
Efficient Planning of Informative Paths for
Multiple Robots

Amarjeet Singh†, Andreas Krause, Carlos Guestrin,
William Kaiser†, Maxim Batalin†

October 2006
CMU-ML-06-112

Efficient Planning of Informative Paths for
Multiple Robots

Amarjeet Singh†, Andreas Krause, Carlos Guestrin,

William Kaiser†, Maxim Batalin†

October 2006

CMU-ML-06-112

School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

Abstract

When monitoring spatial phenomena, such as the ecological condition of a river, deciding where
to make observations is a challenging task. In these settings, a fundamental question is when an
active learning, or sequential design, strategy, where locations are selected based on previous
measurements, will perform significantly better than sensing at an a priori specified set of
locations. For Gaussian Processes (GPs), which often accurately model spatial phenomena, we
present an analysis and efficient algorithms that address this question. Central to our analysis is a
theoretical bound which quantifies the performance difference between active and a priori design
strategies. We consider GPs with unknown kernel parameters and present a nonmyopic approach
for trading off exploration, i.e., decreasing uncertainty about the model parameters, and
exploitation, i.e., near-optimally selecting observations when the parameters are (approximately)
known. We discuss several exploration strategies, and present logarithmic sample complexity
bounds for the exploration phase. We then extend our algorithm to handle nonstationary GPs
exploiting local structure in the model. A variational approach allows us to perform efficient
inference in this class of nonstationary models. We also present extensive empirical evaluation on
several real-world problems.

† University of California, Los Angeles

Keywords: Gaussian Processes; Sensor Networks; Robotics; Path Planning; Approximation Algorithms

1 Introduction
Mobile robots carrying sensors can enable a large number of real-world, large-scale sensing applications. Consider,
for example, the monitoring of algae biomass in a lake. High levels of pollutants, such as nitrates, can lead to the
development of algal blooms. These nuisance algal blooms impair the beneficial use of aquatic systems, by blocking
sunlight to underwater vegetation, consuming oxygen in the water, and producing surface scum and odors. Precise
sensing of quantities, such as pollutants, nutrients, and oxygen levels, can provide biologists with a fundamental char-
acterization of the state of such a lake. Unfortunately, such sensors are a high cost resource, and it is thus impractical
to sufficiently cover the lake with these devices.In this setting, a set of robotic boats have been used to move such
sensors to various locations in the lake [Dhariwal et al., 2006].

When monitoring algae biomass, or in many other real-world sensing tasks, planning the motion of such robots
– coordinating their paths in order to maximize the amount of information collected – is a fundamental task. Often
however, such robots have resource constraints, such as storage battery energy, that limit the distance they can travel,
or the number of measurements they can acquire.We thus seek to find informative paths for a collection of robots,
placing a bound on the cost incurred by each robot, e.g., on the battery capacity.

To optimize the path of these robots, we must first characterize the notion of informativeness. Since we are address-
ing a spatial phenomena, a common approach in spatial statistics is to use a rich class of probabilistic models called
Gaussian Processes (GPs) (c.f., Rasmussen and Williams 2006). Using such models, informativeness can be viewed
in terms of the uncertainty about our prediction of the phenomena, given the measurements made by the mobile robots.
In particular, we use the mutual information (MI) criterion of Guestrin et al. [2005] to quantify the reduction in uncer-
tainty provided by the measurements made along the selected robot paths. Like many other notions of informativeness,
mutual information is a submodular function [Guestrin et al., 2005], i.e., it satisfies an important diminishing returns
property: More the locations that are already sensed, lesser will be the information gained by sensing a new location.

In this paper, we present the first efficient path planning algorithm (eMIP) that coordinates multiple robots, each
having a resource constraint, in order to obtain highly informative paths, i.e., paths that maximize some given submod-
ular function, such as mutual information. By exploiting the submodularity, we provide strong theoretical approxima-
tion guarantees for our algorithm.

The problem of optimizing the path of a single robot to maximize a submodular function of the visited locations
has been studied by Chekuri and Pal [2005], who provide an algorithm with strong guarantees. We first provide
an approach, sequential-allocation, for extending any single robot algorithm, such as that of Chekuri et al., to the
multi-robot setting, with minimal effect on the approximation guarantee.

Unfortunately, the running time of the approach of Chekuri et al. is quasi-polynomial, i.e., exponential in log2 M ,
for M possible sensing locations, and is thus impractical. Using a spatial decomposition and branch and bound
techniques, we develop a practical approach for the single robot case, with theoretical guarantees. Using sequential-
allocation, we then extend our approach to the multi-robot case. Furthermore, we provide extensive experimental
analysis of our algorithm on several real world sensor network data sets, including data collected by the robotic boats
in a lake.

2 Problem statement
Let us now define the Multi-robot Informative Path Planning (MIPP) problem: We assume that the domain of the
phenomenon is discretized into finitely many sensing locations V . We associate with each location v ∈ V a sensing
cost C(v) > 0. When traveling between two locations, u and v, a robot incurs a (not necessarily symmetric) traveling
cost C(u, v) > 0. A robot will traverse a path in this space: an s–t-path P is a sequence of l locations starting at node
s, and ending at t. The cost C(P) of path P = (s = v1, v2, . . . , vl = t) is the sum of sensing costs and traveling costs
along the path, i.e., C(P) =

∑l
i=1 C(vi)+

∑l
i=2 C(vi−1, vi). For a collection of k paths P = {P1, . . . ,Pk}, one for

each robot, let I(P) = I(P1 ∪ · · · ∪ Pk) be the sensing quality, which quantifies the amount of information collected
by the k paths. The MIPP problem desires to find a collection P of k paths, with specified starting and ending nodes
si and ti, such that each path has bounded cost C(Pi) ≤ B for some specified budget B, and that the paths are the
most informative, i.e., I(P) is as large as possible. Formally, the problem can be defined as:

max
Pi⊆V

I(P); subject to C(Pi) ≤ B,∀ i ≤ k. (1)

In our lake monitoring example, the single-robot problem instance is depicted in Fig. 1a, top. We try to find the most
informative path P1 (in terms of predicting the algal content). The experiment cost C(vi) would correspond to the en-

1

Starting node s Ending node t

Starting cell Cs Ending cell Ct

(a) Spatial decomposition of the phenomenon

Cs Middle cell Cm Ct
P1, budget = B’

a

b c

d
Incoming
path P1

Exiting path
P2

Cell center

P2, budget = Be–B’

(b) Cell paths and travel within cells

Smoothed path

(c) Cell paths and path smoothing

Figure 1: Illustration of eMIP. The sensing domain ((a), top) is decomposed into a grid of cells ((a), bottom). eMIP jointly optimizes over
cell-paths ((b), top) and allocations of experiments in the cells ((b), bottom). Within the cells, nodes are connected to cell center. eMIP concatenates
the between-cell and within cell paths ((c), top) and finally applies heuristics to smooth the path ((c), bottom).

ergy required for making a biomass measurement, whereas the travel cost C(vi−1, vi) would correspond to the energy
consumption when traveling from location vi−1 to vi.
Quantifying informativeness. How can we quantify the sensing quality I? To model spatial phenomena, a com-
mon approach in spatial statistics is to use a rich class of probabilistic models called Gaussian Processes (GPs, c.f.,
Rasmussen and Williams 2006). Such models associate a random variable Xv with each location v ∈ V . The joint
distribution P (XV) can then be used to quantify uncertainty in the prediction of unobserved locations, after acquiring
some measurements. To quantify this uncertainty, we use the mutual information (MI) criterion of Guestrin et al.
[2005]. For a set of locations P , the MI criterion is defined as:

MI(P) ≡ H(XV\P)−H(XV\P | XP), (2)

where H(XV\P) is the entropy of the unobserved locations V \ P , and H(XV\P | XP) is the conditional entropy of
locations V \ P after sensing at locations P . Hence mutual information measures the reduction in uncertainty at the
unobserved locations. Hence, in our lake monitoring example, we would like to select the locations that most reduce
the uncertainty in the algal content prediction for the entire lake.

Even if we do not consider the constraints in the length of the paths of the robots, the problem of selecting loca-
tions that maximize mutual information is NP-hard [Guestrin et al., 2005]. Fortunately, mutual information satisfies
the following diminishing returns property of Guestrin et al. [2005]: The more locations that are already sensed, lesser
will be the information gained by sensing a new location. This intuition is formalized by the concept of submodularity:
A function f is submodular if ∀A ⊆ B ⊆ V and s ∈ V \ B, f(A ∪ s)− f(A) ≥ f(B ∪ s)− f(B). Another intuitive
requirement is that the function f is monotonic, which means that f(A) ≤ f(B) for all A ⊆ B ⊆ V . Hence, more the
sensing locations that are selected, higher will be the collected information.

Thus, we define our MIPP problem as one of optimizing paths of length at most B for k robots, such that the
selected sensing locations maximize a monotonic submodular function I(·). Note that this definition of the MIPP prob-
lem allows our approach to be applied to any monotonic submodular objective function, not just mutual information.
Guestrin et al. [2005] address the sensor placement problem, where a subset A ⊆ V of locations are selected in order
to maximize the mutual information, without considering path costs. By exploiting the submodularity property of MI,
they show that if the discretization V is fine enough and the GP satisfies mild regularity conditions, greedily selecting
locations based on this criterion is near optimal. More specifically, the greedy algorithm (which we call GreedySubset
in the following), after selecting the first k locations Ak, picks the location vk+1 = argmaxv I(Ak ∪ {v}) − I(Ak)
and sets Ak+1 = Ak ∪ {vk+1}. GreedySubset hence iteratively adds locations which increment mutual information
the most. Guestrin et al. [2005] showed that GreedySubset selects sets which achieve mutual information of at least
(1 − 1/e)OPT−ε, where OPT is the optimal mutual information among all sets of the same size, and ε is a small
error incurred due to the discretization. This result however only holds true in the unconstrained setting, where k
arbitrary locations can be picked, and does not generalize to the MIPP problem. In this paper, we provide an efficient
algorithm with strong approximation guarantees for the more difficult MIPP problem.

3 Approximation algorithm for MIPP
The problem of optimizing the path of a single robot (i.e., k = 1) to maximize a submodular function of the visited
locations has been studied by Chekuri and Pal [2005]. They proposed a recursive-greedy algorithm, which provides a

2

O(log |P∗|) approximation guarantee, where |P∗| is the number of nodes visited in the optimal path P∗, which is no
larger than the number of possible locations |V|. That is, their algorithm will provide a path of length no more than B
that visits locations yielding a submodular value of at least O(OPT / log |P∗|), where OPT is the submodular value
collected by the optimal path. Their algorithm provides the best approximation guarantee known for the single robot
MIPP problem.

The recursive-greedy algorithm works by iterating over the possible middle nodes of the path, splitting the path
into a left subpath and a right subpath. For each possible middle point, the algorithm is applied recursively on the left
subpath. Then, their approach commits to the selected locations on the left side, and recurses on the right subpath,
given these selected locations. This algorithm is ”greedy” in that it commits to the nodes selected in the first subpath
when optimizing the second subpath.

In the case of multiple robots, to our knowledge, no sub-exponential approximation algorithm has been proposed
previously. In this paper, we first present an algorithm for the multiple robot setting that exploits any approximation
algorithm for the single robot case, such as the recursive-greedy algorithm, and (almost) preserves the approxima-
tion guarantee. Our algorithm, sequential-allocation, works by successively applying the single robot path planning
algorithm k times to get the paths for k robots. At stage i, in order not to double-count information from loca-
tions already visited in earlier stages, we supply a modified sensing quality function to the single robot procedure:
Let Ai−1 be the nodes already visited by paths P1, . . . ,Pi−1. Then the residual information, IAi−1 is defined as
IAi−1(P) = I(Ai−1 ∪ P) − I(Ai−1). This residual information effectively commits to the nodes already visited by
the algorithm until stage i− 1, before deciding the nodes to visit at that stage. The sequential allocation procedure is
implemented in Line a1 of Algorithm 1.

Surprisingly, this straight-forward sequential application of the single robot path planning algorithm results in the
following approximation guarantee:

Theorem 1. Let η be the approximation guarantee for the single path instance of the informative path planning
problem. Then our sequential-allocation algorithm achieves an approximation guarantee of (1 + η) for the MIPP
problem. In the special case, where all robots have the same starting locations (si = sj ,∀i, j) and finishing locations
(ti = tj ,∀i, j), the approximation guarantee improves to 1/(1− exp (−1/η)) ≤ 1 + η.

All the proofs for this paper are discussed in the Appendix.
When using the recursive greedy algorithm from Chekuri and Pal [2005], the approximation guarantee η is

O(log |P∗|) as discussed above. This result extends the analysis of Blum et al. [2003], who considered additive
functions, to our submodular setting.

4 Efficient Algorithm for MIPP
Unfortunately, the running time of the recursive-greedy algorithm is quasi-polynomial. More specifically, the running
time of the algorithm is O((MB)O(log M)), where B is the budget constraint and M = |V| is the total number of
nodes in the graph. So, even for a small problem with M = 64 nodes, the exponent will be 6, resulting in a very large
computation time, making the algorithm impractical for real world sensing applications. In this section, we propose
an efficient algorithm for MIPP, eMIP, which is based on and has similar approximation guarantees as the recursive-
greedy algorithm, but is practical for real-world sensing tasks. Exploiting submodularity and using several branch and
bound heuristics, we reduce the computation effort to within tractable limits. Our eMIP algorithm assumes that the
traveling cost between arbitrary locations is given by their Euclidean distance. We discuss the algorithm only for the
single robot instance of the problem, since it can be easily extended for multiple robots using Theorem 1.

4.1 Spatial Decomposition
Krause et al. [2006] empirically show, that in addition to submodularity, the mutual information criterion exhibits
the following locality property: Two sets A and B of sensing locations which are sufficiently far apart are roughly
independent. Hence, in order to obtain a large amount of information, a robot will have to visit several locations that
are far from each other, rather than staying in one small area. We can thus think about planning informative paths as
deciding which regions to explore, and then deciding which locations to sense in these regions. This motivates the de-
composition of the sensing domain into cells, representing clusters of the sensing locations, and then run the recursive
greedy algorithm on these cells instead of actual sensing locations. Fig. 1 presents an illustration of our approach.

Overview. Informally, our strategy will be the following:

3

1. We decompose the sensing region (c.f., Fig. 1a, top) into a collection of non-overlapping cells Ṽ = {C1, C2, . . . , CN}
(c.f., Fig. 1a, bottom). The distance between two cells is defined as the distance between the centroids of these
cells. All nodes v ∈ V , representing sensing locations, are assigned to the cell Ci in which they are contained.

2. We define a new optimization problem, the spatially decomposed MIPP problem, or SD-MIPP problem on Ṽ . In
SD-MIPP, we jointly optimize over cell-paths in Ṽ (c.f., Fig. 1b, top), and over the allocation of measurements
to the cells visited by the paths. When allocating measurements to a cell, we ignore the traveling cost within
the cell (c.f., Fig. 1b, bottom). Since the cells are not excessively large, this simplification only leads to a small
additional cost when the SD-MIPP solution is transformed back to original MIPP problem.

3. We transfer the (approximate) SD-MIPP solution, consisting of a cell-path and an allocation of measurements
to cells (c.f., Fig. 1c, top), back to the original MIPP problem. We then smooth the path using tour-opt heuris-
tics (c.f., Fig. 1c, bottom). The resulting solution will have an approximation guarantee which depends on the
diameter of the chosen cells.

More formally, the SD-MIPP problem is the following: Suppose, the budget B̃ is split into a budget Bt for traveling
between the cells, and a budget Be for making experiments at sensing locations within the visited cells. We want to
find a path P∗ = (Cs = Ci1 , . . . , Cil

= Ct) with a travel cost of at most Bt. This travel budget is measured in terms
of distances between centers of visited cells, and the cost of traveling within cells is defined as 0. In addition, for each
visited cell Cij

in P∗, we want to select a set of sensing locations Aj , such that the total cost C(A1 ∪ · · · ∪Al) ≤ Be,
and that the information I(A1 ∪ · · · ∪ Al) is as large as possible. The optimal SD-MIPP solution P∗ uses the optimal
split of the budget B̃ into Bt and Be. To simplify the presentation, we rescale the costs such that the cells form a
uniform grid of quadratic cells with width L, and assume that the sensing cost Cexp is constant over all locations.
These assumptions can easily be relaxed, but they allow us to relate the path costs to the number of cells traversed, to
simplify the discussion.

Algorithm for SD-MIPP. We now present our algorithm for solving the optimization problem on Ṽ . In Section 4.2,
we will discuss several details of efficient implementation. The complete algorithm works as follows: An outer loop
(c.f., Line b1 in Algorithm 1) iterates through Bt ∈ {20, 21, 22, . . . , B̃}, where B̃ is the budget given to the SD-MIPP
problem, allocating budget Bt out of the total budget B̃ for traveling between the cells, and Be = B̃ −Bt for making
experiments within the visited cells. Stepping through the travel budget Bt in powers of 2 results in faster performance
(log2 B̃ instead of B̃ iterations), and increases the required budget B̃ by at most a factor of 2. The inner loop is formed
by a recursive procedure, shown in Algorithm 2, which selects cells to visit, and allocates experiments to cells.

More specifically, this recursive-eMIP procedure takes as input a starting cell Cs, a finishing cell Ct, an experimen-
tal budget Be, a residual X indicating the locations visited thus far (initially empty), and a maximum recursion depth,
iter, which is initialized to log2 Bt. We then:

1. Iterate through all possible choices of middle cells Cm, and budget splits B′ ∈ B̃e to spend for making experi-
ments on the path from Cs to Cm (c.f., Fig. 1b). The budget splits B̃e can either be linearly (more accurate) or
exponentially (faster) spaced, as described below.

2. Recursively find a path P1 from Cs to Cm, subtracting 1 from the maximum recursion depth, iter. This max-
imum recursion depth controls the maximum number of cells visited by P1. At the top level of the recursion,
P1 will visit a maximum of Bt/2 cells, in the next level, the limit will be Bt/4 cells, and so on. When reach-
ing a maximum recursion depth of 0, we use the GreedySubset algorithm (c.f., Section 2) to select the sensing
locations Ai based on the residual information function IX constrained by budget B′. Hereby, the residual X
is a parameter of the recursion, and contains all nodes visited before considering the current cell. As an illus-
tration, consider the black nodes selected in the middle cell Cm in Fig. 1b, bottom. These have been selected
by the GreedySubset algorithm with budget B′ = 4, since they provide the maximum improvement in mutual
information measured against the path P1 of Fig. 1b, top.

3. Commit to the nodes visited in P1, and recursively find a path P2 from Cm to Ct, with experimental budget
Be−B′. This path will also visit at most Bt/2 cells. We again greedily select the sensing locations at maximum
recursion depth of 0, but now based on the residual information IX∪P1 , since we have committed to P1.

4. Concatenate the nodes obtained in P1 and P2 to output the best path from the algorithm (c.f., Fig. 1c, top).

The recursive-eMIP procedure is based on the recursive greedy algorithm of Chekuri and Pal [2005], but exploits our
spatial decomposition.

4

Algorithm: eMIP

Input: B, k, starting / finishing nodes s1, . . . , sk , t1, . . . , tk
Output: A collection of informative paths P1, . . . ,Pk .
begin

Perform spatial decomposition into cells;
Find starting and ending cells Csi and Cti ;
X ← ∅;

a1 for i = 1 to k do
b1 for iter = 0 to blog2 Bc do

Be ← B − 2iter ;
P ′

iter ←recursive-eMIP(Csi , Cti ,Be,X ,iter);
Smooth P ′

iter using tour-opt heuristics;
Pi ← argmaxiter I(P ′

iter);
X ← X ∪ Pi;

return P1, . . . ,Pk;
end

Algorithm 1: eMIP algorithm for informative multiple path planning, realizing the sequential allocation described in Section 3 (c.f.,
Line a1). The path for the i-th robot is found using the spatial decomposition approach described in Section 4, which calls the recursive
procedure (c.f., Algorithm 2).

Algorithm: recursive-eMIP

Input: Cs, Ct, Be, X, iter
Output: An informative path P from Cs to Ct.
begin

if (d(Cs, Ct) > 2iterL) then return Infeasible;
a2 P ← GreedySubsetBe (vi : vi ∈ Cs ∪ Ct);

if (iter = 0) then return P;
reward← IX(P);

b2 foreach Cm ∈ C do
c2 for B′ ∈ B̃e do

P1 ← recursive-eMIP(Cs, Cm, B′, X, iter − 1);
P2 ← recursive-eMIP(Cm, Ct, Be −B′, X ∪ P1, iter − 1);
if (IX(P1.P2) > reward) then
P ← P1.P2;
reward← IX(P);

return P ;
end

Algorithm 2: recursive-eMIP procedure for path planning.

Linear vs. exponential budget splits. Step 1 considers different budget splits B′ ∈ B̃e to the left and right subpaths.
Similar to the recursive greedy algorithm, one can choose B̃e = {0, 1, 2, 3, . . . , Be − 1, Be} to be linearly spaced.
Since the branching factor is proportional to the number of considered splits, linear budget splits lead to a large
amount of computation. An alternative is to consider only exponential splits: B̃e = {0, 1, 2, 4, . . . , Be} ∪ {Be, Be−
1, Be−2, Be−4, . . . , 0}. Here the branching factor is only logarithmic in the experimental budget. Even though we
are not guaranteed to find the same solutions as with linear budget splits, we can both theoretically and empirically
show that the performance only gets slightly worse in this case, compared to a dramatic improvement in running
time. In addition to these two ways of splitting the budget, we also considered one-sided exponential budget splits
(i.e., B̃e = {0, 1, 2, 4, . . . , Be}), which halves the branching factor compared to the exponential splits defined above.
Although we do not provide theoretical guarantees for this third possibility, we experimentally found it to perform
very well (c.f., Section 5).

Solving the MIPP problem. Now we need to transfer the approximately optimal solution obtained for SD-MIPP
back to MIPP. This is done by connecting all nodes selected in cell Ci to the cell’s center, (as indicated in Fig. 1b
bottom), then connecting all selected centers to a path (Fig. 1c top), and finally expanding the resulting tree into a
tour by traversing the tree twice. This traversal results in a tour which is at most twice as long as the shortest tour
connecting the selected vertices. (Of course, an even better solution can be obtained by applying an improved approx-
imation algorithm for TSP, such as Christofide’s algorithm [1976].) The following Theorem completes the analysis of
our algorithm:

Theorem 2. Let P∗ be the optimal solution for the MIPP problem with a budget of B. Then, our eMIP algorithm
will find a solution P̂ achieving an information value of at least I(P̂) ≥ 1−1/e

1+log2 N I(P∗), whose cost is no more

5

Max

For all splits of Be in Be

and all possible middle cells

C s
→

C m
1
→

C t

budget
 s

plit
 B

1

Max Max

C
s
→

C
m

j
,

b
u
d

g
e
t
B

j C
m

j →
C

t ,

b
u
d
g
et B

e -
B

j

Cs→Ct ,

budget Be

iter = k

iter = k-1

C
s→

C
m

j→
C

t ,

budget split B
j ’

Sum

Max Max

C s
→

C m
1

,

bu
dg

et
 B

1 C
m

1 →
C

t ,

b
u
d
g
et B

e -
B

1

~

P1 P1P2 P2

Sum

(a) sum-max tree

Max1

Max2 Max3 Max6 Max7Max4 Max5

20 20 20 20 ≤≤≤≤

≤≤≤≤18181818
≤ 24242424=20=20=20=20Sum1 Sum2

Sum3

(b) Pruning of sum nodes

Max1

20 20 20 20 ≤≤≤≤

Max7 ≤≤≤≤ 11111111

≤≤≤≤ 13131313 + + + + 11111111

Max6

1.1.1.1. 7777 ≤≤≤≤

2. 20 2. 20 2. 20 2. 20 ---- 11111111 ≤≤≤≤

≤≤≤≤ 8888

Sum3

Sum4

≤≤≤≤ 13131313 5555 ≤≤≤≤

(c) Tighter lower bounds

Figure 2: Illustration of our branch & bound approach. (a) shows the sum-max tree representing the search space. Each max node selects a middle
cell and a budget allocation, and each sum node combines two subpaths. (b) shows how upper bounds at sum nodes are used to prune branches. (c)
shows how lower bounds at max nodes are tightened to allow even more pruning.

than 2(2
√

2B + 4L)(1 + L
√

2
Cexp

) in the case of linear budget splits (for B̃e) and no more than 2(2
√

2B + 4L)(1 +

L
√

2
Cexp

)N log2
3
2 in the case of exponential budget splits (for B̃e).

Running time analysis of eMIP is straightforward. The algorithm calls the routine recursive-eMIP log2 B times. If
TI is the time to evaluate the mutual information I, then time for computing greedy subset Tgs (Line a2) is O(N2

C TI),
where NC is the maximum number of nodes per cell. At each recursion step we try all the cells that can be reached
with the available traveling budget (Line b2). For the possible experimental budget split, we try all (linearly or ex-
ponentially spaced) splits of Be ∈ B̃e among the two paths P1 and P2 (Line c2). The recursion depth would be
log2(min(N, B̃)). The following proposition states the running time for eMIP.

Proposition 3. The worst case running time of eMIP for linearly spaced splits of the experimental budget is
O

(
Tgs log2 B(NB)log2 N

)
, while for the exponentially spaced splits of the experimental budget it is

O
(
Tgs log2 B(2N log2 B)log2 N

)
Comparing this running time to that of the original Chekuri et al. algorithm (O((MB)O(log2 M))), we note a reduc-

tion of B to log2 B in the base, and log of the number of nodes (log2 M) to log of the number of cells (log2 N) in the ex-
ponent. These two improvements turned the impractical recursive-greedy approach into a much more viable algorithm.

4.2 Branch and Bound
The spatial decomposition technique effectively enables a trade-off between running time complexity and achieved
approximation guarantee. However, the eMIP algorithm still has to solve a super-polynomial, albeit sub-exponential,
search problem.

The problem structure can be represented by a sum-max tree as shown in Fig. 2a. The sum nodes correspond to
combining the two paths P1 and P2 on either side of the middle cell Cmi

. The max nodes correspond to selecting
the best possible path for all possible experimental budget split in B̃e and all possible middle cells Cmi

. Thus, each
sum node will have two children, each one a max node, representing the best possible solution from paths P1 and P2

respectively. The root of the tree will be a max node selecting the best possible solution at the highest level. The depth
of the tree, iter, depends on the traveling budget Bt, iter = dlog2 Bte. As an initial pruning step, we note that since
the middle cells have to lie on a path, we only need to consider those which are at most distance Bt/2 · L from the
starting and finishing cell.

In order to avoid exploring the entire sum-max tree and waste computation considering possibly bad solutions, we
follow a branch and bound approach. At each max node we derive upper bounds for all the child sum nodes. We can
then prune all the sum node children with upper bounds lower than the current best solution. If any of the child sum
nodes provides a solution better than the current best solution, then the current best solution for the parent max node
is updated with the improved solution. Fig. 2b presents an illustration of this concept: After completely exploring
branch Sum1, the current best solution, 20, is thus a lower bound for Max1. The upper bound for branch Sum2 is 18,
which is lower than the current best solution of 20, and hence we can prune this branch and need not explore it further.
Nodes such as Sum3 however, which have higher upper bounds (24) than the current best solution (20), need to be
explored further. In order to improve the current best solution faster, at each max node we explore the sum nodes in
the decreasing order of their upper bounds. (An additional heuristic that is very effective in practice is to explore only
the top K sum nodes.)

6

Upper bound on the sum nodes. One approach for acquiring upper bounds on the sum nodes is to relax the path
constraints, and then find the optimal set of reachable nodes for each path (P1 and P2). In order to compute upper
bounds for P1 (P2) and their corresponding max nodes, we hence need to compute the best set of observations within
all reachable nodes. Since this problem itself is NP-hard, we approximate it using the GreedySubset algorithm: For
an allocation of k experiments to P1 (P2), we run the GreedySubset algorithm to select k nodes reachable (w.r.t. the
remaining traveling budget) within this path. Since this algorithm guarantees a constant factor (1 − 1/e) approxima-
tion [Nemhauser et al., 1978], multiplying the resulting information value by (1 − 1/e)−1 provides an upper bound
on the information achievable by the path (and hence the corresponding max node). In Fig. 2c for example, we use
the greedy algorithm to get upper bounds 13 for Max6 and 11 for Max7, resulting in an upper bound of 13 + 11 = 24
for Sum3. We can even compute tighter online bounds for maximizing monotonic submodular functions, as discussed
by Nemhauser et al. [1978].

Lower bound on the max nodes. In order to perform pruning on lower levels of the sum-max tree, we need lower
bounds for the max nodes. Instead of having to explore one branch completely as described above, we have two
ways for acquiring such lower bounds: Based on a heuristic algorithm, and based on the current best solution of the
grandparent max node. We use the larger of two different lower bounds.

The first lower bound is based on a heuristic proposed for the (modular) orienteering problem in [Chao et al.,
1996]. The solution obtained by the heuristic immediately provides a lower bound at each max node. The heuristic
is applied to the actual sensing locations V , instead of the cells. Starting node and finishing node for the heuristic are
selected greedily from the starting cell and the finishing cell respectively. The current traveling budget is added to the
available experimental budget to calculate the budget constraint for the heuristic.

A second pruning bound for the max nodes is given by the difference between the lower bound (the current best
solution) of the grandparent max node, and the upper bound on the other path originating from the parent sum node.
This is illustrated in Fig. 2c: For the node Max6 and Max7, a lower bound of 7 and 5 respectively is calculated using
the heuristic. The current lower bound at the grandparent max node (Max1) is 20. The parent sum node is explored
further since the sum (24) of the upper bounds from each of the child max nodes (13 and 11 for P1 (Max6) and
P2 (Max7) respectively) is greater than the current best solution (20) of the parent max node. A potentially tighter
pruning bound is calculated by subtracting the upper bound of P2 (Max7 ≤ 11) from the current best solution of the
grandparent max node (Max1 ≥ 20). This bound potentially allows to prune branches since, given the upper bound
on the second path, improving on the current solution of the grandparent requires exceeding this pruning bound. In
our example, this pruning bound (9) is tighter than the lower bound provided by the heuristic (7), and hence enabled
pruning of branch Sum4 (with upper bound 8). This pruning would not have been possible when only using the lower
bound calculated using the heuristic (7).

Before exploring the second path P2, the exact reward collected by the first path P1 can be used for calculating
this additional lower bound. When exploring P1 however, the exact reward for P2 is not known, hence only the upper
bound calculated using the greedy algorithm as described above can be used. In order to ensure that this lower bound
is as tight as possible, we first explore the child of the sum node having more budget in the current budget split instead
of always exploring P1, the path from starting cell to middle cell first.

Sub-approximation. Lower and upper bounds can be quite loose. We can address this issue, and further trade off
collected information with improved execution time, by introducing a sub-approximation heuristic: instead of com-
paring the lower bound of a max node directly with the upper bound from the children’s sum nodes when deciding
which subproblems to prune, we scale up the lower bound by a factor of α > 1. This scaling often allows us to prune
many branches that would not be pruned otherwise. Unfortunately, this optimistic pruning can also cause use to prune
branches that should not be pruned, and decrease the information collected by the algorithm. Fortunately, we can
prove that this approach will not decrease the quality of the solution by more than 1/α. Furthermore, in practice, for
sufficiently small α values, this procedure can speed up the algorithm significantly, without much effect on the quality
of the solution.

5 Experiments and Results

5.1 Data Sets
In order to evaluate the performance of our algorithm, we tested it on three real world datasets. Our main set of ex-
periments are on measurements of the biomass content in Lake Fulmor, James Reserve [Dhariwal et al., 2006]. We
used data collected by a boat carrying a temperature sensor around the lake, of width around 50 meters and length

7

60 80 100 120 140 160
4

5

6

7

8

9

10
R

ew
ar

d
C

ol
le

ct
ed

Cost of output path (meters)

Recursive
Greedy

eMIP

(a) Reward (Temperature)

60 80 100 120 140 160
10

0

10
5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Cost of output path (meters)

Recursive
Greedy

eMIP

(b) Running time (Temperature)

200 250 300 350 400 450
6

8

10

12

14

R
ew

ar
d

C
ol

le
ct

ed

Cost of output path(meters)

Linear variation

Exponential variation from 0

Exponential variation
from both ends

(c) Allocation strategies (Lake)

200 250 300 350 400 450
10

2

10
3

10
4

10
5

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

Cost of output path(meters)

Linear variation

Exponential variation
from both ends

Exponential variation from 0

(d) Computation effort for (c)

0 200 400 600 800
0

5

10

15

20

R
ew

ar
d

C
ol

le
ct

ed

Cost of output path(meters)

Grid: 33 cells

Grid: 14 cells

Grid: 20 cells

Grid: 22 cells

(e) Cell density (Lake)

200 250 300 350 400 450
4

6

8

10

12

14

R
ew

ar
d

C
ol

le
ct

ed

Cost of output path(meters)

Heuristic

Best Possible 20
subproblems

Sub−approx: 10%

Sub−approx: 20%

Left path always
explored first

All Branch and Bound Heuristics

(f) Branch & bound (Lake)

50 100 150 200 250
8

10

12

14

16

18

20

R
ew

ar
d

C
ol

le
ct

ed

Cost of output path(meters)

Heuristic

Best possible 20
branches explored

Sub−approx: 20%
Sub−approx: 10%

Left path always
explored first

All approaches together

(g) Branch & bound (Temp.)

10 15 20 25 30 35
0

2

4

6

8

R
ew

ar
d

C
ol

le
ct

ed

Cost of output path(meters)

Heuristic

Best possible
20 subproblems

Sub−approx: 20%

Sub−approx: 10%
Left path always

explored first

All branch and
bound approaches

(h) Branch & bound (Precipit.)

Figure 3: Single robot experiments on three real-world data sets. Note the logarithmic scale on the running time plots (Figures 3b and 3d).

around 250 meters. Temperature was previously found to be strongly correlated with the algal bloom in the lake. The
average speed of the boat was approximately 0.4 m/s. Half of the total measurements (218 different sensing locations)
were used to learn a nonstationary Gaussian Process model by maximizing the marginal likelihood [Rasmussen and
Williams, 2006], and the rest of the measurements were used for experimentation. We divided the lake into 22 cells,
with distance between adjacent cell approximately 21 meters. Based on the average speed, and motivated by a typical
measurement duration of roughly 25 seconds, we set the experiment cost to be 10.5 meters.

As our second dataset, we used the existing deployment of 52 wireless sensor motes to learn the amount of temper-
ature variability at Intel Research Berkeley. We divided the complete region into a uniform grid containing 20 equal
sized cells, and determined the experimental cost to be 9m (distance to travel between adjacent cells). We learned a
GP model as discussed by Krause et al. [2006].

Thirdly, we explored the performance of our algorithm on a precipitation dataset collected from 167 regions during
the years 1949-1994. We followed the preprocessing and model learning described by Guestrin et al. [2005].

5.2 Single Robot Experiments
We first analyze the performance improvement of our eMIP algorithm compared to the recursive-greedy proce-
dure [Chekuri and Pal, 2005]. Fig. 3a presents trade-off curves comparing path costs and collected reward, for different
budget values B on a subset of temperature data set containing only 23 nodes as recursive-greedy was intractable on
larger datasets. Fig. 3b presents the corresponding running times. We can see that the eMIP algorithm achieves (al-
most) the same amount of mutual information as recursive-greedy, but at several orders of magnitude lower running
time. Since the recursive greedy algorithm is essentially a search procedure with greedily restricted search space, this

8

result also indicates that an exhaustive search over all paths is intractable.
We then compare the impact of restricting ourselves to the exponentially spaced experimental budget allocation.

Figures 3c and 3d present the results on the lake data set. As expected, linear variation achieves very slightly larger
collected mutual information than the exponential variation. However, the computation times for exponential variation
are several orders of magnitude smaller than for linear variation.

Our next experiment considers the effect of varying the coarseness of spatial decomposition. Fig. 3e shows the
results of this experiment on the lake data, indicating that the mutual information is largely insensitive to the coarse-
ness of the cells. On the other hand, the computational complexity decreases drastically as fewer cells are used (c.f.,
Proposition 3).

We performed the same experiments on both the temperature and precipitation data. Detailed results are omitted
here due to space limitations, but they confirm the above insights. In order to analyze the impact of several branch
and bound heuristics, we plotted trade-off curves for varying budgets, for the lake (Fig. 3f), temperature (Fig. 3g) and
precipitation data (Fig. 3h). We find that the mutual information collected is rather insensitive to sub-approximation
(up to 20%), as well as to the restriction to 20 best sub-problems (exploring only the 20 best sum nodes per branch).
We also compared eMIP to a heuristic search algorithm [Chao et al., 1996]. This heuristic had been empirically found
to be one of the best heuristics for the similar problem with fixed reward on each node [Liang et al., 2002], so we
would expect it to also perform well in the submodular case. We can see that, while for the smaller temperature data
set, the heuristic achieves comparable performance, for both larger data sets (lake and precipitation), eMIP strongly
outperforms the heuristic.

200 250 300 350 400 450
5

10

15

20

R
ew

ar
d

C
ol

le
ct

ed

Cost of output path per robot(meters)

1 Robot

2 Robots

3 Robots

(a) Multi-robot: reward, same start

200 250 300 350 400 450
5

10

15

20

25

30
T

ot
al

 R
ew

ar
d

C
ol

le
ct

ed

Average cost of output path per robot (meters)

1 Robot

2 Robots

3 Robots

(b) Multi-robot: reward, different start

200 250 300 350 400 450
8

10

12

14

16

T
ot

al
 R

M
S

 E
rr

or

Average Cost of output path per robot(meters)

1 Robot

2 Robots

3 Robots

(c) Multi-robot: RMS, same start

250 300 350 400 450
0

5

10

15

20

T
ot

al
 R

M
S

 E
rr

or

Average Cost of output path per robot(meters)

1 Robot

2 Robots

3 Robots

(d) Multi-robot: RMS, different start

Figure 4: Experiments using multiple robots on the lake dataset.

5.3 Multiple Robot Experiments
Fig. 4a shows the comparison of collected reward when multiple robots are available to move the sensors around. As
the number of robots are increased, the collected reward exhibits the expected diminishing return, due to the submod-
ularity of mutual information. Fig. 4b presents the same analysis when the robots can start at different locations. Here,
four locations, at four corners of the lake, were pre-selected as possible starting locations. The three robots greedily
selected the starting location leading to the largest increase in mutual information.

9

73

1
33

Robot-3

Robot-2

Robot-1

Start 2

Start 1

Start 3 Boundary Cells

Figure 5: Paths on the lake for different starting cells.

As expected, the first two robots choose starting locations on opposite ends of the lake and collect roughly indepen-
dent information. With addition of the third robot, the diminishing returns in collected reward can again be observed.
Figures 4c and 4d show the predictive RMS error for this experiment. Analogously to the information value, the RMS
error decreases more quickly if the three robots start at different locations, and the biggest improvement as as expected
is in the step from one to two robots. Fig. 5 shows the chosen paths for the case of three robots, each starting from
different locations.

6 Related Work
A related problem to MIPP is one where each node has a fixed reward, and the goal is to find a path that maximizes
the sum of these rewards (Traveling Salesman Problem with Profits (TSPP) [Feillet et al., 05]). Such sum is a modular
function, rather than the submodular function addressed in this paper. A subcategory of TSPP, the Orienteering
Problem (OP) is defined to maximize the collected reward while keeping the associated cost is defined less than given
budget B [Laporte and Martello, 1990]. Multi-robot version of OP is studied in literature as the Team Orienteering
Problem [I-Ming et al., 1996]. For the case of unrooted version of OP (when no starting location is specified), the
approximation guarantees known for Prize Collecting TSP and k-TSP can be easily extended [Johnson et al., 2000].
Blum et al. [2003] gave the first constant factor approximation for the rooted OP in general undirected graphs. They
also extended their algorithm for Multi-path OP. For OP with submodular reward fuction, the approach of Chekuri
and Pal [2005], discussed in Section 3, provides the best approximation guarantee, but has a quasi-polynomial running
time. In the robotics community, similar work has been developed in the context of simultaneous localization and
mapping (SLAM). Stachniss et al. [2005] develop a greedy algorithm, without approximation guarantees, for select-
ing the next location to visit to maximize information gain about the map. In contrast, Sim and Roy [2005] attempt to
optimize the entire trajectory, not just the next step, but their algorithm introduces some approximation steps without
theoretical bounds. We also expect our approach to be useful in the SLAM setting.

7 Conclusions
In this paper, we presented the first efficient path planning algorithm that coordinates multiple robots, each having
a resource constraint, in order to obtain highly informative paths, i.e., paths that maximize some given submodular
function, such as mutual information. We first described sequential-allocation, an approach for extending any single
robot algorithm to the multi-robot setting, with minimal effect on the approximation guarantee. Then, building on the,
impractical, single robot approach of Chekuri and Pal [2005], we developed eMIP, a practical algorithm for obtaining
an informative path for a single robot with theoretical guarantees, that exploits spatial decomposition and branch and
bound techniques. Using sequential-allocation, we then extended our approach to the multi-robot case. Furthermore,
we provided extensive experimental analysis of our algorithm on several real world sensor network data sets, including
data collected by robotic boats in a lake, demonstrating the effectiveness and practicality of our methods.
Acknowledgements This work was supported by NSF Grant Nos. CNS-0509383, CNS-0625518, ANI-00331481
and a gift from Intel Corporation. Carlos Guestrin was partly supported by an Alfred P. Sloan Fellowship and an IBM
Faculty Fellowship. We would like to thank Bin Zhang for providing the lake data set.

References
Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, Adam Meyerson, and Maria Minkoff. Approximation

algorithms for orienteering and discounted-reward tsp. In FOCS, page 46, 2003.

10

I-Ming Chao, Bruce L. Golden, and Edward A. Wasil. A fast and effective heuristic for the orienteering problem. Eur.
Jour. of Op. Research, 88:475–489, 1996.

Chandra Chekuri and Martin Pal. A recursive greedy algorithm for walks in directed graphs. In FOCS, pages 245–253,
2005.

N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem. Tech report,CMU, 1976.

Amit Dhariwal, Bin Zhang, Beth Stauffer, Carl Oberg, Gaurav S. Sukhatme, David A. Caron, and Aristides A. Re-
quicha. Networked aquatic microbial observing system. In IEEE ICRA, 2006.

Dominique Feillet, Pierre Dejax, and Michel Gendreau. Traveling salesman problem with profits. Trans Sci,
39(2):188–205, ’05.

Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-optimal sensor placements in gaussian processes. In
ICML, 2005.

C. I-Ming, B.L. Golden, and E.A. Wasil. The team orienteering problem. Eur. Jour. of Op. Res., 88:464–474, 1996.

David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting steiner tree problem: theory and practice.
In Symp. on Disc. Algorithms, pages 760–769, 2000.

Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Kleinberg. Near-optimal sensor placements: Maximizing
information while minimizing communication cost. In IPSN, 2006.

Gilbert Laporte and Silvano Martello. The selective travelling salesman problem. Disc. App. Math, 26:193–207, 1990.

Yun-Chia Liang, Sadan Kulturel-Konak, and Alice E. Smith. Meta heuristics for the orienteering problem. In Proc. of
CEC, 2002.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions.
Mathematical Programming, 14:265–294, 1978.

Carl Edward Rasmussen and Christopher K.I. Williams. Gaussian Process for Machine Learning. Adaptive Compu-
tation and Machine Learning. MIT Press, 2006.

R. Sim and N. Roy. Global a-optimal robot exploration in slam. In ICRA, 2005.

C. Stachniss, G. Grisetti, and W. Burgard. Information gain-based exploration using rao-blackwellized particle filters.
In RSS, 2005.

APPENDIX

Proof of Theorem 1. For the case when all the robots start and finish at the same location, let Π be the total reward
collected by the optimal solution. Additionally, define Πi to be the difference between the reward collected by the
optimal solution, and by the approximation algorithm, at the end of stage i. Hence, Π0 = Π.

Let Ai = P1 ∪ · · · ∪ Pi be the nodes selected by the approximation algorithm up to stage i (A0 = ∅), and let
P∗ = {P∗1 , . . . ,P∗k} denote the collection of paths chosen in the optimal solution. Consider the residual reward fAi

.
We find fAi

(P∗) = f(Ai ∪ P∗) − f(Ai) ≥ f(P∗) − f(Ai) = Πi due to monotonicity of f . If there were no path
P∗j with fAi(P∗j) ≥ 1

kΠi, then
∑

j fAi(P∗j) < Πi = fAi(P∗), contradicting the monotonic submodularity of fAi .
Hence there is such a path P∗j with fAi(P∗j) ≥ 1

kΠi, and thus the approximation algorithm is guaranteed to find a path
Pi such that fAi

(Pi) ≥ 1
ηkΠi.

The difference in the reward collected by the optimal solution and the reward collected by Algorithm 2 after stage
i + 1 is at most:

Πi+1 ≤ (1− 1/ηk)Πi

≤ (1− 1/ηk)i+1Π

11

Thus after k stages, the difference in the reward is bounded by Πk ≤ (1 − 1/ηk)kΠ ≤ exp (−1/η)Π. Hence, the
reward collect by Algorithm 2 is at least (1− exp (−1/η)) times the optimal reward, resulting in approximation factor
of 1/(1− exp (−1/η)).

For the case when each robot has different starting and finishing location, let P∗i be the set of nodes visited by the
optimal path at stage i. Let Oi be the set of nodes visited by the optimal path until stage i, i.e., Oi = ∪i

j=1P∗j , with
O0 = ∅ and O1 = P∗1 . The reward collected by the approximation algorithm at stage i can be bounded as:

fAi−1(Pi) ≥ 1/η(fAi−1(P∗i)).

After k stages, the total collected reward can be given as:

k∑
i=1

fAi−1(Pi) ≥ 1/η(
k∑

i=1

fAi−1(P∗i)). (3)

Since the left hand side is a telescopic sum, we get:

k∑
i=1

fAi−1(Pi) = f(∪k
i=1Pi) = f(Ak) (4)

On the right hand side (RHS):

R.H.S. = 1/η(
k∑

i=1

fAi−1(P∗i))

= 1/η(
k∑

i=1

(f(P∗i ∪ Ai−1)− f(Ai−1)))

Adding Oi−1 to both the terms and using the submodularity property, we get

R.H.S. ≥ 1/η(
k∑

i=1

(f(Oi ∪ Ai−1)− f(Oi−1 ∪ Ai−1)))

= 1/η [f(O1)− 0 + f(O2 ∪ A1)− f(O1 ∪ A1) + · · ·+ f(Ok ∪ Ak−1)− f(Ok−1 ∪ Ak−1)]

Rearranging the terms, we get:

R.H.S. ≥ 1/η

[
f(Ok ∪ Ak−1)−

k−1∑
i=1

(f(Oi ∪ Ai)− f(Oi ∪ Ai−1))

]
Using the monotonicity (f(Ok ∪Ak−1) ≥ f(Ok)) and submodularity of f (f(Oi ∪Ai)− f(Oi ∪Ai−1) ≤ f(Ai)−
f(Ai−1)), we get

R.H.S. ≥ 1/η

[
f(Ok)−

k−1∑
i=1

(f(Ai)− f(Ai−1))

]
= 1/η [f(Ok)− f(Ak−1)]

Using the monotonicity (f(Ak) ≥ f(Ak−1)), we get

R.H.S. ≥ 1/η [f(Ok)− f(Ak)] (5)

Substituting Equation (4) and (5) into Equation (3), we get:

f(Ak) ≥ 1/η [f(Ok)− f(Ak)] ,

and thus:

f(Ak) ≥ 1/(η + 1)f(Ok).

resulting in an approximation guarantee of (1 + η).

12

The above theorem and proof is inspired by the proof of multi-path orienteering provided by Blum et al. [2003].
The following lemma states the additional budget requirements when a MIPP problem is transformed into the

corresponding SD-MIPP problem instance.

Lemma 4. Let P∗ = (s = v0, v1, . . . , vm = t) be an optimal s-t-path solution to MIPP, constrained by budget
B. Then there exists a corresponding SD-MIPP path P∗C = (Cs = Ci1 , . . . , Cin

= Ct) with budget B̃ of at most
2
√

2B + 4L collecting the same information.

Proof. Let P∗ be the optimal path for MIPP, constrained by budget B. We need to ensure that when MIPP is trans-
formed into SD-MIPP, with P∗C as the corresponding optimal solution, we have enough budget such that P∗C is feasible
in the new problem domain. To recall, for the new problem domain, SD-MIPP, traveling to a new cell costs L (distance
between the centroids of adjacent cells), irrespective of the sensing location within the cell.

1 2

34

5

6

L

Figure 6: Illustration for the increased budget requirement for SD-MIPP.
For the corresponding SD-MIPP, an optimal path may just make 4 experiments in 4 different cells (Cells 1,2,3 and 4

in Fig. 6) sharing a common vertex, with each sensing location in different cell close to the common vertex, while only
requiring an infinitesimally small traveling cost. Increasing the budget by 4L accounts for this case. Furthermore, by
paying only an additional cost L for traveling between the two corners of an edge of a cell, P∗C can make experiments
at 2 new cells (Cells 5,6 in Fig. 6. Thus, the total number of cells visited by the P∗C is upper bounded by 2(B/L) + 4.
Hence, a budget of 2B + 4L suffices to render P∗C a feasible SD-MIPP solution. Now to convert MIPP from the
two-dimensional Euclidean distance into the corresponding L1 distance, the budget needs to be increased to

√
2B

to ensure that P∗ is feasible in the L1 metric. Accounting for the conversion from Euclidean distance into L1, the
total budget B̃ required for SD-MIPP, to ensure the feasibility of the optimal solution in MIPP, is upper bounded by
2
√

2B + 4L.

The following lemma states the approximation bound of the eMIP algorithm for linear split in the experimental
budget:

Lemma 5. Let P∗C = (Cs = Ci1 , . . . , CiN
= Ct) be an optimal SD-MIPP solution constrained by budget B̃. Let P be

the solution returned by eMIP with linear splits of the experimental budget. Then I(P) ≥ 1−1/e
1+log N I(P∗C).

Proof. We will prove this by induction on the length n of the optimal path. Let Fg(= (1 − 1/e)) be the constant
factor due to the greedy selection of sensing locations within each cell. Also assume B̃ be the budget constraint for
SD-MIPP problem. For the case n = 1, iter = 0 and Algorithm 2 will select the greedy subset of nodes from the
set Cs = Ct. This will give an approximation guarantee of Fg [Guestrin et al., 2005] compared to the optimal set of
the same number of observations selected in this cell (and hence of the information obtained by the optimal SD-MIPP
path visiting only this cell).

Now, assuming the induction hypothesis holds for n = k/2, we get:

IX(P) ≥ Fg

(1 + log(k/2))
IX(P∗)

≥ Fg

log k
IX(P∗)

This will hold true for traveling budget of B̃k/2 and experimental budget up to B̃ − B̃k/2. Let us now analyze the case
n = k. Let P ∗

1 be the optimal path from Cs to Ck/2 constrained by budget B′. Since we increase the experimental

13

budget split linearly, B′ will vary from 0 to B̃ − B̃k, where B̃k is the traveling cost for visiting k cells. Since this cost
will be less than B̃ − B̃k/2, using the induction hypothesis,

IX(P1) ≥
Fg

log k
IX(P∗1) (6)

Similarly, with X ′ = X ∪ P1 following approximation guarantee holds true for P2:

IX′(P2) ≥
Fg

log k
IX′(P∗2) (7)

By definition of our submodular function:

IX′(P∗2) = I(P∗2 ∪ P1 ∪X)− I(P1 ∪X)
= IX(P1 ∪ P∗2)− IX(P1)

Substituting in (7), we get

IX′(P2) ≥
Fg

log k
(IX(P1 ∪ P∗2)− IX(P1))

Using monotonicity of I,

IX′(P2) ≥
Fg

log k
(IX(P∗2)− IX(P))

Adding this to (6), we finally get:

IX(P) ≥ Fg

log k
(IX(P∗1) + IX(P∗2)− IX(P))

(Fg + log k) IX(P) ≥ Fg(IX(P∗1) + IX(P∗2))
(1 + log k) IX(P) ≥ Fg(IX(P∗1) + IX(P∗2))

Since IX is a submodular function,

(1 + log k) IX(P) ≥ Fg(IX(P∗))

IX(P) ≥ Fg

1 + log k
(IX(P∗))

The above proof is inspired by the analysis of the recursive greedy algorithm for submodular orienteering proposed
in Chekuri and Pal [2005].

In the case of exponential budget splits, the budget needs to be increased, albeit sub-linearly:

Lemma 6. Let P∗C = (Cs = Ci1 , . . . , CiN
= Ct) be an optimal SD-MIPP solution constrained by budget B̃. Let P

be the solution returned by eMIP with exponential splits of the experimental budget, started with increased budget
N log2

3
2 B̃. Then I(P) ≥ 1−1/e

1+log N I(P∗C).

Proof. The set of paths which eMIP considers under exponential splits – let us call them exponential paths – is in
general a strict subset of the linear paths considered under linear splits. The proof of Lemma 5 indeed shows that the
path returned by eMIP achieves at most a factor 1−1/e

1+log N less information than the optimal exponential path. We need to

show that increasing the budget by a factor of N log2
3
2 B̃ guarantees that the optimal linear path is a feasible exponential

path. Every exponential path can be represented by a complete binary tree, whereby every internal node at a given
level in the tree corresponds to a choice of middle node and experimental budget allocation to the left and right sub-
path at the corresponding recursion level. Further, every leaf in the tree corresponds to a set of observations selected
in a visited cell. Consider the tree T ∗ representing the optimal linear path with budget B̃. At each inner node, the

14

restriction to exponential splits can lead to a situation, where either the left or right sub-path receives less experimental
budget than allocated by the optimal path. Our proof strategy is to turn T ∗ into a new tree T ′, which selects the
same observations and corresponds to a valid exponential path. In order to achieve this, we will annotate each inner
node v, which receives Bv experimental budget in the optimal linear allocation, by a new feasible exponential budget
B′

v ≥ Bv . It then suffices to show that for the root R it holds that B′
R ≤ (n)log2 3/2BR = (3/2)log2 nBR. Label the

edges of T ∗ with 0 and 1, such that the sub-path corresponding to the edge labeled with 1 receives the smaller part of
the linear budget split. Hence, a leaf v on a path with k ones receives at most Bv ≤ (1/2)k of the total linear budget
requirement B̃. Let us derive the bounds B′

v bottom up. We prove by induction that B′
v ≤ (3/2)mBv where m is

the height of v (distance from the leaves). This will suffice the condition B′
r ≤ (3/2)log2 nBr, that we want to prove.

For the leaves v clearly B′
v = Bv is sufficient, since no further split is done and hence the reward collected by both

linear and exponential split will be same. Let v be an inner node with children l and r, where w.l.o.g., the left child l is
annotated by 0. By construction, Br ≤ Bv/2. By induction hypothesis, B′

l ≤ (3/2)m−1Bl, and B′
r ≤ (3/2)m−1Br.

If we choose B′
v = B′

l + 2B′
r, then we can find a feasible exponential budget split allocating at least B′

l to l and B′
r

to r. This split will require increasing the budget exponentially till we suffice r and allocating the rest to l. To ensure
that we always have a budget split that suffice r with exponential budget irrespective of whether it represents P1 or
P2, we need to do exponential splits from both sides, trying both exponential increase from 0 (Bexp) and Bv − Bexp

for the cases when r represents P1 and P2 respectively. Now we have B′
v ≤ (3/2)m−1Bl + 2(3/2)m−1Br =

(3/2)m−1Bv + (3/2)m−1Br ≤ (3/2)mBv .

Proof of Theorem 2. Let B̃ be the budget requirement for SD-MIPP according to Lemma 5 (or Lemma 6 in the case
of exponential splits) and P be the corresponding solution returned by eMIP. Let Cexp be the cost of making an
observation at each sensing location. Maximum number of sensing locations visited by P will be B̃

Cexp
. Since we do

not account for traveling to the sensing locations, an additional cost equivalent to traveling from the centroid of the
visited cells to the corresponding sensing location is to be paid when the solution from SD-MIPP is transformed back
to get the solution for MIPP. For each sensing location, a maximum additional cost of L

√
2 is incurred for traveling to

the sensing location and returning back to the centroid, where L is the length of the cell. Thus the additional cost for
the solution path for MIPP problem, transformed from SD-MIPP problem is upper bounded by B̃L

√
2

Cexp
. Since eMIP

only considers exponential budget splits into traveling and experimental budget, an increase of the budget by another
factor of 2 guarantees that the split defined by the optimal MIPP solution is feasible. Combining this analysis with
Lemma 4 and Lemma 5 completes the proof.

15

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

