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Abstract

Many real-world decision making tasks require us to choosers several expensive observations. In a sensor netwark, f
example, it is important to select the subset of sensordstetpected to provide the highest reduction in uncertaitithias
been general practice to use heuristic-guided procedaresefecting observations. In this paper, we present theeffisient
optimal algorithms for selecting observations for a cldsgraphical models containing Hidden Markov Models (HMMgJe
provide results for both selecting the optimal subset otolaions, and for obtaining an optimal conditional oba&on plan.
We also prove a surprising result: In most graphical modalkg, if one designs an efficient algorithm for chain grapteh as
HMM s, this procedure can be generalized to polytrees. Weepttwat the value of information problemMéPF ¥ -hard even for
discrete polytrees. It also follows from our results thareeomputing conditional entropies, which are widely ugethéasure
value of information, is @ P-complete problem on polytrees. Finally, we demonstrageetifectiveness of our approach on
several real-world datasets.
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1 Introduction

In probabilistic reasoning, where one can choose amongaga@ssible but expensive observations, it is often a akissue to
decide which variables to observe in order to most effelstidecrease the expected uncertainty. In a medical expeteisy14],
for example, multiple tests are available, and each test ldifferent cost. In such systems, it is thus important tadiewhich
tests to perform in order to become most certain about themiatcondition, at a minimum cost.

The following running example motivates our research anehipirically evaluated in Section 7. Consider a temperature
monitoring task, where wireless temperature sensors st@dited across a building. The task is to become mostinaetmut
the temperature distribution, whilst minimizing energyenrditure, a critically constrained resoufdé

Many researchers have suggested the use of myopic (gregplpazhes to select observatidhs; 15; 5; 1. Unfortunately,
this heuristic does not provide any performance guarantiethis paper, we present efficient algorithms, which gotra
optimal nonmyopic value of information in chain graphicadaels such as Hidden Markov Models (HMMs). We address two
settings:subset selectigiwhere the optimal subset of observations is obtained irpan-toop fashion, andonditional plans
a closed-loop plan where the observation strategy depemdseoactual value of the observed variables. To our knovdedg
these are the first optimal and efficient algorithms for thiasks for this class of graphical models. We evaluate owréhgns
empirically on three real-world datasets, and also showttiey are well-suited for interactive classification of gential data.

Most problems in graphical models, such as probabilistierence and the most probable explanation, that can bedsolve
efficiently for chain-structured graphs, can also be sobkffidiently for polytrees. We prove that the problem of maiziimg
value of information iSNPFP-hard even for discrete polytree graphical models, giviegrmplexity theoretic classification of
a core artificial intelligence problenNPF¥-hard problems are believed to be significantly harder iN&complete or even
#P-complete problems commonly arising in the context of gieglhmodels. As a special case, we also prove that computing
conditional entropies igtP-complete even in the case of discrete polytrees. This igp@rising result about a measure of
uncertainty that is frequently used in practice.

2 Optimization criteria

In order to decrease uncertainty, our value of informatibjective functions should depend on probability distribng over
variables. LetS = {X;,...,X,,} be a set of discrete random variables. We consider a classalf reward functions R,
which are defined on the marginal probability distributiaighe variables. This class has the computational advarttzag
local rewards can be evaluated using probabilistic infegetechniques. The total reward will then be the sum of aldlloc
rewards.

Let O be a subset af. ThenP(X; | O = o) denotes the marginal distribution of variabig conditioned on observations
o. For classification purposes, it can be more appropriatensider the max-marginals

P"Y(X; =12;10=0) :m)exP(X =XX;=12;|0=o0),

that is, forX; set to valuer;, the probability of the most probable assignment to all othadom variables conditioned on the
observations. Thelocal reward R; is a functional on the probability distributiaR or P™** over X ;. We write

R;(X;|0) 2 ZP (P(X; |0 =0))

as an abbreviation to indicagxpected local rewardsvhere the expectation is taken over all assignmeitsthe observations
O. Several measures for uncertainty are commonly used:

e Entropy. If we setR;(P(X; | 0)) = —H(X; | O) =3_, ,P(z;,0)log P(z; | o), the objective in the optimization
problem becomes to minimize the sum of residual entrop|ee5 chdose this reward function in our running example to
measure the uncertainty about the temperature distritautio

e Expected utility. The concept of local reward functions also includes the ephof utility nodes in influence diagrams,
R;(P(X; | 0) = sz P(z; | o)U(x;) for some utility functionl. We can also minimize the risk of decisions by

2
considering the variance in expected utilifg; (P(X; | 0)) = ., P(z; | o)U(z)* — (sz P(z; | o)U(xj)) .

e Margin. We can also consider the margin of confidenBe( P™*(X; | O)) = >, P(0)[P™**(x] | 0) = P™*(z; | o],
wherez” = argmax, P™(z; | o) andz = argmax, .. P™"(z; | o), which describes the margm between the most
likely outcome and the closest runner up. This reward foncts very useful for structured classification purposes, as
shown in Section 7.

These examples demonstrate the generality of our notiarcaf feward. One can generalize the algorithms even mgete.
measure the total entropy or the margin between the mosaplelexplanation and its runner up. Details are omitted tieee
to space limitations.
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Figure 1:Decomposition of the reward.

We also want to capture the constraint that observationgxpensive. This can mean that each observaligrhas an
associated positivpenaltyC; that effectively decreases the reward. In our example, wghinbe interested in trading off
accuracy with sensing energy expenditure. Alternativis,atso possible to definetaidgetB for selecting observations, where
each one is associated with an integest3;. Here, we want to select observations whose sum cost isrwittlei budget, but
these costs do not decrease the reward. In our running egathpl sensors could be powered by solar power, and regain a
certain amount of energy per day, which allows a certain arhofisensing. Our formulation of the optimization problems
allows both for penalties and budgets. To simplify notatiea also writeC(O) = ijeo C; andp(0) = ijeo B; to
extendC' andg to sets.

3 Decomposing Rewards

In the following Sections 4 and 5, we present efficient altpons for two problems of optimizing value of information imet
class of chain graphical models.

The set of random variables= { X3, ..., X,,} forms a chain graphical model (a chain)Xf is conditionally independent
of X}, given X; wheneveti < j < k. We can assume that the joint distribution is specified byptiw P(X;) and conditional
probability distributionsP (X ; | X;). The time series model for the temperature measured by oisersie our example can
be formulated as a chain graphical model.

We will now describe the key insight, which allows for efficieoptimization in chains. Consider a set of observations
O C S. If the j variable is observed, i.eX; € O, then the local reward is simplR(X, | O) = R(X; | X;). Now
considerX; ¢ O, and letO; be the subset ap containing the closest ancestor and descendaft;ah O. The conditional
independence property of the graphical model implies tiagn O;, X; is independent of the rest of the observed variables,
i.e.,P(X, | O)=P(X; | O;j). Thus, itfollows thatR(X, | O) = R(X; | O;).

These observations imply that the expected reward of sohtd gbservations decomposes along the chain. For simpb€it
notation, we add two independent dummy variabtgsand X, 1, whereRy = Cyp = 6y = Rp+1 = Cpt1 = On+1 = 0. Let
0 ={Xi...,Xi, ., } wherei; <i;11,io = 0andiy1 = n+ 1. Using this notation, the total rewaf(O) = >, R;(X; |
O) is given by:

m ’L‘v+171
SR (X, [ Xi) = Ci,+ > Ri(X5 1 X4, Xi,,,)
v=0 j=in+1

Figure 1 illustrates this decomposition.

Consider now a Hidden Markov Model unrolled fartime steps, i.e..S can be partitioned into the hidden variables
{X4,...,X,} and the emission variablds7,...,Y,}. In HMMs, theY; are observed and the variabl&s form a chain.
In many applications, some of which are discussed in Segtiove can observe some of the hidden variables, e.g., bygskin
an expert, in addition to observing the emission variableghis case, the problem of selecting expert labels alsorigasl to
the class of chain graphical models addressed by this paper.

4 Subset Selection

In thesubset selectioproblem, we want to find a most informative subset of the Wemto observe. It is specified in advance,
i.e., before any observations are made. In our running elgme would, before deploying the sensors, defiriane points,
at which sensor readings are most informative accordingitormdel.

Define the objective functiof on subsets of by

L(O) = Z R;(X;]0)—C(0). (4.1)

Thesubset selectioproblem is to find the optimal subset

O* = argmax L(O)
OCS,B(0)<B

maximizing the sum of expected local rewards minus the piesakubject to the constraint that the total cost must xceed
the budgetB.



We solve this optimization problem using a dynamic prograngnalgorithm, where the chain is broken into sub-chains
using the insight from Sec. 3. Consider a sub-chain fronatédelX, to X,. We defineL,., (k) to represent the expected total

reward for the sub-chaiX, . .., X3, whereX, and X, are observed, and with a budget levekoMore formally:
b—1
Las(k) = ocix T _Z Rj(X; | OU{Xa, Xp}) — C(O).

soy<k T
Note thatLo.,+1(B) = maxp.500)<p L(O), as in Eq. (4.1), i.e., by computing the values fay,,(k), we compute the
maximum expected total reward for the entire chain.

We can computé., ., (k) using dynamic programming. The base case is simply:

b—1

Lan(0) = D Rj(X; | Xa, Xy).
j=a+1

The recursion for.,.;, (k) has two cases: we can choose not to spend any more of the bredggting the base case, or we can
break the chain into two sub-chains, selecting the optirbaéovationX ;, wherea < j < b

La:b(k) :maX{La:b(O)a X max {_Oj ++RJ(XJ | Xj) +La:j(0) +LJb(k_ﬂJ)}} .
j:a<j<b,B; <k

At first, it may seem that this recursion should consider fhtntal split of the budget between the two sub-chains. Harev

since the subset problem is open-loop and the order of thenadifons is irrelevant, we only need to consider split toivhere

the first sub-chain receives zero budget.

The algorithm fills the dynamic programming tables in twodepthe inner loop ranging over all pais, b), a < b, and the
outer loop increasing. If we do not consider different costs we would simply choosg; = 1 for all variables and compute
Lq.»(N). Once the dynamic program terminates, we recover the opsinfiset by tracing the maximal values induced by the
computation of the above quantities. Using an inductiorofyiwe obtain:

Theorem 1. The dynamic programming algorithm described above conspilte optimal subset with budgstin (%n?’ +
O(n?))B evaluations of expected local rewards.

If the variablesX; are continuous, our algorithm is still applicable when thiegrations and inferences necessary for com-
puting the expected rewards can be performed efficiently.

5 Conditional Plan

In the conditional planproblem, we want to compute an optimal query policy: We satjahly observe a variable, pay the
penalty, and depending on the observed values, select xhgunery as long as our budget suffices. The objective is totfiad
plan with the highest expected reward, where, for each plessequence of observations, the budges not exceeded. In our
example, the sensors could log the day’s data, and the dptonditional plan can be used by the base station to decidé wh
times of the day to upload from the network.

The formal definition of the objective functiohis given recursively. The base case considers the exhamstegbt:

J(O=00)= > R;j(X;|0=0)-C(O).

X;€8

The recursionJ (O = o; k), represents the maximum expected reward of the conditigaalfor the chain wher® = o has
been observed and the budget is limited to

J(O = o03k) = maX{J(O = 0;0),;3;}5{%:13(& =y[0=0)-J(O=0X; Zy;k—ﬁj)}}-

The optimal plan has rewarfl((; B).

We propose a dynamic programming algorithm for obtainireggptimal conditional plan that is similar to the subset algo
rithm presented in Sec. 4. Again, we utilize the decompmsitif rewards described in Section 3. The difference hereais t
the observation selection and budget allocation now deparibe actual values of the observations.

We again consider sub-chaixs,, . . ., X;. The base case deals with the zero budget setting:

b—1
Ja;b(l'a,.fb;()) = Rj(Xj ‘ Xa = m117)(17 = xb)~
Jj=a+1
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Figure 2: Experimental results.
The recursion define$, ., (x4, zp; k), the expected reward for the problem restricted to the $atincX,, . .., X, conditioned

on the values ofX, and X, and with budget limited by:. To compute this quantity we again iterate through possipla
pointsj, such thatt < j < b. However, since the conditional plan is closed-loop, we nowst consider all possible splits of
the budget between the two resulting sub-chains:

Jab(Ta, xp; k) = max{Jy.p(2q, 2p;0), max {—C;+
a<j<b
Y P(Xj = | Xo =20, Xp = 2){R;(X; | X))+
Tj

0hiaX | Vi (@a, 255 1) + Ty (g, woi b = 1= B)1H
The optimal reward is obtained b¥.,,.1(0; B) = J(@; B). The algorithm will fill the dynamic programming tables ugin
three loops, the inner loop ranging over all assignmepts:,, the middle loop ranging over all paifs, b) wherea < b, and
the outer loop covers increasing valuesiof B.
Again, by induction, we obtain:

Theorem 2. The algorithm presented above computes an optimal conditjplan ind® - B2 - (1n? + O(n?)) evaluations of
local rewards, where is the maximum domain size of the random variablgs. . ., X,,. If no budget is used, the optimal plan
can be computed using ondyf - (in* + O(n?)) evaluations.

The faster computation for the no budget case is obtainedbgroing that we do not require the third maximum computa-
tion, which distributes the budget into the j and; : b sub-chains.

6 Theoretical Limits

Many problems that can be solved efficiently for discretarceaphical models can also be efficiently solved for disecpmly-
trees. Examples include inference and the most probablaregion (MPE). Surprisingly, we prove that for the optiatipn
problems discussed in this paper, this generalizationtipossible, unlesP = NP. All proofs in this section are stated in the
Appendix.

In order to solve the optimization problems, we will moselik have to evaluate the objective function, i.e., the etgubc
local rewards. Our first result states that this problemtisatable even for discrete polytrees.

Theorem 3. The computation of expected local rewards for discretetpedg is#P-complete:

This negative result can be specialized to the conditiontbpy, one of the most frequently used reward function erat-
terize the residual uncertainty in value of informationtgems.

Corollary 4. The computation of conditional entropy for discrete pags is#P-complete.

Since evaluating local rewards#5P-complete, it can be suspected that the subset selectibtepras at leas#P-hard. We
show that it is eveNPFF-complet&, a complexity class, which contain problems that are betiew be significantly harder
thanINP or #P complete problems. This result provides a complexity thgoiclassification of value of information, a core
Al problem.

14 P contains problems such as counting the number of satisfying assignmenBoolean formula.
2NPPFP is natural for Al planning problemi®]. A complete problem i€#M AJS AT, where one has to find an assignment to the first
variables of a 3CNF formula, such that the formula is satisfied under #j@rity of assignments to the remaining variables.



Theorem 5. Subset Selection NPFPF-complete even for discrete polytrees.

For our running example, this implies that the generalizezblem of optimally selecting: sensors from a network of
correlated sensors is most likely computationally intatg without resorting to heuristics. A corollary extends hardness
of subset selection to the hardness of conditional plans.

Corollary 6. Computing conditional plans BPFF -hard even for discrete polytrees.

7 Experiments

In this section, we evaluate the proposed methods for dawaiavorld data sets. A special focus is on the comparisahef
optimal methods with the greedy heuristic and other heansethods for selecting observations, and on how the dlgos
can be used for interactive structured classification.

7.1 Temperature time series

The first data set consists of temperature time series tetldfecom a sensor network deployed at Intel Research Berkele
as described in our running example. Data was continuouslgated for 19 days, linear interpolation was used in cdse o
missing samples. The temperature was measured once 6CGsjiant it was discretized into 10 bins of 2 degrees Kelvin. To
avoid overfitting, we used pseudo counts= 0.5 when learning the model. Using parameter sharing, we lddine sets of
transition probabilities: from 12 am - 7am, 7 am - 12 pm, 12 pfpm and 7 pm - 12 am. Combining the data from three
adjacent sensors, we got 53 sample time series.

The goal of this task was to seldebut of 24 time points during the day, during which sensor readingsrarst informative.
The experiment was designed to compare the performancee agtimal algorithms, the greedy heuristic, and an uniform
spacing heuristic, which distributed tiheobservations uniformly over the day. Fig. 2(a) shows thatied improvement of
the optimal algorithms and the greedy heuristic over théoumi spacing heuristic. The performance is measured inedser
of expected entropy, with zero observations as the basdlirtan be seen that ¥ is less than about the half of all possible
observations, the optimal algorithms decreased the exgectcertainty by several percent over both heuristics.iffipeove-
ment gained by the optimal plan over the subset selecticoritigns appears to become more drastic if a large number of
observations (over half of all possible observations) lewedd. Furthermore, for a large number of observationspfitanal
subset and the subset selected by the greedy heuristic imsrstadentical.

7.2 CpG-Island detection

We then studied the bioinformatics problem of finding Cp@urisls in DNA sequences. CpG islands are regions in the genome
with a high concentration of the cytosine-guanine sequenicese areas are believed to be mainly located around theopeos
of genes, which are frequently expressed in the cell. In gpeement, we considered the gene loci HS381K22, AF047825
and AL133174, for which the GenBank annotation listed thtee and one CpG islands each. We ran our algorithm on a 50
base window at the beginning and end of each island, usintyahsition and emission probabilities frd] for our Hidden
Markov Model, and we used the sum of margins as reward fumctio

The goal of this experiment was to locate the beginning amlihngnof the CpG islands more precisely by asking experts,
whether or not certain bases belong to the CpG region or ipt2fb) shows the mean classification accuracy and mearimarg
scores for an increasing number of observations. The saisulicate that, although the expected margin scores aitasiior
the optimal algorithm and the greedy heuristic, the meassifigation performance of the optimal algorithm was stéttbr
than the performance of the greedy heuristic.

7.3 Part-of-Speech Tagging

In our third experiment, we investigated the structuredsifecation task of part-of-speech (POS) tagdi®lg Problem instances
are sequences of words (sentences), where each word isf gartentity (e.g., “United States of America”), and each tgnti
belongs to one of five categories: Location, Miscellanedigjanization, Person or Other. Imagine an application,revhe
automatic information extraction is guided by an expertr @gorithms compute an optimal conditional plan for asking
expert, trying to optimize classification performance whiquiring as little expert interaction as possible.

We used a conditional random field for the structured clasgifin task, where each node corresponds to a word, and the
joint distribution is described by node potentials and gulgfentials. The sum of margins was used as reward functi@ashre
of classification performance was the F1 score, the georrmagan of precision and recall. The goal of this experimerst twa
analyze how the addition of expert labels increases thaifilzetion performance, and how the indirect, decomposémgard
function used in our algorithms corresponds to real worddsification performance.

Figure 2(c) shows the increase of the mean expected mardiRancore for an increasing number of observations, summa-
rized over ten 50 word sequences. It can be seen that théficktisn performance can be effectively enhanced by optyma
incorporating expert labels. Requesting only three ouDdBbels increased the mean F1 score from by more than fivenerc
The following example illustrates this effect: In one sa@maoth words of an entity, the sportsman ‘P. Simmons’, wiassi-
fied incorrectly — ‘P.’ a$Dtherand ‘Simmons’ adiscellaneous The first request of the optimal conditional plan was to labe
‘Simmons’. Upon labeling this word correctly, the word ‘Ras automatically labeled correctly also, resulting in p@écent
F1 score.



8 Related Work

Decision Tree$12] popularized the value of information as a criterion for tirggaconditional plans. Unfortunately, there are
no guarantees on the performance of this greedy method.rZayeek[1] proposed a heuristic method based on the Markov
Decision Process framework. Several researcheéisy suggested myopic, i.e., greedy approaches for selectjaghyering
evidence in graphical models. Heckermanal. [7] proposed an approximate nonmyopic method for optingamalue of
information over sets of variables based on the centrat lindorem. Their work applies only to a limited class of giiaph
models and provides only large sample guarantees. Thetsdisetion problem as an instance of feature selectionésntal
issue in machine learning, with a vast amount of literatsee[10] for a survey). The problem of choosing observations
also has a strong connection to the field of active leart@hgn which the learning system designs experiments basedson it
observations.

9 Conclusions

We have described novel efficient algorithms for optimalsatlselection and conditional plan computation in chaiplgjical
models, including HMMs. Empirical evaluation indicateatithese algorithms can improve upon commonly used hexgisti
for decreasing expected uncertainty. Our algorithms cameffectively enhance performance in interactive stmectelassifi-
cation tasks.

Unfortunately, the optimization problems become intraktdor even a slight generalization of chains. We presested
prising theoretical limits, which indicate that commonisedl local reward functions, such as conditional entrogigsnot be
efficiently computed even in discrete polytree graphicatieie. We also identified optimization of value of informatias a
new class of problems that are intractaliéR* ¥ -complete) for polytrees.

Our hardness results, along with other recent results fiytnee graphical models, th&P-completeness of maximum a
posteriori assignmeni 1] andNP-hardness of inference in conditional linear Gaussian nisd8 suggest the possibility of
developing a generalized complexity characterizationroblgms that are hard in polytree graphical models.

In light of these theoretical limits for computing optimallgtions, it is a natural question to ask whether approxiomat
algorithms with non-trivial performance guarantees cafobed. We are currently focusing our research in this dioect

Appendix

Proof of Theorem 3. Membership in#P is straightforward. To show hardness, we use a construsiioilar to the one
presented i11] for the maximum a posteriori problem. Létbe an instance of:3S AT, where we have to count the number
of assignments tdy, ..., X,, satisfying¢. LetC = {C4,...,C,,} be the set of clauses. Now create a Bayesian network
with nodesU; for eachX;, each with uniform Bernoulli prior. Add variabl&g, which uniformly varies ovef1,...,m} and
Yy,...,Y, with CPTs defined the following way:

0, ifj:O,OI’UL-:ui
Yi | [Yic1 =5, Ui = ui] ~ satisfies clausé€’;;
4, otherwise.

n this modelY,, = 0iff Uy, ..., U, encode a satisfying assignment/ofLet all nodes have zero reward, except¥qt which
is assigned the following reward:

. f 2", ifP(Y,=0|0=0)=1;
R(Yn |0 =0) = { 0, otherwise.

Since the prior probability of any assignment2is”, the expected rewar®(Y,, | Ui,...,U,) is exactly the number of
satisfying assignments ti O

Proof of Corollary 4. We start from the same construction as in the proof of The@gegnd add an additional random variable
Z afterY, onthe chainZ | Y, is 0 if Y,, = 0, and takes uniformly random values{f,, 1} if Y,, # 0. ThenH(Z | U = u)
is 0 if u is a satisfying assignment, andotherwise. Hencéd?(Z | O) = 1 — K27, whereK is the number of satisfying

assignments te. 0
Proof of Theorem 5. Membership follows from Theorem 3. Leétbe an instance oM AJSAT, where we have to find
an instantiation ofXy, ..., X, such that¢(Xy,..., Xs,) is true for the majority of assignments 5,1, ..., Xo,. Let
C ={C1,...,C,} be the set of 3CNF clauses. Create the Bayesian network sindkig. 3, with nodedJ;, each having a
uniform Bernoulli prior. Add bivariate variablé§ = (sel;, par;), 0 < i < 2n, wheresel; takes values ig0, . .., m} andpar;
is a parity bit. The CPTs foy; are defined assely uniformly varies oveK1, ..., m}, paro = 0, and forYy, ..., Ya,:

0, if j =0, oru; satisfiesC;;

seli | [selizy =5, U = wi] ~ { j, otherwise;

par; | [par;—1 = bi—1,U;] ~ bi—1 @ Us,



Figure 3:Graphical model used in proof of Theorem 6.

whered denotes the parity (XOR) operator.
We now add variableg! andZ!" for 1 < i < n and let

o T, ifu=1;
Zi | Ui = wi] ~ { 0, otherwise;

whereZ denotes the uniform distribution. Similarly, let

P Z({0,1}), ifu; =0;
Zi | Ui = ui] ~ { 0, otherwise.

Intuitively, ZI' = 1 guarantees us that, = 1, whereasZ!" = 0 leaves us uncertain abolif. The case o} is symmetric.

We use the subset selection algorithm to chooseZtisethat encode the solution #8M AJSAT. If Z1" is chosen, it will
indicate thatX; should set to true, similarlg/ indicates a false assignmentXq. The parity function is going to be used to
ensure that exactly one 6, Zf'} is observed for each

We first assign penalties to all nodes except!, ZF for 1 < i < n, andU, for n + 1 < j < 2n, which are assigned zero
penalty. Let all nodes have zero reward, excepifgy, which is assigned the following reward:

4", if P(selo, =0| 0O =0)=1and
R(Ys, |O=0) = { [P(pare, =10 =0)=10r P(pars, =0] 0 =o0) =1];
0, otherwise.

Note thatsels,, = 0 with probability 1 iff Uy, . .., Us, encode a satisfying assignmentgfas in the proof of Theorem 3.
Furthermore, we get positive reward only if we are both d¢ertaat sels,, = 0, i.e., the chosen observation set must contain
a proof that¢ is satisfied, and we are certain abgut,. The parity certainty will only occur if we are certain abdhe
assignment/y, ..., Us,. Itis only possible to infer the value of ea€h with certainty by observing one df;, Z! or ZF.
Since, fori = 1,...,n, the cost of observing; is co, to receive any reward we must observe at least ougfabr Z!'. Assume
that we compute the optimal subg2for budget2n, then we can only receive positive reward by observing éxacte of Z!
or zF.

We interpret the selection ¢! and Z!" as an assignment to the firstvariables of EM AJSAT. Let R = R(Yay | O).
We claim thatp € EM AJSAT if and only if R > 0.5. First letp € EMAJSAT, with assignment, . .., x, to the first

n variables. Now add/,, . 1,...,Us, to O and addZ! to O iff x; = 1 andZ to O iff x; = 0. This selection guarantees
R > 0.5.
Now assumer > 0.5. We call an assignment @, . . ., Us,, consistentf forany 1 <i < n, if ZI' € O, thenU; = 1 and if

zF e O thenU; = 0. For any consistent assignment, the chance that the otisex&; prove the consistency & ™. Hence
R > 0.5 implies that the majority of all provably consistent assigmts satisfys and hence) € EM AJSAT. This proves
that subset selection NPF¥ complete. O

Proof of Corollary 6. The construction in the proof of Theorem 5 also proves thatmding conditional plans iNPFF-

hard, since, in this instance, any plan with positive rewartt observe all/,, 1, ..., Us, and one each of th&,, ..., Z,, to

satisfy the parity condition. In this case, the order of st is irrelevant, and, hence, the conditional plan eifflety performs
subset selection. O
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