
CMU-ITC-91-101

The Andrew System:

The Role of Human Interface Guidelines
in the Design of Multimedia Applications;.

Maria G. Wadlow

Carnegie Me//on University

Final Draft

To be published in Current Psychology: Research and Reviews (Summer 1990)

15 May1990

Maria G. Wadlow

Manager, Human Factors Design Group
Information Technology Center
Carnegie Mellon University
4910 Forbes Avenue
Pittsburgh, PA 15213-3890

412 / 268 - 6794

412 / 268 - 6787 (Fax)

maria+@andrew.cmu.edu

-2-

-3-

Abstract

As computer systems are becoming more advanced;the user interface issues involved in system

design are increasing in complexity. Multimedia applications add yet another layer of complexity

to this already intricate task and guidelines are needed to help ensure consistency, both within a

given computer system as well as across systems. The Human Factors Design Group of the

Information Technology Center (ITC) at Carnegie Mellon University has developed a set of user

interface guidelines for the Andrew system. These guidelines are intended to assist application

developers, both within the ITC and externally, in creating application programs whose interfaces

are consistent with the look and feel of Andrew.

-4-

-5-

Introduction

Untilrecently,computerusers havehadto relyontext-orienteddocumentsandcharacter-based

computersystemsto do theirwork. Newer systemshaveenhancedtheuser'sabilityto represent

andcommunicateideasthroughthe useof multimediaobjects. Mostof thesesystemsenable the

userto incorporatetext, graphicsandpicturesas objectsintheirelectronicdocuments. Tables,

equationsandotherobjecttypesare currentlyavailable,whilevideoand soundare beingadded

to the listof multimediacapabilitiesthatcomputersystemscan offer today.

Such newcomputertechnologiescan provideopportunitiesforusers to becomemoreproductive

andcreative. However,userscan takefulladvantageof theseopportunitiesonly if they are

presentedin a waythat is easy to understand,learn,and use. Therefore,it is imperativethat a

computersystem havean appealingandcoherentuser interfacebecause,to the user,the

interfaceis the system.

Human factors, cognitive psychology and graphic design principles are beginning to make an

impact in the computer community through recent attention to user interface design. However,

knowledge about the user interface design process is accumulating at a relatively slow rate. It is

difficult to make definitive statements about user interface design, even in areas which have been

studied in great detail, such as text-based processing and command-oriented systems. When this

territory is broadened to include multiple windows, color, multiple input and output devices, and

new object types such as animation and video, the user interface design task can become quite

challenging. These challenges are further compounded when compatibility with existing systems

is also a concern. While it is impractical to attack all of these issues simultaneously, it can be

helpful to explore a few in detail during the design of a system.

-6-

Background

Upon examining a number of existing multimedia systems, one may perceive several

shortcomings in the level of integrationof the multimedia objects in the system. Many systems

provide a simplistic model in which multimedia objects are integrated at a somewhat supedicial

level. In systems of this type, an object is created and can then be viewed in a number of

representations. For example, a table of numbers can be inserted into a document and then

viewed as a bar graph or as a pie chart. While some attributes of these various representations

may be changed, the user may only view one representation at a time. This approach provides

the user with access to the multimedia aspects of the system, but allows only a gross level of

control over object representation and integration since objects of different types can not be

represented simultaneously.

Other systems offer a slightly more complex model, inwhich a document is viewed by the user as

a simple sequence of objects. In these systems, the user creates a textual document and can

then insert other objects at any locationwithin the document. This approach provides the user

with more flexibility in positioning, in that several objects may be represented simultaneously and

a single object does not necessarily occupy the full document width. However, the user must

invoke a separate application to edit each of the various objects. When the changes have been

made, the user must then update the document to reflectthose changes. Editing a document in

this type of system is similar to professional paste-up, where the pictures and figures are

produced separately from the text and must be inserted by hand. This method of editing is not

very interactive or intuitive and adds too much overhead to the document creation process.

Some systems make use of a more sophisticated environment in which objects may be edited in

place. Here, the user creates a document and inserts objects into it, as desired. Generally, all

documents are considered to be text documents, and multimedia objects may only be inserted

into text. Document creation in a system of this type is analagous to having a very sophisticated

-?-

typewriter,whichdeals primarilywithtext, but is also able to edit equations,pictures and other

objects. While this system presents a model that is closer to what a user might expect, there are

still limitations within the system, such as the special status that text is given over other object

types, which contradict those expectations.

The Andrew System

The Andrew system, developedby the InformationTechnology Center (ITC) at Carnegie Mellon

University, includes among its components the Andrew Toolkit (ATK), a multimedia toolkit which is

used by developers to build multimedia application programs. One goal in the development of

Andrew was to provide developers with the flexibility required to build multimedia application

programs while still providing users with a coherent user interface. To an application developer,

ATK provides a generic structure within which heterogenous objects may be combined. Several

standard objects are packaged with ATK including text, graphics, equations, calendars, tables and

simple animations. In addition, several multimedia application programs are distributed as part of

the Andrew system. Two of the more prominent of these are Ez, a multimedia document editor

(See figure 1) and Messages, a multimedia electronic mail and bulletin board system (See figure

2). ATK was designed to be extensible, providing developers with the ability to build new objects,

which can then be tailored to meet their specific needs. In addition, these new objects may be

integrated with the standard objects, in any combination, to create new application programs. The

integration of heterogeneous objects, both those supplied with the toolkit and those developed

externally, provides a great deal of flexibility for developers.

The Andrew Toolkit uses an embedded object architecture, where objects can be arbitrarily

nestedwithin one another at any level. The top level document is not restricted to text, but can be

of any type. For example, a user can create a table document which includes graphics and text

objects as easily as s/he can create a graphics document which includes text and tables.

-8-

Althoughthere are some logical restrictions, theoretically, any object can be embedded within any

other object type, to any depth. For example, while it may not be sensible to embed an object

within a raster image, one may want to embed a raster image within a table which is itself

embedded in a text document (See figure 3). All objects can be edited in place within the parent

object. In addition, the rules which govern the behavior of multimedia objects in the editor are also

in effect in every other ATK application. This approach is more consistent with the user's mental

model of document creation and it helps to reduce the user's awareness of the limitations of the

system.

User Interface Issues

The user's ability to adopt a mental model of system behavior iscritical to the success of a user

interface. Carefully fostered mental models can enhance the user's perception and understanding

of the system and how it works. Typically, applications are developed with some type of model in

mind. The developer usually has a clear notion of how the application works, which is used to

determine whether additional features will be consistent with the rest of the system.

Users also develop a mental model of the system. The user's mental model is modified and

refined as the user becomes more familiar with the system. In fact, a well-developed mental

model may eventually enable users to predict system behavior as they continue to explore and

learn about the system.

Unfortunately, an application's user interface does not always successfully convey the developer's

mental model to users of the application. A user whose mental model of the system is

inconsistent with that of the developer may find the application confusing and difficult to use. The

user's expectations, which are based on his or her mental model of the system, may vary. in

important ways from the actual functionality of the application. Further, the developer's

conceptual model may be too complex and detailed, lacking the appeal necessary to be of

-9-

assistance to users of the application. In most instances there is no need for users to understand

the application to the level of detail and complexity that is required of the developer. Ideally, the

user's mental model should be structured in a way that will help users "bootstrap" themselves to

greater comprehension of the system as a whole.

One technical goal in the development of ATK was to create a system which could easily be

extended by developers external to the ITC. We hoped to provide a framework in which new

multimedia objects and applications could be developed. Although we did not want to limit the

creativity of these external developers, an important human factors goal was to provide an

environment which would foster consistency among new applications. We wanted to create the

appearance of a single, unified interface, for although the user may perceive a seamless system,

the system is actually composed of many modules which were created by different developers

with different purposes in mind. We wanted the users to be able to create a mental model of the

system's operations which would remain consistent regardless of the particular application being

used or the origins of that application. In addition, we wanted to allow users to transfer skills

between different objects and applications. Although the individual components of an application

may be seen as distinct modules to the developers, we wanted to blur this distinction for users of

the system.

We accomplished this in two ways. We created a set of user interface design guidelines to be

used by developers when creating new objects and applications. In addition, we attempted to

provide standard objects and applications which were consistent with those guidelines. The goal

in developing a guidelines document for Andrew was to focus attention on critical design issues

and establish specific design requirements. In addition, it was hoped that these guidelines would

encourage further discussion of complex user interface decisions and policies.

- 10-

User Interface Guidelines

Ideally, the user interface for a system shouldbe simple,consistent, and appealing, encouraging

exploration and allowing the user to transfer experiential knowledge between applications.

Consideration of guidelines in the development process helps to assure consistency across

applications. In addition, the use of guidelines must be supported by a thorough understanding of

the user population for which the application is being designed. Designers should keep in mind

that accurate samples of the user population rarely consist of application developers. For

maximum effectiveness, consideration of the guidelines must take place early in the design

process, and prototype testing should be done to ensure good design.

In developingthe user interfaceguidelinesfor Andrew,consistencywas our primary goal. We

attempted to ensure consistency on several levels, including: consistency in the kinds of objects

users see; consistency in the kinds of operations that are possible within applications and in how

those operations are accomplished; as well as consistency in the methods used to pass

information from user to machine and back. This consistency is crucial in creating a system which

appears to its users as a consolidated, working whole, and which in turn enables users to transfer

skills and concepts between various objects and applications.

Closely related to consistencyis predictability, the ability of the user to correctly anticipate

responses from the system. We considered system predictability to be vital in establishing the

sense of trust that is needed for users to feel comfortable using the system. Surprising behavior

might be entertaining in a game but is considered frustrating and annoying in a tool.

In making choices about interface options, priority was given to features which put the locus of

controlon the user, rather than on the computer. It was our belief that users would feel more

comfortable and productive if they felt that they were in control. Our goal was to make Andrew a

tool which users employ to reachtheir own goals, rather than a system which appears to have

goals of its own.

-11-

We wanted the layoutof the interfaceto be inviting,drawing the user inand creating a

comfortable working environment. Visualappealis vital to good communication. Complicated,

awkward or cluttered interfaces are low on appeal and inhibit productivity. Well-articulated,

straightforward, clean designs are appealing because they convey information clearly. Appealing

systems encourage exploration, creating an atmosphere which is conducive to learning.

Finally, we believed that users should have the sense that they are dealing directly with "real"

objects, objects which, though they are only two-dimensional on a computer screen, behave in a

manner that is consistent with real world objects. For instance, moving an object on a screen by

adjusting numbers of an axis is not direct; moving that object via selection and dragging with the

mouse is more direct.

After having developed and tested several objects for the system, we felt that we understood the

issues involved in enough detail that we could generalize our knowledge about each of the

individual interfaces into guidelines for the design of future objects. Since the existing objects were

under our control, we could change their interfaces to match any new guidelines or criteria that we

developed.

Although one of the technical goals of ATK was to allow the creation and use of heterogeneous

objects, it is difficult to create a standard interface for objects whose types and uses are so

different. We categorized the objects into several types: sequential, spatial, and spatial-

sequential, to provide a means for meta-level discussions and to anticipate the characteristics and

requirements of future objects.

Sequential objects are characterized by the organization and layout of the information that they

contain. Text and equations are examples of sequential objects, where one piece of data follows

another in a sequential fashion. Spatialobjects contain data which is related by its spatial

positioning. A graphics object would be considered spatial because data is positioned relative to

the object's borders rather than to other data in the object. The last category that we considered

- 12.-

was spatial-sequentiaL These are objectswhich possesscharacteristics of both the spatial objects

and the sequential objects. The table object is considered spatial-sequential since it has both

sequential and spatial positioning attributes. Upon identifying these meta-level distinctions, our

task became much simpler. We could discuss classes of objects without being inhibited by the

nuances or idiosyncracies of any particular object.

Each of the objects which existed in the system at this time, and any that we could imagine being

built, required specific skills and expertise on the part of the developer. We did not want to restrict

the possibilities for interaction within a particular object unnecessarily, but we were concerned

about the consistency of interactions between that object and other objects in the system. Thus,

we classified the operations with which we concerned ourselves in terms of inter-object

operations, which are operations performed on the object as a whole; intra-object operations,

operations performed on the contents of an object; and extra-object operations, operations which

are outside the realm of the object itself.

Inter-object manipulationsthat were discussed in the guidelines dealt primarily with operations on

the object as a whole. For example, the guidelines described the user interface for object

creation, selection, duplication and deletion. In addition, the guidelines addressed operations

which dealt with the display of an object, such as the user interface for scrolling and moving an

object. It was particularly challenging to design the guidelines which described resizing an object.

Depending on the meta-level categorization of the object, its contents may be scaled, cropped or

wrapped in order to fit in the available space (See figure 4). Finally, the inter-object guidelines

described the changes that occur when a user gives an object the input focus, indicating the

desire to manipulate the contents of that object.

Intra-object manipulations describe the operations which can be performed on the contents of an

object. Once an object has received the input focus, the behavior that it exhibits and the options

that it provides are left to the discretion of the developer. Some operations, such as cut, copy,

paste and replace, are available for most objects in the system. The user interface requirements

- 13-

for these and other intra-object manipulations were specified in the guidelines to ensure that they

remain consistent between objects.

Extra-objectoperations dealt with operations which are outside the realm of any individual object.

Primarily, these include what we call dialog and response devices. These devices are included

within ATK as a service to developers and can be used by all of the objects and applications in the

system. Dialog and response devices were divided into four categories:

Action devices - buttons, menus, key and mouse operations

Choicedevices - switches,sliders, lists,toggle items

Text Input devices - data entry fields

Feedback devices- dialog boxes, message lines

In keeping with the extensible architecture of ATK, these devices are also considered objects in

the system and a developer may replace or create objects of this type as well. The guidelines

provided suggestions as to when and how these various devices should be used, in order that

their usage could remain consistent among all object types.

In addition to the classes of guidelines mentioned above, we also considered issues involved in

cooperation between objects at different levels. For example, the relationship between an object

and its parent, or containing object required some amount of detailed discussion and thought.

Although the types associated with the parent and child objects are largely irrelevant, there should

be some standard way of transferring or inheriting information from one to another. This

cooperation is of particular importance when considering the cooperation involved to ensure that

the appropriate menus, key bindings and cursors are being used.

-]4-

Conclusions

We began to compile user interface guidelines for Andrew as an aid to other developers. As this

work continued, we found that the guideline development process helped us immensely in

understanding the issues involved in user interface design for a multi-window, multimedia,

extensible system, such as Andrew. Many of these issues were raised through the development

of the standard objects and applications that exist in Andrew, and much of what we learned

through this process is reflected in those objects and applications. The guidelines may not

provide specific answers to all of the questions that a developer may have, but they can help

convey of the flavor of the system and provide some insight regarding the choices that were made

in its design.

One of the most important and difficult aspects of designing the Andrew user interface was to

determine reasonable default behaviors for our user community here on campus, which varies

greatly in its needs, experience, and knowledge. Reasonable defaults are crucial: it is default

behavior which users first encounter in a system. Defaults shape how users come to understand

and to use a system, and default behavior comprises the mental model which is important for

successful interaction with a system. Simple and predictable default behaviors, then, should allow

users to do what they need to do to get their work done, while not overwhelming them with

complexity or unnecessary information. In many ways, designing a system is designing its default

behavior.

This work has helped us to learn some valuable lessons about the role of human factors in system

design. In particular, it is critical that human factors issues are considered from the beginning of

the system design process. Some of the most difficult changes that were made in the system

could have been avoided had the issues involved been considered earlier in the design process.

Standards and guidelines are valuable tools for system design. Although it may be difficult to

agree on what the standards should be, discussion can help developers focus on problem areas

- 1.5-

and uncover portions of the architecture which may be poorly specified. Although the basic

components of Andrew were developed at the ITC, they were developed over a period of time by

an ever-changing group of people with diverse backgrounds and interests. Furthermore, ATK is

being used and developed by people around the world. Standards and guidelines can be useful

tools for communication within and among these groups.

-]6-

Notes

The author would like to thank Dr. Christina Haas, Dan Boyarski and Paul G. Crumley, who were

involved in the guidelines development and Ayami Ogura for her comments on this paper, as well

as other members of the ITC who contributed to the development of ATK and Andrew.

The ITC is a joint venture between IBM and Carnegie Mellon University. This work would not

have been possible without the support of these organizations.

Address for correspondence: Maria G. Wadlow, Information Technology Center, Carnegie Mellon

University, 4910 Forbes Avenue, Pittsburgh, PA 15213-3890.

-]7-

Refere nces

Human Interface Guidelines: The Apple Desktop Interface. (1987). Addison Wesley.

Borenstein, N., Everhart, C., Rosenberg, J., Stoller, A. (1988). A Multi-media Message System

for Andrew, Proceedings of the USENIX Technical Conference, Winter 1988, 37-42.

Borenstein, N.S. (1990). Multimedia Applications Development with the Andrew Toolkit. Prentice

Hall.

Mayhew, D.J. (1988). Basic Principles and Guidelines in User Interface Design, SIGCHI Tutorial

Notes. ACM Special Interest Group on Computer Human Interaction Annual Meeting:

May, Washington, D.C.

Microsoft Windows Software Development Kit: Application Style Guide. (1986). Microsoft

Corporation, (Version 1.03).

OPEN LOOK Graphical User Iriterface Functional Specification. (1988). Sun Microsystems, Inc.,

(Prerelease Version).

Palay, A.J., Hansen, W.J., Kazar, M.L., Sherman, M., Wadlow, M.G., Neuendorffer, T.P., Stern,

Z., Bader, M. & Peters, T. (1988). The Andrew Toolkit - An Overview, Proceedings of the

USENIX Technical Conference, Winter 1988, 9-21.

Ramsey, R. (1979). Human Factors in Computer Systems: A Review of the Lfferature, Science

Applications Incorporated.

Rubenstein, R. & Hersh, H. (1984). The Human Factor. Digital Equipment Corporation.

Schneiderman, B. (1987). Designing the User Interface: Strategies for Effective Human-

Computer Interaction. Addison-Wesley.

- 18-

Smith, S.L. & Mosier, J.N. (1986). Guidelines for Designing User Interface Software, Mitre

Corporation (ESD-TR-86-278).

Subasic, K., Robertson, J., Langston, D. & Grantham; D. (1988). A Guide to Andrew, Information

Technology Center.

Thomas, F. & Johnston, O. (1984). Disney Animation: The Illusion of Life. Abbeville Press.

Wadlow, M.G., Haas, C., Crumley, P.G. & Boyarski, D. (1988). User Interface Guidelines for the

Andrew System, Information Technology Center.

Wadlow, M.G., Haas, C., Boyarski, D. & Crumley, P.G. (1990). Helping the User by Helping the

Developer: The Role of Guidelines in a Multimedia Context, CHI '90 Conference

Proceedings, 1990.

- 19-

1 2 3 4 5

Pascal's Triangle

Thlstabls contains several v0, j -- v/.,O -- 0
descriptions of' Pascal's Trla_Je.

It contains a set of equations v|, l _ 1which defines the values of the
triangle. It also contains an
anim_Iton showing the building of Yi,.} _ vi.-toj + vi,.r "-I
the triangle. Finaily there is an
implementation of Pasc&l's
Triangle using the spreahsheet
facilities of the table o0ject.

In order to mn the animation, crick -- -

into the cell and choose tl_e r1 aroma.re item from the menus.
I

' [
1

, E.-1

I I i I i 1

1 1 _ 4 4. lo
1 1! 5 I m

D

-Ir, c-q-[r-,.c)

Figure 1. Ez, the multimedia document editor for Andrew.

- 20 -

Fq't reference (Ask-Subscribed; No New}
[_i_ mail (Mail: All S8 shown)
Frill' offictal.cmu--news (Has New Messages)
{3,/ officlal.research.NSF (Has New Messages) Puntl
[3-,/ org.itc (Has New Messages)
P3,/ org.cs.general (Has New Messages)

::::::::
_ 15-Feb-88 Re."cn_/logo - -> Chris Fhyberg@andre (430+0)

Z-Nov-88 Cale,.ndar - • >,Maria Wadlow"@andrew (22+1)
,/ 13-Sep-69 -Lalla (:e Blasi_s@VMA.CC. (921)

;ii_i ,/ 13-Oct-B90SF/Motifsource code - Bob Cosgrove (1164+0)
,/ 13-Oct-89 Re."-Bill Cattey@ATHENA.MIT.E(3193+0)
,/ 1B-Oct-89 Ted of "delete w/ndow'men.. -Tom Neuendorffer (1871+0)

ii _/ 23-Oct-69 Re.'Whatisthed/fference..-ClarkQuinn@unix.cls.pit(2055)
,I 31-Oct-B9 Re."OSFIMotifbinaries _vai.. - Jon C. R. Bennett (650)
v" 6-Nov-89 Motif l.O.lpatch - Bdan Harrison (219+0)
,J 9-Nov-89 R@: One-fingeredkeyboarff$,.. - Dan BoyarskJ (3026+0)

1"o:"Maria G. Wadlow" <maria+@andrew.cmu.edu>
Subject: Calendar

Calendar of Events

January 1990 _ !_!_!_!Monday January 29, t990
M_T'u, _/ _ F So, Su 3:30;Video meeting

]uesday January 30,1990
i_ I_ [] !_",' [] 6 7 II:00;Manager'smeeting
8 191iI[] [] [] 13 14 1:30;Coil=meeting
15 _1_ _ [] [] 20 71 _ednla_l:layJanual_#31, 199[)

=_i [] _! _ 27 2:8 10:00-10:30;HFGmeeting
: ._ 10:30-12:00 INP meeting

= _J [] iii 1:30; TC St_t'meetingStove's birthday

February _ _I_ iiiiiiil I
M'_Tu W Th F Sa Su _ !

flailI [] 3 4
=: ii_ [] iiSii, [] 10 11

t9 =al [] ._ [] 24 25

::_:;:

Figure 2. Messages, the multimedia electronic mail and bulletin board system for Andrew.

-21 -

CursorsInthe AndrewToolkit

I _l"heshape of the cursor should Indlcale mode changes. The st_ulOaJ'd cursor may van/from nset

_'0 inset, howeverthey should be made as consistent as possible. In addition, the same wait
cursor should be used throughout the system and Its threshold should be cdnslstent from Inset
to inset. Mode changes, for example when the user clicks on the rectangle icon in zip and enters
"rectangle-drmvtng mode', should be reflected by a change in the cursor shape.

• 1 2 3 4 5

[I Z

: f i ;
! L ; !

' "

I !1_ l!l - I , .
|
!

I

Figure 3. An Ez window displaying a raster image, embedded within a table, nested in a text

document.

- 22 -

IS the allocated

space big enough?

yes

I Display q [Isthisobject
) [allowed to wrap?

yes _

(Wrap _ Is this objectallowed to scale?

yes _

(Scale) I Crop)

Figure 4. A decision tree to assist developers in understanding the intended algorithm for space

allocation.

