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Abstract

This dissertation seeks to address the challenge of making adaptive accuracy-
cost balancing inside systems for large-scale machine learning-based recom-
mendation services. We show that it is important to make performance trade-
off decisions at a per-query basis instead of a predefined policy for all queries.
We show that we can achieve a better tradeoff between accuracy and cost
by leveraging lightweight machine learning models to make more adaptive
decision-making inside systems infrastructure.

Large-scale recommendation services have two computation-heavy com-
ponents with strict accuracy and latency targets: scoring (typically achieved
by complex machine learning models) and candidate retrieval (typically achieved
by approximate nearest neighbor search). We first introduce a caching system
for scoring component in recommendation systems (in particular search ad-
vertising systems). Inside the cache, we leverage lightweight machine learn-
ing models to make adaptive cache refresh decisions, which provides a better
balance between recommendation accuracy and computation cost. This leads
to a better net profit in the search advertising context. We then present the
learned adaptive termination for approximate nearest neighbor search inside
the candidate retrieval component. We leverage lightweight machine learning
models to decide how much to search for each query, which provides a better
balance between the search accuracy and latency (computation cost).
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Chapter 1

Introduction

Today, we see the deployment of an increasingly large number of machine learning sys-
tems that apply powerful, expensive computation to produce important yet approximate
answers. In these settings, it is common that developers desire to simultaneously optimize
for generally-conflicting objectives: accurate answers and low latency/computational cost
to produce the answers.

In this dissertation, we take a systems approach to balancing these accuracy/cost trade-
offs for machine learning systems. While important exceptions exist, many common ma-
chine learning approaches to reduce cost do so by creating entirely new approaches or
structures, and thus, cannot be modularly applied. Again with important exceptions, mod-
ular systems approaches such as caching often are not designed to work with systems that
are approximate and noisy.

For machine learning systems and query processing systems in general, queries tend to
have diverse accuracy-cost properties and requirements: It could take different amount of
work (cost) to reach the same accuracy for each query. On the other hand, different queries
may have different accuracy requirements (e.g., depending on the penalty of low accuracy),
which means same amount of work could provide different benefits. In this dissertation,
we take a new approach to balancing the cost/benefit tradeoff inside systems by asking:
“how much (more) work should be done for this query?”, and training lightweight machine
learning models to help answer this question.

In this dissertation, we focus generally on the important case of recommendation sys-
tems. Recommendation systems are a kind of information filtering system that seeks to
predict the “rating” or “preference” a user would give to an item [93]. They play a critical
role in a wide range of web applications including online shopping (e.g., Amazon, Ebay),
web search (e.g., Google Search, Bing Search), multimedia services (e.g., YouTube, Net-
flix, Spotify), social networks (e.g., Facebook, Twitter), and advertising (e.g., Google Ad-
Words, Bing Ads, Facebook Ads).
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Figure 1.1: Simplified overview of recommendation systems, together with the challenges
and our contributions.

Large-scale recommendation systems commonly consist of 3 components as illustrated
in Figure 1.1. This is similar to cascading classifiers [38], where each component further
refines the query result. First, the candidate retrieval component selects a subset of relevant
items from the whole items pool. This could mean filtering from billions of items to
thousands of items. Given the enormous number of items in the pool, it is important
to balance the accuracy and latency for candidate retrieval. Besides classic approaches
such as exact keyword matching, one popular candidate retrieval technique is approximate
nearest neighbor search, which leverages the embedding vectors of queries and items and
ranks the items by distances to the query [27].

Second, the scoring component scores and ranks the candidates based on a predicted
relevance score. Since this component evaluates a relatively small subset of items, the sys-
tem can use a more precise model relying on additional feature. Nowadays we incorporate
different complex machine learning models to do the scoring. Finally there is a re-ranking
component to apply some hard rules and to ensure diversity, freshness and fairness.

Advances in machine learning enable increasingly accurate recommendation services.
However, web applications are latency-sensitive where the latency budget is usually within
one or a few seconds. In addition, in the context of most recommendation services, it is
also important to save computation cost. Thus we need a balance between accuracy and
operating cost, which becomes more and more challenging: For the candidate retrieval
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stage, it is hard to balance the accuracy and latency as the database keeps growing to
billion-scale. For the scoring stage, the advanced complex machine learning models re-
quire expensive computations.

This dissertation identifies a modular approach to balancing accuracy/cost tradeoffs
for important classes of machine learning problems that can be applied easily to different
backend algorithms. We apply these techniques to improve the efficiency of the candi-
date retrieval and scoring components inside recommendation systems, since both of them
contribute to a great portion of service latency/operating cost.

This dissertation provides evidence to support the following statement:

Thesis Statement: In real-world recommendation services, answers are approximate
and expensive. Lightweight machine learning models can be used for adaptive decision-
making inside systems to better trade between accuracy and cost.

We have completed the following contributions for this dissertation:

C1. A workload analysis of one kind of recommendation systems: search advertising
systems. We show that modern recommendation systems introduce expensive com-
putation, but there is an opportunity to use caching to save it. On the other hand,
caching may introduce penalties in terms of accuracy/quality drop of recommen-
dation results and revenue loss in advertising context. It is important to adaptively
decide when to use the cached result (e.g., only for the queries with lower potential
revenue loss). (Chapter 2)

C2. A high-level caching system for recommendation systems (in particular search ad-
vertising systems) to reuse the expensive scoring results. Inside the cache, we lever-
age lightweight machine learning models to make adaptive cache refresh decisions.
This leads to a better balance between recommendation accuracy and computation
cost, which eventually improves the net profit in the search advertising context.
(Chapter 3)

C3. A performance analysis of state-of-the-art approximate nearest neighbor search tech-
niques (for the candidate retrieval component). We show that different search queries
require different amount of search to find the true nearest neighbor, but existing
ANN search approaches are not able to exploit this variance. (Chapter 4)

C4. An adaptive search termination technique for approximate nearest neighbor search.
We leverage lightweight machine learning models to decide how much to search for
each query, which provides a better balance between accuracy and latency. (Chap-
ter 5)

3



1.1 Caching strategies for recommendation systems

Caching is commonly used to reduce computation cost by reusing previous results. It is
often easy to implement, fast, and modular: caches can be reused in many situations. Un-
fortunately, since recommendation query answers are approximate and noisy, caching will
also reduce the accuracy of the answers which may introduce various penalties for differ-
ent queries. For each query, caching is only desirable if the cost saving benefit is larger
than the penalty. In the context of this, we present a technique that leverages lightweight
machine learning models inside the cache to make adaptive decisions to balance the cost
saving reward and accuracy drop penalty. This is the first of the two situations to which
we apply our model of asking whether to stop working (use the cached result) or do more
work to produce a better answer. In this dissertation we focus on one kind of recommenda-
tion systems, the searching advertising systems. But we believe that our findings are also
applicable to other recommendation systems that need to balance the reward and penalty
of caching.

To maximize profit and connect users to relevant products and services, search ad-
vertising systems use sophisticated machine learning algorithms to estimate the revenue
expectations of thousands of matching ad listings per query [46, 50, 82]. These machine
learning computations constitute a substantial part of the operating cost, e.g., 10% to 30%
of the total gross revenues. It is desirable to cache and reuse previous computation re-
sults to reduce this cost, but caching introduces approximation which comes with various
revenue loss for each query. To maximize cost savings while minimizing the overall rev-
enue impact, an adaptive refresh policy is required to decide when to refresh the cached
computation results.

We first design, implement, and evaluate a heuristic-based cache design which uses
revenue history to assign different refresh policies for each query. We then improve upon
this baseline heuristic approach by using a lightweight machine learning model to make
the same caching decisions. This approach uses gradient boosted regression trees [35]
that integrate a richer set of features, and we show that it attains better accuracy with low
additional cost.

We evaluate the heuristic-based and prediction-based cache designs by simulations on
production traces from Bing Ads, a major commercial search advertising system. A tradi-
tional cache with fixed refresh rate can reduce cost by up to 30.7% while having negative
revenue impact as bad as −5.16%. In comparison, the proposed heuristic-based cache
design can reduce cost by up to 17% with a negative revenue impact at −0.29%. The
proposed prediction-based cache can reduce cost by up to 24% while capping negative
revenue impact at −0.02%. Based on Microsoft’s earnings release for FY16 Q4, the tra-
ditional cache would introduce a net profit impact between $−30.6 and $59.4 million in
the quarter. The proposed heuristic-based cache would increase the net profit of Bing Ads
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by $20.7 to $70.5 million in the quarter, and the prediction-based cache could increase the
net profit by $35.2 to $106.1 million.

1.2 Learned adaptive early termination for approximate
nearest neighbor search

Since it is not always possible to use cache to avoid all computations (e.g., queries with
high revenue expectation in search advertising), we next focus on applying our core ap-
proach to one of the key underlying components. For the candidate retrieval component
inside recommendation systems, the problem of identifying a set of “similar” real-valued
vectors to a query vector plays a critical role. However, retrieving these vectors and com-
puting the corresponding similarity scores from a large database is computationally chal-
lenging. Approximate nearest neighbor (ANN) search relaxes the guarantee of exactness
for efficiency by vector compression and/or by only searching a subset of database vectors
for each query. Searching a larger subset increases both accuracy and latency. State-of-
the-art ANN approaches use fixed configurations that apply the same termination condition
(the size of subset to search) for all queries, which leads to undesirably high latency when
trying to achieve the last few percents of accuracy. We find that due to the index struc-
tures and the vector distributions, the number of database vectors that must be searched to
find the ground-truth nearest neighbor varies widely among queries. Critically, we further
identify that the intermediate search result after a certain amount of search is an important
runtime feature that indicates how much more search should be performed.

To achieve a better tradeoff between latency and accuracy, we propose a novel ap-
proach that adaptively determines search termination conditions for individual queries. To
do so, we build and train gradient boosting decision tree models and neural network mod-
els to learn and predict when to stop searching for a certain query. These models enable us
to achieve the same accuracy with less total amount of search compared to the fixed con-
figurations. This is the second of the two situations to which we apply our model of asking
how much work should be done for each query. We apply the learned adaptive early ter-
mination to state-of-the-art ANN approaches, and evaluate the end-to-end performance on
three million to billion-scale datasets. Compared with fixed configurations, our approach
consistently improves the average end-to-end latency by up to 9.4 times faster under the
same high accuracy targets. Our approach is open source at github.com/efficient/faiss-
learned-termination.
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Chapter 2

Search Advertising Systems Workload
Analysis

In this chapter, we present workload analysis of one kind of recommendation systems, the
searching advertising systems, as a motivation for the proposed caching system. Spon-
sored search advertising is an indispensable part of the business model of modern web
search engines. For a given search query from a user, the search advertising system
presents several related sponsored search results (advertisements) together with the gen-
eral search results from the web search engine. These advertising systems usually adopt
a pay-per-click model in which advertisers are charged only if their advertisements are
clicked by a user.

Search advertising has become a market of tens of billions of dollars per year. Search
advertising publishers, such as Google AdWords and Bing Ads, aim to accurately connect
users with products and services matching their interests, and earn revenue from adver-
tisers. To better predict user behavior and maximize ad click revenue, search advertising
systems estimate the expected revenue of thousands of matching ad listings per query us-
ing various machine learning algorithms [46, 50, 82].

Machine learning-based ads scoring provides accurate matchings between users and
advertisers. However, as the number of users, ad candidates, and features increase, the
dollar cost of machine learning computations becomes an increasing portion of the cost of
search advertising systems [46]. We study one week of production traces, with billions of
queries, from Bing advertising system. Workload analysis shows that the machine learning
algorithms occupy hundreds of machines for tens of milliseconds to select the ads for
each query. Caching the computation results (list of selected ads) of machine learning
algorithms could reduce the amount of computation for processing ads, thus reducing
infrastructure cost and potentially improving the net profit.

For the rest of this chapter, Section 2.1 describes the basic concept of search advertising

7



systems. Section 2.2 presents related works. Section 2.3 presents the workload analysis.

2.1 Search advertising systems

Search advertising, or sponsored search, is an ecosystem including three participants:
users, advertisers, and publishers. Users search for keywords trying to get relevant and
qualitative search results; advertisers set bidding budget on their interested keywords to
get the chance for showing their own ads to find customers and boost sales. Publishers,
such as Bing Ads and Google AdWords, bridge the two by renting out space on search
result page to show ads. Nowadays publishers usually adopt a pay-per-click model that
advertisers only pay when their ads get clicked by users. Since the space to show ads is
limited, publishers need to select a few ads from the ads pool that contains all advertis-
ers’ ads. To create values for all participants of the ecosystem, search advertising systems
need to select ads that are semantically relevant to the search query, qualitative, and most
profitable.

Figure 2.1 plots the simplified workflow of Bing Ads as an example to show how
a search advertising system serves ads to search queries, and how the proposed cache
works. There are mainly three components in Bing Ads system: the initial candidate
retrieval, the scoring-based selection, and the final auction. Advertisers provide Bing Ads
their ad listings together with the bidding budgets, targeting keywords/user groups, and
various constraints (spatial, temporal, contextual). These data are stored in an ads pool
partitioned across hundreds of servers.

When an user search query arrives, the initial candidate retrieval selects ads with
matching targeting keywords and user groups (e.g., location, gender, etc.) from the ads
pool. This matching process is parallelized to satisfy the throughput and latency require-
ments. For the keyword matching process, Bing Ads provides both exact matching and
approximate matching that leverages different machine learning algorithms (including ap-
proximate nearest neighbor search) to match similar keywords so that advertisers are able
to show their ads to more users. There are normally thousands of ads selected from the
candidate retrieval.

Second, the scoring component scores candidate ads and selects tens of them with
the highest scores. The score depends on both the advertiser’s bidding budget and the
ad’s quality. Bing Ads measures ad quality by three factors: the predicted click-through
rate, the ad relevance, and the landing page (the webpage pointed by the ad) experience.
Click-through rate represents the click probability. Ad relevance represents the relevance
between the ad, the search query, and the user. As different users may have different
behaviors, personalization information such as the gender, age, and location of the user
are important factors. The landing page experience represents the likelihood of the user to
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Figure 2.1: Simplified workflow of how Bing advertising system serves ads to users.

get good experience on the landing page. Due to the complexity of the scoring function and
the varied user behaviors, search advertising systems leverage different complex learning
algorithms to optimize this scoring component [46, 50, 82].

Last, tens of ads with the highest scores are sent to the final auction process for re-
ranking. The auction determines the position of each ad, and how much will be charged
when an ad is clicked by the user. This process is always required, as advertisers’ ad
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listings and bidding budgets change dynamically.

Due to the huge input size and the number of involved features, both the candidate
retrieval and scoring components consume enormous computation cost. To reduce this
cost, we propose to build an ad-serving cache between the scoring and the final auction.
The cache is essentially a key-value store where the key is the query phrase (optionally
combined with other features) and the value is the selected ads from previous scoring
computation results. On cache miss, ads are selected from the candidate retrieval and
scoring-based selections and then inserted into cache. On cache hit, the cache first uses
the heuristic or prediction framework to decide whether or not refresh the cache entry. If
the heuristic decides not to refresh or the prediction value is lower than a threshold, the
cached ads are sent to the final auction. Otherwise the cache refreshes the cached ads just
as the cache miss case.

2.2 Related work

2.2.1 Caching for web search

The closest related work to ours are prior studies on caching systems for web search en-
gines. Since caching for advertising systems can directly affect revenue, simply applying
web search engine caching designs would result in huge revenue loss. However, these
caching techniques for web search engines inspire the design of our caching designs for
advertising systems. To the best of our knowledge, this work is the first to propose cache
design for search advertising systems.

Cost-aware and feature-aware caching

Gan et al. focus on weighted caching and feature-based caching for web search engines [39].
Their study shows that the processing costs of queries can vary significantly and query
traces have application-specific features that is not exploited by previous cache eviction
policies. Ozcan et al. incorporate the query processing cost into the caching policies and
results show that cost-aware policies improve the average query execution time [86]. Cam-
bazoglu et al. show that regionalization improve the relevance of the web search results but
decreases the hit rates of web search result cache [18]. Sazoglu et al. propose to take the
hourly electricity prices into account when computing the processing cost of queries [96].

Search advertising systems require consideration of cost and features as well, but the
definitions are different. Search advertising caching system has to consider both the pro-
cessing cost saving and the potential revenue loss when serving the sub-optimal results
from cache. In addition to regional features, search advertising systems incorporate di-
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verse features such as revenue history and user’s gender and age. These differences require
different cost-aware and feature-aware caching strategies.

Refresh policy

Cambazoglu et al. argue that caching for large-scale search engines should be able to cope
with freshness of the index [19]. They propose to use a time-to-live (TTL) value to inval-
idate cache entries, and leverage idle back-end cycles to refresh cache entries. Bortnikov
et al. propose to use an adaptive TTL per cache entry based on the access frequency and
a ranking score [16]. Alici et al. propose to use generation and update timestamps to es-
timate the staleness of search query results [5]. Bai et al. rely on a subindex of recent
changes to the search index to invalidate the stale cache entries [11]. Instead of a fixed
TTL value, Alici et al. propose to use an adaptive TTL value on a per-query basis to im-
prove the result freshness and reduce the refresh cost [6]. Since minimizing revenue loss
is one of the primary goals of search advertising caching, our proposed ads cache needs
an unique adaptive refresh policy based on potential revenue loss of each cache entry.

Hybrid caching strategy

Fagni et al. propose a hybrid result caching design where the statistically high-frequency
queries are stored in a static cache and other queries are stored in a dynamic cache [32].
Baeza-Yates et al. study the tradeoff of different caching designs for web search engines,
such as static vs. dynamic caching, and caching query results vs. caching posting lists [10].
Ozcan et al. propose a hybrid result caching strategy to exploit the tradeoff between the hit
rate and the average query response latency [87]. Our workload analysis shows that search
advertising systems is also a diverse environment with skewed frequencies and revenue
expectations. This shows that a fixed caching policy is not sufficient.

The related works above in web search consider similar features (e.g., cost and user
information) and the same intuition about reducing cache staleness compared to caching
systems for search advertising. However, since the business models of web search and
sponsored search are quite different, these cache designs do not consider revenue-related
performance thus cannot be directly applied to search advertising systems.

2.2.2 Prediction framework for sponsored search and web search

Our work differs from frameworks in which machine learning algorithms are used to pre-
dict the click-through rate and other performance metrics of the candidate ads in search
advertising systems [46, 50, 82]. These prediction frameworks aim to maximize the ad
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click revenue without considering the computation cost of each prediction. Compared to
these prediction frameworks, our work aims to find the best tradeoff decisions between
cost savings and revenue impact in order to maximize the net profit of the whole system.
To do so, our prediction framework has different performance requirements in terms of
accuracy and latency overhead.

In web search, recent works study fast prediction frameworks to predict the execu-
tion time of search queries and assign different parallelization decisions based on the
predictions [59, 63, 77]. These prediction frameworks enable the web search engine to
accurately predict the long-running queries and reduce the tail latency by parallelization.
These works motivate us to use rapid machine learning algorithms to solve the caching
problem for search advertising systems. Since the performance objectives (latency reduc-
tion v.s. profit improvement) are different, our prediction framework has different design
in terms of prediction objective and feature selections compared to those recent works in
web search.

2.3 Workload analysis

This section describes the workload analysis of the Bing advertising system. We analyze
the Bing advertising system logs corresponding to a slice of the whole traffic from Mon
Jun 5th 2017 to Sun Jun 11th 2017, which contains billions of queries (hundreds of mil-
lions each day). We consider three key personalization features in our workload analysis:
location, gender, and age of the user. Although some sensitive numbers are normalized,
the workload analysis indicates many opportunities and challenges of caching for search
advertising systems.

2.3.1 Performance metrics

To quantify the workload of the Bing advertising system, we use the following perfor-
mance metrics:

Ad click revenue As described in Section 2.1, a search advertising system takes each
user search query, selects the list of ads to show on the web page, and charges the corre-
sponding advertiser when the user clicks one of the shown ads. We call these charges on
clicks as ad click revenue of the advertising system.

Ad-serving cost indicator To illustrate the cost of the candidate retrieval and scoring-
based selection in Figure 2.1, we use the input size of scoring-based selection (i.e., number
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Figure 2.2: Daily normalized statistics of Bing advertising system in a week in US area.

of candidate ads that we need to run complex machine learning predictions) as the cost in-
dicator. Higher cost indicator means more advertisements to be considered by the learning
algorithms, thus the computation cost will increase as well.

2.3.2 The workload in a week

To illustrate the general daily statistics in a week, Figure 2.2 plots four daily statistics
normalized proportionally: total number of search queries, total number of distinct query
phrases, total number of ad clicks, and total sum of cost indicator (divided by 1000). All
the numbers in the figure are normalized by multiplying the same constant coefficient.

Among the logs we analyze, the Bing advertising system receives hundreds of millions
of queries each day. This total number of queries stays stable among the weekdays and
slightly decreases in the weekends. All the other three statistics have similar trends in the
week. The total number of distinct query phrases shows that everyday each distinct query
phrase has about 5 queries on average. As we will show in the following analysis, the
frequency distribution of the query phrases is highly skewed, and the frequencies of top
phrases are much higher than 5.

The total number of ad clicks is much smaller compared to the total number of queries.
Only about 3% of queries end up with ad click, which means that 97% of learning com-
putations result in no revenue. A recent study shows that the average actual click-through
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rate per ad is 1.91% among 2367 Google AdWords advertisers, which is similar to our
workload [1]. As we will show in the following analysis, most of the ad clicks and the
corresponding revenue are contributed by a few percent of distinct query phrases. This
motivates us to consider an adaptive caching strategy depending on the revenue history.

In Figure 2.2 the cost indicator is divided by 1000 in order to plot all the lines at
the same magnitude. This cost indicator is more than 1000 times of the total number of
queries, which means that the scoring-based selection needs to score and select from more
than 1000 matching candidate ads on average for each query. This illustrates the learning
computation cost per query.

In the following workload analysis, we provide a deeper study of the logs in a single
day on Wed Jun 7th, which is the same day we use for simulation evaluation in Section 3.3.
We do perform the same analysis on all the days in the week, and the results are similar
among different days just like the trend in Figure 2.2.

2.3.3 Frequency distribution

Figure 2.3 plots the percentage of total queries contributed by the top x% query phrases,
both with and without personalization information (location, gender, age). When consid-
ering the personalization, queries with the same query phrase but different personalization
are separated into different categories. As the figure shows, the frequency distribution
is highly skewed in both cases. When personalization is not considered, top 1% query
phrases contribute to 64% of the total queries. When personalization is considered, the
distribution is less skewed since query phrases are separated by different personalization
information. However, top 1% query phrases still contribute to as high as 44% of the total
queries. This highly skewed frequency distribution indicates that even a small cache could
achieve a rather high hit rate, demonstrating an opportunity for caching.

2.3.4 Revenue-related features

Average revenue history per query phrase

For both heuristic-based and prediction-based cache designs, it’s important to include
revenue-related features into consideration. The historical average ad click revenue for
each distinct query phrase is a good candidate, since it indicates the potential revenue for
queries with the same phrase. Figure 2.4 illustrates the CDF of average revenue for each
query phrase. Due to business confidentiality, the average revenue numbers in the figure
are normalized by multiplying the same constant coefficient. Only 1.6% of the distinct
query phrases have ads clicked. Moreover, the largest average revenue (100) is much
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Figure 2.3: Percentage of queries contributed by the top query phrases.

higher than the smallest nonzero average revenue. This shows that the potential revenue
of distinct query phrases is highly skewed.

When considering caching for search advertising systems, one important consideration
is to avoid potential ad click revenue loss. Since only 1.6% of distinct query phrases have
revenue, it seems that it’s possible to just not cache any queries with those query phrases.
However, since some of those query phrases have very high frequency (a query phrase
may have many corresponding queries, but only a few percent of queries end up with ad
clicks), these 1.6% of query phrases contribute to 30% of the total queries. Thus we still
want to cache these phrases to save the cost but we need a more intelligent refresh strategy
to deal with these query phrases with revenue.

Average expected cost-per-click of cached ads

When designing the prediction-based cache, we realize that only predicting the potential
revenue of each distinct query phrase is not enough. At each query, we need to predict the
revenue loss when using the cached ads list (computed at last refresh) to serve the query.
We need additional features that indicate the expected revenue of the cached ads list and
the “real” ads list (the potential new ads list if we refresh the cache entry again right now).

For the cached ads list, we choose the average expected cost-per-click (CPC) to indi-

15



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Normalized average ad click revenue per query phrase

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000
Fr

ac
tio

n
of

to
ta

lq
ue

ry
ph

ra
se

s

Figure 2.4: CDF of normalized average ad click revenue for each distinct query phrase.
The x-axis numbers are normalized by multiplying the same constant coefficient. Note the
y-axis starts at 0.98. Outliers (≤ 100) are truncated on the right end of the figure.

cate the expected revenue. The expected cost-per-click for each ad is the expected revenue
when the ad is clicked, computed by multiplying the advertiser’s bid with the click proba-
bility. Then we take the average of all cached ads’ expected CPC as the revenue indicator.
One thing to note is that the expected CPC is computed conditionally when serving the
previous query and the previous user. Thus this average expected CPC is not the exact ex-
pected revenue when serving the cached ads to another query. However, it’s still a helpful
approximation of the expected revenue of the cached ads. Figure 2.5 illustrates the CDF
of normalized average expected CPC for the ads selection of each query. More than 55%
of queries have nonzero expected CPC, and the distribution is highly skewed.

Incoming query throttling level

When predicting the revenue loss by caching, the “real” ads list for the incoming query is
not yet computed since we haven’t decided whether refresh the cached ads or not. Thus we
use a different signal, the throttling level, as the revenue indicator for the incoming query
when we don’t use the cache. The throttling level of each incoming query is an abstract
integer level that indicates the correlated approximate expected revenue. It is currently
used for capacity throttling in Bing Ads so that we could prioritize on serving queries with
higher expected revenue when there is a capacity shortage. Unlike CPC which calculates
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Figure 2.5: CDF of normalized average expected CPC for each query. Normalization uses
the same multiplication coefficient as Figure 2.4. Outliers (≤ 329) are truncated on the
right end of the figure.

the expected revenue of the selected ads, the throttling level is aggregated from different
learning-based revenue predictions using signals from the incoming query (query phrase,
phrase category, user information, etc.) and history information such as revenue history.
Since throttling level must be computed quickly, it doesn’t take the current ad candidates
into consideration. However, it’s still a helpful approximation of the expected revenue of
the incoming query.

Figure 2.6 illustrates the CDF of throttling level for each query. Larger throttling level
indicates larger expected revenue. Similar to the average historical revenue and average
expected CPC above, the throttling level distribution is also highly skewed: more than
73% of total queries have throttling levels no larger than 20, while the other 27% of total
queries have varied throttling levels from 21 to 200.

Summary of the revenue-related features

Analysis above show that the average revenue history, the average CPC of cache entries,
and the throttling level of incoming queries are useful features to predict the revenue loss
by caching. When designing the heuristic-based cache, we only take the average revenue
history into consideration since it is difficult to tune the heuristic with multiple revenue
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Figure 2.6: CDF of throttling level for each query.

indicators.

In contrast, we incorporate all three features in our prediction-based cache design. If
the expected revenue indicated by the throttling level is much higher than the average
expected CPC, it means that the expected revenue of the incoming query is much higher
than the expected revenue of the current cached ads, and the potential revenue loss could be
large as well. By incorporating the average expected CPC and the throttling level features,
we are able to compare the expected revenue of the cached ads list and the “real” ads list
in the prediction framework, and provide more accurate refresh decisions compared to the
heuristics.

2.3.5 Ad-serving cost distribution

Figure 2.7 plots the CDF of the cost indicator for each query. About 40% of the queries
have no candidate ads for scoring. There are two main sources of such queries: the cor-
responding query phrase might be too rare that no advertiser provides ads related to it; or
the Bing advertising system recognizes the query as fraud so that it doesn’t serve any ad
to it. For the other 60% of the queries, each query has thousands of ads in average to be
scored. It is still beneficial to cache those queries with zero cost, since it will still save the
processing time of the query by skipping the candidate retrieval.
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Figure 2.7: CDF of ad-serving cost indicator for each query. A few outliers are truncated
on the right end of the figure.

To score thousands of matching candidate ads, it takes tens of milliseconds for hun-
dreds of machines to compute. Based on this cost indicator distribution and the num-
ber of dedicated machines, the total machine learning computation cost would typically
be around 10% to 30% of the total gross revenue. This cost distribution shows that the
learning-based ads selection requires substantial computation power. It’d be preferable to
use caching to reduce the number of dedicated machines and the overall cost.

2.3.6 The intrinsic variance of learning algorithm results

Compared to traditional caching, one of the biggest differences for the ad-serving cache
is that the cached learning algorithm results (pre-auction ads list) have intrinsic variance.
Even for two search queries with the same query phrase, the ads selected by the learning
algorithms may vary for three main reasons: (1) Users differ in terms of location, gender,
age and so on. This variance affects the decisions of advertisers and publishers; (2) On the
advertiser side, ad listings may be removed or added, and the bid budget may change based
on different features (time, user location, user gender, etc.); (3) On the publisher side,
several different machine learning algorithms are used in parallel for ads selection that
use the user and advertiser above as features. Due to this variance of learning algorithm
results, it’s practically impossible to cache an ads list for a certain query phrase and then
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Figure 2.8: CDF of ads list similarity score for each query.

use the cached entry forever without refresh.

To quantify this variance, we calculate the similarity score which is the percentage of
ads shown in ads list of last query with the same phrase (when personalization is con-
sidered, it has to be both the same phrase and the same three personalization features).
Higher similarity score means higher similarity between the two consecutive queries with
the same key. Figure 2.8 plots the CDF of this similarity score for each query, both with
and without personalization. Note that when calculating the similarity scores: 1) The first
query of each query phrase doesn’t have the similarity score; 2) When two consecutive
queries with the same query phrase both have empty ads list, the second query doesn’t
have the similarity score.

When personalization is not considered, about 30% of the total queries have 0% sim-
ilarity. Among these queries, 11% of the total queries belong to the case where the last
query with the same query phrase has no ads listed. The other 19% of the queries belong
to the case where the non-empty ads list of the last query with the same query phrase has
zero intersection with the current ads list. On the other hand, 24% of the total queries have
100% similarity, which means the current ads list can be completely covered by the last
ads list related to the same query phrase. Overall, the average similarity is 45%.

When personalization (location, gender, age) is considered, overall the similarity scores
increase since the queries with the same query phrase and personalization have more sta-
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ble ads list. About 17% of the total queries has 0% similarity. Among these queries, 7%
of the total queries belong to the case where the last query with the same query phrase has
no ads listed. The other 10% of the total queries belong to the case where the non-empty
ads list of the last query with the same query phrase has zero intersection with the current
ads list. On the other hand, 29% of the total queries have 100% similarity. Overall, the
average similarity is 58%.

The similarity score distributions indicate that personalization can increase the simi-
larity score and reduce the variance of the ads list. On the other hand, the similarity score
variance shows that the cache needs a dynamic and adaptive refresh policy to keep the
average similarity at a high level to avoid revenue loss.

2.3.7 Effect of personalization

As described above, different user information affects the decisions of advertisers and
publishers. As a result, queries with the same query phrase and different user information
may have different expected revenue. We investigate the queries with one of the top prof-
itable query phrase and the combination of three user features: location, gender, age. For
each distinct user info combination, we compute the average revenue of the corresponding
queries. This average revenue distribution is highly skewed: more than 94% of distinct
user info combinations have no revenue, while the others have varied average revenue.
This shows that it could be beneficial to take the user information of both the cached ads
list (at last refresh) and the incoming query into consideration.

Using personalization could increase the similarity between ads list, thus reduces po-
tential revenue loss by caching. However, adding personalization info to the cache key
increase the number of distinct keys, thus reduce the cache hit rate and cost savings. We
consider three personalization features in our workload analysis: location, gender, and age
of the user. Adding these three personalization features on all cache keys would double
the number of distinct cache entry keys in our workload. In search advertising systems,
there are other personalization features (e.g., device type, IP address, and user ID) that
could also be included into the cache entry key. In our heuristic-based cache design, we
select the three personalization features since they appear to be the key features in Bing
Ads system’s ads selection, and they are common features that should exist in any search
advertising system. In our prediction-based cache design, we also take the user’s device
type as an additional personalization feature when predicting the potential revenue loss.
Exploring how to accommodate more personalization features within limited memory and
communication/computation limits is an open direction.
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Chapter 3

Caching Strategies for Recommendation
Systems

In this chapter, we improve the scoring component for searching advertising systems by
caching. Caching systems can save the expensive computation cost by reusing previous
scoring results. Effective caching for ads systems is, however, challenging because the
ads selected for a previous query may not be those with the best expected revenue for the
current query, which could reduce revenue. For example, two users from different states
searching for “local furniture store” likely expect different results, and two users with
different ages may have different preferences on “classic movies”. Other queries may be
invalidated by the progression of time; for example, a product release may cause a shift in
expectations for query results for, e.g., “screen pixel”.

The decision about whether a cached result is applicable to a new query depends on
both the key used to cache it (i.e., does the retrieval key include the same query phrase
(and the same user info)?), as well as a determination of whether the previously cached
results are still applicable to the new query (i.e., does the cache entry needs a refresh?).
In this work, we assume that results are cached based upon the query phrase (optionally
combined with personalization features), and use both recency as well as various features
to determine whether or not a cached computation result should remain valid.

An ideal refresh policy is revenue-aware: it refreshes only if there will be revenue
loss due to serving stale ad suggestions. However, it is hard to predict the revenue loss
and make accurate refresh decisions because: (1) There are many involved features from
the historical statistics, the incoming query and user, and the cached previous computation
result. It is hard to choose which ones and how they jointly affect revenue; (2) The average
click-through rate (CTR) is as low as 2 − 3%, making it easy to trigger false positive or
false negative refresh decisions [1]; (3) The refresh decision must be made quickly, since
the whole ads selection process must finish in tens of milliseconds. These challenges make
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it difficult to build a profitable cache with intelligent refresh policy.

Motivated by the challenges, we first propose an ads cache for search advertising sys-
tems employing three domain-specific heuristics to reduce revenue impact and achieve a
net profit improvement:

• The revenue-aware adaptive refresh policy provides varied refresh decisions based
on the potential revenue gain of different query phrases combining historical and instan-
taneous query information. This enables the cache to incorporate varied refresh strategies
for queries with different potential revenue impacts, resulting in both cost savings and low
revenue loss.

• The selective personalization policy exploits three personalization features (location,
gender, age) on only those revenue-sensitive cache entries. This policy makes better use of
the personalization features to optimize the cache for both cache hit rate (i.e., cost saving)
and revenue impact.

• The ads list merging technique combines the ads list from multiple previous compu-
tation results of the same query phrase, reducing the likelihood of missing revenue-critical
ads.

Although this heuristic-based cache design improves the net profit (compared to the
case without cache), there are several limitations in terms of performance and usability.
First, the cache considers only 4 features (revenue history and three user features) which
is a very small feature set and may reduce the accuracy of refresh decisions. Second, using
a refresh frequency to determine whether or not refresh at next few subsequent queries is
not sufficient because queries with the same key could still have very different revenue
expectations. We need to make dynamic refresh decision at each query. Third, adding
personalization to the cache key reduces not only the revenue loss but also the cost sav-
ings. Due to the limitations above, the cache sacrifices the total cost savings with many
unnecessary cache refreshes in order to achieve a low revenue impact and a net profit im-
provement. In addition, the incorporated heuristics require nontrivial manual tuning of
parameters such as refresh frequencies to achieve better performance. If the workload
changes, these parameters must be re-tuned to keep the same performance.

To improve accuracy and eliminate manual tuning, we propose another prediction-
based cache design which uses a rapid machine learning algorithm to predict the revenue
loss by caching for each query with a richer set of 29 features from the incoming query, the
cached entry, and the historical statistics. Based on the gradient boosting regression tree
algorithm [35], we build a fast prediction framework that is able to predict whether or not
using cached ads would reduce revenue. This prediction framework has rapid prediction
time, fast training time, and low storage requirement. Using this prediction framework,
we are able to make accurate refresh decision per query and build a prediction-based ads
cache that provides better net profit improvement without any parameter tuning.
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For the rest of this chapter, Section 3.1 presents the heuristic-based cache design. Sec-
tion 3.2 presents the prediction-based cache design. Section 3.3 presents the evaluation
results. Section 3.4 concludes the caching work.

3.1 A heuristic-based cache design

Domain-agnostic caching mechanisms such as pure LRU or LRU with a fixed refresh rate
work poorly for ad serving. Depending on how their parameters are chosen, they either
reduce revenue excessively, or fail to reduce the computation cost. In this section, we
discuss three domain-specific caching heuristics we devised to avoid these problems.

3.1.1 Ad-serving cache design space

To build an effective ad-serving cache for maximizing cost saving while minimizing rev-
enue loss, we discuss three important design questions as below.

1. What keys to cache? Query phrase is the most common choice as the key. How-
ever, since personalized information such as location and gender could affect the ads lists
variance, only using query phrase may result in large difference between the cached ads
versus the actual ads, causing revenue loss. On the other hand, one may choose to use
query phrase together with personalization features as cache key. This approach reduces
the potential discrepancies between cached and actual results. However, as studied in
web search engine caching, personalization could render lower hit rate since the reuse fre-
quency would be lower — the cost saving of the cache would be less [18]. How to exploit
personalization features in the cache design is an important question.

2. What values to cache? The most intuitive answer is to cache the pre-auction ads
lists computed by the scoring-based selection from the previous cache miss or last refresh.
However, as described in Section 2.3.6, this pre-auction ads list has intrinsic variance,
especially when the personalization is not considered. This could be a source of lower
similarity scores and higher revenue loss, posing another challenge to the cache design.

3. When to refresh? Due to intrinsic variance of the pre-auction ads list, the ad-serving
cache needs an active refresh policy to avoid revenue loss. A basic approach is to have
a refresh rate with fixed period or frequency: a higher rate reduces revenue impact but
also reduces cost savings, and vice versa. Can we do better? The workload properties
discussed in Section 2.3.4 shed some light — the revenue is contributed by only a small
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portion of distinct query phrases. Could we apply different refresh rate to query phrases
with potentially different revenue impact?

Beyond the above three major design questions, cache size and replacement policies
are two common aspects to consider during cache design. We found, though, the decision
for them at ad-serving cache is fairly intuitive given the properties of the workload.

•With respect to cache size, a small cache could achieve good performance since the
query frequency distribution is highly skewed (Section 2.3.3) and the key-value pair we
cache has rather small sizes. Thus it’s possible to have a large enough cache to store all
key-value pairs. Whether the cache size is infinite or not, it is important to actively refresh
the cached key-value pairs to keep the freshness of the cached ads list and avoid potential
revenue loss.

• Because it is inexpensive to have a large enough cache for frequently accessed items
and most of cache update comes from refreshing policy, the choice of the replacement
policy becomes less important in this context. We find least recently used (LRU) policy
works well, and more advanced policies such as GreedyDual-Size [21] and GD-Wheel [69]
only bring marginal benefits.

3.1.2 What keys to cache: selective personalization

To better exploit the benefit of personalization, we propose a selective personalization
strategy. For those query phrase with no revenue generated before, we don’t consider
personalization to save more computation cost. For those query phrases that have revenue
history, we use the combination of query phrase and personalization features (location,
gender, age of the user) as the key. When a query phrase starts to generate revenue, we
insert a new cache entry with the three personalization feature included and remove the
old cache entry. By using a subset of key personalization features only for those query
phrases that contribute to the total revenue, we could avoid additional revenue loss while
minimizing the reduction of cost savings.

3.1.3 What values to cache: ads list merging

To reduce the effect of the ads list variance, we propose to cache a merged ads list based on
all previous pre-auction ads lists computed by the scoring-based selection. Specifically, we
use a fixed size queue to maintain the cached ads list. The size of the queue is a bit larger
than the usual size of a single pre-auction ads list. Whenever a refresh is scheduled, instead
of completely replacing the cached ads list, we update the cached ads list by inserting new
ads to the head of the queue. If the ad already exists in the queue, we move the ad to the
head of the queue. When the queue is full, we evict the ad at the tail of the queue. By
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caching a merged ads list, we could reduce the variance of the ads list thus avoid revenue
loss.

3.1.4 When to refresh: revenue-aware adaptive refresh

Recent works for web search engine caching propose to use hybrid strategies [32, 87] and
adaptive refresh frequency [6, 16] based on access frequencies to increase cache hit rate
while reducing staleness. For search advertising caching, however, minimizing revenue
loss is the primary design goal that other refresh policies do not consider, and this goal
requires the refresh policy to take both the revenue history and the staleness (intrinsic
variance) of the cached results into consideration.

We propose a revenue-aware adaptive refresh policy which assigns different refresh
rates to cache entries based on the revenue history and the ads list similarity score. For
those query phrases with no revenue generated before, we assign a fixed and conservative
refresh rate to the corresponding cache entries. For those query phrases that have revenue
history, the corresponding cache entries have an aggressive and dynamic refresh rate which
keeps changing based on the similarity score. After each refresh we compute the similarity
score of the old cached ads list based on the new refreshed ads list. We reduce the refresh
rate if the similarity score is high, and vice versa. With such adaptive refresh policy, the
ad-serving cache could make a better tradeoff between the cost saving and the freshness
of the cached ads list. When a query phrase starts to generate revenue, the conservative
refresh rate will be replaced by the aggressive refresh rate.

3.1.5 Heuristic-based approach summary

To summarize, we show how the proposed three domain-specific caching heuristics handle
cache access and insertion in Algorithm 1 and 2. When handling cache access, we first
determine the key based on whether the query phrase has revenue history or not. If so,
we combine the query phrase and the personalization information as the key. Otherwise
we just use the query phrase as the key. On cache miss, we need to run all ads selection
stages and later insert the pre-auction ads list into the cache. On cache hit, we first decide
whether or not refresh the cached ads list based on the stored refresh frequency and the
frequency counter of the entry. If we do refresh, we first compute the new pre-auction ads
list just like a cache miss. If the query phrase has revenue history, we update the aggressive
refresh frequency based on the similarity between the cached ads list and the new ads list.
Then we merge the new ads list into the cached ads list and reset the frequency counter.
If we don’t refresh, we increment the frequency counter. Finally we move the entry to the
head of the LRU queue, and return the cached ads list. If later any ad is clicked by the
user, we will add the query phrase to the list of query phrases with revenue history.
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Algorithm 1: How the proposed heuristics process cache access
input : Query phrase: q,

personalization information: p,
list of query phrases with revenue history: R,
the hashtable that stores the cache entries: H ,
the LRU queue: L.

output: Ads list on cache hit, or null on cache miss.
key ← q
if q ∈ R then

key ← key + p
end
if H[key] = null then

return null
end
freq← H[key].refreshFreq
cnt← H[key].refreshCnt
if cnt%freq = 0 then

// do refresh
{ad} ← new pre-auction ads list computed by scoring-based selection
if q ∈ R then

similarity← compare(H[key].cachedAds, {ad})
update H[key].refreshFreq based on similarity

end
H[key].cachedAds← merge(H[key].cachedAds, {ad})
H[key].refreshCnt← 1

else
increment H[key].refreshCnt

end
move H[key].lruNode to the head of L
return H[key].cachedAds
(if there is any ad get clicked, insert q into R.)

When handling cache insertion, we first determine the key based on whether the query
phrase has revenue history or not. If the cache is full, we evict the least recently accessed
cache entry. Then we cache the pre-auction ads list computed by the scoring-based selec-
tion, set the frequency counter, add the entry to the head of the LRU queue, and set the
refresh frequency based on the query phrase’s revenue history.
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Algorithm 2: How the proposed heuristics process cache insertion (after Algo-
rithm 1 returns null)

input: Query phrase: q,
personalization information: p,
pre-auction ads list to be cached: {ad},
list of query phrases with revenue history: R,
the hashtable that stores the cache entries: H ,
the LRU queue: L.

key ← q
if q ∈ R then

delete H[key] if exists
key ← key + p

end
while size(H) ≥ cache size do

// eviction
evict the tail of L and delete its entry in H

end
H[key].cachedAds← {ad}
H[key].refreshCnt← 1
H[key].lruNode← new node at the head of L
if q ∈ R then

H[key].refreshFreq← aggressive frequency
else

H[key].refreshFreq← conservative frequency
end

3.2 A prediction-based cache design

As discussed at the beginning of this chapter, the heuristic-based cache design has several
drawbacks in terms of performance and usability. To improve accuracy and eliminate
manual tuning, we develop another prediction-based cache design. This section presents
the requirements, features, and empirical evaluations of the prediction framework.

We use the gradient boosting regression tree algorithm [35] to build a rapid, accurate
and flexible prediction framework that predicts the potential revenue loss by caching. Gra-
dient boosting decision trees are an ensemble model of decision trees. A decision tree
is a flowchart-like tree in which each internal node represents a “test” on a feature (e.g.,
whether the feature value is larger than 10), each branch represents the outcome of the
test, and each leaf node represents a prediction value. The gradient boosting decision tree
model trains a set of weak decision tree models in an iterative fashion. At each training
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iteration, a new weak decision tree is trained attempting to improve from the previous tree.
At inference, the prediction is computed as the weighted sum of the predictions from all
weak models. As a result the number of training iterations affects both the model size and
the prediction accuracy/latency.

We selected this decision tree approach because of several of its strengths: Both train-
ing and inference are fast, and the models allow for introspection: decision tree models
allow us to identify the importance of individual features by the total error reduction per
split in the tree, which is helpful during feature exploration and for explaining why the
system works. For the same reasons we also use gradient boosting decision trees when
predicting the search termination condition for approximate nearest neighbor search.

3.2.1 Requirements

We desire three attributes in the prediction framework: accuracy, prediction overhead, and
flexibility. We use the standard metrics of prediction, namely precision (|A ∩ P |/|P |) and
recall (|A ∩ P |/|A|), where A is the set of true queries with revenue loss, and P is the set
of predicted queries with revenue loss when using the cache ads.

Accuracy Given an incoming query and the corresponding cached ads, we want the
prediction framework to predict whether using the cached ads to serve the query would
lead to revenue loss or not. The difficulties of this prediction problem come from two
aspects: (1) Biased sample set. Only about 3% of queries have ad click revenue [1].
(2) Intrinsic uncertainty of user click behavior. In fact, for the same pair of query and
ads, different users may have quite different click behaviors. Even for the same user
who searches the same query multiple times, they may either click or not click on the
same ads. This large intrinsic uncertainty means that the upper bound of classification
accuracy would be low. Since the average revenue per click is much higher than the
average computation cost per query, a false negative prediction is much more harmful to
net profit than a false positive prediction. Thus recall is a more important metric than
precision in this problem.

Prediction overhead The latency overhead involved in performing prediction must be
small to keep the interactive nature of web search. Prediction itself adds additional work
to the advertising system, since we will still perform the machine learning-based ads se-
lection if the prediction shows that using cached result lead to revenue loss. Since the ads
serving execution takes tens of milliseconds, we set the latency budget of the prediction
framework at less than one millisecond.
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Flexibility Since we have different requirements on precision and recall, the ability to
adjust the threshold of defining queries with nontrivial revenue loss allows the predictor to
adapt to varying workload and different performance requirements. We thus abstract the
prediction as a regression problem (of estimating the revenue loss by caching) rather than
a classification problem (of deciding whether serving the query with cached ads lead to
nontrivial revenue loss or not).

3.2.2 Features

Arriving queries have features from the incoming query and user, from the cached entry
based on the cache entry key, and from the historical statistics based on the query phrase.
In this section, we describe the features that can be used for prediction and analyze the
importance of the features.

Space of features

We investigate 29 features that meaningfully correlate with the potential revenue loss by
caching, which we categorize into incoming query features, cached entry features, and
statistic features as listed in Table 3.1. To keep the prediction framework fast enough and
limit the storage overhead, we select a subset of features that commonly exist in any search
advertising system and have high impact on ads selection in Bing Ads.

Incoming query features Incoming query features describe the incoming query and
user. We use the throttling level described in Section 2.3.4 to represent the potential rev-
enue of the incoming query, and use an internal query category id to distinguish different
query phrases. We select location, gender, age, and device type to describe the incoming
user. The location includes features at 5 levels, where level 1 denotes country and higher
levels denote smaller geographical regions. Since these features come with the incoming
query, they do not incur storage overhead.

Cached entry features Cached entry features describe the cached ads and the previous
user at last refresh of ads selection result. We use the average expected CPC described
early on to represent the expected revenue of the cached ads, and we use the cost indicator
to describe the number of matching ad listings at last computation. Since the cached ads
were selected for a different user, we use the same set of features to describe the user at
the previous computation. We use two additional features to describe when was the last
refresh of the cached ads. These features require storage overhead for each cache entry.
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Feature Description Storage Overhead

ThrottleLevel Throttling level of incoming query None
QueryCategory Category id of incoming query None

Location1-5 Location of incoming query’s user None
(5 levels, 1 denotes country)

Gender Gender of incoming query’s user None
Age Age group of incoming query’s user None

DeviceType Device type of incoming query’s user None

AvgCPC Average expected CPC of cached ads Per cache entry
Cost Cost indicator of last refresh Per cache entry

CLocation1-5 Location of cached ads’ user Per cache entry
(5 levels, 1 denotes country)

CGender Gender of cached ads’ user Per cache entry
CAge Age group of cached ads’ user Per cache entry

CDeviceType Device type of cached ads’ user Per cache entry
LastRefDur Duration gap between last refresh Per cache entry

and incoming query
LastRefFreq Occurrence gap between last refresh Per cache entry

and incoming query

AvgRev Average revenue per query Per query phrase w/ revenue
ClickPeriod Click period Per query phrase w/ revenue

ClickFreq Click frequency Per query phrase w/ revenue
RefPeriod Refresh period Per query phrase

RefFreq Refresh frequency Per query phrase
AvgLossDur Duration-based average loss rate Per query phrase

AvgLossFreq Occurrence-based average loss rate Per query phrase

Table 3.1: Space of the features.

Statistic features Statistic features describe the historical statistics for each query phrase.
We use the average revenue per query and click period/frequency to represent the revenue
history. We also use refresh period/frequency to describe refresh history. In addition, we
use two average loss rate numbers to represent the changing rate of ads selection over time.
For two ads lists A and B from two consecutive refreshes, the loss rate is computed by
(1−|A∩B|/|A∪B|)/(duration or occurrence gap between two refreshes). All the statistic
features above are aggregated using only the training data, not including the whole history
log and the test data. On the other hand, we keep updating these statistics using the past
query information during the cache simulation. These features require storage overhead
for each distinct query phrase.
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Feature Importance Feature Importance

AvgRev 1 CLocation5 0.02773
AvgCPC 0.28498 Location5 0.02318

ThrottleLevel 0.19877 QueryCategory 0.02148
Gender 0.07363 AvgLossFreq 0.01925

DeviceType 0.05106 AvgLossDur 0.01558
RefPeriod 0.05100 Location4 0.01313

ClickPeriod 0.03050 Age 0.00995
ClickFreq 0.02877

Table 3.2: Top-15 features ranked by the importance obtained from boosted regression
tree.

Feature analysis

To study which features are good predictors of revenue loss by caching, we use per-feature
gain from boosted regression tree where the importance of a feature is proportional to the
total error reduction per split in the tree. Table 3.2 shows the 15 most important features,
with each importance normalized to the highest value. We observe that the top 3 features
are all directly related to revenue history or expected revenue. Although the throttling
level is the only feature that has the knowledge of all revenue history, it is only the 3rd
most important feature in our experiments. This is because throttling level is designed
only to predict the approximate expected revenue level (with only 200 levels), not the
precise expected revenue. The next two top features are gender and device type of the
incoming user, as female users and PC users tend to have higher expected revenue in some
traffic. The highest level location of both incoming user and previous are also helpful since
local advertisers tend to spend bid budget at only neighboring regions.

3.2.3 Empirical evaluation

To find the ground truth revenue loss for training data built from the history log, we need to
estimate the revenue loss when serving a different cached ads list to a query. We estimate
this revenue loss by aggregating the revenue of ads clicked by the user in history that
are not included in the cached ads list. Although there exist more accurate revenue loss
estimations such as the auction simulation we use in Section 3.3, such calculations take too
long to compute thus are not fit for fast model training. Thus we use a fast yet reasonable
calculation to build the training data.

To build the training data, we simulate an infinite-size cache over the history log. For
the first query of each distinct key (query phrase with optional personalization informa-
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Figure 3.1: CDF of predicted revenue loss for queries with zero and nonzero ground truth
revenue loss.

tion), we insert the selected ads into the cache. For each following query, we first compute
the ground truth revenue loss based on the click history and the cached ads, and gener-
ate the training entry row. Then we refresh the cached ads if the ground truth revenue
loss is positive or at the 20th cache hits as a conservative mandatory refresh. As a result
we get one row of training data per query and the whole training data includes both zero
and nonzero ground truth revenue loss. Despite the overall click-through rate being only
2 − 3%, we choose not to re-balance the training data since 1) there are still hundreds of
thousands of clicks in a hour; and 2) we want to keep the low-CTR pattern in the training
data just as the real workload.

We train the prediction framework using the Light Gradient Boosting Machine (Light-
GBM) framework [62]. After training the regression model, we need to determine the
threshold that distinguish the queries with nontrivial revenue loss by caching so that the
prediction framework can decide when to refresh the cache entry. To do so we compare
the ground truth and predicted revenue loss of the training data (or test data based on
other log). As plotted in Figure 3.1, we find that for any feature sets we test, there always
exists a threshold value (close to the minimum prediction value) where most (e.g., 80%)
of the queries with zero ground truth revenue loss have predicted revenue loss less than
the threshold, and vice versa. Thus we are able to find the threshold by a simple binary
search. Using any threshold with lower value would greatly harm the accuracy of the pre-
diction framework. On the other hand, a slightly higher threshold has marginal effect on
the accuracy since the remaining queries, with either zero or nonzero ground truth revenue
loss, have predicted revenue loss much higher than the threshold (i.e., it’s very difficult to
distinguish those remaining queries by the prediction framework with any threshold).

We collect 3 hour log to get hundreds of millions of training entries, and perform 5-
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Precision (%) Recall (%)

All features 5.02 83.82
Top 15 features 4.80 82.26
Top 3 features 4.03 74.39

Heuristic-based 0.52 51.47

Table 3.3: Prediction accuracy of prediction framework with different feature sets, com-
paring with the heuristic-based approach.

fold cross validation with 5 repetitions to avoid biased results. We compare the accuracy
of the prediction framework with the heuristic-based approach. For the heuristic-based
approach, we use the last one day log before the training to build the list of query phrases
with nonzero revenue history, and use aggressive refresh frequencies and personalized
cache keys for those phrases. Using more history log to build the list would improve the
accuracy of the refresh heuristic. However, based on our experiments using more than one
day log only marginally improves accuracy due to the diminishing returns on number of
frequent query phrases with nonzero revenue.

Table 3.3 presents the average of precision and recall for the prediction framework with
different feature sets, comparing with the accuracy of the heuristic-based approach. As
expected, the precision is much lower than the recall. This is because (1) we have different
requirements on the two metrics, and (2) it is very hard to make a perfect prediction due
to the low click-through rate and huge intrinsic uncertainty in user behavior. On the other
hand, low precision is acceptable since false positive errors have no/small effects on the
gross revenue/net profit, respectively. For the prediction framework, using the top 15
features has similar accuracy to using all features. On the other hand, using only the top 3
features reduces the accuracy but still outperforms the refresh heuristic, since the refresh
heuristic only use average revenue history and three incoming user information as features.

Table 3.4 compares the training time, average prediction overhead per query, and stor-
age overhead per one million distinct query phrases when using different feature sets. All
the numbers are measured when running the prediction framework on a single machine
with Intel Xeon E5-2680 v2. As expected, using fewer features reduces all three met-
rics. On the other hand, all approaches achieve rapid prediction with acceptable storage
requirements.

3.3 Evaluation

To evaluate the proposed heuristic and prediction-based cache designs, we build a cache
simulator based on the production logs of Bing advertising system. Each timestamped log
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Training Avg prediction Storage overhead per
time (s) overhead (µs) 1 million phrases (GB)

All features 71 170 43.9
Top 15 features 50 154 25.7
Top 3 features 17 122 5.7

Table 3.4: Training time, average prediction overhead, and storage overhead of the pre-
diction framework. The average prediction overhead is measured using the Python API.
When using the C++ API (as we do in the adaptive ANN search termination condition
work), the prediction overhead would be even lower.

entry represents the information related to a single search query: the query phrase, the
personalization features (location, gender, age and device type of the user), cost indicator,
pre-auction ads list (output of scoring-based selection and the ads list we want to cache as
well), which ads got clicked and the corresponding revenues. The cache simulator reads
log entries chronologically, makes caching decisions (insertion, eviction, refresh) based
on the heuristics or the prediction, and evaluates the caching performances. We simulate
the logs on Wed Jun 7th 2017 which is the same as what we analyzed in the Section 2.3.
We simulate a cache with LRU replacement policy and one million entries, which is large
enough to cache the top query phrases. Since the value of each cache entry stores an ads
list with variable numbers of ads, cache entries may have different sizes. However, each
ad in the list only takes a few kilobytes including the corresponding metadata.

Section 3.3.1 describes the implementation of evaluated cache designs. Section 3.3.2
describes the performance metrics we use. Section 3.3.3 presents the main results com-
paring the performance of different cache designs. Section 3.3.4 provides post analysis.

3.3.1 Implementation of cache designs

We implement and evaluate three different cache designs. First we build a domain-agnostic
traditional cache with a fixed-rate refresh so that each cache entry will refresh at 5th cache
hits as a moderate refresh rate. (We test different refresh rates and all cases end up with
worse performance and net profit impact than the proposed cache designs.) This cache
doesn’t consider the wall clock time when making refresh decisions because our experi-
ments show that adding consideration of wall clock time doesn’t have significant effect on
revenue impact reduction. At last, this cache doesn’t consider any personalization infor-
mation and the key of each cache entry is the query phrase itself.

Then we build the heuristic-based cache which incorporate three domain-specific caching
mechanisms. First, the revenue-aware adaptive refresh policy assigns different refresh fre-

36



quencies based on the revenue history of the previous day. Cache entries without rev-
enue history have a fixed refresh frequency of 20; cache entries with revenue history
have a dynamic refresh frequency that starts from 1 (always refresh) and then incre-
ments/decrements based on the similarity between the cached ads list and refreshed ads
list. If the similarity is more than 90%, we increment the refresh frequency by 1. If the
similarity is less than 70%, we decrement the refresh frequency by 1 (or unchanged if
the frequency is already 1). Second, the selective personalization policy combines query
phrase and personalization information as the cache entry key for the query phrases with
revenue history. Third, the ads list merging technique combines the ads list from multiple
previous computation results of the same cache key. We use a fixed size queue to maintain
the merged cached ads list. The size of the queue is larger than but at the same magnitude
of the usual size of a single pre-auction ads list. Thus the increased size of pre-auction ads
list won’t affect the processing time of the final auction process.

Finally we build the prediction-based cache. We use 3 hours of logs (19-22PM) on
Jun 6th (the day before cache simulation) to build the training data and train the prediction
framework using the LightGBM library [62]. We use the next one hour log (22-23PM) as
validation data to adjust the threshold as described in Section 3.2.3. Using longer training
data would improve the accuracy of the prediction framework. We decide to train with
3 hours log because (1) we want to show that using a relatively short period of training
data is already enough to train an accurate and stable model for several days, and (2)
our experiments show that using more training data has marginal caching performance
improvements for our cache simulations.

We use this trained prediction framework to predict the revenue loss by caching during
caching simulation at each cache hit. If the predicted revenue loss is lower than the thresh-
old, we serve the cached ads without refresh. We use only query phrase as cache entry
key since it maximizes the performance of prediction-based cache. More precisely, our
experiments show that adding personalization of cache keys to the proposed cache doesn’t
help much on avoiding additional revenue impact but greatly reduces the total cost sav-
ings. This is because the prediction framework already takes the personalization features
into consideration when marking refresh decisions.

3.3.2 Performance metrics

To compare the performance of different caching design, we use four performance metrics
as below.

1. Hit rate Hit rate is one of the basic caching performance metrics. When a refresh is
triggered at cache hit, we count it as a cache miss since the refresh requires the candidate
selection and scoring-based selection to update the cached ads list.
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2. Percentage of cost saving We calculate the caching cost saving by total accumulated
cost indicator on cache hits divided by total accumulated cost indicator over all queries.
The higher cost saving the better. For the prediction-based cache, we also need to take
the cost of prediction framework into consideration. Since each ads selection on cache
miss takes tens of milliseconds (on hundreds of machines) and each prediction takes less
than 200 microseconds (on a single machine), we estimate that the total prediction cost
should be no more than 1% of total ads selection cost when there is no cache. Thus we
always subtract the cost saving by 1% for the prediction-based cache case. This also shows
that using perdition-based cache design doesn’t add significant cost to the caching system
compared to the heuristic-based design.

3. Revenue impact It is impossible to exactly calculate the revenue impact of caching
in simulations, since we don’t know user’s action when the presented ads are changed. To
scientifically estimate the revenue impact of caching, we use an offline auction simulator
available in Bing Ads to simulate the whole auction process. When we use a cached ads
list to serve a query, the auction simulator uses a click prediction framework to recalculate
the click probability for each cached ad based on the current query and user. When a
cached ads list computed for a user is served to another user with different features such
as gender and age, the predicted click probability will drop.

As an alternative calculation, we also consider a pessimistic revenue impact. This
calculation only count the ad click revenue if the clicked ads are cached on cache hits.
This is a pessimistic estimation since the user may click other ads even though the actual
clicked ads are not presented. We use this deterministic revenue impact calculation as a
post analysis in Section 3.3.4.

4. Net profit impact The net profit equals the total revenue subtracted by the total cost.
As mentioned in Section 2.3, 0.1 to 0.3 would be a representative range of learning cost-
to-revenue ratio for search advertising systems. Since there exists other operation cost
for Bing Ads, we present the net profit impact as absolute values: The total revenue of
Bing Ads for fiscal year 2016 4th quarter is $1465.85 million based on Microsoft earnings
release [2]. Thus we calculate the expected net profit impact for the quarter as (total
revenue × pessimistic revenue impact) + (total revenue × cost-to-revenue ratio × cost
saving).

3.3.3 Comparing different cache designs

We evaluate the three cache designs based on the cache simulations and the auction sim-
ulations. Figure 3.2 illustrates the hit rates, cost savings, revenue impacts, and Figure 3.3
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Figure 3.2: Hit rate, cost saving, and revenue impact for naive fixed refresh rate, heuristic-
based cache, and proposed prediction-based cache. For all the numbers the higher the
better.

illustrates the net profit impacts for the three cache designs. The cache with fixed rate
refresh has high hit rate (40.1%) and high cost saving (30.7%), but the revenue impact is
as bad as −5.16% since no revenue information is considered at caching. As a result, this
cache leads to a net profit impact of −30.6 to 59.4 million dollar for Bing Ads in FY16
Q4 (based on 0.1 to 0.3 cost-to-revenue ratio).

The heuristic-based cache greatly improves the revenue impact from−5.16% to−0.29%.
On the other hand, both the hit rate (21.4%) and cost saving (17.0%) are dropped since
the cache uses a very aggressive refresh strategy to avoid revenue impact. Eventually this
cache has a net profit impact of 20.7 to 70.5 million dollar.

Compared to the heuristic-based cache design, the prediction-based cache is able to
achieve a better revenue impact (−0.02%) with much higher hit rate (45.1%) and cost
saving (24.2%). This is because the prediction framework is able to accurately predict
the revenue loss by caching. Overall the prediction-based cache uses 87% less refreshes
compared to the heuristic-based cache. For those query phrases that don’t have revenue
history in last day, the prediction-based cache makes much less false negative errors (no
refresh at revenue loss) since it takes additional features such as throttling level and per-
sonalization features into considerations. For those query phrases with revenue history, the
prediction-based cache makes much less false positive errors (refresh at no revenue loss)
since it doesn’t simply apply an aggressive refresh frequency, but makes separate refresh

39



0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Learning Cost-to-Revenue ratio

−100

−50

0

50

100

150

200
N

et
pr

ofi
ti

m
pa

ct
(m

ill
io

n
$)

Bing Ads

Fixed refresh
Heuristic-based
Prediction-based

Figure 3.3: Net profit impact at different cost-to-revenue ratios (0.1 to 0.3 as representative
range). When there is no cache the profit impact is zero.

decision at every query. Eventually the prediction-based cache is able to greatly reduce
revenue impact with less cache refreshes and no personalization for the cache entry keys.

Compared to the cache with fixed refresh rate, the prediction-based cache has higher
hit rate but lower cost saving. This is because the prediction framework predicts that
queries with higher cost on cache miss tend to have higher revenue loss expectation. Our
proposed cache design achieves the best net profit impact of 35.2 to 106.1 million dollar. In
addition to the representative cost-to-revenue ratio range between 0.1 to 0.3, we also plot
in Figure 3.3 the cases for even smaller or larger cost-to-revenue ratios. The traditional
cache provides better net profit at higher cost-to-revenue ratio since it has the most cost
savings. However, the prediction-based cache dominates the net profit improvement at any
ratio.

3.3.4 Post analysis

Alternative revenue impact calculation

The offline auction simulator we use for the revenue impact calculation is not a public tool.
Different revenue impact prediction algorithms may produce different numbers. Thus we
also consider an alternative pessimistic revenue impact calculation as described in Sec-
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tion 3.3.2. Under this calculation, the traditional cache with fixed refresh has a revenue
impact as bad as -15.2%. The heuristic-based cache has a revenue impact of -2.5%, which
is similar to the number reported in the previous work. On the other hand, the proposed
prediction-based cache has a revenue impact of -1.0%. Using this pessimistic revenue
impact calculation leads to higher revenue impact for all approaches. But the prediction-
based cache is still able to provide the least revenue impact.

Heuristic-based cache: parameter tuning

For the heuristic-based cache design, the proposed adaptive refresh policy depends on 4
parameters: the fixed refresh frequency for entries without revenue; the initial refresh fre-
quency for entries with revenue; and the low/high watermark for changing the aggressive
frequency based on the similarity score. Changing the fixed refresh frequency for entries
without revenue mostly just affect the cost saving. Changing the initial refresh frequency
for entries with revenue has noticeable affect on revenue loss. This is because the intrinsic
variance of ads lists makes it necessary to always refresh for some of revenue-sensitive
phrases. Similarly, using stricter low/high watermark increases number of refreshes, and
reduces both revenue loss and cost saving. Manual tuning of these parameters is necessary
to maximize the heuristic-based cache performance.

Prediction-based cache: comparing different feature sets

We evaluate the prediction-based cache with different feature sets as illustrated in Fig-
ure 3.4. Using top 15 features has nearly the same performance compared to using all
features. However, using only the revenue-related top 3 features lead to a slightly worse
performance. This shows that other top features such as information of the incoming user
and the previous user on refresh are still beneficial to caching performance. On the other
hand, all the three cases outperform the heuristic-based cache design.

Prediction-based cache: temporal stability of the prediction

To evaluate the temporal stability of the prediction framework, we use 3 hour log from
three different days before cache simulation to build the training data. As illustrated in
Figure 3.5, using training data from different days doesn’t have much different caching
performance. This shows that a prediction framework built from 3 hour log is able to
accurately predict the revenue loss in at least next 3 days. This also implies that the
proposed features in our framework are representative to capture the stable patterns in
terms of revenue expectations.
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Figure 3.4: Hit rate, cost saving, and revenue impact for prediction-based cache with
different feature sets. The corresponding net profit impacts are: $29.8 to $93.4 million,
$34.6 to $105.0 million, and $35.2 to $106.1 million.

3.4 Conclusion

Complex machine learning algorithms enable search advertising systems to select the best
ads from a large candidate pool thus improve the total gross revenues. On the other hand,
these expensive computations bring huge operation cost for all traffics regardless of the
revenue expectations. The highly skewed frequency distribution of search queries pro-
vides opportunities for caching the learning computation results. However, as we learn
from workload analysis of the Bing advertising system, the intrinsic variance of the learn-
ing algorithm results leads to substantial revenue loss for traditional domain-agnostic and
revenue-agnostic cache designs. A traditional cache with fixed refresh rate can reduce cost
by up to 30.7% while having negative revenue impact as bad as −5.16%, and a net profit
impact between $−30.6 and $59.4 million.

We propose two cache designs to balance the ads quality and computation cost: one
heuristic-based and one prediction-based. The heuristic-based cache is able to provide net
profit gain, but the limited feature selection with nontrivial tuning lead to a strategy that
sacrifices the cost savings to avoid revenue loss. In contrast, the prediction-based cache
accurately predicts the revenue loss by caching, and use it to guide cache refresh decisions.
Compared to the heuristic-based cache, the prediction-based cache is able to improve the
cost saving (from 17% to 24%), the revenue impact (from−0.29% to−0.02%), and the net
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Figure 3.5: Hit rate, cost saving, and revenue impact for prediction-based cache with
different training data. The corresponding net profit impacts are: $34.3 to $104.2 million,
$34.9 to $105.5 million, and $35.2 to $106.1 million.

profit impact (from [$20.7, $70.5] million to [$35.2, $106.1] million) based on simulation
results on traces from Bing Ads.

Our work reassures the advantages of using fast machine learning algorithms instead of
manually-tuned heuristics to solve performance tradeoff questions in the search advertis-
ing context, and recommendation systems in general. These machine learning techniques
enable us to incorporate a rich selection of features, measure the importance of each fea-
ture, and use the top features to make fast and accurate decisions without parameter tuning.
These advantages make it preferable to use machine learning techniques to solve complex
performance problems that are difficult for heuristics to find better solutions.
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Chapter 4

Approximate Nearest Neighbor Search
Performance Analysis

In this chapter, we present performance analysis of state-of-the-art approximate nearest
neighbor search approaches, as a motivation for the proposed learned adaptive early ter-
mination. Finding the top-k nearest neighbors among database vectors for a query is a
key building block to solve problems such as large-scale image search and information
retrieval [67, 75, 91], recommendation (the candidate retrieval component) [27], entity
resolution [52], and sequence matching [13]. As database size and vector dimensionality
increase, exact nearest neighbor search becomes expensive and impractical due to latency
and memory constraints [14, 15, 104]. To reduce the search cost, approximate nearest
neighbor (ANN) search is used, which provides a better tradeoff among accuracy, latency,
and memory overhead.

ANN search traditionally uses a mixture of compression and indexing. Code compres-
sion shrinks database vectors into compact codes, either binary [23, 44] or based on various
quantization methods [7, 24, 57, 110]. These techniques can reduce computation latency
and memory requirements by nearly an order of magnitude. With code compression alone,
however, the search process remains exhaustive. The second form of approximation, the
indexing structure, restricts the distance evaluation to a subset of elements. State-of-the-
art approaches include inverted file index [8, 12, 57] which groups database vectors by
clusters, and graph-based approaches [3, 31, 37, 79, 80] which perform beam search on
proximity graphs.

The number of the database vectors to search (i.e., the search termination condition)
affects performance: the more vectors to search, the higher the accuracy (good) and latency
(bad). The optimal termination condition (minimum search to find the nearest neighbor)
for each query is not obvious. As a result, state-of-the-art indexing approaches use various
fixed configurations to apply the same search termination condition for all queries. For
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example, inverted file index could terminate after searching the top 5 nearest clusters for
each query, and graph-based index could terminate after searching 100 neighboring graph
nodes for each query.

In our study of three datasets, we find that the number of vectors that must be searched
to find the ground-truth nearest neighbor varies widely among queries: it is possible to
find the nearest neighbor for most queries by searching a small fraction of the dataset, but
the remaining “difficult” queries require much more searching. For inverted file index, it
is possible to reach 80% accuracy by only searching up to the top 1.20% nearest clusters,
but reaching 95-100% accuracy requires searching up to the top 16.90% nearest clusters.
For graph-based approaches, 80% accuracy can be obtained by searching up to 0.13%
of total graph nodes, but reaching 95-100% accuracy requires searching up to 11.83%
of total graph nodes. As a result, fixed configurations force 80% of queries to search an
unnecessarily large number of database vectors, just to cover the remaining 20% “difficult”
queries.

Based on the study we argue that it is necessary to apply different termination condi-
tions for each query. One challenge is that static features such as the query vector itself are
not sufficient to predict this termination condition. During our feature exploration, we find
that runtime features such as intermediate search results after a certain amount of search
(e.g. when reaching 60-80% accuracy) are effective in predicting how much more work
should be performed for each individual query. These features enable us to build predic-
tion models in the next chapter that achieve the same accuracy with less total amount of
search compared to the fixed configurations.

For the rest of this chapter, Section 4.1 presents the background of approximate nearest
neighbor search. Section 4.2 presents the performance analysis of state-of-the-art ANN
search techniques.

4.1 Background

In this section, we first describe the ANN search problem and then introduce the state-of-
the-art ANN indexing approaches.

ANN search problem. Nearest neighbor search is the problem of finding the vectors
in a given set that are closest to a given query vector. As database sizes reach millions or
billions of entries, and the vector dimension grows into the hundreds [9, 58], approximate
nearest neighbor search becomes necessary in order to achieve a better tradeoff between
accuracy and efficiency. Formally, the ANN search problem [94] is defined as:

Definition 4.1.1 Approximate Nearest Neighbor (ANN) Search Problem. LetX = {x1, ..., xN} ∈
RD represents a set of N vectors in a D-dimensional space and q ∈ RD represents the
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query. Given a valueK ≤ N , ANN search finds theK closest vectors inX to q, according
to a pair-wise distance function d〈q, x〉, as defined below:

TopKq = K-argmin
x∈X

d〈q, x〉 (4.1)

The result is a set TopKq ⊆ X such that (1) |TopKq| = K and (2) ∀ xq ∈ TopKq and xp ∈
X − TopKq : d(q, xq) ≤ d(q, xp).

In this paper we use the Euclidean distance as the distance function to measure the (dis)similarity
between vectors.

4.1.1 Compressed representation

The first source of approximation comes from compressed representations, originally pro-
posed to improve search efficiency [104]. Later work proposed compact binary codes
to improve image similarity search [23, 75]. Recent work uses “vector quantization”, in
which a vector is first reduced by principal component analysis (PCA) dimension reduction
and then is subsequently quantized [42, 45, 57]. Although code compression introduces
distance approximation error, it provides more efficient vector storage and distance calcu-
lation. However, the search remains exhaustive: all database vectors must be evaluated.

4.1.2 Specialized ANN indices

In this paper we focus on improving the efficiency of another approximation method:
indexing. The ANN search index structure restricts the distance evaluations to a subset
of database vectors. In this paper we focus on two state-of-the-art methods: inverted file
index (IVF [57] and IMI [8]) and graph-based approaches (HNSW [79, 80]). There exist
other indexing approaches including deterministic space partitioning such as kd-trees [22],
and randomized indexing approaches based on locality sensitive hashing (LSH) [28, 41,
53, 54, 68, 113]. We believe that the idea of adaptive termination conditions also applies
to those approaches.

Inverted file index

The inverted file (IVF) index is a variant of inverted index. Inverted indices were pro-
posed in the computer vision community [97] and have long been used in the information
retrieval community [81]. In a recent paper about product quantization (a vector com-
pression technique) [57], the inverted file index is introduced as a nearest neighbor search
index to avoid exhaustive search. The IVF index groups database vectors into different
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Figure 4.1: The IVF index.

clusters. When building the index, a list of cluster centroids is trained by K-means cluster-
ing, and each database vector is assigned to the cluster with the closest centroid. During
searching, the index first computes the distances between the query and all cluster cen-
troids, then evaluates the database vectors belonging to the top-p nearest clusters as shown
in Figure 4.1. Using a larger p increases both accuracy (good) and search latency (bad).
Different compression methods often use IVF to avoid exhaustive search. In those cases
the database vectors are compressed into shorter codes.

Several follow-up projects aim to improve the inverted file indexing approach. Inverted
multi-index (IMI) [8] decomposes the vectors into several subspaces and trains separate
list of centroids in each subspace, which leads to a fine-grained space partition. Baranchuk
et al. propose to build sub-clusters in each cluster to further restrict the number of database
vectors to be evaluated [12]. However, all of IVF variants search the same fixed number
of nearest clusters for all queries.

Graph-based approaches

One of the state-of-the-art graph-based indexing approaches is the hierarchical navigable
small world graphs (HNSW) [79, 80]. This index includes multiple layers of proximity
graphs where each graph node represents a database vector as plotted in Figure 4.2. The
top layer contains only a single node and the base layer includes all database vectors. Each
intermediate layer includes a subset of database vectors covered by the next lower layer.
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When building the index, database vectors are inserted one by one. Each vector is inserted
into multiple layers from the base layer to a certain layer determined by an exponentially
decaying probability distribution. At each insertion, the newly-inserted vector is connected
to at most a fixed number of nearest nodes previously inserted to the same graph. As
a result the graphs created in HNSW are approximate knn-graphs, since the connected
neighbors might not be the ground truth nearest neighbors. In addition, HNSW’s algorithm
employs heuristics that connect some far away nodes from different isolated clusters to
improve the global graph connectivity.

When handling a query, a variant of beam search with beam width 1 (higher layers)
or p (base layer) is performed at each layer. Search starts from the top layer. At each
layer (except the base layer), the neighboring nodes of the start node are evaluated, and
the node nearest to the query is selected as the start node of the next layer. These 1-
hop beam searches aim to converge to a base layer start node that is fairly close to the
ground truth nearest neighbor of the query. At the bottom base layer, first the start node is
inserted to an empty candidate priority queue where the priority is based on the distance
to the query. Then at every iteration the algorithm pops the top candidate node from the
queue, evaluates the distances between the query and popped node’s neighbors, updates
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the current found best neighbor if necessary, and inserts popped node’s neighbors to the
candidate queue. Eventually top-p best candidate nodes (based on the distance to query)
have their neighboring nodes evaluated. Like in IVF, a larger p increases both accuracy
and latency.

Several follow-up projects aim to improve the proximity graph-based approach. Douze
et al. propose to combine HNSW with quantization [31]. Navigating Spreading-out Graph
(NSG) aims to reduce the graph edge density while keeping the search accuracy [36, 37].
SPTAG combines the IVF index and proximity graph for distributed ANN search [3, 101,
102, 103]. GRIP is a capacity-optimized multi-store ANN algorithm which combines the
HNSW and IVF index to jointly optimize search time, memory usage, and accuracy with
both DRAM and SSDs [108]. As with the IVF variants, all of these proximity graph
variants employ fixed configurations to perform a fixed amount of graph traversal for all
queries.

4.2 Performance analysis of state-of-the-art ANN search
approaches

4.2.1 Fixed configurations lead to inefficient latency-accuracy trade-
off

To motivate our work, we first evaluate the baseline performance of existing indexing
approaches under different fixed configurations. We explore three million to billion-scale
datasets summarized in Table 4.1. DEEP is a dataset of CNN image representations with
1 billion base vectors and 10000 queries [9]. Each vector has 96 dimensions where each
coordinate is a floating-point number between -1 and 1. SIFT is a dataset of local SIFT
image descriptors with 1 billion base vectors and 10000 queries [58]. Each vector has
128 dimensions where each coordinate is an integer between 0 and 128. GIST is a dataset
of global color GIST descriptor with 1 million base vectors and 1000 queries [57]. Each
vector has 960 dimensions where each coordinate is a floating-point number between 0
and 1. Each dataset also includes a separate set of training vectors and we use them to
train the prediction models for the proposed adaptive early termination technique.

In this experiment, for DEEP and SIFT we use the first 10M base vectors as the
database. For GIST, we use all 1M base vectors as the database. We evaluate the CPU-only
IVF and HNSW implementation in the Faiss similarity search library [60]. We build IVF
indices without vector compression in this experiment. Following the standard approach,
the number of clusters are configured close to the square root of the database size. For
each query, database vectors belonging to the top-p nearest clusters will be evaluated, and
we evaluate the performance under different p (in Faiss this parameter p is called nprobe
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Num. Num. Num.
Vector Base Training Query

Dataset Dimension Vectors Vectors Vectors

DEEP 96 10M, 1B 1M 10000
SIFT 128 10M, 1B 1M 10000
GIST 960 1M 0.5M 1000

Table 4.1: Summary of explored datasets.

for IVF).

The HNSW index in Faiss uses parameters M and efConstruction to adjust the index
complexity. For each database vector, the probability of inserting it into layer i graph is
(1/M)i, while the top layer always has only one node as the search starting point. Each
inserted vector will have at most 2M connected neighbors in the base layer and at most
M neighbors in other layers and the connections are determined by a beam search with
width = efConstruction. We build HNSW indices with M = 16 and efConstruction = 500
based on the original HNSW work [80]. For each query, top-p best candidate nodes in the
base layer have their neighboring nodes evaluated, and we evaluate the performance under
different p (in Faiss this parameter p is called efSearch for HNSW).

We search for the top-1 nearest neighbor for each query and the accuracy is represented
as recall-at-1 (the fraction of queries where the top-1 nearest neighbor returned from search
is (one of) the ground truth nearest neighbor). One thing to note is that a query may have
multiple ground truth nearest neighbors: one reason is that we find that all three datasets
we use have duplicate base vectors. In that case we count the search successful as long as
one of the ground truth is returned. Then we measure the recall and the average latency
when using different fixed configurations (nprobe for IVF and efSearch for HNSW). The
detailed methodology is described in Section 5.2.1.

Figure 4.3 illustrates the baseline performance of IVF and HNSW indices where each
dot represents a different fixed configuration: For DEEP10M, it takes only 0.757 ms/0.610
ms on average to reach 0.8 recall on IVF/HNSW index, but it takes 2.015 ms/0.865 ms on
average to reach 0.95 recall; For SIFT10M, it takes only 1.141 ms/0.625 ms on average to
reach 0.8 recall on IVF/HNSW index, but it takes 3.474 ms/0.819 ms on average to reach
0.95 recall; For GIST1M, it takes only 5.628 ms/0.807 ms on average to reach 0.8 recall
on IVF/HNSW index, but it takes 16.142 ms/2.185 ms on average to reach 0.95 recall.
To reach recall targets above 0.95, some extreme cases take hundreds of milliseconds
on average. This shows that the fixed configuration approach leads to undesirably high
average latency when trying to reach high recall target.

Both IVF and HNSW have worse performance on GIST1M for two reasons: First,
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Figure 4.3: Baseline performance with fixed configurations: Average end-to-end latency
at different recall-at-1 targets. Each dot represents a different fixed termination condition
applied to all queries. Note the y-axis starts at 0.5.

Euclidean distance computation time is proportional to the vector dimension. Second,
searching the GIST1M dataset is harder than SIFT10M and DEEP10M, despite its smaller
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Figure 4.4: CDF of the average of ratios between dist(q, xth neighbors) and dist(q, 1st
neighbor). Closer to 1 indicates that it is harder to find the 1st neighbor.

size. Figure 4.4 plots the CDF of average ratio between distance(query, 2nd to 100th
neighbors) and distance(query, 1st neighbor) under exhaustive nearest neighbor search.
When the average ratio is closer to 1, it means that the top 100 neighbors for each query
are more similar to each other, which increases ANN search difficulty: For the IVF index,
queries might be close to many more clusters; For HNSW index, it could take much more
graph node traversal to reach the ground truth nearest neighbor.

4.2.2 Queries need different termination conditions

To investigate the reason for undesirably high average latency with fixed configurations,
we must identify the minimum amount of search needed to find the ground truth nearest
neighbor for each query. For the IVF index, the minimum amount of search is represented
by the minimum number of nearest clusters to search (nprobe). For HNSW index, we do
not use the number of searched top candidate nodes (efSearch), instead using the mini-
mum number of distance evaluations to represent the minimum amount of search. This is
because: 1) The distance evaluation between query and database vector is the time con-
suming task; 2) The number of distance evaluations varies greatly even with the same
number of searched top candidate nodes: In some cases the searched candidate nodes are
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neighbors to each other, where many redundant distance evaluations are avoided. In some
cases it is more like a depth-first search, where the number of evaluations is close to “num-
ber of searched top candidate nodes × number of connected neighbors per node”. For a
few queries in DEEP and GIST datasets, we are not able to find this minimum amount
of search in HNSW index because the ground truth nearest neighbor is not found after
searching all reachable graph nodes due to graph connectivity issue.

Figure 4.5 illustrates the CDF of minimum amount of search to find the ground truth
nearest neighbor for each query: For IVF, 80% of queries only need to search at most top-
6/7/12 nearest clusters for DEEP/SIFT/GIST, but the other 20% queries must search up
to top-606/367/169 nearest clusters; For HNSW, 80% of queries only need to perform at
most 547/481/1260 distance evaluations for DEEP/SIFT/GIST, but the other 20% queries
require up to 88696/16618/118277 distance evaluations. We find the same trend when
using the training vectors as query vectors, which shows that the training and query vectors
share the same distribution.

4.2.3 How to predict the termination condition

To predict the termination condition for each query, we must identify relevant measurable
features. Static features such as the query vector are helpful, but our study shows that
it does not suffice: features obtained at the start of search do not accurately indicate the
termination condition.

Instead, we find that the intermediate search result after a certain amount of search
(e.g., when 60-80% of queries/training vectors have found their ground truth nearest neigh-
bors) is a critical runtime feature that indicates how much more work should be performed
for each query. For the IVF index, we measure the 50th, 75th, and 90th-percentile mini-
mum number of nearest clusters to search for different ranges of distance between query
and intermediate 1st neighbor after searching top 6 (DEEP)/7 (SIFT)/12 (GIST) nearest
clusters. For the HNSW index, we measure the 50th, 75th, and 90th-percentile minimum
number of distance evaluations for different ranges of distance between query and inter-
mediate 1st neighbor after 547 (DEEP)/481 (SIFT)/1260 (GIST) distance evaluations.

Figure 4.6 illustrates this relationship for the DEEP dataset (similar trends are found in
SIFT and GIST). As the distance between query and intermediate search result increases,
the minimum amount of search to find the ground truth also increases. This shows that in-
termediate search results are highly relevant features: if your search result is still far away
from the query, you probably want to search more. To get this feature, we need to search
a fixed amount for all queries, even though some of them need less than that. However
we argue that this runtime feature is necessary for the prediction model as explained in
Section 5.1, and the majority of the variation among search termination conditions is still
remained to be exploited by the proposed approach.
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Figure 4.5: CDF of minimum amount of search to find the ground truth nearest neighbor
for each query.
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Figure 4.6: DEEP10M: 50th/75th/90th-percentile minimum amount of search for different
ranges of distance between query and intermediate 1st neighbor.
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Chapter 5

Learned Adaptive Early Termination
for Approximate Nearest Neighbor
Search

In the last chapter, we show that state-of-the-art ANN approaches use fixed configurations
that apply the same termination condition (the size of subset to search) for all queries,
which leads to undesirably high latency when trying to achieve the last few percents of
accuracy.

To achieve a better tradeoff between latency and accuracy, we propose a novel ap-
proach that adaptively determines search termination conditions for individual queries. To
do so, we build and train gradient boosting decision tree models [35] (using the LightGBM
framework [62]) and neural networks models [95] (using the PyTorch framework [89]) to
learn and predict when to stop searching for each query for three indexing approaches:
IVF [57], HNSW [80], and IMI [8]. We implement our approach over the Faiss similarity
search library [60], and evaluate the end-to-end performance on three million to billion-
scale datasets (DEEP10M & DEEP1B [9], SIFT10M & SIFT1B [58], and GIST1M [57]).

Without vector compression and for applications targeting 95 to 100% recall-at-1 accu-
racy, our approach consistently reduces end-to-end latency vs. using fixed configurations
on three million-scale datasets (DEEP10M, SIFT10M, GIST1M): For the IVF index, the
average latency is reduced by up to 63% (2.7 times speedup); For the HNSW index, the
average latency is reduced by up to 89% (9.4 times speedup).

With OPQ vector compression [42] and for applications targeting 95 to 100% recall-
at-100 accuracy, our approach consistently reduces end-to-end latency vs. using fixed
configurations. For the IVF index+OPQ (DEEP10M, SIFT10M, GIST1M), the average
latency is reduced by up to 52% (2.1 times speedup). For the IMI index+OPQ (DEEP1B,
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SIFT1B), the average latency is reduced by up to 59% (2.4 times speedup).

For the rest of this chapter, Section 5.1 describes the design of the proposed predic-
tion models. Section 5.2 describes the experimental methodology and reports the results.
Section 5.3 presents the related work. Section 5.4 concludes the learned early termination
work.

5.1 Design

In this section, we lay out the way that our approach is trained and integrated into both
IVF and HSNW. Our predictor takes a set of inputs from the algorithm reflecting the
current query state, and outputs a numerical value indicating how much more work should
be done. We begin by describing the parameters that our predictor accepts and how it is
trained. We then discuss the integration into the indices themselves. All the result numbers
in this section are for the DEEP10M, SIFT10M, GIST1M datasets with IVF and HNSW
indices without vector compression. We follow the same training methodology for the
cases with billion-scale datasets and/or OPQ vector compression.

5.1.1 General workflow

The output

For each query, we want to predict the minimum amount of work to reach the ground
truth nearest neighbor (i.e., a regression model). Different indexing approaches may have
different metrics, but what we need is a numerical value that is proportional to the search
latency.

The inputs

Our study shows that the following three categories of features improve the prediction
accuracy:

Query vector Since there could exist intrinsic relevance between minimum amount of
search and query distribution, we use the query vector as the first kind of features where
each dimension is a single feature.

Index structure Different indices have different metrics to describe how far the query
is to a certain sub-region of database. This can help us to understand whether it is likely
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that the nearest neighbor belongs to a certain region.

Intermediate search results As motivated in Section 4.2.3, we find that the intermediate
search result as a runtime feature demonstrates high relevance to what we want to predict.

Training and tuning

We use the training vectors in Table 4.1 to generate training/validation data and use the
query vectors to generate testing data. Each vector generates one row of data which in-
cludes both the output target value and the input features. For the output value, we need
to first perform an exhaustive search to find the ground truth nearest neighbor(s), then find
the minimum amount of search to reach (one of) it. Based on the output metric, differ-
ent indices have different ways to find this minimum amount. For the input features, we
can compute the index structure feature based on the training/query vector and the index.
We can compute the intermediate search results feature by performing the desired fixed
amount of search.

Finding the ground truth via exhaustive search may take up to 13 hours on a single
Nvidia GeForce GTX 980 GPU with 1 billion database vectors and 1 million training vec-
tors. This exhaustive search is a one-time cost amortized across all online/offline queries
as long as there is no change to the database and training vectors. From experience at Mi-
crosoft Bing, there could be hundreds of millions of latency-sensitive online web search
queries per day (that require ANN search) [70, 72]. Thus the exhaustive search is a small
cost compared to the total latency and computation reduction that the proposed approach
can achieve over all queries. If there is any change to the database/training vectors, we can
incrementally update the ground truth which takes much less time than the initial compu-
tation. Last but not least, it is possible to greatly reduce this search time by distributing
the search to multiple GPUs/machines since it is a parallelizable offline computation.

Model 1: Gradient boosting decision trees First we elect to use gradient boosting
decision trees for the prediction models. We build and train them using the LightGBM
library [62]. Gradient boosting decision trees [35] are an ensemble model of decision
trees. Similar to the reasons described in the caching work, we select this model because
of several of its strengths: Both training and inference are fast, and the models allow
for introspection. Training takes only 5 to 39 seconds on a CPU with 1 million training
entries and 100 iterations. Inference takes only tens of microseconds and the model is
only hundreds of KB in size (although these are proportional to the number of training
iterations), which is a small latency/memory overhead. Importantly, decision tree models
allow us to identify the importance of individual features by the total error reduction per
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split in the tree, which is helpful during feature exploration and for explaining why the
system works.

LightGBM’s documentation includes instruction on parameters tuning [4]. We use the
default decision tree structure parameters. As described above, the number of training
iterations affects the model size and the prediction accuracy/latency. To balance the trade-
off, we choose a relatively small number of training iterations (100) and high learning
rate (0.2) (except the case of billion-scale dataset where we use a larger training iterations
(500) and smaller learning rate (0.05)). Since it is important to identify those queries that
need much more search, we choose to minimize the L2 loss function, which favors the
outliers.

Model 2: Neural networks We also explore the use of neural networks-based predic-
tion models for search termination prediction. Neural networks is generally applied as a
powerful machine learning technique for pattern recognition and has attained outstand-
ing accuracy in many computer vision and natural language processing tasks [20, 66, 83].
However, there have been very few studies of adopting neural networks-based prediction
for ANN index building in high dimensional vector space. One of the main reasons is
that neural networks has been traditionally thought to be quite computationally expensive.
However, recent advances of hardware accelerators have demonstrated remarkable perfor-
mance for neural networks computation [25, 48], and studies have also shown that even
commodity hardware can provide significant latency boost for neural networks prediction
with a careful design taking consideration of cache locality and parallelism [109].

We choose simple feed forward neural networks as our prediction model for its sim-
plicity and flexibility. We use the same input features, output values, and training/testing
data as the decision trees case. The neural networks model has a tunable number of hid-
den layers, where each has a tunable number of hidden neurons associated with it. For
this study, we choose two hidden layers with 64 hidden neurons each, which we find to
provide the best balance between prediction accuracy and overhead. We choose ReLU as
the nonlinear activation function [85, 107].

We implement the model in PyTorch framework [89] and train the model on a Nvidia
GeForce GTX 980 GPU. We use stochastic gradient descent (SGD) [17] as our optimiza-
tion method to minimize the mean squared error loss function:

L(θ) = 1

N

N∑
n=1

|pn − gn|2 (5.1)

where θ denotes the neural networks parameters to be learned, pn represents the predicted
termination condition, and gn represents the ground truth termination condition. We train
the model over the training vectors with a mini-batch size of 32 for 10 epochs, with batch
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normalization at each layer [55]. We set the learning rate to be 0.00001 [17] and apply
dropout to hidden layers with a dropout ratio of 0.1 [98]. The model weights are initialized
with He initialization [49], and we set the weight decaying rate to 0.01 [51].

For both the decision trees and neural networks models, we perform the prediction/inference
on CPU during evaluations. This is because this work target CPU-based ANN search,
which has lower cost than current GPU-based ANN search thus preferable in online de-
ployment. However, since machine learning models have very different performance char-
acteristics on GPUs and customized hardwares [61], it would be an interesting direction to
consider the learned search termination on different hardwares.

Integration and online prediction

To integrate the prediction model into the Faiss baseline, we first load the prediction model.
Then for each query we perform a fixed amount of search until the intermediate search re-
sults are ready. Then we gather all the features and perform the prediction which produces
the termination condition. If the predicted termination condition has passed, we stop im-
mediately. Otherwise we keep searching until the termination condition is met.

5.1.2 The IVF index case

The output

For the IVF index (and the IMI variant), we build a regression model to predict the min-
imum number of nearest clusters to search. This number is the nprobe parameter, now
determined for each query.

The inputs

We investigate 6 kinds of features summarized in Table 5.1. We use the ratios of distances
between query and various nearest cluster centroids as the index structure features. The
intuition is that if the query has similar distance to many cluster centroids, we probably
want to search more clusters. We use the other four features to represent the intermediate
search results. First we use the distances between the query and the 1st&10th neighbor
after searching the top 6 (DEEP)/7 (SIFT)/12 (GIST) nearest clusters as two features. How
much should we search before using the results as features is a hyperparameter. We explain
how to tune it by grid search in Section 5.1.2. Then we use the ratio between the two
features as another feature. Finally, we use the ratio between distance to the intermediate
1st neighbor and distance to the 1st nearest cluster centroid as the last feature. These
features all aim to represent how good the intermediate search results are.
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Feature Description

F0: query The query vector
Each dimension is a single feature

F1: c xth to c 1st Dist(q, xth nearest cluster centroid) /
(10 features) Dist(q, 1st nearest cluster centroid)

where x ∈ {10, 20, 30, ..., 90, 100}
F2: d 1st Dist(q, 1st neighbor after a certain

fixed amount of search)
F3: d 10th Dist(q, 10th neighbor after a certain

fixed amount of search)
F4: d 1st to d 10th F2: d 1st / F3: d 10th
F5: d 1st to c 1st F2: d 1st /

Dist(q, 1st nearest cluster centroid)

Table 5.1: IVF index input features.

Training and tuning

To build the training/testing data, the output target value (minimum number of nearest
clusters to search) is generated by computing the distances between query and all cluster
centroids to find the rank of the cluster where the ground truth nearest neighbor belongs
to. The input features are generated by performing the actual search until the intermediate
search results features are ready.

To find which features are more important, we use the per-feature gain stats from
gradient boosting decision tree models where the importance of a feature is proportional
to the total error reduction contributed by the feature. Table 5.2 summarizes the normalized
feature importance (note that we combine the importance of multiple features for the first
two kinds of features). The query vector contributes to roughly one third of the overall
importance. The ratios of distances between query and nearest cluster centroids are also
relevant as expected: when the ratios are closer to 1, the prediction value is higher. The
other four intermediate results features contribute to another great portion of importance.

Table 5.3 summarizes the testing data accuracy when training with all features or only
the query vector (5-fold cross validation on the training data produces similar accuracy)
using both decision trees and neural networks (DEEP10M dataset) models. For all metrics,
lower is better. The MAPE numbers show that our model achieves similar accuracy among
the 3 datasets. Accuracy drops when training with only the query. This shows that using
the intermediate search results as runtime features is critical to the prediction accuracy. For
DEEP10M dataset, the neural networks model provides higher accuracy than the decision
trees model.
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Importance DEEP10M SIFT10M GIST1M

F0: query 44.08% 31.60% 37.92%
F1: c xth to c 1st 13.60% 18.64% 25.88%
F2: d 1st 31.98% 31.16% 0.25%
F3: d 10th 0.50% 0.41% 0.12%
F4: d 1st to d 10th 5.78% 12.85% 31.80%
F5: d 1st to c 1st 4.06% 5.34% 4.03%

Table 5.2: IVF index feature importance.

MAE MAPE RMSE

DEEP10M, all features, decision trees 4.74 149% 16.01
DEEP10M, query only, decision trees 5.42 209% 17.22
DEEP10M, all features, neural networks 4.36 127% 15.75
SIFT10M, all features, decision trees 5.15 162% 12.72
SIFT10M, query only, decision trees 5.98 217% 13.66
GIST1M, all features, decision trees 7.68 220% 14.43
GIST1M, query only, decision trees 8.87 296% 15.56

Table 5.3: IVF index: mean absolute error, mean absolute percentage error, and root mean
squared error of the regression model with different feature sets.

To illustrate the prediction accuracy, Figure 5.1 plots the average number of searched
clusters v.s. the recall-at-1 for DEEP10M. We find similar trends in SIFT10M and GIST1M.
For baseline, each dot on the line represents a different fixed configuration. For our ap-
proach, the number of nearest clusters to search equals max(max thresh, multiplier*prediction),
where the max thresh equals the maximum target value in the training data. When using
all features, we also take the min between the value above and 6 (DEEP)/7 (SIFT)/12
(GIST) (the amount of search needed for the intermediate search results). Each dot on the
line represents a different multiplier. Instead of adding an absolute value to the predic-
tion value, we find that it’s more efficient to multiply a coefficient since the distribution of
target values is highly skewed.

Results show that the adaptive prediction-based approach consistently reduces the av-
erage number of searched clusters to reach the same recall targets compared with the
baseline. When training with only the query, the performance drops but is still better than
the baseline. With higher prediction accuracy, the neural networks model is able to search
the least number of clusters to reach the same accuracy, especially at the accuracy tar-
get of 1.00. One thing to note that this is not the end-to-end performance measurement
since factors like the prediction overhead are excluded. We will evaluate the end-to-end
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Figure 5.1: DEEP10M, IVF index: Average number of searched clusters vs. recall-at-1.
Note the y-axis starts at 0.95.

performance in Section 5.2.

As mentioned previously how much should we search before using the intermediate
results as features is a hyperparameter. Figure 5.2 illustrates how to perform grid search
to tune this hyperparameter for DEEP10M for the decision trees model. If we search less
before the feature generation, the intermediate result feature may provide less information
gain, reducing the prediction accuracy. If we search more before the feature generation,
all queries must search more, increasing the end-to-end average latency. This is why we
choose the intermediate result after searching top-6 clusters which provides the best overall
performance. To tune this hyperparameter for different datasets and/or different indexing
approaches, we just need to perform a similar grid search on different intermediate search
results that reach different recall accuracy targets.

Integration and online prediction

Algorithm 3 summarize how to integrate the prediction model into the IVF index. First
we search a fixed number of top nearest clusters. Then we perform the prediction based
on the query, the query-centroid distance ratios, and the intermediate search results. If the
prediction value is larger than the fixed amount, we perform the remaining searching. At
last we return the search results.
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Figure 5.2: DEEP10M, IVF index: Grid search on finding the best intermediate search
result features. Each line represents using the intermediate search results after searching
the top-x nearest clusters and reaching y% recall accuracy on the training data.

Algorithm 3: Integration for the IVF index
input : Query vector: q,

number of neighbors to return: k,
fixed amount to search before prediction: f .

output: List of top-k nearest neighbors.
h← empty max heap with size k
sort clusters based on query-centroid distance
search the top f nearest clusters and store the results in h
// beginning of the proposed approach
input← the input features including q, query-centroid distance ratios,
intermediate search results from h
p← predict(input)
if p > f then

search the top (f + 1)th to pth nearest clusters and store the results in h
end
// end of the proposed approach
return top-k nearest neighbors in h
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Feature Description

F0: query The query vector
Each dimension is a single feature

F1: d start Dist(q, base layer start node)
F2: d 1st Dist(q, 1st neighbor after a certain

fixed amount of search)
F3: d 10th Dist(q, 10th neighbor after a certain

fixed amount of search)
F4: 1st to start F2: d 1st / F1: d start
F5: 10th to start F3: d 10th / F1: d start

Table 5.4: HNSW index input features.

5.1.3 The HNSW index case

The output

For the HNSW index, we build a regression model to predict the minimum number of
distance evaluations in the base layer. As explained in Section 4.2.2, this value is related
but not equivalent to the efSearch parameter.

The inputs

We investigate 6 kinds of features summarized in Table 5.4. We use the distance between
the query and base layer start node as the index structure feature, since it indicates the
distance between the start node and the ground truth nearest neighbor. We use the other
four features to represent the intermediate search results. We use the distances between
the query and the 1st&10th neighbor after 368 (DEEP)/241 (SIFT)/1260 (GIST) distance
evaluations as two features. Again how much should we search before using the results as
features is a hyperparameter that can be tuned in the same fashion as the IVF case. Then
we use the ratios between the two features and the distance-to-start-node feature as the last
two features.

Training and tuning

To build the training/testing data, the output target value (minimum number of distance
evaluations in the base layer) is generated by performing the actual ANN search until the
ground truth nearest neighbor is found. Due to HNSW graph connectivity issues, we are
not able to find the ground truth for a few vectors after evaluating all reachable nodes.
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Importance DEEP10M SIFT10M GIST1M

F0: query 13.39% 8.17% 27.65%
F1: d start 1.02% 3.47% 1.26%
F2: d 1st 59.23% 69.07% 29.38%
F3: d 10th 4.81% 5.37% 0.74%
F4: 1st to start 6.11% 3.44% 18.80%
F5: 10th to start 15.43% 10.48% 22.17%

Table 5.5: HNSW index feature importance.

MAE MAPE RMSE

DEEP10M, all features, decision trees 305 91% 1255
DEEP10M, query only, decision trees 348 119% 1311
DEEP10M, all features, neural networks 301 86% 1170
SIFT10M, all features, decision trees 231 83% 615
SIFT10M, query only, decision trees 268 111% 665
GIST1M, all features, decision trees 943 121% 4828
GIST1M, query only, decision trees 1011 155% 4877

Table 5.6: HNSW index: MAE, MAPE, and RMSE of the regression model with different
feature sets.

So we exclude them from training data/regard as always missed for testing data. Since
the range of number of distance evaluations for HNSW is much larger than the range of
number of clusters to search for IVF as plotted in Figure 4.5, we use the base 2 logarithm
of the number as the actual target value to help the training converge.

Table 5.5 summarizes the feature importance. The query vector again contributes to
a fair portion of the overall importance. The distance between query and base layer start
node contributes to a small amount of overall importance because it is dominated by the
intermediate search results. The other four intermediate results features contribute to most
of the overall importance.

Table 5.6 summarizes the testing data accuracy when training with all features or only
the query (5-fold cross validation on the training data produces similar accuracy) using
both decision trees and neural networks (DEEP10M dataset) models. The MAPE numbers
show that our model achieves similar accuracy as the IVF case.

Figure 5.3 plots the average number of distance evaluations v.s. the recall-at-1 for
DEEP10M. We find similar trends in SIFT10M and GIST1M. For baseline, each dot on
the line represents a different fixed configuration. For our approach, the number of distance
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Figure 5.3: DEEP10M, HNSW index: Average number of distance evaluations vs. recall-
at-1. Note the y-axis starts at 0.95.

evaluations equals max(max thresh, multiplier*2ˆprediction), where the max thresh equals
the maximum ground truth value in the training data. When using all features, we also take
the min between the value above and 368 (DEEP)/241 (SIFT)/1260 (GIST) (the amount
of search needed for the intermediate search results).

Results show that the adaptive prediction-based approach again consistently reduces
the average number of distance evaluations to reach the same recall targets compared with
the baseline. When training with only the query, the performance again drops but is still
better than the baseline. With higher prediction accuracy, the neural networks model is
able to search the least number of clusters to reach the same accuracy, especially at the
highest accuracy target of 0.9955.

Integration and online prediction

Algorithm 4 summarize how to integrate the prediction model into the HNSW index. First
we start from the top layer and perform beam search to reach the base layer. Then we
perform beam search with unlimited beam width up to a fixed number of distance evalu-
ations. Then we perform the prediction based on the query, the query-start node distance,
and the intermediate search results. If the prediction value is larger than the fixed amount,
we perform the remaining searching. At last we return the search results.
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Algorithm 4: Integration for the HNSW index
input : Query vector: q,

number of neighbors to return: k,
fixed amount to search before prediction: f ,
HNSW graphs: G,
HNSW top layer start node: s.

output: List of top-k nearest neighbors.
h← empty max heap with size k
while base layer in G not reached do

s← beam search with width 1 at the current layer starting from node s
go to the next layer in G

end
d← distance between q and s
cnt← 0 // number of distance evaluations
while cnt < f do

perform beam search with unlimited width at base layer starting from node s
and store the results in h

increment cnt
end
// beginning of the proposed approach
input← the input features including q, query-start node distance d, intermediate
search results from h
p← predict(input)
if p > f then

while cnt < p do
perform beam search with unlimited width at base layer starting from node
s and store the results in h

increment cnt
end

end
// end of the proposed approach
return top-k nearest neighbors in h

5.2 Evaluation

The evaluation section aims to compare the end-to-end performance achieved by three
ANN indexing approaches (IVF, HNSW, IMI) with both fixed configurations and adaptive
predictions. We first perform evaluation without compression because vector compres-
sion is orthogonal to the proposed adaptive early termination technique. We then measure
the effectiveness of the proposed method with compression, because compression is of-
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ten enabled to support large-scale ANN search. Section 5.2.1 describes the experimental
methodology. Section 5.2.2 and 5.2.3 report the results of IVF and HNSW indices without
compression (DEEP10M, SIFT10M, and GIST1M datasets). Section 5.2.4 and 5.2.5 re-
port the results of IVF (DEEP10M, SIFT10M, and GIST1M datasets) and IMI (DEEP1B
and SIFT1B datasets) indices with OPQ vector compression [42]. Section 5.2.6 discusses
the effect of batching.

In this section we mainly evaluate the decision trees-based prediction model (one pre-
diction per query) due to its faster training and tuning time. However, in Section 5.2.2
and 5.2.3 we also presents two additional approaches: one using multiple decision tree
predictions per query instead of a single prediction; one using the neural networks-based
prediction model to determine the termination condition.

5.2.1 Methodology

Setup. We implement our prediction-based approach (using the models trained with all
features) in the Faiss similarity search library (CPU version) [60], and compare with the
fixed configuration baseline approach as evaluated in Section 4.2.1. All experiments are
executed on a machine with Intel R© Xeon R© E5-2680 v2 (2.8 GHz) processor and 128 GB
of memory.

Prediction overhead. For the memory overhead of the prediction, we have one pre-
diction model per indexing type and per dataset with sizes 247-310 KB for decision trees
and 57-97 KB for neural networks, which is much smaller compared to the index and data
size. When making a prediction, a temporary array is allocated to gather the features.

For decision trees model, each prediction takes between 7 us and 47 us depending on
the indexing type and vector dimension. The number of input features and the number of
training iterations affect the prediction overhead. When the dataset size increases, we may
need to increase the number of training iterations in order to keep prediction accuracy high.
For our experiments with 1 billion database vectors, we increase the number of training
iterations from 100 to 500, which increases the prediction overhead by 5 times. But this
is still beneficial since the overall search also takes longer. The number of neighbors
to return (the k) does not affect the prediction overhead, since our model predicts the
minimum termination condition to find the top-1 neighbor.

For neural networks model, each prediction (on CPU since we evaluate CPU-only
ANN search) takes 278 to 322 us depending on the indexing type and vector dimension.
This is slower than the decision trees model mainly because neural networks require heav-
ier computations such as matrix multiplication. However, there exist many optimization
techniques to reduce neural networks prediction overhead that we haven’t explored, such
as quantization and CPU vectorization. On the other hand, our evaluation shows that even
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with the current higher prediction overhead, the neural networks-based approach is able to
provide the best performance on certain accuracy targets.

Performance metric. We envision that both our technique and the baseline approach
would generally be deployed with a per-application expected accuracy target. This ac-
curacy is expected, because no ANN search technique can guarantee a specific accuracy
target without knowing the ground truth answer (in which case it could simply return the
optimal value). The systems can, however, meet an expected accuracy target if the online
query distribution matches the distribution of the training query vectors. This accuracy tar-
get can be met by appropriately configuring various parameters, such as the decision tree
structure, training iterations, fixed configuration or prediction multiplier, etc. We evaluate
our system for a variety of expected accuracy targets, explained next.

To compare the performance of the baseline and proposed approaches, we perform
controlled experiments to keep the accuracy achieved by the two approaches at the same
level in order to compare the average latency numbers. Given an accuracy target, we per-
form binary search to find the minimum fixed configuration for the baseline and minimum
prediction multiplier (as described in Section 5.1.2) for the proposed approach to reach
this desired accuracy. Then we compare the average latency numbers at each accuracy
target. Prediction overhead is included in the end-to-end latency. For the accuracy target,
we use recall-at-1 (the fraction of queries where the top-1 nearest neighbor returned from
search is (one of) the ground truth nearest neighbor) for the cases without compression.
For the cases with compression, we use recall-at-100 (the fraction of queries where the
top-100 nearest neighbors returned from search include (one of) the ground truth nearest
neighbor) as the accuracy target since it’s challenging for compression-based approaches
to reach high recall-at-1: the vector compression introduces distance precision loss which
could reorder the ranks of nearest neighbors. We search and return top-1 or top-100 near-
est neighbors corresponding to the recall-at-1/at-100 metrics. We process the queries one
by one without batching by default. And we measure the average latency in single-thread
as in previous work [57, 79, 80].

5.2.2 IVF without compression

Approach 1: decision trees, single prediction

Figure 5.4 plots the average end-to-end latency vs. recall-at-1, comparing fixed config-
uration and adaptive prediction. Table 5.7 presents the corresponding detailed numbers.
Overall, our approach provides consistent latency reduction from 13% to 58% compared
to fixed configurations at recall-at-1 targets between 0.95 and 1. The relative latency re-
duction increases as recall target gets higher. This is because the baseline approach needs
to use a larger fixed configuration to reach a higher recall target, which gives our approach
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Figure 5.4: IVF index: Average end-to-end latency vs. recall-at-1. Note the y-axis starts
at 0.95. The yellow line is a simple heuristic approach for comparison.

more room to improve. GIST has higher average latency due to the two reasons described
in Section 4.2.1.
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DEEP10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 2.015 ms 1.743 ms 13%
0.96 2.390 ms 1.903 ms 20%
0.97 2.857 ms 2.110 ms 26%
0.98 3.773 ms 2.496 ms 34%
0.99 5.547 ms 3.343 ms 40%
1.00 48.457 ms 21.315 ms 56%

SIFT10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 3.474 ms 2.492 ms 28%
0.96 3.980 ms 2.776 ms 30%
0.97 4.953 ms 3.232 ms 35%
0.98 6.201 ms 3.819 ms 38%
0.99 8.376 ms 5.138 ms 39%
1.00 43.304 ms 20.639 ms 52%

GIST1M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 16.142 ms 12.108 ms 25%
0.96 17.837 ms 14.544 ms 18%
0.97 19.981 ms 15.656 ms 22%
0.98 22.948 ms 17.576 ms 23%
0.99 38.068 ms 22.654 ms 40%
1.00 70.959 ms 29.875 ms 58%

Table 5.7: IVF index: Average end-to-end latency at different recall-at-1 targets.

Figure 5.4 also includes the performance of a simple heuristic-based approach: for
each query, we search all the clusters whose centroid-to-query distances are within x%
(e.g., 140%) of the shortest centroid-to-query distance, and we apply different x to reach
different recall targets. Results show that this heuristic approach is only able to provide
some improvement at a few cases. Since the baseline HNSW index already employs a
beam search heuristic as explained in Section 4.1.2, we do not present another heuristic
for HNSW.
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Single Prediction Multi-Prediction Multi-Prediction
DEEP10M Fixed After 6 Clusters After 6,11 Clusters After 3,6,11 Clusters
Recall-at-1 Configuration Avg. Latency Avg. Latency Avg. Latency

Target Avg. Latency (Reduction) (Reduction) (Reduction)

0.95 2.015 ms 1.743 ms (13%) 1.754 ms (13%) 1.727 ms (14%)
0.96 2.390 ms 1.903 ms (20%) 1.900 ms (21%) 1.880 ms (21%)
0.97 2.857 ms 2.110 ms (26%) 2.086 ms (27%) 2.076 ms (27%)
0.98 3.773 ms 2.496 ms (34%) 2.444 ms (35%) 2.439 ms (35%)
0.99 5.547 ms 3.343 ms (40%) 3.186 ms (43%) 3.241 ms (42%)
1.00 48.457 ms 21.315 ms (56%) 19.421 ms (60%) 19.365 ms (60%)

Table 5.8: IVF index: Average end-to-end latency at different recall-at-1 targets, with
different numbers of predictions per query.

Approach 2: decision trees, multiple predictions

In the first approach, we make a single prediction after a fixed amount of search for each
query. However, different intermediate search results provide different information, which
motivates us to consider a second approach: making different number of predictions for
each query. For a query whose nearest neighbor is easy to find, a single prediction is prob-
ably enough. However, for a difficult query we may want to perform multiple predictions
at different timestamps to refine the prediction along the search. In addition to approach 1
where we make a single prediction after search top-6 clusters for every query, we evaluate
the cases making multiple predictions for each query depending on the prediction value.
How to choose the timestamps of each prediction is a grid search problem similar to the
single prediction case.

Table 5.8 shows the results when making different number of predictions for the DEEP
10M dataset. For the multi-prediction case, we make up to 2 or 3 predictions after search
different number of top clusters. If one prediction value is smaller than the next times-
tamp, the search will terminate without making another prediction. The results show that
making multiple predictions for some queries could provide additional latency reduction,
compared to always making a single prediction. On the other hand, it is a diminishing
return to make even more predictions due to the nontrivial prediction overhead.

Approach 3: neural networks, single prediction

In the first two approaches we use GBDT decision tree models. We were curious whether
different machine learning models could provide similar accuracy for accuracy-cost opti-
mization problems. Thus we explore the third approach where we built simple neural net-
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Decision Trees Neural Networks
DEEP10M Fixed Single Prediction Single Prediction
Recall-at-1 Configuration Avg. Latency Avg. Latency

Target Avg. Latency (Reduction) (Reduction)

0.95 2.015 ms 1.743 ms (13%) 1.998 ms (1%)
0.96 2.390 ms 1.903 ms (20%) 2.174 ms (9%)
0.97 2.857 ms 2.110 ms (26%) 2.391 ms (16%)
0.98 3.773 ms 2.496 ms (34%) 2.791 ms (26%)
0.99 5.547 ms 3.343 ms (40%) 3.695 ms (33%)
1.00 48.457 ms 21.315 ms (56%) 18.098 ms (63%)

Table 5.9: IVF index: Average end-to-end latency at different recall-at-1 targets, compar-
ing decision trees and neural networks models.

works model to predict the termination condition as described in Section 5.1.1. Table 5.9
shows the results comparing decision trees and neural networks for the DEEP 10M dataset.
Compared with the decision trees model, the neural network approach provides better per-
formance at the 1.00 accuracy target (even better than decision trees multi-predictions).
On the other hand, neural networks approach has worse performance than decision trees
at other accuracy targets, but is still able to provide latency reduction compared to the
baseline. This is due to the higher prediction overhead of neural networks, which could be
further alleviated as described in Section 5.2.1. And the most important takeaway is that
the proposed learned termination idea does not depend on any specific machine learning
model.

5.2.3 HNSW without compression

Approach 1: decision trees, single prediction

Figure 5.5 plots the average end-to-end latency vs. recall-at-1, comparing fixed configura-
tion and adaptive prediction. Table 5.10 presents the corresponding detailed numbers. For
DEEP and GIST we stop at 0.9955 and 0.999 recall target due to HNSW graph connectiv-
ity issue which make both approaches unable to find the nearest neighbor for a few queries.
Overall, our approach provides consistent latency reduction from 2% to 86% compared to
fixed configurations at recall-at-1 targets between 0.95 and 1.

The baseline has very high latency for some recall targets. This is because of the
HNSW graph index structure. The performance of HNSW depends heavily on the distance
between the query and the base layer start node, which acts like a dynamic cluster centroid
compared to the static cluster centroids in IVF. When the start node is close to the query,
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Figure 5.5: HNSW index: Average end-to-end latency vs. recall-at-1. Note the y-axis
starts at 0.95.

we can find the nearest neighbor very fast. As a result for most of the queries it takes
shorter time to find the nearest neighbor in HNSW than IVF. On the other hand, the start
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DEEP10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 0.865 ms 0.805 ms 7%
0.96 0.918 ms 0.856 ms 7%
0.97 1.027 ms 0.939 ms 9%
0.98 1.223 ms 1.063 ms 13%
0.99 1.737 ms 1.375 ms 21%

0.9955 48.145 ms 6.762 ms 86%

SIFT10M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 0.819 ms 0.801 ms 2%
0.96 0.860 ms 0.841 ms 2%
0.97 0.923 ms 0.901 ms 2%
0.98 1.042 ms 0.966 ms 7%
0.99 1.255 ms 1.135 ms 10%
1.00 8.835 ms 4.032 ms 54%

GIST1M Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 2.185 ms 1.801 ms 18%
0.96 2.570 ms 2.014 ms 22%
0.97 3.269 ms 2.288 ms 30%
0.98 4.529 ms 2.758 ms 39%
0.99 8.064 ms 4.588 ms 43%

0.999 353.831 ms 59.162 ms 83%

Table 5.10: HNSW index: Average end-to-end latency at different recall-at-1 targets. For
DEEP10M and GIST1M we stop at 0.9955 and 0.999 recall target due to HNSW graph
connectivity issue.

node could be far away from the query due to rare graph connectivity issue or search
difficulty issue as explained in the end of Section 4.2.1. In those rare cases HNSW would
need much more distance evaluations than IVF, which forces the baseline approach to use
an exceptionally large fixed configuration. Our approach could identify those rare cases
and cover them with much lower average latency. This is why we can achieve a latency
reduction up to 86%, which is a 7.1 times speedup.
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Single Prediction Multi-Prediction Multi-Prediction
DEEP10M Fixed After 368 Eval. After 368,1003 Eval. After 265,368,1003 Eval.
Recall-at-1 Configuration Avg. Latency Avg. Latency Avg. Latency

Target Avg. Latency (Reduction) (Reduction) (Reduction)

0.95 0.865 ms 0.805 ms (7%) 0.785 ms (9%) 0.800 ms (8%)
0.96 0.918 ms 0.856 ms (7%) 0.830 ms (10%) 0.846 ms (8%)
0.97 1.027 ms 0.939 ms (9%) 0.908 ms (12%) 0.921 ms (10%)
0.98 1.223 ms 1.063 ms (13%) 1.014 ms (17%) 1.015 ms (17%)
0.99 1.737 ms 1.375 ms (21%) 1.320 ms (24%) 1.289 ms (26%)

0.9955 48.145 ms 6.762 ms (86%) 5.097 ms (89%) 6.425 ms (87%)

Table 5.11: HNSW index: Average end-to-end latency at different recall-at-1 targets, with
different numbers of predictions (after different number of distance evaluations) per query.

Approach 2: decision trees, multiple predictions

Similar to the IVF index case, we evaluate the cases making multiple predictions for each
query depending on the prediction value. Table 5.11 shows the results when making dif-
ferent number of predictions for the DEEP 10M dataset. For the multi-prediction case, we
make up to 2 or 3 predictions after different number of distance evaluations. The results
show that making multiple predictions for some queries could provide additional latency
reduction, compared to always making a single prediction. On the other hand, it is again
a diminishing return to make even more predictions due to the nontrivial prediction over-
head.

Approach 3: neural networks, single prediction

Similar to the IVF index case, we explore the third approach where we built simple neural
networks model to predict the termination condition. Table 5.12 shows the results com-
paring decision trees and neural networks for the DEEP 10M dataset. Compared with
the decision trees model, the neural network approach provides better performance at the
1.00 accuracy target (close to the performance of decision trees multi-predictions). On the
other hand, neural networks approach has worse performance than decision trees at other
accuracy targets, even worse than the baseline for certain cases. This is due to the higher
prediction overhead of neural networks and due to the high efficiency of the HNSW index
at lower accuracy targets. However, neural networks prediction overhead could be opti-
mized, and again it proves that the proposed learned termination idea does not depend on
any specific machine learning model.
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Decision Trees Neural Networks
DEEP10M Fixed Single Prediction Single Prediction
Recall-at-1 Configuration Avg. Latency Avg. Latency

Target Avg. Latency (Reduction) (Reduction)

0.95 0.865 ms 0.805 ms (7%) 1.119 ms (-29%)
0.96 0.918 ms 0.856 ms (7%) 1.170 ms (-27%)
0.97 1.027 ms 0.939 ms (9%) 1.243 ms (-21%)
0.98 1.223 ms 1.063 ms (13%) 1.373 ms (-12%)
0.99 1.737 ms 1.375 ms (21%) 1.721 ms (1%)

0.9955 48.145 ms 6.762 ms (86%) 5.189 ms (89%)

Table 5.12: HNSW index: Average end-to-end latency at different recall-at-1 targets, com-
paring decision trees and neural networks models.

5.2.4 IVF with OPQ compression (decision trees, single prediction)

Table 5.13 presents the results when applying our approach to IVF index with OPQ com-
pression, which is one of the stat-of-the-art vector quantization methods [42]. We use OPQ
to transform the vectors with a compression factor of 8 (i.e., OPQ48 for DEEP, OPQ64
for SIFT, OPQ480 for GIST). One thing to note is that the results in Table 5.13 are not
directly comparable to the results in Table 5.7 because the index construction, the memory
overhead, and the recall target definition are different.

Overall, our approach provides consistent latency reduction from 1% to 52% compared
to fixed configurations at recall-at-100 targets between 0.95 and 1. Our approach has less
improvement for GIST due to the distance precision loss: GIST has higher number of
dimensions than DEEP and SIFT; With the same compression factor, larger number of di-
mensions lead to larger absolute precision loss by compression; This affects the precision
of intermediate search results features, which leads to lower prediction accuracy. Never-
theless, the results show that the proposed approach is effective when vector compression
is applied.

5.2.5 IMI with OPQ compression (decision trees, single prediction)

Table 5.14 presents the results when applying our approach to billion-scale datasets. We
choose IMI index with OPQ compression as the baseline, which is one of the state-of-
the-art approaches for billion-scale ANN search [8]. As explained in Section 4.1.2, IMI
index is a variant of IVF index so that we are able to apply the same approach to train
the prediction model. We build IMI index with (2ˆ14)ˆ2 = 268435456 clusters. Since
the database is much larger, we increase the number of training iterations from 100 to
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DEEP10M Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 2.446 ms 2.134 ms 13%
0.96 2.740 ms 2.318 ms 15%
0.97 3.223 ms 2.566 ms 20%
0.98 4.185 ms 3.006 ms 28%
0.99 5.952 ms 3.880 ms 35%
1.00 52.382 ms 25.284 ms 52%

SIFT10M Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 3.885 ms 2.983 ms 23%
0.96 4.276 ms 3.259 ms 24%
0.97 5.308 ms 3.731 ms 30%
0.98 6.721 ms 4.413 ms 34%
0.99 8.752 ms 5.744 ms 34%
1.00 49.732 ms 24.101 ms 52%

GIST1M Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 36.792 ms 35.597 ms 3%
0.96 39.629 ms 39.263 ms 1%
0.97 44.299 ms 42.504 ms 4%
0.98 53.641 ms 52.865 ms 1%
0.99 84.044 ms 67.840 ms 19%
1.00 154.962 ms 111.186 ms 28%

Table 5.13: IVF index with OPQ compression: Average end-to-end latency at different
recall-at-100 targets.

500 and decrease the learning rate from 0.2 to 0.05 to improve the accuracy. We stop at
0.995 recall target because it takes too long to reach 1.0 recall for billion-scale database.
Overall, our approach provides consistent latency reduction from 8% to 59% compared to
fixed configurations at recall-at-100 targets between 0.95 and 0.995.
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DEEP1B Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 39.994 ms 36.911 ms 8%
0.96 52.353 ms 41.386 ms 21%
0.97 70.287 ms 48.398 ms 31%
0.98 97.558 ms 58.907 ms 40%
0.99 166.346 ms 84.936 ms 49%

0.995 288.611 ms 117.920 ms 59%

SIFT1B Fixed Adaptive
Recall-at-100 Configuration Prediction

Target Avg. Latency Avg. Latency Reduction

0.95 48.217 ms 34.215 ms 29%
0.96 58.051 ms 39.120 ms 33%
0.97 72.990 ms 45.692 ms 37%
0.98 100.894 ms 55.502 ms 45%
0.99 161.553 ms 81.423 ms 50%

0.995 257.333 ms 116.777 ms 55%

Table 5.14: IMI index with OPQ compression: Average end-to-end latency at different
recall-at-100 targets.

5.2.6 Effect of batching (decision trees, single prediction)

In many of the latency-sensitive online serving scenarios we target, requests are often
processed one by one as they arrive in order to make real-time response. But sometimes
a small batch is also desirable. On the other hand, in offline analysis scenarios, requests
are often combined in a single large batch to maximize the throughput. We set batch
size = 1 (no batching) as default in previous sections. Table 5.15 presents the results
with different batch sizes for DEEP10M dataset with IVF and HNSW indices without
compression. We find that for both IVF and HNSW indices batching amortize some fixed
computation or memory allocation cost across queries, but the amount of latency reduction
from the proposed approach stays similar.

For IVF, it is faster to compute the distance between cluster centroids and a batch of
queries because Faiss switches from CPU SIMD vectorization to drastically more batch-
efficient BLAS matrix-matrix operations when the batch size reaches 20. Thus using a
different batch size is equivalent to adding/subtracting similar amount of latency from
both the baseline and our approach.
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IVF index Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency
Batch=1/100/10000 Batch=1/100/10000

0.95 2.015/1.904/1.894 ms 1.743/1.665/1.654 ms
0.96 2.390/2.274/2.266 ms 1.903/1.823/1.814 ms
0.97 2.857/2.729/2.717 ms 2.110/2.024/2.011 ms
0.98 3.773/3.633/3.620 ms 2.496/2.411/2.402 ms
0.99 5.547/5.371/5.370 ms 3.343/3.244/3.243 ms
1.00 48.457/48.164/48.198 ms 21.315/21.264/21.157 ms

HNSW index Fixed Adaptive
Recall-at-1 Configuration Prediction

Target Avg. Latency Avg. Latency
Batch=1/100/10000 Batch=1/100/10000

0.95 0.865/0.457/0.417 ms 0.805/0.387/0.369 ms
0.96 0.918/0.515/0.474 ms 0.856/0.443/0.419 ms
0.97 1.027/0.628/0.581 ms 0.939/0.523/0.498 ms
0.98 1.223/0.839/0.774 ms 1.063/0.651/0.617 ms
0.99 1.737/1.370/1.270 ms 1.375/0.952/0.912 ms

0.9955 48.145/47.732/47.300 ms 6.762/6.225/6.018 ms

Table 5.15: DEEP10M without compression: Average end-to-end latency at different
recall-at-1 targets with different batch sizes. Batch size = 1 (no batching) is used in all
the previous experiments.

For HNSW, an array of size n (the number of database vectors) is allocated every time
the queries are sent to the database. This array is used to record which database vectors
have been visited for each query, since HNSW’s graph traversal may reach the same node
multiple times. When batching is enabled, the array is shared by multiple queries and the
memory allocation cost is amortized.

5.3 Related Work

In addition to the related work mentioned in Section 4.1, there are many recent works about
ANN search in both database and machine learning communities. In database communi-
ties several works focused on improving the Locality Sensitive Hashing (LSH) technique:
Data Sensitive Hashing improves the hashing functions and hashing family based on the
data distributions [40]. Neighbor-Sensitive Hashing improves approximate kNN search
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based on an unconventional observation that magnifying the Hamming distances among
neighbors helps in their accurate retrieval [88]. LazyLSH uses a single base index to sup-
port the computations in multiple metric spaces, significantly reducing the maintenance
overhead [112].

In machine learning communities several works focused on improving the vector com-
pression technique: SUBIC uses deep convolutional neural networks to produce super-
vised, compact, structured binary codes for visual search [56]. Wu et al. proposed an
end-to-end trainable multiscale quantization method that minimizes overall quantization
loss [106].

Several works focused on early stopping conditions for exact nearest neighbor search.
Ciaccia et al. proposed probabilistic early stopping conditions for exact NN search in high-
dimensional and complex metric spaces on smaller 12K to 100K datasets [26]. Gogolou
et al. presented ideas on how to provide probabilistic estimates of the final answer to help
users decide when to stop an exact NN search query on 100M to 267M datasets [43].

The proposed adaptive early termination technique deals with a similar problem in the
online/progressive query answering communities. Online query answering relies on user
interactions to iteratively refine the query results [47], which is similar to the proposed
adaptive search termination that leverages machine learning models to predict the quality
of intermediate search results. Recently, Turkay et al. proposed a cognitive model of
human-computer interaction as the underlying mechanism to determine the pace of user
interaction for high-dimensional data analysis such as online PCA and clustering [99].
Northstar [64] is another interactive data science system that uses interactive whiteboards
to provide a highly collaborative visual data science environment.

5.4 Conclusion

Approximate nearest neighbor search algorithms aim to balance accuracy and cost (la-
tency). We show, however, that traditional fixed configuration-based approaches lead to
undesirably high average latency to reach high recall, because they fail to take into account
the distribution of query difficulty. In this paper, we have demonstrated that there exist op-
portunities to exploit the variation in search termination conditions between queries. We
have presented the first prediction-based approach to leverage this inter-query variation
and improve end-to-end performance, substantially reducing average latency. We believe
that the practicality and effectiveness of this approach make it a must-use component for
the approximate nearest neighbor toolkit.
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Chapter 6

Conclusion and Future Work

In this dissertation, we demonstrated how modular system approaches can be used to bal-
ance accuracy and computation cost for recommendation systems, and how lightweight
machine learning models can be used to adaptively answer “how much (more) work should
be done for this query?” inside the systems. First we presented a high-level caching system
above the scoring component to avoid unnecessary expensive computations. The heuristic-
based cache saves operating costs on queries with low revenue in history. In addition, we
showed that lightweight machine learning models (GBDT) can provide more accurate
per-query cache refresh decisions than heuristics, which lead to a better balance between
ads revenue expectations and computation cost. Our evaluation results estimate that this
adaptive caching technique is valuable, providing a potential hundred million quarterly net
profit increase for the Bing advertising system.

Since caching introduces different penalties for each query, it is not always possible
to avoid all computations (e.g., queries with high revenue expectation in search advertis-
ing). We therefore also focused on applying our core technique to a key component within
these systems. We introduced adaptive early termination for approximate nearest neigh-
bor search inside the candidate retrieval component. We showed that lightweight machine
learning models (GBDT and neural networks) can provide adaptive per-query search ter-
mination conditions, which lead to a better balance between search accuracy and latency.
This advanced the Pareto frontier in terms of nearest neighbor search accuracy and latency
compared with state-of-the-art ANN approaches.

Of the many potential generalizations and extensions of the ideas presented in this
dissertation, we discuss two that best help place our work in a broader context:
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6.1 More applications for adaptive caching and early ter-
mination

In this dissertation we focused on designing adaptive caching systems for search advertis-
ing systems to balance the cached results quality and operating cost. However, our findings
can also be applied to caching systems above other machine learning systems. For exam-
ple, in Section 2.2 we discussed caching for general web search, where previous related
works build caching heuristics. Different heuristics take a subset of the features into con-
sideration: recency, frequency, processing cost, and ranking score of the query and so on.
Our results suggest it would be worthwhile to explore applying the state-of-the-art ma-
chine learning models to build a prediction-based web search cache to provide a better
balance between web search quality and processing cost. In addition, prediction-based
cache design can also be applied to areas like content-based image retrieval [33, 34] and
question answering systems [30] where the query results are approximate and expensive.

To apply our core technique to the components below the caching system, we focused
on designing adaptive early termination for approximate nearest neighbor search queries
to balance the search accuracy and latency. However, our findings can also be applied
to other information retrieval query processing problems where queries require various
processing costs. For example, image retrieval [111], spoken queries processing [105],
and document retrieval [78] all have the concepts of query early termination. It would be
worthwhile to explore applying prediction-based early termination to balance the query
result quality and processing costs in those scenarios.

6.2 Adaptive machine learning-based decision making for
computer systems in general

The work presented herein a specific case of a broader question increasingly being dis-
cussed at the intersection of systems and machine learning: How to apply lightweight
machine learning models to replace heuristics or similar decisions in real-world systems.
As discussed in Jeff Dean’s SysML conference 2018 talk [29] and in the MLSys whitepa-
per [92], computer systems are filled with heuristics. These heuristics are manually tuned
to work well in “general cases”, but they generally do not adapt to patterns of use and
do not take into account available context. For example, in the caching work we showed
that a traditional cache with a fixed refresh rate would lead to high revenue loss. Even the
precisely tuned heuristics we propose are not able to maximize the benefit of caching. In
the ANN search work, we showed that using the fixed search termination configurations
would lead to inefficiency and high average latency when trying to reach high accuracy.
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Compare to tuning heuristics, it is much easier to train a machine learning model to
take the actual pattern and many other context features into consideration. It would be
worthwhile to explore applying machine learning alternatives anywhere we use heuristics
to make a decision: indexing [65], database tuning [76, 90, 100], network traffic schedul-
ing [71, 74], and so on. In the introduction we mentioned that there exist exceptions where
modular system approaches are designed to work with approximate and noisy results. For
instance, in approximate database query processing [84] only a small fraction of the rel-
evant tuples is processed in order to provide fast, approximate answers. This is another
example where machine learning can shine by learning from past queries to answer new
queries using increasingly smaller portions of data.

In the caching work, we showed that a machine learning model can easily handle richer
set of features and generate more accurate cache refresh decisions, which leads to greater
net profit gain by caching. In the ANN search work, we showed that a machine learning
model can incorporate different kinds of features (query vector patterns and intermediate
result contexts) and generate per-query adaptive search termination condition, which pro-
vides a better balance between accuracy and latency. Our work helps move the question
about “how to apply lightweight machine learning models to replace heuristics” forward in
two ways. First, it provides confirmation that these ideas can be made to work in specific
contexts, and help further motivate the search for even more-general techniques that can be
widely applied. Second, it demonstrates how these techniques can be applied to important
systems where it was not previously clear that a learned heuristic could be effectively and
generally applied to improve the cost/accuracy tradeoff.
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and Özgür Ulusoy. Timestamp-based Result Cache Invalidation for Web Search
Engines. In Proceedings of the 34th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR), pages 973–982, 2011.
2.2.1

[6] Sadiye Alici, Ismail Sengor Altingovde, Rifat Ozcan, B. Barla Cambazoglu, and
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and Özgür Ulusoy. A Financial Cost Metric for Result Caching. In Proceedings of
the 36th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR), pages 873–876, 2013. 2.2.1

[97] Josef Sivic and Andrew Zisserman. Video Google: A Text Retrieval Approach to
Object Matching in Videos. In IEEE International Conference on Computer Vision
(ICCV), pages 1470–1477, 2003. 4.1.2

[98] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15(1):1929–1958, 2014. 5.1.1

[99] Cagatay Turkay, Erdem Kaya, Selim Balcisoy, and Helwig Hauser. Designing Pro-
gressive and Interactive Analytics Processes for High-Dimensional Data Analysis.
IEEE Transactions on Visualization and Computer Graphics, 23(1):131–140, 2017.
5.3

[100] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic
Database Management System Tuning Through Large-Scale Machine Learning. In
Proceedings of the 2017 ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 1009–1024, 2017. 6.2

[101] Jing Wang, Jingdong Wang, Gang Zeng, Zhuowen Tu, Rui Gan, and Shipeng Li.
Scalable k-NN Graph Construction for Visual Descriptors. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1106–1113, 2012. 4.1.2

[102] Jingdong Wang and Shipeng Li. Query-Driven Iterated Neighborhood Graph
Search for Large Scale Indexing. In Proceedings of the 20th ACM International
Conference on Multimedia, pages 179–188, 2012. 4.1.2

[103] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, Hongbin Zha, and
Xian-Sheng Hua. Trinary-Projection Trees for Approximate Nearest Neighbor

98



Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(2):
388–403, 2014. 4.1.2

[104] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-Dimensional Spaces. In
Proceedings of the 24th VLDB Conference, pages 194–205, 1998. 4, 4.1.1

[105] Jerome White, Douglas W Oard, Nitendra Rajput, and Marion Zalk. Simulating
early-termination search for verbose spoken queries. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, pages 1270–
1280, 2013. 6.1

[106] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N.
Holtmann-Rice, David Simcha, and Felix Yu. Multiscale Quantization for Fast
Similarity Search. In Advances in Neural Information Processing Systems (NIPS),
pages 5745–5755, 2017. 5.3

[107] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical Evaluation of Rectified
Activations in Convolution Network. arXiv preprint arXiv:1505.00853, 2015. 5.1.1

[108] Minjia Zhang and Yuxiong He. GRIP: Multi-Store Capacity-Optimized High-
Performance Nearest Neighbor Search for Vector Search Engine. In Proceedings of
the 28th ACM International Conference on Information and Knowledge Manage-
ment (CIKM), pages 1673–1682, 2019. 4.1.2

[109] Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He. DeepCPU:
Serving RNN-based Deep Learning Models 10x Faster. In 2018 USENIX Annual
Technical Conference (USENIX ATC), pages 951–965, 2018. 5.1.1

[110] Ting Zhang, Guo-Jun Qi, Jinhui Tang, and Jingdong Wang. Sparse Composite
Quantization. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4548–4556, 2015. 4

[111] Liang Zheng, Shengjin Wang, Ziqiong Liu, and Qi Tian. Fast image retrieval: Query
pruning and early termination. IEEE Transactions on Multimedia, 17(5):648–659,
2015. 6.1

[112] Yuxin Zheng, Qi Guo, Anthony K.H. Tung, and Sai Wu. LazyLSH: Approximate
Nearest Neighbor Search for Multiple Distance Functions with a Single Index. In
Proceedings of the 2016 ACM SIGMOD International Conference on Management
of Data (SIGMOD), pages 2023–2037, 2016. 5.3

[113] Jingbo Zhou, Qi Guo, H.V. Jagadish, Lubos Krcal, Siyuan Liu, Wenhao Luan, An-
thony K.H. Tung, Yueji Yang, and Yuxin Zheng. A Generic Inverted Index Frame-
work for Similarity Search on the GPU. In International Conference on Data En-
gineering (ICDE), pages 893–904, 2018. 4.1.2

99


	1 Introduction
	1.1 Caching strategies for recommendation systems
	1.2 Learned adaptive early termination for approximate nearest neighbor search

	2 Search Advertising Systems Workload Analysis
	2.1 Search advertising systems
	2.2 Related work
	2.2.1 Caching for web search
	2.2.2 Prediction framework for sponsored search and web search

	2.3 Workload analysis
	2.3.1 Performance metrics
	2.3.2 The workload in a week
	2.3.3 Frequency distribution
	2.3.4 Revenue-related features
	2.3.5 Ad-serving cost distribution
	2.3.6 The intrinsic variance of learning algorithm results
	2.3.7 Effect of personalization


	3 Caching Strategies for Recommendation Systems
	3.1 A heuristic-based cache design
	3.1.1 Ad-serving cache design space
	3.1.2 What keys to cache: selective personalization
	3.1.3 What values to cache: ads list merging
	3.1.4 When to refresh: revenue-aware adaptive refresh
	3.1.5 Heuristic-based approach summary

	3.2 A prediction-based cache design
	3.2.1 Requirements
	3.2.2 Features
	3.2.3 Empirical evaluation

	3.3 Evaluation
	3.3.1 Implementation of cache designs
	3.3.2 Performance metrics
	3.3.3 Comparing different cache designs
	3.3.4 Post analysis

	3.4 Conclusion

	4 Approximate Nearest Neighbor Search Performance Analysis
	4.1 Background
	4.1.1 Compressed representation
	4.1.2 Specialized ANN indices

	4.2 Performance analysis of state-of-the-art ANN search approaches
	4.2.1 Fixed configurations lead to inefficient latency-accuracy tradeoff
	4.2.2 Queries need different termination conditions
	4.2.3 How to predict the termination condition


	5 Learned Adaptive Early Termination for Approximate Nearest Neighbor Search
	5.1 Design
	5.1.1 General workflow
	5.1.2 The IVF index case
	5.1.3 The HNSW index case

	5.2 Evaluation
	5.2.1 Methodology
	5.2.2 IVF without compression
	5.2.3 HNSW without compression
	5.2.4 IVF with OPQ compression (decision trees, single prediction)
	5.2.5 IMI with OPQ compression (decision trees, single prediction)
	5.2.6 Effect of batching (decision trees, single prediction)

	5.3 Related Work
	5.4 Conclusion

	6 Conclusion and Future Work
	6.1 More applications for adaptive caching and early termination
	6.2 Adaptive machine learning-based decision making for computer systems in general

	Bibliography

