
CMU-ITC'83'007

Report of the Subgroup on Protection in VICE

1 September 1983
20:20

M. Satyanarayanan

Information Technology Center
Carnegie-Mellon Universi[y

Schenley Park
Pittsburgh, PA 15213

Draft: Do not Circulate_ Reproduce, or Distribute

Table of Con_en'_s

1 Introduction 2

2 Protection Domain Management 3
2.1 Protection Subsystem Rights 4
2.2 Protection Subsystem Calls 4
2.3 Sketch of Protection Subsystem Implementation 6

3 File System Protection 8

_ . ii

i List of Figures

j Figure 1: Users and Groups 2
Figure 2: Naming Groups 5

!

}
t

_

!

t

• 1

Preface

This document describes the design of a mechanism for controlling access to objects in VICE. This

design is based on discussions held by a subgroup of the ITC Common System Services Group,

consisting of Dave Gifford, M. Satyanarayanan, and AI Spector. The task of the subgroup was to

examine the problem of file protection in VICE, and to come up with a strawman design addressing

this issue.

As presented here, the problem is cast in a more general light: that of protecting arbitrary objects in

VICE. It is our view that VICE will be composed of many relatively independent subsystems, each

providing different services. What we propose here is a general mechanism for these subsystems to

control access to the objects they are responsible for. The file subsystem is a very important instance

of such a subsystem, and the discussion on it assumes the design described in the document "Report

of the ITC File System Subgroup."

The principles guiding this design are that it should:

• be richer and more flexible than the Unix file protection scheme.

• be easy to administer.

• allow revocation of privileges after they have been granted.

Note that we do not consider the problem of low-level authentication here. In other words, it is

assumed that there is some orthogonal mechanism for determining who the requester is, and for

ensuring that communications with the requester are not public. The Iogin primitives mentioned at

various points in the document establish authentication with each individual subysystem. However the

details of such authentication, as well as the maintenance of an authenticated session, are not

addressed.

'1

| ' 2

7

1 Introduction

(Associated with each protected object in VICE is an Access List, which is a function from a

, Protection Domain to a set of rights. For every member, m, of the protection domain, such an access

list answers the question "What rights does m possess on this object?" The protection domainf
1 consists of two kinds of entities: Users and Groups.

i A user represents an accountable entity in the system: one who can be charged for resources and
who can be held responsible for actions performed on his behalf. Typically, a user is a human user of

the VICE/VIRTUE systems.

A group is a set of users and/or a set of other groups. The implication of this recursive definition is

illustrated by Figure 1. The user U is a direct member of group A, and A is a direct member of groups

C and D. The "is a member of" relation is transitive, and hence U is an (indirect) member of groups c

1 and D. The rights that U possesses on an object is given by the union of the rights that are specified

for U, A, C, and D on the access list for the object.
l

i

[I°f I v

_ "isa memberof'

Figure 1 : Users and Groups

More generally, the transitive closure of the "is a member of" relation yields the set of all groups that

a user is a direct or indirect member of. This set, together with the user himself, is referred to as the

Current Protection Subdomain of the user. The rights that a user has on an object is the union of the

rights specified for his current protection subdomain on the object.

Conversely, the transitive closure of the "has as a member" relation yields the set of all members

(direct and indirect) of a group. In Figure 1, for example, the membership (direct and indirect) of C is
A, U, V, and W.

Before protected objects may be used, the requester must Login to the VICE subsystem that deals

with those objects. Logging in establishes two bindings for the duration of the Iogin session: the

identity of the requester, and his current protection subdomain. Only users may log in to VICE

groups may not. In most cases, processes in VIRTUE will perform the necessary Iogins to VICE

subsystems, thus avoiding human intervention.

While the protection domain is universal in VICE, the interpretation of rights is object-specific. Each

VICE subsystem that implements a type of protected object has to provide the following:

• A correspondence between operations on objects and rights in access lists.

• An access list for each instance of an object, and primitives to manipulate it.

• Enforcement of the protection specified in the access lists.

At the present time, we are concerned with only two VICE subsystems: the subsystem responsible

for managing the protection domain, and the file system. Sections 2 and 3 discuss protection in the

context of each of these subsystems. As other object types are implemented in VICE, the

requirements mentioned above will have to be addressed for each of them.

2 Protection Domain Management

The protection domain management subsystem handles the creation and deletion of users and

groups, and the modification of group membership. The protected objects manipulated by this

subsystem are users and groups.

Each group has one user who owns it, possesses all rights on it and who is responsible for its

administration. 1 Initially, the user who requests the creation of a group is its owner. Ownership can be

transferred to any other user. 2 An owner can delegate responsibility for administering a group by

allowing group modification privileges to other members of the protection domain.

1There is a school of thought that believesthat joint ownershipshould be possible. For example,the set of usersand
groupswho havethe ability to modifya groupcould be itsowners. Singleownershipdoes,however,simplifyissuesregarding
accountability.

2Doesthe newownerhaveto acknowledgehis willingnessto bearthis responsibility?Thisquestionis oneof aset of related
questions. Do you have to give permissionto be put on an access list? To be included as part of a group? The principle
adoptedhere is that such acknowledgementis unnecessary. If it were necessary,VICEwould haveto providesomekind of
handshakingmechanism,wherebythedonor andthe recipientof aprivilegecould both confirmthe acceptanceof theirroles.

• o 4

A distinguished user called "System" corresponds to the system administrator and posseses .

certain unique privileges. While all users can create groups, only System can create other users.

i System is the only user that VICE starts out with.

i Initially, VICE has a single, distinguished group called "World", whose sole member is System.Every other group that is created in the system has, for naming purposes, a parent group. The name

of a group is thus similar to a Unix file name: if World is the parent of A, and A the parent of B, then a|
! group C created with B as its parent will have the name World.A.B.C. By convention, the "World."

prefix can be omitted, and hence the above group can be referenced as A.B.C. Note that parenthood

is completely independent of membership. It is quite possible, though highly unlikely, that there are

no common members of A, A.B, and A.B.C in the above example. Usually, a group will be a direct

| member of its parent group. A user may create a group without a parent group -- in that case the

name of the user is used as a prefix of the group name. Figure 2 illustrates group naming for a small

organization. The purpose of this naming scheme, is to prevent the uncontrolled generation of
]

groups which are of limited general interest, but whose names have widespread mnemonic

| significance.

2.1 Protection Subsystem Rights!
!_ Associated with each group is an access list, specifying who may examine the group or modify it.

As mentioned before, only System can create and delete users. The rights associated with a user are:7
I

ListMemberShip Allows you to list the groups that this user is a direct member of.

l Groups, however, may be manipulated by users if they possess adequate rights. The rights
associated with a group are:

ListMem bers Allows you to find out who the direct members of the group are.

ListMembership This allows you to find out which groups this group is a direct member of.

ModifyMembers This allows you to add members to or delete members from a group. Ownership
automatically bestows this right.

1
2.2 Protection Subsystem Calls

The following calls are supported:

Login (user, Authentication Information)
Establish one's identity.

Logout0 Obvious
i

5

Bovik.Party

World

Faculty
y.Beerys

Staff

• Students

Faculty.Tenured Facult_

.

Group \.
Student_ Class$8. Guys

Figure2: Naming Groups

C_'eateUser (username)
Create a new user, and make him a member of World. Only System may make this
call.

RemoveUser (username)
Delete the specified user from all groups of which he is a member. Only System
may make this call.

CreateGroup (groupname, parent group)
Create a new group with null membership. The name of the group will be parent

group.groupname. The caller must have ModifyMembership rights on parent
group. If parent group is omitted, the name will be calling user.groupname. The
calling user is the owner of the group.

RemoveGroup (group)
Delete the specified group. All membership links associated with this group are
lost. Only the owner of a group can delete it.

• 6
f-
%

j AddToGroup (group 1, group2)
Makes group2 a direct member of group1. The caller must possess

- ModifyMembership rights on group1.
i

RemoveFromGroup (group 1, group2)

Make group2 no longer a direct member of group1. The caller must possess

_- ModifyMembership rights on group1.

GetDirectMembers(g rou p)

j the list of direct members of group. The caller must possess
Return

ListMembers rights on group.

GetDirectMembership(group or user)
Return the list of groups of which the specified group or user is a direct member.

The caller must possess ListMembership rights on it.

l
GetSubdomain(user)

Return the current protection subdomain of user. The caller must possess

ListMembership rights on user. Typically all VICE subsystems will this
possess

right on all users, and will make this call when a user tries to log in to them.

i ChangeProtection(group 1, group2 or user, rights list)
In the access list entry for group I, replace the entry for group2 or user by rights
list. Only the owner can modify the protection on a group. If the caller is System,
group 1 may be a user.

l

In a simple, non-paranoid implementation of VICE, World would have ListMembers andi
! ListMembership rights on all groups (and users), and only owners would possess ModifyMembers

rights on groups.

t
2.3 Sketch of Protection Subsystem Implementation

ease representation, groups users represented as fixed length integers, called
For of and should be

group and user IDs. There are mapping tables to convert from names to IDs. IDs are for the internal

l use of VICE, and are not visible outside it.

The current protection subdomain and the access lists are sorted according to IDs. So finding the,_ available rights on a file is just a matter of running down two sorted lists and ORing the rights masks

together.!
J

The relations implicit in the pFotection domain are captured by three tables:

! TableA: "Is a direct member of"
- For each user and group, this table yields a list of groups of which it is a direct

member.
!

1
!

TableB: "Is a member of"
For each user and group, this table yields the current protection subdomain. It

essentially contains the transitive closure of each entry in Ta bleA.

TABLEC: "Has as direct member"

For each group, this table yields the list of users or groups who are its direct
members.

The most common request to the protection subsystem is likely to be the GetSubdomain, from

other VICE subsystems, in response to a user Iogin request. This merely involves a lookup of TableB.

When a change is made tO a group, the relevant entries in tables A and C are changed. TableB

now has to be recomputed. In the most general case finding the transitive closure of TableA can be

an expensive operation. There are a number of approaches to address this issue:

• Restrict groups to have only users. This makes the transitive closure trivial, but severely
reduces flexibility.

• Allow groups to have other groups as members, but limit the depth of nesting. This limits
the transitive closure to an O(N 2) algorithm rather than O(N3).

• The direct membership matrix is likely to be sparse. Develop a transitive closure
algorithm which exploits this property to run efficiently in the average case.

How is change propagated in the system? There are two views on this, and no consensus has been

reached on which of these is preferable:

Slow update The tables A, B, and C, are replicated at each VICE node and are read-only most
of the time. Requests for change are sent to one node which batches them,
computes the new tables, and atomically updates them at each node. The slow
propagation mechanism is similar to that used by the file system to maintain its
replicated database of file locations. The frequency of updates is a system t
parameter, and is typically about once a day.

Immediate update The changes take place as they are made -- there is no batching of requests. The
details of such a mechanism remain to be worked out. It is not clear that the

full-fledged protection scheme can support immediate update efficiently enough
to make this possible.

i

Undetermined: Should there be a mechanism to subtract rights? Example, entries in an access list

whose rights masks are NANDed rather than ORed during a rights check? This allows rapid, selective

revocation.

] • 8

i 3 File System Protection

In the file system, the protected objects are files and directories. We feel that it is perfectly
i-

reasonable to require that all files in a directory share tile same level of protection. Therefore

protection can be specified only at the granularity of a directory, and not of an individual file. It is, of

i course, possible to have directories with exactly one file in them, to handle pathological cases.

$ The set of rights on a directory are:
i

LookupFiles Allows GetFileStat0 to be performed on files in the directory. Also allows the

access list for the directory to be examined.
CreateFiles Enter files into this directory. This is distinct from WriteFiles in order to support

f mail and other similar functions.

!
ReadFiles Examine the contents of a file in this directory. In the current file system design,

this effectively means that Fetches may be done on files in the directory.
WriteFiles Replace an existing file. In the current file system design, this is equivalent to

] allowing Stores on files in the directory. This right also allows files to be removed
j from the directory, and allows the access list for the directory to be altered.

t The primitives provided to manipulate an access list are: 3
!

CreateEnt ry(pathname, group or user, initial rights)
Creates a new entry for group or user in the access list for pathname and assigns

initial to it.
rights

RemoveEntry(pathname, group or user)

Deletes the from the list of
group or user access pathname.

ModifyEnt ry(pathname, group or user, new rights)

l The for at is changed to new
entry group or user pathname rights.

ReadAccessList(pathname)

Returns the list for the at The must
access directory pathname. requester possess

LookupFiles rights on the directory.

__ When accessing a file, the protection check is made only on the immediate parent of the file -- a

requester does not have to possess any rights on the intermediate directories of a pathname.

[_ "

3Unlessotherwisespecified,the requestermustpossessWriteFiles rightson the directoryin question'

