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Abstract
Effect systems have been a subject of active research for nearly four decades,

with the most notable practical example being checked exceptions in programming
languages such as Java. The work on effects can be divided into two strands: The
restrictive approach (e.g., Java’s checked exceptions) tracks effects that are already
built into the language–such as reading and writing state or exceptions–and provides
a way to restrict them. The denotational approach, which includes algebraic effects,
defines the semantics of computational effects based on primitives. While there are
many existing restrictive or denotational effect systems, they are rarely designed
with scalability in mind. In this thesis, we design multiple effect systems around the
idea of making effect systems scalable when developing large and complex software.
The first part of our work is a restrictive path-dependent effect system that provides
a granular effect hierarchy by allowing abstract effect members to be bounded. This
thesis presents a full formalization of the effect system, and provides an implemen-
tation as a part of the Wyvern programming language. The second part of our work
presents a denotational effect system that supports abstract algebraic effects. This
thesis gives a formalization of the system and provides proofs for type soundness
and properties of effect abstraction.
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Chapter 1

Introduction

Effect systems have been a subject of active research for nearly four decades, with the most
notable practical example being checked exceptions in programming languages such as Java.
According to Filinski [7], there are two different views on modeling computational effects in
programs: the denotational approach and the restrictive approach.

The denotational approach describes how effectful programs can be translated into a pure
program, which can then be evaluated using the standard semantics for pure programs. Works
by Moggi [22] show that features from imperative computations, such as exceptions or mutable
states, can be mimicked by monads in a pure program. Algebraic effects and handlers [26] are
the latest development in this strand of works. Algebraic effects and handlers can express a
wide range of computation effects such as nondeterminism, concurrency, state, and input/output
[26]. Comparing to the traditional approach that uses general monads, algebraic effects have the
advantage of being freely composable. Therefore, algebraic effects have recently been gaining
popularity as an approach to model effects in a purely functional setting.

Alternatively, in a restrictive setting of computational effects, effects are considered to be
built into the language. Rather than building up new behaviors, the effect systems aim to clas-
sify and restrict the use of existing effectful behavior in a language, such as reads and writes to
memory, as well as checked exceptions. Restrictive effect systems are widely used for reasoning
about security [30], memory effects [17], and concurrency [3, 5, 6].

Abstraction: A requirement for scalable effect systems
Unfortunately, effect systems have not been widely adopted, other than checked exceptions

in Java, a feature that is widely viewed as problematic [31]. The root of the problem is that
existing effect systems do not provide adequate support for scaling to programs that are larger
and have a complex structure. Any adequate solution must support effect abstraction and effect
composition.

Abstraction is key to achieving scale in general, and a principal form of abstraction is abstract
types [20]. There are many existing works that achieve information hiding using abstract types,
such as SML signatures and abstract type members in Scala [23]. Typically, a module system
allows each module to choose what names and entities to export, and what to keep hidden. The
exported interface typically does not reveal details of the implementation of a module. By hiding
the implementation details, the programmer of the module can be certain that the invariants
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within the module cannot be broken by the client. Analogously to type abstraction, we define
effect abstraction as the ability to define higher-level effects in terms of lower-level effects, and
potentially to hide that definition from clients of effects.

In large-scale systems, abstraction should be composable. For example, a database compo-
nent might abstract file.Read further, exposing it as a higher-level db.Query effect to clients.
Clients of the database should be oblivious to whether db.Query is implemented in terms of a
file.Read effect or a network.Access effect (in the case that the backend is a remote database).

Design of a restrictive effect system in Wyvern
This thesis presents a novel and scalable effect system design that supports bounded effect

abstraction, extending the effect system presented by Melicher et al. [19]. The abstraction facility
of our effect-system is inspired by type members in languages such as Scala. Just as Scala
objects may define type members, in our effect calculus, any object may define one or more effect
members. An effect member defines a new effect in terms of the lower-level effects that are used
to implement it. The set of lower-level effects may be empty in the base case or may include
low-level effects that are hard-coded in the system. Type ascription can enable information
hiding by concealing the definition of an effect member from the containing object’s clients.
In addition to completely concealing the definition of an effect, our calculus provides bounded
abstraction, which exposes upper or lower bounds of the definition of an effect, while still hiding
the definition of it.

Effect polymorphism is a form of parametric polymorphism that allows functions or types to
be implemented generically for handling computations with different effects [17]. In systems at a
larger scale, there are various possible effects, and each program component may cause different
effects. With effect polymorphism, we can write generic code that handles objects with different
effects, thereby reducing the amount of replicated code. In practice, we have found that to
make effects work well with modules, it is essential to extend effect polymorphism by assigning
bounds to effect parameters. We, therefore, introduce bounded abstract effects, which allows
programmers to define upper and lower bounds both on abstract effects and on polymorphic
effect parameters.

Just as Scala’s type members can be used to encode parametric polymorphism over types,
our effect members and their bounds double as a way to provide bounded effect polymorphism.
Instead of explicitly supporting parametric polymorphism using universal types, we follow nu-
merous prior Scala formalisms and use effect members to encode polymorphic methods; this
keeps the formal system simpler without giving up expressive power.

Design of a denotational effect system with effect abstraction
This thesis presents a core calculus that supports algebraic effects. The calculus extends

the simply typed lambda calculus with algebraic effect operations and handlers and provides the
ability to define abstract algebraic effects. Similar to the restrictive effect system, algebraic effect
types can be defined in terms of lower-level effects. Effect abstraction in this system ensures that
the client of an abstract effect type is not aware of the lower-level effects that implement the
abstract effect. Consequently, the client of an abstract effect type would not be able to handle the
computation that causes the abstract effect, whose operations are hidden.

Different from the restrictive effect system in Wyvern, which describes the built-in effectful
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behavior in the language and does not affect the dynamic semantics of the program, the dynamic
semantics of algebraic effects operations depend on the handler that encapsulates it during eval-
uation. Therefore, the effect system needs to ensure the abstraction does not break during the
evaluation of a program. This problem was originally discovered by Biernacki et al. [2], who
solved the problem using the technique of coercion. In this paper, we propose the technique of
agent-based reasoning, which was originally designed by Grossman et al. [10], as a solution to
the problem. The benefit of this approach is that by explicitly dividing modules with hidden
information into agents, the system supports syntactic proof for effect-abstraction properties

Outline and Contributions. Chapter 2 introduces the background for both restrictive and de-
notational effect systems, and discusses the basics of the Wyvern effect system, after which we
describe the main contributions of our paper:

• A design of a more expressive effect system for Wyvern. Specifically, ours is the first
system to provide the programmer with a general form of bounded effect polymorphism
and bounded effect abstraction, supporting upper and lower bounds that are other arbitrary
effects. (Section 3.2);

• A precise, formal description of our effect system, and proof of its soundness. Our formal
system shows how to generalize and enrich earlier work on path-dependent effects by
leveraging the type theory of DOT [1]. (Section 3.3);

• A multi-agent calculus that supports abstraction for algebraic effects, and proof of its type
soundness theorems; Our system enables a syntactic proof of the effect-abstraction prop-
erty. (Section 4.3);

• A multi-agent calculus extended with existential effect types that demonstrates how multi-
agent calculus interacts with traditional techniques of type abstraction. (Section 5.3);

The last chapter in the thesis discusses related work and concludes.
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Chapter 2

Background

In this chapter, we introduce designs of existing restrictive effect systems and denotational effect
systems and discuss their shortcomings.

2.1 A Modular Design of Restrictive Effect Systems
Restrictive Systems were originally proposed by Lucassen [16] to track reads and writes to mem-
ory, and then Lucassen and Gifford [17] extended this effect system to support polymorphism.
Effects have since been used for a wide variety of purposes, including exceptions in Java [11]
and asynchronous event handling [5]. Turbak and Gifford [30] previously proposed effects as a
mechanism for reasoning about security, which is the main application that we discuss.

This section describes the effect system of the Wyvern programming language by Melicher
et al. [19], which introduces various effect system features such as effect members, effect abstrac-
tion, and path-dependent effects. The paper shows that the effect system lays a solid foundation
for effect systems that can scale up and can deal with complexities of real-world code.

2.1.1 Running Example
Consider the Wyvern code in Fig. 2.1 that shows a type and a module implementing the

logging facility of a text editor application. In the given implementation of the Logger type,
the logger module accesses the log file.1 All modules of type Logger must have two methods:
the readLog method that returns the content of the log file and the updateLog method that
appends new entries to the log file. In addition, the Logger type declares two abstract effects,
ReadLog and UpdateLog, that are produced by the corresponding methods. These effects are
abstract because they are not given a definition in the Logger type, and so it is up to the module
implementing the Logger type to define what they mean. The effect names are user-defined,
allowing the choice of meaningful names.

The logger module implements the Logger type. To access the file system, an object of
type File (shown in Fig. 2.2) is passed into logger as a parameter. The logger module’s effect

1The keyword resource in the type definition indicates that the implementations of this type may have state
and may access system resources; this is orthogonal to effect checking.
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1 resource type Logger
2 effect ReadLog
3 effect UpdateLog
4 def readLog(): {this.ReadLog} String
5 def updateLog(newEntry: String): {this.UpdateLog} Unit
6

7 module def logger(f: File): Logger
8 effect ReadLog = {f.Read}
9 effect UpdateLog = {f.Append}

10 def readLog(): {this.ReadLog} String = f.read()
11 def updateLog(newEntry: String): {this.UpdateLog} Unit = f.append(newEntry

)

Figure 2.1: A type and a module implementing the logging facility in the text-editor application.

1 resource type File
2 effect Read
3 effect Write
4 effect Append
5 ...
6 def read(): {this.Read} String
7 def write(s: String): {this.Write} Unit
8 def append(s: String): {this.Append} Unit
9 ...

Figure 2.2: The type of the file resource.

declarations are those of the Logger type, except now they are concrete, i.e., they have specific
definitions. The ReadLog effect of the logger module is defined to be the Read effect of the
File object, and accordingly, the readLog method, which produces the ReadLog effect, calls f’s
read method. Similarly, the UpdateLog effect of the logger module is defined to be f.Append,
and accordingly, the updateLog method, which produces the UpdateLog effect, calls f’s append
method. In general, effects in a module or object definition must always be concrete, whereas
effects in a type definition may be either abstract or concrete.

2.1.2 Path-dependent Effects
Effects are members of objects,2 so we refer to them with the form variable.EffectName,
where variable is an immutable reference to the object defining the effect, and EffectName

is the name of the effect. For example, in the definition of the ReadLog effect of the logger

module, f is the variable referring to a specific file and Read is the effect that the read method
of f produces. This conveniently ties together the resource and the effects produced on it (which
represent the operations performed on it), helping a software architect or a security analyst to
reason about how resources are used by any particular module and its methods. For example,
when analyzing the effects produced by logger’s readLog method, a security analyst can quickly

2Modules are an important special case of objects
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deduce that calling that method affects the file resource and, specifically, the file is read, simply
by looking at the Logger type and logger’s effect definitions but not at the method’s code.
Furthermore, these properties can be automatically checked with an idiom of use: In addition to
directly looking at the effect annotation of the method of the logger module, the security analyst
may write client code that specifies the effect that the logger module is allowed to have. If the
logger module accesses system resources outside of the specified effect set, then the compiler
would automatically reject the program.

Because an effect includes a reference to an object instance, our effect system can distinguish
reads and writes on different file instances. If the developer does not want this level of precision,
it is still possible to declare effects at the module level (i.e., as members of a fileSystem module
object instance), and to share the same Read and Write effects (for example) across all files in
fileSystem.

The basic mechanisms of path-dependence are borrowed from Scala and have been shown
to scale well in practice. These mechanisms come from the Dependent Object Types (DOT)
calculus [1], a type theory of Scala and related languages (including Wyvern). In our system,
effects, instead of types are declared as members of objects.

2.1.3 Effect Abstraction
An important and novel feature of our effect system design is the support for effect abstraction.
Effect abstraction is the ability to define higher-level effects in terms of lower-level effects and
potentially to hide that definition from clients of an abstraction. In the logging example above,
through the use of abstraction, we “lifted” low-level resources such as the file system (i.e., the
Read and Append effects of the file) into higher-level resources such as a logging facility (i.e., the
ReadLog and UpdateLog effect of the logger) and enabled application code to reason in terms of
effects on those higher-level resources when appropriate.

Effect abstraction has several concrete benefits. First, it can be used to distinguish different
uses of a low-level effect. For example, system.FFI describes any access to system resources
via calls through the foreign function interface (FFI), but modules that define file and network
I/O can represent these calls as different effects, which enables higher-level modules to reason
about file and network access separately. Second, multiple low-level effects can be aggregated
into a single high-level effect to reduce effect specification overhead. For instance, the db.Query
effect might include both file.Read and network.Access effects. Third, by keeping an effect
abstract, we can hide its implementation from clients, which facilitates software evolution: code
defining a high-level effect in terms of lower-level ones can be rewritten (or replaced) to use a
different set of lower-level effects without affecting clients.

2.1.4 Effect Aggregation
Wyvern’s effect-system design allows reducing the effect-annotation overhead by aggregating
several effects into one. For example, if, to update the log file, the logger module needed to
first read the file and then write it back, the UpdateLog effect would consist of two effects: a file
read and a file write. In other effect systems, this change may make effects more verbose since
all the methods that call the updateLog method would need to be annotated with the two effects.
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However, effect aggregation allows us to define the UpdateLog effect to be the two effects and
then use UpdateLog to annotate the updateLog method and all methods that call it:

module def logger(f: File): Logger
effect UpdateLog = {f.Read, f.Write}
def updateLog(newEntry: String): {this.UpdateLog} Unit
...

This way we need to use only one effect, UpdateLog, instead of two, in method effect annota-
tions, thus reducing the effect-annotation overhead. Because more code may add more effects,
larger software systems might experience a snowballing of effects, when method annotations
have numerous effects in them.

2.1.5 Controlling FFI Effects

Wyvern programs access system resources via calls to other programming languages, such as
Java and Python, i.e., through a foreign function interface (FFI). To monitor and control the
effects caused by FFI calls, we enforce that all functions from other programming languages,
when called within Wyvern, are annotated with the system.FFI effect.

As was mentioned in Section 2.1.3, the system.FFI effect is an effect that describes function
calls through an FFI. Since every function call though FFI has this effect, the access to system
resources via FFI is guaranteed to be monitored. system.FFI is the lowest-level effect in the
effect system which can be used to build other higher-level effects. The programmer can lift
system.FFI to higher-level effects and reason about those higher-level effects instead.

For example, Wyvern’s import mechanism works by loading an object in a static field of a
Java class, and the following code imports a field of a Java class that helps to implement file IO:
import java:wyvern.stdlib.support.FileIO.file

The file object is itself of type FileIO. And FileIO has this method, among others:
public void writeStringIntoFile(String content, String filename) throws

IOException { ... }

In Wyvern, there is a type wyvern.stdlib.support.FileIO as well as an object file (of that type)
that gets added to the scope as a result of the import above. The type has the following member,
corresponding to the method above:
def writeStringIntoFile(content:String, filename:String): { system.FFI }
Unit

Here, the system.FFI effect was added to the signature because this is a function that was
imported via the FFI. The Wyvern file library that uses the writeStringIntoFile function
abstracts this system.FFI effect into a library-specific FileIO.Write effect.

2.1.6 The Limitation of Abstract Effects

In the Wyvern effect system, effects can be declared as members of objects. There are two
possible declaration type for an effect member: An effect can be declared abstractly inside a
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type: In this example, effect Read is defined as a member of type Logger, the effect Read can be
accessed as v.Read if v has the type Logger

type Logger
effect Read

On the other hand, an effect can be also defined as an effect set that contains other effects. In the
following example, any expression of type Logger will have an effect Read that is equivalent
to file.Read.

type Logger
effect Read = { file.Read }

The former type definition for Logger is useful when the programmer wants to hide the definition
of the effect Read, while the second type allows the Read effect and file.Read to be used
interchangeably. However, there is no way for a programmer to have these two benefits at once:
the effect Read in Logger is either completely opaque, or completely equivalent to some other
effect set.

2.2 Algebraic Effects and Handlers

2.2.1 Overview
Algebraic effects and handlers [25, 26] are a way of implementing certain kinds of side effects
such as exceptions and mutable states in an otherwise purely functional setting. As described
above, algebraic effects fall into the “denotational” rather than “descriptive” family of work on
effects.

Algebraic effects introduce the notion of operations, which carry no predefined meaning.
The interpretation for each operation is provided by the evaluation context. In most systems
with algebraic effects and handlers, operations are tracked by an effect system, which is similar
to the way effectful methods are tracked in the Wyvern programming language. Comparing to
restrictive effect systems, algebraic effects subsumes multiple control-flow constructs and can
restore the purity of programs by handling effect operations.

Exceptions are an example of control-flow constructs that are subsumed by algebraic effects.
Assume that an algebraic effect exc is defined with one operation raise:
effect exc = {

raise : String -> a
}
Then the operation raise can be used to implement programs that might cause exceptions. For
example, we can write a division function that raises an exception when the divisor is 0.
def div(x : Int, y : Int) : {exc} Int

if (y == 0)
raise("divide by zero")

else
x / y

The type of function div is Int× Int→ {exc} Int. The {exc} annotation indicates that the
function might cause the exc effect by invoking its operation. Because the meaning of operations
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is undefined, we need to use a handler to define semantics for effect operations. For this example,
we define a handler that returns 0 whenever an error is raised.

handle
div(1, 0)

with
| return x -> x
| raise s -> 0

In the return clause, the variable x is bound to the result of the computation if no operation is
invoked. So in this case the whole handled expression would evaluate to x. In the raise clause,
the handler evaluates the whole expression to 0 when an exception is raised.

Another useful property of algebraic effects and handlers is the ability to resume the compu-
tation, consider the following handled expression that invokes the function div twice.

handle
div(1, 0) + div(2, 1)

with
| return x -> x
| raise s -> resume 3

The raise clause of the handler is resume 3 , which tells the program to continue evaluation
but use 3 as the result of the operation. So the final result for the whole expression is 5. This
example shows that algebraic effects are a more structured form of delimited continuations.

2.2.2 Effect Abstraction
Similar to the restrictive effect system, algebraic effects also benefit from the ability to declare
abstract effects. However, this problem is not studied as thoroughly as the effect abstraction in the
restrictive setting. The abstraction for algebraic effects was originally proposed by Leijen [13],
but was not developed theoretically. The work by Biernacki et al. [2] first studied the abstract
algebraic effects formally and proposed a formalization based on coercions. The relationship
between Biernacki et al. [2]’s work and ours is discussed more in section 6.1.5
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Chapter 3

Bounded Abstract Effects

3.1 Intuition for Subeffecting
Subtyping is used by many programming languages as a means for making the type system
flexible. The standard intuition of subtyping is that if every value described by the type S is
also described by T, then S <: T. The subtyping relation is also often interpreted as a subset
relation, that is, if S <: T, then the elements of S are a subset of the elements of T. Type systems
incorporates subtyping relation by adding the rule of subsumption:

Γ ` t : S S <: T
Γ ` t : T

which states that if a term t belongs to a type S, and S is a subtype if T, then t can be used as a
value of type T.

There is a natural way to incorporate the interpretation of subtyping into the Wyvern effect
system. Since the effect system describes the set of side effects a program can possibly cause, if
one effect E is a subset of another effect F, then it is safe to use a term that has effect E whenever
a term of effect F is expected. We therefore consider the effect E as a subeffect of the effect F, due
to their similarity to subtyping. To give a concrete example, consider a declaration of a method
readFromNetwork:
def readFromNetwork() : {network.Read, file.Write} Unit = writeFile()
def writeFile() : {file.Write} Unit = file.Write{"something"}

The readFromNetwork method has an effect that consists of two effect labels, network.Read and
file.Write, and is implemented by calling writeFile method, which only has the file.Write
effect. Because the effect of writeFile method is a subset of the effect of readFromNetwork, it
can be safely used as an implementation of readFromNetwork.

3.2 Effect Bounds
Our effect system gives the programmer the ability to define a subtyping hierarchy of effects via
effect bounds. To define the hierarchy, the programmer gives the effect member an upper bound
or a lower bound, hiding the definition of the effect from the client.
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For example, consider the type BoundedLogger which has the same method declarations and
effect members as the type Logger in Fig. 2.1, except the ReadLog and UpdateLog effects are
upper-bounded by the corresponding effects in the fileSystem module:

type BoundedLogger
effect ReadLog <= {fileSystem.Read}
effect UpdateLog <= {fileSystem.Append}
...

Any object implementing the type BoundedLogger may have an effect member ReadLog which
is at most fileSystem.Read. This allows programmers to compare the ReadLog effect with
other effects, while keeping its definition abstract. For instance, a library can provide two im-
plementations of BoundedLogger, including an effectless logger in which the effects ReadLog

and UpdateLog are empty sets, and an effectful logger in which ReadLog and UpdateLog are de-
fined as effects in the fileSystem module. The library’s clients then can annotate the effects of
both implementations with fileSystem.Read and fileSystem.Append according to the effect
hierarchy, without the need to know the exact implementation of the two instances.

Effect hierarchy can also be constructed using lower bounds. For example, consider the
following type for I/O modules that supports writes:

type IO
effect Write >= {system.FFI}
def write(s: String): {this.Write} Unit

Since I/O is done using the foreign function interface (FFI), the Write effect is at least the
system.FFI effect. Similar to providing an upper bounded on effects, this type does not specify
the exact definition of the Write effect, and implementations of this type can define Write as an
effect set with more effects than {system.FFI}.

The effect hierarchy achieved by bounding effect members is supported by the subtyping
relations of our effect system (Sections 3.3.5). If a type has an effect member with more strict
bounds than another type, then the former type is a subtype of the latter type. For example, when
a logger with the effect member Read <= {fileSystem.Read} is expected, we can pass in a
logger with Read = {} because the definition as an empty set is more strict than an upper bound.

The following two case studies demonstrates the expressiveness of the effect hierarchy:

3.2.1 Controlling Access to UI Objects
This main idea of the work of Gordon et al. [8] is to control the access of user interface (UI)
framework methods so that unsafe UI methods can only be called on the UI thread. There are
three different method annotations @SafeEffect, @UIEffect, and @PolyUIEffect, where

1. @SafeEffect annotates methods that are safe to run on any thread,

2. @UIEffect annotates methods that is only callable on UI thread, and

3. @PolyUIEffect annotates methods whose effect is polymorphic over the receiver type’s
effect parameter.

In Wyvern, we can model @UIEffect as a member of the UI module, for example:

type UILibrary
effect UIEffect >= {system.FFI}
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def unsafeUIMethod1(): {this.UIEffect} Unit
def unsafeUIMethod2(): {this.UIEffect} Unit
...

This way, any client code of an UI library that calls UI methods will have the uilibrary.

UIEffect effect.
An interface could be used for UI-effectful or UI-safe work. To accommodate such flexibility,

JavaUI introduced the @PolyUIType annotation. For example, a Runnable interface which can
be UI-safe or UI-unsafe is declared as
@PolyUIType public interface Runnable {

@PolyUIEffect void Run();
}

Whether the method Run() will have a UI effect depends on an annotation when the type is
instantiated. For example:
@Safe Runnable s =....;
s.run(); // is UI safe
@UI Runnable s = .....;
s.run(); // has UI effect

In Wyvern, such polymorphic interface can be created by defining the interface with a bounded
effect member:
type Runnable

effect Run <= {uiLibrary.UIEffect}
def run(): {this.Run} Unit

This type ensures that the run method is safe to be called on the UI thread. Moreover, if an
instance of Runnable does not have UIEffect, it can be ascribed with the type SafeRunnable,
which is a subtype of Runnable:
type SafeRunnable

effect Run = {}
def run(): {this.Run} Unit

This indicates that run is safe to be called on any thread.

3.2.2 Controlling Mutable States Using Abstract Regions
Greenhouse and Boyland [9] proposed a region-based effect system which describes how state
may be accessed during the execution of some program component in object-oriented program-
ming languages. One example of the usage of regions is as follows:
class Point {

public region Position;
private int x in Position;
private int y in Position;
public scale(int sc) reads nothing writes Position {

x *= sc;
y *= sc;

}
}
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The two variables x and y are declared inside a region Position. For each region, there can be
two possible effects: read and write. The scale method has the effect of writing on the region
this.Position.

To achieve access control on regions in Wyvern, we need to keep track of the read and write
effect on each variable in a region. We declare the resource type Var representing a variable
wrapper.

resource type Var[T]
effect Read
effect Write
def set (x: T): {this.Write} Unit
def get (): {this.Read} T

Since the set and get methods are annotated with the corresponding effects and there is no
exposed access to the variable that holds the value, the two methods protect the access to the
variable inside the type Var. To avoid code boilerplate, this wrapper type can be added as a
language extension. The Point example above can be rewritten in Wyvern as:

resource type Point
val x: Var[Int]
val y: Var[Int]
effect Read >= {this.x.Read, this.y.Read}
effect Write >= {this.x.Write, this.y.Write}
def scale(sc: Int): {this.Write} Unit

We can also extend the type Point to 3DPoint in the following way:

resource type 3DPoint
val x: Var[Int]
val y: Var[Int]
val z: Var[Int]
effect Read = {this.x.Read, this.y.Read, this.z.Read}
effect Write = {this.x.Write, this.y.Write, this.z.Write}
def scale(sc: Int): {this.Write} Unit

Since the effect Read and Write in the type Point is declared with a lower bound, the type
3DPoint is a subtype of Point.

3.3 Formalization

As was mentioned earlier, Wyvern modules are first class and are, in fact, objects since they are
only syntactic sugar on top of Wyvern’s object-oriented core and can be translated into objects.
The translation has been described in detail previously [18], and here we provide only some in-
tuition behind it. In this section, we start with describing the syntax of Wyvern’s object-oriented
core, then present an example of the module-to-object translation, followed by a description of
Wyvern’s static semantics and subtyping rules. Furthermore, we present the dynamic semantics
and the type soundness theorems. Last but not least, we provide the definitions on authority and
discuss why they are useful for security analysis on programs written in Wyvern.
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3.3.1 Object-Oriented Core Syntax

e ::= x

| new (x⇒ d)
| e.m(e)
| e.f
| e.f = e

d ::= defm(x : τ) : {ε} τ = e
| var f : τ = x
| effect g = {ε}

ε ::= x.g
τ ::= {x⇒ σ}
Γ ::= ∅ | Γ, x : τ

σ ::= defm(x : τ) : {ε} τ
| var f : τ
| effect g
| effect g > {ε}
| effect g 6 {ε}
| effect g = {ε}

Figure 3.1: Wyvern’s object-oriented core syntax.

Fig. 3.1 shows the syntax of Wyvern’s object-oriented core. Wyvern expressions include
variables and the four basic object-oriented expressions: the new statement, a method call, a field
access, and a field assignment. Objects are created by new statements that contain a variable
x representing the current object along with a list of declarations. In our implementation, x
defaults to this when no name is specified by the programmer. Declarations come in three
kinds: a method declaration, a field, and an effect member. Method declarations are annotated
with a set of effects. Object fields may only be initialized using variables, a restriction which
simplifies our core language by ensuring that object initialization never has an effect. Although
at first this may seem to be limiting, in fact, we do not limit the source language in this way. Side-
effecting member initializations in the source language are translated to the core by wrapping the
new object with a let expression (a discussion of which is upcoming) that defines the variable
to be used in the field initialization. For example, this code:

new
var x: String = f.read()

can be internally rewritten as:

let y = f.read()
in new

var x: String = y

Effects in method annotations and effect-member definitions are surrounded by curly braces to
visually indicate that they are sets, and each effect in an effect set is defined to be a variable
representing the object on which an effect is produced, followed by a dot and the effect name.
Abstract effects may be defined with an upper bound or a lower bound.

Object types are a collection of declaration types, which include method signatures, field-
declaration types, and the types of effect-member declarations and definitions. Similar to the
difference between the modules and their types, effects in an object must always be defined (i.e.,
always be concrete), whereas effects in object types may or may not have definitions (i.e., be
either abstract or concrete), and may have an upper or lower bound.

3.3.2 Modules-to-Objects Translation

Fig. 3.2 presents a simplified translation of the logger module from Fig. 2.1 into Wyvern’s
object-oriented core (for a full description of the translation mechanism, refer to [18]). For our
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1 let logger = new(x⇒
2 def apply(f : File) : {} Logger
3 new( ⇒
4 effect ReadLog = {f .Read}
5 effect UpdateLog = {f .Append}
6 def readLog() : {ReadLog} String = f .read()
7 def updateLog(newEntry : String) : {UpdateLog} Unit = f .append(newEntry)))
8 in ...// calls logger .apply(...)

Figure 3.2: A simplified translation of the logger module from Fig. 2.1 into Wyvern’s object-
oriented core.

purposes, the functor becomes a regular method, called apply, that has the return type Logger

and the same parameters as the module functor. The method’s body is a new object containing
all the module declarations. The apply method is the only method of an outer object that is
assigned to a variable whose name is the module’s name. Later on in the code, when the logger
module needs to be instantiated, the apply method is called with appropriate arguments passed
in.

To aid this translation mechanism, we use the two relatively standard encodings:
let x = e in e′ ≡ new( ⇒ def f(x : τ) : τ ′ = e′).f(e)

defm(x : τ) : τ = e ≡ defm(x : (τ1 × τ2 × ...× τn)) : τ = [x.n/xn]e
The let expression is encoded as a method call on an object that contains that method with the
let variable being the method’s parameter and the method body being the let’s body. The
multiparameter version of the method definition is encoded using indexing into the method pa-
rameters.

3.3.3 Well-formedness

Since Wyvern’s effects are defined in terms of variables, before we typecheck expressions, we
must make sure that effects and types are well formed. Wyvern well-formedness rules are mostly
straightforward and are shown in Fig. 3.3. The three judgements read that, in the variable typing
context Γ, the type τ , the declaration type σ, and the effect set ε are well formed, respectively.

An object type is well formed if all of its declaration types are well formed. A method-
declaration type is well formed if the type of its parameter, its return type, and the effects in
its effect annotation are well formed. A field-declaration type is well formed if its type is well
formed. Since an effect-declaration type has no right-hand side, it is trivially well formed. An
effect-definition type is well formed if the effect set in its right-hand side is well formed. Finally,
a bounded effect declaration is well formed if the upper bound or lower bound on the right-hand
side is well formed. An effect set is well formed if, for every effect it contains, the definition of
the effect doesn’t form a cycle, the variable in the first part of the effect is well typed and the
type of that variable contains either an effect-declaration or an effect-definition type, in which
the effect name matches the effect name in the second part of the effect.

The Γ ` safe(x.g, ε) judgment ensures that the definition of effect x.g doesn’t contain a
cycle. The rules Safe-1, Safe-2, and Safe-3 are identical except the declaration of the effect type.

16



Γ ` τ wf

∀σ ∈ σ, Γ, x : {x⇒ σ} ` σ wf

Γ ` {x⇒ σ} wf
(WF-TYPE)

Γ ` σ wf

Γ ` τ2 wf Γ, x : τ2 ` τ1 wf Γ, x : τ2 ` ε wf

Γ ` def m(x : τ2) : {ε} τ1 wf
(WF-DEF)

Γ ` τ wf

Γ ` var f : τ wf
(WF-VAR)

Γ ` effect g wf
(WF-EFFECT1)

Γ ` ε wf

Γ ` effect g = {ε} wf
(WF-EFFECT2)

Γ ` ε wf

Γ ` effect g 6 {ε} wf
(WF-EFFECT3)

Γ ` ε wf

Γ ` effect g > {ε} wf
(WF-EFFECT4)

Γ ` ε wf

∀i, j, xi.gj ∈ ε, Γ ` safe(xi.gj , {}), Γ ` xi : {} {yi ⇒ σi},
(effect gj ∈ σi ∨ effect gj = {εj} ∈ σi ∨ effect gj > {εj} ∈ σi ∨ effect gj 6 {εj} ∈ σi)

Γ ` ε wf
(WF-EFFECT)

Γ ` safe(x.g, ε)
Γ ` x : {}{y ⇒ σ}, effect g = {ε′} ∈ σ
∀a.b ∈ {x.g} ∪ ε, a.b 6∈ [x/y]ε′

∀c.d ∈ [x/y]ε′,Γ ` safe(c.d, {x.g} ∪ ε)
Γ ` safe(x.g, ε)

(SAFE-1)

Γ ` x : {}{y ⇒ σ}, effect g > {ε′} ∈ σ
∀a.b ∈ {x.g} ∪ ε, a.b 6∈ [x/y]ε′

∀c.d ∈ [x/y]ε′,Γ ` safe(c.d, {x.g} ∪ ε)
Γ ` safe(x.g, ε)

(SAFE-2)

Γ ` x : {}{y ⇒ σ}, effect g 6 {ε′} ∈ σ
∀a.b ∈ {x.g} ∪ ε, a.b 6∈ [x/y]ε′

∀c.d ∈ [x/y]ε′,Γ ` safe(c.d, {x.g} ∪ ε)
Γ ` safe(x.g, ε)

(SAFE-3)

Γ ` x : {}{y ⇒ σ}, effect g
Γ ` safe(x.g, ε)

(SAFE-4)

Figure 3.3: Wyvern well-formedness rules.

The effect set ε memorizes a set of effects that are defined by x.g. The rule ensures that those
effects do not appear in the definition of x.g, therefore eliminating cycles in effect definition.
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Γ ` e : {ε} τ

x : τ ∈ Γ
Γ ` x : {} τ

(T-VAR)
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ} ` di : σi

Γ ` new(x⇒ d) : {} {x⇒ σ}
(T-NEW)

Γ ` e1 : {ε1}{x⇒ σ} defm(y : τ2) : {ε3} τ1 ∈ σ
Γ ` [e1/x][e2/y]ε3 wf Γ ` e2 : {ε2} [e1/x]τ2 ε = ε1 ∪ ε2 ∪ [e1/x][e2/y]ε3

Γ ` e1.m(e2) : {ε} [e1/x][e2/y]τ1
(T-METHOD)

Γ ` e : {ε} {x⇒ σ} var f : τ ∈ σ
Γ ` e.f : {ε} [e/x]τ

(T-FIELD)
Γ ` e : {ε1} τ1 Γ ` τ1 <: τ2 Γ ` ε1 <: ε2

Γ ` e : {ε2} τ2
(T-SUB)

Γ ` e1 : {ε1} {x⇒ σ} var f : τ ∈ σ Γ ` e2 : {ε2} τ ε = ε1 ∪ ε2
Γ ` e1.f = e2 : {ε} [e1/x]τ

(T-ASSIGN)

Γ ` d : σ

Γ, x : τ1 ` e : {ε2} τ2 Γ, x : τ1 ` ε1 wf

Γ, x : τ1 ` ε2 <: ε1

Γ ` defm(x : τ1) : {ε1} τ2 = e : defm(x : τ1) : {ε1} τ2
(DT-DEF)

Γ ` x : {} τ
Γ ` var f : τ = x : var f : τ

(DT-VAR)
Γ ` ε wf

Γ ` effect g = {ε} : effect g = {ε}
(DT-EFFECT)

Figure 3.4: Wyvern static semantics.

3.3.4 Static Semantics

Wyvern’s static semantics is presented in Fig. 3.4. Expression type checking includes checking
the effects that an expression may have, the set of which is denoted in a pair of curly braces
between the colon and the type in the type annotation. Then, for expressions, the judgement
reads that, in the variable typing context Γ, the expression e is a well-typed expression with the
effect set ε and the type τ .

A variable trivially has no effects. A new expression also has no effects because of the fact that
fields may be initialized only using variables. A new object is well typed if all of its declarations
are well typed.

A method call is well typed if the expression passed into the method as an argument is well
typed, if the expression the method is called on is well typed, and if the expression’s type contains
a matching method-declaration type. In addition, bearing the appropriate variable substitutions,
the effect set annotating the method-declaration type must be well formed, and the effect set ε in
the method-call type must be a union of the effect sets of both expressions involved in the method
call as well as the the effect set of the method-declaration type. The expressions that are being
substituted are always the terminal runtime form, i.e., the expressions have been fully evaluated
before they are substituted.

An object field read is well typed if the expression on which the field is dereferenced is well
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typed and the expression’s type contains a matching field-declaration type. The effects of an
object field type are those of the expression on which the field dereferencing is called.

A field assignment is well typed if the expression to which the field belongs is well typed
and the expression’s type has an appropriate field-declaration type, and if the expression in the
right-hand side of the assignment is well typed. The effect set that a field assignment produces
is a union between the effect sets the two expressions that are involved in the field assignment
produce.

A type substitution of an expression may happen only if the expression is well typed using the
original type, the original type is a subtype of the new type, and when the effect set of the original
set is a subeffect of the effect of the new type. (Subeffecting is discussed in Section 3.3.5.)

None of the object declarations produce effects, and so object-declaration type-checking rules
do not include an effect set preceding the type annotation. For declarations, the judgement reads
that, in the variable typing context Γ, the declaration d is a well-typed declaration with the type
σ.

When type-checking a method declaration, the effect set annotating the method must be well
formed in the overall typing context extended with the method argument. Furthermore, the effect
annotating the method must be a supereffect of the effect the method body actually produced.

A field declaration is trivially well typed, and an effect declaration is well typed if the effect
set that it is defined with is well formed in the given context.

3.3.5 Subtyping
Subeffecting Rules

Γ ` ε <: ε′

ε1 ⊆ ε2
Γ ` ε1 <: ε2

(SUBEFFECT-SUBSET)

Γ ` n : {y ⇒ σ} effect g 6 ε ∈ σ Γ ` [n/y]ε ∪ ε1 <: ε2

Γ ` ε1 ∪ {n.g} <: ε2
(SUBEFFECT-UPPERBOUND)

Γ ` n : {y ⇒ σ} effect g > {ε} ∈ σ Γ ` ε1 <: [n/y]ε ∪ ε2
Γ ` ε1 <: ε2 ∪ {n.g}

(SUBEFFECT-LOWERBOUND)

Γ ` n : {y ⇒ σ} effect g = {ε} ∈ σ Γ ` ε1 <: [n/y]ε ∪ ε2
Γ ` ε1 <: ε2 ∪ {n.g}

(SUBEFFECT-DEF-1)

Γ ` n : {y ⇒ σ} effect g = {ε} ∈ σ Γ ` [n/y]ε ∪ ε1 <: ε2

Γ ` ε1 ∪ {n.g} <: ε2
(SUBEFFECT-DEF-2)

Figure 3.5: Wyvern subeffecting rules.

As we already saw in the T-SUB, and DT-DEF rules above, to compare two sets of effects, we
use subeffecting rules, which are presented in Fig. 3.5. If an effect is a subset of another effect,
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size(Γ, ε) = n

size(Γ, {}) = 0
(SIZE-EMPTY)

Γ ` x : {y ⇒ σ} effect g ∈ σ
size(Γ, x.g) = 0

(SIZE-ABSTRACT)

size(Γ, x.g) = Σx.g∈x.gsize(Γ, x.g)
(SIZE-LIST)

Γ ` x : {y ⇒ σ} effect g = {ε} ∈ σ
size(Γ, x.g) = 1 + size(Γ, [x/y]ε)

(SIZE-DEF)

Γ ` x : {y ⇒ σ} effect g 6 {ε} ∈ σ
size(Γ, x.g) = 1 + size(Γ, [x/y]ε)

(SIZE-UPPERBOUND)

Γ ` x : {y ⇒ σ} effect g > {ε} ∈ σ
size(Γ, x.g) = 1 + size(Γ, [x/y]ε)

(SIZE-LOWERBOUND)

Figure 3.6: Rules for determining the size of effect definitions.

then the former effect is a subeffect of the latter (SUBEFFECT-SUBSET). If an effect set contains
an effect variable that is declared with an upper bound, and the union of the rest of the effect set
with the upper bound is a subeffect of another effect set, then the former effect set is a subeffect
of the latter effect set (SUBEFFECT-LOWERBOUND). If an effect set contains an effect variable
that is declared with an lower bound, and the union of the rest of the effect set with the lower
bound is a supereffect of another effect set, then the former effect set is a supereffect of the latter
(SUBEFFECT-LOWERBOUND). If an effect set contains an effect variable that has a definition,
and the union of the rest of the effect set with the definition of the variable is a supereffect of
another effect set, then the former effect set is a supereffect of the latter (SUBEFFECT-DEF-1).
Finally, if an effect set contains an effect variable that has a definition, and the union of the rest
of the effect set with the definition of the variable is a subeffect of another effect set, then the
former effect set is a subeffect of the latter (SUBEFFECT-DEF-2).

Lemma 1. size(Γ, ε) (Defined in Fig. 3.6) is finite.

Proof. By rules Safe-1, Safe-2, Safe-3, and Safe-4 in Fig. 3.3, the size of an arbitrary effect x.g
is bounded by the total number of effects in the context Γ.

Theorem 2. Γ ` ε <: ε′ is decidable.

Proof. The proof is by induction on size(Γ, ε ∪ ε′).

BC Since size for both effect is 0, the only applicable rule for subeffecting is Subeffect-Subset.
The rule only checks if ε is a subset of ε′, therefore is decidable.

IS Assume the judgment Γ ` ε <: ε′ is derived from Subeffect-Upperbound. In the premise
of this rule, we have Γ ` [n/y]ε∪ ε1 <: ε2. Since we extract the definition of n.g to find ε,
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Γ ` τ <: τ ′

Γ ` τ <: τ
(S-REFL1)

Γ ` τ1 <: τ2 Γ ` τ2 <: τ3
Γ ` τ1 <: τ3

(S-TRANS)

{x⇒ σi∈1..ni } is a permutation of {x⇒ σ′i∈1..ni }
Γ ` {x⇒ σi∈1..ni } <: {x⇒ σ′i∈1..ni }

(S-PERM)

Γ ` {x⇒ σi∈1..n+ki } <: {x⇒ σi∈1..ni }
(S-WIDTH)

∀i, Γ, x : {x⇒ σi∈1..ni } ` σi <: σ′i

Γ ` {x⇒ σi∈1..ni } <: {x⇒ σ′
i∈1..n
i }

(S-DEPTH)

Γ ` σ <: σ′

Γ ` σ <: σ
(S-REFL2)

Γ ` τ ′1 <: τ1 Γ ` τ2 <: τ ′2 Γ, x : τ1 ` ε1 <: ε2

Γ ` defm(x : τ1) : {ε1} τ2 <: defm(x : τ ′1) : {ε2} τ ′2
(S-DEF)

Γ ` effect g = {ε} <: effect g
(S-EFFECT-1)

Γ ` effect g 6 ε <: effect g
(S-EFFECT-2)

Γ ` ε <: ε′

Γ ` effect g = {ε} <: effect g 6 ε′
(S-EFFECT-3) Γ ` ε <: ε′

Γ ` effect g 6 ε <: effect g 6 ε′
(S-EFFECT-4)

Γ ` effect g > ε <: effect g
(S-EFFECT-5) Γ ` ε′ <: ε

Γ ` effect g = {ε} <: effect g > ε′
(S-EFFECT-6)

Γ ` ε′ <: ε
Γ ` effect g > ε <: effect g > ε′

(S-EFFECT-7)

Figure 3.7: Wyvern subtyping rules.

we have size(Γ, [n/y]ε ∪ ε1 ∪ ε2) < size(Γ, {n.g} ∪ ε1 ∪ ε2). We can then use induction
hypothesis to show the subeffecting judgment in the premise is decidable.
The inductive step for rules Subeffect-Lowerbound, Subeffect-Def-1, and Subeffect-Def-2
have the similar structure.

Declarative Subtyping Rules

Wyvern subtyping rules are shown in Fig. 3.7. Since, to compare types, we need to compare
the effects in them using subeffecting, subtyping relationship is checked in a particular variable
typing context. The first four object-subtyping rules and the S-REFL2 rule are standard. In
S-DEPTH, since effects may contain a reference to the current object, to check the subtyping
relationship between two type declarations, we extend the current typing context with the cur-
rent object. Method-declaration typing is contravariant in the argument types and covariant in
the return type. Furthermore, there must be a covariant-like relationship between the effect sets
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in the method annotations on the two method declarations: the effect set of the subtype method
declaration must be a subeffect of the effect set of the supertype method declaration (S-DEF).
An effect definition or an effect declaration with bound is trivially a subtype of an effect decla-
ration (S-EFFECT-1, S-EFFECT-2, S-EFFECT-5). An effect definition is a subtype of an effect
declaration with upper bound if the definition is a subeffect of the upper bound (S-EFFECT-3).
Similarly, an effect definition is a subtype of an effect declaration with lower bound if the defini-
tion is a supereffect of the lower bound (S-EFFECT-6). An effect declaration with upper bound
is a subtype of the effect declaration with another upper bound if the former upper bound is
a subeffect of the latter upper bound (S-EFFECT-4). Finally, an effect declaration with lower
bound is a subtype of the effect declaration with another lower bound if the former upper bound
is a supereffect of the latter upper bound (S-EFFECT-7).

Algorithmic Subtyping Rules

Γ ` τ <: τ ′

∃ an injection p : {1...n} 7→ {1...m}, ∀i ∈ 1...n, Γ, x : {x⇒ σi∈1..mi } ` σp(i) <: σ′i

Γ ` {x⇒ σi∈1...mi } <: Γ ` {x⇒ σ′
i∈1...n
i }

(S-ALG)

Figure 3.8: Algorithmic Subtyping

The S-Alg rule encodes the S-Refl-1, S-Perm, S-Depth, and S-Width rule using an injective
function p. The subtyping rules of declaration types are identical to the declarative subtyping.
We prove that S-Trans rules is admissible in theorem 3. Since subtyping rules object types and
declaration types are syntax-directed, the subtyping of our effect system is decidable.

Theorem 3. (Transitivity of algorithmic subtyping)
If Γ ` τ1 <: τ2 and Γ ` τ2 <: τ3, then Γ ` τ1 <: τ3.
If Γ ` σ1 <: σ2 and Γ ` σ2 <: σ3, then Γ ` σ1 <: σ3.

3.3.6 Dynamic Semantics and Type Soundness

Object-Oriented Core Syntax

Fig. 3.9 shows the version of the syntax of Wyvern’s object-oriented core that includes dynamic
semantics. Specifically, expressions include locations l, which variables in effects resolve to at
run time. We also use a store µ and its typing context Σ. Finally, to make the dynamics more
compact we use an evaluation context E.

Changes in Static Semantics

Type checking a location (T-LOC) and a field declaration (DT-VAR) is straightforward, and we
also need to ensure that the store is well-formed and contains objects that respect their types.
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n ::= x | l names
e ::= n expressions

| new(x⇒ d)
| e.m(e)
| e.f
| e.f = e

ε ::= n.g effects
d ::= defm(x : τ) : {ε} τ = e declarations
| var f : τ = n
| effect g = {ε}

τ ::= {x⇒ σ} object type

σ ::= defm(x : τ) : {ε} τ declaration types
| var f : τ
| effect g
| effect g > {ε}
| effect g 6 {ε}
| effect g = {ε}

Γ ::= ∅ | Γ, x : τ var . typing context

µ ::= ∅ | µ, l 7→ {x⇒ d} store
Σ ::= ∅ | Σ, l : τ store typing context
E ::= [ ] evaluation context
| E.m(e)
| l.m(E)
| E.f
| E.f = e
| l.f = E

Figure 3.9: Wyvern’s object-oriented core syntax with dynamic forms.

Γ | Σ ` e : {ε} τ

. . .
l : τ ∈ Σ

Γ | Σ ` l : {} τ
(T-LOC)

Γ | Σ ` d : σ

. . .

Γ | Σ ` n : {} τ
Γ | Σ ` var f : τ = n : var f : τ

(DT-VAR)

µ : Σ

∀l 7→ {x⇒ d} ∈ µ, ∀i, di ∈ d, σi ∈ σ, x : {x⇒ σ} | Σ ` di : σi
µ : Σ

(T-STORE)

Figure 3.10: Wyvern static semantics affected by dynamic semantics.

Dynamic Semantics

The dynamic semantics that we use for Wyvern’s effect system is shown in Fig. 3.11 and is
similar to the one described in prior work [18]. In comparison to the prior work, this version of
Wyvern’s dynamic semantics has fewer rules, and the E-METHOD rule is simplified.

The judgement reads the same as before: given the store µ, the expression e evaluates to the
expression e′ and the store becomes µ′. The E-CONGRUENCE rule still handles all non-terminal
forms. To create a new object (E-NEW), we select a fresh location in the store and assign the
object’s definition to it. Provided that there is an appropriate method definition in the object on
which a method is called, the method call is reduced to the method’s body (E-METHOD). In
the method’s body, the locations representing the method argument and the object on which the
method is called are substituted for corresponding variables. An object field is reduced to the
value held in it (E-FIELD), and when an object field’s value changes (E-ASSIGN), appropriate
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〈e | µ〉 −→ 〈e′ | µ′〉

〈e | µ〉 −→ 〈e′ | µ′〉
〈E[e] | µ〉 −→ 〈E[e′] | µ′〉

(E-CONGRUENCE)
l 6∈ dom(µ)

〈new(x⇒ d) | µ〉 −→ 〈l | µ, l 7→ {x⇒ d}〉
(E-NEW)

l1 7→ {x⇒ d} ∈ µ defm(y : τ1) : {ε} τ2 = e ∈ d
〈l1.m(l2) | µ〉 −→ 〈[l2/y][l1/x]e | µ〉

(E-METHOD)

l 7→ {x⇒ d} ∈ µ var f : τ = l1 ∈ d
〈l.f | µ〉 −→ 〈l1 | µ〉

(E-FIELD)

l1 7→ {x⇒ d} ∈ µ var f : τ = l ∈ d

d
′

= [var f : τ = l2/var f : τ = l]d µ′ = [l1 7→ {x⇒ d
′}/l1 7→ {x⇒ d}]µ

〈l1.f = l2 | µ〉 −→ 〈l2 | µ′〉
(E-ASSIGN)

Figure 3.11: Wyvern dynamic semantics.

substitutions are made in the object’s declaration set and the store.

Type Soundness

We prove the soundness of the effect system presented above using the standard combination of
progress and preservation theorems. Proof to these theorems can be found in Appendix B.

Theorem 4 (Preservation). If Γ | Σ ` e : {ε} τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then ∃Σ′ ⊇ Σ,
µ′ : Σ′, ∃ε′, such that Γ ` ε′ <: ε, and Γ | Σ′ ` e′ : {ε′} τ .

Theorem 5 (Progress). If ∅ | Σ ` e : {ε} τ (i.e., e is a closed, well-typed expression), then
either

1. e is a value (i.e., a location) or
2. ∀µ such that µ : Σ, ∃e′, µ′ such that 〈e | µ〉 −→ 〈e′ | µ′〉.
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Chapter 4

Abstract Algebraic Effects via Embeddings

4.1 Background and Motivation

Algebraic effects (introduced by Plotkin and Power [24]) and handlers (introduced by Plotkin and
Pretnar [26]) are an approach to computational effects based on a premise that impure behavior
arises from a set of operations, and are recently gaining popularity due to their ability to model
various form of computational effects such as exceptions, mutable states, async-await, etc.

Modularity is a key concept that separates abstract algebraic effects from the traditional way
of using monad to model effects in purely functional programming [28]. However, similar to
the restrictive strand of work on effects, few works on algebraic effects have investigated the
algebraic effect system on a larger scale, where abstraction between program components is
important.

Abstract algebraic effects are first introduced in Biernacki et al. [2]. Similar to abstract types,
abstract algebraic effects allow program components to define abstract effect signatures that are
opaque to other components in the system. The difference between concrete and abstract ef-
fect signatures lies in the ability of program components to handle them. If an effect signature
is concrete to a program component, then the operations are accessible to the component, and a
handler can handle the effect by handling the operations in the signature. On the other hand, if an
effect signature is abstract to one program component, then the component should not observe
the operations defined in the effect signature, and is therefore unable to handle the effect. As
abstraction is an important issue for module systems because it provides a separation of imple-
mentation details of functions from the interface, the abstraction of algebraic effects provides a
similar benefit for modularity because it helps separate the component operations from the effect
signature, ensuring that the client can only use the handler provided by the library to handle the
effect.

The following code is a motivating example similar to the example in [2] that illustrates
the challenges of implementing abstract algebraic effects. Nondet is a globally defined effect
signature. Then we define a module m with type M with an abstract effect E, a method mflip, and
a handler method handle. The effect E is defined by Nondet, but is opaque to the outside world
of the module, because E is defined as an abstract effect in the type M. The method mflip simply
calls the flip operation, and the handle method handles the flip operation by returning true.
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1 effect Nondet {
2 flip(): Bool
3 }
4

5 type M
6 effect E
7 def mflip() : {this.E} Bool
8 def handler(Unit -> {this.E} Bool) : {} Bool
9

10 module m: M
11 effect E = {Nondet}
12 def mflip() : {this.E} Unit
13 flip()
14 def handle(c: Unit -> {this.E} Bool) : {} Bool =
15 handle c() with
16 | flip() -> resume true
17

18 m.handle(
19 () => handle m.mflip() with
20 | flip() -> resume false
21 | return x -> x
22 )

The last segment of the example shows a client code of module m that calls the method m.

handle and pass in an expression that encapsulates the call to m.mflip with another handler that
handles the flip operation. Since the effect of the method m.mflip is abstract, the inner handler
should not handle the operation inside m.mflip. Instead, the operation should be handled by the
outer handler method m.handle.

As we can see, the abstraction of effect signatures differs from type abstractions, since the
erasure of type information would make the abstraction unsound. So we need a language that
keeps track of the information on effect abstraction during the evaluation of the program. In this
work, we incorporate the method of syntactic type abstraction introduced by Grossman et al.
[10], who use the notion of principals to track the flow of values with abstract types during the
evaluation of a program.

4.2 A Simple Example of the Agent-based Language

Consider the simple case where we only have two agents, namely the client c, and the host h.
And the host h defines an abstract effect E, exports a method that causes the effect, and a method
that handles the effect.

1 module h =
2 effect E = ...
3 val m : 1 -> {E} 1 = ..
4 ...

Now consider client code wants to handle the m function from h
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1 handle
2 [m ()]Eh
3 with
4 op (x) -> ...
5 return x -> ...

Since function m is called in the client code, we use a language construct called embedding to
encapsulate the function call. The subscript h of the embedding indicates that the code inside the
embedding is the host code, and the superscript E indicates that the effect of the code is E, which
is abstract to the client. So the embedding ensures that the client would not be able to handle the
operation inside the function m, therefore keeping the effect abstraction safe.

Besides making the client unable to handle an abstract effect, we need to make sure that a
host code can “rediscover” the effect exported by itself. The scenario would be exhibited by the
following host code. The client code we showed earlier is now embedded into a host handler
that handles the effect E. Because the outer-most handler is now in host code, it would be able to
handle the effect operation inside the function m.

1 handle
2 [handle
3 [m ()]Eh
4 with
5 op (x) -> ...
6 return x -> ...]Ec
7 with
8 op (x) -> ...
9 return x -> ...

4.3 Core Calculus

4.3.1 Syntax

This section describes a variant of the simply typed lambda calculus that maintains a syntactic
distinction between agents during evaluation. Figure 4.1 gives the syntax of our calculus. As
our previous discussion, it is crucial to keep track of the effect abstraction information during the
evaluation of the program. It is therefore natural to divide the code into agents and allow each
agent to export abstract effect signatures. We assume that there are n agents, and variables i, j, k
range over the set of agents.

Every term in this language is assigned to an agent. And terms are split into inert expressions
and potentially effectful computations, following an approach called fine-grain call-by-value,
introduced by Levy et al. [14]. We use the notation i-expression and i-computation to denote
expressions and computations in the agent i. We use subscripts to indicate a term is assigned to
an agent, however, we will omit the subscript if the agent the term belongs to is not important or
obvious in the context.

An i-value is an i-expression that cannot be further reduced. There are two forms of i-value:
the unit (), and the lambda abstraction λxi : τ. ci. i-expressions include variable xi, value
vi, and embedded expressions [ej]

τ
j . i-computations are the terms that can potentially cause
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(agents) i, j ::= {1 . . . n}
(lists) l ::= i | il
(value types) τ ::= 1 | τ → σ

(computation types) σ ::= {ε}τ
(effect types) ε ::= · | f, ε | op, ε
(i-values) vi ::= ()i | λxi : τ. ci

(i-expressions) ei ::= xi | vi | [ej]τj
(i-computations) ci ::= return ei | op(ei, y.ci) | do x← ci in c

′
i | ei e′i

| with hi handle ci | [cj]
σ
j | [op]εl (ei, yi.ci)

(i-handlers) hi ::= handler {return xi 7→ cri , op
1(x1i , k

1) 7→ c1i , . . . , op
n(xni , k

n) 7→ cni }

Figure 4.1: Syntax for multi-agent calculus

effects, and consists of return statement return ei, operation call op(ei; yi.ci), sequencing
do xi ← ci in c′i, application ei e′i, handling with hi handle ci, embedded computation
[cj]

σ
j , and embedded operation call [op]εl (ei; yi.ci). There are a few things worth mentioning:

Sequencing: In do x ← c in c′, we first evaluate c, bind the return value of c′ to x and
then evluate c2
Operation Calls: The call op(e; y.c) passes the parameter e to the operation op, binds
the return value of the operation call to y, and continue by evaluating the computation c.
Note that the encompassing handler could potentially change the behavior of the operation.
Explicit continuations greatly simplifies the operational semantics of the language, because
continuations make the order of the execution of operations explicit.

Embeddings: the term [ej]
τ
j is an i-expression, where ej is an embedded j-expression. The

type τ is exported by the agent j as the type of the embedded expression. Similarly, [cj]
σ
j

is an embedded j-computation with exported type σ.

Embedded Operations: The embedded operation [op]εl (e; y.c) is an operation call that is
annotated with effect ε. l is a list of agents that have contributed to the formation of the
annotation. The embedded operations should not appear in the source code, as they are an
intermediate form of computation that keeps track of the effect annotation of operations.
More details of this construct are given in section 4.4 on Operational Semantics.

Similar to terms, types are also divided into expression types and computation types. There
are two forms of expression types τ : the unit type 1, and the arrow type τ → σ. As for the
computation type σ, there is only one form: {ε}τ , where ε is a set of effects that the computation
might induce, and τ is the type of the return value of the computation.

The effect type ε represents an unordered set of effects that can be empty ·. A effect type can
be extended by either an effect label f , or an operation op.

The i-handler hi must contain a return clause return x 7→ c, which handles the case when
the handled computation directly returns a value. The returned value is bound to the variable x,
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and the entire handling computation evaluates to the computation c. A handler may also contain
clauses that handle operations. For example, the clause op(x, k) 7→ c handles the operation op.
More details can be found in the dynamic semantics section.

4.3.2 Agent-Specific Type Information
We use agents to model a module system where each module can have private information about
effect abstraction. Each agent in our language has limited knowledge of effect abstraction. For
example, an agent i might knows that effect Nondet = flip(): Bool, and an agent j does not
have this information. As a result, agent i would be able to handle a computation with effect
Nondet, while the agent j would not be able to handle the effect, because from agent j’s point of
view, the effect Nondet is an abstract label without an operation. Furthermore, we need to ensure
the consistency of the information on effect abstraction, that is, agent j should not think that the
effect Nondet = read(): String, which would contradict with the knowledge of agent i.

The model of effect abstraction information is similar to the model of type information in
[10]. To capture effect abstraction information, each agent i has a partial function δi that maps an
effect label to an effect type. There are two requirements for these maps: (1) For each effect label
f , the if there are two agents that knows the implementation of the effect f , then their knowledge
about the implementation must be the same. (2) For each effect label f , there is a unique and
most concrete interpretation of f . We would not allow the effect label f itself to appear in the
implementation of f . Examples like δi(f) = {f} and δi(f) = {f, op} would be rejected.

Definition 4.3.1. A set {δ1, . . . , δn} of maps from effect labels to effects is compatible if
1. For all i, j ∈ 1 . . . n if f ∈ Dom(δi) ∩Dom(δj), then δi(f) = δi(j).
2. Effect labels can be totally ordered such that for every agent i and effect label f , all effect

labels in δi(f) precede f .

Then we define the a total function ∆i that refines an effect type:

Definition 4.3.2. ∆i is a function that maps an effect type to another effect type, using the effect
abstraction knowledge of the agent i.

∆i(·) = ·
∆i(op, ε) = op,∆i(ε)

∆i(f, ε) =

{
f,∆i(ε) if f 6∈ Dom(δi)

ε′,∆i(ε) if δi(f) = ε′

The definition of compatibility ensures that there is a fixpoint for repeatedly refining an effect
label ε using the function ∆i. We call such fixpoint ∆i(ε).

Definition 4.3.3. ∆i(ε
′) = ε if there is some n ≥ 0

∆i(. . . (∆i(ε
′) . . . )︸ ︷︷ ︸

n applications

= ∆i(. . . (∆i(ε
′) . . . )︸ ︷︷ ︸

n+1 applications

= ε

To see how we apply ∆ to reach a fix point, consider two effect labels f and g and an agent
i. Agent i knows that the effect f is implemented by two operations op1 and op2. Then consider
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e −→ e′

ej 7→ e′j

[ej ]
τ
j −→ [e′j ]

τ
j

(E-CONGRUENCE)
[()j ]

1
j −→ ()i

(E-UNIT)

[λxj : τ ′. cj ]
τ→σ
j −→ λxi : τ. [{[xi]τ

′

i /xj}cj ]σj
(E-LAMBDA)

Figure 4.2: Operational Semantics for Expressions

applying ∆i to the effect type f, g. We get ∆i(f, g) = op1, op2, g. Since op1, op2, and label g is
the most concrete form of effects, ∆i cannot further refine the resulting type, so we have reached
the fix point. So we have ∆i(f, g) = op1, op2, g. As we can see, by repeatedly applying ∆i and
getting to a fixpoint, we effectively collect all operations and abstract effect labels in the agent
i’s perspective.

We assume that the type information for operations is public to all agents. The type for an
operation op is contained by a separate map Σ, which maps an operation op to an arrow type
τA → τB. Note that this is different from the function type in our calculus, which has the form
τ → σ.

4.4 Operational Semantics
The reduction rules for terms are dependent on the agent of the terms. Figure 4.2 shows that
operational semantics for expressions of agent i. (E-Congruence) shows that a j-expression em-
bedded agent-i should be evaluated using the reduction rules for agent j first. The (E-Unit) and
(E-Lambda) rules show that we can lift an embedded j-value to agent i, so the value becomes an
i-value. The (E-Unit) rule simply lifts the unit value out of the embedding. The (E-Lambda) rule
is more interesting: The value embedded is a lambda expression of agent j. We lift the argument
out of the embedding. However, the type annotating the argument is changed from τ ′ to the
exported argument type τ , because the reduced expression should have the exported type τ → σ.
The body of the reduced expression is an embedded j-computation, so the variable xi should be
encapsulated by an embedding, because any i-term should be embedded in a j-term. We annotate
xi with type τ ′ because the original lambda function expects a value of type τ ′.

Figure 4.3 shows the reduction rules for i-computations. (E-Ret) is the congruence rule that
evaluates the expression in a return statement. (E-Op) evaluates the input argument for the op-
eration call. Note that there is no non-congruence reduction rule for operation calls because the
semantics for operations are defined by the handler encapsulating it.

(E-Embed1) is the congruence rule for embedded computations. (E-Embed2) lifts the return
statement out of the embedding. We can safely remove the effect annotation ε because the
statement that returns a value vj cannot cause any effect.

(E-Embed3) lifts an operation call out of the embedding. This rule introduces embedded
operation as a new language construct. We annotate the embedded operation with the effect
annotation of the whole computation. Since the argument value for op is a j-value, we need to
embed it as an i-value, and annotate it with type τA. The continuation cj is still embedded, and
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c −→ c′

ei 7→ e′i
return ei −→ return e′i

(E-RET)
ei 7→ e′i

op(ei, yi.ci) −→ op(e′i, yi, ci)
(E-OP)

cj −→ c′j

[cj ]
σ
l −→ [c′j ]

σ
l

(E-EMBED1)
[ return vj ]

{ε}τ
l −→ return [vj ]

τ
l

(E-EMBED2)

Σ(op) = τA → τB

[opj(vj ; yj .cj)]
{ε}τ
j −→ [opj ]

ε
j([vj ]

τA
j ; yi.{[yi]τBi /yj}[cj ]{ε}τj )

(E-EMBED3)

Σ(op) = τA → τB ∆j(ε
′) = ε′ op 6∈ ε′

[[opk]ε
′

l (vj ; yj .cj)]
{ε}τ
j −→ [opk]εlj([vj ]

τA
j ; yi.{[yi]τBi /yj}[cj ]{ε}τj )

(E-EMBED4)

ei −→ e′i
[op]εl (ei; yi.ci) −→ [op]εl (e

′
i; yi.ci)

(E-EMBEDOP1)
∆i(ε) = ε′

[op]εl (vi; yi.ci) −→ [op]ε
′

l (vi; yi.ci)
(E-EMBEDOP2)

∆i(ε) = ε op ∈ ε
[op]εl (vi; yi.ci) −→ op(vi; yi.ci)

(E-EMBEDOP3)
∆i(ε) = ε op 6∈ ε op′ ∈ ε

[op]εl (vi; yi.ci) −→ [op]ε\op
′
(vi; yi.ci)

(E-EMBEDOP4)

ei −→ e′′i
ei e
′
i −→ e′′i e

′
i

(E-APP1)
ei −→ e′i

vi ei −→ vi e
′
i

(E-APP2)
(λxi : τ. ci) vi −→ {vi/xi}ci

(E-APP3)

ci −→ c′′i
do x← ci in c′i −→ do x← c′′i inc

′
i

(E-SEQ1)
do x← return vi in c′i −→ {vi/x}c′i

(E-SEQ2)

do x← opi(vi; yi.ci)in c′i −→ opi(vi; yi. do x← ci in c′i)
(E-SEQ3)

∆i(ε) = ε op 6∈ ε
do x← [opj ]

ε
l (vi; yi.ci)in c

′
i −→ [opj ]

ε
l (vi; yi. do x← ci in c′i)

(E-SEQ4)

ci −→ c′i
with hi handle ci −→ with hi handle c′i

(E-HANDLE1)

return xi 7→ c′i ∈ hi
with hi handle return vi −→ {vi/xi}c′i

(E-HANDLE2)

op(xi; k) 7→ c′i ∈ hi Σ(op) = τA → τB

with hi handle op(v;yi.ci) −→ {vi/xi}{(λyi : τB . with hi handle ci)/k}c′i
(E-HANDLE3)

op(xi; k) 7→ c′i 6∈ hi
with hi handle op(vi, yi.ci) −→ op(vi; yi. with hi handle ci))

(E-HANDLE4)

∆i(ε) = ε op 6∈ ε
with hi handle [op]εl (vi, yi.ci) −→ [op]εl (vi; yi. with hi handle ci))

(E-HANDLE5)

Figure 4.3: Operational Semantics for Computations
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we substitute the embedded variable yi for yj . yi should be embedded because i-values should
be embedded in a j-value.

The (E-Embed4) rule is very similar to (E-Embed3) with one difference being that op is
already embedded. In this case, we override the annotation on op with the annotation for the
whole computation and update the agent list in the subscript of the operation. We add j to the
agent list because the agent j has contributed to the effect annotation of the operation.

(E-EmbedOp1) evaluates the argument of an embedded operation. (E-EmbedOp2) refines
the effect annotation of an operation by looking up the effect ε from the type information of the
agent i, ∆i. (E-EmbedOp3) lifts the operation out of an embedding when the annotation contains
the operation, because the agent i has enough information about effect abstraction to handle
the operation. Note that in the premise, we require that the effect annotation cannot be further
refined, in order to ensure determinism of evaluation. (E-EmbedOp4) removes an operation
that is not op out of the effect annotation. This step does not affect the correctness of the type
information, and is helpful in our proof of type soundness.

(E-App1), (E-App2) and (E-App3) are standard call-by-value semantics for applications. (E-
Seq1) evaluates the first computation in a sequence of computations. (E-Seq2) binds the return
value of the first computation to a variable in the second computation. (E-Seq3) witnesses an
operation call as the first computation in a sequence. Since there is no way to further evaluate an
operation right away, we propagate the operation call outwards and defer further evaluation to the
continuation of the call. (E-Seq4) is similar to (E-Seq3), and requires that the effect annotation
on the embedding to be the most concrete annotation.

(E-Handle1) simply evaluates the computation encapsulated by the handler. In (E-Handle2),
the computation returns a value, so we substitute the value into the computation of the clause
that handles the return statement in the handler. (E-Handle3) shows that case when the handler
hi has a matching clause for the operation op. We substitute the argument vi for xi, and substitute
the continuation of the operation for k. The continuation function receives an argument of type
τB, which is the result type of the operation op, and computes the continuation of the operation
ci, but encapsulates the computation with the handler hi. The (E-Handle4) shows the case when
the operation is not handled by the handler, so we propagate the operation outwards to wait for
another handler to handle it. The (E-Handler5) ensures that abstracted effects are not handled: If
the current agent cannot refine the effect annotation, then the operation is abstract and cannot be
handled, and is therefore propagated outward.

4.5 Static Semantics

4.5.1 Typing Rules

Figure 4.4 shows the static semantics of the core-calculus. Static semantics includes typing rules
for both expressions and computations. Note that the typing rules depend on the agent each
expression or computation belongs to. We assume that the following rules assign types to terms
of agent i.

The rule (T-Unit) assigns the unit type 1 to a unit value. (T-Var) looks up a type of a variable
from the context. (T-Lam) is the standard rule for typing a lambda function. Note that the body of
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Γ ` ei : τ

Γ ` ()i : 1
(T-UNIT)

Γ ` xi : Γ(xi)
(T-VAR)

Γ, xi : τ ` ci : σ

Γ ` (λxi : τ. ci) : τ → σ
(T-LAM)

Γ ` ej : τ ′ Γ ` τ ′ ≤ji τ
Γ ` [ej ]

τ
j : τ

(T-EMBEDEXP)

Γ ` ci : σ

Γ ` ei : τ ∆i(ε) = ε

Γ ` return ei : {ε}τ
(T-RET)

Σ(op) = τA → τB Γ ` ei : τA Γ.yi : τB ` ci : {ε}τ op ∈ ∆i(ε)

Γ ` op(ei; yi.ci) : {ε}τ
(T-OP)

Γ ` ci : {ε}τ Γ, xi : τ ` c′i : {ε}τ ′

Γ ` do xi ← ci in c′i : {ε}τ ′
(T-SEQ) Γ ` e1 : τ → σ Γ ` e2 : τ

Γ ` e1 e2 : σ
(T-APP)

hi = { return x 7→ cr, op1(x; k) 7→ c1, . . . , opn(x; k) 7→ cn}
Γ, x : τA ` cr : {ε′}τB

{
Σ(opi) = τi → τ ′i Γ, x : τi, k : τ ′i → {ε′}τB ` ci : {ε′}τB

}
1≤i≤n

Γ ` ci : {ε}τA ε \ {opi}1≤i≤n ⊆ ε′

Γ ` with hi handle ci : {ε′}τB
(T-HANDLE)

Γ ` cj : σ′ Γ ` σ′ ≤li σ
Γ ` [cj ]

σ
l : σ

(T-EMBED)

Σ(op) = τA → τB Γ ` ei : τA Γ, yi : τB ` ci : {ε′}τ ∆i(ε) ⊆ ∆i(ε
′) Γ ` op ≤li ε

Γ ` [op]εl (ei; yi.ci) : {∆i(ε
′)}τ

(T-EMBEDOP)

Figure 4.4: Static Semantics

a lambda is computation, so we need to use the typing judgment for computation in the premise
of this rule. (T-EmbedExp) assigns type to expression embeddings: The embedding has type τ if
the embedded expression ej is assigned to the type τ ′, and τ is related to τ ′ by the list of agents
li. We will elaborate on type relations later.

(T-Ret) assigns a type to a return statement: As expected, the expression part of the com-
putation type matches the type of the returned expression. However we can annotate the return
statement with an arbitrary effect set, because our type system does not describe the precise effect
in computations, but gives the upper bound of effect in computations.

(T-Op) shows the typing rule for operation calls. Again, since we allow effect annotations to
be an upper bound on effect, we can require the operation op to be in the effect set ε.

(T-Handle) shows the typing rule for the effect handling statement with hi handle ci. ci
is a computation with effect type ε and return type τA. hi is a handler that contains a clause that
handles operations op1, . . . , opn. For the return clause, given the type of variable x is τA, the type
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of cr must be {ε′}τB. For the clause handling the operation opi, which has the operation type
τi → τ ′i , if variable x has type τi, and continuation has the type τ ′i → {ε′}τB, then the handling
computation ci must have the type {ε′}τB. The effect type after handling, ε′ should contain all
of the effects that are not handled by the handler.

(T-Embed) is very similar to (T-EmbedExp), where we use the type of the embedded compu-
tation and the type relation judgment to assign a type to the embedding.

(T-EmbedOp) first computes the type of ci given that yi has the correct type. It is required
that the effect annotation on the embedding is a part of the effect of ci. And op should be related
to the effect annotation by the type relations.

4.5.2 Type Relations

τ ≤l τ ′

1 ≤l 1
(R-UNIT)

τ ≤l τ ′ σ ≤l σ′
τ → σ ≤l τ ′ → σ′

(R-ARROW)

σ ≤l σ
ε ≤l ε′ τ ≤l τ ′
{ε}τ ≤l {ε′}τ ′

(R-SIGMA)

ε ≤l ε
∆i(ε) ⊆ ∆i(ε

′)

ε ≤i ε′
(R-EFF1)

ε ≤l ε′′ ε′′ ≤l′ ε′
ε ≤ll′ ε′

(R-EFF2)

Figure 4.5: Type Relations

Type relations ensure the soundness of abstraction. The goal of type relations is to prohibit
embeddings from exporting incorrect effect abstractions. For example, if a i-computation uses
an effect operation flip : 1 → bool, which is an operation of effect Nondet, then whenever
it is embedded in another agent, it should be annotated with effect Nondet, but should not be
annotated with the empty effect or other effects that does not contain Nondet.

The judgements for expression types are of the form τ ≤l τ , where l is a list of agents
that provide the type abstraction information used by the relation. (R-Unit) shows that unit type
relates to itself. (R-Arrow) relates two arrow types given that the input types and the output types
are related, To relate two computation types, we just need to ensure the effect types and return
types are related.

The relation for effect types does the actual work. By (R-EFF1), two effect types are related
under a single agent i if the first effect is a subset of the second effect after refinement by the type
information provided by i. (R-EFF2) shows that by using type information from a list of agents,
we can combine the chain of relation between effects.
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4.6 Safety Properties
In this section, we state the standard type-safety theorems for the core calculus and a theorem
that shows if an effect is abstract to a client, then the client would never handle the operation
of that effect. Since we split terms into expressions and computations, we state progress and
preservation lemmas separately. The proofs to theorems stated in this section can be found in
appendix C.

4.6.1 Type Soundness
We begin by stating the preservation and progress lemmas. The preservation lemma for expres-
sions and computations are rather standard, except for the fact that we consider terms for each
agent separately. In lemma 6, if an i-expression steps to another i-expression, then the new ex-
pression should have the identical type as the original expression. Similarly, in lemma 7, the new
computation should have the same effect type and return type as the original computation.

Lemma 6 (Preservation for Expressions).
For all agent i, if Γ ` ei : τ and ei 7→ e′i, then Γ ` e′i : τ .

Lemma 7 (Preservation for Computations).
For all agent i, if Γ ` ci : {ε}τ and ci −→ c′i, then Γ ` c′i : {ε}τ

The progress lemma for expressions (lemma 8) is also standard. If an i-expression is well-
typed, then it either steps to another expression or is already a value.

Lemma 8 (Progress for Expressions).
For agent i, if ∅ ` ei : τ then either ei = vi or ei −→ e′i.

The progress lemma for computations (lemma 9) is a bit more involved. For any well-typed
i-computation, there are four possibilities. Similar to expressions, a computation can evaluate
to another computation. Otherwise, a computation could potentially be a return statement, an
operation, or an embedded operation. The dynamic semantics ensures that these are the only
possible final configurations for a computation.

Lemma 9 (Progress for Computations).
If ∅ ` ci : {ε}τ then either

1. ci −→ c′i
2. ci = return vi
3. ci = op(vi; yi.c

′
i)

4. ci = [op]εl (vi; yi.c
′
i)

4.6.2 Abstraction Safety
In this section, we prove a theorem on the correctness of effect abstraction. The intuition is that if
a computation contains operations that are part of an opaque abstract effect, i.e., the definition of
the effect is hidden from the agents in the computation, then the evaluation computation would
not be affected by the operations.
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We first define the notion of oblivious. A computation is oblivious to an effect if and only if
the effect is not known to the agent i, or any agent that lives inside the computation.

Definition 4.6.1. An i-computation c is oblivious to effect label f if f 6∈ Dom(δi), and for all
subexpression [e]τj and subcomputation [c]σj , f 6∈ Dom(δj)

In the following theorem, we first define an equivalence relation. Two terms are equivalent if
they are identical or the effect operations inside the terms are opaque to the agents in the terms.
We show that two equivalent terms will stay equivalent after evaluation.

Theorem 10. Let c1 and c2 be computations that are oblivious to the effect f . If c1 ≈ c2,
c1 → c′1, c2 → c′2, then c′1 ≈ c′2. Furthermore, If e1, e2 oblivious to f, e1 ≈ e2, e1 → e′1, e2 → e′2,
then e′1 ≈ e′2

The relation ≈ is defined as follows:

e ≈ e

x ≈ x (R-VAR) () ≈ ()
(R-UNIT)

c ≈ c′
λx : τ. c ≈ λx : τ. c′

(R-LAM) e ≈ e′
[e]τl ≈ [e′]τl

(R-EMBEDEXP)

c ≈ c

e ≈ e′
return e ≈ return e′

(R-RET) e ≈ e′ c ≈ c′
op′′(e; y.c) ≈ op′′(e′; y.c′)

(R-OP)

c ≈ c′ d ≈ d′
do x← c in d ≈ do x← c′ in d′

(R-SEQ)
e1 ≈ e′1 e2 ≈ e′2
e1 e2 ≈ e′1 e′2

(R-APP)

h ≈ h′ c ≈ c′
with h handle c ≈ with h′ handle c′

(R-HANDLE)
cj ≈ c′j

[cj ]
σ
l ≈ [c′j ]

σ
l

(R-EMBED)

e ≈ e′ c ≈ c′
[op′′]εl (e; y.c) ≈ [op′′]εl (e

′; y.c′)
(R-EMBEDOP1)

e ≈ e′ c ≈ c′ ∃i ∈ l, δi(f) = op, op′

[op]εl (e; y.c) ≈ [op′]εl (e
′; y.c′)

(R-EMBEDOP2)

h ≈ h
cr ≈ c′r c1 ≈ c′1, . . . cn ≈ c′n

{ return x 7→ cr, op1(x1, k1) 7→ c1, . . . , opn(xn, kn) 7→ cn} ≈
{ return x 7→ c′r, op1(x1, k1) 7→ c′1, . . . , opn(xn, kn) 7→ c′n}

(R-HANDLER)

Figure 4.6: Definition of equivalence relation ≈

Proof. (Sketch) By induction on derivation of c1 ≈ c2 and e1 ≈ e2

1. R-Ret: The only reduction rule that applies is E-Ret, so we have e1 −→ e′1 and e2 −→ e′2.
By IH, we have e′1 ≈ e′2. Then the result follows by R-Ret

2. R-Op: The only reduction rule that applies is E-Op. The result is immediate by IH.
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3. R-Seq: If the reduction rule is E-Seq1, then result is immediate by IH.
If the reduction rule is E-Seq2. Then we have c1 = do x ← return v1 in d1, c2 =
do x ← return v2 in d2. By inversion, we have v1 ≈ v2 and d1 ≈ d2. So we have
{v1/x}d1 ≈ {v2/x}d2.
If the reduction rule is E-Seq3, then c1 = do x ← op(v1; y.k1) in d1, c2 = do x ←
op(v2; y.k2) in d2. By inversion, we have k1 ≈ k2 and d1 ≈ d2. So do x ← k1 in d1 ≈
do x ← k2 in d2. So op(v1; y. do x ← k1 in d1) ≈ op(v2; y. do x ← k2 in d2). The
proof is similar for rule E-Seq4.

4. R-App: The cases for reduction rules E-App1 and E-App2 follows by IH. If reduction rule
is E-App3. Then c1 = (λx : τ. d1) v1 and c2 = (λx : τ. d2) v2. By inversion we have
d1 ≈ d2 and v1 ≈ v2. So we have {v1/x}d1 ≈ {v2/x}d2.

5. R-Handle: If reduction rule is E-Handle1, then result follows by IH.
If the reduction rule is E-Handle2. Then c1 = with h1 handle return v1 and
c2 = with h2 handle return v2. By inversion we have h1 ≈ h2, v1 ≈ v2.
Let return cr1 ∈ h1 and return cr2 ∈ h2. By inversion we have cr1 ≈ cr2. So
{v1/x}cr1 ≈ {v2/x}cr2.
If the reduction rule is E-Handle3. Then c1 = with h1 handle op(v1; y1.c1), and
c2 = with h2 handle op(v2; y2.c2). By inversion we have h1 ≈ h2, v1 ≈ v2, and
c1 ≈ c2. Let op(x1; k1) 7→ c′1 ∈ h1 and op(x2; k2) 7→ c′2 ∈ h2. By inversion on R-
Handler we have c′1 ≈ c′2. Then we can conclude that the evaluated computations are still
equivalent:

{v1/x1}{(λy1 : τB. with h1 handle c1)/k}c′1 ≈
{v2/x2}{(λy2 : τB. with h2 handle c2)/k}c′2

If the reduction rule is E-Handle4. Then c1 = with h1 handle op(v1; y.k1) and c2 =
with h2 handle op(v2; y.k2). By inversion we have v1 ≈ v2, k1 ≈ k2 and h1 ≈ h2.
Then by equivalence rules we have c′1 ≈ c′2. The case for E-Handle5 is similar.

6. R-Embed: If reduction is E-Embed1, result is immediate by IH. If reduction rule is E-
Embed2, then c1 = [ return v1]

{ε}τ
l and c2 = [ return v2]

{ε}τ
l . It is easy to see

[v1]
τ ≈ [v2]

τ . So the result holds.
If the reduction rule is E-Embed3, Then c1 = [op(v1; y.k1)]{ε}τ l and c2 = [op(v2; y.k2)]

{ε}τ
l .

By inversion we have v1 ≈ v1, k1 ≈ k2. Then by equivalent rules we have c′1 ≈ c′2. Same
arguments apply for E-Embed4.

7. R-EmbedOp1: If reduction rule is E-EmbedOp1, then result follows by IH. If reduction
rules is E-EmbedOp2 or E-EmbedOp3, reduction does not affect terms except effect anno-
tation, so the equivalence relation still hods after reduction.

8. R-EmbedOp2: Reduction rules E-EmbedOp1 and E-EmbedOp2 are similar to the previous
case. If the reduction rule is E-EmbedOp3, then by R-EmbedOp2, the operations op and
op′ are exported as effect f by some agent, and since current agent is oblivious to f , this
case is impossible.
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4.7 Translation of the Abstraction Problem
In this section we show the process of evaluation of the example program presented in 4.1. The
original example could be rewritten as follows:

1 op : 1 -> 1
2

3 module b: B
4 effect f = op
5 def m() : {f} Unit
6 op ()
7 def handler(c: 1 -> {f} 1) : {} Int =
8 handle c () with
9 | op () -> 1

10 | return _ -> 0

The operation op is defined globally, and the module b defines effect f to be equivalent to
op, an effectful method m, and an handler method method. The example program that we will
evaluate is written as follows. The handler method from module b is invoked, and the argument
is a computation that calls the method b.m, which is surrounded by a handler that handles op.

1 b.handler(
2 () => handle b.m() with
3 | op -> resume ()
4 | return _ -> ()
5 )
6

Then we rewrite the example program in our agent-based calculus: Since the code is a client of
b, any method call from the module b should be surrounded by an embedding. So the handler
functions is wrapped in an embedding with type annotation (1 -> {f} -> 1) -> Int, and
the handled function in the argument is also embedded with an annotation 1 -> {f} 1. In the
following evaluation process we assume that there is an agent b that represents the module b, and
an agent a that represents the client code that invokes functions from module b

1 // Translation of Example Program
2 [λc: 1 -> {f} 1.
3 handle c() with
4 | op(x, k) -> return 1

5 | return x -> return 0)](1→{f}1)→{}int
b

6 (λ_:1.

7 handle [λ_:1. op()]1→{f}1
b () with

8 | op(x, k) -> k ()
9 | return _ -> return ())

10

Then according to the dynamic rules, we evaluate the handler function to a value that is not
embedded. The program is therefore evaluated to

1 (λc: 1 -> {f} 1.

2 [handle [c]1→{f}1
a () with

3 | op(x, k) -> return 1

4 | return x -> return 0)]{}intb )
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5 (λ_:1.

6 handle [λ_:1. op()]1→{f}1
b () with

7 | op(x, k) -> k ()
8 | return _ -> return ())
9

Since the function is evaluated to a value, we can perform a β-reduction:

1 [handle
2 [λ_:1.

3 handle [λ_:1. op()]1→{f}1
b () with

4 | op(x, k) -> k ()

5 | return _ -> return () ]1→{f}1
a ()

6 with
7 | op(x, k) -> return 1

8 | return x -> return 0)]{}intb

9

Now we need to evaluate the outter-most handle computation in the embedding. The first
step is to evaluate the handled computation, which is a function application. We first evaluate the
function

1 [handle
2 λ_:1.

3 [handle [λ_:1. op()]1→{f}1
b () with

4 | op(x, k) -> k ()

5 | return _ -> return () ]{f}1a ()
6 with
7 | op(x, k) -> return 1

8 | return x -> return 0)]{}intb

9

Then we pass in the argument, which is a unit value

1 [handle

2 [handle [λ_:1. op()]1→{f}1
b () with

3 | op(x, k) -> k ()

4 | return _ -> return () ]{f}1a

5 with
6 | op(x, k) -> return 1

7 | return x -> return 0)]{}intb

Then we evaluate the inner handling computation. Since the inner handling computation is eval-
uated as a client code and the operation op in an embedding from module b, the operation will
not be handled by the current handler. Instead, it would be lifted out of the handler.

1 [handle

2 [opfb((), y. handle return y with
3 | op(x, k) -> k ()
4 | return _ -> return ()

5 )]{f}1a

6 with
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7 | op(x, k) -> return 1

8 | return x -> return 0)]{}intb

9

At this point since the operation op is lifted to the agent b, where the effect f is transparent,
the handler would be able to handle it. The result of this computation is return 1, because the
continuation is discarded by the handler.

1 [handle

2 opfba((), y. [handle return y with
3 | op(x, k) -> k ()

4 | return _ -> return ()]{f}1a

5 )
6 with
7 | op(x, k) -> return 1

8 | return x -> return 0)]{}intb
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Chapter 5

Algebraic Effects with Existential Types

5.1 Motivation
In section 3.2.2, we defined a resource type Var that provides two public functions, get and set,
that are annotated with effects, but the concrete implementation that causes effects is not revealed
to the client. This construction ensures that any program that reads or writes to a value of type
Var is annotated with the correct effect. Therefore we can see that, in a restrictive effect system,
it is useful to be able to hide the implementation of a computational effect.

In this section, we will show that this form of implementation hiding is also important for
building modular software with algebraic effects and handlers through an example of mutable
state. Mutable state as an algebraic effect is often represented by a state effect with two op-
erations get and set. In this example, we assume that our mutable state can store or access an
integer.

1 operation get : Unit -> Int
2 operation set : Int -> Unit

The handler of a state effect is usually defined in the following way:

1 handler hstate = {
2 return x -> λ_:Int. return x
3 get(_; k) -> λs:Int. (k s) s
4 set(s; k) -> λ_:Int. (k ()) s
5 }

This handler would transform the handled computation into a lambda expression that receives
a state as an argument. In the return clause, the argument is ignored. In the clause handling
get, the state argument is passed into the continuation k. Since the continuation k s is already
transformed into a function that expects a state, we pass s to the computation k s. The clause
for the set operation is similar except that we ignore the state argument, but pass the argument
obtained from the set operation.

Now we consider the module of a single variable introduced in section 3.2.2, where read and
write to the variable cannot bypass the effect checking because the implementation details are
hidden by the interface Var. If we would write a similar module in our core calculus, it is natural
to extend our calculus with record type and implement the module as follows:
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1 val var =
2 < read ↪→ λx:Unit. get((); y.return y),
3 write ↪→ λx:Int. set(x; y.return ()),
4 handle ↪→ λc: Unit → {state} Int. (with hstate handle c ()) 0 >

The module provides functions read, write, and a handler function handle that determines
the semantics for operations in functions read and write. However, this encoding of the module
var does not enforce that the operations get and set are always handled by the handle function.
In fact, any client that calls function read and write can write its own handler to handle the
effects. So in order to solve this issue, we introduce existential type to define the module:

1 val var =
2 pack
3 <{get, set},
4 < read ↪→ λx:Unit. get((); y.return y),
5 write ↪→ λx:Int. set(x; y.return ()),
6 handle ↪→ λc: Unit → {state} Int. (with hstate handle c ()) 0 >
7 > as ∃state. ((read : Unit -> {state} Int)
8 ×(write : Int -> {state} Unit)
9 ×(handle : Unit -> {state} Int -> {} Int))

This encoding of module defines an abstract effect state on top of the effects get and set,
and export the module as an existential type that hides the definition of effect state, therefore
enforcing that the client of this module can only handle effect state by calling the handle

function.
The embedding design presented in section 4.3 helps to ensure that the abstraction does not

break. Imagine a client of module var that calls read and handles it by calling handle.

1 open var as (state, v) in (v.handle v.read)

In this example, the state effect in function read is correctly handled by the handler handle,
and the result of the computation is 0. Note that the abstraction barrier is still preserved if some
handler attempts to handle the abstract effect. For example, let handler hget be a handler that
handles effect get. And the client code uses hget to handle the effect in method read.

1 handler hget = {
2 return x -> x
3 get (x; k) -> 1
4 }
5

6 open var as (state, v) in
7 (v.handle (λ x: Unit. with hget handle v.read ()))

Assume that the open expression is an i-expression. When opening the module var, we
assign the opened expression v to a new agent j that knows the definition of the state effect.
Because the hget handler is evaluating in the agent i, it would not be able to handle the effect
state of the function v.read. Instead, the state effect will be handled by the handler provided
by the module var, therefore ensuring that the abstraction information is not leaked.
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1 resource type Logger
2 effect ReadLog
3 effect UpdateLog
4 effect readLog(): {this.ReadLog} String
5 effect updateLog(newEntry: String): {this.UpdateLog} Unit
6

7 module def logger(f: File): Logger
8 effect ReadLog = {f.Read}
9 effect UpdateLog = {f.Append}

10 def readLog(): {ReadLog} String = f.read()
11 def updateLog(newEntry: String): {UpdateLog} Unit = f.append(newEntry)
12

13 resource type File
14 effect Read
15 effect Write
16 effect Append
17 ...
18 def read(): {this.Read} String
19 def write(s: String): {this.Write} Unit
20 def append(s: String): {this.Append} Unit
21 ...

Figure 5.1: The logging facility in the text-editor application

5.2 Encoding Abstract Effects Using Algebraic Effects
Our discussion of abstraction of algebraic effects has been focusing exclusively on purely func-
tional programming. However, as shown in Melicher et al. [19], the expressiveness provided by
abstract effects enables programmers to develop secure programs when side-effects are in play.
In this section, we show that the effect system in this chapter provides a foundation for expressing
abstract effect in chapter 3.

Melicher et al. [19] and chapter 3 presented a design of effect member to support effect
abstraction: the ability to define higher-level effects in terms of lower-level effects, to hide that
definition from clients of an abstraction, and to reveal partial information about an abstract effect
through effect bounds. In this chapter we no longer use the object-oriented formalization but use
the agent-based lambda calculus introduced in chapter 4 and extend it with the existential types
as a foundation to support effect abstraction. Now we will look at different aspects of the original
abstract effect system and discuss how we can incorporate them in the new setting with algebraic
effects.

5.2.1 Running Example
We begin by encoding the running example presented in Melicher et al. [19] which demonstrates
the key feature of abstract effects. The original example shows a type and a module implementing
the logging facility in the text-editor application and is shown in figure 5.1.

Consider the code in Fig. 5.1 that shows a type and a module implementing the logging
facility of the text-editor application. In the given implementation of the Logger type, the logger
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module accesses the log file. All modules of type Logger must have two methods: the readLog

method that returns the content of the log file and the updateLog method that appends new
entries to the log file. In addition, the Logger type declares two abstract effects, ReadLog and
UpdateLog, that are produced by the corresponding methods. These effects are abstract because
they are not given a definition in the Logger type, and so it is up to the module implementing the
Logger type to define what they mean. The effect names are user-defined, allowing the choice
of meaningful names.

The logger module implements the Logger type. To access the file system, an object of
type File (shown in Fig. 2.2) is passed into logger as a parameter. The logger module’s effect
declarations are those of the Logger type, except now they are concrete, i.e., they have specific
definitions. The ReadLog effect of the logger module is defined to be the Read effect of the
File object, and accordingly, the readLog method, which produces the ReadLog effect, calls f’s
read method. Similarly, the UpdateLog effect of the logger module is defined to be f.Append,
and accordingly, the updateLog method, which produces the UpdateLog effect, calls f’s append
method. In general, effects in a module or object definition must always be concrete, whereas
effects in a type definition may be either abstract or concrete.

Using the existential type, the type Logger can be translated to the following type, note that
we only translate one abstract effect ReadLog and one method readLog to make the code more
readable. We assume that the type String is built into the language.

1 type Logger = ∃ReadLog.〈readLog : Unit → {ReadLog} String〉

Similarly, the File type can be implemented as follows. Again we leave only one abstract
effect and one member function to maintain simplicity of the example.

1 type File = ∃Read.〈read : Unit → {Read} String〉

Then we are finally able to encode the functor logger, which receives a value of type File

and returns a Logger.

1 logger : File → {} Logger =
2 λf:File. open f as (fRead, fBody) in
3 pack (fRead, 〈readLog ↪→ λx: Unit. fBody.read ()〉) as
4 ∃ReadLog.〈readLog : Unit → {ReadLog} String〉

5.2.2 Effect Abstraction
In section 2.1.3, we defined effect abstraction as the ability to define higher-level effects in terms
of lower-level effects and potentially to hide that definition from clients of an abstraction. In the
logger module above, we lifted the low-level file resource into a higher-level logging facility,
and defined higher-level effects ReadLog as an abstraction of the lower-level effect Read. So
application code can reason in terms of effects of higher-level resources when appropriate.

5.2.3 Effect Aggregation
In section 2.1.4 we argued that effect aggregation can make the effect system less verbose. The
original example declares an effect UpdateLog as the sum of two effects f.Read and f.Write.
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module def logger(f: File): Logger
effect UpdateLog = {f.Read, f.Write}
def updateLog(newEntry: String): {this.UpdateLog} Unit
...

Although our new calculus is inherently more verbose than the language based on path-dependent
effects, it can still encode effect aggregation. First we let the File type contains two abstract
effects by existential quantification:

1 type File = ∃Read. ∃Write. . . .

Then we can define logger functor. We first open the module f, then define an existential package
where the abstract effect is defined as a sum of the two effects from the module f:

1 logger : File → {} Logger =
2 λ f : File. open f as (fRead, x) in open x as (fWrite, y) in
3 pack ({fRead, fWrite}, 〈updateLog↪→ . . . 〉) as
4 (∃UpdateLog. 〈updateLog: String → {UpdateLog} Unit〉)

Again the functor logger receives a File and returns a Logger. The functor opens the f module
twice to get the two effect labels fRead and fWrite that are exported by f. Then the logger

returns an existential package that hides the two effect as an abstract effect UpdateLog. This
design achieves effect aggregation by combining the two lower-level effects into one higher-level
effect.

5.3 Formalization
In the previous sections, we have introduced the core calculus of abstract algebraic effects via
embeddings. However it is impractical for requiring programmers to explicitly annotate each
program component with embeddings. So we present a top level language where the annotations
are implicitly added during the evaluation of the program.

According to Mitchell and Plotkin [21], there is a correspondence between abstract data types
and existential types. Existential types are often used as a foundation for expressing type abstrac-
tion in module systems. The calculus introduced in this section contains a form of existential type
that provides abstraction mechanisms for algebraic effects. The values that have existential type
would generate new agents during the evaluation of the program and automatically separate pro-
gram components with different knowledge on effect abstraction, so programmers would not
need to explicitly work with agents and embeddings.

5.3.1 Syntax
Most of the syntax remains the same for our new language. The existential type ∃f. τ is added
as an expression type. The intuition of the type is that the value of this type is a value of type
{ε/f}τ for some effect type ε.

There are two new forms of expressions: The introduction form of the existential type,
pack (ε, e) as ∃f. τ and the elimination form, open e as (f, x) in e′. The pack expres-
sion creates existential package that contains an effect type ε and an expression e. The open
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(agents) i, j ::= {1 . . . n}
(lists) l ::= i | il
(expression types) τ ::= 1 | τ → σ | ∃f. τ
(computation types) σ ::= {ε}τ
(effect types) ε ::= · | f, ε | op, ε
(i-values) vi ::= ()i | λxi : τ. ci | pack (ε, v) as ∃f. τ
(i-expressions) ei ::= xi | vi | [ej]τl | pack (ε, e) as ∃f. τ | open e as (f, x) in e′

(i-computations) ci ::= return ei | op(ei, y.ci) | do x← ci in c
′
i | ei e′i

| with hi handle ci | [cj]
σ
l | [op]εl (ei, yi.ci)

(i-handler) hi ::= handler {return xi 7→ cri , op
1(x1i , k

1) 7→ c1i . . . op
n(xni , k

n) 7→ cni }

Figure 5.2: Syntax for Existential Effects

〈{∆}, e〉 7→ 〈{∆}, e〉

〈{∆}, e〉 7→ 〈{∆′}, e′〉
〈{∆}, pack (ε, e) as ∃f. τ〉 7→ 〈{∆′}, pack (ε, e′) as ∃f. τ〉

(E-PACK)

f fresh j fresh ∆′j = ∆i[f 7→ ε] ∀∆k ∈ {∆},∆′k = ∆k[f 7→ f ]

〈{∆}, open ( pack (ε, e) as ∃f. τ) as (f, x) in e′〉 7→ 〈{∆′}, {[e]τj /x}e′〉
(E-OPEN1)

〈{∆}, e〉 7→ 〈{∆′}, e′〉
〈{∆}, open e as (f, x) in e′′〉 7→ 〈{∆′}, open e′ as (f, x) ∈ e′′〉

(E-OPEN2)

〈{∆}, [ pack (ε, v) as ∃f. τ ]∃f. τ
′

j 〉 7→ 〈{∆}, pack (ε, [v]
{ε/f}τ ′

j ) as ∃f. τ ′〉
(E-EMBEDPACK)

Figure 5.3: Additional Dynamic Semantics for Existential Type

expression opens up an existential package and substitutes the expression in the package for the
variable x.

We only introduce one form of value: the existential package pack (ε, v) as ∃f. τ , where
the packed expression is already evaluated to a value.

5.3.2 Dynamic Semantics

The semantics for existential type ∃f. τ hides the definition of the effect label f from the client
of the value of this type. We leverage our previous design of multi-agent calculus to achieve
information hiding. However, the previous design assumes that the type information for each
agents is predetermined and does not change during evaluation. Since existential types generate
new abstraction boundaries, we need different semantics that allow agents to be created during
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{∆} | Γ ` ei : τ

{∆} | Γ ` e : {ε/f}τ
{∆} | Γ ` pack (ε, e) as ∃f. τ : ∃f. τ

(T-PACK)

{∆} | Γ ` e : ∃f. τ ∀∆i ∈ {∆},∆′i = ∆i[f 7→ f ] {∆′} | Γ, x : τ ` e′ : τ ′

{∆} | Γ ` open e as (f, x) in e′ : τ ′
(T-OPEN)

Figure 5.4: Additional Static Semantics for Existential Effects

evaluation. Therefore, we modify the reduction rule to evaluate a pair that contains both the ex-
pression to evaluate and a context of type information. The idea to keep track of type information
while evaluating terms was used by Grossman et al. [10] to encode parametric polymorphism in
their system.

In figure 5.3, we show the dynamics semantics for new constructs such as exists and open.
In the rules we use the syntax ∆i[f 7→ ε] to express extending the type map ∆i with a new
projection from label f to effect ε.

We introduce the notation {∆} to express a list of type maps for all agents in the context
{∆1, . . .∆n}. The type information of each agent can change, and new agents can be generated,
the evaluation judgment now has the form 〈{∆}, e〉 7→ 〈{∆}, e〉.

(E-Pack) shows the congruence rule for reduction of a pack expression. (E-Open) opens an
existential package: This rule requires f to be a fresh label, which achievable by applying alpha
conversion in τ . j is a fresh agent. A new type map for agent j extends the type map for i by
mapping f to ε. Every existing type map in {∆} is extended by mapping f to itself. Finally, [e]τj
is substituted for x in e′.

(E-EmbedPack) shows how the embedding interacts with existential packages. The existen-
tial package is lifted out of the embedding, and the value v becomes an embedded j-value with
type annotation {ε/f}τ ′.

The reduction rules for remaining terms are not changed by the introduction of {∆} and are
therefore not shown.

5.3.3 Static Semantics
The typing rules also require the set of type maps, so the judgments have the form {∆} | Γ ` e : τ
(T-Pack) assigns the type ∃f. τ to the existential package if the expression e has type {ε/f}τ .
The rule (T-Open) assigns the type τ ′ to the open expression if e has the existential type ∃f. τ
and e′ has type τ ′ given that the context is extended with variable x, and the set of type maps is
extended with the effect label f .

Similar to the previous system, type relations ensure the correctness of the type annotation
on embeddings. Since we introduced the existential type, we need to add an additional rule to
the type relations:

τ ≤l τ ′
∃f. τ ≤l ∃f. τ ′

(R− Exists)
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5.3.4 Type Safety
Lemma 11. (Preservation for expression)
If {∆} | Γ ` e : τ and 〈{∆}, e〉 7→ 〈{∆′}, e′〉, then {∆′} | Γ ` e′ : τ

Proof. By rule induction on the dynamic semantics of expressions.

1. (E-Congruence): By inversion on typing judgement and applying IH.
2. (E-Unit): By directly applying (T-Unit)
3. (E-Lambda):

[λxj : τ ′. cj]
τ→σ
j −→ λxi : τ. [{[xi]τ

′
i /xj}cj]σjl

(E-LAMBDA)

By inversion on (T-EmbedExp), we have {∆} | Γ ` [λxj : τ ′. cj]
τ→σ
j : τ → σ, and

{∆} | Γ ` λxj : τ ′. cj : τ ′ → σ′, where {∆} | Γ ` τ ′ → σ′ ≤j τ → σ. By inversion on
(T-Lam), we have {∆} | Γ, xj : τ ′ ` cj : σ. Then by substitution lemma, we have {∆} |
Γ, xi : τ ` {[xi]τ

′
i /xj}cj : σ′. By (T-Embed), {∆} | Γ, xi : τ ` [{[xi]τ

′
i /xj}cj : σ′]σj : σ.

Then the result follows by (T-Lam).
4. (E-Pack): By inversion and IH.
5. (E-Open): By inversion on (T-Pack), we have {∆} | Γ ` e : {ε/f}τ . Then by (T-

EmbedExp), we have {∆′} | Γ ` [e]τj : τ . By inversion on (T-Open), {∆} | Γ, x : τ `
e′ : τ ′. Since j is fresh, e′ doesn’t contain any j term, so the type information from agent j
doesn’t affect the typing of e′. Therefore, {∆′} | Γ, x : τ ` e′ : τ ′. Finally, by substitution
lemma, we have {∆′} | Γ ` {[e]τj/x}e′ : τ ′.

6. (E-EmbedPack): By inversion on (T-EmbedExp), we have {∆} | Γ ` pack (ε, v) as ∃f. τ :
∃f. τ , and {∆} | Γ ` ∃f. τ ≤j ∃f. τ ′. By type relation, we have τ ≤j τ ′. Then by inver-
sion on (T-Pack), we have {∆} | Γ ` v : {ε/f}τ . Then by T-EmbedExp, we have {∆} |
Γ ` [v]

{ε/f}τ ′
j : {ε/f}τ ′. Then by (T-Pack), we get {∆} | Γ ` pack (ε, [v]

{ε/f}τ ′
j ) as ∃f. τ ′ :

∃f. τ ′

Lemma 12. (Progress)
If {∆} | Γ ` e : τ then either e is a value or there exists e′ and {∆′} such that 〈{∆}, e〉 7→
〈{∆′}, e′〉

Proof. By induction on the typing rule:

(T-Pack) Let e = pack (ε, e′) as ∃f.τ There are two cases. If e′ is value, then we are
done. If e′ is not a value, by inversion and IH, we have 〈{∆}, e′〉 7→ 〈{∆′}, e′′〉. Then we
can apply E-Pack to evaluate e.

(T-Open) Again, let e = open e′ as (f, x) ∈ e′′. By IH and inversion, if e′ is not a value,
then we can evaluate e by (E-Open2). If e′ is a value, by inversion, e′ = pack (ε, e1) as ∃f.τ .
Then we can evaluate e by applying (E-Open1).
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5.4 Discussion and Future Work

5.4.1 Parametric Polymorphism
We introduced polymorphic effects in chapter 3 as a part of our restrictive effect system. How-
ever, we did not include polymorphism in our agent-based core calculus. Parametric polymor-
phism on effects would significantly increase the expressiveness of the language. For example,
in the example of the var module presented in the previous section, the type of the argument to
the handle function is Unit -> {state} Int. So it restricts the handled computation to only
have the state effect, and is therefore unrealistic as we may want to handle computations with
other effects as well.

1 val var =
2 pack
3 <{get, set},
4 < read ↪→ λx:Unit. get((); y.return y),
5 write ↪→ λx:Int. set(x; y.return ()),
6 handle ↪→ λc: Unit → {state} Int. (with hstate handle c ()) 0 >
7 > as ∃state. (read : Unit -> {state} Int) * (write : Int -> {state} Unit)

* (handle : Unit -> {state} Int -> {} Int)

Therefore it would be desirable to add universal quantifications on effect variables to the
system. However, unlike existential quantification, which is a straightforward extension to our
calculus, the universal effect introduces a problem that breaks the abstraction barrier. The fol-
lowing example illustrates the problem brought by parametric polymorphism on effects:

1 type B
2 effect E {
3 def op() : Unit
4 }
5

6 module b : B
7 ...
8

9 type A
10 effect E
11 def handle[F](c: Unit -> {F, this.E} Unit): {F} Unit
12 def m(): {this.E} Unit
13

14 module a: A
15 effect E = {b.E}
16 def handle[F](c: Unit -> {F, this.E} Unit): {F} Unit
17 handle
18 c()
19 with
20 b.op() -> resume ()
21 def m(): {this.E} Unit
22 b.op()
23

The module a defines a polymorphic handle function that handles a computation with effect
a.E and a polymorphic effect F. Since effect a.E is defined abstract in the type A, the client of this
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module should not observe the fact that effect a.E is equivalent to b.E. However, the client1 in
the following code passes effect b.E as the polymorphic effect into the handle function, and be-
cause the implementation of handle function handles the effect b.E, the operation b.op would
be handled by a.handle. So client1 be would be surprised by that the effect b.E is handled, and
the desired output is not printed. In comparison, the client2 code passes an unrelated effect c.E to
the handling function and observes the line “desired output” is printed. This example illustrates
that the clients can actually observe the implementation of the effect a.E, which is supposed to
be opaque.

1 //Client1: Prints nothing
2 handle
3 a.handle[b.E] (
4 () => b.op(); a.m()
5 )
6 with
7 b.op() -> print "desired output"
8

9 //Client2: Prints "desired output"
10 handle
11 a.handle[c.E] (
12 () => c.op(); a.m()
13 )
14 with
15 c.op() -> print "desired output"

5.4.2 Effect Bounds
As we have shown in chapter 3, effect bounds are a useful tool for making the effect system
more expressive. Currently, our calculus does not support bounded quantification because its
formalization is different from the path-dependent formalization we previously developed to
express effect bounds.

One possible direction to achieve this is through the use of bounded existential types. Because
we use existential types to express information hiding on effect types, it is natural to adopt the
technique of bounded existential types to achieve the idea of effect bounds. It could be interesting
to explore how subeffecting introduced by effect bounds interacts with the mechanism of agent-
based type information.
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Chapter 6

Related Work and Conclusion

6.1 Related Work

6.1.1 Restrictive Effect Systems
A restrictive effect system considers effects that are built into the language, such as reading and
writing states or exceptions, and provides a way to restrict the usage of such effects. Our effect
system introduced in chapter 3 is a restrictive effect system. Restrictive effect systems were first
proposed by Lucassen [16] to track reads and writes to memory. Then Lucassen and Gifford
[17] extended this effect system to support polymorphism. Restrictive Effects have since been
used for a wide variety of purposes, including exceptions in Java [11] and asynchronous event
handling [5].

6.1.2 Bounded Effect Polymorphism.
A limited form of bounded effect polymorphism was explored by Trifonov and Shao [29], who
bound effect parameters by the resources they may act on; however, the bound cannot be another
arbitrary effect, as in our system. Long et al. [15] use a form of bounded effect polymorphism
internally but do not expose it to users of their system.

6.1.3 Subeffecting.
Some effect systems, such as Koka [12], provide a built-in set of effects with fixed sub-effecting
relationships between them. Rytz et al. [27] support more flexibility via an extensible framework
for effects. Users can plug in their own domain of effects, specifying an effect lattice representing
sueffecting relationships. Each plugin is monolithic. In contrast, our effect members allow new
effects to be incrementally added and related to existing effects using declared subeffect bounds.

6.1.4 Path-dependent Effects
The Effekt library by Brachthauser et al. [4] explores algebraic effects as a library of the Scala
programming language. Since their effect system is built on the path-dependent type system of
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Scala, it bears some similarities to our system. However, their work is largely orthogonal to our
contributions due to the following reasons:

Our goal is to check the effects of general-purpose code. In contrast, Brachthäuser’s approach
requires all effect-checked code to be written in a monad. This is required to support control
effects (i.e. prescriptive effects), but it is not an incidental difference: it is also an integral part
of their static effect checking system, because monads are the way that they couple Scala’s type
members (which provide abstraction and polymorphism) to effects. Their paper, therefore, does
not solve the problem of soundly checking effects for non-monadic code. Most code in Scala and
Wyvern–let alone more conventional languages such as Java–is non-monadic, for good reasons:
monads are restrictive and, for some kinds of programming, quite awkward. Programmers may
be willing to use monads narrowly to get the benefits of control effects that Brachthäuser et al.
support, but outside the Haskell community, it does not seem likely they would be willing to use
them at a much broader scale for the purpose of descriptive effects.

Our approach provides abstraction and polymorphism for descriptive effects. As discussed
above, Brachthäuser et al.’s leverage of Scala’s type members provides abstraction and polymor-
phism only for prescriptive effects, and only in the context of monadic code. Even setting aside
the issue of monads, above, it is unclear how their approach can provide abstraction for descrip-
tive effects. The reason is that their abstraction works backwards from the kind we need. For
example, we want to be able to implement a logger in terms of file I/O–and hide the fact that
it is implemented that way. The natural way to start would be to model file I/O in their system
as a set of effect operations that “handle” I/O operations at the top level (their system does not
provide support for this, so it would have to be added). A logger library could then provide a
set of ”log” effects and a handler for them, implemented in terms of the top-level I/O operations.
But it would not be possible to hide the fact that the logger library was implemented in terms of
the I/O operations, because the handler for the log effects would have to be annotated with I/O
operation effects. Furthermore, all log operations would have to be nested in the scope of the
log handler, annoyingly inverting control flow relative to the expected approach. And this would
have to be done for every library that abstracts from the built-in I/O effects, a highly anti-modular
approach.

6.1.5 Abstract Algebraic Effects
Our discussion in chapter 4 tackles the issue of abstraction of algebraic effects. This issue was
originally raised by Leijen [13], but was not discussed in depth. Biernacki et al. [2] introduced
a core calculus called λHEL with abstract algebraic effects. However, there are multiple distinc-
tions that distinguish our core calculus from λHEL. First, we adopted the agent-based syntax that
syntactically distinguishes each module by assigning them to different agents. This design al-
lows us to reason about the code using the information provided by agents, and provide syntactic
proof for abstraction properties. Moreover, our calculus can be simply extended with existential
types, which serves as an abstraction to represent module systems for a high-level language. The
benefit of this design is that the programmer would not need to write embeddings explicitly, as
embeddings are generated as a semantic object when a value of existential type is evaluated.
In comparison, it is unclear from the paper [2] how a top-level language with a module system
could be translated to the coercion-based calculus λHEL.
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Zhang and Myers [32] describe a design of algebraic effects that preserves abstraction in the
setting of parametric functions. If a function does not statically know about an algebraic effect,
that effect tunnels through that function. This is different from our form of abstraction, in which
the definition of an effect is hidden from clients.

6.2 Conclusion
Effect systems have been actively studied for nearly four decades, but they are not widely used in
the software development process because little attention is paid to improve the usability of effect
systems when developing large and complex software. On the other hand, type abstraction is an
invaluable tool to software designers, which enables programmers to reason about interfaces
between different components of programs. Therefore, we explored different ways to achieve
effect type abstraction within existing frameworks of computational effects.

This thesis presented the Bounded Abstract Effects, an effect system that allows effects to
be defined as members of objects. The types for objects in our language serves as the interface
that can hide the implementation of an effect. Effects are declared as members of an object
type, and effect members can be declared abstractly with upper and lower bounds. Our system
enables effect abstraction between different program components and allows building a hierarchy
of abstract effects via effect bounds.

We have also presented a core calculus for abstract algebraic effects, which ensures the cor-
rectness of abstraction by using embeddings to keep track of the type information during eval-
uation. We have provided a syntactic proof of the correctness of the abstraction barrier and
have shown that a portion of our design of Bounded Abstract Effects can be implemented within
the setting of algebraic effects and handlers. Moreover, we have added the existential types for
effects to our system as a foundation for abstract effect types.
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Appendix A

Transitivity of Subtyping

A.1 Lemmas
Lemma 13. If Γ, x : τ ` ε1 <: ε2, and Γ ` τ ′ <: τ , then Γ, x : τ ′ ` ε1 <: ε2.

Proof. The proof is by structural induction on the rule to derive Γ, x : τ ` ε1 <: ε2.

1. Subeffect-Subset
Since the premise doesn’t rely on the context. This case is trivially true.

2. Subeffect-Upperbound
If the type of n is not changed, then we can apply the same rule to to derive Γ, x : τ ′ `
ε1 ∪ {n.g} <: ε2. If the type of n is replaced by τ ′, then we have effect g 6 ε′ ∈ σ,
where Γ, n : τ ′ ` ε′ <: ε. By IH, we have Γ, n : τ ′ ` [n/y]ε ∪ ε1 <: ε2. By transitivity
of subeffecting, we have Γ, n : τ ′ ` [n/y]ε′ ∪ ε1 <: ε2. Then we can apply Subeffect-
Upperbound again to derive Γ, x : τ ′ ` ε1 ∪ {n.g} <: ε2.

3. Subeffect-Lowerbound
This case is similar to Subeffect-Upperbound

4. Subeffect-Def-1
Since the declaration type effect g = {ε} is not changed, the result follows directly by
induction hypothesis.

5. Subeffect-Def-2
Since the declaration type effect g = {ε} is not changed, the result follows directly by
induction hypothesis.

Lemma 14. If Γ, x : τ ` τ1 <: τ2, and Γ ` τ ′ <: τ , then Γ, x : τ ′ ` τ1 <: τ2
If Γ, x : τ ` σ1 <: σ2, and Γ ` τ ′ <: τ , then Γ, x : τ ′ ` σ1 <: σ1

Proof. We induct on the number of S-Alg used to derive the typing judgment in the premise of
the statement.

BC S-Alg is not used, so we have Γ, x : τ ` σ1 <: σ2 derived by S-Refl2 or one of the S-Effect
rules. The proof is trivial if we apply lemma 13.
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IS1 Assume we used S-Alg n times to derive Γ, x : τ ` {y ⇒ σi∈1...mi } <: Γ ` {y ⇒ σ′i∈1...ni }.
Then for each subtyping judgments in the premise of S-Alg, we can apply induction hy-
pothesis to derive Γ, x : τ ′, y : {y ⇒ σi∈1..mi } ` σp(i) <: σ′i. Then by applying S-Alg, we
have Γ, x : τ ′ ` {y ⇒ σi∈1...mi } <: Γ ` {y ⇒ σ′i∈1...ni }

IS2 Assume we used S-Alg n times to derive Γ, y : τ ` def m(x : τ1) : {ε1} τ2 <: def m(x :
τ ′1) : {ε2} τ ′2, by inversion on S-Def, we have Γ, y : τ ` τ ′1 <: τ1, Γ, y : τ ` τ2 <: τ ′2,
and Γ, y : τ, x : τ1 ` ε1 <: ε2. Then by induction hypothesis and lemma 13, we have
Γ, y : τ ′ ` τ ′1 <: τ1, Γ, y : τ ′ ` τ2 <: τ ′2, and Γ, y : τ ′, x : τ1 ` ε1 <: ε2. Then we use
S-Def to derive Γ, y : τ ′ ` defm(x : τ1) : {ε1} τ2 <: defm(x : τ ′1) : {ε2} τ ′2

A.2 Proof of Theorem 3
If Γ ` τ1 <: τ2 and Γ ` τ2 <: τ3, then Γ ` τ1 <: τ3.
If Γ ` σ1 <: σ2 and Γ ` σ2 <: σ3, then Γ ` σ1 <: σ3.

Proof. We induct on the the number of S-Alg used to derive the two judgments in the premise
of the first statement: Γ ` τ1 <: τ2 and Γ ` τ2 <: τ3, or the two judgments in the premise of the
second statement: Γ ` σ1 <: σ2 and Γ ` σ2 <: σ3.

BC The S-Alg is not used, so we have Γ ` σ1 <: σ2 and Γ ` σ2 <: σ3 by S-Refl2 or one of
S-Effect. By lemma 18 transitivity of subeffecting, it is easy to see Γ ` σ1 <: σ3

IS1 Assume we used S-Alg n times to derive Γ ` {x ⇒ σi∈1...mi } <: {x ⇒ σ′i∈1...ni } and
Γ ` {x⇒ σ′i∈1...ni } <: {x⇒ σ′′i∈1...ki }. By inversion of S-Alg, there is an injection p :
{1..n} 7→ {1..m} such that ∀i ∈ 1..n, Γ, x : {x⇒ σi∈1..mi } ` σp(i) <: σ′i. There is another
injection q : {1..k} 7→ {1..n} such that ∀i ∈ 1..k, Γ, x : {x⇒ σ′i∈1..ni } ` σ′q(i) <: σ′′i . So
for each i ∈ 1..k we have two judgments

Γ, x : {x⇒ σi∈1..mi } ` σp(q(i)) <: σ′q(i)

Γ, x : {x⇒ σ′
i∈1..n
i } ` σ′q(i) <: σ′′i

By lemma 14, we can write the second judgment as Γ, x : {x ⇒ σi∈1..mi } ` σ′q(i) <: σ′′i .
By IH, for all i ∈ 1..k, Γ, x : {x ⇒ σ′′i∈1..ki } ` σp(q(i)) <: σ′′i . Since the function
p ◦ q is a bijection from {1..k} 7→ {1..n}, we can use the rule S-Alg again to derive
Γ ` {x⇒ σi∈1...mi } <: {x⇒ σ′′i∈1...ki }

IS2 Assume we used S-Alg n times to derive Γ ` def m(x : τ1) : {ε1} τ ′1 <: def m(x : τ2) :
{ε2} τ ′2 and Γ ` defm(x : τ2) : {ε2} τ ′2 <: defm(x : τ3) : {ε3} τ ′3. By inverse on S-Def,
we have Γ ` τ2 <: τ1, Γ ` τ3 <: τ2, Γ ` τ ′1 <: τ ′2, and Γ ` τ ′2 <: τ ′3. By IH, we have
Γ ` τ ′1 <: τ ′3 and Γ ` τ3 <: τ1. We have Γ ` ε1 <: ε3 by transitivity of subeffects. Hence
we can use S-Def again to derive Γ ` defm(x : τ1) : {ε1} τ ′1 <: defm(x : τ3) : {ε3} τ ′3.

IS3 By transitivity of subeffecting, other cases for Γ ` σ1 <: σ3 are trivial.
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Appendix B

Proofs of the Type Soundness Theorems for
Bounded Abstract Effects

B.1 Lemmas
Proof. Straightforward induction on typing derivations.

Lemma 15 (Weakening). If Γ | ∅ ` e : {ε} τ and x 6∈ dom(Γ), then Γ, x : τ ′ | ∅ ` e : {ε} τ ,
and the latter derivation has the same depth as the former.

Proof. Straightforward induction on typing derivations.

Lemma 16 (Reverse of SUBEFFECTING-LOWERBOUND). If Γ ` ε1 <: ε2 ∪ {x.g} , Γ ` x :
{y ⇒ σ}, and effect g 6 ε ∈ σ then Γ ` ε1 <: ε2 ∪ [x/y]ε

Proof. We prove this by induction on size(ε1 ∪ ε2 ∪ {x.g}), which is defined in Fig. 3.6

BC If size(ε1 ∪ ε2 ∪ {x.g}) = 0. Then x.g can not have a definition. This case is vacuously
true.

IS We case on the rule used to derive Γ ` ε1 <: ε2 ∪ {x.g}:
(a) Γ ` ε1 <: ε2 ∪ {x.g} is derived by Subeffect-Subset: If x.g 6∈ ε1, then we can use

Subeffect-Subset to show Γ ` ε1 <: ε2 ∪ [x/y]ε If x.g ∈ ε1. Then ε1 = ε′1 ∪ {x.g},
where ε′1 ⊆ ε2. So we can use Subeffect-Def-1 to show Γ ` ε′1∪{x.g} <: ε2∪ [x/y]ε

(b) Γ ` ε1 <: ε2 ∪ {x.g} is derived by Subeffect-Upperbound:
Then we have ε1 = ε′1 ∪ {z.h}, Γ ` z : {y′ ⇒ σ}, effect h = {ε′} ∈ σ, and
Γ ` ε′1 ∪ [z/y′]ε′ <: ε2 ∪ {x.g} By IH, we have Γ ` ε′1 ∪ [z/y′]ε′ <: ε2 ∪ [x/y]ε
Using Subeffect-Upperbound, we have Γ ` ε′1 ∪ {z.h} <: ε2 ∪ [x/y]ε

(c) Γ ` ε1 <: ε2 ∪ {x.g} is derived by Subeffect-Def-1:
If Subeffect-Def-1 uses the effect x.g, then we immediately have Γ ` ε1 <: ε2 ∪
[x/y]ε Otherwise, if Subeffect-Def-1 doesn’t use x.g, then we have ε2 = ε′2 ∪ {z.h},
Γ ` z : {y′ ⇒ σ}, effect h = {ε′} ∈ σ, and Γ ` ε1 <: ε′2 ∪ [z/y′]ε′ ∪ {x.y}. By
IH, we have Γ ` ε1 <: ε′2 ∪ [z/y′]ε′ ∪ [x/y]ε. Using Subeffect-Def-1, we have
Γ ` ε1 <: ε2 ∪ [x/y]ε
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(d) Γ ` ε1 <: ε2 ∪ {x.g} is derived by Subeffect-Def-2:
This case is similar to (b)

Lemma 17 (Reverse of SUBEFFECTING-DEF-2). If Γ ` ε1 ∪ {x.g} <: ε2 , Γ ` x : {y ⇒ σ},
and effect g = {ε} ∈ σ then Γ ` ε1 ∪ [x/y]ε <: ε2

Proof. We prove this by induction on size(ε1 ∪ ε2 ∪ {x.g}), which is defined in Fig. 3.6

BC If size(ε1 ∪ ε2 ∪ {x.g}) = 0. Then x.g can not have a definition. This case is vacuously
true.

IS We case on the rule used to derive Γ ` ε1 ∪ {x.g} <: ε2:
(a) Γ ` ε1 ∪ {x.g} <: ε2 is derived by Subeffect-Subset:

Then x.g ∈ ε2. So we can use Subeffect-Def-1 to derive Γ ` ε1 ∪ [x/y]ε <: ε2
(b) Γ ` ε1 ∪ {x.g} <: ε2 is derived by Subeffect-Upperbound:

If the Subeffect-Upperbound rule uses the effect x.g, then we by the premise of
Subeffect-Upperbound, we have Γ ` ε1 ∪ [x/y]ε <: ε2 If the Subeffect-Upperbound
rule does not use the effect x.g, then we have ε1 = ε′1 ∪ {z.h}, Γ ` z : {y′ ⇒ σ},
effect h 6 ε′ ∈ σ, and Γ ` ε′1 ∪ [z/y′]ε′ ∪ {x.g} <: ε2 By IH, we have
Γ ` ε′1 ∪ [z/y′]ε′ ∪ [x/y]ε <: ε2. Using Subeffect-Upperbound, we derive Γ `
ε1 ∪ [x/y]ε <: ε2.

(c) Γ ` ε1 ∪ {x.g} <: ε2 is derived by Subeffect-Def-1:
Then we have ε2 = ε′2 ∪ {z.h}, Γ ` z : {y′ ⇒ σ}, effect h = {ε′} ∈ σ, and
Γ ` ε1 ∪ {x.g} <: ε′2 ∪ [z/y′]ε′. By IH, we have Γ ` ε1 ∪ [x/y]ε <: ε′2 ∪ [z/y′]ε′.
Using Subeffect-Def-1, we have Γ ` ε1 ∪ [x/y]ε <: ε2 ∪ {z.h}.

(d) Γ ` ε1 ∪ {x.g} <: ε2 is derived by Subeffect-Def-2:
This case is similar to (b)

Lemma 18 (Transitivity in subeffecting). If Γ ` ε1 <: ε2 and Γ ` ε2 <: ε3, then Γ ` ε1 <: ε3.

Proof. We prove this using structural induction on size(Γ, ε1 ∪ ε2 ∪ ε3), which is defined in Fig.
3.6

BC Let size(Γ, ε1 ∪ ε2 ∪ ε3) = 0. The judgments Γ ` ε1 <: ε2 and Γ ` ε2 <: ε3 are derived
from Subeffect-Subset. So we have transitivity immediately.

IS Let N ≥ 0, assume ∀ε1, ε2, ε3 with size(Γ, ε1 ∪ ε2 ∪ ε3) ≤ N , if ε1 <: ε2 and ε2 <: ε3,
then ε1 <: ε3. Let Γ ` ε1 <: ε2 and Γ ` ε2 <: ε3 and size(Γ, ε1 ∪ ε2 ∪ ε3) = N + 1. Want
to show ε1 <: ε3. We case on the rules used to derive Γ ` ε1 <: ε2 and Γ ` ε2 <: ε3

(a) Γ ` ε1 <: ε2 by Subeffect-Subset
i. Γ ` ε2 <: ε3 by Subeffect-Subset.

Transitivity in this case is trivial.
ii. Γ ` ε2 <: ε3 by Subeffect-Upperbound.

Let ε2 = ε′2 ∪ {x.g}. By Subeffect-Upperbound, we have Γ ` x : {y ⇒ σ}
effect g 6 ε ∈ σ and ε′2 ∪ [x/y]ε <: ε3 There are two cases:
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A. If {x.g} 6∈ ε1, then ε1 ⊆ ε′2. Therefore Γ ` ε1 <: ε′2 ∪ [x/y]ε. By induction
hypothesis, we have Γ ` ε1 <: ε3.

B. If {x.g} ∈ ε1, then ε1 = ε′1 ∪ {x.g}, and ε′1 ⊆ ε′2. So we have Γ ` ε′1 ∪
[x/y]ε <: ε′2∪[x/y]ε by Subeffect-Subset. By IH, we have ε′1∪[x/y]ε <: ε3.
Then we use Subeffect-Upperbound to derive ε′1 ∪ {x.g} <: ε3

iii. Γ ` ε2 <: ε3 by Subeffect-Def-1.
Let ε3 = ε′3 ∪ {x.g}. We have Γ ` x : {y ⇒ σ}, effect g = {ε}, and
Γ ` ε2 <: ε′3 ∪ [x/y]ε. By IH, we have Γ ` ε1 <: ε′3 ∪ [x/y]ε Then we can use
Subeffect-Def-1 again to derive Γ ` ε1 <: ε3

iv. Γ ` ε2 <: ε3 by Subeffect-Def-2.
The proof is identical to ii.

(b) Γ ` ε1 <: ε2 by Subeffect-Upperbound.
So we have ε1 = ε′1 ∪ {x.g}. Γ ` x : {y ⇒ σ}, effect g = {ε}, and Γ `
ε′1 ∪ [x/y]ε <: ε2. Using IH, we have Γ ` ε′1 ∪ [x/y]ε <: ε3. Using Suveffect-
Upperbound again, we have Γ ` ε1 <: ε3.

(c) Γ ` ε1 <: ε2 by Subeffect-Def-1.
Therefore we let ε2 = ε′2 ∪ {x.g}, Γ ` x : {y ⇒ σ}, and effect g = {ε} ∈ σ. By
premise of Subeffect-Def-1, we have Γ ` ε1 <: [x/y]ε ∪ ε′2. Since Γ ` ε2 <: ε3, we
have Γ ` ε′2 ∪ {x.g} <: ε3.

i. Γ ` ε′2 ∪ {x.g} <: ε3 by Subeffect-Subset
Then we have ε3 = ε′3 ∪ {x.g}, and ε′2 ⊆ ε′3. Therefore we have ε′2 ∪ [x/y]ε ⊆
ε′3 ∪ [x/y]ε. Therefore, Γ ` ε′2 ∪ [x/y]ε <: ε′3 ∪ [x/y]ε. By IH, we have
Γ ` ε1 <: ε′3 ∪ [x/y]ε. By Subeffect-Def-1 ,we have Γ ` ε1 <: ε′3 ∪ {x.g} = ε3

ii. Γ ` ε2 <: ε3 by Subeffect-Upperbound
Since the effect {x.g} is used by Subeffect-Def-1, it is not used by the rule
Subeffect-Upperbound. Let ε2 = ε′′2 ∪ {x.g} ∪ {z.h}. By Subeffect-Def-1, we
have Γ ` ε1 <: ε′′2 ∪ [x/y]ε ∪ {z.h}. By Subeffect-Upperbound, we have Γ `
z : {y′ ⇒ σ′}, effect h 6 ε′ ∈ σ′, and Γ ` ε′′2 ∪ {x.g} ∪ [z/y′]ε′ <: ε3.
By Lemma 16 and Γ ` ε1 <: ε′′2 ∪ [x/y]ε ∪ {z.h} , we have Γ ` ε1 <: ε′′2 ∪
[x.y]ε ∪ [z/y′]ε′. By Lemma 17 and Γ ` ε′′2 ∪ {x.g} ∪ [z/y′]ε′ <: ε3, we have
Γ ` ε′′2 ∪ [x/y]ε ∪ [z/y′]ε′ <: ε3. Therefore, we use IH to derive Γ ` ε1 <: ε3.

iii. Γ ` ε2 <: ε3 by Subeffect-Def-1
Therefore, let ε3 = ε′3 ∪ {z.h}, Γ ` z : {y ⇒ σ′}, and effect h = {ε′} ∈ σ′.
And we have Γ ` ε2 <: ε′3 ∪ {z.h}. By premise of Subeffect-Def-1, we have
Γ ` ε2 <: [z/y]ε′ ∪ ε′3. By IH, we have Γ ` ε1 <: [z/y]ε′ ∪ ε′3. Using Subeffect-
Def-1, we derive that Γ ` ε1 <: ε3.

iv. Γ ` ε2 <: ε3 by Subeffect-Def-2
This case is identical to c (ii)

(d) Γ ` ε1 <: ε2 by Subeffect-Def-2
This case is identical to (b)

(e) Γ ` ε1 <: ε2 by Subeffect-Lowerbound
This case is identical to (c)
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Lemma 19 (Substitution in types). If Γ, z : τ ` τ1 <: τ2 and Γ | Σ ` l : {} [l/z]τ , then
Γ ` [l/z]τ1 <: [l/z]τ2. Furthermore, if Γ, z : τ ` σ1 <: σ2 and Γ | Σ ` l : {} [l/z]τ , then
Γ ` [l/z]σ1 <: [l/z]σ2.

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ ` τ1 <: τ2 and
Γ, z : τ ` σ1 <: σ2. For a given derivation, we proceed by cases on the final typing rule used in
the derivation:

Case S-REFL1: τ1 = τ2, and the desired result is immediate.

Case S-TRANS: By inversion on S-TRANS, we get Γ, z : τ ` τ1 <: τ2 and Γ, z : τ ` τ2 <: τ3.
By the induction hypothesis, Γ ` [l/z]τ1 <: [l/z]τ2 and Γ ` [l/z]τ2 <: [l/z]τ3. Then, by
S-TRANS, Γ ` [l/z]τ1 <: [l/z]τ3.

Case S-PERM: τ1 = {x⇒ σi∈1..ni } and τ2 = {x⇒ σ′i∈1..ni }. Substitution preserves the permu-
tation relations, and thus, [l/z]{x⇒ σi∈1..ni } is a permutation of [l/z]{x⇒ σ′i∈1..ni }. Then, by
S-PERM, Γ ` [l/z]{x⇒ σi∈1..ni } <: [l/z]{x⇒ σ′i∈1..ni }.

Case S-WIDTH: τ1 = {x⇒ σi∈1..n+ki } and τ2 = {x⇒ σi∈1..ni }, and the desired result is
immediate.

Case S-DEPTH: τ1 = {x⇒ σi∈1..ni } and τ2 = {x⇒ σ′i∈1..ni }. By inversion on S-DEPTH,
we get ∀i, Γ, x : {x⇒ σi∈1..ni }, z : τ ` σi <: σ′i. By the induction hypothesis,
∀i, Γ, x : {x⇒ σi∈1..ni } ` [l/z]σi <: [l/z]σ′i. Then, by S-DEPTH,
Γ ` [l/z]{x⇒ σi∈1..ni } <: [l/z]{x⇒ σ′i∈1..ni }.

Case S-REFL2: σ1 = σ2, and the desired result is immediate.

Case S-DEF: σ1 = defm(x : τ1) : {ε1} τ2 and σ2 = defm(x : τ ′1) : {ε2} τ ′2. By inversion on
S-DEF, we get Γ, z : τ ` τ ′1 <: τ1, Γ, z : τ ` τ2 <: τ ′2, Γ, z : τ ` ε1 <: ε2. By the induction hy-
pothesis, Γ ` [l/z]τ ′1 <: [l/z]τ1 and Γ ` [l/z]τ2 <: [l/z]τ ′2. By lemma 20, Γ ` [l/z]ε1 <: [l/z]ε2.
Then, by S-DEF, Γ ` [l/z](defm(x : τ1) : {ε1} τ2) <: [l/z](defm(x : τ ′1) : {ε2} τ ′2).

Case S-EFFECT: σ1 = effect g = {ε} and σ2 = effect g, and the desired result is immediate.

Thus, substituting terms in types preserves the subtyping relationship.

Lemma 20 (Substitution in expressions and effects). If Γ, z : τ ′ | Σ ` e : {ε} τ and
Γ | Σ ` l : {} [l/z]τ ′, then Γ | Σ ` [l/z]e : {[l/z]ε} [l/z]τ .

And if Γ, z : τ ′ | Σ ` ε1 <: ε2 and Γ | Σ ` l : {}[l/z]τ , then Γ | Σ ` [l/z]ε1 <: [l/z]ε2.

And if Γ, z : τ ′ | Σ ` d : σ and Γ | Σ ` l : {} [l/z]τ ′, then Γ | Σ ` [l/z]d : [l/z]σ.
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Furthermore, if Γ, z : τ ′ | Σ ` ε wf , then Γ | Σ ` [l/z]ε wf

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ ′ | Σ ` e : {ε} τ ,
Γ, z : τ ′ | Σ ` d : σ, Γ, z : τ ′ | Σ ` ε1 <: ε1, and Γ, z : τ ′ | Σ ` εwf . For a given derivation, we
proceed by cases on the final typing rule used in the derivation:

Case T-VAR: e = x, and by inversion on T-VAR, we get x : τ ∈ (Γ, z : τ ′). There are two
subcases to consider, depending on whether x is z or another variable. If x = z, then [l/z]x = l
and τ = τ ′. The required result is then Γ | Σ ` l : {} [l/z]τ ′, which is among the assumptions of
the lemma. Otherwise, [l/z]x = x, and the desired result is immediate.

Case T-NEW: e = new(x⇒ d), and by inversion on T-NEW, we get
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ}, z : τ ′ | Σ ` di : σi. By the induc-
tion hypothesis, ∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ} | Σ ` [l/z]di : [l/z]σi.
Then, by T-NEW, Γ | Σ ` new(x⇒ [l/z]d) : {} {x⇒ [l/z]σ}, i.e.,
Γ | Σ ` [l/z](new(x⇒ d)) : {} [l/z]{x⇒ σ}.

Case T-METHOD: e = e1.m(e2), and by inversion on T-METHOD,
we get Γ, z : τ ′ | Σ ` e1 : {ε1} {x⇒ σ}; def m(y : τ2) : {ε3} τ1 ∈ σ;
Γ, z : τ ′ | Σ ` [e1/x][e2/y]ε3 wf ; and Γ, z : τ ′ | Σ ` e2 : {ε2} [e1/x]τ2.
By the induction hypothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε1} [l/z]{x⇒ σ},
def m(y : [l/z]τ2) : {[l/z]ε3} [l/z]τ1 ∈ [l/z]σ, Γ | Σ ` [l/z]([e1/x][e2/y]ε3) wf ,
and Γ | Σ ` [l/z]e2 : {[l/z]ε2} [l/z][e1/x]τ2. Then, by T-METHOD,
Γ | Σ ` [l/z]e1.m([l/z]e2) : {[l/z]ε1 ∪ [l/z]ε2 ∪ [l/z]([e1/x][e2/y]ε3)} [l/z]([e1/x][e2/y]τ1),
i.e., Γ | Σ ` [l/z](e1.m(e2)) : {[l/z](ε1 ∪ ε2 ∪ [e1/x][e2/y]ε3)} [l/z]([e1/x][e2/y]τ1).

Case T-FIELD: e = e1.f , and by inversion on T-FIELD, we get Γ, z : τ ′ | Σ ` e1 : {ε} {x⇒ σ}
and var f : τ ∈ σ. By the induction hypothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε} [l/z]{x ⇒ σ}
and var f : [l/z]τ ∈ [l/z]σ. Then, by T-FIELD, Γ | Σ ` ([l/z]e1).f : {[l/z]ε} [l/z]τ , i.e.,
Γ | Σ ` [l/z](e1.f) : {[l/z]ε} [l/z]τ .

Case T-ASSIGN: e = (e1.f = e2), and by inversion on T-ASSIGN, we get
Γ, z : τ ′ | Σ ` e1 : {ε1} {x⇒ σ}; var f : τ ∈ σ; and Γ, z : τ ′ | Σ ` e2 : {ε2} τ .
By the induction hypothesis, Γ | Σ ` [l/z]e1 : {[l/z]ε1} [l/z]{x⇒ σ};
var f : [l/z]τ ∈ [l/z]σ; and Γ | Σ ` [l/z]e2 : {[l/z]ε2} [l/z]τ . Then,
by T-ASSIGN, Γ | Σ ` [l/z]e1.f = [l/z]e2 : {[l/z]ε1 ∪ [l/z]ε2} [l/z]τ , i.e.,
Γ | Σ ` [l/z](e1.f = e2) : {[l/z](ε1 ∪ ε2)} [l/z]τ .

Case T-LOC: e = l, [l/z]l = l, and the desired result is immediate.

Case T-SUB: e = e1, and by inversion on T-Sub, we get Γ, z : τ ′ | Σ ` e1 :
{ε1}τ1, Γ, z : τ ′ | Σ ` τ1 <: τ2 and Γ, z : τ ′ | Σ ` ε1 <: ε2. By in-
duction hypothesis, we have Γ | Σ ` [l/z]e1 : {[l/z]ε1}[l/z]τ1, Γ | Σ ` [l/z]τ1 <: [l/z]τ2, and
Γ | Σ ` [l/z]ε1 <: [l/z]ε2. Then, by T-sub, Γ | Σ ` [l/z]e1 : {[l/z]ε2}[l/z]τ2
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Case DT-DEF: By inversion, we have Γ, z : τ, x : τ1 | Σ ` e : {ε′} τ2, Γ, z : τ, x : τ1 |
Σ ` ε wf , Γ, z : τ | Σ ` ε′ <: ε, By IH, we have Γ, x : [l/z]τ1 | Σ ` [l/z]e : {[l/z]ε′} [l/z]τ2,
Γ, x : [l/z]τ1 | Σ ` [l/z]ε wf , Γ | Σ ` [l/z]ε′ <: [l/z]ε. By DT-Def, we have
Γ | Σ ` defm(x : [l/z]τ1) : {[l/z]ε} [l/z]τ2 = [l/z]e : defm(x : [l/z]τ1) : {[l/z]ε} [l/z]τ2
Case DT-VAR: d = var f : τ = n, and by definition of n, there are two subcases:

Subcase n is x: In this case, d = var f : τ = x, and by inversion on DT-VAR, we get
Γ, z : τ ′ | Σ ` x : {} τ . There are two subcases to consider, depending on
whether x is z or another variable. If x = z, then by the induc-
tion hypothesis, Γ | Σ ` [l/z]x : {} [l/z]τ , which yields Γ | Σ ` l : {} [l/z]τ
and τ = τ ′, and thus, Γ | Σ ` var f : [l/z]τ = l : var f : [l/z]τ , i.e.,
Γ | Σ ` [l/z](var f : τ = l) : [l/z](var f : τ), as required. If
x 6= z, then Γ | Σ ` [l/z]x : {} [l/z]τ yields Γ | Σ ` x : {} [l/z]τ ,
and thus, Γ | Σ ` var f : [l/z]τ = x : var f : [l/z]τ , i.e.,
Γ | Σ ` [l/z](var f : τ = x) : [l/z](var f : τ), as required.

Subcase n is l: In this case, d = var f : τ = l, i.e., the field is resolved to a location l. This
is not affected by the substitution, and the desired result is immediate.

Case DT-EFFECT: By IH, we have Γ | Σ ` [l/z]ε wf . We use DT-Effect to derive
Γ | Σ ` effect g = {[l/z]ε} : effect g = {[l/z]ε}
Case SUBEFFECT-SUBSET: By inversion, we have ε1 ⊆ ε2. So [l/z]ε1 ⊆ [l/z]ε2. By Subeffect-
Subset, we have Γ | Σ ` [l/z]ε1 <: [l/z]ε2.
Case SUBEFFECT-UPPERBOUND: By inversion, we have ε1 = ε′1 ∪ {x.g},
Γ, z : τ | Σ ` x : {y ⇒ σ}, effect g 6 {ε} ∈ σ and Γ, z : τ | Σ ` ε′1 ∪ [x/y]ε <: ε2. By
IH, we have Γ | Σ ` [l/z]ε′1 ∪ [l/z][x/y]ε <: [l/z]ε2. Since y is a free variable, we select y such
that x 6= y and y 6= z. We case on if z = x:

1. If z 6= x, then we can swap the order of the substitutions on ε
Γ | Σ ` [l/z]ε′1 ∪ [x/y][l/z]ε <: [l/z]ε2. Using substitution lemma for
typing on Γ, z : τ | Σ ` x : {y ⇒ σ}, we have Γ | Σ ` x : {y ⇒ [l/z]σ},
effect g 6 [l/z]ε ∈ [l/z]σ. Using Subeffect-Upperbound, we have
Γ | Σ ` [l/z]ε′1 ∪ {x.g} <: [l/z]ε2, Which is equivalent to Γ | Σ ` [l/z]ε1 <: [l/z]ε2.

2. If z = x Then we have Γ | Σ ` [l/z]ε′1 ∪ [l/x, y]ε <: [l/z]ε2, Which is equiv-
alent to Γ | Σ ` [l/z]ε′1 ∪ [l/y][l/z]ε <: [l/z]ε2 We case on the derivation of
Γ, z : τ | Σ ` z : {y ⇒ σ}.

(a) (T-Var)

z : τ ∈ Γ, z : τ

Γ, z : τ | Σ ` z : τ

So τ = {y ⇒ σ}. By our assumption, we have Γ | Σ ` l : {y ⇒ [l/z]σ}. Since
effect g 6 ε ∈ σ, we have effect g 6 [l/z]ε ∈ [l/z]σ. Therefore, we can use
Subeffect-Upperbound on {l.g} to derive Γ | Σ ` [l/z]ε′1 ∪ {l.g} <: [l/z]ε2, Which
is equivalent to Γ | Σ ` [l/z]ε1 <: [l/z]ε2

(b) (T-Sub)
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Γ, z : τ | Σ ` z : τ1 Γ, z : τ | Σ ` τ1 <: {y ⇒ σ}
Γ, z : τ | Σ ` z : {y ⇒ σ}

Notice that we introduced a new type τ1 that z can be ascribed to. The judgment
Γ, z : τ | Σ ` z : τ1 can be derived by T-Sub, which introduce a new type τ2 such
that Γ, z : τ | Σ ` τ2 <: τ1, or T-Var, which shows τ1 = τ . Therefore if we
follow the derivation tree, we get a chain relation Γ, z : τ | Σ ` τ1 <: {y ⇒ σ},
Γ, z : τ | Σ ` τ2 <: τ1, . . . , Γ, z : τ | Σ ` τ <: τn. We can apply IH on
these judgments, so we have a chain Γ | Σ ` [l/z]τ1 <: {y ⇒ [l/z]σ}, Γ | Σ `
[l/z]τ2 <: [l/z]τ1 . . . , Γ | Σ ` [l/z]τ <: [l/z]τn. By transitivity of subtyping, we
have Γ | Σ ` [l/z]τ <: {y ⇒ [l/z]σ} So we have Γ | Σ ` l : {y ⇒ [l/z]σ} The rest
of the proof is similar to case (a).

Case SUBEFFECT-DEF-1: By inversion, we have ε2 = ε′2 ∪ {x.g}, Γ, z : τ | Σ ` x :
{y ⇒ σ}, effect g = {ε} ∈ σ, and Γ, z : τ | Σ ` ε1 <: ε′2 ∪ [x/y]ε. By IH, we have
Γ | Σ ` [l/z]ε1 <: [l/z]ε′2 ∪ [l/z][x/y]ε. Since y is a free variable, we can select y such that
y 6= x and y 6= z. We case on if x = z:

1. If z 6= x, then Γ | Σ ` [l/z]ε1 <: [l/z]ε′2∪[x/y][l/z]εBy substitution lemma for typing, we
have Γ | Σ ` x : {y ⇒ [l/z]σ}, effect g = [l/z]ε ∈ [l/z]σ. Using Subeffect-Def-1, we
have Γ | Σ ` [l/z]ε1 <: [l/z]ε′2 ∪ {x.g}, which is equivalent to Γ | Σ ` [l/z]ε1 <: [l/z]ε2

2. If z = x Then we have Γ | Σ ` [l/z]ε1 <: [l/z]ε′2 ∪ [l/x, y]ε, which is equivalent to
Γ | Σ ` [l/z]ε1 <: [l/z]ε′2 ∪ [l/y][l/z]ε
We case on the derivation of Γ, z : τ | Σ ` z : {y ⇒ σ}.

(a) (T-Var)

z : τ ∈ Γ, z : τ

Γ, z : τ | Σ ` z : τ

So τ = {y ⇒ σ}. By our assumption, we have Γ | Σ ` l : {y ⇒ [l/z]σ}. Since
effect g = {ε} ∈ σ, we have effect g = {[l/z]ε} ∈ [l/z]σ. Therefore, we can
use Subeffect-Def-1 on {l.g} to derive Γ | Σ ` [l/z]ε1 <: [l/z]ε′2 ∪ {l.g}, Which is
equivalent to Γ | Σ ` [l/z]ε1 <: [l/z]ε2

(b) (T-Sub)

Γ, z : τ | Σ ` z : τ1 Γ, z : τ | Σ ` τ1 <: {y ⇒ σ}
Γ, z : τ | Σ ` z : {y ⇒ σ}

Notice that we introduced a new type τ1 that z can be ascribed to. The judgment
Γ, z : τ | Σ ` z : τ1 can be derived by T-Sub, which introduce a new type τ2
such that Γ, z : τ | Σ ` τ2 <: τ1, or T-Var, which shows τ1 = τ . Therefore if we
follow the derivation tree, we get a chain relation Γ, z : τ | Σ ` τ1 <: {y ⇒ σ},
Γ, z : τ | Σ ` τ2 <: τ1, . . . , Γ, z : τ | Σ ` τ <: τn. We can apply IH on
these judgments, so we have a chain Γ | Σ ` [l/z]τ1 <: {y ⇒ [l/z]σ}, Γ | Σ `

67



[l/z]τ2 <: [l/z]τ1, . . . , Γ | Σ ` [l/z]τ <: [l/z]τn. By transitivity of subtyping, we
have Γ | Σ ` [l/z]τ <: {y ⇒ [l/z]σ}. So we have Γ | Σ ` l : {y ⇒ [l/z]σ}. The
rest of the proof is similar to case (a).

Case SUBEFFECT-DEF-2: This case is identical to Case SUBEFFECT-UPPERBOUND

Case SUBEFFECT-LOWERBOUND: This case is identical to Case SUBEFFECT-DEF-1
Case WF-EFFECT:Let ni.gj ∈ ε be arbitrary. By inversion, we have Γ, z : τ | Σ ` ni : {}{yi ⇒
σi}. and the effect declaration of gj is in σi. By IH, we have Γ | Σ ` [l/z]ni : {}{yi ⇒ [l/z]σi}
and the effect declaration of gj is in σi. So we have [l/z]ε wf by WF-Effect.

Thus, substituting terms in a well-typed expression preserves the typing.

B.2 Proof of Theorem 4 (Preservation)
If Γ | Σ ` e : {ε} τ , µ : Σ, and 〈e | µ〉 −→ 〈e′ | µ′〉, then ∃Σ′ ⊇ Σ, µ′ : Σ′, ∃ε′, such that Γ `
ε′ <: ε, and Γ | Σ′ ` e′ : {ε′} τ .

Proof. The proof is by induction on a derivation of Γ | Σ ` e : {ε} τ . At each step of the
induction, we assume that the desired property holds for all subderivations and proceed by case
analysis on the final rule in the derivation. Since we assumed 〈e | µ〉 −→ 〈e′ | µ′〉 and there
are no evaluation rules corresponding to variables or locations, the cases when e is a variable
(T-VAR) or a location (T-LOC) cannot arise. For the other cases, we argue as follows:

Case T-NEW: e = new(x⇒ d), and by inversion on T-NEW, we get
∀i, di ∈ d, σi ∈ σ, Γ, x : {x⇒ σ} | Σ ` di : σi. The store changes from µ to
µ′ = µ, l 7→ {x⇒ d}, i.e., the new store is the old store augmented with a new mapping
for the location l, which was not in the old store (l 6∈ dom(µ)). From the premise of the theorem,
we know that µ : Σ, and by the induction hypothesis, all expressions of Γ are properly allocated
in Σ. Then, by T-STORE, we have µ, l 7→ {x ⇒ d} : Σ, l : {x ⇒ σ}, which implies that
Σ′ = Σ, l : {x ⇒ σ}. Finally, by T-LOC, Γ | Σ ` l : {} {x ⇒ σ}, and ε′ = ∅ = ε. Thus, the
right-hand side is well typed.

Case T-METHOD: e = e1.m(e2), and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and
〈e2 | µ〉 −→ 〈e′2 | µ′〉. Then, the result follows from the induction hypothesis and T-METHOD.

Subcase E-METHOD: In this case, both e1 and e2 are values, namely, locations l1 and
l2 respectively. Then, by inversion on T-METHOD, we get that Γ | Σ ` e1 : {ε1} {x⇒ σ},
def m(y : τ2) : {ε3} τ1 ∈ σ, Γ | Σ ` [e1/x][e2/y]ε3 wf , Γ | Σ ` e2 : {ε2} [e1/x]τ2, and
ε = ε1 ∪ ε2 ∪ [e1/x][e2/y]ε3. The store µ does not change, and since
T-STORE has been applied throughout, the store is well typed, and thus,
Γ | Σ ` defm(x : τ1) : {ε} τ2 = e : defm(x : τ1) : {ε} τ2. Then, by in-
version on DT-DEF, we know that Γ, x : τ1 | Σ ` e : {ε′} τ2 and
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Γ, x : τ1 | Σ ` ε′ <: ε. Finally, by the subsumption lemma, substituting locations for
variables in e preserves its type, and therefore, the right-hand side is well typed.

Case T-FIELD: e = e1.f , and by the definition of the evaluation relation, there are two subcases:
Subcase E-CONGRUENCE: In this case, 〈e1 | µ〉 −→ 〈e′1 | µ′〉, and the result follows from

the induction hypothesis and T-FIELD.
Subcase E-FIELD: In this case, e1 is a value, i.e., a location l. Then, by inversion on

T-FIELD, we have Γ | Σ ` l : {ε} {x ⇒ σ}, where ε = ∅, and var f : τ ∈ σ. The store
µ does not change, and since T-STORE has been applied throughout, the store is well typed,
and thus, Γ | Σ ` var f : τ = l1 : var f : τ . Then, by inversion on DT-VARL, we know that
Γ | Σ ` l1 : {} τ and ε′ = ∅ = ε, and the right-hand side is well typed.

Case T-ASSIGN: e = (e1.f = e2), and by the definition of the evaluation relation, there are two
subcases:

Subcase E-CONGRUENCE: In this case, either 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and
〈e2 | µ〉 −→ 〈e′2 | µ′〉. Then, the result follows from the induction hypothesis and T-ASSIGN.

Subcase E-ASSIGN: In this case, both e1 and e2 are values, namely locations l1 and
l2 respectively. Then, by inversion on T-ASSIGN, we get that Γ | Σ ` l1 : {ε1} {x⇒ σ},
var f : τ ∈ σ, Γ | Σ ` l2 : {ε2} τ , and ε = ε1 = ε2 = ∅. The store changes as follows:
µ′ = [l1 7→ {x⇒ d

′}/l1 7→ {x⇒ d}]µ, where d
′

= [var f : τ = l2/var f : τ = l]d.
However, since T-STORE has been applied throughout and the substituted location has the
type expected by T-STORE, the new store is well typed (as well as the old store), and thus,
Γ | Σ ` var f : τ = l2 : var f : τ . Then, by inversion on DT-VARL, we know that
Γ | Σ ` l2 : {} τ and ε′ = ∅, and the right-hand side is well typed.

Case T-SUB: The result follows directly from the induction hypothesis.

Thus, the program written in this language is always well typed.

B.3 Proof of Theorem 5 (Progress)
If ∅ | Σ ` e : {ε} τ (i.e., e is a closed, well-typed expression), then either

1. e is a value (i.e., a location) or

2. ∀µ such that µ : Σ, ∃e′, µ′ such that 〈e | µ〉 −→ 〈e′ | µ′〉.

Proof. The proof is by induction on the derivation of Γ | Σ ` e : {ε} τ , with a case analysis
on the last typing rule used. The case when e is a variable (T-VAR) cannot occur, and the case
when e is a location (T-LOC) is immediate, since in that case e is a value. For the other cases,
we argue as follows:

Case T-NEW: e = new(x ⇒ d), and by E-NEW, e can make a step of evaluation if the new

expression is closed and there is a location available that is not in the current store µ. From the
premise of the theorem, we know that the expression is closed, and there are infinitely many
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available new locations, and therefore, e indeed can take a step and become a value (i.e., a
location l). Then, the new store µ′ is µ, l 7→ {x ⇒ d}, and all the declarations in d are mapped
in the new store.

Case T-METHOD: e = e1.m(e2), and by the induction hypothesis applied to
Γ | Σ ` e1 : {ε1} {x⇒ σ}, either e1 is a value or else it can make a step of evaluation,
and, similarly, by the induction hypothesis applied to Γ | Σ ` e2 : {ε2} [e1/x]τ2, either e2 is a
value or else it can make a step of evaluation. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take
a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and
l2 respectively, then by inversion on T-METHOD, we have Γ | Σ ` l1 : {ε1} {x⇒ σ} and
def m(y : τ2) : {ε3} τ1 ∈ σ. By inversion on T-LOC, we know that the store contains an
appropriate mapping for the location l1, and since T-STORE has been applied throughout, the
store is well typed and l1 7→ {x⇒ d} ∈ µ with defm(y : τ1) : {ε3} τ2 = e ∈ d. Therefore, the
rule E-METHOD applies to e, e can take a step, and µ′ = µ.

Case T-FIELD: e = e1.f , and by the induction hypothesis, either e1 can make a step of evaluation
or it is a value. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉: If e1 can take a step, then rule E-CONGRUENCE applies to e,
and e can take a step.

Subcase e1 is a value: If e1 is a value, i.e., a location l, then by inversion on T-FIELD, we have
Γ | Σ ` l : {ε} {x⇒ σ} and var f : τ ∈ σ. By inversion on T-LOC, we know that the store
contains an appropriate mapping for the location l, and since T-STORE has been applied
throughout, the store is well typed and l 7→ {x ⇒ d} ∈ µ with var f : τ = l1 ∈ d. Therefore,
the rule E-FIELD applies to e, e can take a step, and µ′ = µ.

Case T-ASSIGN: e = (e1.f = e2), and by the induction hypothesis, either e1 is a value or else it
can make a step of evaluation, and likewise e2. Then, there are two subcases:

Subcase 〈e1 | µ〉 −→ 〈e′1 | µ′〉 or e1 is a value and 〈e2 | µ〉 −→ 〈e′2 | µ′〉: If e1 can take a step
or if e1 is a value and e2 can take a step, then rule E-CONGRUENCE applies to e, and e can take
a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, i.e., they are locations l1 and
l2 respectively, then by inversion on T-ASSIGN, we have Γ | Σ ` l1 : {ε1} {x ⇒ σ},
var f : τ ∈ σ, and Γ | Σ ` l2 : {ε2} τ . By inversion on T-LOC, we know that the store
contains an appropriate mapping for the locations l1 and l2, and since T-STORE has been applied
throughout, the store is well typed and l1 7→ {x ⇒ d} ∈ µ with var f : τ = l ∈ d. A new
well-typed store can be created as follows: µ′ = [l1 7→ {x ⇒ d

′}/l1 7→ {x ⇒ d}]µ, where
d
′

= [var f : τ = l2/var f : τ = l]d. Then, the rule E-ASSIGN applies to e, and e can take a
step.

Case T-SUB: The result follows directly from the induction hypothesis.
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Thus, the program written in this language never gets stuck.
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Appendix C

Type Safety Theorems for Algebraic
Effects and Handlers

C.1 Lemmas
Lemma 21. (Substitution)
If Γ, xj : τ ′ ` ci : σ and Γ ` ej : τ ′, then Γ ` {ej/xj}ci : σ, and
If Γ, xj : τ ′ ` ei : τ and Γ ` ej : τ ′, then Γ ` {ej/xj}ei : τ

Proof. By rule induction on Γ ` e : τ and Γ ` c : σ

(T-Unit) Trivial
(T-Var) Trivial
(T-Lam)

Γ, xj : τ ′, xi : τ ` ci : σ

Γ, xj : τ ′ ` (λxi : τ. ci) : τ → σ
(T-LAM)

By IH, we have Γ, xi : τ ` {ej/xj}ci : σ
Then by (T-Lam) we have Γ ` (λxi : τ. {ej/xj}ci) : σ.
Which is equivalent to Γ ` {ej/xj}(λxi : τ. ci) : σ.

(T-EmbedExp) By inversion and IH
(T-Ret) Follows by induction hypothesis
(T-Op)

Σ(op) = τA → τB Γ ` ei : τA Γ.yi : τB ` ci : {ε}τ op ∈ ∆i(ε)

Γ ` op(ei; yi.ci) : {ε}τ (T-OP)

By inversion we have Γ, xj : τ ′ ` ei : τA and Γ, xj : τ ′, yi : τB ` ci : {ε}τ .
Since we can make yi a fresh variable, we have Γ, yi : τB, xj : τ ′ ` ci : {ε}τ .
Then by IH we have Γ ` {ej/xj}ei : τA and Γ, yi : τB ` {ej/xj}ci : {ε}τ .
By (T-Op) we have Γ ` op({ej/xj}ei; yi.{ej/xj}ci) : {ε}τ
Therefore we have Γ ` {ej/xj}(op(ei; yi.ci)) : {ε}τ
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(T-Seq)
Γ, xj : τ ′′ ` ci : {ε}τ Γ, xj : τ ′′, xi : τ ` c′i : {ε}τ ′

Γ, xj : τ ′′ ` do xi ← ci in c′i : {ε}τ ′ (T-SEQ)

By IH, we have Γ ` {ej/xj}ci : {ε}τ
Since we can choose xi as a fresh variable, we have Γ, xi : τ, xj : τ ′′ ` c′i : {ε}τ ′
Then by IH we have Γ, xi : τ ` {ej/xj}c′i : {ε}τ ′
Then the result follows by (T-Seq)

(T-App) Follows directly by applying IH.
(T-Handle)

hi = { return x 7→ cr, op1(x; k) 7→ c1, . . . , opn(x; k) 7→ cn}
Γ, xj : τ ′, x : τA ` cr : {ε′}τB{

Σ(opi) = τi → τ ′i Γ, xj : τ ′, x : τi, k : τ ′i → {ε′}τB ` ci : {ε′}τB
}
1≤i≤n

Γ, xj : τ ′ ` ci : {ε}τA ε \ {opi}1≤i≤n ⊆ ε′

Γ, xj : τ ′ ` with hi handle ci : {ε′}τB
(T-HANDLE)

Then handling clauses bind variables x and k in the handling computation ci, so we can
make them fresh variables that do not appear in context Γ. Then we can apply IH to typing
judgements in the premise.

(T-Embed) Follows by applying IH
(T-EmbedOp) The proof is similar to the case for (T-Op)

Lemma 22. If Γ ` ci : {ε}τ then ∆i(ε) = ε

Proof. By induction on derivation of Γ ` c : σ. (T-Ret) has a premise the ensures the lemma is
correct. For other rules, the result is immediate by applying IH.

Lemma 23. If ε ≤l ε′, then ε \ op ≤l ε′ \ op

Proof. By induction on ε ≤l ε. The proof is straightforward.

Lemma 24. If op ≤l ε, then op ≤l ε \ op′

Proof. By induction on the derivation of ε ≤l ε. If (R-Eff1) is used, then the proof is straightfor-
ward because the subset relation on the premise still holds. If (R-Eff2) is used, by inversion on
(R-Eff2), we have op ≤l ε′ and ε′ ≤l′ ε. By IH we have op ≤l ε′ \ op′. By lemma 23 we have
ε′ \ op′ ≤l′ ε \ op′. Then the result follows by (R-Eff2)

Lemma 25. If τ ≤l τ ′ then τ ′ ≤rev(l) τ

Proof. By induction on the type relation rules. The proof consists of simple arguments that
follow directly from IH.
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C.2 Preservation
Proof of lemma 6 (Preservation for expressions)

For all agent i, If Γ ` ei : τ and ei 7→ e′i, then Γ ` e′i : τ .

Proof. By induction on derivation of ei 7→ e′i

(E-Congruence) By inversion on the typing rule for embedded expressions, we have Γ `
ej : τ ′. By IH, we have Γ ` e′j : τ ′. Then we use (E-Contruence) to derive Γ ` [e′j]

τ
j : τ

(E-Unit) Follows immediately from (T-Unit)
(E-Lambda) By inversion on (T-Embed), we have Γ ` λxj : τ ′. cj : τ ′ → σ′, where
τ ′ → σ′ ≤ji τ → σ.
By inversion on (R-Arrow), we have τ ′ ≤ji τ and σ′ ≤ji σ
By inversion on (T-Lambda), we have Γ, xj : τ ′ ` cj : σ′. And since xi is a fresh variable
in cj , we have Γ, xi : τ, xj : τ ′ ` cj : σ′

By lemma 25, we have τ ≤ij τ ′, and therefore Γ, xi : τ ` [xi]
τ ′
i : τ ′

Then we can use the substitution lemma to derive Γ, xi : τ ` {[xi]τ
′
i /xj}cj : σ′.

Then by (T-Embed), we have Γ, xi : τ ` [{[xi]τ
′
i /xj}cj]σj : σ

Then the result follows by (T-Lambda).

Proof of lemma 7 (Preservation for computations)

If Γ ` ci : {ε}τ and ci −→ c′i, then Γ ` c′i : {ε}τ

Proof. (Sketch) By induction on the derivation that ci −→ c′i. We proceed by the cases on the
last step of the derivation.

1. E-Ret: By inversion, Γ ` ei : τ . By preservation of expressions and IH, we have Γ ` e′i : τ .
Then we can use E-Ret to derive Γ ` c′i : {ε}τ

2. E-Op: Follow immediately from inversion and IH
3. E-EmbedOp1: Follow immediately from inversion and IH
4. E-EmbedOp2:

∆i(ε) = ε′′

[opj]
ε
l (vi; yi.ci) −→ [opj]

ε′′

l (vi; yi.ci)
(E-EMBEDOP2)

We have the typing rule as follows:

Σ(op) = τA → τB Γ ` ei : τA Γ.yi : τB ` ci : {ε′}τ ∆i(ε) ⊆ ∆i(ε
′) Γ ` op ≤li ε

Γ ` [op]εl (ei; yi.ci) : {∆i(ε
′)}τ

Since ∆i(ε
′′) = ε′′ and ε′′ = ∆i(ε), we have ∆i(ε

′′) ⊆ ∆i(ε
′). Then we can use T-

EmbedOp to derive Γ ` [op]ε
′′

l (ei; yi.ci) : {∆i(ε
′)}τ
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5. E-EmbedOp3: We have the typing rule as follows:

Σ(op) = τA → τB Γ ` ei : τA Γ.yi : τB ` ci : {ε′}τ ∆i(ε) ⊆ ∆i(ε
′) Γ ` op ≤li ε

Γ ` [op]εl (ei; yi.ci) : {∆i(ε
′)}τ

By E-EmbedOp3, op ∈ ∆i(ε). So op ∈ ∆i(ε
′). By inversion on the typing rule, we have

Γ, yi : τB ` ci : {ε′}τ . By lemma 22, we have Γ, yi : τB ` ci : {∆i(ε
′)}τ . Then we can

use T-Op to derive the designed result Γ ` op(ei; yi.ci) : {∆i(ε
′)}τ

6. E-EmbedOp4: We have the typing rule as follows:

Σ(op) = τA → τB Γ ` ei : τA Γ.yi : τB ` ci : {ε′}τ ∆i(ε) ⊆ ∆i(ε
′) Γ ` op ≤li ε

Γ ` [op]εl (ei; yi.ci) : {∆i(ε
′)}τ

By lemma 24, we have op ≤li ε \ op′. By inversion on the typing rule, we have Γ, yi :
τB ` ci : {ε′}τ and ε ⊆ ∆i(ε

′). So ε \ op′ ⊆ ∆i(ε
′). By lemma 22, we have Γ, yi : τB `

ci : {∆i(ε
′)}τ . Then we can apply T-EmbedOp again to derive Γ ` [op]

ε\op′
l (ei; yi.ci) :

{∆i(ε
′)}τ

7. E-App1: Follows immediately by T-App
8. E-App2: Follows immediately by T-App
9. E-App3: By inversion of T-App, we Γ ` (λxi : τ. ci) : τ → σ, Γ ` vi : τ . By inversion of

T-Lam, Γ, xi : τ ` ci : σ. By substitution lemma, we have Γ ` {vi/xi}ci : σ.
10. E-Seq1: Follows immediately by T-Seq and IH.
11. E-Seq2: By inversion on T-Seq, we have Γ ` return vi : {ε}τ and Γ, xi : τ ` c′i :
{ε}τ ′. By inversion on T-Ret, we have Γ ` vi : τ . Then by substitution lemma we have
Γ ` {vi/x}c′i : {ε}τ ′.

12. E-Seq3:

do x← opi(vi; yi.ci)in c′i −→ opi(vi; yi. do x← ci in c′i)
(E-SEQ3)

By inversion of T-Seq, we have Γ ` opi(vi; yi.ci) : {ε}τ and Γ, x : τ ` c′i : {ε}τ ′. By
inversion on T-OP, we have Γ, yi : τB ` ci : {ε}τ and op ∈ ε and Γ ` vi : τA. Then by
T-Seq, we have Γ, yi : τB ` do x ← ci in c′i : {ε}τ ′. Then we can use T-Op to derive
Γ ` opi(vi; yi. do x← ci in c′i) : {ε}τ ′.

13. E-Seq4

∆i(ε) = ε op 6∈ ε
do x← [opj]

ε
l (vi; yi.ci)in c

′
i −→ [opj]

ε
l (vi; yi. do x← ci in c′i)

(E-SEQ4)

Γ ` ci : {ε′}τ Γ, xi : τ ` c′i : {ε′}τ ′

Γ ` do xi ← ci in c′i : {ε′}τ ′ (T-SEQ)

By inversion on T-Seq, we have Γ ` [opj]
ε
l (vi; yi.ci) : {ε′}τ and Γ, x : τ ` c′i : {ε′}τ ′.

Then by inversion on T-EmbedOp, we have Γ, yi : τB ` ci : {ε′}τ , ∆i(ε) ⊆ ε′. Then by
T-Seq, we have Γ, yi : τB ` do x ← ci in c′i : {ε′}τ ′. Then by T-EmbedOp, we have
Γ ` [op]εl (vi; yi. do x← ci in c′i) : {ε′}τ ′
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14. E-Handle1: Follows immediately by inversion on T-Handle and IH
15. E-Handle2: By T-Handle, we have Γ ` with hi handle return vi : {ε′}τB. By

inversion on T-Handle, we have Γ, xi : τA ` c′i : {ε}τB, and Γ ` return vi : {ε}τA.
By inversion on T-Ret, we have Γ ` vi : τA. Then by substitution lemma, we have
Γ ` {vi/xi}c′i : {ε′}τB.

16. E-Handle3

op(xi; k) 7→ c′i ∈ hi Σ(op) = τi → τ ′i
with hi handle op(v;yi.ci) −→ {vi/xi}{(λyi : τ ′i . with hi handle ci)/k}c′i

By T-Handle, we have Γ ` with hi handle op(v; yi.ci) : {ε′}τB. By inversion on
T-Handle, we have Γ, xi : τi, k : τ ′i → {ε′}τB ` c′i : {ε′}τB, and Γ ` op(v; yi.ci) : {ε}τA.
By inversion on T-Op, we have Γ ` vi : τi and Γ, yi : τ ′i ` ci : {ε}τA. By T-Handle,
we have Γ, yi : τ ′i ` with hi handle ci : {ε′}τB. Then by T-Lam, we have Γ `
λyi : τ ′i . with hi handle ci : τ ′i → {ε′}τB. Then, by substitution lemma, we have
Γ ` {vi/xi}{(λyi : τ ′i . with hi handle ci)/k}c′i : {ε′}τB.

17. E-Handle4:

∆i(ε) = ε op 6∈ ε
with hi handle [op]εl (vi, yi.ci) −→ [op]εl (vi; yi. with hi handle ci))

(E-HANDLE4)

hi = { return x 7→ cr, op1(x; k) 7→ c1, . . . , opn(x; k) 7→ cn}
Γ, x : τA ` cr : {ε′}τB{

Σ(opi) = τi → τ ′i Γ, x : τi, k : τ ′i → {ε′}τB ` ci : {ε′}τB
}
1≤i≤n

Γ ` ci : {ε′′}τA ε′′ \ {opi}1≤i≤n ⊆ ε′

Γ ` with hi handle ci : {ε′}τB
(T-HANDLE)

By T-Handle, we have Γ ` with hi handle [op]εl (v; yi.ci) : {ε′}τB. By inversion on
T-Handle, we have Γ ` [op]εl (v; yi.ci) : {ε′′}τA and ε′′ \ {opi} ⊆ ε′. By inversion on
T-EmbedOp, we have Γ ` vi : τi, Γ, yi : τ ′i ` ci : {ε′′}τA and ε ⊆ ε′′. Since ε doesn’t
contain any concrete operation, we have ε ⊆ ε′′ \ {opi} ⊆ ε′. Then by T-Handle, we
have Γ, yi : τ ′i ` with hi handle ci : {ε′}τB. Then, we use T-EmbedOp to derive
Γ ` [op]εl (vi; yi. with hi handle ci) : {ε′}τB

18. E-Embed1: Follows immediately from Inversion and IH
19. E-Embed2: By typing rule, we have Γ ` [ return vj]

{ε}τ
l : {ε}τ . By inversion on the

typing rule, we have Γ ` return vj : {ε′}τ ′ such that {ε}τ ′ ≤li {ε}τ . By inversion on
R-Sigma, we have τ ′ ≤li τ . Then by T-EmbedExp, we have Γ ` [vj]

τ
l : τ . Then by T-Ret,

we have Γ ` return [vj]
τ
l : {ε}τ . Γ ` [ return vj]

{ε}τ
l : {ε}τ

20. E-Embed3:

Σ(op) = τA → τB

[op(vj; yj.cj)]
{ε}τ
l −→ [op]εl ([vj]

τA
j ; yi.{[yi]τBi /yj}[cj]

{ε}τ
l )

(E-EMBED3)
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By typing rule, we have Γ ` op(vj; yj.cj) : {ε′}τ ′, where {ε′}τ ′ ≤li {ε}τ . By inversion on
T-Op, we have Γ ` vj : τA, and Γ, yj : τB ` cj : {ε′}τ ′. Then, by T-EmbedExp, we have
Γ ` [vj]

τA
j : τA. By substitution lemma, we have Γ, yi : τB ` {[yi]τBi /yj}cj : {ε′}τ ′. By

T-Embed, we have Γ, yi : τB ` {[yi]τBi /yj}[cj]
{ε}τ
l : {ε}τ . Then we can use T-EmbedOp

to derive Γ ` [op]εl ([vj]
τA
j ; yi.{[yi]τBi /yj}[cj]

{ε}τ
l ) : {ε}τ .

21. E-Embed4:

Σ(opk) = τA → τB ∆j(ε
′) = ε′ op 6∈ ε′

[[opk]
ε′

l′ (vj; yj.cj)]
{ε}τ
l −→ [opk]

ε
l′jl([vj]

τA
j ; yi.{[yi]τBi /yj}[cj]

{ε}τ
l )

(E-EMBED4)

By typing rule, we have Γ ` [opK ]ε
′

l′ (vj; yj.cj) : {ε′′}τ ′′, where {ε′′}τ ′′ ≤li {ε}τ . By
inversion on T-EmbedOp, we have Γ ` vj : τA and Γ, yj : τB ` cj : {ε′′}τ ′′. Then, by
T-EmbedExp, we have Γ ` [vj]

τA
j : τA. By substitution lemma, we have Γ, yi : τB `

{[yi]τBi /yj}cj : {ε′′}τ ′′. By T-Embed, we have Γ, yi : τB ` {[yi]τBi /yj}[cj]
{ε}τ
l : {ε}τ .

Then we use T-EmbedOp to derive Γ ` [opk]
ε
l′jl([vj]

τA
j ; yi.{[yi]τBi /yj}[cj]

{ε}τ
l ) : {ε}τ .

C.3 Progress
Proof of lemma 8 (Progress for expressions)

For agent i, if ∅ ` ei : τ then either ei = vi or ei −→ e′i.

Proof. By induction on structure of ei.

Case ei = (): ei is already a value.
Case ei = λx : τ.c : ei is already a value.
Case ei = [ej]

τ
j : By IH, either ej is a j-value, or ej −→ e′j . If ej −→ e′j , then by (E-

Congruence), [ej]
τ
j −→ [e′j]

τ
j . If ej is a value, then it is either () or λxj : τ ′.cj . So ei can be

evaluated by (E-Unit) and (E-Lambda) correspondingly.

Proof of lemma 9 (Progress for computation)

If ∅ ` ci : {ε}τ then either
1. ci −→ c′i

2. ci = return vi

3. ci = op(vi; yi.c
′
i)

4. ci = [op]εl (vi; yi.c
′
i) and op 6∈ ε

Proof. By induction on structure of ci.

Case ci = return ei : Immediate by applying IH on ei.
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Case ci = op(ei, yi.c
′
i) : Immediate by applying IH on ei.

Case ci = [cj]
σ
j : By IH on cj , cj can either evaluates to another computation, or be a return

statement, an operation call, or an embedded operation call. Then we can apply (E-Embed)
rules to evaluate ci accordingly.
Case ci = [op]εl (ei, yi.c

′
i) : Follows directly by applying IH on ei.

Case ci = ei e
′
i : If ei or e′i are not values, then (E-App1) or (E-App2) can be applied to ci.

Otherwise, (E-App3) could be applied.
Case ci = do x← c′i in c

′′
i : Follows directly from applying IH on c′i.

Case ci = with h1 handle c′i : Follows directly from applying IH on c′i.
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