
Injecting output constraints
into neural NLP models

Jay Yoon Lee

July 2020
CMU-CS-20-111

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
William W. Cohen, Co-Chair
Jaime G. Carbonell, Co-Chair

Graham Neubig
Yulia Tsvetkov

Dan Roth (University of Pennsylvania)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Jay Yoon Lee

This research was sponsored by the National Science Foundation under grant number IIS-1408924, the Defense
Advanced Research Projects Agency under grant numbers W911-NF-09-2-0053 and W911-NF-11-C-0088 , Boeing
under grant number 2015-002U, and the Department of Energy National Nuclear Security Administration under
grant number DE-ACS2-07NA27344. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

Keywords: Structured Prediction, Hard constraint injection, Arbitrary knowledge injection,
Natural Language Processing, Multi-task Learning, Transfer Learning, Domain adaptation, Se-
mantic Role Labeling, Span-based models.

For my family and Jaime.

iv

Abstract
The goal of this thesis is injecting prior knowledge and constraints into neural

models, primarily for natural language processing (NLP) tasks. While neural models
have set new state of the art performance in many tasks from computer vision to NLP,
they often fail to learn to consistently produce well-formed structures unless there
is an immense amount of training data. This thesis argues that not all the aspects of
the model have to be learned from the data itself, and shows that injecting simple
knowledge and constraints into neural models can help low-resource, out-of-domain
settings, as well as improve state-of-the-art models.

This thesis focuses on structural knowledge of the output space and injects
knowledge of correct or preferred structures as an objective to the model without any
modification to the model structure, in a model-agnostic way. The first benefit in
focusing on knowledge on the output space is that it is intuitive as we can directly
enforce output to satisfy logical/linguistic constraints. Another advantage of structural
knowledge is that it often does not require a labeled dataset.

Focusing on deterministic constraints on the output values, this thesis first applies
output constraints at inference time via the gradient-based inference (GBI) method.
In the spirit of gradient-based training, GBI enforces constraints for each input at test-
time by optimizing continuous model weights until the network’s inference procedure
generates an output that satisfies the constraints.

Then, this thesis shows that constraint injection on inference-time can be extended
to training time: from instance-based optimization at test time to generalization to
multiple instances at training time. In training with structural constraints, this thesis
presents (1) a structural constraint loss, (2) a joint objective of structural loss and
supervised loss on a training set and, (3) a joint objective in a semi-supervised setting.
All the loss functions show improvements and among them, the semi-supervised
approach shows the largest improvement and is particularly effective in a low-resource
setting. The analysis shows that the efforts at training time and at inference time
are complementary rather than exclusive: the performance is best when efforts on
train-time and inference-time methods are combined.

Finally, this thesis presents an agreement constraint on a multi-view learning
that can utilize the semi-supervised approach with the constraint. The presented
agreement constraint in multi-view learning is general in that it can be applied to any
sequence-labeling problem with multiple views, while other constraints in this thesis
consider prior knowledge about specific tasks. This semi-supervised approach again
shows large gains in low-resource settings and shows effectiveness on high-resource
as well.

vi

Acknowledgments
First and foremost, I want to thank my advisor Jaime Carbonell for his guidance

and inspiration. It was a true privilege to know him and work with him. While
allowing the space for me to shape my own research, Jaime always encouraged me
and provided insightful feedback, often drawn from a wide variety of areas and topics.
The discussions with Jaime not only helped this thesis, but it also helped me grow
as an independent researcher. Jaime has set the best possible example for me as a
researcher and mentor. I will remember his enthusiasm and dedication to research,
and love for his students. I am truly fortunate to have had Jaime as my advisor, and I
will cherish fond memories of him.

Many thanks also to Professor William Cohen, Graham Neubig, Yulia Tsvetkov,
and Dan Roth for serving on the thesis committee and providing helpful comments to
better shape this thesis. Even before having Graham as a thesis committee member,
I learned so much about the recent advancements of neural NLP models from his
class and discussions. I learned seminal work in constraint-driven models, which
became part of the related work in this thesis, through Dan’s recommendations. I truly
appreciate Yulia for joining as a new committee member and William for taking the
co-chair position at such short notice after Jaime’s passing. I am grateful to William
for his time and energy as a co-chair, and for offering his insightful and detailed
feedback throughout this process.

I have had the privilege of working with a number of friends, colleagues, and
mentors during my Ph.D. study: Michael Wick, Jean-Baptiste Tristan, Paul Bennett,
Sungjin Lee, Jianfeng Gao, Sanket V Mehta, Kyungtae Lim, Thierry Poibeau, Manzil
Zaheer, Jisu Kim, Aditi Chaudhary, Vidhisha Balachandran, Junjie Hu, Pengcheng
Yin, Barnabas Poczos, Adams Wei Yu, Sashank Reddi, Tom Vu, U Kang, Danai
Koutra, Christos Faloutsos, Stephan G unnemann, Yibin Lin, and Roni Rosenfeld.
While not all of the projects led to a publication, these collaborations were essential
pieces for my Ph.D. and for my growth as a researcher. I would also like to thank
students in Jaime’s group for being a great friend and an inspiration for new ideas:
Seungwhan, Keerthi, Daegun, Ashiqur, Petar, Sanket, Zirui, Byungsoo, Sangkeun,
Junjie, Aditi, and Vidhisha. The reading groups and collaborations taught me how to
better communicate with other researchers. The time I spent with collaborators and
lab members will remain as fond memories of my Ph.D. program.

I would like to thank all the professors who taught great classes that formed
foundations for my research. Thanks to Professor Tom Mitchell and Aarti Singh
for my very first Machine Learning class, and thanks to Professor Ryan Tibshirani
and Barnabas Poczos for teaching convex optimization class, which has become an
essential tool for my research. I would also like to thank our excellent university staff
for their support and assistance: Deb Cavlovich, Alison Day, Kate Schaich, Stacey
Young, and many more. I especially want to thank Deb and Professor Venkatesan
Guruswami for swiftly accommodating a difficult and unusual situation toward the
end of my thesis.

I would like to express a token of appreciation to professors who provided advice

in the early stage of my career choice. When I first came to CMU, I was not even
sure whether I would pursue a Ph.D. I want to thank Professor Youngchul Sung, Dan
Lee at KAIST, and John Vu at CMU for providing advice as I considered pursuing a
Computer Science Ph.D. program at CMU.

Friends from the CMU Korean community were also a significant part of my Ph.D.
life. I would like thank Byeongjoo, Yeonsu, Byungsoo, Daegun, Eunyong, Daehyeok,
Dohyun, Dongyeop, Euiwoong, Yesul, Haewon, Heewook, Hyeju, Jaejun, Jihee,
Taegyun, Jihoon, Youngsuk, Jisu, Joohyung, Junsung, Minkyung, Juyong, Junwoo,
Juyong, Kijung, Kiwan, Philgoo, Seojin, Serim, Seungwhan, Sungho, Jungeun,
Sungwook, Suyoun, Xun, Yoojin and many more. I am grateful for this community
that enabled us to share all aspects of life, regardless of how big or small.

Last but not least, I would like to thank my family for always believing in me and
supporting me throughout this journey. My family constantly motivated me to be in
the present and focus on what is essential. Words cannot describe how thankful I am
for my parent’s unconditional love and patience. However far away we may be from
each other, I love you, and I always believe in you as well.

viii

Contents

1 Introduction 1
1.1 The importance of constraints in learning . 1
1.2 Contributions of the thesis . 3
1.3 Thesis statement . 4
1.4 Organization of the thesis . 5

2 Related Work 7
2.1 Inference with output constraints . 7
2.2 Learning with output constraints . 10
2.3 Constraint incorporation in model structure . 13

I Inference with Output Constraints 17

3 Inference with Output Constraints: Gradient-Based Inference (GBI) 21
3.1 Constraint-aware inference in neural networks 22

3.1.1 Problem definition and motivation . 23
3.1.2 Algorithm . 24

3.2 Applications . 26
3.2.1 Semantic Role Labeling . 26
3.2.2 Syntactic parsing . 28
3.2.3 Synthetic sequence transduction . 29

3.3 Experiments . 30
3.3.1 Research questions and metrics for experiments 30
3.3.2 Toy Transduction Experiment . 31
3.3.3 Semantic Role Labeling . 32
3.3.4 Syntactic parsing . 35
3.3.5 GBI on wide range of reference models 38

3.4 Further analysis . 39
3.4.1 Experiments on out-of-domain data . 40
3.4.2 Robustness of GBI . 40
3.4.3 Runtime analysis . 41
3.4.4 Discussion on max-iteration M . 42

3.5 Related work . 42

ix

3.6 Conclusion . 43

II Semi-Supervised Learning with
Output Constraints 45

4 Semi-Supervised Learning with
Syntactic Constraints 49
4.1 Overview . 50
4.2 Proposed Approach . 51

4.2.1 Task definition . 51
4.2.2 Baseline model . 52
4.2.3 Structural Constraints . 52
4.2.4 Training with Joint Objective . 54
4.2.5 Semi-supervised learning formulation 54

4.3 Experiments . 55
4.3.1 Dataset . 55
4.3.2 Model configurations . 55
4.3.3 Results . 56
4.3.4 Domain adaptation using output constraints 60

4.4 Related Work . 63
4.4.1 Learning with constraints . 63
4.4.2 Injecting syntactic constraints to SRL model 64

4.5 Conclusions and Future Work . 65

5 Semi-Supervised Learning with
agreement constraint in multi-view models 67
5.1 Overview . 68
5.2 Proposed Approach . 70

5.2.1 BASELINE model . 70
5.2.2 Supervised Learning on multi-view data (META-BASE) 71
5.2.3 CO-META . 73
5.2.4 Joint Semi-Supervised Learning . 74

5.3 Experiments . 75
5.3.1 Data Sets . 75
5.3.2 Evaluation Metrics . 75
5.3.3 Experimental Setup . 76
5.3.4 Experiment goals . 77
5.3.5 Results in Low-Resource Settings . 77
5.3.6 Results in High-Resource Settings . 83

5.4 Related Work . 86
5.4.1 Dependency Parsing with Multi-Task Structure 86
5.4.2 Multi-view learning . 87

5.5 Conclusion . 88

x

III Looking Forward 89

6 Conclusions and Future work 91
6.1 Summary . 91
6.2 Future work . 93

6.2.1 Multi-task systems with agreement scores 94
6.2.2 Future applications . 95

Bibliography 97

xi

xii

List of Figures

3.1 The syntactic constituency parse tree for our example “The ball is red”. 28

5.1 The structure of our baseline model: a multi-task POS tagger and dependency
parser. 70

5.2 These figures describe the overall structures of (A) BASELINE, (B) META-BASE,
and (C) CO-META. The BASELINE model in (A) uses the embeddings from
multiple view in a concatenated manner as an single input to a single model. In
contrast, (B) META-BASE and (C) CO-META maintain separate BiLSTM layers
for each view and then builds META-BILSTM on top of them. Both META-BASE

and CO-META learn with supervised loss (LMETA-BASE), however, CO-META learns
with an additional unsupervised loss g using an unlabeled corpus. While the
figures describe a simple case where there are only two views (word, character),
the model can easily expand with extra views as shown in our experiment with
language-model (LM) embeddings (Table 5.6 and 5.7). In order to include
language-model embeddings such as ELMo and BERT in our multi-view set up,
we simply increase the number of views used in lower layers (word, character,
LM). 72

5.3 Evaluation results for Chinese (zh_gsd) on various sizes of the training set (5, 10,
20, 50, 100, 500, 1k, 2k, 3k, 4k) together with the fixed size of 12k unlabeled
sentences. The test results show the effect of varying training set size, while the
unlabeled set size is fixed, on the ENSEMBLE-based CO-META. 82

5.4 Evaluation results for Chinese (zh_gsd) based on different sizes of the unlabeled
set and proposed models. We apply ENSEMBLE-based CO-META with the fixed
size of 50 training sentences while varying the unlabeled set size (0, 500, 1000,
5000, . . . , 30000). Except the case of using 500 unlabeled set, in all seven cases,
CO-META preformed better. 83

xiii

xiv

List of Tables

3.1 A sequence transduction example for which enforcing the constraints improves
accuracy. The loss column indicates Ψ(x, ŷ, θλ)g(ŷ,Lx) for our toy transduction
problem. Red indicates errors. 32

3.2 Comparison of the GBI vs. A*inference procedure for SRL. We first report the
F1-score and failure rate (%) over whole test set in the table above. Then, focusing
on the failure set, we report more detailed analysis with average disagreement
rate, exact match, and F1-scores and exact match in table below. Also, we report
performances on a wide range of reference models SRL-X, where X denotes % of
dataset used for training. We employ Viterbi decoding as a base inference strategy
(before) and apply GBI (after) in combination with Viterbi. 33

3.3 A semantic role labeling example for which the method successfully enforces
syntactic constraints with GBI. The initial output has an inconsistent span (which
are marked red) for token "really like this". Enforcing the constraint not only
corrects the number of agreeing spans, but also changes the semantic role "B-
ARG2" to "B-ARGM-ADV" and "I-ARG2" to "B-ARG2". 34

3.4 Parsing Networks with various performances. Net1,2 are GNMT seq2seq
models whereas Net3-5 are trained on lower-resource and simpler seq2seq
models, providing a wide range of model performances on which to test GBI. . . 35

3.5 Evaluation of GBI on syntactic parsing using GNMT seq2seq. Note that GBI
without beam search performs higher than beam search performance in Table 3.4. 35

3.6 Evaluation of GBI on simpler seq2seq networks Net4, 5 are trained on a lower
resource (75% and 25%, respectively). Here, we also evaluate whether GBI can
be used in combination with different inference techniques: greedy and beam
search of various widths. 36

xv

3.7 A shift-reduce example for which the method successfully enforces constraints
with GBI. The first table illustrates the steps that GBI takes and the second table
compares unconstrained decoder, constrained decoder, and true output. The initial
output has only nine shifts, but there are ten tokens in the input. Enforcing the
constraint not only corrects the number of shifts to ten, but changes the implied
tree structure to the correct tree. For a little more detail, observe the second table
which compares the result with the constrained decoder which constrains the
output only in myopic fashion. The initial unconstrained decoder prematurely
reduces “So it” into a phrase, missing the contracted verb “is.” Errors then
propagate through the sequence culminating in the final token missing from the
tree (a constraint violation). The constrained decoder is only able to deal with this
at the end of the sequence, while our method is able to harness the constraint to
correct the early errors. 37

3.8 Evaluation of GBI method on out-of-domain data on of SRL and syntactic parsing.
F1 scores are reported on the failure set. SRL model was trained on NW and the
syntactic parser was trained on WSJ set which is a subsection of NW on OntoNote
v5.0. The table shows that GBI can be successfully applied to reduce performance
degradation on out-of-domain data. In average, +12.2 F1 point increased for SRL
and +2.7 F1 point for parsing on failure set. Furthermore, in both cases, the gap
between source and out-of-domain test results reduces. 39

3.9 Comparison of different inference procedures: Viterbi, A*(He et al., 2017) and
GBI with noisy and noise-free constraints. Note that the (+/-) F1 are reported w.r.t
Viterbi decoding on the same column. 41

3.10 Comparison of runtime for difference inference procedures in the noise-free
constraint setting: Viterbi, A*(He et al., 2017) and GBI. For SRL-100 refer Table
3.2 and SRL-NW is a model trained on NW genre. 42

4.1 Comparison of baseline models (B) with the models trained with the joint objective
(J). * Legend: BX , JX denotes model trained with X% of the SRL-labeled data
with respective objective. 56

4.2 Training with SI-loss for varying sizes of SRL-unlabeled data on top of the pre-
trained baseline models (B1, B10 on Table 4.1). * Legend: BX-SI·Ux denotes
a model trained with SI-loss (LSI) on the pre-trained model BX where X × U
amount of SRL-unlabeled data were used for further training. 57

4.3 Training with semi-supervised objective (SSL) on top of the baseline models (B1,
B10 from Table 4.1), with the same SRL-labeled data used to train the baseline
models and with varying sizes of SRL-unlabeled data. B1-micro and B10-micro
represents running the same supervised loss that was used to pre-train B1, B10
but with smaller (micro) learning rate. The learning rates used in B1-micro and
B10-micro were set to the same rate as other fine-tunning experiments. We have
conducted these experiments to examine whether the gains are simply coming
from running longer epochs of training. * Legend: BX-SSL·Ux denote model
trained with semi-supervised loss (LSSL) on the pre-trained BX model where
X × U amount of SRL-unlabeled data were used for further training. 58

xvi

4.4 Overall comparison of loss functions from experiments utilizing 1% (top) and
10% (bottom) of available SRL-labeled data. This table aggregates statistics of
best-performing instance of each loss function (SI-loss, Joint, and semi-supervised
loss (SSL)) from Table 4.1, 4.2, 4.3. 59

4.5 Comparison of different decoding techniques: Viterbi, A* He et al. (2017) and
gradient based inference Lee et al. (2019) with noisy and noise-free syntactic
constraints. Note that the (+/-) F1 are reported w.r.t Viterbi decoding on the same
column. 60

4.6 Comparing the best semi-supervised models in Table 4.3 that uses gold parse,
from Treebank in CoNLL2012, with semi-supervised models that uses system-
generated parse trees. The system-generated parse trees were created by running
two off-the-shelf parsers, Berkeley Parser(Petrov et al., 2006) and ZPar(Zhu et al.,
2013), on NYT dataset(Sandhaus, 2008). After selecting instances where both
parses agree, the system-generated parse have approximately 80% agreement with
gold SRL. 61

4.7 Evaluation of domain adaptation models further trained with structural loss on
syntactic parsing application. F1 scores are reported on the whole test set per
domain. The initial reference model was trained on WSJ section under NW
on OntoNote v5.0. The structural loss training improves reference models on
all cases and more than +1 F1 score except BN & TC. The table shows that
learning with structural loss can be successfully applied to resolve performance
degradation on out-of-domain data. 62

4.8 Evaluation of domain adaptation on SRL using the semi-supervised learning
approach. F1 scores are reported on the whole test set per domain. The initial
reference model was trained on the NW section on OntoNote v5.0. Except
TC, a telephone conversation section, semi-supervised approach helps domain
adaptation by giving more than +1 F1 score improvement. The table shows that
semi-supervised learning can be successfully applied to resolve performance
degradation on out-of-domain data. 62

5.1 Hyperparameter setup for experiments . 76
5.2 LAS and UPOS scores of M (meta) model output on the test set using 50 training

sentences and unlabeled sentences based using CO-META, META-BASE, and our
BASELINE model Lim et al. (2018). We report META-BASE, which does not use
any unlabeled data, in order to decompose the performance gains into the gains
due to META-BASE (supervised) and CO-META (semi-supervised). 78

5.3 LAS and UPOS scores of M (meta) model on the test set using 100 training
sentences. We see that CO-META improves over BASELINE for Finnish, unlike
the results in Table 5.2 (50 sentences used) . 79

5.4 LAS on Greek(el_bdt) corpus for each model, with the average agreement score
g(ŷ) comparing M (word) and M (char) over the entire test set using 100 training
sentences. 80

5.5 Scores of CO-META with the ENSEMBLE method on different domains of unla-
beled data with 100 training sentences. 80

xvii

5.6 LAS for the English (en_ewt) corpus for each model, with the external language
models with the entire training set which has 12,543 labeled sentences. 84

5.7 LAS for the Chinese (zh_gsd) corpus for each model, with the BERT-Multilingual
embedding using the entire training set. We observe much higher improvements
than for English showed (see Table 5.6), probably because zh_gsd has a relatively
small training set (3,997) and larger character sets than the training set (12,543)
of English (en_ewt) corpus. 85

xviii

Chapter 1

Introduction

1.1 The importance of constraints in learning

With recent advances in artificial neural network models and computing power, the neural models

have set new state-of-the-art performances in a multitude of tasks across different applications such

as computer vision and natural language processing (NLP). Building upon these successes, neural

models are now applied to more complex real-world problems such as question-answering and

dialog generation. While neural models are tackling advanced problems that require reasoning,

ironically, even the best-performing neural models often fail to satisfy simple rules such as

subject-verb agreement (Linzen et al., 2016).

Many of the real-life tasks entail some form of rules on the output space which we will refer

to constraints in this thesis. For example, a constraint can be as complicated as requiring SRL

arguments to be subtrees of a parse tree, or as simple as requiring balanced parentheses in a

sentence generation, i.e. opened parentheses have to be closed. Especially for NLP, there are

various constraints derived from the innate rules of language.

Producing a well-formed output that satisfies constraints is important as it is a first step towards

generating a logically sound output. For example, if grammatical sentences always have balanced

parentheses, then enforcing this as a constraint will reduce the number of ungrammatical outputs.

In general, a constraint satisfaction will be a necessary condition, while not sufficient, for the

correctness of the output.

In this thesis, we are interested in enforcing constraints on the neural models as they have

become the de facto standard approach for NLP problems. To do so, it is important to review the

characteristics of neural networks. The neural network is a great tool for modeling and learning

a relation between an input X and output Y as a black-box function. The common approach is

to treat a standard neural network structure, such as multi-layer perceptron or recurrent neural

1

network, as a black box and optimize its parameters in a direction that maximizes the conditional

likelihood of Y given X, using training data. This black-box modeling approach can be beneficial

in learning complex functions that we do not know how to specify as its exact form or function

class can remain unknown.

While the black-box approach removes the burden of detailed modeling, it also brings several

challenges to incorporating constraints. First, note that training data itself does not explicitly state

the constraints that we are interested in. Returning to the balanced parentheses example, training

examples only display constraint-satisfying examples with balanced parentheses, however, it does

not state that unbalanced parentheses are wrong. Thus, constraints in a form of prior knowledge

should be injected to the model distinctly, rather than solely relying on the positive examples in

training data.

Second, the injection of constraints on output space for black-box models is difficult as it is

hard to acquire an explicit relation between output variables and model parameters. The success of

the black-box approach is made possible by the deep representation power of the neural network,

which learns to transform input features into space that is suitable for solving prediction problems

we are interested in. The role of each model parameter is to project one representation to another,

typically to a representation that is incomprehensible to humans. As the relation between specific

output variables and model parameters is unclear, it is difficult to inject output constraints directly

into the model.

Lastly, the black-box modeling approach also promoted end-to-end learning which learns a

direct relationship between input and output bypassing all the intermediate steps in the traditional

pipeline approach. This direct relation modeling improved the overall performance, but ironically,

it also omitted the chances to enforce constraints. In the pre-neural era, in order to satisfy

constraints, a cascaded system was often employed. For example, in semantic role labeling (SRL),

the model has to identify the relationship between a verb predicate and a word span given a

sentence. The constraint here is that the SRL spans have to be a parsing constituent of the sentence.

To satisfy this constraint, a traditional SRL system would first output a set of possible spans

using a syntactic parser and then sequentially find the most likely labels on the provided spans.

Now, thanks to the representation power of neural networks, end-to-end learning achieves better

accuracy, but it often violates this constraint as the intermediate steps enforcing them disappear. In

contrast, the limited, weaker-performing pipeline approach did not have any constraint violation

on the output unless the preceding syntactic parser made errors.

Despite these challenges, enforcing constraints on neural models is getting all the more

important as neural models are becoming more prevalent in real-life applications. It is crucial to

inject our priors about a task in order to use neural models in a safe and logically sound way. To

2

this end, this thesis studies how we can inject output constraints into neural models and whether

the injection leads to better satisfaction of constraints without hurting the overall performance of

a model.

To overcome the implicit relation between output variables and model parameters in neural

networks, we take a model-agnostic approach of only modifying objective functions rather than

modifying the model structure itself to reflect prior knowledge on constraint. In doing so, this

thesis takes a similar approach to reinforcement learning where a scoring function is used to

promote or penalize a model’s behavior. Specifically, evaluation of constraint error rate on the

output of a model is used as a scoring function. Measuring the constraint error rate is a simple

way to express the abstract knowledge of constraint that is not explicit on training data. Returning

to the example of the constraint that SRL arguments have to be subtrees of a parse tree, we simply

count the number of SRL arguments that violate such constraint in order to measure the error rate.

It is also an intuitive representation as constraints in our mind are often in the form of case by

case logic which may be difficult to be expressed as an elegant equation.

In summary, this thesis studies whether a simple measure of constraint violation can be a

useful signal of model quality and whether this signal can be leveraged to learn a better model.

First, we show that the inference guided by constraint error signal results in better performance

than constraint injection via simple post-processing and even combinatorial search. Second,

leveraging the fact that constraint evaluation does not require labeled data, we show that a large

amount of unlabeled data can be utilized in injecting constraints in learning time. Finally, we

demonstrate that the use of constraint in inference and learning can alleviate a neural network’s

known weakness in out-of-domain and low-resource settings.

1.2 Contributions of the thesis

In this section we illustrate the major contributions of this thesis.

Model-agnostic and intuitive approach for constraint injection In all our methods presented

in this thesis, we take a model-agnostic approach which only reshapes the loss functions rather

than modifying the model structure. We present an intuitive approach for injecting constraint

where a relation of constraint function to the major task function is not required a priori. Rather,

the only information we require to inject a constraint, is an evaluation of the output produced by a

model respect to constraint function. In the loss function, we use a normalized constraint error

count to inject constraint information to a model. The overall methods were formulated to be

model-agnostic and intuitive so that frameworks presented in this thesis could be useful for many

3

ML applications where there is domain knowledge to be utilized.

Inference with constraints as continuous-space search In NLP, inference steps are conducted

in discrete space and thus requires combinatorial search to reflect global or semi-Markov con-

straints. We convert this combinatorial search in discrete output space to gradient-based inference

(GBI) in continuous model-parameter space. By performing the gradient-based search, inference

steps can utilize the modern architecture for neural networks that are highly optimized to perform

gradient updates to model parameters. With this utilization, GBI shows better, faster, and more

robust performance than A-star search, a dynamic programing approach for combinatorial search.

Semi-supervised learning with constraints: utilization of unlabeled data in learning We

show that constraint injection with a large amount of unlabeled data through semi-supervised

learning can improve the model performance, especially in low-resource and out-of-domain

settings. More specifically, we demonstrate that the usage of unlabeled data is crucial when we

learn constraint by observing the model’s constraint violations. As the model is accustomed to

training corpus, the rate of constraint violation is significantly low in training data. Thus in order

to learn from the model’s mistakes, exposing a model to unfamiliar, unlabeled data is required.

Through experiments, we show that the application of the same loss function results in superior

performance when unlabeled data is employed as opposed to only using training data.

Multi-view learning with agreement constraint Finally, we present an agreement constraint

as a general constraint that multi-view models can utilize. While other constraints illustrated

in this thesis are application-, domain-specific, the agreement constraint on multi-view models

naturally arise from multi-view structure. By using the same semi-supervised framework for

constraint injection, this thesis shows that promoting coherence on unlabeled data can improve

multi-view learning especially on low-resource scenarios.

1.3 Thesis statement

An application that we are interested in learning with neural models is usually a complex function

which combines multiple sub tasks. While we may not know how to model this complex function

specifically, we usually know simple requirements of those tasks in forms of constraints. This

type of knowledge is often not present in conventional training data for machine learning while

intuitive to humans. This thesis tests the hypothesis that the injection of prior knowledge in the

4

form of constraints can help neural networks produce more logical outputs and thus improve the

model performance, especially in low-resource and out-of-domain setups.

1.4 Organization of the thesis

The organization of the thesis is as follows.

Chapter 2 discusses the previous work relevant to constraint injection. While each chapter has

its own section for literature review, Chapter 2 serves as a short survey of the constraint injection

methods relevant to more than one of the subsequent chapters.

Chapter 3 introduces the gradient-based inference (GBI), a framework for structured prediction

that can utilize a provided constraint function at inference time. We present a novel algorithm to

convert the discrete combinatorial problem into search in continuous space using gradients from

a constraint violation signal. This chapter introduces a constraint-loss function, which is used

throughout this thesis, that can be defined whenever constraint violation can be expressed as a

positive scalar score function. The rest of this chapter shows the experimental results on GBI

across different applications and diverse set ups. On all the experiments, GBI increased the main

metric (F1 or % accuracy) of various tasks in the process of enforcing constraints. The material

presented in this chapter is based on Lee et al. (2017, 2019).

Chapter 4 proposes a semi-supervised learning framework that can leverage known constraints.

The key idea comes from noticing that an evaluation of constraint satisfaction does not require

any labeled data. This idea led to extending the constraint-loss defined for inference in the

previous chapter into unsupervised loss for training. We present three different loss functions

(unsupervised, joint loss and semi-supervised loss) and examine the effect of each loss function in

terms of F1 score and mean constraint violation score. In the context of semantic role labeling,

this chapter shows that semi-supervised learning can significantly help low-resource models as

well as improving high-resource models on the popular OntoNotes v5.0 (Pradhan et al., 2013)

dataset. This chapter is an exposition of Mehta et al. (2018)1.

Chapter 5 proposes CO-META, a semi-supervised learning framework that promotes coherence

between multi-view models to further improve them. While other chapters focus on constraint

functions based on a knowledge of specific applications, this chapter proposes a general agreement

constraint that can be defined in multi-view setup. Motivated by Co-Training (Blum and Mitchell,

1998), CO-META encourages multi-view models to learn from each other. However, rather than

1For Mehta et al. (2018), Lee and Mehta are the co-first authors with equal contributions. The mathematical
formulations and experiment designs were conducted by Lee and vast of implementations and evaluations were
conducted by Mehta.

5

approaching the problem as data augmentation as Co-Training did, CO-META weighs learning

signals by comparing with other models in multi-view setup. To use the comparison score in

the learning process, a constraint-loss is again applied in this chapter. Similar to Chapter 4, but

this time in the context of dependency parsing, the experiments on CO-META show significant

improvement on low-resource models. In addition, the presented method improves performance

in some of the relatively high-resource tasks such as Chinese dependency parsing. This chapter is

based on Lim et al. (2020)2.

Lastly, Chapter 6 concludes the findings of this dissertation and suggests future directions for

research.

2For Lim et al. (2020), Lee and Lim are the co-first authors with equal contributions. The technical ideas and
experiment designs were formulated by Lee and implementations and evaluations were conducted by Lim.

6

Chapter 2

Related Work

In this related work section, I will survey existing methods that inject constraints into the model

inference and learning steps and their relation to the methods in this thesis.

2.1 Inference with output constraints

The process of inference is the process of producing an output with maximum score given the

trained model and input. In other words, given the trained model weight θ, input x, and a score

function Ψ(x,y, θ), the goal is to obtain ŷ = arg maxy Ψ(x,y, θ). In particular, this thesis focuses

on the inference of discrete sequence output y with variable length t and vocabulary size V (i.e.,

y = y1y2 . . .yt, yi ∈ {1, 2, . . . , V }) when a constraint is defined over y. If one wants to enforce

constraint in the inference procedure with output y to belong in the constraint set Lx, one can

solve the following optimization problem:

max
y

Ψ(x,y, θ)

s. t. y ∈ Lx
(2.1)

For problem Eq. (2.1), standard inference methods, built without consideration of constraints,

cannot be used blindly since the resulting output might violate the constraints (i.e.,y /∈ Lx). To

use standard inference methods as is, one would need to apply post processing on the constraint-

violating output to modify the output to the closest constraint-satisfying form or to get multiple

candidates and filter out ones with a constraint violation. However, this process might not bring

the optimal solution for the problem Eq. (2.1). In order to bring the constraint satisfaction into

optimization, one can define constraint evaluation function g(y,Lx)→ R+
0 that measures a loss

between output y and a constraint set Lx such that g(y,Lx) = 0 if and only if there are no

constraint violations in y. There are two important lines of work that incorporate a constraint

7

function g(y,Lx) in the inference step: the dual decomposition method (Rush et al., 2010) and

the constrained conditional model (CCM) (Chang et al., 2012).

Dual decomposition (Sontag et al., 2010) is the classic approach to solving the optimization

problem with constraints and also has been widely used in NLP community (Rush et al., 2010;

Riedel and McCallum, 2011; Das et al., 2012) as well. Lagrangian relaxation is the most widely

adopted technique of dual decomposition and converts the original primal problem Eq. (2.2)

max
y

Ψ(x,y, θ)

s. t. g(y,L) = 0,
(2.2)

to dual form Eq. (2.3) as

min
λ

max
y

Ψ(x,y, θ) + λg(y,L). (2.3)

Note that the primal problem Eq. (2.1) is equivalent to Eq. (2.2) as g(y,Lx) = 0 ↔ y ∈ Lx.

Many NLP applications(Rush et al., 2010; Riedel and McCallum, 2011; Das et al., 2012) solved

Eq. (2.3) via alternating the minimizing and maximizing optimization steps. The most popular

setting in these applications were where the model and constraints are both linear:

min
λ

max
y

yθ + λ(Ay − b). (2.4)

With vectors θ, λ, and matrix A, yθ and λ(Ay − b) in Eq. (2.4) corresponds to linear version of

Ψ(x,y, θ) and λg(y,L) in Eq. (2.3). In such a case, the maximization step with constraint reduces

to the same complexity as the unconstrained inference step as one can solve Eq. (2.4) by solving

max
y

yθ′, which has the same form as the unconstrained inference step where θ′ = θ + ATλ.

However, when the constraint function is non-linear or global, this maximization step becomes very

expensive as the maximization becomes a combinatorial search problem, which has exponential

complexity O(V t) with V being the output space for each token yi.

CCM (Chang et al., 2008, 2012) is another popular model that incorporates constraints in the

inference process. The formulation of CCM(2.5) is similar to the Eq. (2.3) dual decomposition

in that CCM introduces a penalty term with constraint violation, as the Lagrangian relaxation

technique does.
max

y
Ψ(x,y, θ) + αg(y,L) (2.5)

Nonetheless, the two methods take very different perspective: note that miny operation is sub-

tracted from Eq. (2.3) to Eq. (2.5) and that λ has been modified to α. CCM permanently expands

its model to incorporate a constraint penalty term and learns1 the α to do so. In contrast, dual
1CCM learns α to be the ratio of probability ratio of constraint violation happening over not happening. The

probabilities are estimated through counting how many instance violate constraint in the training set.

8

decomposition is introducing a temporary auxiliary variable, the dual variable λ, per new input to

perform efficient search of the optimal output ŷ. As a result, CCM applies the same penalty weight

for every instance it visits while dual decomposition optimizes per each instance. Expanding the

model with a constraint penalty term makes CCM’s inference more efficient than dual decompo-

sition since it does not take alternating minimization and maximization steps, nevertheless, the

expansion comes with one caveat: CCM has to be exposed to the constraint-violating examples in

the training process.

While there are some differences between dual decomposition and CCM, the two methods

share many strengths and weaknesses. Both approaches have the strength that the method can

be applied in a model-agnostic way to general constraints. However, both approaches show a

weakness for the global constraint. With discrete sequence y, the maximization steps of Eq. (2.3)

and Eq. (2.5) are in the form of Integer Linear Programming (ILP) and this ILP formulation

requires combinatorial search in presence of global constraint, which leads to exponential com-

plexity O(V t) respect to the output length t. To be more specific, dynamic programing approaches

are often used to solve this ILP problem. The Viterbi algorithm with O(tV 2) can be used for

first-order constraints and the A-star (A*) search algorithm with O(V t) can be used for global con-

straints2. While these dynamic programing approaches do make the inference steps more efficient,

nonetheless, combinatorial search is inevitable given the global constraint for the maximization

steps of Eq. (2.3) and Eq. (2.5). With all these difficulties mentioned, there has been no previous

research that has applied CCM or dual decomposition method to neural sequence models.

Furthermore, requiring combinatorial search for a global constraint is even more problematic

for the sequence-to-sequence model (seq2seq), a widely used neural sequence model, as combina-

torial search on seq2seq is extremely expensive3. Thus, rather than applying expensive inference

methods, in practice, a heuristic approach of filtering out constraint violating output y after beam

search is often used as a post processing method. No formal inference method with constraints

has been applied to the seq2seq model for inference with global constraint, to the best of my

knowledge.

To summarize, the central problem with prior approaches is that the maximization step

becomes too expensive given the fixed model weights and global constraint penalty term. To avoid

this, this thesis explores a new approach: "Can we search for a constraint-satisfying output by

2A* can reduce to polynomial complexity when the search space is tree and there is a single goal state with
appropriate heuristic function. Otherwise, the complexity is exponential.

3Seq2seq models the probability yt at time t to be different if its prefix y1, y2, . . . , yt−1 is different which means
that every possible prefix have to be evaluated separately for the combinatorial search. The exponential complexity of
combinatorial search inflates by complexity of forward propagation of RNN. Typical complexity of RNN forward
propagation is O(tLh2) for length t, number of layers L, and representation embedding size h.

9

nudging model weights θ with gradients from constraint violation loss?". By transforming the

combinatorial search problem in discrete space to continuous-space search problem, Gradient-

Based Inference (GBI) can apply back propagation in its search as vast learning approaches do for

neural models and also can utilize the highly optimized model structures for back propagation.

In short, GBI reduces the discrete search to back propagation, the complexity4 of which is often

much smaller than combinatorial search complexity of O(V t) for NLP applications. Through

experiments on synthetic transducer problem and syntactic parsing, this thesis shows that GBI

can efficiently improve the performance of the seq2seq framework given global constraints.

Additionally, with experiments on SRL, this thesis shows that GBI is also applicable to the

sequence tagging model where GBI is both faster and better performing than a combinatorial

search approach, by comparing to A* search.

2.2 Learning with output constraints

Learning with explicit constraints was a popular direction of research and various approaches

which share a similar framework were proposed around the same era: Constraint-Driven Learning

(CoDL) (Chang et al., 2012), Posterior Regularization (PR) (Ganchev et al., 2010), and Unified

EM (UEM) (Samdani et al., 2012). Most of the approaches were based on the Expectation

Maximization (EM) algorithm (Dempster et al., 1977) framework. To compare and contrast

each of the methods in detail, the section begins by explaining the common framework: the EM

algorithm.

The goal of the EM algorithm is to maximize the marginal likelihood L(θ) = logP (Y |X; θ)

by maximizing the following variational lower bound F (q, θ) of the original loss function L(θ) 5.

The lower bound F (q, θ) is obtained by applying Jensen’s inequality to the L(θ) as

L(θ) = logP (Y |X; θ) = log
∑
Y ∈Yx

q(Y)
P (Y |X; θ)

q(Y)
≥

∑
Y ∈Yx

q(Y) log
P (Y |X; θ)

q(Y)

= F (q, θ) = −KL (q(Y)||P (Y |X; θ))

where q, θ stands for posterior distribution of the output space and model parameter respectively.

Typically, the EM algorithm maximizes F (q, θ), by employing block-coordinate ascent following

the style of (Neal and Hinton, 1998) where Expectation (E), Maximization (M) steps are defined

as,
4Which is the same as the aforementioned forward propagation complexity, i.e. O(tLh2).
5While common description of EM algorithm maximizes the distribution of P (X; θ) as the thesis mainly studies

direct modeling of conditional models P (Y |X; θ), the description will also focus on the conditional models.

10

E : qt+1 = arg max
q∈Q

F (q, θt) = arg min
q∈Q

KL (q(Y)||P (Y |X; θ)) , (2.6)

M : θt+1 = arg max
θ
F (qt+1, θ) = arg min

θ
KL

(
qt+1(Y)||P (Y |X; θ)

)
= arg max

θ
Eqt+1 [logP (Y |X; θ)] , (2.7)

where Q is defined as the space of all possible posterior distribution. This EM block-coordinate

ascent will alternate over E-steps and M-steps until convergence criterion is met. The EM

alternation guarantees to increase the J(θ) = arg maxq F (q, θ) through the following simple

reasoning (Neal and Hinton, 1998) :

J(θt+1) = F (qt+2, θt+1) ≥ F (qt+1, θt+1) ≥ F (qt+1, θt) = J(θt).

The key idea for incorporating constraints, which were generally shared across previous

approaches(Ganchev et al., 2010; Chang et al., 2012; Samdani et al., 2012), was to modify the E

steps with constraint information. More specifically, the previous approaches have incorporated

provided constraints by restricting the possible posterior distribution space Q considered on

the E steps using the constraint information. When one wants to have a constraint-satisfying

output, one way of doing it is by limiting the output space considered to be the feasible set Lx, by

defining Lx to include all constraint-satisfying outputs in the entire output space. For example,

a linear constraint φ(x, y) ≤ b with constant vector b and constraint feature function φ(x, y)

can define a feasible set Lx as {y|φ(x, y) ≤ b}. Similarly, we can define the feasible space for

posterior distribution QLx as the space of all the distributions which will satisfy constraint in

expectation as QLx = {q|Eq [φ(x, y)] ≤ b} given original constraint φ(x, y) ≤ b. In summary,

while general EM considered all possible posterior space Q on the E steps, the previous methods

incorporated constraint information by limiting the search space of E steps toQLx so the constraint

can guide block-coordinate ascent of EM algorithm. In this section, we denote this approach as

constraint-modified EM.

One standard way of solving EM is by applying stochastic gradient descent on the M step

with the samples y ∼ q drawn from the q distribution obtained from the E step. However, there

is a variant called hard EM which only takes gradient with y′ that satisfies the mode of q or in

other words, hard EM defines q as Kronecker-Delta distribution δ(y = y′) centered at y′6. In some

cases, this hard EM is known to work better than regular EM (Spitkovsky et al., 2010).

The same analogy between standard EM and hard EM applies to distinguish the approaches

PR and CoDL takes in solving constraint-modified EM. PR solves the constraint-modified EM

6Kronecker-Delta distribution δ(y = y′) puts a probability of 1 at the center and 0 elsewhere.

11

with standard EM approach and CoDL solves it with hard EM. Unified EM (UEM) approach

tried to express the different variants of constraint learning methods in a unified way (Samdani

et al., 2012). UEM unified the previous methods by adding a parameter γ to the original objective

function of E step Eq. (2.6) as followings:

E : qt+1 = arg min
q∈QLx

KL (q(Y)||P (Y |X; θ); γ) (2.8)

= arg min
q∈QLx

∑
y

γq(y) log q(y)− q(y) logP (y|x). (2.9)

The new parameter γ controls the weight of the negative entropy term of q. γ = 1 represents

PR method as it makes Eq. (2.8) the same as the standard EM formulation Eq. (2.6). γ = − inf

corresponds to CoDL. Taking γ = − inf in minimization problem leads to ignoring the distribution

P (y|x) and thus this leads to the same formulation of hard EM.

To summarize, PR and CoDL differs by the mechanics they take in obtaining a sample from

q ∈ QLx , to take M step in the constraint-modified EM. PR samples y ∼ q and takes gradient

steps with this y. This step requires computation of denominator for q distribution and will

have complexity of O(V t) for sequence y with length t. CoDL, instead, requires finding the

max-scoring output of unnormalized q. The unnormalized q basically has the penalty term for

constraint violation on top of P (y) and takes the same form as CCM (2.5)7. While finding

max-scoring output does not require computation of normalization factor, in the face of global

constraint, this step too will require O(V t) as discussed in the previous survey of constrained

inference.

All of the approaches reviewed in this section thus far focus on modifying the E steps, and

leave the M steps intact, in order to incorporate constraint information in the learning process. In

contrast, in Part II of this thesis, we present a new approach of injecting constraint information

in the optimization step, which can be regarded as adjusting the M step8. The idea is motivated

from policy gradient methods such as REINFORCE (Williams, 1992) in Reinforcement Learning

(Sutton and Barto, 1998). The objective of Reinforcement Learning is to maximize the expected

reward EPθ [r] given the policy Pθ and reward function r. Following policy gradient approaches,

taking gradient on this objective function results in multiplying reward to the gradient of log

7The only difference between the formulations of CoDL and CCM (from the previous section, 2.1) is that
CCM only learns the model parameter and penalty weights from the labeled training set whereas CoDL utilizes the
unlabeled data.

8While there are no EM steps on the proposed work in Part II to make even more concrete comparisons with the
previous work which uses the modified EM framework, one could regard that thesis simply regards q obtained on the
E-step as a conditional model distribution P (Y |X; θ).

12

probability.

∇PθEPθ [r] = EPθ [r∇Pθ logPθ]

The idea of this thesis is to inject constraint information by setting the reward r to be a constraint

satisfaction score, which measures how well the model satisfies the constraint. While many NLP

applications have applied policy gradient methods using the main evaluation metric as a reward

(Ranzato et al., 2015; Bahdanau et al., 2016), policy gradients have not been utilized to enforce

hard constraints as this thesis presents in Part II, especially not in a semi-supervised fashion.

2.3 Constraint incorporation in model structure

In the earlier subsections, we mainly looked at injecting constraints via modification of objectives

in model-agnostic way without changing the model structure. However, there are other works that

tried to tie the constraints directly to the model formulation as well. These types of work vary by

how explicit the constraint was expressed and to what degree the model structure embodies the

constraint. We will discuss these variants of constraint incorporation in model structure with a

focus on application of our interest: syntactic parsing and SRL.

Introducing constraint-related features to a model was a popular approach before the neural

models became prevalent as now. For example, in syntactic parsing, Collins (2003) have added

distance features to reflect the importance of distance to the head in syntactic parsing and also

added gap features in order to reflect knowledges from generalized phrase structure grammar

(Gazdar et al., 1985). With these features, they added a prior into the model so that a parse tree

with long distance dependency (to the head of the tree) will get lower probability. While not

explicitly enforcing the output constraints, this approach expands the input features to enable

probabilistic modeling of the exterior knowledge.

With the recent neural models, explicit probabilistic modeling with extra features are difficult

to implement. Most models are trained in end-to-end fashion which means that just input and

output pairs are presented to the black-box neural network. In this black-box case, returning to

the example of (Collins, 2003), even if we add an extra distance feature, it is hard to add the long

distance dependency prior as discussed, as we do not know specific roles each features play in the

black-box model.

However, the black-box approach of neural network opened up many more ways to incorporate

constraints albeit sometimes not explicitly. The most extreme case is just knowing that some

set of tasks are relevant to each other and jointly training the related tasks rather than explicitly

modeling the constraint. The multi-task training made the task-specific features unnecessary by

13

processing the same input with a shared infrastructure. A common infrastructure across tasks

made it easy to train multiple task objectives simultaneously with a shared parameters. Perhaps

the first attempt of this kind is by Collobert et al. (2011) which learned neural network model

that jointly models the Part-Of-Speech tagging, Chunking, Named Entity Recognition, and SRL

together. Collobert et al. (2011) also showed that pre-training neural networks simply with a

language model objective and fine-tuning the specific tasks improves the model performance,

leveraging the relation of language modeling to many other NLP tasks. Recently, BERT (Devlin

et al., 2018) essentially took the similar approach, albeit on a much larger scale, and surpassed

many state-of-the art results in numerous tasks.

The naive multi-task approach of simply training multiple objectives together with shared

parameters is useful even when a explicit constraint is given. Using the constraint between SRL

output and parse-tree output as introduced in the section 3.2.1, Swayamdipta et al. (2018) jointly

trained SRL model and shallow parser together and showed improvement in SRL’s performance.

While acknowledging that parse-tree span information is important for the SRL task, this approach

does not explicitly enforce constraint, e.g., the fact that any SRL span has to be an element of the

set of parse-tree spans.

More direct injection of relation between SRL and parse tree in neural model via modification

of models structure was proposed concurrently by Strubell et al. (2018). This work injected the

knowledge of dependency parse tree, rather than the knowledge of constituency parse tree, in

the self-attention (Vaswani et al., 2017) level. Dependency parse tree provides the dependency

information between the word pairs, and this work uses the dependency weights between a word

pair to directly model self-attention weights between the same word pair.

Injecting constraints in a model-agnostic way, as in section 2.2 differs from incorporating

constraint in model structure such as feature expansion and multi-task learning. The model-

agnostic way is mainly comprised of changing the objective function to reflect the constraint

information. In order to do this, one has to formulate exact constraint information in mathematical

expression whereas the multi-task approach can be taken even when one is not exactly sure about

the relation between the output of multiple tasks. However, when you know the exact expression

it often can be more powerful to incorporate the constraint in a model-agnostic way. Designing

the model structure to exactly incorporate an explicit constraint is complex and this is why many

works simply uses multi-task approach of jointly training multiple task objective without carefully

modeling the relation between the tasks even when they know the relation explicitly. Furthermore,

in neural models, state-of-the-art models often rely on many engineered factors, from structure to

training schemes, and modifying one of the aforementioned factors often hurts the model. Thus,

incorporating the constraint in the model-agnostic way often enhances the model in a more stable

14

manner, across domains and across applications, as demonstrated in this thesis.

15

16

Part I

Inference with Output Constraints

17

Practitioners apply neural networks to increasingly complex problems in natural language

processing, such as syntactic parsing and semantic role labeling that have rich output structures.

Many such structured-prediction problems require deterministic constraints on the output values;

for example, in sequence-to-sequence syntactic parsing, we require that the sequential outputs

encode valid trees. While hidden units might capture such properties, the network is not always

able to learn such constraints from the training data alone, and practitioners must then resort

to post-processing. In this chapter, we present an inference method for neural networks that

enforces deterministic constraints on outputs without performing rule-based post-processing or

expensive discrete search. Instead, in the spirit of gradient-based training, we enforce constraints

with gradient-based inference (GBI): for each input at test-time, we nudge continuous model

weights until the network’s unconstrained inference procedure generates an output that satisfies

the constraints. We study the efficacy of GBI on three tasks with hard constraints: semantic

role labeling, syntactic parsing, and sequence transduction. In each case, the algorithm not only

satisfies constraints, but improves accuracy, even when the underlying network is state-of-the-art.

19

20

Chapter 3

Inference with Output Constraints:
Gradient-Based Inference (GBI)

Suppose we have trained a sequence-to-sequence (seq2seq) network (Cho et al., 2014; Sutskever

et al., 2014; Kumar et al., 2016) to perform a structured prediction task such as syntactic con-

stituency parsing (Vinyals et al., 2015). We would like to apply this trained network to novel,

unseen examples, but still require that the network’s outputs obey an appropriate set of prob-

lem specific hard constraints; for example, that the output sequence encodes a valid parse tree.

Enforcing these constraints is important because downstream tasks, such as relation extraction

or coreference resolution, typically assume that the constraints hold. Moreover, the constraints

impart informative hypothesis-limiting restrictions about joint assignments to multiple output

units, and thus enforcing them holistically might cause a correct prediction for one subset of the

outputs to beneficially influence another.

Unfortunately, there is no guarantee that the neural network will learn these constraints from

the training data alone, especially if the training data volume is limited. Although in some cases,

the outputs of state-of-the-art systems mostly obey the constraints for the test-set of the data on

which they are tuned, in other cases they do not. In practice, the quality of neural networks are

much lower when run on data in the wild (e.g., because small shifts in domain or genre change the

underlying data distribution). In such cases, the problem of constraint violations becomes more

significant.

This raises the question: how should we enforce hard constraints on the outputs of a neural

network? We could perform expensive combinatorial discrete search over a large output space, or

manually construct a list of post-processing rules for the particular problem domain of interest.

However, we might do even better if we continue to “train” the neural network at test-time to

learn how to satisfy the constraints on each input. Such a learning procedure is applicable at

21

test-time because learning constraints requires no labeled data: rather, we only require a function

that measures the extent to which a predicted output violates a constraint.

In this chapter, we present gradient-based inference (GBI), an inference method for neural

networks that strongly favors respecting output constraints by adjusting the network’s weights at

test-time, for each input. Given an appropriate function that measures the extent of a constraint

violation, we can express the hard constraints as an optimization problem over the continuous

weights and apply back-propagation to tune them. That is, we iteratively adjust the weights so

that the neural network becomes increasingly likely to produce an output configuration that obeys

the desired constraints. Much like scoped learning, the algorithm customizes the weights for each

example at test-time (Blei et al., 2002), but does so in a way to satisfy the constraints.

We study GBI on three tasks, semantic role labeling (SRL), syntactic constituency parsing

and a synthetic sequence transduction problem, and find that the algorithm performs favorably on

all three tasks. In summary, our contributions are that we:

1. Propose a novel Gradient-Based Inference framework.

2. Verify that GBI performs well on various applications, thus providing strong evidence for

the generality of the method.

3. Examine GBI across wide range of reference model performances and report its consistency.

4. Show that GBI also perform well on out-of-domain data.

For all the tasks, we find that GBI satisfies a large percentage of the constraints (up to 98%)

and that in almost every case (out-of-domain data, state-of-the art networks, and even for the

lower-quality networks), enforcing the constraints improves the accuracy. On SRL, for example,

the method successfully injects truth-conveying side-information via constraints, improving state-

of-the-art network1 by 1.03 F1 (Peters et al., 2018b). This improvement surpasses A*-search

algorithm for incorporating constraints while also being robust, in a way that A*is not, to cases for

which the side constraints are inconsistent with the labeled ground truth. The material presented

in this chapter is based on Lee et al. (2017, 2019).

3.1 Constraint-aware inference in neural networks

We present below an approximate optimization algorithm that is similar in spirit to Lagrangian

relaxation in that we replace a complex constrained decoding objective with a simpler uncon-

1Since our submission of Lee et al. (2019) which this chapter is based on, the state-of-the-art Peters et al. (2018b)
in SRL, on which we apply our technique, has been advanced by 1.7 F1 points (Ouchi et al., 2018). However, this is a
training time improvement which is orthogonal to our work.

22

strained objective that we can optimize with gradient descent (Koo et al., 2010; Rush et al., 2010;

Rush and Collins, 2012), but is better suited for non-linear non-convex optimization with global

constraints that do not factorize over the outputs. Although the exposition in this section uses the

motivation of Lagrangian relaxation, we emphasize that the purpose is merely to provide intuition

and motivate design choices.

3.1.1 Problem definition and motivation

Typically, a neural network parameterized by weights θ is a function from an input x to an

output y. The network has an associated compatibility function Ψ(y;x, θ)→ R+ that measures

how likely an output y is given an input x under weights θ. The goal of inference is to find an

output that maximizes the compatibility function, and this is usually accomplished efficiently

with feed-forward greedy-decoding. In this work, we want to additionally enforce that the output

values belong to a feasible set or grammar Lx that in general depends on the input. We are thus

interested in the following optimization problem:

max
y

Ψ(x,y, θ) s. t. y ∈ Lx (3.1)

Simple greedy inference is no longer sufficient since the outputs might violate the global con-

straints (i.e., y /∈ Lx). Suppose instead that we had a constraint evaluation function g(y,L)→ R+
0

that measures a degree of violation of an output y respect to a constraint L such that g(y,L) = 0

if and only if there is no constraint violation in y. That is, g(y,L) = 0 for the feasible region and

is strictly positive everywhere else. For example, if the feasible region is a CFL, g could be the

least errors count function (Lyon, 1974). We could then express the constraints as an equality

constraint and minimize the Lagrangian:

min
λ

max
y

Ψ(x,y, θ) + λg(y,L) (3.2)

However, this leads to optimization difficulties because there is just a single dual variable for our

global constraint, resulting in an intractable problem and thus leading to brute-force trial and error

search for λ.

Instead, we might circumvent these issues if we optimize over the model parameters rather

than a single dual variable. Intuitively, the purpose of the dual variables is to simply penalize

the score of infeasible outputs that otherwise have a high score in the network, but happen to

violate constraints. Similarly, the network’s weights can control the compatibility of the output

configurations with the input. By properly adjusting the weights, we can affect the outcome

of inference by removing mass from invalid outputs—in much the same way a dual variable

23

affects the outcome of inference. However, unlike a single dual variable, the network expresses a

different penalty weight for each output and because the weights are typically tied across space

(e.g., CNNs) or time (e.g., RNNs), the weights are likely to generalize across related outputs. As

a result, lowering the compatibility function for a single invalid output has the potential effect of

lowering the compatibility for an entire family of related, invalid outputs; enabling faster search.

With this in mind, it is tempting to replace the single dual-variable with a “dual neural-network”

that is parameterized by a set of “dual weights.” This is powerful because we have effectively

introduced an exponential number of implicit “dual variables” (via the compatibility function,

which scores each output) that we can easily control via the weights; although similar, the new

optimization is no longer equivalent to the original:

min
θλ

max
y

Ψ(x,y, θ) + Ψλ(x,y, θλ)g(y,L) (3.3)

While a step in the right direction, the objective still requires combinatorial search because (1)

the maximization involves two non-linear functions, and (2) the constraints might be global. In

contrast, the functions involved in classic Lagrangian relaxation methods for NLP have multipliers

for each output variable that can be combined with linear models to form a single unified decoding

problem for which efficient inference exists (Koo et al., 2010; Rush et al., 2010; Rush and Collins,

2012).

In the next subsection, we propose a novel approach that utilizes the amount of constraint

violation as part of the objective function so that we can adjust the model parameters to search for

a constraint-satisfying output efficiently.

3.1.2 Algorithm

To avoid combinatorial search problem, we modify the optimization problem one more time by

(1) removing the compatibility function that involves the original weights θ and compensate with

a regularizer that attempts to keep the dual weights θλ as close to these weights as possible, and

(2) maximizing exclusively over the network parameterized by θλ while ignoring the constraint

term during the maximization. This results in the following optimization problem:

min
θλ

Ψ(x, ŷ, θλ)g(ŷ,L) + α‖θ − θλ‖2

where ŷ = argmax
y

Ψ(x,y, θλ)
(3.4)

The Lagrangian formulations in Eq. (3.2), Eq. (3.3) requires combinatorial search that considers

both compatibility function and constraint information on the maximization step, and the mini-

mization step only requires constraint information. In contrast, if we solve Eq. 3.4 in alternating

24

maximization, minimization steps, we can take an unconstrained maximization step to obtain ŷ.

The burden of reflecting both constraint information and original parameter has been pushed to

minimization step which is much cheaper than the combinatorial search.

Although this objective deviates from the original optimization problem, it is reasonable

because by definition of the constraint function g(·), the global minima must correspond to

outputs that satisfy all constraints. Further, we expect to find high-probability optima if we

initialize θλ = θ. Moreover, the objective is intuitive: if there is a constraint violation in ŷ then

g(·) > 0 and the gradient will lower the compatibility of ŷ to make it less likely. Otherwise,

g(·) = 0 and the gradient of the energy is zero and we leave the compatibility of ŷ unchanged.

We name this Ψ(x, ŷ, θλ)g(ŷ,L) as constraint loss. Crucially, the optimization problem yields

computationally efficient subroutines that we exploit in the optimization algorithm.

Algorithm 1 Gradient-Based Inference (GBI) for neural nets
Inputs: test instance x, input specific CFL Lx, max-iteration M , pretrained weights θ

θλ ← θ #reset instance-specific weights

while g(y,Lx) > 0 and iteration< M do
y← f(x; θλ) #perform inference using weights θλ
∇ ← g(y,Lx) ∂

∂θλ
Ψ(x,y, θλ) + α θ−θλ

‖θ−θλ‖2
#compute constraint loss

θλ ← θλ − η∇ #update instance-specific weights with SGD or a variant thereof

end while

To optimize the objective, the Gradient-Based Inference (GBI) algorithm alternates maximiza-

tion to find ŷ and minimization w.r.t. θλ (Algorithm 1). In particular, we first approximate the

maximization step by employing the neural network’s inference procedure (e.g., greedy decoding,

beam-search, or Viterbi decoding) to find the ŷ that approximately maximizes Ψ, which ignores

the constraint function g. Then, given a fixed ŷ, we minimize the objective with respect to the

θλ by performing stochastic gradient descent (SGD). In the alternating minimization step, by

fixing ŷ, we regard constraint function term as a constant in the gradient; thus, making it easier to

employ external black-box constraint evaluation functions (such as those based on compilers) that

may not be differentiable. As a remark, note the similarity to REINFORCE (Williams, 1992): the

decoder outputs as actions and the constraint loss as a negative reward. However, GBI does not try

to reduce expected reward and terminates upon discovery of an output that satisfies all constraints.

We also introduce max-iteration M , in addition to the condition of satisfying constraints, to avoid

pathological cases as GBI could run indefinitely without finding constraint-satisfying output.

As another remark, note the similarity to the domain adaptation approach with a regularizer

(Chelba and Acero, 2006) as our approach tries to anchor to original model weight while opti-

25

mizing constraint loss on a new instance. We set the weight for the L2 regularizer λ to 0.005

throughout our experiments. Normally, the inference step does not update model parameter as

there is no objective to update it. In Gradient-Based Inference (GBI), the constraint loss acts as a

guiding signal to further optimize the model parameter solely geared to the test instance x. This is

another reason that GBI resets as it encounters a new test instance.

3.2 Applications

There are multiple applications that involve hard-constraints and we provide two illustrative

examples that we later employ as case-studies in our experiments: SRL and syntactic parsing.

The former exemplifies a case in which external knowledge encoded as hard constraints conveys

beneficial side information to the original task of interest while the latter studies a case in

which hard constraints are inherent to the task of interest. Finally, we briefly mention sequence

transduction as framework in which constraints may arise. Of course, constraints may in general

arise for a variety of different reasons, depending on the situation. We provide example-based

case studies for each application.

3.2.1 Semantic Role Labeling

As a first illustrative example, consider SRL. SRL focuses on identifying shallow semantic

information about phrases. For example, in the sentence “John broke the window with a hammer”

the goal is to tag the three-argument verb “broke” as the predicate, “John” as its first argument, the

noun phrase “the window” as its second argument, and the prepositional phrase“with a hammer”

as the last argument. It is traditional to address SRL as a sequence labeling problem, in which the

input is the sequence of tokens and the output are BIO-encoded class labels. For argument span

with semantic role ARGi, the BIO notation of B-ARGi tag indicates that the corresponding token

marks the beginning of the argument span, the I-ARGi tag indicates that the corresponding token

is inside of the argument span, and the O tag indicates that token is outside of all argument spans.

Thus, BIO represents both the regimentation of tokens into contiguous segments and the semantic

role of the those segments.

Note that the parse tree for the sentence might provide constraints that could assist with the

SRL task. In particular, each node of the parse tree represents a contiguous segment of tokens that

could be a candidate for a semantic role, and no other contiguous segment can become a semantic

role (Punyakanok et al., 2008). Therefore, we can include as side-information constraints that

force the BIO-encoded class labeling to produce segments of text that each agree with some

26

segment of text expressed by a node in the parse tree.

Formally defining this constraint Lx, for input sentence x = x1, . . . , xn, let the SRL model

outputs k spans s1, . . . , sk with corresponding length n1, . . . , nk where ni sums up to n. Further,

let parse-spans(x) denote the set of all parse constituents. Now, we can define per-span constraint

function gi(si,Lx) = 0,

gi(si,Lx) =

0 if si ∈ parse-spans,
1
ni

otherwise.
(3.5)

Now we further define that our objective function Ψ(x, ŷ, θλ)g(ŷ,Lx) in Eq. (3.4) for SRL case

to denote

Ψ(x, ŷ, θλ)g(ŷ,Lx) =
k∑
i=1

g(si,Lx)Ψ(x, si,Wλ). (3.6)

To continue with our example, the original SRL sequence-labeling might incorrectly label

“the window with” as the second argument rather than “the window”. Since according to the parse

tree “with” is part of the next prepositional phrase, thus while the tree contains the spans “the

window with a hammer” and “the window” it does not contain the span “the window with.” The

hope is that enforcing the BIO labeling to agree with the actual parse spans would benefit SRL.

We notice that this is indeed the case, and present a real data-case from our experiments later in

section 3.3.3.

While the previous work (Punyakanok et al., 2008) looked into the importance of syntactic

parse tree in SRL, the constraint of aligning SRL labeling spans with actual parse spans has

not been studied before. The traditional architecture for SRL assumed parse-spans as an input

already and only considered span set within the parse-spans to be labeled with some role. As the

parse-span information was already utilized as an input, the traditional systems had no need to

consider the suggested alignment constraint at all. However, recent neural models use end-to-end

model meaning that there is only relationship learning between input sentence and output spans

and these end-to-end models do violate the alignment constraint violation. Thus, this work

suggests additional way of using syntactic parse tree as a constraint on the end-to-end model on

top of traditional constraints suggested by Punyakanok et al. (2008)2.

2Similar motivation was presented by Swayamdipta et al. (2018) at the same conference where the work in this
thesis was presented. However, they do not explicitly enforce parse-span information on SRL spans. The work of
Swayamdipta et al. (2018) is discussed in section 2.3.

27

3.2.2 Syntactic parsing

As a second illustrative example, consider the structured prediction problem of syntactic parsing, in

which the goal is to input a sentence comprising a sequence of tokens and output a tree describing

the grammatical parse of the sentence. Syntactic parsing is a separate but complementary task

to SRL. While SRL focuses on semantic information, syntactic parsing focuses on identifying

relatively deep syntax tree structures. One way to model the problem with neural networks is to

linearize the representation of the parse tree and then employ the familiar sequence-to-sequence

(seq2seq) model (Vinyals et al., 2015). Let us suppose we linearize the tree using a sequence

of shift (s) and reduce (r,!) commands that control an implicit shift reduce parser. Intuitively,

these commands describe the exact instructions for converting the input sentence into a complete

parse tree: the interpretation of the symbol s is that we shift an input token onto the stack, the

interpretation of the symbol r is that we start (or continue) reducing (popping) the top elements of

the stack, and the interpretation of a third symbol ! is that we stop reducing and push the reduced

result back onto the stack. Thus, given an input sentence and an output sequence of shift-reduce

commands, we can deterministically recover the tree by simulating a shift reduce parser. For

example, the sequence ssrr!ssr!rr!rr! encodes a linearized version of the sequence (S

(NP The ball) (VP is (NP red))) for the input sentence “The ball is red” where the

full tree is shown in Figure 3.1. It is easy to recover the tree structure from the input sentence

and the output commands by simulating the shift reduce parser. Of course in practice, reduce

commands include the standard parts of speech as types (NP, VP, etc).

Figure 3.1: The syntactic constituency parse tree for our example “The ball is red”.

Note that for output sequences to form a valid tree over the input, the sequence must satisfy

a number of constraints. First, the number of shifts must equal the number of input tokens,

otherwise either the tree would not cover the entire input sentence or the tree would contain

spurious terminal symbols. Second, the parser cannot issue a reduce command if there are no

items left on the stack. Third, the number of reduces must be sufficient to leave just a single item,

28

the root node, on the stack. The constraint function g(y,Lx) for this task simply counts the errors

of each of the three types.

To formally define g(y,Lx), let mx, n be the number of input and output tokens, respectively,

ctni=1(b(i)) be the function that counts the number of times proposition b(i) is true for i = 1, . . . , n.

Now, we define the following constraint function

g(y,Lx) =
1

mx + n

{
|mx − ctni=0(yi = s)|+

n∑
i

max
(
0, ctij=0(yj = r)− ctij=0(yj ∈ {s, !})

)}
.

Parsing this constraint function, the first term provides loss when the number or shifts is not equal

to the number of input tokens. The second term provides loss when attempting to reduce an empty

stack. The last term provides loss when the number of reduces is not sufficient to attach every

lexical item to the tree.

As a minor remark, note that other encodings of trees, such as bracketing (of which the Penn

Tree Bank’s S-expressions are an example), are more commonly used as output representations

for seq2seq parsing (ibid.). However, the shift-reduce representation described in the foregoing

paragraphs is isomorphic to the bracketing representations and as we get similar model perfor-

mance to single seq2seq model (Vinyals et al., 2015) on the same data, we chose the former

representation to facilitate constraint analysis. Although output representations sometimes matter,

for example, BIO vs BILOU encoding of sequence labelings, the difference is usually minor

(Ratinov and Roth, 2009) and breakthroughs in sequence labeling have been perennially advanced

under both representations. Thus, for now, we embrace the shift reduce representation as a

legitimate alternative to bracketing, pari passu.

3.2.3 Synthetic sequence transduction

Finally, although not a specific application per se, we also consider sequence transduction as it

provides a framework conducive to studying synthetic tasks with appropriately designed properties.

A sequence transducer T : LS → LT is a function from a source sequence to a target sequence.

As done in previous work, we consider a known T to generate input/output training examples and

train a seq2seq network to learn T on that data (Grefenstette et al., 2015). In our case, we can

choose T , LS and LT to ensure that there are hard constraints on the output, viz. the output must

belong to LT and also respect any problem-specific constraints that may arise from the application

of T on the input sentence.

For our task, we choose a simple transducer, similar to those studied in recent work (Grefen-

stette et al., 2015). The source language LS is (az|bz)? and the target language LT is

(aaa|zb)?. The transducer is defined to map occurrences of az in the source string to aaa in

29

the target string, and occurrences of bz in the source string to zb in the target string. For example,

T (bzazbz) 7→ zbaaazb.

Note that the number of a’s in the target sequence is a multiple of three for the given task.

This informally defines the constraint rule (or grammar) Lx. If the network is unable to learn such

constraints Lx from the training data, then our method GBI is applicable and we can evaluate its

performance for such simple cases. To express this constraint, we define the following constraint

evaluation function g, a length-normalized quadratic

g(y,Lx) = (3xa − ya)2/(m+ n) (3.7)

that is zero when the number of a’s in the output (ya) is exactly three times the number in the

input (xa) with m,n denoting input length, output length, respectively.

In this section, we study our algorithm on three different tasks: SRL, syntactic constituency

parsing, and a synthetic sequence transduction task. As introduced in the Chapter3.2, all three tasks

consider hard constraints, but each play a different role. In the sequence transduction task they

force the output to belong to a particular input-dependent regular expression; in SRL, constraints

provide side-information about possible true-spans; and in syntactic parsing, constraints ensure

that the outputs encode valid trees. While the SRL task involves more traditional recurrent neural

networks that have exactly one output per input token, the parsing and transduction tasks provide

an opportunity to study the algorithm on various seq2seq networks.

3.3 Experiments

3.3.1 Research questions and metrics for experiments

We are interested in answering the following questions through experiments.

• Q1. How well does the neural network learn the constraints from the data alone?

• Q2. Can GBI enforce the constraints for cases in which the network is unable to learn the

constraints perfectly?

• Q3. Does GBI enforce constraints without compromising the quality of the network’s

output?

To more thoroughly investigate Q2 and Q3, we also consider:

• Q4. Is the behavior of the method sensitive to the reference network performance?

• Q5. Does GBI also work on an out-of-domain dataset?

30

Q3 is particularly important because we adjust the weights of the network at test-time and this may

lead to unexpected behavior. Q5 deals with our original motivation of using structured prediction

to enhance performance on the out-of-domain data.

To address these various questions, we first define some terminology to measure how well the

model is doing in terms of constraints. To address Q1, we measure the failure-rate (i.e., the ratio

of test sentences for which the network infers an output that fails to fully satisfy the constraints).

To address Q2, we evaluate our method on the failure set (i.e., the set of output sentences for which

the original network produces constraint-violating outputs) and measure our method’s conversion

rate; that is, the percentage of failures for which our method is able to completely satisfy the

constraints (or “convert”). Finally, to address Q3, we evaluate the quality (e.g., accuracy or F1) of

the output predictions on the network’s failure set both before and after applying our method.

3.3.2 Toy Transduction Experiment

As a first experiment on this chapter, we experiment GBI on a toy transduction task in order

to examine whether GBI can work with artificial constraint. We focus on a simple sequence

transduction task in which we find that despite learning the training data perfectly, a seq2seq

model fails to learn the constraint in a way that generalizes to the test set, while GBI can generalize

well to the test set.

As described in section 3.2, we choose a simple transducer where the transducer is defined to

map occurrences of az in the source string to aaa in the target string, and occurrences of bz in

the source string to zb in the target string. The training set comprises 1934 sequences of length

2–20 and the test set contain sentences of lengths 21-24. We employ shorter sentences for training

and test for generalization to longer sentences at test time.

We employ a thirty-two hidden unit single-layered, attention-less, seq2seq LSTM in which

the decoder LSTM inputs the final encoder state at each decoder time-step. We train the network

for 1000 epochs using RMSProp to maximize the likelihood of the output (decoder) sequences in

the training set. The network achieves perfect train accuracy while learning the rules of the target

grammar LT perfectly, even on the test set. However, the network fails to learn the input-specific

constraint that the number of as in the output should be three times the number of as in the input.

This illustrates how a network might rote-memorize constraints rather than learn the rule in a way

that generalizes. Thus, enforcing constraints at test-time is important. To satisfy constraints, we

employ GBI with a constraint loss g, a length-normalized quadratic (3xa − ya)2/(m+ n) that is

zero when the number of as in the output (ya) is exactly three times the number in the input (xa)

with m,n denoting the length of input, output, respectively. GBI achieves a conversion rate of

31

65.2% after 100 iterations, while also improving the accuracy on the failure set from 75.2% to

82.4%. This synthetic experiment provides additional evidence in support of Q2 and Q3, on a

simpler small-capacity network.

Additionally, we present a case study in Table 3.1 where GBI demonstrates fixing the constraint

error for transducer given a real example. The example shows that as the probability of the error

sequence becomes less, other sequences get higher probability and in the end the constraint-

satisfying output was decoded.

azazbzazbzbzazbzbzbzbzbz −→ aaaaaazbaaazbzbaaazbzbzbzbzb

iteration output loss accuracy

0 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2472 66.7

1 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2467 66.7

2 aaaaaazbaaazbaaazbzbzbzbaaazb 0.2462 66.7

3 aaaaaazbaaazbzbaaazbzbzbzbzb 0.0 100.0

Table 3.1: A sequence transduction example for which enforcing the constraints improves accuracy.

The loss column indicates Ψ(x, ŷ, θλ)g(ŷ,Lx) for our toy transduction problem. Red indicates

errors.

3.3.3 Semantic Role Labeling

We employ the AllenNLP (Gardner et al., 2017) SRL network with ELMo embeddings, which is

essentially a multi-layer highway bi-LSTM that produces BIO output predictions for each input

token (Peters et al., 2018b). For data we use OntoNotes v5.0, which has ground-truth for both

SRL and syntactic parsing (Pradhan et al., 2013). We evaluate GBI on the test set (25.6k examples

from train/dev/test split of 278k/38.3k/25.6k), for which consistent parse information is available

for 81.25% examples (we only include side-information in terms of constraints for this subset).

In order to study our algorithm on a wide range of accuracy regimes (section 3.3.5), we train

many networks SRL-X, with varying amounts of training dataset where X denotes a % of dataset

used for training. We optimize our network for at most 10 iterations at test time applying SGD

with step size η = 0.01. From Table 3.2, we see that GBI is able to convert 42.25 % of failure set,

and this boosts the overall F1 measure by 1.23 point over the state-of-the-art network (SRL-100)3.

3The state-of-the-art in SRL (Peters et al., 2018b) performed 84.6 F1 at the time of submitting Lee et al. (2019)
which this chapter is based on. For a fair comparison, we obtain a similar 84.4 F1 baseline with their provided
network architecture(Gardner et al., 2017), and achieve 85.63 after enforcing constraints with our inference.

32

Network Inference

Whole test set

Failure rate(%) Conversion rate(%)
F1

before after

SRL-100
GBI

9.82
42.25

84.40
85.63 (+1.23)

A* 40.40 84.51 (+0.11)

SRL-70
GBI

10.54
46.22

83.55
84.83 (+1.28)

A* 44.42 83.90 (+0.35)

SRL-40
GBI

11.06
47.89

82.57
84.03 (+1.46)

A* 44.74 82.98 (+0.41)

SRL-10
GBI

14.15
44.28

78.56
80.18 (+1.62)

A* 43.66 78.87 (+0.31)

SRL-1
GBI

21.90
52.85

67.28
69.97 (+2.69)

A* 48.96 67.97 (+0.69)

Network Inference

Failure set
Average (%)

Exact Match (%) F1
Disagreement

before after before after before after

SRL-100
GBI

44.85
24.92

0.0
19.90

48.00
59.70 (+11.7)

A* 33.91 13.79 48.83 (+0.83)

SRL-70
GBI

45.54
23.02

0.0
19.57

47.81
59.37 (+11.56)

A* 32.32 16.12 50.49 (+2.68)

SRL-40
GBI

45.71
22.42

0.0
19.45

46.53
58.83 (+12.3)

A* 32.17 15.15 46.53 (+2.88)

SRL-10
GBI

47.14
24.88

0.0
15.28

44.19
54.78 (+10.59)

A* 32.80 12.28 45.93 (+1.74)

SRL-1
GBI

50.38
21.45

0.0
12.83

37.90
49.00 (+11.10)

A* 30.28 11.25 41.59 (+3.69)

Table 3.2: Comparison of the GBI vs. A*inference procedure for SRL. We first report the F1-score

and failure rate (%) over whole test set in the table above. Then, focusing on the failure set, we

report more detailed analysis with average disagreement rate, exact match, and F1-scores and

exact match in table below. Also, we report performances on a wide range of reference models

SRL-X, where X denotes % of dataset used for training. We employ Viterbi decoding as a base

inference strategy (before) and apply GBI (after) in combination with Viterbi.

33

To address Q1 we measure the sentence-level failure rate as well as span-level disagreement

rate (i.e., the ratio of predicted spans in a sentence that disagree with the spans implied by the true

syntactic parse of the sentence). To address Q2 we evaluate our method on the failure set (i.e.,

the set of sentences for which disagreement rate is nonzero) and measure our method’s average

disagreement rate. Finally, to address Q3, we evaluate the quality (F1 and exact match) of the

output predictions on the network’s failure set both before and after applying our method. From

Table 3.2, we can see that by applying GBI on SRL-100, the average disagreement rate on the

failure set goes down from 44.85% to 24.92% which results in an improvement of 11.7 F1 and

19.90% in terms of exact match on the same set. These improvements answer Q1-3 favorably.

〈“ it is really like this , just look at the bus signs . ”〉
Gold SRL: B-ARG1 B-V B-ARGM-ADV B-ARG2 I-ARG2 O O · · · O

iteration output loss accuracy

0 B-ARG1 B-V B-ARG2 I-ARG2 I-ARG2 O O O O O O O O 0.32 50.0%

6 B-ARG1 B-V B-ARG2 I-ARG2 I-ARG2 O O O O O O O O 0.29 50.0%

7 B-ARG1 B-V B-ARGM-ADV B-ARG2 I-ARG2 O O O O O O O O 0.00 100.0%

Table 3.3: A semantic role labeling example for which the method successfully enforces syntactic

constraints with GBI. The initial output has an inconsistent span (which are marked red) for token

"really like this". Enforcing the constraint not only corrects the number of agreeing spans, but

also changes the semantic role "B-ARG2" to "B-ARGM-ADV" and "I-ARG2" to "B-ARG2".

To enforce constraints during inference, He et al. proposed to employ constrained-A*decoding.

For the sake of a fair comparison with GBI, we consider A*decoding as used in He et al. (2017)4

and report results for SRL-X networks. We see from Table 3.2, that the GBI procedure consis-

tently out-performs A*decoding on all evaluation metrics, thus, demonstrating superiority of our

approach. Additionally, we present case study in Table 3.3.3 where GBI demonstrates fixing the

constraint error given a real example. In subsection 3.4.2, we conduct an ablation study on GBI

by introducing noisy constraints where GBI shows its superiority compared to A*again.

4Our A*experiment show very similar tendency with He et al. (2017). They report 84.6 F1 baseline with product
of experts and 84.8 F1 for constrained-A*decoding. We obtain 84.4 F1, 84.51 F1 for baseline and A*-decoding,
respectively, using ELMo embedding.

34

name

F1 hyper-parameters

data(%)Beam-search
greedy hidden layers dropout

(beam size: 9)

Net1 87.58 87.31 128 3 0.5 100%

Net2 86.63 86.54 128 3 0.2 100%

Net3 81.26 78.32 172 3 no 100%

Net4 78.14 74.53 128 3 no 75%

Net5 71.54 67.80 128 3 no 25%

Table 3.4: Parsing Networks with various performances. Net1,2 are GNMT seq2seq models

whereas Net3-5 are trained on lower-resource and simpler seq2seq models, providing a wide

range of model performances on which to test GBI.

Net Failure (/2415) Conversion rate
F1 (Failure set) F1 (Whole test set)

before after before after

Net1 187 93.58 71.49 77.04 87.31 87.93

Net2 287 89.20 73.54 79.68 86.54 87.57

Table 3.5: Evaluation of GBI on syntactic parsing using GNMT seq2seq. Note that GBI without

beam search performs higher than beam search performance in Table 3.4.

3.3.4 Syntactic parsing

We now turn to a different task and network: syntactic constituency parsing. We investigate

the behavior of the constraint inference algorithm on the shift-reduce parsing task described in

Section 3.2.2. We transform the Wall Street Journal (WSJ) portion of the Penn Tree Bank (PTB)

into shift-reduce commands in which each reduce command has a phrase-type (e.g., noun-phrase

or verb-phrase) (Mitchell et al., 1999). We employ the traditional split of the data with section

22 for dev, section 23 for test, and remaining sections 01-21 for training. We evaluate on the test

set with evalb5 F1. In each experiment, we learn a seq2seq network on a training set and then

evaluate the network directly on the test set using a traditional inference algorithm to perform the

decoding (either greedy decoding or beam-search).

We repeat the same experimental procedure as we did on SRL, but for syntactic parsing.

Again, to test GBI on a wide range of accuracy regimes (section 3.3.5), we train many networks

with different hyper-parameters producing models of various quality, from high to low, using

the standard split of the WSJ portion of the PTB. In total, we train five networks Net1-5 for

5http://nlp.cs.nyu.edu/evalb/

35

http://nlp.cs.nyu.edu/evalb/

Net
Infer Failure Conv F1 (Failure set)

method (/2415) rate before after

Net3

Greedy 317 79.81 65.62 68.79 (+3.14)

Beam 2 206 87.38 66.61 71.15 (+4.54)

Beam 5 160 87.50 67.5 71.38 (+3.88)

Beam 9 153 91.50 68.66 71.69 (+3.03)

Net4

Greedy 611 88.05 62.17 64.49 (+2.32)

Beam 2 419 94.27 65.40 66.65 (+1.25)

Beam 5 368 92.66 67.18 69.4 (+2.22)

Beam 9 360 93.89 67.83 70.64 (+2.81)

Net5

Greedy 886 69.86 58.47 60.41 (+1.94)

Beam 2 602 82.89 60.45 61.35 (+0.90)

Beam 5 546 81.50 61.43 63.25 (+1.82)

Beam 9 552 80.62 61.64 62.98 (+1.34)

Table 3.6: Evaluation of GBI on simpler seq2seq networks Net4, 5 are trained on a lower resource

(75% and 25%, respectively). Here, we also evaluate whether GBI can be used in combination

with different inference techniques: greedy and beam search of various widths.

this study, that we describe below. We train our two best baseline models (Net1,2) using a highly

competitive seq2seq architecture for machine translation, GNMT (Wu et al., 2016)6, with F1

scores, 86.78 and 87.33, respectively. To study a wider range of accuracies, we train a simpler

architecture7 with different hyper parameters and obtain nets (Net3-5). For all models, we employ

Glorot initialization, and basic attention (Bahdanau et al., 2015). See Table 3.4 for a summary of

the networks, hyper-parameters, and their performance.

We report the behavior of the constraint-satisfaction method in Table 3.5 for Net1-2, and in

Table 3.6 for Net3-5. Across all the experimental conditions (Table 3.5, 3.6), the conversion rates

are high, often above 80% and sometimes above 90% supporting Q2. Note that beam search

alone can also increase constraint satisfaction with conversion rates reaching as high as 51.74%

(164/317) in the case of Net3 with beam size 9. However, as the quality of the model increases,

the conversion rate becomes minuscule; in the case of Net1,2 the conversion rate is less than 14%

with beam 9; in Net1 converting 26 out of 187 and in Net2 converting just 1 out of 287 instances

from failure set.

In order to address question Q3—the ability of our approach to satisfy constraints without

6An encoder with a bidirectional first layer, unidirectional second and third layer and a decoder with unidirectional
layers.

7Uni-directional encoder/decoder.

36

negatively affecting output quality—we measure the F1 scores on the failure sets both before and

after applying the constraint satisfaction algorithm. Since F1 measure is only defined on valid

trees, we employ heuristic post-processing, as described earlier, to ensure all outputs are valid.

Note that an improvement on the failure set guarantees an improvement on the entire test set

since our method produces the exact same outputs as the baseline for examples that do not initially

violate any constraints. Consequently, for example, the GNMT network improves (Net2) on the

failure set from 73.54 to 79.68 F1, resulting in an overall improvement from 86.54 to 87.57 F1

(on the entire test set). These improvements are similar to those we observe in the SRL task, and

provide additional evidence for answering Q1-3 favorably.

We also measure how many iterations of our algorithm it takes to convert the examples that

have constraint-violations. Across all conditions, it takes 5–7 steps to convert 25% of the outputs,

6–20 steps to convert 50%, 15–57 steps to convert 80%, and 55–84 steps to convert 95%.

〈“ So it ’s a very mixed bag . ”〉 −→ sssr!ssssrr!srrr!rr!ssrrrrrr!

iteration output loss accuracy

0 ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0857 33.3%

11 ssr!sr!ssssrrr!rr!ssrrrrrr! 0.0855 33.3%

12 sssr!ssssrr!srrr!rr!ssrrrrrr! 0.0000 100.0%

inference method output

unconstrained-decoder ssr!sr!ssssrrr! rr!ssrrrrrr!

constrained-decoder ssr!sr!ssssrrr! rr!ssrrrrrr!srr!

our method sssr!ssssrr!srrr!rr!ssrrrrrr!

true parse sssr!ssssrr!srrr!rr!ssrrrrrr!

Table 3.7: A shift-reduce example for which the method successfully enforces constraints with

GBI. The first table illustrates the steps that GBI takes and the second table compares unconstrained

decoder, constrained decoder, and true output. The initial output has only nine shifts, but there are

ten tokens in the input. Enforcing the constraint not only corrects the number of shifts to ten, but

changes the implied tree structure to the correct tree. For a little more detail, observe the second

table which compares the result with the constrained decoder which constrains the output only

in myopic fashion. The initial unconstrained decoder prematurely reduces “So it” into a phrase,

missing the contracted verb “is.” Errors then propagate through the sequence culminating in the

final token missing from the tree (a constraint violation). The constrained decoder is only able to

deal with this at the end of the sequence, while our method is able to harness the constraint to

correct the early errors.

37

In Table 3.7 we provide an example data-case that shows how our algorithm solves the initially

violated shift-reduce parse output. For simplicity we omit the phrase-types and only display the

shift (s), reduce (t) and stop reducing commands (!), and color them red if there is an error. The

algorithm satisfies the constraint in just 12 iterations, and this results in a perfectly correct parse.

What is interesting about this example is that the original network commits a parsing mistake early

in the output sequence. This type of error is problematic for a naive decoder that greedily enforces

constraints at each time-step. The reason is that the early mistake does not create a constraint

violation until it is too late, at which point errors have already propagated to future time-steps and

the greedy decoder must shift and reduce the last token into the current tree, creating additional

spurious parse structures. In contrast, our method treats the constraints holistically, and uses it

to correct the error made at the beginning of the parse. See the second table in Table 3.7 for a

comparison.

3.3.5 GBI on wide range of reference models

The foregoing experimental results provide evidence that GBI is a viable method for enforcing

constraints. However, we hitherto studied GBI on high quality baseline networks such as SRL-100.

To further bolster our conclusions, we now direct our investigation towards lower quality networks,

to understand GBI’s viability under a broader quality spectrum. We ask, how sensitive is GBI

to the reference network’s performance (Q4)? To this end, we train poorer quality networks by

restricting the amount of available training data or employing simpler architectures.

For SRL, we simulate low-resource models by limiting the training data portion to 1%,

10%, 40%, and 70% resulting in F1 score range of 67.28-83.55 (Table 3.2). Similarly, for

syntactic parsing, we train additional low-quality models Net3-5 with a simpler uni-directional

encoders/decoders, and on different training data portions of 25%, 75%, and 100% (Table 3.4). We

evaluate GBI on each of them in Table 3.2, 3.6 and find further evidence in support of favorable

answers to Q2 (satisfying constraints) and Q3 (improving F1 accuracy) by favorably answering

Q4. Moreover, while omitting for brevity, we examined both tasks with over 30 experiments (Lee

et al., 2017) with different baseline networks in combination with different inference strategies,

and we found GBI favorable in all but one case (but by just 0.04 comparing without GBI).

We also study whether GBI is compatible with better underlying discrete search algorithms,

in particular beam search for seq2seq. As we seen in column 2 of Table 3.6, that although beam-

search improves the F1 score and reduces the percentage of violating constraints, GBI further

improves over beam-search when using the latter in the inner-loop as the decoding procedure. In

conclusion, improving the underlying inference procedure has the effect of decreasing the number

38

Failure Conversion

F1 on failure set F1 on whole test set

before after before after

rate (%) rate (%) before after before after

Genre / Task SRL
Source genre (NW) 18.10 - 77.45

Broadcast Conversation (BC) 26.86 53.88 39.72 52.40 (+12.68) 71.2 73.63 (+3.29)

Broadcast News (BN) 18.51 55.19 39.28 50.58 (+11.3) 73.22 75.64 (+2.42)

Pivot Corpus (PT) 10.01 62.34 47.19 63.69 (+16.5) 83.95 85.34 (+1.39)

Telephone Conversation (TC) 19.09 54.62 47.7 58.04 (+10.34) 73.07 75.38 (+2.31)

Weblogs (WB) 20.32 44.13 47.6 57.39 (+9.39) 77.10 79.04 (+1.94)

Genre / Task Syntactic Parsing
Source genre (NW/WSJ) 13.90 - 84.41

Broadcast Conversation (BC) 19.32 99.83 56.38 58.79 (+2.41) 66.93 67.68 (+0.75)

Broadcast News (BN) 11.67 99.70 63.17 67.44 (+4.27) 78.77 79.66 (+0.89)

Pivot Corpus (PT) 9.87 98.85 71.42 76.22 (+4.80) 85.99 86.66 (+0.67)

Telephone Conversation (TC) 10.15 93.33 56.86 58.00 (+1.14) 65.99 66.29 (+0.30)

Weblogs (WB) 17.62 98.58 62.03 62.73 (+0.70) 74.55 74.76 (+0.21)

Table 3.8: Evaluation of GBI method on out-of-domain data on of SRL and syntactic parsing. F1

scores are reported on the failure set. SRL model was trained on NW and the syntactic parser was

trained on WSJ set which is a subsection of NW on OntoNote v5.0. The table shows that GBI can

be successfully applied to reduce performance degradation on out-of-domain data. In average,

+12.2 F1 point increased for SRL and +2.7 F1 point for parsing on failure set. Furthermore, in

both cases, the gap between source and out-of-domain test results reduces.

of violating outputs, but GBI is still very much effective on this increasingly small set, despite

it intuitively representing more difficult cases that even eludes constraint satisfaction with beam

search.

3.4 Further analysis

In this section, we want to further analyze GBI in additional aspects. To do so, we run experiments

on out-of-domain dataset and analyze the run times of each experiment.

39

3.4.1 Experiments on out-of-domain data

In the previous subsection we saw how GBI performs well even when the underlying network is

of lower quality. We now investigate GBI on out-of-domain data. For SRL, we train a network

with ELMo embedding on the NewsWire (NW) section of the OntoNotes v5.0 English PropBank

corpus and then test on the other genres provided in the corpus: BC, BN, PT, TC, WB. The

failure rate on the within genre data (test set of NW) is 18.10%. We can see from Table 3.8, the

failure rate for the NW-trained SRL network (SRL-NW) is higher for most out-of-genre data with

the highest being 26.86% for BC (vs. 18.10% NW). Further, by enforcing constraints, we see

significant gains in terms of F1 score across all genres (ranging from 9.39-16.5 F1 on Failure set

and 1.39-3.29 on whole test set). We observe that the gap between source (NW) section and other

sections decreases with the WB genre surpassing (77.10 to 79.04 F1) source test result (77.45

F1). The overall performance difference of source and out-of-domain reduces by 1.1 F1 score,

providing additional evidence for answering Q5 favorably.

Similar to SRL, we train a GMNT seq2seq model on the Wall Street Journal of NW section in

OntoNotes v5.0 Treebank8 which shares the same genre classification with PropBank. Following

the same experimental protocol as on the PTB data, we report the results in Table 3.8. The F1 on

the within-genre data (test set of WSJ) is 84.41, but the F1 on out-of-domain genres are much

lower, ranging from 66.93-78.77 F1 score except PT which has 85.99. We observe in some cases,

like WB and BC, the failure rate is much higher (17.62%, 19.32% for WB vs. 13.90% for WSJ).

We see that across all genres, the algorithm has high conversion rates (sometimes close to 100%),

and that in each case, enforcing the constraints improves the F1. Similar to SRL case, the overall

performance difference of source and out-of-domain reduces (by 0.54 F1 score). Again, we find

support for Q2, Q3 and Q5.

3.4.2 Robustness of GBI

We perform additional experiments to analyze the robustness and runtime of GBI. First, to

measure robustness, we consider a variant of the SRL task in which we include noisy constraints.

OntoNotes v5.0 English PropBank has about 10% of the spans mismatched between the annotated

SRL output (Propbank) and the parse tree (Treebank). Here, we define noisy scenario as using all

the treebank as it is and define noise-free scenario as using filtered treebank9.

8The WSJ section of OntoNotes Tree bank is slightly different from that of PennTree bank WSJ section. While
PennTree bank has 40k instances on WSJ section, OntoNote WSJ section has 30k instances.

9We simply assume we do not have syntactic parse tree information, setting g(si,Lx) = 0, for the instances that
has span-mismatch between propbank and treebank

40

Decoding Precision Recall F1-score Exact Match (%)

Viterbi 84.03 84.78 84.40 69.37

Noisy constraints

A* 78.13 (-5.90) 76.85 (-7.93) 77.48 (-6.92) 58.30 (-11.70)

GBI 85.51 (+1.48) 84.25 (-0.53) 84.87 (+0.47) 68.45 (-0.92)

Noise-free constraints

A* 84.19 (+0.16) 84.83 (+0.05) 84.51 (+0.11) 70.52 (+1.15)

GBI 85.39 (+1.36) 85.88 (+1.10) 85.63 (+1.23) 71.04 (+1.67)

Table 3.9: Comparison of different inference procedures: Viterbi, A*(He et al., 2017) and GBI

with noisy and noise-free constraints. Note that the (+/-) F1 are reported w.r.t Viterbi decoding on

the same column.

Table 3.9 reports the performance of GBI and A*in the presence of noisy constraints. We can

see that the overall performance (F1-score) for A*drops drastically (−6.92) in the presence of

noisy constraints while we still see gains with GBI (+0.47). We further analyze the improvement

of GBI by looking at the precision and recall scores individually. We see that recall drops slightly

for GBI which suggests that noisy constraints do inhibit predicting actual argument spans. On the

other hand, we see that precision increases significantly. After analyzing predicted argument spans,

we noticed that GBI prefers to predict no argument spans instead of incorrect spans in the presence

of noisy constraints, which leads to an increase in precision. Thus, GBI provides flexibility in

terms of strictness with enforcing constraints, which makes it robust to noisy constraints. On the

other hand, the constrained-A*decoding algorithm is too strict when it comes to enforcing noisy

constraints resulting in a significant drop of both precision and recall.

3.4.3 Runtime analysis

In terms of runtime, GBI is generally faster than A*, though, the difference is less clear on smaller

evaluation sets. Table 3.10 reports the runtime for different inference procedures with varying

dataset sizes. In general, we observe that GBI tends to be faster than A*, especially when the

dataset is large enough. One exception is the BC domain where GBI is only slightly faster than

A*. We hypothesize it might be due to the difficulty of the domain as its failure rate is higher than

others. GBI will spend more time searching for the correct output (more iterations) if it is harder

to find the solution. Similarly, in the case study with noisy constraints, the runtimes are similar;

however, GBI has much better accuracy, showing similar gains as the noise-free setting.

41

Network Genre(s) No. of examples
Failure Inference time (approx. mins)

rate (%) Viterbi GBI A*

SRL-100 All 25.6k 9.82 109 288 377

SRL-NW

BC 4.9k 26.86 23 110 117

BN 3.9K 18.51 18 64 100

PT 2.8k 10.01 8 19 15

TC 2.2k 19.01 5 23 20

WB 2.3k 20.32 12 49 69

Table 3.10: Comparison of runtime for difference inference procedures in the noise-free constraint

setting: Viterbi, A*(He et al., 2017) and GBI. For SRL-100 refer Table 3.2 and SRL-NW is a

model trained on NW genre.

3.4.4 Discussion on max-iteration M

In using GBI, we are required to explicitly set the max-iteration M for GBI after which it will

stop iterating to avoid pathological cases. In all our SRL experiments, we have set the M to be

10. To study its scalability, we ran GBI with max-iteration M set to 30. The runtime increases

to 556 mins for M = 30 as opposed to 288 mins of M = 10. However, if we set M = 30, the

performance of GBI improves significantly in all accuracy metrics compared to that of M = 10:

overall F1 (+0.34), F1 on failure set (+3.4), exact match (+4.35%), and conversion rate (+11.24%).

As can be seen from the demonstration, there is a clear tradeoff between runtime and accuracy

as controlled by the maximum number of epochs M . The user can control M by the runtime

constraint the system has: lower M when the serving time is most important and larger M when

accuracy is more important than the serving time.

3.5 Related work

Recent work has considered applying neural networks to structured prediction; for example,

structured prediction energy networks (SPENs) (Belanger and McCallum, 2016). SPENs incor-

porate soft-constraints via back-propagating an energy function into “relaxed” output variables.

In contrast, we focus on hard-constraints and back-propagate into the weights that subsequently

control the original non-relaxed output variables via inference. Separately, there has been interest

in employing hard constraints to harness unlabeled data in training-time for simple classifications

(Hu et al., 2016). Our work instead focuses on enforcing constraints at inference-time. More

specifically, for SRL, previous work for enforcing syntactic and SRL specific constraints have

42

focused on constrained A*decoding (He et al., 2017) or integer linear programming (Punyakanok

et al., 2008). For parsing, previous work in enforcing hard constraints has focused on post-

processing (Vinyals et al., 2015) or building them into the decoder via sampling (Dyer et al., 2016)

or search constraints (Wiseman and Rush, 2016). Additionally, there was a very recent work that

tried to inject constraints using automaton (Deutsch et al., 2019) where automaton will reshape the

probability distribution at each decoding step. While this can avoid producing constraint failure

output, this approach is different with GBI in that automaton will not modify earlier decoded

results as we have discussed in Table 3.7 comparing GBI to a constrained decoder.

Finally, as previously mentioned, our method highly resembles dual decomposition and more

generally Lagrangian relaxation for structured prediction (Koo et al., 2010; Rush et al., 2010; Rush

and Collins, 2012). In such techniques, it is assumed that a computationally efficient inference

algorithm can maximize over a superset of the feasible region (this assumption parallels our case

because unconstrained inference in the neural network is efficient, but might violate constraints).

Then, the method employs gradient descent to concentrate this superset onto the feasible region.

However, these techniques are not directly applicable to our non-linear problem with global

constraints.

3.6 Conclusion

We presented an algorithm for satisfying constraints in neural networks that avoids combinatorial

search, but employs the network’s efficient unconstrained procedure as a black box to coax

weights towards well-formed outputs. We evaluated the algorithm on three tasks including SRL

and seq2seq parsing and found that GBI can successfully convert failure sets while also boosting

the task performance. Accuracy in each of the three tasks was improved by respecting constraints.

Additionally, we extend the constraint-enforcing loss of GBI’s to another form in Part II in

order to inject constraints on training time. As we will see shortly in Chapter 4, for SRL, we can

employ GBI on top of a model trained with similar loss as GBI’s. We observe that the additional

test-time optimization of GBI on top of constraint-injected model still significantly improves the

model output whereas A*does not. We believe this is because GBI searches in the proximity of the

provided model weights; however, theoretical analysis of this hypothesis is left as future work.

43

44

Part II

Semi-Supervised Learning with
Output Constraints

45

Neural networks have improved the state-of-the-art on many NLP applications over the years.

However, they tend to show poor performance in low-resource and out-of-domain settings. In

Chapter 3, we observed that injecting output constraints can be helpful in these settings. In

Part II, we study whether the output constraints can aid the learning process, as it did for inference

procedures in Part I.

Chapter 4 presents a semi-supervised learning framework that extends the test-time constraint

injection to learning time: from per-instance optimization to learning generally on multiple-

instances. While typical inference steps are performed on a fixed, learned model, in Chapter 3 we

optimized the model parameter with a constraint loss for structured inference.

Noting that the constraint loss is unsupervised, as it does not require a labeled dataset to

evaluate a constraint violation, Chapter 4 presents three loss functions: (1) structural constraint

loss similar to that of Chapter 3, (2) a joint objective of structural loss and supervised loss on

training set, and lastly (3) a joint objective on semi-supervised setting. Among these objectives,

the semi-supervised setting displays the most improvement on task performance and largest

reduction of constraint violation. This semi-supervised learning framework shows significant

improvements in low-resource settings, and positive results on high-resource setting as well in the

case of semantic role labeling.

Chapter 5 applies the semi-supervised framework introduced in Chapter 4 to a multi-view

learning setting to inject an agreement constraint. This constraint is different to other constraints

presented in this thesis, in that it is not based on a prior knowledge of a specific task, but rather

can be applied in any multi-view learning setting. Hence, we believe the approaches introduced in

Chapter 5 can be applied to other sequence-labeling tasks. First establishing recently proposed

multi-view learner (META-BILSTM (Bohnet et al., 2018)) as a baseline, and then applying the

semi-supervised learning framework on top of it, this thesis presents extensive experiments on low-

resource settings. Additionally, Chapter 5 shows that it does not hurt to use agreement constraint

together with a pre-trained language model and demonstrates state-of-the-art result for Chinese

dependency parsing on the CoNLL2018 shared task.

47

48

Chapter 4

Semi-Supervised Learning with
Syntactic Constraints

Several neural models have shown state-of-the-art performances on Semantic Role Labeling (SRL)

(He et al., 2017; Peters et al., 2018c; Tan et al., 2018; He et al., 2018; Ouchi et al., 2018). However,

the neural models require an immense amount of labeled data and are thus not well suited for

low-resource languages or domains. This chapter proposes a semi-supervised semantic role

labeling method that outperforms the state-of-the-art in limited SRL training data. The proposed

method is based on explicitly enforcing syntactic constraints by applying syntactic-inconsistency

loss, a loss function defined in a similar manner to the constraint loss in Chapter 3. Whereas

constraint loss for GBI (Chapter 3) was applied to the single instance, the syntactic-inconsistency

loss is defined on a batch of unlabeled instances. This unsupervised loss combined with supervised

loss from training data forms a semi-supervised learning loss.

The proposed semi-supervised learning is examined on CoNLL-2012 English section. The

experiment comprises of low-resource setting, which considers 1%, 10% of available SRL-labeled

data, as well as high-resource setting, using 100% of available SRL-labeled data1, with varying

amounts of parse trees on SRL-unlabeled data. For example, the semi-supervised learning with

injection of gold parse tree on 1% of available SRL-labeled data achieves +1.58 F1 improvements

over the pre-trained models that were trained with a state-of-the-art architecture2 on the same

SRL-labeled data. Similar experiments are conducted with system-generated parse trees instead

1We use SRL-labeled, SRL-unlabeled data to distinguish instances with and without gold SRL labels regardless of
other label information such as parse tree annotation.

2Since our submission of Mehta et al. (2018), which this chapter is based on, the state-of-the-art model for SRL
has been updated. The previous state-of-the-art Peters et al. (2018b) with ELMo, which we apply our technique on,
has been advanced by 1.6 F1 points Ouchi et al. (2018) as mentioned in Chapter 3 as well.

49

of gold parse trees. Additionally, we also study whether inference with constraint is still beneficial

even after learning with constraints via semi-supervised learning. By applying GBI after semi-

supervised learning with syntactic-inconsistency loss on 1% of available SRL-labeled data, we

demonstrate +3.67 F1 (extra +2.09 F1 by GBI) improvement over pre-trained model on the same

labeled data. The material presented in this chapter is based on Mehta et al. (2018)3.

4.1 Overview

Semantic role labeling (SRL), a.k.a shallow semantic parsing, identifies the arguments corre-

sponding to each clause or proposition, i.e. its semantic roles, based on lexical and positional

information. SRL labels non-overlapping text spans corresponding to typical semantic roles such

as Agent, Patient, Instrument, Beneficiary, etc. This task finds its use in many downstream appli-

cations such as question-answering (Shen and Lapata, 2007), information extraction (Bastianelli

et al., 2013), machine translation, etc.

Several SRL systems relying on large annotated corpora have been proposed (Peters et al.,

2018c; He et al., 2017), and perform relatively well. A more challenging task is to design an

SRL method for low resource scenarios (e.g. rare languages or domains) where we have limited

annotated data but where we may leverage annotated data from related tasks. Therefore, in this

chapter, we focus on building effective systems for low resource scenarios and illustrate our

system’s performance by simulating low resource scenarios for English.

SRL systems for English are usually built using the large annotated corpora of verb predicates

and their arguments provided as part of the PropBank and OntoNotes v5.0 projects (Kingsbury

and Palmer, 2002; Pradhan et al., 2013). These corpora are built by adding semantic role

annotations to the constituents of previously-annotated syntactic parse trees in the Penn Treebank

(Marcus et al., 1993). Traditionally, SRL relies heavily on using syntactic parse trees either from

shallow syntactic parsers (chunkers) or full syntactic parsers and Punyakanok et al. (2008) shows

significant improvements by using syntactic parse trees.

Recent breakthroughs motivated by end-to-end deep learning techniques (Zhou and Xu, 2015;

He et al., 2017) achieve state-of-the-art performance without leveraging any syntactic signals,

relying instead on ample role-label annotations. We hypothesize that by leveraging syntactic

structure while training neural SRL models, we may achieve robust performance, especially

for low resource scenarios. Specifically, we propose to leverage syntactic parse trees as hard

3For Mehta et al. (2018), Lee and Mehta are the co-first authors with equal contributions. The mathematical
formulations and experiment designs were conducted by Lee and vast implementations and evaluations were
conducted by Mehta.

50

constraints for the SRL task i.e., we explicitly enforce that the predicted argument spans of the

SRL network must agree with the spans associated by the syntactic parse of the sentence via

scoring function in the training objective. Moreover, we present a semi-supervised learning (SSL)

based formulation, wherein we leverage syntactic parse trees for SRL-unlabeled data to build

effective SRL for low resource scenarios.

We build upon the SRL system provided by Peters et al. (2018c) (with ELMo) that follows

the architecture of He et al. (2017) which formulates SRL as a BIO tagging problem and use

multi-layer highway bi-directional LSTMs. However, we differ in terms of our training objective.

In addition to the log-likelihood objective, we also include syntactic inconsistency loss (defined

in Section 4.2.3) which quantifies the hard constraint (spans associated with syntactic parse)

violations in our training objective. In other words, while training our model, we enforce the

outputs of our SRL system to agree with the spans associated with the syntactic parse of the

sentence as much as possible. In summary, our contributions to low-resource SRL are:

1. Introducing hard syntactic constraint as a loss function (syntactic-inconsistency loss) during

training time, as opposed to the previous studies which examined the effect of introducing

similar constraints for neural SRL model in inference time (He et al., 2017).

2. Proposing a semi-supervised learning formulation for low-resource SRL by leveraging the

fact that the syntactic inconsistency loss does not require labels.

3. Performing experiments with varying amounts of SRL-unlabeled data, both with gold and

system-generated parse tree, that show the effectiveness of semi-supervised learning for

low-resource SRL.

4.2 Proposed Approach

We build upon an existing deep-learning formulation for SRL (He et al., 2017). First we revisit

definitions introduced by He et al. (2017) and then discuss our approach on top of it.

4.2.1 Task definition

Given a sentence-predicate pair (x, v) with sentence x = x1, x2, . . . , xn and verb predicate v,

SRL task is defined as predicting a sequence of tags y = y1, y2, . . . , yn, where each xi is word

tokens and each yi belongs to a set of BIO tags (Φ). So, for an argument span with semantic

role ARGi, the B-ARGi tag indicates that the corresponding token marks the beginning of the

argument span, the I-ARGi tag indicates that the corresponding token is inside of the argument

span, and the O tag indicates that token is outside of all argument spans. Let n = |x| = |y| be

51

the length of the sentence. Further, let srl-spans(y) denote the set of all argument spans in the

SRL tagging y. Similarly, parse-spans(x) denotes the set of all unlabeled parse constituents for

the given sentence x. Lastly, SRL-labeled data refers to sentence-predicate pairs with gold SRL

labels and SRL-unlabeled data refers to set of sentences without such information.

4.2.2 Baseline model

He et al. (2017) proposed a deep bi-directional LSTM to learn a locally decomposed scoring

function conditioned on the entire input sentence-
∑n

i=1 log p(yi|x). To learn the parameters

of a network θ, the conditional negative log-likelihood L(θ) of a sample of training data T =

{x(t),y(t)}∀t is minimized, where L(θ) is

L(θ) = −
∑

(x,y)∈T

|y|∑
i=1

log p(yi|x; θ). (4.1)

Since Eq. (4.1) does not model any dependencies between the output tags, the predicted output

tags tend to be structurally inconsistent. To alleviate this problem, He et al. (2017) search for the

best ŷ by employing Astar (A*) search over the space of all possibilities (Φn) using the scoring

function f(x, y), which incorporates log probability and structural penalty terms.

ŷ = argmaxy′∈Φn f(x,y
′) (4.2)

where f(x,y) =
n∑
i=1

log p(yi|x)−
∑
c∈C

c(x,y1:i) (4.3)

where each constraint function c applies a non-negative penalty given the input x and a length-t

prefix y1:t.

4.2.3 Structural Constraints

There are different types of structural constraints: BIO, SRL and syntactic constraints. BIO

constraints define valid BIO transitions for sequence tagging. For example, B-ARG0 cannot

be followed by I-ARG1. SRL constraints define rules on the role level and has three particular

constraints, which are, (1) unique core roles constraint (U): each core rule cannot appear more

than once in a sentence, (2) continuation roles constraint (C): a continuation role can only occur to

the roles that already appeared in earlier spans, and (3) reference roles constraint (R): a span can

only labeled as reference role if another span is labeled with the corresponding role (Punyakanok

et al., 2008; Täckström et al., 2015). Lastly, syntactic constraints state that srl-spans(y) have to

be a subset of parse-spans(x).

52

He et al. (2017) use BIO and syntactic constraints at decoding time by solving Eq. (4.2), where

f(x, y) incorporates those constraints, and report that SRL constraints do not show significant

improvements over the ensemble model. In particular, by using syntactic constraints, He et al.

(2017) achieve up to +2 F1 score on CoNLL-2005 dataset via A* decoding.

Improvements of SRL system via use of syntactic constraints is consistent with other observa-

tions (Punyakanok et al., 2008). However, all previous work enforce syntactic consistency only

during decoding step. We propose that enforcing syntactic consistency during training time would

also be beneficial and show the efficacy experimentally on Section 4.3.3.

Enforcing Syntactic Consistency To quantify syntactic inconsistency, we define disagreeing-

spans as

disagreeing-spans(x,y) = {spani ∈ srl-spans(y) | spani /∈ parse-spans(x)}. (4.4)

Further, we define disagreement rate, g(x,y) ∈ [0, 1], and syntactic inconsistency score, s(x,y) ∈
[−1, 1], as follows:

g(x,y) =
|disagreeing-spans(x,y)|

|srl-spans(y)|
(4.5)

s(x,y) = 2× g(x,y)− 1. (4.6)

Note that g(x,y) is defined on a sequence whereas g(·) in Eq. (3.6) for inference (GBI) was

defined on a factorized spans in Chapter 3.

Syntactic Inconsistency Loss (SI-Loss) For a given (x, v), let us consider ŷ(t) to be the best

possible tag sequence (according to Eq. (4.2)) during epoch t of model training. Ideally, if our

model is syntax-aware, we would have empty disagreeing-spans set and have g(x, ŷ(t)) = 0 or

s(x, ŷ(t)) = −1. We define a loss component due to syntactic inconsistency (SI-Loss) as follows:

LSI(θ) = s(x, ŷ(t))

|ŷ(t)|∑
i=1

log p(ŷ
(t)
i |x; θ(t)). (4.7)

During training, we want to inject the syntactic constraint by minimizing the proposed syntactic

inconsistency loss. In order to apply gradient-based learning on a non-differentiable scoring

function, we fix the score s(·) and multiply it to the gradient of probability term similar to that

of REINFORCE(Williams, 1992). As one can observe, we use negative value of inconsistency

score, −s(x,y), as a score function to promote (penalize) any SRL output y that is consistent

(inconsistent) with the parse tree information.

53

4.2.4 Training with Joint Objective

Combining Eq.(4.1), a supervised loss, and Eq.(4.7), the SI-Loss, we propose a joint training

objective. For a given sentence-predicate pair (x, v) and SRL tags y, our joint loss (on mini-batch

t) is defined as:

LJoint(θ) = α1

|y|∑
i=1

− log p(yi|x; θ(t))︸ ︷︷ ︸
Eq. (4.1) supervised loss

+α2 s(x, ŷ
(t))

|ŷ(t)|∑
i=1

log p(ŷ
(t)
i |x; θ(t))︸ ︷︷ ︸

Eq. (4.7) SI-loss

(4.8)

Here, α1 and α2 are weights (hyper-parameters)4 for different loss components and are tuned

using a development set. During training, we minimize joint loss - i.e., negative log-likelihood (or

cross-entropy loss) and syntactic inconsistency (SI) loss simultaneously.

4.2.5 Semi-supervised learning formulation

In low resource scenarios, we have limited labeled data and larger amounts of unlabeled data. The

obvious question is how to leverage large amounts of unlabeled data for training accurate models.

In context of SRL, we propose to leverage SRL-unlabeled data in terms of parse trees.

Observing Eq.(4.7), one can notice that our formulation of SI-Loss is only dependent upon

the model’s predicted tag sequence ŷ(t) at a particular time point t during training and the given

sentence and it does not depend upon gold SRL tags. We leverage this fact and formulate

semi-supervised loss by computing SI-loss portion of Eq. (4.8) from SRL-unlabeled sentences.

In summary, with simplified notation logP (y|x; θ) =
∑|y|

i=1 log p(yi|x; θ), we present our

semi-supervised formulation of joint objective (SSL loss) as follows:

LSSL(θ) = α1

∑
(xj ,yj)∈T

− logP (yj|xj, θ(t))

︸ ︷︷ ︸
supervised

+α2

∑
xk∈U

s(xk, ŷ
(t)
k) logP (ŷ

(t)
k |xk, θ

(t))︸ ︷︷ ︸
unsupervised

(4.9)

where SRL-labeled data T only contributes to supervised loss and SRL-unlabeled data U con-

tributes in terms of syntactic inconsistency objective. Note that on Eq. (4.8), two loss functions are

evaluated at respective input samples xj ∈ T,xk ∈ U , whereas both loss functions on Eq. (4.9)

are evaluated at the same instance x.

4We use α1 = α2 for all the experiments after hyper-parameter tuning on the provided development set on
CoNLL2012.

54

4.3 Experiments

4.3.1 Dataset

We evaluate our model’s performance on the span-based SRL dataset from CoNLL-2012 shared

task (Pradhan et al., 2013). This dataset contains gold predicates as part of the input and also gold

parse information corresponding to each sentence, which we use for defining hard constraints for

the SRL task. We use the standard train/development/test split containing 278K/38.3K/25.6K

sentences. There is approximately 10% disagreement between gold SRL-spans and gold parse-

spans (we term these as noisy syntactic constraints). During training, we do not preprocess data

to handle these noisy constraints, but for the analysis related to enforcing syntactic constraints

during inference, we study both cases: with and without noisy constraints.

4.3.2 Model configurations

For the SOTA system proposed in Peters et al. (2018c), we use the codebase from Allen AI5 to

implement our approach. We follow their initialization and training configurations. Let BX , JX
denote model trained with X% of the SRL-labeled data with cross-entropy loss (L) and joint

loss (LJoint), respectively. Let, BX-SI·Ux and BX-SSL·Ux denote models trained with SI-loss

(LSI) and semi-supervised loss (LSSL), respectively, on the pre-trained BX model where X × U
amount of SRL-unlabeled data were used for further training. For example, if we trained on 2.8k

instances (1% of training set) to pre-train a model B1, and used 5.6k unlabeled examples (2x

times of labeled instance used) to train with SI-loss, then we will obtain B1-SI·2x after training.

For all our results, unless expressed to use A* or GBI, to satisfy BIO constraints, we run Viterbi

decoding by default for inference.

For experiments with syntactic-inconsistency loss (LSI), we add an extra square loss, β‖θ −
θpre-train‖2 with β set to 0.005, to Eq. (4.7) to keep the model θ close to the pre-trained model

θpre-train to avoid catastrophic forgetting. We optimize with SGD with a step size of 0.01 and stop

fine-tuning when the best development score is not updated for more than 10 epochs.

For experiments with joint loss (LJoint) of Eq. (4.8) and semi-supervised loss (LSSL) of

Eq. (4.9), we set the equal weights for supervised loss and syntactic-inconsistency loss, i.e.

α1 = α2 = 1.0. We use SGD with a step size of 0.05 and stop fine-tuning when the best

development score is not updated for more than 10 epochs.

Finally, in order to examine whether the improvements from LSI, LJoint, and LSSL are not

some noisy byproducts of fine-tunning with a very small learning rate, we further applied cross

5https://github.com/allenai/allennlp

55

Model/
Test F1

Average

Legend disagreement rate (%)

B100 84.40 14.69

B10 78.56 17.01

B1 67.28 21.17

J100 84.75 (+0.35) 14.48 (−1.43%)

J10 79.09 (+0.53) 16.25 (−4.47%)

J1 68.02 (+0.74) 20.49 (−3.21%)

Table 4.1: Comparison of baseline models (B) with the models trained with the joint objective

(J). * Legend: BX , JX denotes model trained with X% of the SRL-labeled data with respective

objective.

entropy loss (L) and optimized with SGD with a step size of 0.01 to the pre-trained model. We

denote such models as BX-micro as we are fine-tunning pre-trained BX with very small learning

rate. Again, like all other learning, we stop fine-tuning when the best development score is not

updated for more than 10 epochs.

4.3.3 Results

We are interested in answering the following questions.

• Q1. How often does the baseline model produce syntactically consistent outputs?

• Q2. Does our approach actually enforce syntactic constraints?

• Q3. Does our approach enforce syntactic constraints without compromising the quality of

the system?

• Q4. How well does our SSL formulation perform, especially in low-resource scenarios?

• Q5. What is the difference in using the syntactic constraints in training time compared to

using it at decoding time?

To answer (Q1-2), we report average disagreement rate on test data. To answer (Q3-5), we report

overall F1-scores on test set. For experiments using SRL-unlabeled data, we report average results

after running multiple experiments with different random samples of unlabeled data.

Does training with joint objective help? We trained 3 models (J1, J10, J100) with random

1% and 10% subsamples as well as 100% of the training set, with joint loss (α1 = α2 = 0.5 in

Eq. (4.8)). For comparison, we trained 3 SOTA models (B1, B10, B100) with the same training

56

Base Model/
Test F1

Average

Legend disagreement rate (%)

B1 67.28 21.17

B1-SI·1x 67.67 (+0.39) 20.14 (−4.87%)

B1-SI·5x 67.74 (+0.46) 19.93 (-5.86%)
B1-SI·10x 67.71 (+0.43) 20.16 (−4.77%)

B10 78.56 17.01

B10-SI·1x 78.84 (+0.28) 16.17 (−4.94%)

B10-SI·5x 78.67 (+0.11) 16.47 (−3.17%)

B10-SI·10x 78.76 (+0.20) 16.09 (-5.4%)

Table 4.2: Training with SI-loss for varying sizes of SRL-unlabeled data on top of the pre-trained

baseline models (B1, B10 on Table 4.1). * Legend: BX-SI·Ux denotes a model trained with

SI-loss (LSI) on the pre-trained model BX where X × U amount of SRL-unlabeled data were

used for further training.

sets. All models were trained for 150 epochs at maximum and ended the training earlier if F1 on

validation set did not improve for 20 epochs.

Table 4.1 reports the results of this experiment. Answering (Q1), we can see that even the

state-of-the art model has an average disagreement rate of 14.69% and that the F1 score and

disagreement rate is inversely proportional. We see that models trained with joint objective (JX)

improve over baseline models (BX), both in terms of F1 and average disagreement rate. These

improvements provide evidence for answering (Q2-3) favorably. Further, gains are larger in

low-resource scenarios as additional knowledge injected through constraint is relatively more

informative when the training data is limited.

Does SSL based training work for low-resource scenarios? To enforce syntactic constraints

via SI-loss on SRL-unlabeled data, we further train the pre-trained model with two objectives in

using unlabeled data: SI-loss (LSI) (in Table 4.2) and Semi-supervised loss (LSSL) (in Table 4.3).

Results related to SI-loss experiment are reported in Table 4.2. We see that with SI-loss

improvements are more notable in terms of average disagreement rate as compared to F1. Results

related to the semi-supervised loss are reported in Table 4.3. We report +1.58 F1 and +0.78

F1 improvement over B1 and B10, respectively, by training with semi-supervised loss using

SRL-unlabeled data. Note that we cannot achieve these improvements by simply fine-tunning

BX further with supervised loss, as seen with BX-micro on Table 4.3. This provides evidence to

answer (Q4) favorably. In general, the performance gains increase as the size of the SRL-unlabeled

57

Base Model/
Test F1

Average

Legend disagreement rate (%)

B1 67.28 21.17

B1-micro 67.76 (+0.48) 20.75 (−1.98%)

B1-SSL·1x 68.45 (+1.17) 19.57 (−7.56%)

B1-SSL·5x 68.86 (+1.58) 19.38 (-8.46%)
B1-SSL·10x 68.61 (+1.33) 19.29 (−8.88%)

B10 78.56 17.01

B10-micro 78.86 (+0.3) 16.25 (−2.06%)

B10-SSL·1x 79.23 (+0.67) 16.03 (−5.76%)

B10-SSL·5x 79.25 (+0.69) 16.01 (−5.88%)

B10-SSL·10x 79.34 (+0.78) 15.88 (-6.64%)

Table 4.3: Training with semi-supervised objective (SSL) on top of the baseline models (B1, B10
from Table 4.1), with the same SRL-labeled data used to train the baseline models and with varying

sizes of SRL-unlabeled data. B1-micro and B10-micro represents running the same supervised

loss that was used to pre-train B1, B10 but with smaller (micro) learning rate. The learning rates

used in B1-micro and B10-micro were set to the same rate as other fine-tunning experiments. We

have conducted these experiments to examine whether the gains are simply coming from running

longer epochs of training. * Legend: BX-SSL·Ux denote model trained with semi-supervised

loss (LSSL) on the pre-trained BX model where X × U amount of SRL-unlabeled data were used

for further training.

58

Base Model/
Test F1

Average

Legend disagreement rate (%)

B1 67.28 21.17

B1-micro 67.76 (+0.48) 20.75 (−1.98%)

B1-SI·5x 67.74 (+0.46) 19.93 (−5.86%)

J1 68.61 (+1.33) 20.49 (−8.88%)

B1-SSL·5x 68.86 (+1.58) 19.38 (-8.46%)
B10 78.56 17.01

B10-micro 78.86 (+0.3) 16.25 (−2.06%)

B10-SI·10x 78.76 (+0.20) 16.09 (−5.4%)

J10 79.25 (+0.69) 16.01 (−5.88%)

B10-SSL·10x 79.34 (+0.78) 15.88 (-6.64%)

Table 4.4: Overall comparison of loss functions from experiments utilizing 1% (top) and 10%

(bottom) of available SRL-labeled data. This table aggregates statistics of best-performing instance

of each loss function (SI-loss, Joint, and semi-supervised loss (SSL)) from Table 4.1, 4.2, 4.3.

data increases for semi-supervised learning.

Lastly, in Table 4.4, we compare all presented loss functions together by aggregating statistics

of best-performing instances of each loss functions from Table 4.1, 4.2, and 4.3. Both 1% and 10%

cases show similar trend in that semi-supervised learning performs the best both in terms of F1

(higher the better) and average constraint violation rate (lower the better). While supervised loss

with the small learning rate is similar in F1 with SI-loss, the average violation of constraint is lower

for the model trained with SI-loss. In fact, Table 4.4 shows the importance of learning syntactic

constraint from unlabeled dataset. Both SI-loss and SSL which injects syntactic constraint using

SRL-unlabeled data show lower syntactic constraint violation than other models.

Is it better to enforce syntactic consistency at decoding or at training time? To answer (Q5),

we conducted three experiments: using syntactic constraints on (a) inference only, i.e. structured

prediction, (b) training only, and (c) both training and inference steps. For the structured prediction,

we consider A* decoding, as used in He et al. (2017), and GBI (Chapter 3). If neither A* decoding

nor gradient-based inference is used, we use Viterbi algorithm to enforce BIO constraints. The

performance is the best (bold on Table 4.5) when syntactic consistency is enforced both on training

and inference steps, with +3.67, +2.1 F1 score improvement over B1 and B10 respectively, and

we conclude that the effort of enforcing syntactic consistency at inference time is complementary

to the same effort at training time.

59

Decoding B10 B10-SSL·10x B1 B1-SSL·5x

Viterbi 78.56 79.34 67.28 68.86

Noisy syntactic constraints

A*
72.95 73.57 63.77 64.73

(-5.61) (-5.77) (-3.51) (-4.13)

Gradient- 79.7 80.21 69.85 70.95
based (+1.41) (+0.87) (+2.57) (+2.1)

Noise-free syntactic constraints

A*
78.87 79.51 67.97 68.97

(+0.31) (+0.17) (+0.69) (+0.11)

Gradient- 80.18 80.66 69.97 70.94

based (+1.62) (+1.32) (+2.69) (+2.08)

Table 4.5: Comparison of different decoding techniques: Viterbi, A* He et al. (2017) and gradient

based inference Lee et al. (2019) with noisy and noise-free syntactic constraints. Note that the

(+/-) F1 are reported w.r.t Viterbi decoding on the same column.

While syntactic constraints help at both train and inference time, injecting constraints on train

time is more robust than enforcing them on decoding time. The performance of GBI drops by

0.1 ∼ 0.5 in F1 score6 when about 10% of parse data is noisy as can be seen in Table 4.5). On

the other hand, the performance drop was around 0.1 in F1 score for SSL when the same amount

of noise was introduced.

4.3.4 Domain adaptation using output constraints

A machine Learning model will not perform as well on out-of-domain datasets as on the domain

it was trained on, due to the difference on underlying distribution. We have observed such

behaviors with neural models as well in section 3.4.1. To remedy this problem, the thesis asks

a question ’Can we use the universal constraint independent of domain as a guidance to the

domain adaptation’? We already have observed that using constraint information can improve

performance on out-of-domain using structured prediction (GBI) in Chapter 3. We further explore

whether the proposed SSL approach in this chapter can remedy the difference of data distribution.

To examine whether the proposed SSL approach can help domain adaptation, the thesis

conducts experiments on the CoNLL2012 dataset. The experimental setting is similar to that of in

Chapter 3.4.1. We use the NewsWire (NW) section of OntoNotes v5.0 English PropBank corpus

6The performance of A* drops too significantly given noisy constraints. We only consider GBI for the comparison
of robustness.

60

Parse tree B1-SSL5x B10-SSL·10x J100-SSL·3x

& Predicate
F1

Average
F1

Average
F1

Average

type Disagreement Disagreement Disagreement

Gold
68.86 19.38 79.34 15.88 - -

(+1.58) (-1.79) (+0.78) (-1.13) - -

System-predicted
68.57 19.73 79.01 16.39 84.87 14.23

(+1.29) (-1.44) (+0.45) (-0.62) (+0.47) (-0.46)

Table 4.6: Comparing the best semi-supervised models in Table 4.3 that uses gold parse, from

Treebank in CoNLL2012, with semi-supervised models that uses system-generated parse trees.

The system-generated parse trees were created by running two off-the-shelf parsers, Berkeley

Parser(Petrov et al., 2006) and ZPar(Zhu et al., 2013), on NYT dataset(Sandhaus, 2008). After

selecting instances where both parses agree, the system-generated parse have approximately 80%

agreement with gold SRL.

as the source domain, and additional genres provided in the PropBank corpus (BC, BN, PT, TC,

WB) as the target domains.

First, we examine how training with structural loss (LSI) Eq. (4.7) can help domain adaptation

in case of syntactic parsing. We pre-trained the GNMT model for syntactic parsing on NW

section and then trained further with structural loss on the target domains. As Table 4.7 shows, the

structural loss training on the target domain both reduces the failure rate and improves performance.

In comparison to similar experiment using GBI in section 3.4.1, the F1 gains in this experiment

(+) are relatively higher than GBI (+0.21 to +0.75 in F1), however, GBI reduces failure rate much

more drastically (near 100% enforcement of constraint).

Second, we examine how semi-supervised training with the SSL loss (LSSL) can aid domain

adaptation in the case of SRL. We pre-trained SRL network with ELMo embedding on the NW

corpus and then apply the SSL approach, using the source domain as a supervised set and target

domain as a unsupervised set with SSL loss formulation of Eq. (4.9). As Table 4.8 shows, SSL

training with the joint objective usually reduces the failure rate and improves the performance,

except the Telephone Conversation (TC) domain.

61

Failure rate (%) F1

before after before after

Genre / Task Syntactic Parsing
Source domain (NW/WSJ) 13.90 - 84.40 -

Broadcast Conversation (BC) 19.32 11.16 66.93 74.23 (+7.30)

Broadcast News (BN) 11.67 10.56 78.77 79.04 (+0.27)

Pivot Corpus (PT) 9.84 6.63 85.99 87.06 (+1.07)

Telephone Conversation (TC) 10.01 9.49 65.99 66.13 (+0.14)

Weblogs (WB) 17.48 15.25 74.55 76.45 (+1.90)

Table 4.7: Evaluation of domain adaptation models further trained with structural loss on syntactic

parsing application. F1 scores are reported on the whole test set per domain. The initial reference

model was trained on WSJ section under NW on OntoNote v5.0. The structural loss training

improves reference models on all cases and more than +1 F1 score except BN & TC. The table

shows that learning with structural loss can be successfully applied to resolve performance

degradation on out-of-domain data.

Failure rate (%) F1

before after before after

Genre / Task SRL
Source domain (NW) 18.10 - 77.45 -

Broadcast Conversation (BC) 26.86 19.70 68.05 71.17 (+3.12)

Broadcast News (BN) 18.51 15.19 49.92 74.96 (+1.25)

Pivot Corpus (PT) 10.01 9.01 83.50 85.86 (+2.36)

Telephone Conversation (TC) 19.09 20.15 72.70 71.61 (-1.09)

Weblogs (WB) 20.32 17.57 76.17 78.73 (+2.56)

Table 4.8: Evaluation of domain adaptation on SRL using the semi-supervised learning approach.

F1 scores are reported on the whole test set per domain. The initial reference model was trained on

the NW section on OntoNote v5.0. Except TC, a telephone conversation section, semi-supervised

approach helps domain adaptation by giving more than +1 F1 score improvement. The table shows

that semi-supervised learning can be successfully applied to resolve performance degradation on

out-of-domain data.

62

4.4 Related Work

4.4.1 Learning with constraints

As discussed in the related work section 2.2, the most notable frameworks to learn with constraints

are Posterior Regularization (PR) (Ganchev et al., 2010) and Constrained-Driven Learning (CoDL)

(Chang et al., 2007, 2012) where both frameworks solves constrained EM formulation.

The previous methods explores the most credible outputs from unlabeled instances, using

constraint information in the E-step of EM, to learn from such explored output. In contrast, this

thesis is trying to evaluate how good or bad the the model is by inspecting model’s unconstrained

output similar to Reinforcement Learning. By learning to penalize constraint-violating outputs

the presented semi-supervised learning implants constraint function innately in the process.

In light of this difference, the proposed method brings one computational advantage: the

ability to use very general constraints, global or semi-Markov constraints, without exponential

complexity. As discussed in related work, running inference or sampling a sequence or from a

posterior distribution with global constraint leads to a computation of exponential complexity.

Thus, previous researches are typically too expensive to use with such general constraints, as

one would have to run the expensive sampling steps multiple times in the learning process.

Nonetheless, the proposed method does not suffer from this problem as the method evaluates on

the outcome of an unconstrained inference step which has the linear complexity, or quadratic if

we use Viterbi decoding. As an illustrative example, considering our SRL output with just length

7 and label space of 130, exponential complexity results in ∼ 1014 whereas linear and quadratic

complexities are around 103 and 106, respectively.

After our work in this chapter (Mehta et al., 2018), new line of works (Li et al., 2019; Nandwani

et al., 2019b; Li et al., 2020) appeared for learning with constraints by utilizing differentiable

constraint loss function. These works formulate the first-order constraints to a differentiable loss

function by defining soft logic (Novák, 1987; Gupta and Qi, 1991; Brocheler et al., 2012) over

probability distributions. Among them, Nandwani et al. (2019b) and Li et al. (2020) experimented

injecting hard constraints to SRL. Following our experiment on this chapter, Nandwani et al.

(2019a) reports similar improvement in F1 score from 77.19 to 78.72 on utilizing 10% of available

training set, whereas this chapter reports F1 score improvement from 78.56 to 79.34 for the same

setting. Li et al. (2020) focuses on different kind of constraints and shows improvement in low

resource settings, albeit marginal improvement on larger resource settings, over a RoBERTa model

(Liu et al., 2019).

63

4.4.2 Injecting syntactic constraints to SRL model

Early approaches for SRL (Pradhan et al., 2005; Koomen et al., 2005) constituted of cascaded

systems with four subtasks: pruning, argument identification, argument labeling, and inference.

Recent approaches (Zhou and Xu, 2015; He et al., 2017) proposed end-to-end systems for SRL

using deep recurrent or bi-LSTM-based architecture with no syntactic inputs, and have achieved

competitive results on English SRL. Peters et al. (2018c) proposed ELMo, a deep contextualized

word representation, and improved on He et al. (2017) by 3.2 F1-points. The baseline models (B1,

B10, B100) in this chapter are based on Peters et al. (2018c), and our experiments obtain similar

performance. Since the submission of Mehta et al. (2018), which this chapter is based on, the

performance of Peters et al. (2018c) for SRL has been surpassed by 0.9 (He et al., 2018) and 1.6

F1-points (Ouchi et al., 2018), respectively, by using a span-based model architecture. Recently, a

BERT-based (Devlin et al., 2019) model was also proposed (Shi and Lin, 2019) where BERT-small

performs on par with the state-of-the-art, and RoBERTa (Liu et al., 2019) and BERT-large add

about a +0.3 F1 increment to the state-of-the-art.

Even with the end-to-end learning, inference still remains a separate subtask and can be

formalized as a constrained optimization problem. To solve this problem ILP (Punyakanok et al.,

2008), the A*algorithm (He et al., 2017) and gradient-based inference (GBI of Chapter 3) were

employed. All of these works leveraged syntactic parses during inference and constraints were

never used during training unless used as a cascaded system.

To the best of our knowledge, this work is the first attempt towards semi-supervised learning

(SSL) for a span-based SRL model. Nonetheless, there has been some prior work in SSL for

dependency-based SRL systems (Fürstenau and Lapata, 2009; Deschacht and Moens, 2009; Croce

et al., 2010). Fürstenau and Lapata (2009) proposed to augment the dataset by finding similar

unlabeled sentences and annotate accordingly. While interesting, this augmentation technique

is hard to apply to span-based SRL, as it requires one to annotate the whole span. Deschacht

and Moens (2009) and Croce et al. (2010) proposed to leverage the relations between words

by learning a latent word distribution over the context, i.e. a language model. Our paper also

incorporates this idea by using ELMo, as it is trained via a language model objective.

Along with this chapter, there were two concurrent works (Swayamdipta et al., 2018; Strubell

et al., 2018) that tried to improve SRL by injecting prior knowledge of syntactic parsing. As

discussed in section 2.3, both models take an approach of multi-task learning by changing the

model structure and thus capturing the relation of the SRL and parsing in a soft manner. In contrast,

this chapter focuses on injecting an explicit relation between the two tasks, by augmenting the

training objective with loss that reflects a constraint, i.e. syntactic-inconsistency loss, in a model-

64

agnostic way without changing a model structure. In more detail, Swayamdipta et al. (2018) learns

SRL and constituency parsing together in multi-task fashion by sharing common parameters.

Strubell et al. (2018) uses dependency parse tree in order to guide attention mechanism in the

self-attention model. All three works have shown significant improvements while the results are

not directly comparable as each of them have different model architecture and evaluation set ups.

By using syntactic information, Mehta et al. (2018) improved +0.47 F1 score on top of 84.4 F1

score on CoNLL2012 using baseline model of Peters et al. (2018c) and Swayamdipta et al. (2018)

improved +0.8 F1 score on top of its semi-CRF’s 83.0 F1 score baseline without ELMo. Lastly,

Strubell et al. (2018) performs joint prediction of predicate and semantic-role labels and performs

83.12 F1 similar to its baseline (Tan et al., 2018) and better when dependency parse predictions

are provided on inference time 83.38 F1. All three models demonstrated that injection of syntactic

information to the SRL model is beneficial. However, among these three concurrent related works,

this chapter uniquely focused on semi-supervised learning, in a model-agnostic way, in pursuit of

improving low-resource settings.

4.5 Conclusions and Future Work

We presented a Syntactic-Inconsistency loss SI-loss to enforce SRL systems to produce outputs

that agree with the provided parse tree. Furthermore, leveraging the fact that SI-loss does not

require labeled data, we proposed a SSL formulation with joint objective constituting of SI-loss

and supervised loss together. We show the efficacy of the proposed approach on low resource

settings, +1.58, +0.78 F1 on 1%, 10% SRL-labeled data respectively, via further training on

top of pre-trained SOTA model. We further show the structured prediction can be used as a

complimentary tool and show performance gain of +3.67 and +2.1 F1 over pre-trained model

on 1% and 10% SRL-labeled data, respectively. Semi-supervised training from scratch and

examination of the semi-supervised setting on larger datasets remains as future work.

65

66

Chapter 5

Semi-Supervised Learning with
agreement constraint in multi-view models

In the course of this thesis, I have focused on a framework to enforce known output constraints.

The major benefit of the constraint-injection approach is that it does not require labeled data

and thus can help improve low-resource and domain-adaptation settings. However, it may be

often difficult to identify a meaningful constraint for the given task without being proficient at

it. Furthermore, the prior knowledge might require other types of labeled data or high-quality

models to provide such constraint. For example, we need annotated parse trees or high-quality

parser in order to apply the constraint we use for a SRL output and a parse tree. This chapter

focuses on a more general constraint that can be applicable to any sequence-tagging problems.

By solving sequence-tagging applications in a multi-view learning setup, I propose to apply

agreement constraint between the views in order to promote coherence. Similar techniques to

previous chapters are used in this chapter, and again similarly show significant improvements

on low-resource settings as well as achieving state-of-the-art performance for the high-resource

dependency parsing of Chinese corpus.

Multi-view learning makes use of diverse models arising from multiple sources of input or

different feature subsets for the same task. For example, a given natural language processing

task can combine evidence from models arising from character, morpheme, lexical, or phrasal

views. The most common strategy to use multi-view data, especially popular in the neural network

community, is to unify multiple representations into one unified vector through concatenation,

averaging, or pooling, and then build a single-view model on top of the unified representation. As

an alternative, we examine whether building one model per view and then unifying the different

models can lead to improvements, especially in low-resource scenarios. More specifically, taking

inspiration from Co-Training (Blum and Mitchell, 1998) methods, we propose a semi-supervised

67

learning approach based on multi-view models through consensus promotion, and investigate

whether this improves overall performance. To test the multi-view hypothesis, we use moderately

low-resource scenarios for nine languages and test the performance of the multi-task model

for part-of-speech tagging and dependency parsing. The proposed model shows significant

improvements across the test cases, with average gains of -0.9 to +9.3 in labeled attachment score

(LAS) for dependency parsing and gains of +2.2 to +7.8 universal POS-tagging score (UPOS) for

tagging across 9 languages on extremely-low resource setting. We also investigate the effect of

unlabeled data on the proposed model by varying the amount of training data and by applying

different domains of unlabeled data. The material presented in this chapter is based on Lim et al.

(2020)1.

5.1 Overview

Multi-view data consist of different manifestations of the same data, often in the form of different

features, and such data are abundant in real-world applications (Xu et al., 2013). Color and texture

information can be viewed as examples of multi-view data in image processing whereas character-,

word- level representations, stem, prefix, and suffix are examples of multi-view data in Natural

Language Processing (NLP).

The use of multi-view data has resulted in considerable success in various NLP problems.

Combining different word representations at the character, token, or sub-word levels has proven to

be helpful for dependency parsing (Botha et al., 2017; Andor et al., 2016), Part-of-Speech (POS)

tagging (Plank et al., 2016), and other NLP tasks.

Given multiple views, a simple but popular approach is to unify multiple representations

into a combined one through concatenation, averaging, or pooling. This approach is especially

popular in neural networks as it is very straightforward to concatenate multiple representations

without any modification of the model structure. All the aforementioned work also considered

this approach. However, is it the best usage of multi-view data? A simple input concatenation can

lead to an overfitting problem as the model might ignore the specific statistical properties of each

view (Zhao et al., 2017).

Recently, META-BILSTM (Bohnet et al., 2018) was proposed to extend the naive solution

of concatenating input representations in the context of POS tagging, and it showed superior

performance compared to simple view concatenation on input representations. META-BILSTM

builds a single-view model of each view (lower layer) and concatenates the series of single-view-

1For Lim et al. (2020), Lee and Lim are the co-first authors with equal contributions. The technical ideas and
experiment designs were formulated by Lee and implementations and evaluations were conducted by Lim.

68

model outputs to form an input to the meta layer, as shown in Figure 5.2. All the components of

META-BILSTM (per-view models and meta layer) are trained jointly, as expressed in Eq. (5.2).

In this chapter, we first examine whether META-BILSTM can be beneficial in the context of

more complex tasks, namely multi-task learning in POS tagging and dependency parsing. The

study then proposes CO-META, a semi-supervised approach, to improve each single-view model

through the consensus promotion of the multiple single-view models on unlabeled data. The

proposed CO-META is motivated by Co-Training (Blum and Mitchell, 1998), a classic approach

to multi-view learning, which enables exploration of unlabeled data and is known to be helpful in

low-resource settings. Overall, Co-Training and many of its variants improve the performance of

multi-view models by maximizing agreement between the multi-view models on unlabeled data,

and thus can improve performance in low-resource settings.

Thus, this study raises the question of whether classical Co-Training style approaches can

further improve the META-BILSTM model in low-resource settings. Specifically, we explore two

questions: (1) can models from different views learn from each other on unlabeled data? Moreover,

(2) can this help the performance of low-resource models? We study whether improving each

multi-view model by promoting consensus in a Semi-Supervised Learning (SSL) fashion can lead

to learning better meta models in the context of joint tagging and dependency parsing.

Once we apply META-BILSTM, we obtain several parsing models trained by each view. Then

the main challenge that arises with regard to our SSL approach (CO-META) is deciding what and

how much a single view should learn from other views. We suggest three different methods for

determining what to learn from each other and named them as Sequence-based, Token-based

voting, and the Ensemble-based approach. Then, to determine how much each view should learn

from the determined example, we introduce an agreement score g(·), which serves as example

weighting function, in section 5.2.3.

We employ META-BILSTM and our semi-supervised methods on top of the graph-based

parser with a bi-affine classifier proposed by Dozat et al. (2017), and investigate the effectiveness

of our approach on both low- and high-resource scenario experiment setups using the Universal

Dependency 2.3 dataset (Zeman et al., 2018a). CO-META, the proposed model shows consistent

improvement across the test cases, with an average of -0.9 to +9.3 Labeled Attachment Score

(LAS) gains in low-resource (50 labeled instances) and +0.2 to +1.0 LAS gains in high-resource

settings, respectively. The study also investigates whether the proposed method depends on

unlabeled data by changing the amount and varying the domains of unlabeled data, and its effect

on the proposed model. In summary, our contributions to joint parsing are as follows:

1. Proposal of a new formulation CO-META that leverages consensus promotion on top of a

META-BILSTM model.

69

Figure 5.1: The structure of our baseline model: a multi-task POS tagger and dependency parser.

2. Analysis of the relation of each multi-view model performance to that of the meta model.

3. Exploring different semi-supervised scenarios, where the amount of unlabeled data and the

domains of unlabeled data are varying.

4. Generalization of META-BILSTM and CO-META by expanding an additional-view model

on top of the existing model using external word embedding.

5.2 Proposed Approach

This subsection details the model structures and loss functions that are used throughout this

chapter. We first consider the baseline model, in section 5.2.1, introduced by Lim et al. (2018) and

extend it to a multi-view model structure following Bohnet et al. (2018) in section 5.2.2. Then, in

section 5.2.3, we present a new semi-supervised learning (SSL) approach. We name the baseline

model as BASELINE, the extended multi-view model as META-BASE, and the SSL approach as

CO-META.

5.2.1 BASELINE model

As it is known that using information from multiple views yield better performance, most SOTA

multi-task parsers use both word-level and character-level views to get a lexical embedding

v
(wc)
1:n from a sequence of n words w1:n. Most of these approaches simply concatenate the

word embedding v(w)
i and the character-level embedding v(c)

i of wi to form v
(wc)
i . For example,

70

Figure 5.1 shows a multi-task parsing architecture for low-resource scenarios proposed by Lim

et al. (2018) which obtains near state-of-the-art results on the CoNLL 2018 shared task (Zeman

et al., 2018b)2. Specifically, the parser transforms the sequence of shared lexical representation

v
(wc)
i to a context-sensitive vector contextualized by BiLSTM with a hidden layer r0 as:

h
(pos)
i = BiLSTM(r

(pos)
0 , (v

(wc)
1 , .., v(wc)

n))i

h
(dep)
i = BiLSTM(r

(dep)
0 , (v

(wc)
1 , .., v(wc)

n))i

The system uses vector h(pos)
i to predict POS with a Multi-layer Perceptron (MLP) classifier,

and h(dep)
i to predict Head and Dep with a bi-affine classifier (Dozat and Manning, 2016). During

training, it learns the parameters of the network θ that maximize the probability P (yj|xj, θ) from

the training set T based on the conditional negative log-likelihood loss LBASELINE:

LBASELINE(θ) =
∑

(xj ,yj)∈T

− logP (yj|xj, θ) (5.1)

where (xj, yj) ∈ T denotes an element from the training set T , y is a set of gold labels (lPOS ,

lHead, lDep). The sequence of predicted labels ŷ is obtained by simply taking argmax as follows:

ŷ = arg max
y
P (y|xj, θ).

The model of Lim et al. is subsequently used as the BASELINE model.

5.2.2 Supervised Learning on multi-view data (META-BASE)

Bohnet et al. (2018) increased the performance of tagger using META-BILSTM in the multi-view

setting. In order to examine whether a similar approach would help the joint model of POS-tagging

and dependency parsing, we propose the meta structure shown in Figure 5.2 (B). We use Lim

et al. (2018)’s multi-task structure of tagging and parsing as our default structure for a single-view

model (e.g. for M (word), M (char)) and denote the overall system as META-BASE, as it serves as

an additional baseline for the semi-supervised multi-view learning model (CO-META).

We define a model M vi for each view vi ∈ V , where V is the set of all views. For example,

Figure 5.2 contains different views for word, character, and meta, and overall view V is defined

as V = {word,char,meta}. Each model M vi consists of a BiLSTMvi that contextualizes its view

with a representation hvii for word w, an MLP classifier to predict the POS tag, and a bi-affine

classifier to predict parsing outputs Head and Dep. The overall concatenation of the representation

2The parser achieved the 2nd and 4th ranks with regard to UAS and LAS, respectively, out of 27 teams in the
CoNLL 2018 shared task.

71

supervised

Unsupervised
Coherence promotion

Unlabeled corpus

View of Meta

View of Word
View of Character

Labeled corpus

Embedding (Word)

BiLSTM(Word)

BILSTM(Meta)

Embedding (Char)

Concatenation

Tagger, Parser Tagger, Parser

Tagger, Parser

BiLSTM(Char)

supervised

supervised

Embedding
(word, char)

BiLSTM + MLP

Tagger, Parser

Labeled
corpus

supervised

supervised

Unsupervised
Coherence promotion

Unlabeled corpus

View of Meta

View of Word
View of Character

Labeled corpus

Embedding (Word)

BiLSTM(Word)

BILSTM(Meta)

Embedding (Char)

Concatenation

Tagger, Parser Tagger, Parser

Tagger, Parser

BiLSTM(Char)

supervised

supervised

Embedding
(word, char)

BiLSTM + MLP

Tagger, Parser

Labeled
corpus

supervised

(A) BASELINE (B) META-BASE (C) CO-META

(supervised loss only) (with unsupervised loss)

Figure 5.2: These figures describe the overall structures of (A) BASELINE, (B) META-BASE,

and (C) CO-META. The BASELINE model in (A) uses the embeddings from multiple view in a

concatenated manner as an single input to a single model. In contrast, (B) META-BASE and (C)

CO-META maintain separate BiLSTM layers for each view and then builds META-BILSTM on

top of them. Both META-BASE and CO-META learn with supervised loss (LMETA-BASE), however,

CO-META learns with an additional unsupervised loss g using an unlabeled corpus. While the

figures describe a simple case where there are only two views (word, character), the model can

easily expand with extra views as shown in our experiment with language-model (LM) embeddings

(Table 5.6 and 5.7). In order to include language-model embeddings such as ELMo and BERT

in our multi-view set up, we simply increase the number of views used in lower layers (word,

character, LM).

72

vectors hvii from each view, for all vi ∈ V , becomes an input to the M (meta). For example, in

Figure 5.2, Mword and M char consume the word- and character-level embedding, respectively,

and Mmeta consumes the concatenation of two models’ contextualized outputs as hwc where

hwci =[hwordi ;hchari]. Each M vi is parameterized by the network parameter θvi, and the overall

network parameter θ is defined as the union of the network parameters of all views, that is,

θ = ∪vi∈V θvi.
During supervised learning of a multi-view model using META-BILSTM, we train θ to

maximize the probability P (yj|xj, θ) =
∑

vi∈V − logP (yj|xj, θvi) which is simply the summation

of the standard cross entropy loss across the views (vi ∈ V) for the input and labeled instance

pair (xj, yj) in the training set T . Thus, our multi-view supervised model is trained by optimizing

over the following supervised loss:

LMETA-BASE(θ) =
∑

(xj ,yj)∈T

∑
vi∈V

− logP (yj|xj, θvi). (5.2)

Observing Figure 5.2 (B), note that θvi is updated during optimization of both its own loss,

− logP (yj|xj, θvi), and the loss for META-BILSTM, − logP (yj|xj, θmeta).

5.2.3 CO-META

Coherence promotion. CO-META stands for using a semi-supervised learning approach which

is inspired from Co-Training, on the meta structure. The main idea of Co-Training (Blum and

Mitchell, 1998) is to augment training data with each model’s confident prediction on unlabeled

data so that each model can learn from other models’ predictions. While not exactly following the

Co-Train approach, we adopt the idea of one model teaching other models on unlabeled data.

We propose to promote coherence across multi-view models on the fly, by examining how

similar outputs are across the views before each update. To do so we first extract the best possible

result as ŷ∗ on a given instance x in unlabeled set U . We then impose an agreement constraint

between ŷ∗ and each view(vi)’s output ŷvi through the use of an agreement score g(ŷ∗, ŷvi). The

resulting unsupervised loss LCoherence is as follows:

LCoherence(θ) =
∑

vi∈V \{meta}

∑
x∈U

−g(ŷ∗, ŷvi) logP (ŷ∗|x, θvi). (5.3)

The agreement score g(ŷ∗, ŷvi) measures how much agreement the two arguments ŷ∗, ŷvi have,

g(ŷvi, ŷvj) =
n∑
t=1

I(yvit , y
vj
t)

n
, (5.4)

73

where I(·) is a simple indicator function, n stands for the length of the sequence y, and yt is

the value of y at position t. Note that similar to Chapter 3 and 4, the constraint score function

(agreement score) is a normalized count ranging 0 to 1, where 1 indicates perfect agreement. By

optimizing to reward high-agreement cases in Eq. (5.3), we wish to promote the coherence across

the views.

Another interpretation of LCoherence in Eq. (5.3) is that we are assessing how much we can

trust, when learning, the output ŷ∗. In the equation, the value of agreement score, g(ŷ∗, ŷvi), is

acting as a confidence weight one should have in updating model θvi with instance ŷ∗. If the

prediction ŷvi has a similar structure to the extracted ŷ∗, then the vi-view model is aligned with

the extracted output and thus can confidently learn from ŷ∗.

The idea of learning from a model’s own prediction was explored by Nigam and Ghani (2000)

in the context of self-training but without the agreement score. In our experiments, learning ŷ∗

without an agreement score was almost always worse than learning without it, often resulting

in a negative effect. We present an ablation study on agreement score for the Chinese corpus in

Figure 5.4.

Computing ŷ∗. We consider three methods to obtain ŷ∗: sequence-voting, token-voting, and

ensemble-based computation.

• Sequence-voting selects the entire prediction of one model in one view vi∗, as ŷ∗ = ŷvi
∗ ,

which has the highest likelihood for its prediction score, i.e. vi∗ = argmaxvi∈V P (ŷvi|x, θvi).

In the sequence-voting approach, the view vi∗ only teaches other views and does not teach

itself.

• Token-voting selects the most popular label among the three models for each word wm.

When there is no agreement between the output of each model, we select the prediction of

M (meta).

• Ensemble-based selects ŷ∗ using an ensemble method, that is,

ŷ∗ = Softmax(
∑

vi∈V P (ŷvi|x, θvi)).

5.2.4 Joint Semi-Supervised Learning

While the labeled data T is small in low-resource scenarios, we often have larger unlabeled data U .

We thus need to leverage the supervised model Eq.(2) using unlabeled data. Since our LCoherence

only requires a prediction result ŷ, we can train both T and U as a joint loss (LSSL) as follows:

74

LSSL(θ) = LMETA-BASE(θ) + LCoherence(θ)

=
∑

(xj ,yj)∈T

∑
vi∈V

− logP (yj|xj, θvi) (5.5)

+
∑

vi∈V \{meta}

∑
xk∈U

−g(ŷ∗k, ŷ
vi
k) logP (ŷ∗k|xk, θvi)

where T ⊆ U might apply to U , T when using T without labels. In what follows, let us call

CO-META as the training process with LSSL on the meta-LSTM structure.

5.3 Experiments

5.3.1 Data Sets

We evaluate CO-META on the Universal Dependency 2.3 test set3 for nine languages, following the

criteria from de Lhoneux et al. (2017), with regard to typological variety, geographical distance,

and the quality of the treebanks. Our selected testing languages are Ancient Greek, Chinese,

Czech, English, Finnish, Greek, Hebrew, Kazakh, and Tamil. During training, we use pre-trained

word embeddings4 and unlabeled data5 from the CoNLL 2018 shared task to initialize our word

embedding v(w) and the SSL presented in the previous section. When we employ Language

Models, we use pretrained models provided by Lim et al. (2018) for ELMo and Google6 for BERT.

We use the gold segmentation result for the training and test data.

5.3.2 Evaluation Metrics

There are two major evaluation metrics in dependency parsing. The Unlabeled Attachment Score

(UAS) is used to evaluate the structure of a dependency graph. It measures to what extent the

structure of the parsed tree is correct, without taking into account the labels on the different arcs

of the tree. The Labeled Attachment Score (LAS) is the same as UAS, but takes into account

dependency labels.

As for POS tagging, we report universal POS-tagging score (UPOS) score which measures

the percentage of words that are assigned to the correct POS label. We evaluate our tagger and

3http://hdl.handle.net/11234/1-2895
4http://hdl.handle.net/11234/1-1989
5https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1989#
6https://github.com/google-research/bert

75

Table 5.1: Hyperparameter setup for experiments
Component value

v(c) (char) Dim. 100

v(w) (word) Dim. 100

v(elmo) Dim. 1024

v(bert) (multi) Dim. 768

v(bert) (base) Dim. 200

h(word) (word) output Dim. 400

h(char) (char) output Dim. 400

No. BiLSTM layers 2

MLP output (arc) Dim. 300

MLP output (dep) Dim. 300

MLP output (pos) Dim. 100

Dropout 0.3

Learning rate 0.002

Learning rate (BERT) 0.00001

β1, β2 0.9, 0.99

Epoch 1,000

Batch size (low-resource: 50, 100 labels.) 2

Batch size (high-resource: thousands of labels.) 32

Batch size (high-resource+Language model) 10

Gradient clipping 5.0

parser based on the official evaluation metric provided by the CoNLL 2018 shared task7.

5.3.3 Experimental Setup

To test the low-resource scenario following Guo et al. (2016), we sample the first 50 instances

(Table 5.2) or 100 instances (Table 5.3) from the labeled data to form the training set. In addition,

we conduct an ablation study to examine the effect of the proposed semi-supervised approach

in various conditions: by increasing training set size with fixed unlabeled data for Chinese

(Figure 5.3) and by varying the unlabeled dataset type and size when the training set is fixed for

Greek (Table 5.5). The hyperparameter setup related to layers of each view and meta are presented

7https://universaldependencies.org/conll18/evaluation.html

76

in Table 5.1. For simplicity and for the sake of comparison, we set the respective hyperparameters

of each view’s model and meta-layer to be identical to that of BASELINE model. We use a batch

size of 2 (low-resource with 50, 100 instances of training set), 32 (high-resource training set with

few thousands of training instances), and 10 (high-resource + BERT) respectively for different

resource sizes. In order to reflect the joint loss function Eq. (5.5) we alternate supervised loss and

unsupervised loss in a weighted manner varying from a 8-to-1 ratio to a 25-to-1 ratio. We evaluate

our models on the test sets, and report the average of the three best performing results, trained

with different initial seeds, within 1,000 epochs. All the reported scores are based on the scores

from the meta-layer output, unless otherwise stated.

5.3.4 Experiment goals

Our study has several goals: (1) to study the impact of multi-view based learning, META-BASE

CO-META, on tagging and parsing in low-resource scenarios, (2) to check whether CO-META can

increase the consensus between single-view models and the effect of this promoted consensus on

the performance of each-view model and on the overall META-BILSTM system, (3) to study the

effect of unlabeled data on CO-META, and finally (4) to investigate to what extent the efficacy of

CO-META remains when the approach is applied to high-resource scenarios.

5.3.5 Results in Low-Resource Settings

Impact of Multi-View Learning. Table 5.2 shows the experimental results of M (meta), given

50 training instances, on the test data of each language. We see that the proposed Co-Training

method CO-META shows average performance gains of -0.9 to +9.3 LAS points in parsing and

+1.8 to 7.8 UPOS points in tagging compared to BASELINE.

Note that the proposed META-BASE approach also shows a LAS improvement of -0.7 to +6.5

and UPOS improvement of +1.6 to +5.4 over BASELINE as well. Breaking down the contribution

of improvements, CO-META shows -0.3 to +2.8 LAS improvement and -1.3 to +2.4 UPOS

improvement over META-BASE, and these improvements are comparable to the improvements

of META-BASE over BASELINE. The average LAS score improvement of ENSEMBLE-based

CO-META over META-BASE is +1.3 and the improvement from BASELINE to META-BASE is

+2.8.

The experiment with 100 labeled instances (Figure 5.3) also shows that improvement of

CO-META from META-BASE and META-BASE from BASELINE are comparable. The average

improvement of LAS score ENSEMBLE-based CO-META over META-BASE is +1.4 and the im-

provement from BASELINE to META-BASE is +1.8 LAS score. We also observe that CO-META

77

Table 5.2: LAS and UPOS scores of M (meta) model output on the test set using 50 training

sentences and unlabeled sentences based using CO-META, META-BASE, and our BASELINE

model Lim et al. (2018). We report META-BASE, which does not use any unlabeled data, in

order to decompose the performance gains into the gains due to META-BASE (supervised) and

CO-META (semi-supervised).
CO-META

META-BASE BASELINETOKEN SEQUENCE
ENSEMBLE

corpus number of VOTING VOTING

name unlabeled LAS POS LAS POS LAS POS LAS POS LAS POS

cs_cac
23478 47.4 79.4 47.4 79.7 48.7 81.4 45.9 79.0 39.4 74.6

(Czech)

fi_ftb
14981 21.7 43.2 22.0 44.7 21.8 43.5 21.9 44.6 22.6 39.2

(Finnish)

en_ewt
12543 45.1 75.7 46.3 76.7 46.5 76.3 45.4 75.2 42.8 71.1

(English)

grc_perseus
11460 30.8 70.1 31.7 70.9 31.3 70.7 30.9 70.4 29.5 65.8

(Ancient Greek)

he_htb
5240 47.9 76.9 47.8 77.2 48.4 77.4 47.6 76.7 45.1 75.2

(Hebrew)

zh_gsd
3997 36.1 70.7 35.1 70.8 36.9 71.1 35.1 70.6 34.8 68.7

(Chinese)

el_bdt
1162 60.0 84.3 60.6 83.2 60.5 84.2 57.8 82.6 51.7 80.0

(Greek)

ta_ttb
400 38.1 69.1 39.0 69.7 40.0 69.3 38.3 67.3 34.0 61.9

(Tamil)

kk_ktb8

12000 27.6 56.9 27.9 57.0 28.7 57.1 27.8 57.7 26.2 53.0
(Kazakh)

Average - 39.4 69.6 39.8 70.0 40.3 70.1 39.0 69.3 36.2 65.5

78

Table 5.3: LAS and UPOS scores of M (meta) model on the test set using 100 training sentences.

We see that CO-META improves over BASELINE for Finnish, unlike the results in Table 5.2 (50

sentences used)
CO-META

META-BASE BASELINETOKEN SEQUENCE
ENSEMBLE

corpus number of VOTING VOTING

name unlabeled LAS POS LAS POS LAS POS LAS POS LAS POS

cs_cac
23478 55.0 83.6 54.9 82.9 56.3 84.6 54.1 84.0 50.8 81.6

(Czech)

fi_ftb
14981 28.5 50.7 29.0 50.9 29.2 51.1 29.0 50.5 27.6 49.7

(Finnish)

en_ewt
12543 56.7 81.3 57.9 82.5 57.9 82.0 56.5 82.3 55.1 80.6

(English)

grc_perseus
11460 36.5 77.1 38.1 78.0 37.0 77.8 36.0 77.4 34.9 76.2

(Ancient Greek)

zh_gsd
3997 44.5 76.5 43.5 76.2 45.3 76.9 42.9 76.2 41.0 74.1

(Chinese)

el_bdt
1162 68.5 88.7 69.1 88.2 69.0 88.5 67.4 87.4 66.2 86.7

(Greek)

Average - 48.3 76.3 48.8 76.5 49.1 76.8 47.7 76.3 45.9 74.8

improves over BASELINE for Finnish, unlike the experiment with 50 labeled instances in Table 5.2.

Comparison of CO-META Variants. When we compare the three proposed Co-Training ap-

proaches, one can see that the ENSEMBLE approach seems to work better than SEQUENCE VOTING,

and TOKEN VOTING is always the worst. Because the best-voted labels for each token are not

guaranteed to get an optimal structure over the parse tree at the sentence-level, the TOKEN-VOTING

model has a relatively high chance of learning from an inconsistent graph, e.g. a dependency

parse with multiple roots and cycles.

Interaction among the layers? A more detailed per-layer analysis of the LAS scores is avail-

able in Table 5.4 for the Greek corpus. Among the three views, CHAR always outperforms WORD,

and all three views improve after using CO-META: there are improvements of 1.6-1.7 LAS points

for META, 1.5-1.7 for CHAR and 3.8-4.2 for WORD.

79

Table 5.4: LAS on Greek(el_bdt) corpus for each model, with the average agreement score g(ŷ)

comparing M (word) and M (char) over the entire test set using 100 training sentences.
Method WORD CHAR META AGREEMENT SCORE

SEQUENCE-VOTING 61.8 66.7 69.1 0.871

ENSEMBLE 61.4 66.9 69.0 0.879
WITHOUT 57.6 65.2 67.4 0.799

Table 5.5: Scores of CO-META with the ENSEMBLE method on different domains of unlabeled

data with 100 training sentences.
Labeled Unlabeled size LAS UAS POS

el_bdt el_bdt 1162 69.0 75.6 88.5

(Greek) wikipedia 12000 68.7 75.1 88.7
crawl 12000 68.3 74.8 88.4

zh_gsd zh_gsd 3997 45.3 57.9 76.9

(Chinese) wikipedia 12000 46.3 59.1 77.6

crawl 12000 46.1 59.0 77.8

We make three interesting observations. First, we note that the model with lower performance,

namely, the WORD view in our example, always benefits the most from other better-performing

views. Second, the evolution of low-performing views towards better results has a positive effect

on the META view, and thus on the overall performance. While the score of CHAR increases

by 1.5, META increases by 1.7. If the lower-performing-view model was not helping, then the

improvement would be upper-bounded by the performance gain of the higher-performing model.

Note that we do not update the META layer θ(meta) when using CO-META, and so the gains result

from the improvements of the single-view layers. Lastly, we can observe the AGREEMENT

SCOREs between word and char views on the last column increase when we apply CO-META.

As the higher AGREEMENT SCORE denotes that models predict a similar tree structure, we can

confirm that CO-META indeed promotes consensus between the views.

Sensitivity to the Domain of the Unlabeled Set. In Table 5.5, we investigated a more realistic

scenario for our semi-supervised approach for two languages, Chinese and Greek, by using

out-of-domain data: Wikipedia and a crawled corpus. In the case of Chinese, the crawled out-

of-domain corpus shows better results than the in-domain corpus for both ENTROPY-based and

ENSEMBLE-based CO-META, by up to 1.1 UAS and 0.9 POS points. In contrast, for Greek, the

in-domain corpus (el_bdt) shows a better result than the out-of-domain corpus even though the

80

size of el_bdt is only about 13% of the others. We conjecture that as the Chinese has a large

character set, the exposure to diverse characters helps learning regardless of the domain.

Effect of Training Size on Performance. Table 5.2 shows positive results for CO-META given

fixed size training data. However, would CO-META be useful even with extremely low resource

scenarios (<50 sentences)?, or in a more favorable scenario, when more resources are available

for training (e.g. >1000 sentences)? To answer these questions, we conducted an experiment

using the zh_gsd (Chinese) corpus with training sets of different sizes, but with a fixed set of 12k

unlabeled data. The results are visible in Figure 5.3 (A,B).

Figure 5.3(A) shows our results for the lower resource scenario (with less than 50 sentences for

training). CO-META outperforms META-BASE and BASELINE, except when only five sentences

are used for training. We conjecture that this result is attributable to the fact that too little

vocabulary is used to allow meaningful generalization. A similar behavior was observed for

fi_ftb in Table 5.2: in this experiment, there are only 241 tokens available for fi_ftb, whereas

other languages had on average of 1388 tokens. However, as observed in Figure 5.3, once we

expand the labeled instances (>20 sentences), CO-META and META-BASE always outperform

BASELINE, both in lower (3A) and higher resource (3B) settings. Also note that CO-META always

outperforms META-BASE, including when one only has 5 labeled instances for training.

We can refine our analysis by examining the different layers of META-BASE and CO-META

that appear on Figure 5.3 (A-1). META-BASE is detailed on Figure 5.3 (C-2) and CO-META on

Figure 5.3 (C-1). In most cases, META view stays close to the highest performing view (the

WORD layer for most cases). One interesting fact is that the WORD- as well as the meta- layers of

META models (both META-BASE and CO-META) outperform the BASELINE which is built on a

combined view.

The biggest contrast between CO-META and META-BASE is the gap between the performances

of the WORD and the CHAR layers. A closer look at META-BASE(C-2) seems to indicate that the

performance of the META layer cannot differ too much from the lower-performing layer (CHAR

in our case). When the gap between WORD and CHAR becomes too large (>5 points), then the

performance gain of the META layer is parallel to that of the CHAR layer for training set size of

10–50 even when the WORD layer makes large performance gains. In contrast, the CO-META’s

META layer from 3(C-1) shows more stable performance, as the gap between CHAR and WORD is

minimal as the two layers learn from each other.

To summarize from Table 5.2 and Figure 5.3, the proposed SSL approach is always beneficial

for the META-BILSTM structure when comparing the LAS scores between CO-META and META-

BASE. However, the META-BILSTM structure itself might not benefit when too few tokens exist

81

20 40 60 80 100

40

50

60

70

UP
OS

 sc
or

e

(A-1) UPOS Scores in low-resource

Co-meta
meta-base
baseline

20 40 60 80 100

10

20

30

40

LA
S

sc
or

e

(A-2) LAS Scores in low-resource

Co-meta
meta-base
baseline

500 1000 1500 2000 2500 3000 3500 4000
88

90

92

94

UP
OS

 sc
or

e

(B-1) UPOS Scores in high-resource

Co-meta
meta-base
baseline

500 1000 1500 2000 2500 3000 3500 4000

65

70

75

80

LA
S

sc
or

e

(B-2) LAS Scores in high-resource

Co-meta
meta-base
baseline

20 40 60 80 100

40

50

60

70

UP
OS

 sc
or

e

(C-1) UPOS Scores of Co-meta

meta
word
char

20 40 60 80 100

30

40

50

60

70

UP
OS

 sc
or

e

(C-2) UPOS Scores of meta-base

meta
word
char

Figure 5.3: Evaluation results for Chinese (zh_gsd) on various sizes of the training set (5, 10,

20, 50, 100, 500, 1k, 2k, 3k, 4k) together with the fixed size of 12k unlabeled sentences. The test

results show the effect of varying training set size, while the unlabeled set size is fixed, on the

ENSEMBLE-based CO-META.

82

Number of unlabeled sentences

LA
S

sc
or

e

35.0

35.5

36.0

36.5

37.0

0 10000 20000 30000

with agreement score without agreement score

Figure 5.4: Evaluation results for Chinese (zh_gsd) based on different sizes of the unlabeled set

and proposed models. We apply ENSEMBLE-based CO-META with the fixed size of 50 training

sentences while varying the unlabeled set size (0, 500, 1000, 5000, . . . , 30000). Except the case

of using 500 unlabeled set, in all seven cases, CO-META preformed better.

in the training set. In general, we hypothesize that for META-BILSTM structure to be useful, the

training set should consist of more than 300 tokens (more than 20 sentences).

Effect of agreement score. Lastly, we also ran an ablation study (Figure 5.4) to examine the

effect of the agreement score on Chinese corpus (zh_gsd). To compare to the current setup

LSSL, where the agreement score is used as a weight, we tried running CO-META experiments

without agreement scores by setting them all to 1. The train data was fixed with 50 instances and

unlabeled set size varied. With this configuration, we find that, the performance is always worse

than CO-META, and thus we conclude that the proposed agreement score plays a major role in

stabilizing the Co-Train approach.

5.3.6 Results in High-Resource Settings

Although the lack of annotated resources for many languages has given rise to low-resource

approaches, several languages exist with plenty of resources. We thus need to examine whether

our approach is also effective in more favorable settings, when large scale resources are available.

A comprehensive overview is shown in Table 5.6, which compares different systems using no

language model (first part of the table) and using ELMo (Peters et al., 2018a) or BERT (Devlin

et al., 2019) for English corpus (en_ewt). We conduct similar experiment for Chinese corpus

83

Table 5.6: LAS for the English (en_ewt) corpus for each model, with the external language models

with the entire training set which has 12,543 labeled sentences.
Model LM LAS UAS POS

UDPIPE (Kondratyuk, 2019) - 86.97 89.63 96.29

BASELINE (Lim et al., 2018) - 86.82 89.63 96.31
METABASE - 86.95 89.61 96.19

CO-META - 87.01 89.68 96.17

BASELINE (Lim et al., 2018) ELMo 88.14 91.07 96.83

METABASE ELMo 88.28 91.19 96.90

CO-META ELMo 88.25 91.19 96.84

UDIFY (Kondratyuk, 2019) BERT-MULTI 88.50 90.96 96.21

UUPARSER (Kulmizev et al., 2019) BERT-MULTI 87.80 - -

BASELINE BERT-MULTI 89.34 91.70 96.66

METABASE BERT-MULTI 89.49 92.01 96.75

CO-META BERT-MULTI 89.52 91.99 96.80

(zh_gsd) as well and present it in Table 5.7.

Table 5.6 and 5.7 includes a comparison of our results using the approach presented in this

chapter with four state-of-the-art systems. The first system is BASELINE (introduced in section

5.2.1), which obtained the best LAS measure for English in the 2018 CoNLL shared task. The

second is UDPIPE (Straka, 2018) which was one of the best performing systems during the 2018

CoNLL shared task (best MLAS score, that combines tagging and parsing, and 2nd for the average

LAS score). UDPIPE uses a multi-task learning approach with a loosely-joint LSTM layer between

tagger and parser. The third system is UDIFY (Kondratyuk, 2019) (derived from UDPIPE), where

the LSTM layer is replaced with BERT embedding, which is in turn fine-tuned during training.

The fourth system is UUPARSER (Kulmizev et al., 2019) wherein concatenated word, character

and BERT embeddings serve as an input, i.g., hi =[v(wc);v(bert)].

Effect of CO-META On High-Resource Settings without LMs. By improving our baseline

of our meta-LSTM and SSL approaches, we observe a slight improvement of up to 0.19 and 0.04

LAS points against the BASELINE and UDPIPE, respectively, for English corpus in Table 5.6. In

contrast, we find that both META-BASE and CO-META slightly underperform the BASELINE in

tagging, is surprising. One possible reason might be that there is enough data to get accurate

results using a supervised learning approach while SSL suffers from unexpected surface sequences.

Another evidence of this is that SSL did not bring further improvement when using more than

84

Table 5.7: LAS for the Chinese (zh_gsd) corpus for each model, with the BERT-Multilingual

embedding using the entire training set. We observe much higher improvements than for English

showed (see Table 5.6), probably because zh_gsd has a relatively small training set (3,997) and

larger character sets than the training set (12,543) of English (en_ewt) corpus.
Model LM LAS UAS POS

UDPIPE - 80.50 84.64 94.88
BASELINE - 79.70 84.28 94.41

METABASE - 80.32 84.58 94.72

CO-META - 80.71 84.99 94.81

UDIFY BERT-MULTI 83.75 87.93 95.35

UUPARSER BERT-MULTI 83.7 - -

METABASE BERT-MULTI 83.90 88.07 96.07
CO-META BERT-MULTI 84.21 88.39 96.07

10,000 training sentences. In contrast, Chinese corpus in Table 5.7, for which we had a relatively

small training set (3,997), is positively affected by SSL, with a gain of up to 0.21 LAS points

compared to UDPIPE, and 1.01 points compared to the BASELINE. We assume that the main

reason for this is the character set. Languages with a bigger character set size and little training

data gain more benefit from SSL.

Effect of CO-META On High-Resource Settings with LMs. While we train our model with

a LM, we concatenate the last layer of the LM embedding with the input of the BiLSTM (meta)

presented in the previous section. Finally, the input of our meta model consists of three different

contextualized features as [h(word)
i ;h(char)

i ;v(lm)
i].

On average, adding a LM provides excellent results for both dependency parsing and POS

tagging outperforming cases without LMs by large margins, up to 1.24 LAS point for ELMo

and 2.51 LAS point for BERT for English in Table 5.6, and up to 3.51 LAS point for BERT for

Chinese in Table 5.7. Furthermore, our parser with CO-META globally shows better results than

the state-of-the-art parsers that use ELMo (Lim et al., 2018) and the BERT-Multilingual model

(Kondratyuk, 2019). However, it should be noted that the UDIFY model used by Kondratyuk

(2019) (which includes BERT-Multilingual as a LM) was first trained with 75 different languages

using a Universal Dependency corpora and then tuned for English, and it is not clear how this

training process affects the performance. Thus, we add the results of UUPARSER and BASELINE

with BERT which fine-tune on only one language and still found that CO-META+BERT-MULTI

85

shows better performance.

In this experiment, we generalized CO-META by adding an additional view: LM embedding.

This version of CO-META can, surprisingly, improve by more than 1–1.7 (English) and around

1.5 (Chinese) LAS points compared to competing models even in a high-resource+LM setting.

Note that we obtain the state-of-the-art performance for Chinese corpus with CO-META.

5.4 Related Work

5.4.1 Dependency Parsing with Multi-Task Structure

Dependency parsing is an essential component of many NLP tools because of their ability to

capture potentially complex relational information in a sentence. Formally, the goal of the

dependency parsing is to produce tree structures for a sentence x = (w1, w2 ...wn) following a

provided dependency grammar (De Marneffe et al., 2006; de Marneffe and Manning, 2008; Nivre

et al., 2016). In general, a syntactic dependency tree of a sentence consists of the dependency

arc, from modifier, wm, to the Head, wh, and the dependency relation label on the arc, Dep, that

defines the relation between wm and wh. Dependency parsing is widely used for NLP applications

such as named entity recognition (Kazama and Torisawa, 2008), discourse understanding (Sagae,

2009), and information extraction (Culotta and Sorensen, 2004; Fares et al., 2018).

Recent breakthroughs in multi-task learning have made it possible to effectively perform

different tasks with the same model. The multi-task approach enriches context-sensitive feature

representations by learning different tasks using shared parameters (Hashimoto et al., 2016). In

NLP, this approach has been widely used to learn joint models performing tagging and parsing

simultaneously, and all state-of-the-art (SOTA) models now use a multi-task structure. In general,

given an input sentence x and a set of gold labels y = (l1, l2...ln), where each li consists of labels

for tagging and parsing, the goal of the multi-task structure is to train a joint model that can

provide simultaneously a POS tagger and a dependency parser.

There are many variants of multi-task learning for tagging and parsing. These variants consist

in models sharing parameters between the tasks (Straka, 2018) and variants (Che et al., 2018; Lim

et al., 2018). On top of this, recent systems trained with Language Model (LM) representations

have shown even better results. One of these models, ELMo (Peters et al., 2018a), is trained

with unsupervised textual representations using BiLSTM. Models with ELMo obtained the best

performance in the 2018 CoNLL shared task (Che et al., 2018; Lim et al., 2018). Another

more-recent and cutting-edge Language Model, BERT (Devlin et al., 2019), which is trained by

bidirectional transformers with a masked language model strategy, shows outstanding results in

86

parsing (Kondratyuk, 2019; Kulmizev et al., 2019). While many variants exist, all these models

basically produce a single parser and tagger based on a single concatenated view. In contrast,

Bohnet et al. (2018) proposed an approach to build several POS taggers trained by individual

lexical representations and generated a multi-view model only for POS tagging.

5.4.2 Multi-view learning

The standard multi-view learning approaches try to learn a model by jointly optimizing all the

multi-view models arising from different views as opposed to combining input level multi-view

data. The most representative and one of the earliest multi-view learning methods is Co-Training

(Blum and Mitchell, 1998). Co-Training and many of its variants (Nigam and Ghani, 2000;

Muslea et al., 2002; Yu et al., 2011) try to maximize the mutual agreement of multi-view models

on unlabeled data by promoting the consensus principle. The unified model is expected to perform

better when each view provides some knowledge that the other views do not possess; that is, when

different views hold complementary information.

Recently, Cross-View Training (CVT) (Clark et al., 2018) was proposed for semi-supervised

multi-view learning. CVT creates partial views by limiting the time information and make these

partial views learn from complete information. For example, rather than using both forward
−→
h t

and backward
←−
ht representation in BiLSTM, CVT makes auxiliary predictions by just utilizing

the partial views [
−→
h t] or [

←−
h t]. Then, CVT makes these auxiliary predictions to follow primary

prediction obtained by using complete information [
−→
h t,
←−
h t].

CVT shares some similarities with CO-META, but the biggest difference between the two is

that CO-META is interested in leveraging the complementary information arising from "different"

views, whereas CVT is trying to create an auxiliary loss by "restricting" information. Since

CO-META is trying to fuse multiple kinds of information together, it has to decide what to learn

from (ŷ∗) and how much to learn from it. We can see that this process is indeed important

from our observation, in Figure 5.3 (C-1,2), of partial view (word) sometimes out-performing the

concatenated view (meta-layer). In contrast, for CVT, the learning direction is always from primary

prediction to partial views as you cannot expect artificially restricted information to perform better.

This is perhaps why the purely supervised version of CVT does not show improvements whereas

META-BASE, CO-META’s supervised version, improves significantly over the baseline. CVT and

CO-META also use different techniques to promote coherence on multi-view models. CO-META

performs sequence-level distillation (Kim and Rush, 2016; Ranzato et al., 2015) for the views to

learn form ŷ∗ with agreement score whereas CVT performs token-level distillation to learn from

the primary prediction.

87

5.5 Conclusion

In this chapter, we have presented a multi-view learning strategy for joint POS tagging and

parsing using Co-Training methods. Among three proposed (sequence-voting, token-voting, and

ensemble-based) strategies for CO-META, the ensemble-based model yield the best result. This

strategy is especially well suited for low-resource scenarios, when only a very small sample of

annotated data is available, along with larger quantities of unlabeled data. Our experiment shows

statistically significant gains (-0.9 to +9.3 points compared to the baseline), largely due to the

proper integration of unlabeled data in the learning process. As future research, we wish to apply

CO-META to other sequence-labeling tasks such as Named Entity Recognition and semantic role

labeling.

88

Part III

Looking Forward

89

Chapter 6

Conclusions and Future work

In this chapter, we first summarize the key contributions of this thesis, and then present some

potential directions that the presented methods can take.

6.1 Summary

In this thesis, we proposed methods that incorporate prior knowledge or constraints on the output

space. The proposed method for injecting constraints in the output space is especially beneficial

for the field of applied machine learning, since it is easy and intuitive to design constraints for

each task a priori. Furthermore, in order for non-machine-learning experts to apply the presented

methods, all the algorithms proposed in this thesis injects constraints by only modifying the loss

function without changing the model structure. To demonstrate the proposed constraint-injection

methods, this thesis mainly focuses on natural language understanding tasks such as syntactic

parsing and semantic role labeling where the constraints can be easily identified from its inherent

syntactic structure. With this high-level motivation, the key contributions of this thesis are as

follows.

First, we presented the Gradient-Based Inference (GBI) algorithm where the output constraint

can be utilized in the inference procedure. Performing inference with a global constraint in a

discrete space requires a combinatorial search that leads to exponential complexity. To overcome

this combinatorial search problem in the output space, this thesis transforms it to a gradient-based

search problem in the continuous model space motivated by the dual decomposition approach.

GBI’s approach is novel since it was the first approach to enforce output constraints using model

updates on neural models, improving on after previous dual decomposition approaches for linear

models (Rush et al., 2010; Chang et al., 2012). Through the experiments on semantic role labeling

(SRL), constituency parsing and a toy transducer problem, GBI was shown to effectively enforce

91

constraints while also improving the overall performance of neural models. The experiments

were conducted in an extensive manner as GBI was examined on low-resource, high-resource,

and on out-of-domain examples, and all results demonstrated positive effects of GBI. Particularly

in SRL, the comparison with the A*-search algorithm, GBI exhibited faster, higher-performing,

and more robust-to-noise results. The SRL experiments beat the previous state-of-the-art result

(He et al., 2018) on the CoNLL2012 test set by injecting the syntactic constraint into an older,

lower-performing model (He et al., 2017). However, our SRL model has been superseded by

concurrent work (Ouchi et al., 2018) which uses different model structures.

One concern around applying GBI to neural models was on catastrophic forgetting of neural

networks in that they can unlearn what they learned with a few gradient steps. Since GBI is

applying gradient-based model updates, there was a risk of a neural network forgetting the main

task functions in the process of enforcing subsidiary constraint. This thesis mitigates this problem

by introducing an L2 regularizer, so that the model parameters do not drift too far away from

the original learned model weights, which was demonstrated to be effective through extensive

experiments.

Second, we extended the test time constraint injection of GBI to training time, from test-

instance-based optimization on inference time to generalization to multiple instances at training

time. In contrast to test-time inference, here there is no fixed learned model parameter that

can serve as an anchor for L2 regularization. We proposed a joint loss function to stabilize the

constraint-learning signal with the supervised signal. Furthermore, observing that constraint loss

does not require labeled data, we presented a semi-supervised learning (SSL) framework with the

aim of improving performance on low-resource scenarios. With experiments on SRL, the SSL

framework showed that it can reduce constraint violations and improve the overall performance in

a stable manner. The experiments were first performed using annotated parse tree information

where the SSL improved the performance of 1%- and 10%- resource-SRL models by +1.58 and

+0.78 F1 respectively. In order to show that this approach is also applicable in the real world

setting, the same experiment was conducted using off-the-shelf parsers as well, which improved

100%-resource-SRL models by +0.47 F1. As GBI did, the SSL framework showed its strength on

low-resource and out-of-domain settings. Additionally, the analysis of SSL with GBI suggests that

the efforts on training time and on inference time (GBI) are complementary rather than mutually

exclusive: the performance is best when efforts on train-time and inference-time methods are

combined.

Lastly, we presented a coherence promotion method (CO-META) on a multi-view learning

set up that can significantly help low-resource scenarios. By introducing agreement constraint

between multiple views, we were able to apply a similar SSL framework as we did on SRL.

92

While the previous chapters were geared toward injecting prior knowledge about a task, Chapter 5

proposed an agreement-constraint which can be applied to any sequence-labeling problem with

multiple views. Besides presenting CO-META, this thesis first contributes by applying the recent

META-BILSTM(Bohnet et al., 2018) approach to multi-view learning (META-BASE), previously

applied to POS-tagging, to a more complex problem of joint modeling of POS and dependency

parsing. Based on this, we introduced the CO-META framework which can further improve

META-BASE using semi-supervised learning, and which applies agreement constraint across the

views using unlabeled data. Building on the competitive BASELINE model for dependency parsing,

through experiments, we demonstrated that META-BASE and CO-META can significantly improve

low-resource models across 9 different languages. With an ablation study varying the size of

training data with fixed unlabeled data, we showed that CO-META can significantly help extremely-

low and mid resource settings (train data ranging from 5-4k). We further saw a strong effect of

CO-META on state-of-the-art models by plugging in external language models, and exhibited

state-of-the-art result for Chinese dependency parsing. Whereas the first set of experiments

focused on a trivial multi-view setup by only using word- and character- based embeddings for

CO-META, in applying the external language model, this thesis demonstrated that CO-META can

also handle an expanded multi-view setup with word-, character-, and external-language-model

(ELMo, BERT) - based embeddings. Along with studying the effect of train data, we examined

the effect of unlabeled sets on CO-META by varying domain and amount of unlabeled data on

Greek and Chinese corpora. Finally, we also inspected whether the improvements from CO-META

are, in fact, a result of promoting coherence as we intended. In an ablation study, we showed

that the performance difference between multiple views on META-BASE decrease by applying

CO-META. This result offered the same conclusions as seen in other constraint-injection methods

in this thesis, in that the overall performance was increased as well as enforcing the constraint.

6.2 Future work

Overall, this thesis presented ways to enforce output constraints when they are in the form of

scalar scoring function. This leads to several future research questions. First, the relation of the

constraint function to the main task should be further studied in terms of when the constraint

injection will be most, and least, helpful. Second, a formal study on which unlabeled data to use

and how much should be used in relation to the constraint function is required. While there are

detailed experiments on the OntoNote5.0 (Weischedel et al., 2012) and CoNLL2018 dataset in this

thesis, rigorous studies on conditions to when the presented semi-supervised would be successful

are left as future work. Finally, studies on how to enforce multiple constraints simultaneously

93

should also be conducted. One trivial approach would be forming multiple constraint functions

as a single weighted scoring function. However, this question is related to the multi-objective

research problem (Miettinen, 1999; Hwang and Masud, 2012) and is left for future research as

well.

While there could be many potential directions, we introduce an immediate extension of this

thesis in detail: multi-task learning with constraint loss as a regularizer. Then, we conclude with

discussions on when the models presented could be useful and when it might be hard to apply.

6.2.1 Multi-task systems with agreement scores

Many NLP tasks, for example, are related to each other and thus are solved in a multi-task learning

framework. The usual multi-task learning simply combines a supervised signal from multiple

tasks without taking care of specific relations between the tasks. However, extending this thesis, it

would be noteworthy to examine whether we can utilize an agreement score across the multi-task

output as a regularizer on the multi-task training process.

Generally, the style of loss function presented in this thesis can be expressed by rewriting the

Eq. (4.9) to

∑
(x(i),y

(i)
1)∈D1

XL(x(i), y
(i)
1 ; θ1) +

∑
(x(j),y

(j)
2)∈D2

fagree(ŷ
(j)
1 , y

(j)
2 |x(j); θ1), (6.1)

where theXL denotes cross entropy loss, fagree(y1, y2) denotes agreement score function between

the output y1, y2, D1 denotes a primary training set, D2 is an additional dataset which could be

unlabeled, and ŷ(j)
k denotes output from model θk and input x(j). We express two related y1 and y2

with different subscripts where a subscript serves as a task ID. It is worth noting that in order to

measure fagree(y1, y2), the formats of y1 and y2 do not have to be identical, while it is necessary

for them to be comparable in order to measure an agreement. For example, returning to the

example of SRL application, we can think of ŷ(j)
1 to be an SRL output and y(j)

2 to be parse tree

information for a sentence x(j), i.e. subscript 1 indicates SRL and 2 indicates syntactic parse tree.

While SRL output ŷ(j)
1 and parse tree information y(j)

2 will not be in the same format, the spans

of y(j)
1 and y(j)

2 can be used to measure an agreement score. In our previous experiment fagree
measures whether the spans of ŷ(j)

1 are a subset of y(j)
2 .

Expanding the formulation to the multi-task setting we can simply extend the same equation

onto two data distribution: D1 from task 1 and D2 from task 2.

94

∑
(x(i),y

(i)
1)∈D1

[
XL(x(i), y

(i)
1 ; θcom, θ1) + fagree(y

(i)
1 , ŷ

(i)
2 ; θcom, θ2)

]
+

∑
(x(j),y

(j)
2)∈D2

[
XL(x(j), y

(j)
2 ; θcom, θ2) + fagree(ŷ

(j)
1 , y

(j)
2 ; θcom, θ1)

]
(6.2)

We decompose the model parameter θ as common model part θcom between task1 and task2

and differentiating part θi for each task i, i.e. θ = θcom, θ1, θ2. Note that with the agreement

score function, fagree(ŷ
(j)
1 , y

(j)
2 ; θcom, θ1), we can now further train model of task1 (θ1) even when

we are training task2 using training set D2 in a supervised way, and vice versa, using the same

agreement function in a different direction fagree(y
(i)
1 , ŷ

(i)
2 ; θcom, θ2) on D1. While training with

agreement function, which could be unstable, the supervised loss on another task can serve as

a stable anchor, as we have seen in Chapter 4. With this formulation, there is one clear benefit.

The model can learn how the outputs of multi-task should behave with each other even when the

training instances are not annotated for both task1 and task2 jointly. Thus, this approach could

serve as a method to learn disjoint training dataset on multiple NLP tasks given a reasonable

agreement function.

With the same spirit, further extending the approach recursively, we can even try to leverage

unlabeled dataset and perform semi-supervised learning:∑
(x(i),y

(i)
1)∈D1

[
XL(x(i), y

(i)
1 ; θcom, θ1) + fagree(y

(i)
1 , ŷ

(i)
2)
]

(6.3)

+
∑

(x(j),y
(j)
2)∈D2

[
XL(x(j), y

(j)
2 ; θcom, θ2) + fagree(ŷ

(j)
1 , y

(j)
2)
]

+
∑

x(k)∈Dunlabeld fagree(ŷ
(k)
1 , ŷ

(k)
2).

6.2.2 Future applications

This thesis focused on expressing the output constraint as a simple scalar constraint function, and

the method presented in this thesis shows one way of utilizing this proposed constraint function.

Specifically, this thesis shows that simple normalized count of error in a sequence could be used to

effectively enforce structural constraints. As the proposed constraint function is generic and easy

to formulate, we believe the presented methods can easily extend to other applications swiftly.

A direct application could be on applying CO-META to sequence-labeling tasks and helping

low-resource scenarios as we did for dependency paring. CO-META can be easily extended to

other labeling tasks such as named entity recognition (NER) and SRL as there was no explicit

knowledge used in introducing CO-META, except that there should be coherence across views.

95

While applying CO-META to other sequence-labeling tasks will be a straightforward extension,

as CO-META requires multiple copies of models, the memory footprint can be a problem given

limited resources. Thus, CO-META will be easier to apply on tasks where smaller models are

preferred.

Second, as discussed in the previous subsection, the work presented in this thesis can comfort-

ably expand to multi-task problems. Returning to the example of SRL and syntactic parsing, we

believe a similar approach of injecting syntactic information can be applied to other span-based

models such as co-reference resolution and shallow discourse relation problems. Another example

is neural machine translation (NMT) where various multi-task approaches try to learn syntactic

parser and tagger jointly with NMT. While there are existing efforts to enforce syntactic tree

structure through top-down decoding (Gū et al., 2018) or by manipulating attentions (Eriguchi

et al., 2016), it would be interesting to apply agreement scores to the unconstrained output as this

thesis did. Through use of scoring function, one could evaluate whether translation preserves

syntactic structure or whether aligned tokens have a matching POS-tag type and use this signal to

further learn. Although omitting detailed examples for brevity, question answering could benefit

from the presented work with logic constraint from multiple task.

As we have discussed various possible extensions, we should also consider when the presented

methods are difficult to utilize. The presented methods inject information through evaluation of

constraint function, and thus, it would be laborious to apply these methods on a task where it takes

hours or days to evaluate constraint. For example, some topological consistency measures might

take days, and even years, to compute (Otter et al., 2017). While this measure might be useful in

generating objects with some topological constraints, the presented methods in this thesis would

not be suitable, as these require multiple evaluation of such expensive metric.

To summarize, this thesis concentrated on injecting output constraints to the black-box

neural models in a model-agnostic way. While it is tempting to change the model structure per

constraint injection, this model-agnostic framework provides a capability to easily extend this

framework to different tasks and different model architectures as presented in this thesis. With

this benefit, while this thesis mainly focused on structural knowledge on the output space, the

presented techniques are amenable to extend toward other models and constraints. This may

contribute toward regularizing neural models to behave more coherently with respect to real-world

constraints.

96

Bibliography

Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev,

Slav Petrov, and Michael Collins. Globally normalized transition-based neural networks. CoRR,

abs/1603.06042, 2016. URL http://arxiv.org/abs/1603.06042. 5.1

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly

learning to align and translate. In 3rd International Conference on Learning Representations,

ICLR 2015, 2015. 3.3.4

Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,

Aaron Courville, and Yoshua Bengio. An actor-critic algorithm for sequence prediction. arXiv

preprint arXiv:1607.07086, 2016. 2.2

Emanuele Bastianelli, Giuseppe Castellucci, Danilo Croce, and Roberto Basili. Textual inference

and meaning representation in human robot interaction. In Proceedings of the Joint Symposium

on Semantic Processing. Textual Inference and Structures in Corpora, pages 65–69, 2013. 4.1

David Belanger and Andrew McCallum. Structured prediction energy networks. In International

Conference on Machine Learning, 2016. 3.5

David M. Blei, Andrew Bagnell, and Andrew K. McCallum. Learning with scope, with application

to information extraction and classification. In Uncertainty in Artificial Intelligence (UAI),

2002. 3

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In

Proceedings of the eleventh annual conference on Computational learning theory, pages 92–100.

ACM, 1998. 1.4, 5, 5.1, 5.2.3

Bernd Bohnet, Ryan McDonald, Gonçalo Simões, Daniel Andor, Emily Pitler, and Joshua Maynez.

Morphosyntactic tagging with a meta-bilstm model over context sensitive token encodings.

In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 2642–2652, 2018. II, 5.1, 5.2, 5.2.2, 5.4.1, 6.1

Jan A. Botha, Emily Pitler, Ji Ma, Anton Bakalov, Alex Salcianu, David Weiss, Ryan T. McDonald,

97

http://arxiv.org/abs/1603.06042

and Slav Petrov. Natural language processing with small feed-forward networks. CoRR,

abs/1708.00214, 2017. URL http://arxiv.org/abs/1708.00214. 5.1

Matthias Brocheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similarity logic. arXiv

preprint arXiv:1203.3469, 2012. 4.4.1

Ming-Wei Chang, Lev-Arie Ratinov, and Dan Roth. Guiding semi-supervision with constraint-

driven learning. In ACL, 2007. 4.4.1

Ming-Wei Chang, Lev-Arie Ratinov, Nicholas Rizzolo, and Dan Roth. Learning and inference

with constraints. 2008. 2.1

Ming-Wei Chang, Lev Ratinov, and Dan Roth. Structured learning with constrained conditional

models. Machine Learning, 88(3):399–431, Sep 2012. ISSN 1573-0565. doi: 10.1007/

s10994-012-5296-5. URL https://doi.org/10.1007/s10994-012-5296-5. 2.1,

2.1, 2.2, 2.2, 4.4.1, 6.1

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. Towards better UD

parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation.

In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text

to Universal Dependencies, pages 55–64, Brussels, Belgium, October 2018. ACL. URL

http://www.aclweb.org/anthology/K18-2005. 5.4.1

Ciprian Chelba and Alex Acero. Adaptation of maximum entropy capitalizer: Little data can help

a lot. Computer Speech & Language, 20(4):382–399, 2006. 3.1.2

Kyunghyun Cho, Bart Van Merriënboer, Çağlar Gülçehre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder–

decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1724–1734. Association for Com-

putational Linguistics, October 2014. 3

Kevin Clark, Minh-Thang Luong, Christopher D Manning, and Quoc V Le. Semi-supervised

sequence modeling with cross-view training. arXiv preprint arXiv:1809.08370, 2018. 5.4.2

Michael Collins. Head-driven statistical models for natural language parsing. Computational

linguistics, 29(4):589–637, 2003. 2.3

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel

Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning

Research, 12(Aug):2493–2537, 2011. 2.3

Danilo Croce, Cristina Giannone, Paolo Annesi, and Roberto Basili. Towards open-domain

98

http://arxiv.org/abs/1708.00214
https://doi.org/10.1007/s10994-012-5296-5
http://www.aclweb.org/anthology/K18-2005

semantic role labeling. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics, ACL ’10, pages 237–246, Stroudsburg, PA, USA, 2010. Associa-

tion for Computational Linguistics. URL http://dl.acm.org/citation.cfm?id=

1858681.1858706. 4.4.2

Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation extraction. In Proceedings

of the 42Nd Annual Meeting on ACL, ACL ’04, Stroudsburg, PA, USA, 2004. ACL. doi:

10.3115/1218955.1219009. URL https://doi.org/10.3115/1218955.1219009.

5.4.1

Dipanjan Das, André FT Martins, and Noah A Smith. An exact dual decomposition algorithm

for shallow semantic parsing with constraints. In Proceedings of the First Joint Conference

on Lexical and Computational Semantics-Volume 1: Proceedings of the main conference and

the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic

Evaluation, pages 209–217. Association for Computational Linguistics, 2012. 2.1, 2.1

Miryam de Lhoneux, Sara Stymne, and Joakim Nivre. Old school vs. new school: Comparing

transition-based parsers with and without neural network enhancement. In In Proceedings of

the 15th Treebanks and Linguistic Theories Workshop, pages 99–110, 2017. 5.3.1

Marie-Catherine de Marneffe and Christopher D. Manning. The stanford typed dependencies

representation. In Coling 2008: Proceedings of the Workshop on Cross-Framework and

Cross-Domain Parser Evaluation, CrossParser ’08, pages 1–8, Stroudsburg, PA, USA, 2008.

ACL. ISBN 978-1-905593-50-7. URL http://dl.acm.org/citation.cfm?id=

1608858.1608859. 5.4.1

Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, et al. Generating typed

dependency parses from phrase structure parses. In Lrec, volume 6, pages 449–454, 2006. 5.4.1

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete

data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological),

39(1):1–22, 1977. 2.2

Koen Deschacht and Marie-Francine Moens. Semi-supervised semantic role labeling using the

latent words language model. In Proceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing: Volume 1 - Volume 1, EMNLP ’09, pages 21–29, Stroudsburg,

PA, USA, 2009. Association for Computational Linguistics. ISBN 978-1-932432-59-6. URL

http://dl.acm.org/citation.cfm?id=1699510.1699514. 4.4.2

Daniel Deutsch, Shyam Upadhyay, and Dan Roth. A general-purpose algorithm for constrained

sequential inference. In Proceedings of the 23rd Conference on Computational Natural

99

http://dl.acm.org/citation.cfm?id=1858681.1858706
http://dl.acm.org/citation.cfm?id=1858681.1858706
https://doi.org/10.3115/1218955.1219009
http://dl.acm.org/citation.cfm?id=1608858.1608859
http://dl.acm.org/citation.cfm?id=1608858.1608859
http://dl.acm.org/citation.cfm?id=1699510.1699514

Language Learning (CoNLL), pages 482–492, Hong Kong, China, November 2019. Association

for Computational Linguistics. doi: 10.18653/v1/K19-1045. URL https://www.aclweb.

org/anthology/K19-1045. 3.5

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL

http://arxiv.org/abs/1810.04805. 2.3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis,

Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423.

URL https://www.aclweb.org/anthology/N19-1423. 4.4.2, 5.3.6, 5.4.1

Timothy Dozat and Christopher D. Manning. Deep biaffine attention for neural dependency

parsing. CoRR, abs/1611.01734, 2016. URL http://arxiv.org/abs/1611.01734.

5.2.1

Timothy Dozat, Peng Qi, and Christopher D. Manning. Stanford’s graph-based neural dependency

parser at the CoNLL 2017 shared task. In Proceedings of the CoNLL 2017 Shared Task:

Multilingual Parsing from Raw Text to Universal Dependencies, pages 20–30, Vancouver,

Canada, August 2017. ACL. URL http://www.aclweb.org/anthology/K/K17/

K17-3002.pdf. 5.1

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A. Smith. Recurrent neural network

grammars. In NAACL-HLT, pages 199–209, 2016. 3.5

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa Tsuruoka. Tree-to-sequence attentional

neural machine translation. arXiv preprint arXiv:1603.06075, 2016. 6.2.2

Murhaf Fares, Stephan Oepen, Lilja Øvrelid, Jari Björne, and Richard Johansson. The 2018

shared task on extrinsic parser evaluation: On the downstream utility of English universal

dependency parsers. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing

from Raw Text to Universal Dependencies, pages 22–33, Brussels, Belgium, October 2018.

ACL. URL http://www.aclweb.org/anthology/K18-2002. 5.4.1

Hagen Fürstenau and Mirella Lapata. Semi-supervised semantic role labeling. In Proceedings of

the 12th Conference of the European Chapter of the Association for Computational Linguistics,

EACL ’09, pages 220–228, Stroudsburg, PA, USA, 2009. Association for Computational

Linguistics. URL http://dl.acm.org/citation.cfm?id=1609067.1609091.

100

https://www.aclweb.org/anthology/K19-1045
https://www.aclweb.org/anthology/K19-1045
http://arxiv.org/abs/1810.04805
https://www.aclweb.org/anthology/N19-1423
http://arxiv.org/abs/1611.01734
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf
http://www.aclweb.org/anthology/K/K17/K17-3002.pdf
http://www.aclweb.org/anthology/K18-2002
http://dl.acm.org/citation.cfm?id=1609067.1609091

4.4.2

Kuzman Ganchev, João Graça, Jennifer Gillenwater, and Ben Taskar. Posterior regularization for

structured latent variable models. J. Mach. Learn. Res., 11:2001–2049, August 2010. ISSN

1532-4435. URL http://dl.acm.org/citation.cfm?id=1756006.1859918.

2.2, 2.2, 4.4.1

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew

Peters, Michael Schmitz, and Luke S. Zettlemoyer. Allennlp: A deep semantic natural language

processing platform. 2017. 3.3.3, 3

Gerald Gazdar, Ewan Klein, Geoffrey K Pullum, and Ivan A Sag. Generalized phrase structure

grammar. Harvard University Press, 1985. 2.3

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to

transduce with unbounded memory. In Neural Information Processing Systems (NIPS), 2015.

3.2.3

Jetic Gū, Hassan S Shavarani, and Anoop Sarkar. Top-down tree structured decoding with syntactic

connections for neural machine translation and parsing. arXiv preprint arXiv:1809.01854, 2018.

6.2.2

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. A representation

learning framework for multi-source transfer parsing. In Thirtieth AAAI Conference on Artificial

Intelligence, 2016. 5.3.3

Madan M Gupta and J Qi. Theory of t-norms and fuzzy inference methods. Fuzzy sets and

systems, 40(3):431–450, 1991. 4.4.1

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-

task model: Growing a neural network for multiple NLP tasks. CoRR, abs/1611.01587, 2016.

URL http://arxiv.org/abs/1611.01587. 5.4.1

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettlemoyer. Deep semantic role labeling:

What works and what’s next. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), volume 1, pages 473–483, 2017.

(document), 3.3.3, 4, 3.9, 3.10, 3.5, 4, 4.1, 1, 4.2, 4.2.2, 4.2.2, 4.2.3, 3.3.5, 4.5, 4.4.2, 6.1

Luheng He, Kenton Lee, Omer Levy, and Luke Zettlemoyer. Jointly predicting predicates and

arguments in neural semantic role labeling. In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics (Volume 2: Short Papers), pages 364–369,

Melbourne, Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/

P18-2058. URL https://www.aclweb.org/anthology/P18-2058. 4, 4.4.2, 6.1

101

http://dl.acm.org/citation.cfm?id=1756006.1859918
http://arxiv.org/abs/1611.01587
https://www.aclweb.org/anthology/P18-2058

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric P. Xing. Harnessing deep

neural networks with logical rules. In Association for Computational Linguistics (ACL), 2016.

3.5

C-L Hwang and Abu Syed Md Masud. Multiple objective decision making—methods and

applications: a state-of-the-art survey, volume 164. Springer Science & Business Media, 2012.

6.2

Jun’ichi Kazama and Kentaro Torisawa. Inducing gazetteers for named entity recognition by

large-scale clustering of dependency relations. In proceedings of ACL-08, pages 407–415, 2008.

5.4.1

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint

arXiv:1606.07947, 2016. 5.4.2

Paul Kingsbury and Martha Palmer. From treebank to propbank. In Proceedings of the Third Inter-

national Conference on Language Resources and Evaluation (LREC’02). European Language

Resources Association (ELRA), 2002. URL http://www.aclweb.org/anthology/

L02-1283. 4.1

Daniel Kondratyuk. 75 languages, 1 model: Parsing universal dependencies universally. CoRR,

abs/1904.02099, 2019. URL http://arxiv.org/abs/1904.02099. 5.6, 5.3.6, 5.3.6,

5.4.1

Terry Koo, Alexander M Rush, Michael Collins, Tommi Jaakkola, and David Sontag. Dual decom-

position for parsing with non-projective head automata. In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, pages 1288–1298. Association for

Computational Linguistics, 2010. 3.1, 3.1.1, 3.5

Peter Koomen, Vasin Punyakanok, Dan Roth, and Wen-tau Yih. Generalized inference with multi-

ple semantic role labeling systems. In Proceedings of the Ninth Conference on Computational

Natural Language Learning, pages 181–184. Association for Computational Linguistics, 2005.

4.4.2

Artur Kulmizev, Miryam de Lhoneux, Johannes Gontrum, Elena Fano, and Joakim Nivre. Deep

contextualized word embeddings in transition-based and graph-based dependency parsing–a

tale of two parsers revisited. arXiv preprint arXiv:1908.07397, 2019. 5.6, 5.3.6, 5.4.1

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor

Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory networks for

natural language processing. Machine Learning, pages 1378–1387, 2016. 3

Jay Yoon Lee, Michael Wick, Jean-Baptiste Tristan, and Jaime Carbonell. Enforcing output

102

http://www.aclweb.org/anthology/L02-1283
http://www.aclweb.org/anthology/L02-1283
http://arxiv.org/abs/1904.02099

constraints via sgd: A step towards neural lagrangian relaxation. AKBC workshop, 2017. 1.4, 3,

3.3.5

Jay Yoon Lee, Sanket Vaibhav Mehta, Michael Wick, Jean-Baptiste Tristan, and Jaime Carbonell.

Gradient-based inference for networks with output constraints. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 4147–4154, 2019. (document), 1.4, 3,

1, 3, 4.5

Tao Li, Vivek Gupta, Maitrey Mehta, and Vivek Srikumar. A logic-driven framework for consis-

tency of neural models. arXiv preprint arXiv:1909.00126, 2019. 4.4.1

Tao Li, Parth Anand Jawale, Martha Palmer, and Vivek Srikumar. Structured tuning for semantic

role labeling. arXiv preprint arXiv:2005.00496, 2020. 4.4.1

KyungTae Lim, Cheoneum Park, Changki Lee, and Thierry Poibeau. SEx BiST: A multi-source

trainable parser with deep contextualized lexical representations. In Proceedings of the CoNLL

2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages

143–152, Brussels, Belgium, October 2018. ACL. URL http://www.aclweb.org/

anthology/K18-2014. (document), 5.2, 5.2.1, 5.2.1, 5.2.2, 5.3.1, 5.2, 5.6, 5.3.6, 5.4.1

KyungTae Lim, Jay Yoon Lee, Jaime Carbonell, and Thierry Poibeau. Semi-supervised learning

on meta structure: Multi-task tagging and parsing in low-resource scenarios. In Proceedings of

the AAAI Conference on Artificial Intelligence, 2020. 1.4, 2, 5, 1

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of lstms to learn

syntax-sensitive dependencies. Transactions of the Association for Computational Linguistics,

4:521–535, 2016. 1.1

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining

approach. arXiv preprint arXiv:1907.11692, 2019. 4.4.1, 4.4.2

Gordon Lyon. Syntax-directed least-errors anallysis for context-free languages: A practical

approach. Programming Languages, 17(1), January 1974. 3.1.1

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated

corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993. 4.1

Sanket Vaibhav Mehta, Jay Yoon Lee, and Jaime G. Carbonell. Towards semi-supervised learning

for deep semantic role labeling. CoRR, abs/1808.09543, 2018. URL http://arxiv.org/

abs/1808.09543. 1.4, 1, 2, 4, 3, 4.4.1, 4.4.2

K. Miettinen. Nonlinear Multiobjective Optimization. International Series in Operations Research

103

http://www.aclweb.org/anthology/K18-2014
http://www.aclweb.org/anthology/K18-2014
http://arxiv.org/abs/1808.09543
http://arxiv.org/abs/1808.09543

& Management Science. Springer US, 1999. ISBN 9780792382782. URL https://books.

google.com/books?id=ha_zLdNtXSMC. 6.2

Marcus Mitchell, B Santorini, MA Marcinkiewicz, and A Taylor. Treebank-3 ldc99t42 web

download. Philidelphia: Linguistic Data Consortium, 3:2, 1999. 3.3.4

Ion Muslea, Steven Minton, and Craig A Knoblock. Active+ semi-supervised learning= robust

multi-view learning. In ICML, volume 2, pages 435–442, 2002. 5.4.2

Yatin Nandwani, Abhishek Pathak, Parag Singla, et al. A primal dual formulation for deep learning

with constraints. In Advances in Neural Information Processing Systems, pages 12157–12168,

2019a. 4.4.1

Yatin Nandwani, Abhishek Pathak, Parag Singla, et al. A primal dual formulation for deep learning

with constraints. In Advances in Neural Information Processing Systems, pages 12157–12168,

2019b. 4.4.1

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental,

sparse, and other variants. In Learning in graphical models, pages 355–368. Springer, 1998.

2.2, 2.2

Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of co-training. In

Proceedings of the ninth international conference on Information and knowledge management,

pages 86–93, 2000. 5.2.3, 5.4.2

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajič, Christo-

pher D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty,

and Daniel Zeman. Universal dependencies v1: A multilingual treebank collection. In Pro-

ceedings of the Tenth International Conference on Language Resources and Evaluation (LREC

2016), pages 1659–1666, Portorož, Slovenia, May 2016. European Language Resources Asso-

ciation. URL https://www.aclweb.org/anthology/L16-1262. 5.4.1

Vilém Novák. First-order fuzzy logic. Studia logica, 46(1):87–109, 1987. 4.4.1

Nina Otter, Mason A Porter, Ulrike Tillmann, Peter Grindrod, and Heather A Harrington. A

roadmap for the computation of persistent homology. EPJ Data Science, 6(1):17, 2017. 6.2.2

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto. A span selection model for semantic role

labeling. In EMNLP, pages 1630–1642. Association for Computational Linguistics, 2018. 1, 4,

2, 4.4.2, 6.1

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. Deep contextualized word representations. CoRR, abs/1802.05365,

104

https://books.google.com/books?id=ha_zLdNtXSMC
https://books.google.com/books?id=ha_zLdNtXSMC
https://www.aclweb.org/anthology/L16-1262

2018a. URL http://arxiv.org/abs/1802.05365. 5.3.6, 5.4.1

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018b.

3, 1, 3.3.3, 3, 2

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,

and Luke Zettlemoyer. Deep contextualized word representations. In Proc. of NAACL, 2018c.

4, 4.1, 4.3.2, 4.4.2

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate, compact, and

interpretable tree annotation. In Proceedings of the 21st International Conference on Computa-

tional Linguistics and the 44th annual meeting of the Association for Computational Linguistics,

pages 433–440. Association for Computational Linguistics, 2006. (document), 4.6

Barbara Plank, Anders Søgaard, and Yoav Goldberg. Multilingual part-of-speech tagging with

bidirectional long short-term memory models and auxiliary loss. CoRR, abs/1604.05529, 2016.

URL http://arxiv.org/abs/1604.05529. 5.1

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H Martin, and Daniel Jurafsky. Seman-

tic role chunking combining complementary syntactic views. In Proceedings of the Ninth

Conference on Computational Natural Language Learning, pages 217–220. Association for

Computational Linguistics, 2005. 4.4.2

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue, Hwee Tou Ng, Anders Björkelund, Olga

Uryupina, Yuchen Zhang, and Zhi Zhong. Towards robust linguistic analysis using ontonotes.

In Proceedings of the Seventeenth Conference on Computational Natural Language Learning,

pages 143–152, 2013. 1.4, 3.3.3, 4.1, 4.3.1

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. The importance of syntactic parsing and inference

in semantic role labeling. Computational Linguistics, 34(2):257–287, 2008. 3.2.1, 3.2.1, 3.5,

4.1, 4.2.3, 4.4.2

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level

training with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015. 2.2, 5.4.2

Lev Ratinov and Dan Roth. Design challenges and misconceptions in named entity recognition.

In Computational Natural Language Learning (CoNNL), 2009. 3.2.2

Sebastian Riedel and Andrew McCallum. Fast and robust joint models for biomedical event

extraction. In Proceedings of the Conference on Empirical Methods in Natural Language

Processing, pages 1–12. Association for Computational Linguistics, 2011. 2.1, 2.1

105

http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1604.05529

Alexander M. Rush and Michael Collins. A tutorial on dual decomposition and lagrangian

relaxation for inference in natural language processing. Journal of Artificial Intelligence

Research, 45:305–362, 2012. 3.1, 3.1.1, 3.5

Alexander M Rush, David Sontag, Michael Collins, and Tommi Jaakkola. On dual decomposition

and linear programming relaxations for natural language processing. In Proceedings of the 2010

Conference on Empirical Methods in Natural Language Processing, pages 1–11. Association

for Computational Linguistics, 2010. 2.1, 2.1, 3.1, 3.1.1, 3.5, 6.1

Kenji Sagae. Analysis of discourse structure with syntactic dependencies and data-driven shift-

reduce parsing. In Proceedings of the 11th International Conference on Parsing Technologies,

IWPT ’09, pages 81–84, Stroudsburg, USA, 2009. ACL. URL http://dl.acm.org/

citation.cfm?id=1697236.1697253. 5.4.1

Rajhans Samdani, Ming-Wei Chang, and Dan Roth. Unified expectation maximization. In

Proceedings of the 2012 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, pages 688–698. Association for

Computational Linguistics, 2012. 2.2, 2.2

Evan Sandhaus. The new york times annotated corpus. Linguistic Data Consortium, Philadelphia,

6(12):e26752, 2008. (document), 4.6

Dan Shen and Mirella Lapata. Using semantic roles to improve question answering. In Proceed-

ings of the 2007 joint conference on empirical methods in natural language processing and

computational natural language learning (EMNLP-CoNLL), 2007. 4.1

Peng Shi and Jimmy Lin. Simple bert models for relation extraction and semantic role labeling.

arXiv preprint arXiv:1904.05255, 2019. 4.4.2

David Sontag, Amir Globerson, and Tommi Jaakkola. Introduction to Dual Decompo-

sition for Inference. MIT Press, optimization in machine learning edition, January

2010. URL https://www.microsoft.com/en-us/research/publication/

introduction-to-dual-decomposition-for-inference/. 2.1

Milan Straka. UDPipe 2.0 prototype at CoNLL 2018 UD shared task. In Proceedings of the

CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies,

pages 197–207, Brussels, Belgium, October 2018. ACL. URL http://www.aclweb.org/

anthology/K18-2020. 5.3.6, 5.4.1

Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum. Linguistically-

informed self-attention for semantic role labeling. arXiv preprint arXiv:1804.08199, 2018. 2.3,

4.4.2

106

http://dl.acm.org/citation.cfm?id=1697236.1697253
http://dl.acm.org/citation.cfm?id=1697236.1697253
https://www.microsoft.com/en-us/research/publication/introduction-to-dual-decomposition-for-inference/
https://www.microsoft.com/en-us/research/publication/introduction-to-dual-decomposition-for-inference/
http://www.aclweb.org/anthology/K18-2020
http://www.aclweb.org/anthology/K18-2020

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. In Neural Information Processing Systems (NIPS), 2014. 3

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,

Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981. 2.2

Swabha Swayamdipta, Sam Thomson, Kenton Lee, Luke Zettlemoyer, Chris Dyer, and Noah A.

Smith. Syntactic scaffolds for semantic structures. CoRR, abs/1808.10485, 2018. 2.3, 2, 4.4.2

Oscar Täckström, Kuzman Ganchev, and Dipanjan Das. Efficient inference and structured learning

for semantic role labeling. Transactions of the Association for Computational Linguistics, 3:

29–41, 2015. 4.2.3

Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, and Xiaodong Shi. Deep semantic role

labeling with self-attention. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

4, 4.4.2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information

processing systems, pages 5998–6008, 2017. 2.3

Oriol Vinyals, Luksz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton.

Grammar as a foreign language. In NIPS, 2015. 3, 3.2.2, 3.2.2, 3.5

Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Jess Kaufman, Michelle Franchini, Mo-

hammed El Bachouti, Nianwen Xue, Martha Palmer, Jena D. Hwang, Claire Bonial, Jinho

Choi, Aous Mansouri, Maha Foster, Abdel aaati Hawwary, Mitchell Marcus, Ann Taylor, Crag

Greenberg, Eduard Hovy, Robert Belvin, and Ann Houston. Ontonotes release 5.0. In LDC

Catalog, 2012. 6.2

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine Learning, 8:229–256, 1992. 2.2, 3.1.2, 4.2.3

Sam Wiseman and Alexander M. Rush. Sequence-to-sequence learning as beam-search opti-

mization. In Empirical Methods in Natural Language Processing, pages 1296–1306, 2016.

3.5

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural

machine translation system: Bridging the gap between human and machine translation. CoRR,

arXiv preprint arXiv:1609.08144, 2016. 3.3.4

Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. CoRR, abs/1304.5634,

107

2013. URL http://arxiv.org/abs/1304.5634. 5.1

Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, and R Bharat Rao. Bayesian co-training.

Journal of Machine Learning Research, 12(Sep):2649–2680, 2011. 5.4.2

Dan Zeman et al. Universal Dependencies 2.2 – CoNLL 2018 shared task development and

test data, 2018a. URL http://hdl.handle.net/11234/1-2184. LINDAT/CLARIN

digital library at the Institute of Formal and Applied Linguistics, Charles University, Prague,

http://hdl.handle.net/11234/1-2184. 5.1

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter, Joakim Nivre,

and Slav Petrov. CoNLL 2018 shared task: Multilingual parsing from raw text to universal

dependencies. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw

Text to Universal Dependencies, pages 1–21, Brussels, Belgium, October 2018b. ACL. URL

http://www.aclweb.org/anthology/K18-2001. 5.2.1

Jing Zhao, Xijiong Xie, Xin Xu, and Shiliang Sun. Multi-view learning overview: Recent progress

and new challenges. Information Fusion, 38:43–54, 2017. 5.1

Jie Zhou and Wei Xu. End-to-end learning of semantic role labeling using recurrent neural

networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume

1: Long Papers), volume 1, pages 1127–1137, 2015. 4.1, 4.4.2

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang, and Jingbo Zhu. Fast and accurate shift-

reduce constituent parsing. In Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 434–443, 2013. (document), 4.6

108

http://arxiv.org/abs/1304.5634
http://hdl.handle.net/11234/1-2184
http://hdl.handle.net/11234/1-2184
http://www.aclweb.org/anthology/K18-2001

	1 Introduction
	1.1 The importance of constraints in learning
	1.2 Contributions of the thesis
	1.3 Thesis statement
	1.4 Organization of the thesis

	2 Related Work
	2.1 Inference with output constraints
	2.2 Learning with output constraints
	2.3 Constraint incorporation in model structure

	I Inference with Output Constraints
	3 Inference with Output Constraints: Gradient-Based Inference (GBI)
	3.1 Constraint-aware inference in neural networks
	3.1.1 Problem definition and motivation
	3.1.2 Algorithm

	3.2 Applications
	3.2.1 Semantic Role Labeling
	3.2.2 Syntactic parsing
	3.2.3 Synthetic sequence transduction

	3.3 Experiments
	3.3.1 Research questions and metrics for experiments
	3.3.2 Toy Transduction Experiment
	3.3.3 Semantic Role Labeling
	3.3.4 Syntactic parsing
	3.3.5 GBI on wide range of reference models

	3.4 Further analysis
	3.4.1 Experiments on out-of-domain data
	3.4.2 Robustness of GBI
	3.4.3 Runtime analysis
	3.4.4 Discussion on max-iteration M

	3.5 Related work
	3.6 Conclusion

	II Semi-Supervised Learning with Output Constraints
	4 Semi-Supervised Learning with Syntactic Constraints
	4.1 Overview
	4.2 Proposed Approach
	4.2.1 Task definition
	4.2.2 Baseline model
	4.2.3 Structural Constraints
	4.2.4 Training with Joint Objective
	4.2.5 Semi-supervised learning formulation

	4.3 Experiments
	4.3.1 Dataset
	4.3.2 Model configurations
	4.3.3 Results
	4.3.4 Domain adaptation using output constraints

	4.4 Related Work
	4.4.1 Learning with constraints
	4.4.2 Injecting syntactic constraints to SRL model

	4.5 Conclusions and Future Work

	5 Semi-Supervised Learning with agreement constraint in multi-view models
	5.1 Overview
	5.2 Proposed Approach
	5.2.1 baseline model
	5.2.2 Supervised Learning on multi-view data (meta-base)
	5.2.3 Co-meta
	5.2.4 Joint Semi-Supervised Learning

	5.3 Experiments
	5.3.1 Data Sets
	5.3.2 Evaluation Metrics
	5.3.3 Experimental Setup
	5.3.4 Experiment goals
	5.3.5 Results in Low-Resource Settings
	5.3.6 Results in High-Resource Settings

	5.4 Related Work
	5.4.1 Dependency Parsing with Multi-Task Structure
	5.4.2 Multi-view learning

	5.5 Conclusion

	III Looking Forward
	6 Conclusions and Future work
	6.1 Summary
	6.2 Future work
	6.2.1 Multi-task systems with agreement scores
	6.2.2 Future applications

	Bibliography

