
Scaling Distributed Machine Learning with
System and Algorithm Co-design

Mu Li

CMU-CS-17-102

February 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David G. Andersen, Co-chair

Jeffrey Dean (Google)
Barnabas Poczos

Ruslan Salakhutdinov
Alexander J. Smola, Co-chair

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2017 Mu Li

This research was sponsored by the National Science Foundation under grant number IIS-1409802 and Intel ISTC-
CC. The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Large Scale Machine Learning, Distributed System, Parameter Server, Dis-
tributed Optimization Method

Dedicated to my lovely wife, QQ.

iv

Abstract
Due to the rapid growth of data and the ever increasing model complexity, which

often manifests itself in the large number of model parameters, today, many impor-
tant machine learning problems cannot be efficiently solved by a single machine.
Distributed optimization and inference is becoming more and more inevitable for
solving large scale machine learning problems in both academia and industry. How-
ever, obtaining an efficient distributed implementation of an algorithm, is far from
trivial. Both intensive computational workloads and the volume of data commu-
nication demand careful design of distributed computation systems and distributed
machine learning algorithms. In this thesis, we focus on the co-design of distributed
computing systems and distributed optimization algorithms that are specialized for
large machine learning problems.

In the first part, we propose two distributed computing frameworks: Parameter
Server, a distributed machine learning framework that features efficient data com-
munication between the machines; MXNet, a multi-language library that aims to
simplify the development of deep neural network algorithms. We have witnessed
the wide adoption of the two proposed systems in the past two years. They have
enabled and will continue to enable more people to harness the power of distributed
computing to design efficient large-scale machine learning applications.

In the second part, we examine a number of distributed optimization problems in
machine learning, leveraging the two computing platforms. We present new meth-
ods to accelerate the training process, such as data partitioning with better locality
properties, communication friendly optimization methods, and more compact statis-
tical models. We implement the new algorithms on the two systems and test on large
scale real data sets. We successfully demonstrate that careful co-design of comput-
ing systems and learning algorithms can greatly accelerate large scale distributed
machine learning.

vi

Acknowledgments
Firstly, I would like to express my sincere gratitude to my advisors Prof. Alex

Smola and Prof. Dave Andersen for their continuous support throughout my Ph.D.
study. We spent enjoyable time together in the past 5 years to brain storm research
ideas, to prove theories and write codes, tackle practical problems and work on our
startups. They also give me a great amount of freedom to work on open source
projects. I cannot imagine having better advisors and mentors for my Ph.D. study.

I would like also to thank the rest of my thesis committee: Dr. Jeffrey Dean,
Prof. Barnabas Poczos and Prof. Ruslan Salakhutdinov, for their encouragement and
insightful comments to improve the thesis. I sincerely appreciate the challenging
questions they raised which incented me to widen my research from various per-
spectives.

My sincere thanks also go to my mentor at Baidu, Dr. Kai Yu, and my re-
seearch collabrators, including Prof. Tong Zhang, Prof. Suvrit Sra, Dr. Amr Ahmed,
Prof. Richard Peng, as well as my excellent collabrators for open source proejcts,
including Tianqi Chen, Bing Xu, Eric Xie, Minjie Wang, and Naiyan Wang. I thank
them for the stimulating discussions, for the many sleepless nights before the due
dates, for the great effort devoted to building the open source community, and for all
the fun we had together in the past five years.

I would like to thank my family: my parents Jianlong Li and Songliang Tang,
my dear wife Qingqing Huang, and my lovely son Alex Li. They supported me
spiritually throughout writing this thesis and my life in general.

My utmost thanks go to my wife Qingqing. She spent countless hours to proof-
read this thesis and my other research papers, and she offered many invaluable sug-
gestions to my thesis defense and other presentations. Without her, this Ph.D. is
meaningless.

viii

Contents

1 Introduction 1
1.1 Background . 2

1.1.1 Large Scale Models . 2
1.1.2 Distributed Computing . 4
1.1.3 Optimization Methods . 7

1.2 Thesis Statement . 9
1.3 Thesis Contributions . 9
1.4 Notations, Datasets and Computing Systems . 12

1.4.1 Notations . 12
1.4.2 Datasets . 12
1.4.3 Computing systems . 14

I System 15

2 Preliminaries on Distributed Computing Systems 17
2.1 Heterogeneous Computing . 17
2.2 Data center . 19

3 Parameter Server: Scaling Distributed Machine Learning 23
3.1 Introduction . 23

3.1.1 Engineering Challenges . 23
3.1.2 Our contribution . 25
3.1.3 Related Work . 25

3.2 Architecture . 26
3.2.1 (Key,Value) Vectors . 29
3.2.2 Range-based Push and Pull . 30
3.2.3 User-Defined Functions on the Server 30
3.2.4 Asynchronous Tasks and Dependency 30
3.2.5 Flexible Consistency . 31
3.2.6 User-defined Filters . 32

3.3 Implementation . 32
3.3.1 Vector Clock . 32
3.3.2 Messages . 33

ix

3.3.3 Consistent Hashing . 34
3.3.4 Replication and Consistency . 34
3.3.5 Server Management . 35
3.3.6 Worker Management . 36

3.4 Evaluation . 36
3.4.1 Sparse Logistic Regression . 37
3.4.2 Latent Dirichlet Allocation . 39
3.4.3 Sketches . 41

4 MXNet: a Flexible and Efficient Deep Learning Library 43
4.1 Introduction . 43

4.1.1 Background . 43
4.1.2 Our contribution . 44

4.2 Front-End Programming Interface . 45
4.3 Back-End System . 47

4.3.1 Computation Graph . 48
4.3.2 Graph Transformation and Execution 48

4.4 Data Communication . 50
4.4.1 Distributed Key-Value Store . 50
4.4.2 Implementation of KVStore . 50

4.5 Evaluation . 52
4.5.1 Multiple GPUs on a Single Machine . 53
4.5.2 Multiple GPUs on Multiple Machines 54
4.5.3 Convergence . 55

4.6 Discussions . 56

II Algorithm 59

5 Preliminaries on Optimization Methods for Machine Learning 61
5.1 Optimization Methods . 61
5.2 Convergence Analysis . 63
5.3 Distributed Optimization . 64

5.3.1 Data Parallelism versus Model Parallelism 64
5.3.2 Synchronous Update versus Asynchronous Update 64

6 DBPG: Delayed Block Proximal Gradient Method 67
6.1 Introduction . 67
6.2 Delayed Block Proximal Gradient Method . 69

6.2.1 Proposed Algorithm . 69
6.2.2 Convergence Analysis . 69

6.3 Experiments . 70
6.3.1 Sparse Logistic Regression . 70
6.3.2 Reconstruction ICA . 74

x

6.4 Proof of Theorem 2 . 76

7 EMSO: Efficient Minibatch Training for Stochastic Optimization 81
7.1 Introduction . 81

7.1.1 Problem formulation . 81
7.1.2 Minibatch Stochastic Gradient Descent 81
7.1.3 Related Work and Discussion . 82
7.1.4 Our work . 83

7.2 Efficient Minibatch Training Algorithm . 83
7.2.1 Our algorithm . 83
7.2.2 Convergence Analysis . 84
7.2.3 Efficient Implementation . 86

7.3 Experiments . 88
7.4 Proof of Theorem 7 . 93

8 AdaDelay: Delay Adaptive Stochastic Optimization 99
8.1 Introduction . 99
8.2 AdaDelay Algorithm . 101

8.2.1 Model Assumptions . 101
8.2.2 Algorithm . 102
8.2.3 Convergence Analysis . 102

8.3 Experiments . 103
8.3.1 Setup . 103
8.3.2 Results . 105

9 Parsa: Data Partition via Submodular Approximation 111
9.1 Introduction . 111
9.2 Problem Formulation . 113
9.3 Algorithm . 115

9.3.1 Partition the data vertex set U . 116
9.3.2 Partition the parameter vertex set V . 117

9.4 Efficient Implementation . 118
9.4.1 Find Solution to (9.6) . 118
9.4.2 Divide into Subgraphs . 121
9.4.3 Parallelization with Parameter Server 122
9.4.4 Initialize the Neighbor Sets . 122

9.5 Experiments . 123
9.5.1 Setup . 123
9.5.2 Performance of Parsa . 123

10 DiFacto: Scaling Distributed Factorization Machines 131
10.1 Introduction . 131
10.2 Background . 132

10.2.1 Objectives . 132

xi

10.2.2 Factorization Machine . 133
10.3 Statistical Model . 134

10.3.1 Memory Adaptive Constraints . 134
10.3.2 Sparse Regularization . 135
10.3.3 Frequency Adaptive Regularization . 135

10.4 Distributed Optimization . 136
10.4.1 Asynchronous Stochastic Gradient Descent 136
10.4.2 Convergence Analysis . 137
10.4.3 Implementation . 140

10.5 Experiments . 142
10.5.1 Adaptive memory . 142
10.5.2 Fixed-point Compression . 144
10.5.3 Comparison with LibFM . 144
10.5.4 Scalability . 146

11 Conclusion 147

Bibliography 149

xii

List of Figures

1.1 Three aspects towards distributed large scale machine learning. 2
1.2 Machine learning algorithms studied in this thesis. 3
1.3 The size of training data for ad click estimation in a large Internet company from

year 2010 to 2014. 4
1.4 The number of floating-point operations required for processing a single image

using LeNet and several recent ImageNet challenge winners. 4
1.5 A distributed computing system with distributed memory 5
1.6 A distributed computing system with shared memory 5
1.7 The communication and synchronization overhead of Algorithm 1. 8
1.8 Connections between the proposed systems and the algorithms 9

2.1 The architecture of CPU and GPU. 18
2.2 Typical capacity and bandwidth of system components. 18
2.3 Connecting 8 GPUs to 2 CPUs via two PCIe switches. Each solid line represents

16 lanes. 19
2.4 Multi-rooted tree topology for machine connections in a data center 19
2.5 Cluster-level Infrastructure . 20

3.1 Largest machine learning experiments conducted using different computing sys-
tems. Problems: blue circles — sparse logistic regression; red squares — latent
variable graphical models; grey pentagons — deep networks. 24

3.2 Communication between several groups of workers in Parameter Server. 27
3.3 Parameters per worker node decreases with the number of workers. 27
3.4 Steps of Algorithm 2. Note that each worker node only caches its working set of

parameters w. 29
3.5 Example of asynchronous processing of different tasks by the same node. Here

iteration 12 depends on 11, and iteration 10 and 11 are independent. 31
3.6 Directed acyclic graphs for different consistency models. The size of the DAG

increases with the delay. 31
3.7 Server node layout. 34
3.8 Servers generate replicas of key ranges. Left: a single worker. Right: multiple

workers updating values simultaneously. 35
3.9 Time spent on computation and waiting (per worker) in sparse logistic regression. 38
3.10 Savings of outgoing network traffic. Left: per server. Right: per worker. 38

xiii

3.11 Distribution of log-likelihoods per worker as a function of time, in the setting of
1000 machines and 5 billion users. 39

3.12 Distribution of log-likelihoods per worker as a function of time, stratified by the
number of iterations. 39

3.13 Convergence of log-likelihoods per worker, in the setting of 1000 and 6000 ma-
chines, 500 million users. 40

4.1 The NDArray interface in Python. 46
4.2 Example: define a multilayer perception using a symbol expression in MXNet. . 47
4.3 Example: create and run a module in MXNet. 47
4.4 A partial computation graph for the forward and the backward of a fully con-

nected neural network. Yellow circles and green rectangles represent data vari-
ables and operators, respectively. Arrows indicate data Dependencies between
variables and operators. 48

4.5 Run one SGD iteration with the key-value store. 51
4.6 Two-level parameter server for KVStore. The level 1 server nodes aggregate data

over devices on the same machine, and the level 2 server nodes communicate data
between machines. 51

4.7 Two-level parameter server for KVStore, where each device has a level-1 server. . 52
4.8 The topology of GPU connections for P2.16xlarge. Each line indicates a PCIe

16x connection. 53
4.9 The communication cost and total cost of one SGD iteration on ResNet-152.

Experiments are performed on a single machine, and Number of GPU = (1,2,4,8,
16). 54

4.10 The communication cost of one SGD iteration for different number of machines
(2,4,8,16) and different number of GPUs per machine (1,2,4,8,16). 55

4.11 The communication cost and total cost of one SGD iteration. Experiments are
performed on multiple machines (1,2,4,8,16), and the number of GPUs per ma-
chine is fixed to be 8. 56

4.12 Top-1 validation accuracy versus epoch for Resnet-152 on Imagenet dataset.
Each GPU uses batch size 32 and synchronized SGD is used. 57

6.1 Comparison between Parameter Server implementation of Algorithm 5 and Shot-
gun and CDN implementation. 72

6.2 Convergence of sparse logistic regression on 636TB CTRb. 73
6.3 Time to reach the same convergence criteria under various allowed delays. . . . 73
6.4 Percentage of coordinates skipped when using the KKT filters. 73
6.5 Speedup of Parameter Server when increasing the number of workers with a fixed

number of servers. The dataset is 340 million examples sampled from CTRb. . . 73
6.6 Convergence of RICA on dataset ImageNet with different delays. 75
6.7 Speedup of Parameter Server when increasing the number of workers from 1 to

16 for RICA. 76
6.8 Comparison between computation time and total time for RICA. 76

xiv

7.1 Objective value versus minibatch size after in total 107 examples are processed
in a single node. Here CTRa is downsampled to 4 millions examples due to the
limited capacity of a single node. 89

7.2 Value of the objective function versus minibatch size after in total 107 examples
are processed on each machine. 90

7.3 Value of the objective function versus run time. 91
7.4 The fraction of synchronization cost as a function of minibatch size when using

12 machines. 92
7.5 Value of the objective function versus minibatch size. 12 machines are used.

Left: the total number of examples is fixed to 5×106. Right: the runtime is fixed
to 1000 seconds. 92

7.6 Value of the objective function versus run time for EMSO-CD and L-BFGS using
different numbers of machines. 93

8.1 The first 3,000 observed delays on one server node. 105
8.2 Histgram of all observed delays . 105
8.3 Relative (% worsening) of online LogLoss as function of maximal delays (lower

is better). 106
8.4 Relative test AUC (higher is better) as function of maximal delays. 107
8.5 Relative test AUC (higher is better) as function of maximal delays with the exis-

tence of stragglers. 107
8.6 The speedup of AdaDelay. The results of AsyncAdaGrad and AdaptiveRevision

are almost identical to AdaDelay and therefore omitted. 108

9.1 The amount of network communication versus the size of data in a real text
classification dataset for random partition1. 112

9.2 The dependencies are modeled as a bipartite graph. 114
9.3 Each machine is assigned with a server and a worker, and gets part of the vertex

set U and V . The inter-machine dependencies (edges) are highlighted and the
communication costs for these three machines are 1, 3, and 3, respectively. Note
that moving the 3rd vertex in V to either machine 0 or machine 1 can reduce the
cost. 114

9.4 The data structure to store the vertex costs. It is an array with the i-th entry for
vertex ui, where assigned vertices are marked with gray color. The pointers and
the doubly-linked list provide faster access to the data. 120

9.5 Visualization of Table 9.1. 125
9.6 Partition quality and runtime for different number of partitions. 126
9.7 Partition quality and runtime for different percentage of data used in initialization

(Single thread implementation). 127
9.8 Partition quality and runtime for different percentage of data used in initialization

(parallel implementation). 128
9.9 Speedup of Parsa when the number of machines increases (on dataset CTRa). . . 128

10.1 Number of non-zero entries in V . 142

xv

10.2 Runtime for one iteration. 143
10.3 Relative test logloss compared to logistic regression (k = 0 and 0 relative loss). . 143
10.4 Total data sent by workers in one iteration. The compression rates from 4-byte

to 1-byte are 4.2x and 2.9x for Criteo and CTRa, respectively. 145
10.5 The relative test logloss compared to no fixed-point compression. 145
10.6 Comparison with LibFM on a single machine. 145
10.7 The speedup from 1 machine to 16 machines, where each machine runs 10 work-

ers and 10 servers. 146

xvi

List of Tables

1.1 Statistics for typical parallel and distributed jobs. 5
1.2 Failure rate for machine learning jobs in a data center over a three month period. . 6
1.3 Notations used in thesis. 12
1.4 The datasets for binary text classification. 13
1.5 The social network datasets. 13
1.6 Computing systems used in the experiments. 14

3.1 Attributes of distributed data analysis systems. 24
3.2 Comparison of performance between Parameter Server and other systems. 37
3.3 Insertion rates of distributed CountMin implemented with Parameter Server. . . . 41

4.1 Comparison between the imperative and declarative paradigm. 45
4.2 Comparison between MXNet and other popular open-source ML libraries. 45

7.1 Evaluated Algorithms. 88
7.2 Run time and speedup for EMSO-CD to reach the same value of the objective

function when running on 5, 10 and 20 machines. 93

8.1 Total memory used by server nodes. 108

9.1 Improvements (%) compared to random partition on the maximal individual
memory footprint Mmax, maximal individual traffic volumes Tmax, and total traf-
fic volumes Tsum together with running times (in sec) on 16-partition. The best
results are colored by Red and the second best by Green. Only 1% of CTRa is
used. 124

9.2 Time in hours for solving `1-regularized logistic regression. We runs 45 data
passes using 16 machines for the dataset CTRa. 129

xvii

xviii

Chapter 1

Introduction

Over the past decade, machine learning (ML) prevailed in both industry and in academia. ML has
a wide range of applications in automated document analysis, computer vision, natural language
processing, voice recognition and computational advertising. For all the technological advances
in the field of ML, there are two prevalent trends: the size of training data is getting larger
(“bigger and bigger data”), and the statistical models are becoming more complicated (“deeper
and deeper models”). In this thesis, we aim to address these two issues of large scale machine
learning by exploring the co-design of distributed computing systems and distributed learning
algorithms.

Both “big data” and “deep learning” significantly increase the computational cost of ML
applications. For example, companies often need to train ML models from business data of
terabytes [27]. A state-of-the-art image classifier usually employs hundreds of layers in a con-
volutional neural network model [64], in which processing a single image requires billions of
float-point operations. At such a large scale, although the computing power of modern hardware
grows exponentially, no single machine can finish the training tasks within a time frame that
meets the industrial demands.

Distributed computing is a common approach to tackle the problem of large scale machine
learning. The basic idea of distributed computing is to partition the computational workload and
assign different parts to different computing machines. Then the machines coordinate to com-
plete the task. Recently, thanks to the increasingly convenient access to public cloud services,
such as Amazon AWS [8], Google Cloud [61] and Microsoft Azure [100], using distributed com-
puting to accelerate large scale machine learning has led to a surge of research interest in both
academia and industry.

However, both the design of an efficient distributed computing system and efficient imple-
mentation of ML algorithms in the system are highly non-trivial. A major challenge comes from
the communication cost in the distributed computing environment. In particular, both the itera-
tive nature of many machine learning algorithms and the sheer size of the models and the training
data require a large amount of communication between different machines in the training pro-
cess. However, today, even in the leading industrial data centers, both the network bandwidth
and the communication latency between machines is at least 10 times worse than communicat-
ing within a single machine. The communication overhead is indeed the major bottleneck that
prevents us from applying distributed computing to solve large scale machine learning problems.

1

There are also other challenges in using distributed computing, such as enhancing fault tolerance
so that the computation is not interrupted when one or more machines break down, which all
need to be carefully addressed to make it practical for large scale machine learning.

Distributed
Systems

Large-scale
Models

Optimization
Methods

Figure 1.1: Three aspects towards distributed large scale machine learning.

1.1 Background
In this thesis, we tackle the problem of large scale machine learning from three aspects: dis-
tributed computing systems, large scale models and optimization methods. For a wide class
of machine learning applications, we design new distributed computing frameworks, study new
machine learning models, and propose new optimization methods to shows that distributed ma-
chine learning can be made simple, fast, and scalable. As illustrated in Figure 1.1, these three
aspects are closely connected. Next, we give a briefly overview of each aspect and highlight the
corresponding challenges.

1.1.1 Large Scale Models
The realm of machine learning is mainly divided into supervised and unsupervised learning.
In supervised learning, the training data consists of pairs of input and output values, and the
learning goal is to infer a mapping from input to output, which can be used for predicting the
output for new input instances. An example for supervised learning is image classification, where
one example of the training data is a pair of the input image and the corresponding output label,
indicating the name of the object contained in the image. In unsupervised learning, the training
data contains only the input values, and the learning goal is to find “interesting patterns” in the
training data. One example of unsupervised learning is to cluster input data points in a way such

2

Machine Learning

Deep Learning

Supervised Learning

Unsupervised Learning

Logistic Regression
Factorization Machine

Convolutional
Neural Network

Latent Dirichlet Allocation

Figure 1.2: Machine learning algorithms studied in this thesis.

that the data points in the same cluster are more similar to each other compared to points across
different clusters.

In this thesis, we consider several representative ML algorithms in each category as moti-
vating examples for our system and algorithm co-design. These applications range from simple
linear models to complex neural network models with hundreds of layers. We list and classify
these algorithms in Figure 1.2. One example of the applications is logistic regression for click-
through rate estimation, which aims to learn a map from an ad impression to the probability that
this ad is clicked by an end user. Another example is to learn a latent Dirichlet allocation that
identifies the topics that a user is in from the user browser history.

A recent breakthrough in both supervised and unsupervised machine learning is called deep
learning. In conventional statistical models, examples of the training data are often represented
as multiple dimensional vectors, and representation is obtained from the raw data by feature
extraction. For instance, we can use n-grams to encode word documents, or use scale-invariant
feature transformations [92] to describe local features in images. Instead of using hand-crafted
features, deep learning serves to automatically “learn” a feature representation from the raw data,
by training a multi-layer neural network.

Today, a common challenge for different machine learning problems is the rapidly increasing
size of training data and the growing model complexity. For instance, a large Internet company
wants to use one year’s ad impression log [74] to train an ad-click predictor. The training data
consists of trillions of examples, each of which is typically represented by a high-dimensional
feature vector [27]. Figure 1.3 shows the size of training data for the problem of ad-click es-
timation in a large Internet company. Note that the size of the data almost doubled every year
form 2010 to 2014. A lot of widely used machine learning algorithms process the training data
in an iterative way. When the training data is at such a large scale, the amount of computing re-
sources required is enormous. Moreover, billions of new ad impressions are generated everyday.

3

2010 2011 2012 2013 2014

10
1

10
2

10
3

year

da
ta

 s
iz

e
(T

B
)

Figure 1.3: The size of training data for ad
click estimation in a large Internet company
from year 2010 to 2014.

1995 2000 2005 2010 2015 2020 2025
10

6

10
7

10
8

10
9

10
10

10
11

year

flo
at

in
g−

po
in

t o
pe

ra
tio

ns

lenet

alexnet

vgg 19

inception
inception v3

resnet 152

fit

Figure 1.4: The number of floating-point op-
erations required for processing a single image
using LeNet and several recent ImageNet chal-
lenge winners.

It improves the ad-click prediction accuracy if the real-time data is incorporated in the training
process, but real-time large scale learning imposes even greater challenges [99].

Meanwhile, large size of training data enable and encourage the engineers to use more com-
plex machine learning models to discover finer structures in the data. Take deep learning as an
example, the model size in terms of the depth of the neural networks has been consistently in-
creasing since the 1980s. In 1989, LeNet, one widely used convolutional neural network, only
had 5 convolutional layers; while all the recent ImageNet challenge winners [64, 134] employed
hundreds of convolutional layers. More complex models are often associated with higher com-
putational cost. Figure 1.4 shows that the number of floating-point operations required in order
to process a single example increased from 10 million to over 10 billion over the 20 years. Be-
sides the computational cost, deeper neural networks also bring in more complex computational
patterns—even just evaluating a single example involves hundreds of tensor operations.

Therefore, rapidly increasing amount of training data and more complex machine learning
models necessitate new solutions of the design of both computational system and machine learn-
ing algorithm.

1.1.2 Distributed Computing

As shown in Figure 1.5, a distributed computing system consists of multiple nodes with com-
puting power, and the nodes are connected through a communication network. Examples of
distributed computing system range from distributed scientific computing on supercomputers to
distributed autonomous sensors for monitoring physical conditions. In this thesis, we focus on
cluster computing, where actual computers are connected via local communication networks.
Examples of cluster computing include campus cluster machines, as well as public cloud service

4

Processor

Memory

Processor

Memory

Processor

Memory

Processor

Memory

machine machine

machinemachine

Network

Figure 1.5: A distributed computing system with dis-
tributed memory

Processor

Memory

Processor

ProcessorProcessor

machine

Figure 1.6: A distributed computing
system with shared memory

parallel job distributed job
of CPUs 4 1000s
of GPUs 8 100s

latency 100 ns 0.1 ms
bandwidth 400 Gbit/sec 10 Gbit/sec

Table 1.1: Statistics for typical parallel and distributed jobs.

such as Amazon AWS [8], Google Cloud [61] and Microsoft Azure [100]. In cluster computing,
the structure of the system and the network topology are known in advance.

Distributed computing is different from a commonly used technology called shared-memory
parallel computing, which assumes that the processors are located within a small distance to each
other, so that they have access to the same piece of shared memory. In a distributed computing
system, each computing machine has its own private memory, which cannot be directly accessed
by another machine. The difference between distributed-memory and shared-memory can be
seen from Figure 1.5 and Figure 1.6. Table 1.1 shows that compared to shared-memory parallel
computing, distributed computing systems usually have many more processors and can handle
more computational jobs simultaneously.

For distributed computing, information exchange between machines is conducted over the
communication network, which has limited bandwidth. Indeed, communication is one of the
scarcest resources in a distributed computing system. Moreover, a machine may fail at any time,
and a running job can be preempted. Such unreliability of a system becomes worse when the
number of machines and the size of workload increase. These properties of distributed systems
impose great challenges on developing efficient and reliable machine learning applications using
distributed computing.

5

≈ #machine × time # of jobs failure rate
100 hours 13,187 7.8%

1, 000 hours 1,366 13.7%
10, 000 hours 77 24.7%

Table 1.2: Failure rate for machine learning jobs in a data center over a three month period.

There three desired properties that are most important for a distributed computing system:
efficiency, fault tolerance, and easy-to-use.

Efficiency An efficient distributed computing system incurs a small communication cost and
takes full advantage of the available computing power in the system.

Apart from the actual computational cost that is shared among multiple machines, distributed
computing incurs additional cost of communication overhead and machine synchronization.
Compared to accessing the memory to retrieve information within a single machine, both the
communication latency and the communication bandwidth in a distributed computing system are
significantly worse. For example, the latency for main memory accessing is in the order of mag-
nitude of 100ns, while it is in the order of 0.1 ms to 1ms between machines in a data center. The
memory bandwidth in a personal computer is around 400 Gbit/sec, while a typical network band-
width provided by Amazon AWS is only 10 Gbit/sec. Moreover, such limited communication
bandwidth is shared among all the computing machines and among all the running tasks.

In addition, the computing machines in the system may be very different, or they may run
heterogeneous computational tasks. Thus, some machines may finish their tasks faster or slower.
In this case, if machine synchronization is required for implementing an algorithm, the compu-
tational power of all the machines may not be fully used at any time when there are stragglers in
the system.

Good system design reduces the communication overhead and the effects of machine syn-
chronization.

Fault Tolerance In a distributed computing system, a single machine may fail at any time,
and a running job can be preempted due to such machine breakdown. Moreover, the number
of failures increases with the number of machines in the systems and increases with the size of
the computational tasks. We collect the job logs from a computing cluster that runs machine
learning tasks for production in a large Internet company, over a three month period. Here, task
failures are mostly due to being preempted or machine breakdown. Table 1.2 shows the statistics
of failure rate for different tasks at various scale. Observer that the failure rate can be as high as
25% for large scale problems that need over 10 thousand machine hours of computation.

An important feature of a good distributed computing system is the fault tolerance, namely
its robustness to such failures.

Easy to use It is also desired that the programming interface of a distributed system strikes
a balance between simplicity and flexibility. On one hand, the interface should hide as much
as possible implementation details from the application developers. The implementation details

6

of using multiple machines include task partition and allocation, data communication, machine
synchronization and fault tolerance mechanism. On the other hand, the interface should be flex-
ible enough so that the developers can conveniently implement a wide range of algorithms using
the system.

There exist different approaches for application program interface (API) design for dis-
tributed computing system. For example, MapReduce [41] is one of the most widely used frame-
works. However, the synchronization forced at the end of each map and reduce cycle potentially
limits the performance of iterative machine learning algorithms. Another example is Message
Passing Interface (MPI). It provides flexible routines for high performance data communication,
yet exposes the developers to way too many implementation details such that reliable program-
ming can be challenging in this system.

1.1.3 Optimization Methods

In machine learning, training a statistical model can often be formulated into an optimization
problem [143] in the following form:

minimize
w∈Ω

f(w) =
1

n

n∑
i=1

fi(w), (1.1)

where w denotes the model parameter and Ω denotes the parameter space. The function fi
is the objective function evaluated with i-th example, describing how well the model w fits the
particular example in the training data. Consider the standard linear regression. The i-th example
in the training data consists of a p-dimensional vector xi and an output value yi. The goal of
model training is to find a p-dimensional vector model w, so that given a new example we can
approximately predict the output value y with the value 〈w, x〉. In order to achieve a small
prediction error, one possible objective function is the Euclid distance between 〈w, xi〉 and yi,
namely fi(w) = ‖ 〈w, xi〉 − yi‖2

2.
For general objective function fi, there is usually no explicit solution to the optimization

problem. A common way to get a numerical solution is the iterative gradient method, which
refines the model parameter w through multiple iterations of gradient flow operations. The basic
idea is to start with an initial point w0 ∈ Ω at t = 0, and then update the model as below:

wt+1 = proj
Ω

[
wt −Ht

∑
i∈It

∂fi(wt)

]
for It ⊆ {1, . . . , n} , (1.2)

where ∂fi is the partial gradient of fi with respect to the model parameter w, Ht is a p-by-p
scaling matrix or scalar, and the set It is a subset of example indices which are processed at
iteration t. Different choices of Ht and It lead to different optimization methods. For instance,
the standard gradient descent method can be obtained by setting It = {1, . . . , n} and setting Ht

to be a constant scalar η. The iterations terminate if a stopping criteria is reached.
The bottleneck of iterative gradient methods is often the cost of calculating the gradients

∂fi(w) in each iteration. It is possible to partition and share this computational workload among

7

Algorithm 1 Distributed gradient-based optimization
1: Initialize w0 at every machine
2: for t = 0, . . . do
3: Partition It =

⋃m
k=1 Itk

4: for k = 1, . . . ,m do in parallel
5: Compute g(k)

t ←
∑

i∈Itk
∂fi(wt) on machine k

6: end for
7: Aggregate gt ←

∑m
k=1 g

(k)
t on machine 0

8: Update wt+1 ← wt −H−1
t gt on machine 0

9: Broadcast wt+1 from machine 0 to all machine
10: end for

calc ∂fMachine 0:

Machine 1: calc ∂f

calc ∂f

updt w calc ∂f

calc ∂f

calc ∂fMachine m:

communication synchronization

Figure 1.7: The communication and synchronization overhead of Algorithm 1.

multiple machines. Algorithm 1 sketches the approach called data parallelism. In each itera-
tion, the training data is partitioned and assigned to different machines, and each machine only
calculates the gradients of the objective function evaluated on the assigned training data.

One important measure of the performance of an iterative optimization method is its con-
vergence rate, namely the amount of computing time required in order to achieve a desirable
accuracy. There is a rich body of research results on accelerating the vanilla gradient descent
method. For example, stochastic gradient descent (SGD) [117] only samples a small subset of
examples in the training data to form the index set It, so that each iteration takes much less time.
Given the same amount of total run time, this approach can afford more number of iterations to
updates the model parameter, and hopefully obtains a better value of the objective function.

When data parallelism is used, another measure of the performance of the optimization
method is the communication cost, which includes the amount of communication required be-
tween the machines, and the amount of time that the machines stay idle due to communication
latency or for the purpose of system synchronization. For example, Figure 1.7 shows a possible
distributed implementation of Algorithm 1. The problem with this straightforward implementa-
tion is that if the data is partitioned unevenly or one machine is significantly slower than other
machines, a large communication cost is incurred due to machine synchronization.

A good distributed optimization method should achieve fast convergence with small commu-
nication cost.

8

1.2 Thesis Statement
This thesis seeks to address the multifaceted challenges arising in distributed computing, opti-
mization methods, and large scale models to make large scale distributed machine learning more
accessible. In particular, this thesis provides evidence to support the following statement:

Thesis Statement: With appropriate computational frameworks and algorithm de-
sign, distributed machine learning can be made simple, fast, and scalable, both in
theory and in practice.

We believe that the computational frameworks and the algorithmic ideas developed in this
thesis will enable more people to take advantage of the power of distributed computing to develop
efficient machine learning applications to solve large scale problems. All the codes developed
when completing this thesis are made publicly available at https://github.com/dmlc/
under Apache 2.0 license.

1.3 Thesis Contributions

Parameter
Server
(Sec. 3)

Parsa
(Sec. 9)

DiFacto
(Sec. 10)

AdaDelay
(Sec. 8)

EMSO
(Sec. 7)

DBPG
(Sec. 6)

MXNet
(Sec. 4)

Latent Dirichlet
Allocation

Deep Learning

Proximal
Gradient
Method

Logistic
Regression

Stochastic
Gradient
Descent

Factorization
Machine

Proposed algorithmProposed system

Machine learning application Optimization method

Figure 1.8: Connections between the proposed systems and the algorithms

Our major contributions in these three areas are summarized below:

9

https://github.com/dmlc/

Distributed systems We design new distributed computing systems that are optimized for ma-
chine learning tasks. Our systems provide a high-level system abstraction so that the de-
velopers can focus on designing machine learning algorithms without worrying about the
implementation details. We demonstrate that our systems are highly efficient and scalable.

Optimization methods We propose system-friendly optimization methods that can be easily
parallelized and implemented in a distributed computing system. We show that the meth-
ods achieve fast convergence with reduced communication overhead.

Large scale models Given a fixed amount of training data, a complex model may create the
problem of overfitting, which is often resolved by model parameter regularization. In a
distributed computing environment, a complex model also introduces a large amount of
communication overhead between machines. We explore the approach of regularization
to design large scale models with sparse parameters, which are further exploited to reduce
the communication overhead as well as computational cost.

Next, we briefly describe the tentative structure of the thesis. The thesis is mainly divided
into two parts: distributed computing system (Section 2 to 4), distributed optimization methods
(Section 5 to 10). Figure 1.8 visualizes the connections between different sections.

Part I In the first part of the thesis, we introduce two computing frameworks designed for large
scale distributed machine learning: a new generation of Parameter Server and MXNet. The key
features of these two systems are summarized below.

Parameter Server (PS) PS is a general purpose distributed machine learning framework. Com-
pared to existing frameworks, it has the following prominent features:
• Asynchronous communication, which is optimized for machine learning tasks to re-

duce network communication overhead.
• Flexible consistency model, which further lowers the synchronization cost and com-

munication latency.
• Elastic scalability, which enables adding new machines to the system without restart-

ing the running framework.
• Continuous fault tolerance, which prevents non-catastrophic machine failures to in-

terrupt the overall computation process.
• An efficient implementation of vector clocks, which ensures well-defined behavior

after network failures.
This is joint work with David Andersen, Alex Smola, and Junwoo Park from CMU, to-
gether with Amr Ahmed, Vanja Josifovski, James Long, Eugene Shekita and Bor-Yiing Su
from Google. Part of the work has been published in OSDI’14 [83].

MXNet MXNet is a multi-language library aiming to simplify the algorithm development for
large scale deep neural networks. It outperforms many existing platforms by exploiting the
following features:
• A mixed interface with imperative programming and symbolic programming to achieve

both flexibility and efficiency.
• A compiler-like back-end system that efficiently optimizes workloads.
• A more general asynchronous execution engine that extends Parameter Server’s asyn-

chronous communication model to alleviate the data dependencies in deep neural

10

networks.
• More flexible ways for using heterogeneous computing.

This is joint work with a large number of collaborators from difference university and
companies, including Tianqi Chen (U. Washington), Yutian Li (Standford), Min Li (NUS),
Naiyan Wang (TuSimple), Minjie Wang (NYC), Tianjun Xiao (Microsoft), Bing Xu (Ap-
ple), Chiyuan Zhang (MIT), and Zheng Zhang (NYU Shanghai). Part of the work has been
published in the learning system workshop on NIPS’16 [31].

Part II In the second part of the thesis, we present new distributed optimization algorithms
for several machine learning problems. We implement the algorithms on either PS or MXNet
and demonstrate that careful co-design of computing systems and optimization algorithms can
greatly accelerate large scale distributed machine learning.

We first study the problem of speeding up coordinate descent and stochastic gradient descent
(SGD), which are widely used optimization methods in distributed computing environments.

DBPG To speed up coordinate descent, we propose a new algorithm named DBPG based on
the proximal gradient method to solve non-convex and non-smooth problems. It updates
parameters in the blockwise style and allows delays between blocks to reduce the syn-
chronization cost. Theoretical analysis shows that the algorithm converges under weak
assumptions.
This is joint work with David Andersen, Alexander Smola, together with Kai Yu from
Baidu. The results were published in NIPS’14 [84]

EMSO To speed up SGD in parallel computing, minibatch training has been used to reduce the
communication cost, at the cost of a slower convergence rate. We propose a new mini-
batch training algorithm called EMSO. Instead of just running gradient descent with each
minibatch, for each minibatch the algorithm solves an optimization with a conservatively
regularized objective function. We show that this more efficient use of minibatches speeds
up the convergence while maintaining low communication cost.
This is joint work with Alexander Smola together with Tong Zhang and Yuqiang Chen
from Baidu. The results were published in KDD’14 [85]

AdaDelay To speed up asynchronous SGD, we propose a new algorithm AdaDelay, which
allows the parameter updates to be sensitive to the actual delays experienced, rather than
to worst-case bounds on the maximum delay. We show that this delay sensitive update rule
leads to larger stepsizes, that can help gain rapid initial convergence without having to wait
too long for slower machines, while maintaining the same asymptotic complexity.
This is joint work with Suvrit Sra from MIT, together with Adams Yu and Alexander Smola
from CMU, and the results were published in AISTATS’16 [127].

We then study the problem of using data partitioning to reduce the communication and syn-
chronization cost.
Parsa We formulate data placement as a submodular load-balancing problem and we propose a

parallel partition algorithm named Parsa to solve it approximately. We show that with high
probability the objective function is at least n/ log(n) of the that with the best partition.
The runtime of the algorithm is in the order ofO(k|E|), where k is the number of partitions
and |E| is the number of edges in the graph.

11

f objective function
(xi, yi) i-th data example

w model parameter
g gradient

[v]i the i-th coordinate of vector v
n number of examples
p number of parameters
m number of machines
T number of iterations

Table 1.3: Notations used in thesis.

This is joint work with David Andersen and Alexander Smola, and the results appeared in
arXiv [86].

Finally we study a promising nonlinear model for recommendation and estimation—Factorization
Machines. It has been shown that factorization machine can achieve much better performance
compared to simple linear models. However this complex model increases the computation cost
by at least an order of magnitude larger, which is the main barrier of its applications in practice.

DiFacto To make factorization machine scale to large amounts of data and large numbers of
features, we propose a new algorithm DiFacto, which uses a refined Factorization Machine
model with sparse memory adaptive constraints and frequency adaptive regularization.
This is joint work with Ziqi Liu, Alexander Smola, and Yu-Xiang Wang. The results were
published in WSDM’16 [87].

1.4 Notations, Datasets and Computing Systems

1.4.1 Notations
The notations used in this thesis are listed in Table 1.3.

1.4.2 Datasets
We used the following publicly available datasets in our experiments.

Binary text classification
RCV11 The documents come from Reuters Corpus Volume 1.

News202 The documents come from 20 newsgroups.

KDD043 The particle physics task in KDD Cup 2004. The goal is to classify two types of
particles generated in high energy collider experiments.

1http://www.daviddlewis.com/resources/testcollections/rcv1/
2http://qwone.com/˜jason/20Newsgroups/
3http://osmot.cs.cornell.edu/kddcup/datasets.html

12

http://www.daviddlewis.com/resources/testcollections/rcv1/
http://qwone.com/~jason/20Newsgroups/
http://osmot.cs.cornell.edu/kddcup/datasets.html

name examples unique features non-zero entries
RCV1 20 K 47 K 1 M
News20 20 K 1 M 9 M
KDD04 146 K 74 11 M
KDD14 8 M 20 M 305 M
URL 2.4 M 3.2 M 277 M
Criteo 1.9 B 360 M 58 B
CTRa 100 M 283 M 10 B
CTRb 170 B 65 B 17 T

Table 1.4: The datasets for binary text classification.

name nodes edges type
LiveJournal 5M 69M directed
Orkut 3M 113M undirected

Table 1.5: The social network datasets.

KDD144 The first problem in KDD Cup 2010. The goal is to predict student performance on
mathematical problems from logs of student interaction with Intelligent Tutoring Systems.

URL5 The goal is to detect malicious URLs.

Criteo6 The goal is to estimate the click-through rate of ads that come from Criteo.

CTR Similar to Criteo. The dataset comes a private Internet company. CTRa is sampled from a
three-month period, while CTRb is sampled from a two-year period.

One-hot encoding is used for all datasets. More specifically, we form a dictionary using all
the unique features. Then each example in the dataset is presented by a vector x whose length is
equal to the size of the dictionary. The element xi = 1 if the i-th word in the dictionary appears
in this record, otherwise xi = 0. Note that the size of the dictionary can be huge, yet the number
of distinct features that appear in one example is usually very small. In other words, the datasets
are often high dimensional, but extremely sparse.

We list the statistics of these datasets in Table 1.4.

Social Networks We have two datasets of the social network LiveJournal and Orkut, and they
are obtained from http://snap.stanford.edu/data/. We list the statistics of these 2
datasets in Table 1.5.

Image Classification We use the ImageNet competition 20127 dataset, which contains 1.3M
images from 1,000 classes.

4https://pslcdatashop.web.cmu.edu/KDDCup/
5http://sysnet.ucsd.edu/projects/url/
6http://labs.criteo.com/downloads/download-terabyte-click-logs/
7http://image-net.org/challenges/LSVRC/2012/

13

http://snap.stanford.edu/data/
https://pslcdatashop.web.cmu.edu/KDDCup/
http://sysnet.ucsd.edu/projects/url/
http://labs.criteo.com/downloads/download-terabyte-click-logs/
http://image-net.org/challenges/LSVRC/2012/

name CPU GPU memory network # of machines
(GB) (Gbit/s)

CompanyA 2×Intel Xeon series - 192 10 1000
CompanyB 2×Intel Xeon series - 128 ≥ 10 5000
CampusA 2×Intel Xeon E5620 - 64 1 16
CampusB 4×AMD Opteron 6272 Tesla K20 128 40 36
CampusC 2×Intel Xeon E5-2680 v2 2×GTX 980 128 40 10
Desktop Intel i7-2600 GTX 750 TI 32 1 1
EC2-g2.8x 2×Intel Xeon E5-2686 V4 8×Tesla K80 768 25 16
EC2-c4.8x 2×Intel Xeon E5-2666 V3 - 64 10 10

Table 1.6: Computing systems used in the experiments.

1.4.3 Computing systems
In Table 1.6, we list the specifications of the diverse clusters used in the experiments. They range
from campus clusters to public and private cloud services.

14

Part I

System

15

Chapter 2

Preliminaries on Distributed Computing
Systems

In this section we provide some background information of computing systems that are closely
related to our proposed systems. In particular, we discuss issues of heterogeneous computing and
data center. Heterogeneous computing is widely used to accelerate computation intensive work-
loads such as deep neural networks, and data center is where most distributed machine learning
applications are running. All proposed systems and algorithms in this thesis are evaluated in
these two computing environments.

2.1 Heterogeneous Computing

In a distributed computing system, for the sake of performance or energy efficiency, instead of
using the same type of processors, it is often desirable to include different type of co-processors.
Heterogeneous computing [121] refers to distributed computing systems that use more than one
kind of processor or cores. Recently, it has been widely used in super-computing and cloud
computing service. For example, all of the current top 3 supercomputers [3] are equipped with
co-processors. Sunway TaihuLight uses on-broad slave cores, Tianhe-2 uses Intel Xeon Phi,
and Titan uses NVIDIA K20x. Cloud computing providers including Amazon Web Service and
Microsoft Azure are also providing instances installed with both GPUs and CPUs. In the rest
of this section, we will be using system equipped with GPUs as an example of heterogeneous
computing. Note that the techniques discussed here can be extended to other co-processors such
as Xeon Phi.

The purpose of adding GPUs to the system is to leverage the computational power, as the
computing power of GPUs far exceeds that of standard CPUs. For example, Pascal NVIDIA
TITAN X provides 11 TFLOPS [1], while peak performances of high-end CPUs, such as Intel
Xeon E5-2699 v4, is still less than 1 TFLOPS [2]. In terms of computer architecture, GPUs
and CPUs are very dissimilar processors. As shown in Figure 2.1, in CPU, more than half of
the chip is used for cache and control units, which makes CPU suitable for workloads with
complex logic and irregular memory access patterns. However, the major chip area of GPUs is
dedicated to arithmetic and logical operations. As a result, a GPU can often afford hundreds of

17

Control
ALU ALU

ALU ALU

Cache

(a) CPU

ALU

(b) GPU

Figure 2.1: The architecture of CPU and GPU.

GPU
50 GB/s

PCIe 3.0 x16
CoresMemory

(10 GB) DDR5

200 GB/s

SSD (1TB) HDD (10TB)
500 MB/s 100 MB/s

CPU

Main Memory
(100 GB)

16 GB/s

DDR3

10 Gbit/sec
Ethernet

Figure 2.2: Typical capacity and bandwidth of system components.

computing threads, compared to just tens of threads for a CPU. Therefore GPUs well fit the more
computation-extensive and highly paralleled workloads.

In heterogeneous computing, GPUs are usually connected to CPUs by PCI Express (PCIe).
A single lane (x1 connection) of PCIe 3.0 contains two pairs of wires—one for sending and
one for receiving, with a bandwidth of 0.985 GB/sec for each direction. When using a x16
configuration, a GPU can communicate with another device using a bandwidth of 15.75 GB/sec
in each direction. Figure 2.2 shows the how a GPU and other system components are connected
in a typical heterogeneous computing system. First note that accessing GPU via PCIe is more
than 10 times faster than accessing the disk and the network, yet it is still significantly slower
than accessing the main memory. Also, a GPU is often equipped with memory which can be
accessed using high bandwidth by its core, and this bandwidth is typically about 4 times of that
of the main memory.

Standard CPUs only provide a limited number of lanes for PCIe. For example, the Intel
GPU generation 2600 v3 supports at most 40 lanes. In order to connect multiple GPUs to a
CPU simultaneously and utilize the maximal bandwidth, we often use PCIe switches. Figure 2.3
shows the connection between 2 PCIe switches and 8 GPUs. Each PCIe switch connects 4 GPUs
to 1 CPU and uses 16 lanes PCIe for each connection. The two CPUs are then connected by QPI,
which has similar bandwidth as that of PCIe. Note that GPUs connected by the same PCIe switch
enjoy full bidirectional bandwidth for peer-to-peer communication. However, the bottleneck of

18

GPU 0

GPU 1

GPU 2

GPU 3

80-Lane
Switch

GPU 4

GPU 5

GPU 6

GPU 7

80-Lane
Switch

CPU 0 CPU 1
QPI

Figure 2.3: Connecting 8 GPUs to 2 CPUs via two PCIe switches. Each solid line represents 16
lanes.

communication between GPUs belonging to different switches is determined by the GPU-CPU
and CPU-CPU bandwidth. For example, when GPU 0-3 send data to GPU 4-7 at the same time,
the guaranteed bandwidth is at most 15.75 GB/sec (16 lanes of PCIe between the switch and the
CPU) shared among them.

2.2 Data center
A data center hosts a cluster of computing machines and other components. It also provides
software stacks to make the access to hardware more convenient to end users. Today, a large
number of distributed computing jobs for machine learning are run in data centers. In this section,
we give a brief overview of how hardware and software are structured in a typical data center.
One may refer to [13] for more details.

Machine

Edge

Aggregation

Core

… … …

Figure 2.4: Multi-rooted tree topology for machine connections in a data center

In a data center, computing machines are connected in a network. A typical choice of the

19

Progromming

Resource
management
(Yarn, Mesos,

Borge, …)

Distributed
Filesystem
(HDFS, S3,

GFS, …)

Data Processing
(Hadoop, Hive,

Spark, …)

Performance
Debugging Tools

Distributed
Data Store
(BigTable,

Dynamo, …)

Machine Learning
Frameworks

Storage

Utilities

Figure 2.5: Cluster-level Infrastructure

network topology is the multi-rooted tree as illustrated in Figure 2.4. Machines are grouped into
racks in a data center. Each rack contains tens of machines, which are connected via an edge
switch. The edge switches are then connected by aggregation switches, which usually have a
multi-layer structure. The last layer of aggregation switches are connected to the core data center
switches.

Recall that in Figure 2.3 the communication bottleneck between two GPUs that belong to two
different switches is the bandwidth of the single link between a switch and the CPU. Here, each
edge switch has more than one up-links. Assume all links have the same bandwidth and an edge
switch has four down-links to the four machines in a rack and two up-links to other switches, then
when all four machines attempt to communicate to machines in other racks, each of them enjoys
the bandwidth of half of an up-link. The ratio between the number of down-links and up-links
is called the over-subscription ratio, which is 2:1 in this example, and is 4:1 in the example in
Figure 2.3. An ideal over-subscription would be 1:1, also called full bisection bandwidth. Such
ideal hardware configuration is very expensive.

There is an architecture for different software that are running in a data center. Usually the
software can be classified into three layers [13]. The firmware, kernel, and operating systems that
abstract the hardware of the computing machines run on the bottom level. The top level is the
application level, where the data center runs the applications, which implement specific services
such as hosting website, e-mail services, and various data processing jobs. Between the bottom
level and top level there is the cluster level that manages the computing resources in the cluster
and provides storage and compute services for the application level.

In Figure 2.5, we list several well-known infrastructures for the cluster level. They can be
classified into three categories:

20

Resource managers abstract away the hardware, including CPU, GPU, memory and storage,
from the physical machines to the application level. They allocate and manage resources
for other software running in the cluster. Examples of resource managers include Yarn [52],
Mesos [67], and Kubernetes [35].
The performance debugging tools are used to identify the performance bottleneck, which
could be caused by inefficient usage of CPU, memory, disk, network.

Storage software provide storage services for shared data.
A distributed file system is a file system that provides an interface for machines to mount,
list, read and write data. It can be mounted by multiple machines, and it can span over
multiple machines for larger capacity. It often duplicates data in the storage and use the
redundancy to achieve higher throughput. Examples of distributed file systems include
GFS [57] and HDFS [53],
A distributed data store serves to enforce different APIs for storing structured data. For
example, Dynamo [43] stores data by key-value pairs, BigTable [29] uses a sparse multi-
dimensional sorted mapping as the data format, and Cassandra [54] provides a database
interface.

Programming software are platforms that facilitate the end users to develop distributed com-
puting programs.
A data processing framework utilize multiple machines to process large scale data sets.
Notable examples include MapReduce [41] and its follower Hadoop [53] and Spark [152].
In general, a MapReduce program is composed of a Map procedure for data filtering and
sorting, and a Reduce procedure for data summary operation. Another example of data
processing frameworks is Flink [55], which supports streaming data flow.
A machine learning framework is specialized for different classes of machine learning al-
gorithms, and it works closely with other related software. For example, a machine learn-
ing framework needs to communicate with the resource managers to submit computing
jobs; it usually reads data directly from a distributed file system or a data store; and it may
obtain the output from data processing frameworks.
Machine learning frameworks are the focus of the first part of this thesis. We propose
two machine learning frameworks called Parameter Server (PS) (Chapter 3) and MXNet
(Chapter 4).

21

22

Chapter 3

Parameter Server: Scaling Distributed
Machine Learning

3.1 Introduction
Since its introduction, the Parameter Server (PS) framework [123] has proliferated in both academia
and industry. In this chapter, we introduce our implementation of the third generation Parameter
Server. The focus is on the system aspects of distributed inference, and our design decisions
were guided by the workloads found in real systems.

3.1.1 Engineering Challenges

When solving distributed data analysis problems, the issue of reading and updating model pa-
rameters shared between different worker nodes is ubiquitous. The PS framework provides an
efficient mechanism for aggregating and synchronizing statistics including model parameters be-
tween the worker nodes. In PS, each worker node only needs to maintain a small part of the
model parameters which it typically operates on. Two key challenges arise in constructing a high
performance PS system:

Communication In a conventional datastore, the parameters could be updated as key-value
pairs. However, using this abstraction naively is inefficient: the values are typically small
(floats or integers), thus the overhead of sending each update as a key-value pair can be
very high.
Our insight to improve this situation comes from the observation that many learning algo-
rithms represent parameters as structured mathematical objects, such as vectors, matrices,
or tensors. At each logical time (or an iteration), typically only a small part of the object is
updated. That is, worker nodes usually communicate just a segment of a vector, or a row
of a matrix. This provides an opportunity to automatically batch process both the commu-
nication of updates and their processing on the PS, and allows the consistency tracking to
be implemented efficiently.

Fault tolerance As argued before, for a distributed computing system, fault tolerance is a criti-
cal property especially at large scale. In particular, for efficient operation, upon failure of

23

Shared Data Consistency Fault Tolerance
Graphlab [91] graph eventual checkpoint

Petuum [40] hash table delay bound none
REEF [32] array BSP checkpoint

Naiad [102] (key,value) multiple checkpoint
Mlbase [75] table BSP RDD

Parameter (sparse)
various continuous

Server vector/matrix

Table 3.1: Attributes of distributed data analysis systems.

101 102 103 104 105104

105

106

107

108

109

1010

1011

number of cores

nu
m

be
r o

f s
ha

re
d

pa
ra

m
et

er
s

Distbelief (DNN)

VW (LR)
YahooLDA (LDA)

Graphlab (LDA)

Naiad (LR)

REEF (LR)

Petuum (Lasso)

MLbase (LR)

Parameter server (Sparse LR)

Parameter server (LDA)

Figure 3.1: Largest machine learning experiments conducted using different computing systems.
Problems: blue circles — sparse logistic regression; red squares — latent variable graphical
models; grey pentagons — deep networks.

a single worker node it should not require a full restart of a long-running computation. To
boost fault tolerance in PS, we implement live replication of parameters between servers
to support hot failover, namely switching to a redundant node during running upon a node
failure. Moreover, by treating machine removal or addition as failure or repair respectively,
failover and self-repair in PS can in turn support dynamic scaling.

24

3.1.2 Our contribution
Our PS confers two main advantages to developers: first, by factoring out components of ma-
chine learning systems that are commonly required, it allows the application-specific codes to
remain concise; second, as a shared platform targeting at system-level optimization problems,
it provides a robust, versatile, and high-performance implementation, which is capable of han-
dling a diverse array of algorithms ranging from sparse logistic regression to topic models and
distributed sketching. In particular, our PS features the following five key properties:
Efficient communication We adopt the asynchronous communication model which does not

block computation unless requested. Moreover, it is optimized for machine learning tasks
to further reduce network communication overhead.

Flexible consistency models Our relaxed consistency further lowers synchronization cost and
latency. Also, it offers the choice to balance the algorithmic convergence rate and system
efficiency to the developers.

Elastic Scalability New computing machines and worker nodes can be added to the system
without restarting the running framework.

Fault Tolerance and Durability Non-catastrophic machine failures can be repaired within 1s,
without interrupting the computation process. Vector clocks ensure that the post-failure
behaviors are well defined.

Ease to Use In order to facilitate the development of machine learning applications, the globally
shared parameters are represented as potentially sparse vectors and matrices, which come
with high-performance multi-threaded libraries.

Our PS is the first general purpose machine learning computing system that is capable of
handling large scale problems at the industrial level. The novelty of the proposed system lies in
the synergy of picking the right techniques of computing systems, adapting them to the machine
learning algorithms, and modifying the machine learning algorithms to be more system-friendly.

Figure 3.1 provides an overview of the performance of the largest supervised and unsuper-
vised machine learning experiments that are run on a number of well-known systems. When
possible, we confirmed the scaling limits with the authors of each of these systems (data current
as of 4/2014). As shown in the figure, we are able to handle orders of magnitude more data on
orders of magnitude more processors than other published systems. Furthermore, Table 3.1 pro-
vides an overview of the main features of several distributed computing systems. Among them,
our PS offers the greatest degree of flexibility in terms of consistency; it is the only system with
continuous fault tolerance; and the type of its shared data makes it particularly user-friendly for
data analysis applications.

3.1.3 Related Work
Related distributed computing systems have been implemented at large companies including
Amazon, Baidu, Facebook, Google [42], Microsoft, and Yahoo [6], and there exist open source
codes such as YahooLDA [6] and Petuum [68]. Graphlab [91] also supports parameter synchro-
nization on a best effort model.

There were several major breakthroughs in the history of the development of Parameter
Server. The first generation of PS, as introduced by [123] in 2010, lacked flexibility. In particular,

25

it repurposed memcached distributed (key,value) store as the synchronization mechanism. In
2012, YahooLDA improved this design by implementing a dedicated server with user-definable
update primitives (set, get, update) and a more principled load distribution algorithm [6]. This
second generation of application specific PS can also be found in Distbelief [42] and the syn-
chronization mechanism of [82]. A first step towards a general platform was undertaken by
Petuum [68] in 2013. This system improves YahooLDA with a bounded delay model while plac-
ing further constraints on the worker threading model. We will show that our third generation PS
overcomes these limitations.

Finally, it is useful to compare PS to more general-purpose distributed computing systems
for machine learning. Several of those systems can scale well to tens of worker nodes. However,
since they mandate synchronous and iterative communication, at large scale, this synchronization
significantly increases the chance of a worker node operating slowly. Mahout [12], based on
Hadoop [53] and MLI [124], based on Spark [153], both adopt the iterative MapReduce [41]
framework. A key insight of Spark and MLI is preserving state between iterations, which is
indeed a core goal of PS.

We would also like to compare our PS with two other systems Distributed GraphLab [91] and
Piccolo [111]. Distributed GraphLab [91] schedules its communication using a graph abstraction
in an asynchronous way. However, GraphLab lacks the elastic scalability of the map/reduce-
based frameworks, and it relies on coarse-grained snapshots for recovery, which also impedes
scalability. Its applicability for certain algorithms is limited by its lack of global variable syn-
chronization as an efficient first-class primitive. In a sense, a core goal of the PS framework
is to capture the benefits of GraphLab’s asynchrony and to go beyond its structural limitations.
Piccolo [111] uses a strategy similar to PS to share and aggregate state between machines. In
Piccolo, worker nodes pre-aggregate the state locally and transmit the updates to a server that
keeps the aggregate state. It implements largely a subset of the functionality of our system,
while lacking the optimization techniques specialized for machine learning, including message
compression, replication, and variable consistency models expressed via dependency graphs.

3.2 Architecture
In this section, we discuss the architecture of our third generation PS.

As shown in Figure 3.2, the worker nodes are grouped into a server group and several worker
groups. In the server group, one server node keeps track of the partition of the globally shared
parameters; different server nodes communicate with each other to replicate and to migrate pa-
rameters for reliability and scaling; and a server manager node maintains a consistent view of the
metadata of the server group, such as node liveness and the assignment of parameter partition.

Note that an instance of a PS can run more than one algorithm simultaneously. In particular,
each worker group runs an application. There is a scheduler node in each worker group, which
assigns tasks to the worker nodes in the group and monitors their progress. If workers are added
or removed, the scheduler node is also in charge of rescheduling the unfinished tasks. A worker
in a worker group typically only stores a portion of the training data locally to compute the
local statistics such as the gradients. Workers do not communicate among themselves, and they
communicate only with the server nodes to update and retrieve the shared parameters. Note that

26

server groupserver
managerresource

manager

task
scheduler

a worker
node

training data

a server
node

worker group

Figure 3.2: Communication between several groups of workers in Parameter Server.

10
0

10
1

10
2

10
3

10
4

0.1

1

10

100

number of workers

p
a

ra
m

e
te

rs
 p

e
r

w
o

rk
e

r
(%

)

Figure 3.3: Parameters per worker node decreases with the number of workers.

each worker only needs the working set of the parameters for local computation, which is a small
portion of all the parameters.

Figure 3.3 shows that with 100 workers, each worker only needs 7.8% of the parameters for
the Ad click prediction application that will be discussed in detail in Section 6.3.1. With 10,000

27

Algorithm 2 Distributed Gradient-based Optimization with PS
Task Scheduler:

1: for iteration t = 0, . . . , T do
2: choose It ⊆ {1, . . . , n}
3: partition It =

⋃m
k=1 Itk

4: issue WORKERITERATE(t) to all workers.
5: end for

Worker k = 1, . . . ,m:
1: function WORKERITERATE(t)
2: pull w(k)

t from servers
3: compute g(k)

t ←
∑

i∈Itk
∂fi(w

(k)
t)

4: push g(k)
t to servers

5: end function
Servers:

1: function SERVERITERATE(t)
2: aggregate gt ←

∑m
k=1 g

(k)
t

3: use the gradient gt to update wt+1

4: end function

workers, this fraction further reduces to 0.15%, which leads to less memory required for each
machine.

Our PS supports independent parameter namespaces, which allows a worker group to isolate
its set of shared parameters from others. Several worker groups may also share the same names-
pace. One example of using this feature is that we can use more than one worker group to solve
the same deep learning application [42] to achieve a higher level of parallelization. Another
example is that a model can be actively queried by some worker nodes, in applications such as
online services, while at the same time the model can be updated by a different group of worker
nodes when new training data arrives.

Next, we discuss the key components of our parameter server in detail. The rest of this sec-
tion unfolds as follows. The shared parameters are presented as (key,value) vectors to facilitate
linear algebra operations (Section 3.2.1), and they are distributed across a group of server nodes
(Section 3.3.3). Moreover, any node can both push out its local parameters and pull parameters
from remote nodes (Section 3.2.2). By default, the tasks are executed by worker nodes, or they
can also be assigned to server nodes via user defined functions (Section 3.2.3). The tasks are run
in parallel and in an asynchronous way (Section 3.2.4). The PS provides the algorithm designer
with the flexibility in choosing a consistency model via the task dependency graph (Section 3.2.5)
and also in choosing the subset of parameters to communicate (Section 3.2.6).

As a toy example, in Figure 3.4, we visualize the PS implementation of Algorithm 2, the
standard distributed gradient descent.

28

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 3.4: Steps of Algorithm 2. Note that each worker node only caches its working set of
parameters w.

3.2.1 (Key,Value) Vectors

The model parameters shared among the worker nodes can be represented as a set of (key, value)
pairs. For example, in a loss minimization problem, the pair is a feature ID and its weight. In
LDA, the pair is a combination of the word ID and topic ID, and the frequency count. Each entry
of the model parameters can be read and written locally or remotely accessed via its key. This
(key,value) abstraction is widely adopted by existing approaches [40, 75, 102].

Our PS improves upon this basic approach by acknowledging the underlying meaning of
these key-value items especially in machine learning algorithms, where the model parameters are
typically in the form of a linear algebra object. For instance, for the risk minimization problem
with the objective function in Algorithm 2, the model parameter w is a vector. Our PS can
provide the same functionality as the (key,value) abstraction. Moreover, by treating these model
parameters as linear algebra objects which are often sparse, it allows efficient implementation
of important operations such as vector addition w + u, multiplication Xw, finding the 2-norm
‖w‖2, and other more sophisticated operations [48].

We assume that the keys are ordered, so that we can provide the vector and matrix semantics
to the (key,value) pairs in the model parameters (non-existing keys are associated with zeros by
default). This introduction of linear algebra in machine learning into the PS greatly reduces the
effort of implementing the optimization algorithms. Moreover, this interface design also leads

29

to highly efficient codes by leveraging CPU-efficient multithreaded self-tuning linear algebra
libraries such as BLAS [48], LAPACK [10], and ATLAS [146].

3.2.2 Range-based Push and Pull
In our PS, communication between nodes is through push and pull operations. In Algorithm 2
each worker node pushes the gradients it computes with local data to the server nodes, and then
pulls back the updated weights. Our PS supports range-based push and pull, which bulk com-
munication API greatly improves the computation and communication efficiency. For example,
letR be the range of the keys, the command w.push(R,dest) sends all existing entries in the
model w whose keys fall in the rangeR to the destination dest, which can be either a particular
node, or a node group. Similarly, the command w.pull(R,dest) reads all existing entries of
model w with keys in the range R from the destination dest. If we set R to be the whole key
range, the whole model vector w is be communicated, and if we setR to be a single key, only an
individual entry is chosen.

Note that this communication interface can be extended to communicate any local data struc-
tures that share the same keys as the model parameters. For example, in Algorithm 2, a worker
pushes the gradients g it computes with local data to the PS for aggregation. Since the gradients
g shares the keys of the model parameter set w at the worker node, the developer can simply use
the command w.push(R,g,dest) to push the local gradients.

3.2.3 User-Defined Functions on the Server
The nodes in the server group are not only in charge of aggregating data from worker nodes, but
they can also execute user-defined functions. This is favorable as the server nodes often have
more complete or up-to-date information about the shared model parameters. For example, in
Algorithm 2, the server nodes use subgradients to update the model parameter w. In the context
of sketching (see Section 3.4.3), almost all operations occur in the server nodes.

3.2.4 Asynchronous Tasks and Dependency
A task is issued by a remote procedure call, which can be a push or a pull that a worker sends
to servers, or can also be a user-defined function sent by the scheduler to any node. Tasks may
include arbitrary number of subtasks. For example, the task WorkerIterate in Algorithm 2
contains one push and one pull.

Tasks are executed asynchronously. The caller of the task can start other computation imme-
diately after issuing a task without waiting for the reply from the callee. The caller marks a task
as finished only when it receives the reply. A reply could be the function return of a user-defined
function, or the (key,value) pairs requested by the pull, or an empty acknowledgement. On the
other end, the callee marks a task it receives as finished only if the call of the task is returned and
all the subtasks issued by this call are finished.

By default, callees execute tasks in parallel to achieve better efficiency. A caller that wishes to
enforce serial task execution can place an dependency command execute-after-finished between
different tasks. For example, figure 3.5 depicts three iterations of WorkerIterate. Iterations

30

iter 10:

iter 11:

iter 12:

gradient

gradient

gradient

push & pull

push & pull

pu

Figure 3.5: Example of asynchronous processing of different tasks by the same node. Here
iteration 12 depends on 11, and iteration 10 and 11 are independent.

0 1 2 0 1 2 0 1 2 3

(a) Sequential (b) Eventual (c) 1 Bounded delay

4

Figure 3.6: Directed acyclic graphs for different consistency models. The size of the DAG
increases with the delay.

10 and 11 are independent, but 12 depends on 11. The callee therefore begins iteration 11
immediately after the local gradients are computed in iteration 10. Iteration 12, however, is
postponed until the pull of 11 finishes.

Such task dependency facilitates implementing algorithm logic. For example, in Algorithm 2,
the aggregation logic in ServerIterate updates the weight w only after when the gradients
from all the workers are aggregated. This can be implemented by having the updating task
depending on the push tasks of all workers. Another important use of task dependency is to
support the flexible consistency models introduced next.

3.2.5 Flexible Consistency

It largely improve the efficiency of the system if independent tasks can be run simultaneously.
This can be achieved by parallelizing the use of CPU, disk and network bandwidth. However,
this may also lead to data inconsistency between nodes. For example, consider the diagram in
Figure 3.5 for Algorithm 2, the worker starts iteration 11 before the updated model is pulled
back, thus the outdated local model is used in iteration 11 and the same gradients are obtained
as in iteration 10. This inconsistency can potentially slow down the convergence of the algo-
rithm. Nevertheless, some algorithms are less sensitive to this type of inconsistency, and starting
iteration 11 without waiting for 10 may only cause a small part of the model to be inconsistent.

The best trade-off between system efficiency and algorithm convergence usually depends on
various factors, including the algorithm’s sensitivity to data inconsistency, feature correlation of
the training data, and the capacity difference between hardware components. Instead of forcing
the user to adopt one fixed task dependency pattern that may be ill-suited to a specific problem,
our PS gives the algorithm designers the flexibility in defining their own consistency models.

31

Figure 3.6 shows the directed acyclic graphs for three different models of task dependencies.
Next, we discuss how each of these models can be implemented by our PS.

Sequential In sequential consistency, all tasks are executed one by one. The next task only
starts after the previous one has finished. This consistency is identical to the single-thread
implementation, which is also named as Bulk Synchronous Processing.

Eventual Eventual consistency is the opposite of sequential consistency, where all tasks start
simultaneously. In [123] a system with eventual consistency is discussed. However, this
consistency is only useful if the algorithms are robust to the possible delays.

Bounded Delay In bounded delay consistency, a maximal delay time τ is set. A new task is
blocked until all the previous tasks started τ time slots ago are finished. This model pro-
vides more flexible controls than the previous two. Moreover it has the previous two
models as special cases: setting τ = 0 gives the sequential consistency model, and setting
τ =∞ gives the eventual consistency model.

Note that the dependency graphs can evolve over time. The scheduler may increase or decrease
the maximal delay according to the runtime progress in order to balance system efficiency and
the algorithm convergence.

3.2.6 User-defined Filters
Besides the scheduler-based task flow control, our PS also supports various user-defined filters to
selectively synchronize individual (key,value) pairs, allowing fine-grained control of data consis-
tency within a task. The insight is that the optimization algorithm usually possesses information
about which parameters are most useful and need to be synchronized with high priority. One
example is the significantly modified filter, which only pushes entries that have changed by more
than a threshold since their last synchronization. Another example is fixed point quantization,
which converts float numbers into lower bit integers.

3.3 Implementation
In this section, we discuss the key implementation details of our PS. Different from prior (key,value)
systems, our PS is optimized for range based communication with compression for both range
based vector clocks (Section 3.3.1) and data (Section 3.3.2). Section 3.3.3 shows how the server
nodes use consistent hashing [132] to store the key-value pairs of the model parameters. Sec-
tion 3.3.4 shows that entries are replicated using chain replication [142] to achieve fault tolerance.

3.3.1 Vector Clock
In our PS, given the potentially complex task dependency graph and the need for fast recov-
ery, each (key,value) pair is associated with a vector clock [43, 78], which records the time of
each individual node on this (key,value) pair. Vector clocks have various benefits. For exam-
ple, it is good for tracking aggregation status or rejecting doubly sent data. However, a naive
implementation of the vector clock requires O(nm) space to handle n nodes and m parameters.

32

Algorithm 3 Set vector clock to t for rangeR and node i
1: for S ∈ {Si : Si ∩R 6= ∅, i = 1, . . . , n} do
2: if S ⊆ R then vci(S)← t else
3: a← max(Sb,Rb) and b← min(Se,Re)
4: split range S into [Sb, a), [a, b), [b,Se)
5: vci([a, b))← t
6: end if
7: end for

With thousands of nodes and billions of parameters, this is infeasible in terms of memory and
bandwidth.

Fortunately, as a result of the range-based communication pattern of our PS, many parameters
have the same time-stamp. In particular, if a node pushes the parameters within a range, then the
time-stamps of those parameters are likely to be the same, and thus they can be compressed into
a single range based vector clock. More specifically, let vci(k) denote the time-stamp of key k
for node i. Given a key range R, setting the ranged vector clock vci(R) = t means that for any
key k in the rangeR we set vci(k) = t.

Initially, there is only one vector clock for each node i, which covers the entire key space
and 0 is set to be its initial time-stamp. Each operation of range setting splits the range and may
create at most 3 new vector clocks (see Algorithm 3). Let k be the total number of unique ranges
defined by the algorithm, and let m be the number of nodes, then there are at most O(nk) vector
clocks. Since k is typically much smaller than the total number of parameters, this range based
vector clock significantly reduces the memory and bandwidth requirement1.

3.3.2 Messages
When a node sends a message to an individual node or a node group, a message consists of a list
of (key,value) pairs whose keys are in the rangeR and the associated range vector clock:

[vc(R), (k1, v1), . . . , (kp, vp) : kj ∈ R] .

This is the basic communication format of our PS. It is for communicating both the shared
parameters and the tasks. For the latter, a (key,value) pair usually assumes the form (task ID,
arguments or return results).

Messages may only carry a subset of all the keys within range R, and the missing keys are
assigned the same time-stamp without changing their values. A message can be split by the key
range. This happens when a worker sends a message to the entire server group, or when the
key assignment of the receiver node has changed. To achieve this, we just need to partition the
(key,value) lists and split the range vector clock similar to that in Algorithm 3.

Since machine learning problems typically require high bandwidth for communication be-
tween the nodes, it is desirable to compress these messages. One observation is that the training

1Ranges can also be merged to reduce the number of fragments. However, in practice both m and k are small
enough to be easily handled. We leave range merging for future work.

33

owned
by S1

replicated
by S1

key ring

S1

S3

S1'

S2

S3'

S2'

S4

S4'

Figure 3.7: Server node layout.

data often remains unchanged between iterations of the algorithm, resulting that a worker sends
the same key lists multiple times. Therefore, we allow the receiving node to cache the key
lists, so that when such duplication happens later, the sender only needs to send a hash of the
list. Another observation is that the model parameter may contain many zero entries. For ex-
ample, a large portion of parameters remain zero in sparse logistic regression, as evaluated in
Section 3.4.1. Likewise, a user-defined filter may also zero out a large fraction of the values.
Hence we only need to send the (key,value) pairs with nonzero values. To achieve this, we use
the Snappy compression library [63] to compress messages by effectively removing the zeros.
Note that key-caching and value-compression can be used jointly in our PS.

3.3.3 Consistent Hashing
Similar to a conventional distributed hash table [24, 118], our PS partitions keys by inserting
both keys and server node IDs into the hash ring (Figure 3.7). Each server node manages a key
range, which starts with this server’s insertion point and ends with the next insertion point of
another node in the counter-clockwise direction. This node is called the master of this key range.
A physical server is often represented in the ring via multiple “virtual” servers to improve load
balancing and recovery.

We simplify the key range management by using a directly mapped DHT design. The server
manager handles the ring management, and all other nodes locally cache the key partition, so that
they can determine which server is responsible for a key range, and are notified of any change.

3.3.4 Replication and Consistency
Each server node stores a replica of the key ranges for the k counterclockwise neighbors on the
ring relative to the one it owns. For example, in Figure 3.7, we have k = 2 and server 1 replicates
the key ranges owned by server 2 and server 3. We refer to nodes holding copies of a key range
as slaves of that key range, and the owner of the key range as the master of it.

Worker nodes communicate with the master of a key range for both push and pull. Any
modification of a key range by the master is copied with the time-stamp to its slaves syn-

34

2: f(x+y)W1
S2

push: ack:
1a: x

3: f(x+y)
4

1b: y
5b

5a

W2

S1
2: f(x)

S2S1W1 1: x 3: f(x)
45

Figure 3.8: Servers generate replicas of key ranges. Left: a single worker. Right: multiple
workers updating values simultaneously.

chronously. For example, on the left of Figure 3.8 it shows that when worker 1 pushes x into
server 1, a user defined function f(x) to modify the shared data is invoked. The push task is
completed when the data modification f(x) is copied to every slave.

Naive replication potentially increases the network traffic by k times, which is undesirable
for many machine learning applications where the communication traffic is already high. To
solve this problem, our PS framework permits “replication after aggregation”. The basic idea
is that the server nodes can first aggregate data from the worker nodes, for instance summing
local gradients, and postpone replication until such aggregation is completed. For example, on
the right-hand side of Figure 3.8, two workers push x and y to the server respectively. The
server first aggregates the push by computing x + y, then applies the modification f(x + y),
and performs the replication at last. With n workers, such replication uses only k/n times the
bandwidth. Often k is a small constant, while n can be hundreds or even thousands. Although
one may argue that aggregation also increases the delay of the task reply, such latency can be
reduced by our relaxed consistency conditions.

3.3.5 Server Management

Our PS supports dynamic addition and removal of nodes to achieve fault tolerance and dynamic
scaling. In particular, the following steps happen when a server node joins:

1. The server manager assigns the new node a key range, which may come from a terminated
node or from a key range split.

2. The new server node becomes the master of this key range, and it fetches data within this
key range. The server node also gets the data corresponding to another k key ranges for
which it serves as the slave.
For the new server node, fetching the data in a key range R from some other node S pro-
ceeds similar to the Ouroboros protocol [110]. First, the node S pre-copies all (key,value)
pairs in the range R together with the vector clocks. Note that this may cause a range
vector clock to split similar to that in Algorithm 3. During the pre-copy stage, the node
S updates with the new node all the changes that occurred in R. Then, the node S stops
accepting any message associated with the key rangeR, whilex the new node takes over.

3. The server manager broadcasts the system change. Based on the key range changes, other

35

nodes shrink their data and resubmit the unfinished tasks to the new server node if needed.
Upon receiving the broadcast message about the new server node and the key range change,
a node first checks if it also maintains the key range. If so, and if this key range should no
longer be maintained by it, this node deletes all the (key,value) pairs within this key range
together with the vector clocks. Next, the node scans all the outgoing messages for which
no reply has been received yet. If the key range of such a message overlaps with the new
key range, the message is split according to the key range change and forwarded to the new
server node. Such messages may be sent twice due to delays, failures, and lost Acks. Both
the original recipient and the new server node are able to correct it by checking the vector
clocks.

The server manager detects node failure by a heartbeat signal. The departure of a server
node (voluntary or due to failure) is treated similarly to that when a new server joins. The server
manager simply assigns the key range of the leaving node to a different server node. Integration
with a cluster resource manager such as Yarn [52] or Mesos [67] is left for future work.

3.3.6 Worker Management

The steps of adding a new worker node is similar to but much simpler than adding a new server
node.

1. The task scheduler assigns the new worker node the data within a key range.
2. The new node loads the corresponding training data either from a network file system or

from some existing workers. Note that since the training data is often read-only, there is
no two-phase fetch, which is different from Step 2 when new server node joins the system.
The new node also pulls the shared parameters from the server nodes.

3. The task scheduler broadcasts the system change. Other worker nodes free the correspond-
ing training data if needed.

The task scheduler may start a replacement when a worker leaves the system. We give the
algorithm designer the option to continue without replacing a failed worker, for two reasons.
First, if the training data is huge, compared to recovering a server node, recovering a worker
node is usually much more expensive. Second, for large scale problems, losing a small amount
of training data only has very limited effect to the overall optimization problem. Sometimes, it
may even be desirable to actively terminate the workers that are too slow.

3.4 Evaluation

In order to evaluate the performance of our PS, we implement two representative algorithms:
Sparse Logistic Regression for risk minimization, and Latent Dirichlet Allocation for generative
models. To demonstrate the versatility of our approach, these experiments are run on clusters in
two large Internet companies and a university research cluster.

36

Method Consistency LOC
System A L-BFGS Sequential 10,000
System B DBPG Sequential 30,000
Parameter

DBPG
Bounded Delay

300
Server KKT Filter

Table 3.2: Comparison of performance between Parameter Server and other systems.

3.4.1 Sparse Logistic Regression
Setting Sparse logistic regression is one of the most popular algorithms for large scale risk
minimization [27]. It combines the logistic loss, i.e. `(xi, yi, w) = log(1 + exp(−yi〈xi, w〉)),
with the `1 regularizer, i.e. Ω(w) =

∑n
i=1 |wi|. The `1 regularizer encourages a compact solution

of sparse vector, yet its non-smoothness makes the optimization problem difficult.
We use ad click prediction dataset CTRb with 170 billion examples and 65 billion unique

features, which has a sheer volume of 636 TB uncompressed (141 TB compressed). We deploy
our PS on a cluster of 1000 machines in CompanyA. Each machine is equipped with 16 phys-
ical cores, 192GB DRAM, and connected by 10 Gb Ethernet. Among the 1000 machines, 800
machines are worker nodes, and 200 are server nodes. During our experiment, this cluster is in
concurrent use by other tasks.

Algorithm We propose and implement the DBPG algorithm in Chapter 6 for sparse logistic
regression. This distributed algorithm differs from the standard version in the following ways. In
each iteration, only a subset of parameters is updated. The worker nodes compute both the first
order gradients and the diagonal part of the second order derivatives for this subset. Based on
these aggregated local derivatives, in the parameter server, the server nodes update the model by
solving a proximal operator. Moreover, to reduce communication overhead, we use a bounded-
delay model over iterations, and we use a “KKT” filter to suppress transmission of parts of the
generated gradient update with negligible magnitude.

Results We compare the performance of our PS with two special-purpose systems, named
System A and B, both of which are developed by a large Internet company. The results are
shown in Table 3.2. Notably, to perform the same computational task, our PS only requires 300
lines of code, while both Systems A and B consist of more than 10K lines of code. Our PS
successfully reduces most complicated details of the distributed implementation of the algorithm
into a generalized component that is reusable for many other algorithms.

We run sparse logistic regression in these three systems and compare the time each system
takes to get the objective function to the same value.

Figure 3.9 shows that the relaxed consistency model substantially increases worker node
utilization. As can be seen from the figure, workers in System A are idle for 32% of the time,
and in system B, they are idle for 53% of the time, waiting for the barrier in each block. Our PS
reduces this cost to under 2%. In PS, workers can start processing the next block without waiting
for the previous blocks to be completed, and in this way we can alleviate the delay otherwise
imposed by barrier synchronization. This gain does not come entirely free: we can observe

37

System−A System−B Parameter Server
0

1

2

3

4

5

ti
m

e
 (

h
o

u
rs

)

computing
waiting

Figure 3.9: Time spent on computation and waiting (per worker) in sparse logistic regression.

baseline +caching keys +KKT filter
0

20

40

60

80

100

re
la

ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

2x 2x2x

40.8x 40.3x

non−compressed

compressed

baseline +caching keys +KKT filter
0

20

40

60

80

100
re

la
ti
v
e
 n

e
tw

o
rk

 t
ra

ff
ic

 (
%

)

1.9x 1.9x

1.1x

2.5x

12.3x

non−compressed

compressed

Figure 3.10: Savings of outgoing network traffic. Left: per server. Right: per worker.

that our PS uses slightly more CPU than System B. There are two reasons for this: first, and
less fundamentally, System B optimizes its gradient calculations by careful data preprocessing;
second, asynchronous updates with the PS require more iterations to achieve the same objective
value. Nevertheless, thanks to the significantly reduced communication cost, our PS still halves
the total runtime.

Figure 3.10 shows the reduction in network traffic. We can observe that allowing the senders
and receivers to cache the keys helps to reduce nearly 50% of the traffic. This is because both
key (int64) and value (double) are of the same size, and the key set is not changed during
optimization. In addition, when applying the KKT filter, data compression is effective for com-
pressing the values for both servers (>20x) and workers (>6x). The reasons for its effectiveness
are twofold: first, the `1 regularizer encourages a sparse model, and thus most of values pulled
from the servers are simply 0; second, the KKT filter also forces a large portion of the gradients

38

Figure 3.11: Distribution of log-likelihoods per worker as a function of time, in the setting of
1000 machines and 5 billion users.

Figure 3.12: Distribution of log-likelihoods per worker as a function of time, stratified by the
number of iterations.

sent to servers to be 0.

3.4.2 Latent Dirichlet Allocation

Setting We apply our PS architecture to solve the problem of modeling user interests based on
the domain of the URLs which they click when presented with the search results. We collect
search log data (ClickProfile in Table 1.4) with over 5 billion unique user identifiers and evaluate

39

Figure 3.13: Convergence of log-likelihoods per worker, in the setting of 1000 and 6000 ma-
chines, 500 million users.

user interest model for the 5 million most frequently clicked domains. We run and compare the
performance of the same algorithm with the setting of 800 workers and 200 servers, and with the
setting of 5000 workers and 1000 servers respectively. The machines are from cluster CompanyB
(Table 1.6). Each machine has 10 physical cores, 128GB DRAM, and at least 10 Gb/s of network
connectivity. We again only have access the cluster with production jobs running concurrently.

Algorithm We performed LDA using a combination of Stochastic Variational Methods [69],
Collapsed Gibbs sampling [62] and distributed gradient descent. Similar to the setting of [6], the
gradients are aggregated asynchronously as they are sent from different worker nodes.

We divide the model parameters into local and global parameters. The local parameters (i.e.
auxiliary metadata) are pertinent to a given node and they are streamed from the disk whenever
we query a particular node. The global parameters are shared among the nodes and they are
represented as (key,value) pairs to be stored using the PS.

To our knowledge, no other system (e.g., YahooLDA, Graphlab or Petuum) can handle this
amount of data and model complexity for LDA, with up to 10 billion (5 million tokens and 2000
topics) shared parameters. The largest experiments [5] that have been previously reported only
had under 100 million users active at any time, less than 100,000 tokens and under 1000 topics
(2% the data, 1% the parameters).

Results To evaluate the quality of the inference algorithm with different settings, we use the
training log-likelihood as a measure of fitting and monitor how rapidly it converges.

In Figure 3.13, we observe an approximately 4X speedup of convergence speed when the
number of machines increases from 1000 to 6000. The stragglers observed in Figure 3.11
and 3.12 also illustrate the importance of having an architecture that can cope with performance
variation across different worker nodes.

40

Algorithm 4 CountMin Sketch
Init: M [i, j] = 0 for i ∈ {1, . . . n} and j ∈ {1, . . . k}. Insert(x)

1: for i = 1 to k do
2: M [i, hash(i, x)]←M [i, hash(i, x)] + 1

Query(x)

1: return min {M [i, hash(i, x)] for 1 ≤ i ≤ k}

Peak inserts per second 1.3 billion
hline Average inserts per second 1.1 billion
Peak net bandwidth per machine 4.37 GBit/s
Time to recover a failed node 0.8 second

Table 3.3: Insertion rates of distributed CountMin implemented with Parameter Server.

3.4.3 Sketches

Setting To demonstrate the generality of our system, we test our PS with sketches [16, 37],
which computation operates in a way that is very different from other machine learning algo-
rithms: for sketches, a large number of write events constantly come from a streaming data
source.

The computational task is to insert a streaming log of pageviews into a structure that allows
the user to efficiently track pageview counts for a large collection of web pages. Each entry in
the streaming log is a pair of the key for a webpage and the corresponding number of requests
served in a particular hour. We use the Wikipedia (and other Wiki projects) page view statistics
as a benchmark. For the time period between 12/2007 and 1/2014, there are 300 billion entries
associated with more than 100 million unique keys. We run our PS with 90 virtual server nodes
on 15 machines of a research cluster CampusB. Each machine has 64 cores and is connected by
the Ethernet with 40Gb bandwidth.

Algorithm Sketching algorithms efficiently summarize and store the huge volumes of data so
that the queries can be quickly answered. These algorithms are particularly important in stream-
ing applications where a large volume of data and queries arrive in real-time. For example,
Cloudflare’s DDoS-prevention service analyzes the page requests across its entire content deliv-
ery service architecture to identify likely DDoS targets and attackers. The volume of data logged
in such applications is far beyond the capacity of a single machine. While a conventional ap-
proach might be to shard a workload across a key-value cluster such as Redis, those solutions
typically do not allow the user-defined aggregation semantics which are needed to implement
approximate aggregation.

Algorithm 4 lists the key steps of the CountMin sketch algorithm [37]. In particular, a query
returns an upper bound on the number of observed keys x. Splitting keys into ranges automat-
ically allows us to parallelize the sketch algorithm. We thus implement a distributed CountMin
with our PS.

41

Results Table 3.3 shows the insertion rates of distributed CountMin implemented with our PS.
There are two key factors that contribute to the good performance. First, bulk communication
featured in our PS significantly reduces the communication cost. Second, message compression
further reduces the average (key,value) size to around 50 bits. Moreover, when a server node is
terminated during the insertion operation, our PS can recover the failed node within 1 second.
This fault tolerance makes our system well equipped for realtime applications.

42

Chapter 4

MXNet: a Flexible and Efficient Deep
Learning Library

4.1 Introduction

4.1.1 Background

The term “deep learning” has come to represent a class of algorithms that can absorb huge vol-
umes of data and learn elegant and useful patterns with that data. It prevails in various fields,
including computer vision, natural language processing, and voice recognition. Thanks to the
rapid growth of data volume and computing power, the developers are able to create complex
neural network models, which can model the large scale data sets more accurately compared
to conventional models. For example, almost all the recent ImageNet [119] challenge winners
employ neural networks with hundreds of layers. These networks, however, require billions of
floating-point operations to process each single sample, and there are usually millions to billions
of samples in a typical large scale training data set.

The rise of modeling and computational complexity poses interesting challenges to the design
of computing systems specialized for deep learning applications. We believe that an ideal system
should meet the following criteria:

• Scalability Deep learning models can take days or weeks to train. Thus even modest
improvements can make a huge difference in the speed at which new models are devel-
oped and evaluated. As one of the major themes of this thesis, distributed computing is
a promising solution to speed up the training process by exploiting the computing power
of different devices. The efficiency by which a deep learning framework scales out across
multiple cores is one of its defining features.

• Flexibility Flexible and easy-to-use programming interface are also important. Deep neu-
ral network models are complicated and usually have a rich set of operators. Moreover,
there are many ways to construct the objective function for the learning problems. The
programming interface should allow users to specify the deep neural networks in a flexible
way to accommodate all the variabilities. Besides, the developers also need to handle other
common tasks such as data processing and visualization, which are supported by several

43

other specialized frameworks. In order to reduce the transferring cost, the programming
interface of the deep learning system should either provide a similar interface to existing
frameworks, or provide ways to interact with those frameworks.

• Portability Considering the trend of training and using deep learning applications in a
wide range of situations — from laptops and server farms with high computing power, to
mobiles and connected devices which often locate in remote locations with less reliable
networking and considerably less computing power — portability to run on a broad range
of devices and platforms is also required. However, efficient implementations of even the
same algorithm on difference devices vary significantly. It is a great challenge to hide such
implementation difficulties from the application developers.

A set of programming models have emerged to help developers define and train deep neural
networks; along with open source frameworks that put deep learning in the hands of mere mor-
tals. Well-known examples include Caffe [70], Torch7 [33], Theano [14], and TensorFlow [95].

All these systems embed a domain-specific language (DSL) into a host language (e.g. Python,
Lua, C++). These programming paradigms can be classified into two categories: imperative,
where the user specifies exactly “how” computation needs to be performed, and declarative,
where the user specification focuses on “what” to do. In Table 4.1 we summarize the properties
of the two paradigms. Examples of imperative programming include NumPy and Torch, while
examples of declarative programming packages include Caffe and CNTK, which abstract away
the inner-working of actual implementation and allow users to program over layer definition. The
dividing line between the two categories can be muddy at times. Frameworks such as Theano
and the more recent TensorFlow can be viewed as a mixture of both. These frameworks declare
abstract computational graphs, while the computation within the graphs can be imperatively
specified.

The learning bar of different deep learning systems is usually that programmers need to learn
different host languages. For example, Caffe uses Protobuf as the host language while CNTK
uses Brain Script. Despite the fact that the host language of many computing systems is Python
nowadays, for most deep learning systems, programmers still need to learn a large set of new
functions that are specific to systems.

4.1.2 Our contribution
To address the challenges in computing systems specialized for deep learning applications, we
propose MXNet, a deep learning framework designed for both efficiency and flexibility. We
highlight the key features of MXNet below:
Flexibility MXNet features a superset programming interface, which intends to blend the ad-

vantages of both imperative tensor computation and declarative symbolic expression. This
allows the developers to enjoy the benefits of both approaches: declarative programming
offers the clear boundary on the computation for discovering more optimization opportu-
nities, whereas imperative programming has a much lower learning bar.

Well optimized back-end system . The user programs are transformed into an intermediate
representation which is issued to the back-end system for execution. The back-end sys-
tem uses technologies motivated from the compiler technology to optimize the memory

44

Imperative Program Declarative Program
Execute
a = b+ 1

Eagerly compute and store the
results on a as the same type with b.

Return a computation graph; bind data to
b and do the computation later.

Advan-
tages

Conceptually straightforward, and
often works seamless with the host
language’s build-in data structures,
functions, debugger, and third-party
libraries.

Obtain the whole computation graph
before execution, beneficial for
optimizing the performance and memory
utilization. Also convenient to
implement functions such as load, save,
and visualization.

Table 4.1: Comparison between the imperative and declarative paradigm.

System Core Binding Distri- Imperative Declarative
Lang Langs buted Program Program

Caffe [70] C++ Python/Matlab × ×
√

Torch7 [33] Lua - ×
√

×
Theano [14] Python - × ×

√

CNTK [149] C++ Brain script/Python
√

×
√

TensorFlow [95] C++ Python
√

×
√

MXNet C++ Python/R/Scala/Julia
√ √ √

Table 4.2: Comparison between MXNet and other popular open-source ML libraries.

footprint and computation cost.

Efficiency MXNet has efficient implementation that achieve a high degree of scalability. We
simplify the parameter server interface introduce in Chapter 3 for deep learning workloads.
It explores the communication bandwidth hierarchy to best utilize the local communication
in hetergeous computing to reduce the communication overherad.

In Table 4.2, we give a comparison between MXNet and other state-of-the-art computing
systems.

The rest of this chapter unfolds as follows. We first introduce the front-end programming
interface of MXNet in Section 4.2, and next in Section 4.3 discuss how the user programs are op-
timized and executed in the back-end systems. We explain how data are communicated between
different devices in detail in Section 4.4. In Section 4.5 we show some encouraging experimental
results to demonstrate its scalability. We conclude this chapter with some discussions of future
work for MXNet.

4.2 Front-End Programming Interface
A deep neural network training program often consists of two parts: first defining the specifica-
tions of the neural network model; second specifying how the training algorithm interacts with
the neural network, including how to load training data, how to update model parameters, and
how to monitor the computation progress. The second part is common among machine learning

45

>>> import mxnet as mx
>>> a = mx.ndarray.zeros((2, 3), mx.gpu())
>>> a += 2
>>> b = mx.ndarray.dot(a, a.T)
>>> print(b.asnumpy())
[[12. 12.]
[12. 12.]]

Figure 4.1: The NDArray interface in Python.

applications, while the first part is unique for deep learning applications. Given the complexity
of deep neural network models, it is desirable that the programming interface has the flexibility
to allow users to specify a complex model compactly and conveniently.

To address the need of flexibility, MXNet provides a multi-dimensional array computation
interface to the users. Moreover, it allows symbolic expressions which make constructing neural
networks more convenient. In the rest of this section, we explain these two interfaces. In the
examples we use Python as the front-end language, but note that MXNet also supports other
programming languages including R, Scala and Julia.

Multi-dimensional Array Computation NDArray, the library for multi-dimensional array
computation in MXNet, is similar to that of Numpy, the most widely used scientific computing
package in Python. NDArray provides multi-dimensional array manipulations and efficient linear
algebra computations. Compared to Numpy, one major difference is that, beside CPU, NDArray
also supports various computation devices such as GPU and FPGA. Figure 4.1 shows an example
of doing matrix-constant multiplication on GPU using MXNet.

Symbolic Expressions A symbolic expression is an expression built from variables and op-
erators. A symbolic variable is a free variable which can be assigned with value. A symbolic
operator performs computations on one or multiple symbolic expressions and outputs new ex-
pressions. It can be a simple multi-dimensional array operation, such as element-wise addition,
or a complex neural network component, such as the construction of a fully-connected layer. A
symbolic expression only declares the computations, and all the free variables need to be bound
with values when the expression is actually executed. This is a major difference compared to the
multi-dimensional array interface, where all the variables are assigned with value upon initiation,
with which the computation can be run step by step.

The neural network models can be constructed using symbolic expressions in MXNet. Fig-
ure 4.2 shows the construction of a multilayer perception by chaining the input data variable and
several operators for layer construction. Note that even though we can write a deep learning pro-
gram using only the multi-dimensional array interface, the availability of symbolic expressions
still provides several advantages, especially for deep neural network construction. First, it is more
convenient to save a symbolic expression in disks, which can be loaded using any front-end lan-
guage supported by MXNet. Second, manipulating a symbolic expression incurs little overhead,
which is useful when dealing with large scale deep neural networks. Third, all the computations

46

data = mx.symbol.Variable()
fc1 = mx.symbol.FullyConnected(data, num_hidden=64)
relu = mx.symbol.Activation(fc1, act_type=’relu’)
fc2 = mx.symbol.FullyConnected(relu, num_hidden=10)
mlp = mx.symbol.SoftmaxOutput(fc2)

Figure 4.2: Example: define a multilayer perception using a symbol expression
in MXNet.

mod = mx.mod.Module(mlp, mx.gpu())
mod.init_params(

initializer=mx.init.Uniform(-1, +1))
mod.init_optimizer(

optimizer=’sgd’,
optimizer_params=((’learning_rate’, 0.1),))

mod.forward(data=b)
mod.backward()
mod.update()

Figure 4.3: Example: create and run a module in MXNet.

are known before the program being executed, which makes it possible to optimize the training
process before execution.

Computation Module Despite its efficiency and portability, declarative symbolic expressions
are less straightforward for computation compared to imperative multi-dimensional arrays. MXNet
provides Module to simplify the execution of symbolic expressions. A module works as a com-
putation machine. It accepts symbolic expressions, with which variables it calls functions, such
as forward to compute the output, backward to compute the gradients with respect to model pa-
rameters, and updating model parameters. Figure 4.3 shows an example of creating a module for
the multi-layer perceptron defined in Figure 4.2 and running one iteration of stochastic gradient
descent on GPU, using the multi-dimensional array defined in Figure 4.1 as the training data.

4.3 Back-End System
MXNet features a division between front-end programming interface and back-end system. In
MXNet, the workloads created by front-end interface are pushed into backend system for opti-
mization and execution. This division is motivated by how compilers works: a compiler transfers
the source codes into an intermediate representation, which is then transferred and optimized to
obtain the target program. The back-end system of MXNet is similar to a compiler. It first
represent the the workloads, which are in the form of multi-dimensional array and symbolic
expressions, as computation graphs, an intermediate representation of the system; then these

47

fullc

relu

∂W W

X ∂X

b

∂ fullc

∂ relu

∂b

Figure 4.4: A partial computation graph for the forward and the backward of a fully connected
neural network. Yellow circles and green rectangles represent data variables and operators, re-
spectively. Arrows indicate data Dependencies between variables and operators.

computation graphs are transformed and optimized for more efficient execution on the target
devices; finally, the back-end system schedules the execution of the computation graphs.

4.3.1 Computation Graph

Computation graph serves as the intermediate representation of workloads issued from the front-
end to the back-end. A computation graph is usually defined as a directed bipartite graph, consist-
ing of two sets of nodes which represent the variables and the operators. A variable is associated
with a storage unit, and it can write the value to the storage unit and output the value it is assigned
with. An operator defines the computation. It takes one or multiple variables as the inputs and
generates one or multiple outputs. In particular, an input variable can be also used as the output
variable. In a computation graph, an edge connecting node a to node b means that the variable a
is the input or the output of operator b. For example, Figure 4.4 shows part of the computation
graph of both the forward and the backward operation for the multilayer perceptron defined in
Figure 4.2.

4.3.2 Graph Transformation and Execution

Before being executed, the computation graphs first go through some transformations, mainly
for the following purposes. First, the graph received from the front-end may need additional
information to be executed, such as allocating memory for variables and identifying which device
to run an operator. Such necessary information can be added during graph transformation. Graph
transformation also helps to reduce the memory footprint and facilitate graph optimization for
more efficient execution. The back-end system of MXNet has a variety of techniques of graph
transformation. Next, we discuss a few implementation details to illustrate the effectiveness of
graph transformation.

48

Memory Optimization Naively allocating different memory units to different variables may
result in a large memory working set, which is unfavorable for large scale computation. For a
given computation graph, observe that the life time of each variable, namely the period between
its initiation and the last time the variable is used, can be calculated before the execution. This
suggests a more economical way of using the memory: variables that are non-overlapping in
terms of their life time can share the same storage unit.

However, for a computation graph with n variables, to obtain the optimal memory allocation
strategy has time complexity in the order of O(n2). Instead, we proposed two heuristics for
finding non-overlapping variables in order to obtain a suboptimal memory allocation schemes.
Both heuristics have time complexity linear in n. The first heuristic, called in-place, simulates
the graph execution. This method keeps track of the lifetime of each variable, and the memory
of a variable is recycled when the variable will not used by any operator later. The second
heuristic, called co-share, finds the variables which can share the same memory space with the
least conflicts. For more details of these heuristics, one can refer to our paper [31].

Fusion Operations Sometimes, the overhead of executing an operator, such as memory read
/ write and function call, may dominate the actual computation cost. In such situations, we
combine several operators into a super operator to reduce the implementation overhead. For
example, the normal computation graph for the function (a × b + c) involves two operators,
namely × and +, and one temporary variable to store the intermediate result of (a × b). In
the fused version, we can define a single operator which takes a, b and c as inputs and outputs
the results directly. Besides eliminating the temporary variable and one function call, the fused
operator can even use the fused multiplyadd instruction supported by the specific hardware to
further decrease the number of instructions. Note that operator fusion usually consists of two
steps: first, a subgraph is merged into a single fused node; then, the codes for the fused node are
generated, which can be executed by runtime compilation later.

Lazy Evaluation After issuing the workloads in the form of computation graphs to the back-
end system, the front-end thread returns immediately without waiting for the execution to be
finished. We call this lazy evaluation. It allows the back-end system to batch process multiple
graphs, which potentially improves the graph optimization and parallel execution. For example,
to execute these two multi-dimensional arrays operations, t = a × b and c = t + c, with lazy
evaluation we can merge these two into a single operator with fusion operation. Note that lazy
evaluation does not affect the semantics of the programming interface. If the outputs of the
operators are needed for other tasks such as copying to non-MXNet variables, the front-end
would implicitly call the ‘wait to read’ function, which blocks the thread until the outputs are
ready.

Parallel Execution The transformed and optimized computation graphs are then pushed into
the back-end engine for execution. All the engine threads execute the operators in the graph
in parallel as long as the graph dependencies are satisfied. Parallel execution is particularly
important when there are multiple connected computation devices in a heterogeneous computing
environment.

49

4.4 Data Communication

In a distributed computing setting, data are communicated between devices. How to reduce the
communication overhead is a main issue addressed in this thesis. As deep learning applications
usually involve large scale computation and are most suitable for distributed computing, in this
section, we discuss the issue of data communication in MXNet for both the front-end interface
and the back-end implementation.

The main feature of MXNet in terms of data communication is KVStore. This distributed
key-value store module serves to reduce the data communication overhead. Compared to the
low-level function copyto which is called to move data between devices explicitly, KVStore
provides a high-level abstract interface for communication between devices.

4.4.1 Distributed Key-Value Store

KVStore maintains and updates a list of (key, value) pairs across multiple devices. The key can
be an integer or a string associated with the value, which is often a multi-dimensional array. A
device can either push a list of pairs into the key-value store or pull back the values corresponding
a given list of keys. A customized update function can be registered into the store. The update
function specifies how the pushed values are merged into the store. By default the “add to”
updater is used, namely the new values are added in the store.

Figure 4.5 shows how to implement stochastic gradient descent (SGD) with KVStore. It
differs from the implementation in Figure 4.3 in two ways. First, we set the SGD updater into the
store instead of running the computation module. Second, we pull the recent parameters from
the store before the forward pass, and then push the results, i.e. the gradients, into the store after
the backward pass to update the model parameters.

When the codes in Figure 4.5 are executed using multiple computing devices located in dif-
ferent machines, KVStore sums over the gradients that are pushed by different devices before
calling the update function. With this sequential data consistency model, any pull operation af-
ter the push operation is guaranteed to access the updated model parameters. Therefore, if we
partition the data into m parts and assign them to the m devices, the results we obtain will be
equivalent to that of running the same algorithm on a single device. This approach is often called
data parallelism.

Besides the sequential data consistency model, KVStore also supports other relaxed data
consistency model discusses in Chapter 3. For example, with the asynchronous consistency
model, KVStore does not wait till all the gradients are received. It updates the model parameter
immediately upon receiving the gradients from each device.

4.4.2 Implementation of KVStore

We implemented KVStore based on the parameter server architecture presented in Chapter 3.
Here, we need two major modifications: first, since both push and pull are issued by the front-
end just issues them as operation nodes to the back-end system, they can be further optimized
for execution and do not need to be executed immediately. Second, since the device-to-device

50

kv = mx.kvstore.create()
def update(key, grad, weight):

weight += 0.1 * grad
kv.set_updater(update)
for key, weight in enumerate(model.get_params()):

kv.pull(key, weight)
mod.forward(data)
mod.backward()
for key, grad in enumerate(model.get_gradients()):

kv.push(key, grad)

Figure 4.5: Run one SGD iteration with the key-value store.

dev0 dev1 dev2 dev3

machine0 machine1

level 2
servers

leve 1
servers

Figure 4.6: Two-level parameter server for KVStore. The level 1 server nodes aggregate data
over devices on the same machine, and the level 2 server nodes communicate data between
machines.

communication bandwidth within a machine can be 10 times higher than that of the machine-to-
machine communication (see Section 2.1), we adopt a two-level server structure to better explore
the communication hierarchy.

The two-level architecture is illustrated in Figure 4.6. Each machine may have multiple
computing devices, and each device has one worker node. At level 1, each machine has one
aggregation server node for communication between the devices on this machine. At level 2,
there is another layer of server nodes that connect the aggregation server nodes from level 1.
These server nodes are for communication between different machines. For example, when
running SGD, the level 1 servers sum all data pushed by the devices on each machine before
sending them to level 2 servers; similarly, level 1 servers pull back data and broadcast to the
corresponding devices. In this way, the intra-machine traffic can be greatly reduced at the cost
of latency caused by data aggregation within the machines.

51

dev0 dev1 dev2 dev3

level 2
servers

leve 1
servers

machine0 machine1

Figure 4.7: Two-level parameter server for KVStore, where each device has a level-1 server.

Recall that devices within a machine may have faster peer-to-peer communication bandwidth
than device-to-CPU communication bandwidth. Figure 4.7 shows an architecture which lever-
ages this property. Instead of associating a single server node with each machine, we run a server
node in each device. In this setting, the communication between level 1 server nodes and worker
nodes in the same machine is though peer-to-peer communication, which is much faster than
device-to-CPU communication. Note that this is at the cost of more memory usage.

4.5 Evaluation

In this section, we provide experiment results to demonstrate the performance of MXNet. We
shall focus on its computational efficiency in the distributed computing setting. Other experi-
ments including the performance on a single device can be found in our paper [31].

For the training process, we run synchronized stochastic gradient descent (SGD) on the con-
volutional neural network model ResNet [65]. The ResNet we use has 152 convolutional layers.
It has in total 157 data variables that need to be communicated between machines in distributed
computing, and the total size of these variables is 240 MB.

All the experiments are run on the cloud service of AWS EC2 P2.18xlarge instances. Each
instance is a virtual machine, and is equipped with 8 Nvidia Tesla K80 Accelerators. Each
accelerator has two GPUs. We use the Deep Learning AMI version 1.4 from AWS marketplace,
where CUDA 7.5 and cuDNN 5.1 are pre-installed. In terms of communication, there are two
PCIe 3.0 16x switches, and each of the switches connects 4 K80 accelerators. The GPUs share
the same PCIe switches to communicate with the CPU. All the machines are connected by the
Ethernet with a bandwidth of 25 Gbit/sec.

52

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0CPU

GPU

PCIe switches

Figure 4.8: The topology of GPU connections for P2.16xlarge. Each line indicates a PCIe 16x
connection.

4.5.1 Multiple GPUs on a Single Machine

We first show the results of implementing MXNet with multiple GPUs on a single machine
(an AWS EC2 P2.18xlarge instance). We examine the communication cost, namely is the time
spent on pushing and pulling synthetic data in each iteration, and the total cost, which is the total
elapsed time during which the gradient computation, parameter updates, and data communication
take place. For synchronized SGD, the batch size is the number of examples processed in each
iteration. In our experiments, we fix the batch size of examples processed by every GPU, while
increasing the number of GPUs from 1 to 16. Thus the total batch size of SGD increases with
the number of GPUs.

Figure 4.9 shows the communication cost versus the total cost when running one iteration of
SGD on ResNet-152.

The red line corresponds to the communication cost. Note that the communication cost scales
almost linearly with the number of GPUs when the number of GPUs is in the range between 2
and 8. To run one SGD iteration with 8 GPUs, each worker node at a GPU sends 240MB of data
variables, while the 8 server nodes send 240MB × 8 of data variables in total. In Figure 4.9, we
observe a communication cost of 0.1s for 8 GPUs. This means that the uni-directional aggregate
GPU bandwidth is at least 38.4 GB/sec for 8 GPUs, which achieves over 60% of the theoretical
maximum uni-directional aggregated bandwidth 63GB/sec for the shared 4 PCI-e 16x connec-
tions. In Figure 4.9, there is a 4x increase of the communication cost when the number of GPUs
increases from 8 to 16. The reason is twofold. First, each GPU can only communicate via peer-
to-peer connection to at most 8 other GPUs. Assume that GPU 0 can communicate with GPU
1-8 via the PCIe switches directly. If GPU 0 needs to communicate with GPU 9-15, the com-
munication has to be routed through the CPU, which incurs additional communication overhead.
Second, even when peer-to-peer connection is available, for example when GPU 0 communicates
with GPU 7, the single PCIe 16x connection between the two PCIe switches now becomes the
bottleneck.

The other colored lines in Figure 4.9 correspond to the total cost for different batch size
per GPU. For each line, since we fix the batch size per GPU, ideally the total cost of one SGD
iteration stays the same as the number of GPUs increases. Namely the ideal scalability is linear

53

1 2 4 8 16
number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0
ti

m
e
 (

se
c)

comm cost

bs/GPU=2

bs/GPU=4

bs/GPU=8

bs/GPU=16

Figure 4.9: The communication cost and total cost of one SGD iteration on ResNet-152. Exper-
iments are performed on a single machine, and Number of GPU = (1,2,4,8, 16).

in the number of GPUs. However, in practice the total cost may increase due to the increasing
communication cost when the number of GPUs increases. In Figure 4.9, observe that when the
number of GPUs increases from 1 to 8, all the lines stay nearly flat, namely we achieve a near-
ideal scalability. This is due to the fact that in this range the communication cost is small and the
total cost is dominated by the actual computational time. However, since the communication cost
significantly increases when the number of GPUs is 16, we see that the total cost also slightly
increases, especially for a small batch size per GPU.

4.5.2 Multiple GPUs on Multiple Machines

We also measure the communication cost and total cost of implementing MXNet on multiple
machines. We plot the communication cost of one SGD iteration in Figure 4.10. In particular,
for each colored line in the figure, we fix the number of GPUs used on each machine; and we
plot the communication cost versus the number of total GPUs used when increasing the number
of machines used as 2, 4, 8, 16.

The red line corresponds to the setting where we use one GPU on each machine. The com-
munication cost increases linearly from 0.22s to 0.68s when the number of machines increases
from 1 to 16. Compare the red line with the other lines for which we use 2, 4, 8 GPUs on each
machine respectively. We observe that for a fixed number of machines used, the communication
cost only increases by less than 0.1s when we increase the number of GPUs per machine. This
is far less than the linear growth of each line for fixed number of GPUs per machine while the

54

8 32 64 128 256
number of GPUs

0.2

0.3

0.4

0.5

0.6

0.7

0.8
ti

m
e
 (

se
c)

1 GPU/machine

2 GPUs/machine

4 GPUs/machine

8 GPUs/machine

16 GPUs/machine

Figure 4.10: The communication cost of one SGD iteration for different number of machines
(2,4,8,16) and different number of GPUs per machine (1,2,4,8,16).

number of machines increases as 2, 4, 8, 16. This comparison shows the efficiency of the 2 level
parameter server architecture when there are more GPUs per machine.

In Figure 4.10, we also observe a large increase of communication cost when the number
of GPUs is 16 (the orange line). This is similar to what we have observed in Figure 4.9. The
lacking of full GPU peer-to-peer access requires a significant amount of shared CPU memory
bandwidth, which slows down the data communication between machines.

In Figure 4.11, we plot the communication cost and total cost of one SGD iteration for in-
creasing number of machines (1,2,4,8,16) with the number of GPUs per machine fixed to be 8.
Different colored lines correspond to different batch size per GPU. Similar to our observation of
Figure 4.9, for small batch sizes (bs/GPU=2,4,8), the total cost increases significantly with the
number of GPUs, due to the fact that a large part of the total cost is the increasing communication
cost. However, for a sufficiently large batch size (bs/GPU=16), the actual computation cost is
much higher than the communication cost, and we observe near-linear scalability.

4.5.3 Convergence
In Section 4.5.1 and 4.5.2, we observed that a large batch size of SGD helps to amortize the
communication cost and lead to a near-optimal scalability of the total cost. However in practice,
a large batch usually slows down the algorithm convergence. In this section, we show some
heuristics of tuning the SGD learning rate to improve the convergence speed when the batch size
is large. A more detailed study can be found in Chapter 7.

In our experiments, we train ResNet-152 using the dataset Imagenet [45] As a baseline, we
use 8 GPUs with batch size per GPU 32, namely an aggregate batch size 256 for the algorithm.

55

8 16 32 64 128
number of GPUs

0.0

0.2

0.4

0.6

0.8

1.0
ti

m
e
 (

se
c)

comm cost

bs/GPU=2

bs/GPU=4

bs/GPU=8

bs/GPU=16

Figure 4.11: The communication cost and total cost of one SGD iteration. Experiments are
performed on multiple machines (1,2,4,8,16), and the number of GPUs per machine is fixed to
be 8.

We tune the learning rate as follows: we start the training process with a learning rate 0.1; then
we reduce the learning rate by a factor of 10 at epoch 30, 60, and 90, respectively; and we further
stop data augmentation at epoch 100. As shown in Figure 4.12, for the baseline, we obtained
77.8% top-1 validation accuracy at convergence (at epoch 110), which matches the reported
result of 77% top-1 validation accuracy (at epoch 90) in [65]. We then increase the number of
GPUs from 8 to 80, and thus the aggregate batch size increases from 256 to 2,560 (2K). We
change the initial learning rate from 0.1 to 0.5. For 160 GPUs and the aggregate batch size
5,120 (5K), we further increase the initial learning rate to 1 and defer the learning rate reduction
from epoch 30 to epoch 50. Intuitively, these heuristics introduce more “variance” to the training
process.

In Figure 4.12, we plot the top-1 validation accuracy versus the number of SGD epochs.
Observe that with our carefully tuned learning rate, the batch size does not significantly affect
the algorithm convergence. In particular, the convergence for batch size 2K is very close to that of
the baseline; for batch size 5K, despite the unstable convergence in the beginning of the training
process, it converges to the same final accuracy of the baseline as the training progresses.

4.6 Discussions
MXNet is a efficient and flexible deep learning library. To reduce communication cost, it features
a simplified communication interface supported by a two-level parameter server architecture.

56

0 20 40 60 80 100 120
Number of epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
o
p
-1

 V
a
lid

a
ti

o
n
 A

cc
u
ra

cy

bs=256

bs=2,560

bs=5,120

Figure 4.12: Top-1 validation accuracy versus epoch for Resnet-152 on Imagenet dataset. Each
GPU uses batch size 32 and synchronized SGD is used.

We have demonstrated encouraging experiment results of MXNet in a large scale distributed
computing environment.

MXNet is an ongoing project. We started it in 2015 based on the two projects of CXXNet [46]
and Minerva [36]. MXNet inherits the Numpy-like interface and features such as lazy evaluation,
and develops a new front-end with a mixed interface and multi-language support, as well as a
new back-end with memory optimization and distributed computing. To move forward, for the
front-end interface, we are making it easier to use, as easy-to-use is of great importance for
users new to a framework in the fast growing deep learning community today. For the back-end
system, we will continue to explore the technologies of compiler and database, and use them
in MXNet to develop a more efficient back-end implementation. Moreover, with a modularized
system design where the system components can be decoupled, our MXNet will continue to
evolve and promptly adapt itself to the developing neural network models and hardware devices.

57

58

Part II

Algorithm

59

Chapter 5

Preliminaries on Optimization Methods for
Machine Learning

In this chapter, we provide some background information on the interplay between optimization
methods and machine learning, which will be helpful for our discussion in the second part of this
thesis. For a thorough overview of modern optimization methods, one is referred to the textbook
[17, 22, 106]. The books [19, 126] contain more detailed discussions on the topics of machine
learning and large scale optimization.

In the rest of this chapter, we first present the generic optimization formulation that is cen-
tral to the model training of various machine learning problems, and overview a few standard
techniques for solving the optimization. Then we introduce some terminologies in convergence
analysis for iterative methods. At last, we discuss distributed optimization, which is vital for
large scale optimization problems.

5.1 Optimization Methods

For a lot of machine learning applications, the model training problem can be formulated into
the following optimization problem:

minimize
w∈Ω

f(w) =
1

n

n∑
i=1

fi(w), (5.1)

where w denotes the model parameter and Ω denotes the parameter space.The function fi(·) is
the cost function evaluated with i-th example in the training data, describing how well the model
w fits the particular example in the training data.

For general cost functions, there is usually no closed form solution to the above optimization
problem, and we need to resort to numerical methods. One class of commonly used numerical
methods is called iterative gradient descent method. As can be inferred by its name, this method
uses the gradient information of the objective function f(·) at different points to iteratively update
the model parameter w. It usually starts with an initial point w0 ∈ Ω at t = 0, and then updates

61

the model parameter according to the following parameter update rule at iteration t:

wt+1 = proj
Ω

[
wt −Ht

∑
i∈It

∂fi(wt)

]
for It ⊆ {1, . . . , n} (5.2)

where ∂fi is the partial gradient of fi with respect to the model parameter w, the constant Ht is
a scaling matrix or scalar, and the set It is a subset of example indices which are processed at
iteration t. Different choices of Ht and It lead to different optimization methods. For instance,
in the standard gradient descent method, we set It to be all the training data, and set Ht to be a
constant scalar. The iterations terminate if a stopping criteria is reached, for example when the
progress on the objective function is below certain threshold.

Next, we discuss several commonly used variants of the iterative gradient descent method.

Batch vesus Stochastic In batch update, all the examples in the training data are used to com-
pute the gradient in each iteration, namely It = {1, . . . , n}. For stochastic gradient update,
in each iteration one usually only samples a few random examples and compute the gradient
information of the cost function on these examples. Compared to batch update, the gradient
information used in stochastic methods is noisier due to the fact that only a few examples are
sampled. However, for the same reason, each iteration of stochastic update is much faster as we
only need to compute the gradients on the samples. In a fixed amount of time more iterations can
be run for stochastic update.

Jacobi versus Gauss-Seidel When the model size is large, or equivalently the number of coor-
dinates of the parameter w is large, it may not be necessary to compute the gradient with respect
to every coordinate and update every coordinate in each iteration. In Jacobi method, all the co-
ordinates of w are updated in each iteration. In Gauss-Seidel method, a subset of coordinates
in w is selected in each iteration. The gradient information of the objective function with re-
spect to this subset of coordinates are obtained and used to update these coordinate. Note that
this may be done much faster than computing the gradients with respect to all the coordinates
especially when the model size is large. One special case of Gauss-Seidel method is called co-
ordinate descent, where in each iteration only one coordinate of the model parameter is selected
and updated.

Proximal Gradient Method The proximal gradient method [34, 108] is often used to handle
the non-differential objective functions. Assume that the objective function f(·) can be decom-
posed into two parts f(w) = `(w) + h(w) where `(·) is differentiable and h(·) is not. Proximal
gradient method updates the parameter w in two steps: a forward step that performs steepest
gradient descent only on `(·), and a backward step that carries out projection using h(·). More
specifically, the t-th iteration with a learning rate γt can be written as:

wt+1 = ProxUγt [wt − γt∂`(wt)] , (5.3)

where the generalized proximal operator for h(·) is defined to be:

ProxUγ (x) := argmin
y∈Ω

h(y) +
1

2γ
‖x− y‖2

U . (5.4)

62

The Mahalanobis norm ‖x‖U := x>Ux is taken with respect to a predefined positive semidefinite
matrix U . A sophisticated choice of U can accelerate the convergence of the iterative algorithm.

Approximate Second Order Methods There are situations when the standard gradient de-
scent may fail to make sufficient progress on the objective function over iterations. For example,
if the condition number of the Hessian matrix, evaluated at the points along the path of iteration,
is too large, the gradients, which points to the maximum direction of change in the objective
function, are not well-aligned with the directions pointing to the minimum solution, and it would
take too many iterations for gradient descent to converge to that minimum solution. In this case,
second-order information of the objective function can be used to improve the convergence.
In the classic Newton method, the inverse of the Hessian matrix is used as the scaling matrix,
namely setting the scaling matrix Ht = (

∑
i∈It ∂

2fi(wt))
−1.

However, for large scale models, computing such a scaling matrix requires the inversion
of a giant matrix in each iteration, which is often too expensive in practice. There are differ-
ent approaches to approximate the Hessian matrix and the scaling matrix. One straightforward
approximation is to only compute the diagonal entries of the Hessian matrix while setting the
off-diagonal entries to zero. Another widely used approach is to approximate the Hessian matrix
using the gradients. For example L-BFGS [89] forms an approximation of the Hession matrix
using the gradients over the past iterations.

5.2 Convergence Analysis
For general objective functions, there is usually no guarantee that iterative gradient descent meth-
ods will converge to the minimum of the optimization problem in (5.1). The best hope is that
the sequence of model parameter {w0, w1, . . .} converges to a “good enough” solution. We list
three types of “good” solutions characterized by the value of objective function and gradient
information at the solution ŵ.

1. Global minimum: for any w ∈ Ω, it is true that f(w) ≥ f(ŵ).

2. Local minimum: given a fixed radius ε > 0, for any w ∈ Ω and in the range ‖w− ŵ‖ < ε,
it is true that f(w) ≥ f(ŵ).

3. Stationary point: the gradient namely ∂f(ŵ) = 0.
Note that in the special case where the objective function is convex, the above characterizations
can be shown to be equivalent.

Convergence analysis studies the conditions under which an iterative algorithm converges to
a good solution. For gradient based iterative algorithm with general objective functions, usually
we aim to prove the convergence to a stationary point.

We are interested the convergence rate of iterative algorithms, defined as the speed at which
the convergent sequence approaches its limit. It is often used as a performance measure to
compare different algorithms. Consider a strongly convex objective function for which the global
optimal solution is denoted by w∗. For batch gradient descent, it can be shown that there exists a
constant ρ ∈ (0, 1) such that at iteration t, we can bound

f(wt)− f(w∗) ≤ O(ρt).

63

In other words, to find a solution ŵ such that the objective function evaluated at ŵ is at most
(f(w∗) + ε), the number of iterations required is in the order of O(log(1/ε)). In particular, we
call this linear convergence rate. If using stochastic gradient descent, the convergence speed is
also stochastic for the randomized algorithm. One can show that in expectation,

E[f(wt)]− f(w∗) ≤ O(1/t).

Namely, for stochastic gradient descent to achieve the same value of objective function, the
number of iterated needed is in the order of O(1/ε). However, recall that one iteration in SGD
is often much cheaper than an iteration in batch gradient descent. The performance measure of
convergence rate should be used with caution. In practice, we also need to compare the actual
runtime of two iterative algorithms.

5.3 Distributed Optimization
Today, many machine learning problems are large scale. When the size of the datasets and / or
the model size is too large, even one iteration of gradient descent method cannot be computed
in reasonable time by a single machine. Distributed optimization leverages multiple machines
to process the computation in a parallelized or decentralized fashion. There are two major de-
grees of freedom for designing a distributed optimization method: first, how to partition the
computational workloads and assign them to different machines; second, how to communicate
between machines in order to synchronize the computation results to ensure the convergence of
the algorithm.

5.3.1 Data Parallelism versus Model Parallelism
There are two common approaches to partition the computational workloads: data parallelism
and model parallelism.

In data parallelism, the examples in the training data are partitioned and assigned to different
machines. Take batch gradient descent method as an example. Each machine only computes the
gradient of the cost function evaluated on the examples assigned to it. The gradient computa-
tion can be done in parallel, and these local gradients are then merged to obtain the gradient of
objective function.

Model parallelism partitions the coordinates of the model parameter w and assign them to
different machines, while each machine has access to the entire training data. In each iteration
of gradient descent, each machine computes the gradients of the objective function with respect
to the coordinates assigned to it.

Data parallelism is mostly used when the size of training data is too large to fit into a single
machine, while model parallelism is often used when the number of model parameters is large.

5.3.2 Synchronous Update versus Asynchronous Update
While multiple machines doing local computation in parallel, if the original optimization prob-
lem is not perfectly decoupled, the machines need to communicate with each other about the

64

results of local computation along the iterations. For example, in data parallelism, gradients of
the local assigned examples are computed by every machine in each iteration, and the updated
model parameter in the last iteration is needed for to compute the local gradients.

Synchronous update refers to that in each iteration, the model is updated after the local com-
putation at every machine is completed. The same convergence result as that of single machine
is guaranteed. However, it potentially incurs a large latency for each iteration, especially when
there are a few machines that are particularly slow, and in this case the computing power of the
machines may not be fully utilized.

Asynchronous update allows different machines to use “staled” information of the compu-
tation results from other machines for their local computation in the current iteration, without
waiting for the all the machines to complete local computation. For example, in model paral-
lelism, one machine can compute its local gradients using an outdated model without waiting for
the most recent update from every other machine. Asynchronous update can greatly reduce the
synchronization cost. However, if not carefully designed, it may also slow down the convergence
of the algorithm.

65

66

Chapter 6

DBPG: Delayed Block Proximal Gradient
Method

6.1 Introduction

The objective function in the optimization for many model training problems can be decom-
posed into two parts—loss and regularization. The loss measures how well the model fits the
data while the regularization penalizes too complex models. In this chapter, we consider the
following objective function which can be decomposed into two parts: the loss function `(·) and
the regularization term h(·):

minimize
w∈Ω

f(w) = `(w) + h(w) and w ∈ Rp. (6.1)

We assume that the loss function ` : Ω → R is continuously differentiable but not necessarily
convex, and that the regularizer h : Ω → R is convex, left side continuous, block separable, but
possibly non-smooth.

We propose a proximal gradient method [108] based algorithm, called Delayed Block Prox-
imal Gradient (DBPG), to solve the above optimization problem. Our algorithm is significantly
more efficient than the existing algorithms especially in the regime where the dimension of w
is high (millions or billions coordinates) and the data is sparse (existing many zero entries). Its
success is contributed by the following facts:
• Taking advantage of the fact that (block) Gauss-Seidel updates are more efficient on sparse

data [116, 151], our algorithm only updates a subset (block) of coordinates in each itera-
tion.

• The proximal operator uses coordinate-specific learning rates to adapt the convergence
progress to the sparsity pattern inherent in the data.

• In the setting of distributed computing, we adopt asynchronous communication. To reduce
network traffic, each worker node only maintains partially consistent model parameters,
and the coordinates that would change the associated model weights are communicated.

We demonstrate the efficiency of our algorithm by applying it to two challenging problems:
first, a non-smooth `1-regularized logistic regression on sparse text datasets with over 100 billion

67

Algorithm 5 Delayed Block Proximal Gradient Method (DBPG) Solving (6.1)
Scheduler:

1: Partition examples into m parts
⋃m
k=1 Ik = {1, . . . , n}

2: Partition parameters into b blocks
⋃b
k=1Bk = {1, . . . , p}

3: for iteration t = 1 to T do
4: Randomly pick a block bti and issue the task to workers
5: end for

Worker k at iteration t

1: Wait until all iterations before t− τ are finished
2: Compute the gradient g(k)

t =
∑

i∈Ik ∂`t(w
(k)
t) and coordinate-specific learning rates u(k)

t on
block bti

3: Push g(k)
t and u(k)

t to servers with user-defined filters, e.g., the random skip or the KKT filter
4: Pull w(k)

t+1 from servers with user-defined filters, e.g., the significantly modified filter
Servers at iteration t

1: Aggregate gt and ut
2: Update wt+1 by solving the the generalized proximal operator (5.4) defined in Section 5.1

with U = diag(ut).

examples and features; second, a non-convex and non-smooth ICA reconstruction problem [80],
where the goal is to extract billions of sparse features from dense image data.

Related work There is growing interest in asynchronous iterative algorithms for optimiza-
tion. Shotgun [23] performs parallel coordinate descent for solving `1 optimization problems.
Other methods [7, 79, 138, 157] partition examples and distribute them over several machines
and update the model parameters in a data parallel fashion. Lock-free variants were proposed
in Hogwild! [113]. Mixed variants which partition data and parameters into non-overlapping
components were introduced in [137], albeit at the price of having to move or replicate data on
several machines. Lastly, the NIPS framework [125] discusses general non-convex approximate
proximal methods.

The proposed algorithm differs from the existing approaches mainly in two aspects. First,
we focus on solving large scale problems. Given the sheer size of training data and the lim-
ited network bandwidth, neither the shared memory approach of Shotgun and Hogwild! nor the
approach of moving the entire data during the training process is applicable. We carry out exper-
iments at a scale that is of many orders of magnitude larger. Second, we aim at solving general
non-convex and non-smooth objective functions. We obtain results about the convergence rate
with weaker assumptions than that in [125].

68

6.2 Delayed Block Proximal Gradient Method

6.2.1 Proposed Algorithm
Algorithm 5 gives a sketch of the proposed algorithm, named Delayed Block Proximal Gradient
(DBPG). It takes advantage of the opportunities offered by our Parameter Server framework (see
Chapter 3) to handle high-dimensional sparse data. Next, we highlight how our algorithm sub-
stantially differs from the standard methods including gradient descent and distributed gradient
descent.

1. Only a subset of parameters is updated in each iteration.
2. The worker nodes compute both local gradients and coordinate-specific learning rates.
3. We use a bounded-delay model for the asynchronous iterations. Given the maximal delay
τ , the iteration t can be started without waiting for any previous iteration initiated in the
time frame [t − τ, t] to be completed. Here, τ is a trade-off between data consistency and
system performance. For τ = 0, it corresponds to the standard sequential updates, while
for a larger τ , it allows more iterations to run in parallel, which potentially improves the
system efficiency.

4. To reduce communication overhead, we apply user-defined filters to suppress transmission
of the updates whose effect on the model are likely to be negligible.

6.2.2 Convergence Analysis
We introduce a few assumptions to simplify the convergence analysis for the proposed algorithm.
Under the assumption that the loss function is additive, let `Ik =

∑
i∈Ik `i denote the loss function

associated with the subset of training data assigned to worker node k. Consider the subset of
parameters Bt chosen at iteration t. Assumption 1 below ensures that the gradients of `Ik with
respect to a subset of parameters are Lipschitz, and the amount of “cross-talk” to other subsets
of parameters are also bounded.

Assumption 1 (Block Lipschitz Continuity) There exists positive constants Lvar,k and Lcov,k

such that for any iteration t and all x, y ∈ Ω with xi = yi for any i /∈ Bt, we have

‖∂Bt`Ik(x)− ∂Bt`Ik(y)‖ ≤ Lvar,k ‖x− y‖ , for 1 ≤ k ≤ m; (6.2a)
‖∂Bs`Ik(x)− ∂Bt`Ik(y)‖ ≤ Lcov,k ‖x− y‖ , for 1 ≤ k ≤ m, t < s ≤ t+ τ. (6.2b)

where ∂B`(x) is the blockB of ∂`(x). Further defineLvar :=
∑m

k=1 Lvar,k andLcov :=
∑m

k=1 Lcov,k.

Theorem 2 shows that the proposed algorithm converges to a stationary point under the re-
laxed consistency model, provided that a suitable learning rate is chosen. Note that for general
objective functions there is no guarantee of global optimality.

Theorem 2 Assume that in Algorithm 5, the updates are performed with a τ bounded-delay
model, and assume that Assumption 1 holds. Also assume that we apply a random skip filter on
pushing gradients and a significantly-modified filter on pulling weights with threshold O(t−1).

69

Let Mt denote the minimal coordinate-specific learning rate at time t. Algorithm 5 converges to
a stationary point in expectation if the learning rate γt satisfies

γt <
Mt

Lvar + τLcov + ε
, for all t > 0. (6.3)

The detailed proof of the above theorem is given in Section 6.4. Intuitively, the difference
between wt−τ and wt will be small near a stationary point. As a consequence of the Lipschitz
assumption, the changes in the gradients will also vanish. The inexact gradient obtained by
delayed and inexact model, therefore, is likely to be a good approximation of the true gradient,
so that the standard convergence results of proximal gradient methods can be applied.

Note that, when the maximum delay τ increases, it may not be necessary to decrease the
learning rate in order to guarantee convergence. Instead, one can carefully choose a block parti-
tion of the model parameters and ordering. For example, if features in a block are less correlated
then Lvar decreases. If the block is less correlated to the previous blocks, then Lcov decreases.
This was also exploited in [23, 113].

We apply two filters to reduce the data communication overhead. One filter is to randomly set
some gradient entries to 0, which is also kwown as “dropout” in the deep learning literature [129].
The second filter is to skip pulling the entries that have not been updated for more than O(t−1)
time slots. Surprisingly, out experiments show that applying these two filters in the iterations do
not slow down the convergence.

6.3 Experiments
In this section, we demonstrate how the proposed algorithm DBPG can be used to solve challeng-
ing machine learning problems. We first consider the non-smooth sparse logistic regression, and
then we look into the more challenging problem of Reconstruction ICA which objective function
is both non-convex and non-smooth.

6.3.1 Sparse Logistic Regression
The objective function of sparse logistic regression is

minimize
w∈Rp

n∑
i=1

log(1 + exp(−yi 〈xi, w〉)) + λ‖w‖1 (6.4)

where xi is a p-dimensional vector and yi ∈ {+1,−1}. Note that the `1-regularizer is non-smooth
at zero.

Implementation

We implement Algorithm 5 on our proposed Parameter Server framework (see Chapter 3). In
particular, we apply upper bounds of the diagonal entries of the Hessian for the coordinate-
specific learning [154]. The learning rate is chosen from the grid of [0.2, 0.3, . . . , 0.9, 1], and we

70

search for the largest learning rate that ensures algorithm convergence. Moreover, we design a
Karush-Kuhn-Tucker (KKT) filter which works to skip updating inactive coordinates. Its prin-
ciple is analogous to that of the active-set selection strategies of SVM optimization [71, 96]. In
particular, if wi = 0 for the i-th coordinate, let gi denote the gradient with respect to the i-th
coordinate at the current iteration. According to the optimality condition of the proximal opera-
tor, also known as the soft-shrinkage operator, the model parameter wi remains 0 as long as the
gradient |gi| ≤ λ, and thus the worker does not need to send the gradient gi to the server. We use
an outdated value ĝi to approximate gi, and the i-th coordinate is skipped if |ĝi| ≤ λ− δ, where
δ ∈ [0, λ] controls how aggressive the filtering is.

Performance on Single Machine

To the best of our knowledge, no open source system can handle sparse logistic regression to
the scale in our work. Graphlab provides only a multi-threaded, single machine implementation;
and Mlbase, Petuum and REEF do not support sparse logistic regression (as confirmed with the
authors in 4/2014). Therefore, we could only compare our implementation to other solvers in
their multicore setting if available, and limiting to a relatively small dataset.

More specifically, we compare our Parameter Server implementation of Algorithm 5 to Shot-
gun [23]1 on a single machine with 32 threads/workers. The performance of CDN [51] (single
thread Shotgun) is also reported for reference. Figure 6.1 shows how the objective values de-
creases over time. All three implementations obtain similar objective values after 50 data passes,
however, our algorithm is 4 times faster.

We gain the speedup with clever data partitioning strategies. In each iteration, each thread
of Shotgun only processes a single coordinate. The irregular pattern of non-zero entries makes
it hard to perform load balancing. On the most high-dimensional dataset CTRa, Shotgun is
even slower than the single thread implementation. On the other hand, our Parameter Server
implementation uses multi-thread linear algebra operators on much larger blocks of training data,
which coarse-grained parallelization leads to better load balancing and overall speedup.

Also note that the proposed algorithm produces less sparser models compared to other al-
gorithms during the first few iterations, which might be due to our usage of large block size for
features. However, when close to convergence, the model produced by our algorithm has sparsity
level comparable to other algorithms.

Performance on Multiple Machines

We compare our Parameter Server implementation of the proposed algorithm with two special-
purpose second generation parameter servers, named system A and B, developed by a leading
Internet company. Both systems adopt the sequential consistency model, while system A uses a
variant of L-BFGS [11, 89] and system B runs an algorithm that is similar to ours but does not
allow any data delay (i.e. synchronous update). We again run the implementations to reach the
same convergence criteria.

Figure 6.2 shows that System B outperforms system A due to its better algorithm. Our pa-
rameter server implementation is 2 times faster than System B for essentially the same algorithm.

1www.select.cs.cmu.edu/projects/shotgun/

71

http://www.select.cs.cmu.edu/projects/shotgun/

0 200 400 600 800 1000

101

100

time (sec.)

re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

CDN
Shotgun
Parameter Server

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

3.5x 105

data passes

of

 n
on

ze
ro

 p
ar

am
et

er
s

CDN
Shotgun
Parameter Server

(a) Dataset: URL

0 200 400 600

102

101

time (sec.)

re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

CDN
Shotgun
Parameter Server

0 10 20 30 40 50

0.6

0.8

1

1.2

1.4

1.6

1.8
x 106

data passes

of

 n
on

ze
ro

 p
ar

am
et

er
s

CDN
Shotgun
Parameter Server

(b) Dataset: KDD14

0 200 400 600 800 1000
103

102

101

time (sec.)

re
la

tiv
e

ob
je

ct
iv

e
va

lu
e

CDN
Shotgun
Parameter Server

0 10 20 30 40 50

0.5

1

1.5

2
x 106

data passes

of

 n
on

ze
ro

 p
ar

am
et

er
s

CDN
Shotgun
Parameter Server

(c) Dataset: 4 million examples sampled from CTRb

Figure 6.1: Comparison between Parameter Server implementation of Algorithm 5 and Shotgun
and CDN implementation.

72

10
−1

10
0

10
1

10
10.6

10
10.7

time (hours)

o
b

je
c
ti
v
e

 v
a

lu
e

System−A
System−B
Parameter Server

Figure 6.2: Convergence of sparse logistic re-
gression on 636TB CTRb.

0 1 2 4 8 16
0

0.5

1

1.5

2

ti
m

e
 (

h
o
u
rs

)

maximal delays

computing

waiting

Figure 6.3: Time to reach the same conver-
gence criteria under various allowed delays.

0 0.5 1
94.5

95

95.5

96

96.5

97

97.5

time (hours)

fi
lt
e
re

d
 (

%
)

Figure 6.4: Percentage of coordinates skipped
when using the KKT filters.

16 32 64 128 256
1

2

4

8

16

workers

s
p
e
e
d
u
p
 (

x
)

Parameter Server
Ideal

Figure 6.5: Speedup of Parameter Server
when increasing the number of workers with
a fixed number of servers. The dataset is 340
million examples sampled from CTRb.

Figure 6.3 shows that increasing the allowed delays significantly decreases the waiting time
at the cost of slightly slower convergence. The best trade-off is 8-delay with a 1.6x speedup
compared to the sequential consistency model.

Figure 6.4 demonstrates the effectiveness of KKT filter. Observe that in less than 10 minutes
after the training process starts, our algorithm makes more than 95% coordinates inactive. It
suggests that using the filter can potentially improve the performance, as we do not need to
compute and communicate the gradients of those inactive coordinates.

Figure 6.5 demonstrate the scalability of our algorithm. It shows a 9x speedup when the

73

number of worker nodes increases from 16 to 256.

6.3.2 Reconstruction ICA
Reconstruction Independent Component Analysis (RICA) aims to find a sparse representation
of the raw dataset. Compared to the standard Independent Component Analysis (ICA), RICA
allows an overcomplete solution [80]. The objective function of RICA has a non-convex loss
function and convex but non-smooth penalty function as below.

minimize
W∈R`×p

n∑
i=1

1

2

∥∥WW>xi − xi
∥∥2

2
+ λ ‖Wxi‖1 . (6.5)

We denote the observations {xi}ni=1 ∈ Rp by X = (x1, . . . , xn)> ∈ Rn×p the data matrix. The
gradient of the loss function is given by:

∂`(W) = W
(
(W>W − I)X>X +X>X(W>W − I)

)
. (6.6)

This can be seen by rewriting the objective function `(W) using trace identities:

`(W) =
1

2

∥∥XW>W −X
∥∥2

F

=
1

2
tr
(
W>WX>XW>W − 2X>XW>W +X>X

)
(‖A‖2

F = tr(A>A))

=
1

2
tr
(
W>WX>XW>W

)
− trX>XW>W +

1

2
trX>X (tr(A+B) = tr(A) + tr(B))

=
1

2
tr
(
XW>WW>WX>

)
− tr

(
WX>XW>)+

1

2
tr
(
X>X

)
(tr(AB) = tr(BA))

Applying (112) and (100) of [109] directly we obtain (6.6).

Implementation

In this problem, invoking the proximal operator in our algorithm is nontrivial, as ‖WX‖1 is
not separable but only block separable. Therefore, we need to solve each of the following n
independent optimization problems simultaneously using ADMM [21]:

minimize
ui

1

2γ
‖ui − zi‖2

Hi
+ λ ‖Xui‖1 , for i = 1 . . . n, (6.7)

where we set zi = wi − γH−1
i ∂i`(W), and wi ∈ Rp denotes the i-th row of the parameter W .

Here γ is the learning rate andHi ∈ Rd×d are scaling matrices of the metric space. For notational
convenience we drop the subscript i when it is clear in the context. Following [42], we choose
the scaling matrices at iteration t to be:

H2
t = H2

t−1 + diag(wt − wt−1)2 for t ≥ 0 and H0 = 1,

74

0 10 20 30 40

10
0

time (hour)

re
la

ti
v
e
 o

b
je

c
ti
v
e
 v

a
lu

e

delay=0

delay=1

delay=2

delay=4

Figure 6.6: Convergence of RICA on dataset ImageNet with different delays.

which can be computed locally. With the auxiliary variable y := Xu, the augmented Lagrangian
is given by:

L(u, y, µ) =
1

2γ
‖u− z‖2

H + λ ‖y‖1 + 〈µ,Xu− y〉+
1

2θ
‖Xu− y‖2 . (6.8)

Let Sλ(·) be the soft-thresholding function. We obtain the corresponding update rules as:

u←
(
γ−1H + θ−1X>X

)−1 (
γ−1Hz +X>

(
θ−1y − µ

))
(6.9a)

y ← Sλ
(
θ−1Xu+ µ

)
(6.9b)

µ← µ+ θ−1 (Xu− y) , (6.9c)

Note that in our Parameter Server implementation, each worker node can update its param-
eters independently if it has the training data X and has access to the matrix W>W , which
dimension is typically much smaller than that of W . Therefore, we apply parameter partition for
RICA, where the server maintains W>W , and each worker has a copy of X and only a subset of
rows of W .

Since most computations are dense matrix operations, we implement the proposed algorithm
with GPUs using CUBLAS, which uses all the computational units within the GPU by default.
We configure one worker node on each GPU card. We run the experiments on cluster Cam-
pusB where each machine is equipped with an Nvidia Tesla K20. To obtain the training set, we
randomly sub-sample 100,000 images from ImageNet and resize them to 100× 100 pixels.

Performance

Figure 6.6 shows how delay affects the algorithm convergence speed. Similar to the simpler
problem of `1-regularized logistic regression, we can observe the improvement caused by asyn-
chronous updating. However, increasing the delay beyond 1 slightly affects the time of each

75

1 2 4 8 16
1

2

4

8

16

workers

s
p
e
e
d
u
p
 (

x
)

Parameter Server
Ideal

Figure 6.7: Speedup of Parameter Server
when increasing the number of workers from
1 to 16 for RICA.

0 2 4 8
0

10

20

30

40

50

60

maximal delay (τ)

ti
m

e
 (

h
o

u
r)

Total time
Computational time

Figure 6.8: Comparison between computation
time and total time for RICA.

iteration and the convergence rate. This is because the update delay observed of RICA is typi-
cally 1.

In Figure 6.7, we see a 13.5x acceleration for RICA when increasing the number of workers
by 16 times. The larger speedup of RICA compared to `1-regularized logistic regression is
because that RICA mainly consists of dense matrix operations, which are easier to balance than
sparse matrices operations. This point is illustrated by Figure 6.8, where we observe that even
for synchronous updating (0 delay), over 80% of the total cost of RICA is contributed by the
actual computation.

6.4 Proof of Theorem 2
We first prove several technical lemmas towards the proof of Theorem 2.

Let B ⊆ {1, . . . p} denote a subset of coordinates and let xB ∈ Rp denote the vector obtained
by setting the entries of x, which are not in block B, to 0. We first show that under Assumption 1
the objective is well behaved under subspace shifts.

Lemma 3 Assume block B is chosen at time t, then the following holds under Assumption 1 for
any `Ik and for any time t, for any x, y ∈ Rp

`Ik(x+ yB) ≤ `Ik(x) + 〈∂`Ik(x), yB〉+
Lvar,k

2
‖yB‖2 , (6.10)

Proof. By the mean value theorem it follows that

`Ik(x+ yB) = `Ik(x) + 〈∂`Ik(x+ ξyB), yB〉 for some ξ ∈ [0, 1]. (6.11)

76

Using the Lipschitz property of Assumption 1 it follows that the gradient at x + ξyB can be
bounded via |∂`Ik(x+ ξyB)− ∂`Ik(x)| ≤ Lvar,iξ ‖yB‖. Combining this with ξ ≤ 1 proves the
claim.

Next we prove that for block separable regularizers the solutions also satisfy an appropriate
decomposition property:

Lemma 4 Assume that h is block separable and 0 ∈ ∂h(0) and that U is diagonal. For any x
and for γ > 0 we denote the solutions of the proximal operator to the full vector, and that of only
a subset, by z = ProxUγ (x) and zB = ProxUγ (xB), respectively. For any block b the following
holds:

U (xB − zB) ∈ γ∂h(zB) (6.12)

Proof. Since 0 ∈ ∂h(0) it follows that Proxγ(0) = 0. Further since h is block separable, the
proximity function h(y) + 1

2γ
‖x− y‖2

U is also block separable. zB = Proxγ(xB) follows from
this by setting all entries of x except those in block b to 0. Finally, (6.12) follows by taking
derivatives on both sides of the definition of proximal operator.

Let g̃t and ũt denote the aggregated gradients and scaling coefficients at server nodes, respec-
tively. Assume that each worker randomly skips a coordinate with probability 1 − q, where
0 < q < 1. Let gt := q−1g̃t and ut := q−1ũt be the unbiased inexact gradient and scaling
coefficient estimates respectively (note that more sophisticated subsampling techniques such as
reservoir sampling could be employed, too).

The next step is to bound the changes of the objective function between subsequent iterations
t and t+1 using the updates ∆t = wt+1−wt together with the difference between gt and ∂`(wt).

Lemma 5 Let gt be the unbiased inexact gradient aggregated by servers at time t. Under the
assumptions of Theorem 2 we have

E [`(wt+1)− `(wt)] ≤
(
Lvar −

Mt

γt

)
‖∆t‖2 + ‖∆t‖ ‖∂Bt`(wt)− E [gt]‖ (6.13)

where the expectation is taken with respect to the random skip filter.

Proof. For notation simplicity, we drop the index t for the block indicator Bt, scaling matrix Ut,
learning rate γt and constant Mt (recall that Mt = mini (Ut)ii is the smallest coefficient-specific
learning rate as induced by the Mahalanobis metric in the proximal operator).

First note that (() gt)B = gt because the gradients are computed in block B. Hence it follows
that also the update ∆t is restricted to block B. By Lemma 4 we have that

(∆t)B = ProxUγ
[
(wt)B − γU

−1gt
]
− (wt)B = ∆t

and therefore (wt+1)B = ProxUγ ((wt)B − γU−1gt). Using Lemma 4 again, we have

U

γ
((wt)B − γgt − (wt+1)B) ∈ ∂h((wt+1)B)

77

Since h is block separable we can decompose the updates to obtain

h(wt+1)− h(wt) = h((wt+1)B)− h((wt)B)

≤
〈
U

γ

(
(wt)B − γU

−1gt − (wt+1)B
)
, (wt+1)B − (wt)B

〉
= −1

γ
‖∆t‖2

U − 〈gt,∆t〉

≤ −M
γ
‖∆t‖2 − 〈gt,∆t〉 (6.14)

On the other hand, only the entries of wt+1 in block B has been changed compared to that in wt,
which satisfies the requirement of Assumption 1, therefore, by Lemma 3,

`(wt+1)− `(wt) ≤

〈
wt+1 − wt,

m∑
i=1

∂B`Ik(wt)

〉
+

m∑
i=1

Lvar,i ‖∆t‖2

= 〈∆t, ∂B`(wt)〉+ Lvar ‖∆t‖2 (6.15)

Combining (6.14) and (6.15), we have

E [`(wt+1)− `(wt)] ≤
(
Lvar −

M

γ

)
‖∆t‖2 + E [〈∆t, ∂B`(wt)− gt〉]

≤
(
Lvar −

M

γ

)
‖∆t‖2 + ‖∆t‖ ‖∂B`(wt)− E [gt]‖

In other words, the amount of change between objective functions is bounded from above both
by the amount of change in parameters ∆t and by the discrepancy in the block gradient.

Proof of Theorem 2. We now have all ingredients to prove convergence to a stationary point. In
a nutshell we must bound ‖∆t‖ and all else follows. For a fixed iteration t, let block B = Bt. We
first upper bound the term ‖∂B`(wt)− E [gt]‖ in (6.13). By Assumption 1 we have for 1 ≤ i ≤ τ
that

‖∂B`Ik(wt−i+1)− ∂B`Ik(wt−i)‖ ≤ Lcov,k ‖wt−i+1 − wt−i‖ = Lcov,k ‖∆t−i‖ .

Due to the bounded delay, worker k’s model is only out of date at time t in the range t − τ ≤
tk ≤ t. The significantly modified filter places an additional noise term σtk on the model. By
design of the filter we use

‖σtk‖∞ ≤ δtk = O
(

1

tk

)
.

Futhermore by the random skip filter, the expectation of the unbiased inexact gradient aggregated
at time t is given by

E [gt] =
m∑
k=1

∂B`Ik(wtk + σtk).

78

Then we have

‖∂B`(wt)− E [gt]‖

=

∥∥∥∥∥
m∑
k=1

t−tk∑
i=1

(∂B`Ik(wt−i+1)− ∂B`Ik(wt−i)) + ∂B`Ik(wtk)− ∂B`Ik(wti + σti)

∥∥∥∥∥
≤

m∑
k=1

t−tk∑
i=1

‖∂B`Ik(wt−i+1)− ∂B`Ik(wt−i)‖+ ‖∂B`Ik(wtk)− ∂B`Ik(wtk + σtk)‖

≤
m∑
k=1

t−tk∑
i=1

Lcov,k
∥∥∆t−i∥∥+ Lcov,k ‖σtk‖

≤
m∑
k=1

τ∑
i=1

Lcov,k
∥∥∆t−i∥∥+ Lcov,k

√
pδt−τ

=
τ∑
i=1

Lcov
∥∥∆t−i∥∥+ Lcov

√
pδt−τ (6.16)

where we used the fact that σtk = (σtk)Btk
so that Assumption 1 can be applied and ‖x‖ ≤

√
p‖x‖∞. Substitute (6.16) into (6.13) in Lemma 5, we have

E [`(wt+1)− `(wt)] ≤
(
Lvar −

Mt

γt

)
‖∆t‖2 +

τ∑
i=1

Lcov ‖∆t‖
(∥∥∆t−i∥∥+

√
pδt−τ

)
≤
(
Lvar +

Lcovτ

2
− Mt

γt

)
‖∆t‖2 +

τ∑
i=1

Lcov

2

∥∥∆t−i∥∥2
+ Lcovpδ

2
t−τ

Summing over t yields

E [`(wt+1)− `(w1)] ≤
T∑
t=1

(
Lvar + Lcovτ −

Mt

γt

)
‖∆t‖2 + Lcovpδ

2
t−τ (6.17)

Define ct = Mt

γt
− Lvar − Lcovτ , and assume γt = Mt

Lvar+Lcovτ+ε
for all t with ε > 0, then all

ct = ε > 0. So

ε

T∑
t=1

‖∆t‖2 ≤
T∑
t=0

ct ‖∆t‖2 ≤ E [`(w1)− `(wt+1)] + Lcovpδ
2
t−τ (6.18)

for any T . Since δt = O(1
t
), and by the fact that 1 + 1

22
+ 1

32
+ . . . = π2

6
. Then the RHS of (6.18)

is constant when T → ∞, which implies limt→∞∆t → 0. So limt→∞ ProxUt
γt (wt) − wt → 0,

thus we find a local minimal point.

79

80

Chapter 7

EMSO: Efficient Minibatch Training for
Stochastic Optimization

7.1 Introduction

7.1.1 Problem formulation
We first formally introduce the optimization problem studied in this chapter. Let fi : Ω → R be
a convex loss function evaluated with the i-th data example. Let w be a shared parameter which
we optimize over to minimize the average loss over n examples:

w∗ = argmin
w∈Ω

f(w), where f(w) =
1

n

n∑
i=1

fi(w). (7.1)

7.1.2 Minibatch Stochastic Gradient Descent
Standard stochastic gradient descent (SGD) processes one example at a time, while minibatch
training makes SGD easy to be parallelized for a distributed computing environment by consider-
ing a subset of examples, i.e. a minibatch, at a time. In the vanilla minibatch SGD algorithm, we
choose a minibatch I with b random examples, we can define the loss function on this minibatch
as

fI(w) =
1

|I|
∑
i∈I

fi(w). (7.2)

Let I be uniformly distributed over all minibatches, the expected loss function is given by

f(w) = EI [fI(w)] .

Recall that Ω is the support of the variable w. In the simple case where Ω = Rd, the minibatch
SGD employs the following stochastic updating rule. At each iteration t, we randomly pick It
and update the variable as:

wt = wt−1 − ηt∇fIt(w). (7.3)

81

If the support Ω is a nontrivial set, a projection step is followed[156], which finds the nearest
neighbor of wt in the support.

If the loss function fi is convex, minibatch SGD converges to the optimum at a rateO(1/
√
bT+

1/T) [44], where T is the number of iterations. Note that given the same number of processed
examples, standard SGD converges at a rate of O(1/

√
bT + 1/(bT)). If the batch size b is

larger than the number of iterations, then the term 1/T will dominates the rate and therefore
gives worse convergence speed than standard SGD. The convergence rate slowdown is indeed
observed in practice especially with a large minibatch size.

There are other challenges for efficient implementation of minibatch training. In a distributed
implementation, machines need to communicate with each other over iterations in order to syn-
chronize the shared variables. Given that both the bandwidth and the latency of network com-
munication are much worse than accessing physical memory, such synchronization cost of mini-
batch training may make it prohibitive for large scale applications. A larger minibatch size may
serve to reduce the communication cost, however it also slows down the convergence rate in
practice [26]. For the same problem, if the standard SGD converges with T iterations, the vanilla
minibatch training with batch size b needs more than T/b iterations. With a larger batch size,
such increase of computation workload may outweigh the benefits of the reduced communication
cost. In addition, the I/O costs also increases if the data is too large to fit into memory so that
one need to fetch the minibatch from disk or network for more iterations [150].

7.1.3 Related Work and Discussion

The idea of using minibatch in stochastic optimization has been studied by a number of re-
searchers. For example, it was shown in [44] that distributed minibatch gradient can achieve
a convergence rate of O(1/

√
Tb + 1/T), which is comparable to that of serial SGD when the

minibatch size is small. Additional studies include [38, 120, 135]. There is also a large volume
of works aiming to improve the standard minibatch approach. For example, [77] proposed to
solve minw fIt(w) directly, while [25] presented a L-BFGS style updating. In addition, [72, 93]
argued to reduce the stochastic variance via gradients computed on the whole dataset.

There exist a lot of attempts to speed up the convergence of minibatch SGD. For example, in
[58], asynchronous communication is suggested. In [120], the accelerated version of minibatch
SGD is studied. At a more fundamental level, the authors of [94, 157] consider the problem of
solving subproblems in parallel, followed by averaging of the results. The above works, however,
are not the most efficient in the sense that no communication occurs during the phase of gradients
computation.

Another line of research focuses on the practical performance, especially when data cannot
fit into memory. For example, in [150] the approach of solving linear SVM in the dual form
by processing a block of data at each time was studied. In [96] it showed that having both I/O
and computational threads working together can further improve the performance. In [30] the
selection of the data blocks was explored.

82

7.1.4 Our work
We propose an efficient minibatch algorithm with reduced communication cost and good con-
vergence properties. In particular, the new algorithm does not slow down the convergence as
the minibatch size increases. The key observation is that, when a minibatch is large, it is de-
sirable to solve a more complex optimization problem, rather than simply update the solution
using the stochastic gradients. More specifically, in each iteration, we solve a conservative risk
minimization subproblem, which consists of two components: the original objective function
on the minibatch and a conservative penalty. In this way, we are able to gain more progress on
the objective function from each minibatch iteration. The conservative penalty reduces the vari-
ance and prevents divergence from the previous consensus. The key challenge of this approach
is twofold: we need a more sophisticated update strategy as well as an efficient way to solve
the conservative subproblem, such that the increase in computation workload does not offset the
reduced synchronization cost.

Our approach differs from the previous works by exploiting the data partition in a nontrivial
manner beyond gradient flow methods– we solve subproblems using the partition data instead.
We show that the proposed algorithm has a O(1/

√
bT) convergence rate, which significantly

improves the result in [44] when the batch size b is large. We show that it can be further improved
to O(log T/(λbT) + λ/(

√
bT)) for a λ-strongly convex objective function. We also show a

communication efficient distributed implementation of the proposed algorithm, and demonstrate
the efficacy of the proposed algorithm with experiments on large scale datasets.

7.2 Efficient Minibatch Training Algorithm

7.2.1 Our algorithm
Throughout this chapter, we focus on the case where fi(w) is convex for all i. This standard
assumption simplifies the theoretical analysis. The proposed algorithm, however, can be applied
to more general non-convex functions.

First note that we can write the updating rule of minibatch SGD as solving the following
optimization problem:

wt = argmin
w∈Ω

[
fIt(wt−1) + 〈∇fIt(wt−1), w − wt−1〉+

1

2ηt
‖w − wt−1‖2

2

]
,

where ηt is the learning rate, It is the indexes of the examples choose at iteration t.
Note that this objective can also be viewed as an approximate solution to the minimization of

the loss function fIt(w) plus a conservative penalty in wt−1, in the sense that it is using the first
order Taylor approximation of fIt(w) at wt−1. However, this first order approximation might be
too coarse to make sufficient progress in each iteration. In particular, such an aggressive trade-
off of fast convergence in favor of computational efficiency is undesirable for a large batch size,
as there is often significant overhead of switching minibatches, due to process synchronization,
data reads from disk, and network communication. Also, note that given the variance of the
randomly chosen examples, SGD often favors a small step size, and thus each iteration makes

83

a even smaller progress. However, when the size of a minibatch increases, the variance of a
minibatch of examples decreases, which suggests that more sophisticated methods could be used
towards faster convergence rate.

The proposed algorithm is given in Algorithm 6. The key step is that at each iteration the
parameter is updated by solving the following subproblem:

wt = argmin
w∈Ω

[
fIt(w) +

γt
2
‖w − wt−1‖2

2

]
. (7.4)

Note that the objective function in the optimization has two components. The first part is the loss
function on minibatch It, which serves to exploit this minibatch as much as possible; the second
component is a conservative constraint which limits dramatic changes of the parameter to avoid
over-utilization of this minibatch.

Compared to the update rule of SGD, here we need to solve the more complex conservative
subproblem for each minibatch. We assume that the optimization is performed exactly for the
simplicity of convergence analysis; however in practice, an approximate solution to the subprob-
lem suffices, especially in the early stages of the iterations. If the computational cost for this
approximate optimization is not too high, this update rule can speed up the convergence and
drastically reduce the amount of network communication required between iterations.

Algorithm 6 Single node template for EMSO
1: Input: Initial w0, conservative coefficients γ1, . . . , γT .
2: for t = 1, . . . , T do
3: randomly choose minibatch It ⊂ {1, . . . , n} of size b
4: solve the conservative subproblem:

wt = argmin
w∈Ω

[
fIt(w) +

γt
2
‖w − wt−1‖2

2

]
.

5: end for

7.2.2 Convergence Analysis
Compared to the vanilla minibatch SGD, the advantage of our algorithm is that the convergence
does not slow down when the minibatch size increases. We first introduce the notion of a Breg-
man divergence for convex functions f defined as:

Df (w;w′) := f(w)− f(w′)−∇f(w′)>(w − w′). (7.5)

This is the difference between f(w) and the value of the first-order Taylor expansion of f at w′,
when evaluated at w. The properties of Bregman divergence include:
Non-negativity: Df (w;w′) ≥ 0.

Convexity: Df (w;w′) is convex with respect to w.

Linearity: Df (w;w′) is linear with respect to f , namely

Df+cf ′(w;w′) = Df (w;w′) + cDf ′(w;w′).

84

We also impose the following technical assumption, which bounds the amount of “surprise”
we can expect on the full Bregman divergence when it is replaced by the Bregman divergence on
each minibatch plus a conservative penalty.

Assumption 6 Assume that for all t:

EIt [Df (wt;wt−1)] ≤ EIt

[
DfIt

(wt;wt−1) +
γt
2
‖wt − wt−1‖2

2

]
.

Note that in general, Df (w;wt−1) = EIt

[
DfIt

(w;wt−1)
]

holds for w that is independent of
the minibatch It. However, since the parameter wt is a function of It, we need to impose this
assumption for some γt > 0. This assumption holds as long as we pick γt greater than or equal
to the smoothness parameter of f . Namely,

f(w)− f(w′)−∇f(w′)>(w − w′) ≤ γt
2
‖w − w′‖2

2.

In other words, the counterpart of strong convexity, namely that there exists a quadratic upper
bound on the amount of change, suffices to guarantee this assumption. In practice, however, one
can be more aggressive to allow a much smaller γt when the minibatch size is large. In fact, one
can show that a choice of γt = O(1/b) is sufficient.

We state the main theorem for convergence analysis below. The detailed proof is deferred to
Section 7.4.

Theorem 7 Consider the stochastic update rule (7.4). Assume that fi is λ-strongly convex for
all i. Under Assumption 6 with the step-size γt = γ + λ(t − 1), for all parameter w∗ ∈ Ω, it
holds that:

T∑
t=1

E[f(wt)− f(w∗)] ≤ γ

2
‖w∗ − w0‖2

2 +
A2

b

T∑
t=1

1

γt
,

where

A2 = sup
w∈Ω

n−1

n∑
i=1

‖∇fi(w)−∇f(w)‖2
2.

For general convex functions, we set λ = 0, and this amounts to a constant update rate γ in

the above theorem. In this case, setting γ =
√

2T
b

A
‖w∗−w0‖2

minimizes the right hand side of the
bound. Note that there is no a-priori guarantee that such a small γ is feasible. However, since
the variance decreases with minibatch size in the order of O(1/b), the scaling of γ = O(1/

√
b)

is appropriate. When it is feasible, this yields the following aggregate regret bound:

1

T

T∑
t=1

E[f(wt)− f(w∗)] ≤
√

2A√
Tb
‖w∗ − w0‖2.

85

The above bound says that if minibatch size is b, after T steps, we have a convergence rate in
the order of O(1/

√
Tb). Therefore increasing minibatch size does not affect convergence rate in

terms of the number of training examples processed by the algorithm. Compared to the standard
minibatch SGD, the convergence rateO(1/

√
bT+1/T) is dominated by the second termO(1/T)

when the number of iterations T is less than the batch size b, which often happens for using large
batch size with early stop.

In addition, for strongly convex loss function with λ > 0, we can optimize γ and achieve a
stronger regret bound O(log T/(λbT) + λ/(

√
bT)).

7.2.3 Efficient Implementation

In this section, we discuss two distributed implementations of the proposed algorithm. Note that
we solve the conservative subproblem (7.4) exactly only for the simplicity of the convergence
analysis. In practice, we only need to solve this optimization approximately.

Early Stopping Many optimization methods for the original problem (7.1) can be applied
to the subproblem in (7.4), and the most suitable method indeed depends on the specific risk
function. Here we discuss two generic methods that are helpful for distributed implementation
of (7.4), and we use early stopping to speed up the computation.

Algorithm 7 EMSO-GD: solving (7.4) with gradient descent
1: Input: model parameter wt−1, minibatch It
2: conservative coefficient γt, learning rate ηt
3: Output: updated model parameter wt
4: w ← wt−1

5: for ` = 1, . . . , L do
6: update

w ← w − ηt (∇fIt(w) + γt(w − wt−1)) (7.6)

7: end for
8: wt ← w

Our first method, named EMSO-GD, is a direct extension of SGD. Note that, if we set the
parameter γt = 0 in (7.4), SGD would be equivalent to performing gradient descent with a
single pass of the minibatch with wt−1 as the start point. We can relax the single pass constraint
to obtain a more accurate solution of the conservative subproblem. In Algorithm 7 we sketch
the algorithm EMSO-GD. It solves the subproblem (7.4) using gradient descent. We limit the
maximal number of iterations to a fixed constant L. This early stopping strategy helps to simplify
the synchronization in the distributed implementation.

Our second method EMSO-CD, sketched in Algorithm 8, is motivated by the work in [150],
which applies minibatch coordinate descent to solve the dual form of linear SVM. For our sub-
problem, we directly solve it using coordinate descent in the primal form. Let p denote the
dimension of parameter w. In each iteration, EMSO-CD chooses a random coordinate j ∈ [1, p],

86

Algorithm 8 EMSO-CD: solving (7.4) with coordinate descent
1: Input: previous parameter wt−1, minibatch It
2: conservative coefficient γt
3: Output: new parameter wt
4: w ← wt−1

5: for ` = 1, . . . , Lp do
6: randomly choose a coordinate j ∈ [0, p]
7: update

[w]j ← [w]j − ηt
[∇fIt(w)]j + γt([w]j − [wt−1]j)

[∇2fIt(wt)]jj + γt
(7.7)

8: end for
9: wt ← w

and solves the following one dimensional problem using Newton’s method:

argmin
[w]j

{
fIk(w) +

γt
2
‖w − wt−1‖2

}
,

We apply early stopping similar to that in EMSO-GD.

Distributed Model Averaging To implement our algorithm in a distributed computing envi-
ronment, we first partition the minibatch intom parts, and then assign them to different machines.
Instead of having all machines coordinate with each other to solve the subproblem, which is ex-
pensive given the limited communication resources, we propose a more communication friendly
approach. In Algorithm 9 each machine simply solves the subproblem independently using the
part of data assigned to it, and then the results are averaged across all machines at the end of each
iteration.

Algorithm 9 Distributed EMSO with model averaging.

1: Input: initialization w0, conservative coefficients {γt}Tt=1, learning rate {ηt}Tt=1, number of
machines k

2: for t = 1, . . . , T do
3: randomly choose minibatch It
4: partition It =

⋃m
k=1 I

(k)
t

5: for k = 1, . . . ,m do in parallel
6: solve the conservative subproblem on I(k)

t using Algorithm 7 or 8 to obtain w(k)
t

7: end for
8: average wt = 1

m

∑m
k=1w

(k)
t via communication

9: end for

87

name update iteration distributed
L-BFGS [89] batch yes
LIBLINEAR [51] batch no
Minibatch SGD (7.3) minibatch yes
EMSO-GD (7.6) minibatch yes
EMSO-CD (7.7) minibatch yes

Table 7.1: Evaluated Algorithms.

7.3 Experiments
In this section, we evaluate our algorithm and its implementation with a case study of classifica-
tion using logistic regression. The loss function is given by fi(w) = log(1 + exp(−yi〈xi, w〉)).
We compare our algorithms with two other algorithms. The results are summarized in Table 7.1.
All experiments were carried on the cluster CampusB, where each machine is equipped with
four AMD Opteron Interlagos 16 core 6272 CPUs, 128GB memory and 10Gbit Ethernet. We
summarize the key implementation details below.
L-BFGS This is a parallelized version of the classical memory-limited BFGS method, as de-

scribed in [89]. The root machine obtains subgradients from each of the client machines
and aggregate the information into a global subgradient. Then the parameters are updated
and is broadcasted to the machines.

LibLinear It is a sophisticated batch solver for convex problems. This single-machine imple-
mentation is obtained from the author’s website1. It is included as a reference to existing
well-known solvers.

Minibatch SGD As the name of this algorithm suggests, for each minibatch, it computes the
subgradients using the machines, and then aggregate the subgradients to a full minibatch
subgradient. After that, we update the parameter on the root machine using (7.3) and
broadcast the changes. We used anO(1/

√
t) decay learning rate to set ηt = η

√
α/(t+ α)

for the t-th iteration, where the constants η and α specify the initial scale and decaying
speed, respectively. We use grid search in the range of η ∈ {100, . . . , 10−5} and α ∈
{100, . . . , 104} to choose the best constants to optimize the convergence progress.

EMSO-GD We use the parameter-averaging approach introduced in Algorithm 9. Recall that
this algorithm uses the higher order information of the loss function when solving a sub-
problem with each minibatch.

EMSO-CD The only difference between this algorithm and EMSO-GD is that it uses coordinate
descent to update the parameters. For these two EMSO variants, we set λ = 0, an optimize
γ in the range {100, . . . , 105}.

Minibatch Size and Convergence A first sanity check is to ascertain the convergence results
of minibatch methods. For this purpose we set the batch size to 103, 104, and 105 and examine
the value of the objective function after processing 107 examples. Figure 7.2 shows that the value

1http://www.csie.ntu.edu.tw/˜cjlin/liblinear/

88

http://www.csie.ntu.edu.tw/~cjlin/liblinear/

1000 10000 100000
0.01

0.015

0.02

0.025

0.03

0.035

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

(a) Dataset: KDD14

1000 10000 100000
0

0.05

0.1

0.15

0.2

0.25

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

(b) Dataset: URL

1000 10000 100000
0.19

0.2

0.21

0.22

0.23

0.24

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

(c) Dataset: CTRa

Figure 7.1: Objective value versus minibatch size after in total 107 examples are processed in a
single node. Here CTRa is downsampled to 4 millions examples due to the limited capacity of a
single node.

of the objective function for minibatch SGD significantly increases with the minibatch size as
it does not efficiently use the minibatches. This problem is the worst on the dataset KDD14,
which is dense and extremely unbalanced in terms of the labels. Our algorithm EMSO-GD,
which performs 5 iterations of gradient descent in a minibatch, shows a much better convergence
when the batch size increases as it makes a better use of the minibatch by potentially extracting
more information from the multiple iterations. Moreover, Figure 7.2 shows that the convergence
is even more stable when solving the conservative subproblems using coordinate descent. A
possible explanation is that, even though each minibatch is processed only twice, in EMSO-CD,
the parameter from previous iteration serves as a warm start to improve the solution quality of
the conservative subproblem. It seems that this advantage of coordinate descent can offset the

89

1000 10000 100000
0.01

0.015

0.02

0.025

0.03

0.035

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

(a) Dataset: KDD14

1000 10000 100000
0

0.05

0.1

0.15

0.2

0.25

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

(b) Dataset: URL

1000 10000 100000
0.19

0.2

0.21

0.22

0.23

0.24

minibatch

o
b
je

c
ti
v
e

SGD

EMSO−GD

EMSO−CD

(c) Dataset: CTRa (downsampled to 4 millions exam-
ples due to the limited capacity of a single machine)

Figure 7.2: Value of the objective function versus minibatch size after in total 107 examples are
processed on each machine.

negative effect of minibatch on convergence.

Run time and Convergence We compare the five algorithms listed in Table 7.1 by tracking
the value of the objective function over time. We use a batch size of 105 for EMSO-CD and
103 for the rest. Figure 7.3 shows that the convergence behavior of L-BFGS and LibLinear are
similar: slow at the beginning and faster towards the end. Observe that EMSO-GD is comparable
to SGD. Note that even though EMSO-GD converges faster in terms of the number of minibatch
iterations, it requires 5 times more computational time than SGD. Notably, even with a larger
minibatch size, EMSO-CD is at least 10 times faster than the other algorithms.

90

10
0

10
1

10
2

10
3

10
−2

10
−1

time (sec.)

o
b
je

c
ti
v
e

L−BFGS
Liblinear
SGD
EMSO−GD
EMSO−CD

(a) Dataset: KDD14

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

time (sec.)

o
b
je

c
ti
v
e

L−BFGS
Liblinear
SGD
EMSO−GD
EMSO−CD

(b) Dataset: URL

10
1

10
2

10
3

10
−0.7

10
−0.6

10
−0.5

10
−0.4

time (sec.)

o
b
je

c
ti
v
e

L−BFGS
Liblinear
SGD
EMSO−GD
EMSO−CD

(c) Dataset: CTRa

Figure 7.3: Value of the objective function versus run time.

Minibatch Size and the Synchronization Cost Recall that one advantage of using a large
minibatch size is the potential reduction in synchronization cost of communication between ma-
chines. Figure 7.4 shows the proportion of synchronization cost in the overall runtime. The
proportion is considerable even with just 12 machines, and decreases with the minibatch size.
This is due to fact that both EMSO-GD and EMSO-CD solve a more complex optimization
problem with each minibatch, and thus the amount of actual computation between the synchro-
nization passes increases. In addition, although EMSO-CD passes a minibatch just twice in our
experiment, it requires significant more exponentiation operations than EMSO-GD (a fast special
functions library would probably address this issue). As a result, it consumes more CPU time in
actual computation than EMSO-GD, and has a smaller fraction of synchronization cost.

In Figure 7.5 we compare the convergence results between EMSO-CD and L-BFGS with
various minibatch sizes. In the left subfigure, we fix the total number of examples processed to
be 5×106. Similar to the single machine results in Figure 7.2, EMSO-GD slightly improves SGD

91

10
3

10
4

10
5

30

40

50

60

70

80

90

minibatch

s
y
n

c
h

ro
n

iz
a

ti
o

n
 c

o
s
t

(%
)

SGD

EMSO−GD

EMSO−CD

Figure 7.4: The fraction of synchronization cost as a function of minibatch size when using 12
machines.

10
3

10
4

10
5

0.2

0.205

0.21

0.215

0.22

0.225

0.23

minibatch

o
b

je
c
ti
v
e

SGD

EMSO−GD

EMSO−CD

10
3

10
4

10
5

0.2

0.205

0.21

0.215

0.22

minibatch

o
b

je
c
ti
v
e

SGD

EMSO−GD

EMSO−CD

Figure 7.5: Value of the objective function versus minibatch size. 12 machines are used. Left:
the total number of examples is fixed to 5× 106. Right: the runtime is fixed to 1000 seconds.

while EMSO-CD is much better than the others. In the right subfigure, we fix the run time to
be 1, 000 seconds. In this setting, with a large minibatch size, the proportion of synchronization
cost decreases and more time is allocated to the actual computation. In particular, there is a clear
advantage for EMSO-CD to use a large batch size in distributed computing.

Scalability We conclude our experimental evaluation by assessing the performance for varying
numbers of machines in the distributed computing environment, with a comparison between
EMSO-CD and L-BFGS shown in Figure 7.6. We can see that both algorithms benefit from the
increase of the number of machines, while L-BFGS gains more than EMSO-CD. This is because
L-BFGS passes the whole training data in each iteration and thus the portion of synchronization
cost is only 15% compared to 30% of EMSO-CD. However, EMSO-CD is still 10 times faster

92

10
1

10
2

10
3

10
−0.71

10
−0.69

10
−0.67

10
−0.65

time (sec.)

o
b
je

c
ti
v
e

5 nodes

10 nodes

20 nodes

EMSO−CD

5 nodes

10 nodes

20 nodes

L−BFGS

Figure 7.6: Value of the objective function versus run time for EMSO-CD and L-BFGS using
different numbers of machines.

objective = 0.2 objective = .1972
#nodes time speedup time speedup

5 879s 1.00x 2439s 1.00x
10 499s 1.76x 1367s 1.78x
20 363s 2.42x 962s 2.54x

Table 7.2: Run time and speedup for EMSO-CD to reach the same value of the objective function
when running on 5, 10 and 20 machines.

than L-BFGS for all possible number of machines. Table 7.2 shows the speedup for EMSO-CD
to reach specific objective values. When the number of nodes doubles from 5 to 10, there is an
1.75x speedup on average, and when the nodes number increases by 4 times, we have a 2.5x
speedup.

7.4 Proof of Theorem 7
For convenience, we define the regularized minibatch loss by ht(w) = fIt(w) + γt‖w‖2

2/2. Our
proof relies on three lemmas. First, we upper bound ‖wt− w̄t‖2, where w̄t is similar to wt except
for optimizing over all examples. That is, the gradients differ via ‖∇f(w̄t)−∇fIt(w̄t)‖2. Next,
we show that the expectation of the latter, namely the variance of gradient over a minibatch, is
bounded from above by A2/b. Finally, we characterize the progress from time t− 1 to t.

Lemma 8 Let w̄t be the minimizer of the conservative version of the expected risk, namely

w̄t = argmin
w∈Ω

[
f(w) +

γt
2
‖w − wt−1‖2

2

]
. (7.8)

93

We can bound the difference between the solution w̄t and the solution wt obtained with a mini-
batch as in (7.4) by:

‖wt − w̄t‖2 ≤
1

γt
‖∇f(w̄t)−∇fIt(w̄t)‖2 .

Proof. Since wt = argminw∈Ω ht(w), we have from the first order KKT condition at wt:

∇ht(wt)>(wt − w̄t) ≤ 0

In addition, the first order KKT condition of (7.8) at w̄t combined with the fact that ht(w) =
fIt(w) + γt

2
‖w − wt−1‖2

2 implies that

(∇ht(w̄t) +∇f(w̄t)−∇fIt(w̄t))>(wt − w̄t) ≥ 0.

By substracting the first inequality from the second inequality, and rearranging terms, we obtain:

(∇ht (wt)−∇ht (w̄t))
> (wt − w̄t)

≤ (∇f (w̄t)−∇fIt (w̄t))
> (wt − w̄t) . (7.9)

By additivity of Bregman divergences we have

Dht(w̄t;wt) = DfIt
(w̄t;wt) +

γt
2
‖w̄t − wt‖2

2 .

hence Dht (w̄t;wt) ≥
γt
2
‖w̄t − wt‖2

2 .

Similarly Dht(wt; w̄t) ≥ γt
2
‖w̄t − wt‖2

2. It follows that

γt‖wt − w̄t‖2
2 ≤ Dht(w̄t;wt) +Dht(wt; w̄t)

= (∇ht(wt)−∇ht(w̄t)>(wt − w̄t)
≤ (∇f(w̄t)−∇fIt(w̄t))>(wt − w̄t)
≤ ‖∇f(w̄t)−∇fIt(w̄t)‖2‖wt − w̄t‖2,

where the second inequality is due to (7.9). The third inequality is Cauchy-Schwarz inequality.

Lemma 9 Assume that we randomly choose a minibatch I of size b. We can bound the deviation
between the gradient of the risk minibatch and the actual risk by:

EI

[
‖∇fI(w)−∇f(w)‖2

2

]
=
n− b
n− 1

B2

b
≤ A2

b
,

where B2 =
1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2
2.

94

Proof. This bound is essentially a conversion of variances from a minibatch I to the full set
when using sampling without replacement. To simplify notation we use the abbreviation of
ψi := ∇fi(w)−∇f(w) and ψI = ∇fI(w)−∇f(w). Note that by construction

Ei [ψi] = EI [ψI(w)] = ψ (7.10)

and therefore B2 = Ei

[
‖ψi‖2] and B2 ≤ A2. The latter inequality follows since A2 is a uniform

upper bound on the variance over all w ∈ Ω. This yields

EI

[
‖ψI‖2

2

]
= EI

∥∥∥∥∥1

b

∑
i∈I

ψi

∥∥∥∥∥
2

2

 =
1

b2
EI

[∑
i,j∈I

ψi
>ψj

]

=
1

b2
EI

[∑
i 6=j∈I

ψi
>ψj

]
+
B2

b

=
b− 1

bn(n− 1)

∑
i 6=j

ψi
>ψj +

B2

b

=
b− 1

bn(n− 1)

∑
i,j

ψ>i ψj +
B2

b
− B2

b

b− 1

n− 1

= 0 +
B2

b

n− b
n− 1

<
A2

b

The last equality used the fact that ψi has zero-mean.

Lemma 10 For each iteration, we can bound the expected improvement in terms of Bregman
divergence by

E [Dht(w
∗, wt)−Dht(w

∗, wt−1)] ≤ f(w∗)− E [f(wt)]− E [Df (w
∗;wt−1)] +

1

γt

A2

b
. (7.11)

Proof. We have

Dht(w
∗, wt)−Dht(w

∗, wt−1)

= Dht(wt−1, wt) + (∇ht(wt−1)−∇ht(wt))>(w∗ − wt)
+ (∇ht(wt−1)−∇ht(wt))>(wt − wt−1)

≤ Dht(wt−1, wt) +∇fIt(wt−1)>(w∗ − wt)
+ (∇ht(wt−1)−∇ht(wt))>(wt − wt−1)

=f(w∗)− f(wt)−Df (w
∗;wt−1)

− (∇f(wt−1)−∇fIt(wt−1))>(w∗ − wt)
+ (Df (wt;wt−1)−Dht(wt;wt−1)),

95

where the equalities follow from algebraic manipulations and the definition of Bregman diver-
gence; in the inequality, we used the first order KKT condition of (7.4) at wt, implying that

(∇fIt(wt−1) +∇ht(wt)−∇ht(wt−1))>(w∗ − wt)
= ∇ht(wt)>(w∗ − wt) ≥ 0.

Taking expectation, we have

EDht(w
∗, wt)− EDht(w

∗, wt−1)

≤ f(w∗)− Ef(wt)− EDf (w
∗;wt−1)

− E(∇f(wt−1)−∇fIt(wt−1))>(w∗ − wt)
+ E(Df (wt;wt−1)−Dht(wt;wt−1))

≤ f(w∗)− Ef(wt)− EDf (w
∗;wt−1)

− E(∇f(wt−1)−∇fIt(wt−1))>(w∗ − wt)
=f(w∗)− Ef(wt)− EDf (w

∗;wt−1)

− E(∇f(wt−1)−∇fIt(wt−1))>(w̄t − wt), (7.12)

where the second inequality follows from E(Df (wt;wt−1) − Dht(wt;wt−1)) ≤ 0, which is a
consequence of Assumption 6. The equality holds because

E(∇f(wt−1)−∇fIt(wt−1))>w∗

= E(∇f(wt−1)−∇EIt|wt−1fIt(wt−1))>w∗

= 0 = E(∇f(wt−1)−∇fIt(wt−1))>w̄t.

Note further that

− E(∇f(wt−1)−∇fIt(wt−1))>(w̄t − wt)

≤
√
E‖∇f(wt−1)−∇fIt(wt−1))‖2

2 E‖w̄t − wt‖2
2

≤
√
E‖∇f(wt−1)−∇fIt(wt−1))‖2

2 E‖∇f(w̄t)−∇fIt(w̄t)‖2
2/γt

≤ A2/(γtb),

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality is due
to Lemma 8, and the third inequality is due to Lemma 9. Plugging the above estimate into (7.12),
we obtain the desired bound.

Finally we can prove Theorem 7 below.
Proof of Theorem 7. Under the assumption that fi is λ-strongly convex, it follows by construc-
tion that ht is strongly convex with modulus γt + λ. Consequently the Bregman divergence is
bounded by

Dht(w
∗, wt) ≥

γt + λ

2
‖w∗ − wt‖2

2 .

96

Together with Lemma 10, we have

E
[
f(wt)− f(w∗) +

γt+1

2
‖w∗ − wt‖2

2

]
= E

[
f(wt)− f(w∗) +

γt + λ

2
‖w∗ − wt‖2

2

]
≤ E [f(wt)]− f(w∗) + E [Dht(w

∗, wt)]

≤ E [Dht (w∗, wt−1)−Df (w∗;wt−1)] +
A2

bγt
= E

[
DfIt

(w∗, wt−1)−Df (w∗;wt−1)
]

+
γt
2
E
[
‖w∗ − wt−1‖2

2

]
+
A2

bγt

=
γt
2
E
[
‖w∗ − wt−1‖2

2

]
+
A2

bγt

Here the first equality follows from the definition of γt; the second equality follows from the
definition of ht and simple algebra; the third equality uses the fact that we are drawing It inde-
pendently. Hence we have

EIt|wt−1DfIt
(w∗, wt−1) = Df (w

∗;wt−1).

Summing over t = 1, . . . , T , we obtain the desired bound.

97

98

Chapter 8

AdaDelay: Delay Adaptive Stochastic
Optimization

8.1 Introduction
In this chapter we continue studying stochastic gradient descent for distributed optimization.
Recall that the objective function to optimize is as follows (see also (7.1)):

w∗ = argmin
w∈Ω

f(w), where f(w) =
1

n

n∑
i=1

fi(w). (8.1)

Instead of using synchronous iterations as studied in Chapter 7, in this chapter, we focus on
asynchronous SGD and study how to improve the convergence by taking into account the actual
delay caused by asynchronous updates.

Our work is motivated by the need of precise modeling the delay properties of real-world
cloud services, which behavior are quite different from what one may observe with small clusters.
In particular, computing resources in the cloud are shared by many users who run very different
types tasks. Compared to an environment where resources are shared by a small number of
individuals, the environment of cloud computing will inevitably be more diverse in terms of
availability of key resources such as CPUs, disks, and network bandwidth, which all contribute
to the delays in the computation process. Therefore, it is of great value to both service providers
and end users of large-scale cloud services to be able to accommodate variable delays.

In light of this background, we investigate delay sensitive asynchronous SGD. In particu-
lar, instead of just using global “bounded delay” arguments as in Chapter 6, which can be too
pessimistic, we aim to adapt the computation to the observed delays.

Contributions. A promising and intuitive approach to exploit the actual observed delay is as
follows. At the early stage of the iterations, the server updates model parameters whenever its
receives a gradient from any machine, with a weight inversely proportional to the actual delay
observed. Towards the end, to reduce the bias caused by the initial aggressive steps, the server
takes larger update steps upon receiving gradients from machines that send infrequent update,
and takes smaller steps when the updates are from machines that update very frequently.

99

In this chapter, we propose and analyze a new asynchronous SGD algorithm, named AdaDe-
lay (Adaptive Delay), which uses step sizes that depend on the actual delays observed. It re-
quires a more intricate convergence analysis for two reasons. First, the step sizes and are no
longer guaranteed to be monotonically decreasing. Second, the residuals that measure progress
are not independent over iterations as they are coupled by the random variable of delays.

The computation framework that we use to implement the algorithm is the Parameter Server
(for more details see Chapter 3), where a central server maintains the global parameter, and the
worker nodes compute stochastic gradients using their share of the data and communicate back to
the central server to update the model. We validate our theoretical framework with experiments
on large-scale data sets. The experiments reveal that our assumptions of network delay lead to a
reasonable approximation of the observed delays in practice. In the regime of large delays, using
delay sensitive steps is very helpful for obtaining fast convergence.

Related Work. Of particular relevance to our work is the recent work on delay adaptive gra-
dient scaling in an AdaGrad like framework [98], which claims substantial improvements under
specialized settings over [50], a work that exploits data sparsity in a distributed asynchronous
setting. Our experiments confirm the claims in [98] that their best learning rate is insensitive
to the maximum delays. However, in our experience the method of [98] overly smooths the
optimization path, which can have adverse effects on real-world data (see Section 8.3). To our
knowledge, all previous works on asynchronous SGD assume monotonically diminishing step-
sizes. Our analysis shows that rather than using worst case delay bounds, using exact delays
to control step sizes can be remarkably beneficial in realistic settings, such as when there are
stragglers that slow down progress for all the machines in a worst-case delay model.

Algorithmically, the work [4] is the one most related to ours; the authors of [4] consider
using delay information to adjust the step size. However, the most important difference is that
they only use the worst possible delays which again might be too conservative. The work in
[79] investigates two variants of update schemes, both of which occur with delay, yet it does
not exploit the actual delays either. There are some other interesting works studying specific
scenarios, for example, [50], which focuses on the sparse data. However, our framework is more
general and thus capable of covering more applications.

We build on the groundwork laid by [4, 103]; like them, we also consider optimizing (8.1)
under a delayed gradient model.

Notation. We denote a random delay at time t by τt, denote step sizes by η(t, τt), and denote
delayed gradients by g(t−τt). For a differentiable convex function h, the corresponding Bregman
divergence is defined as Dh(x, y) := h(x) − h(y) − 〈∇h(y), x− y〉. We also interchangeably
use xt and x(t) when it is clear in the context.

100

8.2 AdaDelay Algorithm

8.2.1 Model Assumptions

To simplify the exposition of our key ideas, we consider only smooth objective functions. Straight-
forward, albeit laborious extensions are possible to non-smooth functions, strongly convex costs,
mirror descent versions, and proximal splitting versions. Following [4], we make the following
standard assumptions on the objective function f(x):

Assumption 11 (Lipschitz gradients) The function f has locally L-Lipschitz gradients, namely

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω.

Assumption 12 (Bounded variance) There exists a constant σ > 0 such that

Eξ[‖∇f(x)−∇F (x; ξ)‖2] ≤ σ2, ∀ x ∈ Ω.

Assumption 13 (Compact domain) Let x∗ be a global minimum of the function f(x). Then,

max
x∈Ω
‖x− x∗‖ ≤ R.

Assumption 14 (Bounded Gradient) Let ∀ x ∈ Ω. Then,

‖∇f(x)‖ ≤ G.

These assumptions are typically reasonable for machine learning problems where the value of
data examples are bounded. For instance, logistic-regression losses and least-squares costs all
satisfy the assumptions.

We consider the following two delay models:
Uniform delay model. In this model, we assume that τt, the delay at time t, follows i.i.d.

uniform distribution U({0, 2τ̄}). This is a reasonable approximation of observed delays
after a random start-up time of the network.

Scaled delay model. We assume that for every t, there is a θt ∈ (0, 1) such that τt < θtt.
Moreover, assume that E[τt] = τ̄t and E[τ 2

t] = B2
t , where τ̄t and Bt are constants that

do not grow with t. This delay model includes all delay processes with bounded first and
second moments, and is more general than the uniform model.

Our analysis seems general enough to cover many other delay distributions by combining
the above two delay models. For example, the Gaussian model (where τt obeys a Gaussian
distribution but its support must be truncated as t > 0) may be seen as a combination of the
following arguments: when t ≥ C (a suitable constant), the Gaussian assumption indicates
τt < θt, which falls under our second delay model; when 0 ≤ t ≤ C, our proof technique with
bounded support (same as uniform model) applies.

101

8.2.2 Algorithm
Under the above two delay models, we consider the following projected stochastic gradient iter-
ation:

wt+1 = proj
Ω

[wt − ηt(τt)gt−τt] , t = 1, 2, . . . , (8.2)

where gt−τt is the gradient that the server received at time t with an observed delay τt, and
the learning rate ηt(τt) at iteration t is sensitive to the actual delay τt observed. Iteration (8.2)
generates a sequence {wt}t≥1, and the server maintains the averaged iterate

w̄(T) :=
1

T

T∑
t=1

wt+1. (8.3)

8.2.3 Convergence Analysis
Next, we analyze the convergence rate of the iterative algorithm in (8.2). The learning rate we
use is of the form

ηt(τt) = (L+ αt(τt))
−1,

where the step offsets αt(τt) are chosen to be sensitive to the actual delay of the incoming gradi-
ents. We typically use

αt(τt) = c
√
t+ τt, (8.4)

for some constant c. For clarity of presentation we first let c be independent of t. Later we also
consider time-varying ct (see Corollary 18). The constant c serves to trade off between the effect
of the noise variance σ and the effect of the radius bound R on the error bound. Note that if there
is no delay, namely τt = 0, it reduces to the standard synchronous SGD.

Our convergence analysis builds upon that of [4], whereas the key difference is that our step
size ηt(τt) depends on the actual delay τt observed. These delay dependent step sizes necessi-
tate more intricate analysis. The primary complexity arises from ηt(τt) being dependent of the
actual delay τt, and thus no longer monotonically decreasing, as is typically assumed in most
convergence analyses of SGD.

Theorem 15 Let wt be generated according to (8.2). In the uniform delay model, we have

E

[
T∑
t=1

(
f(wt+1)− f(w∗)

)]
≤
(√

2cR2τ̄ +
σ2

c

)√
T +

LG2(4τ̄ + 3)(τ̄ + 1)

6c2
log T

+ 1
2
(L+ c)R2 + τ̄GR +

LG2τ̄(τ̄ + 1)(2τ̄ + 1)2

6(L2 + c2)
.

In the scaled delay model, we have

E

[
T∑
t=1

(
f(wt+1)− f(w∗)

)]
≤σ

2

c

√
T +

1

2
cR2

T∑
t=2

τ̄t + 1√
2t− 1

+GR

[
1 +

T−1∑
t=1

B2
t

(T − t)2

]

+G2

T∑
t=1

B2
t + 1 + τ̄t

L2 + c2(1− θt)t
+

1

2
R2(L+ c).

102

The detailed proof of Theorem 15 is technical and long. For the coherence of the thesis, we omit
it here and direct the interested reader to the full version of our paper [127].

Theorem 15 has several implications. Corollaries 16 and 17 indicate that both our delay mod-
els share a similar convergence rate, while Corollary 18 shows that such results still hold even
when we replace the constant c with a bounded sequence {ct}. Finally, Corollary 19 mentions a
simple variant that uses ηt = ct(t + τt)

η for 0 < η < 1, and it also highlights the fact that for
η = 0.5, our algorithm achieves the best theoretical convergence.

Corollary 16 Under the uniform delay model, we have

E[f(w̄T)− f ∗] = O

(
D1

√
T

T
+D2

log T

T
+D3

1

T

)
,

where the constants

D1 =
√

2cR2τ̄+
σ2

c
,D2 =

LG2(4τ̄ + 3)(τ̄ + 1)

6c2
, D3 = 1

2
(L+c)R2+τ̄GR+

LG2τ̄(τ̄ + 1)(2τ̄ + 1)2

6(L2 + c2)
.

Corollary 17 Under the scaled delay model, let τ̄t = τ , θt = θ, and Bt = B for all t. We have
that

E[f(w̄T)− f ∗] = O

(
D4

√
T

T
+D5

log
(
1 + c2(1−θ)T

L2

)
T

+D6
1

T

)
,

where the constants

D4 =

[
1√
2
cR2(τ̄ + 1) +

σ2

c

]
, D5 =

G2(B2 + τ + 1)

c2(1− θ)
, D6 = 1

2
(L+ c)R2 +GR

(
1 +

π2B2

6

)
.

Corollary 18 If αt(τt) = ct
√
t+ τt with 0 < M1 ≤ ct ≤ M2, then the conclusion of Theo-

rem 15, Corollary 16 and 17 still hold, except that the term c is replaced by M2 and 1
c

by 1
M1

.

If we wish to use step size offsets αt(τt) = ct(t + τt)
γ where 0 < γ < 1, we get a result of

the following form.

Corollary 19 Let αt(τt) = ct(t + τt)
γ with 0 < M1 ≤ ct ≤ M2 and 0 < γ < 1. Then, there

exists a constant D7 such that

E[f(w̄T)− f ∗] = O
(

D7

Tmin(γ,1−γ)

)
.

8.3 Experiments

8.3.1 Setup
We evaluate the performance of the proposed algorithm AdaDelay in a distributed computing
environment.

103

We compare AdaDelay with two related methods called AsyncAdaGrad [4] and AdaptiveRe-
vision [98]. Let [ηt(τt)]j denote the j-th coordinate of ηt(τt), and let [gt(τt)]j denote the delayed
gradient on the j-th feature. AsyncAdaGrad uses a scaled learning rate given by

[ηt(τt)]j =

(
t∑
i=1

[gi(τi)]
2
j

)1/2

.

AdaptiveRevision takes into account the actual delays by considering
[
gbak
t (τt)

]
j

=
∑t−τ

i=t−1[gi(τi)]j,
and uses a non-decreasing learning rate given by

[ηt(τt)]j =

(
t∑
i=1

[gi(τi)]
2
j + 2[gt(τt)]j

[
gbak
t (τt)

]
j

)1/2

.

The key novelty of our algorithm AdaDelay is the delay-dependent learning rate given by

ηt(τt) = α0(L+ αt(τt))
−1.

We follow the common practice to fix L = 1 while searching for the best α0. Similar to Asyn-
cAdaGrad and AdaptiveRevision, we use a scaled learning rate in AdaDelay to better model the
nonuniform sparsity of the data set (this step size choice falls within the purview of Corollary 18).
In other words, we set

[αt(τt)]j = cj
√
t+ τt,

where cj = (1
t

∑t
i=1

i
i+τi

[gi(τi)]
2
j)

1/2 serves to average the weighted delayed gradients.
We test the algorithms for the objective function of logistic regression on the dataset CTRa

and Criteo. For Criteo, the first 8 days are used for training while the following 2 days are used
for validation. For CTRa, we sampled another 20 millions examples to test the trained model.
All the experiments were run using the campus cluster CampusA.

We implement the three methods in the parameter server framework introduced in Chapter 3.
In each iteration, a worker node first reads a minibatch of data from a distributed file system,
pulls the required working set of parameters from the server nodes, compute the gradients on the
minibatch, and then pushes the gradients to the server nodes. Let t(k, i) denote the time when
worker k pulls the weight for minibatch i, and let t′(k, i) denote the time when the server nodes
update the weight upon receiving the gradients on this minibatch. The actual delay caused by
processing this minibatch is thus given by τt = t′(k, i)− t(k, i).

The server nodes maintain the model parameters. For each feature, both AsyncAdaGrad and
AdaDelay need to store the weight and the accumulated gradient to compute the learning rate,
while AdaptiveRevision needs two more entries, including gbck

j for each feature j. If we send
gbck
j over the network following the method in [98], the total network communication increases

by 50%. Instead, we store gbck
j at the server nodes while processing this minibatch, which incurs

no network communication overhead at the cost of additional memory consumption.

104

0 1000 2000 3000
0

100

200

300

400

500

600

time

d
e

la
y

(a) Dataset Criteo with 1,600 workers

0 1000 2000 3000
0

50

100

150

200

250

300

time

d
e

la
y

(b) Dataset CTRa with 400 workers

Figure 8.1: The first 3,000 observed delays on one server node.

0 100 200 300 400
0

0.5

1

1.5

2

delay

c
o

u
n

t
(%

)

(a) Dataset Criteo with 1,600 workers

0 200 400 600 800 1000
0

0.5

1

1.5

2

delay

c
o

u
n

t
(%

)

(b) Dataset CTRa with 400 workers

Figure 8.2: Histgram of all observed delays

8.3.2 Results
Delay observed Figure 8.1 and 8.2 visualize the actual delay observed at server nodes for
AdaDelay. We observe that delay τt is roughly linear in t at the early stage of the training
process, with different slope for different tasks. For example, the slope is around 0.2 for the
Criteo data set with 1,600 workers, and it increases to around 1 for the CTRa data set with 400
workers. At later stage of the training process, after the delay increases to around half of the
number of workers, it roughly follows a unimodal distribution.

Loss and AUC Next, we present the comparison results of these three algorithms by varying
the number of workers. Following [98] we use the online LogLoss as the criterion. That is,
given example with feature vector d and label y ∈ {+1,−1}, we calculate the loss function

105

1 100 400 1600

0

0.5

1

1.5

workers

re
la

ti
v
e
 L

o
g
L
o
s
s
 (

%
)

AdaDelay

AsyncAdaGrad

AdaptiveRevision

(a) Dataset Criteo

1 100 400 1600
−1

0

1

2

3

4

workers

re
la

ti
v
e
 L

o
g
L
o
s
s
 (

%
)

AdaDelay

AsyncAdaGrad

AdaptiveRevision

(b) Dataset CTRa

Figure 8.3: Relative (% worsening) of online LogLoss as function of maximal delays (lower is
better).

f(x, (d, y)) = log(1 + exp(−y〈d, x〉)) before updating x using (y, d). Similar to [98], we report
the average LogLoss over the second half of the training data to ignore the possible large values
when starting training.

Figure 8.3 reports the relative change in online LogLoss for the three algorithms compared
(smaller value is better). It is seen that on the Criteo dataset, AdaDelay performs better than
AsyncAdaGrad, though AdaptiveRevision is slightly better than both. However, for the larger
CTR2 dataset, both AdaDelay and AsyncAdaGrad are substantially better than AdaptiveRevi-
sion. The reason why it differs from [98] is probably due to the datasets we used are 1000
times larger than the ones reported by [98], and we evaluated the algorithms in a distributed
environment rather than a simulated setting where a large minibatch size is necessary for the
former. However, as reported [98], we also observed that AdaptiveRevision’s best learning rate
is insensitive to the number of workers.

AdaDelay seems to have a tiny edge over AsyncAdaGrad, and as predicted by our theory,
this edge grows much bigger when there are large delays (e.g., due to stragglers)—we report on
this in greater detail in next paragraph.

Besides the LogLoss, AUC is another important merit for computational advertising, which
measures the ranking ability of the model and often 1% difference is significant for click-through
rate estimation. We made a separate validation dataset for calculating the AUC, and shown the
results on Figure 8.4. As can be seen, the test AUC results are consistent with the online LogLoss.

Stragglers Previous experiments indicate that AdaDelay improves upon AsyncAdaGrad when
a large number of workers (greater than 400) is used, which means the delay adaptive learning
rate takes effect when the delay can be large. To further investigate this phenomenon, we sim-
ulated an overloaded cluster where several stragglers may produce large delays; we do this by
slowing down half of the workers by a random factor in [1, 4] when computing gradients. The

106

1 100 400 1600
−1.5

−1

−0.5

0

workers

re
la

ti
v
e
 A

U
C

 (
%

)

AdaDelay

AsyncAdaGrad

AdaptiveRevision

(a) Dataset Criteo

1 100 400 1600
−6

−5

−4

−3

−2

−1

0

1

workers

re
la

ti
v
e
 A

U
C

 (
%

)

AdaDelay

AsyncAdaGrad

AdaptiveRevision

(b) Dataset CTRa

Figure 8.4: Relative test AUC (higher is better) as function of maximal delays.

1 100 400 1600
−2

−1.5

−1

−0.5

0

workers

re
la

ti
v
e
 A

U
C

 (
%

)

AdaDelay

AsyncAdaGrad

(a) Dataset Criteo

1 100 400 1600
−3

−2.5

−2

−1.5

−1

−0.5

0

workers

re
la

ti
v
e
 A

U
C

 (
%

)

AdaDelay

AsyncAdaGrad

(b) Dataset CTRa

Figure 8.5: Relative test AUC (higher is better) as function of maximal delays with the existence
of stragglers.

107

100 400 800 1600
0

5

10

15

20

workers

s
p
e
e
d
u
p
 (

x
)

AdaDelay

ideal

Figure 8.6: The speedup of AdaDelay. The results of AsyncAdaGrad and AdaptiveRevision are
almost identical to AdaDelay and therefore omitted.

AdaDelay AsyncAdaGrad AdaptiveRevision
Criteo 24 GB 24 GB 55 GB
CTRa 97 GB 97 GB 200 GB

Table 8.1: Total memory used by server nodes.

test AUC are shown in Figure 8.51. As can be seen, AdaDelay consistently outperforms Asyn-
cAdaGrad, which shows that adaptive modeling of the actual delay is better than using a constant
worst case delay when the variance of the delays is large.

Scalability Finally we report the system performance. We first present the speedup from 1
machine to 16 machines, where each machine runs 100 workers. We observed a near linear
speedup of AdaDelay, which is shown in Figure 8.6. The main reason is due to the asynchronous
updating which removes the dependencies between worker nodes. In addition, using multiple
workers within a machine can fully utilize the computational resources by hiding the overhead
of reading data and communicating the parameters. The results of AsyncAdaGrad and Adap-
tiveRevision are similar to AdaDelay because their computational workloads are identical except
for parameter updating, which affects the overall system performance little.

In the parameter server framework, worker nodes only need to cache one or a few data mini-
batches. Most memory is used by the server nodes to store the model. We summarize the server
memory usage for the three algorithms compared in Table 8.1.

As expected, AdaDelay and AsyncAdaGrad have similar memory consumption because the
extra storage needed by AdaDelay to track and compute the incurred delays τt is tiny. However

1As before, the results on online LogLoss are similar to the test AUC and therefore omitted.

108

AdaptiveRevision doubles memory usage, because of the extra entries that it needs for each
feature, and because of the cached delayed gradient gbak.

109

110

Chapter 9

Parsa: Data Partition via Submodular
Approximation

9.1 Introduction
In this chapter, we attempt to address one question that is fundamental to applying today’s
loosely-coupled “scale-out” cluster computing techniques to important classes of machine learn-
ing applications: how to spread data and parameters around a cluster of machines in order to
achieve efficient processing?

In our Parameter Server (see Chapter 3), both data and parameters are distributed over the
machines to fit the computation power and storage capacity of the nodes. Many other applications
and frameworks also face the issue of data and parameter distribution. For instance, in very large
scale graph factorization [7], the challenge is to partition a natural graph, so that the memory
required to store the local states and to cache adjacent variables is bounded within the capacity
of a machine. Similar constraints appear in GraphLab [59, 90] where vertex-specific updates
are carried out while other variables need to be synchronized between machines. Likewise,
in distributed graphical model inference with latent variables [6, 123], state variables must be
distributed and synchronized efficiently between machines.

Shared parameters are synchronized via communication network in a scale-out cluster. The
sheer size of model parameters and the iterative nature of machine learning algorithms often
produce huge amount of network traffic. Figure 9.1 shows that, in a text classification application,
if we randomly assign examples (documents) to machines, the total amount of network traffic can
be 10 times higher than the size of training data. Specifically, more than 1 Terabyte of data are
communicated for 72 Gigabyte of training data. Given that network bandwidth is typically much
smaller than the bandwidth of accessing local memory, the sheer amount of traffic potentially
becomes a performance bottleneck for many large scale machine learning applications.

In particular, we face three key challenges in order to achieve scalability:
• Memory footprint (RAM) is limited, and hence the amount of storage per machine avail-

able for processing and caching model parameters is often quite constrained compared to

2We assume 100 machines and the optimization algorithm running 100 iterations until convergence. The sparse
first-order gradient are communicated in each iteration.

111

0 0.1 0.2 0.3
0

10

20

30

40

50

data size (TB)

n
e
tw

o
rk

 c
o
m

m
u
n
ic

a
ti
o
n
 (

T
B

)

Parsa

random partition

Figure 9.1: The amount of network communication versus the size of data in a real text classifi-
cation dataset for random partition2.

the size of the model.
• Network bandwidth and latency are roughly 100 times slower than accessing local mem-

ory, thus one would like to minimize the amount of synchronization between machines.
• The computing power per machine is also limited, which demands a well-balanced task

distribution over machines.

One useful observation is that a lot of times large scale data are extremely sparse. For exam-
ple, documents usually contain only a small fraction of distinct words; one person usually has
only a few friends compared to the total number of people in a social graph; there are only few
vertices in a PubSub network with very high degree (e.g., Bieber, Gaga and Kutcher on Twitter).
Such non-uniformity and sparsity is both a boon and a challenge —we are a nontrivial problem
of partitioning the model for distributed computing, and simple random partitioning typically
leads to poor performance.

Previous works Graph partitioning has attracted a lot of research interests in scientific com-
puting [28, 47, 73], scaling out large-scale computations [20, 59, 60, 141, 147, 155], graph
database [39, 122, 144], search and social network analysis [7, 112, 141], and streaming pro-
cessing [105, 130, 131, 140]. Most of the previous works, such as the well-known package
METIS [73], were concerned with edge cuts. Only a few of them solved the vertex cut problem,
which is closely related to this chapter, to directly minimize the network traffic. PaToH [28] and
Zoltan [47] used multilevel partitioning algorithms related to METIS, while PowerGraph [59]
adopted a greedy algorithm. Very recently [20] studied the relation between edge cut and vertex
cut.

112

Our contribution Even though partitioning problems are often NP hard [131], for the prac-
tical importance of this problem, it is worth seeking scalable solutions that outperform random
partitioning. We model the data and parameter placement problem as a graph partitioning prob-
lem, and we propose Parsa, a PARallel Submodular Approximation algorithm, for solving this
problem. We also provide a fast and practical implementation using an efficient vertex selection
data structure. We propose a novel method based on submodular approximation to solve the
vertex-cut partitioning problem, and provide theoretical analysis for the partition quality. Our
implementation has runtime O(k|E|), where k is the number of partitions and |E| denotes the
number of edges in the graph. This is nontrivial compared to the straightforward implementa-
tion which has runtime O(k|E|2). We further describe technologies including sampling, initial-
ization and parallelization to improve the partitioning quality and efficiency. On several large
scale datasets, we show that the proposed algorithm outperforms the state-of-the-art methods,
including METIS [73], PaToH [28] and Zoltan [47], in terms of both partition quality and speed.
Moreover, the proposed method can significantly accelerate Parameter Server, when dealing with
hundreds gigabytes of data and billions of model parameters.

9.2 Problem Formulation
Many inference problems in machine learning have graph-structured dependencies. For instance,
we can rewrite the objective of risk minimization ((1.1) in Chapter 1) as

minimize
w

n∑
i=1

f(xi, yi, w). (9.1)

In a lot of applications, data and model parameters are often correlated via the nonzero and sparse
terms in xi. For example, in spam filtering for email services, these terms correspond to words
and attributes in emails; while in computational advertising, they can model typical words in ads
and user behavior patterns.

For inference problems in undirected graphical models [18, 76], the correlations between
random variables can be encoded by clique potentials ψC(wC), each of which only depends on
the subset of variables wC belonging to a clique C. The applications, ranging from message
passing, optimization, to sampling, all require extensive manipulation of the parameters involved
in a given clique wC . That is, one needs to solve problems of the form

minimize
w

∑
C∈C

ψC(wC), (9.2)

where C is a set of cliques of variables.
Similar problems also occur in the context of inference on natural graphs [7, 9, 59]. Again,

we have sets of interacting parameters which can be represented by vertices on a graph. Manip-
ulating a vertex affects all of its neighbors in terms of computation.

In the rest of this section, we first show how the parameter dependencies can be modeled
using bipartite graphs. Then we formulate the parameter and data placement problem as a graph
partition problem.

113

x1 = (.1, _, _)
x2 = (_, .3, _)
x3 = (_, .4, .3)
x4 = (_, .9, _) x1 x2 x3 x4

w1 w2 w3V:

U:

Figure 9.2: The dependencies are modeled as a bipartite graph.

machine 0 machine 1 machine 2

V:

U:

Figure 9.3: Each machine is assigned with a server and a worker, and gets part of the vertex set
U and V . The inter-machine dependencies (edges) are highlighted and the communication costs
for these three machines are 1, 3, and 3, respectively. Note that moving the 3rd vertex in V to
either machine 0 or machine 1 can reduce the cost.

Bipartite Graphs The dependencies in the inference problems can be modeled with a bipartite
graph. Let G(U, V,E) denote a bipartite graph, where U and V are the two vertex sets, and E
is the edge set with entries (u, v) ∈ E for u ∈ U and v ∈ V . Figure 9.2 illustrates how the
dependencies in the problem of risk minimization can be modeled with a bipartite graph. Here
U correspond to data examples {ui = (xi, yi)}mi=1 and V correspond to the model parameters
w. There is an edge (ui, vj) ∈ E if and only if the j-th entry of xi is nonzero. Therefore,
{wj : (ui, vj) ∈ E} is the working set of parameters which are needed for evaluating the loss
function l(xi, yi, w). In other applications such as graphical models and nature graph inference
where there is a natural undirected graphG(V,E), we can easily convert the graphs into bipartite
graphs G(U ′, V, E ′). One way is to make U ′ a copy of the original vertex set V , and include to
the edge set (ui, vj) ∈ E ′ if (vi, vj) ∈ E. Alternatively we can define U ′ to be the set of all the
cliques on the original graph G, and include the edge (ui, vj) ∈ E ′ if and only if the vertex vj is
contained in the clique ui.

Graph Partition In distributed inference, we need to partition the problem and assign the
computational tasks to m machines. Next, we show that this can be formulated as a problem of
partitioning the dependency graph.

Take Parameter Server as an example. Without loss of generality, assume that there are m
workers andm servers, and that each machine is associated with one worker and one server. Note

114

that we can combine multiple workers or servers assigned to the same machine into a single node
without affecting the following analysis. To partition the graph, we divide the vertex set V for
the parameters into m non-overlapping subsets, namely V =

⋃m
i=1 Vi, and assign each subset to

a server. Similarly, we partition the vertex set U for the data into m non-overlapping subsets,
namely U =

⋃m
i=1 Ui, and assign them to the workers. Figure 9.3 shows an example for m = 3.

Next, we formalize the three goals we want to achieve with an efficient graph partition.
Balance the computational load We assume that each example ui incurs roughly the same

amount of computational workload. In order to ensure that each machine is assigned ap-
proximately the same workload, we try to keep maxi |Ui| small:

minimize max
i
|Ui|. (9.3)

Satisfy the memory constraints Inference algorithms need to frequently access the model pa-
rameters, which are stored in the limited local memory of the workers. Let N (ui) =
{vj : (ui, vj) ∈ E} denote the neighbor set of the (data) vertex ui. We define N (Ui) =⋃
u∈Ui
N (u) to be the working set of the parameters that worker i need for its compu-

tation. Assume that each parameter vj has the same storage cost, we try to limit each
worker’s memory footprint by:

minimize max
i
|N (Ui)|. (9.4)

In the following, we define function q(U) := |N (U)|.
Minimize the communication cost The communication cost of worker i scales with |N (Ui)|.

To further reduce this communication cost, we configure server i at the same machine
where worker i resides, so that the data communication between this worker and this
server has a large bandwidth. The communication cost of worker i only scales with
(|N (Ui)| − |N (Ui)\Vi|). Moreover, if the model parameter vj is not used by worker i,
server i does not need to store it. In other words, we enforce Vi ⊆ N (Ui) and thus the
communication cost scales with (|N (Ui)| − |Vi|). The communication cost of server i
scales with (

∑
j 6=i |Vi ∩N (Uj)|), which is incurred when other workers request parame-

ters from this server. Overall, we try to reduce the maximal communication cost of each
machine by

minimize max
i
|N (Ui)| − |Vi|+

∑
j 6=i

|Vi ∩N (Uj)|. (9.5)

9.3 Algorithm
In this section we present Parsa, our algorithm for solving the graph partition problem. Note
that the optimization problem in (9.4) equivalent to a m-way graph partition problem on vertex
set U with vertex-cut as the merit, which has been shown to be NP-Complete [28]. Instead of
trying to solve the three hard optimization problems in (9.3)-(9.5) exactly and simultaneously,
the proposed algorithm provides approximate solutions. In particular, the algorithm Parsa pro-
ceeds in two steps: first, it partitions the vertex set U for the data by solving (9.3) and (9.4)

115

Algorithm 10 Partition U via submodular approximation
1: Input: Graph G, number of partitions m, maximal number of iterations T , residue θ, and

improvement α
2: Output: partitions of U =

⋃m
i=1 Ui

3: for i = 1, . . . ,m do
4: Ui ← ∅
5: define gi(S) := f(S ∪ Ui)− α|S ∪ Ui|.
6: end for
7: for t = 1, ..., T do
8: if |U | ≤ mθ then break
9: find i← argminj |Uj|

10: draw R ⊆ U by choosing u ∈ U with probability n
|U |m

11: if |R| > 2T/m then next
12: solve S∗ = argminS⊆R gi(S)
13: if gi(S∗) ≤ 0 then
14: Ui ← Ui ∪ S∗ and U ← U \ S∗
15: end if
16: end for
17: if |U | > mθ then return fail
18: evenly assign the remainder U to Ui

approximately, namely assigning the examples to worker nodes to balance the CPU load and
minimize the memory footprint; then given the partition of U , it divides the vertex set V for the
parameters by solving (9.5) exactly, namely dividing the parameters to server nodes to minimize
the inter-machine communication cost.

9.3.1 Partition the data vertex set U
Note that q(U) = |N (U)| is a submodular function with respect to U . Although the problem of
minimizing maxi q(Ui) is NP-Complete, there exist a few approximate algorithms. For example
[133] proposed an algorithm with the guarantee that all Ui have approximately equal size. In
Algorithm 10, we sketch our algorithm for solving (9.3) and (9.4). It is based on the method in
[133]. The key difference is that we build up the sets Ui in an incremental way, which is essential
for guaranteeing both partition quality and computation efficiency at a later stage.

Our algorithm proceeds in the following steps. Each time we choose the smallest subset Ui
and find the a subset of vertices to add to it. More specifically, we draw a small set of candidate
vertices R and select the best subset of R by solving the following optimization:

S∗ = arg min
T⊆R

gi(T) := q(Ui ∪ T)− α|Ui ∪ T |, (9.6)

where the constant α is the minimum-increment weight. If the optimal solution S∗ to the above
optimization satisfies q(Ui ∪ S∗) < α|Ui ∪ S∗|, i.e. the cost for increasing Ui is small enough,
we assign S∗ to the subset Ui.

The quality of the obtained partition of U is analyzed in the following theorem.

116

Theorem 20 Assume that there exists some partitioning U∗i that satisfies maxi q(U
∗
i) ≤ B. Let

m > θ =
√
T/ log T , c = (32π)−

1
2 , α = mB/

√
T log T and τ = S3

c
log 1

1−p . Algorithm 10
succeeds with probability at least p and it generates a feasible solution with a cost

max
i
q(Ui) ≤ 4B

√
T/ log T .

Proof. The proof closely follows that in [133].
For a given iteration, assume that U∗1 maximizes |U∗j ∩ U | for all j. Define υ = |U∗1 ∩

U |. Since S∗ is the optimal solution at the current iteration we have gi(S∗) ≤ gi(U
∗
1 ∩ U) =

f((U∗1 ∩ U) ∪ Ui) − α |(U∗1 ∩ U) ∪ Ui|. Further note that by monotonicity and submodularity
f((U∗1 ∩ U) ∪ Ui) ≤ q(U∗1 ∩ U) + q(Ui). Moreover, U ∩ Ui = ∅ holds since U contains only the
leftovers. Consequently |(U∗1 ∩ U) ∪ Ui| = |U∗1 ∩ U |+|Ui|. Finally, the algorithm only increases
the size of Ui whenever the cost is balanced. Hence q(Ui)− α|Ui| < 0. Combining this yields

gi(S
∗) ≤ gi(U

∗
1 ∩ U) ≤ q(U∗1 ∩ U)− α|U∗1 ∩ U | ≤ B − αυ.

Using the Theorem 5.4 from the proof of [133] we know that υ ≥ B/α and therefore gi(S∗)
happens with probability at least c/S2. Hence the probability of removing at least one vertex
from U within an iteration is greater than c/S2.

Chernoff bounds show that after τ = −S2/c log(1−δ) iterations the algorithm will terminate
with probability at least p since the residual U is small, i.e., |U | ≤ mθ.

The algorithm will never select a Ui for augmentation unless |Ui| ≤ T/m (there would
always be a smaller set). Moreover, the maximum increment at any given time is 2T/m. Hence
|Ui| ≤ 3T/m and therefore q(Ui) ≤ 3Tα/m.

Finally, the contribution of the unassigned residual U is at most θB since each Ui is incre-
mented by at most θ elements and since q(u) ≤ B for all u ∈ U . In summary, this yields
q(Ui) ≤ 3Tα/m+Bθ = 4B

√
T/ log T .

9.3.2 Partition the parameter vertex set V
Given a partition of the data vertex set U , to find an assignment of parameters in the vertex set
V to the servers, we reformulate the problem in (9.5) as a convex integer programming problem
with totally unimodular constraints. This is then solved by a sequential optimization algorithm
that performs a sweep through the variables.

We define indicator variables vij ∈ {0, 1} for j = 1, . . . ,m to specify which server node
maintains a particular model parameter corresponding to vi. A straightforward constraint is∑m

j=1 vij = 1. Also, let uij ∈ {0, 1} denote whether j ∈ N (Ui). We rewrite (9.5) as a convex
integer program:

minimize
v

max
i
|N (Ui)|+

∑
j

vij

[
−1 +

∑
l 6=i

ulj

]
(9.7a)

subject to
∑
j

vij = 1, vij ∈ {0, 1} , and vij ≤ uij. (9.7b)

117

Algorithm 11 Partition V for given {Ui}mi=1

1: Input: the neighbor sets {N (Ui)}mi=1

2: Output: partitions V =
⋃m
i=1 Vi

3: for i = 1, . . .m do
4: Vi ← ∅
5: costi ← |N (Ui)|, which is the communication cost of machine i
6: end for
7: for all j ∈ V do
8: ξ ← argmini:uij 6=0 costi
9: Vξ ← Vξ ∪ {j}

10: costξ ← costξ − 1 +
∑

i 6=ξ uij
11: end for

Here we exploit the fact that
∑

j vijulj = |Vi ∩N (Ul)| and that
∑m

j=1 vij = |Vi|. It turns out that
the constraints satisfy the totally unimodularity conditions discussed in [66]. As a consequence,
we can relax the constraint vij ∈ {0, 1} to vij ∈ [0, 1] to obtain a convex optimization problem.
While the relaxed problem is still formidable with possibly billions of variables and thousands
of partitions, it informs us that we have a unique minimum value in the objective. Furthermore,
sequential minimization over one row of vi· at a time leads to convergence to the optimal solution.

Algorithm 11 performs a single sweep over (9.7) to find a locally optimal assignment of one
variable at a time. We observe that this method is sufficient for a near-optimal solution. Repeated
sweeps over the assignment space are straightforward and continue improving the objective.
Further note that we need not store the full neighbor sets in memory. Instead, we can perform
the assignment in a streaming fashion.

9.4 Efficient Implementation
In this section, we discuss the details of our efficient implementation (Algorithm 12) of the pro-
posed algorithm (Algorithm 10). In the rest of this section, we first show how to find the optimal
S∗ and how to sample the subset R in (9.6), then we address the issue of parallel implementation
with our Parameter Server, and at last we comment on the issue of neighbor set initialization.

9.4.1 Find Solution to (9.6)

The most expensive operation in the inner loop of Algorithm 10 is line 12, which solves (9.6)
to find S∗, the optimal set of vertices to add to the partition. Standard submodular minimization
problems have runtime in the order of O(n6) [107], which is impractical for large n. A key
approximation in our implementation of Parsa is to add only a single vertex at a time instead of a
set of vertices. In other word, instead of solving (9.6) exactly, given a vertex set R and partition
i, it finds the vertex u∗ as the solution to the following problem:

u∗ = argmin
u∈R

gi(u) := |N ({u} ∪ Ui)| − α|{u} ∪ Ui|. (9.8)

118

Algorithm 12 Parsa: PARallel Submodular Approximation
1: Input: Graph G, initial neighbor sets {Si}mi=1, number of partitions m, max delay τ , initial-

ization from a, number of subgraphs b.
2: Output: partitions U =

⋃m
i=1 Ui

Scheduler:
1: divide G into b subgraphs
2: ask all workers to partition G with (a, τ, true, false)
3: ask all workers to partition G with (b, τ, false, true)

Server:
1: start with a part of {Si}mi=1

2: if receiving a pull request then
3: reply with the requested neighbor set {Si}mi=1

4: end if
5: if receiving a push request containing {Snew

i }
m
i=1 then

6: if initializing then
7: Si ← Snew

i for i = 1, . . . ,m
8: else
9: Si ← Si ∪ Snew

i for i = 1, . . . ,m
10: end if
11: end if
Worker:

1: receive parameters (S, τ, initializing, output)
2: for t = 1, . . . , T do
3: load a subgraph G
4: wait until all pushes before time t− τ finished
5: pull the part of neighbor sets, {Si}mi=1, that contained in V from the servers
6: get partitions {U new

i }
m
i=1 and updated neighbor sets {Snew

i }
m
i=1 using Algorithm 13

7: if initialing = false and t > 1 then
8: Snew

i ← Snew
i \ Si for all i = 1, . . . ,m

9: end if
10: push {Swi }

m
i=1 to servers

11: if output then Ui ← Ui ∪ U new
i for i = 1, . . . ,m

12: end for

An additional advantage of this approximation is that since we assign only one vertex to the
smallest subset, the CPU load can be perfectly balanced for (9.3).

A naive way to solve (9.8) is to compute gi(u) for all vertices and then determine the optimal
u∗. However, if the size ofR is a constant fraction of the entire graph, this runtimeO(|U ||E|) still
remains impractical for large graphs. We further speed up this computation by pre-computing
and storing all vertex costs, and then creating a data structure which allows us to efficiently
locate the lowest-cost vertex in the memory. Algorithm 13 sketches our method. The inputs to
Algorithm 13 are the bipartite graph G = (U, V,E), the number of partitions m, and m subsets

119

Algorithm 13 Partition the vertex set U
1: Input: graph G(U, V,E), number of partitions m, and initial neighbor sets {Si}mi=1

2: Output: partitioned U =
⋃m
i=1 Ui and updated neighbor sets which are equal to {Si ∪

N (Ui)}mi=1

3: for i = 1, . . . ,m do
4: Ui ← ∅
5: for all u ∈ U do
6: Ai(u) = | N (u) \ Si |
7: end for
8: Ai.min := argminu∈U Ai(u) which always points to the lowest-cost vertex
9: end for

10: while |U | > 0 do
11: pick partition i← arg minj |Sj|
12: pick the lowest-cost vertex u∗ ← Ai.min
13: assign u∗ to partition i: Ui ← Ui ∪ {u∗}
14: remove u from U : U ← U \ {u∗}
15: for j = 1, . . . ,m do
16: remove u∗ from Aj by updating the links
17: end for
18: for v ∈ N (u∗) \ Si do
19: Si ← Si ∪ {v}
20: for u ∈ N (v) ∩ U do
21: Ai(u)← Ai(u)− 1
22: update the links in Ai
23: end for
24: end for
25: end while

2 0 0 1 1

hd(0) hd(1)hd(2)

Figure 9.4: The data structure to store the vertex costs. It is an array with the i-th entry for vertex
ui, where assigned vertices are marked with gray color. The pointers and the doubly-linked list
provide faster access to the data.

Si ⊆ V , which are the neighbor sets assigned to i. The outputs are the m subsets that form the
partition U =

⋃
i Ui and the updated subsets Si.

Storing the vertex costs Note that if we subtract the constant |N (Ui)|+α(|Ui|+ 1) from gi(u),

120

we obtain the cost associated with vertex u as

costi(u) := |N (Ui ∪ {u})| − |N (Ui)|, (9.9)

which reflects the number of new vertices that would be added to the neighbor set of
partition Ui because of adding vertex u to Ui.
When adding a vertex u to the subset Ui, this cost is changed only for a few other vertices.
In other words, let ∆i := {v ∈ N (u) : v /∈ N (Ui)} denote the set of new vertices that are
added into the neighbor set of Ui, the only vertices that will have their costs reduced are
those connected to vertices in ∆i. Due to the sparsity of the graph, this is often a small
subset. Therefore, the computation overhead of storing and updating the vertex costs could
be much smaller than re-computing all the costs at each time.

Fast-to-locate data structure Figure 9.4 illustrates the data structure for storing the vertex costs.
For each subset Ui, we use an array Ai to store the vertex costs, and the j-th entry is for
vertex j, namely Ai(uj) = costi(uj). On top of the array, we impose a doubly-linked list
sorted according to increasing cost so that we can locate the lowest-cost vertex quickly.
When the cost of a vertex is modified), we update the doubly-linked list to restore the
ordering. Note that the vertex cost is no larger than its degree, and most large scale graphs
have a heavy-tailed degree distribution. Therefore the costs of a large portion of vertices
are small integers. We store a small array of “head” pointers to the locations in the list
where the cost jumps to 0, 1, 2, ..., θ. These pointers can speed up locating of elements in
the list when updating the costs. In practice, we found that setting θ = 1000 is sufficient
to cover more than 99% of vertex costs.

The initialAi(u)’s can be computed inO(|E|) time and then be ordered inO(|U |) by count-
ing sort, as they are integers upper bounded by the maximal vertex degree. The most expensive
part of Algorithm 13 is updatingAi in line 22, which are evaluated at most k|E| times as a vertex
v ∈ V together with its neighbors are accessed at most once. The time complexity of updating
the doubly-linked lists is O(1). The cost to access the j-th vertex is O(1) due to the sequential
storing on an array. Finding a vertex with the minimal value or removing a vertex from the list is
also in O(1) time because of the doubly links. Keeping the list ordered after decreasing a vertex
cost by 1 is O(1) in most cases (O(|U |) for the worst case), as discussed above, by using the
cached head pointers. Therefore, the average time complexity of Algorithm 13 is O(m|E|).

9.4.2 Divide into Subgraphs
In line 10 of Algorithm 10 we sample a subset R in order to keep the partitions balanced. The
constraint |S| = 1 introduced in Section 9.4.1 ensures that only a single vertex is assigned each
time and thus we are guaranteed with the balancedness of the partition. In this case, we would like
to sample as many vertices as possible to enlarge the search range of the optimal u∗. However,
sampling is still appealing since a proper sample size can significantly reduce the computational
time, while only slightly affecting the partition quality.

To address this issue, we first randomly divide U into b blocks, and then construct the b
subgraphs by including the neighbor vertices from V and the corresponding edges. Let {Gj}bj=1

denote the b subgraphs, and let {Si}mi=1 denote the initialized neighbor sets. We then apply

121

Algorithm 13 to partition these subgraphs sequentially. Specifically, the inputs are Gj and Si and
the outputs are the partition

⋃m
i=1 Ui,j for Gj and the updated set Si. Finally we take a union of

the solutions for all the subgraphs to obtain the final partition of U as Ui =
⋃b
j=1 Ui,j .

Note that instead of sampling a new subgraph R for each single vertex assignment as in line
10 of Algorithm 10, our implementation actually fixes the subgraphs from the beginning. This
strategy has several advantages. First, it exploits the efficient implementation of Algorithm 13 to
partition each subgraph. Next, it is convenient to parallelize the algorithm with the subgraphs.
Finally, this strategy is I/O efficient, as we only keep the current subgraph in memory, which
makes it possible to partition graphs of sizes much larger than the physical memory.

Also note that the number of subgraphs b trades off partition quality and computational ef-
ficiency. In the case where b = 1, the vertex assigned to a partition is the best one from all
unassigned vertices. It is, however, the most time consuming. On the other extreme, by setting
b = |U | we recover the solution of random partition with time complexity reduced to O(|E|). A
moderate b serves to balance the computation time and partition quality.

9.4.3 Parallelization with Parameter Server
For very large graphs, parallelization of the algorithm is desirable. Parsa uses Parameter Server
(see Chapter 3) to parallelize the partition process by having multiple nodes work on different
subgraphs in parallel using the shared neighbor sets. More specifically, we define three kinds of
nodes:
The scheduler, which issues partitioning tasks to workers and monitors their progress.
Server nodes, which maintain the global shared neighbor sets and process the push / pull re-

quests from the worker nodes.
Worker nodes, which solve subgraphs partitioning in parallel. A worker node reads a subgraph

from the (distributed) file system, and pulls the newest neighbor sets associated with this
subgraph from the server nodes. It applies Algorithm 13 to partition this subgraph and
pushes the modified neighbor sets to the servers in the end.

There are several details worth noticing: First, the data communication in Parameter Server
is asynchronous, and we impose a maximal allowed delay τ to control the data consistency.
Second, the worker node may only push the changes of the neighbor sets to the servers in order
to save the communication traffic. Finally, a worker node can start a separate data pre-fetching
thread to run step 3, 4 and 5 in Algorithm 12 in order to improve computation efficiency.

9.4.4 Initialize the Neighbor Sets
Note that the neighbor sets play a similar role as cluster centers on clustering methods, and a
good initialization of the neighbor sets leads to better partition results. One typical choice of
initialization is the empty set, which prefers to assign the vertices with small degrees first. Par-
titioning these vertices, however, often helps little, or even degrades, the following assignment.
Next, we discuss a few heuristics for initializing the neighbor sets.

Individual initialization Given a graph that has been divided into b subgraphs. For a fixed
constant a, we sequentially partition the first a subgraphs, and each time we only use the

122

partition of the preceding subgraph to initialize the neighbor set for the current subgraph.
Then, we forsake the partitioning results of the first (a − 1) subgraphs. Starting with the
partition of the a-th subgraph, we sequentially partition the other (b − 1) subgraphs, and
each time we use the partition of all the processed subgraphs to initialize the neighbor set
for the current subgraph.

Global initialization In parallel partitioning, we first sample a small subgraph and solve the par-
tition problem for this subgraph. The neighbor sets obtained with this subgraph partition
is then used as an initialization by all other worker nodes.

Incremental partitioning When data comes in an incremental or streaming way, we can use
the partition results from outdated data as an initialization of the neighbor sets.

9.5 Experiments

9.5.1 Setup
We implement Parsa with our Parameter Server, and the source codes are available at https:
//github.com/mli/parsa. We compared Parsa with the popular vertex-cut graph parti-
tion toolboxes Zoltan3 and PaToH4. We also benchmark performance with the well-known graph
partition package METIS5 and the greedy algorithm adopted by Powergraph6. All of these algo-
rithms are implemented in C/C++.

We compare the runtime and partition results of these algorithms. The default measurement
of the partition quality is the maximal individual traffic volume. We measure the improvement
over random partition by

random-partition− proposed-partition
proposed-partition

× 100%. (9.10)

Thus a 100% improvement means that the traffic volume or memory footprint is 50% of that
achieved by random partitioning.

The default number of partitions was set to 16. As Parsa is a randomized algorithm, we
average the results over 10 trials. For single thread experiments we use the desktop Desktop
with an Intel i7 3.4GHz CPU, while for the parallel experiments we use the university cluster
CampusA with 16 machines, each with an Intel Xeon 2.4GHz CPU and 1 Gigabit Ethernet.

9.5.2 Performance of Parsa

3http://www.cs.sandia.gov/Zoltan/
4http://bmi.osu.edu/˜umit/software.html
5http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
6http://graphlab.org/downloads/

123

https://github.com/mli/parsa
https://github.com/mli/parsa
http://www.cs.sandia.gov/Zoltan/
http://bmi.osu.edu/~umit/software.html
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://graphlab.org/downloads/

datasets
PowerGraph METIS PaToH Zoltan Parsa

imprv (%) time imprv (%) time imprv (%) time imprv (%) time imprv (%) time
Mmax Tmax Tsum (sec) Mmax Tmax Tsum (sec) Mmax Tmax Tsum (sec) Mmax Tmax Tsum (sec) Mmax Tmax Tsum (sec)

RCV1 - - - - - - - - 19 26 279 7 17 105 154 6 33 112 108 0.2
News20 - - - - - - - - 2 123 389 23 0 214 267 21 23 187 155 1
CTRa - - - - - - - - 8 446 970 571 70 1052 1211 551 91 922 913 18
KDD14 - - - - - - - - 54 905 1102 1401 4 238 313 2409 120 1973 1978 89
LiveJournal 61 84 89 9 185 231 279 65 103 152 160 3.5h 50 84 386 1072 142 216 214 37
Orkut 55 74 78 12 56 74 103 104 87 145 150 5.5h 49 170 180 1413 105 177 121 39

Table 9.1: Improvements (%) compared to random partition on the maximal individual memory footprint Mmax, maximal individual
traffic volumes Tmax, and total traffic volumes Tsum together with running times (in sec) on 16-partition. The best results are colored
by Red and the second best by Green. Only 1% of CTRa is used.

124

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

0

500

1000

1500

2000

running time (sec)

im
p
ro

v
m

e
n
t
(%

)

Parsa

Zoltan

PaToH

(a) Text datasets

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

50

100

150

200

250

running time (sec)

im
p
ro

v
m

e
n
t
(%

)

Parsa
Zoltan
PaToH
METIS
PowerGraph

(b) Social Networks

Figure 9.5: Visualization of Table 9.1.

In Table 9.1, we compare the performance of Parsa with other algorithms on different datasets.
We record the CPU time for running each algorithm. The time for loading the data is not in-
cluded, as it varies for different data formats specific to the algorithms. The improvements are
measured according to (9.10) for maximal individual memory footprint and traffic volume, to-
gether with the total traffic volume, which is the objective for both PaToH and Zoltan. Since
neither METIS nor PowerGraph handles general sparse matrices, we only report the results on
the dataset of social networks. The number of partitions is 16, and the hyper parameters of Parsa
are set to a = b = 16. Recall that b is the number of subgraphs and a is the number of subgraphs
used for individual initialization. In Figure 9.5, we plot both improvements on the maximal
individual traffic volume and the runtime.

Observe that Parsa is not only 20x faster than PaToH and Zoltan, but also produces more
stable partition results, with reduced memory footprint. METIS outperforms Parsa on one out
of the two social networks but consumes twice of the CPU time. PowerGraph is the fastest but
has poor partition quality. Parsa also outperforms other algorithms in terms of both maximal
individual traffic volume and total traffic volume.

As shown in Figure 9.6, when the number of subsets in the partition increases, the runtime of
those recursive-bisection-based algorithms (METIS, PaToH, and Zoltan) does not change much,
but their partition quality degrades. In contrast, for Parsa and Powergraph, their run time in-
creases linearly with m, but their partition quality actually improves.

Next, we tune the hyper parameters of Parsa and observe how its performance changes.

Vary the number of subgraphs and the percentage of data used for initialization We ex-
amine the effect of number of subgraphs (Section 9.4.2) and the neighbor set initialization (Sec-
tion 9.4.4). We first consider the single thread case, with the empty neighbor set initialization.
We vary the number of subgraphs b and also the number of subgraphs a used for individual ini-
tialization. Figure 9.7 shows the results on representative text dataset CTRa and social network
dataset LiveJournal, where the x-axis is a/b × 100%, namely the percent of data used for con-

125

2 4 8 16 32 64
0

500

1000

1500

2000

of partitions

im
p

ro
ve

m
e
n
t
(%

)

2 4 8 16 32 64
10

0

10
1

10
2

10
3

of partitions

ru
n
in

g
 t
im

e
 (

s
e
c
)

Parsa

Patoh

Zoltan

(a) Dataset: 1% of CTRa

2 4 8 16 32 64
−100

0

100

200

300

of partitions

im
p
ro

v
e
m

e
n
t
(%

)

2 4 8 16 32 64
10

0

10
1

10
2

10
3

10
4

10
5

of partitions

ru
n

in
g

 t
im

e
 (

s
e

c
)

Parsa
Patoh
Zoltan
METIS
PowerGraph

(b) Dataset: LiveJournal

Figure 9.6: Partition quality and runtime for different number of partitions.

structing the initialization. We can observe that using more data for initialization improves the
partition quality. In particular, for b > 1, there is a stable 20% improvement when at least 100%
data are used.

With empty neighbor set initialization, using small subgraphs has a positive effect on the
partition results for LiveJournal, but not for CTRa. The reason is that Parsa tends to assign
vertices with small degrees first when starting with empty neighbor sets. Those vertices offer
little or no benefit for the subsequent assignment. LiveJournal has many more sparse vertices
than CTRa due to the power law distribution of the degrees, and partitioning small subgraphs
helps to prevent the sparse vertices coming into the partition too early.

Our nontrivial individual initialization addresses this issue by only using those partition re-
sults for setting the initial neighbor sets. Notably, with a > 1

2
b in Figure 9.7, small subgraphs

improve the partition results on both CTRa and LiveJournal. This occurs because, when using
the same percentage of data for initialization, the neighbor sets are reset more often with a small
b.

Figure 9.7 also shows that the runtime actually decreases with b. This is because splitting
into more blocks (larger b) narrows the search range for adding vertices and thus reduces the cost
of operating the doubly-linked list. On the other hand, the runtime increases linearly as we use

126

0 50 100 150 200 250 300
700

750

800

850

900

950

1000

percent of samples (%)

im
p
ro

v
e
m

e
n
t
(%

)

b= 1

b= 4

b=16

0 50 100 150 200 250 300
0

10

20

30

40

50

60

percent of samples (%)

ru
n
in

g
 t
im

e
 (

s
e
c
)

b= 1

b= 4

b=16

(a) Dataset: 1% of CTRa

0 50 100 150 200 250 300

100

150

200

percent of samples (%)

im
p
ro

v
e
m

e
n
t
(%

)

b= 1

b= 4

b=16

0 50 100 150 200 250 300
0

20

40

60

80

100

120

percent of samples (%)

ru
n
in

g
 t
im

e
 (

s
e
c
)

b= 1

b= 4

b=16

(b) Dataset: LiveJournal

Figure 9.7: Partition quality and runtime for different percentage of data used in initialization
(Single thread implementation).

more subgraphs for individual initialization, but the partition quality benefits of doing so appear
worthwhile up to performing two passes (100% samples).

We also examine the performance of parallel implementation with non-empty initial neighbor
sets. We use 4 workers to partition a subset of CTRa containing 1 billion of edges and use one
worker to partition an even smaller subgraph with size no to obtain the starting neighbor sets.
Figure 9.8 shows that the partition quality is significantly improved even when only 0.1% of the
data are used for the initialization. In addition, although initialization takes extra time, the total
runtime is minimized at no > 0. This is because a good initialization of the neighbor sets reduces
the cost of operating the doubly linked lists, thereby reduces the overall runtime.

Scalability We test the scalability of Parsa on full CTRa with 10 billions of edges. We run 4
workers and 4 servers at each machine. Figure 9.9 shows that the speedup scales almost linearly
with the number of machines and is close to the ideal case. In particular, we obtained a 13.7x

127

0 0.1 1 10
400

600

800

1000

1200

1400

percent of data (%)

im
p
ro

v
e
m

e
n
t
(%

)

b= 4

b= 8

b=16

b=32

0 0.1 1 10
200

220

240

260

280

300

percent of data (%)

ru
n
n
in

g
 t
im

e
 (

s
e
c
)

b= 4

b= 8

b=16

b=32

Figure 9.8: Partition quality and runtime for different percentage of data used in initialization
(parallel implementation).

0 5 10 15
0

5

10

15

machines

s
p
e
e
d
 u

p
 (

x
)

Parsa

ideal

Figure 9.9: Speedup of Parsa when the number of machines increases (on dataset CTRa).

speedup by increasing the number of machines from 1 to 16. The main reason that Parsa scales
well is the eventual consistency model (τ = ∞), where each worker does not need to wait till
the results from previous iterations are pushed successfully. Therefore, workers fully utilize the
computing resource and network bandwidth, without the overhead of data synchronization.

This consistency model potentially leads to inconsistency of the neighbor sets between work-
ers, which Parsa is quite robust to. In our experiment, when the number of machines increases
from 1 to 16 (number of workers increases from 4 to 64), the quality of the partition result de-
creases by at most 5%. We believe that the reason is twofold. First, the initial neighbor sets
obtained with a small subgraph give all workers a consistent initialization, which may already
contain most of the hubs (large degree vertices) in V . Second, after a worker partitions a sub-

128

method partition inference total
random 0 1.43 1.43
Parsa 0.07 0.84 0.91

Table 9.2: Time in hours for solving `1-regularized logistic regression. We runs 45 data passes
using 16 machines for the dataset CTRa.

graph, the updates to the neighbor sets mainly include vertices with small degree. Thanks to the
sparsity of the low degree vertices, the conflicts among workers is small and thus the inconsis-
tency does not drastically affect the final result.

Accelerate Distributed Machine Learning Finally we examine how much Parsa can acceler-
ate distributed machine learning applications with the better data and parameter placement. We
consider `1-regularized logistic regression with the distributed inference algorithm DBPG (see
Chapter 6 for more details).

We run DBPG on CTRa using 16 machines as the baseline, with all optimization options
enabled. Then we apply Parsa to partition CTRa into 16 parts and run the algorithm again.
Table 9.2 compares the performance of the above two methods. By random partitioning, DBPG
stops after passing the data 45 times and uses 1.43 hours. On the other hand, Parsa uses 4 minutes
to partition the data and then accelerates DBPG to 0.84 hour, which is an overall 1.6x speedup.

By random partition, only 6% network traffic between servers and workers happens locally.
Although Chapter 6 reports nearly zero communication cost on DBPG, we observe that a signifi-
cantly part of time is spent on data synchronization. The reason is twofold. First, in Chapter 6 we
use data pre-processing for CTRb to remove tail features (tail vertices in V). That is, the feature
to examples ratio is 2.83 for CTRa while 0.38 for CTRb. However, here we feed the raw data
into the algorithm and let the `1-regularizer work out feature selection automatically, which often
leads to better machine learning model but induces more network traffic. Second, the network
bandwidth of the university cluster in our experiment is 20 times less than the industrial data-
center used in Chapter 6, and thus the communication cost can not be ignored here. We observe
that with the problem partitioning, the total data communication is reduced from 4.5TB to 4TB,
and the ratio of inner-machine traffic increases from 6% to 92%. Over all, the inter-machine
communications decreases by more than 90%.

129

130

Chapter 10

DiFacto: Scaling Distributed Factorization
Machines

10.1 Introduction

Nonlinear models for recommendation and estimation have spurred significant interest in re-
cent years. The growing body in deep learning [42], kernel methods [81], and decision trees
[148] bears witness of this development. For recommender systems and polynomial general-
ized linear models Factorization Machines (FM), [114, 115] offer a computationally efficient
and powerful alternative. They achieve excellent results by using a low-rank expansion of the
higher degree polynomial terms. Moreover, they offer a principled framework for a number of
feature space heuristics in recommender systems, such as bias, features, cold-start strategies, and
temporal models. This framework makes them a very attractive target for statistical modeling
on high-dimensional sparse data occurring in many settings such as computational advertising,
personalization, user profiling, recommendation, and search.

Unfortunately, despite the low-rank expansions, the memory cost remains tremendous for
real-world settings. This occurs because each feature, each user, and each object need to be
embedded into a low-dimensional space. A quick calculation even on modest datasets such as
Criteo shows that we have up to 1 billion features. Realistic problems, such as CTRb, can have
up to 1011 terms. Even a modest 100 dimensional representation would require data (parameters,
preconditioners, auxiliary key storage) in the order of 1TB. This is computationally intractable on
a single machine, especially when tackling industrial scale problems. Moreover, even multiple
machines are heavily taxed by the large memory footprint. In order to address the above issues,
we need:

1. A compact model with low computation and communication cost which still provides high-
quality embeddings;

2. An efficient mechanism of problem partitioning, optimization, and high performance com-
munications protocols, targeting for distributed optimization.

In this chapter, we first make the key observation that the importance of features in real datasets is
not uniform, which deserves adaptive model capacities. We propose a refined FM model, called
DiFacto (Distributed Factorization). DiFacto is based on the Parameter Server framework (for

131

details please see Chapter 3). The algorithm adaptively chooses the effective embedding di-
mension and regularization for each feature, based on the feature frequency count and sparse
regularization. The resulted model is up to 100x more compact than conventional FM and even
provides better generalization accuracy. We prove that the proposed algorithm converges for this
highly challenging nonconvex objective function even under asynchronous updates. Experiments
show that for sparse data, DiFacto can scale up to handle billions of examples and features. To
the best of our knowledge, our results describe the largest statistical model ever computed as in
[7] by at least one order of magnitude. Moreover, our algorithms require only modest resources
on a per-machine basis.

10.2 Background

10.2.1 Objectives

In this chapter we discuss two related goals — recommendation and prediction. The distinction
between those two problems is partly due to different notational conventions, and partly due to
slightly different objectives.

In recommender systems [15] one is typically given pairs of entities, say user u and movie
m for which a rating y(u,m) needs to be estimated. The quality of an estimate of the rating,
denoted by g(u,m), is evaluated, e.g. by the squared discrepancy between rating and estimate,
i.e. 1

2
(y(u,m)− g(u,m))2, or by the quality of the relative ordering of ratings, or by per-session

ordering of preferences. For an exhaustive summary of such objectives see e.g. [101]. In short,
we are interested in the performance of g(u,m) relative to y(u,m). Sometimes when we have
additional feature zu, zm for u and m and context c, we include them in the estimate and denote
the estimate by g(u, zu,m, zm, c). In the following we use the shorthand

x := (u, zu,m, zm, c) and g(x) := g(u, zu,m, zm, c) (10.1)

to indicate the function that takes the features in x as inputs and outputs the estimate g(x).
In prediction we are interested in the slightly more mundane goal of obtaining g(x), given

pairs of feature x and label y. Typical goals are to minimize the squared deviation 1
2
(y − g(x))2

or the log-likelihood of a particular label log(1 + e−yg(x)). Note that y and g(x) need not be of
the same data type, and this was exploited substantially in structured estimation [136].

In the following we will not make major distinctions between the two problems of recom-
mendation and prediction. Instead, we simply assume that x is either a set of covariates, such as
the words occurring in a document for which the click through rate (CTR) of an advertisement
is sought, or a set of recommendation and rating parameters. The quality will be evaluated via a
loss function `(x, y, g(x)), yielding the risk functional

1

n

n∑
i=1

`(xi, yi, g(xi)). (10.2)

132

10.2.2 Factorization Machine
The typical setting in our context is that the covariates x ∈ Rp lives in a very high p-dimensional
space and is sparse. For instance, in recommender systems x might only contain two nonzero
terms — an indicator for the user, and another indicator for the movie, i.e. xu = 1 and xm = 1.
The consequence of such a setting is that linear models are of limited use. For instance, in a
recommender system this would amount to

g(x) = 〈w, x〉 = wu + wm. (10.3)

In other words, this is the trivial case where recommendations are simply the sum of user and
movie biases. Nonetheless, due to the very high dimensionality of the data and the associated
uncertainty in determining even just linear parameters, in CTR estimation problems [99], such
models are quite popular. In particular, even a quadratic model, which require O(p2) parameters,
is too expensive to estimate, since typically the number of observations n� p2.

Rendle and the coauthors [114, 115] introduced a principled strategy for alleviating this prob-
lem via a low-rank expansion instead of a general high-dimensional expansion. That is, they
propose

g(x) = 〈w, x〉+
∑
i<j

xixj tr
(
V

(2)
i ⊗ V (2)

j

)
+
∑
i<j<k

xixjxk tr
(
V

(3)
i ⊗ V (3)

j ⊗ Vk
)

+ . . . ,

(10.4)

where V (i) ∈ Rp×ki are the embedding matrices. In other words, Factorization Machines (FM)
uses a low-dimensional embedding of the (typically very sparse set of) features in x to a much
smaller ki-dimensional space via the embedding matrices. For the purpose of the current thesis
we limit ourselves to expansions up to second order. This simplifies the exposition. Also, it
is sufficient given the sparsity of the problem as we will discuss subsequently. Hence we may
rewrite (10.4) as

g(x) = 〈w, x〉+
1

2
‖V x‖2

2 −
d∑
i=1

x2
i ‖Vi‖

2
2 , (10.5)

where we used the shorthand V := V (2) and k2 = k, and Vi is the i-th column in V . Here we used
the polarization equality to rewrite the ordered sum, and we used the fact that tr (a⊗ b) = 〈a, b〉.
Note that (10.5) can be computed efficiently in O(pk) time, requiring O(pk) storage. This also
illustrates a shortcoming of Factorization Machines.

Lemma 21 Assume that we estimate (10.5) with an embedding dimension k. Then if for feature
i we only observe xi 6= 0 for less than k + 1 times, the problem of estimating (wi, Vi) is under-
determined.

Proof. This follows directly from linear algebra: whenever xi = 0 the terms vi, Vi do not occur
in (10.5). To solve a linear system of k + 1 variables we need at least the same number of
constraints.

133

However, we need to use O(k) memory even for variables that hardly ever occur. Given the
power-law nature of many natural feature distributions, this is clearly undesirable. Large numbers
of variables are not just hard to estimate and hard to store, they are also cumbersome in terms
of optimization purposes, since they slow down the convergence and need to be addressed via
additional stabilizers (regularization). Moreover, usually for large scale problems, the number of
parameters significantly exceeds the amount of available memory on a computer, which calls for
distributed representations and optimization algorithms.

10.3 Statistical Model
DiFactor considers the following optimization problem:

min
w,V

1

|n|

n∑
i=1

`(g(xi), yi) + λ1 ‖w‖1 +
1

2

p∑
i=1

[
λiw

2
i + µi ‖Vi‖2

2

]
, (10.6)

subject to Vij = 0 for j > ki, (10.7)

where the constants λ1, λi, µi and ki are coefficients for regularization. This model differs
in two key parts from standard FM models. First, we add frequency adaptive regularization
to better model the possible nonuniform sparsity pattern in the data. Second, we use sparsity
regularization and memory adaptive constraints to control the model size, which benefits both
the statistical model and system performance.

In the rest of this section, we will discuss the details of the above formulation and introduce
the model capacity control strategies adopted by DiFacto.

10.3.1 Memory Adaptive Constraints
The first step in making factorization machines tractable is to modify the expansion in (10.4) in
line with Lemma 21. Whenever we have insufficient evidence of a feature occurring, it makes
no sense to allocate much capacity to it. More to the point, instead of allocating a fixed number
of dimensions k to each feature i regardless of how frequently xi is not equal to 0, we make this
number dependent on the number of times xi 6= 0 on the training set. Define ni to be:

ni := |{x : xi 6= 0}| . (10.8)

Given a set of dimensionalities {ki} we impose the constraint Vij = 0 for all j > ki. This forces
the infrequently occurring features to assume a rather lower-dimensional embedding using only
ki dimensions rather than the full set k > ki. A simple choice for the dimensions is

ki =

{
k if ni > r

0 otherwise
, (10.9)

where we can set k(1) = r(1) = 103 and k(2) = r(2) = 100, and this differentiated setting yields a
larger embedding for the more frequent keys.

134

10.3.2 Sparse Regularization

Note that the above strategy is entirely independent of the actual problem we solve. We also need
a data adaptive capacity control mechanism that depends on the predictive power of features
relative to the labels yi. A popular choice is `1 regularization [139], which has been widely
used in linear models for high dimensional data such as computational advertising [99]. In `1

regularization, we add a penalty function to the optimization objective:

h(w) = λ1 ‖w‖1 ,

where λ1 controls the degree of sparsity. The sparse model induced by the `1 regularization not
only penalizes complex models, but also reduces the computation cost of the gradients and saves
the communication traffic. It results in a smaller final model which further makes it easier to
deploy for online service. We can apply a similar structured sparsity [104] on V to encourage
sparse solutions:

h(w, V) =
∑
i

[
w2
i + ‖Vi‖2

2

] 1
2 + ‖Vi‖2 . (10.10)

In this case the derivative of the penalty vanishes at wi = 0, provided that Vi 6= 0. Unfortunately,
this penalty is harder to handle from the system perspective. Hence we replace it by a rather
straightforward approximation that directly implements (10.10) by enforcing Vi = 0 whenever
wi = 0. Our experiments show that this strategy is by no means detrimental to the overall
outcome of the estimation, and actually it also closely resembles the ANOVA decomposition
hierarchy proposed by [145].

10.3.3 Frequency Adaptive Regularization

It is well known that adaptively penalizing terms occurring at different frequency can lead to
improved generalization performance [128]. For instance, in collaborative filtering, the strategy
to penalize frequent terms more aggressively, e.g. by performing shrinkage only whenever a
user (or a movie) is being updated, has proven successful. In DiFacto, we use a slightly more
general and more flexible method for capacity control: we shrink whenever an feature occurs
in a minibatch. The consequence is that parameters associated with more frequent features are
less over-regularized. More specifically, we can define the penalty function with feature specific
coefficients as:

h(w, V) =
1

2

∑
i

[
λiw

2
i + µi ‖Vi‖2

2

]
. (10.11)

Lemma 22 (Dynamic Regularization) Assume that we solve a factorization machines problem

135

with the following updates in a minibatch update setting: for each feature i,

Ii ←I {[xj]i 6= 0 for some (xj, yj) ∈ B} , (10.12)

wi ←wi −
ηt
b

∑
(xj ,yj)∈B

∂wi
`(g(xj), yj)− ηtλwiIi, (10.13)

Vi ←Vi −
ηt
b

∑
(xj ,yj)∈B

∂Vi`(g(xj), yj)− ηtµViIi, (10.14)

whereB denotes the minibatch of data and b is the size of the minibatch, and Ii is the indicator for
whether or not feature i appears in this minibatch. Then effective coefficients for regularization
function is given by:

λi = λρi and µi = µρi,

where ρi = 1− (1− ni/n)b ≈ nib/n.

Proof. The probability that a particular feature occurs in a random minibatch is ρi = 1 − (1 −
ni/n)b. Observe that while the amount of regularization on the minibatches is not independent,
it is additive (and exchangeable). Hence the expected amount of regularizations are ρiλ and ρiµ,
respectively. Expanding the Taylor series in ρi yields the approximation.

Note that for b = 1 we obtain the conventional frequency dependent regularization, whereas for
b = n we obtain the Frobenius regularization. Choosing the minibatch size conveniently allows
us to interpolate between the two extreme cases.

10.4 Distributed Optimization
The optimization problem in (10.6)o is challenging, especially when large models bring large
communication cost for distributed computing. We focus on asynchronous optimization method,
which hides synchronization cost by communicating and computing in parallel.

10.4.1 Asynchronous Stochastic Gradient Descent
To solve the optimization problem in (10.6), we use asynchronous stochastic gradient descent
(SGD). In a distributed computing environment, a worker can calculate the gradients of the loss
function. First, compute the partial gradient of the estimator g(·) defined in (10.5):

∂wi
g(x,w, V) = xi (10.15)

∂Vijg(x,w, V) = xi [V x]j − x
2
iVij. (10.16)

Note that the term V x can be pre-computed. Invoke the chain rule, and we can compute the
partial gradients of the loss function `(·). Let wt and Vt denote the model stored at the server at
time t. We denote the partial gradients of the loss function that the server received from a worker
node at time t by:

gθt ← ∂θ`(g(x,wt−τ , Vt−τ), y), (10.17)

136

where θ can be eitherw or V , and τ is the time delay, indicating that the gradients were computed
by the worker using the possibly outdated model at time (t− τ).

As discussed in Section 10.3.3, we use frequency adaptive regularization for w and V and
the sparsity-inducing `1 regularization for w. In addition, we use AdaGrad [49] to better model
the possible nonuniform sparsity in the data. Upon receiving the gradients, the server updates Vij
by:

nij ← nij +
[
gVt
]2
ij
,

Vij(t+ 1)← [Vt]ij −
ηV

βV +
√
nij

([
gVt
]
ij

+ µ [Vt]ij

)
, (10.18)

where ηV and βV are scalar constants, and nij is initialized to 0 at time 0. The update rule for
w is slightly different from that of V due to the nonsmooth `1 regularizer. We adopted FTRL
[97], which solves a “smoothed” proximal operator based on AdaGrad. Let ηw and βw denote
the global learning rate, the server updates wi by:

σi ←
1

ηw

(√
ni + [gwt]2i −

√
ni

)
,

zi ← zi − [gwt]i + σi [wt]i ,

ni ← ni + [gwt]2i , (10.19)

[wt+1]i ←

0 if |zi| ≤ λ1(
βw+

√
ni

ηw
+ λ2

)−1

(zi − sgn(zi)λ1) otherwise
,

where both ni and zi are set to 0 at time 0.

10.4.2 Convergence Analysis
In Algorithm 14, we sketch our DiFacto for solving (10.6). The convergence analysis for this
non-convex and non-smooth optimization problem is highly non-trivial, especially in the face
of asynchronous updates. Next, we provide a preliminary analysis only for a special case with
λ1 = 0. For notation simplicity we assume a fixed learning rate. We can extend the results
to handle the adaptive learning rate by assuming nij in (10.18) is bounded (see [84] for more
details).

In particular, we first show that the simplified algorithm has a O(1/
√
t) ergodic convergence

rate (see, e.g. [56]). Due to the non-convexity, our results do not imply convergence to a KKT
point. However, it is stronger than typical non-convex analysis in the sense that there is an
explicit convergence rate. By carefully incorporating the specific properties of our problem, we
obtain a convergence bound in Theorem 26 that explicitly and intuitively reveals the dependency
on the data sparsity and the size of the minibatch, as well as on the more typical maximum delay
parameter for the asynchronous update.

First, the following lemma shows that Algorithm 14 can be reduced to asynchronous SGD.

Lemma 23 Let η be the fixed learning rate for both parameterw and V , and in addition, λ1 = 0,
then the update equations (10.18) and (10.19) for solving the problem (10.6) becomes plain
asynchronous SGD.

137

Proof. First of all, we note that despite the memory adaptive constraints Vij = 0 for some
i, j, we are essentially solving an unconstrained smooth optimization problem in a pre-defined
coordinate subspace, which admits a simple (non-projected) SGD algorithm.

It remains to show that the stochastic gradient is unbiased. Since the minibatch is picked
randomly, the expectation of the loss-function half of the partial stochastic gradient with respect
to V is just the gradient. Since λi is frequency adaptively chosen, it does not affect the expectation
of the gradient at all. Now we turn to the partial gradient with respect tow. Under the assumption
that λ1 = 0 and without AdaGrad it follows that ni = 0. Hence for every t ∈ {1, . . . T} the
update equation (10.15) becomes

[wt+1]i ←
ηw
βw

[zt+1]i where [zt+1]i ← [zt]i − [gwt]i.

Substitute in [z1]i = βw
ηw

[w1]i, this recursion is essentially the SGD update equation

[wt+1]i ← [wt]i −
ηw
βw

[gwt]i.

with learning rate η = ηw
βw

. The approximation being unbiased is again trivial since the data
points are picked uniformly at random and the regularization weight µi are frequency adaptive.

Our analysis builds upon a generic argument in [88], which we state below.

Theorem 24 ([88, Theorem 2]) Assume that the stochastic gradient is unbiased and has vari-
ance bounded by σ2 and that the gradient functional∇f(·) is L-Lipschitz. Moreover, assume τt,
the delay at time t, is upper bounded by τ . Assume the global optimal solution x∗ exists with
objective value f ∗ > −∞.

If the stepsize satisfies that

Lηt + 2L2τηt

τ∑
κ=1

ηt+κ ≤ 1 for all t = 1, ...,

we have ergodic convergence rate for the following algorithm
1. pick i randomly from data points 1, ..., n.
2. update wt+1 = wt − ηt∇fi(wt−τt).

In particular, the following bound holds

T∑
t=1

ηtE(‖∇f(wt)‖2) ≤ 2(f(w1)− f(w∗)) +
T∑
t=1

(
η2
tL+ 2L2ηt

t−1∑
j=t−τ

η2
t

)
σ2. (10.20)

Divide both sides by
∑

t ηt and we can state our convergence result as a corollary of the above
theorem after verifying all the conditions. We can slightly simplify it with a fixed learning rate.

138

Corollary 25 ([88, Corollary 2]) Under the same assumptions of Theorem 24, if we use a con-
stant stepsize

η :=

√
f(x1)− f(x∗)

Lτσ2
,

for every integer T ≥ 4L(f(x1)−f(x∗))
σ

(τ + 1)2, we have the output of the SGD obeying

1

T

T∑
t=1

E(‖∇f(xt)‖2) ≤ 4

√
(f(w1)− f(w∗))L

T
σ. (10.21)

We apply the above results to our problem setup to prove the following theorem, where the
constants explicitly depend on the average sparsity of the data and size of the minibatch we use.

Theorem 26 Define φi(w) = `(g(xi), yi) and

Φ(w) =
1

n

n∑
i=1

φi(w) +

p∑
j=1

[λjw
2
j + µj‖Vj‖2].

Let the delay of the asynchronous gradient τt ≤ τ for any update t and the minibatch size be
b. Assume that the data X obeys the following property: ‖X‖∞ ≤ 1 and si = ‖xi‖0 ≤ s.
Assume that we work within a sublevel set of the problem such that ‖[wsupp(xi), Vsupp(xi⊗xi)]‖ ≤
Bi. Furthermore, assume that the regularization parameter is sufficiently small, so that the
regularization terms do not weigh more than the data terms in the gradients.

Then there is a universal constant C and a data (sparsity) dependent constant K defined to
be K = 1

nb
maxi(siBi)

2
∑n

i=1(siBi), such that setting stepsize η =
√
Cφ(w1)/τK results in a

stochastic sequence of parameters that satisfies

min
t∈{1,...,T}

E‖∇φ(wt)‖2 ≤ 1

T

T∑
t=1

E‖∇φ(wt)‖2 ≤ 4

√
φ(w1)τK

T
. (10.22)

We first interpret the result before stating the proof. First, the expected magnitude of the gradient
is a intuitive measure of the distance from stationarity condition, which is weaker than typical
measures in convex optimization such as primal suboptimality, mean square distance from the
optimal solution. For “nice” loss functions, it should be in the same ball park (see, e.g. discus-
sions in [56, 88]). Second, when the data is sparse or the minibatch size is big, we can afford
using larger learning rate and hence get faster convergence. Note that the results capture the
average sparsity so the quantity remains small even when a few data points are dense. This is
especially important in face of the practical power-law distributions of data.
Proof of Theorem 26. The proof is a specialization of Corollary 25 to our problem, which in-
volves only calculating the gradient Lipschitz constant and the variance of the stochastic gradient
and upper bounding them using the intuitive quantities of interests.

By the chain rule

∂wφi(w) =
∂

∂g(xi)
`(g(xi), yi)

∂

∂w
g(xi).

139

Since ` is logistic loss, | ∂
∂g(xi)

`(g(xi), y)| ≤ 1, it follows from (10.15) and (10.16) that

‖∂wφi(w)‖ ≤ 1 ·
√∑

j

(∂wj
g(xi))2 +

∑
j,`

(∂Vj`g(xi))2

=

√∑
j

x2
i +

∑
j,`

(xj[V x]` − x2
jVj`)

2

≤
√
si‖xi‖∞ + si‖xi[V xi]T‖2,∞ ≤ siBi

Since the objective is differentiable, the Lipschitz constant can be obtained by upper bound-
ing the gradient

‖∂wφ(w)‖ ≤

∥∥∥∥∥ 1

n

n∑
i=1

∂wφi(w) + 2Λw

∥∥∥∥∥
≤ 1

n

n∑
i=1

siBi + ‖Λw‖2 ≤
2

n

n∑
i=1

siBi

where Λ is a big diagonal matrix that contains the frequency adaptive regularization weights λj
and µj and the last inequality holds whne these weights are small.

The variance of the stochastic gradient is taken over an iid minibatch of size b, and it can be
trivially bounded using the boundedness of the gradient

σ2 ≤ maxi ‖∂wφi(w)‖2

b
≤ maxi(siBi +B)2

b
≤ 4 maxi(siBi)

2

b
.

The last inequality is again simplification by under the assumptions that the regularization terms
are small. Finally, we note that φ(w) ≥ 0 for any w, so φ(w∗) ≥ 0. We arrive at (10.22) by
substituting these bounds into (10.21) in Theorem 25. The proof is complete by noting that the
minimum is always smaller than the mean in a sequence of numbers.

10.4.3 Implementation
Algorithm 14 sketches our algorithm DiFacto. It consists of three parts, where the scheduler
node runs the control logic, the server nodes coordinate the workers and update the model, and
the worker nodes compute the gradients with local data.
The Scheduler issues commands, such as process examples I or save the model to worker and

server nodes. It also monitors the progress of workers. Once a straggler or a dead node
is detected, the scheduler will re-issue the command to another available node. Also, the
scheduler checks whether the stopping criteria has been reached.

Server nodes maintain and update the model w and V . Due to the adaptive memory constraints,
the elements of Vi contain a lot of zeros, and thus to reduce memory footprint a server node
only needs to allocate physical memory to nonzero element of Vi. It also applies when a

140

Algorithm 14 Implement DiFacto in the parameter server
Scheduler Node:

1: Assume the data is partitioned into s parts
⋃s
k=1 Ik = {1, . . . , n}

2: for t = 1 to T do
3: I = {I1, . . . , Is} and A = ∅
4: while I 6= ∅ do
5: switch detected event from worker k do
6: case idle
7: Pick Ii ∈ I \ A and assign Ii to worker k
8: A = A ∪ {Ii},
9: case finished Ii

10: I = I \ {Ii}
11: case dead or timeout
12: A = A \ {Ii},
13: end while
14: end for
Worker k:

1: Receive command “processing Ii” from the scheduler
2: while read a minibatch from Ii do
3: Pull wj and Vj from server nodes for all features j that appear in this minibatch
4: Compute the gradient based on (10.15) and (10.16)
5: Push gradient back to servers
6: end while

Server i:
1: if received gradient from a worker then
2: update w and V by using (10.19) and (10.18)
3: end if

server node handles the model pull request from worker nodes. Upon receiving gradients
from the worker nodes, the server node updates the model using the update rules discussed
in Section 10.4.1.

Worker nodes perform most of the actual computation. After receiving a process examples I
command from the scheduler, a worker repeatedly reads minibatches from I , which are
files stored in a distributed file system. For each minibatch B ⊆ I , the worker first finds
the supporting feature indices J = {j : xij 6= 0 for i ∈ B}, then it pulls (prefetch) the
working set of model parameters from the server nodes, namely {wj, Vj : i ∈ J}, finally
the worker node calculates the gradient of the minibatch and pushes them to the servers.

Note that a worker node only needs to cache the minibatches being processed and the associated
working set of parameters to minimize the memory consumption. It also parallelizes data IO,
computation, and communication to hide the IO cost. Besides, a worker node uses various filters
to reduce the amount of data that needs to be communicated. We adopt standard filters provided

141

10
0

10
1

10
2

10
6

10
8

10
10

10
12

dimesion (k)

m
o

d
e

l
s
iz

e

no mem adaption

freqency

freqency + l1 shrk

(a) Dataset: Criteo

10
0

10
1

10
2

10
7

10
9

10
11

10
13

dimesion (k)

m
o

d
e

l
s
iz

e

no mem adaption

freqency

freqency + l1 shrk

(b) Dataset: CTRa

Figure 10.1: Number of non-zero entries in V .

by the parameter server [83] including the key caching and data compression. In addition, we
use fixed-point encoding, namely we convert the floating-point weight and gradient into shorter
fixed-point integers during communication.

The codes of our implementation of DiFacto are public available in the DMLC project1.

10.5 Experiments
We run DiFacto with 100 workers and 100 servers on 10 physical machines on Amazon EC2
EC2-c4.8x. We fix the dimension k = 16 and the minibatch size 104 for Criteo and 103 for
CTRa. For smaller datasets, we decrease the minibatch sizes by 10 times respectively. We use
a fixed regularizer for w with constants λ1 = 4 and λ = 0, and we optimize the constants µ by
searching within the range of {0, 10−5, 10−4, 10−3} based on an additional validation set. The
elements in V were initialized uniformly at random in the range [−0.01, 0.01]. The fast learning
rate ηw is selected between 0.001 and 0.1 with ηV = ηw and βw = βV = 1. Finally, we terminate
the algorithm when the objective value on the validation set stops decreasing.

10.5.1 Adaptive memory
We first study the effectiveness of adaptive memory. We compare the following three settings
which use different memory adaptive constraints in (10.6):
No memory adaption No constraint is applied, namely we do not force elements in Vi to 0.
Frequency threshold We only impose the constraint Vi = 0 for infrequent keys which have

sparsity ni < k. (recall that ni is the occurrence of feature i in the data.)
Frequency threshold + `1 shrinkage We impose the constraint Vi = 0 if wi = 0. That is, we

mark Vi as inactive if wi is set to 0 by the sparse induction `1 regularization.

1http://dmlc.github.io/

142

http://dmlc.github.io/

10
0

10
1

10
2

300

400

500

600

700

800
ti
m

e
 (

s
e

c
)

no mem adaption

freqency

freqency + l1 shrk

(a) Dataset: Criteo

10
0

10
1

10
2

200

300

400

500

600

dimesion (k)

ti
m

e
 (

s
e

c
)

no mem adaption

freqency

freqency + l1 shrk

(b) Dataset: CTRa

Figure 10.2: Runtime for one iteration.

10
0

10
1

10
2

−3

−2.5

−2

−1.5

−1

−0.5

0

dimesion (k)

re
la

ti
v
e

 l
o

g
lo

s
s
 (

%
)

no mem adaption

freqency

freqency + l1 shrk

(a) Dataset: Criteo

10
0

10
1

10
2

−1

−0.8

−0.6

−0.4

−0.2

0

dimesion (k)

re
la

ti
v
e

 l
o

g
lo

s
s
 (

%
)

no mem adaption

freqency

freqency + l1 shrk

(b) Dataset: CTRa

Figure 10.3: Relative test logloss compared to logistic regression (k = 0 and 0 relative loss).

We use the same hyper-parameters for the three settings and vary the dimension k from 1 to 64.
Figure 10.1 shows that the memory adaptive constraints effectively reduce the model size.

The reduction is about 100x for Criteo and 300x for CTRa when k = 64. Figure 10.2 shows
that they also brings about a 20% reduction in the run time. These constraints also significantly
decrease the server node memory consumption and network traffic. Especially when k is large,
the resulted amount of communication may overwhelm the system. Being able to reduce the
model size benefits the system performance a lot. A more interesting observation from 10.3
is that these memory adaptive constraints do not affect the accuracy. To the contrary, we even
see a slight improvement when the dimension k is greater than 8 for CTRa. The reason could
be that the model capacity control is of great importance when the dimension k is large, and
these memory adaptive constraints can provide additional capacity control besides the `2 and `1

143

regularizers.

10.5.2 Fixed-point Compression
We evaluate the lossy fixed-point compression for data communication. By default, both the
model and gradient entries are represented as 32 bit floating numbers. In this experiment, we
compress these values to lower precision integers. More specifically, given a bin size b and
number of bits n, we represent x by the following n-bit integer

z :=
⌊x
b
× 2n

⌋
+ σ, (10.23)

where σ is a Bernoulli random variable chosen such as to ensure that E[z] = 2nx/b. We imple-
mented the fixed-point compression as a user-defined filter in the parameter server framework.
Since multiple numbers are communicated in each round, we choose b to be the absolute maxi-
mum value of these numbers. In addition, we used the key caching and lossless data compression
(via LZ4) filters.

The results for n = 8, 16, 24 are shown in Figure 10.4 and 10.5. As expected, fixed-point
compression linearly reduces the volume of network traffic, which is dominated by communi-
cating the model and gradient. We also observe that we can obtain a 4.2x compression rate
from 32-bit floating-point to 8-bit fixed-point on Criteo. The reason is the latter improves the
compression rate for the following lossless LZ4 compression.

We observe different effects of accuracy on these two datasets: CTRa is robust to the number
precision, while Criteo has a 6% increase of logloss if only using 1-byte presentation. However,
a medium compression rate even improves the model accuracy. The reason might be that the
lossy compression acts as a regularization to the objective function.

10.5.3 Comparison with LibFM
To our best knowledge, there is no publicly released distributed FM solver. Hence we only
compare DiFacto to the popular single machine package LibFM developed by Rendle [114]. We
only report results on smaller datasets sampled from Criteo and CTRa on a single machine, since
LibFM fails on the other two larger datasets. We perform a similar grid search of the hyper-
parameters as we did for DiFacto. As LibFM only uses single thread, we run DiFacto with 1
worker and 1 server in sequential execution order. We also report the performance using 10
workers and 10 servers on a single machine for reference.

Figure 10.6 shows that DiFacto converges significantly faster than LibFM, it uses 2 times
fewer iterations to reach the best model. This is because the adaptive learning rate used in Di-
Facto better models the data sparsity and the adaptive regularization and constraints can further
accelerate the convergence. In particular, the latter results in a lower test logloss on the CTRa
dataset, where the number of features exceeds the number of examples, requiring improved ca-
pacity control.

Also note that DiFacto with a single worker is twice slower than LibFM per iteration. This is
because the data communication overhead between the worker and the server cannot be ignored
in the sequential execution. More importantly, DiFacto does not require any data preprocessing

144

1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

a
b
y
te

Criteo2

CTR2

Figure 10.4: Total data sent by workers in
one iteration. The compression rates from 4-
byte to 1-byte are 4.2x and 2.9x for Criteo and
CTRa, respectively.

1 2 3 4
−2

0

2

4

6

#byte per entry

re
la

ti
v
e
 l
o
g
lo

s
s
 (

%
)

Criteo2

CTR2

Figure 10.5: The relative test logloss com-
pared to no fixed-point compression.

10
1

10
2

10
3

10
4

10
−0.348

10
−0.345

10
−0.342

10
−0.339

time (sec)

te
s
t

lo
g

lo
s
s

LibFM

DiFacto, 1 worker

DiFacto, 10 workers

(a) 46 million examples from Criteo

10
0

10
1

10
2

10
3

10
−0.193

10
−0.191

10
−0.189

time (sec)

te
s
t

lo
g

lo
s
s

LibFM

DiFacto, 1 worker

DiFacto, 10 workers

(b) 0.3 million examples from CTRa

Figure 10.6: Comparison with LibFM on a single machine.

to map arbitrary 64-bit integer and string feature indices, which are used in both Criteo and CTRa,
to continuous integer indices. The cost of this data preprocessing step, required by LibFM but
not shown in Figure 10.6, even exceeds the cost of the actual training process (1,400 seconds for
Criteo). Nevertheless, DiFacto with a single worker still outperforms LibFM. Moreoverx, it is 10
times faster than LibFM when using 10 workers on the same machine.

145

0 5 10 15
0

5

10

15

machines

s
p
e
e
d
 u

p
 (

x
)

Parsa

ideal

Figure 10.7: The speedup from 1 machine to 16 machines, where each machine runs 10 workers
and 10 servers.

10.5.4 Scalability
Finally, we study the scalability of DiFacto by varying the number of physical machines used
in training. We assign 10 worker nodes and 10 server nodes to each machine, and increase the
number of machines from 1 to 16. Figure 10.7 shows that DiFacto achieves an 8x speedup
when the number of machines increases from to 16 for both Criteo and CTRa. The reason
for the satisfactory performance is twofold. First, asynchronous SGD eliminates the need for
synchronization between workers and it has a high tolerance for stragglers. Even though we used
dedicated machines, they still share network bandwidth with others. In particular, we observe
a large variation of read speed when streaming data from Amazon’s S3 service, despite using
the IO optimized c4.8xlarge series of machines. Second, DiFacto uses several filters which
effectively reduce the amount of network traffic. We observe that even though CTRa produces
10 times more network traffic than Criteo, they have similar speedup performance.

There is a longstanding suspicion that the convergence of asynchronous SGD slows down
when the number of workers increases. Nonetheless, we do not observe a substantial difference
in model accuracy. In other words, the relative difference in the objective logloss on test datasets
is below 0.5% when increasing the number of workers from 10 to 160. The reason might be that
the datasets we use are highly sparse and the features are not extremely correlated, and hence
the inconsistency due to concurrently updating by multiple workers may not have a major effect.
These observations are consistent with our convergence analysis of the algorithm.

146

Chapter 11

Conclusion

In this thesis, we proposed new distributed computing systems and new distributed learning
algorithms to accelerate large scale machine learning. The key idea to improve the efficiency of
the distributed computing systems and learning algorithms is to reduce the communication cost,
including both communication traffic and synchronization frequency. We take the approach to
properly relax the data consistency so that we can trade off system performance and algorithm
convergence. To achieve this, it requires careful co-design of the system and the algorithms.

In the first part of the thesis, we proposed a parameter server implementation with flexible
data consistency models, and our MXNet takes advantage of fast local device-to-device commu-
nication to further reduce the machine communication traffic. In the second part of the thesis,
we proposed several distributed learning algorithms for large scale machine learning. DBPG
explores the delayed block updating; EMSO accelerates the convergence of stochastic gradient
descent when the minibatch size is large; AdaDelay accelerates asynchronous stochastic gradi-
ent by using a learning rate that is adaptive to the actual delay; Parsa reduces the required data
communication by solving a graph partition problem to partition the training dataset; and Di-
Facto improves the scalability by regularizing the model complexity of the standard factorization
machine.

The flourishing research area of large scale machine learning is fuelled by the massive data
and the increasing computing power nowadays. In this thesis, we have only explored a small
part of this area, and we believe that there are many more research topics worth exploring. One
topic is to enhance the portability of large scale problems. In recent years we have witnessed a
rapid growth of the diversity and the powerfulness of computing hardware, ranging from gen-
eral purpose computing hardware to low-power edge devices. It requires a principled way of
optimizing the system performance on these hardware. Another important topic is to tailor the
system and learning algorithms for deep learning applications, as new deep learning algorithms
impose new requirements on the system programming interface as well as the implementation
of the distributed algorithms. For instance, if the objective function has general graph structure
dependencies, the data parallelism discussed in this thesis is not enough, and we need more gen-
eral ways to partition the workload. It is also true when training with different types of devices
that have heterogeneous computing power and bandwidth constraints. We believe that the tools
developed in this thesis, both the computing system implementations and the algorithm design
and analysis, will greatly aid the exploration of the future research problems in the area of large

147

scale machine learning.

148

Bibliography

[1] Geforce 10 series. https://en.wikipedia.org/wiki/GeForce 10 series. 2.1

[2] Detailed specifications of the intel xeon e5-2600v4 broadwell-ep processors.
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-
intel-xeon-e5-2600v4-broadwell-ep-processors/. 2.1

[3] Top500 lists, 2016. https://www.top500.org/lists/2016/06/. 2.1

[4] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In IEEE Con-
ference on Decision and Control, pages 5451–5452. IEEE, 2012. 8.1, 8.2.1, 8.2.3, 8.3.1

[5] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J. Smola. Scalable inference of dynamic
user interests for behavioural targeting. In Knowledge Discovery and Data Mining, 2011.
3.4.2

[6] A. Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and A. J. Smola.
Scalable inference in latent variable models. In Proceedings of The 5th ACM International
Conference on Web Search and Data Mining (WSDM), 2012. 3.1.3, 3.4.2, 9.1

[7] A. Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and Alexan-
der J. Smola. Distributed large-scale natural graph factorization. In World Wide Web
Conference, Rio de Janeiro, 2013. 6.1, 9.1, 9.1, 9.2, 10.1

[8] Amazon. Amazon web services. https://aws.amazon.com/. 1, 1.1.2

[9] R. Andersen, D.F. Gleich, and V.S. Mirrokni. Overlapping clusters for distributed com-
putation. In E. Adar, J. Teevan, E. Agichtein, and Y. Maarek, editors, Proceedings
of the Fifth International Conference on Web Search and Web Data Mining, WSDM
2012, Seattle, WA, USA, February 8-12, 2012, pages 273–282. ACM, 2012. URL
http://doi.acm.org/10.1145/2124295.2124330. 9.2

[10] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide.
SIAM, Philadelphia, second edition, 1995. 3.2.1

[11] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear models.
In Proceedings of the International Conference on Machine Learning, pages 33–40, New
York, NY, USA, 2007. ACM. 6.3.1

[12] Apache Foundation. Mahout project, 2012. http://mahout.apache.org. 3.1.3

[13] L. A. Barroso and H. Hölzle. The datacenter as a computer: An introduction to the design
of warehouse-scale machines. Synthesis lectures on computer architecture, 4(1):1–108,

149

http://doi.acm.org/10.1145/2124295.2124330
http://mahout.apache.org

2009. 2.2, 2.2

[14] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian Goodfellow, Ar-
naud Bergeron, Nicolas Bouchard, David Warde-Farley, and Yoshua Bengio. Theano: new
features and speed improvements. arXiv preprint arXiv:1211.5590, 2012. 4.1.1, 4.1.2

[15] R. M. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD Explorations,
9(2):75–79, 2007. URL http://doi.acm.org/10.1145/1345448.1345465.
10.2.1

[16] R. Berinde, G. Cormode, P. Indyk, and M.J. Strauss. Space-optimal heavy hitters with
strong error bounds. In J. Paredaens and J. Su, editors, Proceedings of the Twenty-Eigth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS,
pages 157–166. ACM, 2009. URL http://doi.acm.org/10.1145/1559795.
1559819. 3.4.3

[17] D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989. 5

[18] J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussion).
Journal of the Royal Statistical Society. Series B, 36(2):192–236, 1974. 9.2

[19] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. arXiv preprint arXiv:1606.04838, 2016. 5

[20] Florian Bourse, Marc Lelarge, and Milan Vojnovic. Balanced graph edge partition. In
ACM KDD 2014, August 2014. 9.1

[21] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–123, 2010. 6.3.2

[22] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, England, 2004. 5

[23] J.K. Bradley, A. Kyrola, D. Bickson, and C. Guestrin. Parallel coordinate descent for L1-
regularized loss minimization. In L. Getoor and T. Scheffer, editors, Proceedings of the
28th International Conference on Machine Learning, pages 321–328. Omnipress, 2011.
6.1, 6.2.2, 6.3.1

[24] J. Byers, J. Considine, and M. Mitzenmacher. Simple load balancing for distributed hash
tables. In Peer-to-peer systems II, pages 80–87. Springer, 2003. 3.3.3

[25] RH Byrd, SL Hansen, Jorge Nocedal, and Y Singer. A stochastic quasi-newton method
for large-scale optimization. arXiv preprint arXiv:1401.7020, 2014. 7.1.3

[26] Richard H Byrd, Gillian M Chin, Jorge Nocedal, and Yuchen Wu. Sample size selection
in optimization methods for machine learning. Mathematical programming, 134(1):127–
155, 2012. 7.1.2

[27] K. Canini. Sibyl: A system for large scale supervised machine learning. Technical
Talk, 2012. URL http://users.soe.ucsc.edu/˜niejiazhong/slides/
chandra.pdf. 1, 1.1.1, 3.4.1

150

http://doi.acm.org/10.1145/1345448.1345465
http://doi.acm.org/10.1145/1559795.1559819
http://doi.acm.org/10.1145/1559795.1559819
http://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf
http://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf

[28] U.V. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999. 9.1, 9.1, 9.3

[29] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: a distributed
storage system for structured data. In OSDI ’06: Proceedings of the 7th symposium on
Operating systems design and implementation, pages 205–218, Berkeley, CA, USA, 2006.
USENIX Association. 2.2

[30] Kai-Wei Chang and Dan Roth. Selective block minimization for faster convergence of
limited memory large-scale linear models. In Conference on Knowledge Discovery and
Data Mining, pages 699–707, 2011. 7.1.3

[31] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing
Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning
library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.
1.3, 4.3.2, 4.5

[32] Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Douglas, Sergiy Matusevych, Bran-
don Myers, Shravan Narayanamurthy, Raghu Ramakrishnan, Sriram Rao, Josh Rosen,
et al. Reef: Retainable evaluator execution framework. Proceedings of the VLDB Endow-
ment, 6(12):1370–1373, 2013. 3.1.2

[33] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like en-
vironment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-
192376, 2011. 4.1.1, 4.1.2

[34] P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal processing. In
Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages 185–212.
Springer, 2011. 5.1

[35] The Kubernetes Community. Kubernetes: Production-grade container orchestration, 2016.
http://kubernetes.io. 2.2

[36] Minerva contributors. Minerva: a fast and flexible system for deep learning.
https://github.com/dmlc/minerva. 4.6

[37] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed data streams. In
SDM, 2005. 3.4.3, 3.4.3

[38] Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch
algorithms via accelerated gradient methods. In NIPS, volume 24, pages 1647–1655,
2011. 7.1.3

[39] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu, Tom
Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar, et al. Unicorn:
A system for searching the social graph. VLDB, 6(11):1150–1161, 2013. 9.1

[40] Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong
Ho, and Eric P Xing. Petuum: A framework for iterative-convergent distributed ml. arXiv
preprint arXiv:1312.7651, 2013. 3.1.2, 3.2.1

151

[41] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
CACM, 51(1):107–113, 2008. URL http://doi.acm.org/10.1145/1327452.
1327492. 1.1.2, 2.2, 3.1.3

[42] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. Ranzato, A. Se-
nior, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In Neural
Information Processing Systems, 2012. 3.1.3, 3.2, 6.3.2, 10.1

[43] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In T. C. Bressoud and M. F. Kaashoek, editors, Symposium on Operat-
ing Systems Principles, pages 205–220. ACM, 2007. ISBN 978-1-59593-591-5. URL
http://doi.acm.org/10.1145/1294261.1294281. 2.2, 3.3.1

[44] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction using mini-batches. Technical report, http://arxiv.org/abs/1012.
1367, 2010. 7.1.2, 7.1.3, 7.1.4

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hier-
archical image database. In Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2009. 4.5.3

[46] CXXNet Developers. Cxxnet: fast, concise, distributed deep learning framework, 2015.
https://github.com/dmlc/cxxnet. 4.6

[47] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V. Catalyurek. Parallel
hypergraph partitioning for scientific computing. In Parallel and Distributed Processing
Symposium, pages 10–pp. IEEE, 2006. 9.1, 9.1

[48] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of fortran
basic linear algebra subprograms. ACM Transactions on Mathematical Software, 14:18–
32, 1988. 3.2.1

[49] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2010.
10.4.1

[50] John Duchi, Michael I Jordan, and Brendan McMahan. Estimation, optimization, and
parallelism when data is sparse. In NIPS 26, pages 2832–2840, 2013. 8.1

[51] R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library
for large linear classification. Journal of Machine Learning Research, 9:1871–1874, Au-
gust 2008. 6.3.1, 7.3

[52] The Apache Software Foundation. Apache hadoop nextgen mapreduce (yarn). http:
//hadoop.apache.org/. 2.2, 3.3.5

[53] The Apache Software Foundation. Apache hadoop, 2009. http://hadoop.apache.org/core/.
2.2, 3.1.3

[54] The Apache Software Foundation. Cassandra: Manage massive amounts of data, fast,
without losing sleep, 2016. http://cassandra.apache.org/. 2.2

[55] The Apache Software Foundation. Flink: open source platform for distributed stream and

152

http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1294261.1294281
http://arxiv.org/abs/1012.1367
http://arxiv.org/abs/1012.1367
https://github.com/dmlc/cxxnet
http://hadoop.apache.org/
http://hadoop.apache.org/

batch data processing, 2016. http://flink.apache.org/. 2.2

[56] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for non-
convex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.
10.4.2, 10.4.2

[57] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
SIGOPS Operating Systems Review, 37(5):29–43, 2003. 2.2

[58] Kevin Gimpel, Dipanjan Das, and Noah A Smith. Distributed asynchronous online learn-
ing for natural language processing. In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, pages 213–222. Association for Computa-
tional Linguistics, 2010. 7.1.3

[59] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. Pow-
ergraph: Distributed graph-parallel computation on natural graphs. In Proceedings of
the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI
2012), 2012. 9.1, 9.1, 9.2

[60] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin,
and Ion Stoica. Graphx: Graph processing in a distributed dataflow framework. In OSDI,
2014. 9.1

[61] Google. Google cloud. https://cloud.google.com/. 1, 1.1.2

[62] T.L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences, 101:5228–5235, 2004. 3.4.2

[63] Steinar H. Gunderson. Snappy: A fast compressor/decompressor. https://code.
google.com/p/snappy/. 3.3.2

[64] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/
1512.03385. 1, 1.1.1

[65] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. CoRR, abs/1603.05027, 2016. URL http://arxiv.org/abs/
1603.05027. 4.5, 4.5.3

[66] I. Heller and C. Tompkins. An extension of a theorem of dantzig’s. In H.W. Kuhn and
A.W. Tucker, editors, Linear Inequalities and Related Systems, volume 38 of Annals of
Mathematics Studies. AMS, 1956. 9.3.2

[67] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D Joseph,
Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the 8th USENIX conference on Networked
systems design and implementation, pages 22–22, 2011. 2.2, 3.3.5

[68] Q. Ho, J. Cipar, H. Cui, S. Lee, J. Kim, P. Gibbons, G. Gibson, G. Ganger, and E. Xing.
More effective distributed ml via a stale synchronous parallel parameter server. In NIPS,
2013. 3.1.3

[69] M. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. In
International Conference on Machine Learning, 2012. 3.4.2

153

https://code.google.com/p/snappy/
https://code.google.com/p/snappy/
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027

[70] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the ACM International Conference on Multimedia,
pages 675–678. ACM, 2014. 4.1.1, 4.1.2

[71] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Kernel Methods — Support Vector Learning, pages
169–184, Cambridge, MA, 1999. MIT Press. 6.3.1

[72] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, pages 315–
323, 2013. 7.1.3

[73] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. J.
Parallel Distrib. Comput., 48(1), 1998. 9.1, 9.1

[74] Larry Kim. How many ads does google serve in a day?, 2012. URL http://goo.gl/
oIidXO. http://goo.gl/oIidXO. 1.1.1

[75] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin, and
Michael I Jordan. Mlbase: A distributed machine-learning system. In CIDR, 2013. 3.1.2,
3.2.1

[76] Frank Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.
9.2

[77] Brian Kulis and Peter L Bartlett. Implicit online learning. In Proc. Intl. Conf. Machine
Learning, 2010. 7.1.3

[78] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001. 3.3.1

[79] J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Neural Information
Processing Systems, 2009. URL http://arxiv.org/abs/0911.0491. 6.1, 8.1

[80] Q.V. Le, A. Karpenko, J. Ngiam, and A.Y. Ng. ICA with reconstruction cost for efficient
overcomplete feature learning. Advances in Neural Information Processing Systems, 24:
1017–1025, 2011. 6.1, 6.3.2

[81] Q.V. Le, T. Sarlos, and A. J. Smola. Fastfood — computing hilbert space expansions in
loglinear time. In International Conference on Machine Learning, 2013. 10.1

[82] M. Li, D. G. Andersen, and A. J. Smola. Distributed delayed proximal gradient methods.
In NIPS Workshop on Optimization for Machine Learning, 2013. 3.1.3

[83] M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Amhed, V. Josifovski, J. Long, E. Shekita,
and B. Y. Su. Scaling distributed machine learning with the parameter server. In OSDI,
2014. 1.3, 10.4.3

[84] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed
machine learning with the parameter server. In Neural Information Processing Systems,
2014. 1.3, 10.4.2

[85] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient mini-batch train-

154

http://goo.gl/oIidXO
http://goo.gl/oIidXO
http://goo.gl/oIidXO
http://arxiv.org/abs/0911.0491

ing for stochastic optimization. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 661–670. ACM, 2014. 1.3

[86] Mu Li, Dave G Andersen, and Alexander J Smola. Graph partitioning via parallel
submodular approximation to accelerate distributed machine learning. arXiv preprint
arXiv:1505.04636, 2015. 1.3

[87] Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. Difacto: Distributed factoriza-
tion machines. In Proceedings of the Ninth ACM International Conference on Web Search
and Data Mining, pages 377–386. ACM, 2016. 1.3

[88] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic
gradient for nonconvex optimization. arXiv preprint arXiv:1506.08272, 2015. 10.4.2, 24,
25, 10.4.2

[89] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(3):503–528, 1989. 5.1, 6.3.1, 7.3, 7.3

[90] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. GraphLab: A new parallel framework for machine learning. In
Conference on Uncertainty in Artificial Intelligence, 2010. URL https://select.
cs.cmu.edu/code/graphlab/index.html. 9.1

[91] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Distributed graphlab: A framework for machine learning and data
mining in the cloud. In PVLDB, 2012. 3.1.2, 3.1.3

[92] David G Lowe. Object recognition from local scale-invariant features. In Computer vision,
1999. The proceedings of the seventh IEEE international conference on, volume 2, pages
1150–1157. Ieee, 1999. 1.1.1

[93] Dhruv Mahajan, S Sathiya Keerthi, S Sundararajan, and Leon Bottou. A parallel sgd
method with strong convergence. arXiv preprint arXiv:1311.0636, 2013. 7.1.3

[94] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale dis-
tributed training of conditional maximum entropy models. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 1231–1239, 2009. 7.1.3

[95] Abadi Martn, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. Tensorflow: Large-scale machine learning on heterogeneous systems.
2015. 4.1.1, 4.1.2

[96] S. Matsushima, S.V.N. Vishwanathan, and A.J. Smola. Linear support vector machines via
dual cached loops. In Q. Yang, D. Agarwal, and J. Pei, editors, The 18th ACM SIGKDD In-

155

https://select.cs.cmu.edu/code/graphlab/index.html
https://select.cs.cmu.edu/code/graphlab/index.html

ternational Conference on Knowledge Discovery and Data Mining, KDD, pages 177–185.
ACM, 2012. URL http://dl.acm.org/citation.cfm?id=2339530. 6.3.1,
7.1.3

[97] B. McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theorems
and l1 regularization. In International Conference on Artificial Intelligence and Statistics,
pages 525–533, 2011. 10.4.1

[98] Brendan McMahan and Matthew Streeter. Delay-tolerant algorithms for asynchronous
distributed online learning. In Advances in Neural Information Processing Systems, pages
2915–2923, 2014. 8.1, 8.3.1, 8.3.2, 8.3.2

[99] H Brendan McMahan, Gary Holt, D Sculley, Michael Young, Dietmar Ebner, Julian
Grady, Lan Nie, Todd Phillips, Eugene Davydov, and Daniel Golovin. Ad click prediction:
a view from the trenches. In KDD, 2013. 1.1.1, 10.2.2, 10.3.2

[100] Microsoft. Microsfot azure. https://azure.microsoft.com/. 1, 1.1.2

[101] T. Moon, A. J. Smola, Y. Chang, and Z. Zheng. Intervalrank: isotonic regression with
listwise and pairwise constraints. In B.D. Davison, T. Suel, N. Craswell, and B. Liu,
editors, Proceedings of the Third International Conference on Web Search and Web Data
Mining, WSDM, pages 151–160. ACM, 2010. 10.2.1

[102] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Mar-
tin Abadi. Naiad: a timely dataflow system. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 439–455. ACM, 2013. 3.1.2, 3.2.1

[103] A Nedić, Dimitri P Bertsekas, and Vivek S Borkar. Distributed asynchronous incremental
subgradient methods. Studies in Computational Mathematics, 8:381–407, 2001. 8.1

[104] S. Negahban, P. Ravikumar, M.J. Wainwright, and B. Yu. A unified framework for high-
dimensional analysis of m-estimators with decomposable regularizers. arXiv preprint
arXiv:1010.2731, 2010. 10.3.2

[105] Joel Nishimura and Johan Ugander. Restreaming graph partitioning: Simple versatile
algorithms for advanced balancing. In ACM SIGKDD, pages 1106–1114. ACM, 2013.
9.1

[106] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Oper-
ations Research. Springer, 2nd edition, 2006. 5

[107] J.B. Orlin. A faster strongly polynomial time algorithm for submodular function mini-
mization. Mathematical Programming, 118(2):237–251, 2009. 9.4.1

[108] N. Parikh and S. Boyd. Proximal algorithms. To appear in Foundations and Trends in
Optimization, 2013. 5.1, 6.1

[109] K. B. Petersen and M. S. Pedersen. The matrix cookbook, 2008. URL http://www2.
imm.dtu.dk/pubdb/p.php?3274. Version 20081110. 6.3.2

[110] Amar Phanishayee, David G Andersen, Himabindu Pucha, Anna Povzner, and Wendy
Belluomini. Flex-kv: Enabling high-performance and flexible kv systems. In Proceedings
of the 2012 workshop on Management of big data systems, pages 19–24. ACM, 2012. 2

156

http://dl.acm.org/citation.cfm?id=2339530
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274

[111] R. Power and J. Li. Piccolo: Building fast, distributed programs with par-
titioned tables. In R. H. Arpaci-Dusseau and B. Chen, editors, Operating
Systems Design and Implementation, OSDI, pages 293–306. USENIX Associa-
tion, 2010. URL http://www.usenix.org/event/osdi10/tech/full_
papers/osdi10_proceedings.pdf. 3.1.3

[112] Josep M Pujol, Vijay Erramilli, Georgos Siganos, Xiaoyuan Yang, Nikos Laoutaris, Par-
minder Chhabra, and Pablo Rodriguez. The little engine (s) that could: scaling online
social networks. ACM SIGCOMM Computer Communication Review, 41(4):375–386,
2011. 9.1

[113] B. Recht, C. Re, S.J. Wright, and F. Niu. Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In Peter Bartlett, Fernando Pereira, Richard Zemel, John
Shawe-Taylor, and Kilian Weinberger, editors, Advances in Neural Information Process-
ing Systems 24, pages 693–701, 2011. URL http://books.nips.cc/nips24.
html. 6.1, 6.2.2

[114] S. Rendle and L. Schmidt-Thieme. Pairwise interaction tensor factorization for per-
sonalized tag recommendation. In WSDM ’10: Proceedings of the third ACM inter-
national conference on Web search and data mining, pages 81–90. ACM, 2010. doi:
http://doi.acm.org/10.1145/1718487.1718498. 10.1, 10.2.2, 10.5.3

[115] Steffen Rendle. Time-Variant Factorization Models Context-Aware Ranking with Factor-
ization Models. volume 330 of Studies in Computational Intelligence, chapter 9, pages
137–153. 2011. ISBN 978-3-642-16897-0. 10.1, 10.2.2

[116] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, pages 1–38,
2012. 6.1

[117] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951. 1.1.3

[118] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware), pages 329–350, Heidelberg, Germany,
November 2001. 3.3.3

[119] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y. 4.1.1

[120] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate
ascent. In Advances in Neural Information Processing Systems, pages 378–385, 2013.
7.1.3

[121] Amar Shan. Heterogeneous processing: a strategy for augmenting moore’s law. Linux
Journal, 2006(142):7, 2006. 2.1

[122] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine on a memory

157

http://www.usenix.org/event/osdi10/tech/full_papers/osdi10_proceedings.pdf
http://www.usenix.org/event/osdi10/tech/full_papers/osdi10_proceedings.pdf
http://books.nips.cc/nips24.html
http://books.nips.cc/nips24.html

cloud. In ACM SIGMOD, pages 505–516. ACM, 2013. 9.1

[123] A. J. Smola and S. Narayanamurthy. An architecture for parallel topic models. In Very
Large Databases (VLDB), 2010. 3.1, 3.1.3, 3.2.5, 9.1

[124] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin, M. I.
Jordan, and T. Kraska. Mli: An api for distributed machine learning. 2013. 3.1.3

[125] S. Sra. Scalable nonconvex inexact proximal splitting. In Neural Information Processing
Systems, 2012. 6.1

[126] Suvrit Sra, Sebastian Nowozin, and Stephen J Wright. Optimization for machine learning.
2012. 5

[127] Suvrit Sra, Adams Wei Yu, Mu Li, and Alexander J Smola. Adadelay: Delay adaptive
distributed stochastic convex optimization. arXiv preprint arXiv:1508.05003, 2015. 1.3,
8.2.3

[128] N. Srebro, N. Alon, and T. Jaakkola. Generalization error bounds for collaborative pre-
diction with low-rank matrices. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances
in Neural Information Processing Systems 17, Cambridge, MA, 2005. MIT Press. 10.3.3

[129] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014. 6.2.2

[130] I. Stanton. Streaming balanced graph partitioning for random graphs. CoRR,
abs/1212.1121, 2012. 9.1

[131] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1222–1230. ACM, 2012. 9.1, 9.1

[132] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scal-
able peer-to-peer lookup service for internet applications. ACM SIGCOMM Computer
Communication Review, 31(4):149–160, 2001. 3.3

[133] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and
lower bounds. SIAM Journal on Computing, 40(6):1715–1737, 2011. 9.3.1, 9.3.1

[134] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/
1409.4842. 1.1.1

[135] Martin Takáč, Avleen Bijral, Peter Richtárik, and Nathan Srebro. Mini-batch primal and
dual methods for svms. arXiv preprint arXiv:1303.2314, 2013. 7.1.3

[136] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems 16, pages
25–32, Cambridge, MA, 2004. MIT Press. 10.2.1

[137] Christina Teflioudi, Faraz Makari, and Rainer Gemulla. Distributed matrix completion.
In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 655–664.

158

http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842

IEEE, 2012. 6.1

[138] Choon Hui Teo, S. V. N. Vishwanthan, A. J. Smola, and Quoc V. Le. Bundle methods
for regularized risk minimization. Journal of Machine Learning Research, 11:311–365,
January 2010. 6.1

[139] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat.
Methodol., 58:267–288, 1996. 10.3.2

[140] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic.
Fennel: Streaming graph partitioning for massive scale graphs. In WSDM, pages 333–342.
ACM, 2014. 9.1

[141] Johan Ugander and Lars Backstrom. Balanced label propagation for partitioning massive
graphs. In Proceedings of the sixth ACM international conference on Web search and data
mining, pages 507–516. ACM, 2013. 9.1

[142] Robbert van Renesse and Fred B Schneider. Chain replication for supporting high through-
put and availability. In OSDI, volume 4, pages 91–104, 2004. 3.3

[143] V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998. 1.1.3

[144] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabrera III,
Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Jeremy Hoon,
et al. Tao: how facebook serves the social graph. In ACM SIGMOD, pages 791–792.
ACM, 2012. 9.1

[145] G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990. 10.3.2

[146] R.C. Whaley, A. Petitet, and J.J. Dongarra. Automated empirical optimization of software
and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001. 3.2.1

[147] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards effective partition man-
agement for large graphs. In ACM SIGMOD, pages 517–528, 2012. 9.1

[148] J. Ye, J.-H. Chow, J. Chen, and Z. Zheng. Stochastic gradient boosted distributed decision
trees. In D. W.-L. Cheung, I.-Y. Song, W.W. Chu, X. Hu, and J.J. Lin, editors, Conference
on Information and Knowledge Management, CIKM, pages 2061–2064. ACM, 2009. URL
http://doi.acm.org/10.1145/1645953.1646301. 10.1

[149] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian Guenter,
Oleksii Kuchaiev, Yu Zhang, Frank Seide, Huaming Wang, et al. An introduction to com-
putational networks and the computational network toolkit. Technical report, Technical
report, Tech. Rep. MSR, Microsoft Research, 2014, 2014. research. microsoft. com/app-
s/pubs, 2014. 4.1.2

[150] H.-F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification when data
cannot fit in memory. In B. Rao, B. Krishnapuram, A. Tomkins, and Q. Yang, editors,
Knowledge Discovery and Data Mining, pages 833–842. ACM, 2010. URL http://
doi.acm.org/10.1145/1835804.1835910. 7.1.2, 7.1.3, 7.2.3

[151] G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. A comparison of optimization meth-
ods and software for large-scale l1-regularized linear classification. Journal of Machine

159

http://doi.acm.org/10.1145/1645953.1646301
http://doi.acm.org/10.1145/1835804.1835910
http://doi.acm.org/10.1145/1835804.1835910

Learning Research, pages 3183–3234, 2010. 6.1

[152] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In HotCloud 2010, June 2010. 2.2

[153] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
Mccauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Fast and interactive analyt-
ics over hadoop data with spark. USENIX ;login:, 37(4):45–51, August 2012. 3.1.3

[154] Tong Zhang and Frank J. Oles. Text categorization based on regularized linear classifica-
tion methods. Information Retrieval, 4:5–31, 2001. 6.3.1

[155] Jingren Zhou, Nicolas Bruno, and Wei Lin. Advanced partitioning techniques for mas-
sively distributed computation. In ACM SIGMOD, pages 13–24, 2012. 9.1

[156] M. Zinkevich. Online convex programming and generalised infinitesimal gradient ascent.
In Proceedings of the International Conference on Machine Learning, pages 928–936,
2003. 7.1.2

[157] Martin Zinkevich, A. J. Smola, Markus Weimer, and Lihong Li. Parallelized stochastic
gradient descent. In nips23e, editor, nips23, pages 2595–2603, 2010. 6.1, 7.1.3

160

	1 Introduction
	1.1 Background
	1.1.1 Large Scale Models
	1.1.2 Distributed Computing
	1.1.3 Optimization Methods

	1.2 Thesis Statement
	1.3 Thesis Contributions
	1.4 Notations, Datasets and Computing Systems
	1.4.1 Notations
	1.4.2 Datasets
	1.4.3 Computing systems

	I System
	2 Preliminaries on Distributed Computing Systems
	2.1 Heterogeneous Computing
	2.2 Data center

	3 Parameter Server: Scaling Distributed Machine Learning
	3.1 Introduction
	3.1.1 Engineering Challenges
	3.1.2 Our contribution
	3.1.3 Related Work

	3.2 Architecture
	3.2.1 (Key,Value) Vectors
	3.2.2 Range-based Push and Pull
	3.2.3 User-Defined Functions on the Server
	3.2.4 Asynchronous Tasks and Dependency
	3.2.5 Flexible Consistency
	3.2.6 User-defined Filters

	3.3 Implementation
	3.3.1 Vector Clock
	3.3.2 Messages
	3.3.3 Consistent Hashing
	3.3.4 Replication and Consistency
	3.3.5 Server Management
	3.3.6 Worker Management

	3.4 Evaluation
	3.4.1 Sparse Logistic Regression
	3.4.2 Latent Dirichlet Allocation
	3.4.3 Sketches

	4 MXNet: a Flexible and Efficient Deep Learning Library
	4.1 Introduction
	4.1.1 Background
	4.1.2 Our contribution

	4.2 Front-End Programming Interface
	4.3 Back-End System
	4.3.1 Computation Graph
	4.3.2 Graph Transformation and Execution

	4.4 Data Communication
	4.4.1 Distributed Key-Value Store
	4.4.2 Implementation of KVStore

	4.5 Evaluation
	4.5.1 Multiple GPUs on a Single Machine
	4.5.2 Multiple GPUs on Multiple Machines
	4.5.3 Convergence

	4.6 Discussions

	II Algorithm
	5 Preliminaries on Optimization Methods for Machine Learning
	5.1 Optimization Methods
	5.2 Convergence Analysis
	5.3 Distributed Optimization
	5.3.1 Data Parallelism versus Model Parallelism
	5.3.2 Synchronous Update versus Asynchronous Update

	6 DBPG: Delayed Block Proximal Gradient Method
	6.1 Introduction
	6.2 Delayed Block Proximal Gradient Method
	6.2.1 Proposed Algorithm
	6.2.2 Convergence Analysis

	6.3 Experiments
	6.3.1 Sparse Logistic Regression
	6.3.2 Reconstruction ICA

	6.4 Proof of Theorem 2

	7 EMSO: Efficient Minibatch Training for Stochastic Optimization
	7.1 Introduction
	7.1.1 Problem formulation
	7.1.2 Minibatch Stochastic Gradient Descent
	7.1.3 Related Work and Discussion
	7.1.4 Our work

	7.2 Efficient Minibatch Training Algorithm
	7.2.1 Our algorithm
	7.2.2 Convergence Analysis
	7.2.3 Efficient Implementation

	7.3 Experiments
	7.4 Proof of Theorem 7

	8 AdaDelay: Delay Adaptive Stochastic Optimization
	8.1 Introduction
	8.2 AdaDelay Algorithm
	8.2.1 Model Assumptions
	8.2.2 Algorithm
	8.2.3 Convergence Analysis

	8.3 Experiments
	8.3.1 Setup
	8.3.2 Results

	9 Parsa: Data Partition via Submodular Approximation
	9.1 Introduction
	9.2 Problem Formulation
	9.3 Algorithm
	9.3.1 Partition the data vertex set bold0mu mumu UUUUUU
	9.3.2 Partition the parameter vertex set bold0mu mumu VVVVVV

	9.4 Efficient Implementation
	9.4.1 Find Solution to (9.6)
	9.4.2 Divide into Subgraphs
	9.4.3 Parallelization with Parameter Server
	9.4.4 Initialize the Neighbor Sets

	9.5 Experiments
	9.5.1 Setup
	9.5.2 Performance of Parsa

	10 DiFacto: Scaling Distributed Factorization Machines
	10.1 Introduction
	10.2 Background
	10.2.1 Objectives
	10.2.2 Factorization Machine

	10.3 Statistical Model
	10.3.1 Memory Adaptive Constraints
	10.3.2 Sparse Regularization
	10.3.3 Frequency Adaptive Regularization

	10.4 Distributed Optimization
	10.4.1 Asynchronous Stochastic Gradient Descent
	10.4.2 Convergence Analysis
	10.4.3 Implementation

	10.5 Experiments
	10.5.1 Adaptive memory
	10.5.2 Fixed-point Compression
	10.5.3 Comparison with LibFM
	10.5.4 Scalability

	11 Conclusion
	Bibliography

