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Abstract
In this work, we explore the possibility of applying sketching, or dimensional-

ity reduction, in the least squares regression (LLS) problem in differentiable pro-
gramming settings. To motivate automatic differentiation (AD) for systems with a
sketched regression component, we need to answer the following questions: do we
yield similar derivatives (AD transformations) in differentiable programming sys-
tems with LLS and sketched LLS? In practice, does a system containing sketched
LLS converge faster than the same system with LLS in training? How close are the
results after convergence? To answer them, we first provide a bound on the operator
norm of a sketched pseudoinverse matrix product, which is useful when analyzing
the derivatives of sketched regression. We then give analysis on the approximation
errors of derivatives in two proposed ways of sketched regression. Finally, we run
experiments on both synthetic and real-world datasets to test the performance of our
sketching methods.
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Chapter 1

Introduction

1 A sketch is a sub-linear space data structure that can answer certain types of queries in the
original data with approximation guarantees. Since the space usage of the sketch is sub-linear to
the input size, a lot of times we benefit from a small sketch size and therefore achieve run time
acceleration. The method to convert the original data into a sketch is called sketching.

Consider the well-known linear least squares regression (LLS) problem. A least squares
regression takes in a matrix A of size n × d (n � d) and a vector b of size n × 1, and aims
to find argminy ‖Ay − b‖2. For a sketched least squares regression (LLSS), we convert LLS to
argminy ‖SAy − Sb‖2 by multiplying a sketching matrix S2. Suppose S has sizem×nwithm <
n. The original problem takes in a matrix of size n×d and a vector of size n, whereas the sketched
problem involves a matrix of size m× d and a vector of size m. Note the problem size becomes
a lot smaller given SA can be calculated fast and m� n. Moreover, for sketching matrices that
form (1 ± ε) `2 subspace embeddings, it is guaranteed that ‖Ay∗S − b‖2 = (1 ± ε)‖Ay∗ − b‖2 3,
where y∗ is the solution to the unsketched problem and y∗S is the solution to the sketched problem.
There has been extensive research on the type and size of the sketching matrix that can be used
as the sketching matrix of LLSS . See [15] for a survey.

In this paper, however, we are not going to design new sketching matrices. Instead, we
mainly use the sketching matrix property as a black box and try to answer the question that
whether LLSS can replace LLS in a differentiable programming system which internally uses
LLS. Although LLSS provides a good approximation to argminy ‖Ay − b‖2, the derivatives are
not necessarily close to those of LLS. As a result, after training with gradient descent method, a
neural network containing LLSS might converge differently and yield higher test loss compared
with the same neural network with LLS.

To address these concerns, we first provide necessary background on sketching and automatic
differentiation. After exploring a novel bound on a sketched pseudoinverse matrix product, we
analyze the two proposed ways of sketched regression, namely the “Regular Sketch” and the
“Partial Sketch”, how the forward and reverse AD transformations of LLSS can be expressed, and
the approximation error bound on the transformations. Finally, we test the actual loss and running

1This work is based on [8].
2Informally, we say a matrix is a sketching matrix if we apply the matrix and the input with certain operations to

get the sketch.
3We use ‖Sx‖22 = (1± ε)‖x‖22 to denote (1− ε)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + ε)‖x‖22.
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speed of our sketched regression in the diffentiable programming context on both synthetic and
real-world datasets to see if the sketching methods enjoy the favorable accuracy and complexity.
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Chapter 2

Preliminaries

2.1 Sketching in Least Squares Regression

We use ‖·‖2 as the operator norm for matrices, ‖·‖F as the Frobenius norm for matrices. and ‖·‖,
‖·‖2 interchangeably as the `2 norm for vectors.
Definition 2.1.1. (Least Squares Regression, or Linear Regression, `2 Regression) Given an n×d
matrix A with n� d, an n× 1 vector b, output a vector x that minimizes ‖Ax− b‖2.

Throughout the document, we assume n � d with rank(A) = d. We can view each row of
the matrix A as a data point and each column as a feature. For real world data, typically there are
far more number of data points than the number of features. This motivates us to only consider
the case when n > d.

It is well-known that for a matrixA, argminx‖Ax−b‖2 = A+bwhereA+ is the pseudoinverse
of A. If A has full column rank, A+ = (ATA)−1AT.
Definition 2.1.2. (`2-Subspace Embedding) Let V be a fixed d-dimensional subspace in Rn. A
matrix S is a (1 ± ε) `2-subspace embedding for V if for all x ∈ V , ‖Sx‖22 = (1 ± ε)‖x‖22.
Equivalently, fix A to be an n × d matrix with column space V , an m × n matrix S is a (1 ± ε)
`2-subspace embedding for V if for all x ∈ Rd, ‖SAx‖22 = (1± ε)‖Ax‖22.

Since we are working in the `2 norm throughout the document, we sometimes omit the `2 for
simplicity. When we say a matrix S is a subspace embedding for a matrix A, we mean S is a
(1± ε) `2-subspace embedding for the column space of A.

A limitation with the subspace embedding is that we need to know the subspace we are trying
to embed beforehand. This motivates the following definition.
Definition 2.1.3. (Oblivious `2-Subspace Embedding) A matrix S is a (d, ε, δ) oblivious `2-
subspace embedding if for any fixed d-dimensional subspace V ∈ Rn, for all x ∈ V , ‖Sx‖22 =
(1 ± ε)‖x‖22 with probability at least 1 − δ. Equivalently, a matrix S is a (d, ε, δ) oblivious `2-
subspace embedding if for any n × d matrix A, for all x ∈ Rd, ‖SAx‖22 = (1 ± ε)‖Ax‖22 with
probability at least 1− δ.

Let U be a matrix with orthonormal columns and v be a unit vector. ‖SUv‖22 = (1±ε)‖Uv‖22
implies (SUv)T(SUv)− (Uv)T(Uv) ≤ ε and can be further simplified to ‖UTSTSU − I‖2 < ε.
This also implies the singular values of UTSTSU are in [1− ε, 1 + ε], and the singular values of
SU are in [1− ε, 1 + ε] for small ε. These properties are useful in later chapters.
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We use OSE to denote the oblivious `2-subspace embedding for short. In literature (and this
document), sometimes “oblivious” are dropped for convenience, and “subspace embedding” is
used interchangeably with “oblivious `2-subspace embedding”.
Definition 2.1.4. (Singular Value Decomposition) Any n × d matrix A can be decomposed as
UΣV T, where U is an n × d matrix with orthonormal columns, Σ is a d × d diagonal matrix
with singular values on its diagonal, V is a d× d orthogonal matrix.

2.2 Notations for Automatic Differentiation
• Automatic Differentiation, or AD for short, refers to the derivative evaluation algorithms.

Forward and reverse mode AD transformations refer to the actual derivative(s).
• Standard notation from AD community is used. Consider an independent variable x and a

dependent variable y. We use ẋ for an infinitesimal perturbation of x, and ẏ for ∂y
∂x

(notation
used in forward mode AD). We use x̄ for ∂y

∂x
(notation used in reverse mode AD). See [1]

for a thorough survey on automatic differentiation.
• We can write a computation process as a directed acyclic graph with circles representing

variables and squares representing operators. Say we compute g(x, y) = f(x) + y where
f(z) = cos z. Then the computation of g(a, b) for values a, b can be represented by the
following graph:

w2w1 = a cos

w3 = b

+ w4

Computation graphs can be helpful in the computation of forward and reverse mode AD
transformations.

2.3 The Problem

Formally, given an n×dmatrixA (with n� d), an n×1 vector b and anm×n sketching matrix
S, we want to show a tight bound on the sketched regression’s approximation error of forward
and reverse mode AD transformations.

2.4 Motivation

Sketching is a useful technique to accelerate linear regression. However, to our best knowledge,
the relationship between the derivatives of the sketched and unsketched linear regression is yet

4



unknown. At the same time, there is burgeoning interest in extending deep learning (aka differ-
entiable programming) to allow more complicated building boxes to appear inside the computa-
tional process being differentiated. This includes optimization of various sorts (learning-to-learn,
bi-level optimization), AD of fixed point computations [2] recently rediscovered in the ML com-
munity [7] and even AD of discrete optimization processes [10]. In a nutshell, if a subroutine is
useful, people will want to use it in programs they write, and it is increasingly desired that we
are able to differentiate the programs we write. This has resulted in a systematic effort to explore
how to efficiently calculate appropriate derivatives of a variety of numerical processes. Here, we
consider differentiating a linear regression subroutine—in particular, linear regression computed
using sketching methods.

2.5 Related Work
There is a recent work on sketching for speeding up distributed communication of gradients [6].
More specifically, the work focuses on shortening the run time of distributed stochastic gradient
descent methods using CountSketch matrices.

In addition to gradient sketching, Hessian sketching has also been considered since second-
order methods have better convergence rate compared with first-order methods. For instance, [5]
is a recent work on Hessian sketching for serverless systems.

Instead of designing a general scheme of solving various kinds of problems with the tradi-
tional “sketch and solve” approach, our work focuses on the least squares regression, explicitly
reveals the derivative computation steps, and studies the errors resulted from sketching in deriva-
tives and the overall network.
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Chapter 3

A bound on the Opertor Norm of Sketched
Pseudoinverse

We need theorem 3.0.1 for proving theorem 3.0.2.
Theorem 3.0.1. (By Cohen et al. [3]) Let A ∈ Rn×d and B ∈ Rn×p with n � d, n � p. For
sketching matrix S drawn from (ε, δ, 2k)-OSE,

‖ATSTSB − ATB‖2 ≤ ε
√

(‖A‖22 + ‖A‖2F/k)(‖B‖22 + ‖B‖2F/k)

holds with probability 1− δ.
Theorem 3.0.2 says the pseudoinverse and sketched pseudoinverse terms cannot differ by

much in terms of the opertor norm, and the difference is small compared to the norm of the
pseudoinverse itself. Since we apply sketching on the least squares regression problem, we
will encounter pseudoinverse and sketched pseudoinverse terms in derivative computations. In
particular, terms like (SA)+(SB), where B is not a vector, come into the picture. Under these
circumstances, the bound in theorem 3.0.2 becomes useful as we need to bound the difference
between the unsketched and sketched pseudoinverse terms. This result also extends previous
results in which B is considered as a vector [12] [4].

The intuition for proving the bound is that after singular value decomposition, (SA)+SB and
A+B have similar structures1. For the parts of the structures that differ between the two terms,
there are enough tools to bound them. The former term has a UTSTSU factor and the latter
term has a corresponding factor I . It is easy to bound the difference as ‖UTSTSU − I‖2 ≤ ε.
Also note the former term consists of a UTSTSB factor, and in the latter term the corresponding
factor is UTB. These two terms are exactly in the form of the left-hand side of theorem 3.0.1.
Theorem 3.0.2. Let A ∈ Rn×d and B ∈ Rn×p with n � d, n � p. Let S be a matrix drawn
from a distribution D with (ε, δ, 2k)-OSE property for some k ≥ d. With probability 1− δ,

‖(SA)+SB‖2 ≤ ‖A+B‖2 +O(ε)
√

(1 + d/k)(‖B‖22 + ‖B‖2F/k)/σmin(A)

1(SA)+SB = V Σ−1(UTSTSU)−1UTSTSB and A+B = V Σ−1UTB.

7



Proof. Let UΣV T be the SVD of A. By Triangle Inequality,

‖(SA)+SB‖2 = ‖(SA)+SB − A+B + A+B‖2
≤ ‖A+B‖2 + ‖(SA)+SB − A+B‖2
= ‖A+B‖2 + ‖V Σ−1(UTSTSU)−1UTSTSB − V Σ−1UTB‖2
= ‖A+B‖2 + ‖V Σ−1‖2‖(UTSTSU)−1UTSTSB − UTB‖2
≤ ‖A+B‖2 + ‖Σ−1‖2‖(UTSTSU)−1UTSTSB − (UTSTSU)−1UTB

+ (UTSTSU)−1UTB − UTB‖2
≤ ‖A+B‖2 + ‖Σ−1‖2(‖(UTSTSU)−1‖2‖UTSTSB − UTB‖2

+ ‖(UTSTSU)−1 − Id‖2‖UTB‖2)

Recall the singular values of UTSTSU are in [1− ε, 1 + ε] when S is an OSE. Therefore the
singular values of (UTSTSU)−1 are also roughly in [1 − ε, 1 + ε] for small ε, and the singular
values of (UTSTSU)−1−I are in [−ε, ε]. Also by theorem 3.0.1, we have ‖UTSTSB−UTB‖2 ≤√

(1 + d/k)(‖B‖22 + ‖B‖2F/k). Now we can continue the proof as follows:

‖(SA)+SB‖2 ≤ ‖A+B‖2 + ‖Σ−1‖2(‖(UTSTSU)−1‖2‖UTSTSB − UTB‖2
+ ‖(UTSTSU)−1 − Id‖2‖UTB‖2)

≤ ‖A+B‖2 + ‖Σ−1‖2(1 + ε)ε

√
(1 +

d

k
)(‖B‖22 +

‖B‖2F
k

) + ε‖Σ−1‖2‖UTB‖2

≤ ‖A+B‖2 + 2ε‖Σ−1‖2

√
(1 +

d

k
)(‖B‖22 +

‖B‖2F
k

) + ε‖Σ−1‖2‖B‖2

≤ ‖A+B‖2 + 3ε‖Σ−1‖2

√
(1 +

d

k
)(‖B‖22 +

‖B‖2F
k

)

≤ ‖A+B‖2 +
3ε

σmin(A)

√
(1 +

d

k
)(‖B‖22 +

‖B‖2F
k

)

Notice that if k/ε2 � d, we have ε
√

1 + d/k � 1, and the term ‖B‖2/εmin(A) roughly
equals to ‖A+B‖2, which translates to ‖(SA)+SB‖2 ≤ (1+c)‖A+B‖2 where c is a constant de-
pends on k, d, ε and is small when k/ε2 > d. In words, we have shown that ‖(SA)+SB‖2/‖A+B‖2 ≈
1 in practice.

We simultaneously get a lower bound on ‖(SA)+SB‖2 as well. If we interchange (SA)+SB
and A+B in the proof, as every term is in norm, we would get

‖A+B‖2 ≤ ‖(SA)+SB‖2 +O(ε)
√

(1 + d/k)(‖B‖22 + ‖B‖2F/k)/σmin(A).

8



Chapter 4

Forward and Reverse Mode AD of
Sketched Regression

• Regular Sketch: We define the “Regular Sketch” to be the scheme that approximates
argminx‖Ax − b‖ with argminx‖SAx − Sb‖ = (ATSTSA)−1ATSTSb and computes the
AD transformations accordingly for both the forward and reverse mode.

• Partial Sketch: We define the “Partial Sketch” to be the scheme that uses (ATSTSA)−1ATb
as primal, and for both forward and reverse mode, sketches the (ATA)−1 term only. We
call it “Partial Sketch” because the derivatives yielded by this method is an approximation
of the real derivative if the sketched solution is given by (ATSTSA)−1ATb. This sketch
is desirable because theoretically it still accelerates the computation, as finding (ATA)−1

is the most expensive operation in calculating the AD transformations. More importantly,
this sketch makes it easier to analyze the AD transformations. Sketching ATA only is first
considered by Pilanci et al. [9].

We summarize the results for the forward and reverse AD transformations.

Type Primal Forward Transform

Regular y = (ATA)−1ATb ẏ = (ATA)−1(ȦTb+ ATḃ− (ȦTA+ ATȦ)y)

“Regular Sketch” yS = (ATSTSA)−1ATSTSb ẏS = (ATSTSA)−1(ȦTSTSb+ ATSTSḃ

− (ȦTSTSA+ ATSTSȦ)yS)

“Partial Sketch” yD = (ATSTSA)−1ATb ẏD = (ATSTSA)−1(ȦTb+ ATḃ

− (ȦTA+ ATȦ)yD)

Table 4.1: Forward Mode AD Transformations.

The computation details can be found in the following section.

9



Type Primal Reverse Transform

Regular y = (ATA)−1ATb Ā =− A(ATA)−1ȳyT

− AyȳT(ATA)−1

+ bȳT(ATA)−1

b̄ = A(ATA)−1ȳ
“Regular Sketch” yS = (ATSTSA)−1ATSTSTb ĀS =− STSA(ATSTSA)−1ȳSyS

T

− STSAyS ȳS
T(ATSTSA)−1

+ STSbȳS
T(ATSTSA)−1

b̄S = STSA(ATSTSA)−1ȳS
“Partial Sketch” yD = (ATSTSA)−1ATb ĀD =− A(ATSTSA)−1ȳDyD

T

− AyDȳDT(ATSTSA)−1

+ bȳD
T(ATSTSA)−1

b̄D = A(ATSTSA)−1ȳD

Table 4.2: Reverse Mode AD Transformations.

4.1 AD Transformations

For completeness, we include the computations of AD transformations for the least squares re-
gression and two ways of the sketched regression.

4.1.1 Forward mode AD

Least Squares Regression

First we create a computation graph for computing y(A, b) = (ATA)−1ATb as shown in figure
1. Then with matrix derivative rules, we have the following:

w1 = A

w2 = b

w3 = AT = w1
T

w4 = ATA = w3w1

w5 = (ATA)−1 = w−14

w6 = ATb = w3w2

w7 = (ATA)−1ATb = w5w6

=⇒

ẇ1 = Ȧ

ẇ2 = ḃ

ẇ3 = ẇ1
T

ẇ4 = ẇ3w1 + w3ẇ1

ẇ5 = −w4
−1ẇ4w4

−1

ẇ6 = ẇ3w2 + w3ẇ2

ẇ7 = ẇ5w6 + w5ẇ6

10



w2

w1

w3 mul

trans

w4mul

w6 inv

w5mul

w7

Figure 4.1: Computation Graph of Least Squares Regression

11



Expand ẏ:

ẇ7 = ẇ5w6 + w5ẇ6

= −w4
−1ẇ4w4

−1w6 + w−14 (ẇ3w2 + w3ẇ2)

= −(ATA)−1ẇ4(A
TA)−1ATb+ (ATA)−1(ȦTb+ ATḃ)

= −(ATA)−1(ẇ3w1 + w3ẇ1)(A
TA)−1ATb+ (ATA)−1(ȦTb+ ATḃ)

= −(ATA)−1[(ȦTA+ ATȦ)(ATA)−1ATb− (ȦTb+ ATḃ)]

= (ATA)−1[(ȦTb+ ATḃ)− (ȦTA+ ATȦ)w7]

= (ATA)−1[(ȦTb+ ATḃ)− (ȦTA+ ATȦ)y]

Regular Sketch

With computation graph figure 2 and matrix derivative rules, we have the following:

w1 = A

w2 = b

w3 = Sw1

w4 = Sw2

w5 = w3
T

w6 = ATSTSA = w5w3

w7 = (ATSTSA)−1 = w−16

w8 = ATSTSb = w5w4

w9 = w7w8

=⇒

ẇ1 = Ȧ

ẇ2 = ḃ

ẇ3 = Sẇ1

ẇ4 = Sẇ2

ẇ5 = ẇ3
T = ẇ1

TST

ẇ6 = ẇ5w3 + w5ẇ3

ẇ7 = −w6
−1ẇ6w6

−1

ẇ8 = ẇ5w4 + w5ẇ4

ẇ9 = ẇ7w8 + w7ẇ8

Expand ẏS:

ẇ9 = ẇ7w8 + w7ẇ8

= −w6
−1ẇ6w6

−1w8 + w6
−1(ẇ5w4 + w5ẇ4)

= −w6
−1(ẇ5w3 + w5ẇ3)w6

−1w8 + w6
−1(ẇ1

TSTw4 + w5Sẇ2)

= −w6
−1(ẇ1

TSTw3 + w5Sẇ1)w6
−1w8 + w6

−1(ẇ1
TSTw4 + w5Sẇ2)

= w6
−1(ẇ1

TSTw4 + w5Sẇ2 − (ẇ1
TSTw3 + w5Sẇ1)w6

−1w8)

= (ATSTSA)−1
(
ȦTSTSb+ ATSTSḃ− (ȦTSTSA+ ATSTSȦ)w7w8

)
= (ATSTSA)−1

(
ȦTSTSb+ ATSTSḃ− (ȦTSTSA+ ATSTSȦ)yS

)
Partial Sketch

The actual ẏD corresponds to the primal yD = (ATSTSA)−1ATb is (ATSTSA)−1(ȦTb+ATḃ−
(ȦTSTSA + ATSTSȦ)yD). However, as we discussed how the “Partial Sketch” works, we
simply sketch any (ATA)−1 term in ẏ to approximate ẏD. Recall ẏ = (ATA)−1[(ȦTb+ ATḃ)−
(ȦTA + ATȦ)y]. We only sketch the ATA term to get (ATSTSA)−1[(ȦTb + ATḃ) − (ȦTA +
ATȦ)y] and use it as ẏD. See the previous discussion for more details.

12



w2

mulS

w4

w3

w1

mulS

w5 mul

trans

w6mul

w8 inv

w7mul

w9

Figure 4.2: Computation Graph of “Regular Sketch”
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4.1.2 Reverse Mode AD

We include the computation of AD transformations in the reverse mode for the linear regression
and two ways of the sketched regression. The same computation graph for forward mode is used.
For reverse mode AD transformations, we want to find both Ā and b̄.

Least Squares Regression

See figure 1 for the computation graph of the least squares regression.

w1 = A

w2 = b

w3 = AT = w1
T

w4 = ATA = w3w1

w5 = (ATA)−1 = w−14

w6 = ATb = w3w2

w7 = (ATA)−1ATb = w5w6

=⇒

w̄7 = w̄7

w̄6 = w5
Tw̄7

w̄5 = w̄7w6
T

w̄4 = −w5w̄5w5

w̄3 = w̄6w2
T + w̄4w1

T

w̄2 = w3
Tw̄6

w̄1 = w̄3
T + w3

Tw̄4

Expand Ā and b̄:

Ā = w̄1

= w̄3
T + w3

Tw̄4

= (w̄6w2
T + w̄4w1

T)T + A(−w5w̄5w5)

= w2w̄6
T + w1w̄4

T − Aw5w̄5w5

= w2(w5
Tw̄7)

T + w1(−w5w̄5w5)
T − Aw5w̄5w5

= w2w̄7
Tw5 − w1w5w̄5

Tw5 − Aw5w̄5w5

= bȳT(ATA)−1 − A(ATA)−1w̄5
T(ATA)−1 − A(ATA)−1w̄5(A

TA)−1

= bȳT(ATA)−1 − A(ATA)−1w6w̄7
T(ATA)−1 − A(ATA)−1w̄7w6

T(ATA)−1

= bȳT(ATA)−1 − A(ATA)−1ATbȳT(ATA)−1 − A(ATA)−1ȳbTA(ATA)−1

= bȳT(ATA)−1 − AyȳT(ATA)−1 − A(ATA)−1ȳyT

b̄ = w̄2

= w3
Tw̄6

= Aw5
Tw̄7

= A(ATA)−1w̄7

= A(ATA)−1ȳ
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Regular Sketch

See figure 2 for the computation graph of the “Regular Sketch”.

w1 = A

w2 = b

w3 = Sw1

w4 = Sw2

w5 = w3
T

w6 = ATSTSA = w5w3

w7 = (ATSTSA)−1 = w−16

w8 = ATSTSb = w5w4

w9 = w7w8

=⇒

w̄9 = ȳS

w̄8 = w7
Tw̄9

w̄7 = w̄9w8
T

w̄6 = −w7w̄7w7

w̄5 = w̄8w4
T + w̄6w3

T

w̄4 = w5
Tw̄8

w̄3 = w̄5
T + w5

Tw̄6

w̄2 = STw̄4

w̄1 = STw̄3

Expand ĀS and b̄S:

ĀS = w̄1

= STw̄3

= ST(w̄5
T + w5

Tw̄6)

= ST((w̄8w4
T + w̄6w3

T)T − w5
Tw7w̄7w7)

= ST((w4w̄8
T + w3w̄6

T)− w5
Tw7w̄9w8

Tw7)

= ST((w4(w7
Tw̄9)

T + w3(−w7w̄7w7)
T)− w5

Tw7w̄9w8
Tw7)

= ST((w4w̄9
Tw7 − w3w7

Tw̄7
Tw7

T)− w5
Tw7w̄9w8

Tw7)

= ST(w4w̄9
Tw7 − w3w7

T(w̄9w8
T)Tw7

T)− w5
Tw7w̄9w8

Tw7)

= ST((SbȳS
T(ATSTSA)−1 − SA(ATSTSA)−1ATSTSbȳS

T(ATSTSA)−1

− SA(ATSTSA)−1ȳSb
TSTSA(ATSTSA)−1)

= STSbȳS
T(ATSTSA)−1 − STSAyS ȳS

T(ATSTSA)−1 − STSA(ATSTSA)−1ȳSyS
T

b̄S = w̄2

= STw̄4

= STw5
Tw̄8

= STSAw7
Tw̄9

= STSA(ATSTSA)−1w̄9

= STSA(ATSTSA)−1ȳS

Partial Sketch

We simply sketch every (ATA)−1 term in Ā, b̄ to approximate ĀD, b̄D respectively. Recall Ā =
bȳT(ATA)−1−AyȳT(ATA)−1−A(ATA)−1ȳyT, b̄ = A(ATA)−1ȳ. We set Ā′ = bȳD

T(ATSTSA)−1−
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AyDȳD
T(ATSTSA)−1 − A(ATSTSA)−1ȳDyD

T and use it as ĀD, b̄′ = A(ATSTSA)−1ȳD and
use it as b̄D. Check the previous discussion for more details.

4.2 Bounds on Sketched Regression AD Transformations
For concision, we use M , MS as the shorthanded expressions for ATA,ATSTSA respectively.
We also make the assumption that ȳ = ȳS = ȳD to simplify the analysis.
Lemma 4.2.1. If S is drawn from a subspace embedding, with probability 1− δ, we have

‖AM−1‖2 = ‖Σ−1‖2
‖AM−1

S ‖2 = (1± ε)‖Σ−1‖2
‖M−1 −M−1

S ‖2 ≤ ε‖Σ−1‖22
‖M−1 −M−1

S ‖F ≤ ε‖Σ−1‖2‖Σ−1‖F
‖M−1 +M−1

S ‖2 ≤ (2 + ε)‖Σ−1‖22
‖AM−1 − AM−1

S ‖2 ≤ ε‖Σ−1‖2
‖AM−1 − AM−1

S ‖F ≤ ε‖Σ−1‖F

Proof. Consider the SVD of matrix A = UΣV T. We have M = ATA = V ΣUTUΣV T =
V Σ2V T and M−1 = V Σ−2V T. Additionally, AM−1 = UΣV TV Σ−2V T = UΣ−1V T yielding
‖AM−1‖2 = ‖Σ−1‖2.

We can simplify the expression AM−1
S = UΣV T(V ΣUTSTSUΣV T)−1 =

UΣV TV Σ−1(UTSTSU)−1Σ−1V T = U(UTSTSU)−1Σ−1V T and bound its norm
‖U(UTSTSU)−1Σ−1V T‖2 = (1± ε)‖Σ−1‖2 with probability at least 1− δ.

The remaining bounds follow:

‖M−1 −M−1
S ‖2 = ‖V Σ−1(I − (UTSTSU)−1)Σ−1V T‖2

≤ ‖Σ−1‖2‖I − (UTSTSU)−1‖2‖Σ−1‖2
≤ ε‖Σ−1‖22

‖M−1 −M−1
S ‖F = ‖V Σ−1(I − (UTSTSU)−1)Σ−1V T‖F

≤ ‖Σ−1‖2‖I − (UTSTSU)−1‖2‖Σ−1‖F
≤ ε‖Σ−1‖2‖Σ−1‖F

‖M−1 +M−1
S ‖2 = ‖V Σ−1(I + (UTSTSU)−1)Σ−1V T‖2

≤ ‖Σ−1‖2‖I + (UTSTSU)−1‖2‖Σ−1‖2
≤ (2 + ε)‖Σ−1‖22

‖AM−1 − AM−1
S ‖2 = ‖U(I − (UTSTSU)−1)Σ−1V T‖2

≤ ‖I − (UTSTSU)−1‖2‖Σ−1V T‖2
≤ ε‖Σ−1‖2
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‖AM−1 − AM−1
S ‖F = ‖U(I − (UTSTSU)−1)Σ−1V T‖F

≤ ‖I − (UTSTSU)−1‖2‖Σ−1V T‖F
≤ ε‖Σ−1‖F

Lemma 4.2.2. (By Sarlos and others [12] [11]) With our previous notations, we have

‖y − yS‖2 ≤ O(ε) min
x
‖Ax− b‖2‖A+‖2 =

O(ε)

σmin(A)
min
x
‖Ax− b‖2

4.2.1 Forward mode AD

Regular Sketch

Lemma 4.2.3. Given a matrix S that is an (ε, δ, d)-OSE, we can bound ‖ẏ−ẏS‖2 with probability
1− δ as follows.

Proof.

‖ẏ − ẏS‖ = ‖M−1(ȦTb+ ATḃ− (ȦTA+ ATȦ)y)

−M−1
S (ȦTSTSb+ ATSTSḃ− (ȦTSTSA+ ATSTSȦ)yS)‖

≤ ‖M−1ȦTb−M−1
S ȦTSTSb‖+ ‖M−1ATḃ−M−1

S ATSTSḃ‖
+ ‖M−1ȦTAy −M−1

S ȦTSTSAyS‖+ ‖M−1ATȦy −M−1
S ATSTSȦyS‖

We use the triangle inequality of version ‖AB − CD‖2 ≤ ‖A − C‖2‖B + D‖2 + ‖A +
C‖2‖B −D‖2 for arbitrary matrices in the following equations.

The first difference term can be written as

‖M−1ȦTb−M−1
S ȦTSTSb‖ ≤ ‖M−1 −M−1

S ‖2‖Ȧ
Tb+ ȦTSTSb‖

+ ‖M−1 +M−1
S ‖2‖Ȧ

Tb− ȦTSTSb‖
≤ ε‖Σ−1‖22‖ȦTb+ ȦTSTSb‖

+ (2 + ε)‖Σ−1‖22‖ȦTb− ȦTSTSb‖

Following up with the second difference term, where we use lemma 4.2.2.

‖M−1ATḃ−M−1
S ATSTSḃ‖ ≤ O(ε) min

x
‖Ax− ḃ‖2‖A+‖2
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The third difference term can be bounded as follows:

‖M−1ȦTAy −M−1
S ȦTSTSAyS‖ ≤ ‖M−1 −M−1

S ‖2‖Ȧ
TAy + ȦTSTSAyS‖

+ ‖M−1 +M−1
S ‖2‖Ȧ

TAy − ȦTSTSAyS‖
≤ ε‖Σ−1‖22‖ȦTAy + ȦTSTSAyS‖

+ (2 + ε)‖Σ−1‖22‖ȦTAy − ȦTSTSAyS‖
≤ ε‖Σ−1‖22‖ȦTAy + ȦTSTSAyS‖

+ (2 + ε)‖Σ−1‖22(‖ȦTA‖2‖y − yS‖
+ ‖ȦTA− ȦTSTSA‖2‖yS‖2)

Note that the second term of the bound vanishes when S is the identity matrix. We can further
apply theorem 3.0.1 on ‖ȦTA− ȦTSTSA‖2.

The last difference term can be bounded using the result in theorem 3.0.2 and lemma 4.2.2 as
follows:

‖M−1ATȦy −M−1
S ATSTSȦyS‖ ≤ ‖M−1ATȦy −M−1

S ATSTSȦy‖
+ ‖M−1

S ATSTSȦy −M−1
S ATSTSȦyS‖

≤ O(ε)
minx‖Ax− Ȧy‖2

σmin(A)

+O(ε)‖(SA)+SȦ‖2
minx‖Ax− b‖2

σmin(A)

where ‖(SA)+SȦ‖2 ≤ ‖Σ−1‖2
(
‖Ȧ‖2 +O(ε)

√
(1 + d/k)(‖Ȧ‖22 + ‖Ȧ‖2F/k)

)
Combining all four terms gives us an approximation bound.

Partial Sketch

Lemma 4.2.4. For any matrix S that is an (ε, δ, d)-OSE, we have with probability 1− δ,

‖ẏ − ẏD‖ ≤ ε‖Σ−1‖22(‖ȦTb+ ATḃ‖+ ‖(ȦTA+ ATȦ)y‖+ ‖M−1
S (ȦTA+ ATȦ)‖2‖ATb‖)

Proof. Let G = ȦTA+ ATȦ.

‖ẏ − ẏD‖ = ‖(M−1 −M−1
S )(ȦTb+ ATḃ) +M−1

S (ȦTA+ ATȦ)yD −M−1(ȦTA+ ATȦ)y)‖
≤ ε‖Σ−1‖22‖ȦTb+ ATḃ‖+ ‖(M−1 −M−1

S )Gy‖+ ‖M−1
S G(y − yD)‖

≤ ε‖Σ−1‖22‖ȦTb+ ATḃ‖+ ε‖Σ−1‖22‖Gy‖+ ‖M−1
S G(M−1ATb−M−1

S ATb)‖
≤ ε‖Σ−1‖22‖ȦTb+ ATḃ‖+ ε‖Σ−1‖22‖Gy‖+ ε‖M−1

S G‖2‖Σ−1‖22‖ATb‖
= ε‖Σ−1‖22(‖ȦTb+ ATḃ‖+ ‖(ȦTA+ ATȦ)y‖+ ‖M−1

S (ȦTA+ ATȦ)‖2‖ATb‖)
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4.2.2 Reverse Mode AD

Regular Sketch

Lemma 4.2.5. With probability 1− δ, the approximation error for the term ĀS can be bounded
as follows.

Proof. Since the terms in Ā and ĀS have one to one correspondence, we bound the approxima-
tion error with three parts ‖Ā− ĀS‖F ≤ P1 + P2 + P3:

P1 = ‖bȳTM−1 − STSbȳS
TM−1

S ‖F
≤ ‖I − STS‖2‖bȳTM−1

S ‖F + ‖bȳT(M−1 −M−1
S )‖F

≤ ‖I − STS‖2‖bȳTM−1
S ‖F + ε‖Σ−1‖2‖Σ−1‖F‖bȳT‖2

P2 = ‖AM−1ȳyT − STSAM−1
S ȳyS

T‖F
≤ ‖AM−1ȳyT − AM−1

S ȳyT‖F + ‖AM−1
S ȳyT − STSAM−1

S ȳyS
T‖F

≤ ε‖Σ−1‖2‖ȳ‖‖y‖+ ‖(I − STS)AM−1
S ȳyT‖F

≤ ε‖Σ−1‖2‖ȳ‖‖y‖+ ‖I − STS‖2‖AM−1
S ȳyT‖F

P3 = ‖AyȳTM−1 − STSAyS ȳS
TM−1

S ‖F
≤ ‖AyȳTM−1 − AyS ȳTM−1

S ‖F + ‖AyS ȳSTM−1
S − S

TSAyS ȳS
TM−1

S ‖F
≤ ‖AyȳTM−1 − AyS ȳTM−1

S ‖F + ‖I − STS‖2‖AyS ȳTM−1
S ‖F

≤ ‖A(y − yS)‖‖ȳ‖‖Σ−1‖2‖Σ−1‖F + ‖I − STS‖2‖AyS ȳTM−1
S ‖F

Note P1, P2, P3 can be large because of the ‖I − STS‖ term.

Lemma 4.2.6. With probability 1 − δ, the approximation error for the term b̄S can be bounded
as follows:

‖b̄− b̄S‖2 ≤ ‖Σ−1‖2‖ȳ‖2(ε+ (1 + ε)‖I − STS‖2)

Proof.

‖b̄− b̄S‖2 = ‖AM−Tȳ − STSAMS
−TȳS‖2

= ‖AM−1ȳ − AM−1
S ȳ + AM−1

S ȳ − STSAM−1
S ȳ‖2

≤ ‖AM−1 − AM−1
S ‖2‖ȳ‖2 + ‖I − STS‖2‖AM−1

S ‖2‖ȳ‖2
≤ ε‖Σ−1‖2‖ȳ‖2 + ‖I − STS‖2‖AM−1

S ‖2‖ȳ‖2
≤ ‖Σ−1‖2‖ȳ‖2(ε+ (1 + ε)‖I − STS‖2)

Note the bound is tight when S = I . However, ‖I − STS‖2 can be large.

19



Partial Sketch

Lemma 4.2.7. With probability at least 1 − δ, the approximation error for the term Ā can be
bounded by ε · poly(‖A‖F , ‖A−1‖F , ‖b‖2, ‖ȳ‖2).

Proof. The approximation error can be split into 3 terms such that ‖Ā− ĀD‖F ≤ Q1 +Q2 +Q3

where:

Q1 = ‖bȳTM−1 − bȳDTM−1
S ‖F

≤ ε‖bȳT‖F‖Σ−1‖2‖Σ−1‖F

Q2 = ‖AM−1ȳyT − AM−1
S ȳyD

T‖F
= ‖A(M−1 −M−1

S )ȳyT + AM−1
S ȳ(yT − yDT)‖F

≤ ‖A(M−1 −M−1
S )ȳyT‖F + ‖AM−1

S ȳ(y − yD)T‖F
≤ ε‖Σ−1‖2‖ȳyT‖F + ‖AM−1

S ‖2‖ȳ(y − yD)T‖F
≤ ε‖Σ−1‖2‖ȳ‖‖y‖+ ‖AM−1

S ‖2‖ȳ‖‖AM
−1 − AM−1

S ‖2‖b‖
≤ ε‖Σ−1‖2‖ȳ‖‖y‖+ ‖AM−1

S ‖2‖ȳ‖ε‖Σ
−1‖2‖b‖

≤ ε‖ȳ‖‖Σ−1‖2(‖y‖+ ‖AM−1
S ‖2‖b‖)

≤ ε‖ȳ‖‖Σ−1‖2(‖y‖+ (1 + ε)‖Σ−1‖2‖b‖)

Q3 = ‖AyȳTM−1 − AyDȳTM−1
S ‖F

= ‖AyȳT(M−1 −M−1
S ) + AyȳTM−1

S − AyDȳ
TM−1

S ‖F
≤ ε‖AyȳT‖2‖Σ−1‖2‖Σ−1‖F + ‖A(y − yD)ȳTM−1

S ‖F
≤ ε‖AyȳT‖2‖Σ−1‖2‖Σ−1‖F + ε‖A‖2‖Σ−1‖2‖b‖‖ȳTM−1

S ‖
≤ ε‖A‖2‖Σ−1‖2(‖yȳT‖2‖Σ−1‖F + ‖b‖‖ȳTM−1

S ‖)

Note that Q1, Q2, Q3 are O(ε).

Lemma 4.2.8. With probability 1 − δ, the reverse mode approximation error for the term b̄D
satisfies

‖b̄− b̄D‖2 ≤ ε‖Σ−1‖2‖ȳ‖2

Proof.

‖b̄− b̄D‖2 = ‖AM−1ȳ − AM−1
S ȳS‖2

= ‖U(I − (UTSTSU)−1)Σ−1V Tȳ‖2
≤ ε‖U‖2‖Σ−1‖2‖ȳ‖2
≤ ε‖Σ−1‖2‖ȳ‖2
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In summary, we provide theoretical bounds on the approximation errors of forward and re-
verse mode AD transformations. For forward mode AD transformations, the errors for both the
“Regular Sketch” and the “Partial Sketch” are in O(ε). However, for reverse mode AD transfor-
mations, the errors for the “Regular Sketch” consist of the term ‖I − STS‖2 which can be large
under certain circumstances. Say if S is a CountSketch matrix, ‖I − STS‖2 can be in O(n). In
reverse mode, the bound for AD transformations of the “Partial Sketch” is straightforward and
all in O(ε).

An intuitive explanation about the tight derivative bounds of the “Partial Sketch” is that, when
combining the terms, we can factor out all the terms that are not (ATA)−1 or (ATSTSA)−1 as
they are common terms. We can then use SVD onAwith the inequality ‖(UTSTSU)−1−I‖2 ≤ ε
to factor out a constant term ε. For the “Regular Sketch” however, because of how derivative
rules work, we end up getting I − STS term if we factor out common terms. We cannot simply
bound the operator norm of a term with an I − STS factor by adding the norm operator on
I − STS as its norm grows with its dimension for certain sketching matrices. At the same time,
the approximation errors of the ADs of the “Regular Sketch” do not have the ε factor.

Thus, we expect a better performance of the “Partial Sketch” than the “Regular Sketch” in
terms of approximating derivatives when replacing the least squares regression. We also expect
the “Partial Sketch” outperforms the “Regular Sketch” when incorporated in a larger deep learn-
ing system as reverse mode ADs are used in back-propagation and the “Partial Sketch” has lower
approximation errors in ADs.
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Chapter 5

Experiments

We consider both synthetic and deep learning experiments to highlight the performance of our
proposed sketching methods in approximating derivatives and speeding up training time.

For the synthetic experiment, we plot the approximation error of AD transformations of the
two proposed approaches for obtaining forward and reverse mode AD in figure 5.1.
• We generateA ∈ R100000×100 and b ∈ R100000×1 with entries to be drawn uniformly random

in [0, 1).
• We set ȳ[i] = 1 if y[i] > 0 and ȳ[i] = −1 if y[i] < 0 (use sign as cost function).
• We set Ȧ and ḃ’s each entry to be to be drawn in i.i.d. N(0, 1) then multiplied with 10−4.
• For the forward mode, we plot ‖ẏ − ẏS‖2 in yellow and ‖ẏ − ẏD‖2 in blue.
• For the reverse mode, we plot ‖b̄− b̄S‖2 in yellow and ‖b̄− b̄D‖2 in blue.
• Three families of sketching matrices: Gaussian, CountSketch and subsampled randomized

Hadamard transform (SRHT) are applied.
We observe that the “Partial Sketch” is more accurate, which is consistent with our previous
results.

Figure 5.1: Numerical Observations in Synthetic Experiment

In figure 5.1 we use old terminology “diff+sketch” and “sketch+diff” in place of the “Par-
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Figure 5.2: Training loss in linear and regression layers on MNIST and CIFAR10 datasets with
64, 128 and 256 rank features run on a NVIDIA GTX980 GPU.

tial Sketch” and the “Regular Sketch”. Note we adapt the latter terminology throughout this
document for less confusion caused by naming. In figure 5.2 we use ds and sd as shorthanded
notation for “diff+sketch” and “sketch+diff” respectively, which should be replaced by ps and rs
that stand for the “Partial Sketch” and the “Regular Sketch” respectively.

For the deep learning experiments, we consider the following real-world datasets:
MNIST: 60, 000 handwritten digits of shape 28× 28 for training and 10, 000 for testing.

CIFAR10: 60, 000 images in 10 classes of which 10, 000 are for testing.
We use an autoencoder for showcasing our sketched regression layer. We consider the standard
encoder decoder framework with the encoder consisting of a linear layer mapping to 64 dimen-
sions followed by a ReLu layer. The decoder is built with a linear layer mapping from 64 to 128
dimensions followed by a ReLU and a second linear layer mapping from 128 dimensions to the
input dimension, followed by a tanh layer. In our experiments, we replace the linear layer of
the encoder by the linear least squares regression modules, both unsketched and sketched, which
have been considered in this work.

The linear layer takes in input data x, then applies a linear transformation to x with the
formula y = Ax + b in which A, b will be learned. The regression layer takes in input data x,
outputs y = (ATA)−1ATx in which A will be learned throughout the training.
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Sketching MNIST CIFAR10
64 128 256 64 128 256

RG ps 0.16 0.08 0.08 0.21 0.09 0.08
rs 0.11 0.07 0.08 0.11 0.08 0.08

CS ps 0.15 0.10 0.09 0.14 0.09 0.09
rs 0.10 0.09 0.08 0.09 0.08 0.08

Table 5.1: Test loss on the MNIST and CIFAR10 datasets after convergence of the sketching
algorithms using random Gaussian (RG) and CountSketch matrices (CS) with “Partial Sketch”
or ps, and “Regular Sketch” or rs.

Figure 5.3: Training loss in linear and regression layers on CIFAR10 dataset with 64, 128 and
256 rank features on multicore settings (CPU).

The result running on GPU is shown in figure 5.2. Notice that the regression layer tends
to result in a higher loss and running time compared with the linear layer, and the sketched
regression layer hardly get any speedup over the plain regression layer. This is probably due to
the fact that we have not taken advantage of GPU capabilities for implementing the sketching
operations. We will discuss this oddity in the last chapter. Also, surprisingly the “Regular
Sketch” seems to result in better performance in terms of training loss than the “Partial Sketch”
approach, as shown numerically in table 5. And with higher rank features (for example 128,
256), the sketched regression model achieves a lower loss.

We note that sketching methods provide a significant speedup over the plain regression layer
in the CPU setting as shown in figure 5.3. Here we only consider the “Partial Sketch” version
though it should also apply to the “Regular Sketch”.
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Chapter 6

Discussions and Future Work

We conclude that a sketched regression layer can be a good replacement of a linear regression
layer in the context of differentiable programming. Both methods provide a good speedup com-
pared to unsketched linear regression in CPU setting. We believe sketch methods would also have
a good performance in GPU setting if we fix our code to take advantage of GPU in sketching
computations.

A big loose end in this work, suggested by Dr. Zico Kolter, is that the regression layer is a
special kind of the linear layer and replacing the linear layer with the regression layer without
making assumption to the experiment datasets typically yields worse performance in terms of
model accuracy. Both the linear layer and the regression layer are performing a linear transfor-
mation to the input, and the regression layer assumes certain characteristics of the transformation
(with form (ATA)−1AT). In this sense, the linear layer captures more scenarios and generally
achieves lower loss than the regression layer. Therefore, it is not realistic to expect the regression
layer to outperform the linear layer in most type of neural networks. However, the regression
layer can be useful with problems where the matrix (ATA)−1AT is structured. Many kinds of
structured matrices are closed under arithmetic operations like summation, product, transpose
and inverse [14]. If we restrict the matrix A to be structured in training, (ATA)−1AT will end up
being a structured matrix. Moreover, the training time can be shortened with the regression layer
as shown in 5.3. We give a few examples of structured matrices that are commonly considered
below.
• A can be innately represented with the sum of two low rank matrices θ1A1 + θ2A2 where
θ1, θ2 ∈ Rn×1 and A1, A2 ∈ R1×d.

• A can be a Vandermonde matrix. An n× d Vandermonde matrix has the form
1 a1 a21 . . . ad−11

1 a2 a22 . . . ad−12
...

...
... . . . ...

1 an a2n . . . ad−1n


It has the property that computingA·x for an arbitrary vector x ∈ Rd takes timeO(n log n)
[13], which can further accelerate the running time of the regression layer when d >
O(log n).

27



• A can be a Toeplitz matrix. An n× d Toeplitz matrix has the form that Ai,j = Ai+1,j+1. It
takes time O(nd log n) to compute ATA [13].

• A can be Hankel matrix. An n × d Hankel matrix has the form that for i ≤ j, Ai,j =
Ai+k,j−k for all 0 ≤ k ≤ j − i.

In these cases, we expect the regression layer to have lower training time and be more robust
than the linear layer. Possible applications include the cubic splines interpolation problem, the
polynomial interpolation problem and fitting the d-th order autoregression model [13]. These
applications correspond to the first three structured matrices we listed above respectively. For
future work, we can conduct experiments using datasets with such features.

Due to the aforementioned reasons, we cannot conclude which sketching method generally
performs better in deep learning setting with the current experiment. In fact, although the test
loss of the “Partial Sketch” scheme is higher compared with that of the “Regular Sketch” scheme,
we still believe the “Partial Sketch” should outperform the “Regular Sketch” as it gives a better
estimation of the derivatives by the synthetic experiment. One possible improvement of the
“Partial Sketch” method is to change the primal to that of the “Regular Sketch”, as the primal of
the “Regular Sketch” theoretically performs better than the primal of the “Partial Sketch”.

Another potential improvement is that we can further accelerate the speed of a sketched
regression layer running on sparse datasets using CountSketch matrix.

Last but not least, we can extend the sketched linear regression problem to sketched regres-
sion with different norms, apply sketching to other problems in differentiable programming, or
even find unbiased gradient estimates with sketching method.
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