
Personalized Knowledge Base Construction
via Natural Language Instructions

Nghia T. Le

CMU-CS-20-123
AUGUST 2020

Computer Science Department
School of Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Matt Gormley (Advisor)

Tom Mitchell

Submitted to Carnegie Mellon University in partial fulfillment of the
requirements for the degree of Master of Science in Computer Science

Keywords: Personalized Knowledge Base, Learning from Instructions, Information Extrac-
tion, Transformer Encoder-Decoder

Abstract
We consider the problem of constructing personalized symbolic knowledge base

(KB) through natural language instructions. This problem presents several chal-
lenges, including (1) integrating symbolic knowledge from the evolving KB with
user utterances to produce the appropriate KB modification commands, and (2) han-
dling open domain utterances that may, e.g., introduce new entities at test time. We
design alternative neural network encoder-decoder models that combine the unstruc-
tured context from the utterance with the structured context from the KB. Empirical
results and analysis show that our models are able to construct the knowledge bases
from user utterances with high accuracy. We also contribute an evaluation dataset,
and perform detailed analysis that reveals interesting properties when applying neu-
ral models on this task.

iv

Contents

1 Introduction 1

2 User-Instructed Knowledge Bases Construction 3
2.1 Task Definition . 3
2.2 Directed Knowledge Graph . 4
2.3 Target Command . 4
2.4 Execution Engine . 5
2.5 TextWorldsKB Dataset . 5

2.5.1 Overall . 5
2.5.2 Single story vs. multiple stories . 7
2.5.3 Dataset Analysis . 8

3 Dynamic KG Transformer Networks 11
3.1 Base Transformer Architecture . 11
3.2 Mention Embedding . 12
3.3 Entity Embedding . 12
3.4 Entity-aware Decoder . 13
3.5 Entity Linking . 15
3.6 Candidate Entities . 15

4 Experiments and Analysis 17
4.1 Experimental Setup . 17
4.2 Results . 18
4.3 Analysis and Discussion . 19

4.3.1 Error Analysis . 19
4.3.2 Effect of k in Multi-utterances . 22
4.3.3 Ablation Studies . 23

5 Related Work 25

6 Conclusion and Future Work 27

Bibliography 29

v

vi

Chapter 1

Introduction

Users of current personal devices are able to interact with AI assistants (e.g., Siri, Alexa) in
a limited capacity, often by querying pre-programmed commands (e.g. ”What is the weather
like today?”). These devices, however, do not allow users to teach their assistants personalized
concepts. If AI assistants could be taught such knowledge, it would open the possibility of
automated assistants that can cater to each user’s unique needs.

While there is a growing research interest in learning from instructions [12, 13], there has
been little effort in constructing personalized knowledge bases (KB) from user instructions. Per-
sonalized KBs would allow users to inspect their taught knowledge via visualization, as well
as assist in downstream tasks such question answering, email classification, or commonsense
reasoning [1]. At the same time, current automatic KB construction efforts mainly focus on
extracting information from large text corpora like the Web [2, 5].

andrew_
wilkins

PhdStudent lucy_
mack

Professor

Second-
year

year

generalization
advise

generalization Create a second-year PhD student
named Andrew Wilkins

Andrew studies in the music
department

He is advised by
Professor Mack

music

department

User’s instructions KB

Figure 1.1: User’s personal KB (represented as a Knowledge Graph) is constructed from user’s
instructions

This work lies between learning from instructions and automatic KB construction: we aim to
construct a personalized KB from natural language instructions (Figure 1.1). We hypothesize that
on-the-fly KBs constructed through interactions with the user will provide an additional source
of structured context to aid in processing the unstructured natural language utterances from the

1

Chapter 1: Introduction

user. This problem combines a unique set of challenges, including extracting relevant entities
and relations from the user instructions, linking them to the symbolic KB, and executing the
information to evolve the KB.

We propose several neural models that can effectively learn to map user instructions to a
set of commands executable on the KB, therefore continuously populating the KB with person-
alized information as the user interacts with the system. Evaluations on a synthetic dataset of
natural language instructions show that our models can construct the personalized KB with high
accuracy, while our analysis reveals interesting properties when building neural models for this
task.

In summary, our contributions include:
• Introducing the task of user-instructed KB construction, with a supporting dataset
• A neural system incorporating the symbolic, evolving KB that performs effectively on the

proposed task and dataset
• Analysis that shows strengths, weaknesses, and interesting properties of the proposed task

and system

2

Chapter 2

User-Instructed Knowledge Bases
Construction

2.1 Task Definition
In the user-instructed KB construction setting, the system is given a sequence of natural language
utterances and an initial personal KB from the user. The goal is to extract relevant information
from these utterances in order to construct and modify the user’s personal KB. For example,
from the utterance ”Create a second-year PhD Student named Andrew Wilkins”, we create a
new entity called andrew wilkins, set its category to PhdStudent, and set its year to
second year (Figure 1.1). Formally, given a sequence of T utterances u1, u2, ..., uT and an
initial KB0, we want to learn a function f that sequentially constructs KBi from KBi−1 and
utterance ui:

KBi = f(KBi−1, ui) ∀1 ≤ i ≤ T (2.1)

KB Construction as Sequence Generation Instead of learning f (eq. 2.1) directly, we adopt
the sequence generation approach for information extraction [3] by mapping utterance ui to an
executable target sequence called command, denoted ci, via function fgenerate. This command is
then executed on KBi−1 using an execution engine fexecute to produce KBi:

KBi = f(KBi−1, ui)

= fexecute(KBi−1, ci)

= fexecute(KBi−1, fgenerate(ui))

The design of fexecute is tightly coupled with the format of ci and the KB (e.g. if the KB is a
SQL database and ci is a SQL query, then fexecute will be a SQL executor). In this work, we treat
the KB as a Knowledge Graph (KG), where each node in the graph represents an entity in the
KB and edges between nodes represent their relations (Section 2.2). We also design a custom
command language (Section 2.3) and execution engine fexecute (Section 2.4). The problem can
then be reduced to learning the mapping fgenerate from utterance ui to command ci in a supervised
manner.

3

Chapter 2: User-Instructed Knowledge Base Construction

Treating this problem as a sequence-generation problem allows us (1) to experiment with
rich encoder-decoder models from NLP literature and (2) the flexibility in designing the target
language. While the target language in this work is designed for natural language instructions,
we can extend the language to accommodate more complex natural language utterances, such
as rules (”PhD students are required to submit a thesis”) and questions (”Who are the PhD
students?”)

2.2 Directed Knowledge Graph

We represent our Knowledge Base as a Knowledge Graph (KG): each node in the graph rep-
resents an entity in the KB. Edges between nodes represent their relations. The node types
correspond to pre-defined entity categories (e.g. PhdStudent, Course, etc). These entity
categories are also themselves entities in our KB, and thus are also nodes in the graph. Repre-
senting categories as entities permits categories to participate in relations just like other entities
do, including links to the utterances that mention them.

2.3 Target Command

Under the Knowledge Graph representation, knowledge fragments can be represented as triples
(h, r, t), where h, r, t denote head entity, relation, and tail entity. To extract this information from
the utterance u,1 each entity in the triple must be matched with a mention from the utterance, and
we need to know what action to take with this information. All of this information (mentions,
entities, relations, and actions) must be encoded in c.

Notations Example(s)

Utterance u Andrew studies in the music department
Mention set Mu {Andrew, music}
Entity set Eu {andrew wilkins, new}
Relations set Ru {department}
Actions set Au {set}
Command c Andrew:andrew wilkins

department:set music:new

Table 2.1: An example of an utterance u and corresponding command c, with the components
that make up c

Mentions Mention set Mu contains noun phrases in the utterance that refer to entities in the
KB. This mention set can consist of all possible spans in u or come from an oracle [14]. We
only experiment with the mentions provided a priori, leaving the investigation of the all possible
spans setting for future work.

1To simplify the notation, we omit the subscript i (e.g. ui, ci become u, c, respectively)

4

Chapter 2: User-Instructed Knowledge Base Construction

Entities Entity set Eu comprises all entities mentioned in utterance u. In particular, each m ∈
Mu should have a corresponding e ∈ Eu. We also add special entity new if m refers to an entity
not yet present in the KB, which can then be created during execution. This allows our model to
link the mention m against an open vocabulary of entities during test time.

Relations and Actions Relation set Ru consists of pre-defined relations between the entities
in u. Each relation r ∈ Ru needs an action a ∈ Au to specify how to execute the extracted
knowledge. a can take the following values:

• add: adding an edge
• remove: removing an edge
• set: replacing an old edge if one exists, otherwise adding an edge
We construct c by linearizing the components of Eu,Mu, Ru, Au in roughly (h, r, t) order.

Specifically, each token in c is either a mention-entity pair m:e or a relation-action pair r:a,
separated by whitespace. The first token of c is the head mention-entity, and we constrain the
utterance to have only one head. 2 Subsequent tokens of c are (r, t) pairs: a relation-action
token r:a followed by its corresponding tail mention-entity token m:e. In other words, c is the
linearization of triples (mh:eh, r1:a1,m1:e1), ..., (mh:eh, rp:ap,mp:ep):

c = mh:eh r1:a1 m1:e1 ... rp:ap mp:ep

Table 2.1 shows a full example of c and its components. A limitation of this formulation for
command c is that it requires explicit mentions to be linked to an entity, thus prohibiting us from
detecting implicit entities not mentioned in the utterance.

Our formulation of command c requires explicit mentions to appear in the utterance, with the
exception of commonly used Boolean entities True and False. We link these Boolean entities
to special the mention <BOOL>.

2.4 Execution Engine
After generating the command ci, we execute ci on the KB using the fexecute algorithm 1

2.5 TextWorldsKB Dataset

2.5.1 Overall
We evaluate our approach using TextWorldsKB, a synthetic dataset generated ourselves using
the TextWorlds framework [13]. This framework is designed to serve as the experiment testbed
for the task of Question-Answering over user-instructed knowledge. We chose TextWorlds be-
cause of the available user-simulated settings, where each utterance in the dataset can introduce
new knowledge or update existing knowledge, simulating a user’s world. The flexibility of the

2We can relax the “one head mention-entity” constraint for more complex utterances by inserting a head token
right before each (r, t) pair

5

Chapter 2: User-Instructed Knowledge Base Construction

Algorithm 1 KG construction algorithm fexecute

Input: initial KGi−1, target command ci = mh:eh r1:a1 m1:e1 ... rp:ap mp:ep
KGi = KGi−1 mh, eh = first element of ci T = pairs of (rj:aj,mj:ej) from ci if eh = new then

create head entity h with name lowercase(mh) add h to KGi

else
retrieve head entity h = eh from KBi

end
for (rj:aj,mj:ej) ∈ T do

if ei = new then
create tail entity t with name lowercase(mj)

else
retrieve head entity t = ej from KGi

end
if aj = add then

Create an edge rj connecting h and t in KGi

else if aj = remove then
Remove an edge rj connecting h and t in KGi

else if aj = set then
Remove an edge rj from t in KGi Create an edge rj connecting h and t in KGi

end

framework also allows us to easily generate supporting KBs that change with each new utter-
ance, as well as label the utterances with target commands. We generated four out of five worlds
(i.e. domains),3 where each world has a different set of entity categories and relations. Within
a world are stories, with each story containing different entities but sharing the same relations.
TextWorldsKB also has a natural flow of instructions, incorporating linguistic phenomena such
as coreference (e.g. ”the meeting with Lucio to grade papers”, ”the homework about linear
algebra”- Figure 2.1). We show the overall statistics in Table 2.2 and detailed statistic according
to each world in Table 2.3.

Statistics Single Multiple

of utterances 10000 12000
stories 1 120
Avg. utterance length 7.1 7.3
Avg. mentions per story 19716 207.1
Avg. coreferences per story 3325 39.6
Avg. entities per story 2137 37.4
relations 48 48
entity category 57 57
token size 1716 1787

Table 2.2: Overall dataset statistics, for single story and multiple stories

3Shopping world is not available on the TextWorlds framework

6

Chapter 2: User-Instructed Knowledge Base Construction

Statistics ACADEMIC MEETING HOMEWORK SOFTWARE Total
of utterances 3000 3000 3000 1000 10000
Avg. utterance length 6.5 6.3 8.1 8.5 7.1
of mentions 5615 5578 6276 2247 19716
Avg. mention per utterance 1.9 1.86 2.1 2.2 2.0
of coreferences 960 1026 821 518 3325
of entities 520 545 854 218 2137
of relation 25 10 12 12 48
of entity category 9 7 9 8 57
Tokens vocabulary size 674 665 584 292 1716

Statistics ACADEMIC MEETING HOMEWORK SOFTWARE Total
of utterances 3000 3000 3000 3000 12000
Avg. utterance length 6.6 6.2 7.8 8.9 7.3
of stories 30 30 30 30 120
Avg. # utterance per story 100 100 100 100 100
of mentions 5848 5625 6255 7125 24853
Avg. mention per story 195.0 187.5 208.5 237.5 207.1
of coreferences 971 992 872 1590 4425
Avg. coreference per story 32.4 33.1 29.1 53.0 36.9
of entities 1047 1027 1230 1179 4483
Avg. # entity per story 35.0 34.2 41.0 39.3 37.4
of relation 25 10 12 12 48
of entity category 9 7 9 8 57
Tokens vocabulary size 903 731 856 373 1787

Table 2.3: Full TextWorldsKB dataset statistics

2.5.2 Single story vs. multiple stories

Each world in TextWorldsKB contains two types of datasets: single story and multiple stories.
A single story dataset contains one story describing the perspective of a single user. This cor-
responds to the setting where the system only learns from a single user, where every entity in
a single story dataset is unique. A multiple stories dataset contains multiple stories describing
the perspectives from different users, corresponding to the setting where the system learns from
multiple users. In multiple stories dataset, we can have cases where an entity refers to a category
in one story, and another entity with the exact same lexical form refers to another category in
another story (Figure 2.1). For each of these dataset types, we report the results and analysis
separately.

7

Chapter 2: User-Instructed Knowledge Base Construction

Figure 2.1: Examples from the single story dataset (left) vs. the multiple stories dataset (right). In
multiple stories, we can see that Andrew Wilkins is a professor in story 1, but a master student in
story 2. These are two different Andrew Wilkins described by two different users, corresponding
to two different stories. In single story, there is only one unique Andrew Wilkins, who is a PhD
student.

2.5.3 Dataset Analysis
Since our dataset is synthetic and sequential in nature, it is not necessary the case that the more
data the better the performance. In particular, since there are a finite amount of entities that can be
created, subsequent utterances generated after we max out all the entities will be skewed towards
certain relations. This is particularly true for the single story datasets: We can see from the Figure
2.2 that in dataset size with 10000 statements, the data is skewed towards relations committee
and sabbatical. In this project, we want to evaluate the system on as many relations and
entities as possible. Thus, we choose the dataset size with the most uniform distribution across
the relations and entities. Note that this effect only appears in single story dataset. For multiple
stories, since the number of utterances at each story is significantly smaller (100), and each
story is independent, we don’t have the issue of dataset skewing towards certain relations/entities
(Figure 2.3). Thus, we chose the dataset size that is comparable to single story datasets (30
stories, 100 statements/stories, 3000 statements in total for each world)

8

Chapter 2: User-Instructed Knowledge Base Construction

Figure 2.2: Distribution of categories (top) and relations (bottom) for Department world, single-
story dataset with 100, 1000, 3000, 5000, 10000 statements

9

Chapter 2: User-Instructed Knowledge Base Construction

Figure 2.3: Distribution of categories (top) and relations (bottom) for Department world,
multiple-stories dataset with 1000, 3000, 5000, 10000 statements

10

Chapter 3

Dynamic KG Transformer Networks

We learn the mapping from utterance u to command c with neural encoder-decoder models in a
supervised manner.1 Furthermore, having access to the KG motivates us to combine the struc-
tured information from the KG with the unstructured context from the utterances to produce the
target command. Using the common Transformer encoder-decoder [26] as our base model (Sec-
tion 3.1), we augment with (1) a mention embedding for each mention m (Section 3.2), (2) an
entity embedding for each entity e that encodes both the structured context from the KB and
unstructured context from the mention history (Section 3.3), and (3) an entity linker that learns
to link m to e (Section 3.5).

3.1 Base Transformer Architecture

Our base architecture is the commonly used Transformer encoder-encoder model. Since our
model architecture is almost identical to the original work, we omit the details and refer the
reader to [26]. We refer to this architecture as BaseTransformer. While powerful, this architecture
has a key shortcoming when applied to our task: it cannot split the mention from the entity in
the mention-entity pair m:e, as it treats m:e as a single token in the output vocabulary. This
prohibits the model from linking entities created during test time. We solve this by decoupling
the mention-entity pair during the decoding process, allowing the model to learn how to link
mentions to the correct entities (Section 3.4).

Input Representations We represent the input utterance u as the input vector u. We pass u
onto a pretrained embedding layer, which consists of context-independent GloVe embeddings
[16] and Elmo embeddings [17]. We concatenate the these two pretrained token embeddings and
pass the concatenated vector into the Transformer encoder, forming the contextualized encoding
ū (Figure 3.1).

1Similar to section 2.3, we omit the subscript i denoting the order of utterance for most of this section, except in
section 3.3 where we need information from previous utterance ui−1 and KGi−1 to construct entity embedding.

11

Chapter 3: Dynamic Knowledge Graph Transformer Networks

Pretrained Embeddings

ui = u : Andrew studies in the music department

ci = c : Andrew:andrew_wilkins department:set music:new

Transformer Encoder

Entity Linking

Transformer Decoder

Joint Entity Linking Sequential Entity Linking

andrew_
wilkins

PhdStudent

lucy_
mack

Professor

Second-
year

Knowledge Graph KGi-1

year

generalization

advise

generalization

andrew_wilkins
lucy_mack
Professor

PhdStudent

Entity Embedding

second-year

mAndrew

Andrew:andrew_wilkins

music:new
new Andrew:andrew_wilkins

Andrew:new
…
music:andrew_wilkins
music:new
…

andrew_
wilkins

PhdStudent

lucy_
mack

Professor

Second-
year

Knowledge Graph KGi

year

generalization

advise

generalization
music

department

Execution Enginemmusic

Figure 3.1: Overview of our approach. Given knowledge graph KGi−1 and utterance ui = ”An-
drew studies in the music department”, we first produce entity embeddings for each entity in
KGi−1 and mention embeddings mAndrew, mmusic. The entity linker (with two different mech-
anisms, joint and sequential, corresponding to two different models) then learns to linnk the
mentions with the appropriate entities {andrew wilkins, new}. These linking information
is passed to the entity-aware decoder to help generate the target command c. The execution
engine then combines c with KGi−1 to produce KGi

3.2 Mention Embedding

Given the contextual encoding ūi, for each mention m ∈Mu, we produce a mention embedding
m concatenating the embeddings of the first and last words in the mention [10]. We then feed
the concatenated vector into a standard feed forward network. Assuming the span of mention
m = [uq, ..., ur], we have

m = FFNNm([ūq; ūr)]

3.3 Entity Embedding

Inspired by [7], we leverage the KG constructed from the previous utterances to help with parsing
the current utterance. For each entity node e in the KG, we compute the mention history vector
vh(e) representing the unstructured context of e, and the graph embedding vg(e) that captures
the structured context of e.

Mention history The mention history vector vh(e) comprises the aggregated mentions of e up
to, but not including, the current utterance ui. 2 Concretely, suppose we are processing utterance

2Since we have yet to know if e is linked to mentions in ui

12

Chapter 3: Dynamic Knowledge Graph Transformer Networks

ui. Let Eui−1
be the extant entities 3 linked at utterance ui−1. If e ∈ Eui−1

, then we know that e
is linked to a mention me (and its embedding, me) in mention set Mui−1

of utterance ui−1. We
then incorporate this me into vh(e), otherwise we inherit vh(e):

vh(e) = λvh(e) + (1− λ)me

where

λ =

{
σ(Wh · [vh(e); me]) if e ∈ Eui−1

1 otherwise

This formulation is similar to [7]. Our work differs in that (1) our KBs evolve as the inter-
actions progress, whereas their KBs do not, and (2) we learn to link entities, and then integrate
the mention embedding after decoding (since we only know the linking results after decoding),
while they integrate their mention embedding after heuristically linking entities before the de-
coding process

Graph Embedding To learn the structured context of entity e from the KG, we utilize a Re-
lational Graph Neural Network [21] to produce the graph embedding vg(e). Specifically, for
a graph network with L layers, we compute the output representation h

(l+1)
e at the lth layer

(0 ≤ l ≤ L) for entity e as

h(l+1)
e = (

∑
r∈R

∑
e′∈Nr(e)

Wr
(l)h

(l)
e′)

whereR is the relation set, and Nr(e) is the neighbors of e that are connected by relation r.
The initial input to the graph network is the mention history vector h0

e = vh(e), and the output
of the graph network is graph embedding vg(e) = hL

e . This graph network allows information
to propagate between nodes via message-passing.

3.4 Entity-aware Decoder

We decouple the mention-entity pair during the decoding process in order to learn how to link
the mentions to the correct entities, allowing the model to link entities that are created at test
time and thus access to a growing open vocabulary of entities. There are two ways we can link
mention to entities: (1) link the mention before command generation in a sequential manner, or
(2) link jointly with the decoding process and leverage the information from the previous decoder
outputs.

Sequential Model This model attempts to first link the mention m ∈ Mu of utterance u to
entity e in entity set Eu, and only start the command generation process when we know which

3This is to exclude new from the mention history; a mention can be linked to new if it’s not in the KB, but once
it’s created we take that new entity as an ”extant” entity for this mention

13

Chapter 3: Dynamic Knowledge Graph Transformer Networks

entities are linked to which mentions. In particular, we want to maximize the likelihood

P (Eu, c|u,Mu) = P (Eu|u,Mu)P (c|Eu;u,Mu)

=
k∏

e∈Eu;m∈Mu

P (e|u,m)P (c|Eu;u,Mu)

=
k∏

e∈Eu;m∈Mu

P (e|u,m)

|c|∏
t=1

P (ct|c<t;u,Mu;Eu)

where e is the entity linked to mention m. At each decoding timestep t, we generate either
relation-action pair r:a 4 or a mention-entity pair m:e:

P (e|u,m) ∝ exp(score(e,m))

P (ct = r:a|c<t;u,Mu, Eu) ∝ exp(Wd
raht)

P (ct = m:e|c<t;u,Mu, Eu) ∝ exp(FFNNme([m,vg(e)]) · ht))

where
• Wd

ra is the weight matrix for relation-action token r:a during decoding
• ht is the decoder hidden state at timestep t
• score(m, e) is the sequential entity scoring function (eq 3.1)

We can think of the score(m, e) as scoring the “matching goodness” between e and m. The
“positional goodness” of pair m:e at timestep t in the target command c must be scored at a later
step in the generation process. We refer to this model as SequentialTransformer.

Joint model In this model (which we refer to as JointTransformer), we jointly link the entity
with the decoding process, thus aiming to leverage the information from the previous decoder
outputs to inform the linking process. Specifically, we want to maximize the likelihood

P (Eu, c|u,Mu) =

|c|∏
t=1

P (Eu, ct|c<t;u,Mu)

Similar to SequentialTransformer, at each time step twe generate either r:a orm:e as follows:

P (ct = r:a|c<t;u,Mu) ∝ exp(Wd
raht)

P (ct = m:e|c<t;u,Mu) ∝ exp(score(m, e,ht))

where score(m, e,ht) is the joint entity scoring function (eq. 3.2), jointly scoring both the
“matching goodness” between e and m, and the “positional goodness” of pair m:e at timestep t
of command c.

4Each r is associated with an action a, so we treat r:a as a single token, which has the same cardinality as the
vocabulary of relations

14

Chapter 3: Dynamic Knowledge Graph Transformer Networks

3.5 Entity Linking
The entity linking functions for both SequentialTransformer and JointTransformer share the same
form, with the only difference being the integration of previous decoder hidden state ht in the
entity linking decision at timestep t for the joint model. Specifically, for SequentialTransformer,
we have the entity linking function

score(m, e) = wl · FFNNl(v(m, e)) (3.1)

where wl is the weight vector learned by the sequential entity linker, and v(m, e) is the feature
vector defined below. For JointTransformer, we have

score(m, e,ht) = ht · FFNNl(v(m, e)) (3.2)

Feature vector v(m, e) is a key component of our scoring system, defined as:

v(m, e) = [m, φ(m, e),vh(e),vg(e),

m ◦ vh(e),m ◦ vg(e)]
(3.3)

with
• mention embedding m (Section 3.2)
• φ(m, e) is the distance (in number of entities linked) from the current mention m to the

last time e was linked
• mention history vh(e) and graph embedding vg(e) of e (Section 3.3)

The feature vector and the entity linking function combine to learn the interactions between
different components of m and e via element-wise product ◦ and feed-forward neural network
FFNNl.

3.6 Candidate Entities
For each mention, we consider a set of candidate entities to link to that mention. Since consid-
ering all the entities in the KB is prohibitively expensive, we develop a simple heuristic reduce
the number of candidate entities: the candidate set includes pre-defined entities (eg Entity,
PhdStudent, True, False, special entity new etc.), r number of most recently linked en-
tities, and s number of entities in the KB with the most similar lexical form to the incoming
mention, with similarity score computed by the modified Ratcliff and Obershelp algorithm, us-
ing Python’s SequenceMatcher class of difflib library. 5. During training, we include
gold linked entities.

5https://docs.python.org/3/library/difflib.html

15

Chapter 4: Experiments and Analysis

16

Chapter 4

Experiments and Analysis

4.1 Experimental Setup

Setup For both single story and multiple stories, we split the data sequentially into train, vali-
dation, and test sets (8:1:1). We use a 1-layer Transformer with a 256-unit feedforward network.
The input to the encoder is the concatenation of 50-dimension GloVe embeddings, and 1024-
dim ELMo embeddings. We use 200-dim embeddings for mention history vh, graph embedding
vg, and mention embedding m. For the Relational Graph Network, we employ a 2-layer graph
convolution network with 50 hidden units. Hyperparameters are tuned with simple grid search
on the validation set using the values in Table 4.1. We use the Adam optimizer [9] with a fixed
learning rate of 10−4. Each model is trained for 200 epochs, with 50 epochs of early stopping
based on the validation exact match. We employ greedy decoding during inference.

Hyperparameters Values
Learning rate 10−3, 10−4, 10−5

Encoder-decoder hidden size 128, 256, 512
Encoder-decoder num layer 1, 2
Mention/Entity embedding dimension 100, 200, 300
Graph net hidden size 50, 100, 200

Table 4.1: Hyperparameter values

Single-utterance vs. multi-utterance There are two possible settings during inference: single-
utterance and multi-utterances. In the single-utterance setting, we provide the gold KB before
processing each utterance. In the multi-utterances setting, we process k utterances continuously,
injecting gold KB only at the beginning of the sequence. Practically, single-utterance represents
the case where the user corrects the system after every command, while in the multi-utterance
setting, the user corrects the system after every k commands. We report the results on the single-
utterance setting k = 1, and perform experiments on the effect of varying k in section 4.3.2

17

Chapter 4: Experiments and Analysis

Evaluation metrics Our main evaluation criteria is command exact match, which measure if
the predicted command exactly matches the gold command. This is a conservative metric, since
a matching command will always yield a correct KB, but a nonmatching command may yield
a correct KB under certain circumstances1. In addition, since the command contains extracted
entities and relations, we further report the entity and relation F1 in order to gain insights into
the effectiveness of our approach when extracting entities and relations.

4.2 Results

Department Meeting Homework Software Average

Single story Val. Test Val. Test Val. Test Val. Test Val. Test

BaseTransformer 0.16 0.18 0.24 0.29 0.06 0.04 0.32 0.31 0.20 0.20
SequentialTransformer 0.82 0.77 0.79 0.73 0.72 0.65 0.87 0.73 0.80 0.72
JointTransformer 0.82 0.79 0.76 0.69 0.69 0.64 0.87 0.78 0.78 0.72

Department Meeting Homework Software Average

Multiple stories Val. Test Val. Test Val. Test Val. Test Val. Test

BaseTransformer 0.07 0.06 0.12 0.07 0.08 0.02 0.11 0.16 0.09 0.08
SequentialTransformer 0.63 0.62 0.60 0.53 0.64 0.61 0.56 0.62 0.61 0.59
JointTransformer 0.61 0.61 0.60 0.58 0.66 0.66 0.54 0.57 0.60 0.60

Table 4.2: Exact match on validation and test data on single story (top) and multiple stories
(bottom). We averaged the results over three separate runs with different seeds

Single story Multiple stories
Metrics Seq Joint Seq Joint
Entity 89.8 89.1 76.2 76.5
Relation 99.2 99.5 97.3 93.4

Table 4.3: Average F1 scores on the val dataset of all the worlds, categorized by entity and
relation metrics

Table 4.2 show our main results on both single story and multiple stories datasets. Both
JointTransformer and SequentialTransformer expectedly outperform BaseTransformer. While
SequentialTransformer has higher overall results, the difference between the results of the two
models are not significant, showing that incorporating the previous outputs from the decoder
during entity linking (for the JointTransformer) does not yield significant improvement.

1Consider commands with multiple relations. For some cases, if we switch the execution order of the relation-tail
entity pairs, then we still get the correct KB (e.g. ”Both Andrew and Leo are TAs for U302”). However, there are
other cases where the order matters, such as ”Andrew was a second-year student, but is now a third-year student”

18

Chapter 4: Experiments and Analysis

We also report the average F1 scores of the entity and relation metrics on the validation
datasets in Table 4.3. This results illustrates that our models perform well with generating the
correct relation information, but still need improvement over entity linking. In addition, multiple
stories datasets are harder to learn than single story datasets.

4.3 Analysis and Discussion
We analyze our results, both qualitatively and quantitatively. Our goal is to identify sources of
error, as well as evaluate the strengths and weaknesses of our approach.

4.3.1 Error Analysis

Single story Multiple stories
Error type Seq Joint Seq Joint
Entity-based 96% 97% 99% 99%
Relation-based 4% 2% 8% 6%
Command-based 19% 16% 10% 13%

Table 4.4: Percentage of incorrect commands based on error categories, average over all worlds.
Note that a command can contain a combination of these errors

We report the percentage of errors, which are aggregated from all the experiments in section
4.2, in Table 4.4. We break the errors into three classes described below. Table 4.5 shows error
examples.

Error type Example utterances Example gold and predicted commands
Entity-based Alverta Mabee is now Gold: Alverta Mabee:alverta mabee status:set assistant:assistant

an assistant professor Predicted: Alverta Mabee:alverta depriest status:set assistant:assistant
Relation-based Luanna currently Gold: Luanna:luanna park has funding:set ¡BOOL¿:True

has funding Predicted: Luanna:luanna elvis funded:set ¡BOOL¿:True
Command-based this student has Zenaida Gold: this student:eun galbreath committee:add Zenaida Pedraza:zenaida pedraza

Pedraza and Alejandra committee:add Alejandra Michael:alejandra michael
Michael on the Predicted: this student:eun galbreath committee:add
committee Alejandra Michael:alejandra michael

Table 4.5: Qualitative examples, based on error type. In this first utterance, the model incor-
rectly links Alverta Mabee to entity alverta depriest. In the second utterance, the model
incorrectly predicts relation funded instead of has funding. It also made an entity-based
error, erroneously mistaking entity luanna park for luanna elvis. In the last utterance,
the model did not predict that Zenaida Pedraza is also on the committee.

Entity-based errors: These are the biggest sources of error, which happen either when a men-
tion is linked to a wrong entity, or when the model predicts the incorrect position of the mention-
entity pair within the command. Figure 4.1 shows the precision and recall for each category

19

Chapter 4: Experiments and Analysis

of the seperationTransformer model, for Department world, single story dataset. The worst-
performing categories are PhdStudent, Professor, MasterStudents. As an example,
a closer look at the distribution of predicted entities type Professor in Table 4.6 reveals that
most of the errors come from mistaking entities within its own category (eg correct category
linked but not correct entity itself, such as confusing a professor with another professor). This is
further supported by looking at the t-SNE visualizations of the graph embeddings in Figure 4.2,
where most of the entities are correctly clustered together. In summary, most of the entity-based
errors come from mistaking entities within the same category (e.g. confusing a professor with
another professor).

Figure 4.1: Precision and Recall for entities according to each category. Results from separa-
tionTransformer model on single story dataset, Department world

Statistics Value
Correct entities linked 76 (58%)
Incorrect entities linked 53 (42%)
Wrong category (PhdStudent) 2 (4%)
Wrong category (MastersStudent) 2 (4%)
Wrong within category 49 (92%)

Table 4.6: Error statistics for entities of category Professor

We also categorize entity-based metrics into entity-coref F1, which reports the F1 over enti-
ties that are linked to an anaphoric mention, as opposed to entity-nocoref which reports the F1
over entities that are linked to their full lexical forms. Results in Table 4.7 shows that there is no

20

Chapter 4: Experiments and Analysis

Figure 4.2: t-SNE visualization of graph embeddings for entities in the KB, clustered by category.
Results after computed on the validation set, using best separationTransformer model on single
story dataset, Department world

difference between linking anaphorical mentions (entity-coref) vs. linking entities’ full lexical
forms (entity-nocoref).

single story multiple stories
Metrics Sep Joint Sep Joint
Entity-nocoref 90 89 81 80
Entity-coref 89 89 59 61
Relation 99 99 97 93

Table 4.7: Average F1 scores on the val dataset of all the worlds, categorized by entity and
relation metrics

Relation-based error: These errors are extremely rare but do occur. For example, the model
confuses the relations funded (for PhdStudent category) and has funding (for Professor
category). These relations have overlapping utterance semantics (e.g. ”that student currently
has funding” and ”this professor currently has funding” are both valid utterances in our dataset),
which confuses our neural models.

Command-based error: A closer look at the actual incorrect commands reveal that our models
sometimes struggle with longer commands with multiple relations (Table 4.5).

21

Chapter 4: Experiments and Analysis

4.3.2 Effect of k in Multi-utterances

We study the difference between the single-utterance and multi-utterances settings discussed
in section 4.1 by varying the number of utterance k (Figure 4.3). We expect multi-utterances
to be the harder setting, as errors will propagate from previous incorrect commands to affect
subsequent generations (Table 4.8). We observe that for the single story dataset, the single-
utterance case k = 1 yields the best exact match. This illustrates there is an advantage when the
user corrects the system after every incorrect command. For k > 1 however, the value of k does
not make a difference in performance. We hypothesize this is because similar errors are made
across the dataset, regardless of where the corrections are in the sequence. For multiple stories
datasets, there is essentially no difference when varying k, for similar reasons.

1 10 20 30 40 50
Number of utterances k

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ex

ac
t m

at
ch

Effect of Varying Multi-Utterance k
jointTransformer, single story
jointTransformer, multiple stories
sequentialTransformer, single story
sequentialTransformer, multiple stories

Figure 4.3: Effect of varying k in the multi-utterances setting

1 10 20 30 40 50
Number of utterances k

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ex

ac
t m

at
ch

Effect of Multi-Utterance k on sequentialTransformer, Single Story
department
software
meetings
homework

1 10 20 30 40 50
Number of utterances k

0.0

0.2

0.4

0.6

0.8

1.0

Va
lid

at
io

n
ex

ac
t m

at
ch

Effect of Multi-Utterance k on sequentialTransformer, Multiple Stories
department
software
meetings
homework

Figure 4.4: Effect of multi-utterance k vs val exact match for separationTransformer model, on
single story (left) and multiple stories (right), breakdown down according to each world

22

Chapter 4: Experiments and Analysis

Utterances Commands for k = 1 Commands for k = 10

there is a new PhD student Alejandra Galbreath:new generalizations:set Alejandra Galbreath:new generalizations:set
named Alejandra Galbreath PhD student:PhdStudent PhD student:luanna elvis
Loyd Mabee’s email is Loyd Mabee’s:loyd mabee email:set Loyd Mabee’s:loyd mabee email:set
loyd mabee@nh.edu loyd mabee@nh.edu:new loyd mabee@nh.edu:new
Alejandra Galbreath Alejandra Galbreath:alejandra galbreath funded:set Alejandra Galbreath:hanna galbreath has funding:set
currently has funding ¡BOOL¿:True ¡BOOL¿:True

Table 4.8: Three consecutive utterances that illustrate the error propagation for k > 1. For k = 10
(right), the first command is incorrectly generated, thus no entity alejandra galbreath
is created. This effects the third utterance, where k = 10 case incorrectly link the mention
Alejandra Galbreath to hanna galbreath, possibly due to alejandra galbreath not
existed in the KB. Contrast this to k = 1 case, where the gold KB is available at every utterance,
and it was able to link Alejandra Galbreath to alejandra galbreath

4.3.3 Ablation Studies
A key component of our model is the entity linker that produces the scores for linking a mention
to entities in the KG. We study the importance of the linking feature vector in equation 3.3 by
ablating its features and report the Exact Match (Ex. Mat.) performance in Table 4.9. We
observe that all features are important in improving the performance of the model. Predictably,
eliminating both the mention history vector vh and the graph embedding vg components reduces
the performance the most. We also note that the ablation effects are more visible for the single
story dataset, compared to the multiple stories (Tables 4.10 and 4.11).

Model Ex. Mat. ∆(%)
JointTransformer 0.80
− distance feature φ 0.66 -0.14 (18%)
− mention history vh 0.68 -0.12 (15%)
− graph embedding vg 0.69 -0.11 (14%)
− both vh, vg 0.57 -0.23 (29%)

Table 4.9: Ablations on the entity linking features, done with the JointTransformer model, single
story dataset, averaging on the validation set of all worlds

Model Department Meeting Homework Software Average
jointTransformer 0.81 0.76 0.74 0.89 0.8
− distance feature φ 0.67 0.56 0.69 0.72 0.66 (-18%)
− mention history vh 0.70 0.50 0.70 0.80 0.68 (-15%)
− graph embedding vg 0.72 0.51 0.68 0.85 0.69 (-14%)
− entity embeddings (both vh, vg) 0.58 0.44 0.54 0.72 0.57 (-29%)

Table 4.10: Feature ablations, single story

23

Chapter 4: Experiments and Analysis

Model Department Meeting Homework Software Average
jointTransformer 0.62 0.61 0.67 0.59 0.62
− distance feature φ 0.59 0.60 0.65 0.57 0.60 (-3%)
− mention history vh 0.58 0.54 0.65 0.54 0.58 (-6%)
− graph embedding vg 0.57 0.57 0.65 0.54 0.58 (-6%)
− entity embeddings (both vh, vg) 0.57 0.5 0.49 0.51 0.52 (-16%)

Table 4.11: Feature ablations, multiple stories

24

Chapter 5

Related Work

Learning from Dialogs and User Interactions Recent years have seen studies on NLP sys-
tems that learn from the end-user via conversational dialog [6, 15, 27] and natural language
interactions [12, 18, 23, 24]. While these works open the door to building conversational assis-
tants that can learn from the user, most do not attempt to build a personalized, user-centric KB
to be used for downstream personal tasks or the current task itself. [8] and [12] build a KB from
extracted knowledge with a certain degree of success, but their information extraction systems
did not take advantage of the representational power that neural models offer in modeling the
extracted knowledge.

Knowledge Base Construction Most works in this area focus on KB construction over un-
structured text extraction on the Web [2, 5] or commonsense reasoning [1, 20, 22]. Similar to our
work is [4], where they build a Machine Reading Comprehension model that constructs dynamic
knowledge graphs to track state changes in procedural text. However, their KG is limited to two
node types with one edge (relation) type denoting the binary location change. In contrast, our
KGs contains a diverse set of entity and relation types.

Neural Open Information Extraction Our work is formulated as a sequence-generation based
Neural Open Information Extraction problem, similar to [3, 11]. Our work differs in that we (1)
involve the KB in the extraction process by embedding it, and (2) perform entity linking on
the constructed KB. The advantage of formulating this task as sequence generation instead of
as sequence-labelling based information extraction [19, 25] is the possibility of extending the
target language to more complex utterances. This formulation easily bridges the problem into
that of semantic parsing, from which we can use the extensive results from the semantic parsing
literature.

25

Chapter 6: Conclusion

26

Chapter 6

Conclusion and Future Work

We study the task of user-instructed Knowledge Base construction by formulating it as a sequence-
generation problem: learning how to map the natural language instructions to target command
than can be executed to construct the KB. We build Transformer-based encoder-decoder models
that integrate the structured context from the evolving KB with the unstructured context from
the utterance to aid command generation. Our models, JointTransformer and SequentialTrans-
former, perform well when extracting relations, while also allow for linking of entities created
during test time. However, they still struggle with linking entities within the same category and
in more challenging settings (multiple stories data and multi-utterances).

Currently, this work has several simplifying assumptions, thus allowing for various future
directions. While our models support open vocabulary of entities, it does not support out-of-
vocabulary relations, restricting the ability to generalize to domains where the model is not
trained on. In addition, our models assume the the entity mentions are provided a priori. Re-
moving this assumption would add the problem of Mention Detection to the task, which is an
interesting end-to-end setting to investigate. Finally, we hope to obtain and evaluate our models
on more challenging datasets that include more variety of utterances as well as implicit knowl-
edge that requires commonsense reasoning.

27

Chapter 6: Conclusion

28

Bibliography

[1] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli Celikyilmaz,
and Yejin Choi. COMET: Commonsense transformers for automatic knowledge graph
construction. In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4762–4779, Florence, Italy, July 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P19-1470. URL https://www.aclweb.org/
anthology/P19-1470. 1, 5

[2] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr., and T.M. Mitchell. To-
ward an architecture for never-ending language learning. In Proceedings of the Conference
on Artificial Intelligence (AAAI), pages 1306–1313. AAAI Press, 2010. 1, 5

[3] Lei Cui, Furu Wei, and Ming Zhou. Neural open information extraction. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 407–413, Melbourne, Australia, July 2018. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P18-2065. URL https://www.aclweb.org/
anthology/P18-2065. 2.1, 5

[4] Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan, Adam Trischler, and Andrew McCal-
lum. Building dynamic knowledge graphs from text using machine reading comprehension.
CoRR, abs/1810.05682, 2018. URL http://arxiv.org/abs/1810.05682. 5

[5] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy,
Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale ap-
proach to probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 601–610. ACM,
2014. URL https://cs.cmu.edu/˜nlao/publication/2014.kdd.pdf. 1, 5

[6] Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazare, and Jason Weston. Learning
from dialogue after deployment: Feed yourself, chatbot! In Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, pages 3667–3684, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1358.
URL https://www.aclweb.org/anthology/P19-1358. 5

[7] He He, Anusha Balakrishnan, Mihail Eric, and Percy Liang. Learning symmetric col-
laborative dialogue agents with dynamic knowledge graph embeddings. In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1766–1776, Vancouver, Canada, July 2017. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P17-1162. URL https://www.aclweb.org/
anthology/P17-1162. 3.3, 3.3

29

https://www.aclweb.org/anthology/P19-1470
https://www.aclweb.org/anthology/P19-1470
https://www.aclweb.org/anthology/P18-2065
https://www.aclweb.org/anthology/P18-2065
http://arxiv.org/abs/1810.05682
https://cs.cmu.edu/~nlao/publication/2014.kdd.pdf
https://www.aclweb.org/anthology/P19-1358
https://www.aclweb.org/anthology/P17-1162
https://www.aclweb.org/anthology/P17-1162

Chapter 6: Conclusion

[8] Ben Hixon, Peter Clark, and Hannaneh Hajishirzi. Learning knowledge graphs for ques-
tion answering through conversational dialog. In Proceedings of the 2015 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 851–861, Denver, Colorado, May–June 2015. As-
sociation for Computational Linguistics. doi: 10.3115/v1/N15-1086. URL https:
//www.aclweb.org/anthology/N15-1086. 5

[9] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
URL http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Pub-
lished as a conference paper at the 3rd International Conference for Learning Representa-
tions, San Diego, 2015. 4.1

[10] Nikolaos Kolitsas, Octavian-Eugen Ganea, and Thomas Hofmann. End-to-end neural en-
tity linking. In Proceedings of the 22nd Conference on Computational Natural Language
Learning, pages 519–529, Brussels, Belgium, October 2018. Association for Computa-
tional Linguistics. doi: 10.18653/v1/K18-1050. URL https://www.aclweb.org/
anthology/K18-1050. 3.2

[11] Keshav Kolluru, Samarth Aggarwal, Vipul Rathore, Mausam, and Soumen Chakrabarti.
IMoJIE: Iterative memory-based joint open information extraction. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 5871–5886,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acl-main.521. URL https://www.aclweb.org/anthology/2020.acl-main.
521. 5

[12] Igor Labutov, Shashank Srivastava, and Tom Mitchell. LIA: A natural language pro-
grammable personal assistant. In Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing: System Demonstrations, pages 145–150, Brussels,
Belgium, November 2018. Association for Computational Linguistics. doi: 10.18653/v1/
D18-2025. URL https://www.aclweb.org/anthology/D18-2025. 1, 5

[13] Igor Labutov, Bishan Yang, Anusha Prakash, and Amos Azaria. Multi-relational ques-
tion answering from narratives: Machine reading and reasoning in simulated worlds. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 833–844, Melbourne, Australia, July 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/P18-1077. URL https:
//www.aclweb.org/anthology/P18-1077. 1, 2.5.1

[14] Kenton Lee, Luheng He, Mike Lewis, and Luke Zettlemoyer. End-to-end neural corefer-
ence resolution. In Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 188–197, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D17-1018. URL https:
//www.aclweb.org/anthology/D17-1018. 2.3

[15] Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason Weston.
Dialogue learning with human-in-the-loop. CoRR, abs/1611.09823, 2016. URL http:
//arxiv.org/abs/1611.09823. 5

[16] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors

30

https://www.aclweb.org/anthology/N15-1086
https://www.aclweb.org/anthology/N15-1086
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/K18-1050
https://www.aclweb.org/anthology/K18-1050
https://www.aclweb.org/anthology/2020.acl-main.521
https://www.aclweb.org/anthology/2020.acl-main.521
https://www.aclweb.org/anthology/D18-2025
https://www.aclweb.org/anthology/P18-1077
https://www.aclweb.org/anthology/P18-1077
https://www.aclweb.org/anthology/D17-1018
https://www.aclweb.org/anthology/D17-1018
http://arxiv.org/abs/1611.09823
http://arxiv.org/abs/1611.09823

Chapter 6: Conclusion

for word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https:
//www.aclweb.org/anthology/D14-1162. 3.1

[17] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of
the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.
18653/v1/N18-1202. URL https://www.aclweb.org/anthology/N18-1202.
3.1

[18] Sudha Rao and Hal Daumé III. Answer-based Adversarial Training for Generating Clar-
ification Questions. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 143–155, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1013. URL
https://www.aclweb.org/anthology/N19-1013. 5

[19] Arpita Roy, Youngja Park, Taesung Lee, and Shimei Pan. Supervising unsupervised open
information extraction models. In Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages 728–737, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1067. URL
https://www.aclweb.org/anthology/D19-1067. 5

[20] Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie,
Hannah Rashkin, Brendan Roof, Noah A. Smith, and Yejin Choi. ATOMIC: an atlas
of machine commonsense for if-then reasoning. CoRR, abs/1811.00146, 2018. URL
http://arxiv.org/abs/1811.00146. 5

[21] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In The
Semantic Web - 15th International Conference, ESWC 2018, Proceedings, Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pages 593–607. Springer/Verlag, 2018. ISBN 9783319934167.
doi: 10.1007/978-3-319-93417-4 38. 15th International Conference on Extended Semantic
Web Conference, ESWC 2018 ; Conference date: 03-06-2018 Through 07-06-2018. 3.3

[22] Robyn Speer, Joshua Chin, and Catherine Havasi. Conceptnet 5.5: An open multilingual
graph of general knowledge. CoRR, abs/1612.03975, 2016. URL http://arxiv.org/
abs/1612.03975. 5

[23] Shashank Srivastava, Igor Labutov, and Tom Mitchell. Joint concept learning and seman-
tic parsing from natural language explanations. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, pages 1527–1536, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/
D17-1161. URL https://www.aclweb.org/anthology/D17-1161. 5

31

https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/N18-1202
https://www.aclweb.org/anthology/N19-1013
https://www.aclweb.org/anthology/D19-1067
http://arxiv.org/abs/1811.00146
http://arxiv.org/abs/1612.03975
http://arxiv.org/abs/1612.03975
https://www.aclweb.org/anthology/D17-1161

Chapter 6: Conclusion

[24] Shashank Srivastava, Igor Labutov, and Tom Mitchell. Learning to ask for conversational
machine learning. In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4164–4174, Hong Kong, China, November 2019.
Association for Computational Linguistics. doi: 10.18653/v1/D19-1426. URL https:
//www.aclweb.org/anthology/D19-1426. 5

[25] Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. Supervised open
information extraction. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 885–895, New Orleans, Louisiana, June 2018. As-
sociation for Computational Linguistics. doi: 10.18653/v1/N18-1081. URL https:
//www.aclweb.org/anthology/N18-1081. 5

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30, pages 5998–6008. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 3, 3.1

[27] Jason E Weston. Dialog-based language learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems, volume 29, pages 829–837. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.cc/paper/2016/file/
07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf. 5

32

https://www.aclweb.org/anthology/D19-1426
https://www.aclweb.org/anthology/D19-1426
https://www.aclweb.org/anthology/N18-1081
https://www.aclweb.org/anthology/N18-1081
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf

	1 Introduction
	2 User-Instructed Knowledge Bases Construction
	2.1 Task Definition
	2.2 Directed Knowledge Graph
	2.3 Target Command
	2.4 Execution Engine
	2.5 TextWorldsKB Dataset
	2.5.1 Overall
	2.5.2 Single story vs. multiple stories
	2.5.3 Dataset Analysis

	3 Dynamic KG Transformer Networks
	3.1 Base Transformer Architecture
	3.2 Mention Embedding
	3.3 Entity Embedding
	3.4 Entity-aware Decoder
	3.5 Entity Linking
	3.6 Candidate Entities

	4 Experiments and Analysis
	4.1 Experimental Setup
	4.2 Results
	4.3 Analysis and Discussion
	4.3.1 Error Analysis
	4.3.2 Effect of k in Multi-utterances
	4.3.3 Ablation Studies

	5 Related Work
	6 Conclusion and Future Work
	Bibliography

