexity and Utility
In a traditional bottom-up approach, a developer must rely on their intuition and on
existing theory when deciding what sensors to implement and deploy. Both intuition and
theory are important, but they are often based on relatively qualitative observations and it
is generally hard to translate them into accurate quantitative estimates of a sensor’s utility
in a statistical model. Anecdotally, it can be easy to fall victim to the belief that a more
complex sensor, because it considers more of the environment, will be more useful in a
statistical model. This is illustrated in Figure 3.2, showing several hypothetical sensors
plotted according to the complexity of their implementation. Without additional
information, it is easy to believe that Sensor F will be the most predictive.

Our top-down approach to sensor-based statistical models exposes the tradeoff
between a sensor’s complexity and its expected utility in a statistical model. This is
illustrated in Figure 3.3 by plotting the complexity of a sensor against its utility in a
sensor-based statistical model. In this hypothetical example, Sensor C provides very high
utility relative to its complexity and Sensor F provides very low utility relative to its
complexity. It would almost certainly be inappropriate to spend the time and resources
necessary to develop Sensor F. A more interesting question is whether to develop
Sensor E, which provides the highest utility but is fairly complex. Depending on the

Chapter 3: A Wizard of Oz Approach To Top-Down Sensor Development 35

application for which a sensor-based statistical model is being developed, the relatively
simple Sensor C may be the best choice. It provides most of the utility of Sensor E with a
much lower complexity.

3.3.2 Enabling the Iterative Exploration of Potential Sensors
In a traditional bottom-up approach, sensors must be developed and deployed before they
can be evaluated. If the evaluation shows that the developed sensors are inadequate, it is
typically very expensive to recover. While a researcher may create an additional sensor
to address a shortcoming discovered in the evaluation, an entirely new evaluation must
then be conducted to determine if the new sensor successfully addresses the issue.

In contrast, using a Wizard of Oz technique in our top-down approach enables
relatively low-cost iterative exploration of potential sensors. If the initial set of simulated
sensors is found to be ineffective, the collected recordings can often be used to simulate
and examine an additional set of potential sensors. Because the recordings have already
been collected, the cost of using our approach is much lower than the cost of collecting
new data at each point in an iterative process. Rapid iteration is a tenet of successful

Figure 3.2. Without information about a sensor’s utility,
decisions can be based only on the complexity of a sensor.

Figure 3.3. Our approach allows the consideration
of both a sensor’s complexity and it expected utility.

Chapter 3: A Wizard of Oz Approach To Top-Down Sensor Development 36

approaches to human-computer interaction, and our approach enables rapid iteration in
the development of sensor-based statistical models.

3.3.3 Inspecting Errors in a Sensor-Based Statistical Model
As noted earlier in this chapter, the success of a sensor-based statistical model includes
two distinct requirements: it must be based on sensors that reliably detect appropriate
context and the sensed context must have a meaningful statistical relationship to the
concept being modeled. If an evaluation shows that a sensor-based statistical model is
unreliable, a traditional bottom-up approach makes it difficult to determine whether
errors are caused by noise introduced as a result of a shortcoming in the sensor
implementation or by the absence of a meaningful statistical relationship with the concept
being modeled.

Because our approach uses a Wizard of Oz technique to simulate potential sensors,
the simulated version of a sensor provides its ideal output. By building statistical models
from the simulated ideal output of potential sensors, we determine the degree to which a
highly-reliable sensor is useful in a statistical model. The error rate of a model based on
simulated ideal sensors provides a target error rate for models based on actual,
implemented sensors. Once sensors have been implemented and evaluated, the
difference between the target error rate and the actual error rate provides an estimate of
the degree to which sensor reliability is interfering with the sensor-based statistical
model. By differentiating these two sources of error in a sensor-based statistical model,
our approach allows a greater understanding of how to go about improving a model.

3.4 Conclusion
This chapter has introduced our top-down approach to developing sensor-based statistical
models. Whereas traditional bottom-up approaches are based in developing, deploying,
and evaluating sensors, our approach uses a Wizard of Oz technique to examine the
utility of simulated versions of potential sensors. Taking our top-down approach exposes
both dimensions of a tradeoff between sensor complexity and sensor utility, enables the
iterative exploration of potential sensors, and allows an understanding of whether errors
are caused by a shortcoming in a sensor implementation or the absence of a statistical
relationship between a sensor and the concept being modeled. The coming chapters
apply our approach to examine sensor-based statistical models of human interruptibility.

 37

Chapter 4
4 A Wizard of Oz Study of

Office Worker Interruptibility

4.1 Introduction
Sensor-based statistical models of human interruptibility are one approach to addressing
the human costs of systems that interrupt inappropriately or unduly demand attention.
Because people use social conventions and externally visible cues to estimate
interruptibility, rather than relying on invisible internal phenomena like cognitive state, it
should be possible to develop such models empirically. One method would be a
bottom-up approach, based on the development, deployment, and evaluation of sensors
and models. However, the uncertainty surrounding the usefulness of various sensors
makes it very likely that significant time and resources would be spent building and
evaluating sensor ill-suited or suboptimal for a model of human interruptibility. This
work is instead based on a top-down approach, in which we collect and analyze more
than 600 hours of audio and video recordings from the actual working environments of
four participants with no prior relationship to our research group. We simultaneously
collect self-reports of their interruptibility. Using a Wizard of Oz technique, as outlined
in the previous chapter, we simulate the presence of a variety of potential sensors and
create models based on the assumption that changes in behavior or context are indicative
of interruptibility. We show that models based on simulated sensors can identify “Highly
Non-Interruptible” situations with an accuracy of 79.2% and an A' of .850.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 38

This chapter starts by presenting our data collection. We then summarize the
collected interruptibility self-reports and the sensed context surrounding those reports.
We next discuss our Wizard of Oz simulation of many potential sensors. After this, we
develop a set of potential features based on the output of our simulated sensors. We then
use the potential features to build statistical models. Finally, we evaluate the accuracy of
the resulting models and examine several questions surrounding which features are most
useful in a statistical model.

4.2 Data Collection
We collected recordings in the actual working environments of four participants with no
prior relationship to our research group. To increase uniformity for this exploratory
work, we selected four participants with similar working environments and tasks. Each
participant serves in a high-level staff position in our university with significant
responsibilities for day-to-day administration of a large university department and/or
graduate program. The participants have private offices with closable doors, but their
responsibilities require them to interact with many different people and they generally do
not have full control over their time. They usually work with their doors open and
respond to a variety of walk-in requests. Because they almost never close their office
doors, it is likely that the absence of this explicit indication of non-interruptibility makes
it more difficult to estimate their interruptibility.

Recordings were captured using a computer with an 80GB disk and an audio/video
capture card connected to a small camera and microphone. Participants could disable
recordings for thirty minutes by pressing the space bar on the machine collecting the
recordings. The computers had speakers used for informing participants that recording
was disabled, to advise them that recording was about to resume, and to request
interruptibility self-reports. While we used a display during the initial configuration and
installation of the recording machine, the machines did not have displays during data
collection. Signs were posted to alert guests to the presence of a recording device, and
the participants were encouraged to disable recording if they or a guest was
uncomfortable. We also provided participants with a mechanism for retroactively
requesting that recordings be destroyed before viewing.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 39

Grayscale cameras with wide-angle lenses were mounted in the office so that both
the primary working area and the door were visible. Figure 4.1 shows representative
images from two of the cameras. Video was captured at approximately 6 frames per
second, at a resolution of 320x240. Audio was captured at 11KHz, with 8-bit samples.
The recording machines were deployed for between 14 and 22 workdays for each
participant, recording from 7am to 6pm on workdays. Our setup worked well except in
one case where a week of data was lost because an undetected improper compression
setting caused the disk to fill prematurely. For this participant, we collected an additional
10 days of data at a later date. A total of 602 hours of recordings was collected from the
offices of these four participants.

Participants were prompted for interruptibility self-reports at random, but controlled,
intervals averaging two prompts per hour. This is an experience-sampling technique,
sometimes known as a beeper study (Larson and Csikszentmihalyi 1983; Feldman-Barrett
and Barrett 2001). To minimize compliance problems, we asked a single question rated
on a five-point scale. Participants could answer verbally or by holding up fingers on one
hand, but almost all responses were verbal. Participants were asked to “rate your current
interruptibility” on a five-point scale, with 1 corresponding to “Highly Interruptible” and
5 corresponding to “Highly Non-Interruptible.” A sign attached to the recording machine
reminded the participant which value corresponded to which end of the scale.
Participants were present for a total of 672 of these prompts.

4.3 Collected Data Overview
This section characterizes the data collected from our participants. The overall
distribution of interruptibility self-reports is shown in Figure 4.2. The distributions for

Figure 4.1. Two representative frames from our recordings.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 40

individual participants are show in Figure 4.3. For 54 of these 672 samples, the
participant was present and clearly heard the prompt, but did not respond within 30
seconds. We examined these individually and determined that the participant was either
on the phone or with a guest for the vast majority of the 54 cases. Results in the literature
suggest that these activities are highly correlated with non-interruptibility, and this
expectation is validated in the remainder of our data. To simplify analysis and model
building, we have placed these 54 cases in the “Highly Non-Interruptible” category (a 5
on our five-point scale).

While there are clearly differences in the self-report distributions for the individual
participants, it is especially important to note that the participants self-reported that they
were “Highly Non-Interruptible” for 215 prompts, or approximately 32% of the data. An
informal inspection found that responses of “Highly Non-Interruptible” were sometimes
given calmly and other times curtly by agitated participants. This distribution seems to

0
50

100
150
200
250

1 2 3 4 5
Highly Interruptible Highly Non-Interruptible

Figure 4.2. Distribution of interruptibility self-reports.
We focus on distinguishing “Highly Non-Interruptible”

responses from the other four possible responses.

 Highly
Interruptible

 Highly
Non-Interruptible

 1 2 3 4 5
Subject

1
9

6.6%
14

10.2%
40

29.2%
18

13.1%
56

40.9%
Subject

2
17

10.2%
21

12.7%
58

34.9%
27

16.3%
43

25.9%
Subject

3
52

31.5%
26

15.8%
20

12.1%
10

6.1%
57

34.5%
Subject

4
14

6.9%
25

12.3%
45

22.1%
61

29.9%
59

28.9%

All 92
13.7%

86
12.8%

163
24.3%

116
17.3%

215
32.0%

Figure 4.3. Individual distributions of self-reports.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 41

indicate that there are circumstances in which people consider themselves to be clearly
non-interruptible, as opposed to other times when their interruptibility might be more
dependent on the nature of the interruption or some other factor. We therefore focus on
models that distinguish “Highly Non-Interruptible” situations from the other four possible
values of a self-report. If models could reliably recognize the times when people are
clearly non-interruptible, this would be a significant advance over current applications.

Figure 4.4 presents how often particular events occur in the collected recordings.
These values are based on the manually simulated sensors discussed later in this chapter.
They are also based on the periods for which the participant was present, as opposed to
the entirety of the recordings. As previously mentioned, these participants almost always
had their doors open and the lack of the explicit non-interruptibility cue provided by a
closed door probably makes it more difficult to estimate their interruptibility. The
participants spent most of the day sitting, and most of that time sitting at their desks. A
guest was present approximately 25% of the time when the participants were present, but
there was very rarely more than one guest present. While participants frequently
interacted with a computer, they also spent a significant amount of time handling papers
or talking.

4.4 Wizard of Oz Sensor Simulation
Working from the collected recordings, we used a Wizard of Oz technique to simulate a
number of potential sensors. We developed custom software for this purpose, shown in
Figure 4.5. The interface presents recordings in 15-second segments. A coder could

Door Open 98.6% Door Close 0.7%
Occupant Sit 88.9% Occupant Stand 13.1%
Occupant at Desk 74.0% Occupant at Table 21.2%
Occupant Keyboard 22.6% Occupant Mouse 19.6%
Occupant Monitor 46.8% Occupant File Cabinet 1.0%
Occupant Papers 28.0% Occupant Write 5.5%
Occupant Drink 1.0% Occupant Food 1.4%
Occupant Talk 32.6% Occupant on Telephone 12.7%
One or More Guests Present 24.1% Two or More Guests Present 3.0%
One or More Guests Sit 9.3% Two or More Guests Sit 1.5%
One or More Guests Stand 14.2% Two or More Guests Stand 0.8%
One or More Guests Talk 20.7% Two or More Guests Talk 1.7%
One or More Guests Touch 0.5% Two or More Guests Touch 0.0%

Figure 4.4. Frequency of various events during
times when the office occupant was present.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 42

playback the recordings at normal speed or double speed, at their option. At the end of
each segment, a coder could go to the next segment or watch the current segment again.
For each of our simulated sensors, the person viewed the recordings and indicated
whether the event occurred at any point in the 15-second segment.

We developed this interface and the set of sensors it simulates after an initial
exploratory coding of the video from our first participant. In this initial exploratory
coding, our video coders viewed the recordings and coded precise start and end times for
any activities they thought were potentially relevant. While this resulted in many ideas
for potential sensors, the precise coding of start and end times is very time consuming
and the resulting set of coded activities was inconsistent both between and within coders.
In contrast, our final interface provided a well-defined set of relevant events and
appropriate keyboard shortcuts allowed coders to quickly indicate whether a particular
event occurred at any point in a 15-second window. This use of a 15-second window is
similar to the methods used in Lag Sequential Analysis (Sackett 1978; Osofsky 1979).
Because we were interested in a large number of potential sensors, we broke our set of
potential sensors into four groups and coded each group in a separate pass through the
recordings. This reduced the cognitive demands on the coders and allowed us to
automatically skip the coding of some sensors for some segments of the recordings. For
example, if an early pass indicated that no guests were present during a segment, our
interface automatically skipped that segment during the pass for coding guest activities.

Figure 4.5. The custom interface used
in our Wizard of Oz simulation of potential sensors.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 43

We also minimized coding time by coding only the 5 minutes of video preceding each
self-report (a total of 56 hours of coded recordings), as we believe information in close
temporal proximity will be most useful in predicting interruptibility.

Using detailed definitions of potential sensors, we simulated the detection of a total
of 24 events or situations. Briefly summarized, these are:

• Is the office occupant present.
• Is the office occupant sitting, standing, speaking, or on the phone.
• Is the office occupant touching or interacting with their desk (primary work

surface), table (large flat surface other than the primary work surface), file
cabinet, food, drink, keyboard, mouse, monitor (gaze at), papers (including
books, newspapers, and loose paper), or writing instruments.

• How many guests are present.
• Is each guest sitting, standing, speaking, or in physical contact with the office

occupant (any physical contact or close physical proximity with the occupant,
including handing the occupant an object).

• Is the door open, is the door closed (when ambiguous, neither event was coded).
• Time of day (at an hour granularity).
• Is anybody talking (the logical OR of the office occupant speaking and any

guests speaking).

We chose these manually simulated sensors because we had an a priori belief that they
might relate to interruptibility, because we believed that a sensor could plausibly be built
to detect them, and because they could be observed in our recordings. While we believed
that information like what applications are running on a computer could be useful, we
could not directly observe such information in our recordings. Some sensors would be
easier to build than others, and we have included sensors that would be difficult to build
because knowing that they are useful might justify the effort necessary to develop them.
For example, our anybody talking sensor would be much easier to build than a sensor that
detects whether it is the office occupant who is talking, but simulating both of them
allows us to evaluate the difference in their utility.

Data from all four participants was coded after finalizing the coding procedures. We
evaluated agreement among coders by recoding a randomly selected 5% of the

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 44

recordings. This found a 93.4% agreement on sensor simulation at our granularity of 15
seconds.

4.5 Potential Feature Development
In order to develop a set of potential features appropriate for use in a statistical model, we
applied a set of functions to the output of our simulated sensors. These functions are
intended to capture recency, density, and change effects in the value of a simulated sensor
during the time preceding a self-report. The six functions we used are:

• Imm: Whether the event occurred in the 15 second interval containing the
self-report.

• All-N: Whether the event occurred in every 15 second interval during the N
seconds prior to the self-report.

• Any-N: Whether the event occurred in any 15 second interval during N seconds
prior to the self-report.

• Count-N: The number of 15 seconds intervals in which the event occurred
during the N seconds prior to the self-report.

• Change-N: The number of consecutive intervals for which the event occurred in
one and did not occur in the other during the N seconds prior to the self-report.

• Net-N: The difference in the sensor between the first interval in the N seconds
prior to the self-report and the sensor in the interval containing the self-report.

We applied these functions for time intervals of 30 seconds, 1 minute, 2 minutes, and 5
minutes. In the remainder of this chapter, we will use these function names to refer to
features. For example, “Occupant Talk (Any-5 minutes)” refers to the application of the
Any function with the Occupant Talk sensor over a 5 minute interval.

4.6 Statistical Model Development
This section discusses the development of statistical models based on the potential
features created by applying our functions to the output of our simulated sensors. While
the functions yield almost 500 potential features, using all of these in a statistical model
could have very negative effects. Some may not have a relationship to interruptibility,
and some may lead to a phenomenon known as overfitting. When a model is overfit, is
mistakenly interprets minor details or quirks in a feature as representative of data it will

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 45

be asked to evaluate in the future. The overall accuracy of its future estimates is then
lower than it should be, because it is confused by differences in the minor details that it
previously mistook for important. Overfitting is very similar to degree-of-freedom
problems found in models with excessive parameters.

In order to construct models from an appropriate set of features, we apply a
wrapper-based feature selection technique (Kohavi and John 1997). In this approach, an
optimization performs a heuristic search for an optimal subset of the potential features.
Starting with an empty feature set, the optimization adds and removes features until no
change to the set results in a better model. A limited backtracking facility is included,
allowing the optimization to search more than a single path. Each potential set of
features is evaluated using a standard ten-fold cross-validation. The data is divided into
ten folds, and ten trials are conducted. Each trial trains a model from the data in nine
folds and tests the model against the data in the remaining fold. The optimization seeks
to maximize the resulting estimate of the area under the ROC curve, a measure that is
related to accuracy but avoids several pitfalls of optimizing directly for accuracy (Hanley
and McNeil 1982; Hand and Till 2001; Fogarty et al. 2005a).

The statistical models presented in this dissertation will be naïve Bayes classifiers, a
relatively simple classifier that has proven effective in a variety of problem domains
(Duda and Hart 1973; Langley and Sage 1994). We have previously examined the use of
decision trees (Quinlan 1993), support vector machines (Burges 1998), and AdaBoost
with decision stumps (Freund and Schapire 1997), but found no significant differences in
their ability to model our data (Hudson et al. 2003; Fogarty et al. 2005b). We will not
attempt to fully describe these techniques, but instead refer readers to the original
references or a machine learning text, such as (Mitchell 1997).

Figure 4.6 presents the accuracy of a naïve Bayes model built from 20 features
created by applying the functions discussed in this chapter to the simulated output of the
potential sensors discussed in this chapter. This model distinguishes situations reported
as “Highly Non-Interruptible” from situations reported as any other value on our
five-point scale. The model’s accuracy is presented in a form known as a confusion
matrix.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 46

Because we will use confusion matrices throughout this dissertation, it is worth
detailing exactly what information they present. The rows in this matrix correspond to
the actual interruptibility of a participant, as measured in self-reports. The columns
correspond to the predictions made by the model. The unshaded diagonal therefore
indicates the cases where the model correctly determined whether a given situation was
“Highly Non-Interruptible”, while the shaded diagonal indicates model errors. This
model has an overall accuracy of 79.2%, computed as (402 + 130) / (402 + 55 + 85 +
130). Looking at individual rows and columns, we can see that the model correctly
identifies 88.0% of the situations in which participants were not “Highly
Non-Interruptible”, which is computed as 402 / (402 + 55). We can also see that, when
the model predicts that a person is not “Highly Non-Interruptible”, it is correct 82.5% of
the time, computed as 402 / (402 + 85). Similar computations show that the model
identifies 60.5% of “Highly Non-Interruptible” situations and that it is correct 70.3% of
the time that it predicts a situation is “Highly Non-Interruptible.” This dissertation will
generally focus on the overall accuracy of models, but we note that this additional
information is available in each confusion matrix. This information might be important
in determining whether a model is appropriate for a particular application. For example,
consider using this model to filter incoming notifications when a person is “Highly
Non-Interruptible.” The model correctly identifies 88.0% of situations where the person
is available, so 12% of notifications would be unnecessarily delayed. The model also
identifies 60.5% of “Highly Non-Interruptible” situations, so 39.5% of inappropriate
interruptions would still be allowed.

 Simulated Sensor Model
Self-Report All Other Values Highly

Non-Interruptible
All Other Values 402

 59.8%
55

8.2%
Highly

Non-Interruptible
85

12.6%
130

19.3%
 Accuracy: 79.2% vs. 68.0% prior

A': .848, z = 24.4, p < .001

Figure 4.6. The reliability of a naïve Bayes model
of human interruptibility based on our simulated sensors.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 47

We will also provide a statistical test against the performance of a naïve estimator for
each dataset in this document. A naïve estimator ignores context and always predicts the
most common value in a particular dataset. In the case of the data shown in Figure 4.6,
always predicting that a person is not “Highly Non-Interruptible” yields an accuracy of
68.0%, computed as (402 + 55) / (402 + 55 + 85 + 130). We note that this characterizes
most current systems, which generally have no model and so assume that a person is
always interruptible. We will refer to the performance of this naïve estimator as either
the prior or the chance performance for a dataset, using the two terms interchangeably.
The information necessary to compute A', the area under the ROC curve, is not available
in a confusion matrix, but this document will also provide the value of A' for the data in
each confusion matrix. The model in Figure 4.6 performs significantly better than the
68.0% chance performance for this dataset (A' = .848, z = 24.0, p < .001).

4.7 Examining the Selected Features
While the naïve Bayes model learned in the last section is based on 20 features, it gains
much of its predictive power from a handful of features. Figure 4.7 illustrates this by
plotting the increase in A', the area under the ROC curve, as additional features are added
to the model. All zero-feature models have an A' of .500. The first feature added

Figure 4.7. The model’s reliability, indicated by A', jumps sharply with
the first features and grows more slowly as additional features are added.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 48

improves this to .660 and the second feature increases the model A' to .727. Later
features still provide value, but their contribution is clearly smaller than the initial
features. For example, the final feature improves the model A' from .847 to .848.

Figure 4.8 shows the first seven features selected, together with the relationship
between values of these features and our collected interruptibility self-reports. The
decision to present seven features is arbitrary, and it is clear that some of the later
features are providing relatively little predictive value. We will always present seven
features in similar figures throughout this document, but note that the first few features
are typically the most predictive. In order to provide some indication of the importance
of each feature, we present the value of A' as each feature is added.

The first feature selected is the Any Talk (Imm) feature, indicating whether anybody
in the office was talking in the 15-second interval containing a prompt for a self-report.
For 70.4% percent of self-reports, this feature has a value of false (nobody was talking).
In this case, the likelihood that a person is not “Highly Non-Interruptible” is increased by

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 68.0%

.660 Any Talk (Imm)
 No Talking 384 89 70.4% 82.2% +14.2%
 Talking 73 126 29.6% 36.7% -31.3%

.727 Occupant Telephone (Count-30 seconds)
 < 30 Seconds 446 153 89.1% 79.8% +11.8%
 >= 30 Seconds 11 62 10.9% 15.1% -52.9%

.773 Occupant Computer Mouse (Count-2 minutes)
 < 45 Seconds 294 185 71.3% 61.4% -6.6%
 >= 45 Seconds 163 30 28.7% 84.5% +16.5%

.793 Occupant Papers (Any-5 minutes)
 Papers 285 143 63.7% 66.6% -1.4%
 No Papers 172 72 36.3% 70.5% +2.5%

.806 Door Open (All-5 minutes)
 Open Entire 5 Minutes 289 131 62.5% 68.8% +0.8%
 Ambiguous or Closed 168 84 37.5% 66.6% -1.4%

.816 Occupant Desk (Change-2 minutes)
 < 6 Changes 363 189 82.1% 65.8% -2.2%
 >= 6 Changes 94 26 17.9% 78.3% +10.3%

.822 Occupant Table (Change-5 minutes)
 < 13 Changes 412 206 92.0% 66.6% -1.4%
 >= 13 Changes 45 9 8.0% 83.3% +15.3%

Figure 4.8. The first seven features selected for the

simulated sensor model shown in Figure 4.6.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 49

14.2%. On the other hand, somebody was talking for 29.6% of self-reports. For these
self-reports, the likelihood that the participant is not “Highly Non-Interruptible” drops by
31.3%. This feature is therefore a fairly good indicator of interruptibility, leading the
wrapper-based feature selection optimization to choose it as the most predictive
individual feature.

After selecting the Any Talk (Imm) feature, the best feature to add is whether the
participant has been on the phone at some point in both of the two most recent 15-second
intervals. These first two features both capture strong cues related to social engagement,
indicating that participants were less interruptible when a conversation was in progress or
when on the phone. The third feature, whether the person has used the mouse during 3 or
more 15-second intervals in the past 2 minutes, indicates that certain mouse-intensive
computer activities are more interruptible. The fourth feature is related to task
engagement, showing that people are less interruptible if they have handled papers in the
past 5 minutes. By this point, features are making smaller contributions to the reliability
of the model. Whether the door has been open for the entire preceding five minutes
provides a small improvement to the model, as do features related to the intermittent use
of a desk or table.

4.8 An Easy to Build Set of Sensors
Together with the fact that the first several features provide most of the predictive power
of the model in the previous section, it is especially interesting to note that the first three
features can be very easily implemented. The audio processing research community has
developed a variety of features appropriate for identifying human speech in audio, such
as those in (Lu et al. 2002). The use of a phone can be detected by software running on
the telephone switch, by a small piece of hardware placed between the phone and the
wall-jack, or by a magnetic reed switch that senses when a handset is off its hook.
Simple software can detect when a person is using their mouse. These three sensors yield
a model with an A' of .773, which in this case corresponds to an accuracy of 78.0%.

We therefore decided to investigate the reliability of a model based entirely on these
relatively easy to build sensors. Figure 4.9 presents the reliability of a model based on
only the Any Talk sensor, the Mouse sensor, the Keyboard sensor, the Telephone sensor,
and the Time of Day sensor. Based on 12 features derived from these sensors, this model

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 50

has an accuracy of 78.6% and an A', the area under the ROC curve, of .797. This is
worse than the model built from the full set of simulated sensors (A' = .797 vs. A' = .848,
z = 2.26, p ≈ .024), but still significantly better than the 68.0% prior (A' = .797, z = 17.6,
p < .001). In the next chapter, we compare the performance of human observers to both
our full set of simulated sensors and this easy to build set of simulated sensors.

Figure 4.10 presents the initial features selected for the model based on simulated
versions of our easy to build sensors. The first three features are the same as those
selected when the full set of simulated sensors is available (see Figure 4.8). The fourth
feature is whether or not the person was using the keyboard during the 15-second interval
containing the self-report. We note that the relationship between keyboard usage and
interruptibility is not what might have been expected. If keyboard usage indicated that
these participants were engaged in a task, we might expect them to be less interruptible.
But these participants are actually more interruptible when using the keyboard (just as the
third feature shows that they are more interruptible when using the mouse). This might
indicate that social engagement dominates the interruptibility of these office workers, or
that their engaging tasks do not include the use of the computer. The final three features
capture whether a conversation has started in the past 5 minutes, whether the office
worker has been on the phone for the entire previous minute, and whether the office
worker started using the computer’s mouse in the past two minutes.

 Easy to Build
Simulated Sensor Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 408
 60.7%

49
7.3%

Highly
Non-Interruptible

95
14.1%

120
17.9%

 Accuracy: 78.6% vs. 68.0% prior
A': .797, z = 17.6, p < .001

Figure 4.9. The reliability of a naïve Bayes model
of human interruptibility based on an easy to build set of sensors

(Any Talk, Mouse, Keyboard, Telephone, Time of Day).

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 51

4.9 Discussion
This chapter has presented a Wizard of Oz study examining the feasibility of
sensor-based statistical models of human interruptibility. Using an experience sampling
method and 600 hours of audio and video recordings, we showed that a model based on
simulated sensors can identify “Highly Non-Interruptible” situations with an accuracy of
79.2% and an A' of .848. If used to filter notifications delivered at inappropriate times,
this model could prevent 60.5% of inappropriate notifications while still allowing the
prompt delivery of 88.0% of appropriately-timed notifications.

While it was initially unclear that human interruptibility could be reliably modeled,
this work has shown that relatively easy to build sensors are appropriate for modeling
human interruptibility. We have examined the simulated versions of an easy to build set
of sensors, including sensors to detect whether anybody in an office is talking, whether an

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 68.0%

.660 Any Talk (Imm)
 No Talking 384 89 70.4% 82.2% +14.2%
 Talking 73 126 29.6% 36.7% -31.3%

.727 Occupant Telephone (Count-30 seconds)
 < 30 Seconds 446 153 89.1% 79.8% +11.8%
 >= 30 Seconds 11 62 10.9% 15.1% -52.9%

.773 Occupant Computer Mouse (Count-2 minutes)
 < 45 Seconds 294 185 71.3% 61.4% -6.6%
 >= 45 Seconds 163 30 28.7% 84.5% +16.5%

.780 Occupant Computer Keyboard (Imm)
 No Typing 335 187 77.7% 64.2% -3.8%
 Typing 122 28 22.3% 81.3% +13.3%

.785 Any Talk (Net-5 minutes)
 Stopped Talking

or No Change
 434 180 91.4% 70.7% +2.7%

 Started Talking 23 35 8.6% 39.7% -28.3%
.787 Occupant Telephone (All-1 minute)

 Not on Phone 451 168 92.1% 72.9% +4.9%
 On Phone 6 47 7.9% 11.3% -56.7%

.789 Occupant Computer Mouse (Net-2 minutes)
 Stopped Mousing

or No Change
 410 200 90.8% 67.2% -0.8%

 Started Mousing 47 15 9.2% 75.8% +7.8%

Figure 4.10. The first seven features selected for the
easy to build sensor model shown in Figure 4.9.

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 52

office worker is using the phone, the level of mouse and keyboard activity, and the time
of day. These sensors can be deployed using existing work on recognizing human speech
in audio (Lu et al. 2002), software on a phone switch or physical sensors to detect when a
phone is in use, and simple software to detect mouse and keyboard activity. The
simulated versions of these sensors support a model with an accuracy of 78.6% and an A'
of .797, appropriate for filtering 55.8% of inappropriate notifications while still allowing
the prompt delivery of 89.3% of appropriately-timed notifications.

Several results from this chapter shape the approach we pursue in the remainder of
this dissertation. First, a sensor to detect whether anybody in an office is talking is
clearly important to sensor-based models of office worker interruptibility. Later chapters
will examine this finding in the context of implemented sensors and office workers with
more diverse responsibilities and work environments. Second, many potential sensors do
not seem to provide enough benefit to warrant the time and cost required to develop,
install, and maintain them. Our easy to build sensor set provided an accuracy of 78.6%,
while the full sensor set provided an accuracy of 79.2%. The difference in the area under
the ROC curves for these two models is statistically significant, but probably does not
justify the installation of cameras or expensive sensing infrastructure. The remainder of
this dissertation is therefore focused on easy to build and low-cost approaches to
deploying sensor-based statistical models of human interruptibility. Finally, it was
unclear whether the accuracy of these models was good enough to warrant the use of
models in applications. The next chapter therefore examines the reliability of human
observers deciding whether the office workers studied in this chapter are “Highly
Non-Interruptible.”

Limitations of the work presented in this chapter suggest several areas for potential
future work. Because this chapter is based entirely on sensors simulated from audio and
video recordings, there are some potential sensors that we could not examine. For
example, information about what application a person is using on their computer seems
like it could be useful in a model of interruptibility, but this information is not visible in
our collected recordings. While we implement and examine this specific sensor later in
this dissertation, this limitation prevents us from examining potential interactions
between this sensor and other potential sensors that we do not later implement. This
could be common issue in applying our Wizard of Oz technique, so it seems worth
examining hybrid approaches that include actual implementations of sensors that are easy

Chapter 4: A Wizard of Oz Study of Office Worker Interruptibility 53

to develop while using our Wizard of Oz approach to consider sensors that will be more
costly or time-consuming to develop.

While this chapter and several that follow use self-reports as a ground truth measure
of interruptibility, there is a significant opportunity for research to examine whether
people can reliably report their own interruptibility. The potential for this concern is
motivated by significant evidence that self-reports can be influenced by a variety of
factors. The actor-observer effect shows that people are more likely to attribute their own
actions to situational factors and other people’s actions to personal or dispositional
factors (Jones and Nisbett 1971). This could manifest in interruptibility self-reports as a
bias for participants to describe their interruptibility in terms of their environment.
Because our models are based on the environment, this bias in participant self-reports
could inflate the estimated reliability of our models. People also tend to be
over-confident in assessing the reliability of social predictions (Dunning et al. 1990), so
people might be expected to be overly confident in predicting how they would respond to
an interruption. Shrauger and Osberg show that self-reports of psychological assessments
are less reliable than judgments by other people, potentially due to a conflict with how a
people perceive themselves (Shrauger and Osberg 1981). In a more humorous example
of biases in how people perceive themselves, two separate studies have shown that over
90% of people surveyed report having an above average sense of humor (Allport 1961;
Lefcourt and Martin 1986). There is a possibility that our interruptibility self-reports
were influenced by how participants perceive themselves. If a participant feels they are a
“busy” or “important” person, they might under-estimate their interruptibility.
Conversely, a person who believes they are “accessible” might over-estimate their
interruptibility. This dissertation uses interruptibility self-reports as a ground truth
measure, deferring examination of these potential issues. Convincingly demonstrating
the validity of interruptibility self-reports is large enough of a research question that we
will defer further discussion of it until our comments on future work in Chapter 9.

Finally, we have examined models that identify situations reported as “Highly
Non-Interruptible”, but this dissertation does not examine models that attempt to estimate
interruptibility along the entire five-point scale used by participants. We have previously
conducted limited analyses based on the full five-point scale (Hudson et al. 2003; Fogarty
et al. 2005b), but several additional analyses could be conducted. For example, it might
be interesting to examine models based on normalizing an individual’s self-reports.

 54

Chapter 5
5 A Study of Human Observers

Estimating Office Worker Interruptibility

5.1 Introduction
While our initial Wizard of Oz study demonstrated the feasibility of sensor-based
statistical models of human interruptibility, it was unclear what level of reliability is
required before it is appropriate to include models in applications. In particular, it would
be inappropriate to expect 100% recognition of human interruptibility, as even people
clearly cannot make such a determination with perfect accuracy. But despite this
limitation, people are generally able to interrupt others without being perceived as rude or
intrusive. Human performance therefore seems to be a good benchmark for evaluating
the performance of sensor-based statistical models of human interruptibility. Even
though such models would sometimes make errors, applications could use them to help
avoid situations where an interruption is obviously inappropriate. This would be a
significant improvement over current applications, which generally assume that a person
is always interruptible.

This chapter explores the reliability required of sensor-based statistical models of
human interruptibility by examining the reliability of human observers making similar
estimates. We show that human observers, using snippets of the recordings collected in
the previous chapter, can identify “Highly Non-Interruptible” situations with an accuracy

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 55

of 76.9%. Our statistical model based on simulated sensors, presented in Figure 4.6,
therefore performs significantly better than the human observers (A' = .848 vs. A' = .720,
z = 6.78, p < .001). Similarly, the model based on easy to build sensors, presented in
Figure 4.9, also performs significantly better than the human observers (A' = .797 vs.
A' = .720, z = 3.74, p < .001).

We start by presenting our methodology. We then informally discuss the strategies
that observers reported when estimating office worker interruptibility. We next present
the results of the human observer estimates, showing that human observers identify
“Highly Non-Interruptible” situations with an accuracy of 76.9%. Before concluding, we
discuss potential questions surrounding observer confidence in their estimates and the
length of the recording snippet used to make each estimate.

5.2 Methodology
Using a website that advertises experiments conducted at our university, we recruited 40
human observers, each of whom was paid for a session that was scheduled to last one
hour. A majority of our human observers were students at our university or at another
university within walking distance. To protect the privacy of the office workers in the
recordings, the human observers were shown still images of the office workers and asked
if they recognized any of the office workers. They were only shown recordings of office
workers that they did not recognize.

Each session started with an explanation of the task. The human observers were told
to evaluate the recordings as if they were walking into that situation and needed to decide
how interruptible the office worker was prior to deciding whether to interrupt. A practice
portion was started, and the experimenter introduced the human observer to the interface
shown in Figure 5.1. The interface presented five initially unchecked radio buttons for
each estimate. The human observers were told that they could watch the video more than
once and they were advised to be as accurate as possible without concern for speed. The
human observers then used the interface to estimate the interruptibility of an office
worker for 6 randomly selected practice self-reports. This was followed by the main
portion, in which the human observer estimated the interruptibility of office workers for
60 self-reports. The main portion self-reports were selected randomly without
replacement between human observers, ensuring that every self-report would be used

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 56

once before any self-report was used twice. After the main portion was completed, the
human observers provided information about their general strategies during the main
session and their specific strategies for making estimates from specific recordings. We
finally collected responses to two seven-point Likert scales discussed later in this chapter.
The sessions were not timed, but none lasted longer than the scheduled hour.

During both the practice and main portions, the interface alternated between showing
15 or 30 seconds of the recordings from immediately before a self-report. Half of the
estimator participants started with 15 seconds, and half started with 30 seconds. We
chose to use 15 seconds of the recordings because people naturally make these estimates
very quickly. For example, a person glancing in an open office door can usually decide
whether it is appropriate to interrupt. We felt that showing too much of the recordings
for each estimate might affect how the human observers made their decisions. While it
would normally be considered inappropriate to look in an open office door for 15
seconds, we felt that the additional temporal information presented in 15 seconds should
help to correct for differences between normal circumstances and our recordings. The
30-second condition was included to determine whether additional time improved

Figure 5.1. The custom interface used by our human observers
to estimate the interruptibility of the office workers.

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 57

accuracy. As we will discuss later in this section, our human observers felt 15 seconds
were sufficient and their performance did not improve with the longer recordings.

Of the original 672 interruptibility self-reports, recordings for 587 self-reports were
used with the human observers. The others were not used because their content was
potentially sensitive or because a technological artifact, such as a short gap in the video,
might have been distracting to the human observer. As 40 participants each provided
estimates for 60 self-reports selected randomly without replacement, each of the 587
self-reports had four or five estimates generated for it, including at least two based on 15
seconds of the recordings and at least two based on 30 seconds.

5.3 Human Observer Strategies
Our human observers reported strategies that are consistent with our intuition and the
available literature suggesting that social and task engagement are important (Seshadri
and Shapira 2001). We will not attempt to analyze the reported strategies, but instead
report informal observations about commonly reported strategies.

The presence of a person other than the occupant of an office was reported as
important in many strategies. As one observer commented, “You can’t just barge in on
someone else’s appointment time.” Similarly, our human observers reported that they did
not want to interrupt an office worker who was on the phone. In regard to both the
presence of another person and the office worker being on the phone, our human
observers generally reported that they attempted to determine if a conversation was
work-related or of a more social nature. Our human observers reported feeling it was
more appropriate to interrupt conversations of a social nature.

Our human observers also reported cues related to the environment and activities of
the office worker. Several observers reported checking whether the door was open or
closed. Many reported feeling that an office worker was more interruptible if music was
playing. Reports indicated that it was difficult to estimate the interruptibility of an office
worker who was using a computer or reading, but the observers also indicated that they
felt less comfortable interrupting an office worker who was typing quickly, as opposed to
occasionally typing or using only the mouse. This related to observer reports that they
attempted to interpret the body language of the office worker, considering them more

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 58

interruptible if they appeared to be happy or relaxing and less interruptible if they
appeared stressed or upset.

Finally, a number of human observers reported that they felt more comfortable
interrupting when an office worker was between tasks, such as when a guest had just left
the office. The observers reported feeling that the office worker was already interrupted
in this situation, so their interruption would not be problematic. But the observers also
felt that they should not interrupt when an office worker was quickly switching back and
forth between attending to two objects, as they felt this indicated the office worker was
focused on a task.

5.4 Human Observer Estimate Reliability
Figure 5.2 presents the estimates made by our human observers in a confusion matrix.
Rows correspond to the self-reports provided by our office workers, and columns
correspond to the estimates provided by our human observers. Summing the diagonal,
we can see that the human observers were correct for 738 instances, or approximately
30.7% of the data. Because “Highly Non-Interruptible” is the most common value,
always estimating that value establishes a chance accuracy of 706 correct, or 29.4%. The
human observers therefore performed only slightly better than chance, a difference which
is not significant (χ2(1, 4800) = 1.01, p > .31). This indicates that interruptibility
estimation, as posed, is difficult for human observers.

 Human Observer Estimates
 Highly

Interruptible Highly
Non-Interruptible

 1 2 3 4 5
1 172

7.2%
92

3.8%
41

1.7%
31

1.3%
10

0.4%
2 94

3.9%
110

4.6%
72

3.0%
36

1.5%
5

0.2%
3 150

6.3%
204

8.5%
133

5.5%
79

3.3%
45

1.9%
4 82

3.4%
110

4.6%
116

4.8%
73

3.0%
39

1.6% Of
fic

e W
or

ke
r

Se
lf-

Re
po

rts

5 89
3.7%

121
5.0%

101
4.2%

145
6.0%

250
10.4%

 Overall Accuracy: 30.7%
Accuracy Within 1: 65.8%

Figure 5.2. Confusion matrix for our human observer

estimates of office worker interruptibility.

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 59

We note that the mistakes made by the human observers appear to include a certain
amount of bias, perhaps related to self-interest. If the mistakes were random, we might
expect approximately the same number of entries in the upper-right half of the confusion
matrix as in the lower-left half. This would mean the human observers were equally
likely to confuse office workers for being more interruptible as they were to confuse
office workers for being less interruptible. Instead, there are 450 entries in the
upper-right half, approximately 18.7% of the data, and 1212 entries in the lower-left half,
approximately 50.5% of the data. Aggregating for each human observer, the human
observers reported significantly lower values than the office workers (t(39) = -8.79,
p < .001). This may imply a systematic bias towards viewing another person as
interruptible when we are interested in making an interruption, a finding consistent with
Avrahami et al.’s study of cell phone interruptions (Avrahami et al. 2006).

Figure 5.3 illustrates a transformation that reduces the problem to distinguishing
between “Highly Non-Interruptible” situations and other situations. The bottom-right
cell represents instances where both the office worker and the human observer responded
with “Highly Non-Interruptible.” The upper-left cell represents instances in which both
the office worker and the human observer responded with any other value. The other two
cells represent instances when either the office worker or the human observer responded
with “Highly Non-Interruptible,” but the other did not. For this problem, the human
observers have an accuracy of 76.9%, significantly better than the chance performance of
70.6% (A' = .720, z = 18.2, p < .001).

While an accuracy of 76.9% may seem low for a task very similar to everyday tasks,
we find this level of accuracy believable because of the context in which people normally

⇒

 Human Observer Estimates
Office Worker
Self-Reports

All Other
Values

HighlyNon-
Interruptible

All
Other Values

1595
 66.5%

99
4.1%

Highly Non-
Interruptible

456
19.0%

250
10.4%

 Accuracy: 76.9% vs. 70.6% prior
A': .720, z = 18.7, p < .001

Figure 5.3. Confusion matrix for our human observers
identifying “Highly Non-Interruptible” situations.

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 60

make interruptibility estimates. As noted in the introduction to this chapter, people do
not typically make an interruptibility estimate and then blindly proceed. Instead, the
evaluation of interruptibility is an early step in a negotiated process (Kendon and Ferber
1973; Goffmann 1982). An initial determination that a person is not interruptible allows
an early exit from negotiation, but other cues allow a person to decide against
interrupting despite an initial evaluation that they could. Other cues can include eye
contact avoidance and the continuation of the task that would be interrupted. In
designing applications that use interruptibility estimates, it will be important to support a
negotiated approach to interruptions, rather than assuming that interruptibility estimates
provide absolute guidance.

5.5 Human Observer Confidence
The validity of our human observer results is strengthened by confidence data collected
from the human observers. The first Likert scale in the experiment stated “I am confident
in the accuracy of my judgments.” Each human observer responded on a seven-point
scale ranging from “Strong Disagree,” which we will refer to as 1, to “Strongly Agree,”
which we will refer to as 7. Given the results for this scale, shown in Figure 5.4, it is
clear that our human observers were confident in the accuracy of their estimates.

Furthermore, there is no significant difference in the reliability of estimates made by
human observers who indicated greater confidence. The observers who indicated a
confidence of 6 or 7 identified “Highly Non-Interruptible” situations with an accuracy of
76.1% and an A' of .724, versus an accuracy of 77.6% and an A' of .716 for observers

0
5

10
15
20

1 2 3 4 5 6 7
Strongly
Disagree

Strongly
Agree

Figure 5.4. Human observer responses to the Likert scale

“I am confident in the accuracy of my judgments.”

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 61

who responded with a confidence of 4 or 5. This difference is not significant (A' = .724
vs. A' = .716, z = 0.34, p ≈ .731).

5.6 Recording Duration
As discussed in introducing our methodology, we felt 15 seconds of the recordings would
be sufficient for estimating interruptibility and we included cases with 30 seconds to
determine whether the additional time was helpful. This section presents evidence
supporting our initial belief that 15 seconds of the recordings was sufficient.

The second Likert scale in the experiment stated “The 15 second videos were long
enough for making judgments.” Figure 5.5 shows the responses of our human observers,
indicating that they generally found 15 seconds to be sufficient. There is no significant
difference in the reliability of estimates made by observers who had more or less
confidence in the use of 15 seconds of the recordings. The observers who responded with
a value of 6 or 7 had an accuracy of 76.7% and an A' of .704, not significantly different
from the observers who responded with a value of 5 or less and had an accuracy of 77.1%
and an A' of .734 (A' = .704 vs. A' = .734, z = 1.22, p ≈ .224).

Furthermore, there is no significant difference in the reliability of estimates based on
15 seconds of the recordings versus estimates based on 30 seconds of the recordings.
When using 30 seconds of the recordings, observers had an accuracy of 77.1% and an A'
of .716. When using 15 seconds of the recordings, observers had an accuracy of 76.7%
and an A' of .724. This difference is not significant (A' = .716 vs. A' = .724, z = 0.33,
p ≈ .741).

0
2
4
6
8

10
12

1 2 3 4 5 6 7
Strongly
Disagree

Strongly
Agree

Figure 5.5. Human observer responses to the Likert scale

“The 15 second videos were long enough for making judgments.”

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 62

5.7 Discussion
This chapter has presented an experiment to explore human observers estimating the
interruptibility of office workers. We showed that human observers performed only
slightly better than chance when asked to estimate office worker interruptibility on a
five-point scale from “Highly Interruptible” to “Highly Non-Interruptible.” These human
observers also appear to have systematically interpreted the office workers as being more
interruptible that the office workers reported. By reducing the problem to distinguishing
between “Highly Non-Interruptible” conditions and other conditions, we establish an
accuracy of 76.9% for human observers.

Taken with our results from the previous chapter, these results indicate that
automated estimates of human interruptibility can be based on short periods of time
immediately preceding a potential interruption. The fact that human observers have
difficulty estimating office worker interruptibility on a five-point scale supports our
decision to focus on sensor-based models that distinguish “Highly Non-Interruptible”
situations from other situations. Our models could identify extremely inappropriate times
for interruptions and allow a system to avoid them while using negotiated approaches
during other times. This strategy appears to work well in human interaction (Kendon and
Ferber 1973; Goffmann 1982) and also seems worth pursuing as an approach to
human-computer interaction.

The performance of human observers in this chapter provides a strong point of
comparison for the previous chapter’s statistical models based on simulated sensors. The
model based on our full set of simulated sensors, presented in Figure 4.6, identifies
“Highly Non-Interruptible” situations significantly better than our human observers
(A' = .848 vs. A' = .720, z = 6.78, p < .001). While the previous chapter showed that a
model based on an easy to build set of sensors performed worse than a model based on
the full set of simulated sensors, this chapter shows that the easy to build model still
performs significantly better than the human observers in this study (A' = .797 vs.
A' = .720, z = 3.74, p < .001).

Showing that our model based on easy to build sensors can identify “Highly
Non-Interruptible” situations significantly better than human observers has two major
implications for the work we pursue in the remainder of this dissertation. First, this
provided more support for our decision to focus on sensors that can be developed,

Chapter 5: A Study of Human Observers Estimating Office Worker Interruptibility 63

deployed, and maintained at a low cost. Second, the effectiveness of naïve Bayes models
led us to focus on using relatively simple classifiers. While there is undoubtedly room to
consider Markov processes or other more complex modeling techniques, this dissertation
will focus on validating the effectiveness of our approach with more diverse office
workers and developing software to enable the deployment of applications based on our
approach. Given large datasets collected in real applications, we believe it would then be
fruitful to examine a wider variety of potential learning algorithms.

The work presented in this chapter suggests a variety of future work to address
limitations or explore additional questions. None of the human observers in this chapter
had personal knowledge of the office workers whose interruptibility they were
estimating, and it is possible that people personally familiar with an office worker may be
able to better estimate the office worker’s interruptibility. If this is the case, it would be
interesting to examine how much of this is based on knowledge of a person’s routines
versus the actual context at the time of a potential interruption. It is also interesting to
consider how different information about context, such as how many guests are present,
influence interruptibility estimates made by human observers. Presenting different types
of relationships to the human observer may also affect their estimates. While we told the
human observers in this chapter to act as if they were approaching the office worker with
an interruption, their estimates might change if they were told to act as an assistant
regulating access to the office worker.

 64

Chapter 6
6 A Robustness Study with

Real Sensors and Diverse Office Workers

6.1 Introduction
While our initial studies demonstrated the feasibility of sensor-based statistical models of
human interruptibility that perform better than human observers, several questions were
left unanswered. The four office workers in the initial study all had similar jobs as
high-level staff in our university, responsible for the day-to-day administration of a large
university department and/or graduate program. It was unclear whether results obtained
with these participants would generalize to different types of office workers, such as
programmers or others who spend less time interacting with people. There was also a
question of whether real sensors could be implemented reliably enough to obtain results
as good as those obtained using simulated sensors. As noted in Chapter 3’s discussion of
our Wizard of Oz approach, it is important to address the potential that a simulated sensor
could be less noisy than an implemented version, that the definition of a simulated
sensors might not exactly match what can be implemented, or that the person simulating
a potential sensor might have unintentionally introduced a systematic error.

This chapter presents a robustness study that deploys real, implemented sensors and
examines sensor-based statistical models of the interruptibility of a more diverse group of
office workers. We show that more reliable models are obtained when focusing on office

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 65

workers with similar responsibilities and work environments, but that even a single
model of our diverse participants still performs significantly better than the human
observers from our previous study (A' = .838 vs. A' = .720, z = 6.87, p < .001). This
shows that our approach to modeling human interruptibility applies to a wide variety of
office workers, not just people in the original demographic. We also examine which
sensors are most predictive for different types of office workers. Finally, we show that a
typical laptop computer can support sensor-based statistical models that perform better
than human observers (A' = .836 vs. A' = .720, z = 5.27, p < .001).

The next section presents an overview of our data collection, including an
introduction to the office workers studied and a description of our deployed sensors. We
then summarize our collected data, showing that the distribution of self-reports in this
study is very similar to that in our original study. We then develop sensor-based
statistical models that distinguish between “Highly Non-Interruptible” situations and
other situations. After showing that a general model performs better than the human
observers from our previous study, we present and analyze models of the interruptibility
of office workers with similar responsibilities and work environments. We show that
different sensors are most useful for different types of office workers, suggesting that
applications should learn individualized models of human interruptibility. Finally, we
examine models based on the sensing capabilities of a typical laptop computer, showing
that software-deployable sensing is sufficient to support models that perform better than
human observers.

6.2 Data Collection
We conducted this study in the offices of a major corporate research laboratory. We
again use an experience sampling technique, which is sometimes referred to as a beeper
study (Larson and Csikszentmihalyi 1983; Feldman-Barrett and Barrett 2001). After
installing sensors in participant offices, we left and participants went about their normal
work activities. At random intervals, our setup played an audio file prompting
participants to report their current level of interruptibility.

6.2.1 Sensor Installation
Sensor data was collected by several background processes running on a participant’s
primary computer. Because some participants used laptop computers that they needed to

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 66

be able to take away from their office, all of our sensors were attached to the computer by
a single connection to a USB hub. Participants detached this connection when they took
their laptop computer away from their office, and our software gave occasional subtle
prompts for participants to reconnect the hub.

A set of speakers connected to the USB hub were used to prompt participants to give
interruptibility self-reports. The speakers played an audio file asking the participant to
“Please give your current interruptibility level.” For the 10 seconds following each
participant prompt, our software recorded audio from a microphone attached via the USB
hub. During this time, participants responded orally on the same 5-point scale used in
our prior studies (where a 1 indicates that a participant is “Highly Interruptible” and a 5
indicates that a participant is “Highly Non-Interruptible). A sign was posted in the
participant’s office to remind them which end of the scale corresponded to which value.
At the end of the 10 seconds, a short tone was played to let participants know that the
software was no longer recording audio. Participants were told that a non-response
would be treated as a 5 if they were on the phone and could not answer. Non-responses
when the participant was not on the phone were discarded, because there was no reliable
way to determine whether the participant was present and had not responded or was just
not present. We initially prompted participants at random intervals of between 40 and 80
minutes, but later increased the frequency of prompts to between 30 and 50 minutes. We
made this change because it was common for participants to miss a prompt by stepping
out of their office for only a few minutes.

Besides recording participant responses to the interruptibility prompts, the USB
microphone was also used as a sensor to determine whether anybody was talking in the
office. The microphones were placed on shelves in each office, about 8 feet from the
floor and away from computer fans or other noise sources. The audio was analyzed in
real-time on the participant’s computer, using the silence detector provided by the
CMU Sphinx speech recognition package (Huang et al. 1993). This software adapts to
the relatively constant noise levels generated by fans, air conditioning, or quite
background music. It identifies sharp increases in the energy of audio frames collected
from the microphone, but does not indicates whether these sharp increases are talking or
some other noise. However, conversations tend to go on for many seconds or even many
minutes, whereas most other loud noises in an office environment are relatively short. In
our experience, this system worked well for detected extended conversations. We used

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 67

several different threshold configurations, logging the beginning and end times of
non-silent intervals for each threshold configuration, but did not record audio. The
analyses in this chapter are based on a count of how many threshold configurations were
non-silent at a given point in time, so a silence detector value of 0 indicates that no
threshold have been activated while a value of 22 indicates that every threshold has been
activated. We later examine this sensor in a relatively noisy environment, offices in
which more than one person normally works.

A custom-built USB sensor board was used to instrument each participant’s office.
Two magnetic switches, similar to those used in home alarm systems, were placed on
either side of the top of the door frame. This allowed us to determine whether the door
was open, cracked, or closed. Two motion sensors were put in each office, both about 5
feet above the floor, one near the door and one near the participant’s desk. Another
magnetic switch was used to determine whether a person’s phone was physically off its
hook. This physical switch could not detect if a person was using the speaker-phone
functionality, but we were not allowed access to the phone systems that would have
enabled reliable detection of this. In any case, the microphone-based talking sensor
would be likely to detect talking when a participant used the speaker-phone.

Software on each participant’s computer logged, once per second, the number of
keyboard, mouse move, and mouse click events from the previous second. It also logged
the title, type, and executable name of the active window and each non-active window.
We chose to log this information out of the belief that some participants might be more or
less interruptible when working in certain applications, a piece of information absent
from the simulated sensors in our earlier study. All of the information associated with
our study was automatically compressed and uploaded to a local server, so that we could
verify that each participant’s sensors seemed to be working properly and so that we could
determine when each participant had provided an appropriate number of self-reports.

6.2.2 Participants
We collected sensor data and interruptibility self-reports from 10 participants with no
prior relationship to this work. The participants were all employees of a major corporate
research laboratory, studied during the course of their normal work. Of our 10
participants, two were first-line managers. We selected these participants because we felt
that their human-centered work was closest to the responsibilities of the four participants

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 68

from our original study. Just as social engagement, detected via the talking and phone
sensors, was a key indicator of non-interruptibility in our initial study, we expected social
engagement to be a key indicator for these two participants. Throughout this chapter, we
shall refer to these two participants as the managers. Five of our 10 participants were
researchers who spent a significant amount of their time programming. These
participants were selected because they seem to represent typical knowledge workers,
who do interact socially and attend meetings, but also work on tasks that require focused
attention. Throughout this chapter, we shall refer to these five participants as the
researchers. Finally, our last three participants were student interns. These participants
also spent a significant amount of their time programming, but were selected because
they shared an office with another intern. Because our initial studies indicated that a
sensor to detect talking is very useful in a model of interruptibility, we included the intern
participants to examine how the regular presence of a second person in the office affected
the usefulness of our talk sensor implementation. While we would like to have studied
the interruptibility of both people in shared offices, we were unable to find an office
where both interns were willing to participate in the study. Throughout this chapter, we
shall refer to these three participants as the interns.

6.3 Collected Data Overview
We set out to collect approximately 100 interruptibility self-reports from each participant.
Figure 6.1 shows the distribution of the 1006 responses that were actually collected,
while Figure 6.2 shows the responses from each individual participant. Data collection
for participant 7, one of the researchers, was terminated early because of an external
deadline that required the removal of the sensors from his office. Data collection for

0
100
200
300
400

1 2 3 4 5
Highly Interruptible Highly Non-

Interruptible

Figure 6.1. Distribution of interruptibility self-reports.
We focus on distinguishing “Highly Non-Interruptible”

responses from the other four possible responses.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 69

participant 9, one of the interns, was terminated early because she expressed a feeling that
the interruptibility prompts were annoying and asked for the sensors to be removed.
Some participants went slightly over 100 responses because of the delay between the
participant reaching 100 responses and our arrival to take down the sensors.

While there are individual differences in the distribution of interruptibility
self-reports, we note that the most common response again was “Highly
Non-Interruptible,” accounting for 32.1% of the data. This distribution is very similar to
the distribution found in our initial Wizard of Oz study, and seems to indicate that there
are circumstances in which people consider themselves to be clearly non-interruptible, as
opposed to situations where their interruptibility might be more dependent on the nature
of the interruption or some other factor. The similarity of this distribution to the
distribution in our original Wizard of Oz study also seems to validate our decision to
focus on models that distinguish “Highly Non-Interruptible” situations from other

 Highly
Interruptible

 Highly
Non-Interruptible

Category 1 2 3 4 5

1 Manager 17
14.0%

31
25.6%

10
8.3%

19
15.7%

44
36.4%

2 Manager 2
2.0%

8
8.2%

36
36.8%

26
26.5%

26
26.5%

3 Researcher 67
62.0%

7
6.5%

8
7.4%

13
12.0%

13
12.0%

4 Researcher 23
22.3%

16
15.5%

27
26.2%

3
2.9%

34
33.0%

5 Researcher 4
3.7%

7
6.4%

24
22.0%

18
16.5%

56
51.4%

6 Researcher 5
4.5%

34
30.4%

29
25.9%

12
10.7%

32
28.6%

7 Researcher 0
0.0%

6
8.0%

12
16.0%

16
21.3%

41
54.7%

8 Intern 26
25.0%

28
26.9%

25
24.0%

11
10.6%

14
13.5%

9 Intern 3
4.6%

17
26.2%

12
18.5%

15
23.1%

18
27.7%

10 Intern 11
9.9%

28
25.2%

2
1.8%

25
22.5%

45
40.5%

All 158

15.7%
182

18.1%
185

18.4%
158

15.7%
323

32.1%

Figure 6.2. Individual distributions of self-reports.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 70

situations. The prior for this data is an accuracy of 67.9%, which could be obtained by
always predicting that a person was not “Highly Non-Interruptible.” As previously
noted, this level of performance generally characterizes current systems, which lack a
model of interruptibility and therefore always treat a person as interruptible.

6.4 A General Model of Office Worker Interruptibility
Figure 6.3 presents the reliability of a model of all ten office workers, based on the actual
implemented sensors discussed earlier in this chapter. Built from 35 features, this model
has an accuracy of 78.7% and an A' of .838. This is significantly better than the 67.9%
chance accuracy for this data (A' = .838, z = 27.6, p < .001) and significantly better than
the human observers in our previous study (A' = .838 vs. A' = .720, z = 6.87, p < .001).

This model and all of the other models presented in this chapter were developed in
much the same way as the models in our initial Wizard of Oz feasibility study. Whereas
Chapter 4 included a full list of the functions used to generate features, the models in this
chapter were developed using Subtle, a tool that we have developed and will discuss in
Chapter 8. For now, it suffices to say that Subtle applies an iterative feature generation
algorithm to examine a variety of frequency, recency, and density features extracted from
streams of sensor data. All of the evaluations presented in this chapter are based on
standard ten-fold cross-validations, wherein the data is divided into ten folds. Ten trials
are then conducted, each training a model with the data from nine of the folds. In each
trial, the unused fold is used to test the resulting model.

 All 10 Office Workers
Real Sensor Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 575
 57.2%

85
8.4%

Highly
Non-Interruptible

129
12.8%

217
21.6%

Accuracy: 78.7% vs. 67.9% prior

A': .838, z = 27.6, p < .001
vs. Human Observers, z = 6.87, p < .001

Figure 6.3. The reliability of a naïve Bayes model of human

interruptibility based our actual, implemented sensors. This model
is built and evaluated against data from all 10 office workers.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 71

As with the models developed in our initial Wizard of Oz feasibility study, much of
the predictive power of this model comes from the first handful of features. Figure 6.4
plots the increase in this model’s A' as features are selected. The first handful of features
increase the model’s A' from .5 to .566 to .655 and to .718.

Figure 6.5 shows the first seven features selected by this model. We note that
occasional issues with the USB connection to our sensors resulted in small amounts of
missing data, shown here as a value of “Undefined” for some features. This is more
common with features that examine a very short time interval, as features that examine
longer time intervals can recover from a short failure of the USB connection. Consistent
with the results of our initial Wizard of Oz feasibility study, the first two sensors selected
here are a threshold on the output of the microphone-based silence detector in the time
immediately preceding an interruption and the physical sensor to detect whether the
phone was off its hook at the time of a prompt for an interruptibility self-report. The
selection of these sensors validates both our Wizard of Oz study, our implementation of
these sensors, and the relevance of these sensors to modeling the interruptibility of a
variety of office workers.

Figure 6.4. As in our initial Wizard of Oz feasibility study, the
reliability of our model based on real sensors jumps sharply with its
first features and grows more slowly as additional features are added.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 72

The third feature selected is how long it has been since the active window was owned
by NLNOTES.EXE, which corresponds to Lotus Notes, the integrated email and calendar
software used by participants in this study. This seems to indicate that participants felt
they were more interruptible when working with their email or calendar.

The fourth feature selected is also based on the output of the microphone-based
silence detector. Whereas the first feature examines the output of the silence detector in
the past second, the fourth feature is based on the maximum output in the past 5 minutes.
Participants were more interruptible if there had been no loud noise at any point in the

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 67.9%

.567 Maximum Output of Silence Detector in Past Second
 Not Noisy (< 16) 545 190 73.1% 74.1% +6.2%
 Noisy (>= 16) 98 107 20.4% 47.8% -20.1%
 Undefined 40 26 6.6% 60.6% -7.3%

.655 Phone Off Hook at Time of Interruption
 Phone On Hook 670 240 90.5% 73.6% +5.7%
 Phone Off Hook 12 80 9.1% 13.0% -54.9%
 Undefined 1 3 0.4% 25.0% -42.9%

.718 Time Since Active Application was NLNOTES.EXE (which is Lotus Notes, the primary email and calendar client used by subjects)
 > 15 Minutes 251 140 38.9% 64.2% -3.7%
 <= 15 Minutes 238 114 35.0% 67.6% -0.3%
 < 32 Seconds 194 69 26.1% 73.8% +5.9%

.751 Maximum Output of Silence Detector in Past 5 Minutes
 Loud at Some Point (> 18) 382 255 63.3% 60.0% -7.9%
 Never Loud (<= 18) 299 67 36.4% 81.7% +13.8%
 Undefined 2 1 0.3% 66.7% -1.2%

.766
Time Since Active Window Class Length Equal to 11
(which primarily corresponds to “SunAWTFrame” and “SWT_Window0”,
found in the Eclipse development environment used by subjects)

 > 15 Minutes 382 210 58.8% 64.5% -3.4%
 >= 42 Seconds 190 53 24.2% 78.2% +10.3%
 < 42 Seconds 111 60 17.0% 64.9% -3.0%

.776 Minimum Number of Open Windows in Past 15 Minutes
 >= 11 Windows 381 227 60.4% 62.7% -5.2%
 < 11 Windows 302 96 39.6% 75.9% +8.0%

.788 Number of Changes in Mouse Clicks Per Second in Past 15 Minutes
 >= 11 Changes 618 267 88.0% 69.8% +1.9%
 < 11 Changes 65 56 12.0% 53.7% -14.2%

Figure 6.5. The first seven features selected for the

general model of office worker interruptibility shown in Figure 6.3.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 73

past 5 minutes. Like the first feature selected, this feature is probably capturing social
engagement.

The fifth feature is how long it has been since the active window had a class name of
length eleven (all windows have a title and a class, though the class is typically not
visible to the user). Examining the full set of collected logs, 53.8% of windows with
class name length of eleven are “SunAWTFrame” and 39.2% are “SWT_Window0”.
These window classes likely correspond to the use of the Eclipse development
environment and related Java software. Participants were more interruptible if they
recently shifted their attention away from these applications. In Chapters 8 and 9, we
discuss the fact that this feature is not easily interpreted and comment on future directions
for making features more easily interpretable.

The last two features are also related to computer usage. Participants were less
interruptible if they had eleven or more top-level windows open at any point in the past
15 minutes. This might indicate that their attention was divided across many windows.
The final feature is how many times the Mouse Clicks Per Second feature changed in the
past 15 minutes. Eleven or more changes roughly corresponds to 6 mouse clicks, as each
click typically results in 2 changes (from 0 clicks in second t, changing to 1 click in
second t + 1, and then changing to 0 clicks in second t + 2). Participants were less
interruptible when not generating mouse clicks in the past 15 minutes.

This model ignores the individual differences between the office workers, their
responsibilities, and their work environments, but is still able to perform significantly
better than the human observers from our previous study. This model captures social
engagement using a microphone-based silence detector and a physical switch to detect
when the office phone is off its hook. It captures task engagement based on the
computer’s active application and its set of open applications. While this chapter next
examines differences in models that better describe the interruptibility of the office
workers in this experiment, the fact that a single model can provide reliable results for all
ten participants is an important result. For example, adaptive interfaces are often faced
with the problem that they have no initial knowledge of the person to which they are
adapting. While the software may ultimately be able to learn a person’s preferences, this
eventual utility is wasted if the person abandons the software due to initially poor
performance. Our results here suggest that systems could be deployed with a default

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 74

initial model of office worker interruptibility. Because some conventions hold across a
variety of office workers, this initial model could provide a more acceptable level of
performance while the system is learning a person’s individual preferences.

6.5 Models of Different Office Workers and Environments
It seems likely that differences in the responsibilities and working environments of our
ten participants would manifest as differences in what features best predict their
interruptibility. This section explores this question by developing separate models of the
interruptibility of our manager participants, our researcher participants, and our intern
participants. By focusing on office workers with similar responsibilities and work
environments, we develop models that can more accurately identify “Highly
Non-Interruptible” situations. We then examine differences in the features selected for
models of different types of office workers.

6.5.1 A Model of Manager Interruptibility
Figure 6.6 presents the reliability of a model of the interruptibility of our two manager
participants. This model is based on 20 features derived from the real sensors deployed
in this study. With an accuracy of 92.2% and an A' of .960, this model performs
significantly better than the 68.0% prior for this dataset (A' = .960, z = 27.6, p < .001)
and significantly better than the human observers from our previous study (A' = .960 vs.
A' = .720, z = 11.7, p < .001). It also performs significantly better than our general model
of all ten office workers (A' = .960 vs. A' = .838, z = 5.93, p < .001).

 2 Manager Participants
Real Sensor Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 141
 64.4 %

8
3.7%

Highly
Non-Interruptible

9
4.1%

61
27.9%

Accuracy: 92.2% vs. 68.0% prior

A': .960, z = 27.6, p < .001
vs. Human Observers, z = 11.7, p < .001

Figure 6.6. The reliability of a naïve Bayes model

of the interruptibility of our two manager participants.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 75

Figure 6.7 shows that the manager model of interruptibility is dominated by features
that show the manager participants felt they were less interruptible when they were
socially engaged. The first feature shows that the managers were less interruptible when
they had not recently generated mouse move activity. In contrast, they were more
interruptible when using the computer. As in other models discussed earlier in this
dissertation, the second feature selected is whether the manager’s phone was off its hook
at the time of an interruption. The third feature again captures an indication that the
managers were more interruptible when using their computer, this time based on the
number of seconds containing key press events in the previous 5 minutes. The fourth
feature examines the noise level in the previous thirty seconds, with managers being less
interruptible when their office was noisier. The fifth feature captures an indication that
managers were more interruptible when they had generated mouse events for more than
half of the previous 15 seconds (recall that we logged the number of mouse events in

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 68.0%

.690 Time Since Generating 9 Mouse Moves in a Second
 > 1 Minute 38 48 39.3% 44.2% -23.8%
 >= 20 Seconds 21 11 14.6% 65.6% -2.4%
 < 20 Seconds 90 11 46.1% 89.1% +21.1%

.854 Phone Off Hook at Time of Interruption
 Phone On Hook 144 32 80.4% 81.8% +13.8%
 Phone Off Hook 5 37 19.2% 11.9% -56.1%
 Undefined 0 1 0.5% 0.0% -68.0%

.892 Number of Changes in Key Press Per Second in Past 5 Minutes
 >= 30 Changes 84 19 47.0% 81.6% +13.6%
 < 30 Changes 65 51 53.0% 56.0% -12.0%

.910 Number of Changes in Phone Off Hook in Past 15 Seconds
 < 2 Changes 107 42 68.0% 71.8% +3.8%
 >= 2 Changes 42 28 32.0% 60.0% -8.0%

.920 Time Output of Silence Detector is Less Than 13 in Past 30 Seconds
 >= 12.5 Seconds (Quiet) 144 60 93.2% 70.6% +2.6%
 < 12.5 Seconds (Noisy) 5 10 6.8% 33.3% -34.7%

.926 Using Mouse in the Past 15 Seconds
 Used Less than Half 118 70 85.8% 62.8% -5.2%
 Used More than Half 31 0 14.2% 100% +32.0%

.931 Time Active Window Title is “New Memo – Lotus Notes” in Past 15 Minutes
 < 12.5 Minutes 123 66 86.3% 65.1% -2.9%
 >= 12.5 Minutes 26 4 13.7% 86.7% +18.7%

Figure 6.7. The first seven features selected for the

model of manager interruptibility shown in Figure 6.6.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 76

each second, and this feature indicates that at least half of the previous 15 counts were
greater than zero). The final feature shown here indicates that managers were more
interruptible when they had spent most of the previous 15 minutes composing a new
email.

6.5.2 A Model of Researcher Interruptibility
Figure 6.8 presents the reliability of a model of the five researcher participants. Based on
32 features, this model has an accuracy of 83.4% and an A' of .888. This is significantly
better than the 65.3% chance performance for this data (A' = .888, z = 22.6, p < .001) and
significantly better than the human observers from our previous study (A' = .888 vs.
A' = .720, z = 8.02, p < .001). It is also significantly better than our general model of all
ten office workers (A' = .888 vs. A' = .838, z = 2.39, p ≈ .017).

Figure 6.9 presents the first seven features selected for this model of researcher
interruptibility. Consistent with the general model presented earlier in this chapter, the
first two features selected are a threshold on the output of the microphone-based silence
detector and whether the researcher’s phone was off its hook at the time of the
interruption. In this case, the selected feature is whether the silence detector has output
zero for more than 4.5 of the past 30 seconds. The researchers are more interruptible
under these quieter conditions.

The researchers were also less interruptible if the name of the active window’s
executable name was of length six in the previous 15 minutes. This is another example
of a feature that is somewhat difficult to interpret, a point that Chapters 8 and 9 discuss as

 5 Researcher Participants
Real Sensor Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 292
 57.6 %

39
7.7%

Highly
Non-Interruptible

45
8.9%

131
25.8%

Accuracy: 83.4% vs. 65.3% prior

A': .888, z = 22.6, p < .001
vs. Human Observers, z = 8.02, p < .001

Figure 6.8. The reliability of a naïve Bayes model

of the interruptibility of our five researcher participants.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 77

an area for future work. But examining the active windows of the researcher participants,
we note that 67.1% of active windows with executable name of length 6 correspond to
“vs.exe”, which is the Microsoft Visual Studio integrated development environment.
Another 32.7% correspond to “qw.exe”, which is Quicken personal finance software.
Researchers were less interruptible if the active window had belonged to either of these
software packages in the previous 15 minutes.

The fourth feature shows that researchers were less interruptible on Thursday and
Friday, possibly due to a recurring meeting or a recurring deadline. While we did not
collect participant calendar information, Horvitz and Apacible have demonstrated the

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 65.3%

.558 Time Output of Silence Detector is 0 in Past 30 Seconds
 >= 4.5 Seconds (Quiet) 276 106 75.3% 72.3% +7.0%
 < 4.5 Seconds (Noisy) 55 70 24.7% 44.0% -21.3%

.650 Phone Off Hook at Time of Interruption
 Phone On Hook 306 134 86.8% 69.5% +4.2%
 Phone Off Hook 7 39 9.1% 15.2% -50.1%
 Undefined 18 3 4.1% 85.7% +20.4%

.718
Time Active Executable Name Length is Equal to 6 in Past 15 Minutes
(which primarily corresponds to “vs.exe” and “qw.exe”,
the executable names for Microsoft Visual Studio and Quicken)

 Not at All 269 104 73.6% 72.1% +6.8%
 < 2.5 Minutes 36 55 17.9% 39.6% -25.7%
 > 2.5 Minutes 26 17 8.5% 60.5% -4.8%

.778 Day of Week
 Before Thursday 202 87 57.0% 69.9% +4.6%
 Thursday or After 129 89 43.0% 59.2% -6.1%

.799 Distinct Values of Key Press Per Second in Past 15 Minutes
 >= 13 Distinct Values 196 78 54.0% 71.5% +6.2%
 < 13 Distinct Values 135 98 46.0% 57.9% -7.4%

.814
Active Window Class Name Length Less Than 5 in Past 15 Minutes
(which primarily corresponds to “tips”, a window shown by custom
colleague availability awareness software use by participants)

 At Some Point 225 86 61.3% 72.3% +7.0%
 Never 106 90 38.7% 54.1% -11.2%

.824 Minimum Number of Open Windows in Past Minute
 < 16 Windows 231 92 63.7% 71.5% +6.2%
 >= 16 Windows 100 84 36.3% 54.3% -11.0%

Figure 6.9. The first seven features selected for the

model of researcher interruptibility shown in Figure 6.8.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 78

utility of electronic calendars in their work on interruptibility models (Horvitz and
Apacible 2003).

The fifth, sixth, and seventh features are related to researcher use of their computer.
The fifth feature shows that the researchers were more interruptible when generating a
variety of levels of keyboard activity in the previous 15 minutes. The sixth feature shows
that they were also more interruptible if the active window class was of a length less than
5 at some point in the previous 15 minutes. For these researcher participants, 44.5% of
such active windows correspond to “Tips” and another 9.8% to “Main”, both of which
are associated with custom software used by these participants. This custom software
showed sensed information about the availability of colleagues, including whether they
were in their office, whether they were active on their computer, and whether they
currently had an item scheduled on their calendar. This seems to indicate that our
researcher participants were more interruptible if they had recently investigated the
availability of a colleague. Another 44.5% of active windows with class name length less
than 5 had a null class name. This appears to be due to a permissions issue, wherein our
sensing software was denied access to the window class name. This occurred for
windows owned by a variety of processes and we did not observe a systematic cause.
Finally, the seventh feature shows they the researchers were less interruptible if they had
16 or more windows open at any point in the previous minute.

In contrast to the dominance of social engagement in our model of manager
participant interruptibility, this model shows that researcher interruptibility was based on
a mix of social engagement and task engagement. While the first two features in the
manager model (more interruptible if using the mouse and less interruptible if on the
phone) are sufficient to create a model with an A' of .854, the talking and phone features
selected first by the researcher model only yield an A' of .650, significantly worse than
the first two features in the manager model (A' = .854 vs. A' = .650, z = 5.07, p < .001).
It takes 13 features for the researcher model to reach an A' of .854, and the full researcher
model is significantly less reliable than the full manager model (A' = .888 vs. A' = .960,
z = 3.01, p < .01). This seems to indicate that it was more difficult to model the
interruptibility of the researcher subjects, potentially because it was difficult to capture
their task engagement. The next chapter more carefully examines task engagement.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 79

6.5.3 A Model of Intern Interruptibility in Shared Offices
As noted earlier in this chapter, we selected intern participants because our previous work
indicated that a talking sensor is useful to models of human interruptibility and because
the interns worked in an office with another intern. The interns were therefore regularly
in the presence of a second person who might be engaged in a conversation or otherwise
making noise, and we wanted to see affected a model of their interruptibility.

Figure 6.10 shows the reliability of a model of the three intern participants. Based on
38 features, this model has an accuracy of 89.3% and an A' of .903. This is significantly
better than the 72.5% chance performance for this data (A' = .903, z = 16.7, p < .001) and
significantly better than the human observers from our previous study (A' = .903 vs.
A' = .720, z = 6.97, p < .001). It is also significantly better than our general model of all
ten office workers (A' = .903 vs. A' = .838, z = 2.40, p ≈ .016).

The first seven features of this intern interruptibility model are shown in Figure 6.11.
The first feature selected is how often the silence detector has output zero in the past five
minutes, with the interns being more interruptible in quieter offices. Note that this is a
much longer time interval than is used for a similar feature in the researcher model (the
researcher model examines only the previous 30 seconds). The second feature is how
long it has been since the active window was owned by an executable with a name of
length nine. Inspecting the data from the interns, 46.3% of such windows correspond to
“javaw.exe” and another 37.0% correspond to “VCafe.EXE”. For these subjects, these
executables correspond to the use of the Eclipse integrated development environment and
Symantec Visual Café, also a development environment. This feature indicates that the

 3 Intern Participants
Real Sensor Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 191
 68.2%

12
4.3%

Highly
Non-Interruptible

18
6.4%

59
21.1%

Accuracy: 89.3% vs. 72.5% prior

A': .903, z = 16.7, p < .001
vs. Human Observers, z = 6.79, p < .001

Figure 6.10. The reliability of a naïve Bayes model

of the interruptibility of our three intern participants in shared offices.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 80

interns were more interruptible when they had recently changed the active window away
from these development environments. The third feature appears to be related, counting
how many times the intern changed to or from an active window with an application
executable name of nine or more characters.

The fourth selection is a second silence detector feature, though this feature is
somewhat unusual. Whereas every other silence detector used in a model has had the
property that a noisier environment meant that subjects were less interruptible, the
noisiest value of this feature (that the silence detector’s output is currently 15) is
associated with the interns being more interruptible. This may be because the interns
were in a shared office, or it may be a timing issue caused by our experiment (because the
timing of this feature is looking at the tenth of a second before a prompt, an undiscovered
rounding error in the timestamp from our sensor logs could mean that the “noise” heard

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 72.5%

.587 Time Output of Silence Detector is 0 in Past 5 Minutes
 >= 2.33 Minutes (Quiet) 115 19 47.9% 85.8% +13.3%
 < 2.33 Minutes (Noisy) 88 58 52.1% 60.3% -12.2%

.677
Time Since Active Executable Name Length is 9
(which primarily corresponds to “javaw.exe” and “VCafe.EXE”,
the executable names for Eclipse and Visual Café)

 > 15 Minutes 78 31 38.9% 71.6% -0.9%
 >= 42 Seconds 55 10 23.2% 84.6% +12.1%
 < 42 Seconds 70 36 37.9% 66.0% -6.5%

.729 Change in Active Executable Name Length Less Than 9 in Past 15 Minutes
 No Changes 121 65 66.4% 65.1% -7.4%
 >= 1 Change 82 12 33.6% 87.2% +14.7%

.765 Time Since Output of Silence Detector is 15
 > 1 Second 162 68 82.1% 70.4% -2.1%
 >= 0.1 Seconds 14 8 7.9% 63.6% -8.9%
 < 0.1 Seconds 27 1 10.0% 96.4% +23.9%

.785 Time Door Cracked in Past 5 Minutes
 < 2.8 Minutes 176 76 90.0% 69.8% -2.7%
 >= 2.8 Minutes 27 1 10.0% 96.4% +23.9%

.800 Change in Active Executable Name Contains “EXE” in Past 5 Seconds
 < 2 Changes 197 69 95.0% 74.1% +1.6%
 >= 2 Changes 6 8 5.0% 42.9% -29.6%

.814 Day of Week
 Not Friday 180 76 91.4% 70.3% -2.2%
 Friday 23 1 8.6% 95.8% +23.3%

Figure 6.11. The first seven features selected for the
model of intern interruptibility shown in Figure 6.10.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 81

here is actually the sound of our audio file being played to request an interruptibility
self-report), or this feature might just be a statistical anomaly.

The fifth feature shows that the interns were more interruptible when their doors
were cracked for a significant portion of the previous five minutes (recall that our sensors
detected whether a door was open, cracked, or closed). The sixth feature shows that an
intern was less interruptible when there were 2 or more changes in whether the active
window’s executable name contained “EXE”. This is most likely related to changing
from “VCafe.EXE” to another application, then rapidly changing back. The final feature
selected shows that interns were more interruptible on Fridays.

6.5.4 Discussion
This section has shown that more reliable models of human interruptibility can be created
by focusing on office workers with similar responsibilities and work environments. Even
though the general model presented in the last section performs better than the human
observers from our previous study, each of the more targeted models in this section
performed significantly better than the general model. Because of the differences in the
responsibilities and work environments of the different types of participants, different
sensors are better or worse indicators of their task engagement and social engagement.

For example, both the manager model and the researcher model gain much of their
predictive power from features that capture indications of social interaction in a small
time window preceding a prompt for an interruptibility self-report. Specifically, the
researcher model starts with an analysis of the microphone-based silence detector in the
previous 30 seconds. The second feature in both the manager and researcher models is
whether the phone is off its hook at the time of the prompt for a self-report. In contrast,
the additional noise in the shared offices of the interns means that the first feature
selected for the intern model is based on the output of the microphone-based silence
detector in the previous 5 minutes. Considering this longer time interval allows the
model to be resistant to the noisier environment.

The differences in the features selected by the models, and the resulting improvement
over a single general model, suggests that statistical models of human interruptibility
should adapt to a person’s individual preferences and circumstances. In Chapter 8, we

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 82

discuss how this result informed our design of Subtle, specifically its support for
continuous learning of individualized sensor-based models.

6.6 Models Based on Only a Laptop Computer
Given the results of our “Easy to Build” analysis in the previous chapter, we were
interested in whether models of human interruptibility could be deployed based on only
the sensing capabilities of a typical laptop computer. The results in the previous section,
analyzing models of the interruptibility of different types of office workers, seem to
support this possibility. While several models include the phone off hook physical
sensor, only one includes a door sensor in its first seven features. We used a microphone
installed in the office to detect talking, but many laptops include a built-in microphone
that could potentially be used to detect nearby talking. The proximity of this microphone
to the computer’s fan and keyboard could be problematic, however, as the sound of the
computer’s fan or the person typing could interfere with the detection of nearby talking.

Of our ten participants, six primarily use laptops (participants 1, 2, 3, 5, 6, and 7).
For these two managers and four researchers, we logged the output of our
microphone-based silence detector using both the USB-attached microphone we installed
in our sensing package and the built-in microphone of the laptop. While previous
analyses considered the USB-attached microphone, this section considers models based
on only the laptop’s built-in microphone and our software to log computer activity.
While there are many corporate environments that could use software-based solutions to
monitoring whether phones are in use, we decided not to include the phone sensor in
these analyses because we want to examine the capabilities of a standalone laptop
computer. We show that the sensing capabilities of a typical laptop computer, including
its built-in microphone, can support a model of all six office workers with an accuracy of
79.3% and an A' of .836, significantly better than the human observers in our previous
study (A' = .836 vs. A' = .720, z = 5.27, p < .001).

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 83

6.6.1 A General Laptop-Based Model of Interruptibility
Figure 6.12 shows the reliability of a model of our six participants who primarily used a
laptop computer. Based only on the sensing capabilities of the laptop computer, this
model is built from 48 features and has an accuracy of 79.3% and an A' of .836. This is
significantly better than the 66.0% chance performance for this data (A' = .836, z = 18.2,
p < .001) and significantly better than the human observers from our previous study
(A' = .836 vs. A' = .720, z = 5.27, p < .001). It is not significantly different from the
performance of our general model of all ten office workers based on our full sensor set
(A' = .836 vs. A' = .838, z = 0.08, p ≈ .937).

The first feature selected for this model is a threshold on the amount of typing in the
past 5 minutes, as captured by the number of changes in the output of our sensor which
logged how many keys were pressed each second. The six laptop participants were more
interruptible when they were typing more. The second feature is a threshold on the
number of changes in the output of our silence detector in the previous 5 minutes. As our
software outputs a value between 0 and 22, a large number of changes in this value
indicates the presence of noise at a variety of volumes. Participants were less
interruptible when the built-in microphone of the laptop computer detected this noise.

 6 Participants who use a Laptop
Laptop Only Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 352
 56.5%

59
9.5%

Highly
Non-Interruptible

70
11.2%

142
22.8%

Accuracy: 79.3% vs. 66.0% prior

A': .836, z = 18.2, p < .001
vs. Human Observers, z = 5.27, p < .001

Figure 6.12. The reliability of a laptop-based naïve Bayes model

of the interruptibility of our six participants who use a laptop computer.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 84

The third feature shows that these six laptop participants were less interruptible if the
name of the active window’s executable was less than 6 characters long at any point in
the previous 15 minutes. Examining the sensor logs for these participants, 66.4% of such
windows correspond to Microsoft Visual Studio, an integrated development environment,
and another 32.4% correspond to Quicken, personal finance software. The fourth feature
shows that participants were less interruptible if the most common set of open windows
in the previous 15 minutes contained 17 or more windows. Subjects were also less
interruptible if the active window’s title was 10 or more characters long for the entire
previous 5 minutes. Consistent with the first feature’s showing that low levels of
keyboard activity indicate a person is not interruptible, the sixth feature shows that low
levels of mouse movement in the previous 30 seconds indicate participants were less
interruptible. Finally, the last feature shown here indicates that participants were more
interruptible on Tuesdays.

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 66.0%

.568 Number of Changes in Key Press Per Second in Past 5 Minutes
 < 53 Changes 209 161 59.4% 56.5% -9.5%
 >= 53 Changes 202 51 40.6% 79.8% +13.8%

.656 Number of Changes in Output of Silence Detector in Past 5 Minutes
 < 364 Changes (Quiet) 206 62 43.0% 76.9% +10.9%
 >= 364 Changes (Noisy) 205 150 57.0% 57.7% -8.3%

.704
Active Executable Name Length Less Than 6 in Past 15 Minutes
(which primarily corresponds to “vs.exe” and “qw.exe”,
the executable names for Microsoft Visual Studio and Quicken)

 Never 348 139 78.2% 71.5% +5.5%
 At Some Point 63 73 21.8% 46.3% -19.7%

.733 Size of Most Common Set of Open Windows in Past 15 Minutes
 < 17 Windows 319 123 70.9% 72.2% +6.2%
 >= 17 Windows 92 89 29.1% 50.8% -15.2%

.762 Active Window Title Length Less Than 10 in Past 5 Minutes
 At Some Point 268 106 60.0% 71.7% +5.7%
 Never 143 106 40.0% 57.4% -8.6%

.772 Maximum Mouse Move Per Second in Past 30 Seconds
 > 19 in Any Second 272 97 59.2% 73.7% +7.7%
 <= 19 in Every Second 139 115 40.8% 54.7% -11.3%

.781 Day of Week
 Not Tuesday 311 183 79.3% 63.0% -3.0%
 Tuesday 100 29 20.7% 77.5% +11.5%

Figure 6.13. The first seven features selected for the

laptop only model of six participants shown in Figure 6.12.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 85

6.6.2 A Laptop-Based Model of Manager Interruptibility
Figure 6.14 presents the reliability of a laptop-based model of the interruptibility of our
two manager participants. Built from 25 features, this model has an accuracy of 88.1%
and an A' of .940. This is significantly better than the 68.0% chance performance for this
data (A' = .940, z = 21.6, p < .001) and significantly better than the human observers
from our previous study (A' = .940 vs. A' = .720, z = 9.37, p < .001). It is not
significantly different from the performance of our model of these managers based on our
full sensor set (A' = .940 vs. A' = .960, z = 0.78, p ≈ .438).

Figure 6.15 presents the first seven features selected for this laptop-based model of
the interruptibility of our two manager participants. The first feature shows that the
managers were more interruptible when using their mouse for 12 or more of the previous
30 seconds. The second feature shows that the managers were less interruptible when the
laptop’s built-in microphone detected nearby noise in the previous 5 seconds. Both of
these features are consistent with our previous discussion that the manager interruptibility
was dominated by social engagement and the managers were more interruptible when not
engaged in a social interaction.

The third feature shows that the managers were less interruptible when they spend
more than 5 of the past 15 minutes in an active window who’s executable names was of
length 12. Examining the data collected from the manager participants, 45.1% of such
windows correspond to Microsoft Explorer’s “explorer.exe”, another 33.5% to Microsoft
Internet Explorer’s “iexplore.exe”, and another 19.7% to Microsoft PowerPoint’s
“powerpnt.exe”.

 2 Managers who use a Laptop
Laptop Only Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 135
 61.6%

14
6.4%

Highly
Non-Interruptible

12
5.5%

58
26.5%

Accuracy: 88.1% vs. 68.0% prior

A': .940, z = 21.6, p < .001
vs. Human Observers, z = 9.37, p < .001

Figure 6.14. The reliability of a laptop-based naïve Bayes model

of the interruptibility of our two managers who use a laptop computer.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 86

The next three features are also related to computer usage. The fourth shows that
managers were more interruptible when above a threshold on their amount of typing in
the previous minute. The fifth feature indicates they were also more interruptible when
exactly 13 windows were open at any point in the previous 4 minutes. The sixth shows
that managers were more interruptible when they made several switches to or away from
a window for composing a new email in the previous 5 minutes. This might be because
they composed and sent several messages (switching back to the main email client
window between each message), or they might have been switching to another

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 68.0%

.633 Time Mouse Move Per Second Equals 0 in Past 30 Seconds
 > 12 Seconds

(Less Movement)
 91 70 73.5% 56.5% -11.5%

 <= 12 Seconds
(More Movement)

 58 0 26.5% 100% +32.0%
.740 Distinct Values of Output of Silence Detector in Past 5 Seconds

 < 5 (Quiet) 99 23 55.7% 81.1% +13.1%
 >= 5 (Noisy) 49 47 43.8% 51.0% -17.0%
 Undefined 1 0 0.5% 100% +32.0%

.789
Active Executable Name Length Equals 12 in Past 15 Minutes
(which primarily corresponds to “explorer.exe”, “iexplore.exe”,
and “powerpnt.exe”, the executable names for Microsoft Explorer,
Microsoft Internet Explorer, and Microsoft PowerPoint)

 < 5 Minutes 102 36 63.0% 73.9% +5.9%
 >= 5 Minutes 47 34 37.0% 58.0% -10.0%

.816 Change in Key Press Per Second in Past Minute
 < 25 Changes

(Less Typing)
 69 119 85.8% 36.7% -31.3%

 >= 25 Changes
(More Typing)

 30 1 14.2% 96.8% +28.8%
.842 Time Since There were Exactly 13 Open Windows

 >15 Minutes 105 50 70.8% 67.7% -0.3%
 < 15 Minutes 6 10 7.3% 37.5% -30.5%
 < 4 Minutes 38 10 21.9% 79.2% +11.2%

.855 Change in Active Window Title is “New Memo – Lotus Notes” in Past 5 Minutes
 < 6 Changes 132 70 92.2% 65.3% -2.7%
 >= 6 Changes 17 0 7.8% 100% +32.0%

.867 Day of Week
 Not Thursday 123 66 86.3% 65.1% -2.9%
 Thursday 26 4 13.7% 86.7% +18.7%

Figure 6.15. The first seven features selected for the

laptop only model of two managers shown in Figure 6.14.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 87

application while composing a single message. Finally, the seventh feature indicates that
the managers were more interruptible on Thursdays.

6.6.3 A Laptop-Based Model of Researcher Interruptibility
Figure 6.16 shows the reliability of a model of our four researcher participants who
primarily used a laptop computer. Built from 26 laptop-based features, this model has an
accuracy of 80.2% and an A' of .860. This is significantly better than the 64.9% chance
performance for this data (A' = .860, z = 17.0, p < .001) and significantly better than the
human observers from our previous study (A' = .860 vs. A' = .720, z = 5.74, p < .001). It
is not significantly different from the performance of our model of all five researchers
based on our full sensor set (A' = .860 vs. A' = .888, z = 1.04, p ≈ .298).

Figure 6.17 shows the first seven features selected for our laptop-based model of the
interruptibility of the four researcher participants who primarily used a laptop computer.
The first indicates that the researchers were less interruptible when the active window
had recently been owned by an executable with a name of length six. In this data, 67.1%
of such windows belong to Microsoft Visual Studio’s “vs.exe” and another 32.7% to
Quicken’s “qw.exe”. The second feature shows that subjects were more interruptible if
the previous 5 minutes included a switch between an active window with a title of length
30 or greater and an active window with a title of length less than 30. These long titles
seem to be commonly associated with programs that add a document title to the window
title, including Microsoft Office applications, web browsers, and email clients.

 4 Researchers who use a Laptop
Laptop Only Model

Self-Report All Other Values Highly
Non-Interruptible

All Other Values 218
 54.0%

44
10.9%

Highly
Non-Interruptible

36
8.9%

106
26.2%

Accuracy: 80.2% vs. 64.9% prior

A': .860, z = 17.0, p < .001
vs. Human Observers, z = 5.74, p < .001

Figure 6.16. The reliability of a laptop-based naïve Bayes model

of the interruptibility of our four researchers who use a laptop computer.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 88

The third feature selected is a threshold on the last 15 seconds of output from our
silence detector running on the laptop’s built-in microphone. The researchers were more
interruptible when the output of the speech detector was less than 6 for more than 6 of the
past 15 seconds. The fifth and seventh features are also thresholds on the output of the
silence detector, examining its maxima in the previous 30 seconds and the number of
changes in its output in the previous second.

The fourth feature shows the researchers were less interruptible when they have
exactly 14 windows open. That this feature is based on an exact count, instead of a
threshold on the number of windows open, is another example of a feature that is difficult
to interpret, a point we plan to discuss as an area for future work in Chapters 8 and 9.
The sixth feature shows that researchers were more interruptible if they had generated 68
mouse move events in any second in the previous 15 minutes.

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 64.9%

.581
Time Since Active Executable Name Length Equals 6
(which primarily corresponds to “vs.exe” and “qw.exe”,
the executable names for Microsoft Visual Studio and Quicken)

 > 15 Minutes 200 70 66.8% 74.1% +9.2%
 < 15 Minutes 26 17 10.6% 60.5% -4.4%
 < 2.5 Minutes 36 55 22.5% 39.6% -25.3%

.681 Change in Active Window Title Length >= 30 in Past 5 Minutes
 >= 1 Change 214 93 76.0% 69.7% +4.8%
 No Changes 48 49 24.0% 49.5% -15.4%

.724 Time Output of Silence Detector < 6 in Past 15 Seconds
 >= 6 Seconds (Quiet) 183 83 65.8% 68.8% +3.9%
 < 6 Seconds (Noisy) 79 59 34.2% 57.2% -7.7%

.736 Exactly 14 Windows Open for Previous Second
 False 221 134 87.9% 62.3% -2.6%
 True 41 8 12.1% 83.7% +18.8%

.753 Maximum Output of Silence Detector in Past 30 Seconds
 < 22 (Quiet) 249 120 91.3% 67.5% +2.6%
 >= 22 (Noisy) 12 21 8.2% 36.4% -28.5%
 Undefined 1 1 0.5% 50.0% -14.9%

.766 Maximum Mouse Move Per Second in Past 15 Minutes
 >= 68 (More Movement) 166 71 58.7% 70.0% +5.1%
 < 68 (Less Movement) 96 71 41.3% 57.5% -7.4%

.783 Change in Output of Silence Detector in Past Second
 < 5 Changes (Quiet) 220 106 80.7% 67.5% +2.6%
 >= 5 Changes (Noisy) 42 36 19.3% 53.8% -11.1%

Figure 6.17. The first seven features selected for the

laptop only model of four researchers shown in Figure 6.16.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 89

6.6.4 Discussion
This section has presented models based entirely on software-based sensing that can be
deployed on a typical laptop computer. Using analyses of audio from a laptop’s built-in
microphone together with the desktop event stream, we have produced models that can
identify situations reported as “Highly Non-Interruptible” significantly better than the
human observers in our previous study. All of these models reach a level of performance
that is not significantly different the previous section’s models based on our full set of
deployed sensors.

While the laptop’s built-in microphone was the only mechanism available for these
models to directly sense social engagement, the models also seem to have used the lack
of computer activity as an indirect indication of social engagement. All three models
presented in this section include at least one feature showing that greater levels of mouse
or keyboard activity indicate that a person is more interruptible. If this greater level of
activity were related to task engagement, we would expect it to indicate that the
participants were less interruptible. Instead, it seems that these features capture the fact
that people interact with their computers less when they are socially engaged. The
features that are related to task engagement seem to be focused on what application a
person is using, such as the researcher model feature that examines how long it has been
since the active window was owned by Microsoft Visual Studio or Quicken.

6.7 Discussion
This chapter has shown that learned statistical models based on practical sensors can
identify situations reported as “Highly Non-Interruptible” with a reliability that is
significantly better than human observers. We have validated this finding with office
workers who have a variety of responsibilities and working environments. Models
focused on smaller sets of similar office workers perform better than a general model of
all ten of our participants, even a general model performs significantly better than human
observers.

It is particularly interesting to see that a typical laptop computer is sufficient for
supporting reliable sensor-based statistical models of human interruptibility. While the
full sensor models generally include the physical phone off hook sensor, the learner is
able to compensate for the absence of this explicit indicator of social engagement by

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 90

selecting microphone-based features and using the lack of computer activity as an
indirect indication of social engagement. Figure 6.18 summarizes the reliability of
models presented in this chapter. Every model performs significantly better than the
human observers in our previous study and every laptop-based model reaches a level of
reliability that is not significantly different from the corresponding model based on the
full set of sensors.

The results presented in this chapter have several implications for the work we
pursue in the remainder of this dissertation. First, this study installation included door
sensors, motion detectors, a physical phone off hook sensor, and a special-purpose
microphone placed away from ambient noise, but we also examined the sensing
capabilities of a typical laptop computer. Given a laptop’s built-in microphone, we
demonstrated models that reach a level of reliability that is not significantly different
from models based on our full sensor set. The remainder of this dissertation is therefore
focused on sensing that can be deployed entirely in software on a typical laptop
computer. While focusing on software-deployable sensing obviously limits the
information available to a model, we are drawn to the fact that software-deployable

Figure 6.18. A summary of the reliability of the models in this chapter.
All of our models identify “Highly Non-Interruptible” situations

significantly better than human observers, and none of the laptop-only
models are significantly worse than the corresponding full sensor model.

Chapter 6: A Robustness Study with Real Sensors and Diverse Office Workers 91

systems can have real impact through wide availability. Second, the results in this
chapter motivate a more careful examination of software-based indications of task
engagement. We have seen that participants were often more interruptible when using
their computer, but that activity in certain applications was an indication that they should
not be interrupted. The next chapter more carefully explores models of interruptibility
based on a computer’s desktop event stream.

While this chapter has demonstrated the robustness of the results from our initial
Wizard of Oz feasibility study and extended these results by examining the capabilities of
a typical laptop computer, notable limitations remain. Because our data collection
mechanism was installed in the office of each participant, we have studied the
interruptibility of office workers only when they are physically in their office. It is
possible that sensors we have shown to be predictive in an office may be less predictive
outside of the office. This might be addressed by including location sensing in a model,
but the exact impact of mobility on these types of models remains unknown. Various
temporal issues may also exist, as we have examined interruptibility only at the moments
in time for which we have collected self-reports. Considering these models in
environments where they are continuously evaluated by an application might introduce
additional concerns, such as whether a model’s output is too discontinuous for use by a
particular application.

 92

Chapter 7
7 A Study of Task Engagement

in a Natural Programming Problem

7.1 Introduction
Our results to this point have primarily been dominated by social engagement as it is
captured by sensors to detect talking or phone use. While our models have included
some features related to computer usage, these have been fairly high-level. Both our
intuition and the literature suggest that capturing task engagement is important for
creating reliable models of human interruptibility (Perlow 1999; Seshadri and Shapira
2001; Hudson et al. 2002). This chapter therefore seeks to more carefully examine task
engagement in sensor-based statistical models of human interruptibility. Using our
Wizard of Oz approach and transitioning to actual, implemented sensing, we examine
how programmers respond to interruptions while they are programming and how
statistical models can be used to predict their interruptibility. We develop a statistical
model based on low-level input events in the development environment. This model can
identify whether a programmer will choose to attend to an interruption with an accuracy
of 75.6%, significantly better than the 58.5% prior (A' = .784, z = 18.5, p < .001).

Several motivations led us to investigate programmers. First, our results in the
previous chapter suggest that the sensors we deployed could be significantly improved to
better capture task engagement. Specifically, we expected the model of manager

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 93

interruptibility to be dominated by social engagement and we expected that task
engagement would play a larger role in the model of researcher interruptibility. The
resulting model of the two manager participants is significantly more reliable than the
model of the five researcher participants (A' = .888 vs. A' = .960, z = 3.01, p < .01). The
fact that the researcher model is less reliable suggests that some difference between the
managers and the researchers affected our ability to model their interruptibility, and it
seems like this difference might be an inability of the deployed sensors to capture certain
types of task engagement.

Beyond our desire to further investigate this aspect of our prior work, programmers
have several other properties that make them good candidates for a study of task
engagement in sensor-based statistical models of human interruptibility. Programming is
a complex activity that places significant demands on working memory and other
cognitive resources, and failures in working memory are known to result in programming
errors (Anderson and Jeffries 1985; Ko and Myers 2004). Because interruptions increase
the likelihood of such failures, we may be able to develop tools that use models of
interruptibility to help reduce programming errors, perhaps by preventing interruptions or
by noticing when programmers are interrupted at particularly non-interruptible points in
their work and then helping them recover. Programmers also seem to be a good example
of knowledge workers whose work involves significant interaction with a computer, and
so we are hopeful that results obtained with programmers will transfer to other
computer-centric knowledge work. While results seem less likely to transfer to office
workers who use computers relatively little, we are comfortable with this tradeoff
because it seems like the advances offered by sensor-based statistical models of human
interruptibility will initially be most relevant to computer-centric workers.

The next section introduces our experimental setup. We then discuss our exploratory
data collection and the decision to use response time as a measure of programmer
interruptibility. This is followed by a brief discussion of our Wizard of Oz analysis and
our resulting implementation of an event sensing library. We then discuss our primary
data collection using our implemented sensing. This is followed by a presentation of our
resulting model and a discussion of its features.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 94

7.2 Experimental Setup
In order to control the effects of social engagement and focus on task engagement, we
studied programmers in a laboratory environment completing a realistic programming
task while being subjected to interruptions. Participants worked in a small office that was
free of other people or environmental distractions (other than the experimenter, who was
available for questions about the task or the equipment but did not otherwise interfere).
Participants worked in Eclipse 2.1.2, a modern development environment popular with
Java programmers. Commercial screen capture software recorded the entire screen at 12
frames per second in 24-bit color, with no noticeable impact on the computer’s
performance.

7.2.1 The Paint Program Primary Task
The Paint program, shown in Figure 7.1, is a 503-line program consisting of nine classes
implemented in Java with the Swing toolkit. It provides basic paint support, allowing
users to draw, erase, clear, and undo colored strokes on a white canvas. Participants were
given the Paint program and allowed 70 minutes to address five requests. These were:

• “Users complained that scroll bars don’t always appear after painting outside the
canvas, but when they do appear, the canvas doesn’t look right. Fix Paint so that
(1) the scroll bars appear immediately when painting outside the visible canvas

Figure 7.1. The Paint program that participants modified during the task.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 95

and (2) the canvas is correctly rendered when using the scroll bars to navigate the
canvas.

• “Users complained that they can’t selected yellow. Fix Paint so that users can
paint with the color yellow.

• “Users complained that the ‘Undo my last stroke’ button doesn’t always work.
Fix Paint so that the ‘Undo my last stroke’ button undoes the last stroke or clear
of the canvas.”

• “Users requested a line tool. There’s a radio button for it, but it doesn’t work yet.
Create a line tool that allows users to draw a line between points. Users should
be able to see the line while dragging.”

• “Users requested control over the stroke thickness of pencil, eraser, and line
tools. Create a thickness slider with values from 1 to 50, which controls the
thickness of the stroke for all tools.”

Participants were given access to whatever resources they desired, including the Internet
and the Java API documentation. They were also given full control over their strategy for
ordering the requests and managing their time. They were told they would be paid $10
for each successfully completed request.

7.2.2 Mental Arithmetic Interruptions
At random time intervals averaging approximately once every three minutes, participants
were notified of a pending interruption by an audio alert and the flashing taskbar icon
shown in Figure 7.2. Participants could choose whether to address the interruption
immediately or continue with their primary programming task until they wanted to
address the interruption. In his work on techniques for coordinating interruptions,
McFarlane refers to this approach as a negotiated solution, because a person is able to
choose when they want to address an interruption. McFarlane found that this negotiated
solution generally works best, as long as small differences in the time taken to begin
addressing an interruption are not critical (McFarlane 2002). Robertson et al. have
compared immediate and negotiated coordination of error messages when programming
in a spreadsheet application, finding that task performance was significantly better with
negotiated coordination (Robertson et al. 2004). This evidence that negotiated
coordination is the best approach to interruptions in development environments informed
our use of negotiated coordination, as we want our study to be based in how programmers
handle normal interruptions. Value was associated with the interruptions by telling

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 96

participants that they would lose $2 for any ignored or incorrectly answered interruption,
but we did not enforce this penalty.

When a participant clicked on a notification, a two digit multiplication problem was
presented, as in Figure 7.3. Participants were required to do the multiplication mentally
and were not allowed to use scratch paper or other programs. Because this task is known
to place significant demands on working memory (Lemaire et al. 1996) and working
memory failures are known to be a significant cause of programming errors (Anderson
and Jeffries 1985; Ko and Myers 2004), this is an effective interruption of a programming
task. To ensure the difficulty of the task, neither multiplicand had a 0 or 1 in its digits.
To ensure participants understood the interruption mechanism and were practiced in
mental arithmetic, several practice interruptions were given prior to the 70 primary task
during a 10 minute session of surfing web pages unrelated to programming.

Figure 7.2. The Eclipse development environment,
with a pending interruption flashing on the taskbar.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 97

7.3 Exploratory Data Collection and Overview
To collect our exploratory data and recordings, we recruited ten participants. Five were
undergraduates majoring in computer science, four were graduate students in disciplines
related to computing, and one was a graduate student in another field. Half of the
subjects reported more than a year of industry programming experience, and other half
reported an average of less than two months of industry experience. This section reports
on our exploratory analyses of the screen capture videos and how those analyses
informed the work presented in the remainder of this chapter.

Given the focus of this work on task engagement, we designed our primary
programming task and the mental arithmetic interruption such that we could use a
measure interruptibility based in task performance, as opposed to more subjective
measures like the self-reports used in our prior work or the retrospective labeling used by
Horvitz and Apacible (Horvitz and Apacible 2003). However, prior to examining our
exploratory recordings, it was unclear which of several potential measures was most
appropriate.

Figure 7.3. A mental arithmetic interruption.
Note that it obscures the entire screen.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 98

After examining our exploratory data, we decided to measure interruptibility in terms
of the difference between the time when the blinking taskbar notification was displayed,
indicating that an interruption was pending, and the time that the participant
acknowledged the interruption by clicking on the taskbar notification, which caused the
multiplication dialog to take over the screen. We decided on this measure of
interruptibility because the exploratory recordings repeatedly show participants finishing
an edit or navigation before responding to the interruption. These behaviors are
consistent with the notion that the participants were externalizing their working memory
into the state of their development environment before addressing the pending
interruption. Less abstractly, participants who were editing code tended to finish the edit
before addressing the interruption, as opposed to responding to the interruption and then
trying to resume the edit. Similarly, participants who were navigating to a particular
location in the source code, such as a method or variable declaration, tended to finish the
navigation, as opposed to addressing the interruption and then trying to remember to
where they were navigating. This explanation held even for exceptionally long delays in
addressing an interruption. For example, we inspected some delays of more than a
minute that we initially thought resulted from missed or ignored notifications. We found
that participants had pasted a large chunk of code shortly before the notification and the
long delay was due to the participant completing all planned modifications of the recently
pasted code before attending to the interruption.

One of the more interesting potential measures of interruptibility that we considered
but decided against is whether interruptions resulted in the introduction of actual errors
into the Paint program. We did not pursue this measure of interruptibility because we
found very few instances of an error being introduced as the result of an interruption. We
believe this is because the negotiated coordination of interruptions, wherein participants
chose when they wanted to attend to an interruption, allowed participants to carefully
externalize their working memory into the development environment, as just discussed.
We also note that Gillie and Broadbent found similar results when the environment
contains the knowledge needed to resume an interrupted task (Gillie and Broadbent
1989). We believe that more programming errors would have resulted if the interruptions
had been presented without warning or delay, but decided against this approach in order
to remain closer to the types of interruptions that programmers experience in their normal
development environments.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 99

7.4 Wizard of Oz Sensor Exploration and Implementation
Based on the major activities we observed in the exploratory recordings and our decision
to measure interruptibility as the time for a participant to respond to an interruption
notification, we developed a set of 20 simulated sensors in 6 categories, shown in
Figure 7.4. We chose these sensors because they occurred with reasonable frequency in
the exploratory recordings, because they seem like they might relate to interruptibility,
and because they might be reasonably implemented. While the specifics of some of these
sensors, such as the difference between PERUSE and GOTO, might be rather difficult to
implement, we included them because knowing that such a sensor would be predictive
could possibly justify the effort needed to develop it.

Reading

LINE
Highlights line(s) or moves
cursor through a brief series
of lines without editing

COMMENT Edits comments in the code

PURUSE
Scrolls through code, but not
to specific line of code, as if
reading

BROWSE
Expands nodes and/or scrolls
in the package explorer, but
not to a specific object

HOVER
Interacts with the system, but
hovers the cursor over a
specific line of code or
explorer object

IDLE
Does not interact with mouse
or keyboard for more than 2
seconds

Interface Navigation

UI
Searches menus, context
menus, or toolbars for
commands for more than 1
second

WAIT Is waiting for a progress bar or
hour glass cursor

Coding

EDIT
Edits program code, including
any cursor movements or line
selections

Code Navigation

FIND
Expands nodes and/or scrolls
in the package explorer to a
specific object

GOTO Scrolls to a specific line of
code

METHOD Opens a method or variable
from the package explorer

SEARCH Places the cursor in a text field
to searching or replace

Task Switching
ACTIVATE Makes the Eclipse window

active

OUTSIDE
Performs actions outside the
Eclipse environment and the
running Paint program

RUN
Executes the program with
CTRL-F11, the Run button, or
the menu item

TEST Interacts with the running
Paint program

VIEW Switches Eclipse perspectives,
or closes or open a source file

Debugging

FIND
Expands nodes and/or scrolls
in the package explorer to a
specific object

GOTO Scrolls to a specific line of
code

Figure 7.4. The 20 simulated sensors we used to examine

our exploratory recordings of programmers working on the Paint task.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 100

Working from a specification of when to mark the beginning and end of an activation
for each of these simulated sensors, we simulated their output for the minute preceding
each notification of a pending mental arithmetic interruption. We then created features to
capture the frequency, recency, and density of simulated sensor activation and built
statistical models from these features, attempting to predict the interruptibility of the
programmers. We do not present a detailed analysis of these simulated sensors, leaving
such a presentation for the results obtained with our implemented sensors. Instead, we
now comment on the results of these analyses that influenced our choice of sensor
implementation.

While we had expected the EDIT sensor to be useful, we were surprised to find it was
the only sensor to emerge as predictive. This might be because the other activities for
which we created simulated sensors do not have the same working memory requirements
as editing, and so therefore do not result in delays when responding to an interruption. It
might also be that they impose working memory requirements, but do not occur often
enough in our collected data to emerge as predictive of interruptibility. In any case, this
result led us to focus on implementing a sensor to detect the frequency, recency, and
density of low-level input events. On the other hand, if simulated sensors like PERUSE,
which is based in the activities a participant is performing over a period of time, had
emerged as predictive, we might have instead chosen to implement a sensor that analyzed
sequences of input events to detect different patterns.

We implemented our sensing by developing an Eclipse plug-in that subscribes to
every system event generated by widgets in the Eclipse development environment.
Because Eclipse is implemented in the Standard Widget Toolkit (SWT), our plug-in uses
the SWT to start from each top-level SWT window and recursively descend its widget
hierarchy, adding appropriate SWT event listeners to each widget encountered. These
event listeners log the appropriate parameters of each low-level event. This recursive
search is executed twice per second, so that newly created widgets and dialogs are
detected and logged.

Beyond logging the basic parameters of each event, the plug-in also logs some
additional information more specific to the programming task. For appropriate events,
our plug-in examines the source code currently visible in the editor and logs which
methods of which classes are visible and how many lines of code from each of those

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 101

methods is visible. This allows events to be associated with classes and methods, rather
than just characters or screen coordinates.

7.5 Primary Data Collection
In order to examine the effectiveness of our implemented sensing, we recruited twenty
additional participants. Eight were undergraduates majoring in computer science, six
were undergraduates majoring in related fields, two had bachelor’s degree in other fields
and several years of industry programming experience, two were graduate students in
computer science, and two were graduate students in related fields. Thirteen participants
reported more than a year of industry programming experience, and the other seven
reported an average of less than two months of industry experience. We collected a total
of 475 interruption response time observations from these participants.

In order to apply a classifier, we clustered participant response times using an
Expectation Maximization algorithm, as implemented in the Weka machine learning
toolkit (Dempster et al. 1977; Witten and Frank 1999). Given a set of observations and a
number of clusters to produce, the algorithm computes the means and standard deviations
of the normal distributions most likely to have generated the given observations. We
examined the algorithm’s output for two, three, and four clusters and decided to proceed
by analyzing the data in three clusters, for reasons we will discuss in this section.

The first cluster, which we will refer to as interruptible, represents an immediate
response to an interruption notification and contains 278 response time observations with
a mean of 2.281 seconds and a standard deviation of 752 milliseconds. The second
cluster, which we will refer to as engaged, represents a short delay from notification to
response and contains 143 response time observations with a mean of 6.917 seconds and
a standard deviation of 3.434 seconds. The final cluster, which we will refer to as deeply
engaged, represents a long delay from notification to response and contains 54 response
time observations with a mean of 43.065 seconds and a standard deviation of 37.399
seconds. Each pair of clusters is significantly different (interruptible vs. engaged:
t(419) = 21.55, p < .001, interruptible vs. deeply engaged: t(330) = 18.28, p < .001,
engaged vs. deeply engaged: t(195) = 11.48, p < .001).

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 102

The very small deviation in response time for observations in the interruptible cluster
was one of the reasons we decided to use three clusters to analyze this data, as we believe
it indicates a more realistic partitioning of the data. When considering two clusters, we
obtained a cluster with a mean of 2.946 seconds with a standard deviation of 1.529
seconds and a cluster with a mean of 27.116 seconds and a standard deviation of 31.601
seconds. Comparing these clusters to the data, we felt that three clusters provided a more
appropriate division of the data and found that moving to four clusters appeared to offer
no improvement.

7.6 A Model of Programmer Interruptibility
After clustering programmer response times, we developed a classifier to distinguish
interruptible observations from observations in the other two clusters, engaged and
deeply engaged. As in the previous chapter, this model was developed using Subtle,
which applies an iterative feature generation algorithm to automatically extract
appropriate high-level features from the low-level event logs collected by our sensing
plug-in. We again constructed a naïve Bayes classifier and evaluated it using a standard
ten-fold cross-validation.

Figure 7.5 presents the reliability of the resulting model. Built from 26 automatically
generated features, this model has an accuracy of 75.6% and an A' of .784, significantly
better than the 58.5% prior for this dataset (A' = .784, z = 18.5, p < .001). If used to filter
development environment notifications, this model could prevent 72.1% of notifications
at inappropriate times while still allowing the immediate delivery of 78.1% of

 20 Programmer Participants
Development Environment Sensing Model

Self-Report Interruptible Engaged or
Deeply Engaged

Interruptible 217
 45.7%

61
12.8%

Engaged or
Deeply Engaged

55
11.6%

142
29.9%

 Accuracy: 75.6% vs. 58.5% prior
A': .784, z = 18.5, p < .001

Figure 7.5. The reliability of a naïve Bayes model
of the interruptibility of our twenty programmer participants.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 103

appropriately-timed notifications. Figure 7.6 shows how this model’s reliability is
improved as features are added. The first several features again provide much of the
model’s eventual predictive power, though the dominance of the initial features is less
pronounced than that shown in Figure 4.7 and Figure 6.4.

The first seven features in this low-level model of programmer interruptibility are
shown in Figure 7.7. The first feature shows that programmers were less interruptible if
they had generated an ExtendedModify event in the previous 15 seconds. This event is
generated whenever the text of a file is modified. Interestingly, the programmers were
less interruptible when this edit occurred inside the body of a method. This is consistent
with the view that any editing includes a certain amount of working memory overhead,
but that editing the definition of a method may require more focused attention than
adding an import or variable declaration.

The second feature selected is that programmers were less interruptible if they had
recently switched their focus away from the Eclipse integrated development environment.
In the Standard Widget Toolkit (SWT) used to implement Eclipse, top-level windows are
referred to as shells. Programmers were less interruptible if a shell deactivate event had

Figure 7.6. As with models presented earlier in this dissertation, the
reliability of our model of programmer interruptibility jumps with its
first features and grows more slowly as additional features are added.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 104

been generated in the previous minute, perhaps because the programmer had shifted to
testing to Paint application or searching through documentation.

The third feature indicates that these programmers were more interruptible when
generating mouse move events in the previous minute. This specific feature examines
each second in a minute to see if a mouse move event occurred in the previous 15
seconds, applying a threshold on whether this is true for more than 37 seconds of the
previous minute. Programmers might therefore generate a fairly continuous stream of

A' Value
 #

Interruptible

Highly Non
Interruptible

% of
Data %

Interruptible
%

Change

.500 No Features 58.5%

.527 ExtendedModify Event in Past 15 Seconds
 No ExtendedModify Event 216 124 71.6% 63.5% +5.0%
 Outside a Method 52 42 19.8% 55.3% -3.2%
 Within a Method 10 31 8.6% 24.4% -34.1%

.601 Shell Event in Past Minute
 No Shell Event 174 133 64.6% 56.7% -1.8%
 Shell Deactivate Event 55 52 22.5% 51.4% -7.1%
 Other Shell Event 49 12 12.8% 80.3% +21.8%

.643 Mouse Move Event in Past Minute
 Move in Past 15 Seconds for

> 37 Seconds of Past Minute
 151 74 47.4% 67.1% +8.6%

 Less Mouse Move Activity 127 123 52.6% 50.8% -7.7%
.669 Key Event Outside of a StyledText Widget in Past Minute

 No Key Events or
Only in StyledText Widgets

 234 188 88.8% 55.5% -3.0%
 Key Event Outside of a

StyledText Widget
 44 9 11.2% 83.0% +24.5%

.688 Paint Event Outside of a Label Widget in Past Minute
 Paint Event

Outside of a Label Widget
 192 159 73.9% 54.7% -3.8%

 No Paint Events or
Only in Label Widgets

 86 38 26.1% 69.4% +10.9%
.703 Any Tree Events in Past 30 Seconds

 No Tree Events 236 186 88.8% 55.9% -2.6%
 1 or More Tree Events 42 11 11.2% 79.2% +20.7%

.715 Change in Mouse Events Within or Outside of Tree Widget in Past 15 Seconds
 No Mouse Events or

< 4 Changes
 259 173 90.9% 60.0% +1.5%

 >= 4 Changes 19 24 9.1% 44.2% -14.3%

Figure 7.7. The first seven features selected for the
model of programmer interruptibility shown in Figure 7.5.

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 105

mouse move events for at least 22 seconds, or a handful of mouse move event distributed
across the previous minute. In either case, programmers were more interruptible.

The fourth feature is whether a programmer generated a Key event in a widget other
than a StyledText widget in the previous minute. Because Eclipse uses StyledText
widgets for editing code, this corresponds to typing in popup dialogs and other such
widgets. Programmers were more interruptible when they recently typed in such a
non-code widget.

The fifth feature shows that programmers were less interruptible when their actions
resulted in the generation of Paint events in widgets other than labels. Many actions in
the development environment generate these events, so this feature seems to indicate that
general activity in the development environment meant that the programmers were less
interruptible.

The sixth and seventh features are related to the tree view used to present the files,
classes, and methods in an Eclipse project (see Figure 7.2). Programmers were more
interruptible if they had generated any Tree events in the previous 30 seconds. This
would seem to indicate that they were either exploring the list of methods in a class or
moving from one source file to another. While they were more interruptible when
generating Tree events, the programmers were less interruptible when moving between a
Tree control and another widget. This is consistent with mousing over items in the tree
view, as this generates a tooltip for the tree item (which the mouse is then over, changing
what type of widget the mouse is moving over).

7.7 Discussion
This chapter has demonstrated learned statistical models that capture programmer task
engagement in an integrated development environment based on the application’s
low-level event stream. Starting from a Wizard of Oz examination of screen capture
recordings, we explored a variety of potentially predictive activities in the development
environment. Because we found that editing was the best indicator of a high working
memory load, we implemented an Eclipse plug-in to capture low-level events in the
development environment. Using Subtle, we automatically extracted high-level
features based on the frequency, recency, and density of low-level events in the
development environment. The resulting model predicts whether programmers will

Chapter 7: A Study of Task Engagement in a Natural Programming Problem 106

choose to immediately attend to or defer an interruption with an accuracy of 75.6% and
an A' of .784, significantly better than the 58.5% prior for this dataset.

The results presented in this chapter have informed how we address task engagement
in the remainder of this dissertation. As discussed in the next chapter, Subtle addresses
task engagement by examining the frequency, recency, and density of low-level events.
An alternative approach would be to develop models of specific tasks and include
routines that examine recent events to determine if a person is in the midst of a task,
similar to the work by Bailey et al. (Bailey et al. 2005). While we ultimately believe that
such approaches could be added to Subtle, our results in this chapter lead us to believe
that we should initially focus on fully-automated approaches. We have shown that the
iterative generation of high-level features based on the frequency, recency, and density of
low-level events can capture indications of task engagement without the need for
manually-specified models of tasks.

Several pieces of future work are suggested by the limitations of the work presented
in this chapter. While we have demonstrated the automated development of models of
task engagement within a particular application, it may be more difficult to develop
comparable models across all of the applications used by an office worker. This is
partially due to practical concerns, such as whether we are able to reliably access the
underlying low-level event stream across applications, but it is also due to the large
number of additional variables that are introduced when considering many additional
applications. It is also unclear how the performance of the model presented in this
chapter compares to other approaches or to human observers. Additional studies might
examine how expert programmers would describe the interruptibility of a programmer at
a given point in time. It might also be interesting to compare the performance of our
model to other types of models, such as one that includes specific knowledge of common
programming tasks. Finally, it is unclear whether the notion of task engagement studied
in this chapter will provide a significant practical contribution to the models discussed in
earlier chapters. While the notion of task engagement studied in this chapter is much
richer than was considered in previous chapters, it might still be dominated by sensors
related to social engagement. Further field studies are necessary to examine the utility of
the types of task engagement models developed in this chapter.

 107

Chapter 8
8 Toolkit Support for Sensor-Based

Statistical Models of Human Situations

8.1 Introduction
This dissertation has shown that practical sensors can support reliable models of the
interruptibility of office workers with diverse responsibilities in a variety of
environments. We have shown that sensors capturing indications of social engagement
and task engagement can support reliable sensor-based statistical models. These models
can enable applications that consider human interruptibility and the social situation
surrounding an application’s usage.

This chapter presents Subtle, a tool we have developed to enable non-expert
development and deployment of sensor-based statistical models of human situations. The
design of Subtle has been informed by the results of our studies of models of human
interruptibility, but the functionality provided by Subtle is sufficiently general that it
can and should be applied to modeling a variety of human situations. For example, we
have used Subtle to build an application that learns to automatically toggle whether a
laptop’s audio is muted, based on such factors as a person’s location and what
applications they are using. This application develops and uses a sensor-based statistical
model with just sixteen lines of code. An instant messaging application could use
Subtle to learn when to set or clear a busy flag shared with colleagues. A notification

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 108

application could use Subtle to model whether a salient notification, such as a popup
with an audio cue, or a peripheral notification, such as a fade-in system tray icon, is
currently more appropriate.

This chapter starts by presenting the challenges addressed by Subtle and how our
approach to these challenges has been informed by the work presented in this
dissertation. We then present the details of Subtle’s implementation. We start by
presenting an overview of Subtle’s architecture. We then introduce its extensible
sensing library. This is followed by a discussion of Subtle’s use of type-based
operators in a fully-automated iterative feature generation and selection algorithm. We
then discuss Subtle’s support for continuous learning of individualized models on
personal computers. Our discussion of implementation concludes with Subtle’s support
for fields deployment, including the application of an extensible privacy policy to sensor
logs. We then present a validation of Subtle’s support for developing applications that
use sensor-based statistical models of human situations.

8.2 Challenges Addressed by Subtle
As a tool, Subtle seeks to enable the development and deployment of applications that
use sensor-based statistical models of human situations. Motivated and informed by our
work presented in this dissertation and related work, Subtle addresses four major
obstacles to developing and deploying sensor-based statistical models.

8.2.1 Providing Relevant Sensors
Learning statistical models requires sensors which can provide relevant context. If the
available sensors have little or no relationship to the concept being learned, no amount of
processing can extracting a meaningful relationship. While this can ultimately be
addressed only by an application designer, as it is the application designer who chooses
what concept will be learned from what sensors, Subtle takes a two-pronged approach
to helping the application designer address this problem. First, Subtle provides a
library of sensors that we believe will be useful in many applications. Informed by prior
work and by the studies presented in this dissertation, this library currently includes
analyses of ambient audio, analyses of the desktop event stream, and WiFi-based location
sensing. Second, Subtle’s sensor data collection and storage mechanisms are designed
to support extensibility, easing the addition of new sensors.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 109

8.2.2 Learning Appropriate Features
It is hard to know what aspects of available context are most useful in a statistical model.
Non-experts can be very unsure about what types of features are appropriate for use with
a machine learning algorithm, and even experts are unlikely to manually craft the best
possible features (Markovitch and Rosenstein 2002). Subtle addresses this problem
with a type-based iterative feature generation algorithm that applies operators to
automatically examine a large number of potential features. Our current operators are
based on the datasets collected and analyzed in this dissertation, and we believe they are
appropriate for extracting a variety of meaningful high-level relationships from the types
of sensors studied in this dissertation. Subtle’s extensible architecture also allows the
addition of new operators that enable future sensors or different types of analyses.
Because Subtle’s feature generation algorithm is fully automated, Subtle removes the
need for an application designer to acquire significant specialized knowledge of machine
learning techniques.

8.2.3 Accounting for Individual Differences and Unexpected Situations
It is hard for a static model to account for individual differences or unexpected situations.
Our study of diverse office workers has shown that better models can be obtained by
focusing on the particular environment and preferences of an individual. Outside the
specific domain of interruptibility, it seems reasonable to expect important differences in
how people expect an application to behave. If a model cannot adjust to individual
preferences or differences in the environment, its utility in an application will suffer.
Subtle addresses this problem by supporting continuous learning from data provided by
individual users. Applications built with Subtle can therefore adapt to individual
preferences and circumstances.

8.2.4 Managing Field Deployments
It is hard to manage the field deployment of applications that use sensor-based statistical
models, thus limiting the scope and scale of research that can be conducted. Because
sensor-based statistical models allow applications to adapt to the situations surrounding
their usage, it is often important to study applications in real field deployments. But
many practical issues arise in such deployments. Informed by the studies presented in
this dissertation, Subtle focuses on software-deployable sensing for a typical laptop
computer. This removes concerns over the costs of installing and maintaining custom
hardware. Subtle also applies a privacy policy when storing sensor data, provides

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 110

secure data and error collection, and supports the automatic application of signed code
updates. Including this functionality in Subtle eases the development and deployment
of applications that use sensor-based statistical models.

8.3 Subtle Architecture
Figure 8.1 presents an overview of Subtle’s architecture. We will discuss each
component of this architecture as this chapter progresses, but here provide a high-level
overview to serve as a basis for future sections. A variety of sensors provide input to
Subtle, each generating readings. Each reading is either an event or a state, where
events occur in an instant and states retain their value until either a new value arrives or a
timeout occurs. Arriving readings are subjected to a privacy policy before being stored in

Figure 8.1. Overview of Subtle’s runtime architecture.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 111

a reading database. In parallel, observers occasionally collect labels, representing times
at which the application knows the value of the concept being modeled. These labels are
stored in a label database. At regular intervals, the model learner examines the reading
database and the label database to produce a new model. The learner uses generators to
iteratively consider operators that can be applied to the collected readings to build a set
of high-level features appropriate for use in a statistical model. Once a model has been
learned, it can be evaluated against the reading database to provide estimates.

The core of Subtle is implemented in Java with approximately 20,000 method lines
of code. Several additional libraries are implemented in native code, including shared
memory data structures used for inter-process communication and the sensing library
discussed in the next section. Subtle runs in a separate process from the application that
is using it, communicating with the application using XML-encoded procedure calls. We
provide a Java client API that encapsulates this inter-process communication, but the
underlying native library calls can be made from any programming language that can
generate appropriate XML, invoke the native library call, and parse the resulting XML.

8.4 Extensible Sensing Library
Informed by the results of the studies presented in this dissertation, Subtle provides an
initial sensing library that leverages the capabilities of a typical laptop computer. This
library is implemented using standard Microsoft Windows libraries, so Subtle provides
a proven set of sensors for all appropriate applications and hardware on the dominant
platform. The sensing library currently includes analyses of ambient audio, analyses of
the desktop event stream, and WiFi-based location sensing. We expect that this library
will grow as additional sensors are developed for specific applications, as adding these
sensors to our library will make them available to every application built with Subtle.

8.4.1 Ambient Audio Analyses
Subtle monitors the primary audio input device, typically a small microphone built into
the case of a laptop computer. Because there are many different types of microphones
with different characteristics, Subtle takes the approach of computing a variety of
statistics from the microphone’s audio stream. Any one of these statistics is probably
sufficient for detecting nearby speech with a particular microphone in a particular
environment, but we cannot know beforehand which feature will be useful in a particular

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 112

model. Computing a variety of appropriate statistics gives our model learner the best
opportunity to select appropriate features based on the ambient audio analyses.

Because it seems intuitive that the overall noise level could be a useful indication of
how applications should behave in different environments, Subtle computes four
features related to the overall noise level. Subtle analyzes both the audio signal’s
energy (defined here as the square of the magnitude of each sample) and power (defined
here as the square of the difference between each pair of consecutive samples). Once per
second, Subtle logs the average and the standard deviation of these values in the
previous second.

Based on our previously presented findings that the presence of human speech is an
important piece of context, Subtle computes several features intended specifically to
identify speech. Analyzing the signal in the frequency domain, Subtle logs the energy
level of audio in the range of human voice. Specifically, Subtle uses 1 KHz bins to log
the energy of frequencies in the range of 0 to 4 KHz. Subtle also computes a set of
features presented by Lu et al. (Lu et al. 2002). Specifically, Subtle logs several
features based on the high-zero crossing rate ratio (HZCRR), the low short-time energy
ratio (LSTER), and spectrum flux (SF). Lu et al. have shows that these features are
effective for recognizing the difference between speech, music, and environmental
sounds. These features have also proven effective in our prior deployment of a
context-aware instant messaging client (Fogarty et al. 2004b).

8.4.2 Desktop Event Stream Analyses
Subtle logs a variety of events and states that have either been shown to be useful in our
studies of human interruptibility or might otherwise be useful to applications built with
Subtle. Because the active and open applications have proven useful, Subtle logs the
window title, window class, and the executable name associated with each top-level
window. Subtle also differentiates between top-level windows and popup windows
(which are owned by another visible top-level window).

Subtle notes whenever a person opens, closes, moves, or sizes a window.
Available information about the window, including whether it is a top-level window or a
popup window, is logged for each of these events. Subtle also logs each mouse and
keyboard input event, including available information about the widget in which an event

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 113

occurred. Because our study of programmer task engagement showed that recent
switches between windows or widgets can be a useful piece of context, Subtle logs each
time a person changes the active window or changes the input focus within an active
window.

Beyond examining open windows and input events, Subtle logs several additional
pieces of information about computer usage and the status of the computer. For each
active executable, Subtle logs the percentage of the CPU used in each five-second
interval. While the semantic meaning of high CPU usage will vary across different
applications, we believe this is a generally useful piece of context. For example, a media
player application will likely exhibit higher CPU usage when playing content, as opposed
to when paused or left open after a clip has finish playing. An integrated development
environment can be expected to generate spikes in CPU usage when compiling. Subtle
also logs whether the laptop’s audio output is muted and whether the laptop is currently
plugged in or running from batteries. Both of these seem to be an indication of a person’s
environment, as people may plug in their laptop when in a semi-permanent working
environment or they may mute their laptop when in a public space.

8.4.3 WiFi-Based Location Sensing
While our field studies of models of human interruptibility have focused on office
workers who are physically in their office, Subtle’s focus on sensing appropriate for a
typical laptop computer raises location as an important piece of context. WiFi-based
location sensing has been used in a number of projects, with the Place Lab initiative
being one of the most successful examples (Schilit et al. 2003; LaMarca et al. 2005).

Subtle implements WiFi-based location sensing by using a laptop’s wireless card to
conduct periodic scans for nearby WiFi access points. Subtle logs the MAC address,
network name, and signal strength of each detected access point. Subtle also logs to
which access point the wireless card is currently connected. While some projects,
including the Place Lab initiative, focus on translating WiFi MAC addresses into GPS
coordinates, Subtle currently makes direct use of MAC addresses as identifiers for
locations. For example, a person might be more interruptible when within range of
access point A (which is near their office) and less interruptible when near access point B
(which is near a conference room). Our discussion of operators and Subtle’s iterative

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 114

feature generation process will include a discussion of how Subtle could be enhanced to
use a Place Lab database to translate MAC addresses into GPS coordinates.

8.4.4 Sensing Library Extensibility Support
While the sensors provided by Subtle have been shown to be effective for modeling
human interruptibility and we believe they will be effective in a variety of other
applications, some applications will want to use custom sensing mechanisms. Subtle
therefore supports two approaches to adding new sensing.

First, new sensors can publish XML-encoded readings into Subtle. This approach
is appropriate when developing a new sensor for Subtle’s sensing library or when an
application has a piece of context that is probably not of general interest but that the
application wants to store or provide to Subtle’s model learner. When given
appropriate XML, Subtle examines a reading as if it were generated by our provided
sensor library: Subtle parses the XML to determine if the reading is a state or an event,
filters it through the privacy policy, and stores the reading in the reading database.

A second approach to extensibility is appropriate when a large existing system needs
to be integrated with Subtle. For example, consider if an application has already been
built with the Context Toolkit (Dey et al. 2001), but the developer wants to add Subtle’s
machine learning support. It would be inappropriate to expect the developer to
re-implement every sensor to generate XML in the form expected by Subtle. Instead,
Subtle provides a degree of abstraction when querying the reading database. The
default implementation stores reading values in our database using timestamped
name/value pairs. But a developer can provide an arbitrary custom implementation for
storing and recovering sensor readings. In the scenario described, an application
developer could provide a custom implementation that queries the existing Context
Toolkit database. Subtle could then learn from both the sensors in our library and the
readings stored in the Context Toolkit database.

8.5 Fully-Automated Iterative Feature Generation and Selection
While the collection of appropriate sensor readings is necessary for learning a model, it is
generally not sufficient. Models instead need to be built from features that extract
higher-level concepts from the relatively low-level sensor readings. For example, the

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 115

exact value of a volume reading from an ambient audio sensor is probably less predictive
than a Boolean feature computed by comparing the volume reading to a threshold. This
feature might in turn be less predictive than one that captures whether the volume was
above that threshold at any point in the previous 30 seconds. Creating appropriate
high-level features is critical to successfully learning statistical models, but it is hard to
know what aspects of available context are most useful in a model. Non-experts can be
very unsure what types of features should be generated for use with a machine learning
algorithm, and even experts are unlikely to manually craft the best possible features
(Markovitch and Rosenstein 2002).

Subtle addresses this problem with a fully-automated iterative feature generation
and selection process illustrated in Figure 8.2. Starting from the base set of features in
the reading database, Subtle creates new potential features by applying generators to
existing features. Each generator creates new potential features by adding an operator to
the chain defining each existing feature. Because this process is fully automated, an
application developer does not need to manually generate ideas for potential features or
otherwise acquire specialized knowledge of machine learning techniques. Removing this
need to acquire specialized knowledge eases the non-expert development of applications
that use sensor-based statistical models.

Figure 8.2. Overview of Subtle’s fully-automated
iterative feature generation and selection algorithm.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 116

8.5.1 Operator Chains
Figure 8.3 presents an example of a high-level feature constructed with an operator chain.
Starting with a reading from an Active Application sensor, the first operator checks
whether the value is equal to “wmplayer.exe”. A second operator computed this value
for the entire previous 30 seconds. Finally, a third operator determines how many of
those previous 30 seconds had a value of true. These operators were added one at a
time over the course of several iterations, and the resulting automatically-generated
feature captures how many of the previous 30 seconds were spent in Windows Media
Player. In an additional iteration, we might expect the creation of a feature that compares
this value to a threshold, perhaps determining if a person spent more than 15 of the
previous 30 seconds in Windows Media Player.

The parameters to each operator in Figure 8.3 were chosen by the generators that
apply each operator. For example, the Value Equals generator examined the values of the
Active Application sensor at the time of each label in the label database. Based on this
history of values, the generator selected “wmplayer.exe” as value of interest to the Value
Equals operator and created a new potential feature to examine it.

8.5.2 Potential Feature Filters
Because a very large number of potential features can be generated by the automated
application of operators, Subtle applies a series of filters to potential features. The first
filter removes non-unique features by finding sets of features that have equal values at the
time of every label. Only one feature needs to be kept from each such set. In accordance
with Occam’s Razor (that the simplest explanation is preferred), Subtle selects the
feature built from the fewest operators.

Figure 8.3. An automatically generated
high-level feature to determine how many of the

previous 30 seconds were spent in Windows Media Player.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 117

The second filter uses several computationally inexpensive heuristics to further
reduce the number of features under consideration. It first examines the values of a
feature at the time of each label. Features that have too many different values are filtered,
as are features for which a value occurs in an overly small percent of the data. We filter
these features to help prevent overfitting, a phenomenon where models mistakenly treat
minor details of training data as important and therefore have an unnecessarily low
accuracy when applied to new situations. The filter then uses several measures of
correlation to select from the potential features. A machine learning researcher manually
experimenting with a dataset could determine what notion of correlation is best for a
particular dataset, but our fully-automated approach leads us to use several in parallel.
The filter computes the information gain, gain ratio, and symmetrical uncertainty of each
feature relative to the labels (Mitchell 1997; Yu and Liu 2003). The filter selects the n
best-correlated potential features for each measure (features are selected if they are in the
top n for any of the measures, where n was 1000 for all models presented in this
dissertation). Finally, the filter uses Yu and Liu’s notion of predominance to selected a
small number features that are not in the top n but provide predictive power distinct from
the top features (Yu and Liu 2003).

After applying the correlation filter, the number of potential features is reduced to a
point where it is computationally appropriate to search for the optimal subset. Our final
filter therefore uses wrapper-based selection to find an optimal feature subset (Kohavi
and John 1997). Starting with an empty feature set, the algorithm adds and removes
potential features until no change results in an improvement. The algorithm maintains a
small set of the best results, enabling limited backtracking. The utility of each potential
feature set is evaluated using a standard ten-fold cross-validation to estimate the area
under the ROC curve (Hanley and McNeil 1982; Hand and Till 2001; Fogarty et al.
2005a). In this cross-validation, data is divided into ten folds and each fold is used to test
a model trained from the other nine folds of data.

Given our earlier examination of different classifier algorithms and the fact that
wrapper-based feature selection requires a computationally inexpensive classifier,
Subtle currently chooses between naïve Bayes classifiers (Duda and Hart 1973;
Langley and Sage 1994) and decision tree classifiers (Quinlan 1993). In the case where a
decision tree is selected, the model type for each branch is recursively determined. This
leads to either a naïve Bayes model or a tree with naïve Bayes models at its leaves. The

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 118

model type is determined during the wrapper-based selection of optimal features, based
on which type of model yields a better score. This allows Subtle to adapt to the
different types of data for which these different classifiers are more appropriate.

After the final filter determines the optimal subset of the current potential features,
Subtle decides whether to continue by generating new potential features. Iteration
terminates after a pass in which the generators do not create any new potential features or
after five passes without any improvement in the scoring of the optimal features (using
the estimated area under the ROC curve to evaluate progress).

Figure 8.4 illustrates Subtle’s feature generation and selection process by showing
how many potential features clear the filters in each iteration of a model learning process.
The counts shown are taken from the model learner session for the programmer
interruptibility model shown in Figure 7.5. We have bolded the column for A', the area
under the ROC curve, as a reminder that iteration continues until this column converges.
The 97 events captured by our Eclipse plug-in are sufficiently low-level that they provide
no initial predictive value. Applying our operators to these 97 potential features creates
3217 potential features, 1322 of which are unique. A second iteration applies operators
to the 1322 unique potential features, creating 19638 potential features. As higher-level
features are developed via the successive applications of operators, the model becomes
more predictive. The fifth iteration, for example, results in a model that is more accurate
and based on fewer features that the model resulting from the fourth iteration. This
indicates that some feature generated by the application of an operator in the fifth

 Unfiltered Unique Correlate Optimal A' (Acc)
0 0 0 0 0 .500 .585
1 97 97 96 0 .500 . 585
2 3217 1322 212 13 .633 .636
3 19638 8247 1062 27 .714 .714
4 62894 23952 1192 42 .751 .733
5 81054 33227 1373 25 .779 .739
6 83061 34801 1383 27 .787 .760
7 83065 34805 1383 27 .787 .760 Ite

ra
tio

ns
 C

om
ple

ted

8 83065 34805 - - - -

Figure 8.4. The number of features that pass each filter in each
iteration of Subtle’s model learner. This example is from the learner
for the programmer interruptibility model presented in Figure 7.5.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 119

iteration was a large improvement over the features from previous iterations. While the
number of potential features grows somewhat rapidly, the uniqueness and correlation
filters quickly reduce the number of potential features under consideration in each
iteration. The optimal filter then searches for the optimal subset of the potential features.
In this case, model development converges after the eighth application of our generators
does not produce any new unique features.

8.5.3 Type-Based Operators
Subtle’s operators are generally based on the type of a sensor reading, rather than the
semantics of a particular sensor. For example, certain operations are appropriate with a
numeric value, others are appropriate with a Boolean value, and still others are
appropriate with a string. Subtle’s type-based approach can automatically adapt to the
addition of new sensors, because generators examine the readings provided by sensors
and apply appropriate operators. In contrast, an approach that defined what operators
should be applied to a specific sensor would require a new explicit definition for every
new sensor. Furthermore, the development of a new operator would then require an
explicit definition of how that operator should be applied to every existing sensor.

Figures 8.5 and 8.6 provides two examples of how Subtle’s type-based operators
can be applied to obtain high-level features from sensors with very different semantic
meanings. In Figure 8.5, the Value Less Than operator is used to apply a threshold to
both the signal strength of a WiFi access point and to the value of a statistic computed by
our analysis of ambient audio. Though these two sensors have very different semantic
meanings and require different thresholds, the generator examines the history of values
output by each sensor and selects an appropriate threshold to create a new potential
feature. Figure 8.6 shows longer operator chains demonstrating this same concept at a

Figure 8.5. While the strength of a WiFi connection and the value of a
statistic from an ambient audio analysis have very different meanings, both
can have operators applied based on the fact that they are numeric values.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 120

higher level. Starting from the list of open applications, the first operator chain extracts
whether Windows Media Player has been open for more than 5 of the past 15 minutes.
The second operator chain starts from the list of WiFi access point and determines
whether the person has been within range of a particular access point for more than 10 of
the past 15 minutes.

Subtle currently defines types for Booleans, numeric values, strings, strings
containing an XML document, a hash-based privacy-sensitive string type (introduced
later in this chapter), and lists of values. New types can be defined by implementing an
interface with a comparison method and methods for storing and retrieving a value from
an XML stream. This section now presents the details of some of the operators we have
implemented for Subtle’s current types. For the sake of brevity, we do not present an
exhaustive operator list.

Numeric values are compared to thresholds by two different generators, Discretize
and Value Less Than. Both use information gain to determine an information theoretic
optimal threshold for a numeric feature. Value Less Than generates exactly one threshold
for every existing numeric feature. Discretize uses Fayyad and Irani’s method, creating

Figure 8.6. Applying the same type-based operators to low-level sensors to
obtain high-level features with different meanings. The top feature

captures whether Windows Media Player was open for more than 5 of
the past 15 minutes, while the bottom captures whether a person was in
range of a particular WiFi access point for 10 of the past 15 minutes.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 121

multiple bins by recursively choosing thresholds according to information gain, with the
minimum description length principle (MDLP) providing a stopping criterion (Fayyad
and Irani 1993). Applying thresholds to numeric features allows those features to clear
Subtle’s filtering of features with too many distinct values, and this type of
discretization has been shown to lead to better results (Liu et al. 2002). We use both the
Value Less Than approach and the Discretize approach because the MDLP criterion can
be somewhat difficult to satisfy. Value Less Than’s generation of a single threshold
allows every numeric feature an opportunity to emerge as predictive. But a single
threshold is not always optimal, so Discretize allows multiple bins when the MDLP
criterion indicates that the result is very likely to be predictive.

Using the comparison method required of all reading value types, Subtle provides
several operators that can perform appropriate analyses of a variety of types. A Value
Equals generator examines the value of an existing potential feature at the time of each
label. It creates a new Boolean feature for each value that occurs often enough to warrant
further examination. It is this generator, for example, that identifies “wmplayer.exe” as a
potentially interesting value of the Active Application sensor in Figure 8.3. The List
Contains generator performs a similar examination of features with a list type. In the
example shown in Figure 8.6, the List Contains generator examined the values that
appeared in the WiFi Access Points list at the time of each label and selected the given
access point as warranting further examination.

Several history-based operators are also provided. For numeric values, Subtle
computes such aggregates as the Minimum, Maximum, Mean, and Median of a value for
some previous time interval. Based on the reading value comparison method, generic
support is provided by a Value Change Count operator (how many times the value of a
feature has changed in a time interval), by a Most Common Value operator (which value
occurs most often in a time interval), by a Time Since Defined operator (how long it has
been since a feature had a non-null value), and by a Time Since Value Equals operator
(how long it has been since a feature had a particular value).

In creating Subtle’s operators and generators, our goal is not to provide a general
learning algorithm (which would be the hard artificial intelligence problem). Instead, we
have taken the lessons from our studies presented in this dissertation and created
operators that are effective with the sensors provided by Subtle. Subtle’s learning

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 122

mechanisms are appropriate for using sensed context to learn models of human situations
and how application should behave, but it would be inappropriate to use Subtle for a
problem like sketch recognition. We have also worked to ensure Subtle can be
extended, both through our use of type-based operators and through some of the specific
operators we provide.

8.5.4 Extensibility
While we have already discussed Subtle’s support for adding new sensors, developers
can also add new operators to Subtle’s model learning process. This section discusses
the extensibility of Subtle’s model learner using an example extension. Specifically,
we discussion the integration of Place Lab’s support for inferring GPS coordinates from
WiFi MAC addresses (Schilit et al. 2003; LaMarca et al. 2005).

Including WiFi-based estimates of GPS coordinates in Subtle raises several issues.
Laptops are often used indoors, and this may interfere with the reliability of available
Place Lab databases. Specifically, Place Lab is trained through war driving and other
mechanisms for collecting the GPS coordinates of WiFi access point, but GPS receivers
generally do not work indoors. Place Lab databases are therefore unlikely to include the
location of many indoor WiFi access points. It is for this reason, together with the fact
that Place Lab databases are still very sparse in many areas, that Subtle is primarily
focused on learning directly from the unique identifiers of WiFi access points. We note
that Subtle can also already learn from a network’s SSID. For example, all of the
access points on the Carnegie Mellon campus have the same SSID. But Subtle
currently cannot learn a concept like “somewhere in Pittsburgh” because Subtle has no
way of knowing what WiFi access points are in Pittsburgh.

This capability could be added to Subtle through the definition of a new type and
several additional operators. A type for a GPS coordinate could be defined as a pair of
numeric values, storing the longitude and latitude of the coordinate. A WiFi to GPS
operator could be created to check a set of WiFi MAC addresses against a Place Lab
database, creating a new feature whose values are either a GPS coordinate or, in the case
that the detected MAC addresses are not in the Place Lab database, a null estimate. A
GPS Distance generator might then examine the history of GPS coordinates visited by a
person, identify locations of interest using an algorithm like that presented by Ashbrook
and Starner (Ashbrook and Starner 2003), and create new potential features based on the

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 123

distance from a person’s current location to a location of interest. Subtle’s existing
operators would then be applied, allowing the automated exploration of a threshold on the
distance from a location of interest or how long it has been since a person was in a
location of interest.

Note that there is no need for a special operator to compute how long it has been
since a person was near a location of interest. Once the GPS Distance operator computes
a numeric value describing a person’s distance from a location of interest, our existing
Value Less Than operator can be applied to determine whether the person is nearby.
After that, our existing Time Since Value Equals operator can consider how long it has
been since the Value Less Than operator had a value of true. In this regard, Subtle’s
type-based operators allow the developer of an extension to focus on operators that
extract meaningful relationships in the domain of a new type (distance in this example).
Subtle’s provided operators then explore a variety of manipulations of the value of the
extracted relationship.

8.6 Continuous Learning of Individual Models
Because our studies found that better models can be created by focusing on office
workers with similar responsibilities and work environments, we believe it is important
that models adapt to an individual’s environment and preferences. Subtle therefore
includes support for continuous learning of personalized models from labels provided by
an individual user.

Figure 8.7. As additional labels are collected, Subtle
continuously learns an updated sensor-based statistical model.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 124

Figure 8.7 illustrates Subtle’s continuous learning framework. The bottom timeline
represents the occasional collection of labels by an application. When the model learner
begins its iterative feature generation process, it takes a snapshot of available labels
(represented by the vertical transition from the unshaded circle). The fully-automated
process from the previous section is then executed against that set of labels. When
complete, the resulting model begins to be used for making estimates (represented by the
second vertical transition). More labels have probably been collected in the time taken to
learn the model, so the process begins with a new snapshot. When this new model is
finished, it is promoted into use. The lifetime of the original model ends at this point,
marked by a shaded circle.

The computational cost of learning personalized models could be an obstacle to large
deployments. When only a handful of users are involved in a small study, this can be
solved by a dedicated server that collects and analyzes user data. But the cost of this
approach grows with the number of people using an application. Subtle therefore
executes the model learner on the client computer. It would be unacceptable for the
model learner to continuously consume a large portion of a computer’s processor, as this
would both interfere with a user’s other applications and quickly drain the battery of an
unplugged laptop computer. Subtle therefore manages its own resource usage. When a
person is active on their computer (indicated by mouse or keyboard activity in the
previous 5 minutes) or when the computer is running from battery, Subtle limits the
model learner to approximately 15 percent processor utilization (allowing 80 percent
when both plugged in and idle). The model learner cache (shown in Figure 8.1) also
reduces the computational cost of model learning by storing a variety of intermediate
computations.

A common issue with learning personalized models is how an application should
behave in the time before the first personalized model becomes available (including the
time needed to collect labels and the time needed to learn the model). If a large set of
labels have been collected from other people, they can be used to create a general model
that is used until a personalized model becomes available. Subtle supports transitioning
from a general model to a personalized model by exposing measures of the accuracy of
each learned model. An application can use these measures to decide when enough labels
have been collected to begin using a personalized model. An application might also

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 125

choose not to use individual models, instead collecting labels to update one or more
general models available to application users.

8.7 Supporting Field Deployments
In our experience conducting studies of human interruptibility and deploying a
context-aware instant messaging client (Fogarty et al. 2004b), we have found a number
of difficulties that arise in conducting studies or deploying applications based on
sensor-based statistical models. A need for hardware installation and maintenance is an
obvious difficulty. We address this in part by designing Subtle for a typical laptop
computer. But Subtle also addresses the need to fix bugs discovered after deployment,
the need to collect data during a field study, and the need to protect participant privacy in
a field study.

Bugs will inevitably be found in an application after it is deployed, and widespread
usage may reveal unexpected issues with a sensor implementation. Subtle therefore
includes secure error collection and signed code updates. Uncaught exceptions are
logged and the error files are uploaded to a central server. A deployment administrator
can then examine these file for indications of a bug. If a code update is needed, Subtle
supports signed code updates for both applications and the core Subtle process.
Applications can be updated at startup, downloading new files from a central server.
Subtle updates itself without need for an application restart (recall that Subtle runs in
a separate process, so it can download updates and restart itself without a need for an
application restart).

An administrator conducting a field study may need to collect detailed sensor logs
from participants, and it can be very time-consuming to visit participants for the sole
purpose of collecting these logs. Problems can also arise if a participant, perhaps
unintentionally, deletes sensors logs. While it is hard enough when an administrator only
needs to collect logs at the end of a deployment, it is common for an administrator to
need to collect logs throughout a deployment. For example, our robustness field study
continued until we had collected 100 self-reports from each participant. We therefore
needed continuous data collection, so we could determine when the desired number
self-reports had been collected. To support these types of requirements, Subtle
provides for the secure, encrypted upload of collected sensor logs to a central server.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 126

Learning a sensor-based statistical model requires the collection of detailed context,
thus introducing concerns for participant privacy. Subtle therefore applies a privacy
policy to every sensor reading before storing it in the reading database. An arbitrary
policy can be implemented through extensions, but Subtle’s default privacy policy is
intended to provide appropriate protection without any effort from the application
designer. The default policy is based in the belief that sensitive content is most likely to
be revealed in window titles and other strings captured from the desktop (recall that
Subtle does not record audio, another likely source of privacy issues). The default
policy is therefore based on a privacy-preserving string type that uses a one-way
cryptographic hash to mask the content of potentially sensitive strings. The default
policy decides whether a string is potentially sensitive based on how the string was
obtained, as opposed to being based on the content of a string. For example, the default
policy considers window titles to be potentially sensitive (because they could reveal
logins or other indicators of a person’s identity), but does not consider the active
executable filename to be potentially sensitive. It therefore tokenizes and applies a
one-way cryptographic hash to window titles, but stores the actual value of the active
executable name.

Subtle’s default privacy policy is designed to preserve anonymity in collected
sensor logs without any effort from an application designer. The default policy provides
sufficient protection that our Institutional Review Board has approved a simple online
consent form for use with Subtle, instead of the signed forms typically required in
studies. But the application of a cryptographic hash can unnecessarily complicate
exploratory data collection. Conversely, any cryptographic hash can provide strong
protection only when it is hard to guess likely values. Because some applications will
desire weaker or stronger privacy policies, Subtle supports the application specification
of an arbitrary policy.

8.8 Subtle Validation
Evaluating a tool like Subtle is inherently difficult. While Subtle has been informed
by a series of studies and Subtle enables applications that would previously have been
extremely difficult to create, an evaluation based on a particular application or dataset
provides only indirect insight into the utility of the tool (Edwards et al. 2003). We
therefore seek to demonstrate Subtle’s utility by examining two issues. First, as a

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 127

demonstration of Subtle’s learning mechanisms, we note that all of the models
presented in this dissertation were built using Subtle. Second, we consider two
applications built with Subtle, discussing how Subtle reduces the time and effort
needed to build applications that use sensor-based statistical models of human situations.

As a validation of Subtle’s model learner, we note that all of the models presented
in this dissertation were built using Subtle (with the exception of the Wizard of Oz
models, for which we loaded the original manually-generated features into Subtle’s
feature selection process). While our prior publications included models based on
features generated using manually-created scripts, we created the models in this
dissertation by loading the unprocessed sensor data and labels into Subtle. In an
indication that Subtle automatically generates features that are at least as useful as the
features we manually crafted in our prior publications, all of the models presented here
perform either better or not significantly different than the models from our prior
publications.

While it might seem that it would be appropriate to conduct a validation by
comparing Subtle to some other model learner, we note that the low-level events
provided as input to Subtle are of little use in a classifier. This is evidenced in Figure
8.4, as the low-level events are of no use in a classifier until after Subtle begins to apply
operators to extract higher-level features.

8.8.1 Whistle
Shown in Figure 8.8, Whistle is an application we have built with Subtle. Whistle
addresses the problem that people often forget to mute or unmute the audio on their
laptop. This can lead to disruptive email notifications in meetings or confusion when
trying to play a media clip during a presentation from a muted laptop. Whistle monitors
when people mute or unmute the audio of a laptop computer. It collects a label each time
a person manually toggles their audio, learning a sensor-based statistical model that it
uses to automatically mute or enable audio. This model is based on Subtle’s provided
sensors, so it can learn such concepts as “mute audio when I am away from my desk” or
“enable audio when Windows Media Player is active.”

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 128

Implemented in Java with a native library for querying and setting the operating
system’s audio mute flag, Whistle contains 265 lines of substantive code (including
assignments and invocations while excluding imports, variable declarations, constant
definitions, etc.). These lines of code are divided as follows:

• 110 lines are GUI-related, used to create a system tray icon, a popup menu for
that icon, and the notification dialog shown in Figure 8.8.

• 100 lines are for querying and setting the audio mute flag. These lines are almost
entirely within the native library.

• 16 lines are directly related to Whistle’s use of Subtle. Of these, 6 are related
to the overhead of starting and stopping the Subtle process and configuring
Whistle’s classloader to use the shared Subtle libraries. Another 4 are invoked
every time a label is collected, connecting to Subtle, creating the label object,
and providing the label to Subtle. The final 6 are invoked every time the model
is evaluated, connecting to Subtle, obtaining the model, evaluating the model,
and comparing the result to an action threshold.

• 27 lines are indirectly related to Subtle, as they coordinate timers that schedule
when Whistle should evaluate the model and when it should check whether the
person has manually toggled their audio.

As an example application, Whistle shows that Subtle greatly reduces the effort needed
to implement an application that uses a sensor-based statistical model. Even using an

Figure 8.8. Whistle addresses the problem that people often
forget to mute or unmute laptop computers. It collects a label

each time a person manually toggles the mute flag, learning a model
of the relationship between context and a person’s desired setting.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 129

existing machine learning toolkit like Weka (Witten and Frank 1999), it would not be
possible to implement comparable feature selection in 16 lines of code, let alone feature
generation, appropriate sensing, data storage, and privacy filtering.

8.8.2 AmIBusy Prompter
Figure 8.9 shows AmIBusy Prompter, another application we have built with Subtle.
Based on our studies of human interruptibility, AmIBusy Prompter provides functionality
similar to that of BusyBody (Horvitz et al. 2004). At configurable intervals, it displays a
prompt like that shown in Figure 8.9. AmIBusy Prompter currently collects two types of
self-reports: one asking about the disruption that would be caused by a 5-second
interruption and one asking about the disruption that would be caused by a 15-minute
interruption. The resulting interruptibility self-reports are provided to Subtle, which
uses them to learn individualized models of a person’s interruptibility. AmIBusy
Prompter is implemented in approximately 250 lines of substantive code. As with
Whistle, this code is overwhelmingly GUI-related.

AmIBusy Prompter makes the results of our work on human interruptibility available
for inclusion in a variety of applications. Because AmIBusy Prompter is responsible for
collecting labels and Subtle is responsible for learning a model, application developers

Figure 8.9. AmIBusy Prompter learns individualized
models of interruptibility, allowing applications to

consider a person’s interruptibility in just 6 lines of code.

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 130

can focus on how to best include a model of human interruptibility in an application.
Only 6 lines of code are required to obtain an interruptibility estimate (2 lines of
classloader configuration, 1 for connecting to the Subtle session created by AmIBusy
Prompter, 1 for obtaining a model of interruptibility, 1 for evaluating the model, and 1 for
comparing the result to a threshold). This makes research on how applications can best
use models of human interruptibility accessible to the larger human-computer interaction
research community, instead of just groups that include machine learning experts.

8.9 Discussion
This chapter has presented Subtle, a toolkit that enables the development and
deployment of applications that use sensor-based statistical models of human situations.
Subtle provides an extensible sensing library, fully-automated iterative feature
generation and selection, continuous learning of personalized models, privacy filtering of
collected sensor logs, and support for field deployments of applications. Informed by our
studies of human interruptibility, Subtle removes many obstacles to using sensor-based
statistical models in applications. Subtle thus moves the focus of human-computer
interaction research onto applications and datasets, instead of the difficulties of collecting
sensor data and learning statistical models.

Subtle is currently being used in research examining a variety of issues in human
computer interaction and sensor-based statistical models. We will discuss our own plans
in the Future Work section of the next chapter, but note that several other researchers are
currently using Subtle. For example, interruptibility models developed by AmIBusy
Prompter are being integrated into an instant messaging extension and a display intended
for a person’s office door. This work plans to examine how colleagues interpret the
output of models of a person’s interruptibility. Subtle’s sensing library has also been
used in work on peripheral displays and to examine models of office worker productivity.
The ease with which applications can directly access Subtle’s sensing library has also
led to some surprising uses, including the use of Subtle’s sensing library to collect logs
in a laboratory study of how people prioritize incoming email.

As a toolkit, Subtle aims to provide a low floor, meaning that it is relatively easy
for non-experts to use Subtle to include sensor-based statistical models of human
situations in applications. A common issue in toolkit design is the fact that a low floor

Chapter 8: Toolkit Support for Sensor-Based Statistical Models of Human Situations 131

often implies a low ceiling, referring to the point at which the abstractions and
mechanisms provided by a toolkit begin to interfere with a developer’s ability to
implement an advanced functionality. In order to raise Subtle’s ceiling, many of
Subtle’s most important components are extensible. But Subtle is not a general
learning architecture, and Subtle’s focus is not on supporting the implementation of
arbitrary learning algorithms.

 132

Chapter 9
9 Conclusion and Future Work

9.1 Summary of Work and Specific Contributions
The promise of ubiquitous computing (Weiser 1991) and context-aware computing
(Schmidt 2000; Dey et al. 2001) includes applications and devices that can sense and
respond to an environment. Many contextual cues are non-ambiguous, as a sensor is
either activated or it is not, but the ultimate decision about how an application or device
should behave is often inherently ambiguous. For example, many email clients use an
audio notification to announce the arrival of new email. Appropriate and useful when
alone in a private office, this audio notification can be disruptive and socially awkward in
an auditorium or during a meeting with colleagues. Current applications are generally
unaware of the difference between these types of situations, and no single piece of
context directly maps to “an audio notification is currently inappropriate.” Given the vast
number of potentially relevant pieces of context and the number of applications and
devices that might want to consider this context, it is also unreasonable to expect a user to
specify what action should be taken in every conceivable situation.

Sensor-based statistical models are one solution to this problem. Using a learned
statistical model, an application can sense the environment, model a situation, and then
act appropriately. This dissertation has examined sensor-based statistical models of
human interruptibility, showing that models based on practical sensors can identify
“Highly Non-Interruptible” situations significantly better than human observers. Using

Chapter 9: Conclusion and Future Work 133

these types of models, application developers could create interfaces that negotiate entry
into interruptions. This could reduce the damage caused by applications that demand
attention at socially inappropriate times or allow workers to remain more focused on their
tasks, while still allowing the benefits of appropriately-timed interruptions.

The work presented in this dissertation has been motivated by the goal of enabling
sensor-based statistical models of human interruptibility. While it was initially unclear
whether reliable models could be built, our Wizard of Oz feasibility study showed that
models can be based on very practical sensors. Our later studies therefore focused on the
robustness of practical sensor-based statistical models of human interruptibility and tools
to enable their deployment in applications. Informed by the results of our studies,
Subtle allows application developers to create effective models of human situations in
as little as 16 lines of code. This section summarizes the contributions of this work,
organizing our discussion according to the chapters in this dissertation.

9.1.1 A Wizard of Oz Approach to Top-Down Sensor Development
Chapter 3 presents a high-level discussion of our use of a Wizard of Oz technique to
simulate potential sensors for in a sensor-based statistical model. This method is critical
to the success of our work on human interruptibility. Without this method, it is very
difficult to address the two requirements of a reliable sensor-based statistical model: that
a sensor must reliably detect some piece of context and that the context must have a
meaningful relationship to the concept being modeled. Later chapters apply our method
to examining camera-based recordings collected in office environments and to examining
screen-capture recordings in a study of programmer task engagement. The specific
contributions of this work include:

• An explicit discussion of the intertwined nature of the two requirements of
sensors in a sensor-based statistical model.

• The presentation of our Wizard of Oz method for addressing these requirements.
• A discussion of the benefits of our Wizard of Oz approach over a traditional

bottom-up approach to sensor development. Our approach exposes both
dimensions of a tradeoff between complexity and utility, enables iterative
exploration of potential sensors, and allows the determination of which of the
two requirements is not being met by a failed sensor.

Chapter 9: Conclusion and Future Work 134

9.1.2 A Wizard of Oz Study of Office Worker Interruptibility
Chapter 4 presents a study that collects audio and video recordings in the normal work
environments of four office workers to consider a variety of potential sensors that might
be useful in a model of their interruptibility. Examining simulated versions of sensors to
detect 24 events or situations, we constructed a model that identified situations reported
as “Highly Non-Interruptible” with an accuracy of 79.2% and an A' of .848. Because this
model gains much of its predictive power from a handful of sensors and because several
of those sensors are easily built, we examined models based on an “Easy to Build” set of
sensors. Considering only a sensor to detect talking, phone use, mouse activity, keyboard
activity, and time of day, we built a model with an accuracy of 78.6% and an A' of .797.
The specific contributions of this work include:

• The finding that 32% of self-reports indicated that the office workers were
“Highly Non-Interruptible”. This was the most common response on our
five-point scale, suggesting that the office workers felt there were situations in
which they were clearly non-interruptible. Their interruptibility in other
situations may be more dependent on the nature of the interruption or some other
factor.

• An examination of simulated versions of many sensors that seem likely to be
useful in a model of human interruptibility.

• The finding that a sensor to detect nearby talking is a powerful indicator in a
sensor-based statistical model of human interruptibility.

• The demonstration of a model based on an “Easy to Build” set of sensors. While
the difference between the reliability of this model and the model based on the
full sensor set is statistically significant, it is probably not large enough to
warrant the costs of developing, installing, and maintaining the complex sensors
used in the full model. This led us to focus on easy to build and low-cost
approaches to sensor-based models of human interruptibility.

9.1.3 A Study of Human Observers Estimating Office Worker Interruptibility
Chapter 5 presents a study of human observers viewing the recordings from Chapter 4
and estimating the interruptibility of the office workers in the recordings. Viewing short
snippets of the collected recordings, human observers found it difficult to estimate the
interruptibility of office workers on a five-point scale. Examining the ability of the
human observers to identify situations reported as “Highly Non-Interruptible” shows that

Chapter 9: Conclusion and Future Work 135

they could do so with an accuracy of 76.9%. The specific contributions of this work
include:

• The finding that human observers performed poorly when estimating office
worker interruptibility on a five-point scale. This provides further support for
our decision to focus on identifying “Highly Non-Interruptible” situations, as it is
in these situations where people feel they are clearly not interruptible. Their
interruptibility in other situations may be more dependent on the nature of the
interruption or some other factor.

• The finding that human observers exhibited a bias towards estimating that the
office workers were more interruptible than the office workers felt they were.
This bias might be related to the self-interest of a person making an interruption.

• Showing that Chapter 4’s models based on the full set of sensors and the “Easy to
Build” set both identify “Highly Non-Interruptible” situations significantly better
than human observers. That our “Easy to Build” sensors can support models that
perform better than human observers provides further support for our decision to
focus on practical and low-cost sensors.

9.1.4 A Robustness Study with Real Sensors and Diverse Office Workers
Chapter 6 presents a robustness study that implements actual sensors and then deploys
them with a more diverse set of office workers than we included in our original Wizard of
Oz study. We deployed sensors in the normal working environments of two managers
whose interruptibility we expected to be dominated by social engagement, five
researchers whose interruptibility we expected to include more task engagement, and
three interns who worked in shared offices. While we obtained more reliable models
when focusing models on participants with similar responsibilities and working
environments, even a general model of all ten office workers still performed significantly
better than the human observers in our previous study. Based on our previous results
with our “Easy to Build” set of simulated sensors, we also examined models based on
only the capabilities of a typical laptop computer. Using only a laptop’s built-in
microphone and the desktop event stream, we developed models that perform
significantly better than the human observers from our previous study. The reliability of
these models is also not significantly different from models based on our full set of
implemented sensors. The specific contributions of this work include:

Chapter 9: Conclusion and Future Work 136

• Further support for our decision to focus on models that identify “Highly
Non-Interruptible” situations. The distribution of self-reports obtained from the
ten participants in this study is very similar to the distribution obtained from the
four participants in our original Wizard of Oz study. “Highly Non-Interruptible”
is again the most common response, accounting for 32.1% of self-reports.

• A demonstration of a model based on actual, implemented sensors that identifies
“Highly Non-Interruptible” situations significantly better than human observers.
The effectiveness of this model validates the results of our Wizard of Oz study,
our implementation of appropriate sensors, and the robustness of our results with
a variety of office workers.

• An examination of what features are most useful in models of the interruptibility
of office workers with different responsibilities and working environments. For
example, our models of managers and researchers examined audio features in the
previous 30 seconds, but the noisier environment of the interns led the model
learner to select an audio feature examining the previous 5 minutes.

• A demonstration of models of human interruptibility based on only the sensing
capabilities of a typical laptop computer. Using only a laptop’s built-in
microphone and the desktop event stream, we demonstrated models that are
significantly more reliable than human observers and not significantly different
from models that also used the physical sensors deployed for this study.

9.1.5 A Study of Task Engagement in a Natural Programming Problem
Chapter 7 examines models of task engagement based on the low-level event stream in a
programmer’s integrated development environment. This work was motivated by
differences in the reliability of the previous chapter’s models of managers (dominated by
social engagement) and researchers (whose responsibilities include more task
engagement). In order to more carefully examine models of task engagement, we studied
a total of 30 programmers completing a natural programming task while attending to
occasional interruptions. Because we repeatedly observed programmers completing an
edit or navigation before choosing to attend to a pending interruption, we measured their
interruptibility as the time from the notification of a pending interruption until the
programmer chose to attend to it. Using screen capture recordings from the first 10
participants, we simulated software-based sensors to detect a variety of activities in the
development environment. Based on our analysis of these simulated sensors, we

Chapter 9: Conclusion and Future Work 137

implemented an Eclipse plug-in to capture low-level events in the development
environment. We then collected data from the final 20 programmers and used Subtle to
automatically extract high-level features for a model of programmer interruptibility. The
resulting model has an accuracy of 75.6% (versus a prior of 58.5%) and an A' of .784.
The specific contributions of this work include:

• The examination of simulated versions of a variety of potentially predictive
sensors in a programmer’s development environment. Surprisingly, EDIT was
the only simulated sensor that imposed enough of a working memory
requirement and occurred often enough to emerge as predictive in our analyses.

• Development of an Eclipse plug-in to capture relevant events, including the
classes and methods for events occurring within the code editing widget.

• Demonstration of a model built from high-level features automatically extracted
from the captured low-level events. If used to filter development environment
notifications at inappropriate times, this model could support the filtering of
72.1% of inappropriately timed notifications while still allowing the immediate
delivery of 78.1% of appropriately timed notifications. This result indicates that
indications of task engagement can be automatically extracted from low-level
event streams, as opposed to the alternative view that a system must include
manually-specified models of particular tasks.

9.1.6 Toolkit Support for Sensor-Based Statistical Models of Human Situations
Chapter 8 presents Subtle, our toolkit to enable the non-expert development and
deployment of applications that use sensor-based statistical models of human situations.
Informed by the sensors and modeling techniques proven effective in our work on
sensor-based statistical models of human interruptibility and designed for a typical laptop
computer, Subtle reduces the time and effort required to develop and deploy
applications that use sensor-based statistical models of human situations. Subtle
addresses the need for appropriate sensors by providing an extensible sensing library that
currently includes ambient audio analyses, analyses of the desktop event stream, and
WiFi-based location estimates. To address the problem that it is difficult to know what
aspects of sensed context will be relevant to a statistical model, Subtle provides
fully-automated iterative feature generation and selection. This is included within
Subtle’s continuous learning framework, which allows Subtle to adapt to an

Chapter 9: Conclusion and Future Work 138

individual user’s preferences and environment. Because it is important to study
sensor-based statistical models in realistic environments, Subtle provides several
mechanisms to support application deployment, including the application of a privacy
policy to collected sensor context, support for secure centralized error and data collection,
and support for the application of signed code updates. Including this functionality in
Subtle helps to enable realistic field deployments, allowing us to gain a better
understanding of sensor-based statistical models in real applications. As a validation that
Subtle lowers the barriers to developing applications that use sensor-based statistical
models of human situations, we developed Whistle and AmIBusy Prompter. Whistle uses
just 16 lines of code to learn a model of whether a laptop’s audio should be muted.
AmIBusy Prompter collects interruptibility self-reports and builds a model of a person’s
interruptibility, allowing applications to use just 6 lines of code to consider
interruptibility. The specific contributions of this work include:

• An extensible and fully-automated iterative feature generation and selection
algorithm appropriate for use by non-experts.

• Development of a system informed by the studies presented in this dissertation.
Subtle’s choice of sensors and automated high-level feature development have
been informed by and validated in our studies of human interruptibility.

• Making research on applications that use sensor-based statistical models
accessible to the wider human-computer interaction research community, instead
of only groups that include machine learning experts.

9.2 Future Work
The work presented in this dissertation suggests a variety of future work, including
significant research that would be very difficult to pursue without a tool like Subtle.
This section discusses four categories of future work. We start with a variety of studies
that are already in progress or that we are interested in conducting with Subtle. We
then discuss our interest in exploring models of human interruptibility based on implicit
labels. The third area of future work we discuss is the exploration of how models can be
based on data collected from many people. The final category of future work examines
the fact that many features developed by Subtle are difficult to interpret, discussing
possible approaches to developing human-interpretable features.

Chapter 9: Conclusion and Future Work 139

9.2.1 Conducting Studies with Subtle
Given the relative ease of developing applications and collecting field data with Subtle,
there are a variety of applications we are interested in building and studies we are
interested in conducting. AmIBusy Prompter currently collects two types of self-reports:
one asking about the disruption that would be caused by a 5-second interruption and one
asking about the disruption that would be caused by a 15-minute interruption. We are in
the process of conducting a deployment to collect and model responses to these two
different prompts. After verifying that people provide different responses to these
prompts for an interruptibility self-report, we plan to examine differences in the features
selected for a model of a short interruption versus features selected for a model of a long
interruption.

We are also interested in how participants and their colleagues will interpret a
sensor-based statistical model of interruptibility from this deployment. We therefore plan
to deploy our learned models of interruptibility in the everyday lives of the participants.
We are developing a door display and an instant messaging extension that will share
estimates of a person’s interruptibility with their colleagues, together with an indication
of the sensed context that informed the estimate. After deploying these applications, we
intend to meet with participants and their colleagues to discuss their reactions to and
interpretations of the interruptibility models.

Many other applications can be built using Subtle. Whistle is an interesting
example of an application because it uses a person’s natural actions to learn a model of
whether a laptop’s audio should be muted. Collecting labels when people naturally
choose to mute or unmute a laptop’s audio, Whistle seems much more appropriate for
real-world deployment than an application that introduces additional demands for explicit
attention. We are also interested in developing an RSS client to investigate the
possibilities for using sensor-based models when filtering or delaying notifications.

9.2.2 Using Implicit Labels in Models of Human Interruptibility
Applications like Whistle or an RSS client can learn a model of a very specific concept
from implicit labels collected as people naturally interact with their computer, but we are
also interested in how these very specific models might relate to a general model of a
person’s interruptibility. For example, consider that people may generally mute a
laptop’s audio when they are in a situation where it would be socially inappropriate for a

Chapter 9: Conclusion and Future Work 140

laptop to play an audio notification. It seems reasonable to believe that whether or not a
laptop is muted could therefore be a useful sensor in a model of a person’s interruptibility
(our studies did not examine this sensor, but we have included it in Subtle).

If whether or not a laptop is muted is useful in a model of human interruptibility, then
whether or not a laptop should be muted may also be useful. An application like Whistle
could observe a person’s natural interaction with their computer to learn whether a laptop
should be muted, and the output of Whistle’s model could be useful to a more general
model of interruptibility. Considering the implicit labels collected by Whistle might
allow reliable models of human interruptibility to be based on fewer self-reports. It
might even be possible to collect a variety of implicit labels from many different
applications and build a general model of a person’s interruptibility without ever
explicitly prompting them.

As a first step towards examining this possibility, we intend to examine datasets
collected from people using both Whistle and AmIBusy Prompter. It is too early to know
what efforts will be fruitful, but it seems worthwhile to examine models of whether a
laptop’s audio should be muted to see if they share features with models of a person’s
interruptibility. It also seems worthwhile to build a model of whether a laptop’s audio
should be muted, then provide the output of that model as a feature to be used in
developing a model of interruptibility.

9.2.3 Examining the Validity of Interruptibility Self-Reports
As noted in the conclusion of Chapter 4, this dissertation uses interruptibility self-reports
as a ground truth measure of interruptibility but there are significant opportunities for
research to examine the validity of interruptibility self-reports. The potential for this
concern is motivated by significant evidence that self-reports can be influenced by a
variety of factors. The actor-observer effect shows that people are more likely to
attribute their own actions to situational factors and other people’s actions to personal or
dispositional factors (Jones and Nisbett 1971). This could manifest in interruptibility
self-reports as a bias for participants to describe their interruptibility in terms of their
environment. Because our models are based on the environment, this bias in participant
self-reports could inflate the estimated reliability of our models. People also tend to be
over-confident in assessing the reliability of social predictions (Dunning et al. 1990), so
people might be expected to be overly confident in predicting how they would respond to

Chapter 9: Conclusion and Future Work 141

an interruption. Shrauger and Osberg show that self-reports of psychological assessments
are less reliable than judgments by other people, potentially due to a conflict with how a
people perceive themselves (Shrauger and Osberg 1981). In a more humorous example
of biases in how people perceive themselves, two separate studies have shown that over
90% of people surveyed report having an above average sense of humor (Allport 1961;
Lefcourt and Martin 1986). There is a possibility that our interruptibility self-reports
were influenced by how participants perceive themselves. If a participant feels they are a
“busy” or “important” person, they might under-estimate their interruptibility.
Conversely, a person who believes they are “accessible” might over-estimate their
interruptibility.

One approach would be to examine the recordings collected in our initial Wizard of
Oz feasibility work to determine how people respond to actual interruptions. If we
examine the context at the time of natural interruptions, such as a phone call or the
unexpected arrival of a guest, models based on self-reports should predict how the office
worker will respond to these natural interruptions. There would, however, still be an
issue of the difference between whether participants considered themselves interruptible
versus whether they felt compelled to allow an interruption. Another approach might
therefore be to collect several independent measures at the time of each self-report. For
example, our study of task engagement might be modified to measure the time until a
person chooses to attend to an interruption, collect a self-report of how the programmer
perceives the severity of the interruption, and measure the time until it appears that the
programmer has successfully resumed the interrupted task. Correlations between these
different measures of interruptibility would provide evidence of their validity.

9.2.4 Building Models with Data Collected from Many People
The studies presented in this dissertation have produced better models when examining
participants with similar responsibilities and working environments, but they have also
shown that some features are useful across a wide variety of office workers. It seems
important to explore methods for determining what types of features are generally useful,
as opposed to being useful for a particular person or environment.

As we collect a variety of data from applications built with Subtle, we intend to
explore what types of operators might lead to features that are generally useful. For
example, a feature that indicates a programmer is less interruptible when using Microsoft

Chapter 9: Conclusion and Future Work 142

Visual Studio is extremely unlikely to be useful in a model of the interruptibility of a
human resources employee. However, it may be the case that we can find generally
useful features like “an office worker is less interruptible when typing in an application in
which they have generated more than half of their keystrokes in the previous week.” This
type of feature might be able to capture task engagement without using the name of a
specific application’s executable and might therefore be more likely to transfer between
office workers with different responsibilities.

Human-specified ontologies may also be useful in building models for data collected
from many people. Subtle currently has no way to know that Microsoft Internet
Explorer and Mozilla Firefox are similar applications. It also has no way to know that
Lotus Notes and Microsoft Outlook both provide calendar and email functionality.
Extending Subtle with ontology-related operators could allow the consideration of
features based on the fact that a person is using a “web browser”, as opposed to only
considering whether they are using “iexplore.exe” or “firefox.exe”.

9.2.5 Managing the Number of Potential Features Considered by Subtle
Subtle’s fully-automated feature generation process is based on the iterative application
of operators. While Subtle’s current set of operators are designed to ensure an effective
and efficient search of potential features, the extensible nature of Subtle introduces the
possibility that a naïve extension could undermine Subtle’s model learner. For
example, a naïve extension might perform some operation that combines every pair of
existing potential features. The resulting rapid growth in the number of potential features
would quickly reach the point where it would become computationally intractable to
compute their values and examine their utility in a model.

We are interested in how Subtle can observe and manage the growth of the number
of potential features considered in a model learning process. If the framework detects an
operator generating an unacceptable number of new features, it could use a variety of
approaches to filter the features generated by the problematic operator. A random
approach may be sufficient, limiting each operator to generating n potential features at
each stage in the iterative process and randomly selecting a subset of size n when the
operator generates too many features. Subtle can also take advantage of the results of
previous model learner results. If a particular feature was previously found to be useful,
the filtering process should ensure that the feature is allowed the opportunity to emerge as

Chapter 9: Conclusion and Future Work 143

predictive in the current model. Limiting the number of features considered would
ensure that the model learner executes in a reasonable amount of time, while considering
the results of previous model learner sessions should help to ensure that the learner is
examining a useful subset of the potential features.

9.2.6 Developing Human-Interpretable High-Level Features
Subtle’s only consideration for the human interpretability of an automatically generated
high-level feature is currently in the uniqueness filter, which chooses among features
with the same value at every label by selecting the feature based on the fewest operators.
Because it has no way to consider the fact that a very small gain in accuracy may lead to
a feature that is very hard to interpret, we have seen that Subtle sometimes generates
features that are very difficult to interpret. The String Length operator is a common
culprit in the examples in this dissertation, as it allows Subtle to combine the data from
two strings of the same length (such as “vs.exe” and “qw.exe”) but it provides little
insight into what the resulting feature actually means. As we begin to deploy these
models in applications, this lack of interpretability will interfere with providing end-users
with explanations of a model’s behavior.

We are interested in exploring existing machine learning techniques that consider the
cost of potential features. While cost is typically considered in either the financial or
computational sense, we believe it is interesting to examine human interpretability as a
cost when selecting features for a sensor-based statistical model. A simple notion of the
cost of a potential feature could be obtained by counting the number of operators used to
derive it, but the String Length operator is an example of an operator that seems to make
interpretation more difficult than other operators. It might instead be better to assign
variable costs to operators or combinations of operators. The specification of these costs
could quickly become cumbersome, so it seems worth investigating how optimization
techniques like those developed by Gajos and Weld might enable the specification of a
large number of operator costs from relatively few examples (Gajos and Weld 2005).

Another approach to human-interpretable high-level features would be to explicitly
model human-specified intermediate concepts. In the case of interruptibility, it seems
clear that high-level concepts like “task engagement” and “social engagement” could be
used as intermediate concepts. If hierarchical models were developed, an interruptibility
estimate could then be explained in terms of the fact that a person appears to be socially

Chapter 9: Conclusion and Future Work 144

engaged. This notion of social engagement could be related to a variety of sensors,
including audio-based detection of a conversation, the presence of an item on a person’s
electronic calendar, or desktop events indicating that a person is engaged in an instant
messaging conversation. Learning this intermediate concept therefore introduces the
need to collect additional appropriate labels. An application like AmIBusy Prompter
could do this by sometimes prompting for a person to describe their interruptibility,
sometimes prompting for them to describe their level of “task engagement,” and
sometimes prompting for them to describe their level of “social engagement.” From a
tools perspective in the context of Subtle, using these human-specified intermediate
concepts introduces the need to know what concepts are likely related to the labels
provided by an application. For example, it may be inappropriate to use an intermediate
concept like “task engagement” to explain why Whistle has decided to mute a laptop’s
audio. It is therefore interesting to consider whether a variety of generally appropriate
intermediate concepts can be included in a tool like Subtle. Concepts that might be
appropriate in a wide variety of applications include “in a conversation” (modeled from a
variety of the audio features provided by Subtle), “away from office” (modeled from
Subtle’s WiFi sensing), or “managing email” (modeled from the desktop event stream).
Beyond being useful in explaining the estimates made by a model, the use of these
intermediate concepts might also help to improve a model’s reliability. Though models
of intermediate concepts introduce the possibility of cascading errors, they also provide a
point where significant knowledge can be accumulated (whether human-specified or
automatically learned). For example, an explicit model of “in a conversation” is likely to
be more robust than any single microphone-based feature.

9.3 Conclusion
Current applications and devices often stumble blindly through a human world they can
neither sense nor understand. Because they are so obviously incapable, we blame
ourselves for their shortcomings. For example, if a laptop interrupts a meeting to let
everybody know that we have new email, we blame ourselves for not thinking to mute it.
More importantly, the other people in the meeting also blame us. When we do remember
to turn off our phone before attending a lecture, we may forget to turn it back when we
leave. In that case, we are blamed by the person who is desperately trying to call. In
either situation, the shortcomings of current applications and devices interfere with
human needs and human interaction.

Chapter 9: Conclusion and Future Work 145

Sensor-based statistical models of human situations offer to change how we interact
with computers. By examining models of human interruptibility, this dissertation has
begun to show that practical, low-cost sensors can support models that capture important
aspects of human situations and how people expect applications to behave. Including the
results of this work in everyday applications could provide us with computers that better
understand and adapt to the human situations surrounding their use. Comparing our
models of interruptibility to estimates made by human observers suggests that computers
might be reasonably polite partners in an interaction. We might then be able to spend
less time dealing with technology and more time focused on our actual goals.

 146

Bibliography
Abowd, G. and Mynatt, E. D. (2000). Charting Past, Present, and Future Research in

Ubiquitous Computing. ACM Transactions on Computer-Human Interaction
(TOCHI) 7(1). 29-58.

Adamczyk, P. D. and Bailey, B. P. (2004). If Not Now, When? The Effects of
Interruption at Different Moments Within Task Execution. Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI 2004). 271-278.

Allport, G. W. (1961). Pattern and Growth in Personality. New York: Holr, Reinhart,
and Winston.

Anderson, J. R. and Jeffries, R. (1985). Novice LISP Errors: Undetected Losses of
Information from Working Memory. Human-Computer Interaction 1(2). 107-131.

Ashbrook, D. and Starner, T. (2003). Using GPS to Learn Significant Locations and
Predict Movement Across Multiple Users. Personal and Ubiquitous Computing 7(5).
275-286.

Avrahami, D., Gergle, D., Hudson, S. E. and Kiesler, S. (2006). Improving the Match
Between Callers and Receivers: A Study on the Effect of Contextual Information on
Cell Phone Interruptions. Behavior and Information Technology (BIT). To Appear.

Avrahami, D. and Hudson, S. E. (2004). QnA: Augmenting an Instant Messaging Client
to Balance User Responsiveness and Performance. Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW 2004). 515-518.

Avrahami, D. and Hudson, S. E. (2006). Responsiveness in Instant Messaging:
Predictive Models Supporting Inter-Personal Communication. Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI 2006). To Appear.

Bailey, B. P., Adamczyk, P. D., Chang, T. Y. and Chilson, N. A. (2005). A Framework
for Specifying and Monitoring User Tasks. In Press, Computers in Human Behavior,
Special Issue on Attention Aware Systems.

Bao, L. and Intille, S. S. (2004). Activity Recognition from User-Annotated Acceleration
Data. Proceedings of the International Conference on Pervasive Computing
(Pervasive 2004). 1-17.

Barker, R. G. (1968). Ecological Psychology: Stanford University Press.
Begole, J. B., Matsakis, N. E. and Tang, J. C. (2004). Lilsys: Sensing Unavailability.

Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW 2004). 511-514.

Begole, J. B., Tang, J. C. and Hill, R. (2003). Rhythm Modeling, Visualizations, and
Applications. Proceedings of the ACM Symposium on User Interface Software and
Technology (UIST 2003). 11-20.

Bibliography 147

Begole, J. B., Tang, J. C., Smith, R. B. and Yankelovich, N. (2002). Work Rhythms:
Analyzing Visualizations of Awareness Histories of Distributed Groups. Proceedings
of the ACM Conference on Computer Supported Cooperative Work (CSCW 2002).
334-343.

Bradley, A. P. (1997). The Use of the Area Under the ROC Curve in the Evaluation of
Machine Learning Algorithms. Pattern Recognition 30. 1145-1159.

Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery 2(2). 121-167.

Cadiz, J., Narin, A., Jancke, G., Gupta, A. and Boyle, M. (2004). Exploring PC-
Telephone Convergence with the Enhanced Telephony Prototype. Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI 2004). 215-222.

Cutrell, E., Czerwinski, M. and Horvitz, E. (2001). Notification, Disruption, and
Memory: Effects of Messaging Interruptions on Memory and Performance.
Proceedings of Human-Computer Interaction (INTERACT 2001). 263-269.

Czerwinski, M., Cutrell, E. and Horvitz, E. (2000a). Instant Messaging and Interruptions:
Influence of Task Type on Performance. Proceedings of the Australian Conference
on Computer-Human Interaction (OZCHI 2000). 356-361.

Czerwinski, M., Cutrell, E. and Horvitz, E. (2000b). Instant Messaging: Effects of
Relevance and Time. Proceedings of the British HCI Group Annual Conference
(HCI 2000). 71-76.

Czerwinski, M., Horvitz, E. and Wilhite, S. (2004). A Diary Study of Task Switching and
Interruptions. Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2004). 175-182.

Dabbish, L. and Kraut, R. E. (2004). Controlling Interruptions: Awareness Displays and
Social Motivation for Coordination. Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW 2004). 182-191.

Dahlbäck, N., Jönsson, A. and Ahrenberg, L. (1993). Wizard of Oz Studies - Why and
How. Proceedings of the International Conference on Intelligent User Interfaces
(IUI 1993). 193-200.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society
39(1). 1-38.

Dey, A. K., Salber, D. and Abowd, G. D. (2001). A Conceptual Framework and a Toolkit
for Supporting the Rapid Prototyping of Context-Aware Applications. Human-
Computer Interaction (HCI) Journal 16(2-4). 97-166.

Duda, R. O. and Hart, P. E. (1973). Pattern Classification and Scene Analysis: John
Wiley and Sons.

Bibliography 148

Dunning, D., Griffin, D. W., Milojkovic, J. D. and Ross, L. (1990). The Overconfidence
Effect in Social Prediction. Journal of Personality and Social Psychology 58(4). 568-
581.

Edwards, W. K., Bellotti, V., Dey, A. K. and Newman, M. W. (2003). Stuck in the
Middle: The Challenges of User-Centered Design and Evaluation for Infrastructure.
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI
2003). 297-304.

Fayyad, U. M. and Irani, K. B. (1993). Multi-Interval Discretization of Continuous
Valued Attributes for Classification Learning. Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). 1022-1027.

Feldman-Barrett, L. and Barrett, D. J. (2001). An Introduction to Computerized
Experience Sampling in Psychology. Social Science Computer Review 19(2). 175-
185.

Fogarty, J., Au, C. and Hudson, S. E. (2006). Sensing from the Basement: A Feasibility
Study of Unobtrusive and Low-Cost Home Activity Recognition. Submitted for
Review.

Fogarty, J., Baker, R. S. and Hudson, S. E. (2005a). Case Studies in the use of ROC
Curve Analysis for Sensor-Based Estimates in Human Computer Interaction.
Proceedings of Graphics Interface (GI 2005). 129-136.

Fogarty, J., Hudson, S. and Lai, J. (2004a). Examining the Robustness of Sensor-Based
Statistical Models of Human Interruptibility. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI 2004). 207-214.

Fogarty, J., Hudson, S. E., Atkeson, C. G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.
C. and Yang, J. (2005b). Predicting Human Interruptibility with Sensors. ACM
Transactions on Computer-Human Interaction (TOCHI) 12(1). 119-146.

Fogarty, J., Ko, A. J., Aung, H. H., Golden, E., Tang, K. P. and Hudson, S. E. (2005c).
Examining Task Engagement in Sensor-Based Statistical Models of Human
Interruptibility. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2005). 331-340.

Fogarty, J., Lai, J. and Christensen, J. (2004b). Presence versus Availability: The Design
and Evaluation of a Context-Aware Communication Client. International Journal of
Human-Computer Studies (IJHCS) 61(3). 299-317.

Fraser, N. M. and Gilbert, G. N. (1991). Simulating Speech Systems. Computer Speech
and Language 5(1). 81-99.

Freund, Y. and Schapire, R. (1997). A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sciences
55(1). 119-139.

Bibliography 149

Gajos, K. and Weld, D. S. (2005). Preference Elicitation for Interface Optimization.
Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST 2005). 173-182.

Gibbs, W. (2005). Considerate Computing. Scientific American. 292. 55-61.
Gillie, T. and Broadbent, D. (1989). What Makes Interruptions Disruptive? A Study of

Length, Similarity, and Complexity. Psychological Research 50. 243-250.
Goffmann, E. (1982). On Facework. Interaction Ritual. E. Goffmann. New York,

Random House: 5-45.
Green, D. and Swets, J. (1966). Signal Detection Theory and Psychophysics. New York,

John Wiley and Sons. 45-49.
Hand, D. J. and Till, R. J. (2001). A Simple Generalisation of the Area Under the ROC

Curve for Multiple Class Classification Problems. Machine Learning 45(2). 171-186.
Hanley, J. A. and McNeil, B. J. (1982). The Meaning and Use of the Area Under a

Receiver Operating Characteristic (ROC) Curve. Radiology 143. 29-36.
Hatch, M. J. (1987). Physical Barriers, Task Characteristics, and Interaction Activity in

Research and Development Firms. Administrative Science Quarterly 32. 387-399.
Hess, S. M. and Detweiler, M. (1994). Training to Reduce the Disruptive Effects of

Interruptions. Proceedings of the Human Factors and Ergonomics Society Annual
Meeting. 1173-1177.

Ho, J. and Intille, S. S. (2005). Using Context-Aware Computing to Reduce the Perceived
Burden of Interruptions from Mobile Devices. Proceedings of the ACM Conference
on Human Factors in Computing Systems (CHI 2005). 909-918.

Horvitz, E. (1999). Principles of Mixed-Initiative User Interfaces. Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI 1999). 159-166.

Horvitz, E. and Apacible, J. (2003). Learning and Reasoning about Interruption.
Proceedings of the International Conference on Multimodal Interfaces (ICMI 2003).
20-27.

Horvitz, E., Apacible, J., Subramani, M., Sarin, R., Koch, P., Cadiz, J., Narin, A. and Rui,
Y. (2003a). Experiences with the Design, Fielding, and Evaluation of a Real-Time
Communications Agent. Microsoft Research Technical Report MSR-TR-2003-98.
ftp://ftp.research.microsoft.com/pub/tr/TR-2003-98.pdf.

Horvitz, E., Breese, J., Heckerman, D., Hovel, D. and Rommelse, K. (1998). The
Lumière Project: Bayesian User Modeling for Inferring the Goals and Needs of
Software Users. Proceedings of the Conference on Uncertainty and Artificial
Intelligence (UAI 1998). 256-265.

Horvitz, E., Jacobs, A. and Hovel, D. (1999). Attention-Sensitive Alerting. Proceeding of
the Conference on Uncertainty and Artificial Intelligence (UAI 1999). 305-313.

Bibliography 150

Horvitz, E., Kadie, C., Paek, T. and Hovel, D. (2003b). Models of Attention in
Computing and Communication: From Principles to Applications. Communications
of the ACM 46(3). 52-59.

Horvitz, E., Koch, P. and Apacible, J. (2004). BusyBody: Creating and Fielding
Personalized Models of the Cost of Interruption. Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW 2004). 507-510.

Horvitz, E., Koch, P., Kadie, C. M. and Jacobs, A. (2002). Coordinate: Probabilistic
Forecasting of Presence and Availability. Proceedings of the Conference on
Uncertainty in Artificial Intelligence (UAI 2002). 224-233.

Horvitz, E., Koch, P., Sarin, R., Apacible, J. and Subramani, M. (2005). Bayesphone:
Precomputation of Context-Sensitive Policies for Inquiry and Action in Mobile
Devices. Proceedings of User Modeling (UM 2005). 251-260.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y. and Rosenfeld, R. (1993). The Sphinx-
II Speech Recognition Systems: An Overview. Computer Speech and Language
7(2). 137-148.

Hudson, J. M., Christensen, J., Kellogg, W. A. and Erickson, T. (2002). "I'd be
overwhelmed, but it's just one more thing to do": Availability and Interruption in
Research Management. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2002). 97-104.

Hudson, S. E., Fogarty, J., Atkeson, C. G., Avrahami, D., Forlizzi, J., Kiesler, S., Lee, J.
C. and Yang, J. (2003). Predicting Human Interruptibility with Sensors: A Wizard of
Oz Feasibility Study. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 2003). 257-264.

Intille, S. S., Larson, K., Beaudin, J. S., Nawyn, E., Munguia Tapia, E. and Kaushik, P.
(2005). A Living Laboratory for the Design and Evaluation of Ubiquitous Computing
Technologies. Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2005). 1941-1944.

Iqbal, S. T., Adamczyk, P. D., Zheng, X. S. and Bailey, B. P. (2005). Towards an Index
of Opportunity: Understanding Changes in Mental Workload During Task
Execution. Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 2005). 311-230.

Jones, E. E. and Nisbett, R. E. (1971). The Actor and the Observer: Divergent
Perceptions of the Causes of Behavior. New York: General Learning Press.

Kendon, A. and Ferber, A. (1973). A Description of Some Human Greetings.
Comparative Behavior and Ecology of Primates. R. P. Michael and J. H. Crook.
London, Academic Press: 591-668.

Kern, N., Antifakos, S., Schiele, B. and Schwaninger, A. (2004). A Model for Human
Interruptability: Experimental Evaluation and Automatic Estimation from Wearable
Sensors. Proceedings of the IEEE International Symposium on Wearable Computing
(ISWC 2004). 158-165.

Bibliography 151

Kern, N. and Schiele, B. (2003). Context-Aware Notification for Wearable Computing.
Proceedings of the IEEE International Symposium on Wearable Computing (ISWC
2003). 223-230.

Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A., Aboobaker, N. and Wang, A.
(2000). SUEDE: A Wizard of Oz Prototyping Tool for Speech User Interfaces.
Proceedings of the ACM Symposium on User Interface Software and Technology
(UIST 2000). 1-10.

Ko, A. J. and Myers, B. (2004). A Framework and Methodology for Studying the Causes
of Software Errors in Programming Systems. Journal of Visual Languages and
Computing 16(1-2). 41-84.

Kohavi, R. and John, G. H. (1997). Wrappers for Feature Subset Selection. Artificial
Intelligence 97(1-2). 273-324.

LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T.,
Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P., Borriello, G. and Schilit,
B. N. (2005). Place Lab: Device Positioning Using Radio Beacons in the Wild.
Proceedings of the International Conference on Pervasive Computing (Pervasive
2005). 116-133.

Langley, P. and Sage, S. (1994). Induction of Selected Bayesian Classifiers. Proceedings
of the Conference on Uncertainty in Artificial Intelligence (UAI 1994). 399-406.

Larson, R. and Csikszentmihalyi, M. (1983). The Experience Sampling Method. New
Directions for Methodology of Social and Behavioral Science 15. 41-56.

Lefcourt, H. M. and Martin, R. A. (1986). Humor and Life Stress: Antidote to Adversity.
New York: Springer/Verlag.

Lemaire, P., Abdi, H. and Faylo, M. (1996). The Role of Working Memory Resources in
Simple Cognitive Arithmetic. European Journal of Cognitive Psychology 8(1). 73-
103.

Liao, L., Fox, D. and Kautz, H. (2005). Location-Based Activity Recognition Using
Relational Markov Networks. Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). 773-778.

Liu, H., Hussain, F., Tan, C. L. and Dash, M. (2002). Discretization: An Enabling
Technique. Journal of Data Mining and Knowledge Discovery 6(4). 393-423.

Lu, L., Zhang, H. and Jiang, H. (2002). Content Analysis for Audio Classification and
Segmentation. IEEE Transactions on Speech and Audio Processing 10(7). 504-516.

Mark, G., Gonzalez, V. M. and Harris, J. (2005). No Task Left Behind? Examining the
Nature of Fragmented Work. Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI 2005). 321-330.

Markovitch, S. and Rosenstein, D. (2002). Feature Generation Using General Constructor
Functions. Machine Learning 49(1). 59-98.

Bibliography 152

Maulsby, D., Greenberg, S. and Mander, R. (1993). Prototyping an Intelligent Agent
Through Wizard of Oz. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI 1993).

McCrickard, D. S., Chewar, C. M., Somervell, J. P. and Ndiwalana, A. (2003). A Model
for Notification Systems Evaluation - Assessing User Goals for Multitasking
Activity. ACM Transactions on Computer-Human Interaction (TOCHI) 10(4). 312-
338.

McFarlane, D. C. (1999). Coordinating the Interruption of People in Human-Computer
Interaction. Proceedings of Human-Computer Interaction (INTERACT 1999). 295-
303.

McFarlane, D. C. (2002). Comparison of Four Primary Methods for Coordinating the
Interruption of People in Human-Computer Interaction. Human-Computer
Interaction 17(1). 63-139.

McFarlane, D. C. and Latorella, K. A. (2002). The Scope and Importance of Human
Interruption in Human-Computer Interaction Design. Human-Computer Interaction
17(1). 1-61.

Metz, C. E. (1978). Basic Principles of ROC Analysis. Seminars in Nuclear Medicine
8(4). 283-298.

Milewski, A. E. and Smith, T. M. (2000). Providing Presence Cues to Telephone Users.
Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW 2000). 89-96.

Mitchell, T. M. (1997). Machine Learning: McGraw-Hill.
Miyata, Y. and Norman, D. A. (1986). Psychological Issues in Support of Multiple

Activities. User Centered System Design. D. A. Norman and S. W. Draper. Hillsdale,
NJ, Lawrence Erlbaum: 265-284.

Morimoto, C., Koons, D., Amir, A. and Flickner, M. (2000). Pupil Detection and
Tracking Using Multiple Light Sources. Image and Vision Computing 18(4). 331-
335.

Munguia Tapia, E., Intille, S. S. and Larson, K. (2004). Activity Recognition in the Home
Using Simple and Ubiquitous Sensors. Proceedings of the International Conference
on Pervasive Computing (Pervasive 2004). 158-175.

Mynatt, E. and Tullio, J. (2001). Inferring Calendar Event Attendance. Proceedings of the
International Conference on Intelligent User Interfaces (IUI 2001). 121-128.

Nagel, K. S., Hudson, J. M. and Abowd, G. (2004). Predictors of Availability in Home
Life Context-Mediated Communication. Proceedings of the ACM Conference on
Computer Supported Cooperative Work (CSCW 2004). 497-506.

Bibliography 153

O'Conaill, B. and Frohlich, D. (1995). Timespace in the Workplace: Dealing with
Interruptions. Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI 1995). 262-263.

Oliver, N. and Horvitz, E. (2003). Selective Perception Policies for Guiding Sensing and
Computation in Multimodal Systems: A Comparative Analysis. Proceedings of the
International Conference on Multimodal Interaction (ICMI 2003). 36-43.

Oliver, N., Horvitz, E. and Garg, A. (2002). Layered Representations for Recognizing
Office Activity. Proceedings of the International Conference on Multimodal
Interaction (ICMI 2002). 3-8.

Osofsky, J. D., Ed. (1979). Handbook of Infant Development. New York, John Wiley &
Sons, Inc.

Patterson, D. J., Liao, L., Fox, D. and Kautz, H. (2003). Inferring High-Level Behavior
from Low-Level Sensors. Proceedings of the International Conference on
Ubiquitous Computing (UbiComp 2003). 73-89.

Perlow, L. A. (1999). The Time Famine: Toward a Sociology of Work Time.
Administrative Science Quarterly 44(1). 57-81.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning: Morgan Kaufmann.
Robertson, T. J., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J. R., Beckwith, L.

and Phalgune, A. (2004). Impact of Interruption Style on End-User Debugging.
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI
2004). 287-294.

Sackett, G. P., Ed. (1978). Observing Behavior, Vol. II: Data Collection and Analysis
Methods. Baltimore, University Park Press.

Schilit, B. N., LaMarca, A., Borriello, G., Griswold, W. G., McDonald, D., Lazowska, E.,
Balachandran, A., Hong, J. I. and Iverson, V. (2003). Challenge: Ubiquitous
Location-Aware Computing and the Place Lab Initiative. Proceedings of the ACM
International Workshop on Wireless Mobile Applications and Services on WLAN
(WMASH 2003). 29-35.

Schmidt, A. (2000). Implicit Human Computer Interaction Through Context. Personal
Technologies 4(2). 191-199.

Schmidt, A., Takaluoma, A. and Mäntyjärvi, J. (2000). Context-Aware Telephony Over
WAP. Personal and Ubiquitous Computing 4(4). 225-229.

Seshadri, S. and Shapira, Z. (2001). Managerial Allocation of Time and Effort: The
Effects of Interruptions. Management Science 47(5). 647-662.

Shell, J. S., Selker, T. and Vertegaal, R. (2003). Interacting with Groups of Computers.
Communications of the ACM. 46. 40-46.

Bibliography 154

Shrauger, J. S. and Osberg, T. M. (1981). The Relative Accuracy of Self-Predictions and
Judgments by Others in Psychological Assessment. Psychological Bulletin 90(2).
322-351.

Tang, J. C., Yankelovich, N., Begole, J., Van Kleek, M., Li, F. and Bhalodia, J. (2001).
ConNexus to Awarenex: Extending Awareness to Mobile Users. Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI 2001). 221-228.

Tullio, J., Goecks, J., Mynatt, E. D. and Nguyen, D. H. (2002). Augmenting Shared
Personal Calendars. Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST 2002). 11-20.

Weiser, M. (1991). The Computer for the 21st Century. Scientific American 265(3). 66-
75.

Whittaker, S. J., Frohlich, D. and Daly-Jones, O. (1994). Informal Workplace
Communication: What is it Like and How Might We Support it? Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI 1994). 131-137.

Wilson, D. H. and Atkeson, C. G. (2005). Simultaneous Tracking and Activity
Recognition (STAR) Using Many Anonymous, Binary Sensors. Proceedings of the
International Conference on Pervasive Computing (Pervasive 2005). 62-79.

Witten, I. H. and Frank, E. (1999). Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations: Morgan Kaufmann.

Yu, L. and Liu, H. (2003). Feature Selection for High-Dimensional Data: A Fast
Correlation-Based Filter Solution. The International Conference on Machine
Learning (ICML 2003). 856-863.

Zeigarnik, B. (1927/1938). On Finished and Unfinished Tasks. A Source Book of Gestalt
Psychology. W. D. Ellis. New York, Harcourt Brace: 300-314.

