
List-Decodable Codes: (Randomized)
Constructions and Applications

Nicolas Resch

CMU-CS-20-113

May 2020

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Venkatesan Guruswami, Co-Chair

Bernhard Haeupler, Co-Chair
Ryan O’Donnell

Madhu Sudan, Harvard University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Nicolas Resch

This research was sponsored by a fellowship from the National Sciences and Engineering Research Coun-
cil Graduate Scholarships Doctoral program award number CGSD2-502898; and from three awards from
the National Science Foundation: award number CCF1814603; award number CCF1422045; and, award
number CCF1563742. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: Coding Theory, List-Decoding, Pseudorandomness, Algebraic Construc-
tions, Complexity Theory.

For my family (including Sparky and Loki!).

iv

Abstract
Coding theory is concerned with the design of error-correcting codes,

which are combinatorial objects permitting the transmission of data through
unreliable channels. List-decodable codes, introduced by Elias and Wozen-
craft in the 1950’s, are a class of codes which permit nontrivial protection
of data even in the presence of extremely high noise. Briefly, a (ρ, L)-list-
decodable code C ⊆ Σn guarantees that for any z ∈ Σn the number of code-
words at distance at most ρ from z is bounded by L. In the past twenty
years, they have not only become a fundamental object of study in coding
theory, but also in theoretical computer science more broadly. For exam-
ple, researchers have uncovered connections to pseudorandom objects such
as randomness extractors, expander graphs and pseudorandom generators,
and they also play an important role in hardness of approximation.

The primary focus of this thesis concerns the construction of list-decodable
codes. Specifically, we consider various random ensembles of codes, and
show that they achieve the optimal tradeoff between decoding radius and
rate (in which case we say that the code “achieves capacity”). Random linear
codes constitute the ensemble receiving the most attention, and we develop
a framework for understanding when a broad class of combinatorial proper-
ties are possessed by a typical linear code. Furthermore, we study random
low-density parity-check (LDPC) codes, and demonstrate that they achieve
list-decoding capacity with high probability. We also consider random linear
codes over the rank metric, a linear-algebraic analog of the Hamming metric,
and provide improved list-decoding guarantees.

We also provide non-randomized (i.e., explicit) constructions of list-decodable
codes. Specifically, by employing the tensoring operation and some other
combinatorial tricks, we obtain capacity achieving list-decodable codes with
near-linear time decoding algorithms. Furthermore, the structure of these
codes allows for interesting local decoding guarantees.

Finally, we uncover new connections between list-decodable codes and
pseudorandomness. Using insights gleaned from recent constructions of list-
decodable codes in the rank metric, we provide a construction of lossless di-
mension expanders, which are a linear-algebraic analog of expander graphs.

vi

Acknowledgments
First of all, I would like to offer my sincerest thanks to my advisors,

Venkat Guruswami and Bernhard Haeupler. While I know that this section
is overly long, I cannot resist the urge to share a story. At the start of my
second year of studies, I was feeling a bit depressed. While I was still very
interested in theoretical computer science, the honest truth was that I was not
overly excited about my own research. In my darkest moments, I wondered
if I truly enjoyed research, and whether I had made the right choice to pur-
sue a PhD. At the time Bernhard was my sole advisor, and when I revealed
my doubts to him he was very understanding, and encouraged me to look
around for research problems that I would find stimulating. At this time, I
was taking A Theorist’s Toolkit, an introductory theoretical computer science
course co-instructed by Venkat. I began speaking to Venkat more regularly
(including one particularly memorable trip to Stack’d where I learned about
a problem concerning k-lifts of graphs) and, after I revealed to him that I
was feeling a bit unenthused about my research directions, he promised to
help “find [me] a problem that would keep [me] up at night”.1 Over time,
we began working together more-and-more closely, and he later agreed to
officially co-advise my thesis.

While I would like to say that from that moment onwards the rest of my
PhD was smooth sailing, the reality is of course much messier. There were
still highs and (many) lows. Fortunately, I now had two brilliant researchers
looking out for me, and with their guidance I gradually got used to the trials
and tribulations of research in theoretical computer science. Their patience
and encouragement gave me the space to search for problems that excited
me. Fortunately for me, Venkat shared my passion for algebra and he intro-
duced me to its myriad uses in coding theory. As promised, I quickly built
up a list2 of fascinating research problems, and sure enough I began to suf-
fer some sleepless nights as matrices and polynomials danced in my mind.
Of course, this might sound to some like a cruel and unusual form of tor-
ture, but compared to the alternative of feeling unmotivated, this was a very
welcome change of pace.

In our research discussions, the technical brilliance of my advisors helped
guide me towards promising solutions (and away from the many deadends I
discovered). Furthermore, at a more basic level, it was wonderful to interact
regularly with people whose company I truly enjoyed. As much as I valued
our stimulating research discussions, some of my best memories from my
PhD experience involve shared pitchers of beer.3 For all these reasons, and

1This was probably my introduction to Venkat’s uncanny ability to pithily encapsulate complex ideas.
Of course, this manifests itself in his technical writing, but also in his everyday conversations.

2Many uses of the word “list” in this thesis could be construed as a pun, given the thesis’ topic. Unless
otherwise noted, please excuse these as unintentional.

3Usually IPAs.

the many others that I do not have space to list, my advisors merit a most
gracious thank you.

While I consider myself lucky to have had two advisors to guide me in
my studies, I in fact received valueable guidance from many other mentors.
First of all, I would like to thank the other members of my thesis commit-
tee, Ryan O’Donnell and Madhu Sudan. Both have been willing to discuss
research problems with me when I asked them to, and their insightful ques-
tions have provided me with useful perspectives on the problems presented
in this thesis.

Next, I was fortunate to have had multiple opportunities to visit aca-
demic institutions and work with other professors. First of all, in the sum-
mer of 2016 I visited Eric Blais at the University of Waterloo, where I learned
all about property testing (and also was introduced to what it is like to be
scooped). While the research we conducted there does not directly appear
in this thesis, I would like to think that it influenced my presentation of the
“local properties” we will encounter in Chapter 3. Next, during Venkat’s sab-
batical I had the opportunity to visit the Center for Mathematical Sciences and
Application (CMSA), affiliated with Harvard. There, I met more researchers
than I have space to thank, but the many stimulating talks I attended and
discussions I engaged in certainly left an indelible mark. In particular, I met
Madhu; and furthermore, I met Noga Ron-Zewi, who invited me to visit her
at the University of Haifa for a semester. There, along with fellow PhD stu-
dent Shashwat Silas, we would engage in long daily research discussions. In
particular, she introduced me to many effective combinatorial techniques for
constructing list-decodable codes, and her expertise has greatly influenced
the material and presentation of this thesis. Furthermore, I was constantly
amazed by her desire to make our trip as comfortable as possible: for a spe-
cific example, I recall her making a large number of phone calls to local hos-
pitals to ensure that Shashwat would be able to see an eye specialist after he
suffered a tennis-induced injury.

Beyond the aforementioned researchers, I have benefited greatly from
collaborations with many other people. In particular, I would like to aknowl-
edge my co-authors: Venkat Guruswami, Swastik Kopparty, Ray Li, Jonathan
Mosheiff, Noga Ron-Zewi, Shubhangi Saraf, Shashwat Silas, Mary Wootters,
and Chaoping Xing. The work in this thesis has benefited greatly from their
insights and efforts, and would not have been possible without them. In par-
ticular, while I have only known Jonathan for about a year and a half now, he
introduced me to a new viewpoint on random linear codes which has greatly
influenced my thinking.

Finally, I should probably address the elephant in the room. Or, to be
precise, the elephant in my bedroom, where I am currently forced to work. I
am writing this in spring 2020 during the height of the COVID-19 pandemic.
When one is forced to socially isolate, it is easy to see just how valuable
one’s interpersonal relationships are. I consider myself truly fortunate to

viii

have made so many great friends in the past five years. To my roommates
Laxman Dhulipala, Fait Poms, Roie Levin, and Greg Kehne4, thank you for
the great companionship and indulging my culinary adventures. I like to say
that I enjoy having roommates; equally likely is that I have been very fortu-
nate with my choice of roommates. To Naama Ben-David, Angela Jiang,
Ellen Vitercik, David Wajc and Rohan Sawhney: thank you for the Friday
lunches. To Colin White, Rajesh Jarayam, Jonathan Laurent and my other
great officemates: thank you for making the workplace fun. To John Wright,
Euiwoong Lee, David Witmer and others: thank you for welcoming me into
the theory group. To Sol Boucher and Connor Brem: thanks for introducing
me to cycling (and especially for the insane early morning rides at freezing
temperatures). To the Semi Regular Lorelei Crew: thanks for the (usually
responsible) late-night drinking. Thanks also to Anson Kahng, Ellis Her-
shkowitz, Alex Wang, Bailey Flanigan, Nick Sharp and many others for all
the great memories. I would also like to thank Faith Adebule for invaluable
conversations. Last, but certainly not least, thanks to Vijay Bhattiprolu: for
all the trips to cafes, being a great roommate in Boston, watching basketball
with me, and many other cherished memories.

Lastly, I would like to thank some people from my life prior to coming
to Pittsburgh. First of all, there are few people I’d rather virtually share a
beer with than Kelsey Adams and Alex Freibauer: for all the FaceTime (now
Zoom) calls, thank you. But, most importantly, I am greatly indebted to my
family: my sister Katrin, my father Lothar and my mother Anne. For my
entire life, they have been my greatest supporters, encouraging me in any
intellectual pursuit that happens to take my fancy. I cannot imagine how
I would have completed this thesis if I had not been able to unload all of
my concerns on my parents in our weekly FaceTime calls (I have not quite
managed to convince them to use Zoom yet). As much as I like to joke that
I call mostly to see our beautiful dog (Sparky and later Loki), the reality is
that I truly enjoy and value our conversations. For this, and for uncountably
many other reasons, I will never be able to repay my debt to them. I hope
this thesis is a small indication that their investment is paying off.

4Note these roommates were not concurrent!

ix

x

Contents

1 Introduction 1
1.1 Error-Correcting Codes . 2
1.2 List-Decodable Codes . 5

1.2.1 Motivations for List-Decoding . 5
1.3 Snapshot of Our Contributions . 6

1.3.1 Random Ensembles of Codes . 7
1.3.2 Explicit Constructions of List Decodable Codes 8
1.3.3 Applications of List-Decodable Codes 8
1.3.4 Roadmap . 8

2 Preliminaries 9
2.1 Notations, Conventions, and Basic Definitions 9
2.2 Codes . 13

2.2.1 Random Ensembles of Codes . 15
2.3 List-Decodable Codes and Friends . 16
2.4 Combinatorial Bounds on Codes . 19

2.4.1 Rate-Distance Tradeoffs . 19
2.4.2 List-Decoding Tradeoffs . 22

2.5 Code Families . 27
2.6 Thesis’ Contributions and Organization . 29

2.6.1 Random Ensembles of Codes . 31
2.6.2 Explicit Constructions of List-Decodable Codes 32
2.6.3 Applications of List-Decodable Codes 32
2.6.4 Dependency Between Chapters . 33

3 Combinatorial Properties of Random Linear Codes: A New Toolkit 35
3.1 Prior Work . 36
3.2 Local Properties of Codes . 39

3.2.1 Definitions . 40
3.2.2 Local Properties . 41

3.3 Characterizing the Threshold of Local Properties 44
3.4 Proof of Lemma 3.3.8 . 47
3.5 New Derivations of Known Results . 51

xi

3.5.1 Showing Random Linear Codes Achieve the GV Bound 51
3.5.2 Recovering Known Results on the List-Decodability of Random

Linear Codes . 53
3.6 An Application to List-of-2 Decoding . 56

4 LDPC Codes Achieve List-Decoding Capacity 61
4.1 LDPC Codes . 61

4.1.1 Prior Work on LDPC Codes . 62
4.2 Our Results . 63
4.3 The Proof, Modulo Two Technical Lemmas 66

4.3.1 Sharpness of Local Properties for Random Linear Codes 67
4.3.2 Probability that a Matrix is Contained in a Random s-LDPC Code . 67
4.3.3 Distance of Random s-LDPC Codes 68
4.3.4 Proof of Theorem 4.2.3, Assuming the Building Blocks 69

4.4 Probability Smooth Types Appear in LDPC Codes 70
4.4.1 Fourier Analysis over Finite Fields 71
4.4.2 Proof of Lemma 4.4.1 . 73

4.5 Distance . 75
4.5.1 Proof of Theorem 4.3.5, given a lemma 76
4.5.2 The Function ϕ and Proof of Items 1 and 2 of Lemma 4.5.2 78
4.5.3 Proof of Item 3 of Lemma 4.5.2 . 80

4.6 Open Problems . 86

5 On the List-Decodability of Random Linear Codes over the Rank Metric 87
5.1 Primer on Rank Metric Codes . 87

5.1.1 List-Decodable Rank Metric Codes 88
5.2 Prior Work . 90
5.3 Our Results . 91
5.4 Overview of Approach . 91

5.4.1 Increasing Sequences: A Ramsey-Theoretic Tool 92
5.5 Proofs . 92
5.6 Open Problems . 99

6 Average-Radius List-Decodability of Binary Random Linear Codes 101
6.1 Overview of Approach . 101

6.1.1 Alterations for Average-Radius List-Decoding 102
6.2 The Proof . 103
6.3 Rank Metric . 107

7 Tensor Codes: List-Decodable Codes with Efficient Algorithms 109
7.1 Introduction . 110

7.1.1 The Cast . 110
7.1.2 The Context . 111
7.1.3 Our Results . 112

xii

7.1.4 Deterministic Near-Linear Time Global List-Recovery 113
7.1.5 Local List-Recovery . 114
7.1.6 Combinatorial Lower Bound on Output List Size 115

7.2 Preliminaries . 115
7.2.1 Local Codes . 116
7.2.2 Tensor Codes . 117

7.3 Deterministic Near-Linear Time Global List-Recovery 118
7.3.1 Samplers . 120
7.3.2 Randomness-Efficient Algorithm . 120
7.3.3 Output List Size, Randomness, and Running Time 121
7.3.4 Deterministic Near-Linear Time Capacity-Achieving List-Recoverable

Codes . 124
7.3.5 Deterministic Near-Linear Time Unique Decoding up to the GV

Bound . 127
7.4 Local List-Recovery . 129

7.4.1 Local List-Recovery of High-Rate Tensor Codes 129
7.4.2 Capacity-Achieving Locally List-Recoverable Codes 133
7.4.3 Local Correction up to the GV Bound 137

7.5 Combinatorial Lower Bound on Output List Size 141
7.5.1 Output List Size for List-Recovering High-Rate Tensor Codes . . . 141
7.5.2 Concrete Lower Bound on Output List Size 143
7.5.3 Lower Bound for Local List-Recovery 144
7.5.4 Dual Distance is a Lower Bound on Query Complexity: Proof of

Lemma 7.5.5 . 145
7.5.5 Tensor Product Preserves Dual Distance: Proof of Lemma 7.5.6 . . 146

8 Dimension Expanders: An Application of List-Decodable Codes 149
8.1 Introduction . 149

8.1.1 Our results . 151
8.1.2 Interlude: Rank Metric Codes . 152
8.1.3 Our approach . 153
8.1.4 Previous Work . 155
8.1.5 Organization . 157

8.2 Background . 158
8.2.1 Dimension Expanders . 158
8.2.2 Subspace Designs . 160
8.2.3 Periodic Subspaces . 160

8.3 Construction . 161
8.4 Constructions of Subspace Designs . 164

8.4.1 Subspace Designs via an Intermediate Field 165
8.4.2 Construction via Correlated High-Degree Places 166

8.5 Explicit Instantiations of Dimension Expanders 171
8.6 Unbalanced Expanders . 172

8.6.1 Unbalanced Dimension Expander Construction 172

xiii

8.6.2 Higher-Dimensional Subspace Designs 172
8.6.3 Explicit Instantiations . 173

8.7 Subspace Evasive Subspaces . 174
8.8 Conclusion and Open Problems . 175
8.9 Deferred Proofs . 176

8.9.1 Proof of Lemma 8.4.2 . 176
8.9.2 Randomized Construction of an Unbalanced Dimension Expander 177

9 Conclusion 181
9.1 Precisely Computing the Threshold for List-Decodability 181

9.1.1 Rephrasing Conjecture With Fourier Analysis 182
9.2 An Additive Combinatorics Conjecture . 185
9.3 Explicit LDPC Codes . 188
9.4 Two-Source Rank Condensers . 190
9.5 Miscellaneous Open Problems . 190
9.6 Final Thoughts . 191

Bibliography 193

xiv

List of Figures

1.1 In the above figure, the black dots represent codewords and the red dot is
the received word z, which is a codeword that has had a ρ-fraction of its
symbols corrupted. So long as ρ < δ/2, where δ is the minimum distance
of the code, the codeword closest to z is unique, so Bob can determine the
codeword (and hence, the message) Alice sent. 3

1.2 A code with minimum distance δ. That is, every pair of codewords differ
in at least a δ-fraction of coordinates. 4

1.3 A higher rate code. The increased number of codewords leads to a de-
creased minimum distance δ′ < δ. 4

2.1 An illustration of (ρ, L)-list-decodability. The black dots represent code-
words; the red dot is any center z. The guarantee is that any Hamming
ball as above contains at most L codewords. 17

2.2 An illustration of (ρ, L)-average-radius list-decodability. The black dots
represent codewords; the red dot is any center z. The guarantee is that if
one chooses L+ 1 codewords, their average distance to z is greater than ρ. 18

2.3 An illustration of a “puffed-up rectangle” B(S, ρ). We fix a combinatorial
rectangle S = S1 × · · · × Sn, and then put a ball of radius ρ around each
point in S. 18

2.4 Graph of hq(x) for various values of alphabet size q. In blue, q = 2; in red,
q = 5; in green, q = 17. Note that as q increases, hq(x) → x; we quantify
this below. 21

2.5 Graph of h17,`(x) for various values of input list size `. In blue, ` = 1; in
red, ` = 4; in green, ` = 7. Note that hq,`(0) = logq ` and hq,`(1− `/q) = 1,
and that hq,` increases monotonically between these points. 24

3.1 Notation in the proof of Claim 3.4.1. 50
3.2 Plots of RE

RLC(τi) for each i ∈ {0, 1, 2, 3}. RE
RLC(τ0) is in blue; RE

RLC(τ1) is
in red; RE

RLC(τ2) is in green; and RE
RLC(τ3) is in black. One can see that,

uniformly over ρ ∈ [0, 0.25], the maximum is obtained by RE
RLC(τ1). 59

4.1 A random (t, s)-regular bipartite graph that gives rise to a random s-
LDPC code of rate R. Here, we set t := s(1−R). 63

xv

4.2 The matrices F and H . Each layer Hj of H is drawn independently ac-
cording to the distribution FΠD, where Π ∈ {0, 1}n×n is a random per-
mutation and D ∈ Fn×nq is a diagonal matrix with diagonal entries that
are uniform in F∗q . 66

5.1 Graph of ψb(ρ) for various values of balancedness b. In blue, b = 1; in red,
b = 0.5; in green, b = 0.25. 89

xvi

List of Tables

2.1 A summary of parameters achieved by explicit constructions of capacity-
achieving list-recoverable codes. In the above, R ∈ (0, 1) denotes the rate
(which we assume is constant) and ` is the input list size. Recall that when
q ≥ exp(log(`)/ε) the capacity is 1− ρ− ε, where ρ is the decoding radius.
In the above, we abbreviate subspace evasive set as SES and subspace
design as SD. 30

3.1 Brief snapshot of state-of-the-art for list-decoding. The first result is ef-
fective in the constant-noise regime; the latter in the high-noise regime. . . 38

3.2 A summary of state-of-the arts results concerning combinatorial proper-
ties of random linear codes. The [LW18] result builds off [Gur+02] and
only applies when q = 2. 39

8.1 Regularly used parameters and notations for Chapter 8. 158

xvii

xviii

Chapter 1

Introduction

Consider the following scenario, which might hit a little too close to home in light of the
current state of affairs.1 There is an deadly outbreak of a new virus and the World Health
Organization has announced a pandemic. For this reason, all persons have been asked
to practice “social distancing”, i.e., to maintain a greater than usual physical distance
from one another and to avoid large congregations of people. Therefore, most people
are spending nearly all of their time in their homes, and only venturing outdoors for
basic necessities.

Feeling lonely, Alice wishes to send a message to her friend Bob. Unfortunately, Bob
is feeling quite ill and, while he is unsure if he has contracted the virus (due to a dearth
of available tests), is required to isolate himself at home for the next fourteen days.
Thus, Alice chooses to send a message from a safe distance; perhaps she uses email or
another online messaging service. Unfortunately, these communication networks can
be unreliable: a package might be dropped, or some other error could be introduced in
the transmission.

Fortunately for Alice, error-correcting codes have been introduced 70 years ago in the
seminal works of Shannon [Sha48] and Hamming [Ham50] to address precisely this
issue. Alice can take her desired message (for instance, “Get well soon!”) and add
some judiciously chosen redundancy: the message with the additional redundancy is
called a codeword. Alice can then transmit this codeword to Bob and, so long as the
channel connecting them does not introduce too much noise, Bob can decode the noisy
codeword to obtain the message “Get well soon!”.

However, in light of the dire state of affairs, more errors than expected are intro-
duced in the transmission, and it is impossible for Bob to determine precisely what
message Alice sent. Fortuitously, this eventuality was foreseen by Elias [Eli57] and
Wozencraft [Woz58]. They proposed the study of list-decodable codes, which guarantee
that Bob will be able to compute a short list of messages Alice could have sent. Ideally,
Bob can use side information to deduce the message that Alice intended to send. And,
even if this is not the case, a short list of possible messages is certainly more comforting

1This chapter was written in March 2020.

1

than no message at all.

List-decodable codes are the main object of study in this thesis. Our contributions
can be largely divided into three categories. First, we study various random ensembles
of codes, and develop tools to understand the list-decodability of a random code drawn
from these distributions. Next, we provide explicit constructions of list-decodable codes
which come equipped with extremely efficient decoding algorithms. Finally, we un-
cover new connections between list-decodable codes and other fields in theoretical com-
puter; specifically, pseudorandomness.

In the next section, we provide a gentle introduction to error-correcting codes. In
Section 1.2, we introduce list-decodable codes, and provide further motivation for their
study.2 A brief snapshot of the contributions of this thesis is given in Section 1.3.

1.1 Error-Correcting Codes

Briefly, error-correcting codes provide a systematic method of adding redundancy to
messages so that two parties as above can communicate, even in the presence of noise.
That is, if certain symbols in Alice’s messages are corrupted, then Bob can still determine
the message that Alice sent.

While we defer formal definitions to Chapter 2, in order to introduce error-correcting
codes some terminology is useful. First, as alluded to earlier, the message with the
additional redundancy is referred to as a codeword. The set of all codewords that could
be obtained from a feasible set of messages is called an error-correcting code, or just a
code for short. The potentially unreliable medium through which Alice transmits her
message is called a channel.

If Alice encodes her length k message into a length n codeword, we say that Alice’s
code has rate k

n
. This is a measure of the code’s efficiency, or (non-)redundancy. In more

detail, the larger a code’s rate, the more information Alice is transmitting per symbol
transmitted through the channel. For this reason, it is desirable to have codes with
rate as large as possible: equivalently, Alice would like to add as little redundancy as
possible.

However, if Alice does not add any redundancy, then the code will not provide any
noise-resilience, which is the initial motivation for error-correcting codes! Thus, some
redundancy is necessary. But how can we determine whether or not the redundancy is
useful? That is, how can we mathematically ensure that the resulting code is actually
capable of correcting errors?

To quantify a code’s fault-tolerance, following Hamming [Ham50],3 we consider a
code’s distance. Given two words, their distance is the fraction of symbols that need to

2We hope that our future readers will not find the “social distancing” motivation particularly relevant.
3In Shannon’s model [Sha48], errors are introduced randomly. While this is an extremely important

model studied by a thriving community of researchers, in this thesis we exclusively study Hamming’s
model of worst case errors.

2

z

ρ

Figure 1.1: In the above figure, the black dots represent codewords and the red dot is the
received word z, which is a codeword that has had a ρ-fraction of its symbols corrupted.
So long as ρ < δ/2, where δ is the minimum distance of the code, the codeword closest
to z is unique, so Bob can determine the codeword (and hence, the message) Alice sent.

be changed to turn one word into the other. A code’s distance is then the minimum
distance between two distinct codewords.

Why is this measure useful? Suppose Alice’s code has distance 0.1, i.e., every pair
of codewords differ in at least 10% of their symbols. Furthermore, suppose that the
transmission channel always corrupts less than 5% of the symbols in any codeword.
Bob can then look for the codeword closest to the word he received: as every pair of
codewords differ in 10% of the symbols, this codeword must be unique. In general, if
Alice uses a code of distance δ, Bob can uniquely decode from a ρ-fraction of errors,
assuming ρ < δ/2 (a formal proof of this assertion follows from the triangle inequality).
See Figure 1.1. However, observe that if there are two codewords c1 and c2 that differ
in exactly a δ fraction of their coordinates where δn is even, there is a word that is at
distance exactly δ/2 from both of these codewords. If Bob receives this word, he cannot
not be sure if c1 or c2 was transmitted. Thus, if ρ ≥ δ/2, unique decoding is impossible.

Thus, it is clear that we would like codes which have large distance and large rate.
However, a moment’s reflection shows that these two desiderata are in tension with one
another. If a code is to have high rate, then we must include a large number of n-letter
words in our code; if we have too many codewords, though, it is inevitable that two will
be close together. In fact, understanding how large rate and distance can be simultane-
ously is one of the most fundamental questions in the theory of error-correcting codes.
We discuss some of the known tradeoffs later in Section 2.4; for now, see Figures 1.2 and
1.3 for an illustration of this phenomenon.

Having established the basics of error-correcting codes, the main character of our
story is ready to take center stage.

3

δ

Figure 1.2: A code with minimum distance δ. That is, every pair of codewords differ in
at least a δ-fraction of coordinates.

δ′

Figure 1.3: A higher rate code. The increased number of codewords leads to a decreased
minimum distance δ′ < δ.

4

1.2 List-Decodable Codes

As stated above, so long as the fraction of errors introduced by the channel is less than
half the minimum distance, it is guaranteed that Bob can determine Alice’s message.
However, what if Alice and Bob are separated by a channel that corrupts, say, 51% of
the transmitted symbols? Is there any hope for them to communicate in any meaningful
way?

More generally, suppose Alice wishes to use a code of rateR to communicate through
a channel which corrupts a ρ-fraction of symbols. Due to known rate-distance tradeoffs,
it might be the case that any rate R code has distance at most 2ρ. As discussed earlier,
there can be scenarios when Bob cannot uniquely decode Alice’s message. Nonetheless,
can Bob still hope to derive some useful information about Alice’s codeword?

These questions were addressed by Elias [Eli57] and Wozencraft [Woz58]. These
authors proposed that Bob could settle for a relaxation of unique decoding called list-
decoding. In this relaxation, Bob is no longer required to output the unique closest code-
word; instead, he merely tries to output a (hopefully short) list of codewords, one of
which is guaranteed to be the codeword transmitted by Alice.

One natural hope is for the size of the list output by Bob to not be too large. Indeed, a
trivial solution to the above problem would be for Bob to output every single codeword.
Ideally, one hopes that Bob can use some additional information, obtained perhaps via
other communications with Alice, to pin down the precise message that Alice intended
to transmit. But if the list size is extremely large, it is unclear how useful this list is. At
a more basic level, if we hope for Bob to be able to efficiently compute this list in time
polynomial in n, at the very least the list he outputs must have size polynomial in n.
Even better would be for the list size to be a constant, independent of n.

Perhaps surprisingly, every code is list-decodable with modest list sizes (e.g., 20) even
if the channel corrupts more than δ/2 fraction of the coordinates. In fact, most codes are
list-decodable with constant list sizes, even if the fraction of errors introduced is very
close to δ. Even more startling, nontrivial list-decoding guarantees can be provided
even if 99% of the symbols are corrupted: that is, even if the noise far outweighs the
signal, we can still recover useful information about the signal.

1.2.1 Motivations for List-Decoding

However, just because the notion of list-decoding is not vacuous, the reader could be
justifiably wondering whether list-decoding is a useful notion. First of all, we indicated
above that the list Bob outputs could potentially be pruned further if he has access to
side information, or if he can engage in extra rounds of communication with Alice.
Furthermore, as a code will necessarily be quite sparse, it turns out that it is actually
quite rare that Bob will need to output a long list: that is, for most codewords and
most error patterns corrupting fewer than a δ-fraction of the coordinates, the list Bob
outputs will have size 1: that is to say, Bob will uniquely decode Alice’s message. Thus,

5

providing a nontrivial decoding guarantee even when the channel corrupts more than
δ/2 errors is useful even if Bob hopes to uniquely decode.

Moreover, list-decoding and related notions have found an impressive number of
applications in theoretical computer science. As a first example, list-decoding4 has
found many uses in computational complexity. Specifically, [Bab+91; STV01] use list-
decodable codes to perform hardness amplification, which informally calls for the trans-
formation of a problem which is slightly hard-on-average to another which is very hard-
on-average. In a similar vein, [Lip90; CPS99; GRS06] use list-decodable codes to con-
struct average to worst-case reductions.

As another example particularly relevant to certain results in this thesis, the field
of pseudorandomness has benefited greatly from interactions with list-decoding and
related notions. For instance, a particular list-decodable code called Pavaresh-Vardy
codes [PV05] (named after the researchers who constructed them) were used by Gu-
ruswami, Umans and Vadhan [GUV09] to construct optimal seeded extractors. The
substantial web of connections uncovered between list-decodable codes and other pseu-
dorandom objects is expounded upon quite beautifully in a survey by Vadhan [Vad12].

Other applications of (objects connected to) list-decodable codes include cryptogra-
phy [GL89; Hai+15; KNY17; BKP18], learning theory [GL89; KM93; Jac97], compressed
sensing and sparse recovery [NPR12; Gil+13], group testing [INR10], and streaming al-
gorithms [Lar+16]. In light of this extensive list of applications, we hope that even the
most skeptical reader is willing to concede that list-decodable codes are worthy of study,
and moreover make a compelling topic of study for a thesis.

1.3 Snapshot of Our Contributions

In this section, we provide an informal overview of the results contributed in this thesis.
For more details and a discussion of the thesis’ structure, please see Section 2.6.

The contributions of this thesis can be broadly broken into three main categories.
The first and most substantial segment investigates the list-decodability of random en-
sembles of codes.5 The second part provides an explicit construction of a list-decodable
code with a notably efficient decoding algorithm. The final part adds to the list6 of
applications of list-decodable codes in other parts theoreotical computer science.

4More precisely, some of these applications require “local” list-decoding. Informally, in local list-
decoding Bob is just required to output a short description of the potentially sent codewords. This notion
is defined formally in Chapter 7; specifically, Section 7.2.

5This is the motivation for the word in parentheses in the title.
6Pun intended.

6

1.3.1 Random Ensembles of Codes

Nearly all codes encountered in practice have the desirable algebraic property of linear-
ity. That is, mathematically, they are a subspace of a finite vector space. Linear codes
offer many advantages over general codes. For example, linear codes come equipped
with an efficient representation, which an arbitrary code need not possess. Also, cod-
ing theorists have developed many methods of taking a small inner code and, perhaps
after combining the inner code with some other outer code, obtaining a larger code that
inherits properties of the inner code. In many of these applications, the inner code is
required to be linear.

In spite of their utility, our understanding of the list-decodability of linear codes is
not complete: it is not clear if linear codes can be list-decoded with list sizes as small
as general codes. In response to this, a line of work ([Gur+02; GHK11; CGV13; Woo13;
RW14; RW18; LW18]) has studied the list-decodability of random linear codes. This is
motivated by a remarkably general phenomenon that optimal constructions of combi-
natorial objects are often furnished by random constructions. While many techniques
have been employed, we have not yet succeeded in completely nailing down the per-
formance of random linear codes in all parameter regimes. Thus, a basic question this
thesis will address is the following:

Question 1.3.1. How list-decodable are random linear codes?

Beyond the motivation stemming from the applicability of linear codes, the list-
decodability of random linear codes shines a spotlight on interesting questions con-
cerning the geometry of finite vector spaces. At a fundamental level, it asks to what
extent random subspaces look like uniformly random subsets of the same density from
the perspective of a tester that is able to look for densely clustered points. For this rea-
son, answering Question 1.3.1 will necessarily provide deep insights into the geometry
of finite dimensional vector spaces, which is mathematically interesting in its own right.

Next, low-density parity-check (LDPC) codes [Gal62] are a subclass of linear codes
of fundamental importance: they are widely studied in theory and practice due to their
efficient encoding and (unique) decoding algorithms. Unlike the situation with random
linear codes, the list-decodability of random LDPC codes has not been previously stud-
ied. In this thesis, we show that random LDPC codes are essentially as list-decodable
as random linear codes. In fact, we provide a reduction which demonstrates that any
results we obtain on the list-decodability of random linear codes will immediately yield
roughly equivalent results for random LDPC codes. In particular, this guarantees that
LDPC codes can achieve list-decoding capacity (i.e., they approach the optimal tradeoff
between rate and decoding radius).

Lastly, while most coding theorists use the Hamming metric to define distance be-
tween codewords, motivations stemming from network coding [KS11; SKK08] have led
researchers to investigate codes over the rank metric, as introduced by Delsarte [Del78].
We provide new results concerning the list-decodability of random linear codes over
the rank metric by adapting techniques which have proved effective for the analogous

7

problem in the Hamming metric.

1.3.2 Explicit Constructions of List Decodable Codes

While we are largely interested in random constructions of list-decodable codes, we
also provide an explicit construction of a list-decodable code with an extremely efficient
decoding algorithm. In more detail, we show how to use the tensoring operation to
construct capacity-achieving codes which can be list-decoded deterministically in near-
linear time. Moreover these codes have (nearly) constant list sizes and alphabets.

Moreover, the codes we construct allow for extremely efficient decoding algorithms
that give nontrivial information about a single symbol of a codeword from a corrupted
version of the codeword; namely, they come equipped with local decoding algorithms.
By applying various combinatorial techniques (e.g., concatenation), we can prove the
existence of interesting local codes over the binary alphabet.

1.3.3 Applications of List-Decodable Codes

As mentioned in Section 1.2.1, list-decodable codes have found numerous applications
in other areas of theoretical computer science, and this is especially prominent within
the field of pseudorandomness. We study a pseudorandom object called a dimension
expander, which is an algebraic analog of an expander graph. We show that techniques
similar to those developed in the context of list-decoding codes over the rank metric
can be employed to construct dimension expanders with very good parameters. In fact,
the dimension expanders we construct are lossless, which is a feat that has not yet been
accomplished for the analogous problem on expander graphs.

1.3.4 Roadmap

In Chapter 2, we establish the necessary background for the technical content of this
thesis. Our contributions are contained in Chapters 3–8. In Chapter 9 we summarize
our results and discuss directions for future work that we find particularly stimulating.

8

Chapter 2

Preliminaries

In this chapter, we begin by setting notations and discussing certain conventions that
we have adhered to as best we could to provide the clearest possible exposition. Then,
in Section 2.2, we provide the basic definitions for error-correcting codes. Section 2.3
then provides the definition of list-decodable codes, as well as other related notions
that we study in this thesis. Section 2.4 collects certain combinatorial facts about codes,
especially known rate-distance tradeoffs, that we will often refer to later in the thesis.
Lastly, Section 2.5 discusses explicit constructions of list-decodable codes, which pro-
vides context for the results presented in Chapter 7.

2.1 Notations, Conventions, and Basic Definitions

Given a positive integer n, we let [n] = {1, 2, . . . , n}. For a finite set X , |X| denotes its
size, i.e., the number of elements in X . For a set X and an integer k,

(
X
k

)
denotes the

family of all k element subsets of X .

The symbols N, Z, Q, R and C refer to (as normal) the set of positive integers,1 the
set of all integers, the set of rational numbers, the set of real numbers, and the set of
complex numbers respectively. For an integer n, Z/nZ refers to the ring of integers
modulo n. The symbol F will always denote a field. Of particular importance are the
Galois fields of order q, which we denote by Fq. It is well-known that such fields exist
if and only if q is a prime power, and moreover Fq and F` are isomorphic if and only if
q = `. Thus, we will refer to Fq as “the finite field of order q”.2

We review the asymptotic Landau notation we use. Given two functions f and g of
a growing (decreasing) positive parameter x, f(x) = O(g(x)) asserts that there exists a
constant C > 0 such that for all x large enough (resp., small enough), f(x) ≤ Cg(x).
We may also denote this by f(x) . g(x). We write f(x) = Ω(g(x)) (or f(x) & g(x)) if

1So 0 /∈ N.
2To be completely formal, one should fix an algebraic closure of Z/pZ and then there is a unique degree

d extension of Z/pZ for each d ∈ N.

9

g(x) = O(f(x)) and f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)).

To assert that f grows strictly slower than g, we write f(x) = o(g(x)) if limx→+∞
f(x)
g(x)

=

0 when x is a growing parameter, and f(x) = o(g(x)) if limx→0+
f(x)
g(x)

= 0 when x is a de-
creasing parameter. Complementarily, we write f(x) = ω(g(x)) if g(x) = o(f(x)). We
also occasionally write on(1) to denote a quantity tending to 0 as n → ∞.3 Finally, the
notation f(x) ∼ g(x) implies f(x)/g(x)→ 1 as x tends to its limit. If we us the symbol≈,
that means that we are being informal, and the equality is mostly stated for intuition’s
sake.

If a quantity C depends on some other parameter α and we wish to emphasize this
dependence, we write C = Cα or C = C(α). Similarly, if the implicit constant in the
Landau notation depends on a parameter α, we subscript it, e.g., f(x) = Oα(g(x)) means
there exists a positive constant C = Cα for which f(x) ≤ Cαg(x) for all x.

Unless specified otherwise, all logarithms are base 2; the logarithm with base e is
denoted by ln. We use exp(x) as shorthand for ex. We also occasionally write expy(x),
which we define to equal yx.

Probabilistic notation. In general, we like to use boldface to denote random variables.
Thus, if (Ω,F , µ) is a probability measure space, the notation x ∼ µ indicates that x is a
random variable such that for each measurable set A ∈ F ,

P (x ∈ A) = µ(A) .

If we wish to emphasize the fact that x is distributed according to µ, we will write

P
x∼µ

(x ∈ A) .

Admittedly, we will not typically require the full generality afforded by measure spaces:
most distributions we encounter will be discrete (in fact, finite). In this case, for a count-
able universe U , µ : U → [0, 1] is a function satisfying

∑
x∈U µ(x) = 1. To say that x ∼ µ

then means that for each x ∈ U ,

P
x∼µ

(x = x) = µ(x) .

The support of x is supp(x) := {x ∈ U : P (x = x) > 0}, and we can analogously speak
of the support of a distribution µ, i.e., supp(µ) := {x ∈ U : µ(x) > 0}. For a finite subset
S ⊆ U , we shorthand x ∼ S to indicate that x is sampled uniformly from S. That is,

P
x∼S

(x = x) =

{
1
|S| if x ∈ S
0 if x /∈ S

.

3This notation is useful to emphasize what the growing parameter is, as 1 is of course independent of
said parameter.

10

For an event E , we let I (E) denote the random variable which is 1 if the event E occurs
and 0 otherwise. This implies E [I (E)] = P (E).

If we (perhaps implicitly) have a family of events E = {En}n∈N, we say that E occurs
with high probability (whp) if limn→∞ P (En) = 1. If P (En) ≥ 1− exp(−Ω(n)), we say that E
occurs with exponentially high probability. If an event family occurs with high probability,
then we say that it almost surely occurs. If limn→∞ P (En) = 0, then we say that E almost
surely does not occur.4

Linear algebra. Given a vector space V over a field F, we write U ≤ V if U ⊆ V is a
subspace of V . If U1, U2 ≤ V are subspaces, so is their intersection U1 ∩ U2, as is their
sum U1 + U2 = {u1 + u2 : u1 ∈ U1, u2 ∈ U2}. If V is equipped with a bilinear form
〈·, ·〉 : V × V → F and U ≤ V , we can form the dual space of U , defined by

U⊥ = {v ∈ V : ∀u ∈ U, 〈v, u〉 = 0} .

One can verify that (U⊥)⊥ = U and dim(U⊥) = dim(V)− dim(U). For our purposes, we
will typically have V = Fnq and the bilinear form will be defined by

〈u, v〉 =
n∑
i=1

uivi .

If the underlying field if C, then the bilinear form will be defined by

〈u, v〉 =
n∑
i=1

uivi .

Next, given a linear map T : V → W , the image of T is

T (V) = im(T) = {Tv : v ∈ V } ,

which is a subspace of W . Note that if M is a matrix representing the linear transfor-
mation T in some (equivalently, any) basis, then im(T) = col-span(M), the span of the
columns of M . Given a matrix M , we often find it convenient to identify it with the
associated linear map, e.g., in the notation im(M). The kernel of T is

ker(T) = {v ∈ V : Tv = 0} ,

which is a subspace of V . Note that if M represents T , then ker(T) = row-span(M)⊥, the
orthogonal complement of the span of the columns of M . As before, we write ker(M)
for the kernel of the associated linear map.

Finally, if M is an m×n matrix, Mi,∗ for i ∈ [m] denotes the i-th row of M , while M∗,j
for j ∈ [n] denotes the j-th column.

4Not to be confused with the assertion that E does not almost surely occur, which merely means
lim supn→∞ P (En) < 1.

11

Information theory. We will require a few definitions from information theory. First,
for a discrete5 random variable x, we define its (Shannon) entropy by

H(x) :=
∑

x∈supp(x)

P (x = x) log

(
1

P (x = x)

)
.

(Recall our convention that log is base 2.) By continuity, we define 0 log 0 = 0. Occasion-
ally, it will be convenient to use a base other than 2: for any q > 1, we define

Hq(x) :=
H(x)

log q
=

∑
x∈supp(x)

P (x = x) logq

(
1

P (x = x)

)
.

to be the q-ary (Shannon) entropy of x. If µ is a discrete distribution, we slightly abuse
notation and let H(µ) denote H(x) for any random variable x distributed according to
µ, and similarly for Hq(µ).

If y is another random variable, the joint entropy of x and y, H(x,y), is the entropy of
the random variable (x,y). The conditional entropy of x given y is

H(x|y) := E
y∼y

[H(x|y = y)] .

We record certain well-known facts concerning the entropy function.

Proposition 2.1.1 (Entropy Facts). Let x and y be discrete random variables.
• Nonnegativity: H(x) ≥ 0.
• Log-support upper bound: H(x) ≤ log(supp(x)).
• Conditioning cannot increase entropy: H(x|y) ≤ H(x), with equality if and only if
x and y are independent.

• Chain rule: H(x,y) = H(x) +H(y|x).
• Data-processing inequality: If x is distributed over a set X and f : X → Y , then
H(f(x)) ≤ H(x), with equality iff f is injective.

Lastly, for two random variables x and y, the mutual information between x and y is

I(x;y) := H(x)−H(x|y) = H(y)−H(y|x) = H(x) +H(y)−H(x,y) ,

where the equalities are justified by the chain rule for entropy. Using the third bul-
let point of Proposition 2.1.1 (“conditioning cannot increase entropy”), we deduce that
I(x;y) ≥ 0 with equality if and only if x and y are independent. Finally, Iq(x;y) :=
I(x;y)
log q

is the q-ary mutual information.

5One can consider the entropy of a continuous random variable, but we will not have cause to do so
in this thesis.

12

2.2 Codes

Let Σ be a finite set of cardinality q and n a positive integer. An error-correcting code (or,
to be brief, a code) is simply a subset C ⊆ Σn. Elements c ∈ C are termed codewords. The
integer n is referred to as the block length. The integer q is the alphabet size, and we deem
C to be a q-ary code in this case. If q = 2, the code is deemed binary.

An important parameter is the (information) rate of the code, defined as

R = R(C) :=
logq |C|
n

. (2.1)

Intuitively, the rate quantifies the amount of information transmitted per symbol of the
codeword. Thus, the rate is a measure of the code’s efficiency: the larger R is, the
more data we are able to communicate per codeword sent. If we don’t normalize by
n, we obtain the code’s dimension, typically denoted k := Rn. (The justification for this
terminology will be clear when we introduce linear codes.)

Another crucial parameter of a code is its distance. First, we assume that the set Σn

is endowed with a metric d : Σn × Σn → [0,∞). For a code C, its (minimum) distance is

δ = δ(C) := min{d(c, c′) : c, c′ ∈ C, c 6= c′} .

Intuitively, the minimum distance of a code corresponds to its noise-resilience: if the
distance of a code is larger, then more errors must be introduced to a codeword to cause
it to be confused for a different codeword. For this reason, we seek codes with large
distance. Unfortunately, this desideratum comes into conflict with that of large rate
(recall Figures 1.2 and 1.3). We will explore this tension further in Section 2.4, but for
now we will boldly proclaim that coding theory is at its core devoted to studying the
achievable tradeoffs between rate and noise-resilience (where the noise models may
vary).

The most popular choice for the metric d is the (relative) Hamming distance defined by

dH(x, y) :=
1

n
· |{i ∈ [n] : xi 6= yi}| .

We also occasionally use the absolute Hamming distance ∆H(x, y) := n · dH(x, y). As
the Hamming metric is the metric we will most often encounter, it is typically denoted
simply by d (and its unnormalized variant by ∆). Having said this, we will encounter
another metric in this thesis: the rank metric. For two matrices X, Y ∈ Fm×nq with n ≤ m,
we define

dR(X, Y) :=
1

n
rank(X − Y) .

If we don’t normalize by n, then we obtain the absolute rank distance ∆R(X, Y) := ndR(X, Y).

A code C ⊆ Σn is often presented in terms of an encoding map, which is an injective
function Enc : Σk

0 → Σn for which Enc(Σk
0) = C, where k ∈ N and Σ0 is a finite alphabet.

13

A word m ∈ Σk
0 is called a message and Enc(m) ∈ C is the encoding of the message m. We

typically assume Σ0 = Σ, in which case k = Rn, where R is the code’s rate.

Formally, we will be interested in families of codes, which are an infinite collection C =
{Ci : i ∈ N} such that each Ci is a code of blocklength ni defined over an alphabet of size
qi such that ni+1 > ni and qi+1 ≥ qi for all i ∈ N. Then, we define R(C) = lim infi→∞R(Ci)
and δ(C) = lim infi→∞ δ(Ci). The code family C is said to be asymptotically good ifR(C) > 0
and δ(C) > 0. Even if this is not made explicit, when we speak of codes they will be
defined in a uniform manner for infinitely many block lengths n, and so they do indeed
constitute a family of codes satisfying this definition.

In this thesis, we will typically have Σ = Fq, in which case Fnq naturally forms a vector
space of dimension n over the finite field Fq. In this setting, we can speak of a linear code,
which means that the subset C ⊆ Fnq also forms a subspace of Fnq . To emphasize this, we
write C ≤ Fnq . Moreover, the formula for the rate a linear code is quite simple:

R =
dim C
n

.

Furthermore, if the metric d respects the additive structure of Fnq in the sense that for all
x, y, z ∈ Fnq ,

d(x, y) = d(x+ z, y + z) ,

then the minimum distance of a linear code satisfies

δ = min{wt(c) : c ∈ C \ {0}} ,

where we define wt(c) := d(c, 0) to be the weight of a codeword. Both metrics we con-
sider in this thesis have this property.

There are two natural ways to present a linear code. Let k = dim(C). First of all, a
linear code may be described via a generator matrix G ∈ Fn×kq :6

C = im(G) = col-span(G) = {Gx : x ∈ Fkq} .

That is, a generator matrix is obtained by choosing a basis for the vector space C, and
making them the columns of a matrix. The “dual view” is to look at the linear space
C in terms of the linear contraints defining it. That is, we can take a parity-check matrix
H ∈ F(n−k)×n

q such that

C = ker(H) = (row-span(H))⊥ = {x ∈ Fnq : Hx = 0} .

Observe that if C has generator matrixG and parity-check matrixH , thenHG = 0. From
a computational perspective, linear codes possess two desirable properties:
• Efficient Storage. By storing either the generator matrix or the parity-check matrix,

a linear code C can be stored with only O(n2) field symbols.

6In much of the coding theory literature, it is popular to view codewords as row-vectors. In this thesis,
however, we find it more convenient to view codewords as column vectors, so that is the viewpoint we
take.

14

• Efficient Encoding. Given a generator matrix G for a linear code and a message
x ∈ Fkq , we can encode x by computing the matrix-vector product Gx, which can
be performed in O(nk) time.

However, the task of efficiently decoding a linear code is NP-hard in the worst case, im-
plying that we can’t in general expect efficient decoding algorithms for linear codes.

Finally, while we will not make regular use of this notation, it is standard to write
[n, k, d]q for a linear code over Fq of block length n, dimension k (and hence rate k

n
) and

minimum absolute distance d (so minimum (relative) distance d
n

).

2.2.1 Random Ensembles of Codes

This thesis is largely concerned with random ensembles of codes. That is, we fix a
distribution over codes contained in (i.e., subsets of) Σn, and consider the performance
of a code drawn from this distribution with respect to various measures. For now, we
introduce two basic random models of codes; we will introduce more as we progress.

The simplest random ensemble is the uniform ensemble. For a desired rateR ∈ (0, 1),
a uniformly random code of rate R is a random subset C ⊆ Σn obtained by including each
element x ∈ Σn in C independently with probability q−(1−R)n. Note that the expected
size of such a code satisfies E|C| = qn · q−(1−R)n = qRn: thus, in expectation the code
has rate R. Furthermore, a Chernoff bound demonstrates that with probability at least
1 − exp(−Ω(n)), |C| ≥ qRn/2, and thus the designed rate and the actual rate differ by
a o(1) term with exponentially high probability. For this reason, when we sample a
uniformly random code of rate R, we assume it has rate exactly R, as this negligibly
affects any of the stated results.

As the collection of events “x ∈ C” for x ∈ Σn are independent, we have the follow-
ing basic fact.
Proposition 2.2.1. Let n ∈ N and R ∈ (0, 1). Let C ⊆ Σn be a uniformly random code of rate
R. Then, for any S ⊆ Σn of cardinality d,

P (S ⊆ C) = q−dn(1−R) .

If this thesis has a protagonist, it is played by the ensemble of random linear codes.
A random linear code C of rate R ∈ (0, 1) is obtained by sampling G ∼ Fn×kq uniformly,
where k = bRnc,7 and setting

C = im(G) = col-span(G) = {Gx : x ∈ Fkq} .

Of course, it could happen that C has dimension smaller than k, which occurs if and
only ifG has rank less than k. The probability thisG has rank k is precisely

q−nk
k−1∏
j=0

(qn − qj) =
k−1∏
j=0

(1− qj−n) ≥ 1−
k−1∑
j=0

qj−n = 1− q−n
k−1∑
j=0

qj ≥ 1− qk−n .

7For readability, in the sequal the floor is typically omitted.

15

Thus, since k = bRnc and we will always think of R ∈ (0, 1) as being bounded away
from 1, we have dim(C) = k with exponentially high probability.

Naturally, there is a dual viewpoint on the sampling procedure for a random linear
code: one samplesH ∼ F(n−k)×n

q uniformly and then puts

C = ker(H) = (row-span(H))⊥ = {x ∈ Fnq : Hx = 0} .

While both viewpoints are useful, the writer of this document tends to be biased to-
wards the second viewpoint, and so arguments will predominantly consider random
parity-check matrices rather than random generator matrices.

In contrast to Proposition 2.2.1, the following proposition demonstrates that the
probability a set is contained in a random linear code is controlled by the rank of the set.
Proposition 2.2.2. Let n ∈ N, q a prime power, and R ∈ (0, 1) such that Rn is an integer. Let
C ≤ Fnq be a random linear code of rate R. For any set S ⊆ Fnq of rank d,

P (S ⊆ C) = q−dn(1−R) .

Proof. Let {v1, . . . , vd} be a maximal linearly independent set in S. For k = Rn, let
h1, . . . ,hn−k denote the rows of H , which are independent, uniform vectors in Fnq . For
each i ∈ [d] and j ∈ [n−k], 〈hj, vi〉 is distributed uniformly over Fq. Furthermore, the lin-
ear independence of v1, . . . , vd guarantees that the random variables 〈hj, v1〉, . . . , 〈hj, vd〉
are stochastically independent for each j ∈ [n − k]. Hence, the set of random variables
{〈hj, vi〉 : i ∈ [d], j ∈ [n − k]} are independent, uniform elements of Fq. Moreover, for
any vector v ∈ span{v1, . . . , vd}, if 〈hj, vi〉 = 0 for all i, j, then also 〈hj, v〉 = 0. Thus,

P (Hv = 0 ∀v ∈ S) = P (〈hj, vi〉 = 0 ∀i ∈ [d], j ∈ [n− k]) = q−d(n−k) = q−dn(1−R) .

The takeaway message is that, for a random linear code C, linear independence of a
set {vi} implies stochastic independence of the events {vi ∈ C}.

2.3 List-Decodable Codes and Friends

If random linear codes are the protagonist of this thesis, list-decoding is their challenge.

Throughout this section, Σ denotes a finite alphabet. First of all, we recall the defini-
tion of a ball in a metric space, specialized to the setting of codes.
Definition 2.3.1 (Ball). Let z ∈ Σn and ρ > 0. The ball of radius ρ centered at z is

B(z, ρ) = {x ∈ Σn : d(x, z) ≤ ρ} .

If we wish to emphasize the block length n, we superscript it, i.e., we denoteBn(z, ρ).
When the metric d is the Hamming metric, we refer to the corresponding balls as Ham-
ming balls. When d = dR is the rank metric, we call them rank metric balls.

16

z

ρ

Figure 2.1: An illustration of (ρ, L)-list-decodability. The black dots represent code-
words; the red dot is any center z. The guarantee is that any Hamming ball as above
contains at most L codewords.

Definition 2.3.2 (List-Decodable Code). Let ρ > 0 and L ∈ N. A code C ⊆ Σn is said to
be (ρ, L)-list-decodable if for all z ∈ Σn,

|B(z, ρ) ∩ C| ≤ L . (2.2)

The parameter L is called the list size.

For a code C, the largest ρ such that Eq. (2.2) holds is called the list-of-L decoding radius
of C. Informally, when we say that C has list decoding radius ρ, this means that Eq. (2.2)
holds for ρ with L ≤ poly(n). For an illustation of list-decodability, see Figure 2.1.

A slight strengthening of this notion is furnished by average-radius list-decodability.
Definition 2.3.3 (Average-Radius List-Decodable Code). Let ρ > 0 and L ∈ N. A code
C ⊆ Σn is said to be (ρ, L)-average-radius list-decodable if for all z ∈ Σn and subsets Λ ⊆ C
of size L+ 1,

1

L+ 1

∑
c∈Λ

d(c, z) > ρ . (2.3)

Note that the condition in Definition 2.3.3 is stricter than that in Definition 2.3.2:
if every set of L + 1 codewords has average distance greater than ρ from z, it cannot
be that some set of L + 1 codewords all have distance at most ρ from z. If we wish
to emphasize that we are referring to the standard notion of list-decodability (that is,
Definition 2.3.2), then we will occasionally add the qualifier absolute. Similar to above,
the maximum ρ for which (2.3) holds is the list-of-L average-decoding radius and, if L is
polynomially bounded, just the average-decoding radius. For an illustration of average-
radius list-decodability, see Figure 2.2. As motivation for the study of average-radius
list-decodability, note that by turning to this concept one is essentially replacing a max-
imum by an average, which is natural from a mathematical perspective. Furthermore,
this viewpoint has helped establish connections between list-decoding and other prob-
lems, e.g., compressed sensing [CGV13].

17

z

Figure 2.2: An illustration of (ρ, L)-average-radius list-decodability. The black dots rep-
resent codewords; the red dot is any center z. The guarantee is that if one chooses L+ 1
codewords, their average distance to z is greater than ρ.

Figure 2.3: An illustration of a “puffed-up rectangle” B(S, ρ). We fix a combinatorial
rectangle S = S1 × · · · × Sn, and then put a ball of radius ρ around each point in S.

Another way to generalize Definition 2.3.2 is to study list-recovery. Informally, list-
recovery calls for list-decoding with only “soft information” on the coordinates. This
property has only been studied in the context of the Hamming metric,8 so in the re-
mainder of this section we specialize to this setting. To provide the formal definition,
we first introduce some notation. For a string z ∈ Σn and a tuple S = (S1, . . . , Sn) ∈

(
Σ
`

)n
,

we define

d(x, S) := min{d(x, y) : y ∈ S1 × · · · × Sn} =
1

n
· |{i ∈ [n] : xi /∈ Si}| .

For ρ > 0, we define B(S, ρ) = {x ∈ Σn : d(x, S) ≤ ρ}. Geometrically, one can think of
the set B(S, ρ) as the combinatorial rectangle S1×· · ·×Sn puffed-up by Hamming balls;
see Figure 2.3.9

8However, there is a natural analog for the rank-metric; we comment upon this in Chapter 8.
9If Σ = Fq and we define A + B := {a + b : a ∈ A, b ∈ B} for two subsets A,B ⊆ Fnq , then B(S, ρ) =

S1 × · · · × Sn +B(0, ρ); this provides more formal justification for the given mental picture.

18

Definition 2.3.4 (List-Recoverable Code). Let ρ > 0 and `, L ∈ N. A code C ⊆ Σn is said
to be (ρ, `, L)-list-recoverable if for all S ∈

(
Σ
`

)n
,

|C ∩B(S, ρ)| ≤ L .

Observe that (ρ, 1, L)-list-recoverability is the same as (ρ, L)-list-decodability.
Remark 2.3.5. When ` > 1, (0, `, L)-list-recovery is still a nontrivial property; for brevity,
it is termed (`, L)-zero-error list-recovery. Geometrically, the guarantee is that no combi-
natorial rectangle of bounded size intersects the code too much.

List-recovery was initially introduced as a stepping stone towards list-decodable
and uniquely-decodable codes [GI01; GI02; GI03; GI04]. In recent years, it has proved
to be a useful primitive in its own right, with a long list of applications outside of coding
theory [INR10; NPR12; Gil+13; Hai+15; Dor+19]. Specifically, the connections between
codes and pseudorandom objects discussed in Section 1.2 actually typically require list-
recoverability.

Finally, we can obtain a common generalization of Definitions 2.3.3 and 2.3.4.
Definition 2.3.6 (Average-Radius List-Recoverable Code). Let ρ > 0 and `, L ∈ N. A
code C ⊆ Σn is said to be (ρ, `, L)-list-recoverable if for all S ∈

(
Σ
`

)n
and Λ ⊆ C of size

L+ 1,
1

L+ 1

∑
c∈Λ

d(c, z) > ρ .

Again, average-radius list-recoverability is a stronger guarantee than standard list-
recoverability, and (ρ, 1, L)-average-radius list-recoverability recovers (ρ, L)-average-
radius list-decodability. If we wish to emphasize that we are referring to the standard
notion of list-recoverability we may add the qualifier absolute.

2.4 Combinatorial Bounds on Codes

In this section we collect several well-known combinatorial bounds on codes to which
we will make repeated reference in this thesis. All of these results are specialized to the
Hamming metric; for analogous results over the rank metric, see Section 5.1.

2.4.1 Rate-Distance Tradeoffs

First, we state the fundamental Singleton bound.
Theorem 2.4.1 (Singleton Bound [Sin64]). Let Σ be a finite set and n a positive integer. Let
C ⊆ Σn be a code of rate R and distance δ. Then

R ≤ 1− δ + 1/n .

19

To see this, consider puncturing the code to (1 − δ)n + 1 coordinates, i.e., for some
S ⊆ [n] of size (1 − δ)n + 1, consider the code CS = {cS = (ci)i∈S : c ∈ C}. Observe that
|CS| = |C|: otherwise, we would have two codewords for which the set of coordinates
on which they disagree is confined to [n] \S, a set of size δn− 1, and this contradicts the
assumption that C has distance δ. Hence, R(C) = 1

n
logq |C| = 1

n
logq |C[n]\S| ≤ (1− δ) + 1

n
.

This bound is actually achievable, and any code achieving this tradeoff between
rate and distance is called maximum distance separable, or MDS for short. In fact, up to
isomorphism the only known MDS code is the famous Reed-Solomon code,10 which we
introduce in Example 2.5.1.

The Singleton bound gives an impossibility result for a rate-distance tradeoff: it
shows that they cannot both be too large. The following result, known as the Gilbert-
Varshamov bound (or GV bound for short), is a possibility result: it asserts that a rate-
distance tradeoff is achievable by a code family. Before stating the result, we must in-
troduce the q-ary entropy function, which will make many appearances in this thesis.

Definition 2.4.2 (q-ary entropy function). Let q ≥ 2 be an integer. Define hq : [0, 1] →
[0, 1] by

hq(x) = x logq(q − 1) + x logq

(
1

x

)
+ (1− x) logq

(
1

1− x

)
= x logq

(
q − 1

x

)
+ (1− x) logq

(
1

1− x

)
.

When q = 2, we refer to h2(x) = x log2
1
x

+ (1− x) log2
1

1−x as the binary entropy function,
and we typically denote it simply by h(x).

Remark 2.4.3. To justify the name, note that if x ∼ Ber(p), i.e., x is 1 with probability p
and 0 with probability 1−p, thenH(x) = h(p), whereH(·) is the Shannon entropy. More
generally, if x is distributed over {0, 1, . . . , q − 1} and P (x = 0) = 1− p and P (x = x) =
p
q−1

for all x 6= 0, then Hq(x) = hq(p).

Theorem 2.4.4 (Gilbert-Varshamov Bound [Gil52; Var57]). Let q be a positive integer. There
exists a family of codes C = {Cn : n ∈ N} such that each Cn has block length n for which
R = R(C) = limn→∞R(Cn) and δ = δ(C) = limn→∞ δ(Cn) satisfy

R ≥ 1− hq(δ) .

There are two main ways to prove this theorem. One can either construct a code
greedily by adding codewords so long as the code does not violate the distance con-
straint, or by observing that random linear codes of rate 1 − hq(δ) − ε have distance at
least δ with probability ≥ 1 − q−εn. The second of these arguments is most in the spirit
of the techniques employed in this thesis, and so we sketch it now. For a random linear
code C to have distance less than δ, there must be a vector x ∈ B(0, δ) such that x ∈ C.

10The famous MDS conjecture asserts that this is not due to a lack of ingenuity.

20

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

h
q
(x

)

Graph of hq for Various q

Figure 2.4: Graph of hq(x) for various values of alphabet size q. In blue, q = 2; in red,
q = 5; in green, q = 17. Note that as q increases, hq(x)→ x; we quantify this below.

By a union bound, this probability is at most∑
x∈B(0,δ)

P (x ∈ C) = |B(0, δ)|q−(1−R)n . (2.4)

To bound this final expression, we must understand the quantity

|B(0, δ)| =
bδnc∑
i=0

(
n

i

)
(q − 1)i . (2.5)

The following estimate is of fundamental importance.
Proposition 2.4.5. Let q be a positive integer and fix δ ∈ (0, 1− 1/q). For any z ∈ [q]n,

qnhq(δ)−o(n) ≤ |B(0, δ)| ≤ qnhq(δ) .

Thus, the exceptional probability in (2.4) is at most qhq(δ)nq−(1−R)n, which is in turn at
most q−εn if R ≤ 1− hq(δ)− ε.

For a proof of Proposition 2.4.5, one can see, e.g., [GRS12, Proposition 3.3.1]. Alter-
natively, one can observe that it is the ` = 1 case of Proposition 2.4.11, for which we do
provide a proof.

While achieving the Singleton bound exactly is only known to be possible if q ≥ n,
the following estimate shows that we can get ε-close to the Singleton bound assuming
q ≥ exp(Ω(1/ε)).

21

Proposition 2.4.6 ([GRS12, Proposition 3.3.2]). For small enough ε > 0, 1−hq(δ) ≥ 1−δ−ε
for every δ ∈ (0, 1− 1/q] if and only if q ≥ exp(Ω(1/ε)).

As a corollary of Theorem 2.4.4, we conclude that there are (linear) codes over Fq of rate
1− δ − ε with distance δ if q ≥ exp(Ω(1/ε)).

Before concluding this subsection, we note that there do exist explicit families of
codes beating the GV bound (at least, for q ≥ 49 of the form p2t for p a prime and t ∈ N):
these are the famous Goppa codes of Tsfasman, Vlădut and Zink [Gop81; TVZ82]. How-
ever, for other values of q (in particular, for q = 2), the GV bound essentially represents
the best known achievable tradeoff between rate and distance.

2.4.2 List-Decoding Tradeoffs

In this subsection, we discuss the achievable tradeoffs between the rate R, decoding
radius ρ and list size L of a list-decodable code. We also discuss generalizations of these
results to the case of list-recovery, where we have the additional parameter `, the input
list size.

Capacity Theorems

Unlike the situation for rate-distance tradeoffs, the best achievable tradeoff between rate
and list-decoding radius is known. Recall that we say a code C ⊆ Σn has list-decoding
radius ρ if |C ∩ B(z, ρ)| ≤ poly(n) for all z ∈ Σn. The following theorem precisely
determines the largest rate R of a code with list decoding radius ρ.
Theorem 2.4.7 (List Decoding Capacity Theorem). Let n ∈ N and Σ a finite alphabet of size
q. Fix ρ ∈ (0, 1− 1/q) and ε > 0.
• There exists a code C ⊆ Σn of rate 1− hq(ρ)− ε which is (ρ,O(1/ε))-list decodable.
• For any code C ⊆ Σn of rate 1 − hq(ρ) + ε, there exists a center z ∈ Σn such that
|C ∩B(z, ρ)| ≥ qεn−o(n).

Thus, for list-decoding up to radius ρ with polynomially-sized lists,11 1 − hq(ρ) is
the capacity. If a code C has rate 1 − hq(ρ) − ε for some small constant ε > 0 and has
list-decoding radius at least ρ with L, then we say that C achieves list-decoding capacity,
or just achieves capacity if list-decoding is clear from the context. By Theorem 2.4.7, such
codes achieve the optimal tradeoff between decoding radius and rate. As a final piece
of terminology, we refer to ε = 1− hq(ρ)−R as the gap to capacity.
Remark 2.4.8. Recall that Proposition 2.4.6 states that for large enough q (i.e., q ≥
exp(Ω(1/ε))), 1 − hq(ρ) ≥ 1 − ρ − ε. Thus, for the large q regime, we refer to 1 − ρ
as the list decoding capacity. Alternatively, recalling Theorem 2.4.1, we might state that
a capacity-achieving code is “list decodable up to the Singleton bound”, as they are list
decodable up to radius ρ = 1−R− ε.

11Or even constant-sized lists.

22

As the List-Decoding Capacity Theorem is of fundamental importance, and because
it introduces certain techniques that will recur throughout this thesis, we provide its
proof.

Proof of Theorem 2.4.7. The first item follows by considering the performance of a uni-
form random code C of rate 1−hq(ρ)− ε. Observe that C fails to be (ρ, L)-list decodably
if and only if there exists a center z ∈ Σn and a subset {x1, . . . , xL+1} ⊆ B(z, ρ) such that
xi ∈ C for all i ∈ [L+1]. By a union bound and the independence of the events “xi ∈ C”,
the probability of failure is at most∑

z∈Σn

∑
{x1,...,xL+1}⊆B(z,ρ)

P (∀i ∈ [L+ 1], xi ∈ C) ≤ qn · q(L+1)nhq(ρ)q−(1−R)n(L+1) . (2.6)

Substituting R = 1− hq(ρ)− ε into (2.6) and simplifying, we obtain qn · q−ε(L+1)n. Thus,
if L ≥ 1/ε, the probability of failure is q−εn. Finally, note that a Chernoff bound implies
that |C| ≥ qRn/2 with probability at least 1− exp(−Ω(n)). Thus, with exponentially high
probability, the code C is (ρ, L)-list decodable and has rate ≥ 1− hq(ρ)− ε− on(1).

We now establish the second item. Let C be a code of rate at least 1 − hq(ρ) + ε and
let z ∼ Σn be uniform. We compute the expectation

E|B(z, ρ) ∩ C| =
∑
c∈C

E [I (c ∈ B(z, ρ))] =
∑
c∈C

E [I (z ∈ B(c, ρ))]

=
∑
c∈C

|B(c, ρ)|
qn

= |C| · |B(0, ρ)|
qn

. (2.7)

Proposition 2.4.5 tells us |B(0,ρ)|
qn

≥ q−(1−hq(ρ))n−o(n). Hence, using the assumption |C| ≥
qn(1−hq(ρ)+ε), we find that (2.7) is at least

qn(1−hq(ρ)+ε) · q−(1−hq(ρ))n−o(n) = qεn−o(n) .

Hence, by the probabilistic method, there must exist a z ∈ Σn for which |B(z, ρ) ∩ C| ≥
qεn−o(n), as claimed.

Next, we remark that there is a similar list-recovery capacity theorem. While we
have seen mentions of such a theorem in the literature (e.g., [RW18]), the following
form does not appear to be present. In analogy to (2.5), for S ∈

(
[q]
`

)
, we seek an estimate

for

|B(S, ρ)| =
ρn∑
i=0

(
n

i

)
(q − `)i`n−i . (2.8)

Much as the q-ary entropy function provided an effective estimate for the cardinality
of Hamming balls, the following function will prove useful:

23

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

h
1
7
,`
(x

)

Graph of h17,` for Various `

Figure 2.5: Graph of h17,`(x) for various values of input list size `. In blue, ` = 1; in
red, ` = 4; in green, ` = 7. Note that hq,`(0) = logq ` and hq,`(1 − `/q) = 1, and that hq,`
increases monotonically between these points.

Definition 2.4.9 ((q, `)-ary entropy function). Let 1 ≤ ` ≤ q be integers. Define hq,` :
[0, 1]→ [min{logq `, logq(q − `)}, 1] by

hq,`(x) = x logq(q − `) + (1− x) logq `− x logq x− (1− x) logq(1− x)

= x logq

(
q − `
x

)
+ (1− x) logq

(
`

1− x

)
.

Remark 2.4.10. Akin to the probabilistic interpretation of hq (cf. Remark 2.4.3), hq,`(p)
is the q-ary entropy of a random variable x distributed over [q] such that, for some
S ∈

(
[q]
`

)
,

P (x = x) =

{
1−p
|S| x ∈ S ,
p

q−|S| x /∈ S .

Furthermore, hq,` satisfies the following symmetry:

hq,`(p) = hq,q−`(1− p) .

We provide plots of this function in Fig. 2.5 for q = 17 and various choices of `.
Now, we justify the claim that the (q, `)-entropy function effectively characterizes the
cardinality of puffed-up rectangles, i.e., the quantity in (2.8).

Proposition 2.4.11. For any integers 1 ≤ ` ≤ q, ρ ∈ (0, 1− 1/q) and S ∈
(

[q]
`

)n
,

qhq,`(ρ)n−o(n) ≤ |B(S, ρ)| ≤ qhq,`(ρ)n

24

Proof. As a first step, note the identity

qhq,`(ρ) = (q − `)ρ`(1−ρ)

(
1

ρ

)ρ(
1

1− ρ

)(1−ρ)

. (2.9)

Now, we prove the upper bound.

1 = (ρ+ (1− ρ))n =
n∑
i=0

(
n

i

)
ρi(1− ρ)n−i ≥

ρn∑
i=0

(
n

i

)
ρi(1− ρ)n−i

=

ρn∑
i=0

(
n

i

)
(q − `)i

(
ρ

q − `

)i
`n−i

(
1− ρ
`

)n−i
=

ρn∑
i=0

(
n

i

)
(q − `)i`n−i

(
ρ`

(q − `)(1− ρ)

)i(
1− ρ
`

)n
≥

ρn∑
i=0

(
n

i

)
(q − `)i`n−i

(
1− ρ
`

)n(
ρ`

(q − `)(1− ρ)

)ρn
=

ρn∑
i=0

(
n

i

)
(q − `)i`n−i

(
ρ

q − `

)ρn(
1− ρ
`

)(1−ρ)n

= |B(S, ρ)| · q−hq,`(ρ)n ,

where the last equality uses (2.8) and (2.9).

For the lower bound, we use Stirling’s approximation to obtain(
n

ρn

)
=

1

ρρn(1− ρ)(1−ρ)n
q−o(n) ,

and so

|B(S, ρ)| ≥
(
n

ρn

)
(q − `)ρn`(1−ρ)n

=
(q − `)ρn`(1−ρ)n

ρρn(1− ρ)(1−ρ)n
q−o(n)

= qhq,`(ρ)n−o(n) .

The following capacity theorem now follows from Proposition 2.4.11.
Theorem 2.4.12 (List-Recovery Capacity Theorem). Let n ∈ N, Σ an alphabet of size q and
` ∈ N satisfying 1 ≤ ` ≤ q. Fix ρ ∈ (0, 1− `/q) and ε > 0.
• There exists a code C ⊆ Σn of rate 1− hq,`(ρ)− ε which is (ρ, `, O(`/ε))-list-recoverable.
• For any code C ⊆ Σn of rate 1−hq,`(ρ)+ε, there exists S ∈

(
Σ
`

)n
such that |C∩B(S, ρ)| ≥

qεn−o(n).

25

Thus, for list-recovering up to radius ρ with input lists of size ` and polynomially-
sized output lists, 1− hq,`(ρ) is the (list-recovery) capacity.
Remark 2.4.13. Recall zero-error list-recovery (Remark 2.3.5); as hq,`(0) = logq `, we
conclude that the zero-error list-recovery capacity is 1− logq `.

Analogously to Proposition 2.4.6, one can show that assuming q ≥ exp(Ω(log(`)/ε)),
the capacity for (ρ, `, poly(n))-list recovery is at least 1− ρ− ε.
Proposition 2.4.14. For small enough ε > 0, 1− hq,`(ρ) ≥ 1− ρ− ε for every ρ ∈ (0, 1− `/q)
if and only if q ≥ exp(Ω(log(`)/ε)).

Finally, we remark that for the average-radius variants of list decoding and recovery,
the capacities are unchanged. The second bullet-points of Theorem 2.4.7 and 2.4.12 still
hold, as average-radius is a stricter requirement. To establish the first bullet-point for
Theorem 2.4.7, it suffices to observe that the number of tuples (x1, . . . , xL+1) ∈ (Σn)L+1

with average distance at most ρ from a center z ∈ Σn is |B(L+1)n(z)|, which is at most
q(L+1)nhq(ρ); this is precisely the bound we used in (2.6), except in that case it was for the
number of (L+ 1)-element subsets of Bn(z, ρ).

Other Combinatorial Bounds for List-Decoding and Recovery

Have established the capacity for list-decoding and related notions, we now discuss
some other combinatorial bounds.

Johnson bound. First of all, we state the fundamental Johnson bound [Joh62; Joh63].12

The Johnson bound asserts that any code has list-decoding radius strictly larger than
half its minimum distance. In fact, the proof applies equally well to average-radius list-
decoding. The following version is taken from Guruswami’s thesis; another relevant
citation is [AVZ00].
Theorem 2.4.15 (Johnson Bound, [Gur04, Corollary 3.3]). Let C ⊆ [q]n be a code of distance
at least δ. If ρ < 1 −

√
1− (1− γ)δ for γ ∈ (0, 1), then C is (ρ, 1/γ)-average-radius list-

decodable.
We also provide the following variant of the Johnson bound which applies to (average-

radius) list-recovery.
Theorem 2.4.16 (Johnson Bound for List Recovery, [Gop+18, Lemma 5.2]). Let C ⊆ [q]n

be a code of distance at least δ. If ρ < 1 −
√
`(1− δ), then C is (ρ, `, L)-average-radius list-

recoverable with L = δ`
(1−ρ)2−`(1−δ) .

Briefly, all proofs of the Johnson bound proceed by considering the sum∑
i<j

d(ci, cj)

12Interestingly, it is known that there is no result analogous to the Johnson bound for the rank-metric.
For details, see [WZ13].

26

in two ways, where c1, . . . , cL ∈ C are distinct codewords. The lower bound follows
easily from the distance assumption; an upper bound is obtained via a convexity argu-
ment.

The important (and perhaps surprising) conclusion to be drawn from the Johnson
bound is that every code of positive distance can be list-decoded beyond radius δ/2,
even with constant list sizes. Moreover, so long as δ > 1 − 1/`, list-recovery at positive
radius is combinatorially feasible.

Lower bounds on list sizes. Lastly, we wish to highlight certain results that derive
lower bounds on list sizes. It is known that a typical code with gap to capacity ε requires
lists of size Θ(1/ε);13 it is natural to ask whether every list-decodable code requires lists of
size Ω(1/ε). Blinovsky [Bli86; Bli05] appears to be the first researcher to make progress
on this question; amongst other results, he demonstrated that lists of size Ωρ(log(1/ε))
are necessary. The first work applies only to binary codes while the second applies to
general q-ary alphabets.14 Later, Guruswami and Vadhan [GV10] considered the high-
noise regime and deduced that for a code to be (1− (1 + η)/q, L)-list-decodable, L must
be at least Ωq(1/η

2). Later, Guruswami and Narayanan [GN14] showed that for average-
radius list-decoding of binary codes, L ≥ Ωρ(1/

√
ε) is necessary.

2.5 Code Families

In this section, we briefly survey the field of algorithmic list-decoding, that is, explicit
constructions of codes equipped with efficient list-decoding algorithms. In this thesis,
unless specified otherwise, an explicit construction of a family of codes {Cni}i∈N is an
algorithm Cons which takes as input ni written in unary and outputs a description of
the code Cni in time poly(ni), and a code is deemed explicit if such an algorithm exists.
We are particularly interested in surveying explicit codes equipped with efficient list-
decoding algorithms. These results largely provide relevant context for Chapter 7. For
explicit constructions of rank metric codes, see Sections 5.1 and 8.1.

It is difficult to conceive of a thesis on error-correcting codes which does not at some
point introduce Reed-Solomon codes; this thesis is no exception.
Example 2.5.1 (Reed-Solomon Codes). Reed-Solomon (RS) codes [Ree54; RS60] are de-
fined in terms of polynomials over finite fields. We assume q ≥ n, and let α1, . . . , αn ∈ Fq
be distinct field elements. For an integer k ≤ n, identify Fkq with Fq[X]<k, the space of
degree < k polynomials with coefficients in Fq. The “message” p(X) =

∑k−1
i=0 ciX

i ∈
Fq[X]<k is mapped to the codeword (p(α1), . . . , p(αn)), where p(αj) =

∑k−1
i=0 ciα

i
j is the

13We established the upper bound in proving Theorem 2.4.7 above; for the lower bound, see [GN14,
Theorem 20], or even [Rud11].

14His argument is in fact precise enough to give nontrivial upper bounds on rate for every finite list
size L.

27

standard polyomial evaluation. That is,

RS[n, k] = {(p(α1), . . . , p(αn)) : p ∈ Fq[X]<k} .

Thanks to the “degree mantra”, i.e., the fact that a non-zero polynomial of degree at
most k − 1 can have at most k − 1 roots, it follows that every non-zero codeword has
at least n − k + 1 non-zero entries. That is, the minimum distance δ is at least 1 − R +
1/n (where R = k

n
is the rate), so Reed-Solomon codes achieve the Singleton bound

(Theorem 2.4.1).

Furthermore, thanks to the Welch-Berlekamp algorithm [WB86], it is known how
to uniquely decode Reed-Solomon codes up to half the minimum distance in polyno-
mial time. Lastly, these codes can be efficiently list-decoded up to the Johnson bound
(Theorem 2.4.15) via the celebrated Guruswami-Sudan algorithm [GS99].

The main drawback of Reed-Solomon codes is the requirement that the field size ex-
ceed the block-length. We next introduce the basic premise behind algebraic-geometry
(AG)/Goppa codes, which address this concern. The precise details of the construction
do not really interest us (only in Section 8.4 do we employ similar techniques), but as we
will employ AG codes in the codes constructed in Chapter 7 a few words are merited.
Example 2.5.2 (AG/Goppa Codes). Goppa observed that Reed-Solomon codes can be
thought of as being obtained as the evaluation of rational functions with bounded poles
at infinity (and no poles anywhere else) at every point on the line Fq (in fact, one could
take the projective plane P1(Fq) = Fq ∪ {∞}). Goppa [Gop81] suggested one could take
other curves in the projective plane P2(Fq) and evaluate functions with bounded poles at
all points on the curve; the hope is that the curve will have more than q points, allowing
for block lengths which exceed the field size.

Quite spectacularly, this approach has led to the construction of explicit codes with
rate-distance tradeoffs exceeding the GV bound [TVZ82]. Furthermore, natural modi-
fications of the Welch-Berlekamp and Guruswami-Sudan algorithms allow for efficient
unique decoding up to half the minimum distance and list-decoding up to the Johnson
bound, respectively.

Now, returning our focus to list-decoding, note that the Guruswami-Sudan algo-
rithm allows for list-decoding of codes with rate R up to radius about 1−

√
R. The next

breakthrough in list-decoding comes from the Parvaresh-Vardy codes [PV05], which
allowed for non-trivial list-decoding beyond the Johnson bound. As an example of the
achievable parameters, for a small ε > 0 one can construct an explicit (1−ε, (1/ε)O(log log(1/ε)))-
list-decodable code of rate Ω(ε log(1/ε)); in contrast, the Johnson bound only guarantees
that codes of rate Ω(ε2) can be notrivially list-decoded at radius 1− ε.

In 2008, the first capacity-achieving list decodable codes were constructed: Gu-
ruswami and Rudra [GR08b] analyzed “Folded”15 Reed-Solomon codes and showed

15Briefly, the folding operation groups together consecutive symbols into the same block sym-
bol. That is, for a folding parameter s dividing n, the word c = (c1, . . . , cn) ∈ Σn is mapped to
(c|[s], c|[s+1,2s], . . . , c|[n−s+1,n]) ∈ (Σs)n/s.

28

they are list-decodable up to the Singleton bound, i.e., up to radius 1−R−ε for any ε > 0.
(Recall that for large enough q, the capacity approaches 1−ρ; see Remark 2.4.8.) Later, it
was observed that Derivative codes (also known as univariate multiplicity codes)16 are
list-decodable up to the Singleton bound [GW13; Kop15a].

There are two main drawbacks associated to Folded Reed-Solomon Codes and Deriva-
tive Codes. First, they require large alphabets, of order roughly (n/ε2)O(1/ε2) to list-
decode up to radius 1 − R − ε. Second, the list size guaranteed by these works is also
(n/ε2)O(1/ε2): while polynomial, this is still much larger than the O(1/ε) list size which
suffices for a typical code.

Broadly speaking, to address these issues, two main approaches are used. First, just
as AG codes allow for similar performance to Reed-Solomon codes with smaller alpha-
bets, authors have replaced polynomials in the underlying codes with rational functions
on other curves [GX12; GX13; GK16]. To address the list size issue, the general strat-
egy is to pass to carefully constructed subcodes of either Folded Reed-Solomon codes,
Derivative codes, or their AG code variants. This is typically done by constructing pseu-
dorandom objects such as (hierarchical) subspace evasive sets [Gur11; DL12; GW13; GX12].
More recently, an improved analysis [Kop+18] of the list sizes of Folded Reed-Solomon
and Derivative codes showed that the list sizes are actually independent of n.

The other approach, which is more combinatorial in nature, takes some code with
good properties and uses a general purpose distance amplification technique employ-
ing expander graphs [AEL95; GI04; HW15; Gop+18; HRZW17; Kop+18; Kop+19]. Col-
loquially, we term this technique “expander tricks”. This is very much in the spirit of
the work we present in Chapter 7.

We summarize the state-of-the-art for capacity-achieving codes in Table 2.1. In fact,
as all of these codes come with efficient list-recovery algorithms, we state the parameters
they achieve when the input lists have size `; to recover the list-decoding guarantee, it
suffices to set ` = 1 in the expressions.

2.6 Thesis’ Contributions and Organization

With this background established, we are in position to discuss our contributions in
more detail. We also describe the thesis’ organization and the dependencies between
the chapters.

As in Section 1.3, we divide our contributions into three categories.

16In these codes, instead of just evaluating a polynomial, one also evalutes derivatives of the polyno-
mial and packs all these data into a single symbol.

29

Code Alphabet size
q

List size L Decoding time Notes

FRS Codes
[GR08b;
Kop+18]

(
n
ε2

)O(log `/ε2) (
`
ε

)O(log(`/ε)/ε)
nO(log `/ε) List-size

initially(
n
ε2

)O(log `/ε2);
improved in

[Kop+18].

Derivative
Codes [GW13;

Kop15a]

(
n
ε2

)O(log `/ε2) (
`
ε

)O(log(`/ε)/ε)
nO(log `/ε) List-size

initially(
n
ε2

)O(log `/ε2);
improved in

[Kop+18]
assuming
d < q.

FRS subcodes
via SES [DL12]

(
n`
ε2

)O(`/ε2) (
`
ε

)(`/ε)
O`,ε(n

2) [Gur11]
suggests using
SES’s; [DL12]

constructs
them .

Folded AG
subcodes via
SES [GX12]

exp
(
` log(`/ε)

ε2

)
O
(
`
ε

)
poly`,ε(n) Construction

is Monte
Carlo.

Folded AG
subcodes via

SD [GX13;
GK16]

exp
(
` log(`/ε)

ε2

)
222

O`,ε(log
∗ n)

poly(n) ·
(1/ε)O(`)

Tensor of
above +

expander
tricks

[HRZW17;
Kop+19]

exp(`/ε2) O`,ε(g(n)),
where g(n) =
o(log(c) n) for

any c ∈ N

O`,ε

(
n1+o(1)

)
In [HRZW17],

decoding is
randomized;
in [Kop+19],

it’s
deterministic.

FRS Codes +
expander

tricks
[Kop+18]

2O(log(`)/ε6) Oε,`(1) polyε,`(n)

Table 2.1: A summary of parameters achieved by explicit constructions of capacity-
achieving list-recoverable codes. In the above, R ∈ (0, 1) denotes the rate (which we
assume is constant) and ` is the input list size. Recall that when q ≥ exp(log(`)/ε) the
capacity is 1−ρ−ε, where ρ is the decoding radius. In the above, we abbreviate subspace
evasive set as SES and subspace design as SD.

30

2.6.1 Random Ensembles of Codes

In Chapter 3, we describe a novel framework for understanding properties of random
linear codes. We define a broad class of properties which we term local, and show that
they capture list-decodability and recoverability, along with their average-radius vari-
ants. Our main result is a demonstration that every local property experiences a sharp
threshold. Informally, this means that for every local property, there is a rate R∗ such
that codes of rate less than R∗ almost certainly satisfy the property, while codes of rate
larger than R∗ almost certainly do not. We also provide a characterization of this rate
R∗, which leads to the tantalizing possibility that we could precisely compute this quan-
tity and thereby obtain a perfect understanding of the list-decodability of random lin-
ear codes. Obtaining such a computation, alas, remains the subject of ongoing work,
although we do provide equivalent formulations that might be more amenable to an ef-
fective analysis. The results presented in this chapter are a (substantial) expansion upon
results of [Mos+19].

In Chapter 4, we study low-density parity-check (LDPC) codes, which are an important
subclass of linear codes. Building off the results in Chapter 3, we show that random
LDPC codes experience a similar threshold phenomenon at roughly the same rate as
random linear codes. As an immediate corollary, since random linear codes achieve list-
decoding capacity with high probability, we deduce that the same is true for random
LDPC codes. Although there is a large volume of literature devoted to LDPC codes,
our result appears to be the first to demonstrate that any LDPC code has nontrivial
list-decodability (i.e., list-decodability at radii beyond the Johnson bound). Along the
way, we also provide a proof that random LDPC codes over fields of size larger than
q achieve the GV bound with high probability. The results in this chapter are derived
from [Mos+19].

In Chapter 5, we investigate the list-decodability of random linear codes over the
rank metric. We adapt a proof technique of Guruswami, Håstad and Kopparty [GHK11],
which proved random linear codes which are ε-away from capacity are (ρ,Oρ,q(1/ε))-
list decodable whp. In this way, we show that random linear rank metric codes which
ε-away from capacity are (ρ,Oρ,q(1/ε))-list decodable whp. (In this chapter, we also dis-
cuss the list-decoding capacity for rank metric codes.) The proof in this chapter appears
in [GR18].

Finally, in Chapter 6, we revisit an argument of Li and Wootters [LW18], which
is itself an improvement of an argument of Guruswami, Håstad, Sudan and Zucker-
man [Gur+02]. Li and Wootters showed that random linear codes over F2 that are ε-
away from capacity are (ρ,O(1/ε))-list-decodable with high probability. Moreover, their
approach applies equally to the Hamming and rank metrics. We show how to modify
their argument to obtain the same result for average-radius list-decoding. The results in
this chapter are currently being prepared for submission.

31

2.6.2 Explicit Constructions of List-Decodable Codes

While most of our results concern randomized constructions of codes, we also pro-
vide improved explicit constructions of capacity-achieving list-decodable (in fact, list-
recoverable) codes. Specifically, in Chapter 7, we show how to use the tensoring oper-
ation (along with certain by-now standard distance amplification techniques) to con-
struct capacity-achieving list-recoverable codes with near-linear17 time decoding algo-
rithms. Prior works had only established randomized near-linear time decoding algo-
rithms; ours is completely deterministic. Furthermore, we provide improved local list-
recovery algorithms, which informally allow for one to obtain nontrivial information
about a single coordinate of a codeword given oracle access to a noisy version of the
codeword, and moreover the algorithm runs in sublinear time. As a corollary, by con-
catenating our codes with random linear codes we obtain (non-explicit) binary codes
approaching the GV bound with efficient unique decoding algorithms. Finally, we
demonstrate that in some sense our analysis is tight; even for zero-error list-recovery,
we prove a lower bound on the list size of any high-rate tensor code, which implies cer-
tain impossibility results for local list-recovery. The material presented in this chapter
comes from [Kop+19].

2.6.3 Applications of List-Decodable Codes

We provide a new application of list-decodable codes to the field of pseudorandomness.
Specifically, in Chapter 8, we present an explicit construction of dimension expanders,
which are a linear-algebraic analog of expander graphs. An (η, β)-dimension expander
of degree d is a collection of d linear maps Γj : Fn → Fn such that for every subspace U ≤
Fn of degree at most ηn, the image ofU under all the maps,

∑d
j=1 Γj(U), has dimension at

least β dim(U). Over a finite field, a random collection of d = O(1) maps offers excellent
“lossless” expansion whp: β ≈ d for η ≥ Ω(1/d). By leveraging techniques developed
for list-decoding rank metric codes, we develop a framework for explicitly constructing
dimension expanders over finite fields. Our approach yields the following:
• Lossless expansion over large fields; more precisely β ≥ (1− ε)d and η ≥ 1−ε

d
with

d = Oε(1), when |F| ≥ n/d.
• Optimal up to constant factors expansion over fields of arbitrarily small poly-

nomial size; more precisely β ≥ Ω(δd) and η ≥ Ω(1/δd) with d = Oδ(1), when
|F| ≥ nδ.

This chapter’s material first appeared in [GRX18].

17That is, n1+o(1).

32

2.6.4 Dependency Between Chapters

The material presented in Chapter 3 is used quite heavily in Chapter 4, and also pro-
vides useful background for Chapters 5 and 6. The material presented in Section 6.3
assumes familiarity with rabj metric codes, particularly Section 5.1.

Chapter 7 is independent of the other chapters and can be read immediately. The
same is generally true for Chapter 8; however, comfort with rank metric codes will
provide useful intuition for our techniques. Thus, we recommend the reader peruse
Section 5.1 prior to reading Chapter 8.

33

34

Chapter 3

Combinatorial Properties of Random
Linear Codes: A New Toolkit

In terms of the quantity of attention paid to it, random linear codes are certainly the
most popular random ensemble of codes. A main focus of this thesis is to understand
combinatorial properties possessed by a typical linear code. The combinatorial proper-
ties of interest are those we introduced in Section 2.3: list-decodability and its general-
izations. In this chapter we develop a suite of tools for understanding what properties
we can expect a random linear code of a prescribed rate to possess. Our main contribu-
tion is a demonstration that every local property (a broad class including list-decoding
and its relatives) experiences a sharp threshold: there is a rate R∗ such that random
linear codes of rate less than R∗ almost certainly satisfy the property, whereas random
linear codes of rate larger than R∗ almost certainly do not. Furthermore, we provide a
novel characterization of this threshold R∗.

We begin by reviewing the literature on the list-decodability of random linear codes
in Section 3.1. In Section 3.2, we precisely define what we mean by a local property
of a code and motivate its definition. The sharp threshold phenomenon experienced
by random linear codes is described in Section 3.3, and the main technical argument is
provided in Section 3.4. Later, we demonstrate a few uses for our main theorem. First,
in Section 3.5, we recover known results on combinatorial properties of random linear
codes with what we feel are simpler arguments. Secondly, in Section 3.6, we prove
what we believe is a new result on list-of-2 decoding for binary random linear codes:
specifically, we precisely pin down the maximum rate R such that a random linear code
of rate R is (ρ, 2)-average-radius list-decodable with high probability.

Unless otherwise noted, in this chapter we always think of q as a constant, inde-
pendent of the block length. There has been some work studying random linear codes
when q may grow with n; however, the local properties formulation that we introduce
in Section 3.2 is only really effective when q is constant.

35

3.1 Prior Work

Zyablov-Pinsker argument. The first researchers to consider the list-decodability of
random linear codes were Zyablov and Pinsker [ZP81]. They demonstrated that a ran-
dom linear code of rate 1−hq(ρ)− ε is (ρ, qO(1/ε))-list-decodable. This demonstrates that
there exist linear codes achieving list-decoding capacity (Theorem 2.4.7). The argument
is based on the observation that any subset S ⊆ Fnq has a linearly indendent subset of
size at least logq |S|. Thus, to show that a linear code C is (ρ, L)-list-decodable, it suf-
fices to show that C does not contain dlogq(L + 1)e linearly independent vectors from
any Hamming ball of radius ρ, and a simple adaptation of the proof of Theorem 2.4.7
guarantees that this is, with high probability, the case for random linear codes so long as
the gap to capacity ε > 1

logq(L+1)
. Furthermore, one can adapt this argument of Zyablov

and Pinsker to the setting of list-recovery to deduce that random linear codes of rate
1 − hq,`(ρ) − ε are with high probability (ρ, `, qO(`/ε))-list-recoverable.1 Thus, we know
that random linear codes achieve list-decoding and recovery capacity with high proba-
bility; however, the dependence of L on ε is exponentially worse than what is achievable
by uniformly random codes. Elias [Eli91] was the first to raise the question of whether
lists of sizeO(1/ε) are sufficient for a typical linear code; the analogous question for list-
recovery asks whether lists of size O(`/ε) suffice. Despite many partial results, some
gaps remain in our knowledge, and answering this question in full generality remains
an active area of research. 2

GHSZ and LW: optimal for q = 2. The next progress on the list-decodability of ran-
dom linear codes was made by Guruswami, Håstad, Sudan and Zuckerman [Gur+02].
Via a very slick potential-function based argument (upon which we elucidate further in
Chapter 6), they show that with positive probability, a random linear code over Fn2 of
rate 1 − h2(ρ) − ε is (ρ,O(1/ε))-list-decodable. Later, Li and Wootters [LW18] revisited
their techniques and observed that the argument can be adapted to show that the same
conclusion holds with high probability. Furthermore, they even determine the constant
in the list size: one can take L ∼ h2(ρ)/ε. Thus, we have a complete understanding of
the list-decodability of random linear codes over F2. In Chapter 6, we extend this to
average-radius list-decoding.

GHK: optimal for ρ � 1 − 1/q. In light of the above, the remaining task is to com-
prehend the list-decodability and recoverability of random linear codes when the field
size is larger than 2. The first result in this direction was provided by Guruswami, Hås-
tad and Kopparty [GHK11]. Therein it is shown that there exists a constant C = Cρ,q

1We remark that it is not clear how to adapt this argument for the average-radius variants: even if
{x1, . . . , xL+1} is on average ρ-close to z, it need not be the case that some linearly independent subset is
on average ρ-close to z.

2We remark that it is known that, with high probability, lists of size Ωq,ρ(1/ε) are required for list-
decoding a random linear code: see, e.g., [GN14, Theorem 20].

36

such that a random linear code of rate 1− hq(ρ)− ε is (ρ, C/ε)-list-decodable with high
probability. The argument makes use of a Ramsey-theoretic argument to deduce that
sets of vectors have some nice combinatorial structure which can be exploited to bound
the number of low-rank subsets of Hamming balls. We will provide more discussion of
this technique in Chapter 5; indeed, the material presented in that section is largely an
adaptation of the [GHK11] method to the setting of rank metric codes. Unfortunately,
the constant C blows up if either ρ → 1 − 1/q or if q → ∞. Moreover, it is unclear how
to generalize the argument to list-recovery, or to average-radius list-decoding.

The high-noise regime. The next series of works attempt to obtain better control of
the list size when ρ is close to 1 − 1/q. Define η := q − qρ − 1 (so ρ = 1 − 1+η

q
); in

this setting, by examining the Taylor expansion of hq centered at 1 − 1/q we obtain the
estimate

hq

(
1− 1+η

q

)
= 1− 1

2(q − 1) ln(q)
η2 +Oq(η

3) . (3.1)

More generally, we have the estimate

hq,`

(
1− `+η

q

)
= 1− 1

2(q − `)` ln(q)
η2 +Oq(η

3) . (3.2)

In either case, one can conclude from the capacity theorems (Theorems 2.4.7 and 2.4.12)
that there exist codes of rate Ωq (η2) which are (1− 1+η

q
, O(1/η2))-list-decodable, or (1−

`+η
q
, `, O(`/η2))-list-recoverable.

The first work to make progress in this regime is by Cheraghchi, Guruswami and
Velinker [CGV13]. Therein, it is shown a random linear code of rate

Ω

(
η2

q2 ln3(q/η) ln4(q)

)
is
(

1− 1+η
q
, O(1/η2)

)
-average-radius list-decodable with probability 0.99. Wootters [Woo13]

improved their argument to show that the same conclusion holds with probability 1 −
o(1) for random linear codes of rate

Ω

(
η2

q2 ln(q)

)
.

Later, Rudra and Wootters [RW14] managed to show (amongst other things) that the
same conclusion holds when the rate is

Ω

(
η2

q ln(q) ln5(1/η)

)
,

although the success probability is again only constant.

37

Source Radius Rate List Size Notes
[GHK11] ρ 1− hq(ρ)− ε Cρ,q/ε Constant Cρ,q →

∞ as ρ→ 1− 1/q
or q →∞.

[Woo13; RW14] 1− 1+η
q

Ω
(

η2

q ln(q)
·max

{
1
q
, 1

ln5(1/η)

})
O(1/η2) Rate should be

Θ
(

η2

q ln(q)

)
.

Table 3.1: Brief snapshot of state-of-the-art for list-decoding. The first result is effective
in the constant-noise regime; the latter in the high-noise regime.

The first two of these works use a simplex encoding and thereby obtain a problem
concerning random vectors in complex vector space. [CGV13] observes that it is suf-
ficient to prove that a certain matrix is a restricted isometry; [Woo13] observes that a
simpler condition is sufficient. In both cases, the arguments boil down to analyzing a
certain gaussian process, i.e., they bound the maximum of a set of random gaussian vec-
tors; the standard technique used for these problems is a chaining argument. In [RW14],
in order to obtain a better dependence on q,3 a chaining argument was directly applied
to random vectors over Fq which appear naturally in constructing a random linear code.

A structure vs. pseudorandomness approach. The final work we wish to highlight
is again by Rudra and Wootters [RW18]. In this work, a “structure vs. pseudoran-
domness” argument is used to directly study the average-radius list-recoverability of
random linear codes. Their results are quite general and apply in many different pa-
rameter regimes; however, none of the results exactly match the results attainable by
uniformly random codes, and are often incomparable to previous results. As an ex-
ample, for sufficiently large alphabets the authors are able to show that codes of rate
0.99(1 − hq/`(1 − `/q − η) − logq(`)) are (1 − `/q − η, `, qO(ln2(`/η)))-average-radius list-
recoverable; that is, the rate is closer to optimal4 and the list size is quasi-polynomial in
` and η.

For a mostly comprehensive summary of this literature review, see Table 3.2; a brief
snapshot of the state of the art is provided in Table 3.1. In this thesis, we extend this
literature in multiple ways. Firstly, in this chapter, we introduce a novel framework for
understanding combinatorial properties of random linear codes. We now turn to the
development of this framework.

3They were particularly interested in the case when q ≥ n, as then their results would apply to random
puncturings of Reed-Solomon codes.

4The quantity 1− hq/`(1− `/q − η)− logq(`) is slightly smaller than 1− hq,`(1− `/q − η).

38

Source Radius List-
Recovery?

Rate List Size Average-
radius?

[ZP81] ρ 3 1− hq,`(ρ)− ε q`/ε 7

[LW18] ρ 7 1− h2(ρ)− ε h2(ρ)/ε 7

[GHK11] ρ 7 1− hq(ρ)− ε Oρ,q(1/ε) 7

[CGV13] 1− 1+η
q

7 Ω
(

η2

q2 ln3(q/η) ln4(q)

)
O(1/η2) 3

[Woo13] 1− 1+η
q

7 Ω
(

η2

q2 ln(q)

)
O(1/η2) 3

[RW14] 1− 1+η
q

7 Ω
(

η2

q ln(q) ln5(1/η)

)
O(1/η2) 3

[RW18] α = 1− `
q
− η 3 0.99(1− hq/`(α)− logq(`)) qO(ln2(`/η)) 3

Table 3.2: A summary of state-of-the arts results concerning combinatorial properties
of random linear codes. The [LW18] result builds off [Gur+02] and only applies when
q = 2.

3.2 Local Properties of Codes

One contribution of this thesis is the development of a theory that characterizes the
sorts of subsets that one can expect to lie in a random linear code. That is, suppose C
is a random linear code of rate R, and B is a collection of subsets of Fnq . As R increases,
it will become only more and more likely that a subset B ∈ B will lie in the code. The
hope is to nail down the value of R for which a random linear code goes from almost
certainly not containing a subset of B to almost certainly containing a subset.

To properly develop this theory, we are inspired by the literature devoted to local
properties of random graphs: that is, a property of a graph that is characterized by the
graph containing, or not containing, a certain constant-sized subgraph H .5 Note that
such a property is invariant with respect to permutations on the vertices.

Now, consider a graph drawn from the Erdős-Rényi model G(n, p). As p increases,
such a graph will be more-and-more likely to satisfy the property. It is well-known
(see, e.g., [Bol01, Sec. 4.2]) that for any constant-sized graph H there is some threshold
pH0 such that the expected number of appearances of H as a subgraph of G(n, p) either
tends to 0 or∞ depending on whether p is smaller or larger than pH0 , and moreover if
p > pH0 then H will indeed appear as a subgraph of G(n, p) with high probability.6

We now seek a reasonable definition for a local property of a linear code. Guided
by the corresponding definition for graphs, this definition should be (i) defined by con-
stant sized subcodes of a code, and (ii) invariant with respect to permutations of the
coordinates. Our definition is inspired by the theory of types developed in information

5There is also interest in graphs containing vertex-induced subgraphs; however, for the analogy with
random linear codes we wish to draw, it is best to think of edge-induced subgraphs.

6Note that this does not follow trivially from the assertion that the expected number of appearances
of H is ω(1): it could be that there are many copies of H with small probability and 0 copies with large
probability.

39

theory [CS+04; CT12].

3.2.1 Definitions

A (length n code) property P is simply a set of linear codes in Fnq . We say a code C satisfies
the property P if C ∈ P . We will only be concerned with monotone decreasing properties,
i.e., properties for which C ∈ P and D ≤ C imply D ∈ P . Furthermore, we assume
properties are nontrivial, which means {0} ∈ P . We will typically be concerned with
property families P = (Pni)i∈N, where each Pni is a length ni code property and n1 < n2 <
. . . is an increasing sequence of integers.

Informally, a local property of a code is a property that can be defined by the exclusion
of certain constant-sized sets. This is hopefully reminiscent the property of a graph
being H-free. However, we find it more convenient think of the excluded sets being
defined in terms of types, which we introduce next.

Types. Types are a basic object of study in information theory; see, e.g., [CT12, Chapter
11] or [CS+04]. We provide the definition specialized to our situation.
Definition 3.2.1. Let q be a prime power and `, n ∈ N with ` < n. A type over F`q with
denominator n is a distribution τ ∼ F`q for which τ(u) ∈ {0, 1

n
, 2
n
, . . . , n−1

n
, 1}. When F`q or

n are clear from context, we will simply refer to τ as a type.

Next, we define the rank of a type.
Definition 3.2.2 (Rank of a Type). Let τ be a type. The rank of a type is

rank(τ) := rank(supp(τ)) .

Let Dn,` denote the set of all possible types over F`q with denominator n. Note that
types are in one-to-one correpondence with partitions of [n] into q` sets, and so we have

|Dn,`| ≤
(
n+ q` − 1

q` − 1

)
≤ (n+ 1)q

`

. (3.3)

In particular, note that for constant q and ` this quantity is polynomial in n.

Next, we associate a type to a matrix in Fn×`q as follows.
Definition 3.2.3 (Type of a Matrix). Let q be a prime power and `, n ∈ N with ` < n.
Let M ∈ Fn×`q . The type of M , denoted τM , is the probability distribution of a uniformly
sampled row of M . That is,

τM(u) =
#{i ∈ [n] : Mi,∗ = u}

n
.

Note that the support of τ is precisely the set of M ’s rows, and ergo rank(τM) =
rank(M). Denote by Mτ the set of matrices in Fn×`q that have row distribution τ ; we
refer to this set as the type class of τ .

40

Observe that there are |Fn×`q | = qn` total matrices, which is exponentially large in
n. However, as observed previously, there are only polynomially many types. Thus, at
least one of theMτ ’s must have exponential size. In fact, we have the following identity:
if u1, . . . , uq` is an enumeration of F`q,

|Mτ | =
(

n

nτ(u1), nτ(u2), . . . , nτ(uq`)

)
.

This expression is quite unwieldy in practice though. Fortunately, we have the follow-
ing well-known estimate. Recall that Hq(τ) = H(τ)/ log(q) denotes the base q entropy
of τ .
Proposition 3.2.4 ([CS+04, Lemma 2.2], [CT12, Theorem 11.1.3]). Let τ be a type over F`q
with denominator n. Then(

n+ q` − 1

q` − 1

)−1

qnHq(τ) ≤ |Mτ | ≤ qnHq(τ) .

That is,
logq |Mτ | = (1− o(1))Hq(τ) · n .

3.2.2 Local Properties

Having established the definition of a type, we are able to discuss local properties of
codes. Let C ≤ Fnq be a code and τ a type. We say that C contains the type τ , written τ ∈ C,
if there exists a matrix M ∈ Mτ such that col-span(M) ⊂ C, which we denote slightly
abusively by “M ⊆ C”.
Definition 3.2.5. Let ` ∈ N. An `-local property is a property defined by excluding a set
of types T ⊆

⋃
1≤`′≤`Dn,`′ :

{C ≤ Fnq : ∀τ ∈ T , τ /∈ C}.

We refer to this property as T -freeness and denote it by PT . We shorthand Pτ := P{τ}.
For a family of properties P = (Pni)i∈N, P is called an `-local property if Pni is an

`-local property for each i ∈ N.
Remark 3.2.6. It is natural to assume that the family of properties is defined in a “uni-
form” manner. As a first example, observe that if we have an `-local type τ with de-
nominator n, one can naturally view it as an `-local type with denominator m whenever
n|m. Thus, if we fix some type τ ∈ Dn1,` for integers n1 and `, we can consider the family
of properties of τ -freeness for all block-lengths ni := i · n1 for i ∈ N.

More generally, when we describe popular code properties (such as list-decodability)
as a local property, the description will be uniform in the following sense: for each n,
we will take the set of all types τ ∈ Dn,` for which the vector (τ(u))u∈F`q ∈ Rq` satisfies
some finite, fixed set of linear inequalities. Notably, the set of linear inequalities will not
depend on n.

41

Nonetheless, our theorem will be general enough to apply to local properties that
are not uniform in any sense. That is, sequence of forbidden types (Tni)i∈N need not be
“consistent” in any meaningful sense. In Chapter 9, we discuss potential improvements
to our results if we assume the property family is uniform.

Intuitively, as the rate R of a random linear code C increases (equivalently, as the
number of rows in the random parity-check matrix H decreases), it will become in-
creasingly unlikely that C will be T -free. This can be proved formally via a standard
coupling argument, akin to [Bol01, Theorem 2.1]; see Remark 3.3.3.

We will demonstrate that any such local property family experiences a sharp thresh-
old. The formal definition is given later (Definition 3.3.4), but the intuition is that there
is a fixed R∗ ∈ [0, 1] such that codes of rate less than R∗ almost certainly satisfy the
property whereas codes of rate greater than R∗ almost certainly do not.

Before proceeding, we demonstrate that many widely studied properties of codes
are local properties in this sense.
Example 3.2.7 (Distance is a 1-Local Property). Consider the property of a code having
distance greater than δ. Let T ⊆ Dn,1 be the set of all types τ ∼ F1

q for which 1 > τ(0) ≥
1− δ. Then a code C is T -free if and only if it has distance greater than δ.
Example 3.2.8 (List-Decodability is an (L + 1)-Local Property). Consider the property
of a code being (ρ, L)-list-decodable. Let T ⊆ Dn,L+1 be the set of all types τ such that
for some (correlated) type τ ′ ∈ Dn,1,

∀i ∈ [L+ 1], P
(u,x)∼(τ,τ ′)

(ui 6= x) ≤ ρ . (3.4)

We furthermore stipulate

∀i 6= j ∈ [L+ 1], P
u∼τ

(ui 6= uj) < 1 . (3.5)

We claim that a code C is (ρ, L)-list-decodable if and only if C is T1-free.

We briefly provide the justification. C fails to be (ρ, L)-list-decodable iff there exists
a center z ∈ Fnq and a set of L + 1 distinct codewords {c1, . . . , cL+1} ∈ B(z, ρ) ∩ C. Let
M ∈ Fn×(L+1)

q be the matrix whose columns are given by c1, . . . , cL+1 (in this order) and
enumerate its rows u1, . . . , un ∈ FL+1

q . (Thus, uji = cij for i ∈ [L + 1] and j ∈ [n].) Define
the pair (τ, τ ′) by sampling j ∼ [n] uniformly and outputting (uj , zj) ∈ FL+1

q × Fq. As C
contains col-span(M), C contains a matrix inMτ , i.e., C contains τ . Moreover note that
Condition 3.4 holds for (τ, τ ′) as c1, . . . , cL+1 ∈ B(z, ρ). Indeed, for any i ∈ [L+ 1],

P
(u,x)∼(τ,τ ′)

(ui 6= x) = P
j∼[n]

(
uji 6= zj

)
=

1

n

n∑
j=1

I
(
uji 6= zj

)
=

1

n

n∑
j=1

I
(
cij 6= zj

)
= d(ci, zj) ≤ ρ .

42

Furthermore, the fact that the codewords are distinct guarantees that Condition 3.5 is
satisfied. The converse can be proved in the analogous way (using the assumption that
the type τ has denominator n).

If one is interested in average-radius list-decodability, one can replace Condition 3.4
by

1

L+ 1

L+1∑
i=1

P
(u,x)∼(τ,τ ′)

(ui 6= x) ≤ ρ . (3.6)

Example 3.2.9 (List-Recovery is an (L + 1)-Local Property). Generalizing the previous
example, we can consider the property of a code being (ρ, `, L)-list-recoverable. Let
T ⊆ Dn,L+1 be the set of all types τ such that for some type τ ′ ∈ Dn,`,

∀i ∈ [L+ 1], P
(u,z)∼(τ,τ ′)

(∀j ∈ [`], ui 6= xj) ≤ ρ , (3.7)

and moreover the type τ is required to satisfy Condition 3.5. It follows that C is (ρ, `, L)-
list-recoverable if and only if C is T -free. The justification is analogous to that given
for the previous example and we omit it. If one is concerned with average-radius list-
recoverability, one may replace Condition 3.7 by

1

L+ 1

L+1∑
i=1

P
(u,x)∼(τ,τ ′)

(∀j ∈ [`], ui 6= xj) ≤ ρ . (3.8)

Thus, the previous examples demonstrate that local properties capture most inter-
esting properties of linear codes. The following proposition generalizes these examples.
In brief, it states that local properties are precisely those properties defined by excluding
a family of “bad” subsets, provided those subsets are closed under coordinate permu-
tations. To state the proposition, we use the following notation and terminology. For a
permutation π ∈ Sn and a string x ∈ Σn, π(x) denotes the string obtained by permut-
ing the coordinates according to π, i.e., π(x) := (xπ(1), . . . , xπ(n)). For a subset B ⊆ Σn,
π(B) := {π(x) : x ∈ B}. A family of subsets B ⊆ 2Σn is called permutation-invariant if
for all B ∈ B and π ∈ Sn, π(B) ∈ B. The family B is furthermore deemed `-bounded if
|B| ≤ ` for all B ∈ B.
Proposition 3.2.10 (Characterization of Local Properties). Let C be a linear code. For any
`-local property P , there exists an `-bounded permutation-invariant family B ∈ 2Σn such that C
satisfies P if and only if for all B ∈ B, B 6⊆ C.

Conversely, given any `-bounded permutation-invariant family B, there is an `-local type P
such that C satisfies P if and only if for all B ∈ B, B 6⊆ C.

Proof. For the forward implification, take

B =
⋃
τ∈T

⋃
M∈Mτ

cols(M) ,

43

where cols(M) denotes the columns of the matrix.

For the other direction, for each B ∈ B, take any matrix M ∈ Fn×|B|q with cols(M) =
B. By permutation-invariance of B, everyM ′ ∈MτM has cols(M ′) = B′ for someB′ ∈ B.
Thus, we take T to be the union of all theMτM ’s obtained in this manner.

3.3 Characterizing the Threshold of Local Properties

In this section we demonstrate that every local property of a random linear code expe-
riences a sharp threshold. Moreover, we provide a characterization of the threshold in
terms of an explicitly computable quantity. First, we define what we mean by a thresh-
old for a monotone property. In the following, for n ∈ N and R ∈ [0, 1], CnRLC(R) denotes
a random linear code of rate R.
Definition 3.3.1 (Threshold of a Property). Let P be a nontrivial property of length n
codes. The threshold of P is defined to be

RRLC(P) := sup{R ∈ [0, 1] : P (CnRLC(R) satisfies P) ≥ 1/2} .

Remark 3.3.2. As P is nontrivial (i.e., {0} ∈ P), RRLC(P) ≥ 0.
Remark 3.3.3. Note that every property has a threshold in the sense of Definition 3.3.1.
This is not entirely obvious, as one must justify that P (CnRLC(R) satisfies P) is decreasing
in R. To do this, a standard coupling argument ([Bol01, Theorem 2.1]) works: if R1 <
R2 then one can imagine sampling n − R2n vectors at random and setting CnRLC(R2)
to be the orthogonal complement of these vectors, and then sampling an additional
(R2 − R1)n vectors and taking the orthogonal complement of all the sampled vectors
to obtain CnRLC(R1). Both CnRLC(R1) and CnRLC(R2) have the correct distribution, and
CnRLC(R1) is only more likely to satisfy P than CnRLC(R2).

To say that a property experiences a sharp threshold is to say that there is a small in-
terval of rates over which a random linear code goes from almost certainly satisfying the
property to almost certainly not satisfying the property. To define sharpness formally,
we should speak of a family of properties for an increasing sequence of blocklengths
n1 < n2 < The following definition makes this notion precise. In this chapter, o(1)
always denotes a quantity f(n) for which limi→∞ f(ni) = 0.
Definition 3.3.4 (Sharp Threshold of a Property Family). Let P = (Pni)i∈N be a property
family. The property family P is said to be sharp for random linear codes if for any ε > 0
the following holds:
• if Rni ≤ RRLC(Pni)− ε, a length ni random linear code of rate Rni satisfies Pni with

probability 1− o(1);
• for any Rni ≥ RRLC(Pni) + ε, a length ni random linear code of rate Rni satisfies
Pni with probability o(1).

We now specialize our discussion to local properties. Our main result in this chapter
is a proof that every local property is sharp for random linear codes. This will follow
from Theorem 3.3.9 which additionally characterizes the sequence (RRLC(Pni))i∈N.

44

Given a type τ with denominator n and M ∈ Mτ , a random linear code C of rate
R contains M with probability q−n(1−R) rank(M) = q−n(1−R) rank(τ); see Proposition 2.2.2.
Hence, in expectation, C contains roughly qn(Hq(τ)−(1−R) rank(τ)) matrices from Mτ . In
particular, this expectation grows (resp. decays) exponentially in n when R is larger
(resp. smaller) than 1− Hq(τ)

rank(τ)
. This motivates the following definition.

Definition 3.3.5 (Expectation Threshold). Given a distribution τ over F`q, let

RE
RLC(τ) := 1− Hq(τ)

rank(τ)
.

It follows from a standard first-moment argument that if R < RE
RLC(τ) then C sat-

isfies Pτ with probability 1 − exp(−Ω(n)). In particular, as n grows we get the lower
bound

RRLC(Pτ) ≥ RE
RLC(τ)− o(1) . (3.9)

However, as the following example shows, this bound is not tight.
Example 3.3.6. Let q = 2, ` = 3 and consider the distribution τ over F3

2 given by the
following table:

u τ(u)

(1, 0, 0) 1/4
(0, 1, 0) 1/4
(1, 0, 1) 1/4
(0, 1, 1) 1/4

Every other vector 0

Note that such a type may be viewed as having denominator n for any n divisible by 4.
It is straightforward to compute RE

RLC(τ) = 1− H2(τ)
rank(τ)

= 1− 2
3

= 1
3
.

We claim that RRLC(Pτ) is strictly larger than RE
RLC(τ). Let A :=

(
1 0 0
0 1 0

)
∈ F2×3

2

represent the linear map which projects a vector onto its first two coordinates. Let τ ′

denote the distribution of Au, where u is a random vector sampled from τ . Thus, τ ′ is
distributed as follows:

u τ ′(u)

(1, 0) 1/2
(0, 1) 1/2

Every other vector 0

Note that a code C which contains a matrix M from Mτ must contain the first two
columns of M : that is, the matrix MAT . Consequently, every code which satisfies Pτ ′

also satisfies Pτ , and so RRLC(Pτ) ≥ RRLC(Pτ ′).

Finally, (3.9) yields

RRLC(Pτ ′) ≥ RE
RLC(τ ′)− o(1) = 1− H2(τ ′)

rank(τ ′)
− o(1) = 1− 1

2
− o(1) =

1

2
− o(1) ,

45

and we conclude that, for sufficiently large n,

RRLC(Pτ) ≥ 1

2
− o(1) >

1

3
= RE

RLC(τ) .

Example 3.3.6 motivates the following definition.
Definition 3.3.7 (Implied Type). Let τ ∈ Dn,` and let A ∈ Fm×`q be a full-rank matrix for
some m ≤ `. The type τ ′ of the random vector Au, where u is sampled according to τ ,
is said to be τ -implied. Note that τ ′ ∈ Dn,m, i.e., it is an m-local type with denominator n.
We denote the set of τ -implied distributions by Iτ .

Note that if τ ∈ C, then τ ′ ∈ C for any τ ′ ∈ Iτ . Indeed, suppose that C contains
a matrix M ∈ Mτ . As all the columns of MAT lie in col-span(M) (where A ∈ Fm×`q

is as in Definition 3.3.7), the linearity of C guarantees that it also contains the matrix
MAT , which belongs to Mτ ′ . That is to say, τ ′ ∈ C. This justifies the terminology: an
appearance of the type τ ′ is “implied” by the appearance of the type τ .

Stated in terms of the contrapositive, this amounts to saying that a linear code satis-
fying Pτ ′ must also satisfy Pτ . Consequently, RRLC(Pτ) ≥ RRLC(Pτ ′). Combining these
observations with Inequality (3.9) implies the stronger lower bound

RRLC(Pτ) ≥ max
τ ′∈Iτ

RE
RLC(τ ′)− o(1) . (3.10)

Lemma 3.3.8 essentially says that (3.10) is tight, and that Pτ is sharp for random
linear codes.
Lemma 3.3.8. Let ` ∈ N and τ ∈ Dn,`. Denote R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′). The threshold

RRLC(Pτ) satisfies
RRLC(Pτ) = R∗τ ± o(1) .

Furthermore, suppose C ≤ Fnq is a random linear code of rate R.
1. If R ≤ R∗τ − ε then

P (τ ∈ C) ≤ q−εn .

2. Conversely, if R ≥ R∗τ + ε then

P (τ ∈ C) ≥ 1−
(
n+ q2` − 1

q2` − 1

)3

· q−εn .

We defer the proof of Lemma 3.3.8 to Section 3.4. Assuming this result, we are able
to conclude that local property families have a sharp threshold in the sense of Defini-
tion 3.3.4.
Theorem 3.3.9. [Sharpness of Local Properties for Random Linear Codes] Fix ` ∈ N. Any
`-local property family P = (Pni)i∈N is sharp for random linear codes.

Futhermore, if Tni ⊆ Dn,` is a set of types such that Pni = PTni , then

RRLC(Pni) = min
τ∈Tni

max
τ ′∈Iτ

RE
RLC(τ ′)± o(1) . (3.11)

46

Proof. For i ∈ N, denote
R∗ni = min

τ∈Tni
max
τ ′∈Iτ

RE
RLC(τ ′) .

For R ∈ [0, 1] let CnRLC(R) denote a random linear code in Fnq of rate R. To prove the
theorem, it suffices to prove the following:

I. For any ε > 0, if Rni ≤ R∗ni − ε for all i ∈ N, limi→∞ P (CniRLC(Rni) satisfies Pni) = 1.

II. For any ε > 0, if Rni ≥ R∗ni + ε for all i ∈ N, limi→∞ P (CniRLC(Rni) satisfies Pni) = 0.

To prove Statement I, observe that Item 1 of Lemma 3.3.8 guarantees that for each τ ∈
Tni , P (τ ∈ CniRLC(Rni)) ≤ q−εni . Note that

|Tni| ≤ |Dni,`| ≤
(
ni + q` − 1

q` − 1

)
≤ (ni + 1)q

`

,

where we have recalled Eq. (3.3). Thus, by taking a union bound over all τ ∈ Tni , we
find

P (CniRLC(Rni) satisfies Pni) ≤ (ni + 1)q
`

q−εni
i→∞−→ 0 .

For Statement II, take any τ ∈ Tni such that maxτ ′∈Iτ R
E
RLC(Pτ ′) = R∗ni . By Item 2 of

Lemma 3.3.8, CniRLC(Rni) almost surely contains τ , which is a sufficient condition for
CniRLC(Rni) to not satisfy Pni .

Remark 3.3.10. Note that this theorem actually promises that the o(1) terms in Defini-
tion 3.3.4 are of the form exp(−Ω(εn)), i.e., they are exponentially small in n.
Remark 3.3.11. Returning to the setting of Remark 3.2.6, suppose we fix a type τ ∈ Dn1,`

and that the property family (Pni)i∈N is defined uniformly as the property of τ -freeness,
where τ is viewed as an `-local property with denominator i · n1 for any i ∈ N. Note
that the quantity R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′) is independent of ni. Thus, we see that the

sequence of thresholds (RRLC(Pni)) converges to a fixed value; namely, R∗τ .

More generally, if we have a family of local properties (Pni) defined uniformly via a
set of linear inequalities (as is the case for, e.g., list-decoding), it is natural to suspect that
the sequence (RRLC(Pni))i∈N will converge to a fixed value. We leave it as an interesting
open problem to determine if this is indeed the case.

3.4 Proof of Lemma 3.3.8

In this section we prove Lemma 3.3.8. The first part uses a simple first-moment argu-
ment. The real challenge is the second part, where we use the second-moment method.7

Proof of Item 1 of Lemma 3.3.8. We begin by proving Item 1 of the lemma. Assume that τ
is such that R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′) satisfies

R ≤ R∗τ − ε .
7How appropriate that the first argument uses the first moment and the second argument uses the

second moment. You would almost think that was intentional.

47

Choose τ ′ ∈ Iτ achieving RE
RLC(τ ′) = R∗τ and let A ∈ Fm×`q be such that τ ′ is the distri-

bution of Av where v ∼ τ . By Proposition 2.2.2, a matrix M ′ ∈ Mn,τ ′ is contained in C
with probability q−(1−R) rank(M ′)n = q−(1−R) rank(τ ′)n, and so

P (∃M ∈Mτ ′ ,M ⊂ C) ≤ |Mτ ′| · q−(1−R) rank(τ ′)n ≤ q(Hq(τ ′)−(1−R) rank(τ ′))n ≤ q−εn .

The first inequality uses a union bound, the second uses Proposition 3.2.4, and the final
uses RE

RLC(τ ′) = 1− Hq(τ ′)
rank(τ ′)

≥ R + ε.

Finally, note that if C contains some matrixM ∈Mτ , then by linearity,M ′ := MAT ∈
Mτ ′ is also contained in C. So we conclude

P (∃M ∈Mτ ,M ⊂ C) ≤ q−εn .

We now proceed to the second part of the Lemma, which is more involved.

Proof of Item 2 of Lemma 3.3.8. We wish to show that when the rate R is too large, then a
random linear code of rate will contain a matrix of type τ with high probability. Suppose
τ ∈ Dn,` is such that R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′) satisfies R ≥ R∗τ + ε.

First, we argue that we may assume rank(τ) = `. By the definition of rank(τ), there is
some matrix B ∈ Frank(τ)×`

q of rank rank(τ) so that the distribution τ̃ given by Bv, v ∼ τ
has rank(τ̃) = rank(τ). We claim that

max
τ ′∈Iτ

RE
RLC(τ ′) ≤ R− ε

implies that
max
τ̃ ′∈Iτ̃

RE
RLC(τ̃ ′) ≤ R− ε.

To demonstrate, we prove the contrapositive. Suppose that there is some τ̃ ′ ∈ Iτ̃ so that
RE

RLC(τ̃ ′) > R − ε. Then by the definition of Iτ̃ , there is some matrix A ∈ Fm×rank(τ̃)
q

with m ≤ rank(τ̃) so that τ̃ ′ is given by Aw, w ∼ τ̃ . But this is the same as the distri-
bution of ABv, v ∼ τ , using the definition of τ̃ . Thus, τ̃ ′ ∈ Iτ , and this implies that
maxτ ′∈Iτ R

E
RLC(τ ′) > R − ε. Finally, we observe that

(
n+q2`−1
q2`−1

)
is increasing in `, so we

conclude that to prove Item 2, we may as well work with the distribution τ̃ on Frank(τ̃)
q .

Thus, in the sequel we will assume rank(τ) = `.

For a matrix M ∈ Fn×`q , let XM be the indicator variable for the event that M ⊆ C,
and let X =

∑
M∈Mτ

XM . Our goal then is to show that X > 0 with high probability,
and we do so by showing that Var (X) = o(E2[X]).

We first show a lower bound on E [X]. Using Propositions 2.2.2 and 3.2.4,

E [X] = |Mτ | · q−(1−R)·`·n ≥ q(Hq(τ)−(1−R)·`)·n ·
(
n+ q` − 1

q` − 1

)−1

. (3.12)

48

Next we show an upper bound on Var (X). Given a pair of matrices M,M ′ ∈ Mτ ,
we let (M |M ′) denote the (n × (2`))-matrix consisting of a left n × ` block equal to M ,
and a right n× ` block equal to M ′. Then in this notation we have

Var (X) =
∑

M,M ′∈Mτ

E [XM ·XM ′]− E [XM] · E [XM ′]

=
∑

M,M ′∈Mτ

P ((M |M ′) ⊆ C)− P (M ⊆ C) · P (M ′ ⊆ C)

=
∑

M,M ′∈Mτ

q−(1−R)·rank(M |M ′)·n − q−2·(1−R)·`·n .

Notice that in the above sum, terms for which rank(M |M ′) = 2` vanish. Let

M := {(M |M ′) : M,M ′ ∈Mτ and rank(M |M ′) < 2`}

and
D := {τM : M ∈M} .

Then we have

Var (X) ≤
∑
M∈M

q−(1−R) rank(M)n

=
∑
τ ′∈D

∑
M∈Mτ ′

q−(1−R) rank(M)n

=
∑
τ ′∈D

|Mτ ′ | · q−(1−R) rank(τ ′)n

≤
∑
τ ′∈D

q(Hq(τ ′)−(1−R) rank(τ ′))n , (3.13)

where the inequality used Proposition 3.2.4. We seek a bound onHq(τ
′)−(1−R) rank(τ ′)n,

which is provided by the following claim. Recall that ε > 0 is such that ε ≤ R−R∗τ , i.e.,
it lower bounds the amount by which the rate of the random linear code exceeds R∗τ .

Claim 3.4.1. For any τ ′ ∈ D,

Hq(τ
′)− (1−R) · rank(τ ′) ≤ 2(Hq(τ)− (1−R) · `)− ε .

We show how to complete the proof assuming the claim. Continuing from (3.13),

Var (X) ≤ |D|q(2(Hq(τ)−(1−R)·`)−ε)n ≤
(
n+ q2` + 1

q2` − 1

)
· q(2(Hq(τ)−(1−R)·`)n · q−εn . (3.14)

Above, we used the fact that D ⊆ Dn,` and applied (3.3). Combining (3.12) and (3.14),
by Chebyshev’s inequality we conclude that

P (X = 0) ≤ Var (X)

E2[X]
≤
(
n+ q2` − 1

q2` − 1

)3

q−εn .

To complete the proof, we prove Claim 3.4.1 which we used above.

49

2`− d

2`

A1 A2

The rows of
(A1|A2) ∈ F(2`−d)×2`

q

are w1, . . . , w2`−d.

The columns of this 2`× n
matrix are distributed

according to τ ′.

The columns of this `× n matrix are
distributed according to τ .

The columns of this `× n matrix are
also distributed according to τ .

= 0

Figure 3.1: Notation in the proof of Claim 3.4.1.

Proof of Claim 3.4.1. In what follows, let d := rank(τ ′), and V := span(supp(τ ′)) ≤ F2`
q .

Let w1, . . . , w2`−d ∈ F2`
q be a basis for V ⊥. Let π1 : F2`

q → F`q (respectively, π2) denote the
projection of a vectorw ∈ F2`

q to the first (respectively, last) ` coordinates. Finally, letA be
the matrix whose rows are w1, . . . , w2`−d, and let A1 ∈ F(2`−d)×`

q (A2, respectively) denote
the matrix whose rows are π1(w1), . . . , π1(w2`−d) (π2(w1), . . . , π2(w2`−d), respectively). See
Fig. 3.1 for a diagram of this notation.

We claim that all rows ofA1 are linearly independent, and so rank(A1) = 2`−d. To see
this, suppose for a contradiction that π1(w1), . . . , π1(w2`−d) are linearly dependent. Then
there exists a non-trivial linear combination of w1, . . . , w2`−d that sums to a non-zero
vector of the form (0, w). But this means that π2(supp(τ ′)) = supp(τ) is orthogonal to
w, in contradiction to our assumption that span(supp(τ)) = F`q. Consequently, recalling
that rank(τ) = `, the distribution τ ′′ given by A1w for w ∼ τ has rank(τ ′′) = 2` − d. As
τ ′′ ∈ Iτ , RE

RLC(τ ′′) ≤ R− ε.
Recall that Iq(x;y) denotes the base-q mutual information of the random variables

x and y. For v ∼ τ ′ we have

Hq(τ
′) = Hq(v)

= Hq(π1(v)) +Hq(π2(v))− Iq(π1(v);π2(v)) (3.15)
= 2Hq(τ)− Iq(π1(v); π2(v)) (3.16)
≤ 2Hq(τ)− Iq(A1π1(v);−A2π2(v)) (3.17)
= 2Hq(τ)−Hq(A1π1(v)) (3.18)
≤ 2Hq(τ)− (1−R + ε) · rank(τ ′′) (3.19)
= 2Hq(τ)− (1−R + ε) · (2`− d) .

The equality (3.15) follows from the definition of mutual information, using v = (π1(v), π2(v)).
The equality (3.16) follows from the fact that π1 and π2 are injective on row-span(A). The
inequality (3.17) follows from the data-processing inequality. The equality (3.18) fol-
lows since A1π1(v) + A2π2(v) = Av = 0. Finally, inequality (3.19) follows because

50

1− Hq(τ ′′)
rank(τ ′′)

= RE
RLC(τ ′′) ≤ R− ε. Rearranging, and recalling the assumption that 2` > d,

gives the desired conclusion.

The proof of Item 2 of Lemma 3.3.8 is thereby completed.

3.5 New Derivations of Known Results

In order to demonstrate the power of the types framework, we show how to use it to
rederive some known results concerning random linear codes.

3.5.1 Showing Random Linear Codes Achieve the GV Bound

Recall that it is known that random linear codes achieve the GV bound (Theorem 2.4.4)
with high probability. That is, for any δ ∈ (0, 1 − 1/q), a random linear code of rate
roughly 1 − hq(δ) has distance δ with high probability. We show how to prove this fact
using our types framework. Recalling Example 3.2.7, if T ⊆ Dn,1 denotes the set of all
types τ for which 1 > τ(0) ≥ 1−δ, showing that a code C ≤ Fnq does not contain a vector
x with 0 < wt(x) ≤ δ is the same as showing that it doesn’t contain a vector8 of type
τ ∈ T . We wish to compute the threshold for T -freeness, RRLC(PT). By Theorem 3.3.9,

RRLC(PT) = min
τ∈T

max
τ ′∈Iτ

RE
RLC(τ ′)± o(1) .

Thus, given a τ ∈ T , we must show that there exists an implied type τ ′ ∈ Iτ for which
RE

RLC(τ ′) = 1 − Hq(τ ′)
rank(τ ′)

≤ 1 − hq(δ). To establish this, we just compute RE
RLC(τ), the

expectation threshold of τ . Note first that τ(0) < 1 guarantees supp(τ) ⊆ Fq contains a
nonzero element, and therefore rank(τ) = 1. To upper bound the q-ary entropy, we use
the following proposition.
Proposition 3.5.1. Let δ ∈ (0, 1 − 1/q) and let τ ∼ Fq be a distribution which, for some
x0 ∈ Fq, satisfies τ(x0) ≥ 1− δ. Then Hq(τ) ≤ hq(δ).

Proof. We compute

Hq(τ) =
∑
x∈Fq

τ(x) logq

(
1

τ(x)

)
= τ(x0) logq

(
1

τ(x0)

)
+
∑
x 6=x0

τ(x) logq

(
1

τ(x)

)
≤ τ(x0) logq

(
1

τ(x0)

)
+

(∑
x 6=x0

τ(x)

)
· logq

(
q − 1∑
x 6=x0 τ(x)

)

= hq

(∑
x 6=x0

τ(x)

)
≤ hq(δ) .

8Typically we speak of matrices of a given type, but as a matrix of type τ ∈ Dn,1 is n× 1 such a matrix
is more naturally thought of as a vector.

51

In the above computations, the first inequality follows from the concavity of the function
y 7→ y log 1

y
, and the second uses the assumption τ(x0) ≥ 1 − δ and the fact that hq(δ)

increases with δ for δ ∈ (0, 1− 1/q).

Thus,

RE
RLC(τ) = 1− Hq(τ)

rank(τ)
= 1− hq(δ) .

Since the previous argument was valid for any τ ∈ Dn,1 with 1 > τ(0) > 1 − δ, we
conclude

RRLC(PT)± o(1) = min
τ∈T

max
τ ′∈Iτ

RE
RLC(τ ′) ≥ 1− hq(δ) .

If desired, one can also prove the corresponding upper bound on RRLC(PT) by consid-
ering the specific type τ ∗ ∈ Dn,1 which assigns probability mass 1−δ to 0 and probability
mass δ

q−1
to each x ∈ Fq \{0}; such a type has entropy hq(δ) and rank 1, so its expectation

threshold is 1−hq(δ). As τ ∗ does not contain any nontrivial implied types, we conclude
that RRLC(τ ∗) = RE

RLC(τ ∗) = 1− hq(δ), so

RRLC(PT)± o(1) = min
τ∈T

max
τ ′∈Iτ

RE
RLC(τ ′) ≤ max

τ ′∈Iτ∗
RE

RLC(τ ′) = 1− hq(δ) .

Remark 3.5.2. Of course, the distribution τ ∗ defined as above need not be a type with
denominator n, but one can adjust the probability masses slightly so that it does have
denominator n. By continuity, this only affects Hq(τ

∗) by o(1) terms, which we may
safely ignore. In the sequel we will ignore this technicality.

Now, suppose we had been a bit less clever in defining the types we must forbid in
order to prove that a random linear code has distance δ. Specifically, suppose that we
had chosen to forbid all types τ ∈ Dn,2 for which

0 < P
(x,y)∼τ

(x = y) ≤ δ . (3.20)

Note that this amounts to saying that the code must not contain an n× 2 matrix whose
columns are at Hamming distance δ from one another. If one were to compute the
expectation threshold of such a τ , one would not in general obtain a better lower bound
than 1 − 1+hq(δ)

2
< 1 − hq(δ). Indeed, consider the following τ : it samples (x,y) ∼ F2

q

such that x and y are marginally uniform over Fq, and that P(x,y)∼τ (x = y) = δ.9 Now,
observe that

Hq(τ) = Hq(x,y) = Hq(x) +Hq(y|x) = 1 + hq(δ) ,

and so
RE

RLC(τ) = 1− Hq(τ)

2
= 1− 1 + hq(δ)

2
,

as claimed.
9This is slightly at odds with the previous assumption that neither of the columns of a matrix of type

τ may be 0; however, this discrepancy would be nullified when we enforce the assumption that the type
have denominator n.

52

However, we claim that any such τ has an implied type τ ′ ∈ Iτ with RE
RLC(τ ′) ≥

1−hq(δ). Specifically, take the type implied by the linear map which maps (x, y) 7→ x−y.
Note that this τ ′ ∈ Dn,1 satisfies

1 > P
x∼τ ′

(x = 0) ≥ 1− δ ,

and Proposition 3.5.1 demonstrates that such a τ ′ has entropy at least hq(δ). Since
rank(τ ′) = 1 (as P(x,y)∼τ (x = y) > 0, it follows that the image of supp(τ) under the map
(x, y) 7→ x− y contains a nonzero point), the expectation threshold RE

RLC(τ ′) ≥ 1−hq(δ).
Thus, if T ⊆ Dn,2 denotes the set of all types satisfying Condition (3.20), we still find

RRLC(PT)± o(1) = min
τ∈T

max
τ ′∈Iτ

RE
RLC(τ ′) ≥ 1− hq(δ) ,

thereby again establishing that random linear codes achieve the GV bound with high
probability.

3.5.2 Recovering Known Results on the List-Decodability of Random
Linear Codes

In this section, we show how two known results on the list-decodability of random lin-
ear codes can be obtained in our types framework. First, we study the Zyablov-Pinsker
([ZP81]) argument; later, we show how to adapt the more sophisticated Guruswami-
Håstad-Kopparty ([GHK11]) argument. Throughout this section, we let T ⊆ Dn,L+1

denote the set of types defined in Example 3.2.8: that is, T consists of all τ ∈ Dn,L+1

such that for some type τ ′ ∈ Dn,1,

∀i ∈ [L+ 1], P
(u,x)∼(τ,τ ′)

(ui 6= x) ≤ ρ (3.21)

and

∀i 6= j ∈ [L+ 1], P
u∼τ

(ui 6= uj) > 0 . (3.22)

The Zyablov-Pinsker Argument

We now provide a new proof of the following result of Zyablov and Pinsker.
Theorem 3.5.3 ([ZP81]). A random linear code of rate 1 − hq(ρ) − 1

dlogq(L+1)e is with high
probability (ρ, L)-list-decodable.

Proof. Let τ ∈ T be a type satisfying Conditions 3.21 and 3.22. We claim that RE
RLC(τ) ≤

1 − hq(ρ)

dlogq(L+1)e . On the one hand, Condition 3.22 guarantees that any matrix sampled
according to τ has rank at least dlogq(L + 1)e, as any such matrix must have distinct

53

columns. That is to say, rank(τ) ≥ dlogq(L + 1)e. On the other hand, we may upper
bound its q-ary entropy as

Hq(τ) = Hq(τ, τ
′)−Hq(τ |τ ′) = Hq(τ |τ ′) +Hq(τ

′)−Hq(τ
′|τ) ≤ Hq(τ |τ ′) + 1 . (3.23)

Hence, we seek an effective upper bound on Hq(τ |τ ′). Let (u,x) ∼ (τ, τ ′), and choose a
subset I ⊆ [L + 1] of size rank(τ) such that (ui)i∈I determines the entire vector u. That
is, I is an information set for the subspace span(supp(τ)) ≤ FL+1

q . We compute

Hq(τ |τ ′) = Hq(u|x) = Hq((ui)i∈I |x) ≤
∑
i∈I

Hq(ui|x) =
∑
i∈I

∑
x∈Fq

P (x = x) ·Hq(ui|x = x) .

Now, note that Condition 3.21 guarantees that the random variable ui ∼ Fq conditioned
onx = x takes on the value xwith probability at least 1−ρ, and takes on a different value
with probability at most ρ. Appealing to Proposition 3.5.1, we find Hq(ui|x) ≤ hq(ρ).
Putting everything together, we conclude

Hq(τ) ≤ |I| · hq(ρ) + 1 = rank(τ) · hq(ρ) + 1 .

Hence,

RE
RLC(τ) = 1− Hq(τ)

rank(τ)
≥ 1− rank(τ) · hq(ρ) + 1

rank(τ)
≥ 1− hq(ρ)− 1

dlogq(L+ 1)e
.

Since the previous argument applies equally well to any τ ∈ T , Theorem 3.3.9 now
yields

RRLC(Pτ)± o(1) = min
τ∈T

max
τ ′∈Iτ

RE
RLC(τ ′) ≥ 1− hq(ρ)− 1

dlogq(L+ 1)e
.

This demonstrates that a random linear code of rate at most 1−hq(ρ)− 1
dlogq(L+1)e is, with

high probability, (ρ, L)-list-decodable.

The Guruswami-Håstad-Kopparty Argument

Next, we show how to recover the Guruswami-Håstad-Kopparty ([GHK11]) result, as-
suming a technical combinatorial result of theirs. Specifically, we use:
Lemma 3.5.4 ([GHK11, Theorem 10]). For every prime power q and ρ ∈ (0, 1 − 1/q), there
is a constant C = Cρ,q > 1 such that for all n and all ` = o(

√
n), the following holds. Suppose

L ≥ C · ` and, for j ∈ [L], let bj = (bj1, . . . , bj`) ∈ F`q be distinct vectors. If x1, . . . ,x` are
sampled independently and uniformly from B(0, ρ), then

P

(∑̀
i=1

bjixi ∈ B(0, ρ) ∀j ∈ [L]

)
≤ q−(6−o(1))n .

54

Remark 3.5.5. This is actually a slight weakening of Theorem 10 from [GHK11]; there,
they conclude that P (| span{x1, . . . ,x`} ∩B(0, ρ)| ≥ L) ≤ q−(6−o(1))n. However, in fact
their argument (implicitly) proceeds by proving the above result and then taking a
union bound over the choice of vectors bj (of which there are at most q`L). So this is
not really a weaker result.

We are then able to rederive:
Theorem 3.5.6 ([GHK11, Theorem 6]). Let q be a prime power and ρ ∈ (0, 1 − 1/q). Then
there exists a constant C = Cρ,q > 0 such that for all ε > 0, if C ≤ Fnq is a random linear code
of rate 1− hq(ρ)− ε, then C is (ρ, C/ε)-list-decodable with high probability.

Proof. Let τ ∈ T , i.e., τ ∈ Dn,L+1 satisfies Conditions 3.21 and 3.22. Appealing to Theo-
rem 3.3.9, it will suffice to show that

RE
RLC(τ) ≥ 1− hq(ρ)− ε .

We assume n is large enough so that the o(1) term in the exponent of Lemma 3.5.4 is at
most 1. We take C = Cρ,q to be the constant from Lemma 3.5.4 and assume L ≥ 2C/ε.
Abbreviate r := rank(τ). We now consider two cases, depending on r.

Case 1: r ≥ 1/ε. We assume first that the rank of τ is large. As in the proof of Theo-
rem 3.5.3, we may show that

Hq(τ) ≤ r · hq(ρ) + 1 .

Hence,

RE
RLC(τ) = 1− Hq(τ)

r
≥ 1− hq(ρ)− 1

r
≥ 1− hq(ρ)− ε .

Case 2: r < 1/ε. Suppose now that the rank of τ is small. Note that in this case,
L+1−r ≥ Cr, where we recall C = Cρ,q is the constant from Lemma 3.5.4. We endeavor
to prove a better upper bound on Hq(τ). As in (3.23),

Hq(τ) ≤ Hq(τ |τ ′) + 1 .

If (u,x) ∼ (τ, τ ′),

Hq(τ |τ ′) = Hq(u|x) ≤ Hq(u− x · 1) ,

where 1 denotes the all-ones vector. Let σ ∈ Dn,L+1 denote the type corresponding to
the random variable u− x · 1, i.e., for each v ∈ FL+1

q ,

σ(v) = P (u− x · 1 = v) .

Note that Condition 3.21 implies

∀i ∈ [L+ 1], P
v∼σ

(vi 6= 0) ≤ ρ . (3.24)

55

By Proposition 3.2.4, we know that

Hq(σ) ≤ 1 + o(1)

n
logq |Mσ| .

Finally, observe that Lemma 3.5.4 guarantees that |Mσ| ≤ qnrhq(ρ) · q−5n. In justification
of this, consider the columns x1, . . . , xL+1 of any M ∈ Mσ, and asumme without loss of
generality that x1, . . . , xr are linearly independent and xj ∈ span{x1, . . . , xr} for all j ≥
r+ 1. Fix scalars bji ∈ Fq such that xj =

∑r
i=1 bjixi for each j ≥ r+ 1, and observe that as

the vectors xr+1, . . . , xL+1 are distinct and the vectors x1, . . . , xr are linearly independent,
the vectors bj = (bj1, . . . , bj`) are distinct. Also, by Condition 3.24, M ∈ Mσ implies that
every column x1, . . . , xL+1 ∈ B(0, ρ). Hence, we may upper bound |Mσ| by

qrhq(ρ)n · P
x1,...,xr∼B(0,ρ)

(
r∑
i=1

bjixi ∈ B(0, ρ) ∀r + 1 ≤ j ≤ L+ 1

)
.

By Lemma 3.5.4, as L+1−r ≥ Cr, we obtain the bound qnrhq(ρ) ·q−5n, as desired. Hence,

Hq(τ |τ ′) ≤ Hq(σ) ≤ 1 + o(1)

n
logq |Mσ| ≤ (1 + o(1)) · (rhq(ρ)− 5) ≤ rhq(ρ)− 4 ,

where the last inequality holds for large enough n. Therefore

RE
RLC(τ) = 1− Hq(τ)

r
≥ 1− hq(ρ) +

4

r
≥ 1− hq(ρ)− ε .

3.6 An Application to List-of-2 Decoding

Finally, in this section, we study the list-of-2-decoding radius of random linear codes in
Fn2 . It is known (see [Bli86], also [ABP18]) that whenever ρ < 1/4 there exist (ρ, 2)-list-
decodable codes with positive rate, but whenever ρ > 1/4 the only (ρ, 2)-list-decodable
codes are of bounded size, independent of n. See also [ABL00], where an improved
upper bound on the capacity for list-of-2 decoding is established.

For mathematical simplicity, we focus upon (ρ, 2)-average-radius list-decoding. Also,
recall that if subscripts are omitted, h(x) and log x are computed to the base 2.
Theorem 3.6.1. Let ρ ∈ (0, 1/4) and let C ≤ Fn2 be a random linear code of rate R.

1. If

R < 1− h(3ρ) + 3ρ log2 3

2
,

then a random linear code of rate R is (ρ, 2)-average-radius list-decodable with high prob-
ability.

2. If

R > 1− h(3ρ) + 3ρ log2 3

2
,

then a random linear code of rate R fails to be (ρ, 2)-average-radius list-decodable with
high probability.

56

Proof. For C to be (ρ, 2)-average-radius list-decodable, it must be the case that it does
not contain any type τ ∈ Dn,3 for which there is some τ̃ ∈ Dn,1 such that

1

3

3∑
i=1

P
(u,x)∼(τ,τ̃)

(ui 6= x) ≤ ρ (3.25)

and

∀1 ≤ i < j ≤ 3, P
u∼τ

(ui 6= uj) > 0 . (3.26)

Denote the set of all such τ by T . Note that if τ̃ is defined to always sample MAJ(u),
then the left-hand side of (3.25) can only decrease. Hence, we may assume x = MAJ(u),
in which case the condition (3.25) may be replaced by

1

3

3∑
i=1

P
u∼τ

(ui 6= MAJ(u)) ≤ ρ . (3.27)

Now, let10

A = {000, 111} and B = F3
2 \ A .

Then, defining x = τ(B), Condition 3.27 becomes

x ≤ 3ρ . (3.28)

Now, we establish Statement 1 of the theorem. Consider the implied type τ ∗ ∈ Iτ de-
fined by the linear map (a, b, c) 7→ (a + b, a + c). Note that the kernel of this map is
{000, 111}, and so τ ∗(00) = 1−x. Hence, τ ∗(10) + τ ∗(01) + τ ∗(11) = x. We may therefore
upper bound the entropy as

Hq(τ
∗) = τ ∗(00) · log 1

τ∗(00)
+ τ ∗(01) · log 1

τ∗(01)
+ τ ∗(10) · log 1

τ∗(10)
+ τ ∗(11) · log 1

τ∗(11)

≤ (1− x) log 1
1−x + x log 3

x
= h(x) + x log 3 .

The above inequality uses the concavity of the function y 7→ y log 1
y
. Note that in the

range [0, 3/4), the function x 7→ h(x) + x log 3 is increasing: clearly h(0) + 0 · log 3 = 0,
and moreover the derivative of h(x) + x log 3 with respect to x is log

(
3(1−x)
x

)
which is

positive assuming 3(1−x)
x

> 1, which rearranges to x < 3/4. Hence, as x ≤ 3ρ and
ρ < 1/4, we conclude

Hq(τ
∗) ≤ h(3ρ) + 3ρ log 3 .

Now, we note that rank(τ ∗) = 2. Let U = span(supp(τ)). If rank(τ ∗) ≤ 1, then we would
require dim(U) ≤ 2 and 111 ∈ U (recall that the kernel of (a, b, c) 7→ (a + b, b + c) is
{000, 111}). This implies

U ∈ {{000}, {000, 111}, {000, 111, 001, 110}, {000, 111, 010, 101}, {000, 111, 100, 011}} .
10In this proof, we denote vectors by the corresponding string for readability.

57

In any case, we find that τ contradicts (3.26). For example, if U = {000, 111, 001, 110},
then Pu∼τ (u1 6= u2) = 0.

Putting everything together, we conclude

RRLC(Pτ)± o(1) = max
τ ′∈Iτ

RE
RLC(τ ′) ≥ RE

RLC(τ ∗) = 1− H(τ ∗)

rank(τ ∗)
≥ 1− h(3ρ) + 3ρ log 3

2
.

As the previous argument applies equally well to any type τ ∈ T , applying Theo-
rem 3.3.9 we conclude that a random linear code of rate less than 1 − h(3ρ)+3ρ log 3

2
is

(ρ, 2)-average-radius list-decodable with high probability.

We now turn to establishing the second statement of the theorem. To do this, we
provide a specific type τ0 ∈ T that is bad for (ρ, 2)-average-radius list-decoding and
show that all of its implied types have expectation threshold at most 1− h(3ρ)+3ρ log 3

2
.

Specifically, take the type τ0 ∼ F3
2 with

τ0(000) = τ0(111) =
1− 3ρ

2
and

τ0(001) = τ0(010) = τ0(100) = τ0(011) = τ0(101) = τ0(110) =
ρ

2
.

First, one can compute that

H(τ0) = h(3ρ) + 1 + 3ρ log 3

and so

RE
RLC(τ0) = 1− H(τ0)

rank(τ0)
= 1− h(3ρ) + 1 + 3ρ log 3

3
.

Next, consider the type τ1 implied by the map (a, b, c) 7→ (a+ b, a+ c); it has entropy

H(τ1) = h(3ρ) + 3ρ log 3

and so

RE
RLC(τ1) = 1− H(τ1)

rank(τ1)
= 1− h(3ρ) + 3ρ log 3

2
.

Next, consider any type τ2 implied by a map F3
2 → F2

2 with a vector fromB in the kernel.
In this case, the entropy H(τ2) = h(2ρ) + 1, and so

RE
RLC(τ2) = 1− H(τ2)

rank(τ2)
= 1− h(2ρ) + 1

2
.

Next, consider any type τ3 implied by a map F3
2 → F2 with 111 in the kernel. In this

case, the entropy H(τ3) = h(2ρ), and so

RE
RLC(τ3) = 1− H(τ3)

rank(τ3)
= 1− h(2ρ) .

58

0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

ρ

R
E R

L
C

(τ
i)

Plots of the Expectation Thresholds

Figure 3.2: Plots of RE
RLC(τi) for each i ∈ {0, 1, 2, 3}. RE

RLC(τ0) is in blue; RE
RLC(τ1) is in

red; RE
RLC(τ2) is in green; and RE

RLC(τ3) is in black. One can see that, uniformly over
ρ ∈ [0, 0.25], the maximum is obtained by RE

RLC(τ1).

Finally, consider any type τ4 implied by a map F3
2 → F2 without 111 in the kernel. In

this case, the entropy H(τ4) = 1, and so

RE
RLC(τ4) = 1− H(τ4)

rank(τ4)
= 1− 1

1
= 0 .

This completes the computation of the expectation threshold of all of τ0’s implied types.
It is now just a finite check to verify that all of the expectation thresholds are at most
RE

RLC(τ1) = 1− h(3ρ)+log 3
2

. For example, to show that

RE
RLC(τ0) = 1− h(3ρ) + 1 + 3ρ log 3

3
≤ 1− h(3ρ) + log 3

2
,

one can note that both the left-hand side and the right-hand side are 0 at ρ = 1/4, and
moreover the derivative of the right-hand side minus the left-hand side is 1

6

(
log2

(
3ρ

1−3ρ

)
− log2 3

)
,

which is negative if ρ < 1/4. We omit the remaining computations, which are com-
pletely routine; for a pictorial proof, see Figure 3.2. Thus, we conclude that

RRLC(Pτ0) ≤ max
i∈{0,...,4}

RE
RLC(τi) + o(1) = 1− h(3ρ) + log 3

2
+ o(1) ,

and so, recalling T ⊆ Dn,3 is the set of forbidden types,

RRLC(PT) = min
τ∈T

RRLC(τ) ≤ RRLC(τ0) = 1− h(3ρ) + log 3

2
+ o(1) .

59

60

Chapter 4

LDPC Codes Achieve List-Decoding
Capacity

In this section, we study Gallager’s ensemble of Low-Density Parity-Check (LDPC)
codes. Our main contribution is to show that a random code drawn from this ensemble
achieves list decoding capacity with high probability. These are the first graph-based
codes shown to have this property: prior codes known to achieve list decoding capacity
were either uniformly random, random linear, or inherently algebraic.

Our result on list decoding follows from a much more general result: any local prop-
erty (q.v. Definition 3.2.5) satisfied with high probability by a random linear code is also
satisfied with high probability by a random LDPC code from Gallager’s distribution.

4.1 LDPC Codes

Originally introduced by Gallager in the 1960’s [Gal62], codes defined from graphs have
become a class of central importance in the past 30 years. There are multiple ways to
obtain a code from a graph; for now, we consider the following procedure. Suppose that
G = (V,W,E) is a bipartite graph with |V | = n and |W | = m. Then G naturally defines
a linear code C ≤ Fnq of rate at least 1−m/n as follows:

C =

c ∈ Fnq :
∑
i∈Γ(j)

αi,jci = 0 ∀j ∈ W

 ,

where Γ(i) denotes the neighbors of i in G and αi,j ∈ Fq are fixed coefficients. That is,
each vertex in W serves as a parity check, and the code is defined as all possible labelings
of vertices in V which obey all of the parity checks. When the right-degree of G is small
(ideally constant, independent of n), the resulting code is called a low-density parity-check
(LDPC) code. Quantifying this, if every parity-check node has degree at most s, we say
the code is s-LDPC.

61

4.1.1 Prior Work on LDPC Codes

LDPC Codes have been studied extensively in the context of unique decoding, espe-
cially in models of random errors. Informally, a code is said to achieve capacity on the
Binary Symmetric Channel (BSC) if there is some algorithm which can, with high prob-
ability, uniquely decode a code of rate R = 1 − h2(ρ) − ε from a ρ-fraction of random
bit-flips. It is known that Gallager’s LDPC codes nearly achieve capacity on the BSC as
n gets large, under maximum-likelihood decoding [Gal62; Gur06], and recently it was
shown that related codes (specifically, spatially-coupled LDPC codes) achieve capacity for
smaller block lengths under efficient decoding algorithms as well [KRU13]. Achieving
capacity on the BSC appears to be related to achieving list-decoding capacity (in partic-
ular, the capacities are the same, R = 1−h2(ρ)). However, there is no formal connection
along these lines, and to the best of our knowledge these results about the BSC do not
imply anything about the list-decodability of LDPC codes.

As for the Binary Erasure Channel (BEC), where codes are said to achieve capacity
if there is some algorithm which can, with high probability, uniquely decode a code of
rate R = 1 − ρ − ε from a ρ-fraction of bit erasures, a special kind of LDPC code with
varying (but still constant) parity-check degree are known to achieve capacity with a
linear-time decoding algorithm [Lub+01].

Another pleasing property of LDPC codes is that any such code can be encoded
in linear time (assuming one is given a sparse parity-check matrix defining it) [LM09;
KS12].

In the model of worst-case errors, LDPC codes (in particular, Tanner codes [Tan81]
and expander codes [SS96; Zém01]) are notable for their efficient algorithms for unique
decoding. In fact, the only asymptotically good codes with linear-time encoding and
decoding algorithms we have are based on such codes.

However, despite our wealth of knowledge on LDPC codes, very little is known
concerning their list-decodability.1 For example, to the best of our knowledge we cur-
rently do not know of any purely combinatorial constructions of capacity-achieving
list-decodable codes (q.v. Table 2.1 and the discussion in Section 2.5). Graph-based tech-
niques have been used to modify a fixed underlying codes to obtain capacity-achieving
codes, e.g., the distance amplification method of [AEL95] used by [HRZW17; Kop+19]
employs an expander graph.

We also currently do not know of any linear-time algorithms to list-decode any code
to capacity. Since graph-based codes and LDPC codes in particular are notable for their
linear-time algorithms, they provide a natural candidate for a code which could have
such efficient decoding.

This state of affairs motivates the following question:

Question 4.1.1. Are there (families of) LDPC codes that achieve list-decoding capacity?

1Beyond what can be deduced from the distance of such a code, i.e., the Johnson bound (Theo-
rem 2.4.15).

62

|W | = (1−R)n

Degree s
Each “layer” is a random

(1, s)-regular graph with n right
vertices and n/s left vertices. There

are t = (1−R)s layers.

Each vertex imposes a parity check on
its neighbors:

∑
i∈Γ(j)αi,jci = 0. We

choose the coefficients αi,j ∈ F∗q
uniformly at random.

|V | = n

Figure 4.1: A random (t, s)-regular bipartite graph that gives rise to a random s-LDPC
code of rate R. Here, we set t := s(1−R).

We show that the answer to Question 4.1.1 is a resounding yes: a random LDPC code
sampled from (a generalization2 of) Gallager’s ensemble [Gal62] achieves list-decoding
capacity with high probability. Before formally stating our results, we pause to intro-
duce the random ensemble of LDPC codes we study.

Gallager’s ensemble. Fix a rate R ∈ (0, 1) and a sparsity parameter s, and let t =
(1−R)s.3 To define the ensemble of random s-LDPC codes of rate R, we need to specify
a distribution on the underlying bipartite graphs and a distribution on the coefficients
αi,j . We define the distribution on graphs as follows. Let Gi = (V,Wi,Ei) for i = 1, . . . , t
be independent uniformly random (1, s)-biregular bipartite graphs with a shared left
vertex set V of size n and disjoint right vertex sets Wi: thus, |Wi| = n/s for each i.
Then let G = (V,W,E) be the union of these graphs, where W =

⊔t
i=1Wi. Finally, we

choose the coefficients αi,j for (i, j) ∈ E to be uniformly random in F∗q . The ensemble of
s-random LDPC codes of rate R is illustrated in Figure 4.1.

4.2 Our Results

Our main theorem about the list-decodability of random LDPC codes is a reduction
from the list-decodability of random linear codes:
Theorem 4.2.1. For any R ∈ (0, 1), ε > 0, prime power q, and L ≥ 1 there exists s0 ≥ 1 such
that the following holds for any odd s ≥ s0. Suppose that a random linear code of rate R over Fq
is (ρ, L)-list-decodable with high probability. Then a random s-LDPC code of rate R− ε over Fq
is (ρ, L)-list-decodable with high probability.

2When q = 2 our definitions coincide. However, for larger q, our definitions differ in that we allow
that αi,j ’s to take random values in F∗q , whereas Gallager set each αi,j = 1.

3We assume that t is an integer.

63

Remark 4.2.2. All of our results actually hold for even s as well. In fact, when q > 2 the
proofs work in this case equally well. To adapt the proof to deal with even s when q = 2
is doable, but tedious.

We can instatiate the above theorem with any of the results concerning the list-
decodability of random linear codes discussed in Section 3.1. First of all, applying the
Zyablov-Pinsker argument [ZP81] which shows that random linear codes are with high
probability list-decodable up to capacity with constant list sizes, we conclude that LDPC
codes also achieve list-decoding capacity with constant list sizes (note that asR, ε, q and
L are all constant, the sparsity s is also constant). The title of this chapter is therefore
justified.

Moreover, we can obtain better control of the list size. Recall that [GHK11] shows
that random linear codes of rate 1−hq(ρ)−ε are with high probability (ρ,Oρ,q(1/ε))-list-
decodable. Combining this result with Theorem 4.2.1 implies that for sufficiently large
s, a random s-LDPC code of rate 1 − hq(ρ) − ε is also (ρ,Oρ,q(1/ε))-list-decodable with
high probability.

Random LDPC codes achieve any local property that random linear codes achieve.
In fact, Theorem 4.2.1 follows as a corollary of a much more general theorem. We show
that any local property which is satisfied by random linear codes with high probability
is also satisfied by random LDPC codes with high probability. For the definition of a
local property, see Section 3.2, and in particular, Definition 3.2.5.

Our main theorem essentially states that every local property is approximately sharp
for random s-LDPC codes, with approximately the same threshold as for random lin-
ear codes. This approximation improves as s grows. Recall the notation CnRLC(Rn) from
Chapter 3 for a random linear code of block length n and rate Rn. Below, we use the
analogous notation CnsLDPC(Rn) for a random s-LDPC code of block length n and rate
Rn. Also, recall that if Pn is a local property of length n codes, its threshold (q.v. Defini-
tion 3.3.1) is

RRLC(Pn) := sup{R ∈ [0, 1] : P (CnRLC(R) satisfies Pn) ≥ 1/2} .

Theorem 4.2.3 (Main). Let P = (Pni)i∈N be any `-local property family such that

R̄ := lim sup
i→∞

RRLC(Pni) < 1 .

For any ε > 0 and prime power q, there exists s0 = s0(ε, R̄, q, `) ≥ 1 such that the following
holds for any odd s ≥ s0. If Rni ≤ RRLC(Pni)− ε for all i ∈ N, then

lim
i→∞

P (CnisLDPC(Rni) satisfies Pni) = 1 .

64

Remark 4.2.4. Recall that for random linear codes of rate ε below the threshold, the
probability the code failed to satisfy P was only exp(−Ω(εn)) (q.v. Remark 3.3.10). One
can ask if the same is true for s-LDPC codes. As it turns out, we will only establish
failure probability which is inverse polynomial. However, this is tight (at least for the
property of distance). See Remark 4.5.4.

Furthermore, as list-recovery is also a local property, as are average-radius list-decoding
and recovery, we can instantiate Theorem 4.2.3 with any of the results discussed in Sec-
tion 3.1. In particular, one can port over any result from Table 3.2.

For example, for the special case of q = 2, we will show in Chapter 6 (following
[Gur+02; LW18]) that random linear codes of rate 1−h2(ρ)−ε are (ρ, h2(ρ)/ε+1)-average-
radius list-decodable with high probability; see Theorem 6.1.1. Applying Theorem 4.2.1
with this result, making the sparsity s sufficiently large (but still independent of n), it
follows that random s-LDPC codes of rate 1 − h2(ρ) − ε are (ρ, L)-average-radius list-
decodable with high probability, where (say) L = 1.01h2(ρ)/ε.

For completeness, we now provide the formal justification for Theorem 4.2.1, assum-
ing Theorem 4.2.3.

Proof of Theorem 4.2.1. Let P = (Pni) denote the property of (ρ, L)-list-decodability. Re-
call from Example 3.2.8 that this is an (L+ 1)-local property. Now, by the List-Decoding
Capacity Theorem (Theorem 2.4.7), we know that for sufficiently large ni there are
no (ρ, L)-list-decodable codes of rate 1 − hq(ρ) + ε. In particular, this implies R̄ :=
lim supi→∞RRLC(Pni) ≤ 1− hq(ρ) < 1.

Now, suppose R ∈ (0, 1) is such that a random linear code CniRLC(R) is (ρ, L)-list-
decodable with high probability. By Theorem 3.3.9, it follows that RRLC(Pni) ≤ R +
oi→∞(1). As R − ε ≤ RRLC(Pni) for large enough ni, Theorem 4.2.3 then guarantees
that there exists s0 = s0(ε, R̄, q, `) such that for any odd s ≥ s0, a random s-LDPC code
CnisLDPC(R− ε) satisfies Pni with high probability. That is, a random s-LDPC code of rate
R− ε is (ρ, L)-list-decodable with high probability.

Before concluding this section, we pause to highlight the surprising nature of Theo-
rem 4.2.3. There is a lot more structure in a random LDPC code than in a random lin-
ear code. For example, as mentioned earlier, random LDPC codes possess linear-time
algorithms for unique-decoding,4 but it is unlikely that any efficient unique decoding
algorithm exists for random linear codes.5 Thus it is quite shocking that this much more
structured ensemble would share many properties—in a black box way—with random
linear codes.
Remark 4.2.5 (A converse to Theorem 4.2.3?). One may be tempted to conjecture that
the converse of Theorem 4.2.3 holds as well. Namely, in the setting of Theorem 4.2.3, if
Rni ≥ RRLC(Pni) + ε for all i, then the code ensemble CnisLDPC(Rni) almost surely does

4This follows, for example, from [SS96] because the underlying random graph is with high probability
a good expander.

5Unique decoding of random linear codes is related to the problem of Learning Noisy Parities (LNP)
and Learning With Errors (LWE), which are thought to be hard.

65

F =

111111
111111

111111
111111

111111

n
s

s

H =

H1

H2

H(1−R)·s = Ht

...

n
s

(1−R)n

n

Figure 4.2: The matrices F and H . Each layer Hj of H is drawn independently ac-
cording to the distribution FΠD, where Π ∈ {0, 1}n×n is a random permutation and
D ∈ Fn×nq is a diagonal matrix with diagonal entries that are uniform in F∗q .

not satisfy Pni . However, this turns out to be false. Consider the following example: let
q = 2 and consider the 1-local property P := (Pni)i∈N, where Pni is the set of all length ni
linear codes that only contain even weight codewords. It is not hard to see (e.g., using
Theorem 3.3.9) that RRLC(Pni) tends to 0 as n → ∞. On the other hand, if ni

s
is even,

then every s-LDPC code of length ni (including, say, a code of rate 1
2
) satisfies Pni . Thus,

lim supi→∞RsLDPC(Pni) > 0 = lim supi→∞RRLC(Pni), contradicting this conjecture.

However, the above counter-example relies on a technicality involving divisibility
criteria. It is an interesting question whether a natural converse of Theorem 4.2.3 holds
if we additionally assume that P belongs to some natural class of “nicely behaved”
properties that precludes counter-examples of this sort.

4.3 The Proof, Modulo Two Technical Lemmas

In this section we give an overview of our proof strategy. First, despite previously defin-
ing our ensemble of LDPC codes in terms of a random graph, it will be more convenient
to use the following parity-check matrix viewpoint. We introduce some notation and
terminology to talk about the structure ofH which we use throughout this chapter.

Let F ∈ {0, 1}(n/s)×n be the matrix F = [F1 | F2 | · · · | Fn/s], where each Fi ∈
{0, 1}(n/s)×n has all 1’s in its ith row, and the remaining rows are all 0’s. Let Π ∈ {0, 1}n×n
be a uniformly random permutation matrix and let D ∈ Fn×nq be a diagonal matrix
whose entries are uniform and independent elements in F∗q . Let H1, . . . ,H(1−R)·s be
independent samples from the distribution of FΠD. Then letH be the matrix obtained
by stackingH1, . . . ,H(1−R)·s on top of each other. ThenH is a parity-check matrix for a
random s-LDPC code of rate R. We refer to each Hj as a “layer” of H . This notation is
summarized in Figure 4.2.

Our main result roughly follows by combining three building blocks. In the next
three subsections we describe these components. In Section 4.3.4, we show how to de-
duce Theorem 4.2.3 from these parts.

66

4.3.1 Sharpness of Local Properties for Random Linear Codes

Fortunately, the first building block was already established in Chapter 3. Namely, we
require the fact that local properties defined by types are sharp for random linear codes.
We restate Lemma 3.3.8 for convenience.
Lemma 3.3.8. Let ` ∈ N and τ ∈ Dn,`. Denote R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′). The threshold

RRLC(Pτ) satisfies
RRLC(Pτ) = R∗τ ± o(1) .

Furthermore, suppose C ≤ Fnq is a random linear code of rate R.
1. If R ≤ R∗τ − ε then

P (τ ∈ C) ≤ q−εn .

2. Conversely, if R ≥ R∗τ + ε then

P (τ ∈ C) ≥ 1−
(
n+ q2` − 1

q2` − 1

)3

· q−εn .

In fact, we only require the part of the lemma that characterizes RRLC(Pτ) in terms
of the set of implicit types Iτ . That is, the part of the lemma prior to the word “Further-
more”.

4.3.2 Probability that a Matrix is Contained in a Random s-LDPC Code

The second component shows that, given a matrix M ∈ Fn×`q , the probability that M
is contained in a random s-LDPC code is not much larger than that of appearing in a
random linear code, provided that M is sufficiently smooth.
Definition 4.3.1. Let δ > 0. We say that a type τ over F`q is δ-smooth if

P
v∼τ

(〈u,v〉 6= 0) ≥ δ for all u ∈ F`q \ {0} .

If M ∈ F`×nq is such that τM is δ-smooth, we also say that M is δ-smooth.
Remark 4.3.2. In coding-theoretic terms, τM is δ-smooth if and only if the code {Mu :
u ∈ F`q} has distance at least δ and M is full-rank. Indeed, the weight of any codeword
Mu in this code is

1

n

∑
i∈[n]

I
(
〈u, eTi M〉 6= 0

)
= P
v∼τ

(〈u,v〉 6= 0) .

Remark 4.3.3 (Parity of s, again). In order to adapt the proof to deal with even s when
q = 2, one should also insist that Pv∼τ (〈u,v〉 = 0) ≥ δ. Also, one needs the observation
that a binary s-LDPC code C with s even always contains the all-1’s vector, and hence,
assuming C has distance δ, for all codewords c except for the all-1’s vector, wt(c) ≤ 1−δ.

67

The following lemma bounds the probability that a smooth type is contained in a
random LDPC code with sufficiently large sparsity parameter. The lemmas assumes
that is a sufficiently large gap between the rate of the random s-LDPC code and the
expectation threshold of τ (q.v. Definition 3.3.5). We prove this lemma in Section 4.4.
Lemma 4.3.4. For any ε, δ > 0, prime power q and ` ≥ 1 there exists s0 ≥ 1 such that the
following holds for any odd s ≥ s0 and sufficiently large n. Suppose that τ ∈ Dn,` is δ-smooth
and R ≤ RRLC(Pτ)− ε. Then, if C ≤ Fnq is a random s-LDPC code of rate R,

P (τ ∈ C) ≤ q−εn/8 .

If we ignore the constraint that τ must be smooth, then together with Theorem 3.3.9
the above would imply Theorem 4.2.3. Indeed, if a type τ is unlikely to appear in a
random linear code then Theorem 3.3.9 shows that some τ -implied type τ ′ appears o(1)
times in expectation in the random linear code. By Lemma 4.3.4, τ ′ also appears o(1)
times in a random LDPC code as well, so an LDPC code is unlikely to contain τ ′. Thus,
it is also unlikely to contain τ .

The proof of Lemma 4.3.4 proceeds by Fourier analysis, and we introduce the neces-
sary tools in Section 4.4. The basic idea is as follows: since C is a random s-LDPC code,
each parity-check corresponds (essentially) to an independent and uniformly random
set of s coordinates in [n].6 Thus, the probability that a matrix M ∈ Mτ is in C can be
derived from the probability that s vectors v1, . . . ,vs ∼ τ sampled independently sum
to zero. This probability is given by a convolution τ ∗s(0) = τ ∗ τ ∗ · · · ∗ τ(0) of τ with
itself s times. The convolution is in turn controlled by sâĂŹth powers of the Fourier
coefficients τ̂(ξ) of τ . As we will see, the condition that τ be δ-smooth implies that the
nonzero Fourier coefficients τ̂(0) are bounded away from 1, and this means that if s is
large enough, the contributions τ̂(ξ)s of the nonzero coefficients to τ ∗s(0) will become
small.

4.3.3 Distance of Random s-LDPC Codes

As noted above, the first two building blocks show that for any δ-smooth type τ ∼ F`q,
a random LDPC code of rate slightly below Rn

RLC(Pτ) is unlikely to contain τ . The third
and final building block shows that we may restrict our attention to δ-smooth types.

As noted in Remark 4.3.2, the condition that M be δ-smooth is the same as the con-
dition that the code generated by M has relative distance at least δ. Thus, if C ≤ Fnq has
relative distance at least δ, it does not contain any matrices that are not δ-smooth. For-
tunately, it was already proved by Gallager [Gal62] that random binary s-LDPC codes
have good distance; in fact, the distance approaches the Gilbert-Varshamov (GV) bound
(Theorem 2.4.4) with high probability. Theorem 4.3.5 generalizes this result to s-LDPC
codes over any alphabet.

6This is not exactly true because the parity checks that belong to the same layer are not independent;
however, we show that this does not significantly affect the probability of the event of interest.

68

Theorem 4.3.5 (Random LDPC codes achieve the GV bound). For any δ ∈ (0, 1 − 1/q),
ε > 0, and prime power q there exists s0 ≥ 1 such that the following holds for any s ≥ s0. A
random s-LDPC code of rate R ≥ 1−hq(δ)− ε over Fq has relative distance at least δ with high
probability.
Remark 4.3.6 (Comparison to Gallager’s Proof). Gallager’s proof for binary random s-
LDPC codes in [Gal62] uses generating functions. We give an alternative proof using
ideas from exponential families, which follows the approach of recent work by Linial
and Mosheiff [LM20]. Our proof extends to random s-LDPC codes over any alphabet.
We note that Gallager left it as an open problem in [Gal62] to obtain a result like this for
larger alphabets, but his definition was slightly different than ours: the coefficients αi,j
in his parity checks were all 1’s, while ours are sampled uniformly from F∗q .

Despite having different frameworks, our proof and that of [Gal62] turn out to yield
similar equations. In particular our proof of Lemma 4.5.2 is very similar to the corre-
sponding proof in [Gal62] at a technical level. We highlight where the proofs diverge in
Remark 4.5.9.

4.3.4 Proof of Theorem 4.2.3, Assuming the Building Blocks

Theorem 4.2.3, which we restate below, now follows as an immediate consequence of
the building blocks above.
Theorem 4.2.3 (Main). Let P = (Pni)i∈N be any `-local property family such that

R̄ := lim sup
i→∞

RRLC(Pni) < 1 .

For any ε > 0 and prime power q, there exists s0 = s0(ε, R̄, q, `) ≥ 1 such that the following
holds for any odd s ≥ s0. If Rni ≤ RRLC(Pni)− ε for all i ∈ N, then

lim
i→∞

P (CnisLDPC(Rni) satisfies Pni) = 1 .

Proof. Fix a sufficiently large integer s (depending on R̄, ε, q and `). Abbreviate Cni =
CnisLDPC(Rni) and let Tni be a collection of types defining Pni . Let

δ :=
h−1
q (1− R̄)

2
> 0 .

Let Eni denote the event that the distance of Cni is at most δ. As R̄ = lim supi→∞RRLC(Pni),
for sufficiently large ni we have

Rni ≤ RRLC(Pni)− ε ≤ 1− hq(δ)− ε ,

and so Theorem 4.3.5 guarantees that limi→∞ P (Eni) = 0. Thus, to conclude the theorem,
it suffices to show that

P (∃τ ∈ Tni s.t. τ ∈ Cni |¬Eni) = o(1) .

69

Partition Tni = T 1
ni
t T 2

ni
such that T 1

ni
consists of δ-smooth types and T 2

ni
consists of the

remaining types.

For any τ ∈ T 2
ni

, conditioned on ¬Eni it is guaranteed that τ /∈ Cni . Thus, we have

P (∃τ ∈ Tni s.t. τ ∈ Cni |¬Eni) = P
(
∃τ ∈ T 1

ni
s.t. τ ∈ Cni |¬Eni

)
≤

P
(
∃τ ∈ T 1

ni
s.t. τ ∈ Cni

)
P (¬Eni)

;

as P (¬Eni) = 1− o(1), it will suffice to show P
(
∃τ ∈ T 1

ni
s.t. τ ∈ Cni

)
= o(1) to conclude

the theorem. Take any τ ∈ T 1
ni

. Noting that RRLC(Pτ) ≥ RRLC(Pni), for large enough ni
we may apply Lemma 4.3.4 to conclude P (τ ∈ Cni) ≤ q−εni/8.

Hence, applying a union bound and recalling (3.3),

P
(
∃τ ∈ T 1

ni
s.t. τ ∈ Cni

)
≤ |T 1

ni
| · q−εni/8 ≤

(
ni + q` − 1

q`

)
q−εni/8

which indeed tends to 0 as i→∞.

4.4 Probability Smooth Types Appear in LDPC Codes

In this section, we prove that smooth types are unlikely to appear in a random LDPC
code, assuming they are sufficiently rare. We restate Lemma 4.3.4 for convenience.
Lemma 4.3.4. For any ε, δ > 0, prime power q and ` ≥ 1 there exists s0 ≥ 1 such that the
following holds for any odd s ≥ s0 and sufficiently large n. Suppose that τ ∈ Dn,` is δ-smooth
and R ≤ RRLC(Pτ)− ε. Then, if C ≤ Fnq is a random s-LDPC code of rate R,

P (τ ∈ C) ≤ q−εn/8 .

The main technical lemma in the proof of Lemma 4.3.4 shows that the probability
that a smooth matrix is contained in a random LDPC with sufficiently large sparsity
parameter is roughly the same as in a random linear code (cf., Proposition 2.2.2).
Lemma 4.4.1. For any ε, δ > 0, prime power q and ` ≥ 1 there exists s0 ≥ 1 such that the
following holds for any odd s ≥ s0 and sufficiently large n. Let M ∈ Fn×`q be a δ-smooth matrix.
Then, if C ≤ Fnq is a random s-LDPC code of rate R,

P (M ⊂ C) ≤ q−(1−ε/4)(1−R)n` .

That is, up to the multiplicative (1 − ε/4) term in the exponent, the probability the
matrix lies in the random LDPC matrix is no greater than the probability it lies in a
random linear code. First, we show how Lemma 4.4.1 implies Lemma 4.3.4.

70

Proof that Lemma 4.4.1 implies Lemma 4.3.4. Applying Lemma 3.3.8, we may choose τ ′ ∈
Iτ such that RE

RLC(τ ′) ≥ RRLC(Pτ) − η(n) where η(n) → 0 as n → ∞. We assume n is
large enough so that η(n) ≤ ε

2
.

Without loss of generality, we may assume that rank(A) = m, i.e., d(τ ′) = m. Oth-
erwise, we can replace A with a submatrix A′ ∈ Frank(A)×`

q whose rows are a basis for
row-span(A), noting that the distribution τ ′′ given by A′v for v ∼ τ satisfies Hq(τ

′′) =
Hq(τ

′) and d(τ ′′) = d(τ ′).

Next, observe that the distribution τ ′ is δ-smooth. Indeed, for any u ∈ Fmq \ {0} we
have

P
v′∼τ ′

(〈u,v′〉 6= 0) = P
v∼τ

(〈u,Av〉 6= 0) = P
v∼τ

(
〈A>u,v〉 6= 0

)
.

As A has rank m, A>u 6= 0, so Pv∼τ
(
〈A>u,v〉 6= 0

)
≥ δ.

By Lemma 4.4.1, for any matrix M ′ ∈Mτ ′ , we have

P (M ′ ⊆ C) ≤ q−(1−ε/4)(1−R)nm ,

and so the probability C contains some matrix inMτ ′ is at most

|Mτ ′ | · q−(1−ε/4)(1−R)mn ≤ q(Hq(τ ′)−(1−ε/4)(1−R)m)n

≤ q((1−R−ε/2)−(1−ε/4)(1−R))mn ≤ q−εn/8 ,

where the first inequality uses Proposition 3.2.4 and the second inequality follows from

R ≤ RRLC(Pτ)− ε ≤ RE
RLC(τ ′)− ε

2
= 1− Hq(τ

′)

m
− ε

2
.

Thus, we find that C contains τ ′ with probability at most q−εn/8. Since containing the
type τ implies containing the type τ ′, the lemma follows.

We now provide the proof of Lemma 4.4.1. This proof employs Fourier analysis over
finite fields; we provide the necessary definitions and facts below.

4.4.1 Fourier Analysis over Finite Fields

We refer the reader to, for example, [LN97; O’D14] for more details and proofs of these
facts. In what follows assume that q = ph for a prime p. Recall the definition of the trace
map of Fq over Fp:

Tr(α) := α + αp + αp
2

+ · · ·+ αp
h−1

.

For a function f : Fnq → C, we define the Fourier transform f̂ : Fnq → C of f by

f̂(ξ) := E
x∼Fnq

[
f(x) · χξ(x)

]
,

71

where χξ(x) = ω
Tr(〈ξ,x〉)
p and ωp = e2πi/p is a primitive p-th root of unity. Then we have

the decomposition

f(x) =
∑
ξ∈Fnq

f̂(ξ)χξ(x) .

For two functions f, g : Fnq → C, we define their inner product by

〈f, g〉 := E
x∼Fnq

[
f(x)g(x)

]
.

Plancherel’s identity then asserts that

〈f, g〉 =
∑
ξ∈Fnq

f̂(ξ)ĝ(ξ) .

An important special case is Parseval’s identity:

〈f, f〉 =
∑
ξ∈Fnq

∣∣∣f̂(ξ)
∣∣∣2 .

The convolution of a pair of functions f, g : Fnq → C is given by

(f ∗ g) (x) = E
y∼Fnq

[f(y)g(x− y)]

Convolution interacts nicely with the Fourier transform:

f̂ ∗ g(x) = f̂(x) · ĝ(x) .

As a useful piece of notation, we define inductively f ∗1 := f and f ∗s := f ∗(s−1) ∗ f .

Finally, we state the following claim and, for lack of a suitable reference, provide the
proof (although this fact is certainly well-known). It allows us to write the probabil-
ity that a sum of i.i.d. random variables from F`q takes a certain value in terms of the
convolution its density function.

Claim 4.4.2. Let P ∼ F`q be a distribution, and let f(x) = q` · P (x) be the density of P
with respect to the uniform distribution. For any y ∈ F`q and s ≥ 1, if u1, . . . ,us ∼ P are
independent,

P

(
s∑
i=1

ui = y

)
= q−` · f ∗s(y) .

Proof. By induction on s. The case s = 1 follows by the definition of f = f ∗1, so we now

72

assume s > 1. Let u1, . . . ,us be independent samples from P .

P

(
s∑
i=1

ui = y

)
=
∑
u∈F`q

P (us = u) · P

(
s−1∑
i=1

ui = y − u
∣∣∣∣us = u

)

=
∑
u∈F`q

q−`f(u) · q−`f ∗(s−1)(y − u)

= q−` · E
u∼F`q

[
f(u) · f ∗(s−1)(y − u)

]
= q−` ·

(
f ∗ f ∗(s−1)

)
(y)

= q−` · f ∗s(y) .

In the second equality, we used the induction hypothesis.

4.4.2 Proof of Lemma 4.4.1

Having established the necessary definitions and notations, we may now prove Lemma 4.4.1.

Proof. Let H ∈ F(1−R)n×n
q be the parity-check matrix of C with layers H1, . . . ,H(1−R)s.

Recall that each layerHj is an independent sample of FDΠ, where F is as in Figure 4.2,
Π ∈ {0, 1}n is a uniformly random permutation matrix, and D ∈ Fn×nq is a uniformly
random diagonal matrix of rank n (i.e., all the diagonal entries are i.i.d. uniform samples
from F∗q). Let Λ be a random matrix sampled according to the distributionDΠM . Then
by independence of the layers,

P (M ⊂ C) = P (HM = 0)

= P (H1M)(1−R)s

= P (FΠDM = 0)(1−R)s

= P (FΛ = 0)(1−R)s . (4.1)

So it suffices to bound the probability that FΛ = 0.

Now, observe that the marginal distribution of each row of Λ is given by λv for
v ∼ τM and uniform λ ∼ F∗q . Denote this distribution on F`q by P . Let Λ′ ∈ Fn×`q denote
a random matrix obtained by sampling each row independently according to P . We
claim that

P (FΛ = 0) ≤ O

(
n
q`−1

2

)
· P (FΛ′ = 0) . (4.2)

Indeed,

P (FΛ = 0) = P (FΛ′ = 0|τΛ′ = τM) =
P (FΛ′ = 0 ∧ τΛ′ = τM)

P (τΛ′ = τM)
≤ P (FΛ′ = 0)

P (τΛ′ = τM)
.

73

Now, enumerating F`q = {v1, . . . , vq`}, we have

P (τM = τΛ′) =

(
n

τ(v1)n, . . . , τ(vq`)n

)
·
q`∏
j=1

τM(vj)
τM (vj)n

=

(
n

τ(v1)n, . . . , τ(vq`)n

)
· q−Hq(τ)n ,

and so (4.2) follows from our estimate for multinomial coefficients, Proposition 3.2.4.

Thus, we are reduced to bounding P (FΛ′ = 0). Let f(x) = q` ·P (x) be the density of
P with respect to the uniform distribution on F`q. By the independence of the rows of Λ′

and Claim 4.4.2:

P (FΛ′ = 0) =

(
P

u1,...,us∼P

(
s∑
i=1

ui = 0

))n/s

=
(
q−` · f ∗s(0)

)n/s
. (4.3)

We are therefore reduced to bounding P ∗s(0). In terms of the Fourier transform, we can
write

f ∗s(0) =
∑
ξ∈F`q

f̂ ∗s(ξ) · χξ(0) =
∑
ξ∈F`q

(
f̂(ξ)

)s
.

We now proceed to bound each term in the above sum. As f is a density, f̂(0) = 1. For
ξ 6= 0, we claim the following:

Claim 4.4.3. For any ξ ∈ F`q \ {0}, f̂(ξ) ∈ R and

f̂(ξ) ≤ 1− q − 1

q
· δ .

Proof of Claim 4.4.3. We have

f̂(ξ) = E
x∼F`q

[f(x)χξ(x)]

= E
x∼P

[χξ(x)] = E
v∼τM ,λ∼F∗q

[
ωTr(〈λv,ξ〉)
p

]
= P
v∼τM

(〈v, ξ〉 = 0) E
λ∼F∗q

[
ω0
p

]
+ P
v∼τM

(〈v, ξ〉 = 0) E
λ∼F∗q

[
ωλp
]

= P
v∼τM

(〈v, ξ〉 = 0) · 1 + P
v∼τM

(〈v, ξ〉 = 0) · −1

q − 1

≤ (1− δ)− δ · 1

q − 1
= 1− q − 1

q
· δ ,

where the inequality follows from the assumption that M is δ-smooth. To justify the
identity Eλ∼F∗q

[
ωλp
]

= − 1
q−1

, recall that Tr : Fq → Fp is an h-to-1 map7 and Tr(0) = 0.

7Recall that we have q = ph in this section.

74

Therefore,

E
λ∼F∗q

[
ωλp
]

=
1

q − 1

∑
λ∈F∗q

ωp(λ) =
1

q − 1
·

(
(h− 1)ω0

p +

p−1∑
j=1

hωjp

)

=
1

q − 1
·

(
p−1∑
j=1

ωj

)
=

1

q − 1
· (−1) .

Returning to the proof of the lemma, recalling the assumption that s is odd, we
obtain

f ∗s(0) =
(
f̂(0)

)s
+

∑
ξ∈F`q\{0}

(
f̂(ξ)

)s
≤ 1 +

(
1− q − 1

q
· δ
)s

,

and so, recalling Equations Eq. (4.1), (4.2) and (4.3), we conclude

P (M ⊆ C) ≤ O

(
n
q`−1

2
·(1−R)·s

)
·
(
q−` +

(
1− q − 1

q
· δ
)s)(1−R)·n

≤ q−(1−ε/4)(1−R)`n ,

where the last inequality holds for large enough s depending on δ, ε, q and `, as well as
sufficiently large n.

Remark 4.4.4 (The choice of s). An inspection of the proof shows that we may take

s0 = O

 `

logq

(
1

1−δ/(1−1/q)

)
 .

In particular, noting that

logq

(
1

1− δ/(1− 1/q)

)
=

1

ln(q)

∞∑
i=1

1

i

(
δ

1− 1/q

)i
,

this part of the proof requires us to take

s0 ≥ C0 ·
` log(q)

δ

for some constant C0 > 0. There is one other place in the proof of Theorem 4.2.3 that
requires s0 to be sufficiently large; we comment on this in Remark 4.5.3.

4.5 Distance

In this section we prove Theorem 4.3.5, which shows that an LDPC code over any al-
phabet approaches the Gilbert-Varshamov bound with high probability. We restate the
theorem below.

75

Theorem 4.3.5 (Random LDPC codes achieve the GV bound). For any δ ∈ (0, 1 − 1/q),
ε > 0, and prime power q there exists s0 ≥ 1 such that the following holds for any s ≥ s0. A
random s-LDPC code of rate R ≥ 1−hq(δ)− ε over Fq has relative distance at least δ with high
probability.

4.5.1 Proof of Theorem 4.3.5, given a lemma

In this section we give an outline of the proof of Theorem 4.3.5 and prove the theorem
based on Lemma 4.5.2 that we state below and prove in subsequent subsections.

Our goal is to show that a random s-LDPC code C has good distance, or equivalently
that there are no low-weight codewords in C with high probability. To that end, we
introduce the following notation.

Definition 4.5.1. For λ ∈ (0, 1) such that λn is an integer, let Pλ = P (u ∈ C), where
u ∈ Fnq has weight λ. Note that this probability is the same for every u of weight λ, so
Pλ is well-defined.

Our main challenge is to find sufficiently tight upper bounds on these terms Pλ for
0 < λ ≤ δ. The proof proceeds by giving a bound on Pλ in terms of a certain function
ϕ : (0, q−1

q
] → R≤0. We will define ϕ below in Section 4.5.2, but for now we introduce

its important properties in the following lemma. (The proof of this lemma appears in
Sections 4.5.2 and 4.5.3.)

Lemma 4.5.2. There is a function ϕ :
(

0, q−1
q

]
→ R≤0 which has the following properties.

1. For every λ ∈
(

0, 1− 1
q

]
,

logq Pλ ≤ ϕ(λ)(1−R)n .

2. The function ϕ satisfies

ϕ(λ) ≤ logq

(
1 + (q − 1)

(
1− q

q − 1
λ

)s)
− 1

for all λ ∈ (0, q−1
q

].

3. The function ϕ(λ)
hq(λ)

is strictly increasing in the range 0 < λ ≤ q−1
q

.

Before we prove Lemma 4.5.2, we show how it implies Theorem 4.3.5.

Proof of Theorem 4.3.5. Our goal is to show that if C is a random s-LDPC code as in the
statement of Theorem 4.3.5, then with high probability there are no codewords in C of
relative weight less than δ. In the following, we assume without loss of generality that

76

δn is an integer. Now

P (C has relative distance less than δ) ≤
δn∑
i=1

P i
n

∣∣{u ∈ Fnq : wt(u) = i
n

}∣∣ (4.4)

≤
δn∑
i=1

P i
n
qnhq(

i
n)

≤
δn∑
i=1

q(ϕ(i
n

)(1−R)+hq(in))n (4.5)

=
δn∑
i=1

q
nhq(

i
n

)

(
(1−R)ϕ(in)

hq(
i
n)

+1

)
(4.6)

≤
δn∑
i=1

q
nhq(in)

(
(1−R)ϕ(δ)
hq(δ)

+1
)
. (4.7)

Above, (4.4) follows from the union bound, (4.5) from Item 1 of Lemma 4.5.2, and (4.7)
from Item 3 of Lemma 4.5.2. By Item 2 of Lemma 4.5.2,

(1−R)ϕ(δ)

hq(δ)
+ 1 =

(1−R) ·
(

logq

(
1 + (q − 1)

(
1− q

q−1
δ
)s)
− 1
)

hq(δ)
+ 1 .

Recall our hypothesis that the rate of the code satisfies R ≤ 1−hq(δ)− ε, and so 1−R ≥
hq(δ) + ε. Noting that logq

(
1 + (q − 1)

(
1− q

q−1
δ
)s)
− 1 ≤ 0, we may thus bound the

right hand side from above by

(hq(δ) + ε) ·
(

logq

(
1 + (q − 1)

(
1− q

q−1
δ
)s)
− 1
)

hq(δ)
+ 1

=

(
1 +

ε

hq(δ)

)
·
(

logq

(
1 + (q − 1)

(
1− q

q − 1
δ

)s)
− 1

)
+ 1

=

(
1 +

ε

hq(δ)

)
· logq

(
1 + (q − 1)

(
1− q

q − 1
δ

)s)
− ε

hq(δ)

≤
(

1 +
ε

hq(δ)

)
(q − 1)

ln(q)

(
1− qδ

q − 1

)s
− ε

hq(δ)
.

Thus, as long as s is sufficiently large in terms of δ, ε and q, we conclude that

(1−R)ϕ(δ)

hq(δ)
+ 1 ≤ − ε

2hq(δ)
≤ −ε

2
.

Hence, the right-hand side of Eq. (4.7) is upper bounded by

δn∑
i=1

q−
nhq(

i
n)ε

2 .

77

This sum is dominated by its first term, so it is at most O(n−Ω(1)).

Remark 4.5.3 (The choice of s). An inspection of the proof above shows that it suffices
to take s & ln(q/ε)/δ. Thus, this part of the proof requires that s0 & ln(q/ε)/δ.
Remark 4.5.4 (Polynomially small failure probability). In the proof, we see that the
failure probability, while o(1), is only polynomially small in n. In fact, this is tight:
it is not hard to see that an s-random LDPC code C (for s = O(1)) contains a code-
word of weight 2 with inverse polynomial probability. Specifically, consider the vector
v = (1, 1, 0, . . . , 0). For each j ∈ [t], we have P (Hjv = 0) ≥ s−1

(q−1)n
: first, with proba-

bility at least (s − 1)/n the vertices 1 and 2 are adjacent to the same right vertex in Wj ,
say i; then, with probability 1

q−1
, α1,i = −α2,i. Thus, with probability O(n−t)8 we have

Hjv = 0 for all j ∈ [t], i.e., v ∈ C.

4.5.2 The Function ϕ and Proof of Items 1 and 2 of Lemma 4.5.2

Let λ ∈
(

0, q−1
q

]
such that λn is an integer, and let u ∈ Fnq have weight λn. LetH1, . . . ,Ht

be the layers of the parity-check matrixH of C, as in Fig. 4.2.

Note that the matrices H1, . . . ,Ht are identically and independently distributed. In
particular, the events P (Hju = 0) are independent. Hence,

Pλ = P (u ∈ C) = P (Hu = 0) = P (H1u = 0)t . (4.8)

Recall that H1 is sampled from the distribution FΠD, where Π is a random permuta-
tion and D is a random full-rank diagonal matrix (cf. Figure 4.2). Note that ΠDu is
uniform over the set of weight λ vectors in Fnq . Hence, if u is uniform over the set of
weight λ vectors,

Pλ = P (Fu = 0)t .

We turn to bound this expression. Let β ∈
(

0, q−1
q

]
. Denote by µq(β) the distribution on

Fq which is 0 with probability 1−β and uniform on F∗q with probability β. When β is clear
from context, we shorthand µq = µq(β). Let µnq ∼ Fnq denote the distribution obtained
by sampling each coordinate independently according to µq, and let v ∼ µnq . Observe
that the distribution of v, conditioned on wt(v) = λ, is identical to the distribution of u.
Hence, by Bayes’ rule,

P (Fu = 0) = P (Fv = 0 | wt(v) = λ) (4.9)

= P (wt(v) = λ | Fv = 0) · P (Fv = 0)

P (wt(v) = λ)

≤ P (Fv = 0)

P (wt(v) = λ)
. (4.10)

8Recall that we think of q as a constant.

78

We proceed to bound the right-hand side of (4.9). For the denominator, note that

P (wt(v) = λ) =

(
n

λn

)
βλn(1− β)(1−λ)n ≥ q−DKLq(λ‖β)n (4.11)

where above DKLq (x ‖ y) denotes the q-ary KL Divergence,

DKLq (x ‖ y) = −x logq
y

x
− (1− x) logq

1− y
1− x

for x ∈ [0, 1] and y ∈ (0, 1).

We next focus on the numerator. The following notation will be useful:
Definition 4.5.5. For k ∈ N, let

Vk
q =

{
w ∈ Fkq :

k∑
i=1

wi = 0

}
.

Let f1, . . . , fn
s

denote the rows of the matrix F . Note that the vectors f1, . . . fn
s

have
disjoint supports, so the inner products 〈fi,v〉 are independently and identically dis-
tributed. Hence, P (Fv = 0) = P (〈f1,v〉 = 0)

n
s . Observe that the distribution of v is

symmetric to multiplication of each entry by a nonzero element of Fq. Consequently, if
w ∼ µsq,

P (Fv = 0) = P (〈f1,v〉 = 0)
n
s = P

(
s∑
i=1

vi = 0

)n
s

= P
(
w ∈ Vs

q

)n
s . (4.12)

The following lemma gives a closed form for this last expression.
Lemma 4.5.6.

P
(
w ∈ Vs

q

)
=

1 + (q − 1)
(

1− qβ
q−1

)s
q

.

Proof. We proceed by induction. The base case (s = 0) is immediate. Now suppose that
the statement holds for s − 1 and let π : Fsq → Fs−1

q denote the projection onto the first
s− 1 coordinates. Then

P
(
w ∈ Vs

q

)
= P

(
π(w) ∈ Vs−1

q

)
· P (ws = 0)

+ P
(
π(w) 6∈ Vs−1

q

)
· P

(
ws = −

s−1∑
i=1

wi | π(w) 6∈ Vs−1
q

)

=
1 + (q − 1)

(
1− qβ

q−1

)s−1

q
· (1− β)

+

1−
1 + (q − 1)

(
1− qβ

q−1

)s−1

q

 · β

q − 1

=
1

q
+

(
1− qβ

q − 1

)s(
q − 1

q

)
,

79

which establishes the inductive hypothesis for s.

Motivated by the computations above, we can define the following useful short-
hands:
Definition 4.5.7. For λ, β ∈ (0, q−1

q
], define

Z(β) = P
(
w ∈ Vs

q

)
=

1 + (q − 1)
(

1− qβ
q−1

)s
q

, (4.13)

ψ(λ, β) = sDKLq (λ ‖ β) + logq Z(β) .

From Equations (4.8), (4.9), (4.11) and (4.12), we conclude that

logq Pλ = t logq P (Fu = 0) ≤ tn

DKLq (λ ‖ β) +
logq

(
1 + (q − 1)

(
1− qβ

q−1

)s)
− 1

s

= (1−R)n

(
sDKLq (λ ‖ β) + logq

(
1 + (q − 1)

(
1− qβ

q − 1

)s)
− 1

)
= (1−R)nψ(λ, β) (4.14)

for every β ∈
(

0, q−1
q

]
. Above, we have used the choice t = (1−R)s.

This motivates the following definition:
Definition 4.5.8. Let Z and ψ be as in Definition 4.5.7. Define:

ϕ(λ) = inf
β∈(0, q−1

q
]
ψ(λ, β) .

Definition 4.5.8, along with (4.14), implies that logq Pλ ≤ ϕ(λ), which establishes
Item 2 of Lemma 4.5.2. Next we establish Item 1 of Lemma 4.5.2. This follows from
Definition 4.5.8, since

ϕ(λ) ≤ ψ(λ, λ) = logq

(
1 + (q − 1)

(
1− qλ

q − 1

)s)
− 1 ,

using the fact that DKLq (λ ‖ λ) = 0.

This almost completes the proof of Lemma 4.5.2, except for Item 3, which we estab-
lish in the next section using calculus.

4.5.3 Proof of Item 3 of Lemma 4.5.2

In this section we prove Item 3, which will establish Lemma 4.5.2 and hence Theo-
rem 4.3.5.

80

Remark 4.5.9 (Difference between [Gal62] and this proof). This is the part of the proof
where our techniques diverge from Gallager’s. The part of [Gal62] which corresponds
to our Item 3 consists of an intricate analytic argument which does not seem (to us) to
generalize to larger alphabets. Thus, our proof has to rely on a different, more general,
argument, which we now provide.

Before proving Item 3 of Lemma 4.5.2, we need to better understand the relation
between a given λ ∈ (0, q−1

q
], and the β which minimizes the expression ψ(λ, β).

Lemma 4.5.10. Let λ ∈ (0, q−1
q

]. Then, ψ(λ, β) is minimized by a unique β ∈ (0, q−1
q

]. This β
is the only solution for

E
w∼µq(β)

[
wt(w) | w ∈ Vs

q

]
= λ .

Proof. We compute the derivative. Recall that ln denotes logarithm to the base e.

d lnZ(β)

dβ
=

1

P
(
w ∈ Vs

q

) · d (P (w ∈ Vs
q

))
dβ

=
1

P
(
w ∈ Vs

q

) ·∑
w∈Vsq

d
(

β
q−1

)s·wt(w)

(1− β)s·(1−wt(w))

dβ

=

∑
w∈Vsq

((
β
q−1

)s·wtw

(1− β)s·(1−wtw) · s ·
(

wt(w)
β
− 1−wt(w)

1−β

))
P
(
w ∈ Vs

q

)
= s ·

(
E
[
wt(w) | w ∈ Vs

q

]
β

−
1− E

[
wt(w) | w ∈ Vs

q

]
1− β

)
. (4.15)

Also, it is not hard to see that

∂DKLq (λ ‖ β)

∂β
=

1

ln(q)
·
(

1− λ
1− β

− λ

β

)
.

Consequently,

∂ψ(λ, β)

∂β
= s

∂DKLq (λ ‖ β)

∂β
+
d logq Z(β)

dβ

= logq e ·
(
s(1− λ)

1− β
− sλ

β
+
d loge Z(β)

dβ

)
= s · logq e ·

(
E
[
wt(w) | w ∈ Vs

q

]
− λ
)(1

1− β
+

1

β

)
.

We conclude that ∂ψ(λ,β)
∂β

has the same sign as E
[
wt(w) | w ∈ Vs

q

]
− λs. The lemma

now follows from the following claim:

81

Claim 4.5.11. As β increases in the range (0, q−1
q

] the function E
[
wt(w) | w ∈ Vs

q

]
strictly

increases from 0 to q−1
q

.

Proof of Claim 4.5.11. Due to (4.13) and (4.15),

E
[
wt(w) | w ∈ Vs

q

]
=

(
d lnZ(β)

s · dβ
+

1

1− β

)
β(1− β)

=

(
dZ(β)
dβ

s · Z(β)
+

1

1− β

)
β(1− β)

=

 −q
(

1− qβ
q−1

)s−1

1 + (q − 1)
(

1− qβ
q−1

)s +
1

1− β

 β(1− β)

= β ·
1−

(
1− qβ

q−1

)s−1

· (1 + qβ)

1 + (q − 1)
(

1− qβ
q−1

)s , (4.16)

(4.17)

and the claim readily follows.

The proof of Lemma 4.5.10 is thus concluded.

Lemma 4.5.10 and Claim 4.5.11 justify the following definition:
Definition 4.5.12. For λ ∈ (0, q−1

q
], denote by β(λ) the unique β ∈ (0, q−1

q
] which mini-

mizes ψ(λ, β). The inverse of this function is denoted λ(β).

By Lemma 4.5.10 and Equation (4.16),

λ(β) = β
1−

(
1− qβ

q−1

)s−1

1 + (q − 1)
(

1− qβ
q−1

)s . (4.18)

Remark 4.5.13. Unfortunately, there are good reasons to suspect that the function β(λ)
has no closed-form expression (see, e.g., the discussion about backward mapping in
[WJ+08, Sec. 3.4.2]), so we prefer to work with its inverse.

It is convenient to extend the definition of these functions to the closed interval[
0, q−1

q

]
by taking limits, namely, λ(0) = β(0) = 0, and

ϕ(0) = lim
λ→0

ϕ(λ) = lim
λ→0

ψ(λ, β(λ)) lim
β→0

ψ(λ(β), β) = lim
β→0

DKLq (λ(β) ‖ β) + logq Z(β)

= lim
β→0

DKLq (λ(β) ‖ β) = lim
β→0
−λ(β) logq β = 0 .

We are now able to prove Item 3 of Lemma 4.5.2. Namely, we show that ϕ(λ)
hq(λ)

is
strictly increasing in the range 0 < λ ≤ q−1

q
.

82

Proof of Lemma 4.5.2, Item 3. Let α(λ) = ϕ(λ)
hq(λ)

. The desired result follows immediately
from the four following claims:

Claim 4.5.14. α(q−1
q

) = −1.

Claim 4.5.15. α(λ) < −1 for some λ ∈ (0, q−1
q

).

Claim 4.5.16. There exists ε > 0 such that α(λ) > − s
2

for all λ ∈ (0, ε).

Claim 4.5.17. For each y ∈ (− s
2
,−1], the equation α(λ) = y has at most one solution λ ∈

(0, q−1
q

].

Indeed, Claims 4.5.14 and 4.5.17 show that α(λ) 6= −1 for λ < q−1
q

. Since α is con-
tinuous, it is either upper bounded or lower bounded by −1 in the whole range (0, q−1

q
].

Claim 4.5.15 implies the former is the case. By Claim 4.5.17, if − s
2
< α(λ0) < −1 for

some λ0 ∈ (0, q−1
q

), then α must be strictly increasing in the range [λ0,
q−1
q

]. The lemma
now follows from Claim 4.5.16. We proceed to prove these claims.

Proof of Claim 4.5.14. Note that α(q−1
q

) = ϕ(q−1
q

). Due to Item 2,

ϕ

(
q − 1

q

)
≤ −1 .

In the reverse direction,

ϕ(λ) = min
β
ψ(λ, β) = min

β

(
s ·DKLq (λ ‖ β) + logq Z(β)

)
≥ min

β

(
s ·DKLq (λ ‖ β)

)
− 1 ≥ −1

for all λ. The first inequality above holds since Z(β) ≥ 1
q
, due to (4.13).

Proof of Claim 4.5.15. By Item 1,

α(λ) ≤
logq

(
1 + (q − 1)

(
1− q

q−1
λ
)s)
− 1

hq(λ)
. (4.19)

Let λ = q−1
q
− ε. As ε tends from above to 0, the numerator of (4.19)’s right-hand side is

−1 + Θ(εs), while the denominator is 1 − Θ(ε2). Thus, for ε small enough, (4.19) yields
α(λ) < −1.

Proof of Claim 4.5.16. Let

Z̄(β) = P
(
w ∈ Vs ∧ wt(w) ≤ 2

s

)
= (1− β)s +

(
s

2

)
(1− β)s−2β2

83

and
ψ̄(β, λ) = sDKLq (λ ‖ β) + logq Z̄(β) .

Clearly, ψ̄(β, λ) is a lower bound on ψ(β, λ), so

ϕ(λ) ≥ min
β∈(0, q−1

q
]
ψ̄(λ, β) .

Note that

∂ψ̄(λ, β)

∂β
=

s

β(1− β)

 2(s− 1)(
1−β
β

)2

+
(
s
2

) − λ
 ,

Hence, for λ < 2
s
, the minimum of ψ̄(λ, β) is attained at β0 = y

1+y
, where

y =

(
λ

2(s− 1)−
(
s
2

)
λ

) 1
2

.

Therefore,

α(λ) =
ϕ(λ)

hq(λ)
≥ ψ̄(λ, β0)

hq(λ)

=
s

2

(
−1 +

λ
(
logq

(
2(s− 1)−

(
s
2

)
λ
)
− logq(1− λs)

)
+ (1− λ) logq(1− λ)

hq(λ)

)
.

For λ small enough, the right-hand side is clearly larger than − s
2
.

Proof of Claim 4.5.17. Denote β∗ = β(λ). Let y ∈ (− s
2
,−1], and define the function

ϕy(λ) = ϕ(λ) − yhq(λ). We seek to show that ϕy(λ) has at most one root in the range
(0, q−1

q
]. This is a consequence of the following three statements, proven below:

1. dϕy(λ)

dλ
has at most one extremal point in the open interval (0, q−1

q
).

2. dϕy(λ)

dλ
(q−1

q
) = 0.

3. ϕy(0) = 0.

Indeed, Item 1 implies that dϕy(λ)

dλ
has at most two roots in the interval (0, q−1

q
]. Item 2

says that one of these roots is at q−1
q

, so dϕy(λ)

dλ
has at most one root in (0, q−1

q
). Conse-

quently ϕy(λ) has at most one extremal point and two roots in [0, q−1
q

]. Due to Item 3,
one of these roots is 0, so there can only be one root in (0, q−1

q
]. We turn to prove these

statements.

Item 3 is trivial. For Item 2, note that in the derivative

dϕ(λ)

dλ
=
∂ψ(λ, β)

∂β β=β∗
· dβ

∗

dλ
+
∂ψ(λ, β)

∂λ β=β∗
,

84

the first term vanishes since ψ has a minimum at (λ, β∗). Hence,

dϕ(λ)

dλ
=
∂ψ(λ, β)

∂λ β=β∗
= s

∂DKLq (λ ‖ β)

∂λ β=β∗
= s logq

λ(1− β∗)
(1− λ)β∗

.

In particular, β(q−1
q

) = q−1
q

, so

dϕy(λ)

dλ λ= q−1
q

=
dϕ(λ)

dλ λ= q−1
q

− ydhq(λ)

dλ λ= q−1
q

= 0 ,

since, in the last equality, the two terms vanish.

We turn to Item 1. Define the new variable x = 1 − qβ∗

q−1
. Note the following useful

relations, the second of which follows from Equation (4.18):

β∗ =
q − 1

q
(1− x) (4.20)

and
λ

1− λ
=

β∗

1− β∗
· 1− xs−1

1 + (q − 1)xs−1
. (4.21)

By (4.20) and (4.21),

dϕy(λ)

dλ
= s

∂DKLq (λ ‖ β)

∂λ |β=β∗
− ydhq(λ)

dλ

= s logq
λ(1− β∗)
(1− λ)β∗

+ y logq
λ

1− λ

= s logq
1− β∗

β∗
+ (s+ y) logq

λ

1− λ

= −y logq
1 + (q − 1)x

(q − 1)(1− x)
+ (s+ y) logq

1− xs−1

1 + (q − 1)xs−1
.

Now,
d2ϕy(λ)

dxdλ
· ln q =

−yq
(1 + (q − 1)x)(1− x)

− (s+ y)(s− 1)qxs−2

(1− xs−1) (1 + (q − 1)xs−1)
.

This second derivative vanishes when
−(s+ y)

y
=

(1− xs−1) (1 + (q − 1)xs−1)

(s− 1)(1 + (q − 1)x)(1− x)xs−2
.

Equivalently,

−(s+ y)

y
=

1

s− 1

s−2∑
i=0

x−i + (q − 1)xi+1

1 + (q − 1)x
. (4.22)

By examining each term of this sum separately, it is straightforward to verify that the
right-hand side of (4.22) is a convex function of x, which tends to∞ (resp. 1) as x → 0
(resp. x → 1). Since y > − s

2
, the left-hand side of (4.22) is larger than 1, so there is a

unique x ∈ (0, 1) which solves (4.22). Item 1 follows.

This establishes Item 3 of Lemma 4.5.2.

85

4.6 Open Problems

In this work, we answered Question 4.1.1 with an emphatic “yes”. There are LDPC
codes that achieve list-decoding capacity, and moreover there are many of them, and
moreover these codes are also likely to satisfy any local property which is likely to be
satisfied by a random linear code. However, we feel that our results are just the tip of
the iceberg. They raise several interesting questions:

1. Derandomization? Our results hold for a random ensemble of LDPC codes. It is
natural to ask whether (or to what extent) this construction can be derandomized.
In particular, it does not seem as though the underlying graph being an expander
would be sufficient.

2. Algorithms? Our results are combinatorial, but one of our main motivations
is algorithmic. At the moment we do not know of any truly linear-time list-
decoding algorithms for any capacity-achieving list-decodable codes. Since essen-
tially all known linear-time algorithms in coding theory arise from graph-based
codes, such codes are a natural candidate for linear-time list-decoding. Now that
we know that random LDPC codes achieve list-decoding capacity combinatori-
ally, can we list-decode them efficiently? As a natural starting point, Hemen-
way and Wootters [HW15] have shown how to list-recover Tanner codes from
erasures in linear-time. Furthemore, recent work by Ron-Zewi, Wootters and Zé-
mor [RZWZ20] shows how to list-decode binary Tanner codes from erasures. Per-
haps a modification of their techniques, together with our combinatorial proof of
the LDPC codes’ list-decodability, can lead to an analyzable list-decoding algo-
rithm.

86

Chapter 5

On the List-Decodability of Random
Linear Codes over the Rank Metric

As alluded to in Chapter 1, while coding theorists have typically used the Hamming
metric to define the distance between words, there are other metrics that one could
consider. Motivated by applications in network coding [KK08; SKK08], space time
coding [LGB03; LK05], magnetic recording [Rot91], and cryptography [GPT91; Loi10;
Loi17], researchers have turned their attention to the rank metric. Introduced by Del-
sarte [Del78], in a rank metric code, codewords are matrices over a finite field and the
distance between codewords is the rank of their difference.

In this chapter, we will be concerned with the list-decodability of rank metric codes.
Specifically, for n ≤ m ∈ N an Fq-linear rank-metric code over Fm×nq of rate R = (1 −
ρ)(1 − bρ) − ε (where b := n

m
) is shown to be (with high probability) list-decodable up

to fractional radius ρ ∈ (0, 1) with lists of size at most Cρ,q,b
ε

, where Cρ,q,b is a constant
depending only on ρ, q and b. This matches the bound for random rank metric codes
(up to constant factors). The proof adapts the approach of Guruswami, Håstad and
Kopparty [GHK11], who established a similar result for the Hamming metric case, to
the rank metric setting.

5.1 Primer on Rank Metric Codes

For any matrices X, Y ∈ Fm×nq with m ≤ n, the (normalized) rank distance between X and
Y is

dR(X, Y) =
1

n
rank(X − Y) .

Observe that this indeed defines a metric (the triangle inequality is a consequence of the
sub-additivity of rank). A rank metric code is then a subset C ⊆ Fm×nq , and if C happens to
be a subspace then it is called a linear code (observe that Fm×nq naturally has the structure
of an mn-dimensional vector space over Fq).

87

The notions of rate and distance naturally apply to rank metric codes: the rate is
R(C) =

logq |C|
nm

and its distance is δ(C) = min{dR(X, Y) : X, Y ∈ C, X 6= Y }. If C
happens to be linear, we can simplify these expressions to R(C) = dim(C)

mn
and δ(C) =

min{rank(X)/n : X ∈ C \ {0}}.
Recall the Singleton bound (Theorem 2.4.1). An analogous result holds for the rank

metric:
Theorem 5.1.1 (Rank Metric Singleton Bound [Gab85]). If C ⊆ Fm×nq is a rank metric code
with minimum distance δ, then

R(C) ≤ 1− δ +
1

n
.

Just as the Singleton bound is achievable by an explicit family of codes over the
Hamming metric (namely, Reed-Solomon codes; cf. Example 2.5.1), there is an explicit
family of rank-metric codes achieving the tradeoff in Theorem 5.1.1 which are called
Gabidulin codes. We defer a formal definition of Gabidulin codes to Chapter 8 (specifi-
cally, Example 8.1.6 in Section 8.1.2); for now, suffice it to say that they are the analog of
RS codes for the rank metric.

5.1.1 List-Decodable Rank Metric Codes

Next, we discuss the list-decodability of rank metric codes. First, as in any metric space,
we have the concept of a metric ball:
Definition 5.1.2 (Rank Metric Ball). For ρ ∈ (0, 1) and Z ∈ Fm×nq , the rank metric ball of
radius ρ centered at Z is

BR(Z, ρ) = {X ∈ Fm×nq : dR(X,Z) ≤ ρ} .

We can then define what it means for a rank metric code to be list-decodable. In
this chapter, we are only concerned with the combinatorial property of list-decodability
(and not the algorithmic task of computing the list from a received word).
Definition 5.1.3 (List-Decodable Rank Metric Code). Let ρ ∈ (0, 1) and L ≥ 1. A rank
metric code C ⊆ Fm×nq is (ρ, L)-list-decodable if for all Z ∈ Fm×nq ,

|BR(Z, ρ) ∩ C| ≤ L .

Recall that the size of a Hamming ball was captured quite well by the q-ary entropy
function hq(ρ) from Definition 2.4.2: Proposition 2.4.5 provides the estimate |B(z, ρ)| ≈
qnhq(ρ). We would like to obtain a similar estimate for rank metric balls. Note that

|BR(Z, ρ)| =
bρnc∑
r=0

Nq(r,m, n) ,

where

Nq(r,m, n) =
r−1∏
j=0

(qn − qj)(qm − qj)
qr − qj

88

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ρ

ψ
b
(ρ

)

Graph of ψb for Various b

Figure 5.1: Graph of ψb(ρ) for various values of balancedness b. In blue, b = 1; in red,
b = 0.5; in green, b = 0.25.

counts the number of rank r matrices in Fm×nq .

The following proposition from [GY08] provides a useful estimate of |BR(Z, ρ)|.
Proposition 5.1.4 (Rank-Metric Ball Estimate). Define ψb : [0, 1]→ [0, 1] by

ψb(ρ) = ρ+ ρb− ρ2b . (5.1)

Then

qmnψb(ρ) ≤ |BR(Z, ρ)| ≤ K−1
q qmnψb(ρ) , (5.2)

where Kq =
∏∞

j=1(1− q−j).
Remark 5.1.5. Observe that the quantity Kq ∈ (0, 1) and increases with q. Moreover,
K2 ≈ 0.2887, so being a bit lax we have K−1

q < 4. Thus, Proposition 5.1.4 actually
shows |BR(Z, ρ)| = Θ

(
qmnψb(ρ)

)
, which is a tighter estimate than that guaranteed by

Proposition 2.4.5.
Remark 5.1.6. For Hamming balls, the estimate was only effective when ρ < 1 − 1/q;
however, note that ψb(ρ) < 1 whenever ρ < 1. See Figure 5.1.
Remark 5.1.7. Interestingly, the function ψb(ρ) does not depend on the underlying field
Fq, but only on the ratio b = n

m
. Moreover, recall that as q → ∞, hq(ρ) approaches ρ.

Similarly, as b→ 0, ψb(ρ) approaches ρ. For this reason, we think of the “large q regime”
in the Hamming metric as being morally similar to “small b regime” in the rank metric.

From this, we can deduce a list-decoding capacity theorem for rank metric codes.
As in the proof of the list-decoding capacity theorem for the Hamming metric (Theo-
rem 2.4.7), the first bullet-point is proved by considering the performance of a uniformly
random rank metric code of the prescribed rate.

89

Theorem 5.1.8 (List-Decoding Capacity Theorem for Rank Metric Codes [Din14]). Let
n ≤ m ∈ N and put b = n

m
. Fix ρ ∈ (0, 1) and ε > 0.

• There exists a code C ⊆ Fm×nq of rate 1− ψb(ρ)− ε which is (ρ,O(1/ε))-list-decodable.
• For any code C ⊆ Fm×nq of rate 1−ψb(ρ)+ε, there exists a Z ∈ Fm×nq for which |B(Z, ρ)∩
C| ≥ qεnm.

In this chapter, we wish to determine whether we can match the performance of a
uniformly random rank metric code with a random linear rank metric code. Our main
result (see Section 5.3) indicates that this is the case for a wide regime of parameters.

Before stating our results, we survey prior work concerning the list-decodability of
rank metric codes.

5.2 Prior Work

List decoding Gabidulin codes. Gabidulin codes are the rank metric code that have
been the most extensively studied and we briefly collect certain facts concerning their
list-decoding. An algorithm for Gabidulin codes akin to the Welch-Berlekamp algo-
rithm has been provided by Loidreau [Loi06]; however, it only guarantees unique de-
coding up to half the distance of the code. Kuijper and Trautmann [KT14] have pro-
vided a list-decoding algorithm for Gabidulin codes, but it is not guaranteed to run in
polynomial time, nor is it guaranteed to output a list of polynomial size.

On the negative side, Wachter-Zeh [WZ12] has shown that Gabidulin codes of rate
R cannot be list-decoded beyond the Johnson radius 1 −

√
R. (Recall that it remains

an open problem to determine if Reed-Solomon codes can be list-decoded beyond the
Johnson bound. However, by the Guruswami-Sudan algorithm [GS99], it is known how
to decode up to the Johnson bound.) More recently, Raviv and Wachter-Zeh [RWZ16]
(see also the correction in [RWZ17]) have shown that certain Gabidulin codes cannot be
list-decoded beyond half the minimum distance.

Nonetheless, certain variants of Gabidulin codes can be list-decoded beyond half
the minimum distance. Guruswami, Wang and Xing [GK16] (see also [GX13; GW14])
provided an explicit construction of a subcode of the Gabidulin code of rate R that can
be list-decoded up to radius 1 − R − ε, matching the Singleton bound for rank metric
codes (Theorem 5.1.1). Their construction and analysis actually inspire the techniques
we use in Chapter 8, so we expound upon them then; see Section 8.1. Mahdifar and
Vardy [MV12] have also provided an algorithm for list-decoding a “folded” variant of
Gabidulin codes up to the Singleton bound, although the list size is of exponential size.

List-decoding random rank metric codes. The study of the list-decodability of ran-
dom rank metric codes was initiated by Ding [Din14]. First she considers the perfor-
mance of a uniformly random rank metric code, and essentially proves Theorem 5.1.8.
Furthermore, she studies when it is possible to list decode up to the Singleton bound

90

1−R−ε, and demonstrates that b . ε is necessary and sufficient. (This can be compared
to Proposition 2.4.6, reinforcing the motto that “small b” is akin to “large q”.)

Furthermore, Ding shows that random linear rank metric codes of rate 1− ψb(ρ)− ε
are (ρ, exp(O(1/ε)))-list-decodable with high probability. Her argument can be viewed
as a natural adaptation of the Zyablov-Pinsker argument (see Section 3.1), explaining
the exponential dependence on the gap to capacity.

5.3 Our Results

Our main result shows that random linear rank metric codes have list sizes that grow
linearly with the reciprocal of the gap to capacity.
Theorem 5.3.1 (Main Theorem). Let ρ ∈ (0, 1) and n ≤ m. There exists a constant C =
Cρ,q,b > 0 such that a random Fq-linear rank metric code C ≤ Fm×nq of rate R = 1− ψb(ρ)− ε
is (ρ, C/ε)-list-decodable with high probability.

In the above theorem, the constant C blows up if q → ∞, ρ → 1 or b → 0. This
is reminiscent of the drawbacks that we discussed regarding the Guruswami-Håstad-
Kopparty argument [GHK11] (recall that, informally, small b corresponds to large al-
phabet). This is no coincidence: our argument is an adaptation of their approach to the
rank metric world. We now provide an informal overview of our proof strategy.

5.4 Overview of Approach

As indicated in Section 5.1, uniformly random rank metric codes C of rate 1−ψb(ρ)−ε are
with high probability (ρ,O(1/ε))-list-decodable. The proof follows from the fact that, for
any center Z and a list {X1, . . . , XL} ⊆ B(Z, ρ), the events “Xi ∈ C” are independent.
Hence, the probability that {X1, . . . , XL} ⊆ C is small enough to allow us to take a
union bound over all possible lists. Unfortunately, for a random linear rank metric
code C, the events “Xi ∈ C” are not independent; indeed, the events are not even 3-wise
independent (as ifXi andXj are in the code, then so isXi+Xj). Since a list {X1, . . . , XL}
is guaranteed to have a linearly independent subset of size dlogq Le, one can use the
argument for uniformly random codes to conclude that random linear rank metric codes
are (ρ,O(exp(1/ε)))-list-decodable – indeed, this is more-or-less the approach followed
by Ding [Din14]. Thus, in order to prove that lists of size O(1/ε) are sufficient, we will
need to argue that, given a list contained in a small rank metric ball which does not
contain a large linearly independent set, very few elements of their span will (with high
probability) also lie in the rank metric ball.

Such an argument is given by Guruswami, Håstad and Kopparty [GHK11]. The
technical core of their argument is to show that it is exponentially unlikely that ` vectors
selected uniformly at random from the Hamming ball B(0, ρ) have ω(`) elements of
their linear span also lying in B(0, ρ). That is, they show there exists a constant C >

91

0 (which depends on q and ρ) such that if x1, . . . ,x` are sampled independently and
uniformly at random from B(0, ρ), the probability that | span{x1, . . . ,x`}∩B(0, ρ)| ≥ C`
is exponentially small in n. We prove an analogous result for matrices with the rank
metric in Lemma 5.5.5.

In order to achieve this, the authors first show that, for any fixed vector z ∈ Fnq ,
if x1,x2 ∼ B(0, ρ) are sampled independently and uniformly, then it is exponentially
unlikely that x1 + x2 ∈ B(z, ρ). In order to bootstrap this to the case of selecting ` vec-
tors from B(0, ρ), the authors find a certain substructure in any set of F`q via a Ramsey-
theoretic lemma which we introduce in Section 5.4.1.

We prove the appropriate generalization of this fact, concerning the sum of low-rank
random matrices, in Lemma 5.5.4. This argument is a bit more involved than the anal-
ogous one in [GHK11] and represents the technical core of this chapter’s contribution.
Once we have proved this lemma, we are able to follow the framework of [GHK11] to
conclude our main theorem (Theorem 5.3.1).

5.4.1 Increasing Sequences: A Ramsey-Theoretic Tool

As alluded to above, in order to analyze the probability thatC` elements from span{x1, . . . ,x`}
lie in B(0, ρ), we will look for combinatorial structure within any set of C` linear com-
binations that we can exploit. Specifically, we will look for c-increasing sequences:
Definition 5.4.1 (c-Increasing Sequence). Let c ∈ N. A sequence of vectors v1, . . . , vd ∈ F`q
is a c-increasing sequence if for all j ∈ [d],∣∣∣∣∣supp(vj) \

j−1⋃
i=1

supp(vi)

∣∣∣∣∣ ≥ c .

It is shown in [GHK11] that all sets in F`q have a translate containing a large c-
increasing sequence. A crucial ingredient in their proof was a Ramsey-theoretic lemma
proved by Sauer [Sau72] and Shelah [She72]. (More precisely, [GHK11] use a nonstan-
dard q-ary version of the Sauer-Shelah lemma which they prove.) While we state the
following result for general c, we remark that we will only ever require c = 2 in our
proof.
Lemma 5.4.2 ([GHK11]). For every prime power q, and all positive integers c, ` and L ≤ q`,
the following holds. For every S ⊆ F`q with |S| = L, there is a w ∈ F`q such that S + w has a
c-increasing chain of length at least

1

c
logq

L

2
−
(
1− 1

c

)
logq((q − 1)`) .

5.5 Proofs

The first statement we prove in this section gives an upper bound on the probability
two random subspaces intersect significantly.

92

Claim 5.5.1. Let U1 and U2 be independent and uniform subspaces of Fnq of dimension ρ1n and
ρ2n, respectively. Assume ρ1 ≤ ρ2. For any α satisfying max{0, 1− ρ1 − ρ2} ≤ α ≤ ρ1,

P (dim(U1 +U2) ≤ n(ρ1 + ρ2 − α)) ≤ 43 expq
(
−n2α(1 + α− ρ1 − ρ2)

)
.

The proof of Claim 5.5.1 makes use of the concept of the Grassmannian.
Definition 5.5.2 (Grassmannian). For a vector space V over Fq and an integer 0 ≤ k ≤
dimV , denote by G(k, V) the set of all subspaces U ≤ V of dimension k. If n = dimV ,
we have

|G(k, V)| =
[
n
k

]
q

=
k−1∏
j=0

qn − qj

qk − qj
.

We record the following estimates for [nk]q.
Lemma 5.5.3 ([GY08]). We have

Kq · qk(n−k) ≤
[
n
k

]
q

≤ K−1
q qk(n−k) .

Proof of Claim 5.5.1. We will in fact bound the probability that dim(U1 ∩U2) ≥ αn; since
dim(U1 + U2) = dim(U1) + dim(U2) − dim(U1 ∩ U2) = ρ1n + ρ2n − dim(U1 ∩ U2), the
claim will follow. Also, by increasing α if necessary it does no harm to assume αn is
an integer. Finally, note that by conditioning on the realization of U1 it suffices to fix a
dimension ρ1n subspace U1 and bound the probability that dim(U1 ∩ U2) ≥ αn. To do
this, we bound the probability that there exists a subspace V ≤ U1 of dimension αn for
which V ≤ U2. By the union bound,

P (∃V ∈ G(αn, U1) s.t. V ≤ U2) ≤
∑

V ∈G(αn,U1)

P (V ≤ U2) =

[
ρ1n
αn

]
q

[
n− αn
ρ2n− αn

]
q[

n
ρ2n

]
q

, (5.3)

where the equality P (V ≤ U2) =

[
n−αn
ρ2n−αn

]
q

(n
ρ2n

)
follows from the fact that the number of

suspaces of Fnq of dimension ρ2n which contain a fixed subspace of dimension αn is
precisely the number of subspaces of Fn−αnq of dimension ρ2n−αn, i.e.,

[
n−αn
ρ2n−αn

]
q
. Using

Lemma 5.5.3, (5.3) is at most

K−3
q expq (αn(ρ1n− αn) + (ρ2n− αn)(n− ρ2n)− ρ2n(n− ρ2n))

= K−3
q expq

(
−n2α(1 + α− ρ1 − ρ2)

)
.

Recalling K−1
q < 4, the claim follows.

With this claim in hand, we proceed to showing that ifX1,X2 are uniformly and in-
dependently selected fromBR(0, ρ), it is exponentially unlikely thatX1+X2 ∈ BR(Z, ρ),
where Z is any fixed matrix.

93

Lemma 5.5.4. Let n ≤ m be positive integers, Z ∈ Fm×nq a fixed matrix, and ρ ∈ (0, 1). Let
X1,X2 ∼ BR(0, ρ) be independent and uniform. Then, assuming n,m are sufficiently large
compared to 1− ρ,

P (X1 +X2 ∈ BR(Z, ρ)) ≤ q−Ωρ,b(nm) .

Informally, the proof proceeds as follows. First, we observe that it suffices to prove
that it is exponentially unlikely that Y1 + Y2 ∈ BR(Z, ρ), where each Yi is indepen-
dently sampled by first choosing a subspace in Fnq of dimension roughly ρn uniformly
at random, then sampling m vectors from this subspace independently and uniformly
at random, and setting them to be the rows of Yi. Claim 5.5.1 guarantees that the sum of
the two random subspaces has large dimension except with probability exp(−Ω(n2)). In
this favorable case, Y1 + Y2 − Z is obtained by sampling a reasonably large subspace of
Fnq and then sampling m vectors from affine shifts of this subspace, and a fairly simple
analysis demonstrates that such a matrix is unlikely to have small rank.

The formal proof follows:

Proof. Let Φ = P (X1 +X2 ∈ BR(Z, ρ)) be the probability of interest. Let r = bρnc and
let η = η(ρ, b) ∈ (0, 1) be a parameter to be fixed later. Let s1, s2 ≤ r be integers such
that, conditioned on rank(X1) = s1 and rank(X2) = s2, the probability Φ is maximized.
That is, the pair (s1, s2) maximizes the expression

P (X1,X2 ∈ BR(Z, ρ)| rank(Xi) = ri, i = 1, 2) .

Since there are at most n2 choices for the pair (s1, s2) (as they must lie in the set {0, 1, . . . , bρnc}2),
we have

Φ ≤ n2 · P (X1 +X2 ∈ BR(Z, ρ)| rank(Xi) = si, i = 1, 2) .

Next, note that if s1 or s2 is ≤ ηr, then since |BR(0, ηρ)|/|BR(0, ρ)| ≤ q−Ωη(nm) (cf. Propo-
sition 5.1.4), we conclude

P (rank(X1) ≤ ηr ∨ rank(X2) ≤ ηr) ≤ q−Ωη(nm) = q−Ωρ,b(nm) .

Thus, in this case, by the total probability rule,

Φ =
∑

(r1,r2)

P (X1 +X2 ∈ BR(Z, ρ) ∧ rank(Xj) = ri, i = 1, 2)

≤ n2 · P (rank(Xi) = si, i = 1, 2)

≤ n2 · P (rank(X1) ≤ ηr ∨ rank(X2) ≤ ηr)

≤ q−Ωρ,b(nm).

Hence, we now assume ηr ≤ si ≤ r for i = 1, 2. Let Yi for i = 1, 2 be independent
random matrices sampled as follows:

(a) sample Ui uniformly at random among all dimension si subspaces of Fnq ;

(b) sample m vectors uniformly and independently from Ui and set them as the rows
of the matrix Yi.

94

For i = 1, 2, the matrix Yi has rank si with probability at least

(1− q−si)(1− q−si+1) · · · (1− q−2)(1− q−1) ≥
∞∏
j=1

(1− q−j) ≥ .288 >
1

4

(this is actually the probability that the first si rows are linearly independent). Now,
note that conditioned on obtaining rank si matrices, the random variables (X1,X2) and
(Y1,Y2) are identically distributed: both are uniform over pairs of matrices (A1, A2) with
rank(A1) = s1 and rank(A2) = s2. Let E denote the event that rank(Xi) = si for i = 1, 2
and F the event rank(Yi) = si for i = 1, 2. Note that

P (Y1 + Y2 ∈ BR(Z, ρ)) ≥ P (Y1 + Y2 ∈ BR(Y, ρ)|F) · P (F) ,

so

P (Y1 + Y2 ∈ BR(Z, ρ)|F) ≤ P (Y1 + Y2 ∈ BR(Z, ρ))

P (F)

≤ 42 · P (Y1 + Y2 ∈ BR(Z, ρ)) .

Recalling that

Φ ≤ n2 · P (X1 +X2 ∈ BR(Z, ρ)|E) = n2 · P (Y1 + Y2 ∈ BR(Z, ρ)|F) ,

we see that it suffices to prove

P (Y1 + Y2 ∈ BR(Z, ρ)) ≤ q−Ωρ,b(nm) . (5.4)

To prove Eq. (5.4), we use Claim 5.5.1. Let U = U1 + U2. Since 0 < ρ1, ρ2 ≤ ρ ∈ (0, 1),
we can choose α ∈ (max{0, 1 − ρ1 − ρ2}, ρ1) (here, we assume wlog ρ1 ≤ ρ2) such that
1 + α− ρ1 − ρ2 > 0 and ρ1 + ρ2 − α > ρ. Let G denote the favorable event that dim(U) >
n(ρ1 + ρ2 − α). Claim 5.5.1 states

P (¬G) ≤ 43 expq(−n2α(1 + α− ρ1 − ρ2)) = expq(−Ωρ,b(nm)) .

Utilizing Bayes’ Rule,

P (Y1 + Y2 ∈ BR(Z, ρ)) ≤ P (¬G) + P (Y1 + Y2 ∈ BR(Z, ρ)|G) ,

so we are reduced to bounding the second term. Note Y1 + Y2 ∈ BR(Z, ρ) ⇐⇒ Y1 +
Y2 − Z ∈ BR(0, ρ). Let z1, . . . , zm ∈ Fnq denote the rows of Z. Let u1, . . . ,um denote the
rows of Y1 + Y2 − Z, and observe that each ui is uniform over the affine space U + zi
which, conditioned on G, has cardinality at least q(ρ+γ)n, where γ = ρ1 + ρ2 − α− ρ > 0.

For Y1 +Y2−Z to have rank at most ρn, there must exist a set S ⊆ [m] of cardinality
ρn such that for all i ∈ [m] \ S, ui ∈ span{uj : j ∈ S} =: VS . The probability of this
event, conditioned on G, is at most(

qρn

q(ρ+γ)n

)m−ρn
=
(
q−γn

)Ωρ,b(n)
= q−Ωρ,b(nm) .

95

Taking a union bound over all
(
m
ρm

)
≤ 2Ωρ,b(n) choices for S, we conclude

P (Y1 + Y2 ∈ BR(Z, ρ)|G) ≤ q−Ωρ,b(nm) ,

as desired.

We now show that if ` matrices from BR(0, ρ) are chosen at random, then it is un-
likely that ω(`) of their linear combinations lie in BR(0, ρ). The proof combines Lem-
mas 5.4.2 and 5.5.4.
Lemma 5.5.5. For every ρ ∈ (0, 1), there is a constant K = Kρ,q,b > 1 such that for all integers
n ≤ m and ` = o(

√
nm), if X1, . . . ,X` are selected independently and uniformly at random

from BR(0, ρ), then

P (| span{X1, . . . ,X`} ∩BR(0, ρ)| ≥ K · `) ≤ q−(4−o(1))nm .

Proof. Let L = K · ` (for some K = Kρ,q,b to be selected later) and let c = 2. Let δ = δρ,b
be the constant in the Ωρ,b(·) from Lemma 5.5.4. Let

d =

⌊
1

c
logq

L

2
−
(

1− 1

c

)
logq((q − 1)`)

⌋
=

⌊
1

2
logq

L

2
− 1

2
logq((q − 1)`)

⌋
≥ 1

2
logq

L

2(q − 1)`
− 1 =

1

2
logq

C

2(q − 1)q2
.

Finally, for a vector u ∈ F`q, letX(u) =
∑

i uiXi.

Towards proving the lemma, we prove the following claim:

Claim 5.5.6. For any S ⊆ F`q with |S| = L+ 1,

P (∀v ∈ S,X(v) ∈ BR(0, ρ)) < qnmq−δdnm . (5.5)

Proof of Claim 5.5.6. Let w ∈ F`q and v1, . . . , vd ∈ S be as given by Lemma 5.4.2. That is,
v1 + w, v2 + w, . . . , vd + w is a 2-increasing sequence. Then

P (∀v ∈ S,X(v) ∈ BR(0, ρ)) ≤ P (∀j ∈ [d],X(vj) ∈ BR(0, ρ))

= P (∀j ∈ [d],X(vj) +X(w) ∈ BR(X(w), ρ))

= P (∀j ∈ [d],X(vj + w) ∈ BR(X(w), ρ)) .

Fix Y ∈ Fm×nq . Then

P (∀j ∈ [d],X(vj + w) ∈ BR(Y, ρ))

=
d∏
j=1

P (X(vj + w) ∈ BR(Y, ρ)|X(vi + w) ∈ BR(Y, ρ) ∀1 ≤ i ≤ j − 1)

≤
d∏
j=1

max
Zk∈BR(0,ρ):

k∈
⋃j−1
i=1 supp(vi+w)

P

(
X(vj + w) ∈ BR(Y, ρ)|Xk = Zk ∀k ∈

j−1⋃
i=1

supp(vi + w)

)

≤
(
q−δnm

)d
.

96

The last inequality follows from Lemma 5.5.4 as follows: let i1, i2 be distinct elements of
supp(vj +w) \

⋃j−1
i=1 supp(vi +w) (which exist thanks to the 2-increasing property). Then

apply Lemma 5.5.4 with (vj)i1Xi1 and (vj)i2Xi2 (which are distributed uniformly over
BR(0, ρ)), and Z = Y −

∑
k∈[`]\{i1,i2}(vj + w)kZk (which is a fixed matrix).

By taking a union bound over all qnm choices of Y ∈ Fm×nq , the claim follows.

We now bound the probability that more than L elements of span{X1, . . . ,X`} lie
in BR(0, ρ). This occurs iff there exists a subset S ⊆ F`q of size L + 1 such that ∀v ∈ S,
X(v) ∈ BR(0, ρ). By taking a union bound over the probability in (5.5), this occurs with
probability at most q`(L+1)qnmq−δdnm. Assuming C = Cρ,q is large enough so that d ≥ 5

δ
,

this probability is at most

qo(nm)+nm−5nm = q−(4−o(1))nm .

We are now prepared to prove Theorem 5.3.1, which we restate for convenience.
Theorem 5.3.1 (Main Theorem). Let ρ ∈ (0, 1) and n ≤ m. There exists a constant C =
Cρ,q,b > 0 such that a random Fq-linear rank metric code C ≤ Fm×nq of rate R = 1− ψb(ρ)− ε
is (ρ, C/ε)-list-decodable with high probability.

Proof. Let C = 2K, where K is the constant from Lemma 5.5.5, let L = dC
ε
e, and let n,m

be larger than L and sufficiently large so that the o(1) term of Lemma 5.5.5 is at most 1.

For Z ∈ Fm×nq selected uniformly at random, we will study the quantity

Φ := P (|BR(Z, ρ) ∩ C| ≥ L) .

By taking a union bound over all Z ∈ Fm×nq , note that proving Φ ≤ q−nm · q−nm will
suffice to conclude the theorem.

As a first step, we observe that we can move Z to the origin without significantly
changing the probability Φ. Indeed, if C = span{X1, . . . ,XRnm} for X1, . . . ,XRnm ∈
Fm×nq sampled independently and uniformly and C∗ = C +Z, we have

Φ = P (|BR(Z, ρ) ∩ C| ≥ L)

= P (|BR(0, ρ) ∩ (C +Z)| ≥ L)

≤ P (|BR(0, ρ) ∩ C∗| ≥ L) .

Thus, it suffices to bound the probability |BR(0, ρ) ∩ C∗| ≥ L, where we now have that
C∗ is a random linear code of dimension Rnm+ 1.

Now, for each integer ` satisfying logq L ≤ ` ≤ L, let F` denote the set of all tuples
(A1, . . . , A`) ∈ BR(0, ρ)` such thatA1, . . . , A` are linearly independent and | span{A1, . . . , A`}∩
BR(0, ρ)| ≥ L. Let

F =
⋃

logq L≤`≤L

F` .

Denote A = (A1, . . . , A`) and, as a slight abuse of notation, we write C∗ ⊇ A to mean
that Ai ∈ C∗ for all i ∈ [`].

97

Towards bounding P (|BR(0, ρ) ∩ C∗| ≥ L), notice that if |BR(0, ρ) ∩ C∗| ≥ L, then
there must exist some A ∈ F for which C∗ ⊇ A. Indeed, we may choose any maximal
linearly independent subset of BR(0, ρ)∩C∗ if this set has size at most L, or any linearly
independent subset of BR(0, ρ) ∩ C∗ of size L otherwise.

Thus, by a union bound,

Φ ≤
∑
A∈F

P (C∗ ⊇ A) =
L∑

`=dlogq Le

∑
A∈F`

P (C∗ ⊇ A) .

Note that for A = (A1, . . . , A`) ∈ F , by linear independence we have

P (C∗ ⊇ A) =

(
qRnm+1

qnm

)`
.

Thus, we find

Φ ≤
L∑

`=dlogq Le

|F`| ·
(
qRnm+1

qnm

)`
.

We now bound |F`| depending on the value of `.
• Case 1: ` < 3

ε
.

In this case, note that |F`|
|BR(0,ρ)|` is a lower bound on the probability that ` matrices

X1, . . . ,X` chosen independently and uniformly at random fromBR(0, ρ) are such
that

| span{X1, . . . ,X`} ∩BR(0, ρ)| ≥ L .

Lemma 5.5.5 tells us that this probability is at most q−3nm. Thus,

|F`| ≤ |BR(0, ρ)|`q−3nm ≤
(
4qmnψb(ρ)

)` · q−3nm .

• Case 2: ` ≥ 3
ε
.

In this case, we have the (simple) bound of

|F`| ≤ |BR(0, ρ)|` ≤
(
4qmnψb(ρ)

)`
.

98

Combining these inequalities, we obtain the following bound:

Φ ≤

⌈
3
ε

⌉
−1∑

`=dlogq Le

|F`| ·
(
qRnm+1

qnm

)`
+

L∑
`=
⌈

3
ε

⌉ |F`| ·
(
qRnm+1

qnm

)`

≤

⌈
3
ε

⌉
−1∑

`=dlogq Le

(
4qmnψb(ρ)

)` · q−3nm ·
(
qRnm

qnm

)`
· q` +

L∑
`=
⌈

3
ε

⌉ (4qmnψb(ρ)
)` · (qRnm

qnm

)`
· q`

≤ q−3nm

⌈
3
ε

⌉
−1∑

`=dlogq Le

4` · q` · q(−εnm)` +
L∑

`=
⌈

3
ε

⌉ 4` · q` · q(−εnm)`

≤ (4q)L
(
q−3nm · 3

ε
+ L · q−εnm·

3
ε

)
< q−nm · q−nm

assuming n,m are large enough compared to ε.

5.6 Open Problems

Many open directions remain to be pursued; we mention a couple of problems that we
find particularly interesting. First of all, we are unable to give good control of the list
size when ρ → 1 or when b → 0. As alluded to earlier, this is inherent in the [GHK11]
analysis of the list-decodability of random linear codes in the Hamming metric case,
and unfortunately our analysis inherits this limitation. Recall that in the case of the
Hamming metric, different techniques were developed in order to understand the high
noise regime: Gaussian processes and chaining [CGV13; Woo13; RW14] and structure
vs. pseudorandomness [RW18]. A natural hope would be to port these ideas over to
the rank metric; unfortunately, there does not appear to be an obvious way to make
this work. Lastly, we comment that the recent Li-Wootters [LW18] does indeed apply to
rank metric codes and therefore obtains the optimal result when q = 2, but generalizing
this approach to larger q appears nontrivial.

Lastly, we note that it is common to view a rank metric code C as a subset of Fnqm , and
then insist that such a code be Fqm-linear. This is done by fixing a basis for Fqm over Fq
and then identifying a vector x ∈ Fnqm with the matrix X ∈ Fm×nq , where the ith column
of X is xi written in the coordinates defined by the basis. Thus, it is natural to ask if a
random Fqm-linear subspace C ⊂ Fnqm is rank metric list-decodable. By adjusting the con-
stant C in the proof of Lemma 5.5.5, one can see that the proof still goes through. Unfor-
tunately, C will have to grow polynomially in qm (rather than just q), so the resulting list
sizes will be on the order of qO(m)/ε. Thus, we are unable to conclude that random Fqm-
linear codes are rank metric list-decodable with polynomial list sizes, let alone prove

99

the optimal O(1/ε) list size.1 Indeed, the situation is even more dire: we are currently
unaware of a proof that any Fqm-linear rank-metric codes are list-decodable beyond half
the minimum distance (the codes constructed by Guruswami, Wang and Xing [GWX16]
are just Fq-linear, not Fqm-linear). Thus, existentially proving that some Fqm-linear rank
metric code is list-decodable or concluding that no such code exists would represent
an important step forward in our understanding of the list-decodability of rank metric
codes.

1A bound of size qO(m)/ε follows from Zyablov-Pinsker style considerations, so this is perhaps a mild
improvement over what was known previously, but certainly not a very impressive result.

100

Chapter 6

Average-Radius List-Decodability of
Binary Random Linear Codes

In this chapter, we strengthen an argument of Li and Wootters (which is itself a strength-
ening of an argument of Guruswami, Håstad, Sudan and Zuckerman) to show that ran-
dom linear codes over F2 of rate 1 − h2(ρ) − ε are (ρ, L)-average-radius list-decodable,
where L = O(1/ε). In fact, just as Li and Wootters did for absolute-radius list-decoding,
we nail down the constant in the big-O notation to obtain L = bh2(ρ)/ε+ 1c.

Furthermore, just as is the case for the argument of Li and Wootters, we observe that
the same techniques apply equally well over the rank metric. In this way, we deduce
that random linear rank metric codes over F2 of rate 1−ψb(ρ)−ε are (ρ, L)-average-radius
list-decodable, where L = bψb(ρ)/ε+ 1c.

6.1 Overview of Approach

In this chapter we prove the following theorem. Recall that we abbreviate h(ρ) = h2(ρ).
Theorem 6.1.1. Let n ∈ N. Let ρ ∈ (0, 1

2
) and R = 1 − h(ρ) − ε, where 0 < ε < 1 − h(ρ).

Let L =
⌊
h(ρ)
ε

+ 1
⌋

. Then, a random linear code C ≤ Fn2 of rate R is (ρ, L)-average-radius

list-decodable with probability 1− 2−Ωρ,ε(n).
Our argument closely follows that of [LW18] which itself builds on the argument

of [Gur+02]. The argument imagines building the random linear code one dimension at
a time and uses a potential function to show that, so long as we don’t add too many di-
mensions, no ball intersects the code too much. We now provide an informal overview
of our approach, specifically comparing and contrasting it with the arguments of Gu-
ruswami, Håstad, Sudan and Zuckerman [Gur+02]; and Li and Wootters [LW18].

Let R = 1 − h(ρ) − ε and put k := Rn (which we assume is an integer). Note that
sampling a random linear code of rate R is the same as sampling b1, . . . , bk ∈ Fn2 in-
dependently and uniformly at random and outputting span{b1, . . . , bk}. Consider the

101

“intermediate” codes Ci = span{b1, . . . , bi}; [LW18] (following [Gur+02]) define a po-
tential function SCi and show that it remains small. [Gur+02] demonstrated that this
holds in expectation; [LW18] improved their argument to show that it holds with high
probability. It is easy to show that, so long as SC is O(1), the code C is suitably list-
decodable.

We now describe this potential function in more detail. First, for a code C and a
vector x ∈ Fn2 , define

LC(x) := |B(x, ρ) ∩ C| .

Note that (ρ, L)-list-decodability is equivalent to LC(x) ≤ L for all x. In [Gur+02], the
authors define

SC :=
1

2n

∑
x∈Fn2

2εnLC(x)

and observe that, for any b1, . . . , bi ∈ Fn2 ,

E
bi+1∼Fn2

[
SCi+{0,bi+1}

]
= S2

Ci ,

where Ci = span{b1, . . . , bi}. That is, the potential function squares in expectation, so
the probabilistic method guarantees that we can choose some bi+1 for which SCi+1

≤ SCi .
Thus, for some choice of b1, . . . , bk, one has SCk ≤ (S{0})

2k .

In [LW18], the definition of SC is slightly modified:

SC :=
1

2n

∑
x∈Fn2

2
εnLC(x)

1+ε .

This little bit of extra room allows to show that, in fact, with high probability over the
choice of bi+1, SCi+{0,bi+1} ≤ S2

Ci . By a union bound, it follows that with high probability,
SCk ≤ (S{0})

2k .

In either case, to conclude the proof, one observes the bound1 S{0} ≤ 1 + 2−n(1−h(ρ)−ε)

and then uses

SCk ≤ (S{0})
2k ≤ (2−n(1−h(ρ)−ε))2k ≤ exp

(
2k−n(1−h(ρ)−ε)) ≤ O(1)

for k chosen as above.

6.1.1 Alterations for Average-Radius List-Decoding

While this argument analyzes the absolute-radius list-decodability of random linear
codes very effectively, it is not immediately clear how to generalize the argument to
study average-radius list-decodability. We now introduce the additional ideas we need

1Actually, for the Li-Wootters potential function, one has S{0} ≤ 1+2−n(1−h(ρ)− ε
1+ε), but this difference

is unimportant.

102

to derive Theorem 6.1.1. We fix a threshold parameter λ ∈ (0, 1
2
) for which h(λ) <

1−R = h(ρ) + ε and put
η := 1−R− h(λ) .

The value of λ (and hence η) will be fixed later.

We define the function MR,λ : [0, 1]→ R by

MR,λ(γ) :=

{
1−R− h(γ) if γ < λ

0 if γ ≥ λ
.

Remark 6.1.2. One can think of this quantity as a sort of “normalized entropy change”
up to the threshold λ. Recalling 1−R = h(ρ) + ε, if γ < λ, then

MR,λ(γ) ≈ 1

n
(h(ρ)− h(λ)) ≈ log

(
|Bn(0, ρ)|
|Bn(0, γ)|

)
.

Hence,MR,λ(γ) is something like a normalized “surprise” an observer would experience
if they are expecting a random vector of weight ≤ ρ and see a vector of weight ≤ γ.

For a linear code C ≤ Fn2 and x ∈ Fn2 we define

LC,R,λ(x) :=
∑
y∈C

MR,λ(d(x, y)) .

This is intuitively the “smoothed-out” list size of x, where nearby codewords are weighted
more heavily than far away codewords, and the weighting is given by the “entropy
change” implied by the distance from x to y.

Next, we define

AC,R,λ(x) := 2
nLC,R,λ(x)

1+η

and
SC,R,λ :=

1

2n

∑
x∈Fn2

AC,R,λ(x) .

The quantity SC,R,λ is the potential function we will analyze.

6.2 The Proof

In this section we prove Theorem 6.1.1. As R and λ (and hence η = 1 − R − h(λ)) will
be fixed throughout,2 we will suppress their dependence and simply write M(x), LC(x),
AC(x) and SC .

First, we observe that the following analog of [LW18, Lemma 3.2] holds. The proof
is a simple adaptation of theirs (which in turn follows [Gur+02]).

2Although the precise value of λ will be determined later.

103

Lemma 6.2.1. For all C ≤ Fn2 and b ∈ Fn2 ,

LC+{0,b}(x) ≤ LC(x) + LC(x+ b) , (6.1)
AC+{0,b}(x) ≤ AC(x) · AC(x+ b) . (6.2)

Moreover, equality holds if and only if b /∈ C.

Proof. To derive (6.1):

LC+{0,b}(x) =
∑

y∈C+{0,b}

M(d(x, y))

≤
∑
y∈C

M(d(x, y)) +
∑
y∈C+b

M(d(x, y))

=
∑
y∈C

M(d(x, y)) +
∑
y∈C

M(d(x, y − b))

=
∑
y∈C

M(d(x, y)) +
∑
y∈C

M(d(x+ b, y))

= LC(x) + LC(x+ b) ,

and equality holds in the second line iff C ∩ (C + b) = ∅, which holds iff b /∈ C. (6.2)
follows immediately.

Next, we bound S{0}. We have

S{0} ≤ 1 + 2−n
∑
x∈Fn2

wt(x)≤λ

2
n·(1−R−h(wt(x)))

1+η

≤ 1 +

bλnc∑
i=0

2−n(1−h(i/n)−h(λ)+η−h(i/n)
1+η) .

As this sum is dominated by its last term, we deduce

S{0} ≤ 1 + (λn)2
−n
(

1−h(λ)− η
1+η

)
. (6.3)

From here, following the argument of Li and Wootters we can combine Lemma 6.2.1
and Eq. (6.3) to deduce the following.
Lemma 6.2.2. Let ρ ∈ (0, 1

2
) and R = 1 − h(ρ) − ε for 0 < ε < 1 − h(ρ). Let CRn ≤ Fn2 be a

random linear code of rate R. Then with probability 1− exp(−Ωη(n)), SCRn ≤ 2.
The proof of this lemma is completely analogous to that of [LW18, Lemma 3.3]. The

core of the proof is encapsulated by the following claim which crucially uses pairwise
independence and the field size of 2; it is completely analogous to [LW18, Lemma 3.4].
Following them, we define

BC(x) := AC(x)− 1 and TC := SC − 1 .

104

Claim 6.2.3. Suppose that C ≤ Fn2 is a fixed code satisfying TC < 1. Then

P
b∼Fn2

(
SC+{0,b} > 1 + 2TC + T 1.5

C
)
< T 0.5

C .

To conclude the lemma, one only needs to be careful about the growth rate of SC . In
particular, the proof crucially uses that η is positive. We again choose vectors b1, . . . , bRn
independently and uniformly at random. If Ci = span{b1, . . . , bi}, we need that SCi ≤
1 + 2−Ω(n) in expectation for all i for the error bounds to succeed. As we expect the o(1)

term to roughly double, we need 2Rn · T{0} ≈ 2−n(η−
η

1+η) ≤ 2−Ωη(n).

Thus, in order to conclude Theorem 6.1.1, we are simply required to demonstrate
that SC ≤ 2 implies that C is (ρ, L)-average-radius list-decodable: this is the crux of our
contribution. The main lemma we require is the following.
Lemma 6.2.4. Let C ≤ Fn2 be a linear code of rate R such that SC ≤ 2. Then, for all x ∈ Fn2 and
D ⊆ C ∩B(x, λ), it holds that∑

y∈D

h(d(x, y)) ≥ (|D| − 1− η)(1−R)− 1 + η

n
.

Proof. First, observe that

LC(x) ≥
∑
y∈D

((1−R)− h(d(x, y))) = |D|(1−R)−
∑
y∈D

h(δ(x, y)) ,

so logAC(x) ≥ n
|D|(1−R)−

∑
y∈D h(δ(x, y))

1 + η
. (6.4)

Next, as d(x, y) = d(x + z, y + z) for any z ∈ Fn2 , observe that for any x ∈ Fn2 and c ∈ C,
LC(x) = LC(x + c) and hence AC(x) = AC(x + c). Thus, maxx∈Fn2 AC(x) is attained at at
least |C| different values of x, so

SC =
1

2n

∑
x∈Fn2

AC(x) ≥ |C|
2n
·max
x∈Fn2

AC(x) = 2−(1−R)n ·max
x∈Fn2

AC(x) .

Combining this with (6.4) we conclude that for any x ∈ Fn2 ,

1 ≥ log2 SC ≥ −(1−R)n+ log2 (AC(x))

≥ n ·
(
−(1−R) +

|D|(1−R)−
∑

y∈D h(d(x, y))

1 + η

)
= n ·

(|D| − 1− η)(1−R)−
∑

y∈D h(d(x, y))

1 + η
.

Rearranging yields the lemma.

We may now conclude Theorem 6.1.1.

105

Proof of Theorem 6.1.1. Since L > h(ρ)
ε

= 1−R
ε
− 1, there exists η > 0 small enough so that

for all sufficiently large n

L >
1−R + η + 1+η

n

ε− η
− 1 . (6.5)

Thus, we define λ so that η (which we defined as η = 1− R − h(λ)) satisfies (6.5). Let C
be a random linear code of rate R. Due to Lemma 6.2.2, the conclusion of Lemma 6.2.4
holds with probability 1 − 2−ΩR,ρ(n) for C. It remains to show that, assuming n is suf-
ficiently large, any code C satisfying the conclusion of Lemma 6.2.4 is (ρ, L)-average-
radius list-decodable.

Let x ∈ Fn2 and Λ ⊆ C such that |Λ| = L+ 1; our goal is to show that

1

L+ 1

∑
y∈Λ

d(x, y) > ρ . (6.6)

Let
D = {y ∈ Λ : d(x, y) ≤ λ}

and define

h∗(α) =

{
h(α) if α ≤ 1

2

1 if x > 1
2

.

Now, ∑
y∈Λ

h∗(d(x, y)) ≥
∑
y∈D

h(δ(x, y)) + (L− |D|)h(λ) (6.7)

≥ (|D| − 1− η)(1−R) + (L− |D|)(1−R− η)− 1 + η

n
(6.8)

= (1−R) · (L− 1)− η · (1−R)− η · (L− |D|)− 1 + η

n

≥ (1−R) · (L− 1)− η · (L+ 1)− 1 + η

n

= (1−R)L− (1−R)− η · (L+ 1)− 1 + η

n

= Lh(p)− (1−R)− (L+ 1)η + Lε− 1 + η

n
(6.9)

= Lh(p)− (1−R + η) + (L− 1)(ε− η)− 1 + η

n
> Lh(p) . (6.10)

Here, the Inequality (6.7) holds because h∗(α) > h(λ) for all α > λ; Inequality (6.8) is the
conclusion of Lemma 6.2.4; Equality (6.9) follows from the fact that R = 1 − h(p) − ε;
and Inequality (6.10) follows from (6.5). Thus, we deduce

1

L+ 1

∑
y∈Λ

h∗(d(x, y)) > h(ρ) . (6.11)

106

Since h∗ is concave,

h∗

(
1

L+ 1

∑
y∈Λ

h∗(d(x, y))

)
≥ 1

L+ 1

∑
y∈Λ

h∗(d(x, y)) ,

and so (6.6) follows from (6.11), the monotonicity of h∗ and the fact that h∗(ρ) = h(ρ).

6.3 Rank Metric

Pleasingly, just as the argument in [LW18] generalizes easily to the case of rank metric
codes, the same holds for the argument given above. We just describe the changes one
needs to make the definitions given in Section 6.1 and leave to the reader the straight-
forward verification that the proof of Section 6.2 holds mutatis mutandis.

The theorem we obtain is as follows:
Theorem 6.3.1. Let n ≤ m ∈ N and put b = n

m
. Let ρ ∈ (0, 1) and R = 1− ψb(ρ)− ε, where

0 < ε < 1 − ψb(ρ). Let L =
⌊
ψb(ρ)
ε

+ 1
⌋

. Then, a random linear code C ≤ Fm×n2 of rate R is

(ρ, L)-average-radius list-decodable with probability 1− 2−Ωε,ρ(n).
To remove notational clutter, in the remainder of this section b ∈ (0, 1) will be fixed

and we let ψ(ρ) := ψb(ρ).

Similar to what was done before, we will fix a threshold parameter λ ∈ (0, 1) for
which ψ(λ) < 1− R = ψ(ρ) + ε, and put η = 1− R − ψ(λ). We then define the function
MR,λ : [0, 1]→ R by

MR,λ(γ) :=

{
1−R− ψ(γ) if γ < λ

0 if γ ≥ λ
.

Again, this is some sort of “normalized entropy change”; cf. Remark 6.1.2.

Next, for a linear code C ≤ Fm×n2 and X ∈ Fm×n2 we define

LC,R,λ(X) :=
∑
y∈C

MR,λ(d(x, y)) .

Next, define

AC,R,λ(X) := 2
nmLC,R,λ(X)

1+η

and
SC,R,λ :=

1

2nm

∑
X∈Fm×n2

AC,R,λ(X) .

It is not difficult now to reuse the arguments of Section 6.2 with these definitions to
derive Theorem 6.3.1.

107

108

Chapter 7

Tensor Codes: List-Decodable Codes
with Efficient Algorithms

We continue the study of list-decoding and recovery properties of high-rate tensor codes,
initiated by Hemenway, Ron-Zewi, and Wootters [HRZW17]. In that work it was shown
that the tensor product of an efficient (poly-time) high-rate globally list-recoverable
code is approximately locally list-recoverable, as well as globally list-recoverable in prob-
abilistic near-linear time. This was used in turn to give the first capacity-achieving list-
decodable codes with (a) local list-decoding algorithms, and (b) with probabilistic near-
linear time global list-decoding algorithms. This also yielded constant-rate codes ap-
proaching the Gilbert-Varshamov bound with probabilistic near-linear time global unique-
decoding algorithms.

In the current work we obtain the following results:

1. The tensor product of an efficient (poly-time) high-rate globally list-recoverable
code is globally list-recoverable in deterministic near-linear time. This yields in
turn the first capacity-achieving list-decodable codes with deterministic near-linear
time global list-decoding algorithms. It also gives constant-rate codes approaching
the Gilbert-Varshamov bound with deterministic near-linear time global unique-
decoding algorithms.

2. If the base code is additionally locally correctable, then the tensor product is (gen-
uinely) locally list-recoverable. This yields in turn (non-explicit) constant-rate
codes approaching the Gilbert-Varshamov bound that are locally correctable with
query complexity and running time no(1). This improves over prior work by Gopi
et. al. [Gop+18] that only gave query complexity nε with rate that is exponentially
small in 1/ε.

3. A nearly-tight combinatorial lower bound on output list size for list-recovering
high-rate tensor codes. This bound implies in turn a nearly-tight lower bound
of nΩ(1/ log logn) on the product of query complexity and output list size for locally
list-recovering high-rate tensor codes.

109

7.1 Introduction

Over the years, many techniques have been devised for constructing new codes from
old codes, where the new codes inherit desirable properties from the base codes. In this
thesis, we aim to broaden our understanding of the effectiveness of these techniques.
Prior work of mine has focused on the popular tensoring operation, which we present
next.

Tensor codes. Given two linear codes C ≤ Fnq and C ′ ≤ Fn′q , one can form their tensor
product C ⊗ C ′ ≤ Fn⊗n′q , which can be abstractly defined as the subspace spanned by
the tensors c ⊗ c′ for c ∈ C and c′ ∈ C ′, or more concretely as the space of matrices
whose columns lie in C and rows lie in C ′. One can easily show δ(C ⊗ C ′) = δ(C)δ(C ′)
and R(C ⊗ C ′) = R(C)R(C ′), and Gopalan, Guruswami and Raghavendra [GGR11] also
gave a formula for its list-decoding radius. More recently, by studying C⊗t,1 Hemenway,
Ron-Zewi and Wootters [HRZW17] showed how to obtain codes with near-linear time
X-decoding, where X is a qualifier that takes values in an impressively large set. We
defer a precise discussion of their results to Section 7.1.2,
Remark 7.1.1. While we typically like to reserve n to refer to the block length of a code,
when we study tensor codes C⊗t it is unclear if n should refer to the block length of the
base code C of the block length of the resulting code, which is nt. In this chapter, we
have made the choice that n should be the block length of C and N will be the block
length of C⊗t.

In this chapter, along with the familiar concepts of list-decoding and list-recovery
we will study various notions of “local” decoding.2 Indeed, a predominant reason for
the interest in the tensoring operation is that the codes thus obtained tend to have in-
teresting locality properties. Before proceeding to a discussion of prior work and our
results, we provide a gentle introduction to these concepts. (The formal definitions are
provided in Section 7.2.)

7.1.1 The Cast

Local decoding/correction. In local decoding, the goal is to uniquely decode in sublin-
ear time. Since outputting the entire codeword already takes linear time, we need to
relax our requirements. For a given w ∈ Σn and a message coordinate i ∈ [k], we are
asked to recover the ith coordinate of the message underlying the unique codeword
closest to w. As we want to run in sublinear time (and in particular query a sublinear
number of the coordinates of w), we allow the algorithm to be randomized and have a
small probability of error. Local correction is similar to local decoding, except now we
are given a codeword coordinate i ∈ [n] and expected to output the ith coordinate of the

1Here, for an integer t ≥ 1, we define inductively C⊗1 = C and C⊗t = C⊗(t−1) ⊗ C for t ≥ 2.
2Indeed, X =local is an allowed setting in [HRZW17].

110

closest codeword. Finally, in approximate local decoding (resp., local correction) one is
only required to recover correctly most of the message (resp., codeword) coordinates.

Local list-decoding/recovery Local list-decoding combines the notions of local decod-
ing and list-decoding. We are given some w ∈ Σn, and the goal is that for any nearby
codeword, one can in sublinear time recover the i-th symbol of the message correspond-
ing to the codeword for any i ∈ [k]. More precisely, the local list-decoding algorithm
first does some preprocessing and then produces as output a collection of algorithms
{A1, . . . , AL}. For any nearby codeword c, with high probability one of these algorithms
corresponds to it. These algorithms then behave like local decoding algorithms: on in-
put i ∈ [k], if the algorithm corresponded to a codeword c, then by making queries to
only a sublinear number of coordinates the algorithm with high probability outputs the
correct value of the ith symbol of the message underlying c.

The above definition of local list-decoding can be extended to local list-recovery in
a straightforward way: now the algorithms Aj correspond to all codewords that agree
with most of the input lists. As above, we can also define a local correction version
of local list-decoding (or local list-recovery) where the algorithms Aj are required to
recover codeword symbols as opposed to message symbols. Finally, we can also define
approximate local list-decoding (or local list-recovery) where the algorithmsAj are only
required to recover correctly most of the message coordinates (or codeword coordinates
in the local correction version).
Remark 7.1.2. In this chapter, if we wish to emphasize that we are referring to a decod-
ing problem in the typical sense (i.e., not in the local senses discussed above), we may
add the qualifier global. E.g., global list-decoding is the standard notion of list-decoding
encountered previously.

7.1.2 The Context

The starting point for this work is the recent result of [HRZW17] on high-rate list-
recoverable tensor codes and its corollaries. The main technical result of [HRZW17]
was that the tensor product of an efficient (poly-time) high-rate globally list-recoverable
code is approximately locally list-recoverable (in either the local decoding or local cor-
rection sense). They then observed that the “approximately” modifier can be elimi-
nated by pre-encoding the tensor product with a locally decodable code. This gave the
first construction of codes with rate arbitrarily close to 1 that are locally list-recoverable
from an Ω(1) fraction of errors, but only in the local decoding version. Finally, using
the expander-based distance amplification method of [AEL95; AL96] (specialized to the
setting of local list-recovery [GI02; Gop+18]), this gave the first capacity-achieving lo-
cally list-recoverable (and in particular, list-decodable) codes with sublinear (and in fact
N Õ(1/ log logN)) query complexity and running time (once more, in the local decoding ver-
sion).

The above result also yielded further consequences for global decoding. Specifically,

111

[HRZW17] observed that the approximate local list-recovery algorithm for tensor codes
naturally gives a probabilistic near-linear time global list-recovery algorithm. Once
more, using the expander-based distance amplification method of [AEL95; AL96; GI02],
this gave the first capacity-achieving list-recoverable (and in particular, list-decodable)
codes with probabilistic near-linear time global list-recovery algorithms. Finally, via the
random concatenation method of [Tho83; GI04], this yielded in turn a (randomized)
construction of constant-rate binary codes approaching the Gilbert-Varshamov bound
with a probabilistic near-linear time algorithm for global unique decoding up to half the
minimum distance.

One could potentially hope (following [Gop+18] which implemented a local ver-
sion of [Tho83; GI04]) for an analogous result that would give constant-rate codes ap-
proaching the GV bound that are locally correctable (or locally decodable) with query
complexity and running time N o(1). However, what prevented [HRZW17] from obtain-
ing such a result was the fact that their capacity-achieving locally list-recoverable codes
only worked in the local decoding version (i.e., they were only able to recover message
coordinates).

7.1.3 Our Results

We revisit the techniques of [HRZW17] and show the following.

Deterministic near-linear time global list-recovery. The tensor product of an efficient
(poly-time) high-rate globally list-recoverable code is globally list-recoverable in deter-
ministic near-linear time. Plugging this into the machinery of [AEL95; AL96; GI02], we
get the first capacity-achieving list-recoverable (and in particular, list-decodable) codes
with deterministic near-linear time global list-recovery algorithms. Plugging this into
the machinery of [Tho83; GI04], yields in turn constant-rate binary codes (with a ran-
domized construction) approaching the GV bound with deterministic near-linear time
global unique-decoding algorithms.

Our deterministic global list-recovery algorithm is obtained by derandomizing the
random choices of the [HRZW17] algorithm using appropriate samplers.

Local list-recovery. An instantiation of the base code to produce tensor product codes
which are themselves genuinely locally list-recoverable (i.e., not just approximately lo-
cally list-recoverable) in the local correction version. Once more, plugging this into the
machinery of [AEL95; AL96; GI02], we get capacity-achieving locally list-recoverable
codes, but now in the local correction version. This now plugs in turn into the ma-
chinery of [Tho83; GI04] to give constant-rate binary codes (with a randomized con-
struction) approaching the GV bound that are locally decodable with query complexity
and running time N o(1). This improves over prior work [Gop+18] that only gave query
complexity N ε with rate that is exponentially small in 1/ε.

112

We obtain our result by taking the base code to be the intersection of an efficient
(poly-time) high-rate globally list-recoverable code and a high-rate locally correctable
code. Assuming both codes are linear, we have that the intersection is a high-rate code
that is both. The result of [HRZW17] already guarantees that this tensor product is ap-
proximately locally list-recoverable (in the local correction version), and we use the fact
that the tensor product of a locally correctable codes is also locally correctable [Vid15]
to remove the “approximately’âĂŹ modifier.

Limitations on list-recoverability. We establish a combinatorial lower bound showing
limitations on the list-recoverability of high-rate tensor codes. Specifically, we show
that when the rate of the base code is high, every t-wise tensor product of this code
has output list size doubly-exponential in t. This means that taking t to be more than
log logN leads to superpolynomial output list size, precluding the possibility of efficient
list-recovery.

Instantiating this appropriately, one implication of this result is that there is a base
code such that for every tensor power with block length N , the product of the query
complexity and output list size for local list-recovery is at least NΩ(1/ log logN). We note
that in contrast, it could be that for every base code, there is a tensor power with block
length N for which local correction can be done with query complexity O(1).

A key observation that we use is that a high-rate code has many codewords with
pairwise disjoint supports. We combine this along with other linear-algebraic argu-
ments to design a list-recovery instance for the tensor product of a high-rate code which
has many codewords that are consistent with it.

Finally, we note that the recent work [Kop+18] has shown that high-rate multiplicity
codes are also genuinely locally list-recoverable in the local correction version with N o(1)

query complexity. However, these codes do not suffice for our GV bound application,
as this application requires the codes to also be locally testable, and we do not currently
know a local testing procedure for multiplicity codes. Moreover, we do not know how
to derandomize the local list-recovery procedure for multiplicity codes.

Below we give precise statements of our results. For formal definitions of the various
notions of decoding in the following theorem statements, see Section 7.2.

7.1.4 Deterministic Near-Linear Time Global List-Recovery

Our first main result shows that the tensor product of an efficient (poly-time) high-
rate globally list-recoverable code is globally list-recoverable in deterministic near-linear
time. In the theorem statement, one should think of all parameters δ, ρ, L, t, and conse-
quently also s, as constants (or more generally, as slowly increasing/decreasing func-
tions of n). In that case, the theorem says that if C ≤ Fnq is (ρ, `, L)-globally list-recoverable
deterministically in time T = poly(n), then the t-iterated tensor product C⊗t of length
N = nt is (Ω(ρ), `, LO(1))-globally list-recoverable deterministically in time O(nt · T) =

113

nt+O(1) = N1+O(1/t).
Theorem 7.1.3 (Deterministic Near-Linear Time List-Recovery of High-Rate Tensor Codes).
The following holds for any δ, ρ > 0, and s = poly(1/δ, 1/ρ). Suppose that C ≤ Fnq is a lin-
ear code of relative distance δ that is (ρ, `, L)-globally list-recoverable deterministically in time
T . Then C⊗t ≤ Fntq is (ρ · s−t2 , `, Lst

3 ·Lt)-globally list-recoverable deterministically in time

nt · T · Lst
3 ·Lt .

Applying the expander-based distance amplification method of [AEL95; AL96; GI02]
on the codes given by the above theorem, we obtain the first capacity-achieving list-
recoverable (and in particular, list-decodable) codes with deterministic near-linear time
global list-recovery algorithms.
Corollary 7.1.4 (Deterministic Near-Linear Time Capacity-Achieving List-Recoverable
Codes). For any constants R ∈ [0, 1], ε > 0, and ` ≥ 1 there exists an infinite family of codes
{CN}N , where CN has block length N , alphabet size N o(1), rate R, and is (1 − R − ε, `,N o(1))-
globally list recoverable deterministically in time N1+o(1).
Remark 7.1.5. The precise o(1) quantities are a bit difficult to determine. However,
an inspection of the proof shows that the list size grows slower than log(c)(n) for any
constant c. (Recall log(c) n is the c-th iterated logarithm, i.e., log ◦ · · · ◦ log n

c times
.) Furthermore

the running time is roughly N1+O(1/ log log logN).

Applying the random concatenation method of [Tho83; GI04], the above corollary
yields in turn constant-rate codes approaching the Gilbert-Varshamov bound with de-
terministic near-linear time global unique decoding algorithms.
Corollary 7.1.6 (Deterministic Near-Linear Time Unique-Decoding up to the GV Bound).
For any constants R ∈ [0, 0.02] and ε > 0 there exists an infinite family of binary linear codes
{CN}N , where CN has block length N and rate R, and is globally uniquely-decodable determin-
istically from h−1

2 (1−R)−ε
2

-fraction of errors in time N1+o(1).
Remark 7.1.7. Again, inspecting the proof shows the running time is roughlyN1+O(1/ log log logN).

7.1.5 Local List-Recovery

Our second main result shows that if the base code is both globally list-recoverable and
locally correctable, then the tensor product is (genuinely) locally list-recoverable (in the
local correction version).
Theorem 7.1.8 (Local List-Recovery of High-Rate Tensor Codes). The following holds for
any δ, ρ > 0, and s = poly(1/δ, 1/ρ). Suppose that C ≤ Fnq is a linear code of relative distance δ
that is (ρ, `, L)-globally list-recoverable, and locally correctable from (δ/2)-fraction of errors with
query complexity Q, and t ≥ 3. Then C⊗t ≤ Fntq is (ρ · s−t3 , `, Lst

3 ·logt L)-locally list-recoverable

with query complexity nO(1) ·QO(t) · Lst
3 ·logt L.

Once more, applying the expander-based distance amplification method of [AEL95;
AL96; GI02; Gop+18], as well as the random concatenation method of [Tho83; GI04;

114

Gop+18], the above theorem yields constant-rate codes approaching the Gilbert-Varshamov
bound that are locally correctable with query complexity N o(1).

Corollary 7.1.9 (Local Correction up to the GV Bound). For any constants R ∈ [0, 0.02]
and ε > 0 there exists an infinite family of binary linear codes {CN}N , where CN has block length
N and rateR, and is locally correctable from h−1

2 (1−R)−ε
2

-fraction of errors with query complexity
N o(1).

Remark 7.1.10. An inspection of the proof reveals that the query complexity is roughly
NO(1/ log logN).

7.1.6 Combinatorial Lower Bound on Output List Size

Our final main result shows a nearly-tight combinatorial lower bound on output list
size for list-recovering high-rate tensor codes.

Theorem 7.1.11 (Output List Size for List-Recovering High-Rate Tensor Codes). Let ε >
0. Suppose that C ≤ Fnq is a linear code of rate 1 − ε, and that C⊗t ≤ Fntq is (0, `, L)-list-
recoverable. Then L ≥ `1/εt .

The above bound can be instantiated concretely as follows.

Corollary 7.1.12. For any δ > 0 and ` > 1 there exists L > 1 such that the following
holds for any sufficiently large n. There exists a linear code C ≤ Fnq of relative distance δ
that is (Ω(δ), `, L)-list-recoverable, but C⊗t ≤ Fntq is only (0, `, L′)-list-recoverable for L′ ≥
exp((2δ)−(t−3/2) ·

√
logL).

Finally, we also obtain a nearly-tight lower bound of NΩ(1/ log logN) on the product of
query complexity and output list size for locally list-recovering high-rate tensor codes.

Corollary 7.1.13. For any δ > 0 and sufficiently large n there exists a linear code C ≤ Fnq of
relative distance δ such that the following holds. Suppose that C⊗t ≤ FNq is (1

N
, 2, L)-locally

list-recoverable with query complexity Q. Then Q · L ≥ NΩδ(1/ log logN).

7.2 Preliminaries

Many of the coding theoretic concepts we will need for this chapter were introduced in
Chapter 2. The notable exceptions are the various notions of local decoding we investi-
gate. We also provide important facts concerning tensor codes in Section 7.2.2.

Remark 7.2.1. In this chapter, many of our results are completely agnostic to the base
field; indeed, some results apply even if the field is infinite. For this reason, we just
denote the field by F. As usual, an arbitrary alphabet that need not be a field is denoted
by Σ.

115

7.2.1 Local Codes

Intuitively, a code C is said to be locally testable [FS95; RS96; GS06] if, given a string
w ∈ Σn, it is possible to determine whether w is a codeword of C, or rather far from C,
by reading only a small part of w. For our purposes, we will also require an additional
tolerance property of determining whether w is sufficiently close to the code.

Definition 7.2.2 (Tolerant Locally Testable Code (Tolerant LTC)). We say that a code
C ⊆ Σn is (Q, ρ, σ)-tolerantly locally testable if there exists a randomized algorithm A that
satisfies the following requirements:
• Input: A gets oracle access to a string w ∈ Σn.
• Query complexity: A makes at most Q queries to the oracle w.
• Completeness: If d(w, C) ≤ ρ, then A accepts with probability at least 2

3
.

• Soundness: If d(w, C) ≥ σ, then A rejects with probability at least 2
3
.

Remark 7.2.3. The definition requires 0 ≤ ρ < σ ≤ 1. The above success probability of 2
3

can be amplified using sequential repetition, at the cost of increasing the query complex-
ity. Specifically, amplifying the success probability to 1−exp(−t) requires increasing the
query complexity by a multiplicative factor of O(t).

Next, we introduce locally correctable codes. Intuitively, a code is said to be locally
correctable [Bab+91; STV01; KT00] if, given a codeword c ∈ C that has been corrupted by
some errors, it is possible to decode any coordinate of c by reading only a small part of
the corrupted version of c.

Definition 7.2.4 (Locally Correctable Code (LCC)). We say that a code C ⊆ Σn is (Q, ρ)-
locally correctable if there exists a randomized algorithm A that satisfies the following
requirements:
• Input: A takes as input a coordinate i ∈ [n], and also gets oracle access to a string
w ∈ Σn that is ρ-close to a codeword c ∈ C.

• Query complexity: A makes at most Q queries to the oracle w.
• Output: A outputs ci with probability at least 2

3
.

Remark 7.2.5. The definition requires ρ < δ(C)/2, as otherwise it is not guaranteed
that the codeword closest to w is unique. The above success probability of 2

3
can be

amplified using sequential repetition, at the cost of increasing the query complexity.
Specifically, amplifying the success probability to 1 − exp(−t) requires increasing the
query complexity by a multiplicative factor of O(t).

The following definition from [GL89; STV01; Gop+18] generalizes the notion of lo-
cally correctable codes to the setting of list-decoding/recovery. In this setting, the local
list-recovery algorithm is required to output in an implicit sense all codewords that are
consistent with most of the input lists.

Definition 7.2.6 (Locally List Recoverable Code). We say that a code C ⊆ Σn is (Q, ρ, η, `, L)-
locally list-recoverable if there exists a randomized algorithmA that satisfies the following
requirements:

116

• Input: A gets oracle access to a string S ∈
(

Σ
≤`

)n
.

• Query complexity: A makes at most Q queries to the oracle S.
• Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes as

input a coordinate i ∈ [n], makes at most Q queries to the oracle S, and outputs a
symbol in Σ.

• Completeness: For any codeword c ∈ C which satisfies d(c, S) ≤ ρ, with proba-
bility at least 1 − η over the randomness of A, the following event happens: there
exists some j ∈ [L] such that for all i ∈ [n],

P (Aj(i) = ci) ≥
2

3
, (7.1)

where the probability is over the internal randomness of Aj .
• Soundness: With probability at least 1−η over the randomness ofA, the following

event happens: for every j ∈ [L], there exists some c ∈ C such that for all i ∈ [n],

P (Aj(i) = ci) ≥
2

3
,

where the probability is over the internal randomness of Aj .

We say that A has preprocessing time Tpre if A outputs the description of the algo-
rithms A1, . . . , AL in time at most Tpre, and has running time T if each Aj has running
time at most T . Finally, we say that the code C is (Q, ρ, η, L)-locally list-decodable if it is
(Q, ρ, η, 1, L)-locally list-recoverable.

Remark 7.2.7. The above definition of locally list-recoverable code defers from that
given in [HRZW17, Definition 4.5] in two ways. First, our definition requires that the
local algorithms A1, . . . , AL in the output list of A locally decode codeword coordinates
as opposed to just message coordinates. Second, following [Gop+18], we require an
additional soundness property that guarantees that with high probability, each local al-
gorithm in the output list locally decodes a true codeword. These two requirements will
be crucial for our GV bound local correction application (Corollary 7.1.9).

7.2.2 Tensor Codes

In this chapter we study the list-recovery properties of high-rate tensor product codes,
defined as follows.

Definition 7.2.8 (Tensor product codes). Let C1 ≤ Fn1 , C2 ≤ Fn2 be linear codes. Their
tensor product code C1 ⊗ C2 ≤ Fn1×n2 consists of all matrices M ∈ Fn1×n2 such that all the
columns of M are codewords of C1 and all the rows are codewords of C2.

What follows are some well-known facts about the tensor product operation, includ-
ing its effect on the classical parameters of a code.

117

Fact 7.2.9. Suppose that C1 ≤ Fn1 , C2 ≤ Fn2 are linear codes of rates R1, R2 and relative
distances δ1, δ2 respectively. Then the tensor product code C1 ⊗ C2 ≤ Fn1×n2 is a linear code of
rate R1 ·R2 and relative distance δ1 · δ2.

Moreover, if C1, C2 are encodable in times T1, T2, respectively, then C1 ⊗ C2 is encodable
in time n1T2 + n2T1, and if C1, C2 are decodable from ρ1, ρ2-fraction of errors in times T1, T2,
respectively, then C1 ⊗ C2 is decodable from (ρ1 · ρ2)-fraction of errors in time n1T2 + n2T1.

For a linear code C, define inductively C⊗1 := C and C⊗t := C ⊗ C⊗(t−1). By induction
on t we have the following.
Corollary 7.2.10. Suppose that C ≤ Fn is a linear code of rate R and relative distance δ. Then
the tensor product code C⊗t ≤ Fnt is a linear code of rate Rt and relative distance δt.

Moreover, if C is encodable in time T then C⊗t is encodable in time t · nt−1 · T , and if C⊗t is
decodable from ρ-fraction of errors in time T then C⊗t is decodable from ρt-fraction of errors in
time t · nt−1 · T .

For a pair of matrices G1 ∈ Fn1×k1 and G2 ∈ Fn2×k2 , their tensor product G1⊗G2 is the
(n1 · n2)× (k1 · k2)-matrix over F with entries

(G1 ⊗G2)(i1,i2),(j1,j2) = (G1)i1,j1 · (G2)i2,j2

for every i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [k1], and j2 ∈ [k2].
Fact 7.2.11. Suppose that G1, G2 are generating matrices of linear codes C1 ≤ Fn1 , C2 ≤ Fn2 ,
respectively. Then the tensor product G1 ⊗G2 is a generating matrix of C1 ⊗ C2.

7.3 Deterministic Near-Linear Time Global List-Recovery

In this section we prove Theorem 7.1.3, restated bellow, which shows that the tensor
product of an efficient (poly-time) high-rate globally list-recoverable code is globally
list-recoverable in deterministic near-linear time.
Theorem 7.1.3 (Deterministic Near-Linear Time List-Recovery of High-Rate Tensor Codes).
The following holds for any δ, ρ > 0, and s = poly(1/δ, 1/ρ). Suppose that C ≤ Fnq is a lin-
ear code of relative distance δ that is (ρ, `, L)-globally list-recoverable deterministically in time
T . Then C⊗t ≤ Fntq is (ρ · s−t2 , `, Lst

3 ·Lt)-globally list-recoverable deterministically in time

nt · T · Lst
3 ·Lt .

Theorem 7.1.3 follows by applying the lemma below iteratively.
Lemma 7.3.1. The following holds for any δ, ρ, δdec, δ′dec > 0, and s̄ = poly(1/δ, 1/ρ, 1/δdec, 1/δ

′
dec).

Suppose that C ≤ Fn is a linear code of relative distance δ that is (ρ, `, L)-globally list-
recoverable deterministically in time T , and C ′ ≤ Fn′ is a linear code that is (ρ′, `, L′)-globally
list-recoverable deterministically in time T ′. Suppose furthermore that C, C ′ are uniquely decod-
able deterministically from δdec, δ

′
dec-fraction of errors in times Tdec, T ′dec, respectively.

Then C ⊗ C ′ ≤ Fn×n′ is (ρ′/s̄, `, (L′)s̄·L/(ρ
′)2)-globally list-recoverable deterministically in

time
(L′)s̄·L/(ρ

′)2 · n · (n′ · (T + Tdec) + n · T ′dec + T ′) .

118

Before we prove the above lemma, we first show how it implies Theorem 7.1.3.

Proof of Theorem 7.1.3. We start with the code C, and iteratively tensor with a new copy
of C t − 1 times. Specifically, we initially set C ′ := C, and at each step we apply
Lemma 7.3.1 with the code C ′ being the code constructed so far, and the code C being a
new copy of C.

On each iteration, we can set in Lemma 7.3.1 δdec := min{ρ, δ/2} and Tdec := T since
the code C can be uniquely decoded from δdec-fraction of errors by running the list-
recovery algorithm for C on the received word, and returning the codeword from the
output list that is closest to the received word. Moreover, by Corollary 7.2.10, on the i-th
iteration we can set δ′dec := δtdec and T ′dec := i ·ni−1 ·T . We conclude that on each iteration
we can apply Lemma 7.3.1 with s̄ := st for s = poly(1/δ, 1/ρ).

In the above setting of parameters, we have that the list-recovery radius of C⊗t is at
least ρ̃ := ρ/s̄t = ρ/st

2 , and that the output list size is at most L̃ := Ls̄
t·Lt/ρ̃2t ≤ Ls

O(t3)·Lt .

Finally, on the i-th iteration the running time is increased by an additive factor of
n′ · (T + Tdec) + n · T ′dec = O(i · ni · T), and then by a multiplicative factor of at most L̃ · n,
yielding a total running time of at most

t−1∑
i=1

O(i · ni · T) ·
(
L̃ · n

)t−i
· T ≤ Ls

O(t3)·Lt · nt · T .

So the desired conclusion holds by slightly enlarging the size of the polynomial s.

We now proceed to the proof of Lemma 7.3.1. Our plan is to derandomize the ap-
proximate local list-recovery algorithm for the high-rate tensor codes of [HRZW17].
Recall that an approximate local list-recovery algorithm (local correction version) is a
randomized algorithm A that outputs a collection of (without loss of generality, deter-
ministic) local algorithms Aj satisfying the following: for any codeword c that is consis-
tent with most of the input lists, with high probability (over the randomness of A) one
of the local algorithms Aj locally corrects most of the coordinates of c.

As observed in [HRZW17], an approximate local list-recovery algorithm naturally
gives a probabilistic near-linear time global list-recovery algorithm as follows. First run
the algorithm A to obtain the collection of local algorithms Aj . Then for each Aj , output
a codeword that is obtained by applying Aj on each codeword coordinate, and then
uniquely decoding the resulting word to the closest codeword. The guarantee now is
that any codeword that is consistent with most of the input lists will be output with
high probability.

To derandomize the probabilistic global algorithm described above, we note that the
preprocessing algorithm A in [HRZW17] produces the collection of local algorithms Aj
by choosing a random subset of rows in the tensor product,3 that is chosen uniformly
at random amongst all subsets of the appropriate size. We then observe that this subset

3In [HRZW17], the role of columns and rows is swapped.

119

can be alternatively chosen using a randomness-efficient sampler without significantly
hampering the performance. Finally, since the sampler uses a small amount of random-
ness (logarithmic in the blocklength of C), we can afford to iterate over all seeds and
return the union of all output lists. This gives a deterministic near-linear time global
list-recovery algorithm that outputs all codewords that are consistent with most of the
input lists.

7.3.1 Samplers

We start by defining the appropriate samplers we use.
Definition 7.3.2 ((Averaging) Sampler). An (n, η, γ)-sampler with randomness r and sam-
ple size m is a randomized algorithm that tosses r random coins and outputs a subset
I ⊆ [n] of size m such that the following holds. For any function f : [n] → [0, 1], with
probability at least 1− η over the choice of I ,∣∣∣∣ E

i∈I
[f(i)]− E

i∈[n]
[f(i)]

∣∣∣∣ ≤ γ .

We shall use the following construction from Goldreich [Gol11].
Theorem 7.3.3 ([Gol11, Corollary 5.6]). For any η, γ > 0 and integer n, the thare exists
an (n, η, γ)-sampler with randomness log(n/γ), sample size O (1/(ηγ2)), and running time
poly(log n, 1/η, 1/γ).

In what follows, let Γ denote the (n, η, γ)-sampler promised by the above theorem,
where we set η := 0.1

L
· δdec·δ

′
dec

3
and γ := ρ′ · δ·δdec·δ

′
dec

24
. Let r := log(n/γ) ≤ log(n · s̄/ρ′) and

m := O(1/(ηγ2)) ≤ L · s̄/(ρ′)2 denote the randomness and sample size of Γ, respectively
(assuming that s̄ is a sufficiently large polynomial).

7.3.2 Randomness-Efficient Algorithm

We first describe a randomness-efficient global list-recovery algorithm Ã for C ⊗ C ′
that is obtained by replacing the choice of a uniform random subset of rows made in
[HRZW17] with a sample from Γ. We will later observe that the randomness can be
eliminated by iterating over all seeds of Γ and returning the union of all output lists.

The algorithm Ã behaves as follows. First, it uses Γ to sample a subset of m rows
I = {i1, . . . , im} ⊆ [n]. Then for k = 1, . . . ,m, it runs the list-recovery algorithm A′ for C ′
on the ik-th row S|{ik}×[n′]; let L′i1 ,L

′
i2
, . . . ,L′im ⊆ C

′ denote the lists output by A′ on each
of the rows in I . Finally, for any choice of codewords c′1 ∈ L′i1 , c

′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im ,

the algorithm Ã outputs a codeword c̃ ∈ C ⊗ C ′ that is obtained as follows.

For each column j ∈ [n′], the algorithm Ã runs the list-recovery algorithm A for C
on the j-th column S|[n]×{j}; let L1,L2, . . .Ln′ ⊆ C denote the lists output by A on each
of the n′ columns. Then the algorithm Ã chooses for each column j ∈ [n′] the codeword

120

cj ∈ Lj whose restriction to I is closest to ((c′1)j, (c
′
2)j . . . , (c

′
m)j) (i.e., the restriction of

c′1, c
′
2, . . . , c

′
m to the j-th column). Finally, the algorithm Ã sets the value of each column

j ∈ [n′] to cj , and uniquely decodes the resulting word c̃0 to the nearest codeword c̃ ∈
C ⊗ C ′, assuming there is one at distance at most δdec · δ′dec. If d(c̃, S) ≤ ρ′/s̄, then Ã
includes c̃ in the output list L̃. The formal description is given in Algorithm 1.

Algorithm 1 The randomness-efficient global list-recovery algorithm Ã for C ⊗ C ′.

function Ã(S ∈
(F
≤`

)n×n′
)

Sample I = {i1, . . . , im} ⊆ [n] of size m using sampler Γ.
for k = 1, . . . ,m do

Run the list-recovery algorithm A′ for C ′ on the ik-th row S|{ik}×[n′], and let
L′ik ⊆ C

′ be the list of codewords output by A′.
end for
Initialize c̃0 ∈ Fn×n′ , L̃ ← ∅.
for any choice of codewords c′1 ∈ L′i1 , c

′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im do

for j ∈ [n′] do
Run the list-recovery algorithm A for C on the j-th column S|[n]×{j}, and let

Lj ⊆ C be the list of codewords output by A.
Choose a codeword cj ∈ Lj for which cj|I is closest to ((c′1)j, (c

′
2)j, . . . , (c

′
m)j)

(breaking ties arbitrarily).
Set the j-th column of c̃0 to cj .

end for
Uniquely decode c̃0 from (δdec · δ′dec)-fraction of errors, and let c̃ ∈ C ⊗C ′ be the

resulting codeword (if it exists). If d(c̃, S) ≤ ρ′/s̄, add c̃ to L̃.
end for

end function

7.3.3 Output List Size, Randomness, and Running Time

The output list size is at most the number of choices of c′1 ∈ L′1, c′2 ∈ L′2, . . . , c′m ∈ L′m
which is (L′)m ≤ (L′)L·s̄/(ρ

′)2 , and the randomness is r ≤ log (n · s̄/ρ′).

As to running time, the algorithm Ã invokes the sampler Γ, followed by m invoca-
tions of the list-recovery algorithmA′ for C ′, and (L′)m ·n′ invocations of the list-recovery
algorithm A for C. Finally, it invokes (L′)m times the unique decoding algorithm for
C ⊗ C ′ which can be implemented to run in time n · T ′dec + n′ · Tdec by Fact 7.2.9. Thus the
total running time is at most

poly(log n,m) +m · T ′ + (L′)m · n′ · T + (L′)m · (n · T ′dec + n′ · Tdec)
≤ (L′)s̄·L/(ρ

′)2 · (n′ · (T + Tdec) + n · T ′dec + T ′) ,

where the inequality holds for a sufficiently large polynomial s̄.

121

Correctness

Next we establish the following.
Claim 7.3.4. Suppose that c̃ ∈ C ⊗ C ′ has d(c̃, S) ≤ ρ′/s̄. Then with probability at least 2/3,
the codeword c̃ is included in L̃.

Note that the above claim in particular implies that there are at most O((L′)m) code-
words c̃ ∈ C ⊗ C ′ with d(c̃, S) ≤ ρ′/s̄. To prove Claim 7.3.4, it is enough to show that
with probability at least 2/3 over the choice of I = {i1, . . . , im}, there exists a choice of
c′1 ∈ L′i1 , c

′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im such that at the iteration corresponding to c′1, c′2, . . . , c′m,

the word c̃0 satisfies d(c̃0, c̃) ≤ δdec · δ′dec. Once we establish this, the unique-decoding
algorithm for C ⊗ C ′ will successfully decode c̃ from c̃0.

For a row i ∈ [n], let ĉi be the codeword in L′i that is closest to the i-th row of c̃ (break-
ing ties arbitrarily), that is, the codeword ĉi ∈ L′i for which d(ĉi, c̃|{i}×[n′]) is minimal. We
will show that with probability at least 2/3 over the choice of I = {i1, . . . , im}, at the
iteration corresponding to the choice of ĉi1 ∈ L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im , the word c̃0

will satisfy that d(c̃0, c̃) ≤ δdec · δ′dec.
Following [HRZW17], to establish the above, we show that with high probability

over the choice of I , a large fraction of the columns j ∈ [n′] are “good”, in the sense
that c̃0 and c̃ agree on all of these columns in the iteration corresponding to the choice
of ĉi1 ∈ L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im . In what follows, let c̃1, c̃2 . . . , c̃n′ denote the columns

of c̃.
Definition 7.3.5 (Good Column). Let I = {i1, . . . , im} ⊆ [n] be a subset of m rows. We
say that a column j ∈ [n′] is good with respect to I if it satisfies the following properties:

1. The codeword c̃ is consistent with all but a ρ-fraction of the input lists on column
j, that is, d(c̃j, S|[n]×{j}) ≤ ρ.

2. Let Lj denote the list of all codewords in C that are consistent with all but a ρ-
fraction of the input lists on column j. Then for any c ∈ Lj \ {c̃j} it holds that
d(c|I , c̃j|I) > δ/2.

3. d
(
c̃j|I , ((ĉi1)j, . . . , (ĉim)j)

)
≤ δ/4.

Claim 7.3.6 below shows that at the iteration corresponding to the choice of ĉi1 ∈
L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im , c̃0 and c̃ agree on all of the good columns. Claim 7.3.7

complements this by showing that with probability at least 2/3 over the choice of I , at
least a (1−δdec ·δ′dec)-fraction of the columns are good with respect to I . The combination
of these claims yields the desired conclusion.
Claim 7.3.6. Let I = {i1, . . . , im} ⊆ [n] be a subset of m rows, and suppose that a column
j ∈ [n′] is good with respect to I . Then at the iteration corresponding to the choice of ĉi1 ∈
L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im it holds that c̃0|[n]×{j} = c̃j .

Proof. By Item 1 in the definition of a good column, c̃ is consistent with all but a ρ-
fraction of the input lists on column j, and so c̃j ∈ Lj . By Item 3,

d
(
c̃j|I , ((ĉi1)j, . . . , (ĉim)j)

)
≤ δ/4.

122

On the other hand, by Item 2 for any other codeword c ∈ Lj we have that

d
(
c|I , ((ĉi1)j, . . . , (ĉim)j)

)
≥ d
(
c̃j|I , c|I

)
− d
(
c̃j|I , ((ĉi1)j, . . . , (ĉim)j)

)
> δ/4.

Thus, c̃j is the codeword in Lj whose restriction to I is closest to ((ĉi1)j, . . . , (ĉim)j),
and so the algorithm Ã will set cj := c̃j at the iteration corresponding to the choice of
ĉi1 ∈ L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im . Consequently, the j-th column of c̃0 will be set to the

j-th column of c̃.

Claim 7.3.7. With probability at least 2/3 over the choice of I , at least a (1− δdec · δ′dec)-fraction
of the columns are good with respect to I .

For the proof of the above claim we shall also use the notion of a "good row".
Definition 7.3.8 (Good Row). A row i ∈ [n] is good if the codeword c̃ is consistent with
all but a ρ′-fraction of the input lists row i, that is, d(c̃|{i}×[n′], S|{i}×[n′]) ≤ ρ′.

We claim that with high probability over the choice of I , a large fraction of the rows
in I are good.

Claim 7.3.9. With probability at least 0.9 over the choice of I , at least a
(

1− δ·δdec·δ′dec
12

)
-fraction

of the rows in I are good.

Proof of Claim 7.3.9. For i ∈ [n], let f(i) := d(c̃|{i}×[n′], S|{i}×[n′]), and note that by the
sampling property of Γ, with probability at least 0.9 over the choice of I we have that

E
i∈I

[f(i)] ≤ E
i∈[n]

[f(i)] + γ = d(c̃, S) + γ ≤ ρ′ · δ · δdec · δ
′
dec

12
,

where the last inequality holds by assumption that γ = ρ′ · δ·δdec·δ
′
dec

24
and d(c̃, S) ≤ ρ′ ·

δ·δdec·δ′dec
24

(which holds assuming that s̄ is a sufficiently large polynomial).

An averaging argument yields that in this case, for at least a (1− δ·δdec·δ′dec
12

)-fraction of
the rows i ∈ I it holds that d(c̃|{i}×[n′], S|{i}×[n′]) = f(i) ≤ ρ′.

Finally, we provide the proof of Claim 7.3.7.

Proof of Claim 7.3.7. We will show that each of the three properties in the definition of a
good column holds for at least a (1 − δdec·δ′dec

3
)-fraction of the columns with probability

at least 0.9 over the choice of I . The claim will then follow by a union bound over the
choice of I and the fraction of bad columns.

Item 1. Assuming that d(c̃, S) ≤ ρ·δdec·δ′dec
3

(which once more holds assuming that s̄ is
a sufficiently large polynomial), an averaging argument implies that for at least a (1 −
δdec·δ′dec

3
)-fraction of the columns j ∈ [n′] it holds that d

(
c̃j, S|[n]×{j}

)
≤ ρ.

123

Item 2. Fix j ∈ [n′] and c ∈ Lj \ {c̃j}, and note that d(c, c̃j) ≥ δ since C has distance δ.
For i ∈ [n], let

f(i) :=

{
1, if ci = (c̃j)i

0, otherwise.
,

and note that by the sampling property of Γ, with probability at least 1− 0.1
L
· δdec·δ

′
dec

3
over

the choice of I we have that

d(c|I , c̃j|I) = E
i∈I

[f(i)] ≥ E
i∈[n]

[f(i)]− γ = d(c, c̃j)− γ > δ/2,

where the last inequality follows by choice of γ < δ/2. Hence, by a union bound, with
probability at least 1 − 0.1 · δdec·δ

′
dec

3
over the choice of I , we have d(c|I , c̃j|I) > δ/2 for all

c ∈ Lj \ {c̃j}.
Finally, by an averaging argument we conclude that with probability at least 0.9 over

the choice of I , at least a (1− δdec·δ′dec
3

)-fraction of the columns j ∈ [n′] satisfy Item 2.

Item 3. By Claim 7.3.9, with probability at least 0.9 over the choice of I = {i1, . . . , im},
at least a (1− δ·δdec·δ′dec

12
)-fraction of the rows in I are good, where for a good row ik ∈ I we

have that c̃|{ik}×[n′] ∈ L′ik , and so ĉik = c̃|{ik}×[n′]. Assuming this is the case, we have that

c̃ agrees with (ĉi1 , . . . , ĉim) on at least a
(

1− δ·δdec·δ′dec
12

)
-fraction of the points in I × [n′],

and so by averaging for at least a (1 − δdec·δ′dec
3

)-fraction of the columns j ∈ [n′] it holds
that d (c̃j|I , ((ĉi1)j, . . . , (ĉim)j)) ≤ δ/4.

Deterministic Algorithm

Lastly, to obtain a deterministic global list-recovery algorithm, we simply iterate over the
randomness of Γ, and output the union of all output lists. This increases the running
time by a multiplicative factor of 2r = n · s̄/ρ′. Moreover, Claim 7.3.4 guarantees that any
codeword that is consistent with all but (ρ′/s̄)-fraction of the input lists will be output in
one of the invocations, and consequently will be included in the final output list (which
is of size at most (L′)s̄·L/(ρ

′)2 by the same claim).

7.3.4 Deterministic Near-Linear Time Capacity-Achieving List-Recoverable
Codes

In this section we prove the following lemma which implies Corollary 7.1.4 from the
introduction.
Lemma 7.3.10. For any constants R ∈ [0, 1], ε > 0, and ` ≥ 1 there exists an infinite family of
codes {CN}N that satisfy the following.
• CN is an F2-linear code of block length N and alphabet size N o(1).

124

• CN has rate at least R and relative distance at least 1−R− ε.
• CN is (1−R− ε, `,N o(1))-globally list-recoverable deterministically in time N1+o(1).
• CN is encodable deterministically in time N1+o(1).
To prove the above lemma, we first use Theorem 7.1.3 to obtain deterministic nearly-

linear time high-rate list-recoverable codes, and then use the Alon-Edmonds-Luby (AEL)
distance amplification method [AEL95; AL96] to turn these codes into deterministic
nearly-linear time capacity-achieving list-recoverable codes. Specifically, we shall use
the following version of the AEL method for list-recovery from [GI02] which roughly
says the following. Given an efficient “outer” code C of rate approaching 1 that is list-
recoverable from a tiny fraction of errors, and a small “inner” code C ′ that is a (possibly
non-efficient) capacity-achieving list-recoverable code, they can be combined to get a
new code CAEL that on the one hand, inherits the tradeoff between rate and error correc-
tion that C ′ enjoys, and on the other hand, is almost as efficient as C.
Lemma 7.3.11 (Distance Amplification for List-Recovery, [GI02, Lemma 6]). There exists
an absolute constant b0 such that the following holds for any δ, ρ, ε > 0 and t ≥ (δ · ρ · ε)−b0 .

Suppose that C ⊆ (ΣR·t)n is an outer code of rate 1−ε and relative distance δ that is (ρ, `, L)-
globally list-recoverable in time T , and C ′ ⊆ Σt is an inner code of rate R and relative distance
1−R− ε that is (1−R− ε, `′, `)-globally list-recoverable in time T ′.

Then there exists a code CAEL ⊆ (Σt)n of rate R − ε and relative distance 1− R − 2ε that is
(1−R− 2ε, `′, L)-globally list-recoverable in time T + n · (T ′ + poly(t, log n)).

Moreover,
• If C, C ′ have encoding times T , T ′, respectively, then CAEL has encoding time T +n · (T ′+

poly(t, log n)).
• If C, C ′ are F-linear then so is CAEL.

Remark 7.3.12. Lemma 6 in [GI02] is stated for the special case of `′ = 1, and for a
more specific choice of list-recovery radius and running times. Also, it does not mention
explicitly relative distance, encoding time, and linearity. However, these can be deduced
from the proof of the lemma, combined with the expander graph construction described
in [Kop+17, Lemma 2.12] (see also [Gop+18, Lemma 5.4] for a similar transformation for
the setting of local list-recovery).

Next we prove Lemma 7.3.10, based on Theorem 7.1.3 and Lemma 7.3.11. We will
require the following code constructed in [HRZW17].
Theorem 7.3.13 ([HRZW17, Theorem A.1]). There exists an absolute constant b0 so that the
following holds. For any ε > 0, ` ≥ 1, q ≥ `b0/ε that is an even power of a prime,4 and
integer n ≥ qb0`/ε, there exists a linear code C ≤ Fn of rate 1 − ε and relative distance Ω(ε2)

that is (Ω(ε2), `, L)-list-recoverable for L = qq
(`/ε)·exp(log∗ n) . Moreover, C can be encoded in time

poly(n, log q) and list-recovered in time poly(n, L).
Furthermore, we will require the following results. The first follows from the GV

bound (Theorem 2.4.4), the second follows from a simple adaptation of the Zyablov-

4That is, q is of the form p2t for a prime p and for an integer t.

125

Pinsker argument for list-decoding random linear codes.
Corollary 7.3.14. For any R ∈ [0, 1] and ε > 0, and prime power q ≥ 2h2(1−R−ε)/ε, a random
linear code C ≤ Fnq of rate R has relative distance at least 1 − R − ε with probability 1 −
exp(−Ω(n)).
Corollary 7.3.15 ([HRZW17], Corollary 2.2). For any R ∈ [0, 1], ε > 0, and ` ≥ 1, and for
sufficiently large prime power q, a random linear code C ≤ Fnq of rate R is (1−R− ε, `, qO(`/ε))-
list-recoverable with probability 1− exp(−Ω(n)).

Proof of Lemma 7.3.10. We shall first apply Theorem 7.1.3 on a suitable base code C to
obtain a deterministic near-linear time high-rate list-recoverable code C ′, and then use
the transformation given by Lemma 7.3.11 to obtain a deterministic near-linear time
capacity-achieving list-recoverable code C ′′.

Base code C: The code C will be the efficient high-rate list-recoverable code given by
Theorem 7.3.13, in an appropriate setting of parameters.

Specifically, in what follows, we let β := (log log logN)−o(1) (where the o(1) term
in the exponent is an arbitrarily slowly decreasing function of N), and we choose the
block length of C to be Nβ , and the rate to be 1− εβ/4. As we will see in a moment, the
rationale for these choices is that if we raise C to the tensor power of 1/β, Theorem 7.1.3
will yield a code of block lengthN with running timeN1+O(β) = N1+o(1) and rate greater
than 1− ε.

Theorem 7.3.13 then guarantees, for any constant `′ ≥ 1, the existence of a lin-
ear code C as above that has relative distance (log log logN)−o(1), and furthermore is
((log log logN)−o(1), `′, exp exp((log log logN)o(1)))-globally list-recoverable in time NO(β),
provided that the alphabet size is a sufficiently large even power of a prime on the order
of exp((log log logN)o(1)).

High-rate list-recoverable code C ′: Let C ′ be the code obtained by raising C to a tensor
power of 1/β = (log log logN)o(1). Then the code C ′ has block length N , alphabet size
exp((log log logN)o(1)), rate at least 1−ε/4, and relative distance exp(−(log log logN)o(1)).
Furthermore, by Theorem 7.1.3, it is (exp(−(log log logN)o(1)), `′, N o(1))-globally list-recoverable
deterministically in time N1+O(β) = N1+o(1).

Capacity-achieving list-recoverable code C ′′: Let C ′′ be the code obtained by applying
Lemma 7.3.11 with the outer code being the code C ′ constructed so far, and the inner
code being a capacity-achieving list-recoverable code D′′ of rate R + ε/4 and relative
distance at least 1−R− ε/2.

Corollaries 7.3.14 and 7.3.15 guarantee the existence of a codeD′′ as above that is (1−
R − ε/2, `, `′)-globally list-recoverable for some constant `′, provided that the alphabet
size is a sufficiently large constant prime power, and the block length is sufficiently
large.

126

To satisfy the conditions of Lemma 7.3.11, we further require that the block length
of D′′ is sufficiently large exp((log log logN)o(1)), and that the alphabet size of C ′ is
exp exp((log log logN)o(1))—the size ofD′′—which can be achieved by grouping together
consecutive symbols of C ′.

Lemma 7.3.11 then implies that C ′′ is a code of block length N , alphabet size N o(1),
rateR, and relative distance 1−R−ε, that is (1−R−ε, `,N o(1))-globally list-recoverable
deterministically in time N1+o(1) (using brute-force decoding of the inner code).

Finally, it can be verified that encoding time is as claimed, and that all codes in the
process can be taken to be F2-linear, and all transformations preserve F2-linearity, so the
final code can be guaranteed to be F2-linear as well.

7.3.5 Deterministic Near-Linear Time Unique Decoding up to the GV
Bound

In this section we prove the following lemma which implies Corollary 7.1.6 from the
introduction.
Lemma 7.3.16. For any constants R ∈ [0, 0.02] and ε > 0 there exists an infinite family of
binary linear codes {CN}N , where CN has block length N and rate R, and is globally uniquely
decodable deterministically from h−1

2 (1−R)−ε
2

-fraction of errors in time N1+o(1).
Furthermore, there exists a randomized algorithm which, on input N , runs in time N1+o(1)

and outputs with high probability a description of a code CN with the properties above. Given
the description, the code CN can be encoded deterministically in time N1+o(1).

To prove the above lemma, we rely on the following lemma from [Tho83; HRZW17]
which says that one can turn a code that approximately satisfies the Singleton bound
into one that approximately satisfies the GV bound via random concatenation. In what
follows let θ(x) := 1− h2(1− 2x−1) for x ∈ [0, 1].
Claim 7.3.17 ([GR10, Lemma 2.2]). θ(x) ≤ x for all x ∈ [0, 1].
Lemma 7.3.18 (Random Concatenation, [HRW17a, Lemma 7.3]). There exists an absolute
constant b0 such that the following holds for any ε > 0, R′ ∈ [0, 1], R ∈

[
0, θ(R

′)−ε/2
R′

]
, and

t ≥ b0
ε2·(1−R)

.

Suppose that C ≤ (FR′·t2)n is an F2-linear code of rate R and relative distance 1 − R − ε2

b0
,

and Ccon ≤ Ftn2 is a code obtained from C by applying a random linear code C(i) ≤ Ft2 of
rate R′ on each coordinate i ∈ [n] of C independently. Then Ccon has relative distance at least
h−1

2 (1−R ·R′)− ε with probability 1− exp(−Ω(n)).
We shall also use the following lemma that states the effect of concatenation on list-

recovery properties.
Lemma 7.3.19 (Concatenation for List-Recovery, [HRW17a, Lemma 7.4]). Suppose that
C ⊆ (Σρ′·t)n is (ρ, `, L)-globally list-recoverable in time T , and Ccon ⊆ Σtn is a code obtained
from C by applying a code C(i) ⊆ Σt of rate R′ on each coordinate i ∈ [n] of C. Suppose

127

furthermore that at least (1 − ε)-fraction of the codes C(i) are (ρ′, `′, `)-globally list-recoverable
in time T ′. Then Ccon is ((ρ− ε) · ρ′, `′, L)-globally list-recoverable in time T + n · T ′.

Next we prove Lemma 7.3.16, based on Lemma 7.3.10 and the above Lemmas 7.3.18
and 7.3.19.

Proof of Lemma 7.3.16. We apply random concatenation on the deterministic near-linear
time capacity-achieving list-recoverable code C given by Lemma 7.3.10. By Lemma 7.3.18,
the resulting code C̃ will approach the Gilbert-Varshmaov bound with high probability,
while by Lemma 7.3.19, the code C̃ will also be near-linear time list-recoverable (and in
particular, list-decodable) with high probability. Thus, whenever the list-decoding ra-
dius exceeds half the minimum distance (which is the case whenever the rate is smaller
than 0.02), the code C̃ can be uniquely decoded from half the minimum distance in
near-linear time by first running the list-decoding algorithm, and then choosing the
codeword from the output list that is closest to the received word. Details follow.

The code C: Let b0 be the absolute constant guaranteed by Lemma 7.3.18, and apply
Lemma 7.3.10 with rate R0 := R

θ−1(R+ε/2)
(noting that this is at most 1 since θ(x) ≤ x for

all x ∈ [0, 1], and θ is monotonically increasing in [0, 1]), proximity parameter ε := ε2/b0,
and input list size `0 := 21/ε. Lemma 7.3.10 then guarantees that, for an infinite number
of N ’s, the existence of an F2-linear code C of block length N , alphabet size N o(1), rate
R0, and relative distance 1−R0−ε0, that is (1−R0−ε0, `0, N

o(1))-globally list-recoverable
deterministically in time N1+o(1).

The code C̃: Let C̃ ≤ FtN2 be a binary linear code obtained from C by applying a ran-
dom linear code C(i) ≤ Ft2 of rate R′ := θ−1(R + ε/2) on each coordinate i ∈ [n] of C
independently. Then the code C̃ has rate ρ, and by Lemma 7.3.18 it also has relative dis-
tance at least h−1

2 (1−R)−εwith probability 1−exp(−N). Moreover, by Corollary 7.3.15,
each C(i) is (h−1

2 (1−R′ − ε), 21/ε)-list-decodable with probability 1− o(1), so with prob-
ability 1 − exp(−Ω(N)) this property holds for at least (1 − ε2/b0)-fraction of the C(i)’s.
Lemma 7.3.19 implies in turn that the code C̃ is (ρ̃, N o(1))-globally list-decodable in time
N1+o(1) (using brute-force decoding of inner codes C(i)) for

ρ̃ = (1−R0 − 2ε2/b0) · h−1
2 (1−R′ − ε) . (7.2)

We now fix a code C̃ achieving these parameters.

Decoding. Next assume that the list-decoding radius ρ̃ exceeds the desired decoding
radius, i.e.,

(1−R0 − 2ε2/b0) · h−1
2 (1−R′ − ε) ≥ h−1

2 (1−R)− ε
2

, (7.3)

where R0 := R
θ−1(R+ε/2)

and R′ := θ−1(R+ ε/2). It was shown in [Rud07, Section 4.4] that
this is indeed the case whenever R ≤ 0.02 and ε is a sufficiently small constant.

128

Assuming that (7.3) holds, one can globally uniquely decode C̃ up to half the min-
imum distance in time N1+o(1) by list-decoding C̃, and outputting the codeword in the
output list that is closest to the received word.

7.4 Local List-Recovery

7.4.1 Local List-Recovery of High-Rate Tensor Codes

In this section we prove the following lemma which implies Theorem 7.1.8 from the
introduction.
Lemma 7.4.1. The following holds for any δ, ρ, η > 0 and s = poly(1/δ, 1/ρ). Suppose that C ≤
Fn is a linear code of relative distance δ that is (ρ, `, L)-globally list-recoverable, and (Q, δ/2)-
locally correctable, and t ≥ 3. Then C⊗t ≤ Fnt is (Q̃, ρ · s−t3 , η, `, Lst

3 ·logt L · log(1/η))-locally
list-recoverable for

Q̃ = n3 · (Q logQ)t · Lst
3 ·logt L · log2(1/η) .

Moreover, if C is globally list-recoverable in time poly(n), locally correctable in time T ,
and globally decodable for (δ/2)-fraction of errors in time poly(n), then the local list-recovery
algorithm for C⊗t has preprocessing time poly(n) · Lst

3 ·logt L · log2(1/η) and running time
poly(n) · (T log T)t · (st3 logt L).

Lemma 7.4.1 relies on the following lemma from [HRZW17] which says that the ten-
sor product of a high-rate globally list-recoverable code (which is not necessarily locally
correctable) is approximately locally list-recoverable. Approximate local list-recovery is
a relaxation of local list-recovery, where the local algorithms in the output list are not
required to recover all the codeword coordinates, but only most of them. Formally, a
β-approximately (Q,α, η, `, L)-locally list-recoverable code C ⊆ Σn satisfies all the require-
ments of Definition 7.2.6, except that the requirement (7.1) is replaced with the relaxed
condition that

P
i∈[n]

(Aj(i) = ci) ≥ 1− β, (7.4)

where the probability is over the choice of uniform random i ∈ [n],5 and the soundness
requirement is eliminated.
Lemma 7.4.2 (Approximate Local List-Recovery of High-Rate Tensor Codes, [HRW17b,
Lemma 4.1]). The following holds for any δ, ρ, β, η > 0 and s = poly(1/δ, 1/ρ, 1/β). Suppose
that C ≤ Fn is a linear code of relative distance δ that is (ρ, `, L)-globally list-recoverable. Then
C⊗t ≤ Fnt is β-approximately (n · (st2 logt L), ρ · s−t2 , η, `, Lst

2 ·logt L · log(1/η))-locally list-
recoverable.

5A standard averaging argument shows that in the case of approximate local list recovery, each of the
local algorithms A1, . . . , AL can be assumed to be deterministic.

129

Moreover, if C is globally list-recoverable in time poly(n), then the approximate local list-
recovery algorithm for C⊗t has preprocessing time log(n) ·Lst

2 ·logt L · log(1/η) and running time
poly(n) · (st2 logt L).

To turn the approximate local list-recovery algorithm given by the above lemma into
a local list-recovery algorithm we shall use the fact that the tensor product of a locally
correctable code is also locally correctable with slightly worse parameters. A similar
observation was made in [Vid15, Proposition 3.15.], but for completeness we provide a
full proof below in Section 7.4.1.
Lemma 7.4.3 (Local Correction of Tensor Codes). Suppose that C ≤ Fn is a linear code that
is (Q, ρ)-locally correctable. Then C⊗t ≤ Fnt is ((O(Q logQ))t , ρt)-locally correctable.

Moreover, if C is locally correctable in time T , then the local correction algorithm for C⊗t
runs in time (O(T log T))t.

To guarantee the soundness property we shall also use the following lemma which
says that high-rate tensor codes are tolerantly locally testable. We prove this lemma in
Section 7.4.1, based on a robust local testing procedure for high-rate tensor codes given
in [Vid15].
Lemma 7.4.4 (Tolerant Local Testing of High-Rate Tensor Codes). Suppose that C ≤ Fn
is a linear code of relative distance δ, and t ≥ 3. Then C⊗t ≤ Fnt is (n2 · δ−O(t), δO(t), (δ/2)t)-
tolerantly locally testable.

Moreover, if C is globally decodable from (δ/2)-fraction of errors in time T , then the tolerant
local testing algorithm for C⊗t runs in time T · n · δ−O(t).

Finally, we show a general transformation that turns an approximately locally list-
recoverable code that is also locally correctable and tolerantly locally testable into a
(genuinely) locally list-recoverable code.
Lemma 7.4.5. Suppose that C ⊆ Σn is a β-approximately (Q, ρ, η, `, L)-locally list-recoverable
code that is also (Qcorr, γ)-locally correctable and (Qtest, β, γ)-tolerantly locally testable. Then C
is (Q̃, ρ, 2η, `, L)-locally list-recoverable for

Q̃ = max{Q ·Qtest ·O(L log(L/η)), Q ·Qcorr} .

Moreover, if the approximate local list-recovery algorithm has preprocessing time Tpre and run-
ning time T , and the local correction and tolerant local testing algorithms run in times Ttest, Tcorr,
respectively, then the local list-recovery algorithm has preprocessing time Tpre + T · Ttest ·
O(L log(L/η)) and running time T · Tcorr.

Proof. First note that by Remark 7.2.3, we may assume that the tolerant local testing
algorithm Atest fails with probability at most η/L, at the cost of increasing the query
complexity and running time by a multiplicative factor of O(log(L/η)).

The local list recovery algorithm Ã first runs the approximate local list recovery al-
gorithm A; denote the (deterministic) local algorithms that are output by A1, A2, . . . , AL,
and let w1, . . . , wL be the words they implicitly compute. Then for each j = 1, . . . , L,
the local list recovery algorithm Ã runs the tolerant local testing algorithm Atest on Aj ,

130

and outputs Acorr(Aj) if and only if the test passes, where Acorr is the local correction
algorithm.

It can be verified that the query complexity, output list size, and running times are
as claimed. For completeness, suppose that c ∈ C satisfies d(c, S) ≤ ρ. Then with
probability at least 1 − η the approximate local list-recovery algorithm A will output
some Aj for which d(wj, c) ≤ β. Consequently, the tolerant local testing algorithm Atest

will accept wj with probability at least 1 − η. So we conclude that with probability at
least 1 − 2η the local algorithm Acorr(wj) will be included in the output list of Ã, and
furthermore by the guarantees of Acorr it will be the case that c = Acorr(wj).

For soundness, suppose that Acorr(wj) is not consistent with some codeword c ∈ C.
Then by properties of Acorr, it holds that d(wj, C) > γ. But in this case the tolerant
local testing algorithm Atest will reject wj with probability at least 1 − η/L. So by the
union bound, with probability at least 1− η, each local algorithm in the output list of Ã
implicitly computes a codeword of C.

Next we prove Lemma 7.4.1 based on the above transformation and Lemmas 7.4.2,
7.4.3, and 7.4.4.

Proof of Lemma 7.4.1. By Lemma 7.4.3 the tensor product code C⊗t is ((O(Q logQ))t, (δ/2)t)-
locally correctable, and by Lemma 7.4.4 it is (n2 · δ−O(t), δb0t, (δ/2)t)-tolerantly locally
testable for some absolute constant b0. Moreover, by Lemma 7.4.2 the tensor prod-
uct code C⊗t is (δb0t)-approximately (n · (st

3
logt L), ρ · s−t3 , η/2, `, Lst

3 ·logt L · log(1/η))-
locally list-recoverable. Finally, Lemma 7.4.5 implies that C⊗t is (Q̃, ρ ·s−t3 , η, `, Lst

3 ·logt L ·
log(1/η))-locally list-recoverable for

Q̃ = n3 · (Q logQ)t · Lst
3 ·logt L · log2(1/η) .

Running times follow similarly.

Local Correction of Tensor Codes: Proof of Lemma 7.4.3

Lemma 7.4.3 can be deduced from the following lemma using induction.
Lemma 7.4.6. Suppose that C ≤ Fn, C ′ ≤ Fn′ are linear codes that are (Q, ρ), (Q′, ρ′)-locally
correctable, respectively. Then C ⊗ C ′ ≤ Fn×n′ is (Q ·O(Q′ logQ′), ρ · ρ′)-locally correctable.

Moreover, if C, C ′ are locally correctable in times T, T ′, respectively, then the local correction
algorithm for C ⊗ C ′ runs in time T ·O(T ′ log T ′).

Proof. First note that by Remark 7.2.5, we may assume that the local correction algo-
rithm A′ for C ′ fails with probability at most 1/6, at the cost of increasing the query
complexity and running time by some multiplicative constant b0. Similarly, we may
also assume that the local correction algorithm A for C fails with probability at most
1/(6b0Q

′), at the cost of increasing the query complexity and running time by a multi-
plicative factor of O(logQ′).

131

Let w ∈ Fn×n′ be a string that is (ρ · ρ′)-close to some codeword c ∈ C ⊗ C ′. Recall
that the local correction algorithm Ã for C ⊗ C ′ is given as input a codeword coordinate
(i, j) ∈ [n]× [n′] in the tensor product code C ⊗C ′, is allowed to query the received word
w at every coordinate of C ⊗ C ′, and must produce a guess for ci,j , the codeword value
indexed by (i, j).

To this end, the local correction algorithm Ã for C ⊗ C ′ first runs the local correction
algorithm A′ for C ′ on input j ∈ [n′]. Let J = {j1, . . . , jm} ⊆ [n′] be the set of query
locations, wherem := b0·Q′. Next for each query location jr ∈ J , the algorithm Ã obtains
a guess for the symbol at position (i, jr) by running the local correction algorithm A for
C on input i with oracle access to the column jr. Let vr be the guess for the symbol at
position (i, jr) produced by A. At this point we have candidate symbols (v1, . . . , vm) for
all positions in {i}×J . Finally, the algorithm Ã responds with the output of A′ on query
locations j1, . . . , jm and values v1, . . . , vm. The formal description of the local correction
algorithm Ã is given in Algorithm 2.

Algorithm 2 The local correction algorithm Ã for C ⊗ C ′.
function Ã((i, j) ∈ [n]× [n′]) . Ã receives oracle access to a matrix w ∈ Fn×n′ .

Run the local correction algorithm A′ for C ′ on input j, let J = {j1, . . . , jm} ⊆ [n′]
be the query locations for m = b0 ·Q′.

for r = 1, . . . ,m do
Run the local correction algorithm A for C on input i and oracle access to the

jr-th column w|[n]×{jr}.
Let vr ← A(i). . vr is a candidate for the symbol at position (i, jr) ∈ [n]× [n′].

end for. At this point, we have candidate symbols (v1, . . . , vm) for every position
in {i} × J .

Let v be the output of A′ on query locations j1, . . . , jm and values v1, . . . , vm.
Return: v

end function

The algorithm Ã invokes the algorithm A′ once, followed by m = O(Q′) invocations
of the algorithm A. Thus, the query complexity of Ã is

O(Q′) +m ·O(Q · logQ′) = Q ·O(Q′ logQ′) ,

and the running time is

O(T ′) +m ·O(T · logQ′) = O(T ′) + T ·O(Q′ logQ′) = T ·O(T ′ log T ′) .

As for correctness, recall that by assumption the received word w is (ρ · ρ′)-close to
the codeword c ∈ C ⊗ C ′. Let us call a column good if w and c are ρ-close on this column,
and note that by Markov’s inequality, at least (1− ρ′)-fraction of the columns are good.
Furthermore, by our assumptions on each good column the local correction algorithmA
for C succeeds with probability at least 1− 1

6m
, and so by union bound, with probability

at least 5/6 the values (v1, . . . , vm) will be computed correctly on each good column.
Conditioned on this, the local correction algorithm A′ for C ′ computes v correctly with
probability at least 5/6, so the total success probability is 2/3.

132

Tolerant Local Testing of High-Rate Tensor Codes: Proof of Lemma 7.4.4

The proof of Lemma 7.4.4 relies on the following robust local testing procedure for high-
rate tensor codes from [Vid15] which is a local testing procedure with the property that
local views of words far from the code are, on average, far from an accepting view.

Theorem 7.4.7 (Robust Local Testing of High-Rate Tensor Codes, [Vid15, Theorem 3.1]).
Suppose that C ≤ Fn is a linear code of relative distance δ, and t ≥ 3. Then for any w ∈
Fnt , the expected relative distance of w from C⊗2 on a random axis-parallel plane is at least
δO(t) · d(w, C⊗t).

Proof of Lemma 7.4.4. Say we are given a string w ∈ Fnt and we need to test if it is close
to a codeword of C⊗t. Let τ ≥ δO(t) be some threshold parameter to be chosen later. The
test is to choose a random axis-parallel plane P in Fnt and find if there is a codeword
c ∈ C⊗2 which is τ -close to w|P . If yes, then accept, else reject. Clearly this test makes
only n2 queries. Also by Corollary 7.2.10, when τ < (δ/2)2, this can be implemented in
O(T · n) time.

To show completeness, let w ∈ Fnt be some string which is ρ-close to a codeword
c ∈ C⊗t for ρ ≥ δO(t) to be chosen later. Since individual coordinates on a random axis-
parallel plane are marginally uniform over Fnt , by Markov’s inequality, the probability
that w|P is τ -far from c|P ∈ C⊗2 is at most ρ/τ . So the probability that the test rejects w
is at most p0 := ρ/τ .

To show soundness, let w ∈ Fnt be some string which is (δ/2)t-far from any code-
word c ∈ C⊗t. Then by Theorem 7.4.7, the expected relative distance of w|P from C⊗2 is
at least δO(t). Thus the probability that the test rejects w is at least p1 := δO(t)−τ

1−τ .

Next observe that we can choose τ ≥ δO(t) and ρ ≥ δO(t) sufficiently small so that p0 <
p1. Finally to get the acceptance and rejection probabilities to 2/3 as in the definition of
tolerant locally testable codes, we repeat the above local test δ−O(t) times and accept a
string if it is accepted in at least p0+p1

2
-fraction of the tests. By a Chernoff bound, the new

test will have the required soundness and completeness.

7.4.2 Capacity-Achieving Locally List-Recoverable Codes

In this section we prove the following lemma which shows the existence of capacity-
achieving locally list-recoverable codes. An analogous lemma was proved in [HRW17b,
Lemma 5.3]; however, only local decoding of message coordinates was guaranteed, and
there was no soundness property. That we are able to locally correct codeword coor-
dinates and guarantee the soundness property will be crucial for our GV bound local
correction application.

Lemma 7.4.8. For any constants R ∈ [0, 1], ε > 0, η > 0, and ` ≥ 1 there exists an infinite
family of codes {CN}N that satisfy the following.

133

• CN is an F2-vector linear6 code of block length N and alphabet size N o(1).
• CN has rate R and relative distance at least 1−R− ε.
• CN is (N o(1), 1−R−ε, η, `, N o(1))-locally list-recoverable with preprocessing and running

time N o(1).
• CN is encodable in time N1+o(1).
As in the proof of Lemma 7.3.10, we first use Lemma 7.4.1 to obtain high-rate locally

list-recoverable codes, and then use the Alon-Edmonds-Luby (AEL) distance ampli-
fication method [AEL95; AL96] to turn these codes into capacity-achieving locally list-
recoverable codes. However, this time we shall use the following version of the AEL
method for local list-recovery from [Gop+18].
Lemma 7.4.9 (Distance Amplification for Local List-Recovery, [Gop+18, Lemma 5.4]).
There exists an absolute constant b0 such that the following holds for any δ, R, ε > 0 and t ≥
(δ ·R · ε)−b0 .

Suppose that C ⊆ (ΣR·t)n is an outer code of rate 1 − ε and relative distance δ that is
(Q, ρ, η, `, L)-locally list-recoverable, and C ′ ⊆ Σt is an inner code of rateR and relative distance
1−R−ε that is (1−R−ε, `′, `)-globally list-recoverable. Then there exists a code CAEL ⊆ (Σt)n

of rate R − ε and relative distance 1 − R − 2ε that is (Q · poly(t), 1 − R − 2ε, η, `′, L)-locally
list-recoverable.

Moreover,
• If the local list-recovery algorithm for C has preprocessing time Tpre and running time T ,

and C ′ can be globally list-recovered in time T ′, then the local list-recovery algorithm for
CAEL has preprocessing time Tpre + Q · (T ′ + poly(t, log n)) and running time T + Q ·
poly(t) · (T ′ + poly(log n)).

• If C, C ′ have encoding times T, T ′, respectively, then CAEL has encoding time T +n · (T ′+
poly(t, log n)).

• If C, C ′ are F-vector linear then so is CAEL.
To apply Lemma 7.4.1, we shall also need a high-rate base code that is both globally

list-recoverable and locally correctable. We obtain such a code by intersecting the high-
rate globally list-recoverable codes given by Theorem 7.3.13 with the high-rate locally
correctable codes given by the following lemma.
Lemma 7.4.10 (High-Rate Locally Correctable Codes). For any ε, β > 0, and integer N
where q := Nβ is a prime power, there exists a code CN that satisfies the following.
• CN is an Fq-vector linear code of block length N and alphabet size N (εβ)−O(1/β) .
• CN has rate 1− ε and relative distance Ω(ε · β).
• CN is (Nβ · (εβ)−O(1/β),Ω(ε · β))-locally correctable in time Nβ · (εβ)−O(1/β).
• CN is encodable in time poly(N).
We prove Lemma 7.4.10 in Section 7.4.2, based on the high-rate locally correctable

6That is, the alphabet Σ = Ft2 for a positive integer t, and the CN is closed under addition (where
elements of (Ft2)N are added in the natural way.)

134

codes of [KSY14]. Next we prove Lemma 7.4.8, based on Lemmas 7.4.1, 7.4.9, and 7.4.10.

Proof of Lemma 7.4.8. The proof is similar to that of Lemma 7.3.10, with the main dif-
ference being that now we need to ensure that the base code is locally correctable.
Specifically, we shall first apply Lemma 7.4.1 on a suitable high-rate base code C that
is both globally list-recoverable and locally correctable to obtain a high-rate locally list-
recoverable code C ′, and then use the transformation given by Lemma 7.4.9 to obtain a
capacity-achieving locally list-recoverable code C ′′.

Base code C. The code C will be the intersection of the efficient high-rate globally list-
recoverable code given by Theorem 7.3.13 with the high-rate locally correctable code
given by Lemma 7.4.10, in an appropriate setting of parameters.

Specifically, let β := (log logN)−o(1) (where the o(1) term in the exponent is an arbi-
trarily slowly decreasing function of N), and we choose the block length of C to be Nβ ,
and the rate to be 1 − εβ/4. The code C will be constructed in turn as D1 ∩ D2, where
D1 is the high-rate globally list-recoverable code given by Theorem 7.3.13, and D2 is
obtained using the high-rate locally correctable code given by Lemma 7.4.10, and both
codes D1,D2 have block length Nβ and rate 1− εβ/8. Details follow.

The code D1. Let `′ ≥ 1 be a constant to be fixed later, and let D1 be the linear
code guaranteed by Theorem 7.3.13 of block length Nβ , rate 1 − εβ/8, and relative
distance (log logN)−o(1), that is ((log logN)−o(1), `′, exp exp((log logN)o(1)))-globally list-
recoverable. Note that such a code exists provided that the alphabet size is sufficiently
large even power of a prime q := exp((log logN)o(1)).

The codeD2. The codeD2 will be constructed in turn as the concatenation of the high-
rate locally correctable code D′2 given by Lemma 7.4.10 with an efficiently encodable
and decodable linear code D′′2 . To construct D′′2 , we will use Reed-Solomon codes (see
Example 2.5.1). The purpose of the concatenation is (a) to reduce the alphabet size ofD′2
to that of D1 and (b) make the code D′2 linear.

We first describe the code D′2. Suppose that Nβ2 is a power of q (which holds for
infinite number of N ’s). Lemma 7.4.10 guarantees the existence of an Fq-vector linear
code D′2 of length Nβ · (1− εβ/16), alphabet size qa for a = (logN)1+o(1), rate 1− εβ/16,
and relative distance (log logN)−o(1), that is (NO(β2), (log logN)−o(1))-locally correctable.

Next we describe the code D′′2 . The code D′′2 will be an efficiently encodable and
decodable linear code of length 1

1−εβ/16
· a, alphabet size q, rate 1 − γβ/16, and relative

distance (log logN)−o(1). The codeD′′2 can be obtained in turn by taking a Reed-Solomon
code (Example 2.5.1) of length 1−εβ/32

1−εβ/16
· a, alphabet size qlog logN (noting that qlog logN >

log2N > a), rate 1 − εβ/32, and relative distance (log logN)−o(1), and concatenating
it with another Reed-Solomon code of length 1

1−εβ/32
· log logN , alphabet size q, rate

1− εβ/32, and relative distance (log logN)−o(1).

135

Finally, by concatenating D′2 with D′′2 we obtain a vector linear code D2 of length Nβ ,
alphabet size q = exp((log logN)o(1)), rate 1− εβ/8, and relative distance (log logN)−o(1),
that is (NO(β2), (log logN)−o(1))-locally correctable.

We conclude that C := D1 ∩ D2 is a linear code of block length Nβ , alphabet size
exp((log logN)o(1)), rate 1 − εβ/4, and relative distance (log logN)−o(1), which is both
((log logN)−o(1), `′, exp exp((log logN)o(1)))-globally list-recoverable and (NO(β2), (log logN)−o(1))-
locally correctable.

High-rate locally list-recoverable code C ′. Let C ′ be the code obtained by raising C
to a tensor power of 1/β = (log logN)o(1). Then C ′ has block length N , alphabet size
exp((log logN)o(1)), rate at least 1 − ε/4, and relative distance exp(−(log logN)o(1)). Fur-
thermore, by Lemma 7.4.1, it is (N o(1), exp(−(log logN)o(1)), η, `′, N o(1))-locally list-recoverable.

Capacity-achieving locally list-recoverable code C ′′. Let C ′′ be the code obtained by
applying Lemma 7.4.9 with the outer code being the code C ′ constructed so far, and the
inner code being a capacity-achieving globally list-recoverable code D′′ of rate R + ε/4
and relative distance at least 1−R− ε/2.

Corollaries 7.3.14 and 7.3.15 guarantee the existence of a codeD′′ as above that is (1−
R − ε/2, `, `′)-globally list-recoverable for some constant `′, provided that the alphabet
size is a sufficiently large constant prime power, and the block length is sufficiently
large. To satisfy the conditions of Lemma 7.4.9, we further require that the block length
of D′′ is sufficiently large, i.e., on the order exp((log logN)o(1)), and that the alphabet
size of C ′ is exp exp((log logN)o(1))—the size of D′′—which can be achieved by grouping
together consecutive symbols of C ′.

Lemma 7.4.9 then implies that C ′′ is a code of block length N , alphabet size N o(1),
rate R, and relative distance 1 − R − ε, that is (N o(1), 1 − R − ε, η, `, N o(1))-locally list-
recoverable.

Finally, it can be verified that running times are as claimed (using brute-force encod-
ing and decoding of inner code D′′), and that all codes in the process can be taken to be
F2-vector linear, and all transformations preserve F2-vector linearity, so the final code
can be guaranteed to be F2-vector linear as well.

High-Rate Locally Correctable Codes: Proof of Lemma 7.4.10

Lemma 7.4.10 is a consequence of the following theorem from [KSY14], summarizing
the parameters of multiplicity codes.
Theorem 7.4.11 (Multiplicity Codes, [KSY14, Lemmas 3.5 and 3.6] and [Kop15b]). The
following holds for any integers s, d,m, and for any prime power q ≥ max{10 ·m, d+6·s

s
, 12 ·(s+

1)}. There exists an Fq-vector linear code C of block length qm, alphabet size q(
m+s−1
m), relative

136

distance at least δ := 1− d
s·q , and rate at least

(
1− m2

s

)
·(1−δ)m, that is (O(sm ·q), δ/10)-locally

correctable.
Moreover, C can be locally corrected in timeO(q/δm) and encoded in time poly

(
qm,
(
m+s−1
m

))
.

Proof of Lemma 7.4.10. We set the code CN to be the code given by Theorem 7.4.11 with
the following parameters. We choose q := Nβ to be the field size (which exists whenever
q is a prime power), and choose m = 1/β. Note that indeed qm = N . We choose
s = 2m2/ε, δ = ε/(2m), and d = s · q · (1− δ).

The alphabet size of the code is

q(
m+s−1
m) ≤ Nβ·(m+s)m ≤ N (εβ)−O(1/β)

,

the relative distance is at least δ ≥ Ω(ε · β), and the rate is at least(
1− m2

s

)
· (1− δ)m =

(
1− ε

2

)(
1− ε

2m

)m
geq1− ε.

Furthermore, CN is locally correctable from Ω(εβ)-fraction of errors with query com-
plexity

O(sm · q) ≤ Nβ · (εβ)−O(1/β).

as required.

Finally, it can be verified that running times are as required.

7.4.3 Local Correction up to the GV Bound

In this section we prove the following lemma which implies Corollary 7.1.9 from the
introduction.
Lemma 7.4.12. For any constants R ∈ [0, 0.02] and ε > 0 there exists an infinite family of
binary linear codes {CN}N , where CN has block length N and rate R, and is locally correctable
from h−1

2 (1−R)−ε
2

-fraction of errors with query complexity N o(1).
Furthermore,
• The local correction algorithm for CN runs in time N o(1).
• There exists a randomized algorithm which, on inputN , runs in timeN1+o(1) and outputs

with high probability a description of a code CN with the properties above. Given the
description, the code CN can be encoded deterministically in time N1+o(1).

Similar to Lemma 7.3.16, the proof of the above lemma relies on random concatena-
tion (Lemma 7.3.18), as well as the following lemma that is an analog of Lemma 7.3.19
for the setting of local list-recovery.
Lemma 7.4.13 (Concatenation for Local List-Recovery). Suppose that C ⊆ (ΣR′·t)n is
(Q, ρ, η, `, L)-locally list-recoverable, and Ccon ⊆ Σtn is a code obtained from C by applying
a code C(i) ⊆ Σt of rate R′ on each coordinate i ∈ [n] of C. Suppose furthermore that at

137

least a (1 − ε)-fraction of the codes C(i) are (ρ′, `′, `)-globally list-recoverable. Then Ccon is
(Q · t, (ρ− ε) · ρ′, η, `′, L)-locally list-recoverable.

Moreover, if the local list-recovery algorithm for C has preprocessing time Tpre and running
time T , and each C(i) can be globally list-recovered in time T ′, then the local list-recovery algo-
rithm for Ccon has preprocessing time Tpre +Q · T ′ and running time T +Q · T ′.

We prove the above lemma in Section 7.4.3. Finally, we shall also use the following
lemma which shows that a locally list-decodable code (satisfying the soundness prop-
erty) is also locally correctable.

Lemma 7.4.14. Suppose that C ⊆ Σn is a code of relative distance δ that is (Q, ρ, 0.1, L)-locally
list-decodable for ρ < δ/2. Then C is

(
O
(
Q · L · log2 n

(δ/2−ρ)2

)
, ρ
)

-locally correctable.

Moreover, if the local list-decoding algorithm has preprocessing time Tpre and running time
T , then the local correction algorithm runs in time Tpre +O

(
T · L · log2 n

(δ/2−ρ)2

)
.

Proof. We first run the local list-decoding algorithm, and then choose a local corrector
from the output list that is sufficiently close to the received word (which can be checked
via sampling).

Specifically, let A be the local list-decoding algorithm for C. By Remark 7.2.5 we may
assume that both the completeness and soundness properties of A hold with success
probability 1− 1

n10 instead of 2
3

at the cost of increasing the query complexity and running
time by a multiplicative factor of O(log n).

On oracle access to w ∈ Σn and input coordinate i ∈ [n], the local correction algo-
rithm Acorr for C first runs the local list-decoding algorithm A for C; let A1, . . . , AL be the
local algorithms in the output list of A. Then for each j = 1, . . . , L, the algorithm Acorr

runs Aj on a random subset Sj ⊆ [n] of O
(

logn
(δ/2−ρ)2

)
coordinates, and computes the frac-

tion δj of coordinates in Sj on which the decoded values differ from the corresponding
values of w. Finally, the algorithm Acorr finds some Aj for which δj ≤ δ/2 (if such Aj
exists), and uses Aj to locally correct the input coordinate i. Clearly, the query complex-
ity and running time of Acorr are as claimed. We proceed to show that Acorr satisfies the
local correction guarantees.

Let c ∈ C be the (unique) codeword which satisfies that d(w, c) ≤ ρ. We shall show
below that with probability 0.9− o(1), there exists some Aj that computes c and satisfies
that δj ≤ δ/2, and on the other hand, with probability 0.9− o(1), any Aj which does not
compute c satisfies that δj > δ/2. This will imply in turn that the algorithm Acorr will
succeed in decoding the input coordinate correctly with probability 0.8 − o(1) ≥ 2

3
as

required.

We first show that with probability 0.9 − o(1), there exists some Aj that computes
c and satisfies that δj ≤ δ/2. To see this note that by the completeness property of A,
since d(w, c) ≤ ρ with probability at least 0.9 over the randomness of A there exists
some Aj that computes c. In this case, by a union bound, with probability 1 − o(1) it
holds that each decoded coordinate of Aj in Sj equals the corresponding coordinate in

138

c. Furthermore, a Chernoff bound demonstrates that with probability 1 − o(1) it holds
that w and c differ on Sj in at most a δ

2
-fraction of the coordinates. Consequently, with

probability 0.9− o(1) it holds that δj ≤ δ/2.

Next we show that with probability 0.9 − o(1), any Aj which does not compute c
satisfies that δj > δ/2. For this note that by the soundness property of A, with prob-
ability at least 0.9 over the randomness of A, any such Aj computes some codeword
c′ ∈ C \ {c}. As above, a union bound guarantees that with probability 1− o(1) it holds
that for any such Aj , each decoded coordinate of Aj in Sj equals the corresponding co-
ordinate in c′. On the other hand, since C has relative distance δ and d(w, c) ≤ ρ, we have
that d(w, c′) ≥ δ − ρ = δ/2 + (δ/2 − α), and so by a Chernoff bound, with probability
1 − o(1) for any such Aj it holds that w and c′ differ on Sj in more than a δ

2
-fraction of

the coordinates. Consequently, with probability 0.9− o(1) it holds that δj > δ/2 for any
such Aj .

Next we prove Lemma 7.4.12, based on the above lemma and Lemmas 7.4.8, 7.3.18,
and 7.4.13.

Proof of Lemma 7.4.12. The proof is similar to that of Lemma 7.3.16. As in Lemma 7.3.16,
we apply random concatenation on the capacity-achieving locally list-recoverable code
C given by Lemma 7.4.8. By Lemma 7.3.18, the resulting code C̃ will approach the
Gilbert-Varshamov bound with high probability, while by Lemma 7.4.13, the code C̃
will also be locally list-recoverable (and in particular, locally list-decodable) with high
probability. Lemma 7.4.14 then implies that whenever the list-decoding radius exceeds
the desired local correction radius, then the code C̃ can also be locally corrected from
this radius. Details follow.

The code C. As in Lemma 7.3.16, let b0 be the absolute constant guaranteed by Lemma 7.3.18,
and apply Lemma 7.4.8 with rate R0 := R

θ−1(R+ε/4)
, proximity parameter ε0 := ε2/(4b0),

and input list size `0 := 21/ε. Lemma 7.4.8 then guarantees, for infinitely many N ’s,
the existence of an F2-vector linear code C of block length N , alphabet size N o(1), rate
R0, and relative distance 1−R0 − ε0, that is (N o(1), 1−R0 − ε0, 0.1, `0, N

o(1))-locally list-
recoverable.

The code C̃. Moreover, by Corollary 7.3.15, each C(i) is (h−1
2 (1 − R′ − ε), 21/ε)-list-

decodable with probability 1 − o(1), so with probability 1 − exp(−Ω(N)) this property
holds for at least (1 − ε2/(4b0))-fraction of the C(i)’s. Let Ci, i ∈ [n] and C̃ be any lin-
ear codes achieving these parameters. Lemma 7.4.13 implies in turn that the code C̃ is
(N o(1), ρ̃, 0.1, N o(1))-locally list-decodable for

ρ̃ = (1−R0 − ε2/(2b0)) · h−1
2 (1−R′ − ε) .

139

Local correction. Next assume that the local list-decoding radius ρ̃ exceeds the desired
local correction radius, i.e.,

(1−R0 − ε2/(2b0)) · h−1
2 (1−R′ − ε) ≥ h−1

2 (1−R)− ε
2

, (7.5)

where R0 := R
θ−1(R+ε/4)

and R′ := θ−1(R+ ε/4). It was shown in [Rud07, Section 4.4] that
this is indeed the case whenever R ≤ 0.02 and ε is a sufficiently small constant.

Assuming that (7.5) holds, Lemma 7.4.14 implies that C̃ is locally correctable from
h−1
2 (1−R)−ε

2
-fraction of errors with query complexity N o(1).

Finally, it can also be verified that running times are as claimed (using brute-force
encoding and decoding of inner codes C(i)).

Concatenation for Local List Recovery: Proof of Lemma 7.4.13

Proof of Lemma 7.4.13. The local list-recovery algorithm Ã for Ccon will run the local list-
recovery algorithm A for C, and answer the queries of A by globally list-recovering the
C(i)’s corresponding to the queries of A.

In more detail, on oracle access to a string of input lists S ∈
(

Σ
`′

)tn
, the local list-

recovery algorithm Ã for Ccon runs the local list-recovery algorithm A for C, and when-
ever A asks for some coordinate i ∈ [n], the algorithm Ã globally list-recovers the i-th
block of S of length t from ρ′-fraction of errors, and feeds the messages corresponding to
the first ` codewords in the output list as an answer to the query of A. Let A1, . . . , AL be
the resulting output local algorithms ofA. Then Ã outputs L local algorithms Ã1, . . . , ÃL
where each algorithm Ãj is defined as follows.

To locally correct the r-th coordinate in the k-th block of Ccon of length t (that is, a
coordinate of the form (k−1) · t+ r ∈ [tn] where 1 ≤ k ≤ n and 1 ≤ r ≤ t), the algorithm
Ãj runs the algorithm Aj on input coordinate k. As above, whenever Aj asks for some
coordinate i ∈ [n], the algorithm Ãj globally list-recovers the i-th block of S of length t
from ρ′-fraction of errors, and feeds the messages corresponding to the first ` codewords
in the output list as an answer to the query of Aj . Let a ∈ Σρ′·t be the output symbol of
Aj . Then the algorithm Ãj outputs the r-th symbol of C(k)(a) ∈ Σt.

Clearly, query complexity, output list size, and running times of Ã are as claimed.
The soundness property also clearly holds. To see that the completeness property holds
as well note that if d(c̃, S) ≤ (ρ−ε) ·ρ′ for some c̃ ∈ Ccon, then by Markov’s inequality for
at most (ρ−ε)-fraction of i ∈ [n] it holds that the i-th block of S of length t is inconsistent
with the i-th block of c̃ of length t by more than ρ′-fraction of the coordinates. Moreover,
since at least a (1− ε)-fraction of the codes C(i) are (ρ′, `′, `)-list-recoverable, list-recovery
of the C(i)’s fails on at most a ρ-fraction of the blocks. Completeness then follows since
C is locally list-recoverable from ρ-fraction of errors.

140

7.5 Combinatorial Lower Bound on Output List Size

In this section, we first provide a combinatorial lower bound on the output list size for
list-recovering a high-rate tensor product C⊗t, even in the noiseless setting. In particular,
we show that the output list size must be doubly-exponential in t. From this, we are able
to deduce certain corollaries demonstrating that our algorithms nearly achieve optimal
parameters.

Recall that given vectors v1 ∈ Fn1 , v2 ∈ Fn2 , . . . , vt ∈ Fnt , their tensor product v1 ⊗ v2 ⊗
· · · ⊗ vt is the t-dimensional box whose value in the (i1, i2, . . . , it) ∈ [n1] × [n2] · · · × [nt]
coordinate is given by the product

(v1 ⊗ v2 ⊗ · · · ⊗ vt)i1,i2,...,it = (v1)i1 · (v2)i2 · · · (vt)it .

For the special case of t = 2, the tensor product v ⊗ u can be thought of as the outer
product vuT .

We also record the following standard fact regarding tensor products.
Fact 7.5.1. Let v1, . . . , vt1 ∈ Fn1 and u1, . . . , ut2 ∈ Fn2 be sets of linearly independent vectors.
Then the collection {vi ⊗ uj | i ∈ [t1], j ∈ [t2]} is linearly independent in Fn1×n2 .

7.5.1 Output List Size for List-Recovering High-Rate Tensor Codes

In this section we prove Theorem 7.1.11 from the introduction, which we restate here
for convenience.
Theorem 7.1.11 (Output List Size for List-Recovering High-Rate Tensor Codes). Let ε >
0. Suppose that C ≤ Fnq is a linear code of rate 1 − ε, and that C⊗t ≤ Fntq is (0, `, L)-list-
recoverable. Then L ≥ `1/εt .

To prove this theorem, we first prove the following proposition. Informally speak-
ing, we iteratively apply the Singleton bound to conclude that linear codes of rate 1− ε
contain about 1/ε codewords with pairwise disjoint supports. Recall that, for a vector
v ∈ Fn, the support of v is supp(v) = {i ∈ [n] | vi 6= 0}.
Proposition 7.5.2. Let C ≤ Fn be a subspace of dimension k, and let r be a positive integer.
Suppose that (

1− 1
r

)
· n+ 1 ≤ k . (7.6)

Then there exist non-zero vectors c1, . . . , cr ∈ C such that for all i 6= j, supp(ci)∩supp(cj) = ∅.

Proof. Let m := n− k + 1, and note that Condition (7.6) is equivalent to

(r − 1)m ≤ k − 1 .

Take a basis for C of the form (e1, u1), . . . , (ek, uk), where ei ∈ Fk is the ith standard
basis vector, and u1, . . . , uk ∈ Fn−k are vectors. For j = 1, . . . , r − 1, we can find a

141

nontrivial linear combination of the vectors u(j−1)·m+1, . . . , uj·m summing to zero, as they
are a (multi-)set of m = n − k + 1 vectors lying in Fn−k. Taking this linear combination
of (e(j−1)·m+1, u(j−1)·m+1), . . . , (ej·m, uj·m), we obtain a nonzero vector whose support is
contained in the interval {(j − 1) · m + 1, . . . , j · m}; denote this vector by cj . In this
manner, we obtain r−1 nonzero vectors c1, . . . , cr−1 ∈ C with pairwise disjoint support.
Finally, we may add the vector cr := (ek, uk) to this collection, yielding r vectors, as
desired.

Next we prove Theorem 7.1.11, based on the above proposition.

Proof of Theorem 7.1.11. Let r := 1/ε, and recall wish to come up with `r
t codewords in

C⊗t that are contained in the output list for appropriately chosen input lists.

In order to accomplish this, we first use Proposition 7.5.2 to obtain a subset C ′ ⊆ C of
r nonzero codewords with pairwise disjoint support. We then consider the subset C ′′ ⊆
C⊗t containing all tensor products c1⊗c2⊗· · ·⊗ct of t (not necessarily distinct) codewords
c1, . . . , ct ∈ C ′, and our main observation is that all these rt tensor products are also
nonzero with pairwise disjoint support. Finally, we let B ⊆ F be an arbitrary subset of
size `, and consider the subset C̄ ⊆ C⊗t containing all linear combinations of codewords
in C ′′ with coefficients inB. Since all codewords in C ′′ are nonzero with pairwise disjoint
support, they are in particular linearly independent, so the set C̄ contains `rt distinct
codewords in C⊗t.

Moreover, since codewords in C ′′ have pairwise disjoint support, for each coordinate
(i1, . . . , it) ∈ [n]t, there is at most one codeword c ∈ C ′′ for which ci1,...,it is nonzero.

Therefore this is the only term which can contribute nontrivially to the value in the
(i1, . . . , it) coordinate of a codeword in C̄. So we can let the corresponding input list
Si1,...,it contain all the β · ci1,...,it for elements β ∈ B. Details follow.

The set C ′. Since C has rate 1−ε, it has dimension k = (1−ε)n, and so Proposition 7.5.2
guarantees the existence of a subset C ′ ⊆ C of r = 1/ε nonzero codewords with pairwise
disjoint support.

The set C ′′. Next we let

C ′′ :=
{
c1 ⊗ c2 ⊗ · · · ⊗ ct | c1, c2, . . . , ct ∈ C ′

}
be the subset of C⊗t containing all tensor products of t (not necessarily distinct) code-
words in C ′. Since all codewords in C ′ are nonzero, their t-wise tensor products are
nonzero as well.

To see that all codewords in C ′′ have pairwise disjoint support, suppose that c =
c1 ⊗ c2 ⊗ . . .⊗ ct ∈ C ′′, and (i1, i2, . . . , it) ∈ supp(c). Then

0 6= ci1,i2,...,it = (c1)i1 · (c2)i2 · · · (ct)it ,

142

so we must have that (c1)i1 , (c2)i2 , . . . , (ct)it are all nonzero. We conclude that

supp(c) ⊆ supp(c1)× supp(c2)× · · · × supp(ct).

Now, suppose that c = c1 ⊗ . . .⊗ ct, c′ = c′1 ⊗ . . .⊗ c′t are a pair of codewords in C ′′ with
cj 6= c′j for some j ∈ [t]. Since all codewords in C ′ have pairwise disjoint support it must
hold that supp(cj) ∩ supp(c′j) = ∅, and we conclude that supp(c) ∩ supp(c′) = ∅.

The set C̄. Now, let B ⊆ Fq be an arbitrary subset of size `, and let

C̄ :=

{∑
c∈C′′

βc · c
∣∣∣∣ βc ∈ B for all c ∈ C ′′

}

be the subset of C⊗t containing all linear combinations of codewords in C ′′ with coeffi-
cients in B. Since all codewords in C ′′ are nonzero with pairwise disjoint support, they
are in particular linearly independent in Fnt ,7 so the set C̄ contains `rt distinct codewords
in C⊗t.

Input lists. Finally, we wish to define input lists Si1,...,it for any coordinate (i1, . . . , it) ∈
[n]t so that for any codeword c ∈ C̄, and for any coordinate (i1, . . . , it) ∈ [n]t, it holds that
ci1,...,it ∈ Si1,...,it .

To this end, we observe that since codewords in C ′′ have pairwise disjoint support,
for each coordinate (i1, . . . , it) ∈ [n]t, there is at most one codeword c ∈ C ′′ for which
ci1,...,it is nonzero. Therefore this is the only term which can contribute nontrivially to
the value in the (it, . . . , it) coordinate of a codeword in C̄. So we can define the corre-
sponding input list Si1,...,it as

Si1,...,it := {β · ci1,...,it : β ∈ B}

if such a codeword c exists, and as Si1,...,it = {0} otherwise. Note that each set Si1,...,it has
size at most `, and that they satisfy the required property.

This yields a set of `rt codewords from C⊗t that are contained in the output list for
the input list tuple S defined above, proving the theorem.

7.5.2 Concrete Lower Bound on Output List Size

In this section, we demonstrate a setting of parameters that yields Corollary 7.1.12 from
the introduction, restated below.

7This also follows from the fact that all codewords in C′′ are linearly independent together with
Fact 7.5.1.

143

Corollary 7.1.12. For any δ > 0 and ` > 1 there exists L > 1 such that the following
holds for any sufficiently large n. There exists a linear code C ≤ Fnq of relative distance δ
that is (Ω(δ), `, L)-list-recoverable, but C⊗t ≤ Fntq is only (0, `, L′)-list-recoverable for L′ ≥
exp((2δ)−(t−3/2) ·

√
logL).

We use the following result on the list-recoverability of random linear codes from [RW18].
Theorem 7.5.3 ([RW18], Corollary 3.3). There exists an absolute constant b0 so that the fol-
lowing holds. For any ε > 0, ` ≥ 1, and a prime power q ≥ `b0/ε, a random linear code C ≤ Fnq
of rate 1− ε is (Ω(ε), `, L)-list recoverable for

L ≤
(
q`

ε

)(log `)/ε

· exp

(
log2 `

ε3

)
with probability 1− exp(−Ω(n)).

Proof of Corollary 7.1.12. Let C ≤ Fnq be a linear code as promised by Theorem 7.5.3 of
rate 1 − 2δ and q = `O(1/δ) that is (Ω(δ), `, L)-list-recoverable for L = exp((log2 `)/δ3),
or equivalently, ` = exp(δ3/2 ·

√
logL). By Corollary 7.3.14, we may further assume

that the code C has relative distance at least δ. Now, by Theorem 7.1.11 we must have
L′ ≥ `(2δ)−t = exp((2δ)−(t−3/2) ·

√
logL).

7.5.3 Lower Bound for Local List-Recovery

We now prove Corollary 7.1.13 from the introduction, restated below.
Corollary 7.1.13. For any δ > 0 and sufficiently large n there exists a linear code C ≤ Fnq of
relative distance δ such that the following holds. Suppose that C⊗t ≤ FNq is (1

N
, 2, L)-locally

list-recoverable with query complexity Q. Then Q · L ≥ NΩδ(1/ log logN).
We first recall Lemma 7.4.14 (restated below in a shorter form) which says that a

locally list-decodable (and in particular locally list-recoverable) code with output list
size L and query complexityQ is also locally correctable with query complexity roughly
Q · L.
Lemma 7.5.4. Suppose that C ⊆ Σn is a code of relative distance δ that is (Q,α, 0.1, L)-locally
list-decodable for α < δ/2. Then C is

(
O
(
Q · L · log2 n

(δ/2−α)2

)
, α
)

-locally correctable.

So to prove Corollary 7.1.13, it is enough to show a lower bound on the query com-
plexity for local correcting C⊗t, assuming that the output list for list-recovering C⊗t is
small. To show such a lower bound, we first observe that for any linear code C, the (ab-
solute) distance of C⊥ is a lower bound on the query complexity for locally correcting
C.
Lemma 7.5.5. Suppose that C ≤ Fn is a linear code that is (Q, 1

n
)-locally correctable. Then

Q ≥ ∆(C⊥)− 2.
We prove Lemma 7.5.5 in Section 7.5.4. To apply this lemma to C⊗t we further ob-

serve that the tensor product preserves the dual distance of the base code.

144

Lemma 7.5.6. Suppose that C1 ≤ Fn1 , C2 ≤ Fn2 are linear codes, and that C⊥1 , C⊥2 have absolute
distances ∆1,∆2, respectively. Then (C1⊗C2)⊥ has absolute distance min{∆1,∆2}. In particu-
lar, if C ≤ Fn is a linear code and C⊥ has absolute distance ∆, then (C⊗t)⊥ has absolute distance
∆ for any t ≥ 1.

The proof of Lemma 7.5.6 is provided in Section 7.5.5. We now proceed to the proof
of Corollary 7.1.13.

Proof of Corollary 7.1.13. Let C ≤ Fnq be a random linear code of rate 1 − 2δ. By Corol-
lary 7.3.14, for sufficiently large q, the code C will have relative distance at least δ with
high probability. Moreover, since C⊥ has rate 2δ, by the same corollary we also have that
C⊥ has relative distance at least 1− 3δ with high probability. We conclude for any suffi-
ciently large n the existence of a linear code C ≤ Fnq of rate 1 − 2δ and relative distance
at least δ such that C⊥ has relative distance at least 1− 3δ.

Next observe that for the code C⊗t to be (Q, 1
N
, 0.1, 2, L)-locally list-recoverable, it

in particular must be (0, 2, L)-list-recoverable, so the lower bound from Theorem 7.1.11
implies that L ≥ 21/(2δ)t . Now, if 21/(2δ)t ≥ N then we have that Q · L ≥ 21/(2δ)t ≥ N ,
and we are done. So we may assume that 21/(2δ)t < N which implies in turn that t =
Oδ(log logN) and n = N1/t = NΩδ(1/ log logN).

Moreover, as we have assumed we have a (Q, 1
N
, 0.1, 2, L)-local list-recovery algo-

rithm for C⊗t, we also have a (Q, 1
N
, 0.1, L)-local list-decoding algorithm forC⊗t. Lemma 7.5.4

then promises that we have a (O(Q ·L · log2N
(δt/2−1/N)2

), 1
N

)-local correction algorithm for C⊗t.

Now, by Lemma 7.5.6 we have that (C⊗t)⊥ has (absolute) distance at least (1− 3δ)n,
and consequently Lemma 7.5.5 implies that

O

(
Q · L · log2N

(δt/2− 1
N

)2

)
≥ (1− 3δ)n− 2 = NΩδ(1/ log logN) .

This implies Q · L ≥ NΩδ(1/ log logN), as desired.

7.5.4 Dual Distance is a Lower Bound on Query Complexity: Proof of
Lemma 7.5.5

First, we recall the standard fact that (absolute) dual distance ∆ implies that the uniform
distribution over the code is (∆− 1)-wise independent.
Fact 7.5.7 ([ABI86]). Let C ≤ Fnq be a linear code, and suppose that C⊥ has (absolute) distance
∆. Then for all 1 ≤ i1 < · · · < is ≤ n with s < ∆, and all a1, . . . , as ∈ Fq,

P
c∼C

(ci1 = a1 ∧ · · · ∧ cis = as) =
1

qs
.

Let ∆ := ∆(C⊥). Making use of Yao’s principle, it suffices to show a distribution µ
over vectors at absolute distance at most 1 from C such that the following holds. For any

145

deterministic algorithm making at most ∆ − 2 queries to its input w sampled according
to µ, the probability that it correctly computes c1 is at most 1/3, where c is the unique
codeword in C at absolute distance at most 1 from w. We will in fact show that no
deterministic query algorithm can correctly compute c1 with probability greater than
1/q.

Let µ denote the distribution that samples c ∈ C uniformly at random and then
sets c1 = 0. Let A be a deterministic algorithm making at most ∆ − 2 queries, and let
j1, . . . , js ∈ [n] denote the queries made by A, where we assume s ≤ ∆ − 2. Note that
queryingw1 does not help A, as it will always read 0. Hence, without loss of generality,
1 /∈ {j1, . . . , js}.

Now, by Fact 7.5.7 and Bayes’ rule, for any b1, . . . , bs, a ∈ Fq, if c ∼ C is distributed
uniformly,

P (c1 = a|cj1 = b1, . . . , cjs = bs) =
P (c1 = a, cj1 = b1, . . . , cjs = bs)

P (cj1 = b1, . . . , cjs = bs)
=
q−(s+1)

q−s
=

1

q
.

Additionally, observe that the distribution of the tuple (cj1 , . . . , cjs) is the same if c is a
uniformly random codeword from C or if it is sampled according to µ.

Hence, if we think of the query algorithm as implementing a (deterministic) func-
tion g : Fsq → Fq from the responses to its queries to its guess for c1, regardless of the
responses b1, . . . , bs to the queries, we have

P
w∼µ

(c1 = g(b1, . . . , bs)|wj1 = b1, . . . ,wjs = bs) =
1

q
,

where c is the unique codeword in C for which d(c,w) ≤ 1
n

. That is, the query algorithm
will not be able to guess c1 with probability greater than 1/q, as claimed.

7.5.5 Tensor Product Preserves Dual Distance: Proof of Lemma 7.5.6

First note that we clearly have that ∆((C1⊗C2)⊥) ≤ min{∆1,∆2}: for example, the matrix
whose first column is a vector from C⊥1 of weight ∆1 and all other columns are 0 gives a
matrix in (C1⊗C2)⊥ of weight ∆1, and similarly a matrix in (C1⊗C2)⊥ of weight ∆2 can be
constructed. We now establish the opposite inequality of ∆((C1⊗C2)⊥) ≥ min{∆1,∆2}.

It is well-known (and not hard to show) that the (absolute) distance of a code C is
the minimum number of linearly dependent columns in a parity-check matrix for C.
Furthermore, if G is a generating matrix for C then GT is a parity-check matrix for C⊥.
We conclude that the distance of C⊥ is the minimum number of linearly dependent rows
in a generating matrix for C.

Let G1, G2 be generating matrices for C1, C2, respectively, and note that by the above,
any collection of t1 < ∆1, t2 < ∆2 rows of G1, G2, respectively, are linearly independent.
Next recall that G1⊗G2 is a generating matrix for C1⊗C2, and so it suffices to show that
for any t < min{∆1,∆2}, any collection of t rows of G1 ⊗G2 are linearly independent.

146

Let u1, u2, . . . , un1 and v1, v2, . . . , vn2 denote the rows of G1, G2, respectively, and note
that each row in G1 ⊗ G2 is of the form ui ⊗ vj for some i ∈ [n1], j ∈ [n2]. Fix t <
min{∆1,∆2}, and suppose that ui1 ⊗ vj1 , ui2 ⊗ vj2 , . . . , uit ⊗ vjt is a collection of t rows of
G1⊗G2. Then by the above we have that both collections ui1 , ui2 , . . . , uit and vj1 , vj2 , . . . , vjt
are linearly independent (ignoring duplications). Fact 7.5.1 implies in turn that the col-
lection ui1 ⊗ vj1 , ui2 ⊗ vj2 , . . . , uit ⊗ vjt is also linearly independent. This concludes the
proof of the lemma.

147

148

Chapter 8

Dimension Expanders: An Application
of List-Decodable Codes

In this chapter, we show that techniques developed in the context of list-decoding rank
metric codes can be used to provide a construction of dimension expanders, which are
a linear-algebraic analog of expander graphs.

8.1 Introduction

The field of pseudorandomness is concerned with efficiently constructing objects that
share desirable properties with random objects while using no or little randomness.
The ideas developed in pseudorandomness have found broad applications in areas such
as complexity theory, derandomizaton, coding theory, cryptography, high-dimensional
geometry, graph theory, and additive combinatorics. Due to much effort on the part of
many researchers, nontrivial constructions of expander graphs, randomness extractors
and condensers, Ramsey graphs, list-decodable codes,1 compressed sensing matrices,
Euclidean sections, and pseudorandom generators and functions have been presented.
Interestingly, while these problems may appear superficially to be unrelated, many of
the techniques developed in one context have been useful in others, and the deep con-
nections uncovered between these pseudorandom objects have led to a unified theory of
“Boolean pseudoranomness”. See for instance this survey by Vadhan [Vad12] for more
discussion of this phenomenon.

More recently, there is a developing theory of “algebraic pseudorandomness,” wherein
the pseudorandom objects of interest now have “algebraic structure” rather than a
purely combinatorial structure. In these scenarios, instead of studying the size of sub-
sets or min-entropy, we consider the dimension of subspaces. Many analogs of classi-
cal pseudorandom objects have been defined, such as dimension expanders, subspace-

1Indeed, the star of this thesis can be naturally considered a pseudorandom object; recall that the best
known constructions of list-decodable codes are uniformly random codes.

149

evasive sets, subspace designs, rank-preserving condensers, and list-decodable rank
metric codes. Beyond being interesting in their own rights, these algebraic pseudoran-
dom objects have found many applications: for example, subspace-evasive sets have
been used in the construction of Ramsey graphs [PR04] and list-decodable codes [GX12;
GW13]; subspace designs have been used to list-decode codes over the Hamming met-
ric and the rank metric [GW14; GWX16]; and rank-preserving condensers have been
used in affine extractors [GR08a] and polynomial identity testing [KS11; FS12].

In this chapter, we focus upon providing explicit constructions of dimension ex-
panders over finite fields. A dimension expander is a collection of d linear maps Γj : Fn →
Fn such that, for any subspace U ⊆ Fn of sufficiently small dimension, the sum of the
images of U under all the maps Γ1(U) + · · · + Γd(U) has dimension which is a constant
factor larger than dimU . As suggested by their name, dimension expanders may be
viewed as a linear-algebraic analog of expander graphs. Indeed, imagine creating a
graph with vertex set Fn, and then adding an edge from a vertex u ∈ Fn to the vertices
Γj(u).2 Alternatively, consider the bipartite graph with left and right partition given by
Fn, and attach a vertex u ∈ Fn in the left partition to Γj(u) in the right partition for each
j. For this reason, d is referred to as the degree of the dimension expander. The property
of being a dimension expander then says that, given any (sufficiently small) subspace,
the span of the neighborhood will have appreciably larger dimension. Indeed, we use
the notation Γj for the linear maps in analogy with the “neighborhood function” of a
graph. Just as with expander graphs, we seek dimension expanders with constant de-
gree, and moreover we would like to be able to expand subspaces of dimension at most
ηn by a multiplicative factor of β, where η = Ω(1) and β = 1 + Ω(1). We refer to such an
object as an (η, β)-dimension expander. If β = Ω(d), we deem the dimension expander
degree-proportional. If moreover β = (1− ε)d, we deem the dimension expander lossless.
Via a probabilistic argument, it is a simple exercise to show that constant-degree lossless
dimension expanders exist over every field.

Finally, we indicate that unbalanced bipartite expander graphs play a key role in
constructions of extractors and other Boolean pseudorandom objects. In this scenario,
the left partition is significantly larger than the right partition, but we still have that
sufficiently small subsets U of the left partition expand significantly, with (1 − ε)d|U |
neighbors in the right partition in the lossless case. Such unbalanced expanders are
closely related to randomness condensers, which preserve all or most of the min-entropy
of a source while compressing its length. The improved min-entropy rate at the output
makes subsequent extraction of nearly-uniform random bits easier. Indeed, the extrac-
tors in [GUV09] were obtained via this paradigm, once lossless expanders based on
list-decodable codes were constructed. Inspired by this, we consider the challenge of
constructing unbalanced dimension expanders: for N and n not necessarily equal, we
would like a collection of maps Γ1, . . . ,Γd : FN → Fn that expand sufficiently small sub-
spaces by a factor of≈ d. We quantify the “unbalancedness” of the dimension expander
by b = N

n
, and we refer to it as a b-unbalanced dimension expander in Fn. Again, if the ex-

2In general, this yields a directed graph. However, we may assume the maps Γj are invertible and
then add the maps Γ−1

j to the collection, which makes the graph undirected.

150

pansion factor is Ω(d) we deem the unbalanced dimension expander degree-proportional,
while if the expansion factor is (1− ε)d we deem it lossless.

8.1.1 Our results

We provide various explicit constructions of dimension expanders. More precisely, we
have a family of sets of matrices {{Γ(nk)

1 , . . . ,Γ
(nk)
d }}k∈N for an infinite sequence of inte-

gers n1 < n2 < · · · , where each Γ
(nk)
j is an nk × nk matrix (or nk × bnk matrix in the

case of b-unbalanced expanders). The family is deemed explicit if there is an algorithm
outputting the list of matrices Γ

(nk)
1 , . . . ,Γ

(nk)
d in poly(nk) field operations.

First of all, we provide the first explicit construction of a lossless dimension ex-
pander. Moreover we emphasize that the η parameter is optimal as well, as one cannot
hope to expand subspaces of dimension more than n

d
by a factor of ≈ d.

Theorem 8.1.1 (Informal Statement; cf. Theorem 8.5.2). For all ε > 0 constant, there exists
an integer d = d(ε) sufficiently large such that there is an explicit family of (1−ε

d
, (1 − ε)d)-

dimension expanders of degree d over Fn when |F| ≥ Ω(n).
As a final remark, we comment that the dependence of d on ε is quite modest: we ob-

tain d = O(1/ε3). This compares favorably with the degree achievable by a randomized
construction, which guarantees d = O(1/ε2); see Proposition 8.2.5 and the subsequent
discussion.

The main drawback of the above result is the constraint on the field size. Our
next result allows for smaller field sizes, but we are only able to guarantee degree-
proportional expansion. We remark that prior to this work, no explicit constructions
of degree-proportional dimension expanders were known.
Theorem 8.1.2 (Informal Statement; cf. Theorem 8.5.1). For all δ > 0 constant, there exists
an integer d = d(δ) sufficiently large such that there is an explicit family of

(
Ω
(

1
δd

)
,Ω(δd)

)
-

dimension expanders of degree d over Fn when |F| ≥ nδ.
Moreover, our paradigm is flexible enough to allow for the construction of unbal-

anced dimension expanders. We remark that while the results of Forbes and Guruswami
[FG15] could be adapted to obtain nontrivial constructions of unbalanced expanders,
our work is the first to explicitly state this. Furthermore, our work is the first to achieve
lossless expansion, or even degree-proportionality. First, we provide a construction of a
lossless unbalanced dimension expander, again over fields of linear size.
Theorem 8.1.3 (Informal Statement; cf. Theorem 8.6.7). For all ε > 0 and integer b ≥ 1,
there exists an integer d = d(ε, b) sufficiently large such that there is an explicit family of b-
unbalanced (1−ε

db
, (1− ε)d)-dimension expanders of degree d over Fn when |F| ≥ Ω(n).

Again, the dependence of d is O(b/ε3), which is only a factor of 1/ε larger than the
randomized construction (Proposition 8.2.5). This result is again complemented by a
construction of degree-proportional unbalanced dimension expanders over fields of ar-
bitrarily small polynomial size.

151

Theorem 8.1.4 (Informal Statement; cf Theorem 8.6.6). For all δ > 0 and integer b ≥ 1,
there exists an integer d = d(δ, b) sufficiently large such that there is an explicit family of b-
unbalanced

(
Ω
(

1
δbd

)
,Ω(δd)

)
-dimension expanders of degree d over Fn when |F| ≥ nδ.

Our final contribution is to define subspace evasive subspaces, and observe that they
yield degree-proportional dimension expanders. Informally, a subspace evasive sub-
space H is an Fq-subspace that has small intersection with any subspace of bounded
dimension defined over an extension field. To properly define this notion, it is best to
identify Fnq with Fqn , and then consider Fqd-subspaces of Fqn for d|n. The subspace
H ⊆ Fqn is then said to be (s, A, d)-subspace evasive if for every Fqd-linear subspace
W ⊆ Fqn of dimension s, dimFq(H ∩W) ≤ As.
Proposition 8.1.5 (Informal Statement; cf. Proposition 8.7.4). There exists a (s, 1+O(1/k), d)-
subspace evasive subspace for all s ≤ O(n/d). Moreover, given an explicit subspace evasive
subspace achieving these parameters, there is an explicit construction of a degree-proportional
dimension expander.

8.1.2 Interlude: Rank Metric Codes

Before describing our approach in detail, we take a brief detour to discuss rank met-
ric codes [Gab85]. While we introduced these objects in Chapter 5, we did not discuss
explicit constructions. As our dimension expanders are inspired by recent explicit con-
structions of list-decodable rank metric codes, the time is ripe for their introduction.

Just as a discussion of list-decodable codes over the Hamming metric must start with
Reed-Solomon codes, a discussion a list-decodable codes over the rank metric much
start with Gabidulin codes.
Example 8.1.6 (Gabidulin Codes, [Gab85]). In analogy with Reed-Solomon codes which
are defined by evaluations of low degree polynomials, Gabidulin codes are defined by
evaluations of low degree linearized polynomials. A q-linearized polynomial is any polyno-
mial of the form

f(X) =
k−1∑
i=0

fiX
qi

where the coefficients fi ∈ Fqm . In justification of their name, observe that the identities
(α + β)q = αq + βq3 for all α, β ∈ Fqm and aq = a for all a ∈ Fq demonstrate that a
linearized polynomial, when viewed as a map from Fqm → Fqm , is linear over Fq in the
sense that f(aα + bβ) = af(α) + bf(β) for all a, b ∈ Fq and α, β ∈ Fqm . The maximum
i for which fi 6= 0 is the q-degree of f , and we let Fqm [X; (·)q]<k denote the space of
all linearized polynomials over Fqm of q-degree less than k, which narturally forms a
k-dimensional vector space over Fqn .

Thus, as f ∈ Fqm [X; (·)q]<k can be viewed as a linear map, we can ask about the
dimension of its kernel. Note that as f is a degree qk−1 polynomial, it can have at most
qk−1 roots, and thus dim(ker f) ≤ k − 1.

3Which is informally referred to as the “freshman’s dream”.

152

Now, for some n ≤ m, let α1, . . . , αn ∈ Fqm be linearly indepdent over Fq. Next,
let ω1, . . . , ωm be a basis for Fqm/Fq, and for α ∈ Fqm let ω(α) ∈ Fmq denote the vector
(a1, . . . , am)>, where α =

∑m
i=1 aiωi. We extend this notation to vectors v ∈ Fnqm , so that

ω(v) ∈ Fm×nq is a matrix. Finally, we define

Gab[n,m, k, q] := {(ω(f(α1), f(α2), . . . , f(αn)) : f ∈ Fqm [X; (·)q]<k} .

(We remark that the resulting code parameters do not depend on the specific choice
of sets {αi} and {ωi}, so we omit their dependence in the above notation.) Now, since
every nonzero f ∈ Fqm [X; (·)q]<k satisfies dim(ker f) ≤ k−1, any matrix in Gab[n,m, k, q]
has rank at least n− k + 1. Moreover, the rate of Gab[n,m, k, q] is k

n
. Thus, we conclude

that Gabidulin codes achieve the rank metric Singleton bound (Theorem 5.1.1).

Finally, we remark that Gabidulin Codes may naturally be viewed as a subset of Fnqm .
Moreover, they are in fact linear over the extension field Fqm , in the sense that the set
Gab[n,m, k, q] is closed under multiplication by scalars from Fqm .

Thus, Gabidulin codes are essentially an optimal rank metric code: they do not even
suffer from the alphabet restriction that plagues RS codes. However, as mentioned in
Section 5.1, when it comes to list-decoding Gabidulin codes most results are negative.
In response to this state-of-affairs, Guruswami, Wang and Xing [GWX16] carefully con-
structed subcodes of Gabidulin codes and showed that they are list-decodable up to
radius 1− R − ε with lists of size qO(1/ε4). The code may also readily be seen to be “list-
recoverable” in the following sense: given vector spaces V1, . . . , Vn ⊆ Fm of bounded
dimension, the number of matrices in A ∈ C with A∗,i ∈ Vi for all i ∈ [n] is bounded,
where A∗,i denotes the i-th column of A. In brief, the authors use a pseudorandom ob-
ject called a subspace design to prune the space of linearized polynomials in Fqm [X; (·)q]<k
that they evaluate. Our construction of dimension expanders, which we outline next, is
very much inspired by the rank metric code of [GWX16].

8.1.3 Our approach

In the case of Boolean pseudorandomness, not long after the construction of Parvaresh-
Vardy codes and folded Reed-Solomon codes [PV05; GR08b], the techniques used to
prove list-recoverability of these codes were adapted to show expansion of unbalanced
bipartite expanders built from these codes [GUV09]. Our approach is strongly inspired
by the connection between list-recovery and expansion that drives [GUV09] and its in-
stantiation with algebraic codes shown to achieve optimal redundancy for list-recovery.
Indeed, our methodology can be viewed as an adaption of the GUV approach to the “lin-
earized world”. Various challenges arise in attempting to adapt the GUV framework to
the setting of Gabidulin-like codes. For instance, we are no longer able to “append the
seed” (in our context, the field element αj) to the output of the neighborhood functions
as is done in [GUV09], as that will prevent the maps from being linear.4 More signif-

4One could instead try tensoring the output with the seed, but it is unclear to us how to make this
approach work without significantly degrading the expansion factor.

153

icantly, we also need to perform a careful “pruning” of subspaces which arise in the
analysis by exploiting the extra structure possessed by these subspaces. Fortunately for
us, the rank metric codes of [GWX16] demonstrate that the solution is to use subspace
designs. However, are required to provide a new constructions of subspace designs, as
none of the results present in the literature a suitable for our purposes. Broadly speak-
ing, our approach necessitates the use of more sophisticated ideas from linear-algebraic
list-decoding than were present in [GUV09].

We now describe our approach in more detail. Recall that Fqn [X; (·)q]<k denotes the
space of all linearized polynomials of q-degree less than k. We fix a subspace F ≤
Fqn [X; (·)q]<k of dimension n over Fq, and then each Γj is simply the evaluation of f ∈ F
at a point αj ∈ Fqn , i.e., Γj(f) = f(αj). We will in fact choose α1, . . . , αd to span a degree
d field extension Fh over Fq; this is much like what is done in [GWX16].

The analysis of this construction mirrors the proof of the list-decodability of the
codes from [GWX16] and we sketch it here. In contrapositive, the dimension expander
property amounts to showing that for every subspace V ≤ Fqn of bounded dimension,
the space of f ∈ F such that f(αj) ∈ V for all j ∈ [d] has dimension about a factor d
smaller. So we study the structure of the space of polynomials f ∈ Fqn [X, (·)q]<k which,
for some fixed subspace V , have f(αj) ∈ V for all j ∈ [d], and show that it forms a
periodic subspace (cf. Definition 8.2.8). Thus, the challenge at this point is to find an ap-
propriate subspace F ≤ Fqn [X; (·)q]<k that has small intersection with every periodic
subspace.

We accomplish this by using an appropriate construction of a subspace design (cf. Def-
inition 8.2.6). Briefly, subspace designs are collections of subspaces {Hi}ki=1 such that, for
any subspace W of bounded dimension, the total intersection dimension

∑k
i=1 dim(Hi∩

W) is small. In fact, we will be interested in a slightly more general object: we are only
required to have small intersection with Fh-subspaces W , where we recall that Fh is an
extension field of Fq. Once we have a good subspace design, it will suffice to define
F =

{
f(X) =

∑k−1
i=0 fiX

qi : fi ∈ Hi+1

}
.

Thus, we have reduced the task of constructing dimension expanders to the task
of constructing subspace designs. We provide two constructions, yielding our two
claimed constructions of dimension expanders. Both use an explicit subspace design
given in [GK16] as a black box (see Lemma 8.4.1). We remark that in this work the
authors only considered the d = 1 case, i.e., the Hi’s were required to have small in-
tersection with all Fq-subspaces, and not just Fh-subspaces. Thus, our task is easier in
the sense that we only require intersection with Fh-subspaces to be small. However, for
our purposes, we will require a better bound on the total intersection dimension than
that which is guaranteed by [GK16]. We also remark that this construction requires
linear-sized fields which is the source of our restrictions on field size.

The subspace design which yields our degree-proportional expander is more ele-
mentary so we describe it first. Essentially, we take the subspace design of [GK16] and
define it over an “intermediate field” F`, i.e., Fq ⊆ F` ⊆ Fh. By appropriately choos-

154

ing the degree of the extension we are able to guarantee smaller intersections with Fh-
subspaces and also allow q to be smaller (as it is now only ` that must be linear in n, and
we can take ` ≈ q1/δ).

Our construction which yields lossless dimension expanders is more involved. We
take the construction of [GK16] and embed the subspaces isomorphically into Fq[Y]<δn
(for an appropriately chosen constant δ > 0), where Fq[Y]<δn denotes the Fq-vector
space of polynomials of degree < δn. We in turn map each of these subspaces into
Fn/dh by evaluating the polynomials at a tuple of correlated degree d places (recall that
h = qd). Concretely, evaluating a polynomial at a degree d place corresponds to reducing
the polynomial modulo an irreducible degree d polynomial g(Y), and then identifying
Fq[Y]/(g(Y)) ∼= Fqd . Identifying Fn/dh with Fqn completes the construction. Ideas similar
to the linear algebraic list-decoding of folded Reed-Solomon codes [Gur11; GW13] are
used to prove the final bound on intersection dimension, which with a careful choice
of parameters is good enough to guarantee lossless expansion. For technical reasons, in
order to explicitly construct the degree d place we require n = q − 1.

Lastly, while we are able to use explicit constructions of subspace designs to ob-
tain degree-proportional dimension expanders, we observe that with high probability
a random Fq-subspace H of dimension n/k will have small intersection with every Fh-
subspace W of bounded dimension. We refer to such an H as a subspace evasive subspace
(cf. Definition 8.7.1). Then, instantiating our approach withF =

{
f(X) =

∑k−1
i=0 fiX

qi : fi ∈ H
}

will provide a degree-proportional dimension expander. Thus, an explicit construction of
a subspace evasive subspace with parameters matching the probabilistic construction
would yield an explicit degree-proportional dimension expander. We leave the con-
struction of such an H , which seems like an interesting object in its own right, for future
work.

8.1.4 Previous Work

We now survey previous work on dimension expanders. Previous constructions have
followed one of three main approaches: the first uses Cayley graphs of groups satisfying
Kazhdan’s property T , the second uses monotone expanders, and the third uses rank
condensers.

Property T . The problem of constructing dimension expanders was originally pro-
posed by Wigderson [Wig04; Bar+04]. Along with the definition, he conjectured that
dimension expanders could be constructed with Cayley graphs. This is in analogy with
expander graphs, where such approaches have been very successful. To construct an
expanding Cayley graph, one uses a group G with generating set S satisfying Kazhdan’s
property T . Wigderson conjectured (see Dvir and Wigderson [DS11, Conjecture 7.1]) that
an expanding Cayley graph would automatically yield a dimension expander. More
precisely, if one takes any irreducible representation ρ : G → GLn(F) of the group G,

155

then ρ(S) = {ρ(g) : g ∈ S}would provide a dimension expander.

In characteristic 0, Lubotzky and Zelmanov [LZ08] succeeded in proving Wigder-
son’s conjecture. In an independent work, Harrow [Har08] proved the same result in
the context of quantum expanders, which imply dimension expanders in characteristic
zero. Unfortunately, their approaches intrinsically use the notion of unitarity which
does not possess a meaningful definition over positive characteristic. Lubotzky and
Zelmanov also provided an example of an expanding group with an irreducible repre-
sentation over a finite field that does not yield a dimension expander. 5 The following
theorem summarizes this discussion.
Theorem 8.1.7 ([LZ08; Har08]). Let F be a field of characteristic zero, n ≥ 1 an integer. There
exists an explicit (1/2, 1 + Ω(1))-dimension expander over Fn of constant degree.

Unfortunately, this approach is inherently unable to construct unbalanced dimen-
sion expanders. Moreover, it is unclear to us if it is possible to obtain expansion propor-
tional to the degree via this strategy.

Monotone expanders. Consider a bipartite graphGwith left and right partition given
by [n] and maximum left-degree d, and let Γ1, . . . ,Γd : [n] → [n] denote the neighbor
(partial)6 functions of the graph, i.e., each left vertex i ∈ [n] is connected to Γj(i) when-
ever it’s defined. One can then define the linear maps Γ′1, . . . ,Γ

′
d which map ei 7→ eΓj(i)

whenever Γj(i) is defined and then extending linearly, where the ei are the standard ba-
sis vectors. It is easily seen that ifG is an expander, the corresponding collection {Γ′j}dj=1

will expand subspaces of the form span{ei : i ∈ S} for S ⊆ [n]. To expand all subspaces
(and hence obtain dimension expanders), Dvir and Shpilka [DS11] implicitly observed
that it is sufficient for the maps Γj to be monotone (this observation is made explicit in
[DW10]). Note that the matrices Γ′j have entries in {0, 1}, and they form a dimension
expander over every field.

Thus, in order to construct dimension expanders, it suffices to construct monotone
expander graphs. Unfortunately, constructing monotone expander graphs is a highly
non-trivial task: indeed, probabilistic arguments seem to be insufficient to even estab-
lish the existence of monotone expanders (see [DW10; BY13]). Nonetheless, Dvir and Sh-
pilka [DS07] succeeded in constructing monotone expanders with logarithmic degree,
as well as constant-degree expanders with inverse-logarithmic expansion. Later, using
the zig-zag product of Reingold, Vadhan and Wigderson [RVW02], Dvir and Wigder-
son [DW10] constructed monotone expanders of degree log(c) n (the c-th iterated loga-
rithm) for any constant c. Moreover, given any constant-degree monotone expander as
a starting point (which is not known to exist via the probabilistic method), their method
is capable of constructing a constant degree monotone expander graph. Lastly, by a so-
phisticated analysis of expansion in the group SL2(R), Bourgain and Yehudayoff [BY13]
were able to construct explicit monotone expanders of constant degree. Thus, we have

5In the example the characteristic of the field divides the order of the group; it could be the case that
assuming this does not occur, any such irreducible representation yields a dimension expander.

6That is, Γj need only be defined on a subset of [n].

156

the following theorem.
Theorem 8.1.8 ([BY13]). Let n ≥ 1 be an integer. There exists an explicit (1/2, 1 + Ω(1))-
dimension expander of degree O(1) over Fn, for every field F.

Unfortunately, just as with the previous approach, it is unclear to us if this argument
could be adapted to yield degree-proportional dimension expanders.

Rank condensers. This final approach to constructing dimension expanders, devel-
oped by Forbes and Guruswami [FG15], uses rank condensers. Unlike the constructions
of the previous sections, it inherently uses properties of finite fields and ideas from al-
gebraic pseudorandomness more broadly, and thus is most in the spirit of our work.
The construction proceeds in two steps. First, one “trivially” expands the subspaces by
a factor of d by defining Tj : Fn → Fn ⊗ Fd mapping v 7→ v ⊗ ej . The challenge is then
to map Fn ⊗ Fd ∼= Fnd back to Fn such that subspaces do not decrease in dimension too
much. This is precisely the problem of lossy rank condensing, namely, of constructing a
small collection of linear maps Sk : Fnd → Fn such that, for any subspace U of bounded
degree, there exists some Sk such that dimSk(U) ≥ (1 − ε) dimU . To complete the con-
struction, one takes the set of SkTj for all k, j. We remark that the construction of the
rank condenser from this work uses the subspace designs of [GK16], providing more
evidence for the interrelatedness of the objects studied in algebraic pseudorandomness.
Unfortunately, the construction of subspace designs used in this work require poly-
nomially large fields. The authors are able to decrease the field size using techniques
reminiscent of code-concatenation at the cost of certain logarithmic penalties.

The following theorem was obtained.
Theorem 8.1.9 ([FG15]).

1. Let n, d ≥ 1. Assume |F| ≥ Ω(n2). There exists an explicit (Ω(1/
√
d),Ω(

√
d))-dimension

expander in Fn of degree d.
2. Let Fq be a finite field, n, d ≥ 1. There exists an explicit (Ω(1/d logq(dn)),Ω(d))-dimension

expander in Fnq of degree O(d2 logq(dn)).
In order to improve the dependence on the field size, improved subspace designs

over small fields were constructed by Guruswami, Xing and Yuan [GXY18]. These sub-
space designs yield a family of explicit (Ω(1/ logq logq n), 1 + Ω(1))-dimension expander
of degree O(logq n) over Fnq .

8.1.5 Organization

In Section 8.2 we set notation and define the various pseudorandom objects that we use
in our construction. We also provide probabilistic arguments ascertaining the existence
of good dimension expanders in order to set expectations. In Section 8.3 we prove that
the problem of constructing dimension expanders can be reduced to that of constructing
appropriate subspace designs, which is the task we address in Section 8.4. In Section 8.5,
we put all of the pieces together to deduce our main theorems for balanced dimension

157

Parameter Meaning Comments
n the dimension of the expander growing
q a prime power expanders will be Fq-linear
d the degree of the expander d|n
h a power of q evaluation points span Fh/Fq ; h = qd

k q-degree bound for linearized polynomials 1 ≤ k ≤ d, k|d
Fqn [X, (·)q]<k q-linearized polynomials of q-degree < k domain of expanders is a subspace

Fqn degree n extension of Fq image space of expander
m degree of Fqn/Fh m = n

d
N dimension of domain for unbalanced expanders k|N
b the “unbalancedness”; assume ∈ Z b = N

n

Table 8.1: Regularly used parameters and notations for Chapter 8.

expanders. In Section 8.6 we show that all our results readily adapt to the case of unbal-
anced expanders. Section 8.7 contains a discussion of subspace evasive subspaces. We
list open problems in Section 8.8. Proofs deferred from the main body are provided in
Section 8.9.

8.2 Background

Terminology. First, we introduce a piece of terminology specific to this chapter. Let
d be an integer dividing n and let h = qd. Recall that this gurantees the inclusions
Fq ⊆ Fh ⊆ Fqn . We will often have subspaces of W ⊆ Fqn that are linear over Fh, i.e.,
for all w ∈ W and α ∈ Fh we have αw ∈ W . When we wish to emphasize this, we will
say that W is an Fh-subspace. Moreover, we will write dimFq W or dimFhW if we need
to emphasize that the dimension is computed when viewing W as an Fq-subspace or as
an Fh-subspace, respectively. We remark that in this case, dimFq W = d · dimFhW .

8.2.1 Dimension Expanders

We now formally define dimension expanders and provide an alternate characterization
that we find easier to reason about.
Definition 8.2.1 (Dimension Expander). Let n, d ≥ 1 be an integer, η > 0 and β > 1.
Let Γ1, . . . ,Γd : Fn → Fn be linear maps. The collection {Γj}dj=1 forms a (η, β)-dimension
expander if for all subspaces U ≤ Fn of dimension at most ηn,

dim

(
d∑
j=1

Γj(U)

)
≥ β dimU .

The degree of the dimension expander is d.

When clear from context we refer to a dimension expander just as an expander. The
following proposition follows easily from the definitions.

158

Proposition 8.2.2 (Contrapositive Characterization). Let n ≥ 1 be an integer, η > 0 and
β > 1. Let Γ1, . . . ,Γd : Fn → Fn be linear maps. Suppose that for all V ≤ Fn of dimension at
most ηβn,

dim {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]} ≤ 1

β
dimV .

Then {Γj}dj=1 forms an (η, β)-dimension expander.

Proof. Let U ≤ Fn be a subspace of dimension at most ηn and put V =
∑d

j=1 Γj(U). If
dim(V) > ηβn then we are done, so assume dim(V) ≤ ηβn. By the assumption of the
proposition, this tells us that

dim {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]} ≤ 1

β
dimV .

Since U ⊆ {u ∈ Fn : Γj(u) ∈ V ∀j ∈ [d]}, we have dimU ≤ 1
β

dimV . Rearranging this
yields dimV ≥ β dimU , as was to be shown.

Next, we define a slight generalization of dimension expanders, wherein the domain
and codomain need not have the same dimension. That is, the linear maps Γj map
FN → Fn, where N and n may not be equal. We parametrize the “unbalancedness” of
the dimension expander by b = N

n
. In our construction we will assume b ∈ Z, although

this is not a fundamental restriction.
Definition 8.2.3 (Unbalanced Dimension Expanders). Let N, n, d ≥ 1 be integers, η > 0
and β > 1. Let Γ1, . . . ,Γd : FN → Fn be linear maps. Set b = N

n
. The collection {Γj}dj=1

forms a b-unbalanced (η, β)-dimension expander if for all subspaces U ≤ FN of dimension
at most ηN ,

dim

(
d∑
j=1

Γj(U)

)
≥ β dimU .

The degree of the unbalanced dimension expander is d.

The appropriate generalization of Proposition 8.2.2 is as follows.
Proposition 8.2.4 (Contrapositive Characterization). Let N, n ≥ 1 be integers, η > 0 and
β > 1. Put b = N

n
. Let Γ1, . . . ,Γd : FN → Fn be linear maps. Suppose that for all V ≤ Fn of

dimension at most ηβN ,

dim
{
u ∈ FN : Γj(u) ∈ V ∀j ∈ [d]

}
≤ 1

β
dimV .

Then {Γj}dj=1 forms a b-unbalanced (η, β)-dimension expander.
We now quote the parameters achievable by a random construction of unbalanced

dimension expanders. This sets the stage and ultimate target to aim for with explicit
constructions. We prove this proposition in Section 8.9.2, and we remark that our argu-
ment is completely analogous to that given in Section C.3 of [FG15].

159

Proposition 8.2.5 (Generalization of [FG15, Proposition C.10]). Let Fq be a finite field, N, n
positive integers and put b := N

n
. Let β > 1 and η ∈ (0, 1

bβ
). Then, assuming

d ≥ β +
b

1− bβη
+ logq 16 ,

there exists a collection of linear maps Γ1, . . . ,Γd : FNq → Fnq forming a (η, β)-unbalanced
dimension expander.

Thus, for b = 1, if we wish to have β = (1−ε)d and η = 1−ε
d

we may take d = O(1/ε2).
We remark that in Theorem 8.5.2, we obtain d = O(1/ε3). Similarly, for the b-unbalanced
case, if we would like β = (1 − ε)d and η = 1−ε

bd
we may take d = O(b/ε2), while in

Theorem 8.6.7 we obtain d = O(b/ε3).

8.2.2 Subspace Designs

A crucial ingredient in our construction of dimension expanders are subspace designs.
They were originally introduced by Guruswami and Xing [GX13] in order to obtain
algebraic codes which are list-decodable up to the Singleton bound. As in [GWX16], we
will be concerned with a slight weakening of this notion, where we are only concerned
with having small intersection with subspaces which are linear over an extension of the
base field, although we will also require the intersection dimension to be smaller.
Definition 8.2.6 (Subspace Design). Let V be a Fqd-vector space. A collectionH1, . . . , Hk ⊆
V of Fq-subspaces is called a (s, A, d)-subspace design in V if for every Fqd-subspace
W ⊆ V of Fqd-dimension s,

k∑
i=1

dimFq(Hi ∩W) ≤ As .

We call a subspace design explicit if there is an algorithm outputting Fq-bases for each
subspace Hi in poly(n) field operations.
Remark 8.2.7. In previous works, what we have termed a (s, A, d)-subspace design
would have been called a (s, As, d)-subspace design. We find it more convenient in
this work to remove the multiplicative factor of s from the parameter in the definition.

8.2.3 Periodic Subspaces

We now abstract the kind of structure that will be found in the subspace of Fnq which
is mapped entirely into a low-dimensional subspace of Fnq by the d linear transforma-
tions comprising our dimension expander. We note that our definition here is slightly
different in form and notation than earlier ones in [GX13; GWX16].
Definition 8.2.8 (Periodic Subspace). For positive integers n, k, s, d with d|n, an Fq-
subspace T of Fkqn is said to be (s, d)-periodic if there exists an Fqd-subspace W ⊆ Fqn

160

of dimension at most s such that for all j, 1 ≤ j ≤ k, and all ξ1, ξ2, . . . , ξj−1 ∈ Fqn , the
Fq-affine subspace

{ξj : ∃v ∈ T with vι = ξι for 1 ≤ ι ≤ j} ⊆ Fqn

belongs to a coset of W . In other words, for every prefix (ξ1, . . . , ξj−1), the possible ex-
tensions ξj to the j-th symbol that can belong to a vector in T are contained in a coset of
W .

An important property of periodic subspaces is that they have small intersection
with subspace designs. This is captured by the following proposition.
Proposition 8.2.9 ([GWX16], Proposition 3.9). Let T be a (s, d)-periodic Fq-subspace of Fkqn ,
and H1, . . . , Hk ⊆ Fqn be Fq-subspaces forming a (s, A, d) subspace design in Fqn . Then T ∩
(H1 × · · · ×Hk) is an Fq-subspace of dimension at most As.

8.3 Construction

As discussed in the introduction (Section 8.1), the construction of our dimension ex-
pander is inspired by recent constructions of variants of Gabidulin codes for list-decoding
in the rank metric. Indeed, the analysis of our dimension expander proceeds similarly
to the analysis of list-decodability of the rank metric codes presented in [GWX16].

Our dimension expanders map Fnq → Fnq . We view the domain as

F :=

{
f(X) =

k−1∑
i=0

fiX
qi : fi ∈ Hi, i = 0, . . . , k − 1

}
where H0, . . . , Hk−1 give a collection of Fq-subspaces of Fqn , each of Fq-dimension n

k

(thus, we assume k|n). We will choose H0, H1, . . . , Hk−1 forming a subspace design. We
view the image space as Fqn . Let h = qd, and let α1, . . . , αd give a basis for Fh over Fq.
We assume d|n and write md = n. For j = 1, . . . , d, we define

Γj : F → Fqn by f 7→ f(αj) . (8.1)

That is, each Γj(f) is just the evaluation of f at the basis element αj . These maps are
clearly linear over Fq.

Analysis. We now prove that the collection {Γj}dj=1 forms a dimension expander.

For positive integers D, s with s ≤ m, we define LD,s to be the space of polynomials
Q ∈ Fqn [Z0, . . . , Zs−1] of the form Q(Z0, . . . , Zs−1) = A0(Z0) + · · ·+As−1(Zs−1) with each
Ai ∈ Fqn [X; (·)q]<D, i.e., each Ai is a q-linearized polynomial of q-degree at most D − 1.
Lemma 8.3.1. Let V ⊆ Fqn be an Fq-subspace of dimension B. If Ds > B, there exists a
nonzero polynomial Q ∈ LD,s such that

∀v ∈ V, Q(v, vh, . . . , vh
s−1

) = 0 . (8.2)

161

Proof. Let v1, . . . , vB give a basis for V over Fq. Then, since γ 7→ γh = γq
d is a linear opera-

tion over Fq, so long asQ(vi, v
h
i , . . . , v

hs−1

i) = 0 for all i ∈ [B] we haveQ(v, vh, . . . , vh
s−1

) =
0 for all v ∈ V . Thus, finding such a Q amounts to solving a homogeneous linear sys-
tem over Fqn with B constraints. Since the Fqn-dimension of LD,s is Ds > B, a nonzero
Q ∈ LD,s meeting Condition (8.2) must exist.

Given a polynomial g(X) = g0 + g1X + · · ·+ grX
r and an automorphism τ of Fqn , we

write gτ for the polynomial gτ (X) = τ(g0)+τ(g1)X+ · · ·+τ(gr)X
r, and let gτ i = (gτ

i−1
)τ .

We let σ : γ 7→ γh, i.e., σ is the Frobenius automorphism of Fhm = Fqn over Fh.
Lemma 8.3.2. Let f ∈ Fqn [X] be a q-linearized polynomial with q-degree at most k − 1. Let
V ⊆ Fqn be an Fq-subspace, andQ ∈ LD,s a polynomial satisfying (8.2). Suppose that f(α) ∈ V
for all α ∈ Fh = Fqd and that D ≤ d− k + 1. Then

A0(f(X)) + A1(fσ(X)) + · · ·+ As−1(fσ
s−1

(X)) = Q(f(X), fσ(X), . . . , fσ
s−1

(X)) = 0 .
(8.3)

Proof. Let α ∈ Fh. Since f(α) ∈ V by assumption, we have

Q(f(α), f(α)h, . . . , f(α)h
s−1

) = 0

as we have assumed Q satisfies Equation (8.2). Now, since α ∈ Fh, we have αh = α, so

f(α)h =

(
k−1∑
i=0

fiα
qi

)h

=
k−1∑
i=0

fhi (αq
i

)h =
k−1∑
i=0

fhi α
qi = fσ(α) ,

and by iterating we have f(α)h
i

= fσ
i
(α) for all i = 0, . . . , s − 1. Thus, we find that for

all α ∈ Fh,
Q(f(α), fσ(α), . . . , fσ

s−1

(α)) = 0 .

Now, the univariate polynomial Rf (X) := Q(f(X), fσ(X), . . . , fσ
s−1

(X)) ∈ Fqn [X] has
q-degree at most (D − 1) + (k − 1) = D + k − 2. Thus, if D ≤ d − k + 1, the q-degree
of Rf (X) is at most d − 1. Since it vanishes on Fh, an Fq-subspace of dimension d, we
conclude that Rf (X) must be the 0 polynomial.

Lemma 8.3.3. The set of solutions to Equation (8.3), for any nonzero Q ∈ LD,s (for arbitrary
D), is an (s− 1, d)-periodic subspace.

Proof. First, by replacing A0, . . . , As−1 with Aq
j

0 , . . . , A
qj

s−1 for an appropriate j and iden-
tifying Xqn with X (which is valid since we only ever evaluate the polynomials on ele-
ments of Fqn), we may assume that there exists an i∗ ∈ {0, . . . , s− 1} such that Ai∗ has a
nonzero coefficient on X . (Of course, this might increase the q-degree of the Ai.)

Write Aι(X) = aι,0X + aι,1X
q + aι,2X

q2 + · · · for ι = 0, . . . , s − 1. Then, for ` =
0, 1, . . . , k − 1, we define

B`(X) := a0,`X + a1,`X
h + · · ·+ as−1,`X

hs−1

.

162

Since ai∗,0 6= 0, we see that B0 6= 0. Since s− 1 ≤ m− 1, if W = ker(B0), we find that W
is an Fh-subspace of Fqn = Fhm of dimension at most s− 1.

Condition (8.3) informs us that

A0(f(X)) + A1(fσ(X)) + · · ·+ As−1(fσ
s−1

(X)) = 0 . (8.4)

The coefficient of X in the left hand size of (8.4) is B0(f0); upon equating it to 0, we see
f0 ∈ W .

Now, fix an i ∈ {1, . . . , k − 1}. The coefficient of Xqi in the left hand side of (8.4) is

Bi(f
qi

0) +Bi−1(f q
i−1

1) + · · ·+B1(f qi−1) +B0(fi) .

Upon equating this coefficient to 0, we see that fi ∈ W +θi, where θi ∈ Fqn is determined
by f0, f1, . . . , fi−1. Specifically, we can take θi = −Bi(f

qi

0) − Bi−1(f q
i−1

1) − · · · − B1(f qi−1).
Therefore, for each choice of (f0, f1, . . . , fi−1), fi must belong to a coset of the subspace
W . This shows that the solutions lie in a (s− 1, d)-periodic subspace.

Equipped with these lemmas, we are in a position to deduce our main theorem for
this section.
Theorem 8.3.4. Let {Hi}k−1

i=0 give a (s − 1, A, d)-subspace design for all s − 1 ≤ µn for some
0 < µ < 1/d. Then {Γj}dj=1 is a (µA, d−k+1

A
)-dimension expander. Moreover if the subspace

design is explicit then the dimension expander is explicit.

Proof. We will appeal to Proposition 8.2.2. Let V ⊆ Fqn be an Fq-subspace of dimension
B ≤ (d− k + 1)µn. Let

U := {f ∈ F : Γj(f) ∈ V ∀j ∈ [d]}.

By the Fq-linearity of the polynomials f and the fact that α1, . . . , αd gives a basis for Fh
over Fq, we may rewrite this as

U = {f ∈ F : f(α) ∈ V ∀α ∈ Fh} .

Let D = d − k + 1 and choose the integer s such that B
D
< s ≤ B

D
+ 1 ≤ µn + 1. As

µ < 1/d, we have s ≤ n/d = m. By Lemma 8.3.1, we have a nonzero Q ∈ LD,s such that
Q(v, vh, . . . , vh

s−1
) = 0 for all v ∈ V . We then have that every f ∈ F satisfies (8.3), so

we conclude that U is contained in a (s− 1, d)-periodic subspace. Since s− 1 ≤ µn, our
assumption on {Hi}k−1

i=0 combined with Proposition 8.2.9 tells us thatU is contained in an
affine subspace over Fq of dimension at most A(s− 1). In particular, dimFq U ≤ A(s− 1).
Recalling s− 1 ≤ B

D
,

dimFq U ≤ A · B
D

=
A

D
· dimFq V .

Applying Proposition 8.2.2 with η = µA and β = D
A

, we conclude that {Γj}dj=1 gives a
(µA, D

A
)-dimension expander, as was to be shown.

163

Finally, as for the explicitness, suppose that H1, . . . , Hk are explicit. Thus, in poly(n)
field operations we may output Fq-bases B1, . . . ,Bk for H1, . . . , Hk. Then, we construct
the basis B = {f =

∑k−1
i=0 fiX

qi : fi ∈ Bi, i ∈ [k]}, and enumerate B = {g1, . . . , gn}.
Finally, for j ∈ [d] we output the matrix Γj obtained by evaluating g1(αj), . . . , gn(αj),
writing each gi(αj) in an Fq-basis for Fqn , and then putting gi(αj) as the i-th column of
Γj .

Intuitively, we have that subspaces of dimension As are expanded to subspaces of
dimension (d − k + 1)s/A. This informs what we should hope for from our subspace
designs. In particular, obtaining A = O(1) is enough to obtain a degree proportional
expander (by setting k = Θ(d)), while if A ≈ 1 + ε and k ≈ εd we can obtain a lossless
expander. With these goals in mind, we turn our attention to constructing subspace
designs.

8.4 Constructions of Subspace Designs

For the case of d = 1, explicit constructions of subspace designs have been given in
previous works. The first explicit construction was given in [GK16], using ideas which
had been developed in constructions of list-decodable codes. This construction was
subsequently improved over fields of small size in [GXY18].

A previous construction of a subspace design for d > 1 was given in [GWX16]. In
this work, a subspace design over the base field (i.e., for d = 1) was intersected with a
subspace evasive set from [DL12]. However, for our purposes, the size of the intersection
dimension (i.e., the product As) of this construction is too large. In that work, the au-
thors were more concerned with ensuring that the Hi’s had large dimension; however,
we only require that the Hi’s have dimension n/k.

We provide two constructions of subspace designs in this work, yielding our two
constructions of dimension expanders. The first construction yields a degree-proportional
dimension expander over fields of size nδ (for arbitrarily small constant δ). The next
yields a lossless dimension expander. The only drawback is that it requires a field of size
linear in n (for technical reasons, we take q − 1 = n). We present our first construction
in Section 8.4.1 and our second construction in Section 8.4.2.

Both of our constructions use as a black box a subspace design provided in [GK16].
Specifically, by taking r = 2 in Theorem 7 of [GK16], we obtain a subspace design with
the following parameters.

Lemma 8.4.1. For all positive integers s, t,m and prime powers ` satisfying s ≤ t ≤ m < `,
there is an explicit collection of M ≥ `2

4t
F`-spaces V1, V2, . . . , VM ⊆ Fm` , each of codimension 2t,

which forms an (s, m−1
2(t−s+1)

, 1) subspace design in Fm` .

164

8.4.1 Subspace Designs via an Intermediate Field

This first construction takes the subspace design of Lemma 8.4.1 defined over an inter-
mediate field F`. That is, we fix an integer 1 < c < d such that c|d so that, for ` = qc,
Fq ⊆ F` ⊆ Fh. Then, if ω1, . . . , ωm gives a basis for Fhm/Fh, define

L =

{
m∑
i=1

aiωi : ai ∈ F`

}
.

This is an F`-subspace of Fhm = Fqn of F`-dimension m, as ω1, . . . , ωm are linearly inde-
pendent over Fh and so a fortiori are linearly independent over the subfield F`. Thus,
L ' Fm` , and we fix an F`-linear isomorphism ψ : Fm` → L. Note that an F`-linear map is
automatically Fq-linear, so, in particular, the dimension of Fq-subspaces in Fm` are pre-
served by ψ. Then, if V1, . . . , Vk give the subspace design from Lemma 8.4.1, we define
Hi := ψ(Vi) for i = 1, . . . , k.

Our analysis of the subspace design makes use of the following lemma. We defer its
proof to Section 8.9.1.
Lemma 8.4.2. Let W be an Fh-subspace of Fqn and let U := W ∩ L. Then U is an F`-subspace
of L and dimF` U ≤ dimFhW .
Proposition 8.4.3. Let ` = qc with c = d

k
· m
m−2t

, where 1 ≤ k < d. For all 1 ≤ s < t < `
and 1 ≤ k < d such that `2 ≥ 4kt, k|d, m|k(m − 2t) and k(m − 2t)|n, there is an explicit
construction of {Hi}ki=1 that forms a (s, d

k
· m−1
m−2t

· m
2(t−s) , d)-subspace design in Fqn . Furthermore

dimFq Hi = n
k

for all i = 1, . . . , k.

Proof. The condition that k|d implies k|n, so n
k
∈ Z. The condition that k(m − 2t)|n

implies that c ∈ Z. Finally, the condition that m|k(m− 2t) implies c|d and so F` ⊆ Fh ⊆
Fqn . We take the first k subspaces {Vi}ki=1 given in Lemma 8.4.1 (which is valid since
`2/(4t) ≥ k) and define Hi = ψ(Vi) for i = 1, . . . , k. For any F`-subspace U ⊆ L of
F`-dimension u < t, we have

k∑
i=1

dimF`(U ∩Hi) =
k∑
i=1

dimF`(ψ
−1(U) ∩ Vi) ≤

(m− 1)u

2(t− u+ 1)
.

Now for any Fh-subspace W ⊆ Fqn of dimension s, Lemma 8.4.2 tells us that the
intersection U := W ∩ L is an F`-subspace in L of dimension at most s. Let u ≤ s be the
F`-dimension of U . As W ∩Hi = U ∩Hi (since Hi ⊆ L), we have

k∑
i=1

dimFq(W ∩Hi) = c

k∑
i=1

dimF`(U ∩Hi)

≤ d

k
· m− 1

m− 2t
· m

2(t− u)
u

≤ d

k
· m− 1

m− 2t
· m

2(t− s)
s .

165

Note that each Hi has F` dimension m− 2t, i.e, it has Fq-dimension c(m− 2t) = n
k

by our
choice of parameters.

As for the explicitness, upon computing the bases B1, . . . ,Bk for V1, . . . , Vk we may
obtain bases for H1, . . . , Hk by applying ψ to each element of the corresponding basis.
Thus, assuming the basis for Vi can be computed in poly(m) field operations we may
also compute a basis for Hi in poly(m) = poly(n) field operations.

We now fix parameters in such a way to show that we can obtain a subspace design
over fields of size nδ for any constant δ > 0.
Corollary 8.4.4. Let δ > 0 be given and choose an integer r such that 1

2δ
< r ≤ 1

δ
. Let k, d

be integers such that d = 2k and r|k. Assume moreover that 2r|m. Then, assuming q ≥ nδ,
there exists an explicit construction of {Hi}ki=1 that forms a (s, 8

δ
, d)-subspace design in Fqn for

all s ≤ 1−2δ
4d
n. Moreover dimFq Hi = n

k
for all i = 1, . . . , k.

Proof. Put t = 1
2
(1 − 1

r
)m, so m − 2t = m

r
. Our assumptions on m imply that t ∈ Z.

Moreover, k(m − 2t) = km/r, and so m|k(m − 2t) as we assumed r|k. We also have
k(m − 2t) = (km/r)|md as k|d and (m/r)|m. Thus, all the divisibility conditions of
Proposition 8.4.3 are satisfied, so let H1, . . . , Hk ⊆ Fqn denote the explicit subspace de-
sign promised by the proposition, each satisfying dimFq Hi = n

k
.

Defining c as in Proposition 8.4.3, we have

c =
d

k
· m

m− 2t
= 2 · m

m/r
= 2r .

Next, assuming s ≤ t/2 = 1
4
(1− 1

r
)m, we have the bound

d

k
· m− 1

m− 2t
· m

2(t− s)
≤ 2r · m

1
2
(1− 1

r
)m

=
4r

1− 1
r

≤ 8r ≤ 8

δ
,

where the second to last inequality is valid assuming r ≥ 2 (which is valid assuming δ
is sufficiently small). Note further that 1

4
(1 − 1

r
) ≥ 1

4
(1 − 2δ). Thus, we conclude that

H1, . . . , Hk forms a (s, 8
δ
, d)-subspace design in Fqn for all s ≤ 1−2δ

4d
n, as was to be shown.

Lastly, note that c = 2r > 1/δ. To satisfy the conditions of Proposition 8.4.3 we
require ` = qc > t = 1

2
(1 − 1

r
)m and `2 ≥ 4kt = 2k(1 − 1

r
)m; note that the first condition

implies the second form large. Thus, we just require q > t1/c, which is implied by q ≥ nδ

as t1/c < nδ.

8.4.2 Construction via Correlated High-Degree Places

The following section uses more sophisticated ideas from the theory of algebraic func-
tion fields. For additional background information, we refer the reader to [Sti09, Chap-
ter 1] and [NX09, Chapter 1].

We utilize techniques developed in the context of linear algebraic list-decoding of
Folded Reed-Solomon codes [Gur11; GW13]. Briefly, we take a subspace design in the

166

space of polynomials of bounded degree, and then map it into Fmh in a manner rem-
iniscent of the encoding map of a folded Reed-Solomon code. As we are concerned
with bounding the intersection dimension with Fh-linear spaces, we in fact evaluate the
polynomial at degree d places. Details follow.

Let ζ be a primitive root of the finite field Fq. Choose a real δ ∈ (0, 1) such that δ > 1
k

and δn < q − 1, where we recall 0 < k < d and n = md. Denote by σ the automorphism
of the function field Fq(Y) sending Y to ζY . The order of σ is q−1 ≥ m. Given g ∈ Fq(Y),
we abbreviate gσ := σ(g(Y)) = g(ζY).7

Denote by Fq[Y]<δn the set of polynomials of degree less than δn. By Lemma 8.4.1,
there exist V1, V2, . . . , Vk of Fq[Y]<δn, each of codimension δn−n

k
, which forms a (r, δn−1

δn−n
k
−2r+2

, 1)-
subspace design.

Let P (Y) be an irreducible polynomial of degree d such that P, P σ, . . . , P σm−1 are
pairwise coprime. Consider the map

π : Fq[Y]<δn → Fmqd , f 7→ (f(P), f(P σ), . . . , f(P σm−1

)) ,

where f(P σj) is the residue of f in the residue field Fq[Y]/(P σj) ∼= Fqd = Fh. As the ide-
als (P), (P σ), . . . , (P σm−1

) are pairwise coprime, the Chinese Remainder Theorem guar-
antees that π is injective. We define

H̃i = π(Vi) =
{

(f(P), f(P σ), . . . , f(P σm−1

)) : f ∈ Vi
}
⊆ Fmh (8.5)

for i = 1, 2, . . . , k.

Before analyzing the subspaces H̃1, . . . , H̃k, we record the following fact:
Fact 8.4.5. We have f(P σ) = (fσ

−1
)(P).

Proposition 8.4.6. If s < (1 − δ)m = (1 − δ)n
d
, then the subspaces H̃1, H̃2, . . . , H̃k defined

above give an (s, δ
1−δ ·

m
(δ− 1

k
)m− 2s

d(1−δ)
, d)-subspace design in Fmh . Moreover dimFq H̃i = n

k
for all

i = 1, . . . , k.

Proof. The claim about the Fq-dimension of the H̃i’s follows from the fact that each Vi
has Fq-dimension n

k
and the injectivity of π.

Let W be an Fh-subspace of Fmh of dimension s and let {wi = (wi1, . . . , w
i
m)}si=1 be an

Fh-basis of W . Put r = b s
1−δc and D = b sd(m−r+1)

r
c. Then one can verify that

D + δdm < d(m− r + 1) . (8.6)

Claim 8.4.7. There are polynomials A0(X), . . . , Ar−1(X) ∈ Fq[X] of degree at most D that are
not all zero such that for all w = (w1, w2, . . . , wm) ∈ W , we have

A0(P σj)wj+1 + A1(P σj)wj+2 + · · ·+ Ar−1(P σj)wj+r (8.7)

for all j = 0, 1, . . . ,m− r.
7Note that in Section 8.3 we wrote gσ to denote the polynomial obtained by applying σ to the coeffi-

cients of g. We hope that this notation does not cause any confusion.

167

Proof of Claim 8.4.7. Consider the interpolation polynomial

R(X,Z1, . . . , Zr) := A0(X)Z1 + A1(X)Z2 + · · ·+ Ar−1(X)Zr ,

where each Ai(X) ∈ Fq[X] has degree at most D. Consider the homogeneous system of
equations where the coefficients of the Ai(X)’s are the variables:

A0(P σj)wi,j+1 + A1(P σj)wi,j+2 + · · ·+ Ar−1(P σj)wi,j+r = 0 (8.8)

for i = 1, 2, . . . , s and j = 0, 1, . . . ,m − r. There are s(m − r + 1) equations in Fh = Fqd
and r(D + 1) coefficients of Ai(X) in Fq in total. Since r(D + 1) > sd(m− r + 1), we can
find polynomials A0, A1, . . . , Ar−1 ∈ Fq[X] of degree at most D that are not all zero such
that the identities (8.8) hold.

Now, for any w = (w1, w2, . . . , wm) ∈ W , we write w =
∑s

i=1 aiw
i for some ai ∈ Fh.

By (8.8) we have

A0(P σj)wj+1 + A1(P σj)wj+2 + · · ·+ Ar−1(P σj)wj+r

=
s∑
i=1

ai(A0(P σj)wi,j+1 + A1(P σj)wi,j+2 + · · ·+ Ar−1(P σj)wi,j+r) = 0

for j = 0, 1, . . . ,m− r, as desired.

For any (w1, w2, . . . , wm) ∈ W ∩ H̃i, there exists a function f ∈ Vi such that
(f(P), f(P σ), . . . , f(P σm−1

)) = (w1, w2, . . . , wm).

Claim 8.4.8. We have

A0(Y)f(Y) + A1(Y)f(ζY) + · · ·+ Ar−1(Y)f(ζr−1Y) = 0 . (8.9)

Proof of Claim 8.4.8. By the identities (8.7), we have

A0(P σj)f(P σj) + A1(P σj)f(P σj+1

) + · · ·+ Ar−1(P σj)f(P σj+r−1

) = 0

for j = 0, 1, . . . ,m− r. Recalling Fact 8.4.5, this gives

(A0f + A1 · (fσ
−1

) + · · ·+ Ar−1 · (fσ
−r+1

))(P σj) = 0

for j = 0, 1, . . . ,m − r. As the polynomial (A0f + A1 · (fσ
−1

) + · · · + Ar−1 · (fσ
−r+1

)) has
degree at most D+ δdm and it has m− r+ 1 zeros at distinct places of degree d, by (8.6)
we must have

(A0f + A1 · (fσ
−1

) + · · ·+ Ar−1 · (fσ
−r+1

)) = 0 .

Recalling the definition of σ, this implies

A0(Y)f(Y) + A1(Y)f(ζY) + · · ·+ Ar−1(Y)f(ζr−1Y) = 0 .

168

Observe that the solutions f ∈ Fq[Y]<δn to (8.9) form an Fq-linear space; denote it by
U . Our task now is to bound the dimension of U ; our argument is analogous to that of
Lemma 6 in [GW13]. Write f(Y) = f0 + f1Y + · · ·+ fk−1Y

k−1.

Claim 8.4.9. dimFq(U) ≤ r − 1.

Proof of Claim 8.4.9. By factoring out common powers of Y we may assume that there
exists i∗ ∈ {0, 1, . . . , r − 1} such that Ai∗ has a nonzero constant term. Write Ai(Y) =
ai,0 + ai,1Y + · · ·+ ai,DY

D for i = 0, 1, . . . , r − 1, and define the polynomials

Bj(Y) := a0,j + a1,jY + · · ·+ ar−1,jY
r−1

for j = 0, 1, . . . , k − 1. Note that our assumption on Ai∗ states that ai∗,0 6= 0, so B0 is a
nonzero polynomial of degree ≤ r − 1. Let Λ(Y) := A0(Y)f(Y) + A1(Y)f(ζY) + · · · +
Ar−1(Y)f(ζr−1Y), which is the 0 polynomial by Identity 8.9.

Note that the constant term of Λ is a0,0f0 + a1,0f0 + · · · + ar−1f0 = B0(1)f0. Thus,
assuming B0(1) 6= 0 we find that f0 = 0; otherwise f0 can take an arbitrary value in Fq.

Now fix an ` ∈ {1, 2, . . . , k − 1}. The coefficient on Y ` in Λ(Y) may be expressed
as f`B0(ζ`) + f`−1B1(ζ`−1) + · · · + f1B`−1(ζ) + f0B`(1). As Λ ≡ 0, this linear form must
equal 0. The crucial observation is that, assuming B0(ζ`) 6= 0, once f0, . . . , f`−1 are fixed
there is a unique choice for f` ∈ Fq such that this linear form is 0 (otherwise f` ∈ Fq
is unconstrained). We therefore obtain that the dimension of U is at most the number
of 0 ≤ ` ≤ k − 1 for which B0(ζ`) = 0. As ζ is primitive and k ≤ q, the elements ζ`

for ` = 0, 1, . . . , k − 1 are distinct. As B0 is a nonzero polynomial of degree ≤ r − 1 we
find that there can be at most r − 1 values of ` such that B0(ζ`) = 0. This implies that
dimFq U ≤ r − 1.

It is clear that π−1(H̃i ∩W) ⊆ Vi ∩ U for i = 1, 2, . . . , k. Thus, we have

k∑
i=1

dimFq(H̃i ∩W) ≤
k∑
i=1

dimFq(Vi ∩ U) ≤ r(δdm− 1)

δdm− dm
k
− 2r + 2

≤ δ

1− δ
· m

(δ − 1
k
)m− 2s

d(1−δ)
· s .

This demonstrates that H̃1, . . . , H̃k provide a subspace design with the claimed param-
eters.

Obtaining from Proposition 8.4.6 an explicit construction is a bit nontrivial, as there
is no known deterministic algorithm to find irreducible polynomials of a given input
degree. However, a simple approach is to assume n = q − 1 and take the polynomial
P (Y) = Y d − ζ−1, where we recall that ζ−1 is a primitive root of Fq. Note that finding
such a primitive root can be done in poly(q) time by brute force. That P (Y) is irreducible
follows from the following proposition.

169

Proposition 8.4.10 ([LN97], Chapter 3). Let d ≥ 2 be an integer and α ∈ Fq \ {0}. Then the
binomial Xd − α is irreducible in Fq[X] iff the following conditions hold:

1. Each prime factor of d divides ordFq(α) and gcd(d, q−1
ordFq (α)

) = 1;

2. q ≡ 1 (mod 4) if d ≡ 0 (mod 4).
Moreover the polynomials P (Y)σ

j
= P (ζjY) = (ζjY)d − ζ−1 = ζjd(Y d − ζ−(jd+1)) are

also irreducible and pairwise coprime (as j < m ≤ n/d = (q − 1)/d). Finally evaluating
a polynomial f at the place P σj , which amounts to reducing the polynomial modulo
Y d − ζ−(j+1), can be done in poly(n) field operations. Thus, given bases B1, . . . ,Bk for
V1, . . . , Vk, we obtain the bases for H̃i by evaluating π on each element of Bi, respectively.

Summarizing the above discussion, we conclude:

Proposition 8.4.11. If n = q − 1 and s < (1 − δ)m = (1 − δ)n
d
, then there exist H̃1, . . . , H̃k

forming an explicit (s, δ
1−δ ·

m
(δ− 1

k
)m− 2s

d(1−δ)
, d)-subspace design in Fmh . Moreover dimFq H̃i = n

k

for all i = 1, . . . , k.

Setting parameters. By choosing k and d appropriately we obtain the following corol-
lary.

Corollary 8.4.12. Let δ > 0 be such that 1/δ ∈ Z and put k = 1/δ2, d = 1/δ3. Assume that
q − 1 = n. There exist H1, . . . , Hk which form an explicit (s, 1

1−2δ−δ2+2δ3
, d)-subspace design in

Fqn for all s ≤ 1−2δ
d
n. Moreover dimFq Hi = n

k
for all i = 1, . . . , k.

Proof. Fix an Fh-linear isomorphism ϕ : Fmh → Fqn and define Hi = ϕ(H̃i) for i =

1, 2, . . . , k, where H̃1, H̃2, . . . , H̃k ⊆ Fmh form the subspace design promised in Proposi-
tion 8.4.11. Since ϕ is also Fq-linear, the dimensions of Fq-subspaces are also preserved
by ϕ. Then, if W ⊆ Fqn is an Fh-subspace,

k∑
i=1

dimFq(Hi ∩W) =
k∑
i=1

dimFq(H̃i ∩ ϕ−1(W))

so H1, . . . , Hk forms a subspace design in Fqn with the same parameters as H̃1, . . . , H̃k.
That H1, . . . , Hk are explicit follows easily from the explicitness of H̃1, . . . , H̃k.

Assuming s ≤ 1−2δ
d
n < (1− δ)m, we find

δ

1− δ
· m

(δ − 1
k
)m− 2s

d(1−δ)
≤ δ

1− δ
· m

δ(1− δ)m− 2(1−δ)δ3m
1−δ

=
1

(1− δ)2
· 1

1− 2δ2

1−δ

=
1

(1− δ)2 − 2δ2(1− δ)
=

1

1− 2δ − δ2 + 2δ3
.

The result now follows from Proposition 8.4.11.

170

8.5 Explicit Instantiations of Dimension Expanders

As outlined in Section 8.3, our approach for obtaining explicit constructions of dimen-
sion expanders is by reducing to the construction of subspace designs. Specifically, we
will will apply Theorem 8.3.4 with the constructions of Section 8.4. These results yield
Theorems 8.1.2 and 8.1.1, respectively.

First, using the subspace design constructed in Corollary 8.4.4, we obtain a degree-
proportional dimension expander over fields of arbitrarily small polynomial size.
Theorem 8.5.1. Let δ > 0 be given and assume |Fq| ≥ nδ. Let r be an integer satisfying
1
2δ
≤ r < 1

δ
, let k be a multiple of r, and let d = 2k. There exists an explicit construction

of a (η, β)-dimension expander of degree d over Fnq whenever 2dr|n, where η = Ω
(

1
δd

)
and

β = Ω(δd).

Proof. Using Corollary 8.4.4, we have an explicit (s, A, d)-subspace design {Hi}ki=1 for all
s ≤ µn, where µ = 1−2δ

4d
and A = 8

δ
. Moreover dimFq Hi = n

k
for all i = 1, . . . , k. Recall

that d = 2k, so d − k + 1 ≥ d/2. Thus, Theorem 8.3.4 implies that we have an explicit
(η, β)-dimension expander for

η = µA =
1− 2δ

4d
· 8

δ
= 2(1− 2δ) · 1

δd
= Ω

(
1
δd

)
and

β =
d− k + 1

A
≥ d/2

8/δ
=

1

16
· δd = Ω(δd) .

Next, we use the subspace design constructed in Corollary 8.4.12 to obtain an explicit
construction of a lossless dimension expander. We remark that the construction achieves
d = O(1/ε3) while the probabilistic argument demonstrates that d = O(1/ε2) suffices.
Thus, we are just a factor of ε away from the randomized construction.
Theorem 8.5.2. Fix ε > 0, and choose δ = Θ(ε) sufficiently small and such that 1/δ ∈ Z.
Let d = 1/δ3 and k = 1/δ2 and assume that q − 1 = n and d|n. Then there exists an explicit
construction of a (1−ε

d
, (1− ε)d)-dimension expander with degree d over Fnq .

Proof. Using Corollary 8.4.12, there exists a collection {Hi}ki=1 forming a (s, A, d) sub-
space design for all s ≤ (1− 2δ)m = 1−2δ

d
n, where

A =
1

1− 2δ − δ2 + 2δ3
.

Hence, by Theorem 8.3.4, using the fact that d − k ≥ d(1 − δ) we obtain the expansion
factor

β =
d− k + 1

A
≥ d(1− δ)(1− 2δ − δ2 + 2δ3) .

By assuming δ ≤ ε/4, this is ≥ (1− ε)d, as desired. The lower bound on η is obtained by
plugging in (1− 2δ)/d for µ in Theorem 8.3.4:

η = µA ≥ µ =
1− 2δ

d
≥ 1− ε

d
.

171

8.6 Unbalanced Expanders

For clarity’s sake, we have presented all our results in the context of balanced dimension
expanders. However, as remarked earlier, our techniques are flexible enough to produce
unbalanced dimension expanders. In this section, we state the appropriate generaliza-
tions of our results that are required to construct unbalanced dimension expanders. As
the proofs are extremely similar to those given before, we do not provide full proofs,
but merely indicate the details that need to be changed.

We recall Definition 8.2.3: a b-unbalanced (η, β)-dimension expander of degree d is a
collection Γ1, . . . ,Γd : FN → Fn of linear maps such that for any V ≤ FN of dimension at
most ηN , dim

∑
j Γj(V) ≥ β dimV . We also recall that b = N

n
, which we assume to be an

integer.

8.6.1 Unbalanced Dimension Expander Construction

In this subsection, we provide the appropriate generalizations of the results of Sec-
tion 8.3.

Construction. Recall that the dimension expanders map FNq → Fnq . We view the do-
main as

F =

{
f(X) =

k−1∑
i=0

fiX
qi : fi ∈ Hi, i = 0, . . . , k − 1

}
where H0, . . . , Hk−1 give a collection of Fq-subspaces of Fqn , each of Fq-dimension N

k
.

Thus, we now require k|N . As before, H0, . . . , Hk−1 will form a subspace design. We
view the image space as Fqn . Again h = qd and α1, . . . , αd gives a basis for Fh/Fq. The
definition of Γj is just as before:

Γj : F → Fqn ; f 7→ f(αj) .

Analysis. The statements of Lemmas 8.3.1, 8.3.2 and 8.3.3 remain valid. Thus, we may
conclude:
Theorem 8.6.1. Let {Hi}k−1

i=0 give a (s, A, d)-subspace design in Fqn for all s ≤ µN for some
µ ∈ (0, 1

bd
). Then {Γj}dj=1 is a b-unbalanced (µA, d−k+1

A
)-dimension expander.

The only detail which has changed from Theorem 8.3.4 is that now µ < 1
bd

, rather
than just µ < 1

d
. Asides from this, the proof proceeds identically to before, appealing

now to Proposition 8.2.4 instead of Proposition 8.2.2.

8.6.2 Higher-Dimensional Subspace Designs

In this section we construct subspace designs H1, . . . , Hk ⊆ Fqn , where the Hi’s now
have Fq-dimension N

k
.

172

Subspace Designs via an Intermediate Field

First, note the proof of Proposition 8.4.3 still applies in this scenario. Essentially, it suf-
fices to adjust the definition of the t parameter so as to ensure that the subspaces have
dimension N

k
.

Proposition 8.6.2. Let ` = qc with c = d
k
· bm
m−2t

, where 1 ≤ k < d. For all 1 ≤ s < t < `
such that `2 ≥ 4kt, k|d, mb|(m − 2t)k and k(m − 2t)|N , there is an explicit construction of
{Hi}ki=1 that forms a (s, d

k
· bm
m−2t

· m−1
2(t−s) , d)-subspace design in Fqn . Moreover dimFq Hi = N

k
for

all i = 1, . . . , k.
We now fix parameters to obtain subspace designs over fields of size nδ.

Corollary 8.6.3. Let δ > 0 be given and choose an integer r such that 1
2δ
≤ r < 1

δ
. We assume

δ > 0 is sufficiently small so that r ≥ max{b, 2}. Let k, d be integers such that d = 2k and r|k.
Assume moreover that 2r|mb. Then, assuming q ≥ nδ, there exists an explicit construction of
{Hi}ki=1 that forms a (s, 8

δ
, d)-subspace design in Fqn for all s ≤ 1−2δb

4bd
N . Moreover dimFq Hi =

N
k

for all i = 1, . . . , k.

Proof Sketch. The proof proceeds very similarly to the proof of Corollary 8.4.4; we just
define the appropriate parameters. Set t = 1

2
(1− b

r
)m = 1

2db
(1− b

r
)N and assume s ≤ t/2.

Thus we may take µ = 1−2δb
4db
≤ 1−b/r

4db
and A is bounded by

d

k
· bm

m− 2t
· m

2(t− s)
≤ 2r

2

1− 1
r

≤ 8

δ
.

Subspace Designs via Correlated High-Degree Places

The results in this section follow from the same arguments as those provided in Sec-

tion 8.4.2, except now we will set δ =
√

b
k

and insist that the V1, . . . , Vk ⊆ Fq[X]<δn are
chosen to have codimension δn− N

k
.

Proposition 8.6.4. If n = q − 1 and s < (1 − δ)m = (1 − δ)N
bd

, then there exists H̃1, . . . , H̃k

forming an explicit (s, δ
1−δ ·

m
(δ− 1

bk
)m− 2s

d(1−δ)
, d)-subspace design in Fmh . Moreover dimFq H̃i = N

k

for all i = 1, . . . , k.
Corollary 8.6.5. Let δ > 0 be such that 1/δ ∈ Z and put k = b/δ2, d = b/δ3. Assume that
n = q − 1 and d|n. There exist H1, . . . , Hk which form an explicit (s, 1

1−2δ−δ2+δ3
, d)-subspace

design in Fqn for all s ≤ 1−2δ
db
N . Moreover dimFq Hi = N

k
for all i = 1, . . . , k.

8.6.3 Explicit Instantiations

Finally, we provide the analogous results to those obtained in Section 8.5. These yield
Theorems 8.1.4 and 8.1.3, respectively.

First, instantiating Theorem 8.6.1 with Corollary 8.6.3 yields the following.

173

Theorem 8.6.6. Let δ > 0 (sufficiently small) be given and assume q ≥ nδ. Let r be an integer
in the range (1

2δ
, 1
δ
), choose a multiple k of r, and let d = 2k. Let b be an integer. There exists an

explicit construction of a b-unbalanced (η, β)-dimension expander of degree d over Fnq whenever
2dr|nb, where η = Ω

(
1
δbd

)
and β = Ω(δd).

Secondly, appealing to Corollary 8.6.5 instead, we obtain the following.
Theorem 8.6.7. Fix ε > 0 sufficiently small, and choose δ = Θ(ε) sufficiently small and such
that 1/δ ∈ Z. Let k = b/δ2 and d = b/δ3. Suppose that n = q− 1 and d|n. Then there exists an
explicit construction of a (1−ε

bd
, (1− ε)d)-dimension expander of degree d over Fq.

As before, we remark that d = O(b/ε3), whereas the randomized construction achieves
d = O(b/ε2). Moreover, η is again optimal: subspaces of dimension greater than N

bd
= n

d

cannot be expanded by a fact of ≈ d.

8.7 Subspace Evasive Subspaces

Recall the discussion from Section 8.1.3: we wish to find a subspaces H1, . . . , Hk which
have small total intersection with subspaces W which are linear over Fqd =: Fh. While
we have the freedom of choosing theHi’s to be distinct subspaces, we observe that there
exists a single subspace that has small intersection with all such subspaces W ! That is,
it is possible to take H1 = · · · = Hk =: H , and still obtain a good subspace design. We
call such an H a subspace evasive subspace.

Moreover, we show that by taking a subspace evasive subspace with parameters
matching those achievable by a random subspace, we may obtain degree-proportional di-
mension expanders. We find this observation rather surprising, and also demonstrative
of the efficiency of our reduction from dimension expanders to subspace designs.

We begin with the definition germane to this section.
Definition 8.7.1 (Subspace Evasive Subspace). An Fq-subspace H ⊆ Fqn is called a
(s, A, d)-subspace evasive subspace if for every Fqd-linear subspace W ⊆ Fqn of dimen-
sion s,

dimFq(H ∩W) ≤ As .

We first observe that subspace evasive subspaces naturally yield subspace designs,
although the A parameter degrades by a factor of k.
Observation 8.7.2. Suppose H is (s, A, d)-evasive. The tuple (H,H, . . . , H), repeated k times,
forms a (s, kA, d)-subspace design.

The following proposition demonstrates that good subspace evasive subspaces exist.
Proposition 8.7.3. Let k, d, n > 2 be positive integers such that qn/4 ≥ m = n/d and k < d.
Let H be a random Fq-subspace of Fqn ∼= Fnq of dimension n/k. Then, with probability at least
1− q−Ω(n), for every Fh-subspace W of Fqn with dimFh(W) ≤ m

4
= n

4d
,

dimFq(W ∩H) ≤ dimFh(W)

1− 2/k
.

174

That is,H is (s, 1
1−2/k

, d)-evasive for all s ≤ m
4

= n
4d

.

Proof. The probability that a fixed set of L vectors that are linearly independent over Fq
belong toH is at most (

qn/k

qn

)L
= q−n(1−1/k)L .

By a union bound, the probability that some Fh-subspace of dimension s has at least L
such vectors belong toH is at most

hms · hsL · q−n(1−1/k)L = qsn · q−L(n(1−1/k)−sd) . (8.10)

Assuming s ≤ n
4d

and taking L ≥ s/(1− 2/k), recalling that k ≥ 3, we have

q−L(n(1−1/k)−sd) ≤ q−
s

1−2/k
(n(1−1/k)−n/4) ≤ q−3s(2n/3−n/4) = q−

5
4
ns .

Thus, (8.10) is at most qnsq−
5
4
ns = q−

1
4
ns. Summing up over all s, 1 ≤ s ≤ m/4, we get

that the desired claim holds for all subspaces W ⊆ Fhm with dimFh(W) ≤ m/4 except
with probability at most m · q−n/4 ≤ q−n/8.

We now set k = 3 and apply Theorem 8.3.4 with thisH to obtain a degree-proportional
dimension expander. We remark that we may even have η ≥ 1/d.
Proposition 8.7.4. Let n, d be integers with 3|n, d|n and 3 < d. Let H be the subspace eva-
sive subspace promised by Proposition 8.7.3, and let {Γj}dj=1 denote the dimension expander
constructed as in Section 8.3 with each Hi = H . Then {Γj}dj=1 forms a degree-proportional
dimension expander.

Proof. By combining Proposition 8.7.3 and Observation 8.7.2, we have that (H,H,H)
forms a (s, 3A, d)-subspace design for all s ≤ µn, for A = 3 and µ = 1

4d
. Applying

Theorem 8.3.4, this implies that Γ1, . . . ,Γd form an (η, β)-dimension expander for η =
µ · 3 · A = 1

4d
· 3 · 3 = 9

4d
and β = d−k+1

3A
= d−2

9
.

8.8 Conclusion and Open Problems

In this work we provide the first explicit construction of a lossless dimension expander.
Our construction uses ideas from recent constructions of list-recoverable rank-metric
codes, which is in analogy with the approach taken by [GUV09] in the “Boolean” world.
Our approach is sufficiently general to achieve lossless expansion even in the case that
the expander is “unbalanced”, i.e., when the codomain has dimension smaller than the
domain.

The main open problem that remains is to achieve similar constructions over fields
of smaller size. Our construction of lossless expanders requires fields of size q > n,
whereas our construction of degree-proportional expanders requires fields of size nδ for
arbitrarily small (constant) δ. The constraints on the field size arise largely from the

175

constructions of subspace designs that we employed. Thus, we believe that a fruitful
avenue of attack on this problem would be to obtain constructions of subspace designs
over smaller fields.8

The authors of [GXY18] addressed precisely this challenge. In this work the authors
do manage to construct subspace designs over all fields, but the intersection size now
grows with logq n. If q = O(1), then instantiating our approach with these subspace
designs only guarantees expansion if the degree is logarithmic. One could also have q
grow polynomially with n and achieve degree-proportional expanders, but as this does
not improve over the intermediate fields approach of Section 8.4.1 we have not included
it.

Lastly, we recall that our construction of a (1−ε
d
, (1 − ε)d)-dimension expander had

degree d = Θ(1/ε3), while the probabilistic argument shows d = O(1/ε2) is sufficient.
Moreover if one is satisfied with a (1

2d
, (1− ε)d)-dimension expander then it is sufficient

to have d = O(1/ε). Thus, constructing lossless expanders whose degree has even better
dependence on ε would also be interesting.

8.9 Deferred Proofs

In this section we provide certain proofs that were deferred from the main body.

8.9.1 Proof of Lemma 8.4.2

In this subsection we provide a proof of Lemma 8.4.2, which we restate for convenience.
Recall that ` = qc and c|d, so Fq ⊆ F` ⊆ Fh. Also, ω1, . . . , ωm denotes a basis for Fhm/Fh
and we define

L :=

{
m∑
i=1

aiωi : a1, . . . , am ∈ F`

}
.

Lemma 8.9.1. Let W be an Fh-subspace of Fqn and let U := W ∩ L. Then U is an F`-subspace
of L and dimF` U ≤ dimFhW .

Proof. It is clear that U is an F` subspace as Fh ⊇ F`. Suppose u1, . . . , ut ∈ U are linearly
independent over F`; we will show that they are also linearly independent over Fh.
Once we have shown this, the lemma follows.

Put r = d/c and let γ1, . . . , γr denote a basis for Fh/F`. Suppose that
∑t

k=1 akuk = 0
with a1, . . . , at ∈ Fh; we want to show a1 = · · · = at = 0. Using our bases, we may write

8In [GK16] there is also an “extension field” construction that allows for smaller field sizes, but only
guarantees the existence of “weak” subspace designs, which does not suffice for the dimension expander
application.

176

ak =
∑r

j=1 bjkγj and uk =
∑m

i=1 ckiωi for bjk, cki ∈ F`. Thus, we have

t∑
k=1

(
r∑
j=1

bjkγj

)(
m∑
i=1

ckiωi

)
= 0

which, upon rearranging, becomes

m∑
i=1

(
r∑
j=1

(
t∑

k=1

bjkcki

)
γj

)
ωi = 0 .

Since ω1, . . . , ωm form a basis for Fqn/Fh and
∑r

j=1

(∑t
k=1 bjkcki

)
γj ∈ Fh for all i ∈ [m],

we deduce
r∑
j=1

(
t∑

k=1

bjkcki

)
γj = 0 ∀i ∈ [m] .

Next, since γ1, . . . , γr form a basis for Fh/F` and
∑t

k=1 bjkcki ∈ F` for all j ∈ [r], we
deduce

t∑
k=1

bjkcki = 0 ∀i ∈ [m], j ∈ [r] .

Thus, defining the matrices B = (bjk) ∈ Fr×t` and C = (cki) ∈ Ft×m` , we find BC = 0
(where 0 denotes the r×m matrix of all zeroes). Moreover, since u1, . . . , ut are assumed
to be F`-linearly independent it follows that the matrix C has full-rank, i.e., rank(C) = t.
We therefore have 0 = rank(BC) = rank(B), i.e., B must be the r × t matrix of zeroes.
This shows that a1 = · · · = at = 0, as desired.

8.9.2 Randomized Construction of an Unbalanced Dimension Expander

In this section, we prove Proposition 8.2.5, demonstrating that good unbalanced loss-
less dimension expanders exist. Our argument is modeled after Section C.2 in [FG15],
wherein it is shown that good (balanced) dimension expanders exist. As is standard
in the theory of pseudorandomness, our existential argument uses the probabilistic
method.

For easy reference, we state lemmas bounding the probability a random matrix has
low rank, as well as a bound on the number of subspaces. These estimates follow from
our upper bounds on the size of rank metric balls (Proposition 5.1.4) and the q-nomial
coefficient (Lemma 5.5.3), respectively.
Lemma 8.9.2. LetM be a uniformly random matrix in Fn×Nq . The probability that rank(M) ≤
r is at most

4q−(N−r)(n−r) .

Lemma 8.9.3. The number of subspaces V ≤ Fnq of dimension k is at most

4qk(n−k) .

177

Lemma 8.9.4. Let q be a prime power and assume N, n ≥ t ≥ r ≥ 1. Let Γ1, . . . ,Γd be
independent random matrices, uniformly distributed over Fn×Nq . Then with probability at least
1− qr, for any subspace V ⊆ FNq of dimension r we have

dim
d∑
j=1

Γj(V) ≥ t ,

assuming

d ≥ t− 1

r
+
N − r + 1

n− t+ 1
+

logq 16

r(n− t+ 1)
.

Proof. Fix a subspace V ⊆ FNq of dimension r, and let M ∈ FN×rq be a matrix whose
columns give a basis for V . Thus, rank(M) = r and the column span of M is V . In
particular, dim

∑
j Γj(V) ≥ t iff the Fn×rdq block matrix

A(V) := [Γ1M | · · · |ΓdM]

has rank at least t. As M has rank r and the Γj are uniformly random, the matrix A(V)
is a uniformly random matrix in Fn×rdq . Thus, the probability it has rank at most t− 1 is
at most

4q−(rd−t+1)(n−t+1) .

Then, taking a union bound over the choice of V , we see that the probability of failure
is at most

16qr(N−r)−(rd−t+1)(n−t+1) .

This is at most q−r assuming

(n− t+ 1)(rd− t+ 1) ≥ r(N − r + 1) + logq 16 .

Dividing both sides by r(n−t+1) and rearranging, the previous inequality is equivalent
to

d ≥ t− 1

r
+
N − r + 1

n− t+ 1
+

logq 16

r(n− t+ 1)
.

The existential proof will be complete upon taking a union bound over the choice of
r; the following proposition does exactly this.
Proposition 8.9.5. Let Fq be a finite field and assume N, n ≥ 1 and put b = N

n
. Let β > 1

and η ∈ (0, 1
bβ

). Then there exists a collection of matrices {Γ1, . . . ,Γd} ⊆ Fn×Nq forming a
(η, β)-dimension expander of degree d, assuming

d ≥ β +
b

1− bβη
+ logq 16 .

Proof. Fix any r ≤ ηN and let Γ1, . . . ,Γd ∈ Fn×Nq be independent and uniform; we wish
to show dim

∑
j Γj(V) ≥ β dimV for any V ⊆ FNq of dimension r with positive probility.

178

That is, we wish to show dim
∑

j Γj(V) ≥ dβre with positive probability. For any fixed
r, Lemma 8.9.4 promises that this occurs with probability ≥ 1− q−r assuming

d ≥ dβre − 1

r
+

N − r + 1

n− dβre+ 1
+

logq 16

r(n− r + 1)
.

As dβre − 1 ≤ βr and r(n− r + 1) ≥ 1, it actually suffices for

d ≥ β +
N

n− βr
+ logq 16 .

Recalling r ≤ ηN = ηbn and b = N
n

, we see that it suffices to have

d ≥ β +
b

1− bβη
+ logq 16 ,

as stated. Now, as
∑dηNe

r=1 q−r ≤
∑∞

r=1 q
−r < 1, we can take a union bound over the

choice of r to conclude that there exists a realization of the Γj’s which indeed forms a
(η, β)-dimension expander.

179

180

Chapter 9

Conclusion

In this thesis, we have expanded the frontiers of our knowledge of list-decodable codes
and friends. In Chapters 3 through 6, we considered random ensembles of codes, with
a particular focus on random linear codes. Some notable punchlines include:
• Every local property, i.e., any property defined by excluding a family of constant-

sized types, has a sharp threshold for random linear codes.
• Random LDPC codes achieve list-decoding capacity with high probability.
• To list-decode random linear rank metric codes ε-away from capacity, lists of size
Oρ,q(1/ε) are sufficent.

• For random linear binary codes ε-away from capacity lists of size O(1/ε) are suffi-
cient for average-radius list-decoding in either the Hamming or rank metrics.

Later, in Chapter 7, we provided an explicit construction of a code with a near-linear
time global list-decoding algorithm; and an explicit construction of a code with a sub-
linear time local list-decoding algorithm.

Finally, in Chapter 8, we showed how to leverage ideas used to algorithmically list-
decode rank metric codes to construct lossless dimension expanders.

Alas, despite our best efforts, many problems remain open.1 In the remainder of this
chapter we expound upon a few problems that we find particularly stimulating.

9.1 Precisely Computing the Threshold for List-Decodability

Recalling the notations from Chapter 3, if Pn is the property of (ρ, L)-list-decodability
for codes of block length n, we wish to understand RRLC(Pn). The Zyablov-Pinsker
argument shows RRLC(Pn) ≥ 1 − hq(ρ) − O

(
1

logq L

)
; however, we believe that in fact

RRLC(Pn) ≥ 1−hq(ρ)−O
(

1
L

)
. Fortunately, we provided a characterization of RRLC(Pn):

1Although, given that I hope to obtain employment in this field in the future, it is fortuitous that so
many problems remain open.

181

if Pn is defined by forbidding types in Tn, we know that

RRLC(Pn) = min
τ∈Tn

max
τ ′∈Iτ

{
1− Hq(τ

′)

rank(τ ′)

}
± o(1) .

Thus, recalling Example 3.2.8, it will suffice to prove the following.
Conjecture 9.1.1. There exists a constant C > 0 such that the following holds. Let L ≥ 1 be
an integer. Let τ ∼ FL+1

q be such that for some τ̃ ∼ Fq and all i ∈ [L+ 1],

P
(u,z)∼(τ,τ̃)

(ui 6= z) ≤ ρ . (9.1)

Moreover, we assume that for all i 6= j ∈ [L+ 1],

P
u∼τ

(ui 6= uj) > 0 .

Then there exists τ ′ ∈ Iτ for which

1− Hq(τ
′)

rank(τ ′)
≥ 1− hq(ρ)− C

L
,

i.e.,

Hq(τ
′) ≤ rank(τ ′)

(
hq(ρ) +

C

L

)
.

Similar conjectures can be made for list-recoverability, etc. Also, note that the con-
jecture is stated for distributions τ ∼ FL+1

q : while it suffices to prove the conjecture for
types τ ∈ Dn,L+1 (i.e., with the additional assumption that each τ(u) ∈ {0, 1/n, . . . , (n−
1)/n, 1} for some n ∈ N), as n is a growing parameter and the desired bound is indepen-
dent of n, this distinction is inconsequential.

9.1.1 Rephrasing Conjecture With Fourier Analysis

We now highlight an unexpected connection to Fourier analysis.2 Specifically, we state
a conjecture that at first blush appears to have nothing to do with random linear codes
or list-decoding, but nonetheless will turn out to be equivalent to Conjecture 9.1.1. (To
be pedantic, we will only obtain an equivalence for the average-radius variant of Con-
jecture 9.1.1.) For simplicity, we restrict attention to q = 2. Throughout, we take expec-
tation norms in real space and counting norms in Fourier space, and entropy is always
base 2.

Let f : Fn2 → R have ‖f‖1 = Ex∼Fn2 [|f(x)|] = 1. We think of |f | (i.e., the function
x 7→ |f(x)|) as the probability density function of a distribution with respect to the
uniform distribution. That is, we write x ∼ |f | to denote a random variable in Fn2 with
P (x = x) = |f(x)| · 2−n.

2For a refresher on the notation we use, see Section 4.4.1. We note that we will only require the defini-
tions specialized to q = 2.

182

Definition 9.1.2 (Smooth Function). Let f : Fn2 → R and let β ∈ [0, 1]. We say that f is
β-smooth if ‖f‖1 = 1 and for every 0 ≤ m ≤ n and every linear surjection T : Fn2 → Fm2 ,

H(Tx) > β ·m ,

where x ∼ |f |.
Definition 9.1.3 (Fourier-Concentrated Function). Let f : Fn2 → R, α ∈ (0, 1), andm ∈ N.
• If

|{ξ ∈ Fn2 : f̂(ξ) > α}| ≤ m ,

we say that f is (α,m)-Fourier-concentrated.
• If for every M ⊆ Fn2 with |M | = m,

1

m

∑
ξ∈M

f̂(ξ) < α ,

we say that f is (α,m)-average Fourier-concentrated.

We now demonstrate that average-radius list-decodability of random linear codes
can be formulated in the above language. This can be done quite efficiently with our
types formulation.
Proposition 9.1.4. Let ρ ∈ (0, 1

2
), L ∈ N and R ∈ (0, 1). The following statements are

equivalent:
1. A random linear code C ≤ Fn2 of rate R is (ρ, L)-average-radius list-decodable with high

probability.
2. For every d ≤ L+1, every (1−R)-smooth function f : Fd2 → R is (1−2ρ, L+1)-average

Fourier-concentrated.

Proof. We only prove that the second statement implies the first; this is the only direction
that is important if our end-goal is to prove list-decodability of random linear codes, and
moreover we feel that it is reasonably clear how to reverse the subsequent argument.

We will prove the contrapositive: namely, the negation of Statement 1 implies the
negation of Statement 2. Let ρ, L,R be as above. For Statement 1 to be false, there must
be a pair of types (τ, τ̃) with τ ∈ Dn,L+1 and τ̃ ∈ Dn,1 such that:

1

L+ 1

L+1∑
i=1

P
(u,z)∼(τ,τ̃)

(ui 6= z) ≤ ρ , (9.2)

P
u∼τ

(ui 6= uj) > 0 ∀i 6= j , (9.3)

max
τ ′∈Iτ

{
1− H(τ ′)

rank(τ ′)

}
< R . (9.4)

Furthermore, we may assume that either (τ, τ̃)(u, 0) = 0 or (τ, τ̃)(u, 1) = 0 for every u ∈
FL+1

2 , where we have defined (τ, τ̃)(u, z) = P(u,z)∼(τ,τ̃) (u = u, z = z). Indeed, suppose

183

(τ, τ̃) satisfies (9.2) and (9.4), and that (τ, τ̃)(u, 0) and (τ, τ̃)(u, 1) are both positive for
some u ∈ FL+1

2 . Consider (τ0, τ̃0) and (τ1, τ̃1) which are both identical to (τ, τ̃) except we
have (τ0, τ̃0)(u, 0) = (τ, τ̃)(u, 0) + (τ, τ̃)(u, 1) and (τ0, τ̃0)(u, 1) = 0, and (τ1, τ̃1) is defined
similarly. Note that both marginals τ0 and τ1 are distributed identically to τ , so (9.4)
still holds. Moreover, at least one of (τ0, τ̃0) and (τ1, τ̃1) satisfies (9.2) as well, since it’s
impossible that perturbing τ in two opposite directions decreases the left-hand side of
(9.2).

Now, let U = span(supp(τ)) and denote d = dim(U) (so d = dim(U) = rank(τ)). Let
B : Fd2 → U be a linear isomorphism. Define the function f : Fd2 → R by

f(x) := 2d · ((τ, τ̃)(Bx, 0)− (τ, τ̃)(Bx, 1)) .

Due to our assumption that either (τ, τ̃)(Bx, 0) or (τ, τ̃)(Bx, 1) is 0, we find

|f(x)| = 2d · P
u∼τ

(u = Bx) .

We claim that f is (1 − R)-smooth. Indeed, let m ≤ d and let T : Fd2 → Fm2 be a linear
surjection. If x ∼ |f | and u ∼ τ , we know H(Tx) = H(TB−1u). Let τ ′ ∈ Iτ denote the
implied type of τ corresponding to the distribution of TB−1u. By Eq. (9.4), it follows
that 1 − H(τ ′)

m
< R, which rearranges to H(τ ′) > (1 − R)m. That is, H(Tx) > (1 − R)m,

demonstrating that f is indeed (1−R)-smooth.

Thus, to establish the negation of Statement 2, it suffices to prove that f is not (1 −
2ρ, L + 1)-average Fourier-concentrated. Let (u, z) ∼ (τ, τ̃), x ∼ |f | and y ∼ Fd2. Let
ξ1, . . . , ξL+1 denote the rows of B. For each i ∈ [L+ 1], we have

P (ui 6= z) =
1− E [(−1)ui+z]

2
=

1− E
[
(−1)〈ξi,x〉 · sign(f(x))

]
2

=
1− E

[
(−1)〈ξi,y〉 · f(y)

]
2

=
1− f̂(ξi)

2
.

LetM = {ξ1, . . . , ξL+1} and note that Condition 9.3 guarantees |M | = L+1: indeed, (9.3)
establishes that U = span(supp(τ)) has the property that for every i 6= j ∈ [L + 1], there
exists a u ∈ U for which ui 6= uj . Thus, applying (9.2), we find

1

L+ 1

L+1∑
i=1

f̂(ξi) =
1

L+ 1

L+1∑
i=1

(
1− 2 P

(u,z)∼(τ,τ̃)
(ui 6= z)

)
≥ 1− 2ρ ,

establishing the failure of f to be (1− 2ρ, L+ 1)-average Fourier-concentrated.

Remark 9.1.5. This equivalence, or something very similar, should also hold between
absolute-radius list-decoding and Fourier-concentrated functions. Unfortunately, it is a
bit tricky to deal with the situation where (τ, τ ′)(u, 0) and (τ, τ ′)(u, 1) are both positive
when dealing with absolute-radius list-decoding.

184

Alas, despite coming up with this rephrasing of Conjecture 9.1.1, resolving this
conjecture has proved to be quite challenging. In fact, somewhat embarrassingly this
thresholds framework has turned out to be more useful for proving lower bounds on the
list size required by random linear codes.3 Specifically, subsequent work of mine [Gur+20]
has managed to show the following:
• A random linear code of rate 1 − logq(`) − ε requires lists of size L ≥ `Ω(1/ε) for

zero-error list-recovery with input lists of size `.
• A random linear code of rate 1−hq(ρ)−ε requires lists of size L ≥ bhq(ρ)/ε+0.99c

for list-decoding from error fraction ρ.

9.2 An Additive Combinatorics Conjecture

In light of our difficulties in obtaining new upper bounds on the list size for a random
linear code via the types formalism, we have also explored other potential avenues for
resolving this question. In this section, we propose an adaptation of our argument from
Chapter 6 (which we recall builds on [Gur+02; LW18]) to field size q > 2. Recall that the
argument proceeds as follows: a potential function is defined, and then one studies how
it varies as random basis elements from Fn2 are added to the code. Using pairwise inde-
pendence, one can demonstrate that it roughly squares. The analysis is greatly aided by
the fact that lines in Fn2 only contain 2 points, which means that pairwise independence
is sufficient to understand the behavior of the potential function.

To sketch our proposed approach, we focus on the case q = 3. Hopefully, a resolution
of the q = 3 case should readily generalize to larger q. Furthemore this approach, if
successful, should easily adapt to the setting of list-recovery. In the sequel, for a subset
X ⊆ Fn3 , 1X denotes the indicator function of the set X , i.e.,

1X(x) =

{
1 if x ∈ X
0 otherwise.

A conjecture. We first provide an additive combinatorics conjecture. Later, we show
why it is sufficient to establish that random linear codes of rate 1−h3(ρ)−ε are (ρ,O(1/ε))-
list-decodable with high probability.
Conjecture 9.2.1. Let ε > 0. There exists a K = o(3εn) such that the following holds. Let
X0, X1, X2 ⊆ Fn3 be subsets satisfying |Xj| ≤ βj3

n for each j, where each βj ≤ 3−εn/2. Then, if
b,x ∼ Fn3 are uniformly random and independent vectors, for all sufficiently large n, we have

P
b

(
E
x

[1X0(x)1X1(x+ b)1X2(x+ 2b)] ≥ Kβ0β1β2

)
≤ n−3 . (9.5)

3In hindsight, this is perhaps not too surprising. Recall that, for a type τ , it was more difficult to show
that the threshold τ -freeness was at most R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′). Hence, it is understandable why this

more difficult direction of the theorem would yield improved results.

185

Essentially, Conjecture 9.2.1 states that the fraction of directions b for which there
exist significantly more than a β0β1β2 fraction of x ∈ Fn3 for which the line in direction b
through x is contained in X0 ×X1 ×X2 is negligible.4 And we really mean significantly
more: suppose β0 = β1 = β2 = 3−εn/2. Then, for fixed b ∈ Fn3 , having

E
x

[1X0(x)1X1(x+ b)1X2(x+ 2b)] = 3−εn/2 = ω(Kβ0β1β2)

means that whenever x happens to lie in X0 (which occurs with probability 3−εn/2), the
next two points on the line {x + jb : j ∈ F3} always lie in X1 and X2, respectively.
Asking for the fraction of b for which this holds to be n−3 appears to be a very modest
request given the assumption that the Xj’s have exponentially small density.

For concreteness, we now describe two cases. Suppose first X0 = X1 = X2 = V ,
where V is a subspace with |V | = β ·3n. We have that Ex [1V (x)1V (x+ b)1V (x+ 2b)] = β
if b ∈ V and Ex [1V (x)1V (x+ b)1V (x+ 2b)] = 0 if b /∈ V . Indeed, x lies in V with
probability β, and then for x+ b to also lie in V we need b ∈ V . Thus,

P
b

(
E
x

[1X0(x)1X1(x+ b)1X2(x+ 2b)] > 0

)
= P

b
(b ∈ V) = β .

Assuming β ≤ 3−εn/2, we see that Conjecture 9.2.1 holds in this case for any K > 0,
even with exponentially small probability of failure. At the other extreme, suppose that
X0 has very little linear structure in the Fourier-analytic sense that 1̂X0(ξ) ≤ β0 for all
ξ ∈ Fn3 .5 A standard argument (see, e.g., [TV06, Proposition 10.11]) shows that

E
x,b

[1X0(x)1X1(x+ b)1X2(x+ 2b)] ≤
(

max
ξ∈Fn3

1̂X0(ξ)

)
· β1β2 = β0β1β2 ,

and so Markov’s inequality implies that

P
b

(
E
x

[1X0(x)1X1(x+ b)1X2(x+ 2b)] ≥ Kβ0β1β2

)
≤ 1

K
.

So taking K = n3 is sufficient for Conjecture 9.2.1, or we could choose it to be 3εn/2, say,
if we want exponentially small failure probability. Our hope is to use techniques from
additive combinatorics to decompose our sets X0, X1, X2 into structured and pseudo-
random components, which we can then analyze separately.

Establishing the list-decodability of random linear codes. In the remainder of this
section we show that this conjecture establishes (ρ,O(1/ε))-list-decodability of rate 1 −

4The choice of n−3 is mostly for convenience – see the proof of Lemma 9.2.3. In fact, I would conjecture
that we could have failure probability of the form 3−Ω(εn).

5This holds with high probability for random sets; see, e.g., Theorem 1.13 of [Hay05].

186

h3(ρ) − ε random linear codes. For a code C and x ∈ Fn3 define LC(x) = |B(x, ρn) ∩ C|,6
and for ` ∈ N, define

f`(C) =
|{x ∈ Fn3 : LC(x) ≥ `}|

3n
,

i.e., the fraction of centers which have at least ` codewords within Hamming distance ρ.

Consider the effect of adding uniformly random basis elements b1, . . . , bk ∈ Fn3 to the
code step-by-step, and define Ci = span{b1, . . . , bi}. Our goal is to show that fL(Ck) <
3−n whp. To establish this, we make use of the following definition.
Definition 9.2.2. Let α, β ∈ (0, 1) and L ≥ 1 an integer. We call a linear code C ≤ Fn3
(α, β, L)-nice if for all integers 1 ≤ ` ≤ L, f`(C) ≤ β · α`.

The following lemma demonstrates that in passing from Ci to Ci+1, if Ci was (α, β, L)-
nice then Ci+1 is with high probability roughly (α, 3β, L)-nice.
Lemma 9.2.3. Let ε > 0 and assume Conjecture 9.2.1. Let β ≤ 3−εn/2 and α ∈ (0, 1). Suppose
that C ≤ Fn3 is (α, β, L)-nice, and let C′ = span{C, b} where b ∈ Fn3 is uniformly random. Then
with probability at least 1− 2n−2, C′ is (α, 3β(1 + o(1)), L)-nice.

Proof. In what follows, we regularly state inequalities which hold assuming n is large
enough compared to the other parameters. Let 1 ≤ ` ≤ L be an integer; we wish
to establish that f`(C′) ≤ 3β(1 + o(1))α` with probability at least 1 − 2n−2. Let Xj =
{x ∈ Fn3 : LC(x) ≥ j} denote the set of points with at least j nearby codewords. Our
assumption gives |Xj| = fj(C) · 3n ≤ β · αj · 3n.

We call b ∈ Fn3 good if, for each 1 ≤ j0, j1, j2 ≤ L with j0 + j1 + j2 ≤ L, we have

E
x

[
1Xj0 (x)1Xj1 (x+ b)1Xj2 (x+ 2b)

]
≤ Kβ3αj0+j1+j2 , (9.6)

where K = o(3εn) is as in Conjecture 9.2.1. By Conjecture 9.2.1 and a union bound over
the choice of (j0, j1, j2), over the randomness of b this fails to hold with probability at
most L3n−3 ≤ n−2. We now condition on the event that b is good.

For x ∈ Fn3 , consider the equation

LC′(x) = LC(x) + LC(x+ b) + LC(x+ 2b) . (9.7)

For an integer j, we now consider all the ways that we could have (9.7) at least `.
• Exactly 1 of the terms on the right-hand side of (9.7) is nonzero, and has value at

least `. Note that, for any b ∈ Fn3 , the fraction of points for which this case occurs
is

E
x

[1X`(x) 1X0(x+ b)1X0(x+ 2b)] + E
x

[1X0(x)1X`(x+ b)1X0(x+ 2b)]

+ E
x

[1X0(x)1X0(x+ b)1X`(x+ 2b)]

= 3E
x

[1X`(x)] ≤ 3βα` .

6One could imagine using the “smoothed-out” list size as defined in Chapter 6 to establish average-
radius list-decodability; however, for simplicity, we will stick to this more concrete definition.

187

(Note that 1X0 = 1Fn3 , the constant 1 function.) Thus, with probability 1, the contri-
bution of this term is at most 3βα`.

• Exactly 2 of the terms on the right-hand side of (9.7) are nonzero, and for some 0 <
j < ` one term has value at least j and another term has value at least `−j. If bwere
uniformly random, the expected fraction of points for which this case occurs is at
most 32`β2α` ≤ 9Lβ2α`; conditioning on b being good, this fraction can increase by
at most (1− n−2)−1 ≤ (1 + 2n−2). Hence, by Markov’s inequality, with probability
at least 1− β0.5 we have that this fraction is at most 9Lβ1.5α`(1 + 2n−2) ≤ β1.4α`.

• All 3 of the terms on the right-hand side of (9.7) are nonzero, and for some 0 <
j1, j2 < `− 1 with j1 + j2 < `, one term takes value at least j1, another takes value
at least j2, and the last takes value at least `− j1 − j2. As we have conditioned on
b being good, the fraction of points for which this occurs is at most

Kβ3α` = o(β)α` .

Hence, the contribution from this term is at most o(β)α`.

Hence, summing these fractions, we find that except with probability at most n−2 +
β0.5 ≤ 2n−2,

f`(C′) ≤
(
3β + β1.4 + o(β)

)
α` ≤ 3β(1 + o(1))α` .

Now, for the code C0 = {0}, LC0(x) = 1 for each x ∈ B(0, ρ) and = 0 if x /∈ B(0, ρ).
Hence, using |B(0, ρ)| ≤ 3h3(ρ)n, {0} satisfies the hypotheses of Lemma 9.2.3 with β =
3−(1−h3(ρ)−ε/3)n and α = 3−εn/3. By a union bound, with probability at least 1− 2n−1, we
have that Ck for k = (1− h3(ρ)− ε)n is (α, β′)-nice for

β′ = 3k(1 + o(1))kβ = 3(1−h3(ρ)−ε)n−(1−h3(ρ)−ε/3)n(1 + o(1))k ≤ 3−εn/2 .

Thus, with probability at least 1− 2n−1,

fL(Ck) ≤ α(β′)L = 3−εn/3 · 3−εnL/2 < 3−n ,

assuming L = c0/ε for a large enough constant c0.

9.3 Explicit LDPC Codes

As we have now demonstrated that random LDPC codes achieve list-decoding capac-
ity, a tantalizing open problem is to now explicitly construct capacity-achieving list-
decodable LDPC codes. Most known constructions of capacity-achieving list-decodable
codes are inherently algebraic, and it appears unlikely that these techniques could yield
genuinely linear-time decoding algorithms. Furthermore, it appears reasonable to sus-
pect that a successful construction of a list-decodable LDPC code would inherently have
constant list and alphabet size. We remark that our work on tensor codes does provide
a construction of a O(n1+o(1))-list-decoding algorithm, and while the alphabet size is
constant the list size is a slowly growing function of n.

188

In particular, I believe that LDPC codes constructed from expander graphs are a nat-
ural candidate for explicit list-decodable codes that (a) have constant alphabet and list
size, and (b) admit a linear-time decoding algorithm. As a first step in this direction,
Hemenway and Wootters [HW15] demonstrated rate 1 − ε expander codes can be list-
recovered from erasures with constant list sizes from a constant fraction ρ of erasures.
In this model, one is given a tuple of lists (S1, . . . , Sn) such that except for αn choices
of i ∈ [n], |Si| ≤ `, and the goal is to output all c ∈ C satisfying ci ∈ Si for all i ∈ [n].
Plugging this into standard “distance amplification” machinery [AEL95; AL96; GI02;
Gop+18] allows them to achieve the optimal tradeoff between any rate and erasure-
radius, still with linear-time list-recovery algorithms. When it comes to binary codes,
Ron-Zewi, Wootters and Zémor [RZWZ20] have recently demonstrated how to con-
struct erasure list-decodable expander codes whose erasure-decoding radius exceeds
the designed distance of the code.

As these “expander codes” are different than the LDPC codes of Gallager’s ensemble
we defined in Chapter 4, we now provide the definition. Given a graph G = (V,E) of
degree d and a linear inner code C0 ≤ Fdq , define

C(G; C0) := {x ∈ FEq : x|δ(v) ∈ C0 ∀v ∈ V } ,

where δ(v) is the set of edges incident on vertex v. Informally, this is the code obtained
by placing symbols on the edges of the graph G subject to the constraint that the edges
incident to each vertex lie in the code C0.7

The algorithms of [HW15] and [RZWZ20] could naturally be adapted to work in the
more challenging model of errors; however, the authors were only able to analyze it in
the model of erasures. We hope that we can use insights gleaned from the analysis of
random LDPC codes to help us understand the performance of these algorithms in the
more challenging model of errors.

Next, we indicate that expander graphs can be viewed as a “sparsified” tensor code.
In this context, one again slightly tweaks the definition of an expander code:8 one takes
a (c, d)-biregular graph H = (V ∪ U,E) and two inner codes C1 ≤ Fcq and C2 ≤ Fd2, and
defines

C(H; C1, C2) := {x ∈ FEq : x|δ(v) ∈ C1 ∀v ∈ V and x|δ(u) ∈ C2 ∀u ∈ U} .

For the case of H = Kn1,n2 , observe that C(H; C1, C2) = C1 ⊗ C2. Therefore, my work on
the list-decodability of tensor codes can be viewed as a stepping stone towards under-
standing the list-decodability of expander codes.

Finally, another natural open problem is to develop an efficient (linear-time?) list-
decoding/recovery algorithm for the LDPC codes constructed in Chapter 4. This would
provide a Monte Carlo construction of a capacity-achieving code over any alphabet
which can be efficiently decoded with constant list sizes.

7Of course, one should fix an ordering on the edges to avoid any ambiguities.
8Apologies for the surfeit of definitions: it seems that expander graphs are so magical that coding

theorists have employed them in many different ways...

189

9.4 Two-Source Rank Condensers

Lastly, having constructed optimal dimension expanders in Chapter 8, we turn our
attention to the construction of other algebraic pseudorandom objects. As indicated
earlier, dimension expanders can be viewed as the algebraic analog of (unbalanced)
bipartite expander graphs, which are themselves equivalent to seeded randomness ex-
tractors. For future work, we propose a construction of a two-source rank condenser,
which is the algebraic analog of two-source extractors/condensers. Fixing parameters a
bit arbitrarily, call a linear function ϕ : Fn⊗Fn → Fm a two-source rank condenser if for all
V,W ≤ Fn of dimension at least

√
n, dim(ϕ(V ⊗W)) ≥ n/2. The probabilistic method

shows that it suffices to take m = O(n); however, the best known construction requires
m = n3/2.9

We describe a construction of a linear function ϕ that we believe could constitute a
two-source rank condenser. Recall the definition F =

{
f(X) =

∑k−1
i=0 fiX

qi : fi ∈ Hi+1

}
,

where H1, . . . , Hk form a subspace design. Assume dim(F) = n. Then, define ϕ : F ⊗
Fqn → Fqn to be the linear map induced by the bilinear mapping (f, α) 7→ f(α). For
context, if Γ1, . . . ,Γd : Fn → Fn give an (η, β)-dimension expander, then if one defines ψ :

Fn⊗ Fd → Fn as the linear map induced by the bilinear mapping (v, u) 7→
∑d

j=1 ujΓj(v),
one can show that for any subspace U ≤ Fn of dimension at most ηn, dim(ψ(U ⊗ Fd)) ≥
β dim(U). Instantiating this with our dimension expander from Theorem 8.5.2, we thus
see that the function ψ : F ⊗ Fqd → Fqn induced by (f, α) 7→ f(α) has the property that
for any U ≤ F of dimension at most ≈ n

d
, dim(ψ(U ⊗ Fqd)) ≈ d · dim(U).

For this reason, we believe that the map ϕ defined above is a very viable candidate
for a two-source rank condenser. Unfortunately, the analysis of the dimension expander
from Theorem 8.5.2 relied crucially on the fact that Fqd forms a subfield, so showing that
ϕ(U ⊗ V) has large dimension when V ≤ Fqn is an arbitrary Fq-linear subspace will
require new ideas. Nonetheless, we believe this is a fruitful avenue to pursue.

9.5 Miscellaneous Open Problems

Lastly, we collect several other questions that were raised earlier.
• The machinery in Chapter 3 applies to any local property, although we were mostly

interested in list-decodability and related notions. Are there other natural proper-
ties that are local?

• Can we more precisely define what it means for a local property family P = (Pni)
to be “uniform”? Here is a natural definition: there is a fixed a polyhedron P

contained in the probability simplex of Rq` , and for each ni, Pni is defined by for-
bidding all types τ ∈ Dni,` for which the vector (τ(u))u∈F`q is contained in P . There

9This construction actually provides the stronger guarantee that dim(ϕ(V ⊗ W))geqn. In fact, the
construction is obtained from a Gabidulin code, or any rank metric code achieving the Singleton bound.

190

are then two natural questions to ask about such “uniform” types.

1. Does the limit limi→∞(RRLC(Pni)) exist?

2. Recall Remark 4.2.5: in general, we cannot prove a converse to Theorem 4.2.3:
one can define a property family (Pn) such that, even if Rn ≥ RRLC(Pn)+0.99
for all n, the random LDPC code CnsLDPC(Rn) does satisfy the property with
probability 1 for all n. However, one can observe that the local property de-
fined in Remark 4.2.5 is not uniform in the polyhedral sense given above. For
this reason, we ask the following question: does a converse to Theorem 4.2.3
hold if we restrict attention to these uniform property families?

• For rank metric codes in Fnqm , do there exist any Fqm-linear codes which are list-
decodable beyond half the minimum distance?

• Can we construct a dimension expander with smaller field size? The answer to
this question would be yes if we could construct subspace designs with smaller
field sizes.

9.6 Final Thoughts

Thank you to everyone who has read this far!10 We hope that we have managed to
demonstrate why list-decodable codes are a subject meriting this much study. Not only
do they find interesting applications in the real world and the (equally valuable) TCS
world, but the mathematical challenges they pose are both stimulating and captivating.

As a final question: may I please have a Ph.D.?

10Mom and/or Dad, if you trudged all the way to this point, I’d be very curious to hear what you
understood.

191

192

Bibliography

[AVZ00] Erik Agrell, Alexander Vardy, and Kenneth Zeger. “Upper bounds for
constant-weight codes”. In: IEEE Transactions on Information Theory 46.7
(2000), pp. 2373–2395.

[ABI86] Noga Alon, László Babai, and Alon Itai. “A fast and simple randomized
parallel algorithm for the maximal independent set problem”. In: Journal
of algorithms 7.4 (1986), pp. 567–583.

[ABP18] Noga Alon, Boris Bukh, and Yury Polyanskiy. “List-decodable zero-rate
codes”. In: IEEE Transactions on Information Theory 65.3 (2018), pp. 1657–
1667.

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. “Linear time erasure codes
with nearly optimal recovery”. In: Proceedings of the 36th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE. 1995, pp. 512–519.

[AL96] Noga Alon and Michael Luby. “A linear time erasure-resilient code with
nearly optimal recovery”. In: IEEE Transactions on Information Theory 42.6
(1996), pp. 1732–1736.

[ABL00] Alexei Ashikhmin, Alexander Barg, and Simon Litsyn. “A new upper bound
on codes decodable into size-2 lists”. In: Numbers, Information and Complex-
ity. Springer, 2000, pp. 239–244.

[Bab+91] László Babai, Lance Fortnow, Leonid A Levin, and Mario Szegedy. “Check-
ing computations in polylogarithmic time”. In: Proceedings of the 23rd An-
nual ACM Symposium on Theory of Computing (STOC). 1991, pp. 21–32.

[Bar+04] Boaz Barak, Russell Impagliazzo, Amir Shpilka, and Avi Wigderson. Per-
sonal Communication to Dvir-Shpilka [DS11]. 2004.

[BKP18] Nir Bitansky, Yael Tauman Kalai, and Omer Paneth. “Multi-collision resis-
tance: a paradigm for keyless hash functions”. In: Proceedings of the 50th
Annual ACM Symposium on Theory of Computing (STOC). 2018, pp. 671–684.

[Bli05] Vladimir M Blinovsky. “Code bounds for multiple packings over a non-
binary finite alphabet”. In: Problems of Information Transmission 41.1 (2005),
pp. 23–32.

193

[Bli86] Volodia M Blinovsky. “Bounds for codes in the case of list decoding of
finite volume”. In: Problems of Information Transmission 22.1 (1986), pp. 7–
19.

[Bol01] Béla Bollobás. Random graphs. 73. Cambridge university press, 2001.
[BY13] Jean Bourgain and Amir Yehudayoff. “Expansion in SL2(R) and monotone

expanders”. In: Geometric and Functional Analysis 23.1 (2013). Preliminary
version in the 44th Annual ACM Symposium on Theory of Computing (STOC
2012)., pp. 1–41. DOI: 10.1007/s00039-012-0200-9.

[CPS99] Jin-Yi Cai, Aduri Pavan, and D Sivakumar. “On the hardness of perma-
nent”. In: Proceedings of the 16th Annual Symposium on Theoretical Aspects of
Computer Science (STACS). Springer. 1999, pp. 90–99.

[CGV13] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. “Re-
stricted isometry of Fourier matrices and list decodability of random linear
codes”. In: SIAM Journal on Computing 42.5 (2013), pp. 1888–1914.

[CT12] Thomas M Cover and Joy A Thomas. Elements of information theory. John
Wiley & Sons, 2012.

[CS+04] Imre Csiszár, Paul C Shields, et al. “Information theory and statistics: A
tutorial”. In: Foundations and Trends R© in Communications and Information
Theory 1.4 (2004), pp. 417–528.

[Del78] Philippe Delsarte. “Bilinear forms over a finite field, with applications to
coding theory”. In: Journal of Combinatorial Theory, Series A 25.3 (1978), pp. 226–
241.

[Din14] Yang Ding. “On list-decodability of random rank metric codes and sub-
space codes”. In: IEEE Transactions on Information Theory 61.1 (2014), pp. 51–
59.

[Dor+19] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly
optimal pseudorandomness from hardness. Tech. rep. ECCC preprint TR19-
099, 2019.

[DL12] Zeev Dvir and Shachar Lovett. “Subspace evasive sets”. In: Proceedings
of the 44th Annual ACM Symposium on Theory of Computing (STOC). 2012,
pp. 351–358.

[DS07] Zeev Dvir and Amir Shpilka. “Locally decodable codes with two queries
and polynomial identity testing for depth 3 circuits”. In: SIAM Journal on
Computing 36.5 (2007), pp. 1404–1434.

[DS11] Zeev Dvir and Amir Shpilka. “Towards dimension expanders over finite
fields”. In: Combinatorica 31.3 (2011), pp. 305–320.

[DW10] Zeev Dvir and Avi Wigderson. “Monotone expanders: Constructions and
applications”. In: Theory of Computing 6.1 (2010), pp. 291–308.

[Eli57] Peter Elias. “List decoding for noisy channels”. In: (1957).

194

https://doi.org/10.1007/s00039-012-0200-9

[Eli91] Peter Elias. “Error-correcting codes for list decoding”. In: IEEE Transactions
on Information Theory 37.1 (1991), pp. 5–12.

[FG15] Michael A Forbes and Venkatesan Guruswami. “Dimension Expanders via
Rank Condensers”. In: Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (APPROX/RANDOM 2015). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015.

[FS12] Michael A Forbes and Amir Shpilka. “On identity testing of tensors, low-
rank recovery and compressed sensing”. In: Proceedings of the 44th Annual
ACM Symposium on Theory of Computing (STOC). ACM. 2012, pp. 163–172.

[FS95] Katalin Friedl and Madhu Sudan. “Some improvements to total degree
tests”. In: Proceedings of the 3rd Annual Israel Symposium on the Theory of
Computing and Systems (ISTCS). IEEE. 1995, pp. 190–198.

[GPT91] EM Gabidulin, AV Paramonov, and OV Tretjakov. “Ideals over a non-commutative
ring and their application in cryptology”. In: Workshop on the Theory and
Application of of Cryptographic Techniques. Springer. 1991, pp. 482–489.

[Gab85] Ernst M Gabidulin. “Theory of codes with maximum rank distance”. In:
Problemy Peredachi Informatsii 21.1 (1985), pp. 3–16.

[GR08a] Ariel Gabizon and Ran Raz. “Deterministic extractors for affine sources
over large fields”. In: Combinatorica 28.4 (2008), pp. 415–440.

[GY08] Maximilien Gadouleau and Zhiyuan Yan. “On the decoder error prob-
ability of bounded rank-distance decoders for maximum rank-distance
codes”. In: IEEE Transactions on Information Theory 54.7 (2008), pp. 3202–
3206.

[Gal62] Robert Gallager. “Low-density parity-check codes”. In: IRE Transactions on
Information Theory 8.1 (1962), pp. 21–28.

[Gil+13] Anna C Gilbert, Hung Q Ngo, Ely Porat, Atri Rudra, and Martin J Strauss.
“`2/`2-Foreach sparse recovery with low risk”. In: Proceedings of the 40th
Annual International Colloquium on Automata, Languages, and Programming
(ICALP). Springer. 2013, pp. 461–472.

[Gil52] Edgar N Gilbert. “A comparison of signalling alphabets”. In: The Bell Sys-
tem Technical Journal 31.3 (1952), pp. 504–522.

[Gol11] Oded Goldreich. “A sample of samplers: A computational perspective on
sampling”. In: Studies in Complexity and Cryptography. Miscellanea on the In-
terplay between Randomness and Computation. Springer, 2011, pp. 302–332.

[GL89] Oded Goldreich and Leonid A Levin. “A hard-core predicate for all one-
way functions”. In: Proceedings of the 21st Annual ACM Symposium on The-
ory of Computing (STOC). ACM. 1989, pp. 25–32.

[GRS06] Oded Goldreich, Dana Ron, and Madhu Sudan. “Chinese remaindering
with errors”. In: IEEE Transactions on Information Theory 46.4 (2006), pp. 1330–
1338.

195

[GS06] Oded Goldreich and Madhu Sudan. “Locally testable codes and PCPs of
almost-linear length”. In: Journal of the ACM (JACM) 53.4 (2006), pp. 558–
655.

[GGR11] Parikshit Gopalan, Venkatesan Guruswami, and Prasad Raghavendra. “List
decoding tensor products and interleaved codes”. In: SIAM Journal on Com-
puting 40.5 (2011), pp. 1432–1462.

[Gop+18] Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and
Shubhangi Saraf. “Locally testable and locally correctable codes approach-
ing the Gilbert-Varshamov bound”. In: IEEE Transactions on Information
Theory 64.8 (2018), pp. 5813–5831.

[Gop81] Valerii Denisovich Goppa. “Codes on algebraic curves”. In: Soviet Math.
Dokl. Vol. 24. 1981, pp. 170–172.

[Gur04] Venkatesan Guruswami. List decoding of error-correcting codes: winning thesis
of the 2002 ACM doctoral dissertation competition. Vol. 3282. Springer Science
& Business Media, 2004.

[Gur06] Venkatesan Guruswami. “Iterative decoding of low-density parity check
codes (A Survey)”. In: Bulletin of the European Association for Theoretical
Computer Science (EATCS) 90 (2006).

[Gur11] Venkatesan Guruswami. “Linear-algebraic list decoding of folded Reed-
Solomon codes”. In: Proceedings of the 26th Annual IEEE Conference on Com-
putational Complexity (CCC). IEEE. 2011, pp. 77–85.

[GHK11] Venkatesan Guruswami, Johan Håstad, and Swastik Kopparty. “On the
List-Decodability of Random Linear Codes”. In: IEEE Transactions on In-
formation Theory 2.57 (2011), pp. 718–725.

[GI01] Venkatesan Guruswami and Piotr Indyk. “Expander-based constructions
of efficiently decodable codes”. In: Proceedings of the 42nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE. 2001, pp. 658–667.

[GI02] Venkatesan Guruswami and Piotr Indyk. “Near-optimal linear-time codes
for unique decoding and new list-decodable codes over smaller alpha-
bets”. In: Proceedings of the 34th Annual ACM Symposium on Theory of Com-
puting (STOC). ACM. 2002, pp. 812–821.

[GI03] Venkatesan Guruswami and Piotr Indyk. “Linear time encodable and list
decodable codes”. In: Proceedings of the 35th Annual ACM Symposium on
Theory of Computing (STOC). ACM. 2003, pp. 126–135.

[GI04] Venkatesan Guruswami and Piotr Indyk. “Efficiently decodable codes meet-
ing Gilbert-Varshamov bound for low rates”. In: Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithm (SODA). SIAM, 2004,
pp. 756–757. ISBN: 0-89871-558-X. URL: http://dl.acm.org/citation.
cfm?id=982792.

196

http://dl.acm.org/citation.cfm?id=982792
http://dl.acm.org/citation.cfm?id=982792

[GK16] Venkatesan Guruswami and Swastik Kopparty. “Explicit subspace designs”.
In: Combinatorica 36.2 (2016), pp. 161–185.

[GN14] Venkatesan Guruswami and Srivatsan Narayanan. “Combinatorial limita-
tions of average-radius list-decoding”. In: IEEE Transactions on Information
Theory 60.10 (2014), pp. 5827–5842.

[GR18] Venkatesan Guruswami and Nicolas Resch. “On the list-decodability of
random linear rank-metric codes”. In: Proceedings of the 2018 IEEE Interna-
tional Symposium on Information Theory (ISIT). IEEE. 2018, pp. 1505–1509.

[GRX18] Venkatesan Guruswami, Nicolas Resch, and Chaoping Xing. “Lossless Di-
mension Expanders via Linearized Polynomials and Subspace Designs”.
In: Proceedings of the 33rd Annual Computational Complexity Conference (CCC).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[GR08b] Venkatesan Guruswami and Atri Rudra. “Explicit codes achieving list de-
coding capacity: error-correction with optimal redundancy”. In: IEEE Trans-
actions on Information Theory 54.1 (2008), pp. 135–150.

[GR10] Venkatesan Guruswami and Atri Rudra. “The existence of concatenated
codes list-decodable up to the Hamming bound”. In: IEEE Transactions on
Information Theory 56.10 (2010), pp. 5195–5206.

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. “Essential coding
theory”. In: Draft available at http://www.cse.buffalo.edu/~atri/
courses/coding-theory/book (2012).

[GS99] Venkatesan Guruswami and Madhu Sudan. “Improved Decoding of Reed-
Solomon and algebraic-geometry codes”. In: IEEE Transactions on Informa-
tion Theory 45.6 (1999), pp. 1757–1767.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. “Unbal-
anced expanders and randomness extractors from Parvaresh-Vardy codes”.
In: Journal of the ACM (JACM) 56.4 (2009), pp. 1–34.

[GV10] Venkatesan Guruswami and Salil Vadhan. “A lower bound on list size
for list decoding”. In: IEEE Transactions on Information Theory 56.11 (2010),
pp. 5681–5688.

[GW13] Venkatesan Guruswami and Carol Wang. “Linear-algebraic list decoding
for variants of Reed-Solomon codes”. In: IEEE Transactions on Information
Theory 59.6 (2013), pp. 3257–3268.

[GW14] Venkatesan Guruswami and Carol Wang. “Evading subspaces over large
fields and explicit list-decodable rank-metric codes”. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik. 2014.

197

http://www.cse.buffalo.edu/~atri/courses/coding-theory/book
http://www.cse.buffalo.edu/~atri/courses/coding-theory/book

[GWX16] Venkatesan Guruswami, Carol Wang, and Chaoping Xing. “Explicit list-
decodable rank-metric and subspace codes via subspace designs”. In: IEEE
Transactions on Information Theory 62.5 (2016), pp. 2707–2718.

[GX12] Venkatesan Guruswami and Chaoping Xing. “Folded codes from function
field towers and improved optimal rate list decoding”. In: Proceedings of the
44th Annual ACM Symposium on Theory of Computing (STOC). ACM. 2012,
pp. 339–350.

[GX13] Venkatesan Guruswami and Chaoping Xing. “List decoding Reed-Solomon,
algebraic-geometric, and Gabidulin subcodes up to the Singleton bound”.
In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC). ACM. 2013, pp. 843–852.

[GXY18] Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. “Subspace de-
signs based on algebraic function fields”. In: Transactions of the American
Mathematical Society 370.12 (2018), pp. 8757–8775.

[Gur+02] Venkatesan Guruswami, Johan Håstad, Madhu Sudan, and David Zuck-
erman. “Combinatorial bounds for list decoding”. In: IEEE Transactions on
Information Theory 48.5 (2002), pp. 1021–1034.

[Gur+20] Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shash-
wat Silas, and Mary Wootters. “Bounds for list-decoding and list-recovery
of random linear codes”. In: arXiv preprint arXiv:2004.13247 (2020).

[Hai+15] Iftach Haitner, Yuval Ishai, Eran Omri, and Ronen Shaltiel. “Parallel hash-
ing via list recoverability”. In: Proceedings of the 35th Annual Cryptology Con-
ference (Crypto). Springer. 2015, pp. 173–190.

[Ham50] Richard W Hamming. “Error detecting and error correcting codes”. In: The
Bell System Technical Journal 29.2 (1950), pp. 147–160.

[Har08] Aram W Harrow. “Quantum expanders from any classical Cayley graph
expander”. In: Quantum Information & Computation 8.8 (2008), pp. 715–721.

[Hay05] Thomas P Hayes. “A large-deviation inequality for vector-valued martin-
gales”. In: Combinatorics, Probability and Computing (2005).

[HRW17a] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. “Local List Recov-
ery of High-rate Tensor Codes & Applications”. In: Electronic Colloquium
on Computational Complexity (ECCC) 24 (2017), p. 104.

[HRW17b] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. “Local List Recov-
ery of High-rate Tensor Codes & Applications”. In: Electronic Colloquium
on Computational Complexity (ECCC) 24 (2017), 104 (revision 1).

[HRZW17] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. “Local list recov-
ery of high-rate tensor codes & applications”. In: Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE.
2017, pp. 204–215.

198

[HW15] Brett Hemenway and Mary Wootters. “Linear-Time List Recovery of High-
Rate Expander Codes”. In: Proceedings of the 42nd Annual International Col-
loquium on Automata, Languages, and Programming (ICALP). Springer. 2015,
pp. 701–712.

[INR10] Piotr Indyk, Hung Q Ngo, and Atri Rudra. “Efficiently decodable non-
adaptive group testing”. In: Proceedings of the 21st Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA). Society for Industrial and Applied
Mathematics. 2010, pp. 1126–1142.

[Jac97] Jeffrey C Jackson. “An efficient membership-query algorithm for learning
DNF with respect to the uniform distribution”. In: Journal of Computer and
System Sciences 55.3 (1997), pp. 414–440.

[Joh62] Selmer Johnson. “A new upper bound for error-correcting codes”. In: IRE
Transactions on Information Theory 8.3 (1962), pp. 203–207.

[Joh63] Selmer Johnson. “Improved asymptotic bounds for error-correcting codes”.
In: IEEE Transactions on Information Theory 9.3 (1963), pp. 198–205.

[KS11] Zohar S Karnin and Amir Shpilka. “Black box polynomial identity testing
of generalized depth-3 arithmetic circuits with bounded top fan-in”. In:
Combinatorica 31.3 (2011), pp. 333–364.

[KT00] Jonathan Katz and Luca Trevisan. “On the efficiency of local decoding pro-
cedures for error-correcting codes”. In: Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC). 2000, pp. 80–86.

[KS12] Kazuki Kobayashi and Tomoharu Shibuya. “Generalization of Lu’s linear
time encoding algorithm for LDPC codes”. In: Proceedings of the 2012 IEEE
International Symposium on Information Theory and its Applications. IEEE.
2012, pp. 16–20.

[KK08] Ralf Koetter and Frank R Kschischang. “Coding for errors and erasures in
random network coding”. In: IEEE Transactions on Information Theory 54.8
(2008), pp. 3579–3591.

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. “Secret-sharing for NP”.
In: Journal of Cryptology 30.2 (2017), pp. 444–469.

[Kop15a] Swastik Kopparty. “List-decoding multiplicity codes”. In: Theory of Com-
puting 11.1 (2015), pp. 149–182.

[Kop15b] Swastik Kopparty. “Some remarks on multiplicity codes”. In: AMS Special
Session on Discrete Geometry and Algebraic Combinatorics 625 (2015), pp. 155–
176.

[KSY14] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. “High-rate codes
with sublinear-time decoding”. In: Journal of the ACM (JACM) 61.5 (2014),
pp. 1–20.

199

[Kop+17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. “High-
rate locally correctable and locally testable codes with sub-polynomial query
complexity”. In: Journal of the ACM (JACM) 64.2 (2017), pp. 1–43.

[Kop+18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters.
“Improved decoding of folded Reed-Solomon and multiplicity codes”. In:
Proceedings of the 59th Annual IEEE symposium on Foundations of Computer
Science (FOCS). IEEE. 2018, pp. 212–223.

[Kop+19] Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and
Shashwat Silas. “On list recovery of high-rate tensor codes”. In: Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2019.

[KRU13] Shrinivas Kudekar, Tom Richardson, and Rüdiger L Urbanke. “Spatially
coupled ensembles universally achieve capacity under belief propagation”.
In: IEEE Transactions on Information Theory 59.12 (2013), pp. 7761–7813.

[KT14] Margreta Kuijper and Anna-Lena Trautmann. “List-decoding Gabidulin
Codes via Interpolation and the Euclidean Algorithm”. In: Proceedings of
the International Symposium on Information Theory and its Applications (ISITA).
IEEE. 2014, pp. 343–347.

[KM93] Eyal Kushilevitz and Yishay Mansour. “Learning decision trees using the
Fourier spectrum”. In: SIAM Journal on Computing 22.6 (1993), pp. 1331–
1348.

[Lar+16] Kasper Green Larsen, Jelani Nelson, Huy L Nguyên, and Mikkel Thorup.
“Heavy hitters via cluster-preserving clustering”. In: Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE.
2016, pp. 61–70.

[LW18] Ray Li and Mary Wootters. “Improved List-Decodability of Random Lin-
ear Binary Codes”. In: Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques (APPROX/RANDOM 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. 2018.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields. Vol. 20. Cambridge uni-
versity press, 1997.

[LM20] Nati Linial and Jonathan Mosheiff. “On the weight distribution of random
binary linear codes”. In: Random Structures & Algorithms 56.1 (2020), pp. 5–
36.

[Lip90] Richard J Lipton. “Efficient checking of computations”. In: Proceedings of
the 7th Annual Symposium on Theoretical Aspects of Computer Science (STACS).
Springer. 1990, pp. 207–215.

[Loi06] Pierre Loidreau. “A Welch-Berlekamp like algorithm for decoding Gabidulin
codes”. In: Coding and Cryptography. Springer, 2006, pp. 36–45.

200

[Loi10] Pierre Loidreau. “Designing a rank metric based McEliece cryptosystem”.
In: International Workshop on Post-Quantum Cryptography. Springer. 2010,
pp. 142–152.

[Loi17] Pierre Loidreau. “A new rank metric codes based encryption scheme”.
In: International Workshop on Post-Quantum Cryptography. Springer. 2017,
pp. 3–17.

[LK05] Hsiao-feng Lu and P Vijay Kumar. “A unified construction of space-time
codes with optimal rate-diversity tradeoff”. In: IEEE Transactions on Infor-
mation Theory 51.5 (2005), pp. 1709–1730.

[LM09] Jin Lu and José MF Moura. “Linear time encoding of LDPC codes”. In:
IEEE Transactions on Information Theory 56.1 (2009), pp. 233–249.

[LZ08] Alexander Lubotzky and Efim Zelmanov. “Dimension expanders”. In: Jour-
nal of Algebra 319.2 (2008), pp. 730–738.

[Lub+01] Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi,
and Daniel A Spielman. “Efficient erasure correcting codes”. In: IEEE Trans-
actions on Information Theory 47.2 (2001), pp. 569–584.

[LGB03] Paul Lusina, Ernst Gabidulin, and Martin Bossert. “Maximum rank dis-
tance codes as space-time codes”. In: IEEE Transactions on Information The-
ory 49.10 (2003), pp. 2757–2760.

[MV12] Hessam Mahdavifar and Alexander Vardy. “List-decoding of subspace
codes and rank-metric codes up to Singleton bound”. In: Proceedings of the
2012 IEEE International Symposium on Information Theory (ISIT). IEEE. 2012,
pp. 1488–1492.

[Mos+19] Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and
Mary Wootters. “LDPC Codes Achieve List Decoding Capacity”. In: arXiv
preprint arXiv:1909.06430 (2019).

[NPR12] Hung Q Ngo, Ely Porat, and Atri Rudra. “Efficiently Decodable Com-
pressed Sensing by List-Recoverable Codes and Recursion”. In: Proceedings
of the 29th Annual International Symposium on Theoretical Aspects of Computer
Science (STACS). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2012.

[NX09] Harald Niederreiter and Chaoping Xing. Algebraic geometry in coding theory
and cryptography. Princeton University Press, 2009.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,
2014.

[PV05] Farzad Parvaresh and Alexander Vardy. “Correcting errors beyond the
Guruswami-Sudan radius in polynomial time”. In: 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS). IEEE. 2005, pp. 285–294.

[PR04] Pavel Pudlák and Vojtech Rödl. “Pseudorandom sets and explicit construc-
tions of Ramsey graphs”. In: Submitted for publication (2004).

201

[RWZ16] Netanel Raviv and Antonia Wachter-Zeh. “Some Gabidulin codes cannot
be list decoded efficiently at any radius”. In: IEEE Transactions on Informa-
tion Theory 62.4 (2016), pp. 1605–1615.

[RWZ17] Netanel Raviv and Antonia Wachter-Zeh. “A correction to “Some Gabidulin
codes cannot be list decoded efficiently at any radius””. In: IEEE Transac-
tions on Information Theory 63.4 (2017), pp. 2623–2624.

[RS60] Irving S Reed and Gustave Solomon. “Polynomial codes over certain finite
fields”. In: Journal of the Society for Industrial and Applied Mathematics 8.2
(1960), pp. 300–304.

[Ree54] Irving Reed. “A class of multiple-error-correcting codes and the decoding
scheme”. In: Transactions of the IRE Professional Group on Information Theory
4.4 (1954), pp. 38–49.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson. “Entropy waves, the
zig-zag graph product, and new constant-degree expanders”. In: Annals of
Mathematics 155 (2002), pp. 157–187.

[RZWZ20] Noga Ron-Zewi, Mary Wootters, and Gilles Zémor. “Linear-time Erasure
List-decoding of Expander Codes”. In: arXiv preprint arXiv:2002.08579 (2020).

[Rot91] Ron M Roth. “Maximum-rank array codes and their application to criss-
cross error correction”. In: IEEE Transactions on Information Theory 37.2 (1991),
pp. 328–336.

[RS96] Ronitt Rubinfeld and Madhu Sudan. “Robust characterizations of polyno-
mials with applications to program testing”. In: SIAM Journal on Computing
25.2 (1996), pp. 252–271.

[Rud07] Atri Rudra. List decoding and property testing of error-correcting codes. Uni-
versity of Washington, 2007.

[Rud11] Atri Rudra. “Limits to list decoding of random codes”. In: IEEE Transac-
tions on Information Theory 57.3 (2011), pp. 1398–1408.

[RW14] Atri Rudra and Mary Wootters. “Every list-decodable code for high noise
has abundant near-optimal rate puncturings”. In: Proceedings of the 46th
Annual ACM Symposium on Theory of Computing (STOC). ACM. 2014, pp. 764–
773.

[RW18] Atri Rudra and Mary Wootters. “Average-radius list-recoverability of ran-
dom linear codes”. In: Proceedings of the 29th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA). SIAM. 2018, pp. 644–662.

[Sau72] Norbert Sauer. “On the density of families of sets”. In: Journal of Combina-
torial Theory, Series A 13.1 (1972), pp. 145–147.

[Sha48] Claude E. Shannon. “A mathematical theory of communication”. In: Bell
System Technical Journal 27 (1948). Monograph B-1598.

202

[She72] Saharon Shelah. “A combinatorial problem; stability and order for models
and theories in infinitary languages”. In: Pacific Journal of Mathematics 41.1
(1972), pp. 247–261.

[SKK08] Danilo Silva, Frank R Kschischang, and Ralf Koetter. “A rank-metric ap-
proach to error control in random network coding”. In: IEEE Transactions
on Information Theory 54.9 (2008), pp. 3951–3967.

[Sin64] Richard Singleton. “Maximum distance q-nary codes”. In: IEEE Transac-
tions on Information Theory 10.2 (1964), pp. 116–118.

[SS96] Michael Sipser and Daniel A Spielman. “Expander codes”. In: IEEE Trans-
actions on Information Theory 42.6 (1996), pp. 1710–1722.

[Sti09] Henning Stichtenoth. Algebraic function fields and codes. Vol. 254. Springer
Science & Business Media, 2009.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. “Pseudorandom genera-
tors without the XOR lemma”. In: Journal of Computer and System Sciences
62.2 (2001), pp. 236–266.

[Tan81] R Tanner. “A recursive approach to low complexity codes”. In: IEEE Trans-
actions on Information Theory 27.5 (1981), pp. 533–547.

[TV06] Terence Tao and Van H Vu. Additive combinatorics. Vol. 105. Cambridge Uni-
versity Press, 2006.

[Tho83] Christian Thommesen. “The existence of binary linear concatenated codes
with Reed-Solomon outer codes which asymptotically meet the Gilbert-
Varshamov bound”. In: IEEE Transactions on Information Theory 29.6 (1983),
pp. 850–853.

[TVZ82] M A Tsfasman, SG Vlădut, and Th Zink. “Modular curves, Shimura curves,
and Goppa codes, better than Varshamov-Gilbert bound”. In: Mathematis-
che Nachrichten 109.1 (1982), pp. 21–28.

[Vad12] Salil P Vadhan. “Pseudorandomness”. In: Foundations and Trends R© in The-
oretical Computer Science 7.1–3 (2012), pp. 1–336.

[Var57] RR Varshamov. “Estimate of the number of signals in error correcting codes”.
In: Docklady Akad. Nauk, SSSR 117 (1957), pp. 739–741.

[Vid15] Michael Viderman. “A combination of testability and decodability by ten-
sor products”. In: Random Structures & Algorithms 46.3 (2015), pp. 572–598.

[WZ12] Antonia Wachter-Zeh. “Bounds on list decoding Gabidulin codes”. In: Pro-
ceedings of the 13th Annual International Workshop on Algebraic and Combina-
torial Coding Theory (ACCT). 2012.

[WZ13] Antonia Wachter-Zeh. “Bounds on list decoding of rank-metric codes”. In:
IEEE Transactions on Information Theory 59.11 (2013), pp. 7268–7277.

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. “Graphical models, expo-
nential families, and variational inference”. In: Foundations and Trends R© in
Machine Learning 1.1–2 (2008), pp. 1–305.

203

[WB86] Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block
codes. US Patent 4,633,470. 1986.

[Wig04] Avi Wigderson. Expanders: Old and new applications and problems. Lecture at
the Institute for Pure and Applied Mathematics (IPAM). Feb. 2004.

[Woo13] Mary Wootters. “On the list decodability of random linear codes with large
error rates”. In: Proceedings of the 45h Annual ACM Symposium on Theory of
Computing (STOC). ACM. 2013, pp. 853–860.

[Woz58] John M Wozencraft. “List decoding”. In: Quarterly Progress Report 48 (1958),
pp. 90–95.

[Zém01] Gillés Zémor. “On expander codes”. In: IEEE Transactions on Information
Theory 47.2 (2001), pp. 835–837.

[ZP81] Victor Vasilievich Zyablov and Mark Semenovich Pinsker. “List concate-
nated decoding”. In: Problemy Peredachi Informatsii 17.4 (1981), pp. 29–33.

204

	1 Introduction
	1.1 Error-Correcting Codes
	1.2 List-Decodable Codes
	1.2.1 Motivations for List-Decoding

	1.3 Snapshot of Our Contributions
	1.3.1 Random Ensembles of Codes
	1.3.2 Explicit Constructions of List Decodable Codes
	1.3.3 Applications of List-Decodable Codes
	1.3.4 Roadmap

	2 Preliminaries
	2.1 Notations, Conventions, and Basic Definitions
	2.2 Codes
	2.2.1 Random Ensembles of Codes

	2.3 List-Decodable Codes and Friends
	2.4 Combinatorial Bounds on Codes
	2.4.1 Rate-Distance Tradeoffs
	2.4.2 List-Decoding Tradeoffs

	2.5 Code Families
	2.6 Thesis' Contributions and Organization
	2.6.1 Random Ensembles of Codes
	2.6.2 Explicit Constructions of List-Decodable Codes
	2.6.3 Applications of List-Decodable Codes
	2.6.4 Dependency Between Chapters

	3 Combinatorial Properties of Random Linear Codes: A New Toolkit
	3.1 Prior Work
	3.2 Local Properties of Codes
	3.2.1 Definitions
	3.2.2 Local Properties

	3.3 Characterizing the Threshold of Local Properties
	3.4 Proof of lem:tau-threshold
	3.5 New Derivations of Known Results
	3.5.1 Showing Random Linear Codes Achieve the GV Bound
	3.5.2 Recovering Known Results on the List-Decodability of Random Linear Codes

	3.6 An Application to List-of-2 Decoding

	4 LDPC Codes Achieve List-Decoding Capacity
	4.1 LDPC Codes
	4.1.1 Prior Work on LDPC Codes

	4.2 Our Results
	4.3 The Proof, Modulo Two Technical Lemmas
	4.3.1 Sharpness of Local Properties for Random Linear Codes
	4.3.2 Probability that a Matrix is Contained in a Random s-LDPC Code
	4.3.3 Distance of Random s-LDPC Codes
	4.3.4 Proof of thm:ldpc-main, Assuming the Building Blocks

	4.4 Probability Smooth Types Appear in LDPC Codes
	4.4.1 Fourier Analysis over Finite Fields
	4.4.2 Proof of lem:smooth-matrix-in-ldpc

	4.5 Distance
	4.5.1 Proof of thm:ldpc-distance, given a lemma
	4.5.2 The Function and Proof of Items 1 and 2 of lem:phi-facts
	4.5.3 Proof of item:Plambda-monotonicity of lem:phi-facts

	4.6 Open Problems

	5 On the List-Decodability of Random Linear Codes over the Rank Metric
	5.1 Primer on Rank Metric Codes
	5.1.1 List-Decodable Rank Metric Codes

	5.2 Prior Work
	5.3 Our Results
	5.4 Overview of Approach
	5.4.1 Increasing Sequences: A Ramsey-Theoretic Tool

	5.5 Proofs
	5.6 Open Problems

	6 Average-Radius List-Decodability of Binary Random Linear Codes
	6.1 Overview of Approach
	6.1.1 Alterations for Average-Radius List-Decoding

	6.2 The Proof
	6.3 Rank Metric

	7 Tensor Codes: List-Decodable Codes with Efficient Algorithms
	7.1 Introduction
	7.1.1 The Cast
	7.1.2 The Context
	7.1.3 Our Results
	7.1.4 Deterministic Near-Linear Time Global List-Recovery
	7.1.5 Local List-Recovery
	7.1.6 Combinatorial Lower Bound on Output List Size

	7.2 Preliminaries
	7.2.1 Local Codes
	7.2.2 Tensor Codes

	7.3 Deterministic Near-Linear Time Global List-Recovery
	7.3.1 Samplers
	7.3.2 Randomness-Efficient Algorithm
	7.3.3 Output List Size, Randomness, and Running Time
	7.3.4 Deterministic Near-Linear Time Capacity-Achieving List-Recoverable Codes
	7.3.5 Deterministic Near-Linear Time Unique Decoding up to the GV Bound

	7.4 Local List-Recovery
	7.4.1 Local List-Recovery of High-Rate Tensor Codes
	7.4.2 Capacity-Achieving Locally List-Recoverable Codes
	7.4.3 Local Correction up to the GV Bound

	7.5 Combinatorial Lower Bound on Output List Size
	7.5.1 Output List Size for List-Recovering High-Rate Tensor Codes
	7.5.2 Concrete Lower Bound on Output List Size
	7.5.3 Lower Bound for Local List-Recovery
	7.5.4 Dual Distance is a Lower Bound on Query Complexity: Proof of lemma:lower-bound-for-correction
	7.5.5 Tensor Product Preserves Dual Distance: Proof of lem:dual-dist-tensor

	8 Dimension Expanders: An Application of List-Decodable Codes
	8.1 Introduction
	8.1.1 Our results
	8.1.2 Interlude: Rank Metric Codes
	8.1.3 Our approach
	8.1.4 Previous Work
	8.1.5 Organization

	8.2 Background
	8.2.1 Dimension Expanders
	8.2.2 Subspace Designs
	8.2.3 Periodic Subspaces

	8.3 Construction
	8.4 Constructions of Subspace Designs
	8.4.1 Subspace Designs via an Intermediate Field
	8.4.2 Construction via Correlated High-Degree Places

	8.5 Explicit Instantiations of Dimension Expanders
	8.6 Unbalanced Expanders
	8.6.1 Unbalanced Dimension Expander Construction
	8.6.2 Higher-Dimensional Subspace Designs
	8.6.3 Explicit Instantiations

	8.7 Subspace Evasive Subspaces
	8.8 Conclusion and Open Problems
	8.9 Deferred Proofs
	8.9.1 Proof of lem:dim-exp-intersection-intermediate-field
	8.9.2 Randomized Construction of an Unbalanced Dimension Expander

	9 Conclusion
	9.1 Precisely Computing the Threshold for List-Decodability
	9.1.1 Rephrasing Conjecture With Fourier Analysis

	9.2 An Additive Combinatorics Conjecture
	9.3 Explicit LDPC Codes
	9.4 Two-Source Rank Condensers
	9.5 Miscellaneous Open Problems
	9.6 Final Thoughts

	Bibliography

