
Learning by Combining Native Features with
Similarity Functions

Mugizi Robert Rwebangira and Avrim Blum

February 2009
CMU-CS-09-107

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research was sponsored by the National Science Foundation under contract no. IIS-0427206, National Science
Foundation under contract no. CCR-0122581, National Science Foundation under contract no. IIS-0312814, US
Army Research Office under contract no. DAAD190210389, and SRI International under contract no. 03660211.
The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: similarity, unlabeled data, semi-supervised

Abstract
The notion of exploiting data dependent hypothesis spaces is an exciting new di-

rection in machine learning with strong theoretical foundations[66]. A very practical
motivation for these techniques is that they allow us to exploit unlabeled data in new
ways [2]. In this work we investigate a particular technique for combining “native”
features with features derived from a similarity function. We also describe a novel
technique for using unlabeled data to define a similarity function.

Contents

1.1 Motivation. 1
1.1.1 Generalizing and Understanding Kernels. 1
1.1.2 Combining Graph Based and Feature Based learning Algorithms.. . . . 2

2.1 Background. 3
2.1.1 Linear Separators and Large Margins. 3
2.1.2 The Kernel Trick. 4
2.1.3 Kernels and the Johnson-Lindenstrauss Lemma. 4
2.1.4 A Theory of Learning With Similarity Functions. 4
2.1.5 Winnow. 5

3.1 Learning with Similarity Functions. 5
3.1.1 Choosing a Good Similarity Function. 6

4.1 Experimental Results on Synthetic Datasets. 9
4.1.1 Synthetic Dataset:Circle. 9
4.1.2 Synthetic Dataset:Blobs and Line. 10

5.1 Experimental Results on Real Datasets. 12
5.1.1 Experimental Design. .12
5.1.2 Winnow. .12
5.1.3 Boolean Features. .12
5.1.4 Booleanize Similarity Function. 12
5.1.5 SVM .12
5.1.6 NN .12
5.1.7 Results .13

6.1 Concatenating Two Datasets. .13
7.1 Discussion. .14
8.1 Conclusion .14
9.1 Future Work. .14

v

In this report we describe a new approach to learning with labeled and unlabeled data using
similarity functions together with native features, inspired by recent theoretical work [2, 5]. In the
rest of this report we will describe some motivations for learning with similarity functions, give
some background information, describe our algorithms and present some experimental results on
both synthetic and real examples. We give a method that given any pairwise similarity function
(which need not be symmetric or positive definite as with kernels) can use unlabeled data to
augment a given set of features in a way that allows a learning algorithm to exploit the best
aspects of both. We also give a new, useful method for constructing a similarity function from
unlabeled data.

1.1 Motivation

Two main motivations for studying the problem of learning with similarity functions are (1)
Generalizing and Understanding Kernels and (2) Combining Graph Based or Nearest Neighbor
Style algorithms with Feature Based Learning algorithms. We will expand on both of these
below.

1.1.1 Generalizing and Understanding Kernels

Since the introduction of Support Vector Machines [62, 64, 65] in the mid 90s, kernel methods
have become extremely popular in the machine learning community. This popularity is largely
due to the so-called “kernel trick” which allows kernelized algorithms to operate in high dimen-
sional spaces without incurring a corresponding computational cost. The ideas is that if data is
not linearly separable in the original feature space kernel methods may be able to find a linear
separator in some high dimensional space without too much extra computational cost. And fur-
thermore if data is separable by a large margin then we can hope generalize well from not too
many labeled examples.

However, in spite of the rich theory and practical applications of kernel methods, there are a
few unsatisfactory aspects. In machine learning applications the intuition behind a kernel is that
they serve as a measure of similarity between two objects. However, the theory of kernel meth-
ods talks about finding linear separators in high dimensional spaces that we may not even be able
to calculate much less understand. This disconnect between the theory and practical applications
makes it difficult to gain theoretical guidance in choosing good kernels for particular problems.

Secondly and perhaps more importantly, kernels are required to be symmetric and positive-
semidefinite. The second condition in particular is not satisfied by many practically useful sim-
ilarity functions(for example the Smith-Waterman score in computational biology [76]). In fact,
in Section3.1.1we give a very natural and useful similarity function that does not satisfy either
condition. Hence if these similarity functions are to be used with kernel methods, they have to
be coerced into a “legal” kernel. Such coercion may substantially reduce the quality of the simi-
larity functions.

From such motivations, Balcan and Blum [2, 5] recently initiated the study of general simi-
larity functions. Their theory gives a definition of a similarity function that has standard kernels
as a special case and they show how it is possible to learn a linear separator with a similarity
function and give similar guarantees to those that are obtained with kernel methods.

One interesting aspect of their work is that they give a prominent role to unlabeled data. In
particular unlabeled data is used in defining the mapping that projects the data into a linearly sep-
arable space. This makes their technique very practical since unlabeled data is usually available
in greater quantities than labeled data in most applications.

The work of Balcan and Blum provides a solid theoretical foundation, but its practical im-
plications have not yet been fully explored. Practical algorithms for learning with similarity
functions could be useful in a wide variety of areas, two prominent examples being bioinformat-
ics and text learning. Considerable effort has been expended in developing specialized kernels
for these domains. But in both cases, it is easy to define similarity functions that are not legal
kernels but match well with our desired notions of similarity (for an example in bioinformatics
see Vert et al. [76]).

Hence, we propose to pursue a practical study of learning with similarity functions. In par-
ticular we are interested in understanding the conditions under which similarity functions can be
practically useful and developing techniques to get the best performance when using similarity
functions.

1.1.2 Combining Graph Based and Feature Based learning Algorithms.

Feature-based and Graph-based algorithms form two of the dominant paradigms in machine
learning. Feature-based algorithms such as Decision Trees[56], Logistic Regression[51], Winnow[53],
and others view their input as feature vectors and use feature values directly to make decisions.
Graph-based algorithms, such as the semi-supervised algorithms of [7, 13, 15, 44, 63, 84, 85],
instead view examples as nodes in a graph for which the only information available about
them is their pairwise relationship (edge weights) to other nodes in the graph. Kernel methods
[62, 64, 65, 66] can also be viewed in a sense as graph-based approaches, thinking ofK(x, x′) as
the weight of edge(x, x′).

Both types of approaches have been highly successful, though they each have their own
strengths and weaknesses. Feature-based methods perform particularly well on text data, for
instance, where individual keywords or phrases can be highly predictive. Graph-based methods
perform particularly well in semi-supervised or transductive settings, where one can use simi-
larities to unlabeled or future data, and reasoning based on transitivity (two examples similar to
the same cluster of points, or making a group decision based on mutual relationships) in order to
aid in prediction. However, they each have weaknesses as well: graph-based (and kernel-based)
methods encode all their information about examples into the pairwise relationships between ex-
amples, and so they lose other useful information that may be present in features. Feature-based

methods have trouble using the kinds of “transitive” reasoning made possible by graph-based
approaches.

It turns out again, that similarity functions provide a possible method for combining these two
disparate approaches. This idea is also motivated by the same work of Balcan and Blum[2, 5] that
we have referred to previously. They show that given a pairwise measure of similarityK(x, x′)
between data objects, one can essentially construct features in a straightforward way by collect-
ing a setx1, . . . , xn of random unlabeled examples and then usingK(x, xi) as theith feature of
examplex. They show that ifK was a large-margin kernel function then with high probability
the data will be approximately linearly separable in the new space. So our approach to combining
graph based and feature based methods is to keep the original features and augment them (rather
than replace them) with the new features obtained by the Balcan-Blum approach.

2.1 Background

We now give background information on algorithms that rely on finding large margin linear
separators, kernels and the kernel trick and the Balcan-Blum approach to learning with similarity
functions.

2.1.1 Linear Separators and Large Margins

Machine learning algorithms based on linear separators attempt to find a hyperplane that sepa-
rates the positive from the negative examples; i.e if examplex has labely ∈ {+1,−1} we want
to find a vectorw such thaty(w · x) > 0.

Linear separators are currently among the most popular machine learning algorithms, both
among practitioners and researchers. They have a rich theory and have been shown to be effective
in many applications. Examples of linear separator algorithms are Perceptron[56], Winnow[53]
and SVM [62, 64, 65]

An important concept in linear separator algorithms is the notion of “margin.” Margin is
considered a property of the dataset and (roughly speaking) represents the “gap” between the
positive and negative examples. Theoretical analysis has shown that the performance of a linear
separator algorithm is directly proportional to the size of the margin (the larger the margin the
better the performance). The following theorem is just one example of this kind of result:

Theorem In order to achieve errorε with probability at least1 − δ, it suffices for a linear
separator algorithm to find a separator of margin at leastγ on a dataset of size

O(
1

ε
[
1

γ2
log2 (

1

γε
) + log (

1

δ
)]).

Here, the margin is defined as the minimum distance of examples to the separating hyperplane
if all examples are normalized to have length at most 1. This bound makes clear the dependence
onγ, i.e as the margin gets larger, substantially fewer examples are needed [16, 66] .

2.1.2 The Kernel Trick

A kernel is a functionK(x, y) which satisfies certain conditions:

1. continuous

2. symmetric

3. positive semi-definite

If these conditions are satisfied then Mercer’s theorem [55] states thatK(x, y) can be ex-
pressed as a dot product in a high-dimensional space i.e there exists a functionΦ(x) such that

K(x, y) = Φ(x) · Φ(y)

Hence the functionΦ(x) is a mapping from the original space into a new possibly much
higher dimensional space. The “kernel trick” is essentially the fact that we can get the results
of this high dimensional inner product without having to explicitly construct the mappingΦ(x).
The dimension of the space mapped to byΦ might be huge, but the hope is the margin will be
large so we can apply the theorem connecting margins and learnability.

2.1.3 Kernels and the Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma[30] states that a set ofn points in a high dimensional Eu-
clidean space can be mapped down into anO(log n/ε2) dimensional Euclidean space such that
the distance between any two points changes by only a factor of(1± ε).

Arriaga and Vempala [1] use the Johnson-Lindenstrauss Lemma to show that a random linear
projection from theφ-space to a space of dimensioñO(1/γ2) approximately preserves linear
separability. Balcan, Blum and Vempala [5] then give an explicit algorithm for performing such
a mapping. An important point to note is that their algorithm requires access to the distribution
where the examples come from in the form of unlabeled data. The upshot is that instead of
having the linear separator live in some possibly infinite dimensional space, we can project it
into a space whose dimension depends on the margin in the high-dimensional space and where
the data is linearly separable if it was linearly separable in the high dimensional space.

2.1.4 A Theory of Learning With Similarity Functions

The mapping discussed in the previous section depended onK(x, y) being a legal kernel func-
tion. In [2] Balcan and Blum show that it is possible to use a similarity function which is not
necessarily a legal kernel in a similar way to explicitly map the data into a new space. This

mapping also makes use of unlabeled data.

Furthermore, similar guarantees hold: If the data was separable by the similarity function
with a certain margin then it will be linearly separable in the new space. The implication is that
any valid similarity function can be used to map the data into a new space and then a standard
linear separator algorithm can be used for learning.

2.1.5 Winnow

Now we make a slight digression to describe the algorithm that we will be using. Winnow is
an online learning algorithm proposed by Nick Littlestone [53]. Winnow starts out with a set of
weights and updates them as it sees examples one by one using the following update procedure:

Given a set of weightsw = {w1, w2, w3, . . . wd} ∈ Rd and an example{x = {x1, x2, x3, . . . xd} ∈
{0, 1}d}

1. If (w · x ≥ d) then setypred = 1 else setypred = 0. Outputypred as our prediction.

2. Observe the true labely ∈ {0, 1} If ypred = y then our prediction is correct and we do
nothing. Else if we predicted negative instead of positive, we multiplywi by (1 + εxi) for
all i ; if we predicted positive instead of negative then we multiplywi by (1− εxi) for all i.

An important point to note is that we only update our weights when we make a mistake.
There are two main reasons why Winnow is particularly well suited to our task.

1. Our approach is based on augmenting the features of examples with a plethora of extra
features. Winnow is known to be particularly effective in dealing with many irrelevant
features. In particular, suppose the data has a linear separator ofL1 marginγ. That is,
for some weightsw∗ = (w∗

1, . . . , w
∗
d) with

∑ |w∗
i | = 1 and some thresholdt, all positive

examples satisfyw∗ · x ≥ t and all negative examples satisfyw∗ · x ≤ t − γ. Then the
number of mistakes the Winnow algorithm makes is bounded byO(1

γ2 log d). For example,
if the data is consistent with a majority vote of justr of thed features, wherer ¿ d, then
the number of mistakes is justO(r2 log d) [53].

2. Experience indicates that unlabeled data becomes particularly useful in large quantities. In
order to deal with large quantities of data we will need fast algorithms, Winnow is a very
fast algorithm and does not require a large amount of memory.

3.1 Learning with Similarity Functions

SupposeK(x, y) is our similarity function and the examples have dimensionk

We will create the mappingΦ(x) : Rk → Rk+d in the following manner:

1. Drawd examples{x1, x2, . . . , xd} uniformly at random from the dataset.

2. For each examplex compute the mappingx → {x,K(x, x1),K(x, x2), . . . ,K(x, xd)}

Although the mapping is very simple, in the next section we will see that it can be quite
effective in practice.

3.1.1 Choosing a Good Similarity Function

The Näıve approach

We consider as a valid similarity function any functionK(x, y) that takes two inputs in the ap-
propriate domain and outputs a number between−1 and1. This very general criteria obviously
does not constrain us very much in choosing a similarity function.

But we would also intuitively like our similarity function to assign a higher similarity to pairs
of examples that are more “similar.” In the case where we have positive and negative examples
it would seem to be a good idea if our function assigned a higher average similarity to examples
that have the same label. One can formalize these intuitive ideas and obtain rigorous criteria for
“good” similarity functions [2]. We discuss this in more detail in section3.1.1

One natural way to construct a similarity function is by modifying an appropriate distance
metric. A distance metric takes pairs of objects and assigns them a non-negative real number. If
we have a distance metricD(x, y) we can define a similarity function,K(x, y) as

K(x, y) =
1

D(x, y) + 1

Then ifx andy are close according to distance metricD they will also have a high similarity
score. So if we have a suitable distance function on a certain domain the similarity function
constructed in this manner can be directly plugged into the Balcan-Blum algorithm.

Scaling issues

It turns out that the approach outlined previously has scaling problems, for example with the
number of dimensions. If the number of dimensions is large then the similarity derived from the
Euclidian distance between any two objects in a set may end up being close to zero (even if the
individual features are boolean). This does not lead to a good performance.

Fortunately there is a straightforward way to fix this issue:

Ranked Similarity

We now describe an alternative way of converting a distance function to a similarity function that
addresses the above problem. We first describe it in the transductive case where all data is given

up front, and then in the inductive case where we need to be able to assign similarity scores to
new pairs of examples as well.

Transductive Classification

1. Compute the similarity as before.

2. For each examplex find the example that it is most similar to and assign it a similarity
score of 1, find the next most similar example and assign it a similarity score of(1− 2

n−1
),

find the next one and assign it a score of(1 − 2
n−1

· 2) and so on until the least similar
example has similarity score(1− 2

n−1
· (n− 1)). At the end, the most similar example will

have a similarity of+1, the least similar example will have a similarity of−1, with values
spread linearly in between.

This procedure (we will call it “ranked similarity”) addresses many of the scaling issues with
the näıve approach as each example will have a “full range” of similarities associated with it and
experimentally it leads to much to better performance.

Inductive Classification

We can easily extend the above procedure to classifying new unseen examples by using the
following similarity function:-

KS(x, y) = 1− 2Probz∼S[d(x, z) < d(x, y)]

whereS is the set of all the labeled and unlabeled examples.

So the similarity of a new example is found by interpolating between the existing examples.

Properties of the ranked similarity

One of the interesting things about this approach is that similarity is no longersymmetric, as the
similarity is now defined in a way analogous to nearest neighbor. In particular, you may not be
the most similar example for the example that is most similar to you. For example, if all points
belong to a tight cluster except for an outliery, the pointx closest toy might have the property
thatK(x, y) = −1 butK(y, x) = 1.

This is notable because this is a major difference with the standard definition of a kernel (as
a non-symmetric function is definitely not symmetric positive definite) and provides an example
where the similarity function approach gives more flexibility than kernel methods.

Comparing Similarity Functions

One way of comparing how well a similarity function is suited to a particular dataset is by using
the notion of a strongly(ε, γ)-good similarity function as defined by Balcan and Blum [2]. We

say thatK is a strongly(ε, γ)- good similarity function for a learning problemP if at least a(1−ε)
probability mass of examplesx satisfyEx′∼P [K(x′, x)|l(x′) = l(x)] ≥ Ex′∼P [K(x′, x)|l(x′) 6=
l(x)] + γ (i.e most examples are more similar to examples that have the same label).

We can easily compute the marginγ for each example in the dataset and then plot the exam-
ples by decreasing margin. If the margin is large for most examples, this is an indication that the
similarity function may perform well on this particular dataset.

0 500 1000 1500
−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 3.1:The Näıve similarity function on the Digits dataset

0 500 1000 1500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Naive Similarity
Ranked Similarity

Figure 3.2:The ranked similarity and the naı̈ve similarity plotted on the same scale

Comparing the näıve similarity function and the ranked similarity function on the Digits
dataset we can see that the ranked similarity function leads to a much higher margin on most of
the examples and experimentally we found that this also leads to a better performance.

4.1 Experimental Results on Synthetic Datasets

To gain a better understanding of the algorithm we first performed some experiments on syn-
thetic datasets. On synthetic datasets we found that both naı̈ve similarity and ranked similarity
performed similarly, hence we only show naı̈ve similarity for these datasets.

4.1.1 Synthetic Dataset:Circle

The first dataset we consider is a circle as shown in Figure4.3Clearly this dataset is not linearly
separable. The interesting question is whether we can use our mapping to map it into a linearly
separable space.

We trained it on the original features and on the induced features. This experiment had 1000
examples and we averaged over 100 runs. Error bars correspond to 1 standard deviation. The
results are given in figure4.4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.3:The Circle Dataset

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110

Number of Labelled Examples

A
cc

ur
ac

y

Original Features
Similarity Features

Figure 4.4:Performance on the circle dataset

4.1.2 Synthetic Dataset:Blobs and Line

We expect the original features to do well if the features are linearly separable and we expect
the similarity induced features to do particularly well if the data is clustered in well-separated
“blobs”. One interesting question is what happens if data satisfies neither of these conditions
overall, but has some portions satisfying one and some portions satisfying the other.

We generated this dataset in the following way:

1. We selectedk points to be the centers of our blobs and randomly assign them labels in
−1, +1.

2. We then repeat the following processn times:

a We flip a coin.

b If it comes up heads then we setx to random boolean vector of dimensiond andy = x1

(the first coordinate ofx).

c If it comes up tails then we pick one of thek centers and flipr bits and setx equal to the
result and sety equal to the label of the center.

The idea is that the data will be of two types, 50% is completely linearly separable in the
original features and 50% is composed of several blobs. Neither one of the feature spaces by
themselves should be able to represent the combination well, but the features combined should
be able to work well.

As before we trained the algorithm on the original features and on the induced features. But
this time we also combined the original and induced features and trained on that. This experiment
had 1000 examples and we averaged over 100 runs. Error bars correspond to 1 standard deviation.
The results are seen in figure4.5.

Figure 4.5:Accuracy vs training data on the Blobs and Line dataset

As expected both the original features and the similarity features get about 75% accuracy
(getting almost all the examples of the appropriate type correct and about half of the examples
of the other type correct) but the combined features are almost perfect in their classification
accuracy. In particular this example shows that in at least some cases there may be advantages
to augmenting the original features with additional features as opposed to just using the new
features by themselves.

5.1 Experimental Results on Real Datasets

To test the applicability of this method we ran experiments on UCI datasets. Comparison with
Winnow, SVM and NN (1 Nearest Neighbor) is included. We used ranked similarity for these
experiments as it seemed to perform better.

5.1.1 Experimental Design

For Winnow, NN, Sim and Sim+Winnow each result is the average of 10 trials. On each trial
we selected 100 training examples at random and used the rest of the examples as test data. We
selected 200 random examples as landmarks on each trial.

5.1.2 Winnow

We implemented Balanced Winnow with update rule (1 ± e−εXi). ε was set to.5 and we ran
through the data5 times on each trial (cuttingε by half on each pass).

5.1.3 Boolean Features

Experience suggests that Winnow works better with boolean features, so we preprocessed all the
datasets to make the features boolean. We did this by computing a median for each column and
setting all features less than or equal to the median to0 and all features greater than or equal to
the median to1.

5.1.4 Booleanize Similarity Function

We also wanted the booleanize the similarity function features. We did this by selecting for each
example the10% most similar examples and setting their similarity to 1 and setting the rest to0.

5.1.5 SVM

For the SVM experiments we used Thorsten JoachimsSV Mlight [46] with the standard settings.

5.1.6 NN

We assign each unlabeled example the same label as that of the closest example in Euclidean
distance.

In Table5.1 below, we present the results of these algorithms on a range of UCI datasets.
In this table,n is the total number of data points,d is the dimension of the space, andnl is the
number of labeled examples.We highlight all performances within 5% of the best for each dataset
in bold.

5.1.7 Results

In Table5.1below, we present the results of these algorithms on a range of UCI datasets. In this
table,n is the total number of data points,d is the dimension of the space, andnl is the number of
labeled examples.We highlight all performances within 5% of the best for each dataset in bold.

Dataset n d nl Winnow SVM NN SIM Winnow+SIM
Congress 435 16 100 93.79 94.93 90.8 90.90 92.24
Webmaster 582 1406 100 81.97 71.78 72.5 69.90 81.20
Credit 653 46 100 78.50 55.52 61.5 59.10 77.36
Wisc 683 89 100 95.03 94.51 95.3 93.65 94.49
Digit1 1500 241 100 73.26 88.79 94.0 94.21 91.31
USPS 1500 241 100 71.85 74.21 92.0 86.72 88.57

Table 5.1:Performance of similarity functions compared with standard algorithms on some real
datasets

We can observe that on certain types of datasets such as the Webmaster dataset (a dataset of
documents) a linear separator like Winnow performs particularly well, while standard Nearest
Neighbor does not perform as well. But on other datasets such as USPS(a dataset comprised
of images) Nearest Neighbor performs much better than any linear separator algorithm. The
important thing to note is that the combination of Winnow plus the similarity features always
manages to perform almost as well as the best available algorithm.

6.1 Concatenating Two Datasets

In the section 5.4 we looked at some purely synthetic datasets. An interesting idea is to consider
a “hybrid” dataset obtained by combining two distinct real datasets. This models a dataset which
is composed of two disjoint subsets that are part of a larger category.

We ran an experiment combining the Credit dataset and the Digit1 dataset. We combined the
two datasets by padding each example with zeros so they both ended up with the same number
of dimensions as seen in the table below:

Credit (653× 46) Padding (653× 241)
Padding (653× 46) Digit1 (653× 241)

Table 6.2:Structure of the hybrid dataset

We ran some experiments on the combined dataset using the same settings as outlined in the
previous section:

Dataset n d nl Winnow SVM NN SIM Winnow+SIM
Credit+Digit1 1306 287 100 72.41 51.74 75.46 74.25 83.95

Table 6.3:Performance of similarity functions compared with standard algorithms on a hybrid
dataset

7.1 Discussion

For the synthetic datasets (Circle and Blobs and Lines) the similarity features are clearly useful
and have superior performance to the original features. For the UCI datasets we observe that the
combination of the similarity features with the original features is never significantly worse than
the best algorithm on any particular dataset. On the“hybrid” dataset the combination of features
does significantly better than either on its own.

8.1 Conclusion

In this report we explored techniques for learning using general similarity functions. We experi-
mented with several ideas that have not previously appeared in the literature:-

1. Investigating the effectiveness of the Balcan-Blum approach to learning with similarity
functions on real datasets.

2. Combining Graph Based and Feature Based learning Algorithms.

3. Using unlabeled data to help construct a similarity function.

From our results we can conclude that generic similarity functions do have significant po-
tential for practical applications. They are more general than kernel functions and can be more
easily understood. In addition by combining feature based and graph based methods we can
often get the “best of both worlds.”

9.1 Future Work

One interesting direction would be to investigate designing similarity functions for specific do-
mains. The definition of a similarity function is so flexible that it allows great freedom to exper-
iment and design similarity functions that are specifically suited for particular domains. This is
not as easy to do for kernel functions which have stricter requirements.

Another interesting direction would be to model some realistic theoretical guarantees relating
the quality of a similarity function to the performance of the algorithm.

Bibliography

[1] Rosa I. Arriaga and Santosh Vempala. Algorithmic theories of learning. InFoundations of
Computer Science, 1999.2.1.3

[2] M.-F. Balcan and A. Blum. On a theory of learning with similarity functions.ICML06,
23rd International Conference on Machine Learning, 2006.(document), 1.1.1, 1.1.2, 2.1.4,
3.1.1, 3.1.1

[3] M.-F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins and low-
dimensional mappings.ALT04, 15th International Conference on Algorithmic Learning
Theory, pages 194—205.

[4] Maria-Florina Balcan and Avrim Blum. A pac-style model for learning from labeled and
unlabeled data. InIn Proceedings of the 18th Annual Conference on Computational Learn-
ing Theory (COLT, pages 111–126. COLT, 2005.

[5] M.F. Balcan, A. Blum, and S. Vempala. Kernels as features: On kernels, margins, and low-
dimensional mappings.Machine Learning, 65(1):79–94, 2006.(document), 1.1.1, 1.1.2,
2.1.3

[6] R. Bekkerman, A. McCallum, and G. Huang. categorization of email into folders: Bench-
mark experiments on enron and sri corpora,. Technical Report IR-418, University of Mas-
sachusetts,, 2004.

[7] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric
framework for learning from labeled and unlabeled examples.Journal of Machine Learning
Research, 7:2399–2434, 2006.1.1.2

[8] G.M. Benedek and A. Itai. Learnability with respect to a fixed distribution.Theoretical
Computer Science, 86:377—389, 1991.

[9] K. P. Bennett and A. Demiriz. Semi-supervised support vector machines. InAdvances in
Neural Information Processing Systems 10, pages 368—374. MIT Press, 1998.

[10] T. De Bie and N. Cristianini. Convex methods for transduction. InAdvances in Neural
Information Processing Systems 16, pages 73—80. MIT Press, 2004.

[11] T. De Bie and N. Cristianini. Convex transduction with the normalized cut. Technical
Report 04-128, ESAT-SISTA, 2004.

[12] A. Blum. Empirical support for winnow and weighted majority algorithms: results on a
calendar scheduling domain.ICML, 1995.

[13] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts.

15

In Proceedings of the 18th International Conference on Machine Learning, pages 19—26.
Morgan Kaufmann, 2001.1.1.2

[14] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the 1998 Conference on Computational Learning Theory, July 1998.

[15] A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-supervised learning using ran-
domized mincuts.ICML04, 21st International Conference on Machine Learning, 2004.
1.1.2

[16] Avrim Blum. Notes on machine learning theory: Margin bounds and luckiness functions.
http://www.cs.cmu.edu/ avrim/ML08/lect0218.txt, 2008.2.1.1

[17] Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov random fields with efficient approx-
imations. InIEEE Computer Vision and Pattern Recognition Conference, June 1998.

[18] U. Brefeld, T. Gaertner, T. Scheffer, and S. Wrobel. Efficient co-regularized least squares
regression.ICML06, 23rd International Conference on Machine Learning, 2006.

[19] A. Broder, R. Krauthgamer, and M. Mitzenmacher. Improved classification via connectivity
information. InSymposium on Discrete Algorithms, January 2000.

[20] J. I. Brown, Carl A. Hickman, Alan D. Sokal, and David G. Wagner. Chromatic roots of
generalized theta graphs.J. Combinatorial Theory, Series B, 83:272—297, 2001.

[21] Vitor R. Carvalho and William W. Cohen. Notes on single-pass online learning. Technical
Report CMU-LTI-06-002, Carnegie Mellon University, 2006.

[22] Vitor R. Carvalho and William W. Cohen. Single-pass online learning: Performance, vot-
ing schemes and online feature selection. InProceedings of International Conference on
Knowledge Discovery and Data Mining (KDD 2006).

[23] V. Castelli and T.M. Cover. The relative value of labeled and unlabeled samples in pattern-
recognition with an unknown mixing parameter.IEEE Transactions on Information Theory,
42(6):2102—2117, November 1996.

[24] C.Cortes and M.Mohri. On transductive regression. InAdvances in Neural Information
Processing Systems 18. MIT Press, 2006.

[25] S. Chakrabarty, B. Dom, and P. Indyk. Enhanced hypertext categorization using hyperlinks.
In Proceedings of ACM SIGMOD International Conference on Management of Data, 1998.

[26] O. Chapelle, B. Scḧolkopf, and A. Zien, editors.Semi-Supervised Learning. MIT Press,
Cambridge, MA, 2006. URLhttp://www.kyb.tuebingen.mpg.de/ssl-book .

[27] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. MIT Press, 1990.

[28] F.G. Cozman and I. Cohen. Unlabeled data can degrade classification performance of gen-
erative classifiers. InProceedings of the Fifteenth Florida Artificial Intelligence Research
Society Conference, pages 327—331, 2002.

[29] I. Dagan, Y. Karov, and D. Roth. Mistake driven learning in text categorization. InEMNLP,
pages 55—63, 1997.

[30] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of the johnson-lindenstrauss
lemma. Technical report, 1999.2.1.3

http://www.kyb.tuebingen.mpg.de/ssl-book�

[31] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incomplete data
via the em algorithm.Journal of the Royal Statistical Society, Series B, 39(1):1—38, 1977.

[32] Luc Devroye, Laszlo Gÿorfi, and Gabor Lugosi. A Probabilistic Theory of Pattern
Recognition (Stochastic Modelling and Applied Probability). Springer, 1997. ISBN
0387946187. URLhttp://www.amazon.ca/exec/obidos/redirect?tag=
citeulike09-20 \&path=ASIN/0387946187 .

[33] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley-Interscience Publi-
cation, 2000.

[34] M. Dyer, L. A. Goldberg, C. Greenhill, and M. Jerrum. On the relative complexity of ap-
proximate counting problems. InProceedings of APPROX’00, Lecture Notes in Computer
Science 1913, pages 108—119, 2000.

[35] Y. Freund, Y. Mansour, and R.E. Schapire. Generalization bounds for averaged classifiers
(how to be a Bayesian without believing). To appear in Annals of Statistics. Preliminary
version appeared in Proceedings of the 8th International Workshop on Artificial Intelligence
and Statistics, 2001, 2003.

[36] Evgeniy Gabrilovich and Shaul Markovitch. Feature generation for text categorization
using world knowledge. InProceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 1048—1053, Edinburgh, Scotand, August 2005. URLhttp:
//www.cs.technion.ac.il/ ∼gabr/papers/fg-tc-ijcai05.pdf .

[37] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary
images.Journal of the Royal Statistical Society, Series B, 51(2):271—279, 1989.

[38] Steve Hanneke. An analysis of graph cut size for transductive learning. Inthe 23rd Inter-
national Conference on Machine Learning, 2006.

[39] T. Hastie, R. Tibshirani, and J. H. Friedman.The Elements of Statistical Learning. Springer,
2001. ISBN 0387952845. URLhttp://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20 \&path=ASIN/0387952845 .

[40] Thomas Hofmann. Text categorization with labeled and unlabeled data: A generative model
approach. InNIPS 99 Workshop on Using Unlabeled Data for Supervised Learning, 1999.

[41] J.J. Hull. A database for handwritten text recognition research.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16:550—554, 1994.

[42] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the Ising model.
SIAM Journal on Computing, 22:1087—1116, 1993.

[43] M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: An approach to ap-
proximate counting and integration. In D.S. Hochbaum, editor,Approximation algorithms
for NP-hard problems. PWS Publishing, Boston, 1996.

[44] T. Joachims. Transductive learning via spectral graph partitioning. InProceedings of the
20th International Conference on Machine Learning (ICML), pages 290—297, 2003.1.1.2

[45] T. Joachims. Transductive inference for text classification using support vector machines.
In Proceedings of the16th International Conference on Machine Learning (ICML), 1999.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387946187�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387946187�
http://www.cs.technion.ac.il/~gabr/papers/fg-tc-ijcai05.pdf�
http://www.cs.technion.ac.il/~gabr/papers/fg-tc-ijcai05.pdf�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387952845�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387952845�

[46] Thorsten Joachims.Making large-Scale SVM Learning Practical. MIT Press, 1999.5.1.5

[47] David Karger and Clifford Stein. A new approach to the minimum cut problem.Journal of
the ACM, 43(4), 1996.

[48] J. Kleinberg. Detecting a network failure. InProc. 41st IEEE Symposium on Foundations
of Computer Science, pages 231—239, 2000.

[49] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pair-
wise relationships: Metric labeling and markov random fields. In40th Annual Symposium
on Foundations of Computer Science, 2000.

[50] J. Kleinberg, M. Sandler, and A. Slivkins. Network failure detection and graph connectivity.
In Proc. 15th ACM-SIAM Symposium on Discrete Algorithms, pages 76—85, 2004.

[51] Paul Komarek and Andrew Moore. Making logistic regression a core data mining tool: A
practical investigation of accuracy, speed, and simplicity. Technical Report CMU-RI-TR-
05-27, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 2005.1.1.2

[52] John Langford and John Shawe-Taylor. PAC-bayes and margins. InNeural Information
Processing Systems, 2002.

[53] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm.Machine Learning, 1988.1.1.2, 2.1.1, 2.1.5, 1

[54] D. McAllester. PAC-bayesian stochastic model selection.Machine Learning, 51(1):5—21,
2003.

[55] Ha Quang Minh, Partha Niyogi, and Yuan Yao. Mercer’s theorem, feature maps, and
smoothing. InCOLT, pages 154–168, 2006.2.1.2

[56] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.1.1.2, 2.1.1

[57] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text from labeled
and unlabeled documents. InProceedings of the Fifteenth National Conference on Artificial
Intelligence. AAAI Press, 1998.

[58] S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(4):380—393, April 1997.

[59] Joel Ratsaby and Santosh S. Venkatesh. Learning from a mixture of labeled and unlabeled
examples with parametric side information. InProceedings of the 8th Annual Conference
on Computational Learning Theory, pages 412—417. ACM Press, New York, NY, 1995.

[60] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. Science, 290:2323—2326, 2000.

[61] Sebastien Roy and Ingemar J. Cox. A maximum-flow formulation of the n-camera stereo
correspondence problem. InInternational Conference on Computer Vision (ICCV’98),
pages 492—499, January 1998.

[62] Bernhard Scḧolkopf and Alexander J. Smola.Learning with Kernels. MIT Press, 2002.
1.1.1, 1.1.2, 2.1.1

[63] Bernhard Scḧolkopf and Mingrui Wu. Transductive classification vis local learning regu-
larization. InAISTATS, 2007.1.1.2

[64] John Shawe-Taylor and Nello Cristianini.Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004. ISBN 0521813972.1.1.1, 1.1.2, 2.1.1

[65] John Shawe-Taylor and Nello Cristianini.An introduction to support Vector Machines: and
other kernel-based learning methods. Cambridge University Press, 1999.1.1.1, 1.1.2, 2.1.1

[66] John Shawe-Taylor, Peter L. Bartlett, Robert C. Williamson, and Martin Anthony. Struc-
tural risk minimization over data-dependent hierarchies.IEEE transactions on Information
Theory, 44:1926–1940, 1998.(document), 1.1.2, 2.1.1

[67] J. Shi and J. Malik. Normalized cuts and image segmentation. InProc. IEEE Conf. Com-
puter Vision and Pattern Recognition, pages 731—737, 1997.

[68] V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized approach to semi-supervised
learning with multiple views.Proc. of the 22nd ICML Workshop on Learning with Multiple
Views, 2005.

[69] Dan Snow, Paul Viola, and Ramin Zabih. Exact voxel occupancy with graph cuts. InIEEE
Conference on Computer Vision and Pattern Recognition, June 2000.

[70] Nathan Srebro. personal communication, 2007.

[71] Josh Tenenbaum, Vin de Silva, and John Langford. A global geometric framework for
nonlinear dimensionality reduction.Science, 290, 2000.

[72] S. Thrun, T. Mitchell, and J. Cheng. The MONK’s problems. a performance comparison of
different learning algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon Uni-
versity, December 1991.

[73] UCI. Repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html, 2000.

[74] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.

[75] V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

[76] J.-P Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. In
B. Scḧolkopf, K. Tsuda, and J.-P. Vert, editors,Kernel methods in Computational Biology,
pages 131—154. MIT Press, Boston, 2004.1.1.1

[77] Larry Wasserman. All of Statistics : A Concise Course in Statistical Inference
(Springer Texts in Statistics). Springer, 2004. ISBN 0387402721. URLhttp:
//www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20 \
&path=ASIN/0387402721 .

[78] Larry Wasserman.All of Nonparametric Statistics (Springer Texts in Statistics). Springer,
2007. ISBN 0387251456. URLhttp://www.amazon.ca/exec/obidos/
redirect?tag=citeulike09-20 \&path=ASIN/0387251456 .

[79] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and its
application to image segmentation.IEEE Trans. on Pattern Analysis and Machine Intelli-
gence, 15:1101—1113, 1993.

[80] Tong Zhang and Frank J. Oles. A probability analysis on the value of unlabeled data for
classification problems. InProc. 17th International Conf. on Machine Learning, pages

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387402721�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387402721�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387402721�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387251456�
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387251456�

1191–1198, 2000.

[81] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf. Learning with local and
global consistency. InAdvances in Neural Information Processing Systems 16. MIT Press,
2004.

[82] Z.-H. Zhou and M. Li. Semi-supervised regression with co-training.International Join
Conference on Artificial Intelligence(IJCAI), 2005.

[83] X. Zhu. Semi-supervised learning literature survey. Technical Re-
port 1530, Computer Sciences, University of Wisconsin-Madison, 2005.
http://www.cs.wisc.edu/∼jerryzhu/pub/sslsurvey.pdf.

[84] X. Zhu. Semi-supervised learning with graphs. 2005. Doctoral Dissertation.1.1.2

[85] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields
and harmonic functions. InProceedings of the 20th International Conference on Machine
Learning, pages 912—919, 2003.1.1.2

