

Differencing and Merging of Architectural Views

Marwan Abi-Antoun Jonathan Aldrich Nagi Nahas
Bradley Schmerl David Garlan

August 2005
CMU-ISRI-05-128

Institute for Software Research International
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Abstract

As architecture-based techniques become more widely adopted, software architects face the problem of reconciling different
versions of architectural models. However, existing approaches to differencing and merging architectural views are based on
restrictive assumptions, such as requiring view elements to have unique identifiers or explicitly log changes between
versions.

To overcome some of the above limitations, we propose differencing and merging architectural views based on structural
information. To that effect, we generalize a published polynomial-time tree-to-tree correction algorithm (that detects inserts,
renames and deletes) into a novel algorithm to additionally detect restricted moves and support forcing and preventing
matches between view elements. We implement a set of tools to compare and merge component-and-connector (C&C)
architectural views, incorporating the algorithm. Finally, we provide an empirical evaluation of the algorithm and the tools
on case studies with real software, illustrating the practicality of the approach to find and reconcile interesting divergences
between architectural views.

This work was supported in part by NASA cooperative agreements NCC-2-1298 and NNA05CS30A, NSF grant CCR-
0204047, a 2004 IBM Eclipse Innovation Grant, the Army Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems”, and was performed as a joint research project in Strategic
Partnership between Carnegie Mellon University and Jet Propulsion Laboratory.

 2

Keywords: View differencing, view merging, view synchronization, tree-to-tree correction, unordered labeled trees.

 3

1. INTRODUCTION

The software architecture of a system defines its high-level organization as a collection of runtime components, connectors
and constraints on their interaction, along with their additional properties defining the expected behavior, commonly referred
to as a component-and-connector (C&C) view. Over the past decade, numerous architecture description languages (ADLs)
have been developed and applied to real-world systems.

As architecture-based techniques become more widely adopted, software architects face the problem of reconciling different
versions of architectural models, including differencing and sometimes merging architectural views— i.e., using the
difference information from two versions to produce a new version that includes changes from both earlier versions. For
instance, during analysis, a software architect may want to reconcile two C&C views representing two variants in a product
line architecture [CCG+03]. Once the system is implemented, an architect may want to compare a high-level conceptual C&C
view with a C&C view retrieved from the implementation (using a variety of architectural recovery techniques): the architect
might be interested in implementation-level violations of the architectural styles or other intent [AAG05], or in a change
impact analysis [KPS+99]. At runtime, the difference information could be used to perform architectural repair [DHT02].
Finally, during evolution, the architect may use the difference information to better focus regression testing efforts [MDR05].

A number of techniques and tools for differencing and merging C&C views have been proposed. Some of these techniques
detect only a small number of differences. For instance, ArchDiff [CCG+03] only detects insertions and deletions, possibly
leading to the loss of information when elements are moved or renamed. Many of these techniques are also limited in their
ability to detect differences based purely on structural information; they assume that elements have unique identifiers (every
time an element is changed, even when only its type changes, it gets a new unique identifier [AP03][OWK03]), or only match
two elements if both their labels and their types match [CCG+03]. Other approaches (e.g., Mae [RHM+04]) rely on the
environment tracking all changes using fine-grained element-level versioning. Although such environments may provide the
ability to infer high-level operations such as merges, splits or clones, in addition to the low-level operations such as inserts
and deletes, they require a heavy upfront investment in tool building and integration, and have not become widely adopted.
Similarly, one can maintain a record of the structural changes introduced to a view and replay it against another view [Jim05].

In this paper, we propose an approach that overcomes some of the above limitations. Our main contributions are:

• An approach for differencing and merging two architectural views based on structural information, using tree-to-tree
correction algorithms to identify matches and classify the changes between the two views. Optional type information can
prevent matches between incompatible view elements, speeding execution and improving the quality of the output.

• A generalization of a recently published tree-to-tree correction algorithm for unordered labeled trees [THP05] (that
detects renames, inserts and deletes) into a novel polynomial-time tree-to-tree correction algorithm that additionally
detects restricted moves and supports forcing and preventing matches between view elements.

• A set of tools incorporating such algorithms for the semi-automated synchronization of C&C views.

• An empirical evaluation of the algorithms and the associated tools on realistic case studies.

The paper is organized as follows. Section 2 describes the challenges in differencing and merging structural views, the
underlying assumptions and the limitations of our approach. Section 3 describes our novel tree-to-tree correction algorithm.
Section 4 describes tools that incorporate tree-to-tree correction algorithms to synchronize C&C views. Sections 5 and 6
present two case studies on real systems. Finally, we discuss related work and conclude.

2. CHALLENGES

A view can generally be described as a graph. View differencing and merging can then be cast as a problem in graph
matching. Hierarchical architectural views have aspects of both graphs and trees—i.e., they have a tree-like hierarchy but
there are cross-links that form a general graph. In this section, we consider the benefits of both graph and tree differencing
approaches, with graph algorithms being more general, but tree algorithms more scalable. Having chosen trees for scalability,
we describe a new algorithm in the next section that meets our requirements.

 4

2.1 Differencing and Merging

Graph matching, in the general case, is NP-complete [CFS+04]. However, certain classes of graphs do not suffer from the
exponential complexity. For instance, graphs characterized by the existence of unique node labels can be processed efficiently
[DBB+04]. In addition, efficient algorithms have been proposed for trees. A widely used measure of the similarity between
two graphs is the notion of graph edit distance [CFS+04]. The approach relies on using a set of edit operations that model
inconsistencies by transforming one graph into another. Typical graph edit operations include the deletion, insertion and
substitution of nodes and edges. Often a cost is assigned to each edit operation. The costs are application dependent and used
to model the likelihood of the corresponding inconsistencies (typically, the more likely a certain inconsistency is to occur, the
lower is its cost). If a cost is assigned to each edit operation, then the edit distance of two graphs g1 and g2 is found by
searching for the sequence of edit operations with the minimum cost that transform g1 into g2. A similar problem formulation
can be used for trees; however, tree edit distance differs from graph edit distance in that operations are carried out only on
nodes and never directly on edges. In Section 3, we describe a novel algorithm based on tree edit distance that meets the
requirements of the problem domain.

2.2 Assumptions

Before we do that, we discuss some of the assumptions in our approach and how they generalize those of existing approaches.

No Unique Identifiers. For maximum generality, we match elements based on their structure and do not require elements to
have unique identifiers, as in ArchDiff. In many applications, such unique identifiers do not exist. Adding this assumption
gives the problem of graph edit distance a polynomial-time complexity, as recently shown in [DBB+04]. As an optimization,
persistent unique identifiers could be assigned to view elements to quickly match them between invocations.

No Ordering. In the general case, an architectural view has no inherent ordering among its elements. Assuming an
architectural view is represented as a tree, this suggests that an unordered tree-to-tree correction algorithm might perform
better than one for ordered trees. Ordered labeled trees (i.e., rooted trees in which the children of each node are ordered) have
been studied extensively with many efficient algorithms available (e.g., [SZ97]). However, tree-to-tree correction for
unordered trees is MAX SNP-hard [ZJ94]. Some algorithms for unordered trees achieve polynomial-time complexity, either
through heuristic methods (e.g., [WDC03][CG97]) or through an exact solution under additional assumptions (e.g., [THP05]).

Support Disconnected/Stateless Operation. For maximum generality, we assume a disconnected and stateless operation,
i.e., no monitoring of structural changes is taking place while the user is modifying a given view (e.g., Mae [RHM+04]) and
no trace is kept of the set of changes made to a view (e.g., [Jim05]).

Detect Renames. For maximum generality, we do not require labels to match exactly. Names are often modified during
software development and maintenance: a name may turn out to be inappropriate or misleading due to either careless initial
choice or name conflicts from separately developed sub-systems [AC94]. In some application domains, some view elements
may not have persistent names or may be assigned automatically generated names. This suggests that the algorithms should be
able to handle sparse or incomplete labels and handle renames. A number of existing algorithms detect renames, but either
assume that a strong majority of nodes will have exactly matching semantic information (labels and types) or have only been
tested under such a condition: e.g., at least 80% of nodes have exactly matching semantic information in [CG97], and at least
99% of nodes have exactly matching semantic information in [RRL+04].

Detect Hierarchical Moves. Architects often use hierarchy to control complexity, and many views are hierarchical: e.g., in
C&C views, the hierarchy corresponds to the system’s decomposition. However, architects differ in their use of hierarchy:
components expressed at the top level in one view could be nested within another component in some other view. A
hierarchical move shifts a node up or down N levels in the tree, changing its parent. The ability to detect hierarchical moves is
one of the main features which distinguish our proposed algorithm from the algorithm described in [THP05].

Allow Manual Overrides. Since having a correct mapping between view elements is critical for the merge operation, user
control over the structural matching process is important: in particular, the user should be able to force a match between
elements that cannot be structurally matched, as well as prevent matches between elements that, although structurally similar,
are in fact incompatible. Note that manual overrides must be taken into account by the algorithm itself, and cannot happen as
a post-processing step since there are dependencies in the mapping (e.g., two view elements a1 and a2 in View A may not both

 5

map to the same element b1 in view B, even if a1 is forced to match b1). This feature also distinguishes our algorithm from
existing ones.

Type Information for Optimization Only. Unlike other approaches (e.g., ArchDiff), matching the type information is not
critical to the operation of the algorithm; it should be able to deal with views containing untyped elements, as well as views at
different levels of abstraction with possibly different type systems. The algorithm should be able to recover a correct mapping
from structure alone if necessary, or structure and type information if type information is available. However, the algorithm
can take advantage of the type information (when available) to prune the search tree, significantly speed convergence towards
the optimal solution and improve the quality of the matching. If the view elements are represented as typed nodes, at the very
least, the algorithm should not match nodes of incompatible types (e.g., do not match connector x to component y). In some
cases, additional architectural type information may be available and could be used for similar purposes (e.g., do not match a
component of type Filter from a Pipe-and-Filter style to a component representing a Repository from a Shared Data style).

In order to remain tractable, our approach makes the following restricting assumptions:

Hierarchical Views. In the general case, the differencing and merging of non-hierarchical views corresponds to error-
correcting or inexact subgraph isomorphism [CFS+04], a problem proved to be NP Complete. The most ambitious optimal
algorithms (i.e., if a global minimum of the matching cost exists, it will be found) can handle at most a few dozen nodes. We
take advantage of the tree hierarchy in architectural views and recast the problem into one that is more tractable, using trees
instead of graphs. In C&C views, hierarchy corresponds to nested sub-architectures or decomposition. Other architectural
views, such as module views [CBB+03], have similar characteristics.

Similar and Comparable Views. The two views being compared and merged have to be somewhat structurally similar.
When comparing two completely different views, the algorithm could produce a trivial edit script that deletes all elements of
one view and then inserts all the elements in the other view. In addition, the two views being compared and merged must be of
the same type, i.e., comparable without any view transformation. This also allows the approach to be more applicable than
just C&C views, at least in principle.

Merging/Splitting Not Supported. Our approach does not currently detect the merging or splitting of view elements.

3. TREE-TO-TREE CORRECTION

In this section, we describe in detail a novel tree-to-tree correction algorithm for unordered labeled trees. The reader only
interested in its applications can skim this section. Our TreeMDIR (Tree Move-Delete-Insert-Rename) algorithm generalizes
a recently published algorithm [THP05], denoted as THP. We also implemented THP for experimental comparison with our
implementation of TreeMDIR.

3.1 Problem Definition

Let us first give an unambiguous definition of the problem, adapted from [SZ97]. We denote the i th node of a labeled tree T in
the postorder node ordering of T by T[i]. |T| denotes the number of elements of T. We define a triple (�, T1, T2) to be a
mapping from T1 to T2, where ��is any set of pairs of integers (i,j) satisfying:

1) 1<= i <=|T1|, 1<= j <= |T2|;

2) For any pair of (i1,j1) and (i2,j2) in �,

a) i1 = i2 if and only if j1 = j2 (one-to-one)

b) T1[i 1] is an ancestor of T1[i 2] if and only if T2[j 1] is an ancestor of T2[j 2] (ancestor order preserved).

We will use ��instead of (�,T1,T2) if there is no confusion. To delete a node N in tree T, we remove node N and make its
children become the children of the parent of N. To insert a node N in tree T as a child of node M, we make N one of the
children of M, and we make a subset of the children of M become children of N (See Figure 1). Renaming a node only
updates its label. In the following discussion, a matched node means a node with an exactly matching label or a renamed
node. The edit operations that we refer to as restricted moves correspond to deletion and insertion operations in the middle of

 6

the tree: sequences of node deletions in the middle of the
tree result in nodes moving up a number of levels in the
hierarchy, and sequences of node insertions in the middle
of the tree result in nodes moving down in the hierarchy
(by becoming children of the inserted nodes). TreeMDIR
does not currently support arbitrary node moves. THP does
not allow any insertions or deletions in the middle of the
tree and works under the assumption that if two nodes
match, so do their parents (i.e., only subtrees can be inserted or deleted).

Suppose we obtain a mapping ��between trees T1 and T2. From this mapping we can deduce an edit script to turn T1 into T2.
First, we flag all unmatched nodes in the first tree as deleted and all unmatched nodes in the second tree as inserted. We order
the operations so that all deletion operations precede all insertion operations, delete the nodes in order of decreasing depth
(deepest node first), and insert them in increasing depth order.

We still have to define the cost of an edit script (which is a sequence of edit operations): for each node in the source tree, we
choose a cost of deletion (not necessarily the same for all nodes); for each node in the destination tree we choose a cost of
insertion (again, not necessarily the same for all nodes), and for each pair of nodes (n, m) where n is some node in T1 and m in
T2, we choose a cost of changing the label of n into the label of m (for example, to change “banana” into “ananas”, we
might choose a cost of two using string-to-string correction [WF74]). The cost of the edit script is then equal to the sum of the
costs of insertion, deletion, and renaming operations it contains. Therefore, any given mapping has a unique cost. So, in order
to find an optimal edit sequence, it is sufficient to find an optimal mapping.

3.2 Explanation of the Algorithm

The algorithm pseudocode is given in Section 3.3 below. Let C(i,j) be the cost of the optimal mapping from the subtree
rooted at i to the subtree rooted at j. A set of nodes S(i) is a successor set of node i if it is a subset of the set of descendents of
i and none of the elements of S(i) is an ancestor of another, and each node of the subtree rooted at i is either a descendent or
an ancestor of an element of S(i). Given two sets S(i) where i belongs to T1, and S(j) where j belongs to T2, it is possible to
define the optimal mapping of S(i) to S(j) as a one to one function from a subset of S(i) into S(j) with least cost, where the cost
of mapping element k of S(i) to element l of S(j) is equal to cost of the optimal mapping of the subtree rooted at k to the
subtree rooted at l, and the cost of leaving an element k of S(i) without image is equal to the cost of deleting the whole subtree
rooted at k, and the cost of having an umatched element l in S(j) is equal to the cost of inserting the entire subtree rooted at l.
This suggests that if we know all the costs C(d1,d2) where d1 is a descendent of i and d2 is a descendent of j, it is possible to
compute C(i, j) by considering all possible pairs of sets (S(i),S(j)), and for each such pair, getting the minimum weight
bipartite matching defined by the entries of the cost matrix C corresponding to the elements of S(i) and S(j). Finally, let L(i,j)
be the cost of changing the label of node i in the source tree to the label of node j in the destination tree. The minimum cost
obtained added to L(i, j) will be equal to C(i, j). L(i,j) uses string-to-string correction to evaluate the intrinsic degree of
similarity between the labels of two nodes, using the standard dynamic programming algorithm to find the longest common
subsequence [WF74].

We choose the best pair (S(i),S(j)) using a branch-and-bound backtracking algorithm. Let DESC(i) denote the set of
descendents of i. We try to choose a subset Q of DESC(i)xDESC(j) with minimal cost. This is done by trying to add to Q one
element of DESC(i)xDESC(j) such that the new element in Q is consistent with the previous elements (no same node can be
matched to 2 different nodes, nor can a node appear in an element of Q, if either a descendent or an ancestor already appears
in some element of Q). The algorithm backtracks each time it determines that there are no more valid pairs to add, or when it
determines that the cost of the current branch will be too large to match the best solution already discovered to date. As the
problem is NP-complete, the approach outlined above can quickly become computationally infeasible without additional
constraints.

We chose to enforce an upper bound B on the sum of distances between elements of S(i) and the closest child of i
(respectively, S(j) and j) with B typically a small integer. The reasoning behind this constraint is that nodes are not usually
moved too far from their original positions in a hierarchy, and it is relatively rare for several non-leaf siblings to be deleted at
the same time. The bound B has the additional benefit that only relatively small neighborhoods of each node have to be
considered for the computation of the optimal cost of a single subtree pair, enabling us to perform many operations very

Figure 1: Edit operations in tree-to-tree correction [SZ97].

 7

efficiently using bit manipulation. For example, during the backtracking search, checking whether a node is still available is a
single bitwise AND operation instead of a time-consuming loop over an array.

TreeMDIR can be considered a generalization of THP because THP only handles the case where B=0 (i.e., only the children
of a node can be in a successor set of that node), producing a fully polynomial time algorithm that is typically much faster
than our generalized algorithm. But being able to handle non-zero values of B allows our algorithm to detect hierarchical
moves. TreeMDIR is guaranteed to find the optimal matching within the constraints of the bound B, provided it is allowed to
run long enough. Unfortunately, on a number of instances (especially, on trees with more than a few hundred nodes and when
the average degree of a non-leaf node is greater than four), it is necessary to limit the running time by enforcing a bound R on
the number of recursive calls of the backtracking search corresponding to a given subtree pair. This bound removes the
guarantee of optimality. Nevertheless, we found that the algorithm still obtains good results when we limit the number of
recursive calls, because usually the backtracking search finishes very quickly when we compare similar subtrees. Since the
algorithm uses the branch-and-bound technique, a good match allows for tight bounds and therefore early cutting of branches.
The search terminates normally for matrix entries actually corresponding to good matches, and is interrupted only when the
match is not good, which often allows the algorithm to return an optimal match even though the backtracking search was
interrupted for the computation of some of the cost matrix entries (as these matrix entries correspond to bad matches which
are not part of the optimal solution).

3.3 Pseudo Code of the Algorithm

In the following pseudo code of the TreeMDIR algorithm, arguments that are passed by reference are indicated by ������������. In
order to reduce the complexity of the pseudo-code, the parameter R, and the ability to force and prevent matches are not
reflected here. For efficiency reasons, bit vectors are stored in integers (with 0 meaning false, and 1 meaning true) in and
bitwise manipulations are used heavily.
���������	���������	���������	���������	

������������������������

��������

�������
����������
����������
����������
�������

�����	�����	�����	�����	

����
��	
�����
����
��
�������

����
��	
������
����
��
�������
 ����
��
����
��!

������	������	������	������	

"���#$�%�$����&	
��������
�&�
%���
������'
����
��
��
��

���$���	���$���	���$���	���$���	

���������(
���������()�*)+*
��
�&�
����
��
�&�
������$
������'
����
�&�
��%����
������
��
�

��
�&�
��%����
������
��
+

"���#$�%�$����&)*	
����,
��
�����
��
�����
������������'
��
�&�
$����
����
������'
����
��
��
��

"���-��������)*)*	
�
��
����,
��
����
��
�����
��
�����

 �.�!∈ "���-��������)�*)+*
�����
 �.�!
��
�
����&
%��/���
���
�$�����
��
�&�

����������
��
�
���
���
�$�����
��
�&�
����������
��
+
��
��
������$
������'

����
�&�
��%����
������
��
�
��

�&�
��%����
������
��
+

0 �.+!	
����
��
�&��'��'
�&�
$�%�$
��
����
�
��
��
��
�&�
$�%�$
��
����
+
��
��

����'
�����'1��1�����'
����������

"�'��"�'��"�'��"�'��

���������
��
���
��
�����

������������ �
2
�
��������
��3��4�!

������������ +
2
�
��������
��3��4�!

"���-��������)�*)+*
2
-���5 �.
+.
������������
���������(!

���������()�*)+*2
"���-��������)�*)+*3����
6
0 �.+!

#�"-�����5��# "���-��������.
������������
"���#$�%�$����&.

��3��4�.
��3��4�!

��������

���������	
���������	
���������	
���������	
----���5���5���5���5

��������

----���
����
-�������-���
����
-�������-���
����
-�������-���
����
-�������-
7��
��00��#

7��
��00��#

7��
��00��#

7��
��00��#
""""��8����8��8����8��8����8��8����8

�����	�����	�����	�����	

�	
����(
��
����
��

+	
����(
��
����
��

���������(
����
�����(.
����
��
���
������

������	������	������	������	

���������()�*)+*	
�������
����,
��
�&�
����
�����(

������
�
���
��
����
�����
�����������'
�&�
%���
�����
������'
��
�&�
�����
��
�
���������
���
��
�
��

�&�
�����
��
�
���������
���
��

+

���$���	���$���	���$���	���$���	

����)*.
����)*	
����,�
��
����'���
/&���
�&�
��&
%��
��
�&�

��&
����'��
���������
/&��&��
��&
����
��
��

���������
 ��������9�$,.
����������!
��
��&
����
��
��

����)*.
�����)*	
����
��
�%�9�.
���
��

"���-�$�����)*	
���
��
������$
����&��.
���$�������
��
�
"��$���
����,	
��&
����,
��
����
��
�&�
��&
����

����
��
�&�
���
��
�$$
����
�����
������
%,
�����
%�$��'�
��
�&�
%���
����&��'

 �����
��
�
�������
��
�&�
:��$��,
��
�&�
����&��'!

�������-�$�����)*	
���
��
����&��
%���'
%��$�.
�������
��
�&�
����
/�,
��
"���-�$�����)*

"�������	
9����%$�

 8

���9��$�%$��	
����'��
/&���
�&�
��&
%��
��
���
��
�&�
��&
����
��
����
��
��
���9��$�%$�
���
���$�����
��

�������-�$�����
%������
��
���������
��
����������
��
�$����,
���$����
��
�������-�$�����

���9��$�%$��	
����
��
���9��$�%$��
%��
���
����
��

"�'��"�'��"�'��"�'��

#��
�&�
$���
0
��
�$$
�����
 �.:!
/&���
�
��
�
����������
��
�
���
:
��
�
����������
��
+

-���
�&�
$���
%,
���������'
����&
�����

 �����
����������
�&�
��������'�
��
��%����
/��'&�
�&��
��
����&��
/&��
�/�
�����
���
��������!

���������&�����&�����&�����&
����
����'
�&�
�����������
��
�
���
+

���������
��
����'��3
��;�
�&�
%��
��:�����
����������

��
�&�
���
��
��
����������������������
��
�&�
�����

-����
�&�
����'���
��
�&�
��������
����,�.
��������9�$,

������$�4�
"���-�$�����
���
�������-�$�����
����,�
��
<

������$�4�
"�������
��
��
��������
9�$��

������$�4�
���9��$�%$��
��
<.
���9��$�%$��
��
<

"��8����8 <

�=
����(=�.
0.
����.
����.
�����.
�����.
���9��$�%$��.���9��$�%$��.
���������(.

<
�=
�����������=�.
���

���

���

���
"�������.
���
���
���
���
"���-�$�����.
.
.
.
������������
�������-�$�����!

���9���
"���-�$�����
%��
9�����
��
�
���
��
����
�����

������������������������
���
��
����
�����

��������

���������	
���������	
���������	
���������	
""""��8��8��8��8�������8���8���8���8

��������----���5���5���5���5

7��
�
#���
������#
7��
�
#���
������#
7��
�
#���
������#
7��
�
#���
������#
"�>�
-�"��-"�>�
-�"��-"�>�
-�"��-"�>�
-�"��-

�����	�����	�����	�����	

����(
��������
����&��
��
$���
0

0	
$���
��
�����
��
�����
 �.�!
������
%,
�����

����)*.
����)*.
�����)*.
�����)*	
����
��
���
-���5

���9��$�%$��.
���9��$�%$��	
����
��
���
-���5

���������(
����
�����(.
����
��
���
-���5

�����������	
�������
����
��
�&�
������'
%���'
%��$�

 �3�3.
�&�
��%���
��
���������
�������
��
�&�
���
��

�����������
��
�
���
+!

���
���
���
���
"�������	
����
��
���
-���5

���
���
���
���
"���-�$�����)*	
����
��
���
-���5

���
���
���
���
�������-�$�����)*
	
����
��
���
-���5

������	������	������	������	
"�������.
"���-�$�����.
�������-�$�����	
�������

"�'��"�'��"�'��"�'��

"���
����	

��������
 ��
�$�����
��
0
���
%�
�����
��
�������-�$�����!

��������

 �����������
6
����
��
��$����
��%�����
?
"�������!

 "���-�$�����
2
�������-�$�����

 "�������
2
�����������

������������������������

���������&�����&�����&�����&
�$�����
$2
 �.�!
��������
0
�������'
��
��������
����(

�&��;
/&��&��
$3�����
���
$3������
���
���$$
�9��$�%$�

��
���
����������
���
����������
���
����������
���
��������

��������

�����'
$
��
�������
������'
9��$����
%����
"
!!!!

��������������������������������

���
����
��
����&
��
�����������
��
�%����
��/����

#��
�
$�/��
%����

��
��������'
����
����'
����&
�����

��������

6
��/����
@2
"�������
!
��������������������������������

���
$
��
�������-�$�����
 %,
������'
�&�
������������'

����,
��
�������-�$�����
��
$!

��/���9��$�%$��
2
���9��$�%$��
��
����� �!
��
���� �!

��/���9��$�%$��
2
���9��$�%$��
��
����� �!
��
���� �!

"��8����8 ����(6�.
0.
����.
����.
�����.
�����.

��/���9��$�%$��.
��/���9��$�%$��.
���������(.

��/����.
"�������.
"���-�$�����.���
���
���
���
�������-�$�����!!!!A

����9�
$
����
�������-�$�����

��������

���������	
���������	
���������	
���������	
####����""""-�-�-�-��������5��#���5��#���5��#���5��#

��������

�������
�5
������0
�����
�5
������0
�����
�5
������0
�����
�5
������0
������#����#����#����#

�����	
�����	
�����	
�����	

"���-��������)*)*	
����
��
���
������

������������
"���#$�%�$����&)*				
����
��
���
������

�.
+	
�������
��
�
����
��
�����
�&��
%�$��'
��
�&�
%���
�����%$�
������'
%��/���
�&�
�/�
�����

������	������	������	������	
"���#$�%�$����&	
�������

"�'��"�'��"�'��"�'��

���������������&���&���&���&
�
2
 �.
�!
��������
"���-��������)�*)+*

���
�
��
��
"���#$�%�$����&

#�"-�����5��# "���-��������.
������������
"���#$�%�$����&.
�.
�!

��������

3.4 Forcing and Preventing Matches

Manual overrides are not a standard operation in most tree-to-tree correction algorithms. We added to TreeMDIR the ability
to force and prevent matches between a node in tree T1 and another node in tree T2. Preventing a match between two nodes i
and j is easy—just assign a very large cost to the corresponding entry in the cost matrix C[i][j] . But forcing a match between
two nodes is more difficult. At first glance, it would seem that preventing the match of either of these two nodes with any

 9

node other than the required one, and making the cost of deletion and insertion of these nodes very high, would be enough. It
would be enough if the algorithm did not have to handle the additional constraint concerning the distance to the subtree root.
Since this constraint exists, it is often necessary to delete entire subtrees at a time. So we have to prevent that one of the nodes
involved in the forced match is deleted in one of those subtree deletions. A possible solution would be to prevent the deletion
of all the ancestors of the forcibly matched node. This is indeed the best solution if we used THP. But in our case, this
solution could produce a very sub-optimal edit script, because it is quite possible that a few ancestors got deleted, while the
forcibly matched node isn't deleted. This requires distinguishing between individual delete operations and mass delete
operations.

We therefore allow the deletion of ancestors of the forcibly matched node, on the condition that this deletion operation is not
part of a subtree deletion operation, i.e., whenever an ancestor is deleted, at least one of its descendents which is itself an
ancestor of the forcibly matched node must be part of the successor set. We enforce that constraint in the base case of the
recursive BACKTRACK procedure. When computing the best cost for the (i,j) entry of the cost matrix, if i is an ancestor of a
forcibly matched node, BACKTRACK does not record in BestSolution any mapping that deletes the branch leading to the
forcibly matched node, although it records a mapping that deletes a few intermediate nodes on the path from i to the forcibly
matched node. This feature is not shown in the pseudo-code to keep it manageable.

3.5 Time and Memory Complexity

An upper bound on the running time of the TreeMDIR algorithm is as follows: let X be the set of nodes of both trees, x be an
element of X, p be the maximum allowable size of a connected subgraph of the tree that can be deleted or inserted in the
middle of the tree, f(x,p) be the number of nodes that lie within a distance of (p+1) from x, and F(a) = max{f(x,p): x∈X and
p=a}.

TreeMDIR has a worst case running time of O((2*F(a))! N2). In our implementation, pruning the search tree by using both
tree structure and additional semantic information (e.g., type information) and being able to limit the running time by
returning a possibly suboptimal solution, make the average case considerably faster than the worst case. In practice, the
observed runtime is O(K N2) where K is a large constant, but not quite as large as the theoretical worst case bound would let
one imagine. In comparison, THP has a running time of O(d3 N2).

Regarding memory requirements: although both THP and TreeMDIR can be implemented in O(N2) space at the expense of
increased implementation complexity, we implemented THP in O(d N2) where d is the max degree of a tree, and TreeMDIR in
O(b N2), where b is the number of bits in an integer.

3.6 Empirical Evaluation

In this section, we present an empirical evaluation of the performance and the accuracy of TreeMDIR. Evaluating the
accuracy of the algorithm is necessary because bounds B and R remove the guarantee of optimality. The test data was built as
follows: 1) generate a random tree with random labels (taken from a pool of 10 possible names so as to be non-unique); 2)
copy the tree; 3) delete a random number of nodes in the copy (both internal and leaf nodes); 4) rename a number of nodes in
the copy; 5) and finally, compare the two trees using THP and TreeMDIR.
The deletion operations in the middle of the tree correspond to
the restricted moves that TreeMDIR detects. In the interest of
full disclosure, however, we did not check that at least some of
the randomly generated test cases do not violate THP’s
assumption, namely, that if two nodes match, so do their
parents. Additional details can be found in Appendix A.

The length of an optimal edit script must necessarily be equal to
the sum of the number of deletion added to the number of
renaming operations, since there is a tree which lacks a certain
number of nodes, and it has a number of nodes which doesn't
exactly match any of the nodes in the other tree and each of
these nodes needs at least one edit operation to be taken into
account. Table 1 shows for different tree node sizes, the length

Table 1: Empirical evaluation of TreeMDIR (R = 100K)
THP TreeMDIR Case #

Nodes
Ops

Ops Time Ops Time

640 569 770 2 569 64 Rename

1280 857 1509 7 963 442

640 492 701 2 492 50 Delete

1280 1113 1397 5 1114 169

640 441 1076 3 1093 215 Move

1280 652 2407 9 735 471

640 288 712 2 288 65 Degree

1280 576 1194 10 576 248

 10

of the optimal edit script, the length of the edit script produced by THP (including the time), and the length of the edit script
produced by TreeMDIR (including the time). All times are in seconds.

On average, THP produced edit scripts sub-optimal by about 120%, whereas TreeMDIR produced edit scripts sub-optimal by
about 7%. In the worst case, THP produced a suboptimal edit script by about 400% whereas TreeMDIR's worst case
performance resulted in an edit script sub-optimal by around 150%. In both cases, accuracy deteriorated significantly when
nodes of large degree were allowed or when the trees were very different. TreeMDIR’s worst case was on a source tree of 640
nodes separated from its target by an optimal edit script of 440 operations containing both deletions and renames. In that case,
the returned edit script was 2.5 times longer than the optimal edit script. This behavior, however, was far from typical and
TreeMDIR produced good results with most trees, even when the optimal edit script involved 2/3 of the number of nodes.
Finally, with up to 85% of the nodes renamed (no deletions), TreeMDIR produced excellent edit scripts within less than 1%
of the optimal script length on trees of 640 nodes, providing us with the evidence that it can recover the mapping from tree
structure alone.

The improved match quality comes at a heavy runtime cost. With bound R set to a large value (100 K), TreeMDIR was about
60 times slower than THP on average and up to 200 times slower in the worst case. As predicted, setting bound R to a much
smaller value often produced only slightly sub-optimal edit scripts for a noticeably reduced running time: on a tree of 1280
nodes with an optimal edit script of 396 edits, THP produced an edit script of 1775 edit in 7 seconds. TreeMDIR (with
R=100K) produced an edit script of size 459 in 6 minutes, whereas TreeMDIR (with R = 5K) produced an edit script of size
479 in 4 minutes. Finally, we would like to point out that we have avoided premature optimization in our current
implementation to allow for easier debugging, so we think that the running time can be improved.

4. SYNCHRONIZING C&C VIEWS

We illustrate an application of the algorithm by incorporating it in a set of scalable tools to synchronize C&C views.

4.1 C&C View Differencing and Merging

We represent the structural information in a C&C view as a cross-linked tree structure that mirrors the hierarchical
decomposition of the system. The tree also includes information to improve the accuracy of the structural comparison. For
instance, the subtree of a node corresponding to a port or role includes all the port’s or the role’s involvements, i.e., all
components (and their ports) or connectors (and their roles) reachable from that port or role through attachments or bindings.
Cross-links refer back to the defining occurrence of each element and allow the user to navigate the architectural graph. We
also add to each element various properties (such as type information). The type information, if provided, is used to build a
matrix of incompatible elements that may not be matched.

A graph representing a C&C view can generally have cycles in it. Representing an architectural graph as a tree causes each
shared node in the architectural graph to appear several times in several subtrees, with cross-links referring back to their
defining occurrences. These redundant nodes greatly improve the accuracy of the tree-to-tree correction; however, they may
be inconsistently matched with respect to their defining occurrences (either in what they refer to, or in the associated edit
operations). We post-process the edit script to eliminate inconsistent matches using two passes. During the first pass, we
synchronize the strictly hierarchical information (e.g., components, connectors, ports, roles, and representations); during the
second pass, we synchronize attachments and bindings. The post-processing step is very simple, since at that point, the
mapping between the nodes in the two graphs is known.

4.2 Tool Support

Synchronization follows the following five-step process: 1) Setup the synchronization; 2) View and match types (optional); 3)
View and match instances; 4) View and modify the edit script (optional); 5) Confirm and apply the edit script (optional).
Because steps 1 and 5 are straightforward, we will only discuss steps 2-4 in more detail below.

In Step 2, matching the type structures between the two views (See Figure 2), currently a manual step, can produce semantic
information that speeds up the comparison, but is otherwise optional. It also reduces the amount of data entry for assigning
types to the elements to be created by the edit script.

 11

In Step 3, matching instances uses tree-to-tree correction to compare
the tree-structured data from the two views to find structural
differences and produce an edit script. It consists of: a) retrieve tree-
structured data from the first C&C view; b) retrieve tree-structured
data from the second C&C view; c) use the tree-to-tree correction
algorithm for unordered labeled trees to identify matches and
structural differences (classified as inserts, deletes, renames and
moves– See Figure 3), and obtain an edit script to make one view
more consistent with the other.

The differences found during structural matching are shown in each
tree by overlaying icons on the affected elements (see Figure 3). If an
element is renamed, the tool automatically selects and highlights the
matching element in the other tree; for inserted or deleted elements,
the tool automatically selects the insertion point by navigating up the
tree until it reaches a matched ancestor.

The tool provides various features to restrict the size of the trees and
therefore, significantly reduce the comparison time:

• Start at Component: the architect can have the trees
corresponding to the system decomposition start at certain
selected components to significantly reduce their sizes.

• Restrict Tree Depth: an architect is often interested, at least initially, in only comparing the top-level elements. So the
trees can be restricted to not include elements beyond a certain tree depth.

• Elide Elements: the architect can selectively exclude entire subtrees from comparison. Elision can be instance-based or
type-based, where all elements of a given type are excluded at once (e.g., only match components and ports). Elision is
temporary and does not generate any edit actions.

Various features give the user additional manual control:

• Forced matches: the architect can manually force a match
between two elements that cannot be structurally matched.

• Manual overrides: the architect can override any edit action
suggested by the comparison, e.g., cancel a delete action.

In Step 4, the edit script is used to produce a common supertree to
preview the merged view. This step can be used to supplement the
edit script with additional semantic information. For instance, the
user can assign types to elements to be created, change the types
of existing elements, or override automatically inferred types.
Finally, the user can cancel any unwanted edit actions.

Acme and ArchJava C&C Views. One specialized tool based on
this approach can synchronize a C&C view described in an
Architectural Description Language (ADL), Acme [GMW00],
with a C&C view retrieved from an implementation in ArchJava
[ACN02]. We chose Acme, since it is a general purpose ADL
with good tool support; we chose ArchJava since it allows
recovering a C&C view from an existing implementation.
Furthermore, both AcmeStudio [SG04], a domain-neutral
architecture modeling environment for Acme, and ArchJava's
development environment are Eclipse plugins [Ecl03], thus
reducing the tool integration barrier. We have completed the
functionality needed to make an Acme model incrementally

Figure 2: Matching Types Structures: the user manually
specifies arbitrary matches in a view that shows the type
hierarchies in both views flattened and shown side-by-
side: e.g., the user assigns any ArchJava port with only
provided methods the provideT Acme type defined in the
MVCFam, a Model-View-Controller style.

Figure 3: Structural comparison of architectural instances in
a C&C view retrieved from Acme and a C&C view retrieved
from ArchJava: component privateAphyds exists in ArchJava
but not in Acme; similarly, connector starConnector matches
a connector in ArchJava with an automatically generated
name (highlighted nodes).
Symbols: Match (), Insert (), Delete (), Rename ()

 12

consistent with an ArchJava implementation. We still need to change the ArchJava infrastructure to support making
incremental changes to an existing ArchJava implementation.

This problem domain clearly requires going beyond insertions and deletions to support renames and moves. There will always
be name differences of the same structural information between Acme and ArchJava. As an illustration, even if code
generation is used to automatically produce a skeleton implementation from an architectural model, connector names and role
names are lost during code generation (since ArchJava does not even name those elements). Identifying a renamed element in
one view as being deleted and then re-inserted, while producing structurally equivalent views, results in losing properties
about view elements that are crucial for architectural analyses (such style and type information, or other architectural
properties).

Matching the type structures in this context is particularly useful. Acme has a predicate-based type system: an element is an
instance of any type whose properties and rules it satisfies, and one type is a subtype of another if the predicate of the first
type implies the predicate of the second type. Implementation-level type systems such as the ones provided by C2SADL
[MOR+96] or ArchJava are more like programming-language type systems. We allow the user to manually specify arbitrary
matches between the two type hierarchies in the two systems in a view that shows the type hierarchies in both views flattened
and shown side-by-side (See Figure 2).

Matching type structures between Acme and ArchJava can take several forms:

• Match explicit types when possible: e.g., match an ArchJava component type with one or more Acme component types;

• Assign types to instances when no explicit type is available: e.g., assign types to individual ports on an ArchJava
component type;

• Assign types to special wildcards: e.g., using the ArchJava connector type ANY, one can assign the Acme type
CallReturnT to all ArchJava implicit connector instances; similarly, one can assign a specific Acme type to a port with
only required and no provided methods (e.g., useT) or with only provided and no required methods (e.g., provideT);

• Finally, infer types when possible: e.g., infer the types of implicit ArchJava roles based on Acme connection patterns
optionally defined for an architectural style: if the architect assigns types to components, ports and connectors, the role
type (e.g., providerT) is inferred based on the source component type (e.g., ANY), source port type (e.g., provideT), and
connector type (e.g., ANY).

Two Acme C&C Views. Another specialized tool can more generally synchronize two C&C views represented in Acme: one
view could correspond to a documented architecture, and the second could correspond to a C&C view recovered using any
architectural recovery technique (e.g., [YGS+04]), another version of the Acme model retrieved from a configuration
management system or to another variant in a product line.

Detecting moves across levels of the hierarchy is often helpful, since two architects will often differ in their use of hierarchy,
so that components expressed at the top level in one C&C view are nested within another component in some other C&C
view. For example, one architect may use hierarchy to hide certain decision decisions from some parts of the system [Par72],
but a designer may flatten the hierarchy for efficiency reasons. In an Acme system, this would correspond to replacing an
architectural element with its representation (a nested system).

5. CASE STUDY: APHYDS

We illustrate the first tool on an ArchJava implementation of a pedagogical circuit layout application, Aphyds [ACN02]. The
goal of this case study is to compare the architecture based on an informal drawing by the developer to the extracted
architecture from the ArchJava implementation.

 13

Building the Conceptual Architecture. The starting point was an
informal drawing (See Figure 4) of the desired conceptual
architecture which loosely followed the Model-View-Controller
style, with the views consisting of user interface elements and the
model consisting of a circuit database and a set of computational
components. The architect converted the informal diagram into a
C&C view (See Figure 5a): he created a single Acme component to
represent the circuitModel and added all the computational
components to a representation of circuitModel (See Figure 5b). In
the informal diagram, some arrows were meant to represent control
flow and others data flow. The architect did not want to distinguish
between data and control flow, so he converted all the arrows in the
original diagram to connectors in the Acme model.

Matching Types. The architect was interested in the control flow so
he assigned the provideT, useT, provreqT Acme types to ArchJava
ports which only provide, only require, or have both methods,
respectively; he assigned the generic TierNodeT Acme type to all
components and the CallReturnT Acme type to all the implicit
ArchJava connectors.

Matching Instances. The architect let the synchronization tool
compare the two views: he noticed a few renames, e.g., ArchJava
uses model instead of circuitModel, and in that representation,
ArchJava uses globalRouter instead of route (See Figure 3). The
Acme architect was the least sure about how he represented the
circuitModel component in Acme; facing a number of name
differences certainly did not raise his confidence level. So, he
decided to focus on the circuitModel Acme component instance
which was matched to the model ArchJava component instance.
Running the structural comparison showed that the Acme
representation for circuitModel had more connectors than the
ArchJava implementation, i.e., the tool only matched starConnector
in the middle of Figure 5, modulo renaming (See Figure 3). The
architect investigated this further and confirmed that the dataflow
arrows in the informal Aphyds boxes-and-lines diagram are not
actually in the implementation, so he accepted the edit actions to
delete the extra connectors from the Acme model (See Figure 5b).

Merging Instances. The architect next turned his attention to the
additional top level component, shown as privateAphyds in Figure
3). privateAphyds represents a private window port in ArchJava and
the corresponding glue. By looking at the control flow, the architect
decided to assign that subsystem the publish-subscribe style, so he
renamed component privateAphyds as window and renamed the
added connector to windowBus, and assigned it the EventBusT
connector type from the Publish-Subscribe style. The architect also
decided to use the same component names as the ArchJava implementation to avoid future confusion, so he let the tool apply
the edit script.

Discussion. Figure 6 shows the resulting C&C view after it has been manually laid out in AcmeStudio. Unlike the original
architect’s model (Figure 4), Figure 6 shows bi-directional communication taking place between components
placeRouteViewer and model; upon further investigation, the architect traced that to a callback. Since Aphyds is a multi-
threaded application with long running operations moved onto worker threads, the architect made note of the fact that

Figure 4: Original Java developer’s model.

Figure 5a: Original developer’s model in Acme.

Figure 5b: Acme representation for the circuitModel
component. Extra connectors are marked with ����.

 14

developers should not carelessly add callbacks from a worker
thread onto the user interface thread. Finally, the architect decided
to use the up-to-date C&C view with types and styles as the basis
for evolving the system in the future.

Performance Evaluation. On an Intel Pentium4® CPU 3GHz
with 1GB of RAM, comparing an Acme tree of around 650 nodes
with an ArchJava tree of around 1,150 nodes (as in Figure 3)
currently took under 2 minutes, whereas our implementation of
THP took around 30 seconds but produced less accurate results:
in particular, THP did not treat component privateAphyds as an
insertion and mismatched all the top-level components. In this
case study, the edit script consisted of over 300 renames, over 600
inserts and over 100 deletes.

6. CASE STUDY: DUKE’S BANK

We illustrate the tool to compare two C&C views using the
Duke’s Bank Application, a simple Enterprise JavaBeans (EJB) banking application created as a demonstration of EJB
functionality [EJB]. Duke’s Bank allows bank customers to access their account information and transfer balances from one
account to another. It also provides an administration interface for managing customers and accounts. In this case study, the
architect wanted to compare the architecture presented in the documentation with the actual architecture discovered by
instrumenting the running system as explained in [YGS+04].

The architect defined an Acme family (or style) and types based on the EJB specification. The architect converted a boxes-
and-lines diagram documented in a tutorial [J2EE] into an Acme
model (See Figure 7).

As mentioned earlier, the two views must be comparable without
any view transformation. Since the model recovered by
instrumentation includes each session and entity bean instance
created at runtime, the architect post-processed it to eliminate
duplicates and consolidate multiple instances into one instance
with a property indicating multiplicity (not shown) in Figure 8, to
match the documented architecture where each component
instance represents a number of run-time components.

The architect ran the synchronization tool between the two Acme
C&C views. The tool was able to match all the elements between
the two views, despite the large number of renames (automatically
generated by the recovery tool). Furthermore, the tool correctly
detected all the moves corresponding to replacing the EJB
container component in one view with its representation in the
other view (See Figure 9). The tool also enabled the architect to
quickly detect the additional undocumented port on
Account_Controller_Bean, which is communicating to the DB
component through a DbWriter connector. Figure 7 does not show
any connections between the session beans and the database,
which implies that all database access is through the entity beans,
as recommended by the EJB specification: the architect planned
to investigate this apparent violation using source code analysis
techniques.

Performance Evaluation. On an Intel Pentium4® CPU 3GHz
with 1GB of RAM, TreeMDIR took around 30 seconds to

Figure 6: Acme model with styles and types.

Figure 7: Duke’s Bank documented architecture in Acme;
the components were added inside the Acme
representation of an EJB container (shown as a thick
border).

Figure 8a: Duke’s Bank recovered architecture in Acme.

Figure 8b: Legend.

 15

compare the two Acme trees, one with around 330 nodes, and
one with around 390 nodes. In this case, the edit script
consisted of over 250 renames and over 50 inserts. As
expected, THP did not correctly identify any of the moved view
elements in this case.

7. RELATED WORK

In addition to the related work previously mentioned
throughout the paper, we point out a few related results.

Program Differencing. Tree-to-tree correction algorithms
have been used for finding differences between programs; most
approaches consider abstract syntax trees (ASTs) as ordered
trees with several polynomial time algorithms available (e.g.,
[SZ97]).

The Difference Extract (Dex) [RRL+04] includes an algorithm
that supports two kinds of move operations: a move that
changes parents (a match between nodes whose parents are not
matched to each other), and a move that changes order (a match
between two nodes with matching parents but different sibling ranks). This work is probably the closest to ours. Although
intended to solve the differencing problem for ordered trees, Dex includes a bottom-up algorithm which is vaguely similar to
THP as a subroutine that solves an unordered tree problem. Dex purports to support arbitrary moves, but the authors warn that
no guarantee can be given that the obtained edit script is optimal because Dex is only a heuristic. This is a reasonable choice
for Dex as it typically handles trees that are several orders of magnitude larger than our typical inputs.

There are several important differences between TreeMDIR and Dex, one being that Dex targets inputs where less than 1% of
the nodes are affected by edit operations (e.g., at most 200 changed nodes with tree sizes reaching 200,000 nodes or so). The
remaining nodes are matched exactly, including their labels. The labels or the semantic information associated with the nodes,
which represent the control flow and data of a computer program, have very few duplicates, if any. This enables a linear time
subroutine in Dex, called top-down matching, to identify 94% of the matches, and the remaining matches can be deduced by
other subroutines. This makes the running time of Dex grow linearly until around 100,000 nodes. In contrast, our
implementation of THP, while much slower than Dex, would still work even in the total absence of semantic information (i.e.,
using tree structure only) without significant impact on running time. Our implementation of TreeMDIR would see its running
time increase in practice, but it would still work. And if semantic information is only present on few nodes or is otherwise
incomplete, TreeMDIR would still be able to make full use of it. Typical inputs for our algorithms often have more than half
of their nodes renamed, and may have a large number of duplicates (for example if the only semantic information we have
about the nodes is their type) which would make the Dex top-down subroutine ineffectual, because it would lack the
information that lets it quickly match a node to another. Also, TreeMDIR provides the capability of forcing and preventing
matches manually, and can find the optimal matching within these user-imposed constraints, assuming these constraints are
consistent. This feature does not exist in Dex and we are not sure how difficult it might be to add it. Finally, Dex converts an
Abstract Syntax Graph (ASG) into a tree simply by removing non-tree edges corresponding to type information; through
empirical evaluation, adding sub-tree information greatly improves the accuracy of the tree-to-tree correction algorithm.

[CG97] proposes a heuristic solution with a worst-case O(N3) time that supports arbitrary move, copy and glue operations.
However, the approach was only tested on instances of a few hundred nodes where 80% or more of the nodes were matching
exactly (same semantic information) without any indication of how many of these labels were unique. Also the largest
instance over which the accuracy of the heuristic was tested did not contain more than six edit operations (including renames):
even on that, the heuristic returned a suboptimal answer in some cases (about 15% larger than the optimal edit script).

JDIFF [AOH04] bears some vague similarity to TreeMDIR, as hammock graphs can be turned into trees without loss of
information or structure. We think that it would be trivial to add the ability to prevent matches to JDIFF, but adding the ability
to force matches would be substantially more complicated. JDIFF is faster than TreeMDIR since it relies on matching labels
exactly, but it loses the ability to detect renames, one of our requirements.

Figure 9: Comparison of the documented and the recovered
C&C views for the Duke’s Bank application.
Symbols: Match (), Insert (), Delete (), Rename ()

 16

Tree Alignment vs Tree Edit. Tree differences can be represented using tree alignment instead of tree edit distance. Each
alignment of trees actually corresponds to a restricted tree edit in which all the insertions precede all the deletions. There are
algorithms based on tree alignment that can detect unbounded deletes (e.g., [JWZ95]). Another advantage of tree alignment is
that it can easily generalize to more than two trees, something not easily done with tree edit distance. But the memory
requirements of such algorithms are prohibitive for the tree sizes and branching factors that are typical of our inputs: the
memory requirements would typically be several orders of magnitude higher than those of TreeMDIR– O(22d N 2) where d is
the maximum degree of the tree. Due to the prohibitive space requirements, there's no need to prefer tree alignment to an
algorithm based on tree edit distance.

8. CONCLUSIONS

In this paper, we presented a novel algorithm for finding differences and merging tree-structured data. Given two tree-
structured representations, our algorithm identifies, in addition to inserts, deletes, and renames, restricted moves across levels
of the hierarchy. The algorithm also supports manually forcing and preventing matches between view elements.

We also presented tools that use the tree-to-tree correction algorithm to compare and merge architectural component-and-
connector (C&C) views. Finally, we provided an empirical evaluation of the algorithms and tools with case studies on real
programs. The case studies show the practicality of the algorithm and the tool, as they enabled us to find interesting
architectural divergences in both cases.

9. ACKNOWLEDGMENTS
This work was supported in part by NASA cooperative agreements NCC-2-1298 and NNA05CS30A, NSF grant CCR-
0204047, a 2004 IBM Eclipse Innovation Grant, the Army Research Office grant number DAAD19-02-1-0389 entitled
“Perpetually Available and Secure Information Systems”, and was performed as a joint research project in Strategic
Partnership between Carnegie Mellon University and Jet Propulsion Laboratory.

10. REFERENCES

[AAG05] Abi-Antoun, M., Aldrich, J., Garlan, D., Schmerl, B., Nahas, N., and Tseng, T. Improving System Dependability by
Enforcing Architectural Intent. In WADS, 2005.

[AC94] Ammann, M. M., and Cameron, R.D. Inter-Module Renaming and Reorganizing: Examples of Program
Manipulation-in-the-Large. In Proc. ICSM, 1994.

[ACN02] Aldrich, J., Chambers, C. and Notkin, D. ArchJava: Connecting Software Architecture to Implementation. In Proc.
ICSE, 2002.

[AOH04] Apiwattanapong, T., Orso, A. and Harrold, M.J. A Differencing Algorithm for Object-oriented Programs. In Proc.
Automated Software Engineering, 2004.

[AP03] Alanen, M. and Porres, I. Difference and Union of Models. In Proc. «UML» 2003, 2003.

[CBB+03] Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and Stafford, J. Documenting
Software Architecture: View and Beyond, Addison-Wesley, 2003.

[CCG+03] Chen, P., Critchlow, M., Garg, A., van der Westhuizen, C. and van der Hoek, A. Differencing and Merging within
an Evolving Product Line Architecture. In Proc. PFE-5, 2003.

[CFS+04] Conte, D., Foggia, P., Sansone, C., Vento, M. Thirty years of graph matching in pattern recognition. In Int'l J.
Pattern Recognition and Artificial Intelligence, 18(3), 2004.

[CG97] Chawathe, S. and Garcia-Molina, H. Meaningful change detection in structured data. In Proc. ACM SIGMOD, 1997.

[DBD+04] Dickinson, P.J., Bunke, H., Dadej, A., and Kraetzl, M. Matching graphs with unique node labels. In Pattern
Analysis & Applications. 7(3), pp. 243- 254, 2004.

 17

[DHT02] Dashofy, E. M., van der Hoek, A., and Taylor, R. N. An infrastructure for the rapid development of XML-based
architecture description languages. In Proc. ICSE, 2002.

[Ecl03] Object Technology International, Inc. Eclipse Platform Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

[EJB] Sun Microsystems. Enterprise JavaBeans. http://java.sun.com/products/ejb/docs.html

[GMW00] Garlan, D., Monroe, R., and Wile, D. Acme: Architectural Description of Component-Based Systems. In
Foundations of Component-Based Systems, Cambridge University Press, 2000.

[J2EE] Sun Microsystems. J2EE Tutorials. Duke’s Bank. http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank2.html

[Jim05] Jimenez, A. M. Change Propagation in the MDA: A Model Merging Approach. M.S. Thesis. University of
Queesland, 2005.

[JWZ95] Jiang, T., Wang, L., and Zhang, K., Alignment of trees— an alternative to tree edit. In Theoretical Computer
Science, 143:137--148, 1995.

[KPS+99] Krikhaar, R., Postma, A., Sellink, A., Stroucken, M., Verhoef, C. A Two-Phase Process for Software Architecture
Improvement. In Proc. ICSM, 1999.

[MDR05] Muccini, H., Dias, M. and Richardson, D. Towards Software Architecture-based Regression Testing. In WADS,
2005.

[OWK03] Ohst, D., Welle, M., and Kelter, U. Differences between Versions of UML Diagrams. In Proc. FSE, 2003.

[Par72] Parnas, D. On the Criteria for Decomposing Systems into Modules. In Communications ACM 15 (12), 1972.

[RHM+04] Roshandel, R., van der Hoek, A., Mikic-Rakic, M. and Medvidovic, N. Mae A System Model and Environment
for Managing Architectural Evolution. In TOSEM, 2004.

[RRL+04] Raghavan, S., Rohana, R., Leon, D., Podgurski, A. and Augustine, V. Dex: a semantic-graph differencing tool for
studying changes in large code bases. In Proc. ICSM, 2004.

[SG04] Schmerl, B. and Garlan, D. AcmeStudio: Supporting Style-Centered Architecture Development. In ICSE, 2004.

[SWZ+94] Shasha, D., Wang, J., Zhang, K., Shih, F. Exact and approximate algorithms for unordered tree matching. In IEEE
Trans. Sys. Man. Cyber. 24(4): 668-678, 1994.

[SZ97] Shasha, D., Zhang, K. Approximate Tree Pattern Matching, in Pattern Matching Algorithms, Apostolico, A. and Galil,
Z., Eds., Oxford University Press, 1997.

[THP05] Torsello, A., Hidovic-Rowe, D. and Pelillo, M. Polynomial-Time Metrics for Attributed Trees. In IEEE Trans.
Pattern Analysis and Machine Intelligence, 2005.

[WDC03] Wang, Y., Dewitt, D.J. and Cai, J.-Y. X-Diff: An Effective Change Detection Algorithm for XML Documents. In
Proc. 19th Int’l Conf. Data Eng., 2003.

[WF74] Wagner, R.A. and Fischer, M.J. The string to string correction problem. Journal of the ACM, 21:168--173, 1974.

[YGS+04] Yan, H., Garlan, D., Schmerl, B., Aldrich, J. and Kazman, R. DiscoTect: A System for Discovering Architectures
from Running Systems. In ICSE, 2004.

[ZJ94] Zhang, K., and Jiang, T. Some MAX SNP-hard results concerning unordered labeled trees. In Information Processing
Letters, 49, pp. 249–254, 1994.

 18

Appendix A

The test cases were built as follows:

1) generate a random tree with random labels (taken from a pool of 10 possible names so as to be non-unique);

2) copy the tree;

3) delete a random number of nodes in the copy (both internal and leaf nodes);

4) rename a number of nodes in the copy;

5) and finally, compare the two trees using THP and TreeMDIR.

TreeMDIR was run once with bound R = 100K, and another time with bound R = 5K. Bound R was left unchanged from its
default value in all runs.

This appendix contains the test results.

Table 1: List of abbreviations

Abbreviation Description
N Number of Nodes
R Number of Renames
D Number of Deletes
ID% Percentage of Internal Deletes
DE Tree Degree
O Number of Optimal Edit Operations
AE Actual Number of Edit Operations
S% Percentage by which the generated edit script is suboptimal
T Running time (in seconds)

F Slow down factor (compared to THP)

Table 2: List of tables.

Table 2 Testing Renames
Table 3 Testing Deletes
Table 4 Testing Internal Deletes
Table 5 Testing Node Degree
Table 6 Summary

 19

Table 2: Testing Renames.

THP TreeMDIR (R = 100K) TreeMDIR (R = 5K) N R O
AE S% T AE S% T F AE S% T F

320 0 96 350 265% 0.594 114 19% 17.781 29 114 19% 15.078 24

320 3 99 460 365% 0.438 143 44% 34.625 78 143 44% 16.265 36

320 6 102 367 260% 0.484 112 10% 19.11 38 112 10% 16.609 33

320 9 105 526 401% 0.484 109 4% 27.109 55 109 4% 16.141 32

320 12 108 240 122% 0.484 109 1% 14.625 29 109 1% 14.563 29

320 19 115 326 183% 0.469 116 1% 15.593 32 116 1% 15.141 31

320 25 121 402 232% 0.484 125 3% 16.735 34 125 3% 15.843 32

320 35 131 473 261% 0.5 138 5% 31.672 62 138 5% 16.297 32

320 44 140 336 140% 0.469 141 1% 14.296 29 141 1% 14.266 29

320 57 153 368 141% 0.484 158 3% 19.234 39 158 3% 17.329 35

320 73 169 437 159% 0.453 171 1% 26.375 57 171 1% 17.265 37

320 92 188 360 91% 0.485 188 0% 16.437 33 188 0% 15.688 31

320 118 214 433 102% 0.469 214 0% 16.156 33 214 0% 15.485 32

320 150 246 480 95% 0.468 250 2% 25.125 53 250 2% 16.563 34

320 188 284 516 82% 0.453 295 4% 32.375 70 295 4% 17.391 37

640 0 192 895 366% 2.032 309 61% 67.312 32 309 61% 56.766 27

640 6 198 586 196% 1.75 221 12% 71.172 40 221 12% 64.75 36

640 12 204 707 247% 1.875 216 6% 85.219 44 216 6% 64.547 33

640 19 211 789 274% 1.906 239 13% 80.563 41 239 13% 64 33

640 25 217 827 281% 1.907 239 10% 140.421 73 239 10% 71.422 36

640 38 230 1058 360% 1.906 266 16% 136.812 71 266 16% 64.063 33

640 51 243 883 263% 1.907 248 2% 88.687 46 248 2% 65.922 34

640 70 262 817 212% 1.968 310 18% 126 63 310 18% 64.141 32

640 89 281 1041 270% 1.828 323 15% 158.297 86 323 15% 70.797 38

640 115 307 634 107% 1.829 307 0% 74.578 40 307 0% 65.484 35

640 147 339 983 190% 1.782 400 18% 86.64 48 400 18% 61.906 34

640 185 377 802 113% 1.984 405 7% 109.125 54 405 7% 74.422 37

640 236 428 924 116% 1.906 445 4% 109.579 56 445 4% 65.735 33

640 300 492 994 102% 1.891 529 8% 98.609 51 529 8% 65.625 34

640 377 569 1030 81% 1.875 591 4% 95.765 50 591 4% 69.141 36

1280 0 384 1879 389% 8.14 552 44% 446.141 54 552 44% 260.641 31

1280 12 396 1879 374% 7.141 408 3% 341.891 47 408 3% 264.39 36

1280 25 409 2111 416% 7.125 413 1% 334.703 46 413 1% 259.375 35

1280 38 422 1689 300% 7.672 775 84% 431.578 55 775 84% 252.907 32

1280 51 435 2095 382% 7.11 471 8% 419.687 58 471 8% 281.922 39

1280 76 460 2097 356% 7.063 483 5% 454.547 63 483 5% 256.687 35

1280 102 486 2041 320% 7.469 628 29% 390 51 628 29% 261.328 34

1280 140 524 1891 261% 7.125 739 41% 360.391 50 739 41% 255.875 35

1280 179 563 2138 280% 7.109 747 33% 596.25 83 747 33% 266.203 36

1280 230 614 1792 192% 7.422 1306 113% 357.156 47 1310 113% 257.735 34

1280 294 678 1930 185% 7.297 849 25% 344.875 46 849 25% 246.313 33

1280 371 755 1819 141% 7.266 867 15% 427.359 58 867 15% 266.625 36

1280 473 857 2114 147% 7.172 875 2% 480.328 66 875 2% 279.672 38

1280 601 985 1831 86% 8.359 1058 7% 413.969 49 1058 7% 259.891 30

1280 755 1139 2133 87% 7.235 1166 2% 468.797 64 1166 2% 292.422 39

 20

Table 3: Testing Deletes.

THP TreeMDIR (R = 100K) TreeMDIR (R = 5K) N D O
AE S% T AE S% T F AE S% T F

320 0 128 128 0% 0.625 128 0% 19.578 30 128 0% 19.609 30

320 3 131 131 0% 0.985 131 0% 19.859 19 131 0% 19.891 19

320 6 134 134 0% 0.593 134 0% 19.157 31 134 0% 19.171 31

320 9 137 137 0% 0.594 137 0% 19.031 31 137 0% 19.047 31

320 12 140 140 0% 0.594 140 0% 20.453 33 140 0% 20.485 33

320 19 147 147 0% 0.562 147 0% 19.609 34 147 0% 19.625 34

320 25 153 153 0% 0.579 153 0% 18.078 30 153 0% 18.125 30

320 35 163 166 2% 0.547 163 0% 16.765 30 163 0% 16.781 30

320 44 172 184 7% 0.547 172 0% 17.719 31 172 0% 17.75 31

320 57 185 190 3% 0.484 185 0% 15.922 32 185 0% 15.938 32

320 73 201 215 7% 0.453 201 0% 15.469 33 201 0% 15.5 33

320 92 220 276 25% 0.437 220 0% 13.922 31 220 0% 13.938 31

320 118 246 266 8% 0.406 246 0% 11.391 27 246 0% 11.453 27

320 150 278 372 34% 0.344 278 0% 10.016 28 278 0% 10.031 28

640 0 256 256 0% 2.328 256 0% 80 33 256 0% 79.578 33

640 6 262 262 0% 2.422 262 0% 79.672 32 262 0% 79.672 32

640 12 268 268 0% 2.812 268 0% 76.781 26 268 0% 76.813 26

640 19 275 275 0% 2.406 275 0% 71.328 29 275 0% 71.453 29

640 25 281 281 0% 2.297 282 0% 79.563 34 282 0% 79.703 34

640 38 294 294 0% 2.282 294 0% 76.859 33 294 0% 76.453 33

640 51 307 309 1% 2.219 307 0% 74.343 33 307 0% 74.25 32

640 70 326 331 2% 2.531 326 0% 72.953 28 326 0% 72.953 28

640 89 345 352 2% 2.125 345 0% 67.907 31 345 0% 67.437 31

640 115 371 384 4% 2.203 371 0% 67.594 30 371 0% 67.578 30

640 147 403 440 9% 1.844 403 0% 64.047 34 403 0% 64.093 34

640 185 441 495 12% 2.031 441 0% 56.375 27 441 0% 56.344 27

640 236 492 745 51% 1.562 493 0% 50.469 31 493 0% 50.609 31

640 300 556 806 45% 1.313 556 0% 42.703 32 556 0% 42.484 31

1280 0 512 512 0% 10.81 513 0% 330.953 30 513 0% 330.719 30

1280 12 524 524 0% 10.41 525 0% 322.734 30 525 0% 322.329 30

1280 25 537 537 0% 10.59 537 0% 308.75 28 537 0% 308.235 28

1280 38 550 553 1% 10.3 550 0% 322.015 30 550 0% 321.469 30

1280 51 563 567 1% 10.3 563 0% 313.907 29 563 0% 308.578 29

1280 76 588 589 0% 10.19 588 0% 301 29 588 0% 299.766 28

1280 102 614 619 1% 10 614 0% 289.672 28 614 0% 289.422 28

1280 140 652 661 1% 8.625 654 0% 285.172 32 654 0% 285.14 32

1280 179 691 699 1% 9.25 691 0% 278.86 29 691 0% 278.657 29

1280 230 742 773 4% 7.765 743 0% 274.485 34 743 0% 274.609 34

1280 294 806 873 8% 8.5 806 0% 243.625 28 806 0% 243.64 28

1280 371 883 1030 17% 6.781 883 0% 230.453 33 883 0% 230.016 33

1280 473 985 1379 40% 6.094 986 0% 200.203 32 986 0% 200.015 32

1280 601 1113 1435 29% 5.734 1115 0% 168.094 28 1115 0% 167.438 28

 21

Table 4: Testing Internal Deletes.

THP TreeMDIR (R = 100K) TreeMDIR (R = 5K) N ID% O
AE S% T AE S% T F AE S% T F

320 0 128 128 0% 0.625 128 0% 21.14 33 128 0% 21.125 33

320 1 131 135 3% 0.61 131 0% 21.265 34 131 0% 21.281 34

320 2 134 244 82% 0.625 134 0% 21.032 33 134 0% 20.734 32

320 3 137 213 55% 0.625 137 0% 19.234 30 137 0% 19.282 30

320 4 140 193 38% 0.609 140 0% 18.875 30 140 0% 18.859 30

320 6 147 278 89% 0.579 149 1% 26.031 44 149 1% 23.015 39

320 8 153 407 166% 0.563 154 1% 24.469 42 154 1% 22.062 38

320 11 163 409 151% 0.562 192 18% 23.922 42 192 18% 18.922 33

320 14 172 552 221% 0.531 176 2% 42.906 80 176 2% 26.016 48

320 18 185 524 183% 0.531 200 8% 50.328 94 200 8% 23.328 43

320 23 201 510 154% 0.453 308 53% 57.532 126 308 53% 19.265 42

320 29 220 523 138% 0.641 350 59% 51.25 79 350 59% 19.578 30

640 0 256 256 0% 2.437 256 0% 78.828 31 256 0% 79.032 31

640 1 262 294 12% 2.843 262 0% 75.969 26 262 0% 76.031 26

640 2 268 433 62% 2.516 268 0% 80.609 31 268 0% 79.875 31

640 3 275 409 49% 2.485 275 0% 79.5 31 275 0% 79.187 31

640 4 281 476 69% 2.64 282 0% 78.782 29 282 0% 78.687 29

640 6 294 484 65% 2.437 296 1% 90.672 36 296 1% 83.656 33

640 8 307 915 198% 2.344 307 0% 112.234 47 307 0% 91.813 38

640 11 326 1106 239% 2.391 392 20% 109.062 45 392 20% 83.047 34

640 14 345 902 161% 2.516 394 14% 174.125 68 394 14% 89.781 35

640 18 371 848 129% 2.015 415 12% 199.297 98 415 12% 89.203 43

640 23 403 1092 171% 2.031 932 131% 202.516 99 933 132% 82.031 39

640 29 441 1033 134% 1.844 612 39% 240.921 130 614 39% 76.875 41

1280 0 512 512 0% 11.86 512 0% 316.453 26 512 0% 316.641 26

1280 1 524 666 27% 10.03 524 0% 328.969 32 524 0% 323.813 31

1280 2 537 675 26% 10.19 537 0% 329.547 31 537 0% 326.39 31

1280 3 550 892 62% 9.906 550 0% 340.797 33 550 0% 330.359 32

1280 4 563 1782 217% 11.27 563 0% 400.562 35 563 0% 342.172 29

1280 6 588 1106 88% 9.797 589 0% 345.984 34 589 0% 337.547 33

1280 8 614 1241 102% 9.578 618 1% 442.375 45 618 1% 340.641 35

1280 11 652 2153 230% 9.203 685 5% 515.969 55 685 5% 361.516 38

1280 14 691 1911 177% 9.437 765 11% 706.313 74 765 11% 374.25 39

1280 18 742 2246 203% 8.437 2328 214% 627.922 73 2328 214% 323.406 37

1280 23 806 2193 172% 8.188 1195 48% 1028.66 125 1195 48% 365.125 44

1280 29 883 2112 139% 7.687 1469 66% 1026.74 133 1477 67% 360.187 46

 22

Table 5: Testing Degree.

THP TreeMDIR (R = 100K) TreeMDIR (R = 5K) N D O
AE S% T AE S% T F AE S% T F

320 2 144 392 172% 0.578 144 0% 17.141 29 144 0% 17.203 29

320 3 144 222 54% 0.594 144 0% 21.687 36 144 0% 21.453 35

320 4 144 261 81% 0.656 150 4% 44.047 66 150 4% 23.797 35

320 5 144 258 79% 0.657 144 0% 68.406 103 144 0% 26.156 39

320 6 144 252 75% 0.64 145 1% 109.86 171 146 1% 27.531 42

320 7 144 193 34% 0.625 144 0% 98.547 157 144 0% 25.406 40

320 8 144 278 93% 0.609 151 5% 82 134 151 5% 22.328 36

320 9 144 480 233% 0.578 144 0% 100.172 172 144 0% 25.766 44

320 10 144 235 63% 0.609 144 0% 60.938 99 144 0% 23.515 38

320 11 144 222 54% 0.891 144 0% 113.641 127 144 0% 24.453 26

320 12 144 216 50% 0.562 146 1% 80.875 143 146 1% 23.469 41

320 13 144 403 180% 0.593 144 0% 70.594 118 144 0% 23.125 38

320 14 144 356 147% 0.61 278 93% 67.656 110 278 93% 20.375 32

640 2 288 693 141% 2.063 289 0% 62.969 30 289 0% 63.156 30

640 3 288 488 69% 2.656 288 0% 75.094 27 288 0% 74.578 27

640 4 288 804 179% 2.266 393 36% 204.531 89 393 36% 85.188 37

640 5 288 699 143% 2.625 318 10% 345.766 131 318 10% 112.109 42

640 6 288 632 119% 2.609 289 0% 272.25 103 289 0% 91.328 34

640 7 288 988 243% 2.718 329 14% 306.282 112 329 14% 88.922 32

640 8 288 1007 250% 2.547 296 3% 370.031 144 296 3% 92.203 35

640 9 288 680 136% 2.609 380 32% 337.532 128 380 32% 97.437 36

640 10 288 1022 255% 2.594 320 11% 293.656 112 320 11% 87.219 33

640 11 288 398 38% 2.766 288 0% 315.109 113 288 0% 94.922 33

640 12 288 516 79% 2.593 300 4% 442.844 170 300 4% 106.954 40

640 13 288 546 90% 2.578 294 2% 255.265 98 294 2% 91.11 34

640 14 288 750 160% 2.578 394 37% 320.391 123 394 37% 87.843 33

1280 2 576 1571 173% 8.985 578 0% 246.937 26 578 0% 246.781 26

1280 3 576 1434 149% 9.062 576 0% 309.172 33 576 0% 294.313 31

1280 4 576 1550 169% 9.484 578 0% 863.906 90 578 0% 386.375 40

1280 5 576 1515 163% 9.641 600 4% 1293.05 133 600 4% 390.156 39

1280 6 576 1296 125% 10.61 579 1% 1527.69 143 579 1% 414.984 38

1280 7 576 954 66% 10.06 579 1% 1517.95 150 581 1% 416.703 40

1280 8 576 2327 304% 9.703 576 0% 1420.03 145 576 0% 397.813 40

1280 9 576 2233 288% 9.235 2154 274% 1208.19 130 2154 274% 362.188 38

1280 10 576 1194 107% 9.515 687 19% 1316.38 137 687 19% 360.516 37

1280 11 576 1021 77% 9.375 586 2% 1173.48 124 586 2% 361.86 38

1280 12 576 1160 101% 9.593 722 25% 1324.64 137 683 19% 352.625 36

1280 13 576 1186 106% 9.516 705 22% 1348.83 141 705 22% 374.453 38

1280 14 576 1988 245% 9.375 694 20% 1688.02 179 697 21% 404.672 42

 23

Table 6: Summary.

THP TreeMDIR (R = 100K) TreeMDIR (R = 5K)

 Sub-Optimal % Sub-Optimal % Slowdown
Factor

Sub-Optimal
%

Slowdown
Factor

Average 121% 13% 61.86 13% 34
Min 0% 0% 19.16 0% 19
Max 416% 274% 179.06 274% 48

