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Abstract

Many real-world decision making tasks require us to choose among several expensive observations. In a sensor network, for
example, it is important to select the subset of sensors thatis expected to provide the highest reduction in uncertainty. It has
been general practice to use heuristic-guided procedures for selecting observations. In this paper, we present the first efficient
optimal algorithms for selecting observations for a class of graphical models containing Hidden Markov Models (HMMs).We
provide results for both selecting the optimal subset of observations, and for obtaining an optimal conditional observation plan.
We also prove a surprising result: In most graphical models tasks, if one designs an efficient algorithm for chain graphs,such as
HMMs, this procedure can be generalized to polytrees. We prove that the value of information problem isNP

PP-hard even for
discrete polytrees. It also follows from our results that even computing conditional entropies, which are widely used to measure
value of information, is a#P-complete problem on polytrees. Finally, we demonstrate the effectiveness of our approach on
several real-world datasets.
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1 Introduction
In probabilistic reasoning, where one can choose among several possible but expensive observations, it is often a central issue to
decide which variables to observe in order to most effectively decrease the expected uncertainty. In a medical expert system[14],
for example, multiple tests are available, and each test hasa different cost. In such systems, it is thus important to decide which
tests to perform in order to become most certain about the patient’s condition, at a minimum cost.

The following running example motivates our research and isempirically evaluated in Section 7. Consider a temperature
monitoring task, where wireless temperature sensors are distributed across a building. The task is to become most certain about
the temperature distribution, whilst minimizing energy expenditure, a critically constrained resource[4].

Many researchers have suggested the use of myopic (greedy) approaches to select observations[13; 15; 5; 1]. Unfortunately,
this heuristic does not provide any performance guarantees. In this paper, we present efficient algorithms, which guarantee
optimal nonmyopic value of information in chain graphical models such as Hidden Markov Models (HMMs). We address two
settings:subset selection, where the optimal subset of observations is obtained in an open-loop fashion, andconditional plans,
a closed-loop plan where the observation strategy depends on the actual value of the observed variables. To our knowledge
these are the first optimal and efficient algorithms for thesetasks for this class of graphical models. We evaluate our algorithms
empirically on three real-world datasets, and also show that they are well-suited for interactive classification of sequential data.

Most problems in graphical models, such as probabilistic inference and the most probable explanation, that can be solved
efficiently for chain-structured graphs, can also be solvedefficiently for polytrees. We prove that the problem of maximizing
value of information isNP

PP-hard even for discrete polytree graphical models, giving acomplexity theoretic classification of
a core artificial intelligence problem.NP

PP-hard problems are believed to be significantly harder thanNP-complete or even
#P-complete problems commonly arising in the context of graphical models. As a special case, we also prove that computing
conditional entropies is#P-complete even in the case of discrete polytrees. This is a surprising result about a measure of
uncertainty that is frequently used in practice.

2 Optimization criteria
In order to decrease uncertainty, our value of information objective functions should depend on probability distributions over
variables. LetS = {X1, . . . ,Xn} be a set of discrete random variables. We consider a class oflocal reward functionsR,
which are defined on the marginal probability distributionsof the variables. This class has the computational advantage that
local rewards can be evaluated using probabilistic inference techniques. The total reward will then be the sum of all local
rewards.

Let O be a subset ofS. ThenP (Xj | O = o) denotes the marginal distribution of variableXj conditioned on observations
o. For classification purposes, it can be more appropriate to consider the max-marginals

Pmax(Xj = xj | O = o) = max
x

P (X = x,Xj = xj | O = o),

that is, forXj set to valuexj , the probability of the most probable assignment to all other random variables conditioned on the
observationso. Thelocal rewardRj is a functional on the probability distributionP or Pmax overXj . We write

Rj(Xj | O) ,
∑

o

P (O = o)Rj(P (Xj | O = o))

as an abbreviation to indicateexpected local rewards, where the expectation is taken over all assignmentso to the observations
O. Several measures for uncertainty are commonly used:

• Entropy. If we setRj(P (Xj | O)) = −H(Xj | O) =
∑

xj ,o P (xj , o) log P (xj | o), the objective in the optimization
problem becomes to minimize the sum of residual entropies. We choose this reward function in our running example to
measure the uncertainty about the temperature distribution.

• Expected utility. The concept of local reward functions also includes the concept of utility nodes in influence diagrams,
Rj(P (Xj | O)) =

∑

xj
P (xj | o)U(xj) for some utility functionU . We can also minimize the risk of decisions by

considering the variance in expected utility,Rj(P (Xj | O)) =
∑

xj
P (xj | o)U(xj)

2 −
(

∑

xj
P (xj | o)U(xj)

)2

.

• Margin. We can also consider the margin of confidence:Rj(P
max(Xj | O)) =

∑

o P (o)[Pmax(x∗
j | o)−Pmax(x̄j | o)],

wherex∗ = argmaxxj
Pmax(xj | o) andx̄ = argmaxxj 6=x∗ Pmax(xj | o), which describes the margin between the most

likely outcome and the closest runner up. This reward function is very useful for structured classification purposes, as
shown in Section 7.

These examples demonstrate the generality of our notion of local reward. One can generalize the algorithms even more, e.g., to
measure the total entropy or the margin between the most probable explanation and its runner up. Details are omitted heredue
to space limitations.



Figure 1:Decomposition of the reward.

We also want to capture the constraint that observations areexpensive. This can mean that each observationXj has an
associated positivepenaltyCj that effectively decreases the reward. In our example, we might be interested in trading off
accuracy with sensing energy expenditure. Alternative, itis also possible to define abudgetB for selecting observations, where
each one is associated with an integercostβj . Here, we want to select observations whose sum cost is within the budget, but
these costs do not decrease the reward. In our running example, the sensors could be powered by solar power, and regain a
certain amount of energy per day, which allows a certain amount of sensing. Our formulation of the optimization problems
allows both for penalties and budgets. To simplify notationwe also writeC(O) =

∑

Xj∈O Cj andβ(O) =
∑

Xj∈O βj to
extendC andβ to sets.

3 Decomposing Rewards
In the following Sections 4 and 5, we present efficient algorithms for two problems of optimizing value of information in the
class of chain graphical models.

The set of random variablesS = {X1, . . . ,Xn} forms a chain graphical model (a chain), ifXi is conditionally independent
of Xk givenXj wheneveri < j < k. We can assume that the joint distribution is specified by theprior P (X1) and conditional
probability distributionsP (Xi+1 | Xi). The time series model for the temperature measured by one sensor in our example can
be formulated as a chain graphical model.

We will now describe the key insight, which allows for efficient optimization in chains. Consider a set of observations
O ⊂ S. If the j variable is observed, i.e.,Xj ∈ O, then the local reward is simplyR(Xj | O) = R(Xj | Xj). Now
considerXj /∈ O, and letOj be the subset ofO containing the closest ancestor and descendant ofXj in O. The conditional
independence property of the graphical model implies that,givenOj , Xj is independent of the rest of the observed variables,
i.e.,P (Xj | O) = P (Xj | Oj). Thus, it follows thatR(Xj | O) = R(Xj | Oj).

These observations imply that the expected reward of some set of observations decomposes along the chain. For simplicity of
notation, we add two independent dummy variablesX0 andXn+1, whereR0 = C0 = β0 = Rn+1 = Cn+1 = βn+1 = 0. Let
O = {Xi0 , . . . ,Xim+1

} whereil < il+1, i0 = 0 andim+1 = n + 1. Using this notation, the total rewardR(O) =
∑

j Rj(Xj |

O) is given by:
m

∑

v=0



Riv
(Xiv

| Xiv
) − Civ

+

iv+1−1
∑

j=iv+1

Rj(Xj | Xiv
,Xiv+1

)



 .

Figure 1 illustrates this decomposition.
Consider now a Hidden Markov Model unrolled forn time steps, i.e.,S can be partitioned into the hidden variables

{X1, . . . ,Xn} and the emission variables{Y1, . . . , Yn}. In HMMs, theYi are observed and the variablesXi form a chain.
In many applications, some of which are discussed in Section7, we can observe some of the hidden variables, e.g., by asking
an expert, in addition to observing the emission variables.In this case, the problem of selecting expert labels also belongs to
the class of chain graphical models addressed by this paper.

4 Subset Selection
In thesubset selectionproblem, we want to find a most informative subset of the variables to observe. It is specified in advance,
i.e., before any observations are made. In our running example, we would, before deploying the sensors, definek time points,
at which sensor readings are most informative according to our model.

Define the objective functionL on subsets ofS by

L(O) =
n

∑

j=1

Rj(Xj | O) − C(O). (4.1)

Thesubset selectionproblem is to find the optimal subset

O∗ = argmax
O⊆S,β(O)≤B

L(O)

maximizing the sum of expected local rewards minus the penalties, subject to the constraint that the total cost must not exceed
the budgetB.



We solve this optimization problem using a dynamic programming algorithm, where the chain is broken into sub-chains
using the insight from Sec. 3. Consider a sub-chain from variableXa to Xb. We defineLa:b(k) to represent the expected total
reward for the sub-chainXa, . . . ,Xb, whereXa andXb are observed, and with a budget level ofk. More formally:

La:b(k) = max
O⊂{Xa+1...Xb−1}

β(O)≤k

b−1X
j=a+1

Rj(Xj | O ∪ {Xa, Xb}) − C(O).

Note thatL0:n+1(B) = maxO:β(O)≤B L(O), as in Eq. (4.1), i.e., by computing the values forLa:b(k), we compute the
maximum expected total reward for the entire chain.

We can computeLa:b(k) using dynamic programming. The base case is simply:

La:b(0) =
b−1
∑

j=a+1

Rj(Xj | Xa,Xb).

The recursion forLa:b(k) has two cases: we can choose not to spend any more of the budget, reaching the base case, or we can
break the chain into two sub-chains, selecting the optimal observationXj , wherea < j < b:

La:b(k) = max

{

La:b(0), max
j:a<j<b,βj≤k

{−Cj + +Rj(Xj | Xj) + La:j(0) + Lj:b(k − βj)}

}

.

At first, it may seem that this recursion should consider the optimal split of the budget between the two sub-chains. However,
since the subset problem is open-loop and the order of the observations is irrelevant, we only need to consider split points where
the first sub-chain receives zero budget.

The algorithm fills the dynamic programming tables in two loops, the inner loop ranging over all pairs(a, b), a < b, and the
outer loop increasingk. If we do not consider different costsβ, we would simply chooseβj = 1 for all variables and compute
La:b(N). Once the dynamic program terminates, we recover the optimal subset by tracing the maximal values induced by the
computation of the above quantities. Using an induction proof, we obtain:

Theorem 1. The dynamic programming algorithm described above computes the optimal subset with budgetB in ( 1
6n3 +

O(n2))B evaluations of expected local rewards.

If the variablesXi are continuous, our algorithm is still applicable when the integrations and inferences necessary for com-
puting the expected rewards can be performed efficiently.

5 Conditional Plan
In the conditional planproblem, we want to compute an optimal query policy: We sequentially observe a variable, pay the
penalty, and depending on the observed values, select the next query as long as our budget suffices. The objective is to findthe
plan with the highest expected reward, where, for each possible sequence of observations, the budgetB is not exceeded. In our
example, the sensors could log the day’s data, and the optimal conditional plan can be used by the base station to decide what
times of the day to upload from the network.

The formal definition of the objective functionJ is given recursively. The base case considers the exhaustedbudget:

J(O = o; 0) =
∑

Xj∈S

Rj(Xj | O = o) − C(O).

The recursion,J(O = o; k), represents the maximum expected reward of the conditionalplan for the chain whereO = o has
been observed and the budget is limited tok:

J(O = o; k) = max

{

J(O = o; 0), max
Xj /∈O

{
∑

y

P (Xj = y | O = o) · J(O = o,Xj = y; k − βj)}

}

.

The optimal plan has rewardJ(∅;B).
We propose a dynamic programming algorithm for obtaining the optimal conditional plan that is similar to the subset algo-

rithm presented in Sec. 4. Again, we utilize the decomposition of rewards described in Section 3. The difference here is that
the observation selection and budget allocation now dependon the actual values of the observations.

We again consider sub-chainsXa, . . . ,Xb. The base case deals with the zero budget setting:

Ja:b(xa, xb; 0) =

b−1
∑

j=a+1

Rj(Xj | Xa = xa,Xb = xb).
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Figure 2: Experimental results.

The recursion definesJa:b(xa, xb; k), the expected reward for the problem restricted to the sub-chainXa, . . . ,Xb conditioned
on the values ofXa andXb and with budget limited byk. To compute this quantity we again iterate through possiblesplit
pointsj, such thata < j < b. However, since the conditional plan is closed-loop, we nowmust consider all possible splits of
the budget between the two resulting sub-chains:

Ja:b(xa, xb; k) = max{Ja:b(xa, xb; 0), max
a<j<b

{−Cj+

∑

xj

P (Xj = xj | Xa = xa,Xb = xb){Rj(Xj | Xj)+

max
0≤l≤k−βj

[Ja:j(xa, xj ; l) + Jj:b(xj , xb; k − l − βj)]}}}.

The optimal reward is obtained byJ0:n+1(∅;B) = J(∅;B). The algorithm will fill the dynamic programming tables using
three loops, the inner loop ranging over all assignmentsxa, xb, the middle loop ranging over all pairs(a, b) wherea < b, and
the outer loop covers increasing values ofk ≤ B.

Again, by induction, we obtain:

Theorem 2. The algorithm presented above computes an optimal conditional plan ind3 · B2 · ( 1
6n3 + O(n2)) evaluations of

local rewards, whered is the maximum domain size of the random variablesX1, . . . ,Xn. If no budget is used, the optimal plan
can be computed using onlyd3 · ( 1

6n4 + O(n3)) evaluations.

The faster computation for the no budget case is obtained by observing that we do not require the third maximum computa-
tion, which distributes the budget into thea : j andj : b sub-chains.

6 Theoretical Limits
Many problems that can be solved efficiently for discrete chain graphical models can also be efficiently solved for discrete poly-
trees. Examples include inference and the most probable explanation (MPE). Surprisingly, we prove that for the optimization
problems discussed in this paper, this generalization is not possible, unlessP = NP. All proofs in this section are stated in the
Appendix.

In order to solve the optimization problems, we will most likely have to evaluate the objective function, i.e., the expected
local rewards. Our first result states that this problem is intractable even for discrete polytrees.

Theorem 3. The computation of expected local rewards for discrete polytrees is#P-complete.1

This negative result can be specialized to the conditional entropy, one of the most frequently used reward function to charac-
terize the residual uncertainty in value of information problems.

Corollary 4. The computation of conditional entropy for discrete polytrees is#P-complete.

Since evaluating local rewards is#P-complete, it can be suspected that the subset selection problem is at least#P-hard. We
show that it is evenNP

PP-complete2, a complexity class, which contain problems that are believed to be significantly harder
thanNP or #P complete problems. This result provides a complexity theoretic classification of value of information, a core
AI problem.

1#P contains problems such as counting the number of satisfying assignmentsto a Boolean formula.
2
NP

PP is natural for AI planning problems[9]. A complete problem isEMAJSAT , where one has to find an assignment to the firstk
variables of a 3CNF formula, such that the formula is satisfied under the majority of assignments to the remaining variables.



Theorem 5. Subset Selection isNP
PP-complete even for discrete polytrees.

For our running example, this implies that the generalized problem of optimally selectingk sensors from a network of
correlated sensors is most likely computationally intractable without resorting to heuristics. A corollary extends the hardness
of subset selection to the hardness of conditional plans.

Corollary 6. Computing conditional plans isNP
PP-hard even for discrete polytrees.

7 Experiments
In this section, we evaluate the proposed methods for several real world data sets. A special focus is on the comparison ofthe
optimal methods with the greedy heuristic and other heuristic methods for selecting observations, and on how the algorithms
can be used for interactive structured classification.

7.1 Temperature time series
The first data set consists of temperature time series collected from a sensor network deployed at Intel Research Berkeley
as described in our running example. Data was continuously collected for 19 days, linear interpolation was used in case of
missing samples. The temperature was measured once 60 minutes, and it was discretized into 10 bins of 2 degrees Kelvin. To
avoid overfitting, we used pseudo countsα = 0.5 when learning the model. Using parameter sharing, we learned four sets of
transition probabilities: from 12 am - 7am, 7 am - 12 pm, 12 pm -7 pm and 7 pm - 12 am. Combining the data from three
adjacent sensors, we got 53 sample time series.

The goal of this task was to selectk out of24 time points during the day, during which sensor readings aremost informative.
The experiment was designed to compare the performance of the optimal algorithms, the greedy heuristic, and an uniform
spacing heuristic, which distributed thek observations uniformly over the day. Fig. 2(a) shows the relative improvement of
the optimal algorithms and the greedy heuristic over the uniform spacing heuristic. The performance is measured in decrease
of expected entropy, with zero observations as the baseline. It can be seen that ifk is less than about the half of all possible
observations, the optimal algorithms decreased the expected uncertainty by several percent over both heuristics. Theimprove-
ment gained by the optimal plan over the subset selection algorithms appears to become more drastic if a large number of
observations (over half of all possible observations) is allowed. Furthermore, for a large number of observations, theoptimal
subset and the subset selected by the greedy heuristic were almost identical.

7.2 CpG-Island detection
We then studied the bioinformatics problem of finding CpG islands in DNA sequences. CpG islands are regions in the genome
with a high concentration of the cytosine-guanine sequence. These areas are believed to be mainly located around the promoters
of genes, which are frequently expressed in the cell. In our experiment, we considered the gene loci HS381K22, AF047825
and AL133174, for which the GenBank annotation listed three, two and one CpG islands each. We ran our algorithm on a 50
base window at the beginning and end of each island, using thetransition and emission probabilities from[6] for our Hidden
Markov Model, and we used the sum of margins as reward function.

The goal of this experiment was to locate the beginning and ending of the CpG islands more precisely by asking experts,
whether or not certain bases belong to the CpG region or not. Fig. 2(b) shows the mean classification accuracy and mean margin
scores for an increasing number of observations. The results indicate that, although the expected margin scores are similar for
the optimal algorithm and the greedy heuristic, the mean classification performance of the optimal algorithm was still better
than the performance of the greedy heuristic.

7.3 Part-of-Speech Tagging
In our third experiment, we investigated the structured classification task of part-of-speech (POS) tagging[3]. Problem instances
are sequences of words (sentences), where each word is part of an entity (e.g., “United States of America”), and each entity
belongs to one of five categories: Location, Miscellaneous,Organization, Person or Other. Imagine an application, where
automatic information extraction is guided by an expert: Our algorithms compute an optimal conditional plan for askingthe
expert, trying to optimize classification performance while requiring as little expert interaction as possible.

We used a conditional random field for the structured classification task, where each node corresponds to a word, and the
joint distribution is described by node potentials and edgepotentials. The sum of margins was used as reward function. Measure
of classification performance was the F1 score, the geometric mean of precision and recall. The goal of this experiment was to
analyze how the addition of expert labels increases the classification performance, and how the indirect, decomposing reward
function used in our algorithms corresponds to real world classification performance.

Figure 2(c) shows the increase of the mean expected margin and F1 score for an increasing number of observations, summa-
rized over ten 50 word sequences. It can be seen that the classification performance can be effectively enhanced by optimally
incorporating expert labels. Requesting only three out of 50 labels increased the mean F1 score from by more than five percent.
The following example illustrates this effect: In one scenario both words of an entity, the sportsman ‘P. Simmons’, wereclassi-
fied incorrectly – ‘P.’ asOtherand ‘Simmons’ asMiscellaneous. The first request of the optimal conditional plan was to label
‘Simmons’. Upon labeling this word correctly, the word ‘P.’was automatically labeled correctly also, resulting in 100percent
F1 score.



8 Related Work
Decision Trees[12] popularized the value of information as a criterion for creating conditional plans. Unfortunately, there are
no guarantees on the performance of this greedy method. Bayer-Zubek[1] proposed a heuristic method based on the Markov
Decision Process framework. Several researchers[15; 5] suggested myopic, i.e., greedy approaches for selectivelygathering
evidence in graphical models. Heckermanet al. [7] proposed an approximate nonmyopic method for optimizing value of
information over sets of variables based on the central limit theorem. Their work applies only to a limited class of graphical
models and provides only large sample guarantees. The subset selection problem as an instance of feature selection is a central
issue in machine learning, with a vast amount of literature (see[10] for a survey). The problem of choosing observations
also has a strong connection to the field of active learning[2] in which the learning system designs experiments based on its
observations.

9 Conclusions
We have described novel efficient algorithms for optimal subset selection and conditional plan computation in chain graphical
models, including HMMs. Empirical evaluation indicates that these algorithms can improve upon commonly used heuristics
for decreasing expected uncertainty. Our algorithms can also effectively enhance performance in interactive structured classifi-
cation tasks.

Unfortunately, the optimization problems become intractable for even a slight generalization of chains. We presentedsur-
prising theoretical limits, which indicate that commonly used local reward functions, such as conditional entropies,cannot be
efficiently computed even in discrete polytree graphical models. We also identified optimization of value of information as a
new class of problems that are intractable (NP

PP-complete) for polytrees.
Our hardness results, along with other recent results for polytree graphical models, theNP-completeness of maximum a

posteriori assignment[11] andNP-hardness of inference in conditional linear Gaussian models [8], suggest the possibility of
developing a generalized complexity characterization of problems that are hard in polytree graphical models.

In light of these theoretical limits for computing optimal solutions, it is a natural question to ask whether approximation
algorithms with non-trivial performance guarantees can befound. We are currently focusing our research in this direction.

Appendix
Proof of Theorem 3. Membership in#P is straightforward. To show hardness, we use a constructionsimilar to the one
presented in[11] for the maximum a posteriori problem. Letφ be an instance of#3SAT , where we have to count the number
of assignments toX1, . . . ,Xn satisfyingφ. Let C = {C1, . . . , Cm} be the set of clauses. Now create a Bayesian network
with nodesUi for eachXi, each with uniform Bernoulli prior. Add variablesY0, which uniformly varies over{1, . . . ,m} and
Y1, . . . , Yn with CPTs defined the following way:

Yi | [Yi−1 = j, Ui = ui] ∼

8<: 0, if j = 0, or Ui = ui

satisfies clauseCj ;
j, otherwise.

n this model,Yn = 0 iff U1, . . . , Un encode a satisfying assignment ofφ. Let all nodes have zero reward, except forYn, which
is assigned the following reward:

R(Yn | O = o) =

�
2n, if P (Yn = 0 | O = o) = 1;
0, otherwise.

Since the prior probability of any assignment is2−n, the expected rewardR(Yn | U1, . . . , Un) is exactly the number of
satisfying assignments toφ.

Proof of Corollary 4. We start from the same construction as in the proof of Theorem3, and add an additional random variable
Z afterYn on the chain.Z | Yn is 0 if Yn = 0, and takes uniformly random values in{0, 1} if Yn 6= 0. ThenH(Z | U = u)
is 0 if u is a satisfying assignment, and1 otherwise. HenceH(Z | O) = 1 − K2−n, whereK is the number of satisfying
assignments toφ.

Proof of Theorem 5. Membership follows from Theorem 3. Letφ be an instance ofEMAJSAT , where we have to find
an instantiation ofX1, . . . ,Xn such thatφ(X1, . . . ,X2n) is true for the majority of assignments toXn+1, . . . ,X2n. Let
C = {C1, . . . , Cm} be the set of 3CNF clauses. Create the Bayesian network shownin Fig. 3, with nodesUi, each having a
uniform Bernoulli prior. Add bivariate variablesYi = (seli, pari), 0 ≤ i ≤ 2n, whereseli takes values in{0, . . . ,m} andpari
is a parity bit. The CPTs forYi are defined as:sel0 uniformly varies over{1, . . . ,m}, par0 = 0, and forY1, . . . , Y2n:

seli | [seli−1 = j, Ui = ui] ∼

�
0, if j = 0, or ui satisfiesCj ;
j, otherwise;

pari | [pari−1 = bi−1, Ui] ∼ bi−1 ⊕ Ui,



Figure 3:Graphical model used in proof of Theorem 6.

where⊕ denotes the parity (XOR) operator.
We now add variablesZT

i andZF
i for 1 ≤ i ≤ n and let

ZT
i | [Ui = ui] ∼

{

I({0, 1}), if ui = 1;
0, otherwise;

whereI denotes the uniform distribution. Similarly, let

ZF
i | [Ui = ui] ∼

{

I({0, 1}), if ui = 0;
0, otherwise.

Intuitively, ZT
i = 1 guarantees us thatUi = 1, whereasZT

i = 0 leaves us uncertain aboutUi. The case ofZF
i is symmetric.

We use the subset selection algorithm to choose theZis that encode the solution toEMAJSAT . If ZT
i is chosen, it will

indicate thatXi should set to true, similarlyZF
i indicates a false assignment toXi. The parity function is going to be used to

ensure that exactly one of{ZT
i , ZF

i } is observed for eachi.
We first assign penalties∞ to all nodes exceptZT

i , ZF
i for 1 ≤ i ≤ n, andUj for n + 1 ≤ j ≤ 2n, which are assigned zero

penalty. Let all nodes have zero reward, except forY2n, which is assigned the following reward:

R(Y2n | O = o) =

{

4n, if P (sel2n = 0 | O = o) = 1 and
[P (par2n = 1 | O = o) = 1 or P (par2n = 0 | O = o) = 1];

0, otherwise.

Note thatsel2n = 0 with probability 1 iff U1, . . . , U2n encode a satisfying assignment ofφ, as in the proof of Theorem 3.
Furthermore, we get positive reward only if we are both certain thatsel2n = 0, i.e., the chosen observation set must contain
a proof thatφ is satisfied, and we are certain aboutpar2n. The parity certainty will only occur if we are certain aboutthe
assignmentU1, . . . , U2n. It is only possible to infer the value of eachUi with certainty by observing one ofUi, Z

T
i or ZF

i .
Since, fori = 1, . . . , n, the cost of observingUi is∞, to receive any reward we must observe at least one ofZT

i or ZF
i . Assume

that we compute the optimal subsetÔ for budget2n, then we can only receive positive reward by observing exactly one ofZT
i

or ZF
i .

We interpret the selection ofZT
i andZF

i as an assignment to the firstn variables ofEMAJSAT . Let R̂ = R(Y2n | Ô).
We claim thatφ ∈ EMAJSAT if and only if R̂ > 0.5. First letφ ∈ EMAJSAT , with assignmentx1, . . . , xn to the first
n variables. Now addUn+1, . . . , U2n to O and addZT

i to O iff xi = 1 andZF
i to O iff xi = 0. This selection guarantees

R̂ > 0.5.
Now assumêR > 0.5. We call an assignment toU1, . . . , U2n consistentif for any 1 ≤ i ≤ n, if ZT

i ∈ Ô, thenUi = 1 and if
ZF

i ∈ Ô thenUi = 0. For any consistent assignment, the chance that the observationsZi prove the consistency is2−n. Hence
R̂ > 0.5 implies that the majority of all provably consistent assignments satisfyφ and henceφ ∈ EMAJSAT . This proves
that subset selection isNP

PP complete.

Proof of Corollary 6. The construction in the proof of Theorem 5 also proves that computing conditional plans isNP
PP-

hard, since, in this instance, any plan with positive rewardmust observe allUn+1, . . . , U2n and one each of theZ1, . . . , Zn, to
satisfy the parity condition. In this case, the order of selection is irrelevant, and, hence, the conditional plan effectively performs
subset selection.
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