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Abstract
People express their opinions on blogs and other social media platforms. As per

a recent estimate, interactions on Twitter alone result in over 500 million tweets per
day. The magnitude of this data enables new applications of opinion mining that
have previously remained challenging e.g., finding users’ stance (as in pro or con)
on topics of interest. However, one of the major barriers to utilizing this amount of
data is the cost of hand-labeling examples for machine learning. This barrier is even
more apparent in stance mining, as opinions can change overtime and can be about
any issues. To reduce the need for hand-labeled data by taking the complex interac-
tions of social media users and their social influence into account, this dissertation
develops semi-supervised methods for stance mining.

Most existing studies on stance mining take a simplistic view that assumes a
sentence (like a Tweet) holds a perspective that is independent of the context and
the author’s network position. This approach to stance learning leaves three cru-
cial unresolved challenges. First, how do we train stance-learning models on new
topics with minimal labeling effort? Discussion topics change fast and new issues
emerge, making it difficult to reuse prior labeled data. However, artifacts of social
networks like hashtags can give noisy signal about the stance of users. To extract
the signal from noise, I develop methods to find useful hashtags by exploiting how
users in the pro-group and the anti-group use popular hashtags. Second, how can we
use multiple interaction modalities for stance mining? Users opinions are evident in
different types of interactions, e.g. tweeting, retweeting or liking. I develop a semi-
supervised method based on co-training that jointly trains multiple stance classifiers
using different interaction modalities resulting in a better stance prediction model.
Third, how to leverage users networks for stance prediction? The current approaches
to stance learning ignore important network factors such as the interactions of social
media users (e.g., a persons preference can also be known from his friends prefer-
ences). I use the network alignment as one of the training signals to train the stance
classifiers.

My thesis brings a new direction to the stance learning problem that is grounded
in social theory, is more amenable to analyzing activities on social media, and al-
lows effective learning from multiple types of interactions without requiring large
amounts of labeled data. By labeling only a few hashtags used in Twitter conver-
sations on a few controversial topics, my approach allows for predicting both the
stance of users (as in whether they are pro or con a topic) by over 80% accuracy and
the stance in conversations (as in whether they favor or deny others posts) by over
70% accuracy.
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Chapter 1

Introduction

People express their opinions on social media platforms. Automated ways to categorize views of
people in such user generated corpora is of immense value. In particular, in polarized communi-
ties and echo-chambers which are increasingly more common these days, mining users opinion
can enable situational awareness and help to bridge the communities. To mine social-media for
opinions, stance learning – which involves finding people’s opinion about a topic of interest –
provides a natural way to model social interactions, therefore lending itself to study users’ opin-
ions on controversial topics. So it’s not a surprise that stance learning has become an active area
of research [49, 59, 91].

However, most existing study on stance takes a simplistic view that assumes a ‘sentence’ (like
a Tweet) holds a perspective that is independent of the context and the author. This approach to
stance learning ignores the complex activities and interactions of social media users (see Fig.
1.1). Bois et al. [31] (page 163) defines the act of stance as ‘a public act by a social actor,
achieved dialogically through overt communicative means, of simultaneously evaluating objects,
positioning subjects (self and others), and aligning with other subjects... ’. In the same spirit, I
approach stance in a broader context of social action wherein authors interact on social-media to
align themselves with other stance takers. This approach to stance mining allows to combine the
technique’s of different approaches to stance mining, and paves way to a holistic approach that
uses the multi-modal nature of user interactions on social media platforms.

Two common approaches to stance learning are natural language processing (NLP) based
and network based. In Fig. 1.2, we show the NLP approach to stance mining, and in Fig.
1.3 we show a result from a network based approach (adapted from [25], Fig. 1). The NLP
based approaches consider stance learning as a supervised natural language processing tasks,
and uses a dictionary definition of stance as ‘a mental or emotional position adopted with respect
to a proposition, a person, an idea, etc’1. The tasks often come with three different but related
learning goals: 1) stance from text (e.g. a twitter post about a single topic), 2) stance about a
topic from multiple tweets (could come from a single source e.g. a single user), and c) stance on
multiple topics from a single text message. These supervised approaches to stance mining have
gained significant attention [59, 90, 91] but are challenging, as getting over 80% accuracy on a 2
class (pro/con) stance classification is difficult [91].

1https://www.thefreedictionary.com/stance
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Figure 1.1: On the left, we show the Twitter profile of Cenk Uygur highlighting his ‘Followers’
and ‘Followings’. On the right, we show the activities related to one on his Tweets highlight-
ing the ‘Retweets’, ‘Likes’ and ‘Replies’. As we can observe, the interactions in Twitter are
inherently multi-modal which includes posts (often text based), networks (like follower, follow-
ings, retweets, likes etc.) and conversations (such as replies and quotes). However, most current
stance learning models only consider one of the modalities, i.e. either the text or the networks for
stance mining. This thesis explores approaches to learn stance of social-media users from their
multi-modal interactions.

In contrast, the network based approaches commonly use a semi-supervised method where
only the stance of a very few users are known (or hand labeled). Based on the stance of the
known users, stance of other users could be determined. This approach to stance mining has lead
to better results achieving over 80% accuracy (see [80] results). However, often networks used in
such approaches is created by finding users’ involvement in certain interactions. For example, in
Fig. 1.3, the network is composed on retweets based interactions. Often only type on interaction,
like retweets networks, are only composed of a small fraction of users that are in the dataset, and
in our experience, the fraction of users which are not in the retweets network could be even lesser
than 50%. As the network based model is not able to predict the stance of many users, this limits
the generalizability of these learning models. This limitation also affects the further downstream
tasks like analyzing community polarization.

However, the two approaches to stance learning, i.e., stance from users’ texts and stance
based on users’ networks, are not entirely independent. In fact, if we transform the main goal of
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Figure 1.2: We show the common natural language processing (NLP) approaches to stance learn-
ing tasks. As shown, the general approach is to have a text (e.g., from a Twitter post) and the
task is to infer the stance with respect to a topic.

a research to learning the stance of users’ (and not text or retweet nodes), users’ posts and users’
networks are just two types of interactions users engage in. The preference to certain entities
(as in pro stance about a topic or a person), leads to specific pattern in the way users engage
on social-media platforms. For example, if one likes ‘Cenk Uygur’, it is natural for the user to
follow Cenk Uygur and retweet Cenk Uygur’s tweets. Another person, that does not favor ‘Cenk
Uygur’, he or she could still follow ’Cenk Uygur’, but is less likely to retweet Cenk Uygur’s
tweets and, perhaps, is more likely to engage in ‘quoting’ and ‘replying’ to his tweets. Therefore,
we can rethink stance mining as a multi-modal problem where text based posts, networks and
conversations (as in replying/quoting) are just different modes of conveying ones’ stance. In
fact, some of these modalities could bring complementary information about users’ stance that
could not be possible by just considering at one modality. We use these complementary views to
propose learning models that better learn the stance of social-media users.

Stance learning systems should not focus on one particular interaction but rather consider all
sets of interactions that could reveal users’ stance. This thesis takes the multi-modality of stance
as the central theme and look at the various ways these modalities can be used to develop better
stance learning models (see Fig. 1.4). Unlike prior work, our approach positions users as central
and their alignment as a crucial to learning stance. This approach, thus, brings a new direction to
the stance learning problem which is grounded in theory and is more amenable to conversations
on social-media. This research can be applied to improving the understanding of community
polarization and partisanship.

Next, I provide some background on stance taking, and related prior work in which I also
describe the existing and the new dataset that I use in the research. Then I summarize the main
contributions of this these and the summary of the chapters.
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Figure 1.3: We show a result based on a network based approach (adapted from [25], Fig. 1, blue
dots in the right figure are left leaning users and red dots are right leaning users).

Figure 1.4: Proposed stance learning idea: The text-based approach (on the left, bottom) consider
stance learning as a supervised machine learning task, whereas the network-based approach (on
the left, top) commonly use a semi-supervised machine learning method. Both methods have
their limitations. Because of the supervised nature, text approaches require a hand-labeled dataset
which is expensive to build. The network-based approaches ignore the isolates (users not engaged
in the interaction that was used to create the network), which could be a sizeable fraction of the
dataset. By taking advantage of their strengths and applying the idea to a more realistic network
that includes isolates (on the right), this thesis combines these two approaches.
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1.1 Background
People express their opinion on different topics on social media platforms like Twitter and Face-
book. Algorithms have been developed to automatically extract peoples opinion form these vast
corpora of user-generated data. In particular, sentiment mining was an extremely popular field
of research in the last decade [78]. However, sentiment mining aggregates users’ opinions. In
sentiment mining, we are interested in finding general perception of an entity. For example, the
company ‘Apple’ may want to find about their brand perception i.e. whether they are generally
discussed in a positive way or or a negative way. In such tasks, we first obtain a large set of data,
e.g., by searching the social media platforms for the term ‘Apple’ and then obtaining a sentiment
score for each data item. Finally, we average the scores obtained to get the overall perception.
This approach of analysis is beneficial in tasks like learning about a brand and measuring a prod-
uct’s rating. However, there are other tasks, in which we are interested in information at a more
granular level. For example, we might be interested in finding the perception of users about a
party or a political candidate so that we can send targeted advertisements. Such tasks are better
approached by evaluating opinions at the level of users. This user level aspect is further high-
lighted in an unrelated task, such as when the goal is to understand the view of users engaged
in discussion on rumors. In discussing such controversial topics, people take sides and are in-
vested in the discussions at various levels. As described by Kiesling et al. [60], there are three
dimensions to analyzing conversations on social media a) Affect b) Alignment c) Investment.
Sentiment mining stays at the level of affect. In stance learning, we consider affect and align-
ment. In conversations on social media, there is yet another aspect of ‘Investment’. In this work,
I tend to discount ‘Investment’ as the prime application of this work is to understand polarization
on social-media about a controversial topic. When it comes to controversial topics, people take
a side, i.e. either they are either pro or they are anti.

In this work, we focus in aligning users to better evaluate their stance. This approach closely
follows the definition of Stance proposed bu Prof. Du Bois [31], who argues that stancetaking
is the public act of simultaneously evaluating objects, positioning subjects and aligning with
other subjects. This definition is illustrated in a Fig. 1.5 which is described as ‘The stance
triangle’. As shown in the figure, alignment (or dis-alignment) happens as users display similarity
and difference with respect to their evaluations. As shown by Joseph et al. in Constance [59],
in addition to a tweet, providing more context relevant information (e.g.more relevant tweets)
improves the agreement between annotators who are labeling stance of users. Thus, it is natural
to expect that other relevant interactions on social media would also improve the stance prediction
accuracy.

There are many challenges in applying interactional stancetaking to improve stance predic-
tion by aligning users. The primary challenge is the multiple ways people can interact on Twitter.
The popular way is to ‘tweet’ which is a way to broadcast opinion. However, in addition to tweet-
ing, one can retweet posts, like posts, reply to a post, make connections (like become a follower)
and more. All these types of interactions have relevance in finding users stance and their align-
ment. My goal, in this thesis research, is to explore which of these interactions are useful for
learning stance and how the learners that are trained on one type of interaction can be combined
with others. As shown in Fig. 1.4, the current stance learning system important limitations. In
this thesis, I intend to move from the current text based stance learning paradigm to a multi-
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Figure 1.5: The stance triangle, adapted from Du Bois [31], page 163.

modal graph based stance learning approach that can use text as input, in addition to other kinds
of Twitter interactions.

1.2 Prior Work
Prior work on Stance learning have appeared in primary three flavors a) Ideological leaning of
Users on social media platforms [59, 91, 109] b) Agreement or disagreement of users about a
topic in debates [49, 110, 111] c) Stance of connected users in communities [80]. I summarize
recent contributions in each of these categories next. In addition, I also discuss machine learning
models for stance mining, applications of stance learning e.g., in rumor identification. Lastly I
describe the existing datasets for stance learning tasks.

1.2.1 Learning Stance from Social-Media data
Existing approaches on stance mining that uses Twitter posts can be categorized as one of the
three types a) Single Tweet Single Target (STST) b) Single Tweet Multiple Targets (STMT) and
c) Multiple Tweets Single Target (MTST). We summarize three existing datasets in Table 1.1.

Out of these three datasets, SemEval 2016 dataset contains tweets’ text and stance labels for
five different topics where each tweet has only one target (STST) [91]. This dataset was used in
SemEval competition in 2016 (Task #6). The dataset obtained from Twitter contained text from
on five controversial topics and was used in a SemEval, 2016 competition 2. Many researchers
used this dataset and tried many different types of algorithms to predict stance [5, 79, 126].
However, as reported in [91], none of them exceeded the performance achieved by a simple
algorithm that uses word n-grams and word-embedding as features. Even neural-network models
[4] that uses bi-directional conditional encoding did not perform better than simple n-grams

2http://alt.qcri.org/semeval2016/task6/
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based models, perhaps indicating that the amount on labeled data was not sufficient to train the
models.

More recently, two more text based stance datasets (ConStance and MultiStance) were re-
leased. In Constance, the dataset contains multiple tweets given a target (MTST) which are four
different politicians [59]. Multistance is composed of tweets that have multiple targets (STMT)
[109]. Researchers have also looked at different ways to train stance models. By analyzing tem-
poral tweeting activity of politicians and the way issues can be framed on Twitter, [58] designed
a weakly supervised model for learning stance. They suggested to use content, frames jointly,
and temporal activity to build local models and combine them through Probabilistic Soft Logic.

Unlike text sentiment, stance is user based, and stances of users don’t change frequently.
Text content of a Tweet could be a useful stance indicator. However, using just one tweet fails
to leverage the consistency in users’ stance. Therefore, there is need to move form a single
tweet based stance models to multiple tweets from a user (or the entire timeline) based models.
Constance dataset highlights the benefit of multiple tweets. Future methods should explore ways
to find all relevant tweets of a user that are relevant to stance target and use them for estimating
users’ stance. This thesis is an attempt in that direction.

1.2.2 Learning Stance from Debates
Earlier work on stance learning revolved around debates [49, 110, 111]. Using a manually anno-
tated corpus, Somasundaran and Wiebe [110] constructed an arguing lexicon to recognize stance
in online debates and used an SVM classifier resulting in above 60% accuracy. The authors used
data on debate posts in four domains ‘Gun rights’, ‘Gay rights’, ‘Abortion’ and ‘Creationism’.
Ozer et al. tried to cluster politically motivated users into communities [95]. They used struc-
tural balance theory to build a user-connectivity network using endorsements and tried three non-
negative matrix factorization approaches to detect communities. Tu et al. proposed context-aware
embeddings that attempt to use semantic relationships between users to preserve the diverse roles
of interacting users [118] . Some researchers have also considered adding different types of con-
straints in models, e.g. [49] used author constraints (AC) in which two posts written by the same
author for the same domain should have the same stance. In [48], the authors explored more
constraints that include ideology constraints and user-interaction constraints. By modeling the
problem as an optimization problem and solving it by integer linear programming (ILP), they
report an improvement in accuracy in the range of 2-10%. Due to the short text and noisy na-
ture of social media, in most cases, this line of research on debates can’t be directly applied to
social media data. However, as we show in the chapter 6, stance in debates and stance obtained
from social media data are not independent and can very well be integrated. More details on this
unifying approach is discussed in chapter 6 of this thesis.

1.2.3 Learning Stance Using Networks Data
Social theory of homophily and some work on understanding bias, partisanship and user-to-
user sentiment clearly show the utility of user-to-user connections for stance learning. Lu et
al. proposed BiasWatch, a bias propagation method to infer opinion bias of Twitter users [80].
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Using a few seed hashtags, they identified other supporting and opposing hashtags using co-
occurrence and information gain. Then they used this expanded set of hashtags to find partisan
users. Finally, a label propagation approach based on content and retweeting similarity is used
to estimate bias of rest of the users in the dataset. A limitation of this work is the step of finding
features similarity between every user, which is very resource consuming and does not scale to
large number of users.

On similar lines, Collenoi et al. used content shared in Tweets to build a machine learning
classifier to identify users aligned to Democrats and Republicans [23]. They separately analyzed
two different networks a) Symmetric, where users follow back b) Non-symmetric where users
don’t follow back their follower. They used 1,683 Democrat users and 8,868 Republican users
data as training set to predict the political orientation of users using linguistic features of the
tweets. The observed that political homophily structure differs between Democrats and Republi-
cans. For the Republicans, they found low levels of political homophily, in contrast to high levels
for the Democrats. Ozer et al. tried to cluster politically motivated users in to communities [95].
They used structural balance theory to build a user-connectivity network using endorsements,
and tried three non-negative matrix factorization approaches to detect communities. Their model
merged user content and connectivity information based on endorsements.

There is also a line of research on signed networks [73]. Wang et al. proposed SiNE to
learn signed network embedding [123]. SiNE learns a low dimensional representation of nodes
while preserving the ideas of structural balance theory. In [127], authors build people to people
network. Gurini et al. used sentiment based community detection for user recommendation
[46]. West et al. uses social network structure to understand user-to-user sentiment analysis
[127]. Choi et al. tried document level sentiment to infer opinions [22]. The authors used integer
linear programming to jointly model sentiment, entity factions and constraints (homophily, social
balance and reciprocity). In our work, we showed that users attributes are useful for grouping
users [67] but we did not consider users’ sentiment. The ideas from the work on signed network
is applied in chapter 6 in which we use different networks to infer stance.

1.2.4 Machine Learning Approaches to Stance Mining
Deep neural networks (DNN) have shown great success in many fields [51]. Researchers have
used DNNs for various NLP tasks like POS tagging, named entity recognition [24]. In DNNs,
our prime interest is in multi-modal techniques [92] that can combine multiple types of features
extracted from social media interactions. On stance learning, [136] used an average of word
vectors from each tweet as an input to their LSTM model. They trained their LSTM model using
branches of twitter conversations where mean-of-words is used as input and stance label is used
as output. Sequential classifiers like LSTMs are biased to use prior inputs to predict outputs. For
example, an LSTM can be used to predict the next word for the partial sentence ‘The flower is

’, given a large amount of training data the model estimate that ‘beautiful’ or ‘fresh’ is more
likely to the last word. However, when it comes to tasks like stance classification in threaded
discussions, each reply is made against another post (and not necessarily to the series of earlier
posts). Does the sequential nature of responses make it more suitable for an LSTM like model?
Or would a model that can learn the differences between the source and reply tweets are more
ideal for stance classification? These are some of questions that we consider in chapter 3.
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1.2.5 Multi-modal Stance Mining – Models to Combine Different Types of
Interactions

Use of multi-modal interactions for stance prediction is non-trivial. Because different interac-
tions result in text (from posts) or graphs or a combination of both, multi-modal stance learning is
challenging. Though there is limited research in combining different modalities for stance learn-
ing, there is a quite some work on multi-modal machine learning [8, 92]. A common technique
is to embed all modalities in a continuous representation space. A good stance learner model
should be able to use all text and graphs data. For converting text to embedding space, multiple
ways to encode sentences (like [63]) are available. To convert graphs to a continuous represen-
tation space, several techniques have been proposed recently. For example Perozzi et al. [97]
introduced DeepWalk, a model to learn latent vector representations for nodes that encode social
relations by using short random walks. Therefore, using a continuous representations space for
all types of interactions, we can build a joint model based on inputs of different modalities. We
explored this idea in chapter 4, in which converted users’ attributes to user-to-user connections
based on a similarity metric [67]. Chapter 5 and chapter 6 propose new methods to jointly train
classifiers based on different modalities.

1.2.6 Applications of Stance Learning in Rumor and Misinformation Iden-
tification

This task of stance learning got popularity when it was realized that stance could be used to
identify fake news 3 and rumors 4. Finding misinformation on social media platforms has been
an active area of research in recent years. In this type of work, the researchers use the content
of a post to determine the veracity typically uses language features. For example, Rashkin et al.
[100] discuss language characteristics of real news compared to satire, hoaxes, and propaganda.
They found that Linguistic Inquiry and Word Count (LIWC) and sentiment lexicon features are
useful to understand the differences between fake and more reliable digital news sources. This
can be further extended by including information present in more reputable sources like using
knowledge graphs to find factual discrepancies [50]. When network features are available (e.g.
when an article is posted on social media), researchers have shown that including social-network
features in addition to content features, outperform lexical based models [121].

There is another line of research on rumor detection that uses stance in the reply posts. This
kind of work was in initiated by the Pheme project 5 and was popularized in a SemEval 2018
competition (task 8) 6. The task involves predicting stance (‘supporting’, ‘denying’, ‘comment-
ing’ and ‘querying’) in replies to rumor posts on Twitter and is described in [137] and [138]. A
number of researchers used this dataset and proposed many algorithms. For this dataset, [28]
proposed an LSTM that uses branch of conversation trees to classify stance in reply posts, and
[136] used and compared many different sequential classifiers. My work in chapter 3 extends

3http://www.fakenewschallenge.org/
4http://alt.qcri.org/semeval2017/task8/
5https://www.pheme.eu/
6http://www.aclweb.org/anthology/S17-2006
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this thread of research by using different ways to learn stance from social media conversations
[68].

In summary, in most NLP based research described above that used social-media data, the
stancetaker (as in author of text) are not explicitly considered, and aligning authors was not an
important goal. However, on controversial topics in which authors take clear stance (e.g. in
polarized communities), authors alignment is important as asserted in [31]. Therefore there is
a need to extend the text-based stance learning to use multiple posts from the same user. My
research explores this critical aspect of stance learning. One modality that is rarely used for
stance mining is the conversations e.g., replying and quoting on Twitter. Conversation threads
can reveal authors’ alignment with other users based on the stance they take in replying to other’s
posts. Yet another problem with text based stance learner is the availability of datasets. Most
existing dataset are on a few hand picked topics. As we know, discussions on topics change a
lot on social media. There is need to build stance learning models that do not need hand-labeled
examples for training but rather can be trained using weak supervision. A good research trying
to overcome this challenge is BiasWatch ([80]), in which the authors use a few hand picked
hashtags. Even in this line of work, there is a need to build more robust systems that could
work with noisy hand-picked hashtags. Furthermore, various interaction networks on Twitter
(e.g. follower, mentions, likes) would result in graph structured data which needs networks
based machine learning models. In this thesis, in chapters 3, 4, 5 and 6, we propose joint models
that combines the various sources of stance information (see Fig. 1.4). To combine different
modalities of information (e.g., users’ follower graphs and users’ likes), one can embed features
from all information sources into one continuous representation space (chapter 3). But there
could be better ways to learn from modalities where different modalities bring complementary
information (chapters 4 and 5). We expect that the methods proposed for multi-modal stance
learning techniques in this thesis could be useful in many areas. For example, we can apply these
models to analyze polarized communities.

1.2.7 Stance Datasets
There are two datasets on stance learning that were built in prior research (by other researchers)
which I use in my research. These datasets are described in Tbl. 1.2 and Tbl. 1.4. Because the
focus of this work is in weak supervision, the two labeled datasets are used only for the validation
purpose and not for training of the models (unless specified otherwise in the chapters). For semi-
supervised methods to work, we often take benefit of the structure of the data itself in which case,
having more data helps. With this goal, we also augment theses datasets with additional tweets
from the users in these datasets i.e. for each user in the dataset, we obtain their entire timeline.
Because we retrieved the users’ timeline recently, there are users that were in the original dataset
but are not present in our dataset (e.g. some users got suspended or deleted their accounts). That
is why, the summary statistics in tables (shown next) could be different from the statistics of the
datasets we describe in the later chapters.

In addition to the two existing datasets, we also use the dataset described in Tbl. 1.6 for
applying stance mining for rumor detection (in chapter 3). Moreover, we built a new dataset
that has stance labels (as in favor or denial) for replies in conversation threads (see sec. 1.2.7).
The labeling of conversations (as in favoring vs denying) is different from the labeling of users’
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stance (as pro/con a topic) as we highlight in chapter 2.
I summarize these datasets next.

Existing Datasets

As explained in Fig. 1.2, existing approaches on stance learning that uses Twitter data can
be categorized as one of the three types a) Single Tweet Single Target (STST) b) Single Tweet
Multiple Targets (STMT) and c) Multiple Tweets Single Target (MTST). We summarize the three
existing datasets in Table 1.1.

Table 1.1: Manually labeled datasets created in prior research. These are of three types. a)Single
Tweet Single Target (STST) b) Single Tweet Multiple Targets (STMT) and c) Multiple Tweets
Single Target (MTST).

Reference Type Targets/Topics Count (total/train/
dev/test)

SemEval 2016
[91]

STST Atheism, Climate Change is con-
cern, Feminist Movement, Hillary
Clinton, Legalization of Abortion

4163/ 2914/ NA/ 1249

MultiStance
[109]

STMT Donald Trump, Hillary Clinton,
Bernie Sanders, Ted Cruz

4455/ 3119/ 446 /890

Constance
[59]

MTST Donald Trump, Hillary Clinton,
Neutral

1130/ 562/ 250/ 318

SemEval 2016 [91] contains text and stance labels for five topics (see table. 1.2). SemEval
2016 Stance Dataset (Single Text Single Target) In this section, we describe a human-labeled
dataset that was built in prior research [91] and was used for a competition in SemEval 2016.
The dataset is summarized in Tab. 1.2.

Table 1.2: SemEval 2016 Stance Dataset

Topic Train Test

Atheism 513 220
Climate Change 395 169
Feminist Movement 664 285
Hillary Clinton 689 295
Legality of Abortion 653 280

This dataset, which I think is the most popular dataset for stance learning, has text data on
five topics that are ‘Atheism’, ‘Climate Change’, ‘Feminist Movement’, ‘Hillary Clinton’ and
‘Legality of Abortion’. This dataset has no development/validation set.
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Dataset on stance labels (pro/con about a topic) of users along with their connections Lu et
al. creates a dataset of Twitter users along with their bias on three different topics [80]. We
summarize the users in Table 1.3 and their labeled stance in Table 1.4.

Table 1.3: Topics summary

Events Users Tweets RTUsers Endtags

Guncontrol 70387 117679 15635 5505
Obamacare 67937 123320 14807 7376
Abortion 111463 173236 26818 9784

Table 1.3 summarizes Biaswatch topics. In the table, RT users mean the number of users
that were retweeted in data and the information is used create the user-retweet graph. Similarly,
endtags show the number of unique hashtags used at the end of tweets, and are used to build the
user hashtags networks. We use endtags as prior research has shown that hashtags that appear at
the end convey stance signal [34].

Table 1.4: Labeled users summary

Events Neutral Pro Anti Total

Gun-control 60 156 288 504
Obamacare 33 108 363 504
Abortion 55 169 280 504

Dataset on stance labels (favor vs denial) for replies in rumour threads This dataset was cre-
ated as a part of the Pheme project which aims to find and verify rumors shared on social-media
platforms [137, 138]. The dataset consists of Twitter conversation threads on nine different events
and contains three types of annotations. Each thread is labeled as either rumor or non-rumor.
Rumors are annotated as true, false or unverified. For a subset of the true rumors, we also have
stance labels for each reply in the threaded conversations. The stance labels are ‘supporting’,
‘denying’, ‘commenting’ and ‘querying’.

A new dataset on stance in conversations

In addition to using some of the existing datasets, we also developed a new dataset for this thesis.
This was needed as no existing datasets have stance labels both for users’ stance and stance in
conversations. The new dataset dataset is composed of stance labels of replies to the posts on
controversial topics of ‘Iran Deal’. ‘Santa Fe Shooting’, ‘Student Marches’, and some general
conversations not representing any specific topic. In addition to stance in replies, we are also
creating labels for users’ stance about these topics. In a way, this is the first and only dataset that
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Table 1.5: Stance labels for Tweets in the conversations

Event Name Supporting Denying Querying Commenting

Charlie Hebdo (CH) 239 58 53 721
Sydney siege (SS) 220 89 98 700
Ferguson (FG) 176 91 99 718
Ottawa shooting (OS) 161 76 63 477
Germanwings-crash
(GC)

69 11 28 173

Putin missing (PM) 18 6 5 33
Prince Toronto (PT) 21 7 11 64
Ebola Essien (EE) 6 6 1 21

has stance labels for users as a well as conversations, and therefore, could be considered the first
multi-modal stance mining dataset. The dataset is summarized in Tbl. 1.6.

Table 1.6: Distribution of labels across different events.

General
Terms

Iran Deal Santa Fe
Shooting

Student
Marches

Comment 656 293 246 153
Explicit Denial 521 350 471 253
Implicit Denial 202 116 116 49
Explicit Support 138 118 85 47
Implicit Support 415 327 279 215
Queries 88 42 21 19

Table 1.6 presents the label distribution for the different events. We observe that the labeled
dataset is skewed towards denials as. This is intentional as we tried to overcome the limitation of
the earlier rumor threads based stance dataset described in the earlier paragraph (see Tbl. 1.5).
The process of constructing the dataset and additional details are available in chapter 2.

1.3 Contributions
Here we highlight the main contributions of this thesis. This thesis aims to resolve the three
crucial challenges of stance mining:

1. How do we train stance-learning models on new topics with minimal labeling effort?
2. How can we use multiple interaction modalities for stance mining?
3. How to leverage users’ networks for stance prediction?
On social-media discussion, topics change fast, and new issues emerge, making it difficult

to reuse prior labeled data. This leads to challenge 1, i.e., how do we train stance-learning
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models on new topics with minimal labeling effort? As we show in this thesis, simple artifacts
of social networks like hashtags can carry noisy signal about the stance of the users who have
used those hashtags. The challenging part is to extract the signal from noise. We proposed a
semi-supervised learning approach that uses two or more models and plenty of unlabeled social-
media data to build stance classifiers (chapters 4 and 5). In the proposed approach, multiple
stance classifiers are jointly trained, which results in reducing the effect of noise and improving
the performance of the classifiers over the training iterations. As the models get trained using
only the stance given by a few seed hashtags, the approach is very flexible and works well on
new topics.

Users’ opinions are evident in different types of interactions, e.g., tweeting, retweeting, or
liking. Though having multiple interactions allows different ways to learn and predict users’
stance, and it is not apparent how we can correctly use the various interaction modalities for
stance mining. This leads to problem 2. As discussed in the last paragraph, we proposed a semi-
supervised method for jointly training models based on different interactions. The proposed
method could learn from complementary information in different interactions to train better clas-
sifiers. Though in this work, we only considered three interactions comprised of two networks
(namely user-hashtags and user-retweets) and one text classifier (based on users’ tweets or user-
to-user conversations), the simplicity of our approach allows extending the method to other in-
teractions.

The current approaches to stance learning ignore important network factors, e.g., a person’s
preference can also be known from his friends’ preferences. Since stance is a public act, the
actor’s social network position should matter. This is described as the third challenge on how
to leverage users’ networks for stance prediction. We use the network alignment as one training
signal to train the stance classifiers (chapters 3, 4, and 5 uses networks). One of the classifiers
used for jointly training the model is a network-based label propagation classifier. The label
propagation model effectively utilizes the similarity in the connected nodes to improve the overall
stance classification performance.

Based on experiments on six topics, we estimate that with 2-4 hashtags as weak labels, the
user’ stance classifiers could reach an accuracy of over 80%. For learning the stance in conversa-
tions, which is a more challenging problem, we achieve accuracy over 70%. More importantly,
the proposed methods result in inductive classifiers that could be used with newer data without a
need to retrain the models. Furthermore, as demonstrated in chapter 6, the stance learners could
be applied to problems that are relevant in society, such as the spread of misinformation.

I summarize the main contribution of this thesis as:

Learning the stance of social media users is challenging as topics change, and new
discussion topics emerge. By intelligently extracting data from the different interac-
tion modalities, and jointly training the models, we can build usable stance learners
that require minimal labeling effort..

1.4 Organization of this Thesis
This thesis is divided in seven chapters and two additional appendix items.
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1. Introduction
2. A New Stance Dataset and Some Baseline Models
3. Learning Users’ Stance by Combining Users’ Networks and Users’ Posts by Creating Vir-

tual Connections (Extension of my SBP-Brims 2018 paper [67])
4. Co-Training on Social Networks: A Joint Network Label Propagation and Text Classifica-

tion Approach for Stance Mining
5. A Joint Network and Text based Model for Learning Stance in Conversations
6. Models of Tree Structured Conversations for Predicting Stance and Rumor Veracity (Ex-

tension of the work published at ACL 2019 [68])
7. Conclusions and Future Work
8. Appendix 1: Better ways of collecting Twitter data: What to Track on the Twitter Stream-

ing API? A Knapsack Bandits Approach to Dynamically Update the Search Terms (Exten-
sion of the work published at ASONAM 2019 [69])

9. Appendix 2: A users guide for labeling stance in conversations

Chapter one (this chapter) introduces this thesis work, provides a a background along with
motivations. Here, I also describe the prior work on stance mining. In addition, I also introduce
the common datasets that I have used throughout the thesis.

In the second chapter, I describe a new dataset that we created for this research along with
many baseline models. Recently, there is a renewed excitement in the field of stance mining
as we see new models attempting to improve the state-of-the-art. However, for training and
evaluating the models, the datasets used are often small. Additionally, these small datasets have
uneven class distributions, i.e., only a tiny fraction of the examples in the dataset have favoring
or denying stances, and most other examples have no clear stance. Because of this, models
trained on one event do not generalize to other events. In this chapter, we create a new dataset
by labeling stance in responses to posts on Twitter (both replies and quotes) on controversial
issues. To the best of our knowledge, this is currently the largest human-labeled stance dataset
for Twitter conversations with over 5200 stance labels. The dataset described in this chapter
is used in later chapters for training and verifying the performance of different stance learning
methods.

The third chapter provides a way to learn stance from users’ networks and users’ attributes.
In most social network studies, in which group a user is, is determined as a function of explicit
ties. For example, given a set of random walks through the network, it is possible to learn a vector
for each node which contains a latent representation of the node. These latent representations
have useful properties that can be easily exploited by statistical models for tasks like identifying
groups and inferring implicit links. However, most existing representation learning methods
ignore node attributes. In many cases, there is a rich body of information and events associated
with nodes that also can be used for node clustering and to infer ties. In this chapter, I propose
People2Vec, an algorithm to learn representations that takes into account proximity between users
due to their attributes and social media activities and apply it to learning stance of social-media
users.

In the fourth chapter, I extend the idea of using multiple interactions (as tweeting, retweeting,
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using hashtags) to new training paradigm where we jointly train different stance classifiers with
weak supervision. This chapter tackles the two important challenges of stance mining: 1) Dis-
cussion topics change fast, and new issues emerge. How do we train stance-learning models on
new topics with minimal labeling effort? 2) Users’ opinions are evident in different types of in-
teractions. How do we learn from multiple types of interactions effectively? In this research, we
tackle both these challenges by extending the co-training approach to jointly train two classifiers:
1) a label propagation model on networks, and 2) a text classification model using text features.
We use the weak stance signals given by two to four labeled hashtags for training the models.
Though training examples obtained using hashtags are noisy, co-training effectively handles the
noise, thereby enabling stance mining on new topics with minimal labeling effort.

In the fifth chapter, I extend the idea developed in chapter four to train stance classifiers
(for users’ posts and networks), to include users’ conversations (e.g. replies). Prior research
to predict the stance of social-media users on controversial topics has been broadly explored as
two separate threads of research: 1) learning stance of users based on their social media posts
(as in Pro/Con about a topic), and 2) learning stance taken in conversations while replying (as
in favoring and denying a post) to social-media posts. Though these threads represent different
aspects of stacetaking behaviour on social-media forums, it is natural to ask if they are two faces
of the same phenomenon, and if so, what would be a unifying approach. As we would expect,
given a discussion on a controversial topic, a user is more likely to deny a post (while replying)
to a post of another user who has the opposing stance. To better leverage this pattern, we propose
a joint model for training stance classifiers that learn stance from : 1) users’ networks, 2) users’
conversations.

In the sixth chapter, I use stance in conversations (as favor vs denial) for detecting rumors
on Twitter. Learning from social-media conversations has gained significant attention recently
because of its applications in areas like rumor detection. In this chapter, I propose a new way
to represent social-media conversations as binarized constituency trees that allows comparing
features in source-posts and their replies effectively. Moreover, I propose to use convolution
units in Tree LSTMs that are better at learning patterns in features obtained from the source and
reply posts. Our Tree LSTM models employ multi-task (stance + rumor) learning and propagate
the useful stance signal up in the tree for rumor classification at the root node. The proposed
models achieve state-of-the-art performance, outperforming the current best model by 12% and
15% on F1-macro for rumor-veracity classification and stance classification tasks respectively.

In the seventh chapter, I conclude, provide limitations of this work and suggest directions for
the future research.

In Appendix, I provide a way to get more relevant Twitter data using the Twitter streaming
API. As the second item in appendix, I provide the user manual used for labeling stance in
conversations (details in chapter 2).
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Pro-Topic

Anti-Topic

Users - Text messages
User 1 - Text message

User 1 - Text message

User 2 - Text message
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User 1 #1 #2 .... #n
User 3 0 1 9

User 3 2 0 0

User 4 1 1 1

User 5 0 6 1

Users-Hashtags Matrix

Stance from Users’ Timeline

Stance from Users’ Interaction Networks Stance in Conversations 

Joint Stance Learning Model

Application: PolarizationText messages
Text message #ProA

Text message #AntiA

Text message #AntiA

Text message #ProA

Stance in Text

Stance from Pictures

Figure 1.6: Summary of the research conducted in this thesis. The different colors of lines show
different interactions. Solid lines indicate explicit relationships (like retweets) and dashed lines
indicate inferred relationships. The goal of this thesis is to provide a framework to effectively
utilize the multi-modal interactions on social-media platforms like Twitter for stance learning.
Stance from pictures and application to community polarization are left for future work.
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Chapter 2

A New Stance Dataset and Some Baseline
Models

2.1 Introduction

People express their opinions on blogs and other social media platforms. Automated ways to
understand the opinions of users in such user-generated corpus are of immense value. It is es-
pecially essential to understand the stance of users, which involves finding people’s opinions on
controversial topics. Therefore, it’s not surprising that many researchers have explored auto-
mated ways to learn stance given a text [49]. While learning stance from users’ individual posts
have been explored by several researchers [59, 91], there is an increased interest in learning
stance from conversations. For example, as we show in Fig. 6.1, a user denies the claim made
in the original tweet. This kind of stance learning has many applications, including insights
into conversations on controversial topics [38] and finding potential rumor posts on social-media
[6, 136, 137]. However, the existing datasets used for training and evaluating the stance learning
models limit the broader application of stance in conversations.

The existing research on stance in conversations has three significant limitations: 1) The
existing datasets are built around rumor events to determine the veracity of a rumor post based
on stance taken in replies [137]. Though useful for rumor detection, this does not generalize
to non-rumor events [17], 2) The existing datasets focus primarily in direct responses and do
not take into account quotes. This is critical as quotes have been gaining prominence since
their introduction by Twitter in 2015, especially in the context of political debates [40], 3) The
existing datasets have uneven class distributions, i.e., only a small fraction of the examples in
the dataset have supporting and denying stances, and most other examples have no clear stance.
These unbalanced classes lead to poor learning of denying stance (class) [68]. The denying
class is expected to be more useful for downstream tasks like finding an antagonistic relationship
between users. Therefore there is a need to build a new dataset that has more denying stance
examples.

To overcome the above limitations, in this research, we created a new dataset by labeling the
stance in replies (and quotes) to posts on Twitter. To construct this dataset, we developed a new
collection methodology that is skewed towards responses that are more likely to have a denial

19



Figure 2.1: When we reply on Twitter, sometimes we also support or deny others claims. For
example, in the conversation shown above, a user denies the claim made in the original tweet.
In this research, we build a new dataset to learn the language pattern that users’ employ while
taking a stance (support vs deny). This dataset could be used to develop automated methods to
infer the stance in replies (and quotes).

stance. This methodology was applied across three different contentious events that transpired
in the United States during 2018. We also collected an additional set of responses without regard
to a specific event. We then labeled a representative sample of the response-target pairs for
their stance. Focusing on the identification of denial in responses is an essential step for the
identification of tweets that promote misinformation [137, 138] and also to estimate community
polarization [38]. By leveraging these human-labeled examples, along with more unlabeled
examples on social-media, we expect to build better systems for detecting misinformation and
understanding of polarized communities.

To summarize, the contribution of this work is fourfold:
1. We created a stance dataset (target-response pairs) for three different contentious events

(and many additional examples from unknown events). To the best of our knowledge, this
is currently the largest human-labeled stance dataset on Twitter conversations with over
5200 stance labels.

2. To the best of our knowledge, this is the first dataset that provides stance labels for Quotes
(others are based on replies). This provides a new opportunity to understand the use of
quotes.

3. The denial class is the minority label in existing datasets built in a prior research [137] and
is the most difficult to learn, but is also the most useful class for downstream tasks like
rumor detection. Our method of selecting data for annotation results in a more balanced
dataset with a large fraction of support/denial as compared to other stance classes.

4. We introduce two new stance categories by distinguishing between explicit and implicit
non-neutral responses. This can help the error analysis of trained classifiers as the implicit
class, for either support or denial, is more context dependent and harder to classify.

This paper is organized as follows. We first discuss the related work and then describe our
approach to collect the potential tweets to label in ‘Dataset Collection Methodology’. As the
sample that can be labeled is rather small (because of budget limitations) compared to the en-
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tire available dataset, we discuss the sample construction procedure for annotation. Then, we
describe the annotation process and the statistics of the dataset that obtained as a result of anno-
tation in section ‘Annotation Procedure and Statistics’. Next, we present some baseline models
for stance learning and present the result. Finally, we discuss our results and propose future
directions.

2.2 Related Work
Topics on learning stance from data could be broadly categorized as having to do with: 1) Stance
in posts on social media, and 2) Stance in Online Debates and Conversations. We next describe
prior work on these topics.

2.2.1 Stance in Social-Media Posts
Mohammad et al. [91] built a stance dataset using Tweets of several different topics, and orga-
nized a SemEval competition in 2016 (Task 6). Many researchers [5, 79, 126] used this dataset
and proposed algorithms to learn stance from data. However none of them exceeded the per-
formance achieved by a simple algorithm [91] that uses word and character n-grams, sentiment,
parts-of-speech (POS) and word embeddings as features. The authors used an SVM classifier to
achieve 0.59 as the mean f1-macro score. While learning stance from posts is useful, the focus
of this research is stance in conversations. Conversations allow a different way to express stance
on social media in which a user supports or denies a post made by another user. Stance in a post
is about authors’ stance on any topic of interest (pro/con), in contrast, stance in conversation is
about stance taken when interacting (replying or quoting) with other authors (favor/deny). We
describe this in detail in the next section.

2.2.2 Stance in Online Debates and Conversations
The idea of stance in conversations is very general and its research origin can be traced back to
identifying stance in online debates [110]. Stance in online debates have been explored by may
researchers recently [49, 108, 111]. Though stance-taking by users on social-media, especially
on controversial topics, often mimic a debate, social-media posts are very short. An approach
of stance mining that combines machine-learning to predict stance in replies – categorized as
‘supporting’, ‘denying’, ‘commenting’ and ‘querying’ – to a social media post is gaining popu-
larity [135, 137]. Prior work has confirmed that replies to a ‘false’ (misleading) rumor are likely
to have replies that deny the claim made in the source post [138]. Therefore, this approach is
promising for misinformation identification [6]. However, the earlier stance dataset on conver-
sations was collected around rumor posts [137], and contains only replies, and has relatively few
denials. Our new dataset generalizes this approach and extends it to quotes-based interactions
on controversial topics. As described, this new dataset is distinct as: 1) it distinguishes between
‘replies’ and ‘quotes’, the two very different types of interaction on Twitter, 2) it is collected
in way to get more ‘denial’ stance examples, which was a minority label in [135], and 3) it is
collected on general controversial topics and not on rumor posts.
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2.3 Dataset Collection Methodology

Figure 2.2 summarizes the methodology developed to construct the datasets that skews towards
more contentious conversation threads. We describe the steps in details next.

Figure 2.2: Methodology developed for the collection of contentious tweet candidates for a spe-
cific event.

The first step requires finding the event related terms that could be used to collect the source
(also called target) tweets. Additionally, as the focus is on getting more replies that are denying
the source tweet, we use a set of contentious terms used to filter the responses made to the source
tweets.

2.3.1 Step 1: Determine Event

The collection process centered on the following events.
• Student Marches: This event is based on the ‘March for Our Lives’ student marches that

occurred on the 24 of March of 2018 in the United States. Tweets were collected from
March 24 to April 11 of 2018.
The following terms were used as search queries: #MarchForOurLives, #GunControl, Gun
Control, #NRA, NRA, Second Amendment, #SecondAmendment.

• Iran Deal: This event involves the prelude and aftermath of the United States announce-
ment of its withdrawal from the Joint Comprehensive Plan of Action (JCPOA), also known
as the ”Iran nuclear deal” on May 8, 2018. Tweets were collected from April 15 to May
18 of 2018.
The following terms were used as search queries: Iran, #Iran, #IranDeal, #IranNucle-
arDeal, #IranianNuclearDeal, #CancelIranDeal, #EndIranNuclearDeal, #EndIranDeal.

• Santa Fe Shooting: This event involves the prelude and aftermath of the Santa Fe School
shooting that took place in Santa Fe, Texas, USA in May 18, 2018.
Tweets were collected from May 18 to May 29 of 2018. For this event, the following terms
were used as search queries: Gun Control, #GunControl, Second Amendment, #Secon-
dAmendment, NRA, #NRA, School Shooting, Santa Fe shooting, Texas school shooting.
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• General Terms: This defines a set of tweets collected that were not from any specific
event, but are collected based on responses that contain the contentious terms described
next. Tweets were collected from July 15 to July 30 of 2018.

The set of contentious terms used across all events are divided in 3 groups: hashtags, terms
and fact-checking domains:

• Hashtags: #FakeNews, #gaslight, #bogus, #fakeclaim, #deception, #hoax, #disinforma-
tion, #gaslighting.

• Terms: FakeNews, bull**t, bs, false, lying, fake, there is no, lie, lies, wrong, there are no,
untruthful, fallacious, disinformation, made up, unfounded, insincere, doesnt exist, mis-
representing, misrepresent, unverified, not true, debunked, deceiving, deceitful, unreliable,
misinformed, doesn’t exist, liar, unmasked, fabricated, inaccurate, gaslight, incorrect, mis-
leading, deception, bogus, gaslighting, mistaken, mislead, phony, hoax, fiction, not exist.

• URLs: www.politifact.com, www.factcheck.org, www.opensecrets.org, www.snopes.com.

2.3.2 Step 2: Collect Tweets
Using Twitter’s REST and the Streaming API we collected tweets that used either the event
or contentious terms (as described earlier). If the target of a response is not included in the
collection, we obtained it from Twitter using their API.

2.3.3 Step 3: Determine Contentious Candidates
A target-response pair is selected as potential candidate to label if the target contains any of the
listed event terms and the response contains any of the contentious terms. If urls are in the tweet,
they are matched at the domain level by using the urllib library in Python. For ‘General Terms’
event collected pairs based solely on the responses regardless of the terms used in the target.

To reduce the sample size, we filtered the tweets on some additional conditions. We only
used the responses that were identified by Twitter to be in English and excluded responses from
a user to herself (as this are used to form threads). In order to simplify the labeling context, we
also excluded responses that included videos, or that had targets that included videos and limited
our sample set to responses to original tweets. This effectively limits the dataset to the first level
of the conversation tree.

The above steps resulted in a dataset which can potentially be labeled. We show the distribu-
tion of this dataset in Tab. 2.1. Because this set is large, we developed a method to a retrieve a
smaller sample for labeling. We describe this sample construction method next.

2.4 Sample Construction for Annotation
We sought to design a sample that was representative of the semantic space observed on the
responses across the different events. For this purpose we encoded the collected responses via
Skip-Thought vectors [63], to obtain an a priori semantic representation. The Skip-Thought
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Table 2.1: Distribution of relevant tweet pairs by response type that could be labeled.

Event Replies Quotes

Student
Marches

23314 8321

Santa Fe Shoot-
ing

24494 11825

Iran Deal 21290 14939
General Terms 3756269 2540084

model is trained using a large text dataset such that the vector representation of the text encodes
the meaning of the sentence. To generate vectors, we use the pre-trained model shared by the
authors of Skipthought 1. The model uses a neural-network that takes text as input and generate
a 4800 dimension embedding vector for each sentence. Thus, on our dataset, for each response
in Twitter conversations, we get a 4800 dimension vector representing the semantic space.

Figure 2.3: Dendogram derived for the Student Marches event. Horizontal line describes the
maximum cophenetic distance used when determining the final cluster labels. Further bifurca-
tions of the dendogram where replaced with dots in order to avoid clutter.

To obtain a representative sample of the semantic space, we applied a stratified sampling
methodology 2. The strata were determined by clustering the space via hierarchical clustering
methods using a ’average’ linkage algorithm and a euclidean distance metric. It is important
to note that given the difficulty of assessing clustering quality on such high-dimensional spaces
(over 4k dimensions), we first reduced the space to 100 dimensions via Truncated Stochastic
Value Decomposition [131]. Figure 2.3 presents the derived dendogram and the optimal number

1https://github.com/ryankiros/skip-thoughts
2Stratified Sampling is a sampling method that divides a population in exhaustive and mutually exclusive groups

which can reduce the variance of estimated statistics.
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of clusters selected for the Student Marches event, a similar analysis was done for the other
events. The relevant hyper-parameters used were determined by evaluating the final clustering
quality based on the resulting cophenetic correlation [105]. It is important to note that the number
of clusters selected was higher than the optimal, as our main purpose is to get a thorough partition
of the semantic space.

A two level stratified scheme was utilized, with the second level being the type of response.
This means that the percentage of Quotes and Replies within each stratum were maintained.
Finally, we decided to under-sample, by a factor of two, the responses to verified accounts so that
our final sample has more interaction between regular Twitter users. The final sample distribution
by response type is presented in table 2.2.

Table 2.2: Distribution of relevant tweet pairs by response type. Notice that these terms tend to
be used more frequently in direct replies.

Event Replies Quotes

Student Marches (SM) 293 443
Santa Fe Shooting (SS) 609 609
Iran Deal (ID) 508 738
General Terms (GT) 1476 544

Figure 2.4 presents a 3-dimensional representation, obtained via Truncated Stochastic Value
Decomposition, of the semantic space observed for the responses in the General Terms event and
the derived sample. A similar clustering pattern is observed on other events as well. Notice that
the sample covers fairly well the observed semantic distribution, especially when compared with
simple random sampling.

2.5 Annotation Procedure and Statistics
Recent work on stance labeling in social media conversations has centered on identifying 4 dif-
ferent positions in responses: agreement, denial, comment, and queries for extra information
[99, 138]. We introduced two extra categories, by distinguishing between explicit and implicit
non-neutral responses. The former refers to responses that include terms that explicitly state that
their target is wrong\right (e.g. ‘That is a blatant lie!’). The implicit category on the other hand,
as its name implies, correspond to responses that do not explicitly mention the stance of the user,
but that, given the context of the target, are understood as denials or agreements. These are much
harder to classify, as they can include sarcastic responses.

The annotation process was handled internally by our group and for this purpose we devel-
oped a web interface for each type of response (see Fig. 2.5 for replies, and Fig. 2.6 for quotes).
Each annotator was asked to go through a tutorial and a qualification test to participate in the the
annotation exercise. The annotator is required to indicate the stance of the response (one of the
six options in the list below) towards the target and also provide a level of confidence in the label
provided. If the annotator was not confident in the label, then the task was passed to another
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Figure 2.4: 3-dimensional representation, obtained via Truncated Stochastic Value Decomposi-
tion, of the skip-thought vector representation for the responses in the General Terms event. The
top figure corresponds to the collected universe and the bottom to the derived sample. Similar
distributions and clustering behavior is observed on other events.

Figure 2.5: Snapshot of a web-form used for labeling replies.

annotator. If both labels agreed, the label was accepted and if not the task was passed to a third
annotator. Then the majority label was assigned to the response, and in the few cases were dis-
agreement persisted, the process was continued with a different annotator until a majority label
was found.
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Figure 2.6: Snapshot of a web-form used for labeling quotes.

2.5.1 Definition of Classes

We define the stance classes as:
1. Explicit Denial: Explicitly Denies means that the quote/tweet outright states that what the

target tweets says is false.
2. Implicit Denial: Implicitly Denies means that the quote/tweet implies that the tweeter

believes that what the target tweet says is false.
3. Implicitly Support: Implicitly Supports means that the quote/tweet implies that the tweeter

believes that what the target tweet says is true.
4. Explicitly Support: Explicitly Supports means that the quote/tweet outright states that what

the target tweets says is true.
5. Queries: Indicates if the reply asks for additional information regarding the content pre-

sented in the target tweet.
6. Comment: Indicates if the reply is neutral regarding the content presented in the target

tweet.

2.5.2 Inter Annotator Agreement

To validate the methodology, we selected 55% of the tweets that were initially confidently la-
beled to be annotated again by a different team member. Of this sample, 86.83% of the tweets
matched the original label and the remainder required additional annotation to find a majority
consensus. From the 13.17% of inconsistent tweets, a 61.86% were labeled confidently by the
second annotator. This means that among the confident labels we validated, only 8.15% resulted
in inconsistencies between two confident annotators, which we deemed an acceptable error mar-
gin.

Cohens kappa measures the agreement between two or more raters. If each rate labels N
items into C categories, Cohen kappa is defined as:
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Figure 2.7: Histogram of number of times tweets were annotated. As we used confidence score
in labeling, the labeled tweets for which the labler had low confidence were relabeled by more
labelers. This process resulted in some tweets getting labeled up to 5 times to obtain confidence
in the assigned class label.

 =
p0 � pe
1� pe

=
0.92� 0.33

1� 0.33
= 0.89 (2.1)

where p0 is the relative observed agreement among raters and pe is the estimate of possible
agreement by chance. In our experiment, p0 = 0.92 and agreement chance pe = 0.33 as there
are three class types. This leads to  value of 0.89

Figure 2.7, shows the distribution of times the tweets were annotated. As shown, 45% of
tweets were annotated only once, 47% were annotated twice, 5% were annotated three times and
less than 2% required more than three annotations.

2.5.3 Distribution of Labeled Conversations

Table 2.3: Distribution of relevant tweet pairs by response type.

General
Terms

Iran Deal Santa Fe
Shooting

Student
Marches

Comment 656 (32.5) 293 (23.5) 246 (20.2) 153 (20.8)
Explicit Denial 521 (25.8) 350 (28.1) 471 (38.7) 253 (34.4)
Implicit Denial 202 (10) 116 (9.3) 116 (9.5) 49 (6.7)
Explicit Support 138 (6.8) 118 (9.5) 85 (7) 47 (6.4)
Implicit Support 415 (20.5) 327 (26.2) 279 (22.9) 215 (29.2)
Queries 88 (4.4) 42 (3.4) 21 (1.7) 19 (2.6)
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Table 2.3 presents the label distribution for the different events. As expected we observe that
the labeled dataset is skewed towards denials as, when combining implicit and explicit types,
they constitute the majority label for all events. Interestingly, when applied to a specific event,
the ”comment” category fall behind the two explicit non-neutral labels. This suggest that for
contentious events, the proposed collection methodology is effective at recovering contentious
conversations and more non-neutral threads.

In Figure 2.8, we show the distribution of the labels for each type of response. Note that
among Quotes, the majority label becomes implicit support, which shows how these types of
responses are more context dependent. As we show in the next section, this also translates on a
more complex prediction task.

Figure 2.8: Distribution of the labels among the different response types. Note that among
Quotes, the majority label is implicit support. This shows how these type of responses tend to be
more context dependent and harder to label.

2.5.4 Distribution of Users’ Stance
In addition to conversations, we also labeled a small set of users in the dataset for their stance.
For ‘Santa Fe Shooting’ and ‘Student Marches’, the stance was labeled for ‘Pro/Con’ gun con-
trol. For ‘Iran Deal’, the stance was evaluated for pro and against the breaking of the Iran deal
agreement. The labeled dataset is summarized in Tbl. 2.4.

2.6 Dataset Schema and FAIR principles
In adherence to the FAIR principles, the database was uploaded to Zenodo and is accessible
with the following link http://doi.org/10.5281/zenodo.3609277. We also adhere
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Table 2.4: Distribution of labeled users’ stance.

Iran Deal Santa Fe
Shooting

Student
Marches

Pro 137 188 129
Anti 122 64 154

to Twitter’s terms and conditions by not providing the full tweet JSON but provide the tweet ID
so that it can be rehydrated. However, for the labeled tweets, we do provide the text of the tweets
and other relevant metadata for the reproduction of the results. The annotated tweets are included
in a JSON file with the following fields:

• event: Event to which the target-response pair corresponds to.
• response id: Tweet ID of the response, which also served as the unique and eternally

persistent identifier of the labeled database (in adherence to principle F1).
• target id: Tweet ID of the target.
• interaction type: Type of Response: Reply or Quote.
• response text: Text of the response tweet.
• target text: Text of the target tweet.
• response created at: Timestamp of the creation of the response tweet.
• target created at: Timestamp of the creation of the target tweet.
• Stance: Annotated Stance of the response tweet. The annotated categories are: Explicit

Support, Implicit Support, Comment, Implicit Denial, Explicit Denial and Queries.
• Times Labeled: Number of times the target-response pair was annotated.
We also include a separate dataset that provides the universe of tweets from which the labeled

dataset was selected. Because of the number of tweets involved, we do not include the text of the
target-response pairs. These tweets are included in a JSON file with the following fields:

• event: Event to which the target-response pair corresponds to.
• response id: Tweet ID of the response.
• target id: Tweet ID of the target.
• interaction type: Type of Response: Reply or Quote.
• response text: Text of the response tweet.
• terms matched: List of ’contentious’ terms found on the text of the response tweet.

2.7 Baseline Models and Their Performance
We consider a number of classifiers including traditional text features based classifiers and
neural-networks (or deep learning) based models. In this section, we describe the input features,
the model architecture details, the training process and finally, discuss the results.
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2.7.1 Input Features
As we have sentence pairs as input, we use features extracted from text to train the models. For
each sentence pair, we extract text features from both the source and the response separately.

TF-IDF

Tf-Idf (Term frequency- inverse document frequency) [104] is very popular feature commonly
used in many text based classifier. In our research, we use TF-IDF along with Support-Vector
Machine (SVM) model that we describe later.

Glove (GLV)

In this kind of sentence encoding, word vectors are obtained for each word of a sentence, and
the mean of these vectors are used as the sentence embedding. To get word vectors, we used
Glove [96] which is one the most commonly used word vectors. Before extracting the Glove
word vectors, we perform some basic text cleaning which involves removing any @mentions,
any URLs and the Twitter artifact (like ‘RT’) which gets added before a re-tweet. Some tweets,
after cleaning did not contain any text (e.g. a tweet that only contains a URL or an @mention).
For such tweets, we generate an embedding vector that is an average of all sentence vectors of
that type in the dataset. The same text cleaning step was performed before generating features
for all embeddings described in the paper.

Skip-thoughts (SKP)

We use the pre-trained model shared by the authors of Skipthought 3. The model uses a neural-
network that takes sentences as input and generate a 4800 dimension embedding for each sen-
tence [63]. Thus, on our dataset, for each post in Twitter conversations, we get a 4800 dimension
vector

DeepMoji (DMJ)

We use the DeepMoji pre-trained model 4 to generate deepmoji vectors [35]. Like skipthought,
DeepMoji is a neural network model that takes sentences as input and outputs a 64 dimension
feature vectors.

The process of training the LSTM model using DeepMoji vectors closely follows the training
process for the semantic features. The only difference is that the input uses DeepMoji vectors,
and hence the size of input vector changes.

2.7.2 Classifiers
As mentioned earlier, we tried two types of classifiers: 1) TF-IDF Text features based classifiers,
and 2) neural-networks (deep learning) based classifiers. For the classification task, we only

3https://github.com/ryankiros/skip-thoughts
4https://github.com/huggingface/torchMoji
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consider four class classification by merging ‘Explicit Denial’ and ‘Implicit Denial’ as Denial,
and ‘Implicit Support’ and ‘Explicit Support’ as Support. We describe the details of the classifiers
next.

SVM with TF-IDF features

Support Vector Machine (SVM) is a classifier of choice for many text classification tasks. The
classifier is fast to train and performs reasonably well on wide-range of tasks. For the Text SVM
classification, we only use the reply text to train the model. The classifier takes TF-IDF features
as input and predicts the four class stance classes. We would expect that this simple model
cannot effectively learn to compare the source and the reply text as is needed for good stance
classification. However, we find that such models are still very competitive and therefore serves
as a good baseline.

Deep Learning models with GLV, SKP, DMJ features

Figure 2.9: Deep learning model sample diagram

As opposed to traditional text classifiers, neural-network based models could be designed to
effectively use text-reply pair as input. One such model is shown in Fig. 5.7. A neural network
based architecture that uses both source and reply can effectively compare target and reply posts
and we expect it to result in a better performance. This type of neural network can further be
divided in two types based on inputs: 1) Word vectors (or embeddings) are used as input such as
Glove (GLV), 2) Sentence vectors (or sentence representations) are used as input such as skip-
thoughts, DeepMoji and a joint representation of skip-thought and deep-moji (SKPDMJ). The
first model that takes word embeddings as input requires a recurrent layer that embeds the text
and reply to a fixed vector representation (one for target and one for reply). One fully connected
layer that uses the fixed vector representation input and a softmax layer on top to predict the final
stance label. The second type of model that uses the text and reply representations only have one
(or more) fully connected layer and a softmax layer on top to predict the final stance label.
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Table 2.5: Classification results for Replies: F1-score (micro) and mean of F1 scores (Mean) for
different events. QOT implies quotes, RLP implies replies and CMB implies combined quotes
and replies.

Model#
Event !

Iran Deal (ID) General Terms (GT) Student Marches (SM) Santa Fe Shooting (SS) Mean

Data Type QOT RPL CMB QOT RPL CMB QOT RPL CMB QOT RPL CMB QOT RPL CMB
Baseline Models

Majority 0.46 0.47 0.37 0.37 0.36 0.36 0.53 0.50 0.41 0.40 0.56 0.48 0.44 0.47 0.41
Text SVM 0.44 0.44 0.43 0.46 0.41 0.41 0.45 0.51 0.45 0.44 0.55 0.48 0.45 0.48 0.44
Deep Learning Models

Glove 0.41 0.46 0.40 0.42 0.41 0.42 0.49 0.48 0.47 0.47 0.56 0.49 0.45 0.48 0.45
SKP 0.46 0.42 0.39 0.38 0.37 0.37 0.48 0.50 0.42 0.38 0.53 0.46 0.43 0.45 0.41
DMJ 0.46 0.46 0.40 0.40 0.39 0.41 0.54 0.51 0.44 0.41 0.56 0.48 0.45 0.48 0.43
SKPDMJ 0.45 0.41 0.39 0.39 0.39 0.36 0.46 0.49 0.42 0.46 0.51 0.44 0.44 0.45 0.40

2.7.3 Classifiers Training
Our neural-network based models are built using Keras library 5. The models used feature vectors
(Glove, SKP, DMJ) as input. Because Glove is a word vector embeddings, we use a recurrent
layer right above the input to create a fixed size sentence embeddings vector. For SKP, DMJ
and SKPDMJ, the concatenated sentence representation is used as the input to the next fully
connected layer. The fully connected layer is composed of relu activation unit followed by
a dropout (20 %) and batch normalization. For all models, a final softmax layer is used to
predict the output. The training of SKPDMJ model also followed the same pattern except the
concatenation of SKP and DMJ features which is used as the input. The models are trained
using ‘RMSProp’ optimizer using a categorical cross-entropy loss function. The number of fully
connected layers and the learning rate were used as hyper-parameter. The learning rate we tried
were in range 10�5 to 10�1. The fully-connected layer size we tried varied from 1 to 3. Once
we find the best value for these hyper parameters by initial experiments, they remain unchanged
during training and testing the performance of the model for all four events. For all models
we find that a single fully connected layer performs better than multi-layered fully connected
networks, so we use single layer network for all the results discussed next.

2.7.4 Results and Discussion
We summarize the performance of the models in Tab. 2.5 in which we show the f1 score (micro)
for all models for each dataset. As we can observe, if we consider the mean values across events,
the replies-based models perform better. The performance is better not just when compared with
quotes but also when compared with combined quotes and replies data. In fact, in all but one
case, the model trained on combined data performs worse than both the replies based model and
quotes based model. This confirms our earlier suspicion that people use quotes and replies in
different ways on Twitter, and it is better to train separate models for inferring stance in quotes
and replies.

5https://keras.io/
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If we compare the input features (Glove, SKP, DMJ, SKPDMJ), we can observe that most
models are only slightly better than the majority (class) based model, which means that this
problem is very challenging. The SVM model that used TF-IDF text features is the simplest yet
performs as good as the deep learning models. Only on the combined data, the SVM is .01 worse
than the Glove based model. This is not completely unexpected, as we know that most deep
learning models require a lot of data to train, and in our case, we barely have a few thousand
examples. What is more interesting is that even among the deep learning models, the Glove
features based model that is the simplest to train, performs better than all other feature-based
models. This is also unexpected given that earlier work, e.g., [68], has indicated the benefit of
using sentence vectors (SKP, DMJ and SKPDMJ) in comparison to word vectors based models
(GLove). This phenomenon could partially be because of the difference in the models used in
the earlier work.

Figure 2.10: Confusion Matrix for Glove feature based deep-learning model for combined quotes
and replies data.

If we consider the confusion matrix as shown in Fig. 2.10, we can observe that the ‘Denial’
class is the best performing class followed by ‘support’ class. This is aligned with the overall
objective of this research to improve the denial class performance. In future work, we would like
to combine the dataset prepared in earlier research [137] where ‘comment’ is the majority class
and and this new dataset that has more ‘Denial’ and ‘Support’ labels.

2.8 Conclusion and Future Work
In this research, we created a new dataset that has stance labels for replies (and quotes) on Twitter
posts on three controversial issues and on additional examples which do not belong to any spe-
cific topic. To overcome the limitations of prior research, we developed a collection methodology
that is skewed toward non-neutral responses, and therefore has a more balanced class distribution
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as compared with prior datasets that have ‘Comment’ as the majority class. We find that, when
applied to contentious events, our methodology is effective at recovering contentious conversa-
tions and more non-neutral threads. Finally, our dataset also separates quotes and replies and is
the first dataset to have stance labels for quotes. We envision that this dataset will allow other
researchers to train and test models to automatically learn the stance taken by social-media users
while replying to (or quoting) posts on social media.

We also experimented with few machine learning models and evaluated their performance.
We find that learning stance in conversations is still a challenging problem. Yet stance mining
is important as conversations are the only way to infer negative links between users of many
platforms, and therefore inferring stance in conversations could be very valuable. We expect that
our new dataset will allow the development of better stance learning models and enable a better
understanding of community polarization and the detection of potential rumors.
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Chapter 3

Learning Users’ Stance by Combining
Users’ Networks and Users’ Posts by
Creating Virtual Connections

3.1 Introduction

Online social media platforms are popular for sharing information and allowing users to net-
work with each other. Analyzing such social networks is an active area of research. Significant
problems in this field are finding communities, predicting interests of users, and recommending
friends and content. Typical end goals are to identify groups, infer links and make network pre-
dictions. To achieve these goals, it is first necessary to determine for two social-media users,
how socially proximate they are. Two individuals who are connected by a friendship tie or a
follower-followee tie are more socially proximate than are those not connected. However, just
examining the binary friendship or follower-followee ties is insufficient for assessing there over-
all social proximity. Users are more socially proximate vis-a-vis a topic, the more they have in
common. Learned representations using random walks over the network links provide a better
feature to find the social proximity of users, but they still miss important cues such as what they
say or feel about a topic. We argue, that in addition to the explicit ties among users, the activities
and preferences of the social media users could be used to find weighted virtual links that can be
leveraged to learn more useful node representations.

In this paper we present People2vec, a latent space representation of the user in context as a
vector. This representation supports generalization and the identification of similar actors and so
groups. This representation is learned from the data and captures the complexities of the situation
in which the user is embedded. Our approach is inspired by an analogous problem in language
technology which is to learn a representation of a word from the common context of the word in
sentences. To that end we draw on the word2vec approach for identifying the context of the node
by random traversals of the network similar to [45, 97]. However, we move beyond this approach
by bringing in user activities as node attributes, which enables the inference of additional links
and solves the sparse network problem. Existing network analytic tools, like ORA, uses both the
network and the attributes on the nodes. By exploiting attribute information to infer the network,
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Figure 3.1: Using just the binary friendship network, the only similarity between the orange and
green person is that they are both friends of the brown person. Each person also has social media
activity, e.g. a set of messages that they send. Combining these two types of data can generate
new weighted virtual links (the red dashed lines) between nodes and reveal hidden connections.

People2vec supports a more detailed analysis.
The important contributions of this paper are:
• We propose People2vec, a model to learn node representations that captures similarity in

users’ attributes and activities, in addition to their friendship links.
• Our model extends the popular random walk approach of learning node representation and

brings valuable improvements, yet preserves the simplicity of the approach.
The paper is outlined as follows. First, we discuss prior work in section 3.2. Then, we

introduce our ‘People2Vec Model’ in section 3.3. In section 3.4, we present our experiments on
two different datasets, along with a discussion of the results. We finally conclude and discuss the
future work. Code to reproduce the results is available on Github 1.

3.2 Related Work
Some recent advancements in learning node representations are inspired from the improvement
in natural language processing. Bengio et al. [11] proposed the distributed representations of
words aka ‘Word embeddings’ which was later used by Collobert and Weston [24] to demon-
strate their usefulness in many NLP tasks. Mikolov et al. [88] proposed Word2vec, a Skip-
gram model for learning high-quality distributed vector representations using skip-gram model.
Such representations capture many syntactic and semantic word relationships e.g. they predict:

1https://github.com/CASOS-IDeaS-CMU/People2Vec
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vec(‘Berlin’) - vec(‘Germany’) + vec(‘France’) = vec(‘Paris’). The concept of learning represen-
tations using skip-gram could be applied to networks as well. These latent representations can be
learned in a number of ways; e.g. a) factorization of social network’s adjacency matrix b) learn-
ing functions to find better features. Recently, researchers have tried to train neural-networks to
find efficient nonlinear transformations for learning node embeddings. However, unlike words
in a language that has plenty of examples to get related contextual words, often networks are
sparse. Besides, there is no clear notion of social-context in networks. To incorporate context in
networks, researchers have tried random walks [45, 97]. Random walks on links in a network
help to generate contexts that consist of proximity nodes. Like in language models, such con-
text is then used to build embedding vectors (representations) often by training a shallow neural
network. Learning low dimensional representation of nodes in networks allow mapping local
structural characteristics to a continuous space representation. Learning these representations
of nodes have helped to improve performance in many tasks including node classification and
link prediction. Though models proposed in [45, 97, 115] learn good representation on simple
graphs, they mostly explore binary edges, so are best suited for social-networks that have clear
links as in friendship and follower-followee relationship. They do not exploit node attributes and
preferences which are often very relevant and strong indicators in social networks. This gap is
the focus of this research.

3.3 People2Vec Model
We consider the problem of learning node representation in social-networks that captures users’
preferences, in addition to their explicit links in the form of friendship or follower-followee
relationship. We expect a good solution to have the following two properties:

a) Users with direct links in a network should be closer in latent representation space. Many
existing models exhibit this property.

b) Users with similar preferences should be closer in latent representation space. The way
to measure similarity in preferences should be flexible to allow the model to adapt to different
formulations of preferences. For example, in one situation, two users discussing a topic could be
similar, and in another situation, two users using same tag could be similar.

We formulate the problem as follows: Let G(V,E) be a network where v 2 V are nodes (or
users) and e 2 E are edges. Let F : v ! Rd be the function that learns a d dimensional repre-
sentation (z) of a node. Let Y be a matrix of user preferences that contains a set of preferences
for each user, where Y j

i indicates preferences of node vi towards jth item. The jth ‘item’ could
be stance towards a topic or the count of a tag (as in hashtag used by a user). The goal of the
algorithm is to learn zi, a low-dimensional representation of user vi that considers the explicit
links in E and also the similarity in Y space.

As in Deepwalk[97] , we follow the language modeling technique of generating latent repre-
sentation of words from sentences. In language modeling, given some text corpus W = (w0, w1,
..., wn), the goal is to maximize the likelihood Pr(wi|w0, w1, ..wi�1, wi+1, .., wn) over the entire
corpus. By analogy, in social networks, we define the likelihood of observing a node vi given
other nodes by Pr(vi|v0, v1, ..vi�1, vi+1, .., vn). In the latent space F of node representations, this
can be formulated as maximizing the likelihood of
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Pr
⇣
vi|

�
F (vi�k), F (vi�k+1), .., F (vi�1), F (vi+1), F (vi+k�1), F (vi+k)

�⌘
(3.1)

where we only consider 2k immediate neighbors on node vi. To efficiently solve such a
formulation, we use the skip-gram [88] approach. Taking log the optimization problem can be
formulated as :

min
F
� logPr

⇣�
vi�k, vi�k+1, ..., vi+k�1, vi+k

�
|F (vi)

⌘
(3.2)

Since a node and its latent vector have symmetry in latent space, the conditional likelihood
of a neighbor node vj given by Pr(vj|F (vi)) can be approximated as similarity in latent space.
As in Deepwalk [97], we use the stochastic gradient descent over neighbor nodes collection
generated by random walk to optimize the final objective function. To speed up the training
we used hierarchical soft-max [? ]. In the proposed model, the neighborhood of a node vi
(v0, v1, ..vi�1, vi+1, .., vn) is not limited to nodes reachable by explicit links, and is extended to
nodes having similar attributes. We call such links ‘virtual links’ (explained next).

3.3.1 Virtual Links from Users’ Activities

We define virtual links as edges in social-networks that connect users with similar preferences
as evident by their involvement on these platforms. These virtual links (like real links) can be
used in random-walks to explore node neighborhood, thus enhancing the network information
present in the original networks. Moreover, there virtual edges, based on nodes similarities, can
also strength the existing linkage. Hence, virtual links enable to learn more meaningful node
representations.

There are two possible formulations of virtual-links. A rigid link that is either present or
absent, and a weighted link that that gives a probabilistic score of links being present. We go
with the probabilistic version of virtual-links as it enables a more flexible learning framework.

The probability of having a virtual link between two users is based on similarity between their
activity on social-media platform. As discussed earlier, let’s model the activity profile of users
as a matrix Y j

i , where Y j
i indicates preferences of node vi towards jth item. Similarity between

users is obtained by measuring similarity between vectors representing users preferences.
The similarity between two users is defined as:

Similarity
�
vk, vi

�
= Sim

�
Yk, Yi)

�
(3.3)

There are a number of ways to measure such similarity. We tried three such similarity mea-
sures: a) Cosine Similarity b) Hamming Distance c) Euclidean Distance. On our datasets, we
find that ‘Cosine Similarity’ (CS) performs better than other measures. Hence, we use CS as the
similarity measure in rest of the paper.
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Random Walks

We use random walks to sample neighborhood nodes. The random walks approach provides a
more flexible approach over known ’Depth First’ and ’Breadth First’ sampling as explained in
[45]. A random walk starts from a node, say v0, and uses node links to find the next node. In
prior studies, the probability of transition from node v0 to vi is given by:

P (vi|v0) =
(

0, if (v0, vi) /2 E
1P
k 1 , otherwise

)
(3.4)

where k = Number of links of v0.

Random Walks over Virtual Links

In our model, we extend the random walk over nodes to include random walk over virtual links.
Figure 3.2 explains the idea.

Figure 3.2: An example of a random walk transition in People2vec. Real links are shown in
blue and virtual links are shown in red. The walk originates from node v1. The probability of
transition to other nodes is shown in text. Similarity scores for virtual links are obtained using
Sim function. Here we consider the weighing factor ↵ = 0.5, i.e. we weigh the real links and the
virtual links equally. For clarity, we have not shown virtual links for nodes already connected via
real-links.

To weigh the relative importance of virtual links and to real links, let’s introduce a hyper-
parameter ↵, a weighing factor. This parameter is tuned based on characteristics on the network
under consideration. For random walks over virtual links (see Fig. 3.2), we use the probability
of transition from node v0 to vi as:

P (vi|v0) =
(

↵ ⇤ Sim0�Y (v0), Y (vi)
�
, if (v0, vi) /2 E

(1� ↵) ⇤ 1P
k 1 + ↵ ⇤ Sim0�Y (v0), Y (vi)

�
, if (v0, vi) 2 E

)
(3.5)

where k = Number of real links of v0, and Sim0 is the normalized similarity score defined as

Sim0 =
Sim

�
Y (v0),Y (vi)

�
P

vi
Sim

�
Y (v0),Y (vi)

� .
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3.3.2 People2Vec Algorithm

People2Vec extends the original Deepwalk algorithm [97] by including virtual links. Like in
Deepwalk, our algorithm uses random walk to learn node representation. However, in the pro-
cess of generating walks, the algorithm uses ‘virtual links’ in addition to the real links, thus
considers neighbors that were not accessible in plain random walks. The steps as described in
Algorithm 1. Again, similar to Deepwalk, we use skip-gram [88] algorithm to efficiently learn
the representations for each node.

Algorithm 1 The People2Vec algorithm.
1: learnRepresentations
2: Graph G, VirtualGraph Gv

3: RepresentationDimension d
4: walks per node r
5: walk length l
6: window size w
7: walks = []
8: for iter 2 {1, . . . , r} do
9: for node 2 V do

10: walk = randomWalk(G, Gv, node, l)
11: walks.append(walk)
12: end for
13: end for
14: SkipGram(F, walks, w) (see Ref. [88])
15: ————————————————————
16: randomWalk(Graph G, VirtualGraph Gv, Start node u, Length l)
17: walk = [u]
18: for walk iter 2 {1, . . . , l} do
19: currentNode = walk[-1]
20: newNode = getNeighbor(currentNode, G, Gv)
21: walk.append(newNode)
22: end for
23: ————————————————————–
24: getNeighbour( Start node v0, Graph G, VirtualGraph Gv)
25: start at v
26: Nr = getRealNeighbors(G, v0)
27: Nv = getVirtualNeighbors(Gv, v0)
28: pick neighbor v1 from [Nv + Nr] using P (v1|v0) (See Eqn. 3.5 )

42



3.4 Experiments and Results
In this section, we present the experimental evaluation of our model on two different datasets.
The first dataset is a set of blogs, second is a sample from Flickr website and the third is a
stance dataset based on Twitter data. We also evaluate the impact of using different latent-space
dimensions.

3.4.1 Datasets
We use two existing datasets (BlogCatalog and Flickr) to evaluate our algorithm. These datasets
are publicly available and were used is earlier studies [54]. In addition, we also experiment with
stance detection where users are labeled as ‘Pro’/‘Con’. For stance detection, the proposed algo-
rithm is used on a Twitter dataset vis-a-vis three controversial topics namely: 1:‘Gun Control’,
2) ‘Abortion’, and 3) ‘Obamacare’. The dataset was built in a prior study on bias and is described
in [81]. We summarize the users in Table 4.1 and their labeled stance in Table 4.2.

Table 3.1: Dataset Description

Dataset Nodes Edges Labels Attributes
BlogCatalog 5,196 171,743 6 8,189
Flickr 7,575 239,738 9 12,047

BlogCatalog Dataset

BlogCatalog is an online community of bloggers. The dataset is created by including keywords
used in blog description as attributes [54]. Using those keywords, we generate users preference
matrix . In this dataset, the labels used for predicting the classification performance represent
bloggers’ interests.

Flickr Dataset

Flickr is popular website that hosts videos and images. Users can follow each other, thus, forming
a network. They can join different groups which is used as labels. To get the users’ preference
matrix, tags by users are used [54].

Stance Dataset

We used the dataset created in [80] to find if our approach generalizes to stance learning. We
summarize the users in Table 4.1 and their labeled stance in Table 4.2.

Table 4.1 summarizes Biaswatch topics. In the table, RT users mean the number of users
that were retweeted in data and the information is used create the user-retweet graph. Similarly,
endtags show the number of unique hashtags used at the end of tweets, and are used to build the
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Table 3.2: Topics summary

Events Users Tweets RTUsers Endtags

Guncontrol 70387 117679 15635 5505
Obamacare 67937 123320 14807 7376
Abortion 111463 173236 26818 9784

user hashtags networks. We use endtags as prior research has shown that hashtags that appear at
the end convey stance signal [34].

Table 3.3: Labeled users summary

Events Neutral Pro Anti Total

Gun-control 60 156 288 504
Obamacare 33 108 363 504
Abortion 55 169 280 504

3.4.2 Baseline Algorithms And Model Optimization
We measure the performance of People2Vec against several state-of-the-art algorithms [45, 97,
115]. DeepWalk [97] uses uniform random walks on networks to learn embeddings as in lan-
guage modeling techniques like word2vec. LINE [115] algorithm preserves both local and global
network structures and uses edge sampling approach for optimization. Node2Vec [45] extends
Deepwalk by combining depth-first and breadth-first search in their sampling strategy.

We use social-media tags to create a nodes’ preference vectors. Preference vectors of dif-
ferent nodes are then compared using cosine similarity measures to create weighted virtual links
which are later used to learn node representations. Because similarity between nodes generates
O(n2) possible edges, which could result in a very dense graph so we use a threshold (10 clos-
est neighbours unless otherwise stated) to reduce the number of virtual-edges used in learning
embeddings. The exact threshold is of lesser importance as People2vec random-walk prefers
node transitions to higher similarity nodes, and thus ignores less similar nodes more often. The
dimensions of representations used are 64 and 128. For a fair comparison, all algorithms used
walklength = 10 and walkcount = 40. For all models, we use one-vs-rest logistic regression as
used in [97]. We trained all the models on an Ubuntu Linux machine with 64 GB ram and eight
core Intel i7 processor with 4.00 GHz processing speed.

3.4.3 Experimental Results
We present the results of the experiments. Table: 3.4 shows the top classification performance
for the two datasets. Figure 3.3 shows the trend of F1-score (macro) for different train and
test ratio. The plot show that most algorithms have a reasonable performance right from the
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Figure 3.3: We tried different algorithms to learn the class labels (a proxy of community) of
nodes in BlogCatalog graph. In this plot, we compare mean F1 score for different algorithms.

Figure 3.4: We tried different algorithms to learn the class labels (a proxy of community) of
nodes in Flickr graph. In this plot, we compare mean F1 score for different algorithms.

smallest training percentage (10%). There are small improvements as we increase the training
data percentages. Peopl2vec performed better than rest of the algorithms. In general, embeddings
with 128 dimension perform better than 64 dimension embeddings. People2Vec is an exception
for which scores were very similar. Figure 3.4 shows the results for the Flickr dataset. Again for
most algorithms 128 dimensional embedding performed better than 64 dimensional. Like before,
Peopl2vec performed better than all other algorithms.
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Table 3.4: Best F1 Macro Score

Method BlogCatalog Flickr
DeepWalk 0.73 0.58
Node2vec 0.72 0.58
LINE 0.73 0.58
People2Vec 0.83 0.75

We don’t compare our results with matrix factorization based approaches (like LANE [54],
BlogCatalog: 0.90 best F1 score, Flick: 0.90 best F1 score) as walk based approaches allows to
generalization and extension to other modalities as we show in the next chapters. However, we
want to note that we observe similar performance gains over the baselines e.g. on BlogCatalog
dataset, LANE improved from 0.81 (Deepwalk) to 0.90 (LANE). The gain is similar to our work
which improved from 0.73 (Deepwalk) to 0.83 (People2vec).

3.4.4 Parameter Sensitivity
We consider the following parameters in evaluating People2Vec: a) Different measure of simi-
larity for creating virtual links, b) Effect of parameter ↵ that allows to weigh real links vs virtual
links c) Effect of embeddingdimensions.

Effect of different similarity measures:

We tried three similarity measures to find the similarity between any two users. a) Cosine similar-
ity: b) Hamming distance c) Euclidean distance. The cosine similarity gives better performance
on the two datasets we used. Fig. 3.5 shows the performance of People2Vec if Euclidean dis-
tance is used to measure similarity. The best accuracy is observed for ↵ = 0.08, and a higher
value of ↵, in general, reduced the performance.

Fig. 3.6 shows the performance on People2vec when Hamming distance is used as the mea-
sure of similarity. For Hamming distance, the best performance is obtained for ↵ = 0.2 for lower
training percentage, but for higher training percentage ↵ = 0.6 performs better.

All other plots use cosine similarity metrics, unless specified otherwise.

Effect of weighing parameter ↵ :

Hyper-parameter ↵ needs to be optimized for the particular dataset, as the best parameter de-
pends on the characteristics of networks like size, sparsity, and variance in node attributes. For
BlogCatalog, we tried different values of ↵ for embedding dimension 128. We find that ↵ =
0.5 gives the best classification performance. This means for the optimum performance, equal
weight should be given to virtual and real links in the random walks.

Effect of embedding dimensions:

For comparing People2vec with other approaches, we consider embeddings of two different
dimensions of 64 and 128 size. Fig. 3.4 and Fig. 3.3 shows the results. We observe that a higher
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Figure 3.5: F1-micro score for different ↵ values using Euclidean distance as the measure of
similarity.

Figure 3.6: F1-micro score for different ↵ values using Hamming distance as the measure of
similarity.

dimension leads to a better performance in most cases. We also evaluate the performance of
Peopl2vec for many different dimensions. Figure 3.8 shows the trend of F1 score for embedding
of dimension 8 to 254, in multiples of 32. The plot shows a general improvement in performance
when dimension is increased, but the benefit saturates around size 192, and then the performance
decreases.
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Figure 3.7: F1-micro score for different ↵ values. ↵ indicates the weighing parameter, and a
higher alpha means more virtual links are considered in the random walks.

Figure 3.8: F1-micro score for embeddings of different dimensions on Flickr dataset.

3.4.5 Results on Stance Dataset
Next we present results when we apply the Peopl2Vec algorithm to another dataset used to predict
stance on users on Twitter. The dataset was described earlier in the Dataset section. Here we
elaborate on the training process and the results. The training process used the same methods as
we describes earlier for other datasets. For node similarity. we use TF-IDF features extracted for
the text of all users and used the co-sine similarity as the measure of similarity. We pick an ↵ =
0.5, as that have worked well for other datasets and an embedding dimension of 128. Also, for
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computational efficiency we only considered the top 10 similar nodes to each node to create the
virtual connections.

Figure 3.9: F1-micro score for different topics in the Biaswatch dataset. Retweets graph was
used as original network and text similarity was used to generate the virtual connections. 128
vector sized embedding was used for both people2vec and node2vec.

As we observe in Fig. 3.9, for almost all training set fraction, the people2vec model exceeds
the performance of the Node2vec model. The trend is only reversed for ‘Abortion’ dataset for
which, when 0.8 and 0.9 fraction of the entire dataset is used for training, the test performance is
better for Node2Vec model. At least for this topic, it implies that adding similarity based virtual
connections decreases the test performance. However, looking at other plots, we don’t expect the
pattern to generalize.

Overall, we can confidently say that the performance the best performance obtained by Peo-
ple2Vec model is better than the performance obtained by the Node2Vec model, indicating that
bringing virtual connection using mode similarity adds useful information for stance detection.

3.5 Conclusions and Future Work
We proposed People2Vec, a model to learn the representation of nodes in complex networks. We
used nodes similarity to construct virtual links between nodes. Virtual links enhance the original
graph with additional information that uses users’ attributes and preferences. People2Vec con-
siders these virtual edges while building random-walk paths, thus, exploits similarity of nodes in
addition to real links. Experiments on two real-world datasets reveal that using People2Vec to
learn representations substantially improves node classification performance. On the BlogCataog
dataset, we observe an improvement of 13% (F1 score) over other state-of-the-art algorithms to
learn embeddings. On the Flickr dataset, the performance improved by 25% on F1-score.

People2Vec is straightforward and intuitive, yet learns better node representations. The
approach is also very general, hence can easily be extended to other types of data on users.
Peopl2vec significantly improves over the baselines as it can use additional node features (at-
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tributes) that are not available to other models. The baseline models only make use of network
connections without able to exploit the node attributes. Peopl2vec allows adding new node con-
nections based on the users attributes, making the attributes useful for learning better node em-
beddings. Better node embeddings, in turn, lead to improved performance for node classification.
In future, we plan to investigate the usage of sentiment and emotions in social media posts, to
learn node representations that consider the stance of users towards topics. We would also like
to explore confidence levels on the results for sparse graphs.
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Chapter 4

Co-Training on Social Networks: A Joint
Network Label Propagation and Text
Classification Approach for Stance Mining

4.1 Introduction

People express their opinions on blogs and other social media platforms. Automated ways to
understand users opinion in such large human-generated corpora is of great value. For example,
social media data can be used to find the users’ perception of a product [56], the spread of dis-
eases [71], the stock market trend [14], and more. A particular sub-field of opinion mining is
stance mining – which focuses on finding automated ways to infer users’ opinions on controver-
sial topics.

Stance mining is of growing importance because it enables a better understanding of the
stance taken in social media posts [91], the polarization of online communities [38] and the
spread of misinformation [82]. For learning the stance of social media users, the conventional
approach is to use a human-labeled dataset to train a supervised machine-learning classifier and
then use the trained model to predict the stance of unlabeled users [76, 87, 91]. Though im-
mensely valuable, this approach has two significant limitations.

First, the supervised learning approach works well for tasks where both train and test data
are from the same distribution. That is usually the case with topics that change slowly over time.
However, many topics evolve quickly. For example, take the topic of immigration reforms in the
US. The topic has evolved from arrests on the border, to the new border bill, to the construction
of a border wall, to new rules for asylum seekers, to perhaps something new as you read this
paper. Because such topics evolve fast, the traditional approach to train a stance classifier using
human-labeled examples from the past (which are only available for a few topics) is of limited
value.

Second, social-media allows multiple interactions, for example, on Twitter, users can ‘Tweet’,
‘Retweet’, ’use hashtags’ etc (see Fig. 4.1). Most existing stance learning approaches use text
in user’s tweets. However, simple text-based classifiers barely perform well, as evident by the
SemEval 2016 competition scoreboard, in which the top team received a 0.67 F1-score (average)
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Figure 4.1: Twitter allows multiple interactions that we can broadly group into users’ text mes-
sages and users’ networks (e.g., retweets graph). Given data on a topic, a stance classifier (as in
pro/con about the topic) can learn from any of these interactions. Though the model trained using
a single interaction is useful, this approach of training fails to take advantage of the uncorrelated
information in different interactions. In this research, we show the benefits of co-training that
leverages information in multiple interactions to train better stance classifiers.

[90] in the two-class stance classification problem. While using multiple interactions makes
it harder to train models, prior research on semi-supervised learning has shown that by using
multiple interactions, we can exploit additional patterns in unlabeled data to train better models
[13]. In this research, we tackle both limitations of stance learning using a new semi-supervised
approach that resembles the co-training setting [93] and combines the idea of co-training with
another semi-supervised approach, label propagation. Unlike the original co-training approach
[13] that used two text-based views, we use a co-training setting in which we train two models
using data from two or more types of interactions. By co-training these models, our method
allows us to effectively learn from multiple interaction features.

The other advantage of our proposed approach is that we use weak supervision to train mod-
els, by utilizing the stance signal given by a few seed hashtags (e.g., #ActOnClimate as pro and
#ClimateChangeHoax as anti). Our approach effectively utilizes the stance signal given by such
seed hashtags to obtain the initial set of seed users, who are then used to co-train the classifi-
cation models. Co-training these models improves their performance, not only because sharing
the more confident labeled examples expands the training set, but also because one model can
label examples that which are otherwise not possible for the other model to label (e.g., label
propagation cannot classify nodes in disconnected components without any labeled nodes).

To validate the benefits of our proposed approach, we predict the stance of users on a Twitter
dataset that contains manually verified stance labels of 504 users and additional unlabeled users
( 100,000 users) on three topics. By following the proposed co-training approach, which uses
stance given by two to four labeled hashtags as input stance signal, we improve the text based
stance classifier by more than 17% on all three topics.

Our main contributions are as follows:
• We extend the original co-training approach by using two different types of models, i.e.,
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a label propagation and a text classifier. This combination can learn from both users’
networks and users’ text features data (sec: 4.3.3). Co-training results in trained models
that perform better than the self-trained models (sec. 5.4).

• We use a few hashtags (e.g., #ProChoice:+1,#StandForLife:-1) as a way to obtain the seed
training examples. We show that the co-training approach effectively handles such noisy
training examples (sec: 4.4.8). Because it’s easy to label a few hashtags manually, this
makes our approach very flexible.

• The trained text-classifier can be used to predict the stance of new tweets without requiring
networks (as in inductive learning) (sec: 4.4.6). This resolves concerns with prior network
based approaches that used the transductive learning setup.

The remainder of the paper is organized as follows: We formulate the problem in sec. A.3.
We discuss the label propagation algorithm in sec. 4.3.1 and self-trained text classification in sec.
4.3.2. In section 4.3.3, we elaborate on our proposed co-training based approach. We explain
our dataset, training methodology, baseline modes, and results in sec. 5.4. In section A.7, we
describe other prior work that are relevant to this research. Finally, in sec. 4.6 we conclude our
findings and propose future work. Code to reproduce the experiments is available on Github 1.

4.2 Background and Problem Formulation
Our goal is to propose an approach that can be used to train stance classifiers that predict the
stance of users provided their social media data. Moreover, we aim only to use the stance given
by a few labeled hashtags as the input signal. Utilizing weak signals to train models is an over-
arching desire that has been explored in the past, but can be said to have achieved only partial
success at best. For instance, in Mohammad et al. [91], the research (and related SemEval com-
petitions) that could be credited to popularize the field of stance mining, briefly discussed the idea
of using unlabeled tweets for improving stance classification performance. The authors explored
using hashtags based dataset for training. They found that using data from specific hashtags as
additional training data could improve the f-score by up to 4 percentage points (on one topic, but
minimal on others). Even by including a large datasets built using hashtags, they fail to improve
the models’ performance partly because people use hashtags not only to explain their stance but
for many other purposes [34].

To pick the correct signal from hashtags, we position the stance classification task as a user-
level task rather than a text-level task. As discussed earlier, we use the tweets along with their
metadata to 1) aggregate text in users’ tweets, 2) construct users’ retweets network, and 3) con-
struct users’ hashtags network. We use these three views to co-train a network-based model and
a text-based model. One may ask, are the views conditionally independent (one condition for
co-training to work), and if they are not, is there any benefit of using such views. To justify our
choice, note that co-training does not require completely independent views [30]. Moreover, we
have multiple steps that filter the noisy signal. First, each classifier uses only the more confident
examples for training. Even then, if we train these classifiers independently, the test performance
is on the lower side. To improve this result, we co-train the models (4.3.3), which results in

1https://github.com/CASOS-IDeaS-CMU/stance analyzer
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improving the performance of these models.

4.2.1 Problem Statement
Given a topic, let’s assume we retrieve a set of tweets T = {t1, t2, t3, ...., tm} which were tweeted
by a set of users U = {u1, u2, u3, ...un} where n  m. The tweets can be grouped by users
resulting in a new set of groups of tweets, which we name D = {d1, d2, d3, ..., dn} where di is
the collection of tweets tweeted by user ui. As mentioned earlier, tweets also have additional
metadata that are used to build user-hashtags network H and user-retweet network R. Let’s
assume H is a weighted matrix created from k most used hashtags in the dataset. Similarly, R
is a weighted matrix created using p most popular retweets in the dataset. Therefore, H 2 Rnxk

matrix and R 2 Rnxp matrix. When the distinction between H and R is not critical, we use I to
represent the user interaction matrix (H or R) with edge weights wij.

Furthermore, because the topics studied in this research are controversial, we assume that
users have either pro-stance (+1) or con-stance (�1) (same as anti-stance). Users can also have
an unknown stance (0) when the stance of the user is not known. The goal of this research
is to correctly assign a stance label {+1,�1} to as many users as possible in the set U based
on D,H,R. This assignment results in a user-stance matrix S = {s1, s2, s3, ...., sn} where
si 2 {+1, 0,�1}.

4.3 Methodology
We divide the proposed method in three parts. We first describe: 1) Label Propagation on Bi-
Partite Networks, 2) Self-Trained Text Classifier, and then we explain the 3) Co-training process.

4.3.1 Label Propagation on Bi-Partite Networks with Linear Threshold
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Figure 4.2: Label propagation on bipartite graphs with influence functions � and �0, and W is a
matrix representing usage of hashtags by users.
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In the bi-partite label-propagation, there are two types of nodes, and information flows from
both types of nodes. For example, if we consider user-hashtag networks where ‘user’ is one node
type, and ‘hashtag’ is another node type, label propagates from users to hashtags. and then from
hashtags back to users (see Fig. 4.2). In addition to the propagation of labels through edges
in a typical label propagation approach, we incorporate some ideas from influence propagation
research [15] to improve our models.

In influence propagation, influence functions are used to model the spread of a disease [74]
or a belief [21]. A node (user) is influenced by another node (user), only when certain conditions
are met. The condition to get influenced could be as simple as – if a user gets higher then a certain
level of influence from the influencers, the user gets influenced. For instance, let’s assume users
can have two possible states +1, 0, where +1 implies a user has been influenced, and 0 implies a
user has not been influenced. A user gets influenced i.e., ‘+1’, if the ratio of ‘+1’ influence over
the sum of all incoming influence (‘+1’ and ‘0’) is above a threshold value. This simple influence
propagation model is called the ‘Linear Threshold Model’ (LTM). We modify this LTM model
to suit our requirements of three types of stance states.

Let’s assume � and �0 are influence functions. For a bipartite network I , in step: 1) influence
propagates from users to hashtags, and in step 2) influence spreads from influenced hashtags to
users. We assume ✓h to be a parameter that acts as a threshold for propagating influence from
users to hashtags, and ✓u is another parameter that is another threshold for spreading influence
from hashtags to users. The label propagation model could be represented as:

S̃  �0
✓h
(I 0 · SI) (4.1)

SI  �✓u(I · S̃) (4.2)

where · is dot product, and I 0 is the transpose of the matrix I . For influence functions, we
propose a new model that extends the idea in the LTM model and better suits our requirements.

Linear threshold model (LTM) with decreasing threshold (LTMDT)

As we want the stance to propagate to as many nodes as possible, we propose to use a decreasing
threshold function. We name this model LTMDT in which the threshold condition linearly de-
creases after every iteration that allows propagating the stance to nodes that are connected even
by relatively small edge weights. LTMDT model is described as:

s̃j =

8
<

:

1, if
Pn

k=1 w
0
jk ⇤ sIk > ft(✓h)

�1, if
Pn

k=1 w
0
jk ⇤ sIk < �ft(✓h)

0, otherwise
(4.3)

sIj =

8
<

:

1, if
Pn

k=1 wjk ⇤ s̃k > ft(✓u)
�1, if

Pn
k=1 wjk ⇤ s̃k < �ft(✓u)

0, otherwise
(4.4)

where ft is a uniformly decreasing function of the iteration number t, and sIk is users’ stance
based on network data. Though confidence estimate is not used in bi-partite label propagation,
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we define it here as it will be needed while describing the co-training of the model (discussed
later). Confidence estimate is defined as the ratio of weight of the edges leading to the stance of
a user, divided by the sum of all edge-weights for that user:

cIj =

(Pn
k=1 wjk⇤1s̃k=sIjPn

k=1 wjk
, if sIj 6= 0

0, otherwise
(4.5)

where cIj is the confidence in the estimated stance sj of user j.

4.3.2 Self-Trained Text Classifier
As each user in our dataset has text features (from tweets), it is possible to infer the stance of
users based on their tweets. Many text classifiers can be used for this task. However, given that
we have plenty of unlabeled data, it is natural to ask if we can pick a classifier that uses unlabeled
data in training. Nigam et al. explored this idea and proposed self-training [94].
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Figure 4.3: Self-trained Text Classifier. The model uses Expectation Maximization (EM) steps
but is incremental. Only the users that are predicted with high-confidence (uk s.t. CT

k > ✓T ) are
used in the next iteration.

In self-training, a model is first trained using an initial set of labeled examples (text from seed
users) to predict the class labels of unlabeled users (E-Step). We then use the predictions of the
unlabeled examples to retrain the text classifier (M-Step). Then, the trained model is again used
to label the unlabeled data, and this process repeats until convergence. For a better performance,
we again use a confidence threshold function that only allows to use the predictions above a
certain threshold to be used as training examples.

We show the steps of training the text classifier in algorithm 2. Though the text classifier
only predicts one label for a text sample (obtained from a tweet), because users can have mul-
tiple tweets, multiple predictions (one for the text from each tweet) can be used to quantify the
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Algorithm 2 Self-Training Text Classifier
Require: Xl labeled tweets and Xu unlabeled tweets

1: function SELF-TRAIN-ITERATE(Xl, Xu)
2: Train classifier ftext(✓) using Xl

3: for until convergence do
4: E-Step
5: Estimate text stance ftext(sj|xj; ✓)
6: Estimate users stance ST . see Eqn. 4.6
7: Estimate confidence CT . see Eqn. 4.7
8: Expand Xl Xl + �Xl . see Eqn. 4.8
9: M-Step

10: Update ✓ using new Xl

11: end for
12: return (ST , CT )
13: end function

confidence in the stance estimation of a user. In each iteration, the number of ‘pro’ text and
‘con’ text a user has, determines the stance ST and prediction confidence CT . This step can be
formulated as:

sTj =

8
><

>:

1, if
Pm

k=1 1sk>0Pm
k=1 1

> ft(✓T )

�1, elif
Pm

k=1 1sk<0Pm
k=1 1

> ft(✓T )

0, otherwise

(4.6)

cTj =

8
><

>:

Pm
k=1 1sk>0Pm

k=1 1
, if sTj > 0

Pm
k=1 1sk<0Pm

k=1 1
, elif sTj < 0

0, otherwise

(4.7)

where sk is the stance of the kth tweet of the user j who has a total of m tweets. To expand
the training set, we only use the users who pass the threshold criterion and for whom stance is
not zero:

�Xl  Dj 2 sTj 6= 0 (4.8)

where Dj is the set of tweets associated with user uj for whom stance sj 6= 0.

4.3.3 Co-Training of Label Propagation Model and Text Classifier
In our co-training setting, the labeled seed hashtags are used to obtain the initial set of labeled
users. The labeled users and the unlabeled users are the input to the algorithm, which iterates till
it converges, i.e., no change in user labels. We explain the steps using user-hashtag network (see
Alg. 3), but the steps transfer well to user-retweet or combined user-hashtag and user-retweet
network.
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Algorithm 3 Co-Training: Joint training of hashtag based label-propagation model and text
classifier
Require: T is the set of tweets collected

1: function CO-TRAIN SOCIAL NETWORKS(T )
2: Extract User-Text D
3: Extract User-Hashtag Network H
4: Label Seed hashtags . e.g, #Prochoice +1
5: Get Seed users (UL)
6: Get Unlabeled users (UU)
7: while until convergence do
8: STEP 1: Label Propagation
9: Label hashtags (H) using UL

10: Predict the Stance SI of UU using H
11: Estimate stance confidence (CI)
12: STEP 2: Text based classification
13: Train a text classifier ftext(✓) using UL
14: Use ftext(✓) to Predict UU stance ST

15: Estimate stance confidence (CT )
16: STEP 3: Update UL
17: L=LabelMixing(SI , CI , ST , CT )
18: UL= UL + L
19: end while
20: return UL
21: end function

In each iteration, the label propagation algorithm uses the users-hashtag network and propa-
gates users’ stance-labels to unlabeled hashtags, and then propagates the hashtags’ stance-labels
to unlabeled users. Therefore, in an iteration, the label propagation model uses the user-hashtags
network to predict labels of the unlabeled users. Similarly, the text classifier uses the stance-
labels of the labeled users and their tweets to retrieve a set of labeled text examples. The text
examples and their labels are then used to train the text-classifier model. The trained text classi-
fier then predicts the stance labels of text used by unlabeled users, which is then used to get the
text-based stance and the confidence (in stance prediction) of the unlabeled users.

At the end of each iteration is a label-mixing step. In the label-mixing step, the predictions
and the confidence in predictions of the models are used to expand the training set. For this step,
we use a common-set approach in which a common-set of labeled examples (say u1, u2, ...uk 2
UL) is used to train classifiers. In every iteration, the top 5 % confident predictions of unlabeled
data, which exceed the confidence thresholds, are used to expand UL . The newly labeled users
and labeled users from prior iterations are used as the new training set.

For the final stance prediction, we create a joint model that combines the predictions of
different models using the confidence scores to create a classifier (as described below):
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4.4 Experiments and Results
In this section, we evaluate the proposed method on a dataset with three topics. We describe the
dataset, the data prepossessing steps, seeds hashtags and seed users, details on training and hyper-
parameter optimization, baseline models to compare the performance of the proposed methods,
and finally discuss and visualize the results. Towards the end, we also discuss the effect of
different seed hashtags and the effect of hyper-parameter selection.

4.4.1 Dataset
In Bias-watch [81], a study to understand opinion bias on social media, the authors built a human-
labeled dataset on three topics, namely ‘gun-control’, ‘abortion’, and ‘obamacare’. Because
opinion bias and stance are used in similar context, we use this dataset for evaluating our algo-
rithms. We only use the pro/con labels for evaluation, ignoring the neutral users. We summarize
the users in Table 4.1 and their labeled stance in Table 4.2.

Table 4.1: Topics summary

Events Users Tweets RTUsers Endtags

Guncontrol 70387 117679 15635 5505
Obamacare 67937 123320 14807 7376
Abortion 111463 173236 26818 9784

RT users shows the number of users that were retweeted in data and the information is used
create the user-retweet graph. Similarly, endtags show the number of unique hashtags used at the
end of tweets, and are used to build the user hashtags networks. We use endtags as prior research
has shown that hashtags that appear at the end convey stance signal [34].

Table 4.2: Labeled users summary

Events Neutral Pro Anti Total

Guncontrol 60 156 288 504
Obamacare 33 108 363 504
Abortion 55 169 280 504
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4.4.2 Data Pre-processing
Most prior research on users’ bias and community polarization have used user-user networks.
Working with graphs of single entity type (i.e. user) makes the problem formulation simpler.
However, converting bipartite graphs to single mode graphs also results in the loss of information.
For example, for understanding user’s bias in the gun-control conversation, converting a user-
hashtag network to user-user network with edges as common hashtags results in loosing the
discriminating signal of various hashtags. This is evident as the hashtag ‘#GunControlNow’
and ‘#GunControl’ would be treated equally even though the first gives a much stronger stance
signal. To improve this, our problem formulation includes bi-partite graphs.

We categorize the two types of dataset that can be built from users tweets.

1. Users-text: Here we only include the text in users’ tweets after removing any hashtags and
retweets.

2. User-interaction networks: Tweets could also be used to extract bi-partite graphs e.g. the
graph created by users and hashtags with edges as the count of usage.

Prior research and our experiments show that hashtags at the end are more likely to carry
stance information [34], therefore, our experiments only used user-endtag networks. In the paper,
when we refer to hashtags, we only mean hashtags that appear at the end of the tweets.

4.4.3 Seed Hashtags and Seed Users
In semi-supervised learning, a small fraction of data points (seed users) are labeled in the be-
gining. To get seed user labels, we label a few (two to four) popular hashtags which we call as
seed hashtags (details in Tab. 4.3). For example, for the topic ‘abortion’, we labeled {#prolife :
�1,#stand4life : �1,#prochoice : +1,#reprorights : +1}. The labels given by these seed-
hashtags are propagated to users using the label propagation algorithm. These seed labeled users
are noisy labels (not ground truth) and these labeled users are often only a small fraction of all
users.

We describe the hashtags used as seed hashtags to train the models in Tab. 4.3. Using
seed hashtag, one can get the seed users by using label propagation model on the user-hashtag
networks. The number of seed users available for the three datasets is shown in the right column.
The number varies across dataset, and as we can observe, ‘Obamacare’ has the most number of
seed users ‘Gun-control’ dataset has the least number of seed users.

4.4.4 Training and Hyper-parameter optimization
We have five parameters to optimize {k, p, ✓I , ✓U , ✓T} where k is the the count of hashtags to
use, p is the count of retweets to use and others are model parameters. To identify the right value
for these, we tried these parameters on the ‘guncontrol’ dataset and then use the best parameter
on other datasets and in the rest of the experiments. We show the performance of the models for
different values of model parameters in Figures 4.4, 4.5, and 4.6.
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Table 4.3: Seed hashtags, their labels, and the count of seed users obtained using seed hashtags

Dataset Seed Hashtags No. of Seed
Users

Guncontrol #guncontrolnow: Pro, #endgunviolence: Pro,
#2ndamendment: Anti, #secondamendment: Anti

Pro:782,
Anti:321

Obamacare #uniteblue: Pro, #ilikeobamacare: Pro, #defun-
dobamacare: Anti, #dontfundit: Anti

Pro:1342,
Anti:3883

Abortion #prochoice: Pro, #reprorights: Pro, #prolife: Anti,
#stand4life: Anti

Pro:499,
Anti:2183

As we can observe in the plot (see Fig. 4.4), ✓U has an optimal value for 0.0 and ✓I is good
at 0.1. When we use ✓I that decreases over iterations, most values do well near the end of the
iterations. The text classifier only has one parameter ✓T . Like for the label-propagation models,
we again tested the text classifier for different values of the parameter, and when the parameter
values decrease over iterations on one dataset, and used the best parameter on other datasets. As
shown in Fig. 4.6, in the plot on the left, we find the ✓T = 0.6 works well. However, when
decreasing parameter is used over iterations, values in range [0.0, 0.6] perform well.

Figure 4.4: Accuracy of the label propagation model for different values of ✓I (left) and ✓U

(right). The trends are for the ’gun-control’ dataset.

Note that with LTMWDT which uses a uniformly decreasing threshold over iterations, there
is a range of the parameter values that work well. We pick the optimal parameter values as:
{k = 250, p = 5000, ✓I = 0.1, ✓U = 0.0, ✓T = 0.6}.

4.4.5 Baseline Models
We pick some classifiers that are known to perform well on other NLP tasks namely, ‘Support
Vector Machine (SVM)’, ‘Neural Networks (NN) with varying size of hidden layers’ and ‘XG
Boost (XGB)’ as the baseline models. We provide more details on these models next. Details on
performance of the baseline models is described in the fist part of Tbl. 4.4. For co-training we
use SVM because it is fast to train and also performs well.
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Figure 4.5: Accuracy of the label propagation for different values of ✓I when ✓I decreases over
iterations. The trend is for the ’gun-control’ dataset.

Figure 4.6: Accuracy of the text-classifier model at different threshold values ✓T , and when the
threshold ✓T decreases over the iterations. The trend is for the ’gun-control’ dataset.

We consider some of commonly used NLP classifiers namely ‘Support Vector Machine
(SVM)’, ‘Neural Networks (NN) with varying size of hidden layers’ and ‘XG Boost (XGB)’
as the baseline models. We do not consider network based classifiers as baselines as we are
interested in the inductive training setup that could generalize to new data (even when networks
are not available). For a fair comparison, all classifiers use the same set of input. The input is
composed of TF-IDF features extracted after vectorizing the count of words as uni-grams and
bi-grams obtained from the pre-processed text. All text classifiers were build and trained using
‘sklearn’ 2 python package with ‘CountVectorizer’ and ‘TfidfTransformer’ and the classifier in a
pipeline.

Support Vector Machine: The support vector machine classifier (SVM) was built using the
‘SGDClassifier’ 3 with a ‘hinge’ loss that leads to a linear SVM and was trained for the maximum
of 15 iterations. Alpla value which is used as the regularizer was used as a parameter with values
in {1e� 2, 1e� 3}.

2https://scikit-learn.org/stable/
31 + /.../sklearn.linear model.SGDClassifier.html
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We also used an SVM model tri-grams as inputs, in addition to uni-grams and bi-grams. We
name this model ‘svm123’. The other parameters of the model stay the same as the SVM as
described above.

Neural Networks: We used two neural networks with slight different configurations to under-
stand not just the general performance of neural networks but also how the performance varies
by changing the number of hidden units and the number of layers. We call them ‘NN88’, and
‘NN8168’ where ‘NN’ indicates multi-layer perceptron classifier 4 with ‘relu’ activation func-
tion.

NN88 is constituted of two hidden layers each with eight neurons each. NN8168 is comprised
of three hidden layer, first with eight units, second with sixteen units and third with eight units.
All NNs were trained to optimize the log loss using the ‘lbfgs’ weight optimizer with an alpha
value of 1e � 5. The rectified linear unit function (‘relu) was used as the activation function in
all the models.

XG Boost: In addition to SVM and MLP, we also tried the XGBoost (XGB) classifier [20],
a classifier commonly used in data mining competitions and have shown performance benefits
over other classifiers. We used the sklearn based version of XGB 5 that takes the same input as
the other two classifier and therefore, fits our training pipeline. For XGB, we used ‘gbtree’ as
booster with a maximum depth of 2 and the learning rate of 0.1.

4.4.6 Results and Discussion

Figure 4.7: Classifiers performance over iterations. Networks LP implies label propagation
model that uses both hashtags and retweets networks.

We use accuracy as the metric to compare models. However, as not all classifiers are able to
label (reach) all users (e.g. a label propagation model cannot label users that are not connected
in the graph i.e. have not used any hashtags or have not retweeted.), and also the models’ reach
changes with iterations, so we use a modified definition of accuracy. This new accuracy assigns

41 + .../neuralnetwork.MLPClassifier.html
5https://xgboost.readthedocs.io/.../module-xgboost.sklearn
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a random accuracy score of 0.5 for the users that are unreachable (not labeled) by the classifier.
We define:

Accuracy = ULA ⇤R + 0.5 ⇤ (1�R) (4.10)

where R is the fraction of users that the model is able to label and ‘User Labeling Accuracy’
(ULA) is the conventional accuracy metric for labeled users. We show the models’ accuracy
over iterations in Fig. 4.7 and compare the performance of different models in Tbl. 4.4.

As we can observe in the figure, the iterative training process improves the accuracy of almost
all classifiers. However, most improvement is observed for the text classifier and the joint model.
Self-trained text classifier (for gun-control and abortion) improves till the 6-7 iterations after
which the performance degrades. On further inspection, we find that the text classifier and the
networks based label propagation models have complementary strengths. The network based
models have low reach but their precision is rather high. In contrast, the text classifiers are able
to label all users (as the dataset is collected using text keywords), but have lower accuracy as we
only use the signal given by the hashtags.

We now discuss the results shown in the Tbl. 4.4. As we can observe, in almost all cases, co-
training results in better performance. For ‘Guncontrol’ dataset, the joint models of ‘Hashtags +
Retweets + Text’ has the highest accuracy of 0.85. The ‘Retweets +Text’ model also has the same
accuracy, which is slightly better than ‘Hashtags + Text’ based model. If we compare the text
classifiers, the self-trained text classifier (SVM) has an accuracy of 0.68. The accuracy improves
to 0.80 when co-trained. This is a significant improvement especially considering that the only
training signal that is available to the models are the hashtags. If we compare the hashtags based
LP models, the accuracy improved from 0.49 to 0.54, a rather minor improvement. If we look
at the results for ‘Abortion’ dataset, the best performer is again the joint model of ‘Hashtags +
Retweets and Text’ with an accuracy of 0.86. The best text classifier is the one that is co-trained
with ‘hashtag +retweets’. The accuracy of this model improves from 0.60 to 0.80. If we look at
the LP models, the performance improvement is rather small (0.54 from 0.49 for hashtags and
0.60 from 0.53 for Retweets).

If we consider the results for ‘Obamacare’ dataset, the best performance is shared by ‘Retweets
and Text’ cotrained and ‘Retweets, hashtags and text’ cotrained. The text model significantly im-
proves from 0.54 (self-trained) to 0.82 (co-trained). Again, the improvement in LP based models
is rather low (0.55 from 0.49 for hashtags, and 0.63 from 0.55 for retweets).

To summarize, it is clear that the co-training models have clear advantage over self trained
model. The joint model is the best performer for all three datasets. The co-trained text classifier
shows significant improvement (17.6% on Guncontrol, 31.6% on Abortion, 161.7% on Oba-
macare) in their performance over the self trained models. For Obamacare, the higher increase
is partially because of the decrease in the base accuracy as a result of self-training process. For
other two datasets, self-training improved the performance.

4.4.7 Visualization of Results
In this section, we try to visualize the outcome of the models. We use only the gun-control
dataset for this discussion. In Fig. 4.8, we show the bipartite network of users on the left, and on
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Table 4.4: Performance of models on different datasets. LP implies label propagation, and bold
font indicates the best for a dataset.

Classifier Type # Dataset! Guncontrol
(Accuracy)

Abortion
(Accuracy)

Obamacare
(Accuracy)

Mean
(Accuracy)

Self-trained Text Classifiers

Text SVM 0.68 0.60 0.34 0.54
Text SVM123 0.68 0.59 0.33 0.53
NN88 0.54 0.62 0.29 0.48
NN8168 0.53 0.38 0.35 0.42
XGB 0.66 0.60 0.54 0.60
Network Label-Propagation Models

Hashtags LP 0.49 0.49 0.49 0.49
Retweets LP 0.53 0.53 0.60 0.55
Hashtags and Retweets LP 0.56 0.54 0.63 0.58
Hashtags + Text Cotrained Models

Text SVM Cotrained 0.81 0.78 0.85 0.81
Hashtags Cotrained 0.54 0.54 0.57 0.55
Hashtags Text Joint 0.83 0.82 0.84 0.83
Retweets + Text Cotrained Models

Text SVM Cotrained 0.80 0.79 0.89 0.82
Retweets Cotrained 0.62 0.60 0.69 0.63
Retweets Text Joint 0.85 0.85 0.91 0.87
Hashtags + Retweets + Text Cotrained Models

Text SVM Cotrained 0.79 0.80 0.88 0.82
Hashtags and Retweets Co-
trained

0.64 0.60 0.71 0.65

Hashtags and Retweets Text
Joint

0.85 0.86 0.91 0.87

the right, we show the user-user network based on co-retweets. There are links connecting the
dots which will be more clear after zooming. As we can see in the plot, there are many small
groups of closely connected users. These are the groups formed by users using the same set of
hashtags or user retweeting a similar set of users. There also many users away from the central
region that are not connected with other users. These are possibly the users that only tweeted
once or twice, and did not use any popular hashtags. Note that the plot does not show users who
have not used hashtags or have not retweeted, and this set of users in the dataset is larger than
the set shown in the plot. Therefore, this visual analysis of the plots just gives a partial picture.

Next we show the stance of users predicted by the models. In Fig. 4.9, we show users color
based on the stance predicted by the text-based stance classifier (self-trained) on the left, and
joint hashtag + retweet+ text based stance prediction on the right. Red colored nodes are users
having pro-stance and green colored nodes have anti-stance. As we can observe in the plots, the
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Figure 4.8: Forced directed layout user-endtag + user-retweet bipartite network (on left) using
guncontrol data. Black dots represent users, blue dots represent endtags and light blue represents
retweets. Links show the usage of endtags and retweets by users. On the right is the user-user
network based on co-retweets. Co-retweets implies users who are retweeting the same set of
users are connected by a link. Best if seen on a computer after zooming-in.

Figure 4.9: Forced directed layout for text based stance prediction (left) and joint hashtag +
retweet+ text based stance prediction (right) on the guncontrol dataset. Red colored nodes are
users having pro-stance and green colored nodes have anti-stance. Blue nodes represent end-
tags and retweets. Pink nodes shows that users for whom the joint model has no clear stance
prediction. Best if seen on a computer screen after zooming-in.

joint model results in a more homogeneous plot where clusters are labeled by one color. This is
possibly because, co-training the models, results in more coherent stance labels for the groups.

We visualize the output of stance prediction for guncontrol in Fig. 4.10 using the user-user
network in the guncontrol dataset created using common retweets. The stance prediction for
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self-trained text based classifier is shown on the left, and the co-trained joint model (hashtag +
retweet+ text) based stance prediction is shown on the right. Red colored nodes are users having
pro-stance, green colored nodes have anti-stance, and yellow nodes are the users for whom the
joint model has no clear stance prediction. As we know from the results table, the self-trained
SVM classifier is 68% accurate and the joint model is 80% accurate. The 12% improvement has
lead to significant difference in the visualization, and as we can observe in the figure, the joint
model is able to shown the polarized nature of the conversation which is not visible using the
self-trained text classifier result.

Figure 4.10: Forced directed layout network visualization for the text based (self-trained) stance
prediction model (left), and the co-trained joint model (hashtag + retweet+ text) based stance
prediction (right). We used the user-user network based on common retweets in the guncontrol
dataset for this visualization. Red colored nodes are users having pro-stance, green colored nodes
are users having anti-stance, and yellow nodes are users for whom the joint model has neutral
stance prediction. As described in the paper, we only used the training signal given by four
labeled hashtags to learn the stance of users. Best if seen on a computer screen after zooming-in.

To summarize the visualizations, as observed in prior research, the retweets based networks
better reflect the polarized nature of social-media conversation on controversial topics. Also it
is evident that the joint models are much better at dividing a controversial discussion into two
groups. Given the our approach only used weak hashtag labels as input signal, being able to
identify the polarized groups could be useful for many tasks e.g. estimating the polarization in a
discussion.

4.4.8 Effect of Different Seed Examples
Given that we only use the stance signal given by a few seed hashtags, it it natural to ask how
generalizable are the results obtained in the previous sections. To understand the differences
because of choosing different seed hashtags, we conducted experiments by selecting a subset of
the labeled hashtags used. We show the selected hashtags and the resulting accuracy of classifiers
in Tbl. 4.5.
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Table 4.5: Performance of co-trained joint model on bias-watch datasets with different seed
hashtags. LP implies label propagation.

Seed Hashtags Classifier Type Metric!
Dataset#

Accuracy Precision Recall F1-
Score

Labeled
Users
(Fraction)

#stand4life:+1, #prochoice:-
1

Hashtags + Retweets +
Text Joint

abortion 0.38 0.38 0.98 0.54 0.98

#prolife:+1, #prochoice:-1 Hashtags + Retweets +
Text Joint

abortion 0.83 0.77 0.78 0.78 0.94

#reprorights:+1,
#stand4life:-1

Hashtags + Retweets +
Text Joint

abortion 0.83 0.76 0.80 0.78 0.94

#endgunviolence:+1,
#secondamendment:-1

Hashtags + Retweets +
Text Joint

guncontrol 0.68 1.00 0.09 0.16 0.96

#2ndamendment:+1,
#guncontrolnow:-1

Hashtags + Retweets +
Text Joint

guncontrol 0.81 0.87 0.55 0.67 0.92

#2ndamendment:+1,
#endgunviolence:-1

Hashtags + Retweets +
Text Joint

guncontrol 0.68 1.00 0.10 0.18 0.96

#ilikeobamacare:+1,
#defundobamacare:-1

Hashtags + Retweets +
Text Joint

obamacare 0.80 0.81 0.16 0.26 0.95

#uniteblue:+1,
#defundobamacare:-1

Hashtags + Retweets +
Text Joint

obamacare 0.90 0.87 0.67 0.75 0.92

#uniteblue:+1, #dontfundit:-
1

Hashtags + Retweets +
Text Joint

obamacare 0.91 0.84 0.75 0.79 0.90

As we can see in the table, the classifiers accuracy are not entirely independent of the seed
hashtags. For example, for abortion, if we select only ‘#stand4life’ and ‘#prochoice’, the models
accuracy decreases drastically to 0.38. In contrast, other selections like ‘#prolife’ and ‘#pro-
choice’ does not make much of a difference in the trained classifiers’ accuracy (0.83). A similar
pattern is visible on other datasets as well. For guncontrol, the accuracy varies from 0.68 to
0.81, and for obamacare, the accuracy varies from 0.80 to 0.91. One possible reason for such
difference is the popularity of the chosen hashtags. For example, if one selects hashtags that are
not frequently used in the dataset, it is less likely to result in good classifiers. The extreme of
this is when one selects a hashtag that has never been used in the dataset, and therefore, the se-
lected seed hashtags leads to no useful signal in the model resulting in random classifiers. On the
other extreme, if one uses a very popular hashtag e.g., ‘#guncontrol’ that gives no clear stance
signal, this would again fail, as there is not enough signal to differentiate the two sides of the
conversation.

On the brighter side, it is evident that as long as we have a few (two or more) hashtags for
the both sides, the classifiers are reasonably good. On further inspection, we find that as long as
the seed hashtags are able to generate a reasonable number of labeled users (say over 500), the
classifiers perform reasonably well. So our suggestion would be to look at the top few hashtags in
the dataset and pick a few representing both sides of the conversation. It would be good it could
get an estimate of the trained models’ accuracy based on the selected seed hashtags. There has
been some work on using unlabeled data and multiple classifiers to get the estimate of classifiers’
accuracy (see [98]), but we leave it for the future work.
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4.4.9 Effect of Hyper-Parameter Selection
We again re-look at the parameter values and their impact on the performance of the models.
As the parameters decrease over iterations, as we have seen earlier, this reduces the need for
a through parameter tuning. However, it is still important to understand the effect of using
different parameter values. As we mentioned earlier, we have three parameters: user threshold
✓U , interaction threshold ✓I , and text threshold ✓T . Note that we picked a uniformly decreasing
threshold function that has shown to minimize the impact of selecting a particular threshold but
still results in good accuracies. We test the trend of the ‘hashtag+retweet+text’ joint model for
different values of these parameters. We show the trend of performance of the joint models for
different values of user thresholds and interaction thresholds in Fig. 4.11.

In the Fig. 4.11, on the left, we show the models’ accuracy trend for different user-threshold
values ✓U . As we can observe, the performance is rather stable only changing between 0-2%
points in accuracy. The trend is similar for all three datasets showing that the parameter selection
had minimal impact. The plot on the right in the same figure, shows the trend for different
interaction thresholds ✓I . Again we observe that the accuracy is mostly stables but degrades
around the value of 1.0. The stability of parameters is a good news as the parameters need not be
tuned independently for different datasets. Also, even for a selected parameter, there is not much
of difference in the trend across different datasets.

To summarize, it appears that using a decreasing threshold function reduces the impact of
parameter selection, and therefore, our approach should have a similar performance on other
datasets as well.

Figure 4.11: Trend of performance of the joint models for different values of user thresholds and
interaction thresholds.

4.5 Related Work

4.5.1 Stance Learning
Stance learning – which aims to predict opinion of social-media users about a proposition or
a topic on interest – is a sub-field of opinion mining. Researcher have explored stance in many
different contexts e.g., stance mining has been actively used is online debates [95, 110]. Research
on stance has also appeared in the context of political positioning e.g. liberal vs conservative.

69



[1, 26, 129]. However, in most of these work, stance learning has been attempted as a supervised
learning problem (as proposed in [91]). Like other supervised learning problems, if labeled data
is not available on the topic on interest, finding users’ stance about the topic is difficult. In the
research, we extend the stance learning to the semi-supervised domain using weak labels.

4.5.2 Weakly Supervised Machine Learning for Stance Mining
Though weak labels are common in many areas of text mining (sub-event discovery [130],
aspect-based opinion mining [77] and sentiment mining[44]), for opinion mining tasks, most
work use labeled datasets [59, 91]. Misra et al. used a set of hashtags to build a topic-specific
training corpus [89] which was created in a semi-supervised manner by hand-selecting a set of
seed hashtags. In another related work, Lu et al. proposed a opinion bias propagation framework
to find the strong partisan members and use them to find partisanship of other members [81].
Our work tries to improve the text-based stance classifier (which removes the need for networks)
by splitting the tweets information into ‘text’ and ‘networks’, and therefore can be used in an
inductive fashion (unlike pure networks based optimization approaches like [81]). Strategies to
improve a text classifier is likely to be more useful to newer data that does not have networks,
which is common.

4.5.3 Co-Training
Blum and Mitchell [13] introduced the idea of co-training to improve the performance of a learn-
ing model when some labeled data and a large amount of unlabeled data is available with two
distinct views. A number of researchers extended this idea, e.g., Han et al. [47] proposed Co-
teaching which uses noisy labels to train deep neural networks. Very recently, [132] used co-
training to identify users with disabilities. We follow a similar idea, however, 1) in our problem,
even the label data are noisy (hashtgas), 2) we apply co-training to an entirely new task of stance
learning.

4.6 Conclusion and Future Work
In this research, we proposed a new semi-supervised learning approach that uses two to four
labeled hashtags, and plenty of unlabeled social-media data to train two stance classifiers. The
proposed co-training approach uses different interactions (users’ text, user-hashtags, and users-
retweets) extracted from users’ tweets, and learns from the complementary information in these
views, to train better classifiers. Based on experiments on three human-labeled datasets, we
estimate that with 2-4 hashtags as weak labels, the text classifiers trained using our proposed
approach could reach an accuracy of over 80%. Co-training results in improving the text clas-
sifier accuracy by a margin of 17% across all three datasets. As our models are trained using
the stance signal given by the labeled hashtags, the approach is very flexible and, therefore, can
easily extend to new topics.

We get significant improvement using the co-training method because social-networks data
appear to have the same characteristics (two or more views of the same information) that is
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needed for co-training to work. For example, co-training requires two or more conditionally in-
dependent views. This requirement partially translates to complementary information in views
i.e., if the information available in view one is not available to view two, the co-training helps.
This requirement is also true for social-networks data. In social networks, users have their pref-
erences. For example, some users commonly use hashtags; some use retweets, and others use
text messages. Therefore, retweets only base view cannot help to identify the stance of all users.
In this sense, the different views provide complementary information and hence, if we use data
from all views to train models in co-trained fashion, the approach can label users with varied
preferences, thus improving the overall performance.

In this work, we only considered semantic networks. However, the simplicity of our approach
allows extending the method to other interactions (e.g., ‘Following’, ‘Likes’). We plan to use
these interactions in the future work.
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Chapter 5

A Joint Network and Text based Model for
Learning Stance in Conversations

5.1 Introduction
Automated ways to learn Stance – which aims to predict the stance of social-media users on
controversial topics – has been broadly explored as two separate threads of research: 1) learning
stance of users based on their social media posts (as in Pro/Con about a topic), and 2) learning
stance taken in conversations while replying (as in favoring and denying a post) to social-media
posts. Though these threads represent different aspects of stacetaking behaviour on social-media
forums, it is natural to ask if they are two faces of the same phenomenon, and if so, what would
be a unifying approach.
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User's Stance: Anti Gun-Control

Figure 5.1: Stance in Conversations: While users have stance about topics, they also exhibit their
stance while in conversation with other users. For example, in this illustrative example above, a
user while replying to another users, reveals his stance by ‘denying’ to the original post.

Using a new human-labeled dataset with labels for both ‘stance of users’ from their posts’
and ‘stance in conversations’ (as described in Chapter 2), we provide empirical evidence that
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these two stancetaking behaviors are indeed related (sec. 5.2). As we would expect, given a dis-
cussion on a controversial topic, a user is more likely to deny a post (while replying) to a post of
another user who has an opposing stance. This pattern can in fact be used to train conversations
based stance classifiers. The benefit of learning stance from conversations is that, conversations
are the only modality of interaction on Twitter that allows to exhibit negative relationship. Most
other interaction modalities such as ‘Retweeting’, ‘Liking’ or ‘Following’ allow to infer positive
interactions. In contrast, as mentioned earlier, conversations as in ‘replies’ and ‘quotes’ (and
sometimes tweeting with mentions) allow to show one-to-one antagonistic relationship. How-
ever, inferring relationship directly from text messages is challenging (as discussed in chapter
2). A part of the challenge is that labeled examples are few, so training models with a large
number of parameters is difficult. Instead, we propose a weakly supervised approach that uses
training labels generated using weak supervision. To learn from the pattern in conversations, we
propose a multi-modal stance classifier (MMSC) that jointly learns stance from : text in users’
conversations, and users’ networks. MMSC brings two unique ideas: 1) confidence in node class
(users’ stance) prediction, and 2) edge polarity (stance in conversations) prediction (as in signed
networks) to improve on prior approaches to stance classification. To summarize, we propose a
holistic approach of learning stance from social-media data, which in turn also leads to a a better
stance classifier for conversations.

This chapter is organized as follows. Before we move ahead with the idea of using users’
stance to train stance learning models on conversations, it is necessary to empirically validate
the proposed correlation i.e., between ‘Stance in conversations’ and ‘Stance of Users’. We do
it in the next section 5.2. We describe our joint learning model in sec. 5.3. We discuss the
experiments and the results in sec. 5.4. Finally, we conclude and suggest directions for future
research. Code to reproduce the experiments is available on Github 1.

5.2 Empirical Evidence of Correlation Between ‘Stance in Con-
versations’ and ‘Stance of Users’

Stance of users as in ‘pro’ or ‘con’ on a topic indicates users’ preference of taking one side over
other. This preference of one side over other also influences the stance that the user takes while
engaging in conversations with other users. Intuitively, when engaged in a conversation on a
topic, a person who has pro stance on a topic (say pro ‘gun control’) is likely to give favorable
replies to other users who share the stance. In contrast, while engaging in a conversations with a
user who is against gun-control, the user is more likely to have a ‘denial’ type response. As this
idea is only a hypothesis, we try to validate it empirically in this section.

To validate the hypothesis empirically, we use the dataset that we built in the first chapter.
The dataset has the stance of users (as in pro/con) as well as stance labels for conversations (as
in favor/deny). To validate the hypothesis, we first create two groups using the conversations
which we found in our dataset. The first group is composed of Twitter users who have the the
‘pro’ stance, and the second group is composed of users who have ‘anti’ stance on a topic. Then,
for both these groups, we get the conversations within the group and across the groups. Then

1https://github.com/CASOS-IDeaS-CMU/Stance in Conversation
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for these two groups, we find the number of users that have ‘favoring’ and ‘denying’ stances in
conversations. We present the result of this analysis as a confusion matrices below:

Student Marches Santa Fe Shooting Iran Deal

Figure 5.2: Confusion Matrix for stance in conversations (True label as Y axis) and predicted
label obtained from the users’ stance on the topic (on X axis). For prediction, if the two users
engaged in the conversation have the same stance, the predicted label is ‘Favoring’, otherwise it
is ‘Denying’. For the plots above, we ignore the conversations that have ‘comments’ and ‘query’
as ground truth labels.

Student Marches Santa Fe Shooting Iran Deal

Figure 5.3: Confusion Matrix for stance in conversations (True label) and label obtained by
users’ stance on the topic when ‘comment’ labels are used as ‘Favoring’. For prediction, if the
two users engaged in the conversation have the same stance, the predicted label is ‘Favoring’
otherwise it is ‘Denying’.

We present the result of this analysis as confusion matrices in Fig. 5.2. As we can observe,
based on the stance of the users, we are able to predict the stance in conversations (as in denying
vs favoring) with a high probability for ‘Student Marches’ and ‘Santa Fe Shooting’. If two users
had ‘favoring’ conversations in our dataset, with over 90% of probability the users have the same
stance on the topic. For denying conversations, the two users are more likely to have opposing
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stance (except for the ‘Iran deal’ topic). For ‘Iran Deal’, though we are able to get ‘Favoring’
type conversations with a high accuracy, getting ‘denying’ conversations based on users’ stance
appears challenging.

The confusion matrix (Fig. 5.2) ignores ‘Comments’ and ‘Query’ type true labels. In Fig.
5.3 We show a similar trend, but in this case we use ‘comment’ type true labels as ‘favoring’.
The idea behind using comments as favoring response is that two users are more likely to have
a neutral conversation if they have similar stance on the topic of discussion. As we can observe,
this results in a slight decrease of the accuracy. Overall, the correlation between ‘users’ stance’
and ‘stance the users take in conversations’ is strong enough to try to use users’ stance to train a
model for learning stance in conversations.

5.3 Methodology
In the last chapter of this thesis (chapter 4), we showed that the stance of users can be learned
using weak supervision. We want to extend the idea of weak supervision to train models to learn
‘stance in conversations’ in this chapter. The goal is to first use weak supervision to get the stance
of a few seed users, and then use the seed users to train the stance classification models. Figure
5.4 shows the steps we use to train the classifiers but before we discuss the steps, let’s formulate
the problem.

1. Label Seed Nodes

3. Propagate Node’ Labels
to Other Nodes

4. Predict Edges Labels
using the Text Classifier

6. Add Confident Node Labels
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2. Label Edges

Labeled Seed 
Edges

5. Predict Node Labels
using Edge Labels

Anti User
Pro User

Denying Edge
Favoring Edge

Conversations (source-reply pairs)

？

？
？

？

？

？

Figure 5.4: A high level illustration of the methodology. As shown in the diagram, the entire
process could be divided in six smaller steps.

5.3.1 Problem Statement
Given a topic, let’s assume we retrieve a set of tweets T = {t1, t2, t3, ...., tm} which were tweeted
by a set of users U = {u1, u2, u3, ...un} where n  m. Tweets also have additional metadata
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that are used to build user-hashtags network H and user-retweet network R. Let’s assume H is
a weighted matrix created from k most used hashtags in the dataset. Similarly, R is a weighted
matrix created using p most popular retweets in the dataset. Therefore, H 2 Rnxk matrix and
R 2 Rnxp matrix. When the distinction between H and R is not critical, we use I to represent
the user interaction matrix (H or R) with edge weights wij .

Moreover, two users can have conversations (one user tweets and another user replies to
his/her tweet) between them. Let’s define the conversations between two users ui and uj as Cij

where Cij = {C1
ij, C

2
ij, ...C

k
ij} are k conversations (source tweet, reply tweets pair). Therefore,

Ck
ij = (ts, tr) where ts is source text and tr is reply text. These source reply pairs could have

stance labels as ‘Favoring’ (+1) and ‘Denying’ (�1). We ignore ‘Comments’ and ‘Queries’ (the
other two classes in the labeled dataset) in this chapter. The goal of this research is to correctly
assign a conversation stance label {+1,�1} to as many conversations as possible in the set C.

Because we use users’ stance as a signal to learn stance in conversations, an intermediate step
in the process of learning stance of Ck

ij is to learn stance of users ui and uj on the topic. Because
the topics studied in this research are controversial, let’s assume that users have either pro-stance
(+1) or con-stance (�1) (same as anti-stance). Users can also have an unknown stance (0) when
the stance of the user is not known. An intermediate goal of this research is to correctly assign
a stance label {+1,�1} to as many users as possible in the set U based on D,H,R,C. This
assignment results in a user-stance matrix S = {s1, s2, s3, ...., sn} where si 2 {+1, 0,�1}.

Fig. 5.4 show the step of training the models. Note that these steps extends the approach
which was described in details in the last chapter. The main difference from the last chapter
is that the approach is modified to train stance models on conversations. For this, we change
the text classifier (that predicted users’ stance) to predict stance in conversations (sour-reply text
pairs). This lead to new steps like step 2 and step 5 for transforming between users’ stance and
stance in conversations.

In step 1, we label two to four hashtags to get seed labeled users. As the labeled users don’t
directly result in labeled conversations, we first use labeled users to derive seed labeled edges
(step 2). In step 3, a bi-partied label propagation is used to get labels for other users. In step 4,
we use whatever edges are already labeled to train a text classifier which takes source-reply text
pairs as input, and predict the edge labels for the rest of the conversations. Then in step 5, the
predicted labels of the edges are used to predict node labels. In the last step, node labels from
both the classifiers are used to predict the stance of unlabeled nodes (step 6 and 7).

As in the last chapter, the proposed process uses two classifiers, 1) a node label propagation,
and a 2) text classifier that uses source, reply pairs from users’ conversations. Both theses classi-
fiers are trained in a co-training fashion to reduce noise from weak labels. We elaborate on these
steps next.

5.3.2 Step 1: Label Seed Nodes
We use two to four hashtags (that appear at the end of the text in tweets) as the weak signal to
label a few initial seed users. This step uses the label propagation algorithm on the user-hashtag
bipartite network.

SI = H · h̃ (5.1)
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where SI is the resulting labeled users and h̃ indicates the hashtags vector with a few labeled
tags as {+1,�1}.

5.3.3 Step 2: Label Edges from Seed Nodes

✚−
✚ −

Anti User

Pro User

Denying Edge

Favoring Edge✚
−Opposing Stance Neighbors

Similar Stance Neighbors

Figure 5.5: Model of predicting stance of edges (conversations) as in favoring/denying from
stance of users (pro/anti)

We use the stance of users (node labels) to derive the stance on potential edges between
the users (see Eqn. 5.2). For this we use a simple heuristics which is based on our empirical
validation in the last section (see Fig. 5.5). If two users have the same stance (i.e. either both
of them are pro or both of them are anti), the conversations between them ( as in edges in the
network) are assumed to be ‘favoring’. In contrast, if if two users have opposing stance, all
conversations between them are assumed to be ‘denying’. This way, we get edge labels for all
conversations (source, reply pair text) between any two users with non-neutral stances.

Ck
ij =

8
<

:

0, if si = 0 or sj = 0
�1, elif si 6= sj
1, otherwise

(5.2)

It is possible that any of the two users have unknown ({0}) stance , in which case, their edges
are ignored. However, as described in the next step, we also use a label propagation model to
propagate stance over the users’ networks. This way, the stance labels of users expand over the
network, and more conversations could be labeled.

5.3.4 Step 3: Propagate Node Stance Labels to Other Nodes
This step uses a bi-partied label propagation propagation algorithm to propagate labels to other
nodes. Let’s assume � and �0 are influence functions. For a bipartite network I , the stance
propagates in two steps: 1) influence propagates from users to hashtags, and in step 2) influence
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spreads from influenced hashtags to users. We assume ✓u to be a parameter that acts as a thresh-
old for spreading the influence from hashtags to users. The label propagation model could be
represented as:

S̃  �0
✓h
(I 0 · SI) (5.3)

SI  �✓u(I · S̃) (5.4)

where · is dot product, and I 0 is the transpose of the matrix I . As we want the stance to
propagate to as many nodes as possible, for influence functions, we reuse the model proposed
in the last chapter i.e., Linear threshold model (LTM) with decreasing threshold (LTMDT). In
LTMDT the threshold condition linearly decreases after every iteration that allows propagating
the stance to nodes that are connected even by relatively small edge weights. LTMDT model is
described as:

�✓uj =

8
<

:

1, if
Pn

k=1 wjk ⇤ s̃k > ft(✓u)
�1, if

Pn
k=1 wjk ⇤ s̃k < �ft(✓u)

0, otherwise
(5.5)

where ft is a uniformly decreasing function of the iteration number t, and sIk is users’ stance
based on network data.

Though the confidence estimate is not used in bi-partite label propagation, we define it here
as it will be needed while describing the joint model (discussed later). Confidence estimate is
defined as the ratio of weight of the edges leading to the stance of a user, divided by the sum of
all edge-weights for that user:

RN
j =

(Pn
k=1 wjk⇤1s̃k=sIjPn

k=1 wjk
, if sIj 6= 0

0, otherwise
(5.6)

where RN
j is the confidence in the estimating stance sj of user j.

5.3.5 Step 4: Predict Labels of Conversations using the Text Classifier
The text classifier uses conversations between any two users that are already labeled (last step).
All source reply pairs such that Ck

ij! = 0 are used as the training set for a text classifier that takes
source and reply pairs as input. This classifier after training is used to predict the stance labels
for rest of the conversations i.e., Ck

ij = 0. The predictions are used to predict labels for unlabeled
nodes in the next step.

For a better performance, we again use a confidence threshold function that only allows to
use the predictions above a certain threshold to be used as training examples. Though the text
classifier only predicts one label for a source-reply text pair (obtained from a conversation),
because users can have multiple conversations, multiple predictions (one for each source-reply
pair) can be used to quantify the confidence in the stance estimation between two users Cij . In
each iteration, the number of ‘favoring’ text and ‘denying’ the users ui, uj have, determines the
stance Cij and prediction confidence RT

ij . This step can be formulated as:
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Cij =

8
>>><

>>>:

1, if
Pm

k=1 1Ck
ij>0

Pm
k=1 1

> ft(✓T )

�1, elif
Pm

k=1 1Ck
ij<0

Pm
k=1 1

> ft(✓T )

0, otherwise

(5.7)

RT
ij =

8
>>><

>>>:

Pm
k=1 1Ck

ij>0
Pm

k=1 1
, if CT

ij > 0
Pm

k=1 1Ck
ij<0

Pm
k=1 1

, elif CT
ij < 0

0, otherwise

(5.8)

where Ck
ij is the stance of the kth source-reply pair of the users i, j who has a total of m

conversations. For a better performance, we expand the training set over iterations such that in
early iterations more confident examples are only used for expanding the training set. Therefore,
we use the conversation with confidence higher that threshold criterion ft(✓T ). Note that ft is
regularly decreasing function over iterations t as in the last chapter.

5.3.6 Step 5: Predict Node Labels using Edge Labels

Anti User

Pro User

Denying Edge

Favoring Edge

？

？

User with 
Unknown Stance

Figure 5.6: Step of predicting stance of nodes (pro/anti users) from stance of edges (as in favor-
ing/denying in conversations)

In this step, given a few unlabeled nodes and a few labeled edges, we predict the labels of
unlabeled nodes. This step is the reverse of step 2 and is illustrated in Fig. 5.6. For all the labeled
edges, if they are connecting two nodes such that one of the two nodes is unlabeled, the label of
the labeled node and the label of the edge, is used to predict the label of the unlabeled node.

Stance of user si could be derived from the stance of another user sj with whom he had
conversations. The equation could be written as:
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si =

8
>>>><

>>>>:

0, if sj = 0
�1, elif Cij = �1 and sj = 1
�1, elif Cij = +1 and sj = �1
+1, elif Cij = +1 and sj = 1
+1, otherwise

(5.9)

where Cij is derived using 5.7. This could be thought as the majority label of all k conversa-
tions between user i and user j.

5.3.7 Step 6: Label Mixing and Adding Confident Node Labels as New
Labeled Data

At the end of an iteration, we us the K percentage top confident labels of both classifiers to
be added as new training examples. K is a hyper-parameter and its value is determined using
experiments.

5.3.8 Joint Model

For the final stance prediction, we create a joint model that combines the predictions of different
models using the confidence scores to create a classifier (as described below). The classifier uses
the stance given by the more confident model to assign the stance of a conversation Jk

ij . If the
network based classifier is more confident, then the similarity and difference in the stance of
users i, j is used to predict the joint stance.

Jk
ij =

8
>><

>>:

0, if Ck
ij = 0 and si = 0 and sj = 0

Ck
ij, elif RT

ij >= RN
ij

+1, elif RT
ij <= RN

ij and si = sj
�1, elif RT

ij <= RN
ij and si 6= sj

(5.10)

where RT
ij is the confidence score of predicting the the edge stance by the text classifier, and

RN
ij is the confidence in predicting the stance of the edge by the network classifier, si and sj are

stance of users i and j and Ck
ij is the stance predicted by the text classifier. RN

ij is the mean of
confidence in estimating the stance si, sj of users using network label propagation, and is defined
as:

RN
ij =

RI
i +RI

j

2
(5.11)

To summarize the steps, we propose an approach to train a conversation (source text, reply
text) based stance classifier, with only weak supervision from two to four labeled hashtags. Note
that we still use the labeled examples to show the performance of the models.
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5.4 Experiments and Results

5.4.1 Dataset Statistics
For the experiments in this chapter, we use a labeled dataset built in chapter 2. We describe the
general statistics of the dataset in Tbl. 5.1, and then summarize the labeled part of the dataset in
Tbl. 5.2.

Table 5.1: Dataset summary

Events Users Tweets RTUsers Endtags Replies

Student Marches 410785 1039778 391127 17821 48277
Santa Fe Shooting 973506 3043731 910967 45057 83293
Iran Deal 685058 3304519 580180 86653 71808

In this chapter, we are interested in support and denial, so we first group implicit and explicit
types labels together, and we regroup the stance labels in two classes ignoring comments and
queries.

Class labels

1. Denial: Denial means that the reply tweet outright states that what the target tweets says is
false or that the tweeter implicitly believes that what the target tweet says is false.

2. Support: Support means that the reply tweet implies that the tweeter believes that what the
target tweet says is true or it means that the quote/tweet outright states that what the target
tweets says is true.

Also, for the experiments in this chapter, we only take ‘replies’ as the mode of interaction of
interest, ignoring ‘quotes’. This lead to the dataset described in Tbl. 5.2.

Table 5.2: Distribution of labeled replies across different events.

Stance Category Student
Marches

Santa Fe
Shooting

Iran Deal

Denial 220 304 198
Support 212 225 202

5.4.2 Expanding the Dataset by Including Users’ Timeline Data
As our stance in conversation prediction model is based on ‘stance of users’, we would like to
improve our users’ stance prediction accuracy. In chapter 5, we showed that a text classifier
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and a network classifier could be jointly trained to improve stance prediction accuracy of users’
in a stance dataset. In this chapter, instead of using the same approach, we use and alternative
approach. As the stance based model use network data in a semi-supervised approach, one way
to improve a semi-supervised classifier is by getting more unlabeled data to the network. For
example, for our problem on stance learning, one way to add additional data is by collecting
more data for each user in the network. This is easy for Twitter users as a Twitter API allows to
collect users’ timeline data. Timeline data allows to have more retweet as well as more hashtags
for each user, there by, extending the user’s data by almost a factor. We summarize this enhanced
dataset in Tab 5.3. Note we use this enhanced dataset for training the model in the rest of the
chapter.

Table 5.3: Summary of the enhanced dataset that includes users’ timeline data

Events Users Tweets RTUsers Endtags Replies

Student Marches 578669 9712379 486897 761105 1780261
Santa Fe Shooting 1157176 14673240 1007408 778000 1815277
Iran Deal 870495 18244243 680612 809967 1803792

5.4.3 Seed Hashtags and Seed Users
As in the last chapter, a small fraction of data points (seed users) are needed in the begining. To
get seed user labels, we label a few (two to four) popular hashtags which we call as seed hashtags
(details in Tab. 5.4). The labels given by these seed-hashtags are propagated to users using the
label propagation algorithm. These seed labeled users are noisy labels (not ground truth) and
these labeled users are often only a small fraction of all users.

We describe the hashtags used as seed hashtags to train the models in Tab. 5.4. Using
seed hashtag, one can get the seed users by using label propagation model on the user-hashtag
networks.

Table 5.4: Seed hashtags and their labels

Dataset Seed Hashtags

Iran Deal #thankyoutrump: Pro, #iranuprising: Anti,
#freeiran: Anti

Student Marches #defendthesecond: Pro, #2ashallnotbeinfringed:
Pro,#2adefenders: Pro, #2ndamendment: Pro
,#guncontrolnow: Anti, #marchforourlives: Anti

Santa Fe Shooting #defendthesecond: Pro, #2ashallnotbeinfringed:
Pro,#2adefenders: Pro, #2ndamendment: Pro
,#guncontrolnow: Anti, #marchforourlives: Anti
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5.4.4 Baseline Models and Their Performance
We consider a number of classifiers including traditional text features based classifiers and
neural-networks based models. In this section, we describe the input features, the model ar-
chitecture details, the training process and finally, discuss the results.

5.4.5 Input Features
As we have sentence pairs as input, we use features extracted from text to train the models. For
each sentence pair, we extract text features from both the source and the response separately.

TF-IDF

Tf-Idf (Term frequency- inverse document frequency) [104] is very popular feature commonly
used in many text based classifier. In our research, we use TF-IDF along with Support-Vector
Machine (SVM) model that we describe later.

Glove (GLV)

To get word vectors, we used Glove [96] which is one the most commonly used word vectors.
Before extracting the Glove word vectors, we perform some basic text cleaning which involves
removing any @mentions, any URLs and the Twitter artifact (like ‘RT’) which gets added before
a re-tweet. Some tweets, after cleaning did not contain any text (e.g. a tweet that only contains a
URL or an @mention). For such tweets, we generate an embedding vector that is an average of
all sentence vectors of that type in the dataset. The same text cleaning step was performed before
generating features for all embeddings described in the paper.

5.4.6 Classifiers
A text classifier is used in step 4 of the training process. Additionally, it is also used to determine
the baseline results. As mentioned earlier, we tried two types of classifiers: 1) TF-IDF Text fea-
tures based SVM classifier that uses only text in replies, and 2) neural-networks (deep learning)
based classifiers that input source-reply text pairs. We describe the details of the classifiers next.

SVM with TF-IDF features

Support Vector Machine (SVM) is a classifier of choice for many text classification tasks. The
classifier is fast to train and performs reasonably well on wide-range of tasks. For the Text
SVM classification, we only use the reply text to train the model. The classifier takes TF-IDF
features as input and predicts the two class stance classes. We would expect that this simple
model cannot effectively learn to compare the source and the reply text as is needed for good
stance classification. However, we find that this model is still able to get reasonable accuracy on
the training set and and therefore serves as a good baseline.
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Deep Learning models with GLV features
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Figure 5.7: Deep learning model diagram which was used in step 4 of the proposed system.

As opposed to SVM text classifiers, a neural-network based models could be designed to
use text-reply pair as input. One such model is shown in Fig. 5.7. A neural network based
architecture that uses both source and reply can effectively compare target and reply posts and
we expect it to result in a better performance. This type of neural network can further be divided
in two types based on inputs: 1) Word vectors (or embeddings) are used as input such as Glove
(GLV), 2) Sentence vectors (or sentence representations) are used as input such as skip-thoughts,
DeepMoji and a joint representation of skip-thought and deep-moji (SKPDMJ). The first model
that takes word embeddings as input requires a recurrent layer that embeds the text and reply to a
fixed vector representation (one for target and one for reply). One fully connected layer that uses
the fixed vector representation input and a softmax layer on top to predict the final stance label.
The second type of model that uses the text and reply representations only have one (or more)
fully connected layer and a softmax layer on top to predict the final stance label. In chapter 2,
we found that word vectors based models are as good as sentence representation based models.
As sentence representation based models require an additional step of getting sentence vectors,
for this experiment, we stick with word-vectors based neural networks only.

5.4.7 Training Process and Parameters
Our neural-network based models are built using Keras library 2. The models used feature Glove
word vectors as input. Because Glove is a word vector embeddings, we use an addition recur-
rent neural network to embed an entire sentence to a fixed size representation. This recurrent
layer is an addition recurrent network layer right above the input to create a fixed size sentence
embeddings vector. The fully connected layer is composed of relu activation unit followed by a

2https://keras.io/
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dropout (20 %) and batch normalization. For all models, a final softmax layer is used to predict
the output.

The model is trained using ‘RMSProp’ optimizer using a categorical cross-entropy loss func-
tion. The number of fully connected layers and the learning rate were used as hyper-parameter.
The learning rate we tried were in range 10�5 to 10�1. The fully-connected layer size we tried
varied from 1 to 3. Once we find the best value for these hyper parameters by initial experiments,
they remain unchanged during training and testing the performance of the model for all four
events. For all models we find that a single fully connected layer performs better than multi-
layered fully connected networks, so we use single layer network for all the results discussed
next.

We also have three hyper parameters that are used in the model training steps namely: 1) ✓u,
2) ✓T and 3) K (mixing parameter). The values of these parameters are determined by experi-
menting on one of the datasets (Student Marches). We find the following values that work well:
✓u = 0.7, ✓T = 0.7, k = 0.2.

5.4.8 Results and Discussion
We provide the training plots in Fig. 5.8 (with only weak supervision) and Fig. 5.9 in which
weak labels and labeled conversations data from other events was used for training. As we
can observe, in both cases, performance of the classifiers improve over iterations. This is as
expected as more and more users in the network are labeled, the classifiers have more data for
training. For both the plots, ‘Iran Deal’ performed on the worse side. This is also not entirely
unexpected, as we had observed in the empirical correlation section that the users’ stance and
their stance in conversations are less correlated for Iran Deal. If we compare, the two plots, we
see that for the network LP classifier performed better when labeled text data was not used in
the training. Surprisingly, the text classifiers achieve the same performance with and without
additional labeled data.

Student Marches Santa Fe Shooting Iran Deal

Figure 5.8: Models Performance with training iterations when only labeled data from weak-
supervision is used for training.

We summarize the performance of the models in Tab. 5.5 in which we show the f1 score
(macro) for all models for each dataset. As we can observe, if we consider the mean values
across events, the jointly trained models perform better. However, the text based models, even
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Student Marches Santa Fe Shooting
Iran Deal

Figure 5.9: Models Performance with training iterations when other events text data is used while
training the neural network text classifier.

when trained jointly, have minimal improvement in performing indicating that learning stance
in conversations just from text is a challenging task. Surprisingly, the networks based models
performs reasonably well which confirms out earlier find that users’ stance and stance is con-
versations are correlated. The best mean performance is achieved when weak supervision is
augmented with additional labeled data from other events.

For the final predictions of the joint model, we show the confusion matrix as shown in Fig.
5.10. As we can observe the model is fairy good at predicting both the favoring and denying type
conversations. For the event ‘Iran Deal’ the performance is worse (for denying) but this is also
as we expected from our earlier observation on empirical correlation.

Student Marches Santa Fe Shooting Iran Deal

Figure 5.10: Confusion Matrix for stance in conversations (True label) and stance predicted by
the joint model. For the performance shown above, no labeled examples were used in the training
set.
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Table 5.5: Performance of models on different datasets. Bold font indicates the best for a dataset.
F1-score Macro is used for comparing the models.

Classifier Type # Dataset! Student Marches
(F1-Macro)

Santa Fe Shooting
(F1-Macro)

Iran Deal
(F1-Macro)

Mean
(F1-Macro)

Baselines

Random 0.50 0.46 0.52 0.49
Majority 0.40 0.42 0.41 0.41
Leave-one-out Event Based Supervised Text Classifiers

SVM using Reply Text 0.52 0.56 0.56 0.55
Text based Neural Network us-
ing Source-Reply pair

0.62 0.63 0.58 0.61

Weakly Supervised Network Label-Propagation Models

Hashtags LP 0.51 0.60 0.47 0.53
Retweets LP 0.72 0.71 0.43 0.62
Hashtags and Retweets LP 0.71 0.70 0.55 0.65
Weakly Supervised (Hashtags + Retweets + Text) Jointly-trained Models

Text Based Neural-Network 0.58 0.56 0.56 0.57
Hashtags and Retweets Label
Propagation

0.75 0.73 0.63 0.70

Hashtags, Retweets and Text
Joint

0.72 0.73 0.63 0.69

Weakly Supervised (Hashtags + Retweets + Text) Jointly-trained Models with Leave-one-out Text Data

Text Based Neural-Network 0.62 0.61 0.62 0.62
Hashtags and Retweets Label
Propagation

0.72 0.74 0.64 0.70

Hashtags, Retweets and Text
Joint

0.73 0.73 0.66 0.71

5.5 Related Work

5.5.1 Stance in Conversations

Stance in conversations was earlier explored as identifying stance in online debates [49, 108, 110,
111]. Though stance-taking by users on social-media, especially on controversial topics, often
mimic a debate, social-media posts are very short because of which many of the earlier devel-
oped methods don’t directly transfer to conversations on platforms like Twitter. More recently,
stance in conversations on social media post is gaining popularity [135, 137] with applications
to predicting veracity of rumors. In this chapter, we extend the ideas explored in [135] for rumor
detection to a more general formulation where stance in conversation are explored on contro-
versial topics. Moreover, we employ ideas from stance of users’ (as in pro/con) based on their
network position to improve the prediction accuracy of stance the users take in conversations (as
in favoring/denying).
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5.5.2 Signed Link Prediction
Signed link prediction has remained an active area of research for a while. Leskovec et al. [73]
used thee data platforms (epinions, slashdot and Wikipedia) to show that the classical theory
of structural balance tends common patterns of interaction, and extended the theory to directed
graphs. The authors also observed that when two nodes have multiple neighbors in common ,
then the link is significantly more likely to be positive. In a related, more recent work, Beigi
et al. [10] uses the theories of y ‘Emotional Information’, ‘Diffusion of Innovations’ and ‘Indi-
vidual Personality’, for link analysis in signed networks. In most of these work on signed-link
prediction, ground-truth for links was known at least partially. In contrast, in this chapter, we try
to predict the links without any labeled data while training the models.

5.5.3 Joint Models for Text and Network Data
Graph representation (also called embedding) involves learning low dimensional vector encoding
of nodes that maps local network structural characteristics to a continuous space representation.
Because these representations are useful in many tasks including node classification and link
prediction, learning representation of nodes in networks is an active area of research. Though
many algorithms have been proposed to learn representation of nodes on simple graphs [45, 97,
115], most research have only explored explicit unsigned edges. Very few work have explored
node representation for signed networks [73], e.g. Kim et al. [61] used sign and direction
information in edges to learn node representations that encodes structural information. However,
even in in these work signs of edges that are explicit are know a priori. In contrast, in our
research on Twitter users, we do not have the direct edges between users. Edges like following
relationships only provide partial information as often it’s the interaction (e.g. liking, quoting,
commenting and retweeting) that convey similarity in users’ thoughts. Thus, a crucial aspect of
our work is the way we extract users-networks from Twitter data. Moreover, it is perhaps the first
work, where we extract and used both positive and negative edges based on users’ conversations.
These signed edges are then used with a network based model to better predict the edges polarity.

5.6 Conclusion and Future Work
In this research, we studied the correlation in ‘stance of users’ ( as in pro/con) and ‘stance in
conversations’ (as in favoring/denying) when users communicate by tweeting and replying to
tweets. Our empirical study using a labeled dataset showed that two users are more likely to
have a favoring conversation when they share the same stance on the topic of conversation.
Conversely, two users are more likely to have denying stance in their conversations if they have
opposing stance on the topic. We used this empirical evidence to propose a weakly supervised
method to label stance in conversations. A joint model that uses input from both conversation
(source-reply text pair) based classifier and users’ stance based classifier outperforms both the
models. By evaluating the models on three human labeled dataset that we created in chapter 2,
we estimate that the improvement is over 18% on average. This is a significant improvement and
shows the potential of our proposed approach.
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We also note that the performance of the co-trained text-classifier (0.57 mean F1-macro)
is substantially lower than the supervised text classifier which uses leave-one-out event data
( 0.61 mean F1-macro). This indicates the text classifier is not gaining much from the weak
supervision. This is not entirely surprising as using the stance signal of users to predict the
stance in conversations, which in then use to train the conversation models add noise at all steps.
Our co-training process is not very effective in reducing the noise as it was for users’ stance
prediction as shown in the last chapter. Therefore, in future, we would like to try other methods
that could perhaps keep the noise to the minimal. The other direction that we would like to
pursue is more on the applied side of this research e.g., could we use stance in conversations to
find rumors. This is something that is the focus of the next chapter.
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Chapter 6

Models of Tree Structured Conversations
for Predicting Stance and Rumor Veracity

6.1 Introduction

Putin is missing. www.abcnews.co.ir

Source	Tweet	

This is not verified

It’s on TV as well

Stance:	Deny	

Stance:	Deny	

He went missing last week

Stance:	Favor	

R
um

or
: F

al
se



T1:

R1:

R11:

R2: 	

Reply	Tweet	

Reply	Tweet	

Reply	Tweet	

Figure 6.1: Twitter threads with stance and rumor-veracity labels. The conversation tree shown
above has two branches a) T1–R1–R11 and b) T1-R2. R1 and R2 are 1st level reply tweets and
R11 is a 2nd level reply tweet. Stance labels for each reply is relative to the tweet it is replied to
i.e. stance for R11 is with-respect-to R1. There is a rumor-veracity label on the root tweet (T1
in the example above). The goal of this research is to learn the root tweet’s veracity based on
pattern in replies.

Online misinformation, commonly called ‘fake news’, has become a serious problem in soci-
ety [36] to the extent that they are impacting election decisions [2]. Many machine-learning ap-
proaches have been proposed to identify and contain the fake-news shared on online social-media
platforms [57, 102, 103, 106, 113, 121, 122]. One approach that combines machine-learning and
human-intelligence by exploiting stance in reply posts has gained significant attention recently
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T1

R1

R11

R2 	 T1

R1 R11

R2 	

T1

VT1R2 	

VR1R11 	

VT1R1R11 	

VT1R2T1R1R11 	

R1

VT1R1 	

Figure 6.2: Normal tree structure (left) and the modified binarized constituency tree (BCTree)
structure for the conversation shown in Fig. 6.1. On left, a tree with structure representing
the original thread in which a node can have any number of children. On right, a binary tree
structure where source post and reply posts are all leaf nodes such that each reply is placed next
to the tweet it was made against and connected to a virtual parent node. E.g. R11 was made
against R1 so are connected to VR1R11.

[135, 137]. In this approach, we first identify the stance – categorized as ‘supporting’, ‘denying’,
‘commenting’ and ‘querying’ – in the replies to the original post and then use the stance signal
to find rumor veracity i.e. if a rumor is true or false. Prior work has confirmed that replies to
a ‘false’ (misleading) rumor contain specific patterns, e.g. more replies deny the claim made in
the source post [138]. This approach is promising as people are reasonably good at pointing out
misinformation [6] and if such posts could be automatically found, the post could go through
enhanced scrutiny before it gets circulated widely.

In this research, we extend this line of work on rumor-veracity and stance learning by propos-
ing a new way to represent conversation trees and new LSTM cells that could be used to detect
rumors more effectively. In past, researchers have explored various models to learn from tree
structured data [42, 124]. For rumor veracity classification, prior research have found that the
approach that performs the best on social-media conversations is a sequence model (like the Long
Short Term Memory (LSTM) [53] as discussed in [136]). Sequential classifiers like LSTMs are
good at learning temporal structure and are biased to use prior inputs to predict outputs [32].
However, when it comes to comparison tasks like stance classification in threaded discussions,
each reply is made against a post or a response to a source post (see Fig. 1). So, we ask, is
the regular sequential model apt to learn the relationship between a source post and its replies in
conversations? Would a model that can learn the contrast between a source and the reply tweets
be more appropriate for rumor classification? To this end, we propose a new tree structure that is
obtained from social-media conversation trees but allows for easy comparison of the source and
its replies. Additionally, we use a convolution unit to learn patterns in local features for stance
classification, and the tree model propagates the signal up the tree for the rumor classification at
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the root of the tree. Code to reproduce the experiments are available on Github 1.
To evaluate our models, we use a human-labeled Twitter dataset that contains stance labels

and rumor labels for around two thousand rumour threads related to five different events. Our
proposed models achieve the state-of-the-art performance, outperforming the current best model
by 12% and 15% on F1-macro for rumor classification and stance classification tasks respec-
tively.

6.2 Models of Tree Structured Social Media Conversations

Tai et al. 114 proposed a tree structured LSTM networks and showed its utility on two tasks of
semantic relatedness and sentiment classification. In their work, the tree LSTM is composed
of sentence sub-phrases using a given syntactic structure. The benefits of using a recursive tree
approach was discussed by Li et al. [75] where the authors concluded that tree models are more
suitable for root level identification. Social-media conversations are naturally structured as trees.
Can Tree LSTMs be used for classifying node labels in such conversations trees? In this work,
we try to answer this question by modeling conversations as trees where each node in the tree is
a sentence representation (Fig. 6.2). Node labels in tree structured conversations can be learned
using: a) branches of the tree as input to an LSTM (Branch LSTM Model) as used in many prior
research e.g. [135, 136] b) using the entire tree as the input (Tree LSTM Model) c) modifying
the structure of the tree to better capture the inherent correlations in conversations for a given
task (Binarized Constituency Tree LSTM Model). We discuss these formulations next.

6.2.1 Branch LSTM Model

In branch LSTM, the encodings of source-tweet text and the replies text along a tree branch are
used as the input and the stance-labels are used as the output (as illustrated in Fig. 6.3). Using
a simple text encoder (like mean of a word vectors), at each step, the LSTM gets a sentence
embedding and predicts a label. The process is repeated for all nodes in the thread. For example,
if we take the thread (T1-R1-R11) (see an example thread in Fig. 6.1), the LSTM takes the R11
as the input in the first time step, R1 as the input in the second time step and T1 as the input in
the third time step.

Modelling tree conversations as branches of the tree has two limitations: a) repetition of input
as many branches share nodes (e.g. root node is present in all branches) b) no communication
between branches during the learning process. The LSTM uses branches independently. Thus,
there is no communication between branches during training and inference. We expect that not
all branches are useful to predict the veracity of a rumor post and a few branches might have
stronger signal. The branch LSTM weighs all branches equally and therefore, is likely to under
perform when there are many uninformative branches in a tree. This problem is solved in Tree
LSTM.
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Figure 6.3: Branch LSTM: Recurrent Neural Network (RNN) architecture for sequence labeling.
T1 , R1 and R11 are embeddings. At each time step, the LSTM uses a sentence embedding vector
as input to output a stance label. At the root node T1, the RNN outputs a rumor-veracity label.
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Figure 6.4: Tree LSTM model: Latent vectors at all nodes (except the root node) are used to
predict stance label and the latent vector at the root node is used to predict the rumor-veracity
label of the conversation.

6.2.2 Tree LSTM Model
A typical social-media conversations consists of a post (source post), its reply and reply to the
replies. This is a tree structure with the source post as the root node and the replies as the
child nodes. Models for such tree structures was explored in [114] where authors suggested a
modification of the LSTM cell to accommodate an unknown number of inputs at a node. For
a general tree with any number of child nodes, they suggested ‘Child Sum Unit’ that sums the
hidden vectors of child nodes (as in eqn. 6.8). We generalize this formulation to accommodate

1https://github.com/CASOS-IDeaS-CMU/Detecting Rumors In Conversation Trees
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other operations as shown in Fig. 6.4.

h̃ = O
k2C(j)

hk (6.1)

where C(j) denotes the set of children of node j and Ok is an operator that acts on the hidden
vector hk of child k to output h̃. Using this, we define the LSTM transition equations as follows:

ij = �
⇣
W (i)xj + U ih̃j + b(i)

⌘
(6.2)

fjk = �
⇣
W (f)xj + U (f)hk + b(f)

⌘
(6.3)

oj = �
⇣
W (o)xj + U oh̃j + b(o)

⌘
(6.4)

uj = tanh
⇣
W (u)xj + U (u)h̃j + b(u)

⌘
(6.5)

cj = ij � uj +
X

k2C(j)

fjk � ck (6.6)

hj = oj � tanh(cj) (6.7)

Except wherever specified, the notations used are of standard Tree LSTM with input sentence
vector xj , input and output gates ij and oj , a memory cell cj , hidden state hj and � denotes
the logistic sigmoid function and � denotes elementwise multiplication. W and U are weight
matrices and bias vector b are parameters which are learned during training.

Child Sum Tree Unit

The child-sum unit involves using sum of all hk vectors which means O =
P

. Therefore

h̃ =
X

k2C(j)

hk (6.8)

Child Max-Pooling Unit

The child max-pooling unit involves using the maximum of all hk vectors across a dimension.
Therfore

h̃ = max
P

k2C(j)hk (6.9)
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Child Convolve + MaxPooling Tree Unit

Child convolve uses convolution operation of the set of child hidden vectors i.e. O = ~ where
~ denotes vector convolution operation. As a normal tree node can have any number of child
nodes, convolution operation using all child nodes requires a max-pooling operation to preserve
the dimension of h̃.

h̃ = max
P

~k2C(j)hk (6.10)

where ~ denotes vector convolution operation and maxP denotes max pooling operation. A
2d convolution over h matrix results in another matrix and the max pooling operator maps the
matrix to vector containing the maximum value of each column in the matrix.

A neural-network model (like an LSTM) expects a pre-defined size of input. Using an oper-
ation that reduces the children hidden layer matrix h̃ to fixed dimension vector like in equation
6.8 or in equation 6.10 attempts to solve the problem. However, these reduction operators have
limitations e.g. ‘sum’ weighs all children equally and ’convolve+maxpool’ only picks the convo-
luted features with maximum value. Ideally this importance factor should be learned from data
itself, which is what we intend to achieve using Binarized Constituency Tree (BCTree) LSTM
Model.

6.2.3 Binarized Constituency Tree (BCTree) LSTM Model
Social media conversations are in the format of a tree where a node can have many children.
Converting this tree structure to another tree structure in which each node always contain two
children creates a consistent format which is convenient for matrix operations needed to train
neural networks. Additionally, for tasks like stance learning, where its important to compare a
reply against its source post, a source reply-pair should be placed such that the contrast features
can be effectively learned. To achieve this, we modify the original structure to a binary tree
which we call Binarized Constituency Tree (BCTree).

In BCTree, all source posts and their replies appear as leaf nodes (Fig. 6.5). A reply is always
paired with its source (this requires source node to be duplicated) and they are connected to a
new (virtual) parent node. To construct a BCTree from a tree, we replace all parent node with
a new virtual node. The original parent node and a child node are then connected to the new
virtual parent node. If a parent node has more than one child, additional virtual nodes are created
to keep the tree binary.

Because each node in a BCTree always has only two children, and therefore is consistent,
many operators are trivially supported. E.g. we can use hidden vector concatenation. Similarly,
for convolution, a convolution unit with kernel size 2 and stride size 1 (comparing a source post
and a reply) preserves the dimension of hk (as BCTree node always have 2 children). Thus
additional operation like ‘Sum’ or ‘MaxPooling’ is not needed.

Child Sum BCTree Unit

This uses the same operation as in the normal tree structure (see equation 6.8).
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Figure 6.5: BCTree LSTM model: Latent vectors at virtual parent node of each leaf node is used
to predict stance labels (e.g. HR1R11 to predict stance of R11) and the latent vector at the root
node is used to predict the rumor-veracity label of the conversation.

Child Concat BCTree Unit

h̃ = �k2C(j)hk (6.11)

where � denotes vector concatenation operation.

Child Convolve BCTree Unit

h̃ = ~k2C(j)hk (6.12)

where ~ denotes vector convolution operation.

Combinations of BCTree Units

Because a BCTree has a uniform structure, any combination of the previous discussed units
can also be combined together. Some possible combinations we try are ’Convolve + Concat’,
’Convolve + Sum ’ and ’Convolve + Concat + Sum ’.

6.3 Experiments and Results

6.3.1 Datasets
We use Pheme 5 events dataset. This dataset was created as a part of the Pheme project 2 which
aims to find and verify rumors shared on social-media platforms [137, 138]. The dataset consist
of Twitter conversation threads on five different events and contains three types of annotations.
Each thread is labeled as either rumor or non-rumor. Rumors are annotated for their veracity as

2https://www.pheme.eu/
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‘true’, ‘false’ or ‘unverified’ (see Tab. 6.1). For a subset of the true rumors, we also have stance
labels for each reply in the threaded conversations. The stance labels are ‘support’, ‘deny’,
‘comment’ and ‘query’ (see Tab. 6.2). As we can observe in Tab. 6.2, this dataset is highly
skewed towards ‘comment’.

Table 6.1: Conversation threads in the Pheme dataset

Events True False Unverified

Charlie Hebdo
(CH)

193 116 149

Sydney siege
(SS)

382 86 54

Ferguson (FG) 10 8 266
Ottawa shoot-
ing (OS)

329 72 69

Germanwings-
crash (GC)

94 111 33

Total 1008 393 571

Table 6.2: Stance labels for Tweets in the conversations. Event codes are described in Tab. 6.1

Events Support Deny Query Comment

CH 239 58 53 721
SS 220 89 98 700
FG 176 91 99 718
OS 161 76 63 477
GC 69 11 28 173
Total 865 325 341 2789

6.3.2 Feature Representation
We use four different models that have shown good results on various NLP tasks to extract text
features.

Mean of Glove word vectors

To get word vectors, we used Glove [96] and the mean of these word vectors are used as the
sentence embedding. Before extracting the Glove word vectors, we perform some basic text
cleaning which involves removing any @mentions, any URLs and the Twitter artifact (like ‘RT’)
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which gets added before a re-tweet. Some tweets, after cleaning did not contain any text (e.g. a
tweet that only contains a URL or an @mention). For such tweets, we generate an embedding
vector containing uniformly generated numbers between -0.5 and 0.5. The same text cleaning
was performed before generating features for all embeddings described in the rest of the paper.

BERT embeddings

BERT 3 is not a ready to use model to generate embeddings in its original form. It is rather a
model that can be tuned for a task [29]. We first tried to tune the model on our rumor classification
task. But since the rumor classification dataset is relatively small, while evaluating we found that
tuning did not lead to a good performance. We then considered other datasets that can be used
for tuning. Because natural language entailment task (which predicts entailment, contradiction,
or neutral between two sentences) is similar to stance learning, we use the BERT model and
tune it on Multi-Genre Natural Language Inference task [128]. The tuned model is then used to
generate BERT embedding which is the vector representation on the last layer of the Bert model.
This tuned BERT model generates a 768 dimension vector for each sentence.

Skipthought (SKP) embeddings

We use the pre-trained model shared by the authors of Skipthought [63] 4. The model uses a
neural-network that takes sentences as input and generate a 4800 dimension embedding for each
sentence. Thus, on our dataset, for each post in Twitter conversations, we get a 4800 dimension
vector.

DeepMoji (EMT) embeddings

We use the DeepMoji [35] pre-trained model 5 to generate deepmoji vectors. Like skipthought,
DeepMoji is a neural network model that takes sentences as input and outputs a 64 dimension
feature vectors.

Skipthought and DeepMoji joint (SKPEMT) embeddings

Because DeepMoji and Skipthoughts are different types of encodings, we also tried a concate-
nated version of them which we call SKPEMT. This encoding is of size 4864 dimension.

6.3.3 Models Training
Following the convention in prior work [136], we use event wise cross-validation, which means
out of five events, four events are used to train a model and one event is used to validate the
performance.

3https://github.com/huggingface/pytorch-pretrained-BERT
4https://github.com/ryankiros/skip-thoughts
5https://github.com/huggingface/torchMoji
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Table 6.3: Stance learning results: F1-score (macro) and mean of F1-macro (Mean-F1) for dif-
ferent events.

Model# Event! CH SS FG OS GC Mean F1
Majority 0.189 0.190 0.197 0.192 0.175 0.188
Branch LSTM Models

GLOVE 0.332 0.322 0.298 0.305 0.385 0.329
BERT 0.384 0.393 0.332 0.380 0.425 0.383
SKP 0.424 0.417 0.373 0.454 0.455 0.425
EMT 0.370 0.332 0.365 0.399 0.442 0.381
SKPEMT 0.428 0.424 0.397 0.463 0.468 0.436
Tree LSTM Models - ‘Child Sum’ Cell Type

BERT 0.512 0.580 0.528 0.481 0.522 0.524
SKP 0.490 0.565 0.540 0.495 0.568 0.532
EMT 0.443 0.514 0.444 0.453 0.509 0.473
SKPEMT 0.509 0.577 0.524 0.504 0.529 0.529
Tree LSTM Models - ‘Child Convolve + MaxPooling’ Cell Type

BERT 0.510 0.564 0.522 0.476 0.530 0.520
SKP 0.514 0.579 0.553 0.469 0.547 0.532
EMT 0.486 0.478 0.530 0.439 0.496 0.486
SKPEMT 0.480 0.574 0.497 0.477 0.598 0.525
Prior Research

[136] 0.465 0.446 0.373 0.475 0.543 0.460
[135] 0.427 0.495 0.390 0.457 0.523 0.458
[83] 0.326 0.323 0.260 0.323 NA NA

We define the overall objective function using cross-entropy loss, as can be seen in equation
6.13, where i 2 n samples, j are classes, y is the (one-hot) true label, and p is the probability
output for each label. In multi-task training, the total loss is the sum of loss for stance learning
task and rumor learning task. As shown in Fig. 6.3, Fig. 6.4 and Fig. 6.5, we use the output of
the softmax layer for classifying stance and rumor labels of nodes in trees.

L(y, p) = � 1

n

X

i,j

yij log(pij) (6.13)

All operations in our models are fully differentiable, so these models can be trained end-to-
end. Because the dataset has unbalanced labels, we can use over sampling of minority classes
to create balanced input to train models. For rumor, balancing is easy as each tree has one
rumor label, so we over-sample minority labeled trees to balance the training set. For stance
labels, balancing is not trivial. The stance classes can be balanced by creating duplicate nodes
of minority classes and connecting the new nodes to the original parent nodes. However, this
results in changing the structure of trees. Thus we only used balancing on original conversation
trees for stance classification and not for rumor classification on BCTrees.

Our LSTM models are built using PyTorch 6 and DGL library 7. The Branch LSTM models
used feature vectors as input, adds an LSTM layer, a linear dense activation layer followed by a

6https://pytorch.org/
7https://www.dgl.ai
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dropout (0.3) [112] and uses a softmax layer for the output (rumor or stance). The models are
trained using stochastic gradient descent (SGD) optimization using a cross-entropy loss function.
The size of LSTM hidden layer and learning rate were used as hyper-parameter. The learning
rate we tried were in range .0001 to 0.01. The LSTM layer size we tried varied from 16 to 256.
We found 64 to be the best hidden dimension vector size and 0.08 to be a good learning rate for
training the branch LSTMs. Once we find the best value for these hyper parameters by initial
experiments, they remain unchanged during training and evaluations of the model for all five
events.

The training of tree models also followed the same pattern except they use an entire tree
conversation. The convolution units use convolution kernels of size 2 (i.e. it used two hidden
vectors at time) and stride of 1. We tried learning rate from 0.001 to 0.1, and .008 was found
to work the best. We again used stochastic gradient descent (SGD) optimization with a cross-
entropy loss function. For multi-task training, we used step wise training that alternates between
rumor objective and stance objective. We train the models for 30 epochs.

To evaluate the trained models, we use F1-score which is defined as the harmonic mean of
precision and recall. Rather than using accuracy, we use F1-score as the metric for evaluating
the performance of the models for two reasons: a) Pheme dataset (the dataset we use) is skewed
towards one class (‘comment’), hence, a classifier that predicts the majority class can get a good
accuracy. F1-score (macro) balances the classes and considers precision as well as recall. 2) Prior
work on this dataset used F1-score [136]. Thus, the use of this measure allows to compare with
prior research. The performance for a validation event is the F1-macro obtained by evaluating
the model trained on all data except the validation event data. This step is performed for all five
events, and the mean of F1-macro scores from all five events is used to compare the models.
For the stance classification task, the F1-score (macro) is defined in Eqn. 6.14. For the rumor
classification task, the F1-score (macro) is defined in Eqn. 6.15.

F1stance =
F1deny + F1favor + F1query + F1com.

4
(6.14)

F1rumor =
F1true + F1false + F1unverified

3
(6.15)

6.3.4 Stance Classification Results
We present the results of evaluating the models for stance classification in Tab. 6.3. The Tree
LSTM model that uses ‘Child Convolve + Maxpooling’ with skipthought features outperforms
all other models (0.532 mean f1). The Tree LSTM model using ‘Child sum’ unit performs
equally well on mean value but was worse on three events.

In Fig. 6.6, we show the confusion matrix for the best performing stance classifier. As we
can observe, the model is best at classifying ‘Comment’ and is worst at classifying ‘Denial’.
The poor performance of the denial class could be partially attributed to the unbalance of classes
(‘Deny’ being the smallest) in the dataset.

If we compare the stance classification results based on feature types, we see that BERT and
SKP are often comparable and EMT is slightly worse then them. SKPEMT performs better than
EMT and BERT, but is as not as good as SKP. Because of space limitation, we do not present
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Figure 6.6: Normalized stance confusion matrix. Q, S, D and C labels indicate ‘Query’, ‘Sup-
port’, ’Deny’ and ‘Comments’ respectively.

results for Glove features for Tree based models as, in almost all cases, the mean of Glove vectors
as sentence representation performed worse than other features.

For stance learning, the BCTree based models did not work as well as the Tree LSTM based
models. This is likely because we are not able to balance stance classes in BCT trees. BCTrees
stance nodes can be balanced before binarizing, but that adds many additional new nodes. These
new virtual nodes don’t have stance labels and results in poor performance.

6.3.5 Rumor Classification Results
We present the rumor classification results in Table 6.4.

For rumor classification, the best performing model uses ‘Convolve + MaxPool’ as units in
Tree LSTM (Mean F1 of 0.379 using SKP features) and is trained in multi-task fashion. Other
comparable models are ‘sum’ and ‘Convolve + concat’ units with BCTree LSTM. For SKPEMT
features, the best performance was obtained using ‘Maxpool’ cell with a Tree LSTM model.
We expected BCTree LSTM to work better than Tree LSTM. They are almost comparable but
BCTree LSTM is slightly worse. This is likely because binarizing a tree creates many new nodes
(without labels), and as height of trees increase it becomes more difficult for LSTMs to propagate
useful information to the top root node for rumor-veracity classification.

If we compare the different types of features, SKP features outperformed others in almost
all cases. It should be noted that SKP features are also higher in dimension (4800) in compar-
ison to EMT 64 and BERT 768. If we compare, multi-task vs single-task, in almost all cases,
performance improved by training in a multitask fashion.

Overall, for rumor classification, the best model is the LSTM model that uses ’Convolve +
MaxPool’ unit and trained on Tree LSTM using multi-task. This exceeds the best prior work
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Table 6.4: Rumor classification results: Mean F1-score from different cell-type and feature-type
combinations. For NileTMRG, we used the results presented in [64], Tbl. 3.

CellType # Feature! SKP EMT BERT SKPEMT
Branch LSTM - Multitask

0.358 0.359 0.332 0.347
Tree LSTM - Multitask

Sum 0.364 0.348 0.341 0.364
MaxPool 0.369 0.352 0.339 0.375
Convolve + MaxPool 0.379 0.365 0.359 0.370
BCTree LSTM - Multitask

Sum 0.371 0.356 0.338 0.371
Convolve 0.367 0.335 0.337 0.362
Convolve+Sum 0.353 0.353 0.329 0.364
Convolve + Concat 0.370 0.354 0.340 0.364
MaxPool 0.353 0.354 0.326 0.352
Convolve+MaxPool 0.363 0.349 0.333 0.357
Concat + Sum 0.364 0.341 0.324 0.364
Convolve+Sum+Concat 0.366 0.343 0.342 0.354
Baselines and Prior Research

Zubiaga et al.[64] 0.329
NileTMRG [33] 0.339
Majority 0.223

Figure 6.7: Normalized rumor confusion matrix. F, U and T labels indicate ‘False’, ‘Unverified’
and ‘True’ respectively.

by 12% in f1-score. For this model, we show the confusion matrix in Fig. 6.7. As we can
observe, ‘True’ (T) and ‘Unknown’ (U) performs equally well and the ‘False’ (F) rumor is the
most confusing class. The poor performance of ‘False’ rumors could be linked to the poor
performance of ‘Denials’ stance in stance classification. Prior research have shown that a high
number of denials is a good indicator of ‘False’ rumors, and therefore a model that is poor at
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predicting denials also performs poorly at predicting ‘False’ rumors.

6.4 Related Work
Stance learning and rumor detection lie at the intersection of many different fields. We highlight
important related topics here.

6.4.1 Stance Learning
Computational approaches of Stance learning – which involves finding people’s attitude about
a topic of interest – have primarily appeared in two flavors. 1) Recognizing stance in debates
[95, 110] 2) Conversations on online social-media platforms. Since our research focuses on
conversations on social-media platforms, we discuss some important contributions here. Mo-
hammad et al. built a stance dataset using Tweets and organized a SemEval competition in 2016
(Task 6). Many researchers [5, 79, 126] used the dataset and proposed algorithms to learn stance
from this text data. In almost the same time frame, work on stance in conversations appeared in
the context of fake-news and misinformation identification, we discuss this in the next section.

6.4.2 Rumor and Misinformation Identification
Finding misinformation on social-media platforms has been an active area of research in recent
years [27, 50, 82, 107, 121, 134, 136]. Rumor detection that uses stance in the reply posts was
in initiated by the Pheme project 8 and was popularized as a SemEval 2017 task 8 9. The task
involved predicting stance (‘supporting’, ‘denying’, ‘commenting’ and ‘querying’) in replies to
rumor posts on Twitter and the dataset is described in [137, 138]. A number of researchers
used this dataset and proposed many algorithms. For example, [28] proposed an LSTM that uses
branches in conversation trees to classify stance in reply posts, and [64] used sequential classifiers
for joint stance and rumor classification. More recently [84] suggested two tree structured neural-
networks to find rumors i.e. if a post is rumor or not. In this work, we focus on rumor-veracity and
stance learning objectives. Our work extends this thread of research by showing that convolution
operations that compare source and reply tweets are more effective in learning stance and rumor-
veracity.

6.4.3 LSTM and Convolutional Neural Networks
Deep neural networks (DNN) have shown great success in many fields [51]. Researchers have
used DNNs for various NLP tasks like POS tagging, named entity recognition [24]. Convolution
neural networks [72] are popular in computer vision tasks for quite some time but lately they have
shown potential in NLP tasks as well [133]. Yoon Kim [62] used convolution neural networks
(CNN) for various NLP tasks. To the best of our knowledge, this is the first work that uses a
convolution unit in LSTMs.

8https://www.pheme.eu/
9http://www.aclweb.org/anthology/S17-2006
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6.5 Conclusion
In this work, we explored a few variants of LSTM cells for rumor-veracity and stance learning
tasks in social-media conversations. We also proposed a new Binarized Constituency Tree struc-
ture to model social-media conversations. Using a human labeled dataset with rumor-veracity
labels for source posts and stance labels for replies, we evaluated the proposed models and com-
pared their strengths and weaknesses. We find that using convolution unit in LSTMs is useful
for both stance and rumor classification. We also experimented with different types of features
and find that skipthoughts and BERT are competitive features while skipthoughts have slight
advantage for rumor-veracity prediction task.
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Chapter 7

Conclusions, Limitation and Future Work

In this chapter, I highlight the main conclusions of this thesis. I also provide the limitations and
the potential future work. Besides, I also discuss the scalability and my thoughts on integration
of the different methods that I proposed.

7.1 Conclusions
This thesis aimed to resolve the three crucial challenges of stance mining:

1. How do we train stance-learning models on new topics with minimal labeling effort?
2. How can we use multiple interaction modalities for stance mining?
3. How to leverage users’ networks for stance prediction?
How do we train stance-learning models on new topics with minimal labeling effort? On

social-media discussion, topics change fast, and new issues emerge, making it difficult to reuse
prior labeled data. Therefore, there is a need to train stance-learning models on new topics
with minimal labeling effort. As we show in this thesis, simple artifacts of social networks like
hashtags have noisy signal about the stance of the users who have used those hashtags. The chal-
lenge is how to extract the signal from noise. For this, we proposed a semi-supervised learning
approach that uses two or more models that are trained in co-training setting, and plenty of unla-
beled social-media data to build stance classifiers (chapters 4 and 5). In the proposed approach,
using the stance given by a few seed hashtags, multiple stance classifiers are jointly trained which
results in reducing the effect of noisy hashtag labels and improving the performance of the clas-
sifiers over the training iterations. As the models get trained using only the stance given by a few
seed hashtags, the approach is very flexible and could be easily extended to new topics.

How can we use multiple interaction modalities for stance mining? Users’ opinions are
evident in different types of interactions, e.g., tweeting, retweeting, or liking. Depending on
users’ preference some users prefer to use tweeting, some others use retweeting and others use
liking. Though having multiple interactions allows different ways to learn and predict users’
stance, and it is not apparent how we can correctly use the various interaction modalities for
stance mining. As discussed in the last paragraph, we proposed a semi-supervised method for
jointly training two are more models which are based on different interactions. The proposed
co-training method could learn from complementary information in different interactions to train
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better classifiers. Though in this work, we only considered three interactions comprised of two
networks (namely user-hashtags and user-retweets) and one text classifier (based on users’ tweets
or user-to-user conversations), the simplicity of our approach allows extending the method to
other interactions.

How to leverage users’ networks for stance prediction? A person’s preference can also be
known from his friends’ preferences. The current approaches to stance learning ignore important
network factors. Since stance is a public act, the actor’s social network position should matter.
We use the network alignment as one training signal to train the stance classifiers (chapters 3,
4, and 5 uses networks). One of the classifiers used for jointly training the model is a network-
based label propagation classifier. The label propagation model effectively utilizes the similarity
in the connected nodes to improve the overall stance classification performance. Therefore, the
proposed method effectively uses networks to learn users’ stance.

Based on our experiments on six controversial topics, we estimate that with 2-4 hashtags as
weak labels, the user’ stance classifiers could reach an accuracy of over 80%. For learning the
stance in conversations, which is a more challenging problem, we achieve accuracy over 70%.
More importantly, the proposed methods result in inductive classifiers that could be used with
newer data without a need to retrain the models. Furthermore, as demonstrated in chapter 6, the
stance learners could be applied to problems that are relevant in society, such as the spread of
misinformation.

7.2 Scalability and Integration

Figure 7.1: Scalability and Integration

Here I discuss the scalability issues and opportunities to integrate different works together.
Some of the chapters are related, but not all techniques developed in different chapters are built
on top of each other. Ch. 4 and Ch. 5 are relatead as Chapter 5 extends the ideas developed in
chapter 4. Fig. 7.1, visualizes the dependency of different techniques, and as we can observe
many of them are loosely coupled. The software/code also reflects this dependency.
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Chapter 3 is on users stance prediction, and the output of the model is the same as the output
of the model in chapter 4. However, one of the steps in chapter 3 (creating virtual connections
based on similarity in node attributes) is very slow as each node needs to be compared with all
other nodes to get the similar top nodes to create virtual connections. In my experience, a dataset
with 100,000 nodes could take up to a week to get the result based on this model. In contrast,
the proposed approach in chapter 4 more salable. For a network in order of 100,000 nodes, we
can get the stance of all nodes predicted within an hour. Though theoretically it is possible to
combine the ideas in chapter 3 and chapter 4, I would suggest not to do it because of practical
reasons.

As mentioned earlier, chapter 4 and chapter 5 are related, and chapter 5 depends on the
methods developed in chapter 4.

Ideas from Chapter 5 and chapter 6 can be combined; however, that is not straight forward.
Chapter 5 is about stance in conversations, whereas ch. 6 is about using stance in conversations to
detect rumors. Though the two chapters appear to be related, they are yet very different. Stance
in Ch. 5 is about stance of users, whereas Chapter 6 explores the stance more as supporting or
denying claims in posts. Though the difference is subtle, it is important. Supporting a post by
expressing a view that the post is true (as in veracity) is different from supporting other persons
stance. Because of this, merging the datasets used in the two chapters bring little improvement.

Still, some of the ideas developed in earlier chapters could be taken forward to chapter 6.
One such idea is to use the reputation of users to identify false rumors. Reputation of not just the
user that posts a message but also of users that engage in conversations. As one can expect, the
reputation of users could be related to the extent he shares misinformation, therefore the spread
of reputation of users in networks could be something to try in future research. If that works, it
could be valuable for identifying potential misinformation posts.

Table 7.1 summarizes the scalability of the proposed approaches, where N is the count on
nodes in a network. As we can observe in the table, methods in Ch. 4 are most scalable and
methods in Ch. 3 and Ch. 5 are least scalable. For applying the methods in wild, chapter 4 and
chapter 5 are most convenient. I have tested these methods on Twitter data and the results on
such datasets are promising. Chapter 3 is very slow. As methods in chapter 4 are able to achieve
what is being done in chapter 3, there is no reason to use chapter 3 in wild. Chapter 5 on rumor
detection could be useful to apply in wild. But there are two complications with this approach.
First, it requires conversation trees which is not trivial to collect. Second, the performance of the
model, though better than other existing models, is still poor and only slightly above the random
choice. This method is promising but requires more investigation before it could be used in wild.

7.3 Limitations
I am listing a few more potential situations where this line of research may not be applicable:

1. When threads are hijacked, which is also call threadjacking
2. When topics in the dataset are not controversial
3. When the dataset is a mixture of many subtopics
4. When the dataset is highly unbalanced
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Table 7.1: Time Complexity of Methods

Chapter Data Type Time for Training Scalability
Ch.3
Peopl2vec

Network + Node at-
tributes

Few Days for
⇠100,000 node

Not scalable, works
fine with ⇠10,000
nodes

Ch.4
Stance
Analyzer

Multiple Networks +
Node Text

An Hour for ⇠100,
000 nodes

Scalable, can handle
hundred thousand
nodes

Ch.5
Stance in
Conversa-
tions

Multiple Networks +
+Node Text + Conver-
sations

Few Hours for ⇠100,
000 nodes

Scalable, can handle
hundred thousand
nodes

Ch. 5
Rumor
Detection

Conversation Trees Many Hours for
⇠100, 000 nodes

Not scalable, can han-
dle ten thousand nodes

Ch. 8-
Twitter
Data
Collection

Outputs Twitter Json
Data

NA NA

I explain these points in detail next.
Thread jacking remains a limitation of this work. Though the methods proposed in Ch. 4 are

fairly robust to noise in using hashtags, they are not immune to threadjacking. To remove the
noise from signal, we: a) use hashtags at the end of tweets, b) use influence functions, and c) use
a co-training step that uses only the most robust predictions as labeled examples. However, if a
group of actors decides to use hashtags in a way that defies the assumptions of the model, then,
the proposed approach will fail. For example, if a group of users who are anti-gun-control, but
always use ‘guncontrolnow at the end of all their tweets, our model will not be able to infer the
stances of such users correctly, and perhaps will also reduce the accuracy of predicting stance of
other users’ in the dataset.

Though our method does not handle the issue of threadjacking, there are many ways to iden-
tify threadjacking to remove the threadjacked data. The detailed steps to identify threadjacking
is beyond the scope of this thesis. Some ideas that can be explored are: 1) Supervised machine
learning-based approaches to identify a threadjacked thread. 2) Annotations by users that the
thread has been hijacked as weak supervision.

When topics are not controversial, the network structure in the discussion is not likely to fol-
low a polarized structure (two groups with higher interconnections and lesser cross-connections).
In the absence of such a polarized structure, the network classifier (e.g., a label propagation
model) is unlikely to add much benefit in users’ stance prediction. Therefore, the co-training
method (ch-4) is unlikely to improve the stance classification accuracy as compared to a regular
text classifier.

When the dataset is a mixture of many sub-topics, there may be many sub-topics that would

110



be neutral. Our approach in the current format does not cater to neutral conversations. For
example, take the recent Twitter discussion on Coronavirus. The topic covers discussions on
‘Dr. Fauci’, ‘Opening up American economy’, ‘Ban on immigration’ etc. Many users may
have stance on one of the sub-topics but could be neutral on others. Therefore, for this type of
discussions, I recommend a two-step approach in which first we select a sup-topic and filter the
dataset on that sub-topic and use the methods on the sub-topic to understand user’s opinion.

The last situation is when the dataset is highly unbalanced. In an unbalanced discussion,
one side of the debate occupies the majority fraction. In such a case, the classifiers cannot
be appropriately trained as the unbalanced dataset leads to poor training of classifiers. This
problem could be partly solved by balancing the dataset by oversampling the minority class data.
However, even this step would fail to improve the classifier if the dataset is extremely unbalanced.

Future work should consider neutral conversations as one of the classes and should extend
the methods to work with the neutral class. More potential work has been added to the thesis.

7.4 Future Work
In the future, I would like to suggest ideas for some general questions and would like to con-
sider and evaluate our approach on other types of users’ networks data. For example, we did not
consider follower-followee network data which requires additional Twitter API calls. As our pro-
posed approach is very generic, such additional networks could be plugged in easily. Moreover,
in the chapter on co-training, we only consider the mixing strategy that combines the top most
confident predictions from different models for mixing. However, the top prediction of one clas-
sifier need not always be useful to the other classifier. Therefore, it would be worth considering
other mixing strategies e.g., one that balances the information gain and the sharing of confident
examples. Furthermore, there are other problems where stance learning tools can be applied. For
examples, pictures and memes shared on social media platforms while discussing controversial
topics also convey stance. Also, in the context of community polarization, stance could be used
to understand the sides taken by individual users, and therefore, could lead to a better estimate
of the extent of polarization. A phenomenon related to polarization is the formation of echo-
chambers. Next, I provide more details on research in these areas along with thoughts on future
work that connects this work on stance mining.

7.4.1 What Would it Take to Use Data that Does not Have Hashtags?

Hashtags are useful entities as they are commonly used to highlight the topic of discussion and
intent of the author. Some hashtags give clear stance information, and we could use them as a
weak signal to extract data that could be used to train machine learning models for stance mining.
This is what is proposed in the thesis.

However, hashtags are not the only entities that are suitable for stance learning problems.
The stance of users could also be evident from the domain names of the websites that they share,
or the user-mentions that they use. So mentions and domain names are other good candidates for
feeding the model the stance signal.
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It is also possible to use words or phrases (e.g., n-grams) as the input signal. For example, on
the topic of gun control, phrases like ‘gun control now or ‘guns should be banned could be used
to get the initial seed users. Though promising, there are two problems with this approach: 1)
Such phrases or n-grams require the entire text to be pre-processed which could be a challenge
with big data 2) we also need to create user-phrases network, and creating such a network would
also require processing large data. Therefore, though the use of text phrases is possible, the
complexity of identifying and extracting such phrases would require careful consideration.

7.4.2 Big Topics Might be Influencing Smaller topics. How to Handle
This?

Larger topics impact sub-topics. For example, a user favoring Trump is likely to favor discussions
around Trumps policies, e.g., say ‘Immigration Ban’. This phenomenon could be put to the
advantage if the sub-topic has a smaller amount of data. As our model requires more data for
semi-supervised learning, in the absence of data on a not so popular topic, one we can collect
data on the bigger topic. The result obtained from the bigger issue can then be extrapolated to
the smaller topic.

In the case of diversity of conversation, especially if the conversation is not controversial,
the recommended step is to filter the entire conversation with the targeted discussion. For exam-
ple, consider the discussion on the Coronavirus on Twitter. The large topic has many aspects,
including ‘how to stop the spread’, ‘effective medications’, ‘performance of Dr. Fauci’ etc. In
this diverse conversation, there are a few controversial topics, e.g., ‘performance of Dr. Fauci’ is
controversial with a group wanting Dr. Fauci to be fired from his official position. Therefore, a
good approach would be first to find the smaller controversial topic and filter the data related to
those topics from the larger discussion. Besides, resulting in a more accurate model, this would
also speed up the model training process.

The proposed techniques in the thesis are best suited for controversial topics with bi-polar
discussions. In case a debate has more than two sides, the proposed co-training method will need
to be extended to work with such datasets. This should not be very challenging as both classifiers
used in the approach allows multi-class labeling. The challenge could be in how the labels are
mixed in the label mixing step and need to be carefully explored in future research.

7.4.3 Extending the Stance Learning Models to Use Pictures and Memes
Posted on Social Media

There is limited work on analyzing pictures shared on social-networks for stance mining. How-
ever, there is strong evidence that pictures are increasing being used to convey stance [12]. A
good example of stance in pictures is the use of memes. While memes can exist as words, emoti-
cons, videos, or gifs, a common form is an image with superimposed text that conveys some
message. Various political actors are increasingly using memes to communicate political mes-
saging and memes are increasingly being used in public discourse as elaborated in the New York
Times article “The mainstreaming of political memes online” [16]. Though unexplored, pictures
and memes are going to be important for the holistic understanding of stance in future. In [12],
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we show that a multi-model deep learning model could be trained to extract memes from pictures
shared on Twitter. Theses memes could then be analyzed to find pro-party memes. We use im-
age similarity, meme specific optical character recognition, and face detection to find and study
families of memes shared on Twitter in the 2018 US Mid-term elections.

This kind of work could very well be extended to find memes that are pro or anti a given
topic. The signal needed to make the stance distinction could come from the methods proposed
in this thesis. Weak supervision could come through social-media artifacts like by hashtags or
URL domains. Though noisy, these artifacts contain useful stance signal. As we demonstrated in
this thesis, it could be better to first extract the set of users that are frequently using these hashtags
and group them as pro and con. This labeled group of users could then be used to further spread
the stance signal to other users through the co-training approach that we experimented with in
this thesis. Based on how the meme is being used by the users in different set, we could give a
probability estimate of the stance conveyed by the meme itself.

7.4.4 Analyzing Polarized Communities in Social-Networks via Stance Min-
ing

Community polarization and partisanship are both heavily studied in social-science. Recently,
with the presence of abundant data on social-media platforms, computer science researchers are
exploring ways to utilize data to better understand such social interactions [37, 39, 43]. Akoglu et
al. [1] used signed bipartite networks that represents opinions of individuals to understand polit-
ical polarity of individuals. Lahoti et al. [70] used constrained non-negative matrix factorization
to explore liberal-conservative ideology space on Twitter. Using twitter dataset of controversial
topics, the authors were able to separate users by ideology with over 90% accuracy. Unlike these
work, I think there is still more value in combining community structure and users’ stance to
quantify the extent of polarization. Typically, the network used in the quantifying polarization
involves extracting the largest connected component from the data [39]. Also, this largest compo-
nent is often composed one of the interaction modality, typically the retweets network. The main
issue with such a network is that there are many users who exist in the network but do not engage
in that particular activity e.g, retweeting in this case. The similar phenomenon of not engaging in
particular activity could lead to users not present in the largest connected component. From our
empirical analysis, we find that the users in this largest component is a small fraction (¡ 50%) of
total users. Quantifying the extent of polarization based on the largest component obtained from
one of the modalities could at best be a crude approximation of the real polarization. With our
work on stance mining, we are better able to evaluate the stance of each user even those who are
not involve in certain activities. Therefore, our approach to stance mining when combined with
metrics for quantifying polarization, could better estimate the presence of polarization in social
media data.

7.4.5 Stance Mining for Discovering Echo-chambers on Social Media
A concept very closely related to polarized communities is of the echo-chambers. The Oxford
dictionary defines an echo-chamber as ”An environment in which a person encounters only be-
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liefs or opinions that coincide with their own, so that their existing views are reinforced and
alternative ideas are not considered” 1. Gilbert et al. [41] used blogs to find echo-chambers. By
manually annotating comments on blog posts, they found that comments that agree to the blog-
posts outnumber the comments that disagree on most blogs. The authors defined echo-chamber
as as a blog on which more than 64% of the opinionated commenters agree with the blogger, and
they find that majority of blogs are echo chambers. The paper also provides a good perspective
of prior research focusing on understanding homophily on social platforms.

Margetts et al. [86] used ‘echo chambers’, in which people are surrounded by like-minded
people and opinions that reinforce their own belief systems (in the same way that acoustic echo
chambers use hollow enclosures to produce reverberated sounds). It is argued that inhabitants
of these ideologically narrow environments are vulnerable to distorted versions of events or fake
news, which bounce around the chamber and become regarded as the truth. In this way, echo
chambers lead to polarization, dragging those in the middle ground towards more extreme opin-
ions. Echo-chambers are also close knit communities that behave in a particular way depending
on the type of information shared. For example, the anti-climate change echo-chamber becomes
very active when an anti-climate change article is circulated. In contrast, an article that is pro-
climate change will hardly percolate through the same network. If the article diffuses, it mostly
gathers negative comments. This is because such communities become highly polarized for cer-
tain types of information, thus changing their structure (turtling). The same community might
behave like a normal community when an article related to other topic is shared. Thus echo-
chambers illustrate the dynamic and complex nature of communities present on social media
platforms.

Though there may be variations in the definition of the echo-chamber, it is accepted is that an
echo-chambers stop the flow of ideas, especially the ideas that are against the beliefs of the echo-
chambers. Though echo-chambers are easy to think of, they are difficult to discover. Learning
the stance of users in a network and getting the stance in the articles shared through the networks
along with the stance in the conversations around these articles could be a potential way to find
and understand echo-chambers. Much of the work in this thesis revolved around finding stance
of users and stance in conversations. However, given the stance on users, and using our proposed
approach of filtering articles through the user-article sharing matrix, it would be possible to get
the stance in the articles. Moreover, as we demonstrate in chapter 4, our models are better able
to capture the polarized nature of the users’ networks. Thus this thesis contains the necessary
ingredients needed for analyzing echo-chambers. A thorough study of topics that can have echo-
chambers would be a natural extension.

1https://en.oxforddictionaries.com/definition/echo chamber
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Appendix A

Better ways of collecting Twitter data:
What to Track on the Twitter Streaming
API? A Knapsack Bandits Approach to
Dynamically Update the Search Terms

A.1 Introduction

Imagine a disaster scenario. An earthquake hits the city of Anchorage. As people in Anchorage
start responding to the event, many people start to tweet about their situation. Many research
agencies and disaster response teams monitor Twitter to find such tweets and to respond to them
as soon as possible. The standard way to monitor events on Twitter is to use the Twitter stream-
ing API that allows tracking search terms. The streaming API is limited to approximately 1%
(or 10% for the paid service) of Twitter data, and the proportion of tweets generated to tweets
collected is even less if we track trendy terms [18]. Therefore, despite the best efforts, in events
like an earthquake, often a large fraction of useful tweets do not reach the agencies because they
do not contain the exact search terms which the agencies are monitoring. For example, if the dis-
aster agency is tracking ‘#earthquake’, the agency will miss tweets that contain ‘#Alaska’ (e.g.
Tweet in Fig. A.1). Their data collection could be improved by adding new relevant search terms
as events unfold, e.g. using ‘#Anchorage’ and ‘#Alaska’ soon after the earthquake in Anchorage.

Twitter has been shown to be useful in disasters [19, 119]. However, that is not its only use
case. Twitter remains a popular source of data both for researchers [6, 52, 66] and social-media
analytic companies. The common approach to collect tweets is to use a set of words-of-interest
as search terms to track on Twitter streaming API. However, as events happen and discussions
evolve, the relevant search terms change with time. Thereby, if the search terms are not updated,
the old search terms get misaligned with the goals of the data collection. For example, in the
earthquake scenario discussed earlier, the new search term ‘#Alaska’ could get dis-aligned with
the goal of collecting data on earthquakes in a few days. This begs a question. Is it possible to
use the goal of the search in the data collection itself to collect more relevant data over time?

In this research, we propose an iterative two step online algorithm that: 1) gets live data
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Figure A.1: A sample Tweet sent after an earthquake with some parts blacked out to preserve
anonymity. A data collection approach that only tracks ‘#earthquake’ on Twitter streaming API
would miss such tweets. In this research, we propose an approach to dynamically update the
search terms based on prior collected data. For example, if the goal is to find Tweets relevant
to earthquakes then our proposed algorithm would be able to find new relevant search terms like
‘#Alaska’ in case of an earthquake in Alaska.

from Twitter using a set of search-terms, then 2) finds the next set of search-terms based on the
data retrieved (in the previous step or in the last few iterations). Rather than formulating the
data collection goal as a set of fixed search terms, our approach allows using the goal in a more
flexible way (e.g. as a text classifier) and our solution embeds this higher level formulation in
the data collection process. We model the search-terms selection problem as a knapsack problem
and solve it using standard knapsack and knapsack bandits. The knapsack bandits effectively
handle exploration (new search terms to explore) and exploitation (keep using the most useful
search terms) and respect the constraints of data collection such as ‘number of terms that can be
used’ or ‘the amount of data that can be downloaded’ in a time window. We summarize our main
contributions below:

• We suggest ways to collect more relevant Twitter data using the Twitter streaming API. We
model the Twitter data collection as a knapsack problem with cost, value and constraints
(Section A.3), and propose two solutions.

• The first solution uses a dynamic programming based knapsack solver that estimates the
cost and the value of search terms independently in each time iteration (Section A.4).

• The second solution proposes a multi-armed-bandit approach to estimate the cost and value
of search terms over multiple time iterations (Section A.5).

• To the best of our knowledge, this is the first work that suggests a principled approach to
dynamically update the search terms while staying relevant to the goal of the data collec-
tion. We show the utility of our approach using a real example (Section A.6).

Section A.2 provides background on Twitter data collection, highlighting the limitations of
the Twitter streaming API. We describe the related prior research that are relevant to this work
in Sec. A.7. Finally, at the end, we conclude and provide directions for future research. Code to
rerun the experiments is available on GitHub 1.

1https://github.com/CASOS-IDeaS-CMU/What to track on Twitter Streaming API
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A.2 Twitter Data Collection Background
Twitter Streaming API allows three parameters to search the real-time data which are ‘follow’,
‘track’ and ‘locations’ 2. Here we focus on ‘track’ as that is commonly used to track a comma-
separated list of phrases (e.g. words, mentions, #hashtags). As mentioned earlier, given a topic
of interest, the most common approach is to use intuition to come up with a few generic phrases
that overlap with the discussions on the topic. For example, if someone is interested in find-
ing information about earthquakes, the phrases to use could be ‘#earthquake’, ‘earthquake’ or
‘earthquake now’. Though this is how Twitter API is commonly used, this approach has a few
limitations.

Some phrases are trendy and result in a vast amount of data, much of which is not relevant
to the goals of the data collection. Therefore the collected data needs to be filtered later which
results in processing and discarding a significant proportion of data. There is one more problem.
If multiple search terms are used, the majority of tweets obtained using the API will be from the
more commonly used phrases. Searching for more terms results in less number of tweets per
search term [18] and, in our experience, the returned data never exceeds around 25GB per day
(raw JSON files obtained using Tweepy library 3) irrespective of the number of search terms used
(tested on a computer with 1 Gbps Internet connection speed at the Carnegie Mellon University
campus). This limitation of Twitter is not well documented so to better understand it, we used
the Twitter Streaming API to track all 195 country names in English.

Figure A.2: Tweets volume obtained on different days using all country names as search terms.
On y axis, ‘M’ indicates tweets count in millions. The total data received each day is shown
on the top of the day’s bar. As we can observe, though there is a wide variation in tweets with
certain country-names (e.g. check Venezuela), but still the total volume of tweets has remained
between 22 GB and 23.1 GB and the total count is approximately 4 million.

In Fig. A.2, we show the volume and the quantity of data obtained by searching 195 coun-
tries names for over a week. As we can observe, though there is a wide variation in tweets from
specific countries (e.g., check Venezuela), but still the total volume of tweets has remained be-
tween 22 GB and 23.1 GB and the total count of tweets is approximately 4 million. This finding
confirms the observations in [18] where the authors find that Twitter returns around 2900 tweets
per minute when search terms are used with Twitter streaming API. 2900 tweets per minute is

2https://developer.twitter.com/en/docs/tweets/filter-realtime/guides/basic-stream-parameters.html
3https://tweepy.readthedocs.io/en/v3.5.0/streaming how to.html
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4,176,000 tweets in a day i.e. approximately 4 million. Note that these limits are different while
using the Twitter Streaming API without any search terms.

A.3 Problem Formulation
In collecting Twitter data, there is a cost in collecting data, there is some value of the data
collected, and there are some constraints. We describe these next:

1. Cost: Cost in data collection is due to the costs of data streaming (e.g., the internet band-
width), data storage and/or data processing. Because these costs are proportional to the
volume of the data obtained, to keep our model simple, we aggregate the different costs
and call the overall cost as wi, where i is the search term index. Let xi be the number of
tweets retrieved per minute by searching the ith search term. Cost wi is a function of the
amount of data xi. We expect the cost to be low if the volume of data retrieved is low, but
if the data volume xi is large, the cost should much higher as it reduces the collection of
data associated with other search terms (as discussed earlier). Therefore, the cost function
should be non-linear and should satisfy the following conditions: a) Cost is proportional
to number of tweets collected if the total volume of tweets is low b) If the total volume
obtained reaches the maximum limit (2900 per minute), then the cost should be very high
as we can’t get data at any higher rate. Many functions can possibly respect these condi-
tions. We model the cost function as a non-linear logit function (see Fig. A.3). As shown
in the figure, this function is approximately linear till 2000 tweets per minute and increases
rapidly later.

wi(xi) = log
⇣ (xi + 2900)/5800

1� (xi + 2900)/5800

⌘
(A.1)

Figure A.3: Cost function plot

The goal of this cost function is to encourage search terms that results in smaller fraction
of tweets.
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2. Value: This value of the search term i is the mean utility of the data. For example, in the
case of an earthquake, the value is a function of the fraction of tweets that are relevant to
a real shock. We call this value vi where again i is the search term index. vi is estimated
based on the goals of the data collection and could be as simple as a text pattern match.
For instance, if one is interested in the text of the tweets matching some pattern, we can
model the value function as:

V alue Func(tk) =

(
1 if tk matches p
0 otherwise

and vi = Mean(V alue Func(tk)) where tk is a tweet associated with search term with
index i.

3. Constraints: While collecting Twitter data, a critical limitation is the total amount of data
that we can download. As discussed earlier, it appears that there is a hard limit on the
amount of streaming data that can be obtained using a single API connection. We define
this constraint as W where W  2900 tweets per minute (based on the Internet bandwidth
of the system or the expected amount of data to be collected).
Thus,

P
i2I(t) wi

�
xi(t)

�
 W in every iteration t = 0, 1, 2, .., where I(t) is the set of

indices of the selected search terms. There are other possible constraints as well e.g. Twit-
ter limits the number of search terms to 4004. To satisfy the search term limit, we have:P

i2I(t) 1  400 .

Using cost, value and constraints, we define our optimization problem as:

max(
X

i

h
vi(xi(t))

i
) (A.2)

subject to:
X

i2I(t)

wi

�
xi(t)

�
 W (A.3)

and

X

i2I(t)

1  400 (A.4)

at iteration t = 0, 1, 2, .., where xi is data collected for the ith search term, and I(t) is the
index of all ‘search terms’ used at time t. The objective is to maximize the expected value at
time t+ 1 based on the estimates of vi and wi at time t.

Given cost, value and constraints, the standard approach is to model such problems as a
knapsack problem (described next).
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Figure A.4: In every time iteration, a set of search-terms are used to get data from the Twitter
Streaming API. The data is then processed to find high frequency terms. For each of these terms,
value and cost are estimated (shown with light blue and light green background respectively)
based on the tweets associated with each term. Cost and value are then used to find the next set
of search-terms using a knapsack solver that also considers the constraints of the data collection.
The result of one iteration is used as the search-terms for the next iteration.

A.4 New Search Terms as a Knapsack Problem
We first solve the simpler version of the problem in which cost and value are estimated each
iteration. An iteration consists of a small batch of data obtained by connecting to the Twitter
streaming API for some time. The time duration of the iteration depends on how often the search
terms need to be updated based on the goal of the data collection. For example, in case of an
earthquake, since such events are instantaneous, an iteration could be of short time like a few
minutes. In contrast, for slow changing goals like political discussions, an iteration could be of
larger time duration like 30 minutes. At the end of the iteration, the tweets dataset is processed to
find the high-frequency terms which are the potential search-term candidates for the next batch.
For each of these terms, value and cost are estimated based on the tweets associated with each
term. The search terms are first filtered to remove any unwanted content (i.e. stop words or
pornographic content). Cost and value for the filtered terms are estimated using the cost and
value function as described in the last section. Knapsack problems, though NP-hard [85], have
many efficient solutions [120]. We use a dynamic programming based knapsack solver to find
the next set of search terms [116]. We show the steps in Fig. A.4, and summarize the steps as an
algorithm which we name as ‘Dynamically Update Search Terms’ (DUST1) (see Alg. 4).

DUST1 algorithm returns a set of new terms (in addition to seed terms) after each iteration.
Though useful for dynamically updating the search, this approach has two limitations: 1) The
approach only considers the current data, thereby ignoring the cost and value estimated in previ-
ous iterations. Because the streaming API only consists of a small fraction of the total tweets, it’s
possible that in a particular iteration, there is no data from a search-term though the search-term
is generally useful. 2) The approach does not consider the confidence in estimating the value of
the search terms. For example, if a search-term ‘X1’ had only a single tweet of high value, the
mean-value based algorithm is more likely to suggest it when compared to another term ‘X2’

4https://developer.twitter.com/en/docs/tweets/filter-realtime/overview/statuses-filter.html
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Algorithm 4 DUST1: Dynamically Update Search Terms
Require: data is the tweets collected

1: function DUST1(data) terms, terms tweets dictProcess(data) utility scores[]
2: for k  0 to len(terms) do
3: term terms[k]
4: term tweets  terms tweets dict[term] valueMean(Value Func((term tweets))

costMean(Cost Func((term tweets))
5: utility scores.add((term ,cost, value))
6: end for
7: search terms KnapsackSolver(utility scores)
8: return search terms
9: end function

that has a few hundred tweets, many of which are useful. We improve on these two limitations
in the next section.

A.5 A MAB Approach to Dynamically Update the Search Terms
Here we propose an algorithm that estimates and maintains cost and value of each search term
overtime. A common approach to estimate the utility of different options is the ‘online controlled
testing’, popularly called A/B testing [65]. Re-looking at our earthquake example, if the options
are ‘#Alaska’ and ‘#Canada’, one can wait for certain number of tweets on both the terms to
arrive before using A/B test to determine if ‘#Alaska’ is more useful than ‘#Canada’. However,
A/B testing requires large enough sample set to derive the confidence of the benefit of option
A over B. The opportunity cost of waiting to get the sample set is high in many cases (like the
earthquake example) and we want the more useful options to be picked quickly (i.e. greedily) to
get more relevant data. In such situations, the framework of multi-armed bandits is preferred 5.
Therefore, given our goal of greedily exploring more useful search terms, we model the problem
as a knapsack-bandit where bandits are used to estimate the value of the search terms and a
knapsack solver is used to filter the top search-terms that satisfy the constraints.

In this simple case, the goal in Multi-Armed Bandits (MAB) optimization is to estimate
the reward of each arm to find the arm which leads to maximum reward over multiple trials.
Such MAB problems can be solved using many different strategies. These strategies attempt
to strike a balance between exploration and exploitation in different ways. To suit the MAB
paradigm to our problem, we need two changes 1) need to select a set of search-terms that
are more useful (in contrast MAB selects the best search-term). 2) selected terms should also
satisfy the data collection constraints that we discussed earlier. Therefore, we use MAB only to
estimate the value of search-terms over multiple iterations (using two different strategies) and
use the knapsack solver to get the final set of search-terms for data collection. The steps of
the approach is shown as an algorithm in Alg. 5 where the MAB Strategy returns a list of

5https://conversionxl.com/blog/bandit-tests/
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(term, cost, value) tuples.

Algorithm 5 DUST2: Update Search Terms using Bandits
Require: data is the tweets collected and util scores queue is a dictionary of FIFO queues that

maintains the costs and values of terms

1: function DUST2(data) terms, terms tweets dictProcess(data) utility scores[]
2: for k  0 to len(terms) do
3: term terms[k]
4: term tweets  terms tweets dict[term] valueMean(Value Func((term tweets))

costMean(Cost Func((term tweets))
5: utility scores queue[term].enqueue((cost, value))
6: end for
7: utility scores = MAB Strategy(utility scores queue)
8: search terms KnapsackSolver(utility scores)
9: return search terms

10: end function

Next, we describe two strategies which we we use for search-terms selection.

Mean-k Strategy

Mean-k estimates the mean of a function (value or cost) over last k iterations. Thus, mean-k
value of term i at iteration n is be written as:

v̂i(n) =

Pn
t=n�k vi(xi(t))Pn

n�k 1
(A.5)

where v̂i is the estimated mean value of search term i over last k iterations.

Upper-Confidence-Bound (UCB) Strategy

UCB strategy allows for better exploration by giving higher probability to actions for which
reward estimate is not available [3]. Intuitively, UCB uses two criterion 1) try if better candidate
i.e. v̂i(t) is large 2) try if less explored i.e. Nn(i) is small.

ṽi(n) =
⇣
v̂i(n) + c

s
lnn

Nn(i)

⌘
(A.6)

where ṽi(n) is the UCB value associated with term i after iteration n, Nn(i) denotes the total
number of times i has been selected before iteration n and c is a parameter to control exploration.

DUST2 algorithm is simple but we found some practical limitations while implementing. a)
cost and value estimation of some search terms get stale over time. b) large number of search
terms needs to be tracked as we get more and more data which slows down the algorithm. To
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resolve ‘a’, we use a FIFO queue (data structure) of limited size to store the cost and value of
each search term. In addition, if we don’t get data for a search term in an iteration, an empty
(cost, value) is added for the term to the queue. With this modifications, we are able to get rid of
the stale data. But we still keep on aggregating all search terms. To fix ‘b’, after every iteration,
we run a subroutine that removes any search term that contains only empty (cost, value) in the
queue.

A.6 Experiments and Results

We conducted a data-collection experiment for a few weeks to measure the quantity and the
relevancy of data collected using our proposed approach. Our goal is to collect tweets that are
relevant to earthquake beyond what could be obtained by using the seed terms. To compare
different approaches, we collected data in four different ways: 1) Searching with seed terms
‘#earthquake’ and ’earthquake’. 2) Searching using the terms suggested by DUST 1(see Alg.
4) 3) Searching using the terms suggested by DUST2 (see Alg. 5) with mean of cost and value
estimation for last 10 iterations. 4) searching using the terms suggested by DUST2 (see Alg. 5)
with mean for cost and UCB (strategy) for value estimation using last 10 iterations data. For
estimating the value of a tweet, we use a small tweets dataset from prior research [55] that has
relevancy labels (relevant vs non-relevant) for a set of tweets related to an earthquake in Nepal.
We first removed any words that contain ‘Nepal’ and use the filtered dataset to build a Support
Vector Machine classifier using TF-IDF features that predicts whether a given tweet is relevant
or not. Using a separate test set that is around 40% the entire dataset, we found the accuracy of
the classifier to be 81%. We use this classifier in our value function as defined below:

V alue Func(tk) =

(
1 if EQakeClassifier(tk) = 1

0 otherwise

and vi = Mean(V alue Func(tk)) where tk is a tweet associated with search term with index
i.

Using this value function, we present the amount of tweets obtained by just searching for seed
terms (only ‘earthquake’), searching for the terms suggest by DUST-1, and by DUST-2 (Mean-
10 and UCB strategies) in Fig. A.5. As we can see in the plot, on most days, data collected by
DUST-1 exceed the data obtained by just searching for seed terms. For the entire time during for
the experiment, we estimate that DUST-1 gets 1.71 times the data obtained using the seed terms.
For MAB based search, Mean-10 gets 0.65 times and UCB-10 gets 0.53 times additional data.
The total data that was found to be relevant using the relevancy classifier is 3.89 times the total
data that was collected only using the seed terms (see Fig. A.6 for trends).

To summarize, even if we discount the accuracy estimate of the relevancy classifier (which
can always be improved with more labeled data), we can still expect the gain of our approach to
be over 2x times the data collected using the seed terms.
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Figure A.5: Results of earthquake data collection using only ‘earthquake’ like search-terms and
our proposed approaches.

A.7 Related Work

A.7.1 Twitter Data Collection and Event Detection
A number of researchers have explored and compared Twitter Streaming APIs ([18, 125]). Cam-
pan et al. [18] compares the Twitter Streaming API based on popular and not so popular terms
and find that if filtering is used for terms that are not very popular, it’s likely that all matching
Tweets are provided by Twitter. In contrast, if very popular filtering terms are used, the collected
data leads to biased results. Wang et al. [125] used samples obtained from the Spritzer Twitter
stream API and Gardenhose Twitter stream API to find that the actual sampling ratios are around
0.95% and 9.6% for Spritzer and Gardenhose respectively. They also suggested that though
Spritzer is sufficient when using text terms and URL domains, for hashtags, the small Spritzer
sample is not adequate to preserve accurate data statistics. There is also a rich literature on using
Twitter for event detection [9]. In most prior work on event detection, the data that was collected
apriori. In this work, instead, we suggest a a way to get more data by adding new search terms,
and to the best of our knowledge, this is the first work of this type.

A.7.2 Multi-Armed Bandit Problems (MAB) and Web Crawling
MABs are commonly used for optimization in noisy environments where there is an exploration
(more labels to try) and exploitation (use the best one) trade-off. Many extensions to the standard
MAB have been proposed like the contextual-bandit, the collaborative-bandit and the knapsack
bandits [7]. In particular, knapsack bandits are useful when both exploration and exploitation
incur cost and the total possible cost is constrained[117]. In knapsack bandits, in every iteration,
a set of bandit arms are selected that satisfy the knapsack constraints to maximize the value of
arms selected in the knapsack. Our problem differs from the previous formulation of knapsack
bandits. In the earlier studies, arms are scheduled independently, but in our formulation, a set of
arms are scheduled at a time and we use bandits to only estimate the value of arms (search terms)
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Figure A.6: Relevant vs non-relevant trend of data obtained using our proposed approaches.
The relevancy and non-relevancy is determined using a classifier based on a labeled dataset for
earthquakes from a prior research.

over multiple iterations. In the domain of focused (web) crawling, reinforcement learning has
been studied before e.g. to design a web spider[101]. However, to the best of our knowledge,
no one has applied our formulation of knapsack-bandits in the context of Twitter data collection
earlier.

A.8 Conclusion and Future Work
In this research, we first show that Twitter limits the amount of data that can be retrieved using
their Streaming API to around 4 million tweets in a day. We then propose two novel approaches
that respect the constraints on data collection volume and the number of search terms, still get
additional data. Given a value function that can quantify the utility of a tweet, our proposed
algorithm allows embedding the function in the data collection process itself. Our solution uses
the ‘search terms’ as bandit-arms to find the best set of arms that satisfies the constraints. Using
‘earthquake’ related data collection as an example, we estimate that our suggested approach gets
data that is more than twice the data retrieved by just searching for ‘earthquake’. In the future,
we would like to extend our approach to a distributed system so that multiple machines/processes
can coordinate to get more useful data.
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Appendix B

A Users Guide for Labeling Stance in
Conversations

141



CASOS Tweet Labeling Tutorial v2 
	

In	this	task	you	will	be	shown	pairs	of	tweets.	These	pairs	are	made	up	of	either	a	quote	tweet	and	its	
target	tweet	or	a	reply	tweet	and	its	target	tweet.		

Here	is	what	a	quote	pair	looks	like:	

	

Here	is	what	a	reply	pair	looks	like:	

	

	

	

Quote	Tweet	(above	target)	

Target	Tweet	(within	box)	

Reply	Tweet	(below	target)	

Target	Tweet	(in	this	case	a	
sentence	with	a	link	to	a	news	
source)	



	

For	each	pair	of	tweets	the	task	requires	you	to	judge	whether	the	quote/reply	is	denying	that	what	is	
being	said	in	the	target	tweet	is	true	or	is	supporting	that	what	is	being	said	in	the	target	tweet	is	true.	

The	response	scale	looks	like	this:	

Explicitly	Supports	–	Implicitly	Supports	–	Neutral	–	Implicitly	Denies	–	Explicitly	Denies	

Explicitly	Supports	means	that	the	quote/tweet	outright	states	that	what	the	target	tweets	says	is	true.	

Implicitly	Supports	means	that	the	quote/tweet	implies	that	the	tweeter	believes	that	what	the	target	
tweet	says	is	true.	

Neutral	(/comment/Query)	means	that	the	quote/reply	does	not	support	or	deny	that	what	the	target	
tweet	says	is	true.	This	can	be	because	the	quote/reply	talks	about	a	different	topic	than	the	target	
tweet	or	because	the	quote/reply	talks	about	some	separate	issue	within	the	same	topic.	This	can	also	
be	because	the	quote/reply	is	asking	for	more	information	about	the	target	tweet	in	a	way	that	
indicates	the	quoter/replier	has	not	judged	the	veracity	of	the	target	tweet	yet.	If	the	target	tweet	is	
reporting	on	comments	made	by	a	third	party	and	the	quote/reply	is	denying	or	supporting	those	
comments	but	not	the	report	of	those	comments,	then	the	relationship	should	be	labeled	neutral.		

Implicitly	Denies	means	that	the	quote/tweet	implies	that	the	tweeter	believes	that	what	the	target	
tweet	says	is	false.	

Explicitly	Denies	means	that	the	quote/tweet	outright	states	that	what	the	target	tweets	says	is	false.	

It	should	be	noted	that	many	of	the	tweet	pairs	deal	with	politically	and	emotionally	contentious	topics.	
Your	task	is	not	to	determine	whether	a	tweet	is	true	or	false,	or	if	a	response	is	wrong	or	right.	Your	
task	is	only	to	determine	the	relationship	between	the	two	tweets	in	each	pair	(whether	the	quote/reply	
is	disagreeing	or	agreeing	that	what	the	target	tweet	says	is	true).		

For	some	pairs	of	tweets,	this	will	be	easy.	For	other	pairs,	it	can	be	difficult.	Please	take	the	time	to	
make	a	careful	judgement.		

Following	are	five	examples:	

	

	

	

	

	

	

	

	



Example	1:	

								 	

Explanation	1:	In	this	tweet	pair,	the	reply	(bottom	tweet)	is	directly	stating	that	the	target	tweet	(top		
																										tweet)	is	lying.	The	correct	choice	is	“Explicitly	Denying”.	

	
	

	
Example	2:	

	 	

Explanation	2:	In	this	tweet	pair,	the	quote	(top	tweet)	is	saying	that	what	the	target	tweet	(in	the		
																										box)	says	is	true.	The	correct	choice	is	“Explicitly	Supporting”.	
	

	



Example	3:	

	

Explanation	3:	In	this	tweet	pair,	the	quote	(top	tweet)	is	asking	whether	what	the	target	tweet	(in	the	
box)	says	happened	really	happened.	The	correct	choice	is	“Neutral”.	If	the	quote	had	been	phrased	
more	sarcastically,	it	could	have	been	labeled	as	“Implicitly	Denying”.	
	

Example	4:	

	

Explanation	4:	In	this	tweet	pair,	the	reply	(bottom	tweet)	is	making	a	statement	regarding	the	content	
of	the	target	tweet	(top	tweet)	but	is	not	directly	supporting	or	denying	the	content	of	the	target	tweet.	
The	correct	choice	is	“Neutral”.	



	
Example	5:	

	

Explanation	5:	In	this	tweet	pair,	the	quote	(top	tweet)	is	making	a	statement	regarding	the	content	of	
the	news	report	in	the	target	tweet	(in	the	box).	The	quote	is	not	calling	into	question	the	veracity	of	the	
news	report	(whether	the	NRA	made	the	statement	or	not),	it	is	calling	into	question	the	veracity	of	the	
statement	that	the	NRA	made.	The	correct	choice	is	therefore	“Neutral”.	This	is	an	example	of	the	
difficulty	of	determining	the	relationship	between	tweets	when	the	target	is	a	news	source.	If	the	target	
is	a	news	source,	then	care	should	be	taken	to	decide	if	the	quote/reply	is	questioning	whether	what	
was	reported	happened	or	if	the	quote/reply	is	accepting	the	report	and	questioning	the	statements	of	
those	in	the	report	(as	in	this	example).			
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