
Controlling Module Authority
Using Programming Language Design

Darya Melicher

CMU-ISR-20-101

February 2020

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich, Chair

Lujo Bauer
Limin Jia

Alex Potanin, Victoria University of Wellington
Robert Biddle, Carleton University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Software Engineering.

c© 2020 Darya Melicher

This research was supported by the National Security Agency (NSA) Lablet Contract No. H98230-14-C-0140 and
the Defense Advanced Research Projects Agency (DARPA) agreement No. FA8750-16-2-0042. Any opinions,
findings, and conclusions or recommendations expressed in this manuscript are those of the author(s) and do not
necessarily reflect the views of NSA or DARPA. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Keywords: Language-based security, capabilities, authority, modules, effects

Abstract
The security of a software system relies on the principle of least privilege, which

says that each software component must have only the privilege necessary for its
execution and nothing else. Current programming languages do not provide ade-
quate control over the privilege of untrusted software modules. To fill this gap, we
designed and implemented a capability-based module system that facilitates con-
trolling what resources each software module accesses. Then, we augmented our
module system with an effect system that facilitates controlling how resources are
used, i.e., authority over resources. Our approach simplifies the process of ensuring
that a software system maintains the principle of least privilege. We implemented
our solution as part of the Wyvern programming language.

In Wyvern, modules representing or using system resources, such as the file sys-
tem and network, are considered to be security-critical and are designated as resource
modules. References to resource modules are capability-protected, i.e., to access a
resource module, the accessing module must have the appropriate capability. Using
this feature, we designed our module system in such a way that it is obvious at com-
pile time what capabilities a module have from looking at modules’ interfaces and
not their code. This property significantly simplifies the task of checking what capa-
bilities a module holds. From a theoretical viewpoint, our capability analysis uses a
novel, non-transitive notion of capabilities, which allows estimating the capabilities
each module holds more precisely than in previous formal systems.

Further, leveraging the fact that effects are a good proxy for operations performed
on a resource, we designed Wyvern’s effect system that can account for the effects
a module has on each resource. Our effect system is capability-based and allows
specifying and enforcing what operations a module can perform on a resource it
accesses, i.e., allows controlling the module’s authority. Similarly to our module-
system design, effect annotations that convey information about module authority
are located in modules’ interfaces, thus simplifying the task of checking resource
usage.

We formalized both Wyvern’s module system and effect system, and proved
Wyvern to be capability- and authority-safe. We also assessed the effectiveness of
the module system and the effect system that we designed in terms of how they
would be used in practice and how they benefit a security-minded software devel-
oper writing an application. To do that, we implemented an extensible text-editor
application in Wyvern and performed a security analysis on it.

iv

Acknowledgments
As many pointed out before me, obtaining a doctorate degree is a journey, and

everyone’s journey is unique. My journey had a considerable effect on every aspect
of my life, professional as well as personal. During my journey, I gained significant
new knowledge, learned and practiced a variety of new skills, and met many people
who affected my ultimate path.

I am tremendously grateful to my advisor Jonathan Aldrich for his guidance,
help, and support, which were instrumental for me obtaining the doctoral degree.
I am also indebted to my thesis committee for providing their useful advice and
feedback. In addition, I would like to thank my collaborators, family, friends, fel-
low students, university and department staff, and various members of the research
community.

Contents

1 Introduction 1
1.1 Thesis Approach . 2
1.2 Threat Model . 3

1.2.1 Attack Scenarios . 4
1.3 Thesis Statement and Outline . 5

2 A Capability-Safe Module System 6
2.1 Running Example . 6
2.2 Resource Modules . 7
2.3 Pure Modules . 9
2.4 Capability Analysis . 10
2.5 Formalization . 12

2.5.1 Module Syntax . 12
2.5.2 Core Syntax . 13
2.5.3 Modules-to-Objects Translation . 14
2.5.4 Static Semantics . 16
2.5.5 Subtyping Rules . 18
2.5.6 Dynamic Semantics . 18
2.5.7 Type Soundness . 19

2.6 Capability Safety . 20
2.6.1 Significance of Capability Safety . 21
2.6.2 Formal Definition of Capability Safety 22

2.7 Implementation . 27
2.8 Limitations . 27
2.9 Related Work . 28

3 Authority Safety via Effects 30
3.1 Running Example . 30
3.2 Wyvern Effects Basics . 31

3.2.1 Effect Abstraction . 33
3.3 Software Development Patterns Facilitated by Wyvern’s Effect System 33

3.3.1 Controlling Operations Performed on Resources 33
3.3.2 Information Hiding and Polymorphism 35
3.3.3 Designating Important Resources Using Globally Available Effects . . . 36

vi

3.3.4 Authority Attenuation . 39
3.4 Formalization . 39

3.4.1 Core Syntax . 40
3.4.2 Modules-to-Objects Translation . 41
3.4.3 Well-Formedness Rules . 41
3.4.4 Static Semantics . 42
3.4.5 Effect-Lookup Rules . 44
3.4.6 Dynamic Semantics . 45
3.4.7 Subtyping Rules . 46
3.4.8 Type Soundness . 47

3.5 Authority-Related Properties . 47
3.5.1 Authority Safety . 48
3.5.2 Authority of an Object . 48
3.5.3 Authority Attenuation . 49

3.6 Implementation . 51
3.7 Limitations . 51
3.8 Related work . 52

4 Evaluation 55
4.1 Threat Mitigation . 55
4.2 Case Study: An Extensible Text-Editor Application 56

4.2.1 Application Description . 57
4.2.2 Security Analysis . 60
4.2.3 Observations and Discussion . 65

5 Conclusion and Future Work 74
5.1 Contributions . 74
5.2 Future Work . 75

A Capability-Safe Module System 77
A.1 Type Soundness . 77

A.1.1 Preservation . 77
A.1.2 Progress . 80

A.2 Capability Safety . 82
A.2.1 Capabilities-Related Properties . 82
A.2.2 subexps Rules . 83
A.2.3 Lemmas . 83
A.2.4 Capability-Safety Theorem . 97

B Authority Safety via Effects 106
B.1 Type Soundness . 106

B.1.1 Lemmas . 106
B.1.2 Preservation . 109
B.1.3 Progress . 110

vii

B.2 More General Definition of Authority Attenuation 112

Bibliography 113

viii

List of Figures

2.1 A module access diagram of the word-processor application used in code examples. 7
2.2 A Wyvern code example demonstrating resource modules, how they are ac-

cessed, and their instantiations. 8
2.3 A Wyvern code example demonstrating a pure module and its import. 10
2.4 Access capabilities of fileIO, logger, and wordCloud. 10
2.5 Wyvern’s abstract grammar. 12
2.6 Syntax of Wyvern’s object-oriented core. 13
2.7 Modules-to-objects translation rules, and encodings for let, multivariable bind

and multiparameter methods. 14
2.8 A sample modules-to-objects translation. 16
2.9 Wyvern static semantics. 17
2.10 Wyvern subtyping rules. 19
2.11 Wyvern dynamic semantics. 20
2.12 cap rules. 22
2.13 pointsto rules. 24

3.1 The overall architecture of the text-editor application. 31
3.2 A type and a module implementing the logging facility in the text-editor appli-

cation. 31
3.3 The type of the file resource. 32
3.4 Excerpts from the code-completion and user-statistics-analyzer plugins of the

text-editor application. 34
3.5 An alternative implementation of the Logger type from Figure 3.2. 35
3.6 A pure module defining file effects. 37
3.7 A version of the File type that uses globally available effects. 37
3.8 A version of the Logger type and implementation that uses globally available file

effects. 38
3.9 A version of the code completion plugin that uses the alternative version of the

Logger type from Figure 3.8. 38
3.10 Wyvern’s object-oriented core syntax. 40
3.11 A simplified translation of the logger module from Figure 3.2 into Wyvern’s

object-oriented core. 41
3.12 Well-formedness rules. 42
3.13 Wyvern static semantics. 43
3.14 Wyvern effect-lookup rules. 44

ix

3.15 Wyvern dynamic semantics. 45
3.16 Wyvern subtyping rules. 46
3.17 Intuition behind using effects to describe module authority. 47
3.18 Rules defining authority of an object. 49
3.19 Wyvern effect-lookup rules that target a specific type. 50

4.1 Screenshots of the text-editor application. 57
4.2 The Plugin type that each text editor’s plugin must implement. 58
4.3 Text editor in the dark theme provided by the darkTheme plugin. 59
4.4 Text editor’s questionnaireCreator plugin in action. 59
4.5 Text editor’s wordCount plugin in action. 60
4.6 Module accesses and authority in the text-editor application. 62
4.7 The reduced version of code pertaining to the logger module. 63
4.8 Code snippets of the OptionPane type and the wordCount plugin. 63
4.9 Code snippets of the darkTheme and questionnaireCreator plugins. 66
4.10 Code snippets relevant to attenuating Java’s textArea object. 69
4.11 The registerPlugin method of the textEditor module. 70
4.12 The performNewAction method and the Run effect definitions of the textEditor

module. 72
4.13 The module header of the textEditor module. 73

x

List of Tables

4.1 The average number (arithmetic mean) of effects per an effect set. 68
4.2 The effect-annotation overhead in the text editor-application and its plugins. . . . 71

xi

Chapter 1

Introduction

The principle of least privilege [65] is a fundamental technique for designing secure software
systems. It states that each component of a system must be able to access only the information
and resources that it needs for operation and nothing more. For example, if an application module
needs to append an entry to an application log, that module should not also be able to access the
whole file system. This is important for any software system that divides its code into a trusted
code base [63] and untrusted peripheral code because, in such a system, trusted code could run
directly alongside untrusted code. A common example of such software systems is extensible
applications that allow supplementing their functionality with third-party extensions (also called
plugins, add-ins, and add-ons). Another example is large software systems in which some devel-
opers may lack the expertise to write secure or privacy-compliant code and thus should have a
limited ability to access system resources in their code. Enforcing the principle of least privilege
helps to limit the attack surface of a software system and to isolate vulnerabilities and faults.
However, current programming languages do not provide adequate control over the authority of
untrusted modules [12, 13, 39, 66, 70, 75]. For example, to control module privilege, Java uses
sandboxing via the Java Security Manager, which is complicated to use, resulting in compro-
mised protection of Java applications [13, 39].

Application security becomes even more challenging if an application uses code-loading fa-
cilities or advanced module systems, which allow modules to be dynamically loaded and ma-
nipulated at run time. In such cases, an application has extra implementation flexibility and may
decide what modules to use at run time, e.g., responding to user configuration or the environment
in which the application is run. On the other hand, untrusted modules may get access to crucial
application modules that they do not explicitly import via global variables or method calls. For
example, although an untrusted third-party extension may import only the logging module and
not the file I/O module, the extension could still receive an instance of the file I/O module via a
method call as an argument or a return value. Dynamic module loading can be modeled as first-
class modules, i.e., modules that are treated like objects and can be instantiated, stored, passed as
an argument, returned from a function, etc. However, in a conventional programming language
featuring first-class modules (e.g., SML/NJ [30], Newspeak [8], Scala [54], and Grace [28]), be-
cause module passing can happen anywhere in an application’s code, it is impossible to limit the
amount of code one must inspect to check application security, making it difficult to track and
control module accesses in practice.

1

Another challenge of ensuring an application’s security is controlling the operations per-
formed on the legitimately accessed resource. For example, in a text editor, a theme plugin may
access the user-interface-related modules and may call methods that change the color of buttons,
but it must not call methods that delete or disable buttons. So far, although there has been some
success addressing the challenge of controlling module accesses (e.g., [41] and [16]), not much
progress has been made towards controlling operations that are performed on modules.

1.1 Thesis Approach

Before discussing how the thesis approach described in this dissertation tackles the
above-mentioned shortcomings of current programming languages, let us define the main terms:
• A capability is an unforgeable, communicable reference that allows accessing a resource.

(In our approach, it is a reference to an object representing a resource.)
• A capability-safe programming language (or system) is a programming language (or

system) in which capability passing is the main way for granting access rights, is restricted,
and abides by a set of clearly defined rules.

• Authority is the ability to operate on resources. (In our approach, it is the ability to operate
on objects representing resources.)

• An authority-safe programming language (or system) is a programming language (or
system) that provides a way to specify and enforce a set of rules according to which au-
thority over resources may be obtained.

To address the challenge of controlling modules’ accesses, we developed a capability-safe
module system that facilitates controlling the capabilities granted to each application module
(Chapter 2). Unlike prior research, our capability analysis defines the capabilities possessed by
an object non-transitively, allowing engineers to reason about programs that use wrappers to
provide an attenuated version of a more powerful capability [48]. Furthermore, our approach
simplifies reasoning about capabilities a module has. To determine a module’s capabilities, soft-
ware developers need to examine only the capabilities that are passed as module arguments when
the module is created, or are delegated to the module later during execution. The type system
facilitates this by both identifying which objects provide capabilities to system resources and
enabling software developers to examine the capabilities passed into and out of a module based
only on the module’s interface, without needing to inspect the module’s implementation.

To address the challenge of controlling modules’ authority, i.e., controlling the operations
modules perform on important, security- and privacy-crucial modules, we developed an authority-
safe effect system that uses as a basis the capability-safe module system (Chapter 3). An effect
system [37] is a formal system that keeps track of effects of a program, where an effect de-
scribes an action performed on a resource. Notably, the definition of an effect coincides with
the information we are interested in from the security standpoint: resources are the security- and
privacy-crucial modules of the program, and the actions performed on resources are the oper-
ations performed on the security- and privacy-crucial modules. For instance, using our effect
system design, the programmer of the text-editor application from the example above is able to
use effects to express the constraints that the plugin could only change the color of buttons but

2

not disable or delete them.
Strengthening the connection between effects and resources, in our effect system, effects

are defined using object capabilities that represent resources. For example, implemented in our
system, effects of the text-editor’s theme plugin, along with a specification of all the operations
performed on a button resource, contain an object capability (i.e., an object reference) to the
button resource itself. This connection between resources and the operations performed on them
closely and conveniently ties the two notions together aiding a software architect or a security
analyst to reason about software system’s architecture and security.

Since capability safety and authority safety require substantial support from the programming
language, we designed a new programming language, called Wyvern [52], which is built from
the ground up with the security goals in mind. Thus, both the capability-safe module system
and effect system were developed as part of Wyvern, making it a capability- and authority-safe
language.

1.2 Threat Model
Our approach helps software developers minimize the risks associated with handling potentially
malicious third-party code that runs alongside the application code, such as a third-party library
or application extension. Wyvern’s module system and effect system allow software developers
to specify and enforce security policies using module interfaces. In particular, to specify re-
source access and use, software developers, including authors of third-party code, must request
resource-associated capabilities to be passed into module constructors and methods, and annotate
module methods with appropriate effects.

We do not prescribe a single notion of authorized and unauthorized usage but instead provide
the tools for software developers to establish boundaries between parts of the application code
with varying levels of trust. The notion of authorized and unauthorized usage is defined by
security analysts who audit the application code. For example, a security analyst may want to
enforce that a third-party library is not allowed to access the network but can read from a specific
file, and we aim to allow both the security analyst and the software developer (who may be the
same person but act in different roles at different times) to specify and enforce this property at
the module boundary level.

Using the static checks of Wyvern’s type-and-effect system, we aim to prevent attacks that
try to gain unauthorized privilege, and specifically, we consider the case when third-party code
(e.g., an application extension) attempts to exploit the application either by:

1) gaining unauthorized capabilities (e.g., access to system resources or the privilege to load—
malicious or vulnerable—native code) or

2) calling unauthorized methods on capability-protected resources (e.g., an application ex-
tension whose primary functionality requires read-only access to a file performs a write
operation on that file).

In addition, there are several low-level attacks that are either not possible or out of scope for
this work:

1. Attacks involving overflows, such as buffer overflow and integer overflow, are generally
not possible in Wyvern, as all the languages used as Wyvern backends (currently Java,

3

JavaScript, and Python) are memory-safe.
2. Code injection is not possible in Wyvern, as Wyvern does not provide support for dynamic

evaluation of expressions, such as an eval function.
3. Code injection in auxiliary languages, such as SQL queries, are explicitly out of scope for

this project but can be mitigated using Wyvern’s type-specific languages (TSLs) [55].
4. Attacks involving malicious or vulnerable native code (e.g., code that is vulnerable to code-

injection attacks) are out of scope, as native libraries are able to bypass the compile-time
enforcement inside Wyvern. However, these attacks can be mitigated by:

(a) The (capability-based) control within Wyvern over what native code is loaded;
(b) Keeping the loaded native code minimal;
(c) Auditing the loaded native code;
(d) For Java, compiling the Wyvern code that interoperates with the Java code into byte-

code with appropriately set Java Security Manager restrictions, which is potential
future work;

(e) For JavaScript, compiling the Wyvern code that interoperates with Secure
EcmaScript [2], which is potential future work.

1.2.1 Attack Scenarios

Our attack scenarios assume three actors:

1. A software developer writes application code, is not actively malicious, but is potentially
fallible. The software developer may integrate a third-party library from a potentially
malicious attacker.

2. A security analyst decides a security policy for the application and audits its code (written
by software developers) as well as the resources and their use by third-party libraries.
During an audit, the security analyst may modify code to enforce security policies.

3. An attacker is malicious and may provide both input to the application and potentially
malicious third-party library code. The attacker attempts to take advantage of the appli-
cation either indirectly by exploiting fallible code in the application or directly by gaining
access to a system resource and using it, disobeying the policy set by the security analyst.

Notably, the security analyst and the software developer may be the same person, in that first,
during development, the software developer or security analyst writes a security policy for en-
forcement (i.e., module interfaces) but, later, is writing implementation code and may make
mistakes in implementation that they would like to be caught by Wyvern’s type-and-effect sys-
tem.

We are concerned with the attack scenario when a software developer is integrating a library
provided by a potentially malicious third party. We aim to provide a mechanism to limit the
resources given to such a library and provide an easy way for the software developer to check
the resources that the library requests and how the requested resources are used. The software
developer may change the application code, but not third-party code, to enforce security policies.

4

1.3 Thesis Statement and Outline
The thesis of this dissertation can be stated as follows:

A programming language can provide facilities to help a software developer in iden-
tifying and controlling the authority of software modules. Specifically, a software
developer can leverage a capability-safe module system to control module accesses
and an effect system to control how modules are used, i.e., modules’ authority. It is
feasible to combine the capability-safe module system with the effect system to yield
an authority-safe programming language.

Furthermore, the thesis statement can be broken down into the following four hypotheses:
Hypothesis 1: It is possible to design a capability-safe, first-class, higher-order module system.
Hypothesis 2: It is possible to design an effect system that allows controlling the authority each

program module has.
Hypothesis 3: A capability-safe module system in conjunction with an effect system that allows

controlling modules’ authority can make a programming language authority safe.
Hypothesis 4: An authority-safe programming language can be used by software developers to

control and reason about software modules’ authority.
To examine these hypotheses, we developed and implemented in the Wyvern programming

language the capability-safe module system (Chapter 2; Hypothesis 1) and the effect system
(Chapter 3; Hypothesis 2 and Hypothesis 3). To evaluate the effectiveness of the proposed
programming-language designs, we developed and analyzed an extensible text-editor application
(Chapter 4; Hypothesis 4).

5

Chapter 2

A Capability-Safe Module System

Wyvern modules have several features that distinguish our module system from others. First,
modules are first-class, i.e., they are treated as objects and can be instantiated, stored, passed as
arguments into methods, and returned from methods. Second, modules are treated as capabilities,
i.e., unforgeable tokens that enable access to a module. Since modules are objects in Wyvern,
modules act as object capabilities (objects in Wyvern act as object capabilities too). If a module
can access another module, we say that the former module has a capability to use the latter
module. Finally, modules are divided into two categories: resource modules, i.e., security- or
privacy-related modules (system resources, modules containing application data, or state-bearing
modules), and pure modules, i.e., non-state-bearing utility modules.

2.1 Running Example

To illustrate our approach, let us consider a sample application that allows third-party exten-
sions. Figure 2.1 shows a module access diagram of a word-processor application, similar to
OpenOffice or Microsoft Word, that extends its feature set by allowing third-party extensions.
The vertical dotted line represents a virtual border between standard language-provided libraries
and the word processor’s code. Boxes represent modules, which are clustered according to their
conceptual type. Boxes with a solid outline represent resource modules, and boxes with dotted
outline represent pure modules. Arrows represent module accesses. If an arrow goes from mod-
ule A to module B, module A accesses module B. Being able to access a resource module is
equivalent to having a capability to access the imported module.

Wyvern provides a number of standard libraries: Collections refer to a set of pure modules
that provide implementations of basic functionality, e.g., list and queue factories. System Re-
sources refers to a set of language-provided modules that implement system-level functionality,
e.g., file and network access. Platforms refer to the modules that implement the Wyvern back
end. Platforms and system resources may be used to subvert the word-processor application
or the machine it is running on, and thus access to them requires the possession of appropriate
capabilities.

The word-processor system consists of core modules, which are considered trusted, and ex-
tension modules (marked so on the diagram), which are provided by third parties and considered

6

Wyvern Libraries Word Processor

Collections

System
Resources

Extensions

listFactory

logger
wordCloud
prettyChartnetwork

...

...

queueFactory

fileIO
Platforms

python
...

java

...

wordProcessor

Figure 2.1: A module access diagram of the word-processor application used in code examples.
Boxes represent modules. Boxes with a solid outline represent resource modules, and boxes with
dotted outline represent pure modules. Arrows represent module accesses. If an arrow goes from
module A to module B, A accesses B. The dark background delineates the trusted code base.

untrusted. The diagram presents only a subset of modules of the word processor’s core that are
used in our examples: the wordProcessor module is the main module of the word processor,
and the logger module provides a logging service and can be used by multiple word processor’s
modules.

We use the word processor example to introduce Wyvern’s two types of modules—resource
modules and pure modules—and to show how one can determine a module’s capabilities.

2.2 Resource Modules

Resource modules are defined as modules that encapsulate system resources (e.g., java and
fileIO), use other resource modules (e.g., wordProcessor and logger), or contain mutable
state (e.g., wordProcessor). A module is a resource if it has at least one of these characteris-
tics. For example, the wordProcessor module is a resource module because it uses the system
resource fileIO and has state (details upcoming). It is important for state-bearing modules to be
resources, as they may contain private application data and also may facilitate communication
between modules that access them, potentially allowing illegal sharing of capabilities.

Figure 2.2 presents a code example with several resource modules and types. By convention,
in Wyvern, type names are capitalized, and module names (like variables, functions, and other
identifiers that stand for values) start with lowercase letters. The code snippet starts with the
abbreviated definition of the resource type FileIO that gives access to the file system, followed
by the resource type Logger and a logging module of that type. For its operation, the logger

module needs to use an instance of a module of type FileIO, and thus logger is a resource
module. We prohibit global state and restrict access to resources, and so, to access a resource, a
module must receive a reference to that resource. In Wyvern, this can be done via the argument-
passing mechanism, and thus Wyvern’s resource modules are ML-style functors [40]. Resource
modules are functions that accept one or more arguments, each of which is a module instance of
a required type, and produce a module instance as a result. In the case of logger, the module
functor accepts a module instance of type FileIO and returns an instance of the logger module.

7

1 resource type FileIO
2 def getStandardLogFile(): File
3 ...
4

5 resource type Logger
6 def appendToLog(entry: String): Unit
7

8 module def logger(io: FileIO): Logger
9 def appendToLog(entry: String): Unit

10 io.getStandardLogFile().append(entry)
11

12 module def wordProcessor(io: FileIO): WordProcessor
13 import logger
14 var log: Logger = logger(io)
15 ...

Figure 2.2: A Wyvern code example demonstrating resource modules, how they are accessed,
and their instantiations.

Following the logger module is the wordProcessor module, which is the main module of
the word processor application. Since wordProcessor receives as an argument an instance of
the FileIO type, wordProcessor is a resource module too. To access a resource module of the
FileIO type, wordProcessor needs to have an appropriate capability. The capability must be
passed into the wordProcessor module on its instantiation by either another module or top-level
code.

The wordProcessor module instantiates the logger module by, first, importing the defini-
tion of the logger module using the import keyword and then calling the imported logger

functor definition with appropriate arguments to get an instance of the logger module. The
argument that logger requires is a module instance of the FileIO type, and by passing in io,
wordProcessor gives logger the capability to use the module instance of the FileIO type it
received on instantiation. The created instance of logger is immediately assigned to a local
variable log, which may be used later in the wordProcessor’s code. Note that wordProcessor
receives a module instance of the FileIO type as an argument, but it instantiates, i.e., creates
a local instance of, the logger module. Generally, any resource module can instantiate other
resource modules from its initialization block and even provide them with access to resource
modules to which it itself has access. Since logger is a resource module, instantiating it creates
a capability for it, which, in this case, belongs to the wordProcessor module.

Alternatively, if wordProcessor did not want to provide logger access to the file system,
wordProcessor could create and pass in a dummy module of type FileIO as follows:
module def wordProcessor(io: FileIO): WordProcessor
import logger
var dio: FileIO = dummyIO
var log: Logger = logger(dio)
...

This would disallow the logger module from having any access to the file system.
To run the program, the top-level code is as follows:

8

platform java
import fileIO
import wordProcessor
let io = fileIO(java) in
let wp = wordProcessor(io) in ...

First, the back end to be used is specified using the platform keyword. This keyword can appear
only on the top level and is used to create a resource module instance representing the back-end
implementation. Then, the definitions of the fileIO and wordProcessor module functors are
imported, and the two modules are instantiated receiving the arguments they require. The two
newly created module instances are assigned to two variables in two nested let constructs and
can be used in the rest of the code contained in the inner let’s body.

The top-level code exercises high-level control over accesses to resource modules, perform-
ing two important functions. First, it instantiates resource modules, implicitly creating capa-
bilities that allow using the instantiated modules. Second, it grants module access capabilities
(conceptually, in the Newspeak style [8]; syntactically, in the ML-functor style [40]): the in-
stantiated modules (and implicit capabilities to use them) are passed as arguments to authorized
modules.

For brevity, the top-level code can be shortened as follows:

require fileIO: FileIO
import wordProcessor
let wp = wordProcessor(fileIO) in ...

Here we use syntactic sugar (the keyword require) for specifying the platform (the default
platform is chosen), importing the functor definition of the fileIO module, and instantiating it.
This syntactic sugar can be used for resource modules that require only the back-end platform
implementation in any programs that benefit from abstracting the platform they run on.

2.3 Pure Modules

The definition of a pure module is the opposite of the definition of a resource module. Pure
modules are those modules that do not encompass system resources, do not access any resource
module instances, and do not capture or transitively reference any mutable state. For a module to
be pure, all of these conditions must be satisfied. The last condition has a caveat. The prohibition
is on whether a module and its functions capture state, not whether they affect it. Functions
defined in a pure module may have side effects on state, but only if the state in question is passed
in as an argument or created within the function itself. Thus, since pure modules do not add to the
caller’s ability to use resources or cause side effects, pure modules are harmless from the security
perspective. For more convenience, in Wyvern, any module can import any pure module.

Figure 2.3 shows an example of a pure module and how it can be imported. The listFactory
module is the implementation of a list factory and belongs to the standard Wyvern library. It does
not contain mutable state, but only creates new lists, and therefore is a pure module. In Wyvern,
pure modules are not functors, and a module that imports a pure module receives an instance of
the pure module.

9

1 module listFactory: ListFactory
2 def create(): List
3 ...
4

5 module def wordCloud(log: Logger): WordCloud
6 import listFactory as list
7 var words: List = list.create()
8 ...

Figure 2.3: A Wyvern code example demonstrating a pure module and its import.

logger wordCloudfileIOjava

x x

x

Figure 2.4: Access capabilities of fileIO, logger, and wordCloud. If an arrow goes from
module A to module B, A has a capability to access B. Crosses on arrows mean that such access
capability is not granted. In Wyvern, capabilities are non-transitive.

The wordCloud module is a third-party extension module that creates a word cloud—an
image composed of words used in a text passage, in which the size of each word indicates its
frequency—and pastes it into a word processor document. The wordCloud module uses a list to
store the words it operates on and therefore imports the listFactory module using the import

keyword. Since, for pure modules, the import statement produces a module instance, it can be
immediately assigned to a local variable using the as keyword. The import of listFactory by
wordCloud is invisible to the module or top-level code that instantiates the wordCloud module.

2.4 Capability Analysis

As stated in our threat model, we are concerned with the capabilities granted to third-party ex-
tensions, as well as minimizing access to system resources by all application modules. In this
section, we demonstrate how a security analyst can verify that capabilities of the modules in the
word-processor application match the capabilities shown in Figure 2.4. (In Section 2.6, we show
how to determine capabilities of arbitrary objects and provide a formal definition.)

Since access to resources is mediated by modules, we can represent the capabilities of a given
module as the set of resource modules it can access. In Figure 2.4, if an arrow goes from module
A to module B, A has a capability to access B. If an arrow is crossed, it means that such access
capability is not granted. Thus, wordCloud has a capability to access logger, which in turn has
a capability to access fileIO, which ultimately has access to the java foreign function interface
module. We want to verify that the transitive extension of these capabilities relationships does not
hold, e.g., the wordCloud module does not have a capability to access the file system or perform
file I/O operations supported by the fileIO module. In effect, we are verifying that wordCloud
gets only an attenuated capability to do file I/O, i.e., wordCloud can perform the logging oper-

10

ations supported by the logger module and nothing more. This facilitates a defense-in-depth
strategy: if an attacker controls the wordCloud module and somehow subverts the logger mod-
ule to get a fileIO capability, since fileIO itself attenuates the java foreign function interface
capability, the attacker can do file I/O but cannot make arbitrary system calls supported by the
Java standard library.

To verify that capabilities are property attenuated (thereby mitigating the attack mentioned
above by ensuring that wordCloud cannot get a fileIO capability), we need to check that the
fileIO module is properly encapsulated by the logger module, and that the logger module
provides operations that are restricted appropriately to the intended semantics of logging and
cannot be used to do arbitrary file I/O.

We can check encapsulation by manually inspecting the interface of wordCloud as well as
the interfaces of the modules it accesses: Logger and ListFactory. Since ListFactory is not
a resource module, we do not have to look any further at its interface. Note that, in contrast to
dynamically typed, capability-safe languages such as E [47] or Newspeak [8], Wyvern’s type
system aids our inspection here. We inspect the interface of logger and immediately observe
that none of the types in logger’s interface are resource types. Thus, we verify that logger
cannot leak a reference to the fileIO module that it uses internally—again, using only the type
of the logger module, not its implementation.

Of course, encapsulation by itself is not enough: if logger provided the same operations
as fileIO, it would essentially provide the same capabilities despite the actual fileIO being
encapsulated. To this end, we check that logger attenuates the capability to access fileIO and
that logger can only do logging, instead of arbitrary file operations, by looking at the implemen-
tation of logger. Notably, this manual inspection is localized: we can use interfaces to reason
about where capabilities can reach and then check the code that uses those capabilities to ensure
it enforces the proper invariants. We do not have to inspect any code if we can show that the
capability we are reasoning about does not reach that code. In this case, if we do inspect logger,
it is easy to see that it invokes append on a specific file, which is characteristic of the intended
logging functionality.

This process would be more complicated in a language that is not capability-safe or even in a
language that is capability-safe but does not have Wyvern’s static typing support. In a language
that is not statically typed, we could not so quickly exclude the possibility that a capability of
interest is hidden in ListFactory, nor could we be sure that we know all of the operations avail-
able on an object unless we enforce that dynamically by imposing a wrapper. In a language that
is not capability-safe, there is much more to worry about: wordCloud could get access to fileIO

by reading a global variable, a reference to a file object could be smuggled in an apparently in-
nocent variable of type Object and then downcast to type File, or reflection could be used to
extract a fileIO reference from within the logger object. However, these are not possible in
Wyvern: currently, Wyvern does not support arbitrary downcasts but only pattern matching in a
hierarchy where the possible child types are known. In addition, Wyvern’s capability-safe reflec-
tion mechanism respects type restrictions [74], so that reflection cannot be used to do anything
other than invoke the public methods of logger. Thus, Wyvern’s capability-safe module system
along with its static types greatly simplify reasoning about modules’ capabilities.

11

p ::= md platform x i e program

md ::= h i d module
h ::= module x : τ module header
| module def x(y : τ) : τ

i ::= import x [as y] imports
d ::= defm(x : τ) : τ = e declarations
| var f : τ = x

e ::= x expressions

| news(x⇒ d)
| e.m(e)
| e.f
| e.f = e
| let x = e in e
| bind x = e in e

s ::= resource | pure

Figure 2.5: Wyvern’s abstract grammar.

2.5 Formalization

Although modules are at the heart of our work, they are not central to Wyvern’s formal system.
Inspired by the Wyvern core work [52], our modules are syntactic sugar on top of an object-
oriented core language and are available for software developers’ convenience. We present the
Wyvern formal system in the following order: first, we describe the abstract grammar for writing
modules in Wyvern, then the object-oriented core language syntax and module translation into it,
and finally, Wyvern’s static and dynamic semantics. This precisely defines our design and lays
the groundwork for the definition and proof of capability safety in Section 2.6.

2.5.1 Module Syntax

Wyvern’s abstract grammar is shown in Figure 2.5. A Wyvern program consists of zero or more
modules followed by the top-level code that includes specifying the back end used to run the
program using the platform keyword, zero or more module imports, and an expression e. Each
module consists of a module header h, a list of imports i, and a list of declarations d. Module
headers can be one of two types depending on whether the module is a resource module or a pure
module. If a module is pure, its header consists of the module keyword, a name x that uniquely
identifies the module, and a module type τ . If a module is a resource module, its header consists
of the module keyword, followed by the def keyword, which signifies that it is a functor, a name
x, which uniquely identifies the module functor, a list of functor parameters and their types, and
a functor return type τ .

The module-import syntax is used for importing instances of pure modules or module func-
tors for resource modules, and consists of the import keyword followed by the module or functor
name x. In the case of importing an instance of a pure module, for convenience, the instance can
be renamed using the as keyword.

A module can contain declarations of two kinds: method declarations and variable declara-
tions. Method declarations are specified using the def keyword followed by the method namem,
a list of method parameters and their types, the method’s return type τ , and the method body e.
Variable declarations are specified using the keyword var followed by the variable name f , the
variable type τ , and the value x. We restrict the form of the initialization expression to simplify

12

e ::= x expressions

| news(x⇒ d)
| e.m(e)
| e.f
| e.f = e
| bind x = e in e
| l
| l.m(l) B e

s ::= resource | pure
d ::= defm(x : τ) : τ = e declarations
| var f : τ = x
| var f : τ = l

τ ::= {σ}s object type

σ ::= defm(x : τ) : τ declaration types
| var f : τ

Γ ::= ∅ | Γ, x : τ var . typing context

µ ::= ∅ | µ, l 7→ {x⇒ d}s store
Σ ::= ∅ | Σ, l : τ store typing context
E ::= [] evaluation context
| E.m(e)
| l.m(E)
| E.f
| E.f = e
| l.f = E
| bind x = E in e
| l.m(l) B E

Figure 2.6: Syntax of Wyvern’s object-oriented core.

translation into the core, but this is relaxed in our implementation.
Wyvern expressions are common for an object-oriented programming language and include:

a variable, the new construct, a method call, a field access, a field assignment, and the let and
bind constructs. The new construct carries a tag s that indicates whether the object being created
is pure or is a resource, which is at the core of our formalization of capability control. It also
contains a self reference x that is similar to a this, but provides more flexible naming, and is
used for tracking the receiver (discussed in more detail later). In our implementation, x defaults
to “this” when no name is specified by the programmer. Finally, the new construct accepts a list
of declarations d. The bind construct is similar to a let with the difference that expressions in
its body can access only the variables defined in it and nothing outside it (one can think of it as a
Scala’s spore [46] or an AmbientTalk’s isolate [72]). The types of variables defined in a let or
bind are inferred.

2.5.2 Core Syntax
For the sake of uniformity and to simplify reasoning about capability safety, Wyvern modules
are translated into objects. The abstract grammar that has modules (Figure 2.5) is translated into
the object-oriented core of Wyvern that does not have modules (Figure 2.6). Furthermore, in
Wyvern’s object-oriented core:
• Methods may have only one parameter.
• Expressions do not include the let construct.
• The bind construct may have only one variable.
• Expressions and declarations are extended with run-time forms that cannot appear in the

source code of a Wyvern program.
To represent multiparameter methods, the let construct, and multivariable bind in the object-
oriented core, we use a standard encoding (presented in the next section).

Expressions have two run-time forms: a location and a method-call stack frame. The loca-
tion l refers to a location in the store µ (on the heap) that holds an object definition added at

13

trans(md platform z i e) =

let name(md) = trans(md) if md = md md′

in trans(md′ platform z i e)

bind z = 〈constResObj〉 trans(i) if md = ∅
in e

trans(module x : τ i d) = bind trans(i) in newpure(x⇒ d)

trans(module def x(y : τ) : τ i d) = newresource(x⇒ def apply(y : τ) : τ
bind y = y trans(i)

in newresource(⇒ d))

trans(i) =

{
y = x trans(i′) if i = import x as y i′

∅ if i = ∅

name(module x : τ i d) = x

name(module def x(y : τ) : τ i d) = x

let x = e in e′ ≡ news(⇒ def f(x : τ) : τ ′ = e′).f(e)
bind x = e in e ≡ bind x = (e1, e2, ..., en) in [x.n/xn]e

defm(x : τ) : τ = e ≡ defm(x : (τ1 × τ2 × ...× τn)) : τ = [x.n/xn]e

Figure 2.7: Modules-to-objects translation rules, and encodings for let, multivariable bind and
multiparameter methods.

object creation. The method-call stack frame models the call stack and method calls on it, while
preserving information about the receiver of the executing method. The expression l.m(l1) B e
means that we are currently executing the method body e of a method m of the receiver l, and
object l1 was passed as an argument.

Declarations have only one run-time form for object fields. Method bodies can never contain
method-call stack frames. An object field in the source code can contain only a variable, which
at run time becomes a location in the store. Thus, the run-time form for an object field represents
that a field f is referring to a location l.

A set of types of object fields and methods forms an object type, which is tagged as either
pure or resource. We use standard typing contexts Γ for variables and Σ for the store, and to
simplify Wyvern dynamic semantics, an evaluation context E.

2.5.3 Modules-to-Objects Translation

Figure 2.7 presents modules-to-objects translation rules and encodings that are used in the trans-
lation but not expanded for brevity. Overall, a Wyvern program is translated into a sequence of
let statements, where every variable in a let represents a module and the body of the last let
in the sequence is a bind expression containing the top-level code. The reason for this program
structure is that module definitions are pure and thus can be created in the let statements with
no restrictions. However, when modules are instantiated in the top-level code or inside other
modules, they operate in the restricted environment of the bind statement in the body of the last
let, having access only to the variables defined in that bind.

Variable names in the let expressions correspond to module names. Variables defined in the

14

bind expression that immediately surrounds the top-level code are a special constant resource
object, representing the back-end implementation, and the translation of top-level imports.

In essence, modules are translated into objects: pure modules are translated into pure objects
and resource modules are translated into resource objects. The exact translation of a Wyvern
module depends on whether the module is a pure module or a resource module, but for both kinds
of modules the object representing the module and containing all of the module’s declarations is
created in a restricted environment of the body of a bind expression. This ensures that, when a
module is created, the module’s declarations do not gain unauthorized access to resources outside
those defined in the bind.

If the module is pure, it translates into a bind construct, in which the module’s imports
become the bind’s variables, and the module’s declarations are wrapped into a pure object of type
τ in the bind’s body. If the module is a resource module, it is a functor, and it translates into a new
resource object with a single method apply. The apply method takes as arguments the functor’s
arguments and, when called, returns a bind expression. The variables in the returned bind

consist of variables that shadow the functor’s arguments (since a bind’s body can access only
the variables defined in the bind and no other, outside variables) and the imports of the resource
module under translation. The body of the bind contains a resource object that encompasses the
declarations of the translated resource module. The module’s declarations are prohibited from
referring to the resource object itself (as it does not exist in the original code), and therefore we
generate a fresh name for the self variable (in the translation, it is marked with an underscore).
The apply method of a functor’s translation is invoked whenever the functor is invoked.

Importantly, the bind construct plays a significant role in Wyvern’s module access control.
Module imports and arguments are translated into variables in a bind construct. Since the body
of a bind is forbidden to access anything outside the variables defined in the bind, a module can
receive a capability to access a resource only via the argument-passing mechanism of its functor,
as an argument to one of its methods, or as the return value from a method call on an imported
module. This substantially limits the number of possible paths for acquiring module access.

The let construct, a multivariable bind construct, and multiparameter methods are provided
only for software developer convenience and are absent from Wyvern’s core syntax; they are en-
coded instead. The let construct is encoded as a method call, and the multiplicity of variables in
the bind construct and parameters in methods is achieved by bundling variables and parameters
together in a tuple and then accessing them by their indices in the bind and methods’ bodies.

Figure 2.8 shows an example of applying the translation rules from Figure 2.7. On the left is a
code snippet as a developer would write it, and on the right is the same code written in Wyvern’s
core syntax without modules (the encodings are not expanded for conciseness, and we use the
type abbreviations supported by our implementation rather than the less-readable structural types
in our formalism). The snippet is a partial program; the logger and fileIO modules are assumed
to be defined elsewhere.

The listFactory and wordProcessor modules are translated into variables defined in two
nested lets. The outer let defines the listFactory module, which is translated into a bind

expression. Since listFactory does not import any modules, the bind has no variables, and the
bind’s body is a new pure object encompassing the listFactory’s create method. Being in
the body of the bind expression and having no variables defined in the bind, listFactory has
access to no resources and no other modules.

15

1 module listFactory: ListFactory
2 def create(): List
3 ...
4

5 module def wordProcessor(io: FileIO)
6 : WordProcessor
7 import wyvern: listFactory as list
8 import logger
9 var log: Logger = logger(io)

10 var exts: List = list.create()
11 ...
12

13 // top level
14 platform java
15 import fileIO
16 import wordProcessor
17 let io = fileIO(java) in
18 let wp = wordProcessor(io) in ...

1 let listFactory = bind in newpure(x⇒
2 def create() : List = ...)
3 in let wordProcessor = newresource(x⇒
4 def apply(io : FileIO) : WordProcessor
5 bind

6 io = io
7 list = listFactory
8 logger = logger
9 in newresource(⇒

10 var log : Logger = logger .apply(io)
11 var exts : List = list .create()
12 ...))
13 // top level
14 in bind

15 java = 〈constResObj 〉
16 fileIO = fileIO
17 wordProcessor = wordProcessor
18 in

19 let io = fileIO .apply(java) in

20 let wp = wordProcessor .apply(io) in ...

Figure 2.8: A sample modules-to-objects translation. On the left is a code snippet as a devel-
oper would write it, and on the right is the same code written in Wyvern’s core syntax without
modules. The encodings are not expanded for conciseness, and we use the type abbreviations
supported by our implementation rather than the less-readable structural types from the formal-
ism. The logger and fileIO modules are assumed to be defined elsewhere.

The inner let defines the wordProcessor module, which is translated into a resource object
containing an apply method. Similarly to the wordProcessor functor, the apply method takes
an object of the FileIO type and returns an object of the WordProcessor type. The body of the
apply method is a bind expression, the variables of which are the apply’s argument io as well as
the two wordProcessor’s imports, listFactory and logger. The body of the bind expression
has a resource object encompassing wordProcessor’s declarations. To get an instance of the
logger module, the logger’s apply method is called on it with an appropriate argument. Since
the body of the bind is limited to access only the variables defined in the bind, wordProcessor
has access to only three modules, fileIO, listFactory, and logger, and no other modules.

The top-level code is translated as the body of the inner let and is represented by a bind

expression. The bind expression has all top-level imports as variable definitions, and the bind’s
body contains the rest of the top-level code (e.g., the two nested let expressions).

2.5.4 Static Semantics

The Wyvern static semantics is presented in Figure 2.9. The annotation on top of the turnstile
represents the current or future (in case of object creation) receiver of the enclosing method.

16

Γ | Σ `e′ e : τ

x : τ ∈ Γ
Γ | Σ `e x : τ

(T-VAR)
Γ, x : {σ}s | Σ `xs d : σ

Γ | Σ `e news(x⇒ d) : {σ}s
(T-NEW)

Γ | Σ `e′ e : τ1 τ1 <: τ2

Γ | Σ `e′ e : τ2
(T-SUB)

Γ | Σ `e e1 : {σ}s def m(x : τ2) : τ1 ∈ σ Γ | Σ `e e2 : τ2

Γ | Σ `e e1.m(e2) : τ1
(T-METHOD)

Γ | Σ `e e : {σ}s var f : τ ∈ σ
Γ | Σ `e e.f : τ

(T-FIELD)

Γ | Σ `e1 e1 : {σ}s var f : τ ∈ σ Γ | Σ `e1 e2 : τ

Γ | Σ `e1 e1.f = e2 : τ
(T-ASSIGN)

Γ | Σ `e e1 : τ1 x : τ1 | Σ `e e2 : τ2

Γ | Σ `e bind x = e1 in e2 : τ2
(T-BIND) l : τ ∈ Σ

Γ | Σ `e l : τ
(T-LOC)

Γ | Σ `e′ l1 : {σ}s def m(x : τ2) : τ1 ∈ σ Γ | Σ `e′ l2 : τ2 Γ | Σ `l1 e : τ1

Γ | Σ `e′ l1.m(l2) B e : τ1
(T-STACKFRAME)

Γ | Σ `zs d : σ Γ | Σ `zs d : σ

∀j, dj ∈ d, σj ∈ σ, Γ | Σ `zs dj : σj

Γ | Σ `zs d : σ
(T-DECLS)

Γresource = {x : {σ}resource | x : {σ}resource ∈ Γ}
Γpure = Γ \ Γresource Γpure, y : τ1 | Σ `z e : τ2

Γ | Σ `zpure defm(y : τ1) : τ2 = e : defm(y : τ1) : τ2
(DT-DEFPURE)

Γ, x : τ1 | Σ `z e : τ2

Γ | Σ `zresource defm(x : τ1) : τ2 = e : defm(x : τ1) : τ2
(DT-DEFRESOURCE)

Γ | Σ `z x : τ

Γ | Σ `zresource var f : τ = x : var f : τ
(DT-VARX)

Γ | Σ `z l : τ

Γ | Σ `zresource var f : τ = l : var f : τ
(DT-VARL)

µ : Σ
∀l 7→ {x⇒ d}s ∈ µ, ∀i, di ∈ d, σi ∈ σ, x : {x⇒ σ}s | Σ `s di : σi

µ : Σ
(T-STORE)

Figure 2.9: Wyvern static semantics.

Tracking the receiver is used in lieu of making object fields private. Both mechanisms enforce
non-transitivity of capabilities, but receiver tracking is simpler and is already implemented for
capability safety. The annotation underneath the turnstile—in the premise of T-NEW and dec-

17

laration typing rules—is the same as the tag on the new construct in the syntax and serves to
identify objects and their declarations as pure or resource.

For expressions, the judgement reads that, in the variable typing context Γ and the store
typing context Σ, with the receiver e′ of the enclosing method, the expression e is a well-typed
expression with the type τ . Similarly, for declarations, the judgement reads that, in the variable
typing context Γ and the store typing context Σ, with the receiver z of the enclosing method, the
declaration d that belongs to a pure or a resource object (the s tag underneath the turnstile) is a
well-typed declaration with the type σ. The judgement for a set of declarations is analogous.

In the premise of the T-NEW rule, the receiver for the new object’s declarations is the new
object itself. In the conclusion of T-FIELD and T-ASSIGN, the receiver must be the object whose
field is being accessed, which makes object field accesses private to the object to which they
belong. For all declaration typing rules, the receiver is the object to which the declarations
belong.

The T-DECLS rule enforces that each declaration of an object is well typed. DT-DEFPURE

and DT-DEFRESOURCE typecheck pure and resource object methods respectively. A pure
method should be able to typecheck in a typing environment without any resource variables,
except for the passed argument. The argument may be a resource, but because all other variables
in the context are pure, it cannot be stored (e.g., be assigned to a variable) inside the method
body. If all methods in an object are pure and the object does not have any fields, the object
is pure. DT-DEFRESOURCE has a standard, much less restrictive premise than DT-DEFPURE.
If an object has a field, it is automatically declared a resource, and its typechecking proceeds
as expected depending only on whether the field’s value is a variable (DT-VARX) or a location
(DT-VARL). The T-STORE rule ensures that the store is well formed.

To summarize, an object is a resource if at least one of the following conditions is true:
• The object contains a field (e.g., the object representing the wordProcessor module).
• An object’s method definition needs a resource variable to typecheck (e.g., the object rep-

resenting logger needs an object of type FileIO to typecheck).
These conditions are checked statically. If neither of them are true, then the object is pure (e.g.,
the object representing the listFactory module).

2.5.5 Subtyping Rules

Subtyping rules are presented in Figure 2.10. All of them are standard, except for the S-
RESOURCE rule, which is used for the conversion between resource objects and pure objects.
A pure object is a subtype of a resource object and, thus, can be used in place of a resource
object but not the other way around.

2.5.6 Dynamic Semantics

Figure 2.11 shows Wyvern’s dynamic semantics. The judgement is fairly standard and reads that,
given the store µ, the expression e evaluates to the expression e′ and the store becomes µ′.

The E-CONGRUENCE rule subsumes all evaluation rules with non-terminal forms; the rest
of the reduction rules deal with terminal forms. To create a new object, a fresh store location is

18

τ <: τ ′

τ <: τ (S-REFL1)
{σj∈1..n

j }s is a permutation of {σ′j∈1..n
j }s n ≥ 0

{σj∈1..n
j }s <: {σ′j∈1..n

j }s
(S-PERM)

n, k ≥ 0

{σj∈1..n+k
j }s <: {σj∈1..n

j }s
(S-WIDTH)

∀j, σj <: σ′
j n ≥ 0

{σj∈1..n
j }s <: {σ′j∈1..n

j }s
(S-DEPTH)

{σ}pure <: {σ}resource
(S-RESOURCE)

σ <: σ′

σ <: σ (S-REFL2)
τ ′1 <: τ1 τ2 <: τ ′2

defm(x : τ1) : τ2 <: defm(x : τ ′1) : τ ′2
(S-DEF)

Figure 2.10: Wyvern subtyping rules.

chosen, and the object definition is assigned to it (E-NEW). In E-METHOD, when the method
argument is reduced to a location, a method-call stack frame is put onto the stack, the caller and
the argument are substituted with corresponding locations in the method body, and the method
body starts to execute. An object field is evaluated to the location that it holds (E-FIELD), and
when an object field’s value is reassigned, the necessary substitutions are made in the store (E-
ASSIGN). Similarly to methods, when the bind’s variable value is fully evaluated, variables in
its body are substituted with their corresponding locations, and the bind’s body starts to execute
(E-BIND). Finally, in the E-STACKFRAME rule, when a method body is fully executed, the
method-call stack frame is popped from the stack and the resulting location is returned.

Notably, pure objects always remain pure, i.e., if a location l maps to a pure object in the
store µ, then it always maps to a pure object in the store µ′. This can be proven by a simple
induction on the reduction rules.

2.5.7 Type Soundness

The preservation and progress theorems are stated as follows. The proofs for both the theorems
are fairly standard and are available in Appendix A.1.

Theorem (Preservation). If Γ | Σ `e′′ e : τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then
∃Σ′ ⊇ Σ, µ′ : Σ′, and Γ | Σ′ `e′′ e′ : τ .

Theorem (Progress). If ∅ | Σ `e′′ e : τ (i.e., e is a closed, well-typed expression), then either e is
a value (i.e., a location), or ∀µ such that µ : Σ, ∃e′, µ′ such that
〈e | µ〉 −→ 〈e′ | µ′〉.

19

〈e | µ〉 −→ 〈e′ | µ′〉

〈e | µ〉 −→ 〈e′ | µ′〉
〈E[e] | µ〉 −→ 〈E[e′] | µ′〉

(E-CONGRUENCE)
l 6∈ dom(µ)

〈news(x⇒ d) | µ〉 −→ 〈l | µ, l 7→ {x⇒ d}s〉
(E-NEW)

l1 7→ {x⇒ d}s ∈ µ defm(y : τ1) : τ2 = e ∈ d
〈l1.m(l2) | µ〉 −→ 〈l1.m(l2) B [l2/y][l1/x]e | µ〉

(E-METHOD)

l 7→ {x⇒ d}s ∈ µ var f : τ = l1 ∈ d
〈l.f | µ〉 −→ 〈l1 | µ〉

(E-FIELD)

l1 7→ {x⇒ d}s ∈ µ var f : τ = l ∈ d
d
′

= [var f : τ = l2/var f : τ = l]d µ′ = [l1 7→ {x⇒ d
′}s/l1 7→ {x⇒ d}s]µ

〈l1.f = l2 | µ〉 −→ 〈l2 | µ′〉
(E-ASSIGN)

〈bind x = l in e | µ〉 −→ 〈[l/x]e | µ〉
(E-BIND)

〈l.m(l1) B l2 | µ〉 −→ 〈l2 | µ〉
(E-STACKFRAME)

Figure 2.11: Wyvern dynamic semantics.

2.6 Capability Safety

We use the object-oriented core to prove our language capability-safe. Once modules are trans-
lated into objects, objects become the unit of reasoning, and thus our capabilities-related formal-
ism is formulated in terms of objects.

In our system, a principal [15] is a resource object. An object—a principal or a pure object—
can directly access a principal if the object has a reference to the principal, either by capturing
it on object creation or acquiring it via a method call or return. The capabilities of an entity (an
object or an expression) is the set of principals the entity can directly access.

The capability-safety property (formally defined in Section 2.6.2 below) states that the ca-
pabilities of an object can only increase due to the creation of a new object, a method call, or a
method return. More precisely, the situations in which an object’s capabilities can increase are:

1. Object creation: If a resource object A creates a new resource object B, then A has a
capability to access B.

2. Method call: If a resource object A does not have a capability to access a resource object
B and receives B as an argument to one of A’s methods, then A acquires a capability to
access B (perhaps only temporarily, while A’s method is being executed).

3. Method return: If a resource object A does not have a capability to access a resource
object B and B is returned from a method call that A invoked, then A acquires a capability
B (perhaps only temporarily, while A’s method is being executed).

It is important to note that these must be the only situations when the set of capabilities of
an object increases (e.g., capabilities an object has cannot increase due to side effects). The
capability-safety property is what assures us that all we need to reason about the capabilities
of an object is to examine actions at its interface: method calls and returns; the case of object

20

creation is usually not very interesting because the newly created object is born with no more
capabilities than its creator had.

Note that the third case of capability safety is unique to our non-transitive definition of ca-
pabilities. In the transitive definitions of capabilities used in prior work, the caller of a method
always already has the same capabilities as its callee, or more. This also means that if an object
such as the logger is careful not to return a reference to the underlying file being used, then ob-
jects that use the logger will not have a capability to access that file, which matches our intuition
about the role of the logger object as a gatekeeper.

For a pure object, an increase in the set of its capabilities is inconsequential because a pure
object cannot store mutable state. Thus, the definition of capability safety focuses on principals—
i.e., resource objects. On a technical level—as discussed in more detail below—we treat a pure
object as being part of whatever resource object uses it.

2.6.1 Significance of Capability Safety
If a Wyvern program typechecks, it is capability safe, i.e., capability gains are possible only in
the three cases specified by the capability safety theorem. The type system automatically, at
compile time enforces that a module cannot gain capabilities to access another module by any
other means (e.g., via side effects). This property allows developers to reason effectively about
the capabilities of program modules.

Consider reasoning about the capabilities of the wordCloud module. wordCloud is born with
only the capability to access its required resources: due to the typechecking rule for bind and
the way that modules are translated, these are the only resources in scope when wordCloud is
instantiated. To see whether wordCloud acquires any additional capabilities, the capability-safety
theorem tells us we need only inspect its type (WordCloud) and that of its required resources
(Logger). Together the types show to what resources wordCloud can acquire capabilities via
method calls and returns (cases 2 and 3 of the capability-safety theorem). For example, it is easy
to verify that no object representing fileIO can go across this interface and thus ensure that all
file access done by wordCloud must go through the logger. Case 1 of capability safety allows
wordCloud to create objects of its own that act as principals, but it cannot thereby gain access
to system resources it did not already have. Notice that we can conclude all of this without
even looking at the code in the wordCloud module—which is a useful property if this module is
provided by a third party in compiled form and the source code is not available.

Capability safety also allows developers to reason about global invariants about the use of
resources, while only needing to inspect part of the program. For example, to verify that the en-
tire program only accesses the file system to write to log files, we first inspect the top-level code
and observe that the fileIO resource is only passed to the wordProcessor module. We then in-
spect wordProcessor and observe that it passes the fileIO module exclusively into the logger

module. Examining the logger’s code, we see that it enforces the desired invariant of writing
only to log files and does not provide clients with any means of accessing fileIO’s functional-
ity. Since capabilities are non-transitive and neither wordProcessor nor logger expose fileIO
via their methods, it is guaranteed that, besides wordProcessor and logger, no other program
module can access the fileIO module. It is unnecessary to inspect any other modules, which
could make up an arbitrarily large fraction of the program, because we can rely on the capability-

21

cap(l, e, µ) capstore(l, µ) capstack (l, e, µ)

cap(l, e, µ) = capstore(l, µ) ∪ capstack (l, e, µ)
(CAP-CONFIG)

l 7→ {x⇒ d}s ∈ µ
capstore(l, µ) = pointsto(l, µ) ∪ pointsto(d, µ)

(CAP-STORE)

l.m(l′) B e′ 6∈ e
capstack (l, e, µ) = ∅

(CAP-STACK-NOCALL)

l.m′(l′′) B E′ 6∈ E
capstack (l, E[l.m(l′) B e′], µ) = pointsto(e′, µ) ∪ capstack (l, e′, µ)

(CAP-STACK)

Figure 2.12: cap rules.

safety property to ensure that those parts of the program can never acquire a capability to access
fileIO.

Thus, our approach enables reasoning that is impossible in conventional languages, such as
Java, without a global analysis that requires access to all code in the program, or use of the Java
security manager (which is difficult to use correctly due to its excessive complexity [13, 39]).

2.6.2 Formal Definition of Capability Safety
To formalize capability safety, we must first present a formal notion of capabilities. Our defini-
tion of capabilities is given by two sets of rules—the cap and pointsto rules. Intuitively, pointsto
captures references between objects, while cap is a higher-level relation that builds on pointsto
to define capabilities. We describe the rules, give an example of how the rules are applied, state
the capability-safety theorem, and finally prove Wyvern capability safe.

cap Rules

The capabilities of an object are determined according to the functions and rules in Figure 2.12.
Intuitively, our definition of capabilities has two parts. The first part, capstore , captures the prin-
cipals that an object has a reference to in the heap, either as one of its fields, or as a location
captured in one of its methods (which act as closures in Wyvern). The second part, capstack , is
more subtle: it captures the principals that an object has a reference to in an on-the-fly execution
of one of the object’s methods. More formally:
• cap(l, e, µ) takes a location l, an expression e, and a store µ, and returns a set of locations

identifying principals that constitute the total set of capabilities of an object identified by l
when a program e is being executed in the context of memory µ.

• capstore(l, µ) takes a location l and a store µ and returns a set of locations identifying
principals to which an object identified by l has direct access by virtue of the object’s static
state in the store µ. In other words, the function determines the object’s capabilities that
can be statically deduced by examining the code stored in the object.

22

• capstack(l, e, µ) takes a location l, an expression e, and a store µ, and returns a set of
locations identifying principals to which an object identified by l has direct access by
virtue of the execution state of methods of l executing in e in the context of memory µ.
That is, the function determines the object’s capabilities acquired on the stack.

Since, in the process of evaluation, methods may have received new principals as arguments
and method bodies may have been re-written to include new principals, the sets returned by
capstore(l, µ) and capstack(l, e, µ) may differ.

The CAP-CONFIG rule defines the relation between the three functions: the total set of capa-
bilities of an object consists of capabilities it has statically from the code it stores and capabilities
it acquired on execution. The CAP-STORE rule defines capstore(l, µ). It requires the object iden-
tified by l to be in the store µ and returns two sets of locations identifying principals to which an
object identified by l has direct access via itself and its declarations.

The CAP-STACK-NOCALL and CAP-STACK rules define capstack(l, e, µ). The CAP-STACK-
NOCALL rule is used when there are no method-call stack frames with the receiver l on the
stack (l.m(l′) B e′ 6∈ e) and returns an empty set, as in such cases, l aquires no capabilities from
executing e. If the stack contains method-call stack frames where the receiver is l, the CAP-
STACK rule is used, and the capabilities are “collected” from the outermost such method-call
stack frame (i.e., the furthest method-call stack frame from the expression that is being evaluated)
up to the expression being evaluated. The condition l.m′(l′′) B E ′ 6∈ E means that there must be
no method-call stack frames with l as the receiver preceding the method call in consideration,
which assures that, as we go down the stack, we do not miss any method calls with l as a receiver.
The capstack(l, e, µ) returns a set of locations identifying the principals that the method body
contains and the principals that l can access on the rest of the stack.

pointsto Rules

Capabilities functions use pointsto functions (Figure 2.13). The pointsto functions take an ex-
pression e, a declaration d, or a list of declarations d and a store µ, and return a set of locations
identifying principals to which the expression, the declaration, or the list of declarations point
(i.e., have direct access) in the context of memory µ.

A variable does not point to any location (POINTSTO-VAR). A new expression points to lo-
cations to which the new object’s declarations points (POINTSTO-NEW). A method, an object
field and its assignment, as well as a bind construct (POINTSTO-METHOD, POINTSTO-FIELD,
POINTSTO-ASSIGN, and POINTSTO-BIND respectively) point to locations in their subexpres-
sions. Depending on whether a location is identifying a principal or a pure object, it points to
either itself (POINTSTO-PRINCIPAL) or nothing (POINTSTO-PURE) respectively. Depending on
whether the method caller is a principal or a pure object, a method-call stack frame points to
either itself (POINTSTO-CALL-PRINCIPAL) or a set of locations pointed to by the method body
(POINTSTO-CALL-PURE) respectively.

POINTSTO-PRINCIPAL and POINTSTO-PURE look similar to capstore(l, µ), but differ seman-
tically: in these pointsto rules, l is treated as an expression, not as a location identifying a
principal, and so the only location l can access is itself.

A list of declarations points to a union of sets of locations to which each declaration in
the list points (POINTSTO-DECLS). A method declaration points to the locations to which the

23

pointsto(e, µ) pointsto(d, µ) pointsto(d, µ)

pointsto(x, µ) = ∅
(POINTSTO-VAR)

pointsto(news(x⇒ d), µ) = pointsto(d, µ)
(POINTSTO-NEW)

pointsto(e.m(e′), µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(POINTSTO-METHOD)

pointsto(e.f, µ) = pointsto(e, µ)
(POINTSTO-FIELD)

pointsto(e.f = e′, µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(POINTSTO-ASSIGN)

pointsto(bind x = e in e′, µ) = pointsto(e, µ) ∪ pointsto(e′, µ)
(POINTSTO-BIND)

l 7→ {x⇒ d}resource ∈ µ
pointsto(l, µ) = {l}

(POINTSTO-PRINCIPAL)
l 7→ {x⇒ d}pure ∈ µ

pointsto(l, µ) = ∅
(POINTSTO-PURE)

l 7→ {x⇒ d}resource ∈ µ
pointsto(l.m(l′) B e, µ) = {l}

(POINTSTO-CALL-PRINCIPAL)

l 7→ {x⇒ d}pure ∈ µ
pointsto(l.m(l′) B e, µ) = pointsto(e, µ)

(POINTSTO-CALL-PURE)

pointsto(d, µ) = ∪
⋃
d∈d pointsto(d, µ)

(POINTSTO-DECLS)

pointsto(defm(x : τ1) : τ2 = e, µ) = pointsto(e, µ)
(POINTSTO-DEF)

pointsto(var f : τ = x, µ) = ∅
(POINTSTO-VARX)

pointsto(var f : τ = l, µ) = pointsto(l, µ)
(POINTSTO-VARL)

Figure 2.13: pointsto rules.

method body points (POINTSTO-DEF). A field declaration points to locations to which the field’s
value points: if the field’s value is a variable, the field declaration does not point to any location
(POINTSTO-VARX), and if the field’s value is a location, the field declaration points to the same
location as the value location (POINTSTO-VARL).

In our system, capabilities are non-transitive for principal objects and transitive for pure
objects to which a principal points. As pure objects do not have fields, they cannot point
to any resources and their methods cannot capture resources. Thus, POINTSTO-PRINCIPAL

and POINTSTO-PURE do not involve declarations of the object identified by the location (cf.
POINTSTO-NEW). However, an executing method of a pure object can have resources in it if they

24

were passed as arguments. Since the pure object cannot own the resource arguments, in this case,
the capabilities are transitive, and the resource arguments are owned by the resource caller down
the stack. Therefore, POINTSTO-CALL-PRINCIPAL considers only the principal caller, whereas
POINTSTO-CALL-PURE allows a principal caller down the stack to have capabilities to access
principals in a pure callee’s method.

Determining Capabilities of an Object

To demonstrate how capabilities of an object are determined, consider the following definition
of the prettyChart module:
module def prettyChart(logger: Logger): WordCloud
def updateLog(entry: String): Unit
logger.appendToLog(entry)

Assume that the definition of the logger module is as in Figure 2.2 and that the last line in the
above code snippet is currently being executed, i.e., the method appendToLog is called on the
logger object. The logger object in the store µ looks like:
llogger 7→ { x⇒ def appendToLog(entry : String) : Unit

lio .getStandardLogFile().append(entry) }resource

To find the capabilities llogger has statically, i.e., from the code it contains, we apply CAP-
STORE, POINTSTO-PRINCIPAL, POINTSTO-DEF, POINTSTO-METHOD, POINTSTO-PRINCIPAL,
and POINTSTO-VAR as follows:

capstore(llogger , µ) = pointsto(llogger , µ) ∪ pointsto(def appendToLog(...) ..., µ)

= {llogger} ∪ pointsto(def appendToLog(entry : String) : Unit

lio .getStandardLogFile().append(entry), µ)

= {llogger} ∪ pointsto(lio .getStandardLogFile().append(entry), µ)

= {llogger , lio}

To find the capabilities llogger acquired on the stack, we use CAP-STACK, CAP-STACK-NOCALL,
POINTSTO-METHOD, POINTSTO-PRINCIPAL, and POINTSTO-VAR as follows:
capstack (llogger , E[llogger .appendToLog(lentry) B lio .getStandardLogFile().append(entry)], µ)

= pointsto(lio .getStandardLogFile().append(entry), µ)

∪ capstack (llogger , lio .getStandardLogFile().append(entry), µ)

= pointsto(lio .getStandardLogFile().append(entry), µ)

= {lio}

Finally, by CAP-CONFIG, the total set of capabilities of llogger when executing the appendToLog

method is
cap(llogger , E[llogger .appendToLog(lentry) B lio .getStandardLogFile().append(entry)], µ)

= capstore(llogger , µ)

∪ capstack (llogger , E[llogger .appendToLog(lentry) B lio .getStandardLogFile().append(entry)], µ)

= {llogger , lio}

As expected, llogger has capabilities to access lio and no other resource object.

25

This way, the cap and pointsto rules allow us to determine capabilities of every object on
every step of execution, which serves as a basis for our formal system and the capability-safety
proof.

Capability-Safety Theorem

We now state the capability-safety theorem (formerly authority-safety theorem [43, 44]) for-
mally.
Theorem (Capability Safety). If

1. Γ | Σ `e′′′ e : τ ,
2. 〈e | µ〉 −→ 〈e′ | µ′〉,
3. l0 7→ {x⇒ d0}resource ∈ µ′,
4. l 7→ {x⇒ d}resource ∈ µ, and
5. cap(l, e′, µ′) \ cap(l, e, µ) ⊇ {l0},

then one of the following must be true:
1. Object creation:

(a) e = E[l.m(l′) B E ′[newresource(x⇒ d0)]] and
(b) e′ = E[l.m(l′) B E ′[l0]], where
(c) ∀la.ma(l

′
a) B E ′′ ∈ E ′, la 7→ {x⇒ da}pure ∈ µ

2. Method call:
(a) e = E[l.m(l0)],
(b) e′ = E[l.m(l0) B [l0/y][l/x]e′′], and
(c) y ∈ e′′

3. Method return:
(a) e = E[l.m(l′) B E ′[la.ma(l

′
a) B l0]] and

(b) e′ = E[l.m(l′) B E ′[l0]], where
(c) ∀lb.mb(l

′
b) B E ′′ ∈ E ′, lb 7→ {x⇒ db}pure ∈ µ

The formal statement of capability safety makes the informal statement above more precise,
in that:

1. The principal acquiring capabilities in the given evaluation step must be a receiver of a
method-call stack frame on the stack, but not necessarily the immediate receiver for the
expression under evaluation.

2. Receivers of all method-call stack frames between the principal receiver and the expression
under evaluation must be pure.

These points allow us to define capability safety comprehensively, while treating pure objects,
essentially, as a part of the principal that uses them. Below is a sketch of the proof of the
capability-safety theorem, while the full proof is presented in Appendix A.2.4.

Proof Sketch. The proof is by induction on a derivation of 〈e | µ〉 −→ 〈e′ | µ′〉. Essentially, we
need to determine the difference in principal l’s capabilities between the two states. We start
by considering E-CONGRUENCE. Through several lemmas, presented in Appendix A.2.3, we

26

found that l’s position on the call stack is important for how we determine the difference in its
capabilities and that there are two cases (this fact is formally stated and proven in Lemma 8):
• If there are only pure callers after the last method-call stack frame where l is a caller, i.e.,
l was the last principal caller on the stack, then

cap(l, E[e′], µ′) \ cap(l, E[e], µ) = capstore(l, µ′) ∪ pointsto(e′, µ′) ∪ capstack (l, e′, µ′)

\ capstore(l, µ) ∪ pointsto(e, µ) ∪ capstack (l, e, µ)

• Otherwise, if the last method-call stack frame where l is the caller is followed by a method-
call stack frame with a principal caller that is not l, or if the stack has no method-call stack
frames with principal callers, then
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstore(l, µ′) ∪ capstack (l, e′, µ′) \ capstore(l, µ) ∪ capstack (l, e, µ)

In either case, the change in l’s capabilities depends on expressions e and e′ inside the evalu-
ation context E and thus on 〈e | µ〉 −→ 〈e′ | µ′〉. So next, we consider all possible terminal-form
reduction steps and, using the cap and pointsto rules, calculate the difference in capabilities of
the principal before and after the reduction step.

In the cases for E-NEW, E-METHOD, and E-STACKFRAME, l’s capabilities increase, which
matches the three situations stated in the theorem. The rest of the reduction rules do not cause
any capability gains.

2.7 Implementation
We implemented the module system as part of the open-source Wyvern compiler and interpreter,
which is available on GitHub: https://github.com/wyvernlang/wyvern. Examples
from Figures 2.2 and 2.3 run as part of the wyvern.tools.tests.Figures test suite and
can be found in the tools/src/wyvern/tools/tests/figs subdirectory of the project.

2.8 Limitations
Our threat model makes an important assumption that the code in the trusted code base of a
software system is trustworthy. We assume that the security analysts who are in charge of the
trusted code base are honest and do not make mistakes. This may not be true in practice, and thus
our approach is susceptible to insider attacks, which are common to systems that reason about
trusted code bases and involve vulnerabilities inside the trusted code base.

For example, a security analyst responsible for the trusted code base may have a malicious
intent and subvert the software system by exporting the functionality of system resources via
wrapper functions. A wrapper function is a function of a module (e.g., logger) that “wraps” the
functionality of a function of another module (e.g., a module of type FileIO), performing the
same operations as the original function, e.g.:
module def logger(io: FileIO): Logger

def write(fileName: String, text: String)
io.write(fileName, text)

27

https://github.com/wyvernlang/wyvern
wyvern.tools.tests.Figures
tools/src/wyvern/tools/tests/figs

By calling logger’s write method, an extension importing logger could write to any file in the
file system, and this would not be exposed in the logger’s type or interface. In a similar fashion,
the malicious logger module may export functionality of an entire file I/O module, potentially
changing function names to obfuscate the exposure. In such a case, an extension that is allowed
to import logger would, in essence, have capabilities to access a module of type FileIO.

Although insider attacks directed at the trusted parts of a system are beyond our reach, our
approach allows software developers to formally reason about the isolation of security- and
privacy-related resources in a software system and gives software developers a tool to enforce
certain isolation properties. Also, the described limitations can be mitigated either by using more
rigorous software development practices, e.g., code reviews, for critical parts of the system, or
by complementing our approach with more complex analyses, e.g., by using an effects system
(discussed in Chapter 3) or an information flow analysis.

2.9 Related Work
The object-capability model, in which capabilities guard access to objects, was introduced by
Miller [48]. The two pioneering programming languages that use object capabilities are E [47]
and W7 [62]. Our approach carries forward this line of work by exploring a statically typed,
capability-safe programming language and providing support for modules as capabilities.

Similar to all object-capability languages, Wyvern is inherently more resistant to confused-
deputy attacks [61]. In Wyvern, all uses of capabilities are explicit in code, thus enabling the
deputy to require that the requester provide the necessary capability before the deputy can per-
form the requested operation. Furthermore, Wyvern improves on other capability-based systems
such as E [47] because capabilities in Wyvern are statically typed, making it more obvious from
looking at the objects’ types which objects are security- and privacy-related (i.e., which objects
are capabilities) and which objects are “harmless” and can be ignored.

Our module-system design was primarily inspired by the capability-passing modules design
in Newspeak [8] and its predecessors, such as MzScheme’s Units [25]. As in Newspeak, Wyvern
modules are first-class. However, our static types support reasoning about capabilities based on
module interfaces (Newspeak is dynamically typed), and our approach reduces the overhead of
ubiquitous module parameterization by allowing pure modules to be directly imported, rather
than passed in as arguments (in Newspeak, all module dependencies must be passed in as argu-
ments).

Several research efforts limited mainstream, non-object-capability programming languages
to turn them into object-capability languages. Typically the imposed restrictions disallow mu-
table global state (e.g., static fields), limit access to certain APIs (e.g., the reflection API), and
prohibit ambient authority [73]. Sometimes sandboxing is used to facilitate isolation of program
components (e.g., add-ons). Programming languages in this category include: Joe-E [45] (a re-
stricted subset of Java in which program privileges are represented using object references), work
by Hayes et al. [27] (a restricted version of Java in which capabilities are represented as a special
type of interface), Emily [68] (a performant subset of OCaml), CaPerl [31] (a subset of modified
Perl), Oz-E [67] (a proposed variation of Oz), and Google’s Caja [26, 49] (an object-capability-
based subset of JavaScript). In contrast, our work explores a module system with explicit support

28

for object-capabilities without the constraint of adapting an existing language, enabling a cleaner
design.

SHILL [50] is a secure shell scripting programming language that takes a declarative ap-
proach to access control. In SHILL, capabilities are used to control access to system resources,
contracts are used to specify what capabilities each script requires, and capability-based sand-
boxes are used to enforce contracts at run time. SHILL supports compositional reasoning by
tracing capabilities through program invocations and, if necessary, attenuating capabilities on
every transition. The authority of the SHILL program’s entry point is ambient, but its transition
to other parts of the program is limited via contracts and sandboxes. SHILL does not include
mutable state (e.g., variables), which are part of our model and make our notion of capability
safety more interesting; nor does SHILL include a module system.

Monte [1] is a capability-safe programming language that aims to support secure distributed
computing. Similar to Wyvern, Monte’s modules are first-class values and are translated into
objects. In contrast to Wyvern, Monte is dynamically typed, which means that Monte’s com-
piler offers no help in reasoning about capabilities. In addition, Monte does not differentiate
between security- and privacy-crucial modules (Wyvern’s resource modules) and other modules
(Wyvern’s pure modules), and all imported modules are immutable, which prevents programmers
from using module-local state and thus limits the language expressivity.

Maffeis et al. [41] formalized the notions of capability and authority safety and proved
that capability safety implies authority safety, which in turn implies resource isolation. They
showed that these semantic guarantees hold in a Caja-based subset of JavaScript and other object-
capability languages. Maffeis et al.’s formal system defines capabilities topologically: objects are
represented as nodes in a graph, and a path between two nodes implies that the source node can
access the destination node. Such a definition renders capabilities transitive. In contrast, our
formal definition of capabilities is non-transitive, enabling reasoning about the attenuation of
capabilities.

Devriese et al. [16] presented an alternative formalization of capability safety that is based
on logical relations. They argue that formalizations like Maffeis et al.’s [41] are too syntactic and
the topological definition of authority is insufficient to characterize capability safety as it leads
to over-approximation of authority. Our non-transitive definition of capabilities is similarly more
precise than prior, transitive topological definitions. However, our focus is on a relatively simple
(compared to logical relations) type system that provides capability safety with respect to this
more refined notion of capabilities, along with support for modules as capabilities.

Another line of related work assumes a capability-safe base language and develops logics or
advanced type systems to state and prove properties that are built on capabilities. Drossopoulou
et al. analyzed Miller’s mint and purse example [48], rewrote it in Joe-E [19] and Grace [53],
and based on their experience, proposed and refined a specification language to define policies
required in the mint and purse example [20, 21, 22, 23]. Also, Dimoulas et al. [17] proposed
a way to extend an underlying capability-safe language with declarative access control and in-
tegrity policies for capabilities, and proved that their system can soundly enforce the declarative
policies. Dimoulas et al.’s formalization, like that of Maffeis et al. but unlike ours, formalizes
access capabilities transitively.

29

Chapter 3

Authority Safety via Effects

An effect system can be used to reason about various aspects of a program execution, includ-
ing exceptions (e.g., Eiffel’s exceptions and the widely used Java’s checked exceptions [29]),
memory effects [38], concurrency [7, 11, 18], and security [71]. Our effect system, which is
implemented as part of Wyvern, tracks the use of system resources, such as the file system, net-
work, and keyboard, and is intended to help developers reason about how application modules
use these resources, i.e., modules’ authority. Wyvern’s effect system is built on top of and relies
on features of Wyvern’s module system (Chapter 2).

3.1 Running Example

Drawing inspiration from a recent report on security vulnerabilities in text editors [4],1 we use a
text-editor application as a running example to demonstrate the key features of our effect-system
design. The overall architecture of this application is shown in Figure 3.1. Each box in the
diagram represents a module, and the arrows represent module imports. For the purposes of
our forthcoming examples, the solid arrows are imports that take place, and the dashed arrows
represent potential imports that may or may not occur.

The application is written using Wyvern’s libraries, which contain modules representing sys-
tem resources, such as the file system and network. These modules rely on access to native
backend modules, such as java and python, which are Wyvern’s Java and Python backends,
respectively. In the text editor, we focus only on the logger module that implements the logging
facility of the application. The text editor allows supplementing its core functionality with vari-
ous third-party plugins. We assume that the application requires that all plugins and user-facing
modules of the text editor itself update the log file with the user-observable actions they perform.
In our examples, we use two sample plugins: one that, as the user types in code, detects code
patterns and offers to complete the code for them, and another that analyzes the text editor’s log
file and provides insight into how the text-editor application is used.

1Notably, it is possible to prevent the vulnerabilities described in the report by implementing a text editor
using an object-capability-based programming language similar to Wyvern, which facilitates the enforcement of the
principle of least privilege.

30

Wyvern Libraries Text Editor
System

Resources

logger userStats

codeCompletion

network

file
Platforms

python

java

Plugins

Figure 3.1: The overall architecture of the text-editor application. Boxes represent modules,
and the arrows represent module imports. The solid arrows are imports that take place, and the
dashed arrows represent potential imports that may or may not occur.

1 resource type Logger
2 effect ReadLog
3 effect UpdateLog
4 def readLog(): {this.ReadLog} String
5 def updateLog(newEntry: String): {this.UpdateLog} Unit
6

7 module def logger(f: File): Logger
8 effect ReadLog = {f.Read}
9 effect UpdateLog = {f.Append}

10 def readLog(): {ReadLog} String
11 f.read()
12 def updateLog(newEntry: String): {UpdateLog} Unit
13 f.append(newEntry)

Figure 3.2: A type and a module implementing the logging facility in the text-editor application.

The dashed vertical lines represent the conceptual boundaries between parts of the applica-
tion that vary in the level of trust based on the security of the contained code. Modules in the
Wyvern libraries are the most trusted since they provide functionality essential for all applica-
tions developed in Wyvern and were written with security in mind. Modules of the text-editor
application are less trusted since they are more likely to contain fallible code. Finally, the plugins
are the least trusted since they are written by third parties and may be error-prone, vulnerable to
exploitation, or outright malicious.

3.2 Wyvern Effects Basics

Consider the code in Figure 3.2 that shows a type and a module implementing the logging facility
of the text-editor application. The keyword resource in the type definition indicates that the
implementations of this type may have state and may access system resources. In the given
implementation of the Logger type, the logger module accesses the log file, which is a resource.
All modules of type Logger must have two methods: the readLog method that returns the content
of the log file and the updateLog method that appends new entries to the log file. In addition,
the Logger type declares two abstract effects: the ReadLog effect that, when run, the readLog

31

1 resource type File
2 effect Read
3 effect Write
4 effect Append
5 effect Delete
6 ...
7 def read(): {this.Read} String
8 def write(s: String): {this.Write} Unit
9 def append(s: String): {this.Append} Unit

10 def delete(): {this.Delete} Unit
11 ...

Figure 3.3: The type of the file resource.

method produces and the UpdateLog effect that, when run, the updateLog method produces.
These effects are abstract because they do not have a definition, and it is up to the module
implementing the Logger type to define what they mean. The effect names are flexible, and the
software developer may choose effect names that are most meaningful for a given module.

The logger module implements the Logger type. Access to the file system is granted via the
capability to the file object, which is of type File (shown in Figure 3.3) and is passed into logger

as a parameter. The logger module’s effects are those of the Logger type, except now they are
concrete, i.e., they have specific definitions. The ReadLog effect of the logger module is defined
to be the Read effect of the file module, and accordingly, the readLog method, which produces
the ReadLog effect, calls file’s read method. Similarly, the UpdateLog effect of the logger

module is defined to be the Append effect of the file module, and accordingly, the updateLog

method, which produces the UpdateLog effect, calls file’s append method. In general, effects
in a module must always be concrete, and effects in a type may be either abstract or concrete.

Effects are members of objects (with modules as an important special case), so we refer to
them with the form variable.EffectName, where variable is a reference to the object defining
the effect and EffectName is the name of the effect. For example, in the definition of the ReadLog
effect of the logger module, f is the variable referring to a specific file and Read is the effect that
the read method of file produces. This conveniently ties together the resource and the effects
produced on it (which represent the operations performed on it), helping a software architect or a
security analyst to reason about how resources are used by any particular module and its methods.
For example, when analyzing the effects produced by logger’s readLog method, a security
analyst can quickly deduce that calling that method affects the file resource and, specifically, the
file is read, simply by looking at the Logger type and logger’s effect definitions but not at the
method’s code. Furthermore, because an effect includes a reference to an object instance, our
effect system can distinguish reads and writes on different file instances. If the developer does
not want this level of precision, it is still possible to declare effects at the module level (i.e.,
as members of a fileSystem module object instance), and to share the same Read and Write

effects (for example) across all files in fileSystem.

32

3.2.1 Effect Abstraction

An important and novel feature of our effect-system design is the support for effect abstraction.
Effect abstraction is the ability to define higher-level effects in terms of lower-level effects and
potentially to hide that definition from clients of an abstraction. In the logging example above,
through the use of abstraction, we “lifted” low-level resources such as the file system (i.e., the
Read and Append effects of the file) into higher-level resources such as a logging facility (i.e., the
ReadLog and UpdateLog effect of the logger) and enabled application code to reason in terms of
effects on those higher-level resources when appropriate.

Effect abstraction has several concrete benefits. First, it can be used to distinguish different
uses of a low-level effect. For example, system.FFI describes any access to system resources
via calls through our language’s foreign function interface (FFI), but modules that define file and
network I/O can represent these calls as different effects, which enables higher-level modules
to reason about file and network access separately. Second, multiple low-level effects can be
aggregated into a single high-level effect to reduce effect specification overhead. For instance,
the db.Query effect might include both file.Read and network.Access effects. Third, by
keeping an effect abstract, we can hide its implementation from clients, which facilitates software
evolution: code defining a high-level effect in terms of lower-level ones can be rewritten (or
replaced) to use a different set of lower-level effects without affecting clients (more on this in
Section 3.3.2).

3.3 Software Development Patterns Facilitated by Wyvern’s
Effect System

In this section, we present a selected set of patterns that could be used by software architects and
security analysts to ensure the security of the software system under development.

3.3.1 Controlling Operations Performed on Resources

Our design of effects in Wyvern allows software developers, software architects, and secu-
rity analysts to control what operations are performed on system resources and other resource-
containing modules in a software system written in Wyvern.

Consider the two previously introduced plugins for the text editor. As we pointed out earlier,
these plugins lie outside the trusted code base for the application because they were written by
third parties and may contain bugs, which could introduce vulnerabilities, or be actively mali-
cious. Thus, to better maintain security of the text-editor application and minimize any potential
damage from the plugins, developers of the text editor need to control what resources the plugins
may access and what operations they are allowed to perform on those resources. The first part
of this task, i.e., controlling access to resources, is done via Wyvern’s capability-based module
system (Chapter 2), which limits the plugins’ access to resource modules. Briefly, the plugins
may use capabilities that are passed into them on creation, i.e., as parameters to their module
functors, or that become available via method calls. The second part of the task is limiting what

33

1 module def codeCompletion(log: Logger)
2 def findTemplate(wordSequence: String): {log.UpdateLog} String
3 ...
4 log.updateLog("Searching for a matching template.")
5 ...
6 log.updateLog("Found matching template.")
7 ...
8

9 module def userStats(log: Logger)
10 def calculateUserStats(): {log.ReadLog, log.UpdateLog} String
11 ...
12 log.updateLog("Starting to analyze the log content.")
13 analyzeLogContent(log.readLog())
14 ...

Figure 3.4: Excerpts from the code-completion and user-statistics-analyzer plugins of the text-
editor application.

operations are performed on the capabilities the plugins have access to, and this is the main focus
of Wyvern’s effect system.

Relevant code excerpts from the two plugins are shown in Figure 3.4. Both plugins have
access to the logger module, which is passed in as a functor parameter; however, they use it
differently. Both plugins must follow the text editor’s policy of recording user-observable ac-
tions they perform, but only the userStats plugin needs to perform more operations on logger

than simply updating it. The codeCompletion module needs logger only to update the log
file about the status of the search of an appropriate template in its findTemplate method.
On the other hand, along with simply updating the log file, the userStats module reads the
log file to analyze its content. Accordingly, codeCompletion’s findTemplate method must
only call logger’s updateLog method and must have only the log.UpdateLog effect, whereas
userStats’s calculateUserStats method may call both logger’s updateLog and readLog

methods and may have both the log.ReadLog and log.UpdateLog effects.
Wyvern’s effect system ensures that the method bodies of findTemplate and

calculateUserStats methods produce only the effects with which the methods are annotated
(more details on this are in Section 3.4). Then, a software architect or a security analyst can rely
on the modules’ interfaces and, specifically, the methods’ effect annotations to reason about the
effects that methods may produce on resources. For example, if the codeCompletion module’s
findTemplate method calls log.readLog()—erroneously or on purpose—Wyvern’s compiler
will report an error saying that the method’s effect annotations do not reflect the effects pro-
duced in the method body. Consequently, it is sufficient for a security analyst to examine only
codeCompletion’s interface, but not its code, to verify that its code performs only the allowed
operations on the logging resource. This allows a software architect or a security analyst to
control what operations are performed on the important resource modules of an application and
also significantly simplifies the reasoning process when a security analyst or a software architect
performs an analysis of the application security, as the method effect annotations reliably reflect
the operations performed on resources inside the method’s body.

34

1 module def remoteLogger(net: Network): Logger
2 effect ReadLog = {net.Receive}
3 effect UpdateLog = {net.Send}
4 def readLog(): {ReadLog} String
5 net.receive()
6 def updateLog(newEntry: String): {UpdateLog} Unit
7 net.send(newEntry)

Figure 3.5: An alternative implementation of the Logger type from Figure 3.2.

Another feature of Wyvern’s effect-system design is that it is possible to reduce the effect-
annotation overhead by aggregating several effects into one. The way the userStats module is
written in Figure 3.4 is somewhat too verbose in that, if some other module calls userStats’s
calculateUserStats method, it has to annotate the calling method with two effects. Because
more code may add more effects, larger software systems might experience a snowballing of
effects, when method annotations have numerous effects in them. Alternatively, the userStats

module can be written as:
module def userStats(log: Logger)
effect AnalyzeLog = {log.ReadLog, log.UpdateLog}
def calculateUserStats(): {AnalyzeLog} String

...

In this version, the userStats module declares the AnalyzeLog effect which, in its defini-
tion, aggregates the two logger effects. Using this version of userStats, any method that calls
calculateUserStats would have to add only one extra effect annotation, instead of two, thus
reducing the effect-annotation overhead.

3.3.2 Information Hiding and Polymorphism

Having been introduced by Parnas in the early 1970s [57, 58], the principle of information hiding
is a key software development principle that states that, in a software application, implementation
details of a particular software module should be hidden behind a stable interface. This principle
promotes modularity in the software implementation and gives software developers more flexi-
bility to modify the existing implementation of a module without affecting other modules. Our
design facilitates the principle of information hiding.

Figure 3.5 shows an alternative implementation of the Logger type from Figure 3.2. In this
version, the log file is stored on some remote machine, and the network resource (instead of the
file system resource) is used to perform operations on the log. Importantly, the Logger type
contains no information about what resource should be used to implement the logging function-
ality, and thus, a module implementing the Logger type may use any resource or no resources
at all (in which case Logger’s effects could be defined as empty effects, i.e., {}). Yet the client
modules that use a resource of type Logger, such as the two plugins discussed in the previous
subsection, observe no difference in the logging functionality. The software architect may swap
one logger version for the other or modify the implementation at any time without affecting the
modules using logger, provided that the interface of the Logger type remains the same. Thus,

35

using effect abstraction in the Logger type facilitates the principle of information hiding.
Effect members also naturally support effect polymorphism, following an idiom that has been

used in Scala and other languages with type members. We designed an intuitive syntax for effect-
polymorphic functions. For example, the following higher-order function can be used to invoke
a function with an arbitrary effect:

def invokeTwice[effect E](f: Unit -> {E} Unit)
f()
f()

invokeTwice[log.UpdateLog](() -> log.updateLog("Updating log."))

Here invokeTwice is parameterized by an effect E. The invokeTwice function takes another
function that has no arguments and produces no result but has effect E, and invokes that function
twice. We call invokeTwice, instantiate the effect parameter with log.UpdateLog, and give
invokeTwice a function that updates the log file.

The compiler rewrites invokeTwice using only effect members. In this rewriting, the
invokeTwice function takes an extra parameter, an EffectHolder object, which holds the effect
parameter E as an effect member. The desugared code would look like this:

type EffectHolder
effect E

def invokeTwice(eh: EffectHolder, f: Unit -> {eh.E} Unit)
f()
f()

let effectHolder: EffectHolder = new
effect E = log.UpdateLog

in invokeTwice(effectHolder, () -> log.updateLog("Updating log."))

Note that this code creates an effectHolder object that instantiates effect E with
log.UpdateLog. We also rely on path-dependent types [3]: the second parameter of invokeTwice
can refer to the first parameter in order to describe the effect of the argument function f.

3.3.3 Designating Important Resources Using Globally Available Effects

To enforce certain architecture or security constraints, it may be helpful to “highlight” effects
of a particular module and “suppress” the effects of another, thus controlling what effects are
propagated throughout the application code and designating effects produced on one module as
more important than effects produced on another one. Using Wyvern’s effect system, a software
architect or a security analyst can achieve this by making effects of a module globally available.

An effect can be made globally available by defining it in a module that can be imported
from anywhere in the program. Wyvern’s pure modules, which are purely functional modules
that do not contain any state, have this “importable-anywhere” property. (Recall that modules
with state, i.e., resource modules, must be instantiated and passed into all modules that use them.)
Therefore, to make effects globally available, we specify them in a pure module. For example,
Figure 3.6 shows a pure module that defines effects for the File type.

36

1 module fileEffects
2 effect Read = {system.FFI}
3 effect Write = {system.FFI}
4 effect Append = {system.FFI}
5 effect Delete = {system.FFI}
6 ...

Figure 3.6: A pure module defining file effects.

1 import fileEffects
2 resource type File
3 def read(): {fileEffects.Read} String
4 def write(s: String): {fileEffects.Write} Unit
5 def append(s: String): {fileEffects.Append} Unit
6 def delete(): {fileEffects.Delete} Unit
7 ...

Figure 3.7: A version of the File type that uses globally available effects.

For convenience, we chose the effect names in the fileEffects module to match the effect
names in the original File type, shown in Figure 3.3. All effects in the fileEffects module
are defined to be the system.FFI effect, which is the lowest-level Wyvern effect.2 It represents
the effects on the native Wyvern backends, such as the java and python modules in Figure 3.1,
and thus is the effect produced by all methods called on the java and python modules. The
system.FFI effect is built-in and is globally available without being imported, and so, any mod-
ule can use this effect to annotate its methods. (Yet to be able to actually call a method on the
java or python modules, a module needs to possess an appropriate capability.) However, given
that system.FFI indicates some effect on a Wyvern’s native backend, during a security code re-
view, observing this effect in a method annotation of a third-party plugin would prompt suspicion
and necessitate further investigation.

Having made file effects globally available, the File type does not need to redefine its effects
(although it can), and we can use the fileEffects’ effects to annotate methods in the File type
directly (Figure 3.7). With this change, we can also write the Logger type and the logger module
differently. Figure 3.8 presents an alternative version of them. In this version, the Logger type
imports the fileEffects module and uses effects defined in it in method effect annotations,
instead of declaring any of its own effects. By writing the Logger type this way, the software
architect designates that it is more important to keep track of effects produced on the file system

2There is a potential issue with giving all the effects the same definition because, then, one effect could be
substituted for another and the effect system would be unable to differentiate among them. For example, the way
fileEffects’s effects are defined here, if a method is annotated with the Read effect but in fact performs a
write operation, the effect system would be unable to detect this issue. A solution to this problem is to make
the definitions abstract either by introducing a subeffecting relationship that allows providing a definition without
using precise effects or by imposing per-directory visibility restrictions so that, outside certain packages, the effect
definitions are invisible and the effects are treated as abstract. The former variant of the solution is currently under
development.

37

1 import fileEffects
2 resource type Logger
3 def readLog(): {fileEffects.Read} String
4 def updateLog(newEntry: String): {fileEffects.Append} Unit
5

6 module def logger(f: File): Logger
7 import fileEffects
8 def readLog(): {fileEffects.Read} String
9 f.read()

10 def updateLog(newEntry: String): {fileEffects.Append} Unit
11 f.append(newEntry)

Figure 3.8: A version of the Logger type and implementation that uses globally available file
effects.

1 module def codeCompletion(log: Logger)
2 import fileEffects
3 def findTemplate(wordSequence: String): {fileEffects.Append} String
4 ... // same as in Figure 4

Figure 3.9: A version of the code completion plugin that uses the alternative version of the
Logger type from Figure 3.8.

than on the log. Then, following the Logger type, in the new version, the logger module also
imports the fileEffects module and uses the file effects defined in it in the logger’s method
effect annotations.

Finally, logger’s client modules, such as the two plugins described above, are also written
differently. For example, Figure 3.9 shows a new version of the code completion plugin. Sim-
ilarly to the logger module, codeCompletion now imports the fileEffects module and uses
its effects to annotate codeCompletion’s methods, thus, “skipping” a dependency level and ex-
posing the information that codeCompletion’s findTemplate method produces an effect on the
file system.

Another notable outcome of using globally available effects like this is that, if
codeCompletion already uses file, e.g., to store custom, user-defined templates in a file, written
this way, it can use fileEffects’s effects to annotate methods that only use logger, methods
that only use file, and methods that use both without having to introduce any new effects.

Thus, a software architect or a security analyst can designate effects on the resources that
are more important to track than others by making the effects of the more important resource
globally available and not declaring any effects in the type describing the important resource.
For example, a software architect can establish that it is more important to track effects on the
file resource than on logger by creating the pure fileEffects module to represent the effects
of the File type and not declaring any effects in the File type itself. Generally, making effects
of any resource globally available promotes the use of those effects throughout the application
code. In turn, this allows for better tracking of how resources are used, which is beneficial when
reasoning about the architecture and security of an application.

38

3.3.4 Authority Attenuation

When performing a security analysis of an application, an important component of privilege
is operations performed on a resource being accessed. In the field of software security, such
operations represent authority over the accessed module [48].3 For example, the logger module
is expected to perform the read and append operations on the log file; however, it is not supposed
to completely overwrite the log file. In other words, logger should have authority to read and
append to the log file but should not have authority to overwrite it.

Notably, Wyvern effects that describe operations performed on modules are a good medium
for representing authority over modules. For example, the fact that the logger module’s effects
use only file’s Read and Append effects in logger’s effect definitions signifies that the only
operations logger performs on the log file are the read and append operations, meaning that the
only authority logger has over the log file is to read it and append to it.

Furthermore, our effect-system design allows expressing the notion of authority attenua-
tion, which is a common software-security pattern [51]. Authority attenuation happens when
the original set of operations that can be performed on a resource is limited by an intermediary
object [48]. For example, consider the sequence of module dependencies from Figure 3.1 con-
sisting of the file module, the logger module, and the codeCompletion module. There are
several operations that can be performed on a file (at least the four shown in the File type in
Figure 3.3), but logger performs only two of them (as was mentioned above and as can be seen
from its effects’ definitions in Figure 3.2). The codeCompletion module can access the logger

module but not the file module, and so, the only operations it can perform on file are those
that logger can perform. Thus, the logger module attenuates codeCompletion’s authority over
the file module.

Therefore, Wyvern’s effect system aids software architects and security analysts in observing
and establishing the authority attenuating relationship between modules of a software applica-
tion, which may be desired and beneficial during the design phase of a software application, a
security audit, or an architecture review of a software application.

3.4 Formalization

As was mentioned earlier, Wyvern modules are first class and are, in fact, objects since they are
only syntactic sugar on top of Wyvern’s object-oriented core and can be translated into objects.
The translation has been described in detail previously (Section 2.5.3), and here we provide only
some intuition behind it. In this section, we start with describing the syntax of Wyvern’s object-
oriented core with effects, then present an example of the module-to-object translation, followed
by a description of Wyvern’s static and dynamic semantics and subtyping rules. Finally, we state
the progress and preservation theorems.

39

n ::= x | l names
e ::= n expressions

| news(x⇒ d)
| e.m(e)
| e.f
| e.f = e

s ::= resource | pure
ε ::= n.g effects
d ::= defm(x : τ) : {ε} τ = e declarations
| var f : τ = n
| effect g = {ε}

τ ::= {x⇒ σ}s object type

σ ::= defm(x : τ) : {ε} τ declaration types
| var f : τ
| effect g
| effect g = {ε}

Γ ::= ∅ | Γ, x : τ var . typing context

µ ::= ∅ | µ, l 7→ {x⇒ d}s store
Σ ::= ∅ | Σ, l : τ store typing context
E ::= [] evaluation context
| E.m(e)
| l.m(E)
| E.f
| E.f = e
| l.f = E

Figure 3.10: Wyvern’s object-oriented core syntax.

3.4.1 Core Syntax

Figure 3.10 shows the effect-system version of the syntax of Wyvern’s object-oriented core. It
is similar to the object-oriented core presented in Section 2.5.2 with a few differences that we
highlight here.

In this version, declarations come in three kinds: a method declaration, a field, and an effect
member. Method declarations are annotated with a set of effects. Object fields may only be
initialized using variables (since locations are a run-time notion), a restriction which simplifies
our core language by ensuring that object initialization never has an effect. Although at first
this may seem to be limiting, in reality, we do not limit the source language in this way. Side-
effecting member initializations in the source language are translated to the core by wrapping
the new object with a let expression (the encoding for which is the same as was shown in
Section 2.5.3) that defines the variable to be used in the field initialization.

Effects in method annotations and effect-member definitions are surrounded by curly braces
to visually indicate that they are sets. Each effect in an effect set is defined to be a variable
representing the object on which an effect is produced, followed by a dot and the effect name.
During run time, variables in effects are substituted with locations corresponding to the values
of the variables then.

Object types are a collection of declaration types, which include method signatures, field-
declaration types, and the types of effect-member declarations and definitions. Similar to the
difference between the modules and their types, effects in an object must always be defined (i.e.,
always be concrete), whereas effects in object types may or may not have definitions (i.e., be
either abstract or concrete).

40

1 let logger = newresource(x⇒
2 def apply(f : File) : {} Logger
3 newresource(⇒
4 effect ReadLog = {f .Read}
5 effect UpdateLog = {f .Append}
6 def readLog() : {ReadLog} String
7 f .read()
8 def updateLog(newEntry : String) : {UpdateLog} Unit
9 f .append(newEntry)

10)
11) in ...// calls logger .apply(...)

Figure 3.11: A simplified translation of the logger module from Figure 3.2 into Wyvern’s object-
oriented core.

3.4.2 Modules-to-Objects Translation

Figure 3.11 presents a simplified translation of the logger module from Figure 3.2 into Wyvern’s
object-oriented core (for a full description of the translation mechanism, refer to Section 2.5.3).
For our purposes, the functor becomes a regular method, called apply, that has the return type
Logger and the same parameters as the module functor. The method’s body is a new object
containing all the module declarations. The apply method is the only method of an outer object
that is assigned to a variable whose name is the module’s name. Later on in the code, when the
logger module needs to be instantiated, the apply method is called with appropriate arguments
passed in.

3.4.3 Well-Formedness Rules

Since Wyvern’s effects are defined in terms of variables, before we type check expressions, we
must make sure that effects and types are well formed. Wyvern well-formedness rules are mostly
straightforward and are shown in Figure 3.12. The three judgements read that, in the variable
typing context Γ and the store typing context Σ, the type τ , the declaration type σ, and the effect
set ε are well formed, respectively.

An object type is well formed if all of its declaration types are well formed. A method-
declaration type is well formed if the type of its parameter, its return type, and the effects in
its effect annotation are well formed. A field-declaration type is well formed if its type is well
formed. Since an effect-declaration type has no right-hand side, it is trivially well formed. Fi-
nally, an effect-definition type is well formed if the effect set in its right-hand side is well formed.
An effect set is well formed if, for every effect it contains, the variable in the first part of the
effect is well typed and the type of that variable contains either an effect-declaration or an effect-
definition type, in which the effect name matches the effect name in the second part of the effect.

3Similar to the work by Maffeis et al. [41], we widened the original definition of authority to be about being
able to perform any operation on a module, instead of being able to only modify it.

41

Γ | Σ ` τ wf
∀σ ∈ σ, Γ, x : {x⇒ σ}s | Σ ` σ wf

Γ | Σ ` {x⇒ σ}s wf
(WF-TYPE)

Γ | Σ ` σ wf

Γ | Σ ` τ2 wf Γ, x : τ2 | Σ ` τ1 wf Γ, x : τ2 | Σ ` ε wf

Γ | Σ ` def m(x : τ2) : {ε} τ1 wf
(WF-DEF)

Γ | Σ ` τ wf

Γ | Σ ` var f : τ wf
(WF-VAR)

Γ | Σ ` effect g wf
(WF-EFFECT1)

Γ | Σ ` ε wf

Γ | Σ ` effect g = {ε} wf
(WF-EFFECT2)

Γ | Σ ` ε wf

∀i, j, ni.gj ∈ ε, Γ | Σ ` ni : {} {yi ⇒ σi}s, (effect gj ∈ σi ∨ effect gj = {εj} ∈ σi)
Γ | Σ ` ε wf

(WF-EFFECT)

Figure 3.12: Well-formedness rules.

3.4.4 Static Semantics

Wyvern’s static semantics is presented in Figure 3.13. Expression type checking includes check-
ing the effects that an expression may have, the set of which is denoted in a pair of curly braces
between the colon and the type in the type annotation. Then, for expressions, the judgement
reads that, in the variable typing context Γ and the store typing context Σ, the expression e is a
well-typed expression with the effect set ε and the type τ .

A variable trivially has no effects. A new expression also has no effects because of the
fact that fields may be initialized only using variables. A new object is well typed if all of its
declarations are well typed. The s subscript on the turnstile in the premise of T-NEW and in the
object-declaration typing rules is the same as on the new construct and the object types in the
syntax and signifies whether we are type checking a pure object or a resource object.

A method call is well typed if the expression passed into the method as an argument is well
typed, if the expression the method is called on is well typed, and if the expression’s type contains
a matching method-declaration type. In addition, bearing the appropriate variable substitutions,
the effect set annotating the method-declaration type must be well formed, and the effect set ε in
the method-call type must be a union of the effect sets of both expressions involved in the method
call as well as the the effect set of the method-declaration type. Notably, the expressions that are
being substituted are always locations, i.e., the expressions have been fully evaluated before they
are substituted.

An object field read is well typed if the expression on which the field is dereferenced is well
typed and the expression’s type contains a matching field-declaration type. The effects of an
object field type are those of the expression on which the field dereferencing is called.

A field assignment is well typed if the expression to which the field belongs is well typed

42

Γ | Σ ` e : {ε} τ

x : τ ∈ Γ
Γ | Σ ` x : {} τ

(T-VAR)
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ}s | Σ `s di : σi

Γ | Σ ` news(x⇒ d) : {} {x⇒ σ}s
(T-NEW)

Γ | Σ ` e1 : {ε1} {x⇒ σ}s def m(y : τ2) : {ε3} τ1 ∈ σ
Γ | Σ ` [e1/x][e2/y]ε3 wf Γ | Σ ` e2 : {ε2} [e1/x]τ2 ε = ε1 ∪ ε2 ∪ [e1/x][e2/y]ε3

Γ | Σ ` e1.m(e2) : {ε} [e1/x][e2/y]τ1
(T-METHOD)

Γ | Σ ` e : {ε} {x⇒ σ}s var f : τ ∈ σ
Γ | Σ ` e.f : {ε} [e/x]τ

(T-FIELD) l : τ ∈ Σ
Γ | Σ ` l : {} τ

(T-LOC)

Γ | Σ ` e1 : {ε1} {x⇒ σ}s var f : τ ∈ σ Γ | Σ ` e2 : {ε2} τ ε = ε1 ∪ ε2
Γ | Σ ` e1.f = e2 : {ε} [e1/x]τ

(T-ASSIGN)

Γ | Σ ` e : {ε1} τ1 Γ ` τ1 <: τ2 lookup(Γ, ε1) = ε′1 lookup(Γ, ε2) = ε′2 ε′1 ⊆ ε′2
Γ | Σ ` e : {ε2} τ2

(T-SUB)

Γ | Σ `s d : σ

Γresource = {x : {x⇒ σ}resource | x : {x⇒ σ}resource ∈ Γ} Γpure = Γ \ Γresource

Γpure, y : τ1 | Σ ` e : {ε2} τ2 Γ, y : τ1 | Σ ` ε1 wf

lookup(Γ, ε1) = ε′1 lookup(Γ, ε2) = ε′2 ε′1 ⊇ ε′2
Γ | Σ `pure defm(y : τ1) : {ε1} τ2 = e : defm(y : τ1) : {ε1} τ2

(DT-DEFPURE)

Γ, x : τ1 | Σ ` e : {ε2} τ2 Γ, x : τ1 | Σ ` ε1 wf

lookup(Γ, ε1) = ε′1 lookup(Γ, ε2) = ε′2 ε′1 ⊇ ε′2
Γ | Σ `resource defm(x : τ1) : {ε1} τ2 = e : defm(x : τ1) : {ε1} τ2

(DT-DEFRESOURCE)

Γ | Σ ` n : {} τ
Γ | Σ `resource var f : τ = n : var f : τ

(DT-VAR)

Γ | Σ ` ε wf

Γ | Σ `s effect g = {ε} : effect g = {ε}
(DT-EFFECT)

µ : Σ

∀l 7→ {x⇒ d}s ∈ µ, ∀i, di ∈ d, σi ∈ σ, x : {x⇒ σ}s | Σ `s di : σi
µ : Σ

(T-STORE)

Figure 3.13: Wyvern static semantics.

and the expression’s type has an appropriate field-declaration type, and if the expression in the
right-hand side of the assignment is well typed. The effect set that a field assignment produces
is a union between the effect sets the two expressions that are involved in the field assignment
produce.

A type substitution of an expression may happen only if the expression is well typed using

43

lookup(Γ, x.g)

lookup(Γ, x.g) =
⋃

x.g∈x.g
lookup(Γ, x.g) (LOOKUP)

lookup(Γ, x.g)

Γ | ∅ ` x : {} {y ⇒ σ}s effect g ∈ σ
lookup(Γ, x.g) = x.g

(LOOKUP-STOP)

Γ | ∅ ` x : {} {y ⇒ σ}s effect g = {ε} ∈ σ
lookup(Γ, x.g) = lookup(Γ, [x/y]ε)

(LOOKUP-RECURSE)

Figure 3.14: Wyvern effect-lookup rules.

the original type, the original type is a subtype of the new type, and when having resolved the
effect definitions in the effect sets of both types to the lowest-possible level of effects (the lookup
rules will be discussed in Section 3.4.5), the resolved effect set of the original type is a subset of
the resolved effect set of the new type.

None of the object declarations produce effects, and so object-declaration type-checking rules
do not include an effect set preceding the type annotation. Also, inheriting the distinction from
Wyvern’s capability-safe module system, when type checking object declarations, we differenti-
ate between pure and resource objects, which is denoted by the subscript under the turnstile of
the object-declaration type-checking rules. Then, for declarations, the judgement reads that, in
the variable typing context Γ and the store typing context Σ, the declaration d that belongs to a
pure or a resource object (the s tag underneath the turnstile) is a well-typed declaration with the
type σ.

Correspondingly, there are different rules for a method declaration depending on whether
the method declaration is contained in a pure or in a resource object. If a method declaration is
contained in a pure object, the method’s body must be well typed in a typing context devoid of all
resource objects and containing the method argument. The effect set annotating the method must
be well formed in the overall typing context extended with the method argument. Furthermore,
when all effects are resolved to the lowest-possible level of effects, the effect set annotation
the method must be a superset of the effect set the method body actually produced. We use
the superset relationship here to impose more limited subtyping. Type checking of a method
declaration of a resource object is exactly the same, except for all the checks are done in the
overall context without removing anything from it.

A field declaration is trivially well typed, and an effect declaration is well typed if the effect
set that it is defined with is well formed in the given context.

Finally, we ensure that the store is well-formed and contains objects that respect their types.

3.4.5 Effect-Lookup Rules

As we already saw in the T-SUB, DT-DEFPURE, and DT-DEFRESOURCE rules above and as we
will see more in the upcoming Section 3.4.7, to compare two sets of effects, we use effect-lookup

44

〈e | µ〉 −→ 〈e′ | µ′〉

〈e | µ〉 −→ 〈e′ | µ′〉
〈E[e] | µ〉 −→ 〈E[e′] | µ′〉

(E-CONGRUENCE)
l 6∈ dom(µ)

〈news(x⇒ d) | µ〉 −→ 〈l | µ, l 7→ {x⇒ d}s〉
(E-NEW)

l1 7→ {x⇒ d}s ∈ µ defm(y : τ1) : {ε} τ2 = e ∈ d
〈l1.m(l2) | µ〉 −→ 〈[l2/y][l1/x]e | µ〉

(E-METHOD)

l 7→ {x⇒ d}s ∈ µ var f : τ = l1 ∈ d
〈l.f | µ〉 −→ 〈l1 | µ〉

(E-FIELD)

l1 7→ {x⇒ d}s ∈ µ var f : τ = l ∈ d
d
′

= [var f : τ = l2/var f : τ = l]d µ′ = [l1 7→ {x⇒ d
′}s/l1 7→ {x⇒ d}s]µ

〈l1.f = l2 | µ〉 −→ 〈l2 | µ′〉
(E-ASSIGN)

Figure 3.15: Wyvern dynamic semantics.

rules, which are presented in Figure 3.14. These rules “look up” the effects following their def-
initions to the lowest-possible level, at which point we can compare the effect sets canonically.
When given a set of effects, we look up each effect in the set separately (LOOKUP). For each
effect, we find the type of the variable in the first part of that effect and look for an effect decla-
ration with the name matching the effect name in the second part of the effect after the dot. If we
find that the effect is abstract, i.e., the type only declares that effect by does not provide a defi-
nition for it, we stop the lookup and return the effect we were looking up last (LOOKUP-STOP).
Alternatively, if we find that the effect is concrete, i.e., the type provides a definition for it, we
substitute the current object for the variable name in all the effects in the newly found effect def-
inition and recursively call the lookup function on the resulting effect set (LOOKUP-RECURSE).

3.4.6 Dynamic Semantics

The dynamic semantics that we use for Wyvern’s effect system is shown in Figure 3.15 and is
similar to the one we used in the module system (cf. Figure 2.11) but simpler. This version of
Wyvern’s dynamic semantics has fewer rules, and the E-METHOD rule is simplified.

The judgement reads the same as before: given the store µ, the expression e evaluates to the
expression e′ and the store becomes µ′. The E-CONGRUENCE rule still handles all non-terminal
forms. To create a new object (E-NEW), we select a fresh location in the store and assign the
object’s definition to it. Provided that there is an appropriate method definition in the object on
which a method is called, the method call is reduced to the method’s body (E-METHOD). In
the method’s body, the locations representing the method argument and the object on which the
method is called are substituted for corresponding variables. An object field is reduced to the
value held in it (E-FIELD), and when an object field’s value changes (E-ASSIGN), appropriate
substitutions are made in the object’s declaration set and the store.

45

Γ ` τ <: τ ′

Γ ` τ <: τ
(S-REFL1)

Γ ` τ1 <: τ2 Γ ` τ2 <: τ3
Γ ` τ1 <: τ3

(S-TRANS)

{x⇒ σi∈1..n
i }s is a permutation of {x⇒ σ′i∈1..n

i }s
Γ ` {x⇒ σi∈1..n

i }s <: {x⇒ σ′i∈1..n
i }s

(S-PERM)

Γ ` {x⇒ σi∈1..n+k
i }s <: {x⇒ σi∈1..n

i }s
(S-WIDTH)

∀i, Γ, x : {x⇒ σi∈1..n
i }s ` σi <: σ′

i

Γ ` {x⇒ σi∈1..n
i }s <: {x⇒ σ′i∈1..n

i }s
(S-DEPTH)

Γ ` {x⇒ σ}pure <: {x⇒ σ}resource
(S-RESOURCE)

Γ ` σ <: σ′

Γ ` σ <: σ
(S-REFL2)

Γ ` τ ′1 <: τ1 Γ ` τ2 <: τ ′2 lookup(Γ, ε1) = ε′1 lookup(Γ, ε2) = ε′2 ε′1 ⊆ ε′2
Γ ` defm(x : τ1) : {ε1} τ2 <: defm(x : τ ′1) : {ε2} τ ′2

(S-DEF)

Γ ` effect g = {ε} <: effect g
(S-EFFECT)

Figure 3.16: Wyvern subtyping rules.

3.4.7 Subtyping Rules

Wyvern subtyping rules are shown in Figure 3.16. Since, to compare types, we need to compare
(i.e., lookup) the effects in them, subtyping relationship is checked in a particular variable typing
context.

The first four object-subtyping rules and the S-REFL2 rule are standard. In S-DEPTH, since
effects may contain a reference to the current object, to check the subtyping relationship be-
tween two type declarations, we extend the current typing context with the current object. The
S-RESOURCE rule was discussed previously in Section 2.5.5 and says that pure objects can
be subtypes of resource objects but not other way around. Method-declaration typing is con-
travariant in the argument types and covariant in the return type. Furthermore, there must be a
covariant-like relationship between the effect sets in the method annotations on the two method
declarations: after having been resolved to the lowest-possible level using the lookup rules de-
scribed above, the effect set of the subtype method declaration must be a subset of the effect set
of the supertype method declaration. Finally, an effect definition is trivially a subtype of an effect
declaration.

46

file
Read
Write
Append
Delete
…

logger codeCompletionfile
logger
ReadLog
UpdateLog

file
Read

Append
file logger

codeCompletion

logger
UpdateLog

becomes

Figure 3.17: Intuition behind using effects to describe module authority Black boxes represent
modules, and red boxes represent capabilities. On the left-hand side of the figure is a diagram
representing what we knew about resource modules and capabilities in Chapter 2 only relying on
our module system design. On the right-hand side of the figure is a diagram augmented with the
information about effects that we gain by using Wyvern’s effect system.

3.4.8 Type Soundness

The preservation and progress theorems are as follows, and the proofs for both of them are fairly
standard and are available in the Appendix B.1.
Theorem (Preservation). If Γ | Σ ` e : {ε} τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then ∃Σ′ ⊇ Σ,
µ′ : Σ′, ∃ε′, such that lookup(Γ, ε′) ⊆ lookup(Γ, ε), and Γ | Σ′ ` e′ : {ε′} τ .
Theorem (Progress). If ∅ | Σ ` e : {ε} τ (i.e., e is a closed, well-typed expression), then either

1. e is a value (i.e., a location) or
2. ∀µ such that µ : Σ, ∃e′, µ′ such that 〈e | µ〉 −→ 〈e′ | µ′〉.

3.5 Authority-Related Properties

Our definition of authority, presented in Section 1.1, is based on prior research [24, 48] and
says that authority is the ability to operate on resources. Using the extra information that effect
members and annotations provide, we can now talk about authority of modules (and objects) in
an application.

The intuition behind this enhancement in reasoning about an application’s security can be
seen in Figure 3.17, which shows the relationship between modules described in Figures 3.1–
3.4. Black boxes represent modules, and red boxes represent capabilities. On the left-hand side
of the figure is a diagram representing what we knew about resource modules and capabilities
in Chapter 2 only relying on our module system design. Namely, the logger module has a ca-
pability to access the file module, and the codeCompletion module has a capability to access
the logger module. On the right-hand side of the figure is a diagram augmented with the in-
formation about effects that we gain by using Wyvern’s effect system. Namely, now we know
that the methods in the file module can produce several effects (Read, Write, etc.) and that
the logger module uses only two of those effects (the Read and Append effects). Similarly, the
logger’s methods can produce two effects (ReadLog and UpdateLog), but the codeCompletion

plugin produces only the UpdateLog effect on the logger module. This allows a security analyst
or a software developer to analyze an application security more precisely than if they used only
capabilities.

47

Underpinned by Wyvern’s capability safety that is facilitated by the module system, we in-
troduce three authority-related properties of Wyvern: authority safety, authority of an object, and
authority attenuation.

3.5.1 Authority Safety
In Section 1.1, we defined an authority-safe programming language as one that provides a way for
a software developer to specify and limit modules’ (or objects’) authority over other modules (or
objects) using a set of well-defined rules. Through examples in Sections 3.1–3.3, we illustrated
how a software developer could use effect annotations to specify and control modules’ authority.
Our formal system, described in Section 3.4, ensures that the program behavior adheres to the
rules specified by the software developer. Specifically, Wyvern’s static semantics (Section 3.4.4)
checks that effect annotations correspond to the effects produced by each method body, and the
preservation theorem (Section 3.4.8) guarantees that effects produced during execution adhere
to the effect annotations in the program. Then, since we proved the type soundness of Wyvern’s
effect system, we proved Wyvern authority safe.

3.5.2 Authority of an Object
A basic notion in the authority analysis of an application is the notion of an object’s authority,
which we define next.
Definition 1 (Authority of an object). The authority of an object is a set of effects that the object’s
methods and fields can produce.

This definition is “outward facing” in a sense that it helps reasoning about authority of objects
that use the current object. We chose such definition because it seems to be more useful in
a security analysis. For example, if an application’s programming interface allows plugins to
access a specific module (e.g., the logger module described in Figure 3.2), it is useful to be able
to determine what effects a plugin could produce by using that module, accessing its fields and
calling methods on it.

Formally, we represent an object’s authority as a set of auth rules, shown in Figure 3.18.
An object’s authority (AUTH-OBJECT) is the authority of the object’s declarations. Authority
of a method declaration (AUTH-DEF) is the effects that the method produces during execution
and also the authority of objects of the method’s return type. The reason for including the lat-
ter authority component is that, whenever the method is called, an object of the return type is
returned to and may be operated on by the caller, thus increasing the caller’s authority. For the
same reason, authority of an object’s field (AUTH-VAR) is the authority of objects of the field’s
type. An effect declaration carries no authority (AUTH-EFFECT).

Authority of objects of a particular type (AUTH-TYPE) is authority of the type’s declarations.
Authority of a method-declaration type (AUTH-DEFTYPE), a field-declaration type (AUTH-
VARTYPE), and a concrete-effect-declaration type (AUTH-CONEFFECTTYPE) is similar to the
authority of corresponding declarations in an object. An abstract-effect-declaration type pro-
duces no authority (AUTH-ABSEFFECTTYPE).

As an example of how these rules can be applied in practice, if we look at the logger module
presented in Figure 3.2, using the auth rules, we can determine that logger has authority to read

48

auth(news(x⇒ d))

auth(news(x⇒ d)) =
⋃
d∈d

auth(d) (AUTH-OBJECT)

auth(d)

auth(defm(x : τ1) : {ε} τ2 = e) = ε ∪ auth(τ2) (AUTH-DEF)
auth(var f : τ = n) = auth(τ) (AUTH-VAR)
auth(effect g = {ε}) = ∅ (AUTH-EFFECT)

auth(τ)

τ = {x⇒ σ}s
auth(τ) =

⋃
σ∈σ auth(σ)

(AUTH-TYPE)

auth(σ)

auth(defm(x : τ1) : {ε} τ2) = ε ∪ auth(τ2) (AUTH-DEFTYPE)
auth(var f : τ) = auth(τ) (AUTH-VARTYPE)

auth(effect g) = ∅ (AUTH-ABSEFFECTTYPE)
auth(effect g = {ε}) = ∅ (AUTH-CONEFFECTTYPE)

Figure 3.18: Rules defining authority of an object.

the log file (the ReadLog effect) and to update the log file (the UpdateLog effect), but no other
authority. Although this example may seem trivial, knowing an object’s authority is useful if we
analyze objects that are more complex than the logger object and also for object comparison,
like we demonstrate in the next section.

3.5.3 Authority Attenuation

Introduced in Mark Miller’s dissertation [48], the notion of authority attenuation can be de-
scribed as follows. If a module (or an object) accesses a resource and produces less than the
total possible set of operations on that resource, we say that that module (or object) attenuates
the resource. For example, consider the modules presented in Figure 3.17 (the code for which is
shown in Figures 3.2–3.4). We observe that, while the file module can have a number of effects
(Read, Write, Append, etc.), the logger module produces only two of file’s effects (Read and
Append). Then, any module that uses logger and does not have access to the file module (e.g.,
the codeCompletion plugin module) can produce on file at most the two effects logger can
produce. Thus, the logger module attenuates the file capability by giving access to only a
subset of file’s effects.

To aid a security analyst in a formal security analysis of an application, we formalized the no-
tion of authority attenuation. Relying on our effect system, our definition of authority attenuation
is static. We only examine an object’s code and do not know which specific objects the object
uses at run time. Instead, we can talk about objects of a specific type that the object uses. Our
definition of authority attenuation benefits from this since we can talk about groups of objects any
object in which is attenuated. For example, using our static definition of authority attenuation,
instead of knowing that the logger module attenuates the file module (which is of type File),

49

tLookup(Γ, τ, x.g)

tLookup(Γ, τ, x.g) =
⋃

x.g∈x.g
tLookup(Γ, τ, x.g) (TLOOKUP)

tLookup(Γ, τ, x.g)

Γ | ∅ ` x : {} τ
tLookup(Γ, τ, x.g) = τ.g

(TLOOKUP-STOP)

Γ | ∅ ` x : {} τ ′ τ ′ 6= τ τ ′ = {y ⇒ σ}s effect g ∈ σ
tLookup(Γ, τ, x.g) = τ ′.g

(TLOOKUP-STOP2)

Γ | ∅ ` x : {} {y ⇒ σ}s τ 6= {y ⇒ σ}s effect g = {ε} ∈ σ
tLookup(Γ, τ, x.g) = tLookup(Γ, τ, [x/y]ε)

(TLOOKUP-RECURSE)

Figure 3.19: Wyvern effect-lookup rules that target a specific type.

we know that logger attenuates all objects of type File.
In essence, our formal definition says that if we let F1 be the set of effects that represents

an object’s authority and F2 be the set of effects that represents authority of objects of a specific
type. Then, if F1 and F2 share at least one effect and there is at least one effect that is in F2 but
not in F1, we say that the object attenuates objects of that type. For example, if we let F1 be the
set of effects that represents the logger’s authority and F2 be the set of effects that represents
authority of objects of type File. Then, if F1 and F2 share at least one effect and there is at
least one effect that is in F2 but not in F1, we say that logger attenuates objects of type File.
Formally, we write these conditions as follows.
Definition 2 (Authority Attenuation). An object o attenuates objects of type τ , if

1. F1 = tLookup(Γ, τ, auth(o)), F2 = tLookup(Γ, τ, auth(τ)),
2. F1 ∩ F2 6= ∅, and
3. F2 \ F1 6= ∅.
First, using the auth rules (shown in Figure 3.18), we find authority of object o and of objects

of type τ . Then, we use the tLookup rules, which are shown in Figure 3.19, to “normalize” the
two effect sets, thus making it possible to compare them. Finally, we compare the two effect sets.

The tLookup rules serve to support the static nature of our definition of authority attenuation.
Similarly to the lookup rules (Figure 3.14), tLookup rules resolve effects to lower-level effects.
However, they differ in that the tLookup rules “search” for effects of an object of a particular
type and stop when an object of that type is found.

When we apply tLookup to a set of effects, we apply tLookup to each effect in that set
(TLOOKUP). If the type that we are looking for is the type of the current object (TLOOKUP-
STOP), we return the “normalized” form of the effect, which differs from the original form in
that we substitute the variable name with the type name. If we encounter an abstract effect
(TLOOKUP-STOP2), we return the “normalized” form of that effect that uses the type of the
current object. Otherwise, the effect is concrete, and we proceed by examining the effect’s

50

definition (TLOOKUP-RECURSE).
As an example, let us apply our definition of authority attenuation to the logger module and

the objects of type File (e.g., the file module) from Figure 3.17. Using the auth and tLookup
rules on the logger object, we determine that logger’s authority is:

F1 = tLookup(Γ,File, auth(logger))

= tLookup(Γ,File, this.ReadLog , this.UpdateLog) (this is implicit)

= tLookup(Γ,File, this.ReadLog) ∪ tLookup(Γ,File, this.UpdateLog)

= tLookup(Γ,File, f .Read) ∪ tLookup(Γ,File, f .Append)

= {File.Read ,File.Append}

Similarly, we determine that the authority of objects of type File is:

F2 = tLookup(Γ,File, auth(File))

= tLookup(Γ,File, this.Read , this.Write, this.Append , this.Delete, . . .) (this is implicit)

= tLookup(Γ,File, this.Read) ∪ tLookup(Γ,File, this.Write)

∪ tLookup(Γ,File, this.Append) ∪ tLookup(Γ,File, this.Delete) ∪ . . .
= {File.Read ,File.Write,File.Append ,File.Delete, . . .}

Then, comparing the two sets, we have:

F1 ∩ F2 = {File.Read ,File.Append} 6= ∅
F2 \ F1 = {File.Write,File.Delete, . . .} 6= ∅

Therefore, by our definition, the logger module attenuates modules of type File.
It is possible to create a more general formal definition of authority attenuation by, instead

of considering one object that attenuates objects of a specific type, considering objects of one
type that attenuate objects of another type. This version of the authority attenuation definition is
presented in Appendix B.2.

3.6 Implementation
Effect checking was implemented as part of the open-source Wyvern compiler and interpreter,
available on GitHub: https://github.com/wyvernlang/wyvern, and is tested by the
wyvern.tools.tests.EffectSystemTests test suite.

3.7 Limitations
A frequently cited limitation of effect systems is the high annotation burden. While outside the
scope of this dissertation, recent work by Craig et al. [14] demonstrated how, in the presence
of first-class modules acting as object capabilities, effect annotations can be inferred at a more
granular level. This work showed that capabilities allow the effect information to be inferred “for
free” by building on the absence of globally accessible objects.

51

https://github.com/wyvernlang/wyvern
wyvern.tools.tests.EffectSystemTests

Common examples of effect systems in the real world are exceptions in languages such as
Java, C#, and Scala [29]. Keeping track of all possible effects in the code is a nontrivial problem,
even in the case of checked exceptions, and can be addressed by polymorphic effects [64] or
effect aggregation as we described above. To address these issues, Lubin [36] extended the work
of Craig et al. [14] on Wyvern effects to account for mutable state and effect polymorphism,
demonstrating how effects with first-class modules can be used by programmers with only the
essential effect annotations. When combined with the work on abstract effects as presented here,
we believe our approach achieves both high assurance and high programming language usability.

3.8 Related work
Origins of Effect Systems. Effect Systems were originally proposed by Lucassen [37] in

1987 to track reads and writes to memory. Lucassen and Gifford extended this effect system to
support polymorphism the following year [38]. Effects have since been used for a wide variety of
purposes, including exceptions in Java and asynchronous event handling [11]. Turbak previously
proposed effects as a mechanism for reasoning about security [71], which is the main application
that we discuss.

Algebraic Effects, Generativity, and Abstraction. Algebraic effects and handlers [59, 60]
are a way of implementing certain kinds of side effects such as exceptions and mutable state
in an otherwise purely functional setting. Bračevac et al. [11] use algebraic effects to support
asynchronous, event-based reactive programs. They need to use a different algebraic effect for
each join operation that correlates events; thus, they want effects to be generative. Their OCaml
implementation builds on Multicore OCaml [18], and they observe that declaring an effect type
in a module signature is a way of getting per-module generativity. They do not explore abstract
effects, per-object generativity (e.g., as in different effects for every File object instance), nor
do they formalize generative effects.

Zhang et al. [76] describe a design for algebraic effects that preserves abstraction in the sense
of parametric functions: if a function does not statically know about an algebraic effect, that
effect tunnels through that function.

Biernacki et al. [6] discuss how to abstract algebraic effects using existentials. The setting of
algebraic effects makes their work quite different from ours: their abstraction hides the “handler”
of an effect, which is a dynamic mechanism that actually implements effects such as exceptions
or mutable state. In contrast, our work allows a high-level effect to be defined in terms of zero
or more lower-level effects, and our abstraction mechanism allows the programmer to hide the
lower-level effects that constitute the higher-level effect. Our system, unlike algebraic effect
systems, is purely static. We do not attempt to implement effects, but rather give the programmer
a system for reasoning about side effects on system resources and program objects. It is not clear
that defining a high-level effect that encapsulates multiple low-level events is sensible in the
setting of algebraic effects, since this would require merging effect implementations that could
be as diverse as mutable state and exception handling. It is also not clear how Biernacki et al.’s
abstraction of algebraic effects could apply to the security scenarios we examine in Section 3.3,
since some of our scenarios rely critically on abstracting lower-level events as higher-level ones.

52

JML’s data groups [33] have several similarities to Wyvern’s effect system, including dec-
larations that can have custom identifiers, definitions that can be defined using a collection of
field locations and other data groups, and abstraction that allows reasoning about effects in client
code without knowing the underlying definitions. However, data groups are used to abstract over
only a specific type of effects, namely, modifications to heap locations, whereas Wyvern effects
can represent more general notion of effects. Also, Wyvern’s effect system provides the ability
to either keep an effect abstract or make its definition public, and Wyvern’s effects depend on
individual objects, allowing for more flexibility and more precise effect analysis, respectively.

Notable Effect-System Implementations. Several programming languages and language
extensions provide general effect systems. Scala has two effect-related extensions: one is a
generic effect-checking framework that supports effect polymorphism [64], and the other specif-
ically supports algebraic effects [9]. IDRIS [10] supports an embedded domain specific language
that, relying on the host language being dependently typed, allows capturing and handling alge-
braic effects. Koka [32] requires effects to be an explicit part of the type signature of a func-
tion, implements polymorphic effects using row polymorphism, and allows for effect inference.
Eff [5] supports first-class effects and handlers, and takes the algebraic approach to computa-
tional effects, viewing them as algebraic operations. Finally, Frank [34] introduced a form of
effect polymorphism that avoids mentioning effect variables in the source code, instead relying
on the fact that an operator’s effects are always instantiated with all algebraic effects permitted
by the current typing context.

Similar to our design, languages that support polymorphic effects (Koka, Frank, and Rytz et
al.’s extension of Scala) allow flexibility of implementation in terms of what lower-level effects
are used to implement a function. However, none of these effect systems feature effect abstrac-
tion: allowing a module to declare an effect that is implemented in terms of other effects, but
hiding what effects those are from clients.

Marino and Millstein [42] discuss an effect system in which application-specific effects can
be defined. One of their examples is system calls that can block. Our focus on system resources
captures a slightly different set of system calls, namely, those that have an impact on an external
resource.

Reasoning About Authority of Code. Object capabilities [48] have been used to reason
about the authority of an object to access a resource in the system, based on whether that object
possesses an appropriate capability (typically an object pointer). This was first formalized by
Maffeis et al. [41], who used a topology criterion to reason about what resources a module can
affect. The idea is that if a resource such as a file is reachable from some object, then that object
has authority over the resource. However, this criterion is an approximation: perhaps the file is
transitively reachable, but due to information hiding the file may not actually be directly acces-
sible (e.g., the resource is stored in a private field of some intermediate object). Our analysis
of authority is more precise in two ways. First, effects distinguish different classes of opera-
tions, such as read, write, and append, and they can characterize not just what resource an object
has authority to access but what operations it has authority to perform on those resources. Sec-
ond, since an intermediate object may only use a resource in certain ways, we can reason about

53

authority attenuation, which is impossible in a definition based purely on transitive topology.
While Maffeis et al. used definitions based on the run-time semantics of a language, more

recent work attempts to support static reasoning about authority. One solution is to use informa-
tion flow policies to reason about the capability propagation directly [17], which comes at a cost
of defining and maintaining such system-wide policies. Another solution, proposed by Devriese
et al. [16], characterizes effects as a set of side-effecting commands, then applies logical rela-
tions and parametric reasoning to analyze the possible effects of untrusted code. Devriese et al.’s
approach is precise but requires heavyweight mathematical machinery. In contrast, our goal is to
retain as much precision as possible in the simpler setting of an effect system.

Authority Attenuation. Although a number of works on object capabilities and authority
safety mention and explain authority attenuation (e.g., [45, 48]), the only work on formaliz-
ing authority attenuation that we are aware of is a recent workshop presentation by Loh and
Drossopoulou [35]. In the presentation, the authors used Hoare triples and invariants to show
how authority can be attenuated in a restricted document object model (DOM) tree. In contrast,
our approach to authority attenuation uses effect abstraction and is more generally applicable,
being able to describe a wide range of situations.

54

Chapter 4

Evaluation

As an evaluation of our design of Wyvern’s module system and effect system, we present ways
to mitigate the threats and attack scenarios described in the threat model (Section 1.2), as well as
a case study of an extensible text-editor application written in Wyvern, on which we performed
a security analysis.

4.1 Threat Mitigation

Conventional programming languages typically allow any module to access any resource and
permit passing pointers to those resources in difficult-to-track ways. To ensure that the principle
of least privilege is obeyed in a software application, such languages usually use one of the
following two ways. They require either sandboxing some parts of the application code, which
adds computational overhead and is complicated and error-prone [13, 39], or a manual code
inspection, which is error-prone, laborious, and time-consuming.

In contrast, Wyvern simplifies the task of performing a security audit by requiring software
analysts to examine, in many cases, only modules’ interfaces and not their code. Specifically,
security analysts need to inspect what capabilities a module receives on its instantiation or as
method arguments, and methods’ effect annotations, i.e., what effects the module’s methods
produce on the capabilities that the module uses. Once the resource access and use is specified in
module interfaces, Wyvern’s type-and-effect system ensures at compile time that the specification
is enforced. If a security analyst discovers an instance of privilege abuse during the security audit,
Wyvern provides a mechanism to preclude this. For example, the security analyst may modify the
code to not pass the capability to the module at its instantiation or provide an attenuated version
of the capability that either makes the method “harmless” or removes it, thereby disabling the
third party’s ability to call the abusive method.

Both potential attacks described in the threat model (Section 1.2) can be mitigated by ex-
amining modules’ interfaces. In many cases, an attempt by a third-party module to exploit the
application by itself is obvious from looking at the module’s interface. To gain access to system
resources or native code, a module must receive an appropriate capability either on its creation or
as a method argument. Then, if a third-party module tries to gain unauthorized access to a system
resource, it is evident from examining the module’s interface and checking what capabilities it

55

receives via these two mechanisms. Importantly, to be able to use a native module (e.g., Python’s
builtins module), a third-party module needs to receive an appropriate capability. In addi-
tion, operations on system resources are specified in effect annotations on each of the module’s
methods. Then, if a third-party module tries to perform an unauthorized operation on a system
resource necessary to implement the primary functionality of the malicious code, it is evident
from examining the module’s interface and checking the effect annotations on its methods. If
a third-party module requires unauthorized capabilities or performs unauthorized operations on
the capabilities that are to be passed into it, the developer or security analyst may choose not to
instantiate that module or not to call the abusive method.

To protect against the attacks described in the threat model (Section 1.2) where third-party
code exploits the application via fallible application code, in many cases, it is sufficient for
security analysts to examine the interfaces of the modules that are used by third-party modules.
In particular, security analysts must ensure that application modules:

1. Properly manage the resources they need to implement their own functionality by:
(a) not requiring capabilities unnecessary for implementing their functionality;
(b) not unnecessarily exposing system resources (e.g., by returning a reference to a sys-

tem resource from a method); and
(c) not performing operations on system resources that are not necessary to implement

their functionality.
2. If application modules are used to perform operations on system resources on their clients’

behalf, their clients are required to pass in an appropriate capability to access each system
resource.

If any of these violations are found, the security analyst should modify modules’ interfaces to
eliminate unnecessary privilege and to remove the unnecessary resource exposure, requiring the
software developer to change the modules’ code to obey the new interfaces.

As a limitation of our approach, if the desired security properties cannot be expressed in
the module interfaces in terms of required capabilities and produced effects, the security analyst
needs to fall back to a conventional code-inspection-based strategy. For example, if the abusive
module legitimately requires the privilege that it is granted (i.e., the module legitimately requires
access to a resource, and it is legitimate for the module to perform all operations specified by
effect annotations on its methods) and misuses it, to detect the violation, the security analyst
must resort to inspecting the code of the abusive module.

4.2 Case Study: An Extensible Text-Editor Application

To evaluate our module-system and effect-system designs more directly, we used Wyvern to
create an extensible text-editor application. In this section, we describe the text-editor application
and plugins for it that we implemented, present a security analysis of our implementation, and
state and discuss the observations that we made during the implementation process.

56

(a) Text area. (b) The “File” menu.

(c) The “Edit” menu. (d) The “Plugins” menu.

Figure 4.1: Screenshots of the text-editor application.

4.2.1 Application Description
We implemented a text-editor application1 that provides the basic text-editing functionality.
When started, the text-editor window has a text area where the user may enter or edit text (Fig-
ure 4.4a). The title bar shows the path to the currently opened document or “Untitled” if the
document have not been saved yet. The menu bar has three options and allows users to per-
form operations on files (Figure 4.4b), perform editing operations on the text in the text area
(Figure 4.1c), or run plugins (Figure 4.1d).

Conceptually, we divide the implementation into two parts: the text-editor part, which con-
sists of 233 lines of code, and the plugins part, which consists of 110 lines of code.

Program Structure

The program starts by compiling and running the main.wyv file, which contains the top-level
script that instantiates the text-editor application. The main application module is called
textEditor, and it is of type TextEditor.

To build the application, we used Wyvern’s Java backend. We created a Java class2 that
provides access to the Java objects necessary for the text editor’s execution. On the Wyvern side,

1The code for the text-editor application and its plugins is available online: https://github.com/
wyvernlang/wyvern/tree/master/examples/text-editor

2https://github.com/wyvernlang/wyvern/blob/master/tools/src/wyvern/stdlib/
support/TextEditorHelper.java

57

https://github.com/wyvernlang/wyvern/tree/master/examples/text-editor
https://github.com/wyvernlang/wyvern/tree/master/examples/text-editor
https://github.com/wyvernlang/wyvern/blob/master/tools/src/wyvern/stdlib/support/TextEditorHelper.java
https://github.com/wyvernlang/wyvern/blob/master/tools/src/wyvern/stdlib/support/TextEditorHelper.java

1 resource type Plugin
2 effect Run
3 def getName(): {} String
4 def run(): {Run} Unit

Figure 4.2: The Plugin type that each text editor’s plugin must implement.

we created types which correspond to the Java objects that are used by the text editor’s plugins,
namely, OptionPane, TextArea, and UIManager.

The text-editor application maintains a log of every event that happens inside it. This logging
functionality is implemented in the logger module, which is of type Logger.

Finally, the application is extensible and allows third-party plugins. All plugins must imple-
ment the Plugin type, which is shown in Figure 4.2. Since the application policy is that all events
must be recorded in the log, the text editor’s plugins must use the logger module to update the
log file as needed.

Adding a Plugin

All the plugin files must be in the plugins directory. There are three steps to add a plugin to the
text-editor application. Each plugin must be:

1) imported,
2) instantiated with the resources necessary for its operation (and no more), and
3) registered to be displayed in the “Plugins” menu or set to run (once) when the application

starts.
These steps require modifying the textEditor module. The plugin imports must happen in
the beginning of the textEditor module. The plugin instantiation happens after the text editor
is fully instantiated (except for the plugins) because plugins may need some elements of the
text editor for their operation (e.g., the text area). After plugins are instantiated, they are either
registered with the menu or run.

Plugins registered with the “Plugins” menu are those that depend on the user’s input. Regis-
tering a plugin with the menu enables the user to activate the plugin on demand during the text
editor’s execution. For example, a plugin that counts the number of words in the currently opened
document must capture the latest edits that the user made to the document, and so that plugin
should be registered with the menu. In contrast, plugins that are run during the text editor’s setup
are those that set some of the text editor’s configurations. For example, a plugin that sets the text
editor’s theme should be run during the text editor’s setup.

Plugins

We implemented three plugins.3.

3In fact, we implemented four plugins, and there are four plugins in the online code repository. The extra plugin
is the lightTheme plugin which sets the theme of the text editor to be like in Figure 4.1. However, we removed
this plugin from our analysis here because its implementation is similar to the darkTheme plugin.

58

Figure 4.3: Text editor in the dark theme provided by the darkTheme plugin.

(a) The original document.

(b) The questionnaire created from the original document.

Figure 4.4: Text editor’s questionnaireCreator plugin in action.

1. The darkTheme plugin sets the theme of the text editor to have a dark background and light
text (Figure 4.3).

2. The questionnaireCreator plugin extracts questions from the currently opened docu-
ment and creates a questionnaire in a separate file (Figure 4.4).

3. The wordCount plugin counts the number of words in the currently opened document and
displays that number to the user in a pop-up window (Figure 4.5).

The darkTheme plugin is run only once during the text editor’s setup, whereas the
questionnaireCreator and wordCount plugins are registered with the “Plugins” menu, and
the user may run them at any time and as many times as they want.

59

Figure 4.5: Text editor’s wordCount plugin in action.

Implementation Component Summary

Overall, the implementation consists of the following thirteen components:
• six types:

three types that describe modules of the text editor: TextEditor, Logger, and Plugin;
three types that describe Wyvern-attenuated Java objects that are used to implement
text editor’s user interface and are used by the text editor’s plugins: OptionPane,
TextArea, and UIManager;

• one pure module that defines a set of globally available, user-interface effects: uiEffects;
• two resource modules implementing the main text-editor functionality: textEditor and
logger;

• one top-level script that distributes the access to the main system resources and starts the
application: main;

• three resource4 modules that implement the three plugins: darkTheme,
questionnaireCreator, and wordCount.

4.2.2 Security Analysis
The main goal for designing our module system and effect system is to make it easier for a
software developer to follow the principle of least privilege and for a security analyst to verify
that the principle is indeed followed. Specifically, we designed the two systems so that:

1. It is possible for a software developer to express the restrictions that they want to impose
on the access to and the use of resources, and

2. It is easy for a security analyst to verify what resources are accessed and how they are
used.

Procedure

We rely on Wyvern’s capability safety and type soundness, which implies authority safety, to
ensure that the important information about module accesses and uses is obvious from looking
only at modules’ interfaces and not their code. Our formal system and Wyvern’s compiler, in

4All the plugin modules are resource modules because they access user-interface-related resource modules.

60

which we implemented our formal system, guarantee that fields and method bodies do not allow
any extra privilege,5 thus simplifying the task of following the principle of least privilege in a
Wyvern application. To this end, to analyze the text-editor application, we removed all of its
code, except for:
• module headers,
• type definitions, and
• effect declarations.

We used the remaining code to establish the privilege that the text editor’s modules have.
Using the reduced version of the text editor’s code, we determined the modules’ accesses

and authority as shown in Figure 4.6. In the diagram, the boxes denote modules, and the arrows
denote module accesses. If an arrow goes from module A to module B, A accesses B. Modules
that are relevant for our discussion about code privilege are augmented with the information
about their authority, i.e., effects. For each such module, under its name is a list of effects it
declares. Red boxes on top of module boxes are capabilities the modules have along with lists of
effects the modules produce on those capabilities.

As an example of how we constructed the diagram in Figure 4.6, consider the reduced version
of the logger module’s code shown in Figure 4.7. From the module header (line 5), we see that
logger accesses the logFile module, an instance of which must be passed in on logger’s
instantiation. Thus, there is an arrow from logger to logFile in the diagram, and also the
logFile capability is in the red box above the logger’s box. The parameter to the only method
logger has is not capability-protected (line 3). The logger module declares an Update effect
(line 6), which is defined to be logFile.Append. Thus, under the logger’s name is the Update

effect, and in the red box on top of the logger’s box, logFile has the Append effect. Importantly,
the logger module accesses no other modules and declares no other effects, which is consistent
with the diagram. We performed a similar type of reasoning for each module in the text-editor
application.

During the implementation of the text-editor application, for the user-interface-related (UI-
related) resources, namely, uiManager, textArea, and optionPane, we maximally limited their
exposure to plugins. We wrapped the original UI objects into objects that provide only the
methods that plugins call and, correspondingly, have only effects that those methods produce.
Therefore, each UI-related effect is produced by at least one plugin.

In addition, to define the effects of the UI-related modules, we made a design choice to use
globally available effects (discussed in detail in Section 3.3.3). Thus, we defined the UI-related
globally available effects in the pure module called uiEffects. We also used globally available
effects, instead of the UI modules’ own effects, in the plugins.

To determine the effects that the plugins produce on the UI modules, we used a correspon-
dence of the globally available effects with the UI modules’ own effects. For example, consider
the code snippets of the OptionPane type and the wordCount plugin shown in Figure 4.8. When
run, one of the effects that the wordCount plugin produces is the uiEffects.ShowDialog ef-
fect (line 14). Examining the resources that wordCount has access to (lines 8–10), we find
optionPane of type OptionPane. Looking at the OptionPane’s effects, we see that its ShowDialog
effect is defined to be {uiEffects.ShowDialog}. Thus, we conclude that the wordCount plugin

5Currently except for the cases when underlying effects are the same, as was mentioned in Section 3.3.3.

61

Wyvern Resources Text Editor

java

Plugins

textEditor

logFile
Read
Write
Append

uiManager
PaintUI

SetLookAndFeel

textArea
Read

optionPane
ShowDialog

fileSystem
Read
Write
Append

darkTheme

logger
Update

uiManager
PaintUI*

SetLookAndFeel*

wordCount

logger
Update

optionPane
ShowDialog*
textArea
Read*

questionnaireCreator

logger
Update

fileSystem
Append
Write

textArea
Read*

logger
Update

logFile
Append

Figure 4.6: Module accesses and authority in the text-editor application deduced from examining
only modules’ interfaces and types. The boxes denote modules, and the arrows denote module
accesses. If an arrow goes from module A to module B, A accesses B. Modules that are relevant
for our discussion about code privilege are augmented with the information about their authority,
i.e., effects. For each such module, under its name is a list of effects it declares. Red boxes on
top of module boxes are capabilities the modules have, along with lists of effects the modules
produce on those capabilities. Gray boxes represent modules that are directly accessed by plugin
modules. Effects marked with an asterisk were determined indirectly, using the correspondence
between the effects of UI-related objects and globally available UI-related effects.

produces the ShowDialog effect on the optionPane module. In a similar way, we were able
to unequivocally match all the UI-related effects. In Figure 4.6, the UI-related effects that we
deduced using this method are marked with an asterisk.

62

1 resource type Logger
2 effect Update
3 def updateLog(msg: String): {Update} Unit
4

5 module def logger(logFile: fileSystem.File): {} Logger
6 effect Update = {logFile.Append}

Figure 4.7: The reduced version of code pertaining to the logger module.

1 import uiEffects
2 resource type OptionPane
3 effect ShowDialog = {uiEffects.ShowDialog}
4 def showMessageDialog(message: String, title: String, messageType: Int):
5 {ShowDialog} Unit
6 def getPlainMessageValue(): {} Int
7

8 module def wordCount(logger: Logger,
9 textArea: TextArea,

10 optionPane: OptionPane):
11 {} Plugin[{logger.Update,
12 uiEffects.ReadTextArea,
13 uiEffects.ShowDialog}]
14 effect Run = {logger.Update, uiEffects.ReadTextArea, uiEffects.ShowDialog}
15 ...

Figure 4.8: Code snippets of the OptionPane type and the wordCount plugin.

Analysis

From the security perspective, it is important to inspect the boundary between the trusted, in-
house code and the untrusted, third-party code, and verify that the interactions between the two
follow the principle of least privilege. In the text-editor application, plugins may be written by
some third party, and thus their code is untrusted. Then the boundary between the trusted and
untrusted code consists of the modules that the plugins access. In Figure 4.6, such modules are
represented by gray boxes.

The boundary between the trusted and untrusted code must be inspected in terms of three
aspects:

1. What modules are requested to be passed in to instantiate third-party modules,
2. Whether the boundary in-house modules expose other in-house modules, and
3. How the boundary in-house modules are used by third-party modules, i.e., what operations

are performed on the boundary in-house modules by third-party modules.
The first two aspects rely on capability safety. The first one is evident from examining plugins’
module headers, and the second one is evident from examining whether the boundary in-house
modules’ methods return capabilities to access other modules. The last aspect relies on authority
safety and is captured via effect annotations on the third-party modules’ methods.

The information necessary for verifying all three aspects is shown in the diagram in Fig-

63

ure 4.6. The information required to verify the first two aspects is reflected in the arrows between
the modules, and to decide whether the principle of least privilege is followed, we need to check
the logic of whether the existing arrows coming from the plugin boxes are necessary. For ex-
ample, the questionnaireCreator plugin has access to fileSystem, logger, and textArea,
which is shown in the diagram as three arrows going from the questionnaireCreator box to
the three boxes corresponding to the in-house modules. Considering the functionality that the
questionnaireCreator plugin provides, all three accesses are required: the plugin needs ac-
cess to fileSystem to create a file containing the resulting questionnaire, to logger to obey the
text-editor’s application policy to log all the actions that take place inside the application, and to
textArea to read the current version of the opened document’s text to process into a question-
naire. If the plugin was able to access any other modules, which would have been reflected in
the diagram as more arrows going from the questionnaireCreator box, those accesses would
have been unauthorized. Thus, the questionnaireCreator plugin has just enough capabilities
to implement its functionality and no more.

The information required to verify the third aspect is shown in the red boxes above each
plugin box, and to decide whether the principle of least privilege is followed, we need to check
the logic of whether the effects produced on each capability are authorized. For example, the
questionnaireCreator plugin produced the Update effect on logger, the Append and Write

effects on fileSystem, and the Read effect on textArea. Considering the functionality that
the questionnaireCreator plugin provides, all effects are required: the plugin produces the
Update effect on logger to update the log file; the Write and Append effects on fileSystem

to create a new file containing the resulting questionnaire and to append to it every time a
question is encountered in the original text, respectively; and the Read effect on textArea to
read the current version of the opened document’s text to process into a questionnaire. If the
questionnaireCreator plugin had any more effects, which would have been reflected in the
red box above the questionnaireCreator box, those effects would have been unauthorized.
Thus, all the effects that the questionnaireCreator plugin produces are authorized, and the
plugin has just enough authority to implement its functionality and no more.

In a similar way, one can verify the three security aspects for all the boundary and plugin
modules, and conclude that:

1. Only modules necessary for the plugins’ functionality are passed in to instantiate them,
2. The boundary in-house modules expose no extra in-house modules, and
3. All the plugins use the boundary in-house modules in an authorized way.

Thus, the implementation of the text-editor application follows the principle of least privilege,
and all the plugins are given just enough privilege to implement their functionality and nothing
more. They are given access to the minimal number of resources and, on those resources, they
perform only the necessary operations.

Conclusion

The privilege-analysis results show that our designs of the module and effect systems helped
enforcing the desired security guarantees. It is possible to express the limitations on resource ac-
cess and use needed to follow the principle of least privilege. Our designs also simplify verifying
what resources are accessed and how they are used by making the security-related information

64

more obvious and reducing the amount of code one needs to inspect to only the module interfaces
and not their code.

4.2.3 Observations and Discussion

During the implementation and analysis of the text-editor application, we made several observa-
tions that stem from the way we designed Wyvern’s module and effect systems. Next, we present
and discuss the benefits and limitations of our approach that we observed.

Benefits

We observed the following six benefits of our module-system and effect-system designs.
Simplified Code Inspection. One of the core advantages of using Wyvern is that, due to formal

guarantees that Wyvern provides, during a security analysis, a security analyst needs to
inspect less code than in other programming languages. Specifically, to deduce what re-
sources each application module accesses and how those resources are used, one needs to
examine only modules’ interfaces and not their code.

As described in Section 4.2.2, to perform a security analysis of the text-editor applica-
tion and its plugins, we removed all the application code, except for the interfaces, namely,
module headers, type definitions, and effect declarations. In our version of the text-editor
implementation, the interfaces accounted for 69 lines (out of 343 lines in total) or 20% of
code. This is a significant code reduction, as we reduced the amount of code to a fifth of
the original. However, as the text-editor application grows in size and more plugins are
added, we expect to be able to remove an even larger fraction of code. The reason for that
is that, in large software systems, more methods tend to be private methods and thus are
not part of the interface of a module, and their signatures need not be inspected.

Thus, our approach proved to reduce the amount of code a security analyst needs to
examine to evaluate an application’s security, and we expect an even greater reduction with
the growth of the code base.

Information Hiding and Polymorphism. Our module-system and effect-system designs facil-
itate the principle of information hiding, i.e., they allow flexibility in what resources are
used and how they are used in modules that implement the same type. To achieve this, three
features of our designs come together: type abstraction in terms of what resources must be
passed into a module on its instantiation, effect abstraction, and effect polymorphism.

There are two examples that we observed in the text-editor application. The first ex-
ample lies in the plugin modules. For their (legitimate) functionality, plugins may use any
available resource and also may use same resources in different ways, while implement-
ing the same type. For example, consider the darkTheme and questionnaireCreator

plugin modules, relevant code snippets for which are presented in Figure 4.9. Both plu-
gin modules implement the Plugin type (shown in Figure 4.2). However, as can be seen
from lines 2 and 8 in the code snippets, except for the logging module, darkTheme and
questionnaireCreator have no common resources that they receive on instantiation.
This is possible due to the ability of Wyvern’s module system to support a certain level of

65

1 // module definitions
2 module def darkTheme(l: Logger, uim: UIManager):
3 {} Plugin[{l.Update, uim.PaintUI, uim.SetLookAndFeel}]
4

5 effect Run = {l.Update, uim.PaintUI, uim.SetUILookAndFeel}
6 ...
7

8 module def questionnaireCreator(l: Logger, ta: TextArea, fs: FileSystem):
9 {} Plugin[{l.Update, fs.Write, fs.Append, ta.ReadTextArea}]

10

11 effect Run = {l.Update, fs.Write, fs.Append, ta.ReadTextArea}
12 ...
13

14 // module instantiations
15 val dt: Plugin[{l.Update, uim.PaintUI, uim.SetLookAndFeel}] =
16 darkTheme(l, uim)
17 val qc: Plugin[{l.Update, fs.Write, fs.Append, ta.ReadTextArea}] =
18 questionnaireCreator(l, ta, fs)

Figure 4.9: Code snippets of the darkTheme and questionnaireCreator plugins. For sim-
plicity, we substituted globally available UI-related effects with effects from the corresponding
UI-related objects.

type abstraction, namely, that types do not include information about what resources are
passed into modules on their instantiation.

Furthermore, since the resources that the plugins use differ, so do the effects that run-
ning the plugins’ run method produces, which is handled by the effect-abstraction feature
of our effect-system design. Specifically, since the Run effect in the Plugin type is ab-
stract, the definitions of that effect in the two plugins can be and, in fact, are different (see
lines 5 and 11 in the code snippets), accommodating the difference in the resource usage.

Finally, to account for the difference in the effects that running the two plugins causes
in the code outside the modules, we use effect polymorphism (more details about which
can be found in [36]). In particular, the Plugin type is parametric in that it is parameterized
with the effects used to define the Run effect in the modules’ return types (lines 3 and 9 in
the code snippets) as well as at the place of instantiation (lines 15–18 in the code snippets).

The second example lies in the logging module. In the current version of the text-
editor code, the logger module is implemented using the file system and stores the log
file locally in a file. In the future, the text-editor application can be made distributed, so
that files that the application operates on can be stored not locally but on some machine
in the network. Similarly, in such a version of the text-editor application, the logging
module could maintain a log file which is stored somewhere else on the network (e.g., as
was suggested in Section 3.3.2). Due to the type abstraction in terms of what resources
a module receives on instantiation and effect abstraction, this change to the application
is easily accommodated in the current version of the text editor’s code. As long as the
new, distributed logger implements the Logger type, the modules that use logger are not
affected by the substitution.

66

There is one more possible change that our design can accommodate. In the current
version of the text editor’s code, the logger module only appends to the log file, thus
producing the Append effect on the logFile module, which is reflected in the definition of
logger’s Update effect. Alternatively, logger could write to the log file aggregating the
information that has been already logged, e.g., substituting “X action occurred. X action
occurred.” with “X action occurred 2 times.” In such a case, logger would produce the
Write effect on the logFile module, and the definition of logger’s Update effect would
change accordingly. Due to effect abstraction, there would be no difference for the modules
that use the logger module, which would still produce logger’s Update effect.

Thus, our case study demonstrated the usefulness of the type-abstraction,
effect-abstraction, and effect-polymorphism features of our module-system and effect-
system designs, and also provided more real-life examples for the information-hiding pat-
tern that we suggested to use when developing a software application in Wyvern.

Enforcing That a Method May Produce No Effects. Our effect-system design allows a soft-
ware developer to express the intent that a method may not produce any effects, which
is then enforced by Wyvern’s effect system. If the software application is fully effect-
annotated and effects account for all important operations on system resources, the ability
to specify and enforce that a method may cause no effects is equivalent to the ability to
disallow the use of any resource inside that method. Inside of it, the method could still
have an object capability to access a resource, but the method may not use that capability
to perform any operations on the resource.

During the implementation of the text-editor application, we took advantage of this
feature. When defining the Plugin type, which all plugins must implement, we needed
to add a method that returns the plugin’s name (line 3 in Figure 4.2), so that the plugin
can be added to the text editor’s user menu. All that such method needs to do is to return
a String with the name, and thus the method must use no resources. To enforce this
restriction, in the Plugin type, we annotated the method with {}, i.e., an empty effect set,
which precluded any operations on resources inside the method.

Therefore, it proved useful to have a mechanism in our effect-system design that pro-
hibits a method from having any effects, thus, potentially, disallowing it to operate on any
resources inside of it.

Detecting the Authority-Attenuation Pattern. Section 3.5.3 describes how authority attenua-
tion can be formalized using our effect-system design. In practice, as suggested in Sec-
tion 3.3.4, since method effect annotations expose the information about how resources
are used, a software developer is able to identify occurrences of authority attenuation by
looking at modules’ interfaces.

In the text-editor application, the logger module attenuates the logFile module. This
can be seen in the diagram in Figure 4.6 from the effects of the two modules and the
arrows that go in and out of the modules. Specifically, one can observe that, while logFile
has three effects, namely, Read, Write, and Append, logger produces only one of them,
namely, the Append effect. Also, there is only one arrow going into the logFile box,
which is from the logger box, whereas there are several arrows that go into the logger

box. This means that all the modules that modify the log file do it through the logger

67

Effects per definition Effects per annotation

Text editor 1.6 1.5
Plugins 3.3 0.9

Overall 1.8 1.3

Table 4.1: The average number (arithmetic mean) of effects per an effect set.

module, which allows for only a limited set of effects to be produced on logFile, thus
attenuating it.

Thus, while analyzing the text-editor application, we were able to identify a real-life
example of the authority-attenuation pattern and did that by examining only module inter-
faces and not their code. Considering the structured nature of the module interfaces, we
believe that it is feasible to automate this discovery process.

Effect Aggregation. Table 4.1 shows the average number (arithmetic mean6) of effects in each
effect set used in the implementation. This aspect speaks to the amount of boilerplate code
that the effect-aggregation feature of our effect-system design eliminates.

Interestingly, the average number of effects in the effect-definition sets is much lower
for the text editor than for the plugins, which signals that usually effects declared in the
text editor are composed of fewer effects than those declared in plugins. There are at least
two reasons for that. The main reason is that text editor’s methods frequently use only one
resource each and perform only one operation on it, whereas, in a plugin, the run method
tends to use all the resources that the plugin has access to. Another, minor reason is that
the textEditor module defines an effect, called SaveFile, whose definition consists of
four effects, which is then used as a shorthand in defining two out of seven textEditor’s
effects. The text editor’s code base being relatively small, using the SaveFile effect as a
shorthand may have a role in the lower average number of effects per definition.

In contrast to effect definitions, the difference between the average numbers of effects
in effect-annotation sets in the text editor and the plugins is insignificant, and the numbers
are low. For the text-editor application, the reason why the number of effects per effect
annotation is low is that the same SaveFile is used to annotate five out of fifteen (i.e., one
third of) textEditor’s methods. As expected, all five methods are related to saving a file
to the disk. In addition, three more textEditor’s methods have empty effect annotations.
For the plugins, the number of effects per effect annotation is low because there is only
one method (the run method) that has an effect annotation with an effect (Plugin’s Run

effect) in it, and the rest of the methods have empty effect annotations.
Overall, these observations imply that the effect-aggregation feature has its merit and

indeed serves to reduce the amount of effect-related code.
Compiler Help with Method Effect Annotations. During the development of the text-editor

application, the compiler was useful in ensuring that all the effects were captured by the

6We did not observe any strong outliers, and so the arithmetic mean was sufficient to summarize the data (e.g.,
as opposed to using the geometric mean).

68

1 // From uiEffects.wyv
2 module uiEffects: {}
3 effect ReadTextArea = {system.FFI}
4

5 // TextArea.wyt (in full)
6 import uiEffects
7 resource type TextArea
8 effect Read = {uiEffects.ReadTextArea}
9 def getText(): {Read} String

10

11 // From textEditor.wyv
12 import java:wyvern.stdlib.support.TextEditorHelper.nativeJTextArea
13 val textArea = nativeJTextArea.create(20, 60)
14

15 def getAttenuatedNativeJTextArea(): {} TextArea
16 new
17 effect Read = {uiEffects.ReadTextArea}
18 def getText(): {Read} String
19 textArea.getText()
20

21 val wc = wordCount(logger, getAttenuatedNativeJTextArea(),
22 getAttenuatedNativeJOptionPane())

Figure 4.10: Code snippets relevant to attenuating Java’s textArea object.

method effect annotations. There were several instances when we forgot to include an
effect in a method effect annotation, and the compiler gave an error pointing that out.

Since the compiler is able to provide such help with the effect-annotation inference,
it may be possible to use this compiler feature to create a more advanced version of the
compiler or a standalone tool that would be able to automatically infer and add some or all
method effect annotations.

Limitations

During the implementation and analysis of the text-editor applications and its plugins, we ob-
served the following two limitations of our current approach.

Non-Capability-Based Backend. As was mentioned in Section 4.2.1, we developed the text-
editor application using Wyvern’s Java backend. Java is not a capability-based program-
ming language and does not support effects (at least not in the same sense as Wyvern does),
and so, to minimize the security risks that come from using the Java backend, one must
handle method calls into the backend and the overall Wyvern-to-backend communication
carefully. In the text editor implementation, to secure the interlanguage communication,
we took the following three measures.

The first measure results from the fact that we need a way to account for the effects
that are caused by the Java code. To achieve that, we created a special effect, called

69

1 def registerPlugin(plugin: Plugin): {RegisterPlugin, plugin.Run} Unit
2 plugins.add(nativeActionCreator.createWithAction(plugin.getName(),
3 () => plugin.run()))

Figure 4.11: The registerPlugin method of the textEditor module.

system.FFI, which we use to annotate all methods that call into Java.7 For example,
consider the code snippets in Figure 4.10. The getText method (lines 19–20) calls into
Java by calling the getText method (line 20) on the textArea object that represents the
text-area object in Java (lines 12–13). To account for this call into the Java backend code,
the getText method is said to have the system.FFI effect, which can be seen if we resolve
the higher-level Read effect to lower-level effects (line 17 and then line 3).

The second measure is that we attenuate Java objects before passing them to plugins.
Specifically, we wrapped Java objects into Wyvern objects making available only the meth-
ods that plugins need for their functionality and nothing more. Also, since we know what
methods plugins call on the Java objects, instead of using the system.FFI effect described
above, we introduced more descriptive effects. For example, Figure 4.10 presents this
attenuation process for the Java object representing the text area of the text-editor appli-
cation. First, we create the TextArea type (lines 6–9) that contains only the methods that
plugins may use, namely, the getText method (line 9). We also introduce the Read effect
(line 8) and use it to annotate the getText method, thus communicating the information
that, if the getText method is called, the text area is being read. Then, we create a wrapper
object for the original text-area object (lines 16–19) and ascribe it the TextArea type (line
15). All the plugins, e.g., wordCount (lines 21–22), are given the attenuated version of
the original Java object. Thus, we made available only a limited set of the methods of the
original Java objects and introduced more descriptive effects to better capture how the Java
objects are used by the plugins.

The third measure is related to how plugin objects are used in the text-editor applica-
tion. The plugins that are registered with the text editor’s user menu must be forwarded
onto the Java code. This is done in the registerPlugin method of the textEditor mod-
ule, which is shown in Figure 4.11. For each plugin that is being registered, its run method
is passed to Java as a lambda (line 3). Once the run method is passed to Java, there
is no way to track the effects that the run method produces. To mitigate this issue, be-
fore the run method escapes into Java, we expose its effects by annotating with them the
registerPlugin method (line 1). Notably, this is imprecise because we treat the effects
as if they happened at the registration time, whereas in reality they happen later, when the
callback is invoked. In the future, this could be improved by translating more of the Java
backend code into Wyvern, including the code that handles the user-menu actions.

In general, although Wyvern does not provide inherently unsafe operations, such as
pointers in C or unsafe in Rust, there are still risks associated with the non-capability-
based backend, and method calls going to and coming from the backend must be imple-

7Currently, the annotations are added by hand, and the compiler does not check them, but we plan to automate
adding the annotations and implement the compiler check in the near future.

70

LoC Effect declarations Effect annotations Effect parameters Total

Text editor 233 29 (12%) 57 (24%) 3 (1%) 86 (37%)
Plugins 110 3 (3%) 12 (11%) 6∗ (5%) 21 (19%)

Total 343 32 (9%) 69 (20%) 9 (3%) 110 (32%)

Table 4.2: The effect-annotation overhead in the text-editor application and its plugins. For the
plugins, the number of lines that contain effect parameters, marked with an asterisk, includes the
lines where plugins are instantiated that are located in the text editor’s code.

mented with utmost care. The main strength of Wyvern coming from its object model,
there must be no way of getting around it.

Effect-Annotation Overhead. There are two ways to analyze the effect-annotation overhead.
One way, which is higher-level, is in terms of the number of lines of code that are effected
by adding the information about the code’s effects. The other way, which is lower-level, is
in terms of examining how the affected lines of code were changed.

Table 4.2 presents the higher-level picture about the effect-annotation overhead. Over-
all, the effect-annotation overhead comes from three sources: effect declarations, effect
annotations on methods, and effect parameters. The important distinction among these
types of effect-annotation overhead is that effect declarations require adding new lines of
code to the implementation, whereas effect annotations and effect parameters changes the
lines of code that would exist in an unannotated version of code.

Incorporating effects into the text editor’s code base led to a 9%-increase of its size
and affected 23% of (the enlarged version of) it, and so, overall, 32% of code was affected
by the inclusion of the effect information. The percent is lower for the plugins than for
the text-editor application itself (19% vs. 37%). The reason for this difference is that the
text-editor application possesses and exercises more authority. The text editor accesses and
operates on a larger number of resources than any one plugin does, and also the application
defines the effects that the plugins may have. In contrast to the text editor, all three plugins
define and use only one effect that involves using resources, the Run effect, (and one more
empty effect) which, by our design of the text-editor application, is intended to support the
desired authority restrictions. Also, none of the plugins introduce new effects that would
be pertinent only to the plugin itself.

To perform the lower-level analysis of the effect annotations, we need to examine how
each of the three sources of effect-annotation overhead affects the changed lines of code.
For effect declarations and effect annotations, this aspect has been studied above as part of
the discussion about effect aggregation, which was demonstrated to be useful for minimiz-
ing the code boilerplate. Here we discuss the remaining source of effect annotations, i.e.,
effect parameters.

The effect-parameterization feature of Wyvern’s effect system was discussed in more
detail elsewhere [36]. Part of the reason for introducing the feature into Wyvern is to
overcome the issue of not being able to always guarantee that the objects to be used in
effect annotations are in scope. In the text editor implementation, we solved this issue by

71

1 effect Run = {logger.Update, system.FFI, uiEffects.PaintUI,
2 uiEffects.SetUILookAndFeel, uiEffects.ReadTextArea,
3 uiEffects.ShowDialog, fs.Write, fs.Append}
4

5 def performNewAction(): {Run} Unit
6 val te: TextEditor[{logger.Update, system.FFI, uiEffects.PaintUI,
7 uiEffects.SetUILookAndFeel, uiEffects.ReadTextArea,
8 uiEffects.ShowDialog, fs.Write, fs.Append}] =
9 createTextEditorInstance()

10 te.run()

Figure 4.12: The performNewAction method and the Run effect definitions of the textEditor

module.

combining effect parameterization with globally available effects. Notably, this issue led
us to use globally available UI-related effects as described in Section 4.2.2 and also helped
us discover this new use case for the globally available effects, which adds to the use case
described in Section 3.3.3.

As an example for when it would not be possible to guarantee that the objects to be
used in effect annotations are in scope, consider the performNewAction method of the
textEditor module, the relevant code snippets for which are shown in Figure 4.12. This
method is called when a new text-editor window is opened. The performNewAction

method creates a new textEditor instance (lines 2–5) and then runs it (line 6). When
the new textEditor instance is run, we need to account for all effects that running it
produces, including the effects that running its plugins produces. However, since plugins
are instantiated inside the textEditor instance, in the performNewAction method, where
textEditor is instantiated, there are no plugin objects available to use in effect anno-
tations. To be able to provide the necessary effect information, the TextEditor type is
parametric, and its parameters include the globally available UI-effects, as can be seen in
lines 6–8 in the code snippets.

Although the issue is resolved from the technical standpoint, due to the verbosity of
the effect parameters of the TextEditor type, the solution leads to high effect-annotation
overhead. Specifically, the line of code on which a new instance of the text-editor applica-
tion is created, which is split between lines 6–9 in Figure 4.12, is the second longest line
in the implementation and has 192 characters.

In fact, the three longest lines in the text editor’s code, which are 409, 192, and 186
characters long, respectively, are the result of effect parametricity. The longest line is
the module header of the textEditor module, presented in Figure 4.13. It contains two
effect-parametric types: the return type of the module and also the return type of the
lambda that is passed into the module functor as an argument. Both effect sets used as
effect parameters in the effect-parametric return types have seven effects each. The second
longest line is described above, and the third longest line is the method signature of the
createTextEditorInstance method. A call to the method can be seen on line 9 of the
code snippet in Figure 4.12. The method has an effect-parametric return type matching the

72

1 module def textEditor(java: Java,
2 fs: fileSystem.FileSystem,
3 logger: Logger,
4 createTextEditorInstance:
5 Unit -> TextEditor[{logger.Update,
6 uiEffects.PaintUI,
7 uiEffects.SetUILookAndFeel,
8 uiEffects.ReadTextArea,
9 uiEffects.ShowDialog,

10 fs.Write,
11 fs.Append}]
12): {system.FFI} TextEditor[{logger.Update,
13 uiEffects.PaintUI,
14 uiEffects.SetUILookAndFeel,
15 uiEffects.ReadTextArea,
16 uiEffects.ShowDialog,
17 fs.Write,
18 fs.Append}]

Figure 4.13: The module header of the textEditor module, which is the longest line in the text
editor’s implementation and has 409 characters.

type of the te variable in the code snippet. All three longest lines are in the code of the
text editor itself.

While effect-parametricity may cause effects to be verbose, there is a security benefit to
using effect parameters. Namely, specifying effects in types allows for a greater exposure
of the modules’ authority in their interfaces. For example, consider the longest line of code
in the text editor application, shown in Figure 4.13. Due to the effect parameters, we can
account for all the effects that creating a textEditor module instance causes, which gives
us a fuller picture of the textEditor’s authority.

Also, we see two possible mitigations to the issue of effect verbosity. One mitigation is
allowing splitting Wyvern statements into multiple lines, e.g., by following Python’s way
of using implied line continuations inside parentheses, brackets, and braces. Another mit-
igation is to use more coarse-grained effects. For example, in the text-editor application,
the UI-related effects could be defined to be a single effect or broken down into fewer
distinct effects. However, this mitigation involves a tradeoff between code readability and
maintainability, and security, which would be a design choice for the software developer
writing the application.

All in all, adding information about code’s effects affected about a third of the text edi-
tor’s code. The text-editor application bears most of the effect-annotation burden, whereas
the burden on the plugins is light. Thus, we expect the ratio of affected lines to go down as
more plugins are added, and also effect annotations not to be a deterrent for plugin devel-
opers. In addition, while the effect verbosity may be a concern, there are mitigations for
it.

73

Chapter 5

Conclusion and Future Work

Writing code that adheres to the principle of least privilege is an important yet challenging step
towards creating more secure software applications. We created two programming-language
mechanisms which simplify this task. Namely, we developed a capability-based module system
that allows restricting and controlling access to system resources (Chapter 2), and also, we de-
veloped an effect system that allows manifesting and controlling how system resources are used
in a program (Chapter 3). Using a case study of a text-editor application, we demonstrated that
both of these programming-language features together aid a software developer in expressing
security- and privacy-related constrains when writing a program and aid a security analyst in
verifying a program’s security during a security analysis (Chapter 4). Concluding this disserta-
tion, we highlight the contributions that we made and suggest some paths for future work.

5.1 Contributions
The contributions of this work are:
• The design of a module system that supports first-class modules (cf. Newspeak, Scala, and

Grace) and is capability safe [45, 48]. Our approach forbids ambient authority [73], instead
requiring each module to take the resources it needs as parameters (similar to Newspeak,
but in contrast to Scala and Grace). For practical purposes, our module system supports
module-local state and does not restrict the imports of non-state-bearing modules (in con-
trast to Newspeak).

• A type system that distinguishes modules and objects that act as capabilities to access
sensitive resources, from modules and objects that are purely functional computation or
store immutable data. This design makes it easy for an architect to focus on the parts of
an interface that are relevant to the authority of a module. Overall, the type system allows
software developers to determine the authority of a module at compile time by examining
only the interfaces of the module and the modules it imports, without having to look at the
implementation of the involved modules.

• The formalization of capability control in the designed module system, in which we in-
troduce a novel, non-transitive definition of capabilities. We also introduce a definition
of capability safety and formally prove the designed system capability safe. Our result

74

contrasts with prior, transitive definitions of capability safety [17, 41].
• The design of an effect system that supports effect abstraction and provides a means for

controlling and reasoning about module authority without having to sacrifice programming
language expressiveness. In our effect system, effects are defined in terms of object capa-
bilities allowing for a tighter connection between the operations performed on a resource
(i.e., authority over a resource) and the resource itself. In addition, using our effect system,
in most cases, software developers and security analysts are able to determine authority of
a module by looking only at its interface, not needing to examine its code.

• The application of our module-system and effect-system designs to a number of com-
mon software-development patterns and forms of security reasoning. In each case, we
illustrated the ability of our designs to express and enforce various security and software-
architecture constraints about the software system under development.

• The formalization of our effect system, which includes the definition of authority safety
and the proof of our programming language being authority safe. We also, for the first
time, provided a formal definition of a common object-capability pattern of authority at-
tenuation [48], allowing its inclusion in formal reasoning about a software application’s
security.

• The implementation of the designed module system and effect system in Wyvern, a stat-
ically typed, capability-safe, object-oriented programming language [52], demonstrating
the feasibility and practicality of the proposed approach.

• A case study based on the implementation in Wyvern of an extensible text-editor applica-
tion and plugins for it. The application is able to perform the basic text-editing function-
ality and serves as an example of how our module-system and effect-system designs serve
to express and verify security constraints in a Wyvern application.

5.2 Future Work

There are several ways in which the work presented in this dissertation could be extended:
• Controlling system-resource use in a large software system is tedious, time consuming,

and error prone. To help a software developer or a security analyst in this task, we could
develop a tool that would extract relevant information from module interfaces, perform
an analysis of capabilities and effect annotations in them, and automatically display that
information in a convenient format. For example, such a tool could automatically identify
instances of the authority-attenuation patterns, similar to those described in Sections 3.3.4
and 3.5.3, and manually identified in Section 4.2.3.

• As described in Section 4.2.3, currently, Wyvern’s compiler is able to give errors when a
method effect annotation is missing. We could further extend the compiler to perform a
full inference of effect annotations, which would help software developers in annotating a
large software system or gradually annotating previously unannotated code.

• To enrich the expressiveness of Wyvern’s effects, building on the subtyping rules described
in Section 3.4.7, we could develop a more elaborate effect subtyping. For example, we
could create a subtyping mechanism using which it would be possible to express that one

75

effect is equivalent to another without having to provide a definition for the former one and
allow substituting the latter effect for the former one.

• As was discussed in Section 4.2.3, there is a challenge in maintaining the desired level
of security in a Wyvern application while relying on non-capability-based backend. To
protect Wyvern applications more in-depth, we could reimplement the key pieces of the
backend in Wyvern or reinforce the layer between Wyvern and the current backend lan-
guages:

For Java, we could compile the Wyvern code that interoperates with the backend Java
code into bytecode with appropriately set Java-Security-Manager restrictions [56],
and
For JavaScript, we could compile the Wyvern code that interoperates with the back-
end JavaScript code into Secure EcmaScript [2].

• To account for changes during the program execution more precisely, we could add a
run-time notion of effects to Wyvern’s dynamic semantics (the version presented in Sec-
tion 3.4.6), e.g., using the most simplistic one [69].

• In this dissertation, we analyzed the application of our module-system and effect-system
designs only to the security domain. However, historically, capabilities, module sys-
tems, and effect systems were used in various other domains and for various software-
engineering concerns. It would be interesting and valuable to explore how our programming-
language designs perform in other domains, e.g., concurrency and memory management,
and accommodate other software-engineering concerns, e.g., modularity, integrity, reusabil-
ity, and code maintainability.

76

Appendix A

Capability-Safe Module System

A.1 Type Soundness

A.1.1 Preservation

Lemma 1 (Preservation of types under substitution). If Γ, z : τ ′ | Σ `e′′ e : τ and Γ | Σ `e′′ e′ : τ ′,
then Γ | Σ `e′′ [e′/z]e : τ . Furthermore, if Γ, z : τ ′ | Σ `x′s d : σ and Γ | Σ `x′ e′ : τ ′, then
Γ | Σ `x′s [e′/z]d : σ.

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ ′ | Σ `e′′ e : τ and
Γ, z : τ ′ | Σ `x′s d : σ. For a given derivation, we proceed by cases on the final typing rule used
in the derivation:

Case T-VAR: e = x, and by inversion on T-VAR, we get x : τ ∈ (Γ, z : τ ′). There are two sub-
cases to consider, depending on whether x is z or another variable. If x = z, then [e′/z]x = e′.
The required result is then Γ | Σ `e′′ e′ : τ ′, which is among the assumptions of the lemma.
Otherwise, [e′/z]x = x, and the desired result is immediate.

Case T-NEW: e = news(x⇒ d), and by inversion on T-NEW, we get Γ, x : {σ}s | Σ `xs d : σ.
By the induction hypothesis, x : {σ}s | Σ `xs [e′/z]d : σ. Then, by T-NEW,
Γ | Σ `e′′ news(x⇒ [e′/z]d) : {σ}s, i.e., Γ | Σ `e′′ [e′/z](news(x⇒ d)) : {σ}s.

Case T-METHOD: e = e1.m(e2), and by inversion on T-METHOD, we get
Γ, z : τ ′ | Σ `e′′ e1 : {σ}s; def m(x : τ2) : τ1 ∈ σ; and Γ, z : τ ′ | Σ `e′′ e2 : τ2. By the in-
duction hypothesis, Γ | Σ `e′′ [e′/z]e1 : {σ}s and Γ | Σ `e′′ [e′/z]e2 : τ2. Then, by T-METHOD,
Γ | Σ `e′′ [e′/z]e1.m([e′/z]e2) : τ1, i.e., Γ | Σ `e′′ [e′/z](e1.m(e2)) : τ1.

Case T-FIELD: e = e1.f , and by inversion on T-FIELD, we get Γ, z : τ ′ | Σ `e1 e1 : {σ}s and
var f : τ ∈ σ. By the induction hypothesis, Γ | Σ `e1 [e′/z]e1 : {σ}s. Then, by T-FIELD,
Γ | Σ `e1 ([e′/z]e1).f : τ , i.e., Γ | Σ `e1 [e′/z](e1.f) : τ .

77

Case T-ASSIGN: e = (e1.f = e2), and by inversion on T-ASSIGN, we get
Γ, z : τ ′ | Σ `e1 e1 : {σ}s; var f : τ ∈ σ, and Γ, z : τ ′ | Σ `e1 e2 : τ . By the induction hypoth-
esis, Γ | Σ `e1 [e′/z]e1 : {σ}s and Γ | Σ `e1 [e′/z]e2 : τ . Then, by T-ASSIGN,
Γ | Σ `e1 [e′/z]e1.f = [e′/z]e2 : τ , i.e., Γ | Σ `e1 [e′/z](e1.f = e2) : τ .

Case T-BIND: e = bind x = e1 in e2 : τ2, and [e′/z](bind x = e1 in e2) =
bind x = [e′/z]e1 in e2. By inversion on T-BIND, we get Γ, z : τ ′ | Σ `e′′ e1 : τ1, and by
the IH, Γ | Σ `e′′ [e′/z]e1 : τ1. Then, by T-BIND, Γ | Σ `e′′ bind x = [e′/z]e1 in e2 : τ2, i.e.,
Γ | Σ `e′′ [e′/z](bind x = e1 in e2) : τ2.

Case T-LOC: e = l, [e′/z]l = l, and the desired result is immediate.

Case T-STACKFRAME: e = l1.m(l2) B e1, and by inversion on T-STACKFRAME, we get
Γ, z : τ ′ | Σ `e′′ l1 : {σ}s; defm(x : τ2) : τ1 ∈ σ; Γ, z : τ ′ | Σ `e′′ l2 : τ2; and
Γ, l2 : τ2, z : τ ′ | Σ `l1 e1 : τ1. Locations are not affected by the substitution, and by the induc-
tion hypothesis, Γ, l2 : τ2 | Σ `e

′′
[e′/z]e1 : τ1. Then, by T-STACKFRAME,

Γ | Σ `e′′ l1.m(l2) B [e′/z]e1 : τ1, i.e., Γ | Σ `e′′ [e′/z](l1.m(l2) B e1) : τ1.

Case T-SUB: e = e1, and by inversion on T-SUB, we get Γ, z : τ ′ | Σ `e′′ e1 : τ1 and τ1 <: τ2.
By the induction hypothesis, Γ | Σ `e′′ [e′/z]e1 : τ1 and τ1 <: τ2. Then, by T-SUB,
Γ | Σ `e′′ [e′/z]e1 : τ2.

Case DT-DECLS: By inversion on T-DECLS, we get ∀j, dj ∈ d, σj ∈ σ, Γ, z : τ ′ | Σ `x′s dj : σj .
By the IH, ∀j, dj ∈ d, σj ∈ σ, Γ | Σ `x′s [e′/z]dj : σj . Then, by T-DECLS, Γ | Σ `x′s [e′/z]d : σ.

Case DT-DEFPURE: d = defm(y : τ1) : τ2 = e. There are two subcases depending on whether
z is in Γpure or not.

Subcase z ∈ Γpure: By inversion on DT-DEFPURE, we get
Γresource = {x : {σ}resource | x : {σ}resource ∈ Γ}; Γpure = Γ \ Γresource; and
Γpure, y : τ1 | Σ `x

′
e : τ2, and the desired result is immediate.

Subcase z 6∈ Γpure: By inversion on DT-DEFPURE, we get
Γresource = {x : {σ}resource | x : {σ}resource ∈ Γ}; Γpure = Γ \ Γresource; and
Γpure, y : τ1, z : τ ′ | Σ `x′ e : τ2. By the IH, Γpure, y : τ1 | Σ `x

′
[e′/z]e : τ2. Then, by

DT-DEFPURE, Γ | Σ `x′pure defm(y : τ1) : τ2 = [e′/z]e : defm(y : τ1) : τ2, i.e.,
Γ | Σ `x′pure [e′/z](defm(y : τ1) : τ2 = e) : defm(y : τ1) : τ2.

Thus, in both cases, the type of d is preserved under substitution.

Case DT-DEFRESOURCE: d = defm(x : τ1) : τ2 = e, and by inversion on DT-DEFRESOURCE,
we get Γ, x : τ1, z : τ ′ | Σ `x′ e : τ2. By the induction hypothesis, Γ, x : τ1 | Σ `x

′
[e′/z]e : τ2.

Then, by DT-DEFRESOURCE, Γ | Σ `x′resource defm(x : τ1) : τ2 = [e′/z]e : defm(x : τ1) : τ2,
i.e., Γ | Σ `x′resource [e′/z](defm(x : τ1) : τ2 = e) : defm(x : τ1) : τ2.

Case DT-VARX: d = var f : τ = x, and by inversion on DT-VARX, we get

78

Γ, z : τ ′ | Σ `x′ x : τ . There are two subcases to consider, depending on whether x is z or
another variable. If x = z, then Γ, z : τ ′ | Σ `x′ [e′/z]x : τ yields Γ, z : τ ′ | Σ `x′ e′ : τ and
τ = τ ′. Thus, Γ | Σ `x′resource var f : τ = e′ : var f : τ as required. If x 6= z, then
Γ, z : τ ′ | Σ `x′ [e′/z]x : τ yields Γ, z : τ ′ | Σ `x′ x : τ , and the desired result is immedi-
ate.

Case DT-VARL: d = var f : τ = l, i.e., the field is resolved to a location l. This is not affected
by the substitution, and the desired result is immediate.

Thus, substituting terms in a well-typed expression preserves the typing.

Theorem 1 (Preservation). If Γ | Σ `e′′ e : τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then ∃Σ′ ⊇ Σ,
µ′ : Σ′, and Γ | Σ′ `e′′ e′ : τ .

Proof. The proof is by induction on a derivation of Γ | Σ `e′′ e : τ . At each step of the induction,
we assume that the desired property holds for all subderivations and proceed by case analysis on
the final rule in the derivation. Since we assumed 〈e | µ〉 −→ 〈e′ | µ′〉 and there are no evaluation
rules corresponding to variables or locations, the cases when e is a variable (T-VAR) or a location
(T-LOC) cannot arise. For the other cases, we argue as follows:

Case T-NEW: e = news(x ⇒ d), and by inversion on T-NEW, we get Γ, x : {σ}s | Σ `xs d : σ.
The store changes from µ to µ′ = µ, l 7→ {x⇒ d}s, i.e., the new store is the old store augmented
with a new mapping for the location l, which was not in the old store. From the premise of the
theorem, we know that µ : Σ, and by the induction hypothesis, all expressions of Γ are properly
allocated in Σ. Then, by T-STORE, we have µ, l 7→ {x⇒ d}s : Σ, l : {σ}s, which implies that
Σ′ = Σ, l : {σ}s. Finally, by T-LOC, Γ | Σ ` l : {σ}s. Thus, the right-hand side is well typed.

Case T-METHOD: e = e1.m(e2), and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and
〈e2 | µ〉 −→ 〈e′2 | µ′〉. Then, the result follows from the induction hypothesis and T-METHOD.

Subcase E-METHOD: In this case, both e1 and e2 are values, namely locations l1 and l2 re-
spectively. Then, by inversion on T-METHOD, we get that Γ | Σ `e′′ l1 : {σ}s;
def m(x : τ2) : τ1 ∈ σ; and Γ | Σ `e′′ l2 : τ2. The store µ does not change, and since T-STORE

has been applied throughout, the store is well typed, and thus,
Γ | Σ `e′′s def m(l2 : τ2) : τ1 = e : def m(x : τ2) : τ1. Then, by inversion on both
DT-DEFPURE and DT-DEFRESOURCE, we know that Γ, l2 : τ2 | Σ `e

′′
e : τ1, and by

T-STACKFRAME, we have Γ, l2 : τ2 | Σ `e′′ l1.m(l2) B e : τ1. Finally, by the preservation
under subsumption lemma, substituting locations for variables in e preserve its type, and there-
fore, the right-hand side is well typed.

Case T-FIELD: e = e1.f , and by the definition of the evaluation relation, there are two subcases:
Subcase E-CONGRUENCE: In this case, 〈e1 | µ〉 −→ 〈e′1 | µ′〉, and the result follows from

the induction hypothesis and T-FIELD.

79

Subcase E-FIELD: In this case, e1 is a value, i.e., a location l. Then, by inversion on T-FIELD,
we have Γ | Σ `l l : {σ}s and var f : τ ∈ σ. The store µ does not change, and since T-STORE

has been applied throughout, the store is well typed, and thus,
Γ | Σ `ls var f : τ = l1 : var f : τ . Then, by inversion on DT-VARL, we know that
Γ | Σ `l l1 : τ , and the right-hand side is well typed.

Case T-ASSIGN: e = (e1.f = e2), and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and
〈e2 | µ〉 −→ 〈e′2 | µ′〉. Then, the result follows from the induction hypothesis and T-ASSIGN.

Subcase E-ASSIGN: In this case, both e1 and e2 are values, namely locations l1 and l2 re-
spectively. Then, by inversion on T-ASSIGN, we get that Γ | Σ `l1 l1 : {σ}s, var f : τ ∈ σ, and
Γ | Σ `l1 l2 : τ . The store changes as follows: µ′ = [l1 7→ {x⇒ d

′}s/l1 7→ {x⇒ d}s]µ, where
d
′

= [var f : τ = l2/var f : τ = l]d. However, since T-STORE has been applied throughout
and the substituted location has the type expected by T-STORE, the new store is well typed (as
well as the old store), and thus, Γ | Σ `l1s var f : τ = l2 : var f : τ . Then, by inversion on
DT-VARL, we know that Γ | Σ `l1 l2 : τ , and the right-hand side is well typed.

Case T-BIND: e = bind x = e1 in e2, and by the definition of the evaluation relation, there are
two subcases:

Subcase E-CONGRUENCE: In this case, 〈e1 | µ〉 −→ 〈e′1 | µ′〉, and the result follows from
the induction hypothesis and T-BIND.

Subcase E-BIND: In this case, e1 are values, namely locations l1, and the result follows di-
rectly from the inversion on T-BIND and the preservation of types under substitution lemma.

Case T-STACKFRAME: e = l.m(l1) B e2, and by the definition of the evaluation relation, there
are two subcases:

Subcase E-CONGRUENCE: In this case, 〈e | µ〉 −→ 〈e′ | µ′〉, and the result follows from the
induction hypothesis and T-STACKFRAME.

Subcase E-STACKFRAME: In this case, e2 is a value, i.e., a location l2, and the result follows
directly from the inversion on T-STACKFRAME.

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language is always well typed.

A.1.2 Progress
Theorem 2 (Progress). If ∅ | Σ `e′′ e : τ (i.e., e is a closed, well-typed expression), then either

1. e is a value (i.e., a location) or
2. ∀µ such that µ : Σ, ∃e′, µ′ such that 〈e | µ〉 −→ 〈e′ | µ′〉.

Proof. The proof is by induction on the derivation of Γ | Σ `e′′ e : τ , with a case analysis on the
last typing rule used. The case when e is a variable (T-VAR) cannot occur, and the case when e

80

is a location (T-LOC) is immediate, since in that case e is a value. For the other cases, we argue
as follows:

Case T-NEW: e = news(x ⇒ d), and by E-NEW, e can make a step of evaluation if there is
a location available that is not in the current store µ. There are infinitely many available new
locations, and therefore, e indeed can take a step and become a value (i.e., a location l). Then,
the new store µ′ is µ, l 7→ {x⇒ d}s, and all the declarations in d are mapped in the new store.

Case T-METHOD: e = e1.m(e2), and by the induction hypothesis applied to Γ | Σ `e′′ e1 : {σ}s,
either e1 is a value or else it can make a step of evaluation, and, similarly, by the induction
hypothesis applied to Γ |Σ `e′′ e2 : τ2, either e2 is a value or else it can make a step of evaluation.
Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take
a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and l2 re-
spectively, then by inversion on T-METHOD, we have Γ | Σ `e′′ l1 : {σ}s and
def m(y : τ2) : τ1 ∈ σ. By inversion on T-LOC, we know that the store contains an appropriate
mapping for the location l1, and since T-STORE has been applied throughout, the store is well
typed and l1 7→ {x⇒ d}s ∈ µ with defm(y : τ1) : τ2 = e ∈ d. Therefore, the rule E-METHOD

applies to e, e can take a step, and µ′ = µ.

Case T-FIELD: e = e1.f , and by the induction hypothesis, either e1 can make a step of evaluation
or it is a value. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉: If e1 can take a step, then rule E-CONGRUENCE applies to e,
and e can take a step.

Subcase e1 is a value: If e1 is a value, i.e., a location l, then by inversion on T-FIELD, we
have Γ | Σ `l l : {σ}s and var f : τ ∈ σ. By inversion on T-LOC, we know that the store con-
tains an appropriate mapping for the location l, and since T-STORE has been applied throughout,
the store is well typed and l 7→ {x ⇒ d}s ∈ µ with var f : τ = l1 ∈ d. Therefore, the rule
E-FIELD applies to e, e can take a step, and µ′ = µ.

Case T-ASSIGN: e = (e1.f = e2), and by the induction hypothesis, either e1 is a value or else it
can make a step of evaluation, and likewise e2. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take
a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and l2
respectively, then by inversion on T-ASSIGN, we have Γ | Σ `l1 l1 : {σ}s, var f : τ ∈ σ, and
Γ | Σ `l1 l2 : τ . By inversion on T-LOC, we know that the store contains an appropriate mapping
for the locations l1 and l2, and since T-STORE has been applied throughout, the store is well
typed and l1 7→ {x⇒ d}s ∈ µ with var f : τ = l ∈ d. A new well-typed store can be created as
follows: µ′ = [l1 7→ {x⇒ d

′}s/l1 7→ {x⇒ d}s]µ, where d
′
= [var f : τ = l2/var f : τ = l]d.

81

Then, the rule E-ASSIGN applies to e, and e can take a step.

Case T-BIND: e = bind x = e1 in e2, and by the induction hypothesis, either e1 can make a
step of evaluation or it is a value. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉: If e1 can take a step, then rule E-CONGRUENCE applies to e,
and e can take a step.

Subcase e1 is a value: If e1 are values, i.e., locations l1, the rule E-BIND applies, and e can
take a step.

Case T-STACKFRAME: e = l.m(l1) B e2, and by the induction hypothesis, either e2 can make a
step of evaluation or it is a value. Then, there are two subcases:

Subcase 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e2 can take a step, then rule E-CONGRUENCE applies to e,
and e can take a step.

Subcase e2 is a value: If e2 is a value, i.e., a location l2, the rule E-STACKFRAME applies,
and e can take a step.

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language never gets stuck.

A.2 Capability Safety

A.2.1 Capabilities-Related Properties
Property 3. The runtime expression forms l and l.m(l)B e do not appear in the program source
code.

Proof. This property is enforced by the syntactic check of the source code of a program.

Property 4. Method-call stack frames (l.m(l) B e) do not appear in method definitions and the
bodies of the bind constructs.

Proof. The proof is by induction over execution steps.
Base case: By Property 3, there are no method-call stack frames in the program source code.
Inductive case: The absence of method-call stack frames in the method definitions and the bodies
of the bind constructs is maintained by all evaluation rules. Cases of E-METHOD and E-BIND

involve substitution; however, substituted expression is a value (location), and thus, substitution
preserves the property.

Property 5. Object fields are private to the objects they belong to and access to them can occur
only inside methods of the objects to which they belong.

Proof. The typing rules contain information about what object is (or will be, in case of an object
creation) the receiver of the enclosing method. Then, from the T-FIELD and T-ASSIGN rules,
it can be seen that, for a field access to occur, the receiver must be the object to which the field
belongs.

82

A.2.2 subexps Rules

subexps(E)

subexps([]) = ∅ (SUBEXPS-EMPTY)
subexps(E.m(e)) = {e} ∪ subexps(E) (SUBEXPS-METHOD1)
subexps(l.m(E)) = {l} ∪ subexps(E) (SUBEXPS-METHOD2)

subexps(E.f) = subexps(E) (SUBEXPS-FIELD)
subexps(E.f = e) = {e} ∪ subexps(E) (SUBEXPS-ASSIGN1)
subexps(l.f = E) = {l} ∪ subexps(E) (SUBEXPS-ASSIGN2)

subexps(bind x = E in e) = {e} ∪ subexps(E) (SUBEXPS-BIND)
subexps(l.m(l′) B E) = {l, l′} ∪ subexps(E) (SUBEXPS-STACKFRAME)

A.2.3 Lemmas

Lemma 2. If l.m(l′) B E ′ 6∈ E, then

pointsto(E[e], µ) = pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ).

Proof. The proof is by induction on E.
Case E = []: E[e] = e

pointsto(E[e], µ) = pointsto(e, µ)

= pointsto(e, µ) ∪
⋃

e′∈subexps([])

pointsto(e′, µ) (SUBEXPS-EMPTY)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ)

Case E = E ′.m(e′′): E[e] = E ′[e].m(e′′)

subexps(E) = subexps(E ′.m(e′′)) = {e′′} ∪ subexps(E ′) (SUBEXPS-METHOD1) [1]

pointsto(E[e], µ) = pointsto(E ′[e].m(e′′), µ)

= pointsto(E ′[e], µ) ∪ pointsto(e′′, µ) (POINTSTO-METHOD)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E′)

pointsto(e′, µ) ∪ pointsto(e′′, µ) (by IH)

= pointsto(e, µ) ∪
⋃

e′∈{e′′}∪subexps(E′)

pointsto(e′, µ)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ) (by [1])

Case E = l.m(E ′): E[e] = l.m(E ′[e])

83

subexps(E) = subexps(l.m(E ′)) = {l} ∪ subexps(E ′) (SUBEXPS-METHOD2) [2]

pointsto(E[e], µ) = pointsto(l.m(E ′[e]), µ)

= pointsto(l, µ) ∪ pointsto(E ′[e], µ) (POINTSTO-METHOD)

= pointsto(l, µ) ∪ pointsto(e, µ) ∪
⋃

e′∈subexps(E′)

pointsto(e′, µ) (by IH)

= pointsto(e, µ) ∪
⋃

e′∈{l}∪subexps(E′)

pointsto(e′, µ)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ) (by [2])

Case E = E ′.f : E[e] = E ′[e].f

subexps(E) = subexps(E ′.f) = subexps(E ′) (SUBEXPS-FIELD) [3]

pointsto(E[e], µ) = pointsto(E ′[e].f, µ) = pointsto(E ′[e], µ) (POINTSTO-FIELD)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E′)

pointsto(e′, µ) (by IH)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ) (by [3])

Case E = (E ′.f = e′′): E[e] = (E ′[e].f = e′′)

subexps(E) = subexps(E ′.f = e′′) = {e′′} ∪ subexps(E ′) (SUBEXPS-ASSIGN1) [4]

pointsto(E[e], µ) = pointsto(E ′[e].f = e′′, µ)

= pointsto(E ′[e], µ) ∪ pointsto(e′′, µ) (POINTSTO-ASSIGN)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E′)

pointsto(e′, µ) ∪ pointsto(e′′, µ) (by IH)

= pointsto(e, µ) ∪
⋃

e′∈{e′′}∪subexps(E′)

pointsto(e′, µ)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ) (by [4])

Case E = (l.f = E ′): E[e] = (l.f = E ′[e])

subexps(E) = subexps(l.f = E ′) = {l} ∪ subexps(E ′) (SUBEXPS-ASSIGN2) [5]

pointsto(E[e], µ) = pointsto(l.f = E ′[e], µ)

= pointsto(l, µ) ∪ pointsto(E ′[e], µ) (POINTSTO-ASSIGN)

= pointsto(l, µ) ∪ pointsto(e, µ) ∪
⋃

e′∈subexps(E′)

pointsto(e′, µ) (by IH)

= pointsto(e, µ) ∪
⋃

e′∈{l}∪subexps(E′)

pointsto(e′, µ)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ) (by [5])

84

Case E = (bind x = E ′ in e′′): E[e] = (bind x = E ′[e] in e′′)

subexps(E) = subexps(bind x = E ′ in e′′)

= {e′′} ∪ subexps(E ′) (SUBEXPS-BIND) [6]

pointsto(E[e], µ) = pointsto(bind x = E ′[e] in e′′, µ)

= pointsto(E ′[e], µ) ∪ pointsto(e′′, µ) (POINTSTO-BIND)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E′)

pointsto(e′, µ) ∪ pointsto(e′′, µ) (by IH)

= pointsto(e, µ) ∪
⋃

e′∈{e′′}∪subexps(E′)

pointsto(e′, µ)

= pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ) (by [6])

Case E = l.m(l′) B E ′: This case cannot happen as it contradicts the precondition that
l.m(l′) B E ′ 6∈ E.

Thus, for all E, if l.m(l′) B E ′ 6∈ E, then

pointsto(E[e], µ) = pointsto(e, µ) ∪
⋃

e′∈subexps(E)

pointsto(e′, µ).

Lemma 3. If
1. for 1 ≤ i ≤ k, l.m(l′) BE 6∈ Ei [no method-call stack frames in Ei]
2. for 1 ≤ i ≤ k, li 7→ {x⇒ di}pure ∈ µ [callers in all method-call stack frames are pure]

then pointsto(Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

=
k⋃

i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ pointsto(e, µ).

Proof. The proof is by induction on the number of method-call stack frames preceding e on the
stack.
Base case: k = 1
pointsto(E1[l1.m1(l

′
1) B e], µ)

=
⋃

e′∈subexps(E1)

pointsto(e′, µ) ∪ pointsto(e, µ) (Lemma 2, POINTSTO-CALL-PURE)

=
1⋃

i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ pointsto(e, µ)

Inductive case: k > 1
pointsto(Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

85

=
⋃

e′∈subexps(Ek)

pointsto(e′, µ) (Lemma 2, POINTSTO-CALL-PURE)

∪ pointsto(Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

=
⋃

e′∈subexps(Ek)

pointsto(e′, µ) ∪
⋃

e′∈subexps(Ek−1)

pointsto(e′, µ)

∪ pointsto(Ek−2[lk−2.mk−2(l
′
k−2) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

(Lemma 2, POINTSTO-CALL-PURE)

=
k⋃

i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ pointsto(e, µ)

((Lemma 2, POINTSTO-CALL-PURE)× (k − 2))

Lemma 4. If
1. for 1 ≤ i ≤ k, l.m(l′) BE 6∈ Ei [no method-call stack frames in Ei]
2. ∃j, such that 1 ≤ j ≤ k, lj 7→ {x⇒ dj}resource ∈ µ

[there is at least one method-call stack frame that has a principal caller]
then pointsto(Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

=
k⋃

i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp},

where 1 ≤ p ≤ k and p is the greatest index, such that lp 7→ {x⇒ dp}resource ∈ µ.
[lp is the first (furthest from e) principal method caller on the stack]

Proof. The proof is by induction on the number of method-call stack frames preceding e on the
stack.
Base case: k = 1, and since l1 is the only method-call stack frame, l1 7→ {x ⇒ d1}resource ∈ µ
and p = 1.
pointsto(E1[l1.m1(l

′
1) B e], µ)

=
⋃

e′∈subexps(E1)

pointsto(e′, µ) ∪ {l1} (Lemma 2, POINTSTO-CALL-PRINCIPAL)

=
1⋃

i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {l1}

Inductive case: k > 1
pointsto(Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

86

=
⋃

e′∈subexps(Ek)

pointsto(e′, µ) (Lemma 2, POINTSTO-CALL-PURE)

∪ pointsto(Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

=
⋃

e′∈subexps(Ek)

pointsto(e′, µ) ∪
⋃

e′∈subexps(Ek−1)

pointsto(e′, µ)

∪ pointsto(Ek−2[lk−2.mk−2(l
′
k−2) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

(Lemma 2, POINTSTO-CALL-PURE)

=
k⋃

i=p+1

⋃
e′∈subexps(Ei)

pointsto(e′, µ)

∪ pointsto(Ep[lp.mp(l
′
p) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

((Lemma 2, POINTSTO-CALL-PURE)× (k − p− 2))

=
k⋃

i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp}

(Lemma 2, POINTSTO-CALL-PRINCIPAL)

Lemma 5. If l.m(l′) B E ′ 6∈ E, then capstack(l, E[e], µ) = capstack(l, e, µ).

Proof. Depending on whether l.m(l′) B E ′ ∈ e or not, there are two possibilities.
Case l.m(l′) B E ′ ∈ e: e = E ′′[l.m(l′) B e′], where l.m(l′) B E ′ 6∈ E ′′, and
E[e] = E ′′′[l.m(l′) B e′], where E ′′′ = E[E ′′] and l.m(l′) B E ′ 6∈ E ′′′.

capstack(l, E[e], µ) = capstack(l, E ′′′[l.m(l′) B e′], µ)

= pointsto(e′, µ) ∪ capstack(l, e′, µ) (CAP-STACK)

capstack(l, e, µ) = capstack(l, E ′′[l.m(l′) B e′], µ)

= pointsto(e′, µ) ∪ capstack(l, e′, µ) (CAP-STACK)

Case l.m(l′) B E ′ 6∈ e: l.m(l′) B E ′ 6∈ E[e].

capstack(l, E[e], µ) = ∅ (CAP-STACK-NOCALL)

capstack(l, e, µ) = ∅ (CAP-STACK-NOCALL)

Thus, capstack(l, E[e], µ) = capstack(l, e, µ).

Lemma 6. If
1. for 1 ≤ i ≤ k, l′.m(l′′) BE 6∈ Ei [no method-call stack frames in Ei]
2. l 7→ {x⇒ d}resource ∈ µ [l is a principal]
3. ∀i, such that li = l, i ∈ {q1, q2, . . . , qr1}, where 0 ≤ r1 ≤ k

[the set of indices of all method-call stack frames where l is the caller; this set can be
empty]

4. ∀i ∈ {q1, q2, . . . , qr1}, if ∃j, such that

87

(a) lj 7→ {x⇒ dj}resource ∈ µ and [lj is a principal]
(b) ∀t, such that i > t > j and lt 7→ {x⇒ dt}pure ∈ µ

[all receivers between li and lj are pure]
j ∈ {p1, p2, . . . , pr2} where 0 ≤ r2 ≤ r1
[the maximal set of indices of principal callers immediately after method-call stack frames
where l is the caller; this set can be smaller than the one above only by one element; this
set can also be empty; such principals can be l itself]

then
capstack(l, Ek[lk.mk(l′k)BEk−1[lk−1.mk−1(l

′
k−1)B · · ·BE2[l2.m2(l

′
2)BE1[l1.m1(l

′
1)Be] . . .], µ)

=

⋃
(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

⋃q−1
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) if r2 < r1

∪
⋃

j∈{p1,p2,...,pr2}
{lj} ∪

⋃qr2+1−1
i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ)

∪pointsto(e, µ) ∪ capstack(l, e, µ)

⋃
(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

⋃q−1
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) if r2 = r1

∪
⋃

j∈{p1,p2,...,pr2}
{lj} ∪ capstack(l, e, µ)

[If r2 < r1, then there are only pure callers after the last method-call stack frame where l is the
caller. In other words, l was the last principal caller on the stack.
If r2 = r1, then the last method-call stack frame where l is the caller is followed by a method-call
stack frame with a principal caller that is not l. If r2 = r1 = 0, then there are no method-call
stack frames with principal callers on the stack.
Since the set in 4(b) can include indices of method-call stack frames where the caller is l, the
difference between r1 and r2 is at most 1, i.e., r2 ≤ r1 ≤ r2 + 1.]

Proof. The proof is by induction on the number of method-call stack frames preceding e on the
stack.

Base case: k = 1. Depending on the values of r1 and r2, there are two possibilities.
Case r2 < r1: r1 = 1, r2 = 0, l1 = l, q1 = 1, and 6 ∃p1.

capstack(l, E1[l1.m1(l
′
1) B e], µ) = pointsto(e, µ) ∪ capstack(l, e, µ) (CAP-STACK)

Case r2 = r1: r1 = r2 = 0, l1 6= l, and 6 ∃q1, p1.

capstack(l, E1[l1.m1(l
′
1) B e], µ) = capstack(l, e, µ) (Lemma 5)

Inductive case: k > 1
capstack(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

88

= capstack(l, lq1 .mq1(l
′
q1

) B Eq1−1[lq1−1.mq1−1(l
′
q1−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

(Lemma 5)

= pointsto(Eq1−1[lq1−1.mq1−1(l
′
q1−1) B Eq1−2[lq1−2.mq1−2(l

′
q1−2) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

∪ capstack(l, Eq1−1[lq1−1.mq1−1(l
′
q1−1) B Eq1−2[lq1−2.mq1−2(l

′
q1−2) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

(CAP-STACK)

=

q1−1⋃
i=p1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp1}

∪ capstack(l, Eq1−1[lq1−1.mq1−1(l
′
q1−1) B Eq1−2[lq1−2.mq1−2(l

′
q1−2) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

(Lemma 4)

=

q1−1⋃
i=p1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp1}

∪ capstack(l, lq2 .mq2(l
′
q2

) B Eq2−1[lq2−1.mq2−1(l
′
q2−1) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

(Lemma 5)

=

q1−1⋃
i=p1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp1}

∪ pointsto(Eq2−1[lq2−1.mq2−1(l
′
q2−1) B Eq2−2[lq2−2.mq2−2(l

′
q2−2) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

∪ capstack(l, Eq2−1[lq2−1.mq2−1(l
′
q2−1) B Eq2−2[lq2−2.mq2−2(l

′
q2−2) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

(CAP-STACK)

=

q1−1⋃
i=p1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp1} ∪
q2−1⋃
i=p2

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ {lp2}

∪ capstack(l, Eq2−1[lq2−1.mq2−1(l
′
q2−1) B Eq2−2[lq2−2.mq2−2(l

′
q2−2) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

(Lemma 4)

...

=
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

q−1⋃
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪
⋃

j∈{p1,p2,...,pr2}

{lj}

∪ capstack(l, Eqr2−1[lqr2−1.mqr2−1(l
′
qr2−1

) B · · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

89

Depending on the values of r1 and r2, there are two possibilities.
Case r2 < r1: There is no other resource callers after lqr2+1 , i.e.,
∀l0.m0(l

′
0) B E ′′′ ∈ Eqr2+1−1[lqr2+1−1.mqr2+1−1(l

′
qr2+1−1) B · · · B E1[l1.m1(l

′
1) B e] . . .],

l0 7→ {x⇒ d0}pure ∈ µ, which implies that there are also no method-call
stack frames with l as the caller after lqr2+1 , i.e.,
l1.m

′(l′′) B E ′′ 6∈ Eqr2+1−1[lqr2+1−1.mqr2+1−1(l
′
qr2+1−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .]. Then,

capstack(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

=
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

q−1⋃
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪
⋃

j∈{p1,p2,...,pr2}

{lj}

∪ capstack(l, lqr2+1 .mqr2+1(l
′
qr2+1

) B Eqr2+1−1[lqr2+1−1.mqr2+1−1(l
′
qr2+1−1) B . . .

· · ·B E1[l1.m1(l
′
1) B e] . . .], µ)

(Lemma 5)

=
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

q−1⋃
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪
⋃

j∈{p1,p2,...,pr2}

{lj}

∪ pointsto(Eqr2+1−1[lqr2+1−1.mqr2+1−1(l
′
qr2+1−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

∪ capstack(l, Eqr2+1−1[lqr2+1−1.mqr2+1−1(l
′
qr2+1−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

(CAP-STACK)

=
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

q−1⋃
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪
⋃

j∈{p1,p2,...,pr2}

{lj}

∪
qr2+1−1⋃

i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ pointsto(e, µ)

∪ capstack(l, Eqr2+1−1[lqr2+1−1.mqr2+1−1(l
′
qr2+1−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

(Lemma 3)

=
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

q−1⋃
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪
⋃

j∈{p1,p2,...,pr2}

{lj}

∪
qr2+1−1⋃

i=1

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪ pointsto(e, µ) ∪ capstack(l, e, µ)

(Lemma 5)

Case r2 = r1: There are no method-call stack frames with l as the caller after lqr2+1 , i.e.,
l.m′(l′′) B E ′′ 6∈ Eqr2−1[lqr2−1.mqr2−1(l

′
qr2−1

) B · · ·B E1[l1.m1(l
′
1) B e] . . .]

capstack(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l1.m1(l

′
1) B e] . . .], µ)

90

=
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}

q−1⋃
i=p

⋃
e′∈subexps(Ei)

pointsto(e′, µ) ∪
⋃

j∈{p1,p2,...,pr2}

{lj}

∪ capstack(l, e, µ)

(Lemma 5)

Lemma 7. If 〈E[e0] | µ〉 −→ 〈E[e′0] | µ′〉, then⋃
e∈subexps(E)

pointsto(e, µ′) =
⋃

e∈subexps(E)

pointsto(e, µ).

Proof. The proof is by induction on the subexps(E) rules.

Case SUBEXPS-EMPTY: Since the subexps(E) returns an empty set, the desired result is imme-
diate.

Case SUBEXPS-METHOD1:⋃
e∈subexps(E.m(e′′)) pointsto(e, µ) = pointsto(e′′, µ) ∪

⋃
e∈subexps(E) pointsto(e, µ), and similarly,⋃

e∈subexps(E.m(e′′)) pointsto(e, µ′) = pointsto(e′′, µ′) ∪
⋃

e∈subexps(E) pointsto(e, µ′).
Since we are considering small-step semantics and e′′ is evaluated only after E is fully evalu-

ated, there were no changes to e′′ at this evaluation steps, and pointsto(e′′, µ′) = pointsto(e′′, µ).
By the induction hypothesis,

⋃
e∈subexps(E) pointsto(e, µ′) =

⋃
e∈subexps(E) pointsto(e, µ).

Thus,
⋃

e∈subexps(E.m(e′′)) pointsto(e, µ′) =
⋃

e∈subexps(E.m(e′′)) pointsto(e, µ).

Case SUBEXPS-METHOD2:⋃
e∈subexps(l.m(E)) pointsto(e, µ) = pointsto(l, µ) ∪

⋃
e∈subexps(E) pointsto(e, µ), and similarly,⋃

e∈subexps(l.m(E)) pointsto(e, µ′) = pointsto(l, µ′) ∪
⋃

e∈subexps(E) pointsto(e, µ′).
By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointsto(l, µ′) = pointsto(l, µ). By the

induction hypothesis,
⋃

e∈subexps(E) pointsto(e, µ′) =
⋃

e∈subexps(E) pointsto(e, µ).
Thus,

⋃
e∈subexps(l.m(E)) pointsto(e, µ′) =

⋃
e∈subexps(l.m(E)) pointsto(e, µ).

Case SUBEXPS-FIELD:
⋃

e∈subexps(E.f) pointsto(e, µ) =
⋃

e∈subexps(E) pointsto(e, µ), and simi-
larly,

⋃
e∈subexps(E.f) pointsto(e, µ′) =

⋃
e∈subexps(E) pointsto(e, µ′). By the induction hypothesis,⋃

e∈subexps(E) pointsto(e, µ′) =
⋃

e∈subexps(E) pointsto(e, µ), and thus,⋃
e∈subexps(E.f) pointsto(e, µ′) =

⋃
e∈subexps(E.f) pointsto(e, µ).

Case SUBEXPS-ASSIGN1:⋃
e∈subexps(E.f=e′′) pointsto(e, µ) = pointsto(e′′, µ) ∪

⋃
e∈subexps(E) pointsto(e, µ), and similarly,⋃

e∈subexps(E.f=e′′) pointsto(e, µ′) = pointsto(e′′, µ′) ∪
⋃

e∈subexps(E) pointsto(e, µ′).
Since we are considering small-step semantics and e′′ is evaluated only after E is fully evalu-

ated, there were no changes to e′′ at this evaluation steps, and pointsto(e′′, µ′) = pointsto(e′′, µ).
By the induction hypothesis,

⋃
e∈subexps(E) pointsto(e, µ′) =

⋃
e∈subexps(E) pointsto(e, µ).

91

Thus,
⋃

e∈subexps(E.f=e′′) pointsto(e, µ′) =
⋃

e∈subexps(E.f=e′′) pointsto(e, µ).

Case SUBEXPS-BIND:⋃
e∈subexps(bind x=E in e′′) pointsto(e, µ) = pointsto(e′′, µ) ∪

⋃
e∈subexps(E) pointsto(e, µ) and⋃

e∈subexps(bind x=E in e′′) pointsto(e, µ′) = pointsto(e′′, µ′) ∪
⋃

e∈subexps(E) pointsto(e, µ′).
Since we are considering small-step semantics and e′′ is evaluated only after E is fully evalu-

ated, there were no changes to e′′ at this evaluation steps, and pointsto(e′′, µ′) = pointsto(e′′, µ).
By the induction hypothesis,

⋃
e∈subexps(E) pointsto(e, µ′) =

⋃
e∈subexps(E) pointsto(e, µ).

Thus,
⋃

e∈subexps(bind x=E in e′′) pointsto(e, µ′) =
⋃

e∈subexps(bind x=E in e′′) pointsto(e, µ).

Case SUBEXPS-ASSIGN2:⋃
e∈subexps(l.f=E) pointsto(e, µ) = pointsto(l, µ) ∪

⋃
e∈subexps(E) pointsto(e, µ), and similarly,⋃

e∈subexps(l.f=E) pointsto(e, µ′) = pointsto(l, µ′) ∪
⋃

e∈subexps(E) pointsto(e, µ′).
By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointsto(l, µ′) = pointsto(l, µ). By the

induction hypothesis,
⋃

e∈subexps(E) pointsto(e, µ′) =
⋃

e∈subexps(E) pointsto(e, µ).
Thus,

⋃
e∈subexps(l.f=E) pointsto(e, µ′) =

⋃
e∈subexps(l.f=E) pointsto(e, µ).

Case SUBEXPS-STACKFRAME:⋃
e∈subexps(l.m(l′)BE) pointsto(e, µ) = pointsto(l, µ)∪pointsto(l′, µ)∪

⋃
e∈subexps(E) pointsto(e, µ),

and similarly,
⋃

e∈subexps(l.m(l′)BE) pointsto(e, µ′) = pointsto(l, µ′) ∪ pointsto(l′, µ′)

∪
⋃

e∈subexps(E) pointsto(e, µ′).
By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointsto(l, µ′) = pointsto(l, µ) and

pointsto(l′, µ′) = pointsto(l′, µ). By the induction hypothesis,⋃
e∈subexps(E) pointsto(e, µ′) =

⋃
e∈subexps(E) pointsto(e, µ).

Thus,
⋃

e∈subexps(l.m(l′)BE) pointsto(e, µ′) =
⋃

e∈subexps(l.m(l′)BE) pointsto(e, µ).

Lemma 8. If
1. 〈e | µ〉 −→ 〈e′ | µ′〉 [e can make a step of evaluation]
2. for 1 ≤ i ≤ k, l′.m(l′′)BE 6∈ Ei [no method-call stack frames in Ei]
3. l 7→ {x⇒ d}resource ∈ µ [l is a principal]
4. ∀i, such that li = l, i ∈ {q1, q2, . . . , qr1}, where 0 ≤ r1 ≤ k

[the set of indices of all method-call stack frames where l is the caller; this set can be
empty]

5. ∀i ∈ {q1, q2, . . . , qr1}, if ∃j, such that
(a) lj 7→ {x⇒ dj}resource ∈ µ and [lj is a principal]
(b) ∀t, such that i > t > j and lt 7→ {x⇒ dt}pure ∈ µ

[all callers between li and lj are pure]
j ∈ {p1, p2, . . . , pr2} where 0 ≤ r2 ≤ r1
[the maximal set of indices of principal callers immediately after method-call stack frames
where l is the caller; this set can be smaller than the one above only by one element; this
set can also be empty; such principals can be l itself]

then
cap(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E2[l2.m2(l

′
2) B E1[l1.m1(l

′
1) B e′] . . .], µ′)

92

\ cap(l, Ek[lk.mk(l′k)BEk−1[lk−1.mk−1(l
′
k−1)B · · ·BE2[l2.m2(l

′
2)BE1[l1.m1(l

′
1)B e] . . .], µ)

=

capstore(l, µ

′) ∪ pointsto(e′, µ′) ∪ capstack(l, e′, µ′) if r2 < r1

\ capstore(l, µ) ∪ pointsto(e, µ) ∪ capstack(l, e, µ)

capstore(l, µ
′) ∪ capstack(l, e′, µ′) if r2 = r1

\ capstore(l, µ) ∪ capstack(l, e, µ)

[If r2 < r1, then there are only pure callers after the last method-call stack frame where l is the
caller. In other words, l was the last principal caller on the stack.
If r2 = r1, then the last method-call stack frame where l is the caller is followed by a method-call
stack frame with a principal caller that is not l. If r2 = r1 = 0, then there are no method-call
stack frames with principal callers on the stack.
Since the set in 5(b) can include indices of method-call stack frames where the caller is l, the
difference between r1 and r2 is at most 1, i.e., r2 ≤ r1 ≤ r2 + 1.]

Proof. The proof is by induction on the number of method-call stack frames preceding e and e′

on the stack.

Base case: k = 1. Depending on the values of r1 and r2, there are two possibilities.
Case r2 < r1: r1 = 1, r2 = 0, l1 = l, q1 = 1, and 6 ∃p1.
cap(l, E1[l1.m1(l

′
1) B e], µ)

= capstore(l, µ) ∪ capstack(l, E1[l1.m1(l
′
1) B e], µ) (CAP-CONFIG)

= capstore(l, µ) ∪ pointsto(e, µ) ∪ capstack(l, e, µ) (CAP-STACK)

Similarly, cap(l, E1[l1.m1(l
′
1) B e′], µ′) = capstore(l, µ

′) ∪ pointsto(e′, µ′) ∪ capstack(l, e′, µ′).
Then, cap(l, E1[l1.m1(l

′
1) B e′], µ′) \ cap(l, E1[l1.m1(l

′
1) B e], µ)

= capstore(l, µ
′) ∪ pointsto(e′, µ′) ∪ capstack(l, e′, µ′)

\ capstore(l, µ) ∪ pointsto(e, µ) ∪ capstack(l, e, µ)

Case r2 = r1: r1 = r2 = 0, l1 6= l, and 6 ∃q1, p1.
cap(l, E1[l1.m1(l

′
1) B e], µ)

= capstore(l, µ) ∪ capstack(l, E1[l1.m1(l
′
1) B e], µ) (CAP-CONFIG)

= capstore(l, µ) ∪ capstack(l, e, µ) (Lemma 5)

Similarly, cap(l, E1[l1.m1(l
′
1) B e′], µ′) = capstore(l, µ

′) ∪ capstack(l, e′, µ′). Then,
cap(l, E1[l1.m1(l

′
1) B e′], µ′) \ cap(l, E1[l1.m1(l

′
1) B e], µ)

= capstore(l, µ
′) ∪ capstack(l, e′, µ′) \ capstore(l, µ) ∪ capstack(l, e, µ)

Inductive case: k > 1
cap(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E1[l.m1(l

′
1) B e] . . .], µ)

93

= capstore(l, µ) ∪ capstack(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B . . .

· · ·B E1[l.m1(l
′
1) B e] . . .], µ)

(CAP-CONFIG)

=

capstore(l, µ) if r2 < r1

∪
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}
⋃q−1

i=p

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ)

∪
⋃

j∈{p1,p2,...,pr2}
{lj} ∪

⋃qr2+1−1
i=1

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ)

∪pointsto(e, µ) ∪ capstack(l, e, µ)

capstore(l, µ) if r2 = r1

∪
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}
⋃q−1

i=p

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ)

∪
⋃

j∈{p1,p2,...,pr2}
{lj} ∪ capstack(l, e, µ)

(Lemma 6)

Similarly, cap(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l.m1(l

′
1) B e′] . . .], µ′)

= capstore(l, µ
′) ∪ capstack(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B . . .

· · ·B E1[l.m1(l
′
1) B e′] . . .], µ′)

(CAP-CONFIG)

=

capstore(l, µ
′) if r2 < r1

∪
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}
⋃q−1

i=p

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ′)

∪
⋃

j∈{p1,p2,...,pr2}
{lj}

∪
⋃qr2+1−1

i=1

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ′) ∪ pointsto(e′, µ′)

∪capstack(l, e′, µ′)

capstore(l, µ
′) if r2 = r1

∪
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}
⋃q−1

i=p

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ′)

∪
⋃

j∈{p1,p2,...,pr2}
{lj}

∪capstack(l, e′, µ′)

(Lemma 6)

94

=

capstore(l, µ
′) if r2 < r1

∪
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}
⋃q−1

i=p

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ)

∪
⋃

j∈{p1,p2,...,pr2}
{lj}

∪
⋃qr2+1−1

i=1

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ) ∪ pointsto(e′, µ′)

∪capstack(l, e′, µ′)

capstore(l, µ
′) if r2 = r1

∪
⋃

(q,p)∈{(q1,p1),(q2,p2),...(qr2 ,pr2)}
⋃q−1

i=p

⋃
e′′∈subexps(Ei)

pointsto(e′′, µ)

∪
⋃

j∈{p1,p2,...,pr2}
{lj}

∪capstack(l, e′, µ′)

(Lemma 7)

Then, cap(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l.m1(l

′
1) B e′] . . .], µ′)

\ cap(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l
′
k−1) B · · ·B E1[l.m1(l

′
1) B e] . . .], µ)

=

capstore(l, µ
′) ∪ pointsto(e′, µ′) ∪ capstack(l, e′, µ′) if r2 < r1

\ capstore(l, µ) ∪ pointsto(e, µ) ∪ capstack(l, e, µ)

capstore(l, µ
′) ∪ capstack(l, e′, µ′) if r2 = r1

\ capstore(l, µ) ∪ capstack(l, e, µ)

Lemma 9. If l 7→ {x⇒ d}s ∈ µ and l′.m′(l′′) B E 6∈ e, then

pointsto([l/z]e, µ) =

{
pointsto(l, µ) ∪ pointsto(e, µ) if z ∈ e
pointsto(e, µ) if z 6∈ e

Proof. There are two cases depending on whether z is in e or not.

Case z ∈ e: We prove this case by simultaneous induction on the pointsto(d, µ), pointsto(d, µ),
and pointsto(e, µ) rules.
Case POINTSTO-DEF: pointsto([l/z](defm(x : τ1) : τ2 = e′), µ)

= pointsto(defm(x : τ1) : τ2 = [l/z]e′, µ)

= pointsto([l/z]e′, µ) (POINTSTO-DEF)

= pointsto(l, µ) ∪ pointsto(e′, µ) (by IH)

= pointsto(l, µ) ∪ pointsto(defm(x : τ1) : τ2 = e′, µ) (POINTSTO-DEF)

Case POINTSTO-VARX: Since there is only one variable, x = z.
pointsto([l/z](var f : τ = x), µ)

= pointsto(var f : τ = l, µ)

= pointsto(l, µ) (POINTSTO-VARL)

= pointsto(l, µ) ∪ pointsto(var f : τ = x, µ) (POINTSTO-VARX)

95

Case POINTSTO-VARL: Since there are no variables, the substitution cannot take place, and the
case is true by contradiction.
Case POINTSTO-DECLS: pointsto([l/z]d, µ)

=
⋃
d∈d

pointsto([l/z]d, µ) (POINTSTO-DECLS)

= pointsto(l, µ) ∪
⋃
d∈d

pointsto(d, µ) (POINTSTO-DEF, POINTSTO-VARX, POINTSTO-VARL)

= pointsto(l, µ) ∪ pointsto(d, µ) (POINTSTO-DECLS)

Case POINTSTO-VAR: Since there is only one variable, x = z.
pointsto([l/z]x, µ) = pointsto(l, µ) = pointsto(l, µ) ∪ pointsto(x, µ) (POINTSTO-VAR)

Case POINTSTO-NEW: pointsto([l/z](news(x⇒ d)), µ)

= pointsto(news(x⇒ [l/z]d), µ)

= pointsto([l/z]d, µ) (POINTSTO-NEW)

= pointsto(l, µ) ∪ pointsto(d, µ) (by case POINTSTO-DECLS)

= pointsto(l, µ) ∪ pointsto(news(x⇒ d), µ) (POINTSTO-NEW)

Case POINTSTO-METHOD: pointsto([l/z](e.m(e′)), µ)

= pointsto(([l/z]e).m([l/z]e′), µ)

= pointsto([l/z]e, µ) ∪ pointsto([l/z]e′, µ) (POINTSTO-METHOD)

= pointsto(l, µ) ∪ pointsto(e, µ) ∪ pointsto(e′, µ) (by IH)

= pointsto(l, µ) ∪ pointsto(e.m(e′), µ) (POINTSTO-METHOD)

Case POINTSTO-FIELD: pointsto([l/z](e.f), µ)

= pointsto(([l/z]e).f), µ)

= pointsto([l/z]e, µ) (POINTSTO-FIELD)

= pointsto(l, µ) ∪ pointsto(e, µ) (by IH)

= pointsto(l, µ) ∪ pointsto(e.f, µ) (POINTSTO-FIELD)

Case POINTSTO-ASSIGN: pointsto([l/z](e.f = e′), µ)

= pointsto(([l/z]e).f = [l/z]e′, µ)

= pointsto([l/z]e, µ) ∪ pointsto([l/z]e′, µ) (POINTSTO-ASSIGN)

= pointsto(l, µ) ∪ pointsto(e, µ) ∪ pointsto(e′, µ) (by IH)

= pointsto(l, µ) ∪ pointsto(e.f = e′, µ) (POINTSTO-ASSIGN)

Case POINTSTO-BIND: pointsto([l/z](bind x = e in e′), µ)

= pointsto(bind x = [l/z]e in [l/z]e′, µ)

= pointsto([l/z]e, µ) ∪ pointsto([l/z]e′, µ) (POINTSTO-BIND)

= pointsto(l, µ) ∪ pointsto(e, µ) ∪ pointsto(e′, µ) (by IH)

= pointsto(l, µ) ∪ pointsto(bind x = e in e′, µ) (POINTSTO-BIND)

96

Case POINTSTO-PRINCIPAL or POINTSTO-PURE: Since there are no variables, the substitution
cannot take place, and the case is true by contradiction.
Case POINTSTO-CALL-PRINCIPAL or POINTSTO-CALL-PURE: Since both the cases have method-
call stack frames and the premise prohibits that, the cases are true by contradiction.

Case z 6∈ e: [l/z]e = e and pointsto([l/z]e, µ) = pointsto(e, µ).

A.2.4 Capability-Safety Theorem

Theorem 6 (Capability Safety). If
1. Γ |Σ `e′′′ e : τ , [e is well-typed]
2. 〈e | µ〉 −→ 〈e′ | µ′〉, [a step of evaluation is made]
3. l0 7→ {x⇒ d0}resource ∈ µ′, [l0 is a principal]
4. l 7→ {x⇒ d}resource ∈ µ, and [l is a principal]
5. cap(l, e′, µ′) \ cap(l, e, µ) ⊇ {l0},

[between the two states, l’s capability set increases by l0]
then one of the following must be true:

1. Object creation:
(a) e = E[l.m(l′)BE ′[newresource(x⇒ d0)]] and [a new principal was created
(b) e′ = E[l.m(l′)BE ′[l0]], where in this evaluation step]
(c) ∀la.ma(l

′
a) B E ′′ ∈ E ′, la 7→ {x⇒ da}pure ∈ µ

[there are only pure callers after the last method-call stack frame where l is the caller]
2. Method call:

(a) e = E[l.m(l0)], [a method argument was fully evaluated
(b) e′ = E[l.m(l0)B[l0/y][l/x]e′′], and in this evaluation step]
(c) y ∈ e′′ [the passed-in argument y is used in the method body e′′]

3. Method return:
(a) e = E[l.m(l′)BE ′[la.ma(l

′
a)B l0]] and [a method call returned

(b) e′ = E[l.m(l′)BE ′[l0]], where in this evaluation step]
(c) ∀lb.mb(l

′
b) B E ′′ ∈ E ′, lb 7→ {x⇒ db}pure ∈ µ

[there are only pure callers after the last method-call stack frame where l is the caller.]

Proof. The proof is by induction on a derivation of 〈e | µ〉 −→ 〈e′ | µ′〉. For a given derivation,
we proceed by cases on the last evaluation rule used:

Case E-CONGRUENCE: 〈E[e] | µ〉 −→ 〈E[e′] | µ′〉
Let us enumerate method-call stack frames in E:
E[e] = Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E2[l2.m2(l

′
2) B E1[l1.m1(l

′
1) B e] . . .]

E[e′] = Ek[lk.mk(l′k)BEk−1[lk−1.mk−1(l
′
k−1)B · · ·BE2[l2.m2(l

′
2)BE1[l1.m1(l

′
1)B e′] . . .]

where
1. for 1 ≤ i ≤ k, l′.m(l′′)BE ′ 6∈ Ei [no method-call stack frames in Ei]

97

2. ∀i, such that li = l, i ∈ {q1, q2, . . . , qr1}, where 0 ≤ r1 ≤ k
[the set of indices of all method-call stack frames where l is the caller; this set can be
empty]

3. ∀i ∈ {q1, q2, . . . , qr1}, if ∃j, such that
(a) lj 7→ {x⇒ dj}resource ∈ µ and [lj is a principal]
(b) ∀t, such that i > t > j and lt 7→ {x⇒ dt}pure ∈ µ

[all callers between li and lj are pure]
j ∈ {p1, p2, . . . , pr2} where 0 ≤ r2 ≤ r1
[the maximal set of indices of principal callers immediately after method-call stack frames
where l is the caller; this set can be smaller than the one above only by one element; this
set can also be empty; such principals can be l itself]

Then,
cap(l, Ek[lk.mk(l′k) B Ek−1[lk−1.mk−1(l

′
k−1) B · · ·B E2[l2.m2(l

′
2) B E1[l1.m1(l

′
1) B e′] . . .], µ′)

\ cap(l, Ek[lk.mk(l′k)BEk−1[lk−1.mk−1(l
′
k−1)B · · ·BE2[l2.m2(l

′
2)BE1[l1.m1(l

′
1)B e] . . .], µ)

=

capstore(l, µ

′) ∪ pointsto(e′, µ′) ∪ capstack(l, e′, µ′) if r2 < r1

\ capstore(l, µ) ∪ pointsto(e, µ) ∪ capstack(l, e, µ)

capstore(l, µ
′) ∪ capstack(l, e′, µ′) if r2 = r1

\ capstore(l, µ) ∪ capstack(l, e, µ)

(Lemma 8)

[If r2 < r1, then there are only pure callers after the last method-call stack frame where l is the
caller. In other words, l was the last principal caller on the stack.
If r2 = r1, then the last method-call stack frame where l is the caller is followed by a method-call
stack frame with a principal caller that is not l. If r2 = r1 = 0, then there are no method-call
stack frames with principal callers on the stack.
Since the set in 3(b) can include indices of method-call stack frames where the caller is l, the
difference between r1 and r2 is at most 1, i.e., r2 ≤ r1 ≤ r2 + 1.]
Thus, the changes in capabilities when 〈E[e] | µ〉 −→ 〈E[e′] | µ′〉 depend on what expressions
are in 〈e | µ〉 −→ 〈e′ | µ′〉. Let us consider all possible e and e′.

Subcase E-NEW: e = news(x⇒ da), e′ = la, and 〈E[news(x⇒ da)] | µ〉 −→ 〈E[la] | µ′〉,
where µ′ = µ, la 7→ {x⇒ da}s.

By CAP-STORE, capstore(l, µ) = pointsto(l, µ) ∪ pointsto(d, µ) and
capstore(l, µ

′) = pointsto(l, µ′) ∪ pointsto(d, µ′). By POINTSTO-PRINCIPAL and
POINTSTO-PURE, pointsto(l, µ′) = pointsto(l, µ). By POINTSTO-DECLS and the pointsto(d, µ)
rules, pointsto(d, µ) depends only on what is in d and whether it is resource. Then, since the
only change to the store was the addition of a new object la, and by inversion on E-NEW,
la 6∈ dom(µ), and it is fully defined and all objects in da must be in the store at the time of the ob-
ject creation (T-STORE), pointsto(la, µ) 6∈ pointsto(d, µ′). Thus, capstore(l, µ

′) = capstore(l, µ).

Case r2 < r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

98

= pointsto(la, µ
′) ∪ capstack(l, la, µ

′)

\ pointsto(news(x⇒ da), µ) ∪ capstack(l, news(x⇒ da), µ)

= pointsto(la, µ
′) \ pointsto(news(x⇒ da), µ) (CAP-STACK-NOCALL × 2)

= pointsto(la, µ
′) \ pointsto(da, µ) (POINTSTO-NEW)

There are two possibilities depending on whether la is a principal or not.
Case la is a principal:

cap(l, E[e′], µ′) \ cap(l, E[e], µ) = {la} \ pointsto(da, µ) (POINTSTO-PRINCIPAL)

Since la points to a fresh memory location and our language requires an object to be allocated in
memory before it can be used, {la} 6∈ pointsto(da, µ), the capability set of l increases, which is
in accordance with the object creation case, and the theorem holds.
Case la is pure: cap(l, E[e′], µ′) \ cap(l, E[e], µ) = ∅ \ pointsto(da, µ) (POINTSTO-PURE)

Thus, the capability set of l does not increase, and the theorem holds.

Case r2 = r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstack(l, la, µ
′) \ capstack(l, news(x⇒ da), µ) = ∅ (CAP-STACK-NOCALL × 2)

Thus, the capability set of l does not increase, and the theorem holds.

Subcase E-METHOD: e = la.m(lb), e′ = la.m(lb) B [lb/y][la/x]ea, µ′ = µ, and
capstore(l, µ

′) = capstore(l, µ). Since ea is a method definition, by Property 4, ea has no
method-call stack frames.

Case r2 < r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto(la.m(lb) B [lb/y][la/x]ea, µ) ∪ capstack(l, la.m(lb) B [lb/y][la/x]ea, µ)

\ pointsto(la.m(lb), µ) ∪ capstack(l, la.m(lb), µ)

= pointsto(la.m(lb) B [lb/y][la/x]ea, µ) ∪ capstack(l, la.m(lb) B [lb/y][la/x]ea, µ)

\ pointsto(la.m(lb), µ)

(CAP-STACK-NOCALL)

There are three possibilities depending on whether la = l and whether it is a principal or not.
Case la = l: Since l is a principal, la is a principal too.
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= {la} ∪ capstack(l, la.m(lb) B [lb/y][la/x]ea, µ) (POINTSTO-CALL-PRINCIPAL)

\ pointsto(la, µ) ∪ pointsto(lb, µ) (POINTSTO-METHOD)

= {la} ∪ pointsto([lb/y][la/x]ea, µ) ∪ capstack(l, [lb/y][la/x]ea, µ) (CAP-STACK)

\ pointsto(la, µ) ∪ pointsto(lb, µ)

= {la} ∪ pointsto([lb/y][la/x]ea, µ) (CAP-STACK-NOCALL)

\ pointsto(la, µ) ∪ pointsto(lb, µ)

= pointsto(la, µ) ∪ pointsto([lb/y][la/x]ea, µ) (POINTSTO-PRINCIPAL)

\ pointsto(la, µ) ∪ pointsto(lb, µ)

99

=

pointsto(la, µ) ∪ pointsto(lb, µ) ∪ pointsto(ea, µ) if x, y ∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

pointsto(la, µ) ∪ pointsto(ea, µ) if x ∈ ea and y 6∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

pointsto(la, µ) ∪ pointsto(lb, µ) ∪ pointsto(ea, µ) if x 6∈ ea and y ∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

pointsto(la, µ) ∪ pointsto(ea, µ) if x, y 6∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

(Lemma 9× 2)

=

pointsto(ea, µ) if x, y ∈ ea
pointsto(ea, µ) \ pointsto(lb, µ) if x ∈ ea and y 6∈ ea
pointsto(ea, µ) if x 6∈ ea and y ∈ ea
pointsto(ea, µ) \ pointsto(lb, µ) if x, y 6∈ ea

⊆ pointsto(ea, µ)

= capstore(l, µ) ∪ pointsto(ea, µ) \ capstore(l, µ)

By CAP-STORE, POINTSTO-DECLS, and POINTSTO-DEF, capstore(l, µ) ⊇ pointsto(ea, µ), and
therefore, cap(l, E[e′], µ′) \ cap(l, E[e], µ) = ∅. Thus, the capability set of l does not increase,
and the theorem holds.

Case la 6= l and la is a principal: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= {la} \ pointsto(la, µ) ∪ pointsto(lb, µ) (POINTSTO-CALL-PRINCIPAL)

= pointsto(la, µ) \ pointsto(la, µ) ∪ pointsto(lb, µ) = ∅ (POINTSTO-PRINCIPAL)

Thus, the capability set of l does not increase, and the theorem holds.

Case la 6= l and la is pure: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto([lb/y][la/x]ea, µ) \ pointsto(la, µ) ∪ pointsto(lb, µ) (POINTSTO-CALL-PURE)

100

=

pointsto(la, µ) ∪ pointsto(lb, µ) ∪ pointsto(ea, µ) if x, y ∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

pointsto(la, µ) ∪ pointsto(ea, µ) if x ∈ ea and y 6∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

pointsto(la, µ) ∪ pointsto(lb, µ) ∪ pointsto(ea, µ) if x 6∈ ea and y ∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

pointsto(la, µ) ∪ pointsto(ea, µ) if x, y 6∈ ea
\ pointsto(la, µ) ∪ pointsto(lb, µ)

(Lemma 9× 2)

=

pointsto(ea, µ) if x, y ∈ ea
pointsto(ea, µ) \ pointsto(lb, µ) if x ∈ ea and y 6∈ ea
pointsto(ea, µ) if x 6∈ ea and y ∈ ea
pointsto(ea, µ) \ pointsto(lb, µ) if x, y 6∈ ea

⊆ pointsto(ea, µ)

= capstore(l, µ) ∪ pointsto(ea, µ) \ capstore(l, µ)

By CAP-STORE, POINTSTO-DECLS, and POINTSTO-DEF, capstore(l, µ) ⊇ pointsto(ea, µ), and
therefore, cap(l, E[e′], µ′) \ cap(l, E[e], µ) = ∅. Thus, the capability set of l does not increase,
and the theorem holds.

Case r2 = r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstack(l, la.m(lb) B [lb/y][la/x]ea, µ) \ capstack(l, la.m(lb), µ)

= capstack(l, la.m(lb) B [lb/y][la/x]ea, µ) (CAP-STACK-NOCALL)

There are two possibilities depending on whether la = l or not.

Case la = l: Since l is a principal, la is a principal too.
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto([lb/y][la/x]ea, µ) ∪ capstack(l, [lb/y][la/x]ea, µ) (CAP-STACK)

= pointsto([lb/y][la/x]ea, µ) (CAP-STACK-NOCALL)

101

=

pointsto(la, µ) ∪ pointsto(lb, µ) ∪ pointsto(ea, µ) if x, y ∈ ea
pointsto(la, µ) ∪ pointsto(ea, µ) if x ∈ ea and y 6∈ ea
pointsto(lb, µ) ∪ pointsto(ea, µ) if x 6∈ ea and y ∈ ea
pointsto(ea, µ) if x, y 6∈ ea

(Lemma 9× 2)

=

capstore(l, µ) ∪ pointsto(la, µ) if x, y ∈ ea
∪pointsto(lb, µ) ∪ pointsto(ea, µ)

\ capstore(l, µ)

capstore(l, µ) ∪ pointsto(la, µ) ∪ pointsto(ea, µ) if x ∈ ea and y 6∈ ea
\ capstore(l, µ)

capstore(l, µ) ∪ pointsto(lb, µ) ∪ pointsto(ea, µ) if x 6∈ ea and y ∈ ea
\ capstore(l, µ)

capstore(l, µ) ∪ pointsto(ea, µ) \ capstore(l, µ) if x, y 6∈ ea

Since la = l and by CAP-STORE, POINTSTO-DECLS, and POINTSTO-DEF,
capstore(l, µ) ⊇ pointsto(la, µ) ∪ pointsto(ea, µ). Then, cap(l, E[e′], µ′) \ cap(l, E[e], µ)

=

capstore(l, µ) ∪ pointsto(lb, µ) \ capstore(l, µ) if x, y ∈ ea
capstore(l, µ) \ capstore(l, µ) if x ∈ ea and y 6∈ ea
capstore(l, µ) ∪ pointsto(lb, µ) \ capstore(l, µ) if x 6∈ ea and y ∈ ea
capstore(l, µ) \ capstore(l, µ) if x, y 6∈ ea

=

{
pointsto(lb, µ) if y ∈ ea
∅ if y 6∈ ea

=

{
{lb} if y ∈ ea and lb is a principal (POINTSTO-PRINCIPAL)

∅ otherwise

Thus, if y ∈ ea and lb is a principal, the capability set of l increases, which is in accordance with
the method call case, and the theorem holds.
Case la 6= l: cap(l, E[e′], µ′) \ cap(l, E[e], µ) = ∅ (CAP-STACK-NOCALL)
Thus, the capability set of l does not increase, and the theorem holds.

Subcase E-FIELD: e = la.f , e′ = lb, µ′ = µ, and capstore(l, µ
′) = capstore(l, µ).

By Property 5, the object field that is being accessed must belong to the caller of the last
method-call stack frame on the stack. Then, l1 = la. Considering that e is well-typed, since l1
has a field, by definition, l1 is a principal.
Case r2 < r1: Since l1 is a principal, l = l1 = la.
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

102

= pointsto(lb, µ) ∪ capstack(l, lb, µ) \ pointsto(l.f, µ) ∪ capstack(l, l.f, µ)

= pointsto(lb, µ) \ pointsto(l.f, µ) (CAP-STACK-NOCALL × 2)

= capstore(l, µ) ∪ pointsto(lb, µ) \ capstore(l, µ) ∪ pointsto(l.f, µ)

By inversion on E-FIELD, var f : τ = lb ∈ d. Then, by CAP-STORE,
POINTSTO-DECLS, and POINTSTO-VARL, capstore(l, µ) ⊇ pointsto(lb, µ), and

cap(l, E[e′], µ′) \ cap(l, E[e], µ) = capstore(l, µ) \ capstore(l, µ) ∪ pointsto(l.f, µ)

= ∅

Thus, the capability set of l does not increase, and the theorem holds.

Case r2 = r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstack(l, lb, µ) \ capstack(l, la.f, µ) = ∅ (CAP-STACK-NOCALL × 2)

Thus, l’s capability set does not increase, and the theorem holds.

Subcase E-ASSIGN: e = (la.f = lb), e′ = lb, and by inversion on E-ASSIGN,
la 7→ {x⇒ da}s ∈ µ, var f : τ = lc ∈ da, da

′
= [var f : τ = lb/var f : τ = lc]da, and

µ′ = [la 7→ {x⇒ da
′}s/la 7→ {x⇒ da}s]µ.

By Property 5, the object field that is being accessed must belong to the caller of the last
method-call stack frame on the stack. Then, l1 = la. Considering that e is well-typed, since l1
has a field, by definition, l1 is a principal.
Case r2 < r1: Since l1 is a principal, in this case, l = l1 = la.

Since in this step of evaluation, the only change to the store is the sub-
stitution of lc with lb in one of l’s fields, by CAP-STORE, POINTSTO-
DECLS, and POINTSTO-VARL, capstore(l, µ

′) \ capstore(l, µ) ⊆ pointsto(lb, µ
′).

[1]
By POINTSTO-PRINCIPAL and POINTSTO-PURE, pointsto(lb, µ

′) = pointsto(lb, µ).
[2]
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstore(l, µ
′) ∪ pointsto(lb, µ

′) ∪ capstack(l, lb, µ
′)

\ capstore(l, µ) ∪ pointsto(l.f = lb, µ) ∪ capstack(l, l.f = lb, µ)

= capstore(l, µ
′) ∪ pointsto(lb, µ

′) \ capstore(l, µ) ∪ pointsto(l.f = lb, µ)

(CAP-STACK-NOCALL × 2)

= capstore(l, µ
′) ∪ pointsto(lb, µ

′) \ capstore(l, µ) ∪ pointsto(l, µ) ∪ pointsto(lb, µ)

(POINTSTO-ASSIGN)

⊆ pointsto(lb, µ
′) \ pointsto(l, µ) ∪ pointsto(lb, µ) (by [1])

= ∅ (by [2])

Thus, the capability set of l does not increase, and the theorem holds.

103

Case r2 = r1: Since l1 is a principal and l1 = la, in this case, l 6= la and r2 = r1 6= 0.
Since l 6= la and, in this step of evaluation, the only change to the store is the substitu-

tion of lc with lb in one of l1’s fields, by CAP-STORE, POINTSTO-DECLS, and POINTSTO-VARL,
capstore(l, µ

′) = capstore(l, µ). [3]
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstore(l, µ
′) ∪ capstack(l, lb, µ

′) \ capstore(l, µ) ∪ capstack(l, la.f = lb, µ)

= capstore(l, µ
′) \ capstore(l, µ)

(CAP-STACK-NOCALL × 2)

= ∅ (by [3])

Thus, the capability set of l does not increase, and the theorem holds.

Subcase E-BIND: e = bind x = la in ea, e′ = [la/x]ea, µ′ = µ, and
capstore(l, µ

′) = capstore(l, µ). Since ea is a method definition, by Property 4, ea has no
method-call stack frames.

Case r2 < r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto([la/x]ea, µ) ∪ capstack(l, [la/x]ea, µ)

\ pointsto(bind x = la in ea, µ) ∪ capstack(l, bind x = la in ea, µ)

= pointsto([la/x]ea, µ) \ pointsto(bind x = la in ea, µ)

(CAP-STACK-NOCALL × 2)

= pointsto([la/x]ea, µ) \ pointsto(la, µ) ∪ pointsto(ea, µ) (POINTSTO-BIND)

=

{
pointsto(la, µ) ∪ pointsto(ea, µ) \ pointsto(la, µ) ∪ pointsto(ea, µ) if x ∈ ea
pointsto(ea, µ) \ pointsto(la, µ) ∪ pointsto(ea, µ) if x 6∈ ea

(Lemma 9)

= ∅

Thus, the capability set of l does not increase, and the theorem holds.

Case r2 = r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstack(l, [la/x]ea, µ) \ capstack(l, bind x = la in ea, µ)

= ∅ (CAP-STACK-NOCALL × 2)

Thus, l’s capability set does not increase, and the theorem holds.

Subcase E-STACKFRAME: e = la.m(lb) B lc, e′ = lc, µ′ = µ, and
capstore(l, µ

′) = capstore(l, µ).

Case r2 < r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

104

= pointsto(lc, µ) ∪ capstack(l, lc, µ)

\ pointsto(la.m(lb) B lc, µ) ∪ capstack(l, la.m(lb) B lc, µ)

= pointsto(lc, µ) \ pointsto(la.m(lb) B lc, µ) ∪ capstack(l, la.m(lb) B lc, µ)

(CAP-STACK-NOCALL)

There are three possibilities depending on whether la = l and whether it is a principal or not.
Case la = l: Since l is a principal, la is a principal too.
cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto(lc, µ) \ pointsto(la.m(lb) B lc, µ) ∪ capstack(l, la.m(lb) B lc, µ)

= pointsto(lc, µ) (CAP-STACK)

\ pointsto(la.m(lb) B lc, µ) ∪ pointsto(lc, µ) ∪ capstack(l, lc, µ)

= ∅

Thus, the capability set of l does not increase, and the theorem holds.
Case la 6= l and la is a principal: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto(lc, µ) \ pointsto(la.m(lb) B lc, µ) ∪ capstack(l, la.m(lb) B lc, µ)

= pointsto(lc, µ) \ {la} ∪ capstack(l, la.m(lb) B lc, µ) (POINTSTO-CALL-PRINCIPAL)

= pointsto(lc, µ) \ {la} (CAP-STACK-NOCALL)

=

{
{lc} \ {la} if lc is a principal (POINTSTO-PRINCIPAL)

∅ if lc is pure (CAP-STACK-NOCALL)

Thus, if la 6= l, la is a principal, and lc is a principal, then the capability set of l increases, which
is in accordance with the method return case, and the theorem holds. If la 6= l, la is a principal,
and lc is pure, then the capability set of l does not increase, and the theorem holds.
Case la 6= l and la is pure: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= pointsto(lc, µ) \ pointsto(la.m(lb) B lc, µ) ∪ capstack(l, la.m(lb) B lc, µ)

= pointsto(lc, µ) \ pointsto(lc, µ) ∪ capstack(l, la.m(lb) B lc, µ)

= ∅ \ capstack(l, la.m(lb) B lc, µ) (POINTSTO-CALL-PURE)

Thus, the capability set of l does not increase, and the theorem holds.

Case r2 = r1: cap(l, E[e′], µ′) \ cap(l, E[e], µ)

= capstack(l, lc, µ) \ capstack(l, la.m(lb) B lc, µ)

= ∅ \ capstack(l, la.m(lb) B lc, µ) = ∅ (CAP-STACK-NOCALL)

Thus, l’s capability set does not increase, and the theorem holds.

105

Appendix B

Authority Safety via Effects

B.1 Type Soundness

B.1.1 Lemmas
Lemma 10 (Permutation). If Γ | ∅ ` e : {ε} τ and ∆ is a permutation of Γ, then
∆ | ∅ ` e : {ε} τ , and the latter derivation has the same depth as the former.

Proof. Straightforward induction on typing derivations.

Lemma 11 (Weakening). If Γ | ∅ ` e : {ε} τ and x 6∈ dom(Γ), then Γ, x : τ ′ | ∅ ` e : {ε} τ ,
and the latter derivation has the same depth as the former.

Proof. Straightforward induction on typing derivations.

Lemma 12 (Substitution in types). If Γ, z : τ ` τ1 <: τ2 and Γ | Σ ` l : {} [l/z]τ , then
Γ ` [l/z]τ1 <: [l/z]τ2. Furthermore, if Γ, z : τ ` σ1 <: σ2 and Γ | Σ ` l : {} [l/z]τ , then
Γ ` [l/z]σ1 <: [l/z]σ2.

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ ` τ1 <: τ2 and
Γ, z : τ ` σ1 <: σ2. For a given derivation, we proceed by cases on the final typing rule used in
the derivation:

Case S-REFL1: τ1 = τ2, and the desired result is immediate.

Case S-TRANS: By inversion on S-TRANS, we get Γ, z : τ ` τ1 <: τ2 and Γ, z : τ ` τ2 <: τ3.
By the induction hypothesis, Γ ` [l/z]τ1 <: [l/z]τ2 and Γ ` [l/z]τ2 <: [l/z]τ3. Then, by
S-TRANS, Γ ` [l/z]τ1 <: [l/z]τ3.

Case S-PERM: τ1 = {x⇒ σi∈1..n
i }s and τ2 = {x⇒ σ′i∈1..ni }s. Substitution preserves the per-

mutation relations, and thus, [l/z]{x⇒ σi∈1..n
i }s is a permutation of [l/z]{x⇒ σ′i∈1..ni }s. Then,

by S-PERM, Γ ` [l/z]{x⇒ σi∈1..n
i }s <: [l/z]{x⇒ σ′i∈1..ni }s.

106

Case S-WIDTH: τ1 = {x⇒ σi∈1..n+k
i }s and τ2 = {x⇒ σi∈1..n

i }s, and the desired result is im-
mediate.

Case S-DEPTH: τ1 = {x⇒ σi∈1..n
i }s and τ2 = {x⇒ σ′i∈1..ni }s. By inversion on S-DEPTH, we

get ∀i, Γ, x : {x⇒ σi∈1..n
i }s, z : τ ` σi <: σ′i. By the induction hypothesis,

∀i, Γ, x : {x⇒ σi∈1..n
i }s ` [l/z]σi <: [l/z]σ′i. Then, by S-DEPTH,

Γ ` [l/z]{x⇒ σi∈1..n
i }s <: [l/z]{x⇒ σ′i∈1..ni }s.

Case S-RESOURCE: τ1 = {x⇒ σ}pure and τ2 = {x⇒ σ}resource, and the desired result is im-
mediate.

Case S-REFL2: σ1 = σ2, and the desired result is immediate.

Case S-DEF: σ1 = defm(x : τ1) : {ε1} τ2 and σ2 = defm(x : τ ′1) : {ε2} τ ′2. By inversion on
S-DEF, we get Γ, z : τ ` τ ′1 <: τ1, Γ, z : τ ` τ2 <: τ ′2, lookup((Γ, z : τ), ε1) = ε′1,
lookup((Γ, z : τ), ε2) = ε′2, and ε′1 ⊆ ε′2. By the induction hypothesis, Γ ` [l/z]τ ′1 <: [l/z]τ1
and Γ ` [l/z]τ2 <: [l/z]τ ′2. Substitution does not affect the relationship between effects, and
thus, lookup(Γ, [l/z]ε1) = [l/z]ε′1, lookup(Γ, [l/z]ε2) = [l/z]ε′2, and [l/z]ε′1 ⊆ [l/z]ε′2. Then, by
S-DEF, Γ ` [l/z](defm(x : τ1) : {ε1} τ2) <: [l/z](defm(x : τ ′1) : {ε2} τ ′2).

Case S-EFFECT: σ1 = effect g = {ε} and σ2 = effect g, and the desired result is immediate.

Thus, substituting terms in types preserves the subtyping relationship.

Lemma 13 (Substitution in expressions). If Γ, z : τ ′ | Σ ` e : {ε} τ and Γ | Σ ` l : {} [l/z]τ ′,
then Γ | Σ ` [l/z]e : {[l/z]ε} [l/z]τ . Furthermore, if Γ, z : τ ′ | Σ `s d : σ and
Γ | Σ ` l : {} [l/z]τ ′, then Γ | Σ `s [l/z]d : [l/z]σ.

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ ′ | Σ ` e : {ε} τ and
Γ, z : τ ′ | Σ `s d : σ. For a given derivation, we proceed by cases on the final typing rule used
in the derivation:

Case T-VAR: e = x, and by inversion on T-VAR, we get x : τ ∈ (Γ, z : τ ′). There are two sub-
cases to consider, depending on whether x is z or another variable. If x = z, then [l/z]x = l and
τ = τ ′. The required result is then Γ | Σ ` l : {} [l/z]τ ′, which is among the assumptions of the
lemma. Otherwise, [l/z]x = x, and the desired result is immediate.

Case T-NEW: e = news(x⇒ d), and by inversion on T-NEW, we get
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ}s, z : τ ′ | Σ `s di : σi. By the induction hypothesis,
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ}s | Σ `s [l/z]di : [l/z]σi. Then, by T-NEW,
Γ | Σ ` news(x⇒ [l/z]d) : {} {x⇒ [l/z]σ}s, i.e.,
Γ | Σ ` [l/z](news(x⇒ d)) : {} [l/z]{x⇒ σ}s.

Case T-METHOD: e = e1.m(e2), and by inversion on T-METHOD, we get
Γ, z : τ ′ | Σ ` e1 : {ε1} {x⇒ σ}s; def m(y : τ2) : {ε3} τ1 ∈ σ;

107

Γ, z : τ ′ | Σ ` [e1/x][e2/y]ε3 wf ; and Γ, z : τ ′ | Σ ` e2 : {ε2} [e1/x]τ2. By the induction hy-
pothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε1} [l/z]{x⇒ σ}s,
def m(y : [l/z]τ2) : {[l/z]ε3} [l/z]τ1 ∈ [l/z]σ, Γ | Σ ` [l/z]([e1/x][e2/y]ε3) wf , and
Γ | Σ ` [l/z]e2 : {[l/z]ε2} [l/z][e1/x]τ2. Then, by T-METHOD,
Γ | Σ ` [l/z]e1.m([l/z]e2) : {[l/z]ε1 ∪ [l/z]ε2 ∪ [l/z]([e1/x][e2/y]ε3)} [l/z]([e1/x][e2/y]τ1),
i.e., Γ | Σ ` [l/z](e1.m(e2)) : {[l/z](ε1 ∪ ε2 ∪ [e1/x][e2/y]ε3)} [l/z]([e1/x][e2/y]τ1).

Case T-FIELD: e = e1.f , and by inversion on T-FIELD, we get Γ, z : τ ′ |Σ ` e1 : {ε} {x⇒ σ}s
and var f : τ ∈ σ. By the induction hypothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε} [l/z]{x ⇒ σ}s
and var f : [l/z]τ ∈ [l/z]σ. Then, by T-FIELD, Γ | Σ ` ([l/z]e1).f : {[l/z]ε} [l/z]τ , i.e.,
Γ | Σ ` [l/z](e1.f) : {[l/z]ε} [l/z]τ .

Case T-ASSIGN: e = (e1.f = e2), and by inversion on T-ASSIGN, we get
Γ, z : τ ′ | Σ ` e1 : {ε1} {x⇒ σ}s; var f : τ ∈ σ; and Γ, z : τ ′ | Σ ` e2 : {ε2} τ . By the
induction hypothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε1} [l/z]{x⇒ σ}s; var f : [l/z]τ ∈ [l/z]σ; and
Γ | Σ ` [l/z]e2 : {[l/z]ε2} [l/z]τ . Then, by T-ASSIGN,
Γ | Σ ` [l/z]e1.f = [l/z]e2 : {[l/z]ε1 ∪ [l/z]ε2} [l/z]τ , i.e.,
Γ | Σ ` [l/z](e1.f = e2) : {[l/z](ε1 ∪ ε2)} [l/z]τ .

Case T-LOC: e = l, [l/z]l = l, and the desired result is immediate.

Case T-SUB: e = e1, and by inversion on T-SUB, we get Γ, z : τ ′ | Σ ` e1 : {ε1} τ1;
Γ ` τ1 <: τ2; lookup((Γ, z : τ ′), ε1) = ε′1; lookup((Γ, z : τ ′), ε2) = ε′2; and ε′1 ⊆ ε′2. By the in-
duction hypothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε1} [l/z]τ1. By Lemma 12 (substitution in types),
Γ ` [l/z]τ1 <: [l/z]τ2. Substitution does not affect the relationship between effects, and thus,
lookup(Γ, [l/z]ε1) = [l/z]ε′1, lookup(Γ, [l/z]ε2) = [l/z]ε′2 and [l/z]ε′1 ⊆ [l/z]ε′2. Then, by T-SUB,
Γ | Σ ` [l/z]e1 : {[l/z]ε2} [l/z]τ2.

Case DT-DEFPURE: d = defm(y : τ1) : τ2 = e. By inversion on DT-DEFPURE, we get
Γresource = {x : {x⇒ σ}resource | x : {x⇒ σ}resource ∈ Γ}; Γpure = Γ \ Γresource;
Γpure, y : τ1, z : τ ′ | Σ ` e : {ε′} τ2; Γ, y : τ1, z : τ ′ | Σ ` ε wf ; and ε ⊇ ε′, and by the induc-
tion hypothesis, Γpure, y : [l/z]τ1 | Σ ` [l/z]e : {[l/z]ε′} [l/z]τ2; Γ, y : [l/z]τ1 | Σ ` [l/z]ε wf ;
and [l/z]ε ⊇ [l/z]ε′. Then, by DT-DEFPURE,
Γ | Σ `pure defm(y : [l/z]τ1) : {[l/z]ε} [l/z]τ2 = [l/z]e : defm(y : [l/z]τ1) : {[l/z]ε} [l/z]τ2,
i.e., Γ | Σ `pure [l/z](defm(y : τ1) : {ε} τ2 = e) : [l/z](defm(y : τ1) : {ε} τ2).

Thus, in both cases, the type of d is preserved under substitution.

Case DT-DEFRESOURCE: d = defm(x : τ1) : τ2 = e, and by inversion on DT-DEFRESOURCE,
we get Γ, x : τ1, z : τ ′ | Σ ` e : {ε′} τ2; Γ, x : τ1, z : τ ′ | Σ ` ε wf ; and ε ⊇ ε′. By the induc-
tion hypothesis, Γ, x : [l/z]τ1 | Σ ` [l/z]e : {[l/z]ε′} [l/z]τ2; Γ, x : [l/z]τ1 | Σ ` [l/z]ε wf ; and
[l/z]ε ⊇ [l/z]ε′. Then, by DT-DEFRESOURCE,
Γ | Σ `resource defm(x : [l/z]τ1) : {[l/z]ε} [l/z]τ2 = [l/z]e : defm(x : [l/z]τ1) : {[l/z]ε} [l/z]τ2,
i.e., Γ | Σ `resource [l/z](defm(x : τ1) : {ε} τ2 = e) : [l/z](defm(x : τ1) : {ε} τ2).

108

Case DT-VAR: d = var f : τ = n, and by definition of n, there are two subcases:
Subcase n is x: In this case, d = var f : τ = x, and by inversion on DT-VAR, we get

Γ, z : τ ′ | Σ ` x : {} τ . There are two subcases to consider, depending on whether x is z or
another variable. If x = z, then by the induction hypothesis, Γ | Σ ` [l/z]x : {} [l/z]τ , which
yields Γ | Σ ` l : {} [l/z]τ and τ = τ ′, and thus,
Γ | Σ `resource var f : [l/z]τ = l : var f : [l/z]τ , i.e.,
Γ | Σ `resource [l/z](var f : τ = l) : [l/z](var f : τ), as required. If x 6= z, then
Γ | Σ ` [l/z]x : {} [l/z]τ yields Γ | Σ ` x : {} [l/z]τ , and thus,
Γ | Σ `resource var f : [l/z]τ = x : var f : [l/z]τ , i.e.,
Γ | Σ `resource [l/z](var f : τ = x) : [l/z](var f : τ), as required.

Subcase n is l: In this case, d = var f : τ = l, i.e., the field is resolved to a location l. This
is not affected by the substitution, and the desired result is immediate.

Thus, substituting terms in a well-typed expression preserves the typing.

B.1.2 Preservation
Theorem 7 (Preservation). If Γ | Σ ` e : {ε} τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then ∃Σ′ ⊇ Σ,
µ′ : Σ′, ∃ε′, such that lookup(Γ, ε′) ⊆ lookup(Γ, ε), and Γ | Σ′ ` e′ : {ε′} τ .

Proof. The proof is by induction on a derivation of Γ | Σ ` e : {ε} τ . At each step of the in-
duction, we assume that the desired property holds for all subderivations and proceed by case
analysis on the final rule in the derivation. Since we assumed 〈e | µ〉 −→ 〈e′ | µ′〉 and there
are no evaluation rules corresponding to variables or locations, the cases when e is a variable
(T-VAR) or a location (T-LOC) cannot arise. For the other cases, we argue as follows:

Case T-NEW: e = news(x⇒ d), and by inversion on T-NEW, we get
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ}s | Σ `s di : σi. The store changes from µ to
µ′ = µ, l 7→ {x⇒ d}s, i.e., the new store is the old store augmented with a new mapping for
the location l, which was not in the old store (l 6∈ dom(µ)). From the premise of the theorem,
we know that µ : Σ, and by the induction hypothesis, all expressions of Γ are properly allocated
in Σ. Then, by T-STORE, we have µ, l 7→ {x ⇒ d}s : Σ, l : {x ⇒ σ}s, which implies that
Σ′ = Σ, l : {x⇒ σ}s. Finally, by T-LOC, Γ | Σ ` l : {} {x⇒ σ}s, and ε′ = ∅ = ε. Thus, the
right-hand side is well typed.

Case T-METHOD: e = e1.m(e2), and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and
〈e2 | µ〉 −→ 〈e′2 | µ′〉. Then, the result follows from the induction hypothesis and T-METHOD.

Subcase E-METHOD: In this case, both e1 and e2 are values, namely, locations l1 and l2 re-
spectively. Then, by inversion on T-METHOD, we get that Γ | Σ ` e1 : {ε1} {x⇒ σ}s,
def m(y : τ2) : {ε3} τ1 ∈ σ, Γ | Σ ` [e1/x][e2/y]ε3 wf , Γ | Σ ` e2 : {ε2} [e1/x]τ2, and
ε = ε1 ∪ ε2 ∪ [e1/x][e2/y]ε3. The store µ does not change, and since T-STORE has been applied
throughout, the store is well typed, and thus,

109

Γ | Σ `s defm(x : τ1) : {ε} τ2 = e : defm(x : τ1) : {ε} τ2. Then, by inversion on both
DT-DEFPURE and DT-DEFRESOURCE, we know that Γ, x : τ1 | Σ ` e : {ε′} τ2 and
lookup(Γ, ε′) ⊆ lookup(Γ, ε). Finally, by the subsumption lemma, substituting locations for
variables in e preserve its type, and therefore, the right-hand side is well typed.

Case T-FIELD: e = e1.f , and by the definition of the evaluation relation, there are two subcases:
Subcase E-CONGRUENCE: In this case, 〈e1 | µ〉 −→ 〈e′1 | µ′〉, and the result follows from

the induction hypothesis and T-FIELD.
Subcase E-FIELD: In this case, e1 is a value, i.e., a location l. Then, by inversion on T-FIELD,

we have Γ | Σ ` l : {ε} {x ⇒ σ}s, where ε = ∅, and var f : τ ∈ σ. The store µ
does not change, and since T-STORE has been applied throughout, the store is well typed, and
thus, Γ | Σ `s var f : τ = l1 : var f : τ . Then, by inversion on DT-VARL, we know that
Γ | Σ ` l1 : {} τ and ε′ = ∅ = ε, and the right-hand side is well typed.

Case T-ASSIGN: e = (e1.f = e2), and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and
〈e2 | µ〉 −→ 〈e′2 | µ′〉. Then, the result follows from the induction hypothesis and T-ASSIGN.

Subcase E-ASSIGN: In this case, both e1 and e2 are values, namely locations l1 and l2 respec-
tively. Then, by inversion on T-ASSIGN, we get that Γ | Σ ` l1 : {ε1} {x⇒ σ}s, var f : τ ∈ σ,
Γ | Σ ` l2 : {ε2} τ , and ε = ε1 = ε2 = ∅. The store changes as follows:
µ′ = [l1 7→ {x⇒ d

′}s/l1 7→ {x⇒ d}s]µ, where d
′

= [var f : τ = l2/var f : τ = l]d. How-
ever, since T-STORE has been applied throughout and the substituted location has the type ex-
pected by T-STORE, the new store is well typed (as well as the old store), and thus,
Γ | Σ `s var f : τ = l2 : var f : τ . Then, by inversion on DT-VARL, we know that
Γ | Σ ` l2 : {} τ and ε′ = ∅, and the right-hand side is well typed.

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language is always well typed.

B.1.3 Progress
Theorem 8 (Progress). If ∅ | Σ ` e : {ε} τ (i.e., e is a closed, well-typed expression), then either

1. e is a value (i.e., a location) or
2. ∀µ such that µ : Σ, ∃e′, µ′ such that 〈e | µ〉 −→ 〈e′ | µ′〉.

Proof. The proof is by induction on the derivation of Γ | Σ ` e : {ε} τ , with a case analysis on
the last typing rule used. The case when e is a variable (T-VAR) cannot occur, and the case when
e is a location (T-LOC) is immediate, since in that case e is a value. For the other cases, we argue
as follows:

Case T-NEW: e = news(x ⇒ d), and by E-NEW, e can make a step of evaluation if the new

expression is closed and there is a location available that is not in the current store µ. From the

110

premise of the theorem, we know that the expression is closed, and there are infinitely many
available new locations, and therefore, e indeed can take a step and become a value (i.e., a loca-
tion l). Then, the new store µ′ is µ, l 7→ {x ⇒ d}s, and all the declarations in d are mapped in
the new store.

Case T-METHOD: e = e1.m(e2), and by the induction hypothesis applied to
Γ | Σ ` e1 : {ε1} {x⇒ σ}s, either e1 is a value or else it can make a step of evaluation, and,
similarly, by the induction hypothesis applied to Γ | Σ ` e2 : {ε2} [e1/x]τ2, either e2 is a value
or else it can make a step of evaluation. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take
a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and l2 re-
spectively, then by inversion on T-METHOD, we have Γ | Σ ` l1 : {ε1} {x⇒ σ}s and
def m(y : τ2) : {ε3} τ1 ∈ σ. By inversion on T-LOC, we know that the store contains an ap-
propriate mapping for the location l1, and since T-STORE has been applied throughout, the store
is well typed and l1 7→ {x⇒ d}s ∈ µ with defm(y : τ1) : {ε3} τ2 = e ∈ d. Therefore, the rule
E-METHOD applies to e, e can take a step, and µ′ = µ.

Case T-FIELD: e = e1.f , and by the induction hypothesis, either e1 can make a step of evaluation
or it is a value. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉: If e1 can take a step, then rule E-CONGRUENCE applies to e,
and e can take a step.

Subcase e1 is a value: If e1 is a value, i.e., a location l, then by inversion on T-FIELD, we have
Γ | Σ ` l : {ε} {x⇒ σ}s and var f : τ ∈ σ. By inversion on T-LOC, we know that the store
contains an appropriate mapping for the location l, and since T-STORE has been applied through-
out, the store is well typed and l 7→ {x⇒ d}s ∈ µ with var f : τ = l1 ∈ d. Therefore, the rule
E-FIELD applies to e, e can take a step, and µ′ = µ.

Case T-ASSIGN: e = (e1.f = e2), and by the induction hypothesis, either e1 is a value or else it
can make a step of evaluation, and likewise e2. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take
a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and l2 re-
spectively, then by inversion on T-ASSIGN, we have Γ | Σ ` l1 : {ε1} {x⇒ σ}s, var f : τ ∈ σ,
and Γ | Σ ` l2 : {ε2} τ . By inversion on T-LOC, we know that the store contains an ap-
propriate mapping for the locations l1 and l2, and since T-STORE has been applied throughout,
the store is well typed and l1 7→ {x ⇒ d}s ∈ µ with var f : τ = l ∈ d. A new well-
typed store can be created as follows: µ′ = [l1 7→ {x ⇒ d

′}s/l1 7→ {x ⇒ d}s]µ, where
d
′

= [var f : τ = l2/var f : τ = l]d. Then, the rule E-ASSIGN applies to e, and e can take a
step.

111

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language never gets stuck.

B.2 More General Definition of Authority Attenuation
Definition 3 (Authority Attenuation (more generally)). Objects of type τ1 attenuate objects of
type τ2, if

1. F1 = tLookup(Γ, τ, auth(τ1)), F2 = tLookup(Γ, τ, auth(τ2)),
2. F1 ∩ F2 6= ∅, and
3. F2 \ F1 6= ∅.
This definition essentially says that if we let F1 be the set of effects that represents authority

of objects of one type and F2 be the set of effects that represents authority of objects of another
type. Then, if F1 and F2 share at least one effect and there is at least one effect that is in F2 but
not in F1, we say that objects of the former type attenuate objects of the latter type.

112

Bibliography

[1] The Monte Programming Language. http://monte.readthedocs.io. 2.9

[2] Draft Proposal for SES (Secure EcmaScript). https://github.com/tc39/
proposal-ses. 4e, 5.2

[3] Nada Amin, Tiark Rompf, and Martin Odersky. Foundations of Path-Dependent Types.
SIGPLAN Notices, 49(10), October 2014. ISSN 0362-1340. doi: 10.1145/2714064.
2660216. URL https://doi.org/10.1145/2714064.2660216. 3.3.2

[4] Dor Azouri. Abusing Text Editors with Third-party Plugins. https:
//go.safebreach.com/rs/535-IXZ-934/images/Abusing_Text_
Editors.pdf, 2018. 3.1

[5] Andrej Bauer and Matija Pretnar. Programming with Algebraic Effects and Handlers. Jour-
nal of Logical and Algebraic Methods in Programming, 84(1):108 – 123, 2015. ISSN
2352-2208. doi: http://dx.doi.org/10.1016/j.jlamp.2014.02.001. URL http://www.
sciencedirect.com/science/article/pii/S2352220814000194. 3.8

[6] Dariusz Biernacki, Maciej Piròg, Piotr Polesiuk, and Filip Sieczkowski. Abstracting Alge-
braic Effects. In Symposium on Principles of Programming Languages, 2019. 3.8

[7] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vakil-
ian. A Type and Effect System for Deterministic Parallel Java. In Object Oriented Program-
ming Systems Languages and Applications, 2009. ISBN 978-1-60558-766-0. doi: 10.1145/
1640089.1640097. URL http://doi.acm.org/10.1145/1640089.1640097. 3

[8] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules as Objects in Newspeak. In European Conference on Object-Oriented
Programming, 2010. 1, 2.2, 2.4, 2.9

[9] Jonathan Immanuel Brachthäuser and Philipp Schuster. Effekt: Extensible Algebraic Ef-
fects in Scala (Short Paper). In International Symposium on Scala, 2017. ISBN 978-
1-4503-5529-2. doi: 10.1145/3136000.3136007. URL http://doi.acm.org/10.
1145/3136000.3136007. 3.8

[10] Edwin Brady. Programming and Reasoning with Algebraic Effects and Dependent Types.
In International Conference on Functional Programming, 2013. ISBN 978-1-4503-
2326-0. doi: 10.1145/2500365.2500581. URL http://doi.acm.org/10.1145/
2500365.2500581. 3.8

113

http://monte.readthedocs.io
https://github.com/tc39/proposal-ses
https://github.com/tc39/proposal-ses
https://doi.org/10.1145/2714064.2660216
https://go.safebreach.com/rs/535-IXZ-934/images/Abusing_Text_Editors.pdf
https://go.safebreach.com/rs/535-IXZ-934/images/Abusing_Text_Editors.pdf
https://go.safebreach.com/rs/535-IXZ-934/images/Abusing_Text_Editors.pdf
http://www.sciencedirect.com/science/article/pii/S2352220814000194
http://www.sciencedirect.com/science/article/pii/S2352220814000194
http://doi.acm.org/10.1145/1640089.1640097
http://doi.acm.org/10.1145/3136000.3136007
http://doi.acm.org/10.1145/3136000.3136007
http://doi.acm.org/10.1145/2500365.2500581
http://doi.acm.org/10.1145/2500365.2500581

[11] Oliver Bračevac, Nada Amin, Guido Salvaneschi, Sebastian Erdweg, Patrick Eugster, and
Mira Mezini. Versatile Event Correlation with Algebraic Effects. Proceedings of the ACM
on Programming Languages, 2(ICFP):67:1–67:31, 2018. ISSN 2475-1421. doi: 10.1145/
3236762. URL http://doi.acm.org/10.1145/3236762. 3, 3.8, 3.8

[12] Shuo Chen, David Ross, and Yi-Min Wang. An Analysis of Browser Domain-isolation
Bugs and a Light-weight Transparent Defense Mechanism. In Conference on Computer
and Communications Security, 2007. ISBN 978-1-59593-703-2. 1

[13] Zack Coker, Michael Maass, Tianyuan Ding, Claire Le Goues, and Joshua Sunshine. Eval-
uating the Flexibility of the Java Sandbox. In Annual Computer Security Applications
Conference, 2015. 1, 2.6.1, 4.1

[14] Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich. Capabilities: Effects
for Free. In Formal Methods and Software Engineering, 2018. ISBN 978-3-030-02450-5.
3.7

[15] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogrammed
Computations. Communications of the ACM, 9(3):143–155, 1966. 2.6

[16] Dominique Devriese, Frank Piessens, and Lars Birkedal. Reasoning about Object Capabil-
ities with Logical Relations and Effect Parametricity. In European Symposium on Security
and Privacy, 2016. 1, 2.9, 3.8

[17] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. Declarative Policies
for Capability Control. In Computer Security Foundations Symposium, 2014. 2.9, 3.8, 5.1

[18] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, K. C. Sivara-
makrishnan, and Leo White. Concurrent System Programming with Effect Handlers. In
Trends in Functional Programming, 2017. doi: 10.1007/978-3-319-89719-6\ 6. URL
https://doi.org/10.1007/978-3-319-89719-6_6. 3, 3.8

[19] Sophia Drossopoulou and James Noble. The Need for Capability Policies. In Workshop on
Formal Techniques for Java-like Programs, 2013. 2.9

[20] Sophia Drossopoulou and James Noble. How to Break the Bank: Semantics of Capability
Policies. In Integrated Formal Methods, 2014. 2.9

[21] Sophia Drossopoulou and James Noble. Towards Capability Policy Specification and Veri-
fication. Technical report, Victoria University of Wellington, 2014. 2.9

[22] Sophia Drossopoulou, James Noble, and Mark S. Miller. Swapsies on the Internet: First
Steps Towards Reasoning About Risk and Trust in an Open World. In Workshop on Pro-
gramming Languages and Analysis for Security, 2015. 2.9

[23] Sophia Drossopoulou, James Noble, Toby Murray, and Mark S. Miller. Reasoning about
Risk and Trust in an Open World. Technical report, Victoria University of Wellington,
2015. 2.9

[24] Sophia Drossopoulou, James Noble, Mark S. Miller, and Toby Murray. Permission and
Authority Revisited Towards a Formalisation. In Workshop on Formal Techniques for Java-
like Programs, 2016. ISBN 978-1-4503-4439-5. 3.5

[25] Matthew Flatt and Matthias Felleisen. Units: Cool Modules for HOT Languages. In Pro-

114

http://doi.acm.org/10.1145/3236762
https://doi.org/10.1007/978-3-319-89719-6_6

gramming Language Design and Implementation, 1998. 2.9

[26] Google, Inc. Caja. https://code.google.com/p/google-caja/. 2.9

[27] Ian J. Hayes, Xi Wu, and Larissa A. Meinicke. Capabilities for Java: Secure Access to
Resources. In Asian Symposium on Programming Languages and Systems, 2017. ISBN
978-3-319-71237-6. doi: 10.1007/978-3-319-71237-6 4. URL https://doi.org/
10.1007/978-3-319-71237-6_4. 2.9

[28] Michael Homer, Kim B. Bruce, James Noble, and Andrew P. Black. Modules As Gradually-
typed Objects. In Workshop on Dynamic Languages and Applications, 2013. 1

[29] Joseph R. Kiniry. Advanced Topics in Exception Handling Techniques, chapter Excep-
tions in Java and Eiffel: Two Extremes in Exception Design and Application. Springer-
Verlag, 2006. ISBN 3-540-37443-4, 978-3-540-37443-5. URL http://dl.acm.org/
citation.cfm?id=2124243.2124264. 3, 3.7

[30] George Kuan and David MacQueen. Engineering Higher-Order Modules in SML/NJ. In
Marco T. Morazán and Sven-Bodo Scholz, editors, Implementation and Application of
Functional Languages, pages 218–235, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg. 1

[31] Ben Laurie. Safer Scripting Through Precompilation. In Security Protocols, 2007. 2.9

[32] Daan Leijen. Koka: Programming with Row Polymorphic Effect Types.
In Mathematically Structured Functional Programming, 2014. URL
https://www.microsoft.com/en-us/research/publication/
koka-programming-with-row-polymorphic-effect-types-2/. 3.8

[33] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using Data Groups to
Specify and Check Side Effects. In Conference on Programming Language Design and
Implementation, 2002. ISBN 1-58113-463-0. doi: 10.1145/512529.512559. URL http:
//doi.acm.org/10.1145/512529.512559. 3.8

[34] Sam Lindley, Conor McBride, and Craig McLaughlin. Do Be Do Be Do. In Symposium on
Principles of Programming Languages, 2017. ISBN 978-1-4503-4660-3. doi: 10.1145/
3009837.3009897. URL http://doi.acm.org/10.1145/3009837.3009897.
3.8

[35] Shu-Peng Loh and Sophia Drossopoulou. Specifying Attenuation. https://2017.
splashcon.org/event/ocap-2017-specifying-attenuation, 2017. 3.8

[36] Justin Lubin. Approximating Polymorphic Effects with Capabilities. In SPLASH 2018
Student Research Competition, 2018. 3.7, 4.2.3, 4.2.3

[37] John M. Lucassen. Types and Effects towards the Integration of Functional and Imperative
Programming. PhD thesis, Massachusetts Institute of Technology, 1987. 1.1, 3.8

[38] John M. Lucassen and David K. Gifford. Polymorphic Effect Systems. In Symposium on
Principles of Programming Languages, 1988. ISBN 0-89791-252-7. doi: 10.1145/73560.
73564. URL http://doi.acm.org/10.1145/73560.73564. 3, 3.8

[39] Michael Maass. A Theory and Tools for Applying Sandboxes Effectively. PhD thesis,
Carnegie Mellon University, 2016. 1, 2.6.1, 4.1

115

https://code.google.com/p/google-caja/
https://doi.org/10.1007/978-3-319-71237-6_4
https://doi.org/10.1007/978-3-319-71237-6_4
http://dl.acm.org/citation.cfm?id=2124243.2124264
http://dl.acm.org/citation.cfm?id=2124243.2124264
https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-types-2/
https://www.microsoft.com/en-us/research/publication/koka-programming-with-row-polymorphic-effect-types-2/
http://doi.acm.org/10.1145/512529.512559
http://doi.acm.org/10.1145/512529.512559
http://doi.acm.org/10.1145/3009837.3009897
https://2017.splashcon.org/event/ocap-2017-specifying-attenuation
https://2017.splashcon.org/event/ocap-2017-specifying-attenuation
http://doi.acm.org/10.1145/73560.73564

[40] David MacQueen. Modules for Standard ML. In ACM Symposium on LISP and Functional
Programming, 1984. 2.2, 2.2

[41] Sergio Maffeis, John C. Mitchell, and Ankur Taly. Object Capabilities and Isolation of
Untrusted Web Applications. In IEEE Symposium on Security and Privacy, 2010. 1, 2.9,
3, 3.8, 5.1

[42] Daniel Marino and Todd Millstein. A Generic Type-and-effect System. In International
Workshop on Types in Language Design and Implementation, 2009. ISBN 978-1-60558-
420-1. doi: 10.1145/1481861.1481868. URL http://doi.acm.org/10.1145/
1481861.1481868. 3.8

[43] Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. A Capability-
Based Module System for Authority Control. In European Conference on Object-Oriented
Programming, 2017. 2.6.2

[44] Darya Melicher, Yangqingwei Shi, Alex Potanin, and Jonathan Aldrich. A Capability-
Based Module System for Authority Control. Technical Report CMU-ISR-17-106,
Carnegie Mellon University, 2017. URL http://reports-archive.adm.cs.
cmu.edu/anon/isr2017/abstracts/17-106.html. 2.6.2

[45] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A Security-Oriented Subset of Java.
In Network and Distributed System Security Symposium, 2010. 2.9, 3.8, 5.1

[46] Heather Miller, Philipp Haller, and Martin Odersky. Spores: A Type-Based Foundation for
Closures in the Age of Concurrency and Distribution. In European Conference on Object-
Oriented Programming, 2014. 2.5.1

[47] Mark S. Miller. The E Language. http://erights.org/elang/. 2.4, 2.9

[48] Mark S. Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, 2006. 1.1, 2.9, 3.3.4, 3.5,
3.5.3, 3.8, 3.8, 5.1

[49] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja: Safe Active
Content in Sanitized JavaScript. Technical report, Google, Inc., 2008. 2.9

[50] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. SHILL: A Secure Shell
Scripting Language. In USENIX Symposium on Operating Systems Design and Implemen-
tation, 2014. 2.9

[51] Toby Murray. Analysing Object-Capability Security. In Joint Workshop on Foundations of
Computer Security, Automated Reasoning for Security Protocol Analysis and Issues in the
Theory of Security, 2008. 3.3.4

[52] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin, and
Jonathan Aldrich. Wyvern: A Simple, Typed, and Pure Object-Oriented Language. In
Workshop on Mechanisms for Specialization, Generalization and Inheritance, 2013. 1.1,
2.5, 5.1

[53] James Noble and Sophia Drossopoulou. Rationally Reconstructing the Escrow Example.
In Workshop on Formal Techniques for Java-like Programs, 2014. 2.9

[54] Martin Odersky, Philippe Altherr, Vincent Cremet, Gilles Dubochet, Burak Emir, Philipp

116

http://doi.acm.org/10.1145/1481861.1481868
http://doi.acm.org/10.1145/1481861.1481868
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/abstracts/17-106.html
http://reports-archive.adm.cs.cmu.edu/anon/isr2017/abstracts/17-106.html
http://erights.org/elang/

Haller, Stéphane Micheloud, Nikolay Mihaylov, Adriaan Moors, Lukas Rytz, Michel
Schinz, Erik Stenman, and Matthias Zenger. Scala Language Specification. http:
//scala-lang.org/files/archive/spec/2.11/. Last accessed: May 2017.
1

[55] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and Jonathan
Aldrich. Safely Composable Type-Specific Languages. In Proceedings of the 28th Euro-
pean Conference on Object-Oriented Programming, ECOOP’14, pages 105–130. Springer,
2014. ISBN 978-3-662-44201-2. doi: 10.1007/978-3-662-44202-9 5. URL http:
//dx.doi.org/10.1007/978-3-662-44202-9_5. 3

[56] Class SecurityManager. Oracle Corporation. https://docs.oracle.com/
javase/10/docs/api/java/lang/SecurityManager.html. 5.2

[57] David L. Parnas. Information Distribution Aspects of Design Methodology. volume 71,
pages 339–344, 01 1971. 3.3.2

[58] David L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1053–1058, 1972. ISSN 0001-0782. doi: 10.1145/
361598.361623. URL http://doi.acm.org/10.1145/361598.361623. 3.3.2

[59] Gordon Plotkin and John Power. Algebraic Operations and Generic Effects. Applied Cate-
gorical Structures, 11(1):69–94, 2003. ISSN 1572-9095. doi: 10.1023/A:1023064908962.
URL https://doi.org/10.1023/A:1023064908962. 3.8

[60] Gordon Plotkin and Matija Pretnar. Handlers of Algebraic Effects. In Programming Lan-
guages and Systems, 2009. ISBN 978-3-642-00590-9. 3.8

[61] Vineet Rajani, Deepak Garg, and Tamara Rezk. On Access Control, Capabilities, Their
Equivalence, and Confused Deputy Attacks. In 2016 IEEE 29th Computer Security Foun-
dations Symposium (CSF), pages 150–163, June 2016. doi: 10.1109/CSF.2016.18. 2.9

[62] Jonathan A. Rees. A Security Kernel Based on the Lambda-Calculus. Technical report,
Massachusetts Institute of Technology, 1996. 2.9

[63] John M. Rushby. Design and Verification of Secure Systems. In Symposium on Operating
Systems Principles, 1981. ISBN 0-89791-062-1. 1

[64] Lukas Rytz, Martin Odersky, and Philipp Haller. Lightweight Polymorphic Effects. In
European Conference on Object-Oriented Programming, 2012. ISBN 978-3-642-31056-
0. doi: 10.1007/978-3-642-31057-7 13. URL http://dx.doi.org/10.1007/
978-3-642-31057-7_13. 3.7, 3.8

[65] Jerome H. Saltzer. Protection and the Control of Information Sharing in Multics. Commu-
nications of the ACM, 17(7):388–402, 1974. 1

[66] Z. Cliffe Schreuders, Tanya Mcgill, and Christian Payne. The State of the Art of Application
Restrictions and Sandboxes: A Survey of Application-oriented Access Controls and Their
Shortfalls. Computers and Security, 32:219–241, 2013. ISSN 0167-4048. 1

[67] Fred Spiessens and Peter Van Roy. The Oz-E Project: Design Guidelines for a Secure
Multiparadigm Programming Language. In Multiparadigm Programming in Mozart/Oz,
2005. 2.9

117

http://scala-lang.org/files/archive/spec/2.11/
http://scala-lang.org/files/archive/spec/2.11/
http://dx.doi.org/10.1007/978-3-662-44202-9_5
http://dx.doi.org/10.1007/978-3-662-44202-9_5
https://docs.oracle.com/javase/10/docs/api/java/lang/SecurityManager.html
https://docs.oracle.com/javase/10/docs/api/java/lang/SecurityManager.html
http://doi.acm.org/10.1145/361598.361623
https://doi.org/10.1023/A:1023064908962
http://dx.doi.org/10.1007/978-3-642-31057-7_13
http://dx.doi.org/10.1007/978-3-642-31057-7_13

[68] Marc Stiegler. Emily: A High Performance Language for Enabling Secure Cooperation. In
International Conference on Creating, Connecting and Collaborating through Computing,
2007. 2.9

[69] Jean-Pierre Talpin and Pierre Jouvelot. The Type and Effect Discipline. Information and
Computation, 111(2):245–296, 1994. ISSN 0890-5401. doi: 10.1006/inco.1994.1046.
URL http://dx.doi.org/10.1006/inco.1994.1046. 5.2

[70] Mike Ter Louw, Prithvi Bisht, and V Venkatakrishnan. Analysis of Hypertext Isolation
Techniques for XSS Prevention. Web 2.0 Security and Privacy, 2008. 1

[71] Franklyn A. Turbak and David K. Gifford. Design Concepts in Programming Languages.
The MIT Press, 2008. ISBN 0262201755, 9780262201759. 3, 3.8

[72] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: Programming Respon-
sive Mobile Peer-to-peer Applications with Actors. Computer Languages, Systems and
Structures, 40(34):112–136, 2014. 2.5.1

[73] David Wagner and Dean Tribble. A Security Analysis of the Combex DarpaBrowser Archi-
tecture. http://combex.com/papers/darpa-review/security-review.
pdf, March 2002. 2.9, 5.1

[74] Esther Wang and Jonathan Aldrich. Capability Safe Reflection for the Wyvern Language.
In Workshop on Meta-Programming Techniques and Reflection, 2016. 2.4

[75] Robert N. M. Watson. Exploiting Concurrency Vulnerabilities in System Call Wrappers.
In USENIX Workshop on Offensive Technologies, 2007. 1

[76] Yizhou Zhang and Andrew C. Myers. Abstraction-safe Effect Handlers via Tunneling. Pro-
ceedings of the ACM on Programming Languages, 3(POPL):5:1–5:29, 2019. ISSN 2475-
1421. doi: 10.1145/3290318. URL http://doi.acm.org/10.1145/3290318.
3.8

118

http://dx.doi.org/10.1006/inco.1994.1046
http://combex.com/papers/darpa-review/security-review.pdf
http://combex.com/papers/darpa-review/security-review.pdf
http://doi.acm.org/10.1145/3290318

	1 Introduction
	1.1 Thesis Approach
	1.2 Threat Model
	1.2.1 Attack Scenarios

	1.3 Thesis Statement and Outline

	2 A Capability-Safe Module System
	2.1 Running Example
	2.2 Resource Modules
	2.3 Pure Modules
	2.4 Capability Analysis
	2.5 Formalization
	2.5.1 Module Syntax
	2.5.2 Core Syntax
	2.5.3 Modules-to-Objects Translation
	2.5.4 Static Semantics
	2.5.5 Subtyping Rules
	2.5.6 Dynamic Semantics
	2.5.7 Type Soundness

	2.6 Capability Safety
	2.6.1 Significance of Capability Safety
	2.6.2 Formal Definition of Capability Safety

	2.7 Implementation
	2.8 Limitations
	2.9 Related Work

	3 Authority Safety via Effects
	3.1 Running Example
	3.2 Wyvern Effects Basics
	3.2.1 Effect Abstraction

	3.3 Software Development Patterns Facilitated by Wyvern's Effect System
	3.3.1 Controlling Operations Performed on Resources
	3.3.2 Information Hiding and Polymorphism
	3.3.3 Designating Important Resources Using Globally Available Effects
	3.3.4 Authority Attenuation

	3.4 Formalization
	3.4.1 Core Syntax
	3.4.2 Modules-to-Objects Translation
	3.4.3 Well-Formedness Rules
	3.4.4 Static Semantics
	3.4.5 Effect-Lookup Rules
	3.4.6 Dynamic Semantics
	3.4.7 Subtyping Rules
	3.4.8 Type Soundness

	3.5 Authority-Related Properties
	3.5.1 Authority Safety
	3.5.2 Authority of an Object
	3.5.3 Authority Attenuation

	3.6 Implementation
	3.7 Limitations
	3.8 Related work

	4 Evaluation
	4.1 Threat Mitigation
	4.2 Case Study: An Extensible Text-Editor Application
	4.2.1 Application Description
	4.2.2 Security Analysis
	4.2.3 Observations and Discussion

	5 Conclusion and Future Work
	5.1 Contributions
	5.2 Future Work

	A Capability-Safe Module System
	A.1 Type Soundness
	A.1.1 Preservation
	A.1.2 Progress

	A.2 Capability Safety
	A.2.1 Capabilities-Related Properties
	A.2.2 subexps Rules
	A.2.3 Lemmas
	A.2.4 Capability-Safety Theorem

	B Authority Safety via Effects
	B.1 Type Soundness
	B.1.1 Lemmas
	B.1.2 Preservation
	B.1.3 Progress

	B.2 More General Definition of Authority Attenuation

	Bibliography

