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Abstract

Molecular dynamics simulations provide vast amount of information about a protein’s dynamics.
To interpret a protein’s dynamics and how it may relate to its function, traditionally, two-way
analysis techniques such as principal component analysis have been used. However, two-way
analysis techniques are usually limited by the fact that they have to be done post-process, i.e.,
after the simulations have been run and also cannot provide insights into temporal behavior of a
protein. To overcome these limitations, we are proposing to use multi-way analysis techniques to
understand and interpret protein dynamics as and when the simulations are progressing i.e., online.
We model MD simulations in terms of a collection of contact maps and then modeling them as
tensors to capture multiple dependencies. Using two recently developed techniques to perform
online analysis of streaming data, we illustrate the use of this technique to describe and interpret
the behavior of a protein complex in real time. We provide both experimental evidence to support
our claims and also discuss the potential advantages and disadvantages of using tensor analysis
techniques.





1 Introduction
With the proliferation of a number of protein structures in the PDB database [9], efforts are now
on to systematically understand the relationship between structure and function [32]. A recent
and widely acknowledged belief is that local dynamics (local changes to hydrogen bonds and hy-
drophobic interactions) drives global dynamics (large scale motions including that of domains) [41]
and hence, its function [5]. To fully appreciate a protein’s structure-function relationship, it would
be essential to understand the intrinsic dynamics of proteins. Proteins, even under equilibrium con-
ditions (constant temperature, pressure and solvent/ chemical conditions) undergo a wide range of
motions in varying time-scales. Some of these motions may involve bond-stretching/ vibrations
and have a time scale of typically a few femto-seconds, where as other motions, including breath-
ing motions or rearrangements of subdomains may have a time-scale of micro- to milli-seconds.
The wide gap in time-scales is often a problem in relating the dynamics of a protein to its function,
and hence statistical sampling techniques such as Molecular Dynamics (MD) and/ or Monte-Carlo
(MC) simulations are used in understanding the dynamics of a protein and how it may relate to its
function.

Molecular dynamics (MD) simulation is perhaps the most widely used technique to understand
how a protein functions [32]. In its simplest form, an MD simulation solves the Newton’s equations
of motions for every atom in a protein and updates their positions at every time step, given an
initial configuration of the atoms within a protein [17]. The data from a MD simulation (called
MD-trajectory) provides a detailed step-by-step view of a protein’s behavior aggregated over the
specified number of time-steps for which the simulation was carried out. Given a sufficiently long
MD trajectory (assuming that the protein was simulated for a long time), MD can also provide
accurate information about time-scales associated with long-range motions [30]. MD can also
provide information about solvent motions and how they affect protein function (if solvent was
included in the simulations) [4]. Thus, MD can be an extremely useful tool to understand protein
dynamics and function. However the data from MD simulations can be quite noisy and not all
the data present in the MD trajectory may be related to the protein’s functionality. Similarly,
visualizing and interpreting the trajectory data in high dimensions presents challenges that are quite
difficult to address using current methods. In order to relate protein’s dynamics to its function,
a number of post-processing tools such as Principal Components Analysis (PCA) [22] and its
flavors (Essential Dynamics [7], Quasi-harmonic analysis [23]) need to be employed to interpret
and understand the results from MD-simulations.

PCA based techniques for MD construct a covariance matrix from the MD trajectories and de-
compose them into eigenvalues and eigenvectors [18]. A small number of eigenvalues and eigen-
vectors (or a linear combination of these) describe the largest motions in the protein during the
course of the MD simulation [38]. However, the construction of the covariance matrix renders it
time independent; hence, time dependencies associated with functionally relevant motions cannot
be inferred from such techniques. Similarly, these techniques can be applied only after the simula-
tion is completed, and hence, no information about functionally relevant motions can be obtained
as the simulation is progressing.

A relevant question one may ask is whether any of these analyses can be done as the simulation
is progressing. This might be relevant in several circumstances; when one wants to monitor the
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progress of a simulation towards a certain target (i. e., steering) or in situations where one is
tracking the progress of a reaction (like catalysis). Hence, we propose to investigate MD as a
streaming application. The idea would be to represent the simulation in the form of a stream of
data (like video) and apply algorithms that already exist to analyze streaming data.

In the current work, we use a simple contact map representation [13, 20, 29] of a protein to cap-
ture how a residue interacts with its local environment. Based on this representation, we model the
MD trajectory as a collection of tensors. Tensors represent a convenient way to capture multi-way
dependencies [33], By employing a variety of tensor-analysis techniques [34], we evaluate how
one can understand the contact dynamics of a protein. We also present the application of two novel
techniques called Dynamic Tensor Analysis (DTA) and Streaming Tensor Analysis (STA) [37] to
analyze and monitor MD simulations as and when they are progressing. We apply the method to
a fairly large data-set of MD-trajectories to infer information about how a protein behaves during
the course of a MD-simulation. Using a simple clustering technique, we extract information about
dynamically coupled regions in a protein. We also illustrate how either DTA and STA could be
used to monitor MD simulations, and how reconstruction error (used in DTA and STA) may point
out events of dynamical interest in the simulation. We also provide a comprehensive analysis of
the performance of the two methods mentioned above, and conclude with a possible outlook into
how these methods may be applied to other problems in the realm of biology.

2 Modeling MD-simulations as Tensor Streams

2.1 Tensors and Tensor Operations
Tensors represent an abstraction of multiple dependencies that may exist in the underlying data, by
succinctly capturing them in multiple dimensions. Formally, a tensor, X of M dimensions can be
defined as a multi-dimensional array of real values,

X ∈ <N1×N2×...×NM (1)

where Ni represents the dimensionality of the ith mode for (1 ≤ i ≤ M). Thus, a scalar is a
tensor of dimension zero, a vector is a tensor of dimension one, and matrix is a two dimensional
tensor. All operations possible on a matrix are defined for tensors, however certain key operations
do differ in their definition and usage; a review of the tensor operations are provided in Kolda, et
al [24].

Any M -dimensional tensor can be converted into a matrix through the matricization process.
The dimension-i matricizing or unfolding of a tensor X ∈ <N1×N2×...×NM is defined as vectors
obtained by keeping index i fixed, while varying the other indices. For example, consider X ∈
<N1×N2×N3 . Unfolding the tensor in mode-1 will result in a matrix X(1) having an order (N2 ×
N3)×N1. An illustration of the same is provided in Figure 1.

It is also possible to multiply a tensor with a matrix. This operation is referred to as the tensor
mode product, and can be defined as follows. The mode product of a tensor X ∈ <N1×N2×...×NM
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Figure 1: Tensor unfolding into a matrix.

Figure 2: Tensor product illustration.

and a matrix U ∈ <Ni×R is a tensor of dimensions Y ∈ <N1×N2×...×Ni−1×R×Ni+1×...×NM as:

X ×d U(i1, . . . , id−1, j, id+1, . . . , iM) =

Ni∑
id=1

X (i1, . . . , id−1, j, id+1, . . . , iM)U(id, j) (2)

An example of such an operation is illustrated in Figure 2. Given a sequence of matrices U|Mi=1 ∈
<Ni×Ri , then, one may multiply these matrices in sequence shown below:

X
M∏
i=1

×iUi = X ×1 U1 ×2 . . .×M UM (3)

2.2 Representing Protein Structures as Tensors
Extending this representation to proteins, the most convenient way to model a protein as a ten-
sor, would be to use a simple contact-map representation. In this representation, we consider the
number of heavy atoms of residue i in contact with residue j in a particular MD snapshot. In this
context contact means whether any of the heavy atoms in residue i comes within 4 Å of the heavy
atoms in residue j. The choice of 4 Å can be even parameterized depending on whether we mean
van der Waals contact between two hydrophobic atoms or between a hydrogen bond donor and
acceptor atom. For the current study, a uniform distance cut-off of 4 Å was used. Based on this,
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Figure 3: A contact map representation for a protein structure. The diagonal elements of the plot
are set to zero, whereas immediate neighbors and the neighbors with which the protein maintains
contact are set to a value that is proportional to the number of heavy atoms in contact with that
residue as described in Equation4.

one can model the contact matrix Aij(t) as follows:

Aij(t) =
nij√
ni.nj

(4)

where Aij(t) is the contact matrix. nij is the number of heavy atoms in residue i coming in contact
with the heavy atoms in residue j. This value is normalized over the square root of the number
of heavy atoms in residues i and j. This value captures a measure of the localized density of
interaction within an amino acid’s immediate neighborhood. This representation of a contact map
has been used in several previous works including [14, 12]. For the purposes of clarity, we choose
to ignore self contacts (all heavy atoms of residue i are in contact with it self) and hence the
diagonal elements of A were set to zero. Since A(t) is also a second order tensor, we will use the
standard tensor notation, At to represent this data. A simple contact plot for one of the proteins is
shown in Figure 3.

At every time step t, MD updates the positions of the atoms and thus, a new instantaneous
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At arrives. Although there is not a very drastic change between At and At−1, its immediate
predecessor, any change or reorganization of the contacts will be captured in this representation.
In effect, we are able to capture the residue’s interactions by tracking the instantaneous change in
the localized density of a residue in a protein.

One can imagine the whole MD trajectory to be a collection of these second order tensors in
series (and thus as a third order tensor). Such an ordered sequence of tensors is usually referred
to as tensor stream. Formally, a tensor stream is defined as a sequence of M th order tensors
X1,X2, . . .Xn, where each of the Xi ∈ <N1×N2×...×NM and n is an integer that increases with time.
For our particular application, we model the contact map tensor as a stream of tensors:

A1,A2, . . . ,An (5)

where n = T/w represents the number of tensor windows in the MD simulation. T is the total
number of steps (or time) for which the MD simulation was carried out, and w is the size of the
window of snapshots involved in the analysis. Ai thus represents a slice of the MD trajectory
which may involve w snapshots, where w represents a window in the MD trajectory. The size of
the window w can be varied depending on the length of the MD trajectory.

2.3 Tensor Analysis for MD-simulations
Given the description of the tensor stream defined in Equation (5), the main objective of our analy-
sis would be to find underlying patterns about how the contacts between a residue and its environ-
ment are changing with respect to each other (i.e., relative behavior) as well as with respect to time
(i.e. temporal behavior). By studying the variation in contact maps, we are able to extract a global
description about movements within residues. We term this description of the patterns observed in
contact maps over the course of the simulation as contact map dynamics.

In order to extract patterns underlying the original data, it is essential to describe the system
in terms of reduced dimensions using a procedure like Singular Value Decomposition (SVD) or
Principal Component Analysis (PCA), by minimizing the observed variance in the underlying
data. SVD or PCA are applicable to two-dimensional problems such as analysis of covariance
matrices from MD simulations. Let us now see how PCA will be applicable in this scenario. One
may construct a covariance matrix based on the observed changes in contact maps over time, as
defined:

cov(Aij) = 〈aij − 〈aij〉〉 (6)

where aij is the instantaneous contact value, defined in Equation 4 and 〈.〉 defines the average value
over the entire simulation. Since Aij is a symmetric positive semi-definite matrix, PCA would
yield exactly N eigenvalues (Λ) and eigenvectors (UPCA

1 ), which may be concisely represented as
follows:

cov(Aij) = UPCA
1 ΛUT,PCA

1 (7)

For tensors, patterns are extracted by a similar procedure called tensor analysis which is an
extension of SVD into multiple dimensions. Thus, the objective function would be to minimize
the variance observed in the tensors, across every chosen dimension. Formally, given a sequence
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of tensors J1,J2, . . . ,Jn, where each Ji ∈ <N1×N2×...×NM (1 ≤ i ≤ M), we would like to find
orthogonal matrices Ui ∈ <Ni×Ri , one per dimension, such that the least-squared deviation e is
minimized. The reconstruction error e is defined by:

e =
n∑

t=0

‖Jt − Jt

M∏
i=1

×i(UiU
T
i )‖2F (8)

The operation Jt

∏M
i=1×i(UiU

T
i ) is the approximation of Jt under the space spanned by

Ui|Mi=1. This approximation in multiple dimensions is termed Frobenius-norm and can be formally
defined as the sum of the squared elements of the tensor J , shown below:

‖J ‖2F =

N1∑
i1=1

. . .

NM∑
iM=1

J (i1, i2, . . . , ıM)2 (9)

In order to construct the least-squared approximation in multiple dimensions, one can typically
formulate it as minimizing the least-squared approximation across every pair of M dimensions
separately. Thus, if we have M dimensions, one way of minimizing the least squared deviation
is to construct individual covariance matrices across two different dimensions and minimize using
the PCA technique in every one of the dimensions. Formally, this may be written down as:

cov(J(1)) = U1Λ(1)UT
1 (10)

cov(J(2)) = U2Λ(2)UT
2 (11)

cov(J(M)) = UMΛ(M)UT
M (12)

In the case of simulations, one can substitute A in Equation (8) and minimize the deviation
observed across the variation in contacts as well as time. There will be three core matrices that one
will obtain since the whole MD trajectory is modeled as a third order tensor. By our representation,
since At is symmetric, U1 and U2 orthogonal matrices will be the same. Orthogonal matrix U3

which represents the time dependent variation in the rearrangements will be dependent on the
window size n that we previously defined.

In order to track simulations on-the-fly, it is essential that Equation(8) is performed as the
simulations are progressing. Hence, tracking the variance in each one of the dimensions shown in
Equations (10-12), need to be incremental. This is done by using two algorithms devised by Sun,
et al [34]. These two algorithms called Dynamic Tensor Analysis (DTA) and Streaming Tensor
Analysis (STA) provide an intuitive yet efficient way to update the variance observed in the tensors
incrementally. The details of these algorithms can be obtained from [34, 35, 36, 37]. Here we
provide a qualitative description of the two algorithms used.

The DTA procedure is illustrated in Figure 4. One can observe that it is possible to update the
variance matrices (in a particular dimension d, represented by Cd) incrementally, without having
to store any prior information about previous tensors. Implicitly, every tensor stream arriving at
time t is independent of the tensor at time t − 1. Once the variance matrices are available, an
SVD on the variance matrix is easy to compute using the relation Cd = UdΛdUT

d , where Ud is an
orthogonal matrix (eigenvectors) and Sd is a diagonal matrix (eigenvalues). Thus, the steps in the
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Figure 4: Illustration for the Dynamic Tensor Analysis Algorithm.

algorithm would entail the matricizing the new tensor J in the dth mode, updating the variance
matrix Cd with Cd ← Cd + JT

(d)J(d), and then computing the new projection matrices Ud by
performing an SVD on the Cd. This was illustrated in the previous discussion (refer Equations
10-12).

The most time-consuming step in DTA is the SVD that needs to be performed on the new
variance matrix Cd. STA is an efficient approximation of DTA without the necessity of this step.
The schematic for STA is illustrated in Figure 5. Instead of diagonalizing the Cd, it is also possible
to track the changes in the variance matrices, by estimating the change in the projection matrix Ud

and then updating U on the basis of the error e observed. This update is done by sampling a certain
number of columns from U to estimate the change in error e that is observed and can be controlled
by the user. Note that this is only a fast approximation to DTA. The technical details of both these
algorithms and their complexity is discussed in detail in [35].

2.4 Related Work
The use of multi-way analysis has been particularly popular within the field of cheminformatics
[33]. Although several of these applications deal mostly with data from experiments such as fluo-
rescence and infra-red spectroscopy, only recently has it been applied for NMR [27, 28]. Multi-way
analysis techniques have also been popular in other bioinformatics applications such as three-way
analysis of micro-array data [42] and also in several medical applications [1, 2]. However, this is
the first time, that multi-way analysis techniques to systematically analyze protein structures via
MD-simulations. Recently, a comprehensive survey of multi-way analysis techniques has been
provided in [24].

On the fly analysis of multiple data streams has only been a recent development. Network
attack monitoring has been successfully performed by using DTA and STA [35, 36]. Also, the
techniques presented above have been used to perform multi-way latent semantic indexing on
several large data-sets including DBLP, to mine and visualize information in multiple dimensions
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Figure 5: Illustration for the Streaming Tensor Analysis Algorithm.

simultaneously [37, 34].
A vast amount of literature exists on using contact map representation for proteins [13, 20, 29]

and their use to model protein dynamics [19, 8, 31, 15]. Domany et al modeled protein folding
in the contact map space using Monte Carlo simulations [8, 39]. Similarly a simple lattice based
model was used to simulate protein folding in [19] as well as understand the kinetics behind a
protein folding process in [31]. However, the process of using contact maps to track and monitor
MD simulations has not been attempted before, and also the study of the evolution of contact maps
to identify which parts of the protein are more susceptible to change (in terms of their dynamics)
is also unique in the current work.

3 Results

3.1 MD and Data preparation
Our data set of protein simulations comprised of Cyclophilin A (CypA), a protein that catalyzes
the peptidyl-prolyl cis-trans isomerization reaction [16, 10, 6, 3]. CypA is a protein formed by a
β-barrel flanked by two α-helices on either side of the barrel, and a large number of functionally
important loop structures. CAN on the other hand, is a protein that is almost exclusively made up
of α-helices with a large functional loop which binds to CypA. In this data set of MD simulations,
we have basically studied the progress of the entire cis-trans isomerization using a simulation
protocol outlined in [6]. The CypA structure used for this analysis had an entire protein (namely
the HIV-1 capsid protein; CAN ). We first processed the MD trajectories to compute the contact
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map (Equation 4) at every time step. Since there is a large amount of data within the trajectory, we
chose to use a smaller subset of the structures that spanned the entire reaction pathway as our input
contact matrices. Each MD trajectory consisted of 18000 structures. Using a regular increment
of 50 snapshots, we constructed a 3rd order tensor consisting of T = 3600 structures, and chose a
window size w of 10. Thus, for our case, n worked out to be 360. We ran both DTA and STA on
the chosen snapshots and analyzed the results.

3.2 Analysis of CypA-CAN dynamics with DTA
In this subsection, we will illustrate how the outputs from DTA can help one understand the contact
dynamics of a protein such as CypA complexed with CAN . The protein, as explained above
provides an ideal platform for study since it involves the dynamics between two entirely different
proteins with significant structural differences. First we examine the core matrices from DTA and
illustrate how one may interpret information about the dynamics of CypA-CAN complex. Then,
we apply clustering techniques like k-means to interpret the orthogonal matrices. Also, we analyze
the nature of dynamical events by tracking the reconstruction error.

3.2.1 Core matrices from DTA indicate differences in contact dynamics of CypA and CAN

The core matrices U1 or U2 (which are identical in this case) represent a compact description of
how contacts between residues evolved over the course of the entire simulation. One can visualize
this as a summary of contact dynamics, which may give insights into how the protein behaves as
a whole. First, we illustrate the core matrices U1 shown as a color map in Figure 6. As such, the
plot (Figure 6) represents the correlation in contacts observed from the simulation. However, the
column maximum values of the core matrix U1 indicate those residues that may play an important
role in terms of the contact dynamics, a subsequent plot is illustrated in Figure 7. Observe that
within the plot, there are several regions of CypA (1-165 on the x-axis) that stand out, particularly
(a) 26-56, (b) 90-102 and (c) 140-150. Note that (a) is the location of the active site of CypA
(52-56) and several of the residues in this region are conserved across species (ex. 30, 32, 35, 36
and 48). Similarly, within (b), a number of residues are also conserved: 90, 98, 100 and 102. A
similar observation can also be made for CAN .

It is also interesting to note that several of the residues that are implicated in CypA and CAN

function occupy the extremum points on the plot. To illustrate this, we plotted the mean and
standard deviations for the column maxima in U1 for CypA and CAN separately. An immediate
observation that follows from this plot is that the CypA structure exhibits potentially more changes
within its contact matrices compared to that of the CAN . This is evident because (a) the mean
for CypA’s U1 is larger than that of CAN and (b) the variance/ spread in CypA is also larger than
that of CAN . As is evident from experimental evidence the B-factors for CypA is also larger than
that of CAN , providing further support to the claim that CypA exhibits more changes in its contact
dynamics. Another relevant experimental evidence might be also explained on the basis of the
secondary structure content of the protein. CypA is clearly formed of a β barrel and with a number
of loop regions than CAN which is largely made up of α helices. The residues beyond the first
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Figure 6: Absolute values of the core matrix U1 shown as a color map. The columns in U1 with
the highest values represent important residues.

standard deviation interval (both minima and maxima) on the plot are typically conserved across
species (in CypA) and are involved in forming important contacts with the neighboring residues.

3.2.2 Clustering the core matrices from DTA can provide insights into contact dynamics of
CypA-CAN complex

In order to meaningfully interpret the correlations from the core matrices, we chose to cluster the
core matrices using a simple clustering algorithm such as k-means. The output from the k-means
clustering for CypA-CAN complex is illustrated in Figure 8. One of the interesting observations
was that at k = 2, we were able to observe that the CypA separated from the CAN protein,
indicating that the contact dynamics of the substrate (CAN ) and the enzyme (CypA) were quite
different. Only those parts of the substrate in intimate contact with the enzyme seem to exhibit
similar or co-ordinated contact dynamics with CypA. This is especially encouraging, since several
previous studies have also indicated such a result.

It is interesting to note that the clustering not only gives an idea about the spatial locations
of the regions in the protein exhibiting similar contact dynamics, but also gives insights into the
relative difference in contact dynamics of CypA and CAN . As already illustrated before from
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Figure 7: Maximum fluctuations in terms of contacts within cyclophilin A

Figure 6, CAN is relatively stable in terms of its contacts, meaning that residues in CAN do not
change their contacts dynamically as much as CypA does. However, when we observe the clusters
from k = 3, as shown in Figure 8(b) it is clear that the clusters from CypA have now separated into
two clusters; one cluster showing loops from CypA that are in contact with the substrate (CAN )
and the other cluster showing the rest of CypA (shown in green). This separation is further clear
when k = 4, as shown in Figure 8(c). The entire β-sheet proximal to the substrate and the loop
structures involved in the catalytic process [3] are separated into a cluster (shown in blue) with the
rest of the CypA structure forming the hydrophobic core of the protein (the two α-helices and the
rest of the β-barrel) grouped into another cluster (shown in yellow). The substrate is also clustered
into two regions. Of these two regions, the cluster shown is cyan is also dynamic, as evident from
the B-factors determined from X-ray crystallography [21]. We have also illustrated k = 5, Figure
8(d) which shows the further division in the hydrophobic core of the protein by separating the three
β-strands as well as the α-helix located in proximity of the active site of the protein.

A clearer picture of the relative contact dynamics between CypA and CAN can be obtained by
looking at the actual values of U1. Here we illustrate this for k = 4, shown in Figure 8(c). Note
that the k-means clustering uses an arbitrary numbering scheme to illustrate its clusters and hence
in order to understand the meaning of the clusters, one has to actually look at the values of U1.
The clusters shown in green and cyan exhibit lower values on average compared to the rest of the
structure. The cluster shown in yellow has relatively the lowest average values of U1, compared
to the rest of CypA. However, the cluster shown in blue has the highest values in the core matrix.
Note that this cluster is formed of residues in CypA that form the active site of the protein and/
or have residues implicated in the catalytic activity of the protein. These residues are all part of
the three regions that we pointed out earlier in section 3.2.1. Also the residues from CAN that
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(a) k = 2 (b) k = 3

(c) k = 4 (d) k = 5

Figure 8: k-means clustering of the core matrix U1 from DTA mapped onto the structure of CypA-
CAN complex (1AWQ). The colors are arbitrarily selected via the k-means implementation in
MATLAB. The significance of the clustering is discussed in the text.

are in contact with the enzyme also form a part of this cluster, further indicating that the contact
dynamics (both spatial and temporal aspects) are similar.

Note also that there is a distinct hierarchy within the clustering observed. This hierarchy is
illustrated in Figure 9. The first level/ topmost level of clustering divides the substrate (CAN ) and
enzyme (CypA) into two separate clusters (except for the regions from the substrate in contact with
the enzyme). The second level divides the regions of CypA in contact with CAN from the rest of
CypA, however, the substrate remains unaffected. With k = 4, one can further observe that CAN is
further divided into two clusters; and with k = 5, CypA is further divided into one more cluster, as
shown in 8. None of this information was provided as either as prior knowledge or as information
to DTA for processing. Thus, DTA learns these clusters automatically, from the MD simulations
(see discussion).
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Figure 9: Cluster hierarchy from DTA for CypA-CAN complex.The leaves at the bottom level
illustrate clusters obtained from k = 5 and the levels higher illustrate clustering at k = 2, 3 and 4
respectively.

3.2.3 Tracking MD simulations using DTA

One of the interesting aspects of using DTA to analyze streaming data is that it can identify time-
points where there was significant deviation from the previous tensor. This ability has been es-
pecially useful in identifying and tracking external attacks in a network monitoring application
setting [35]. For MD simulations, we analyze here the reconstruction error (e) metric to track
bio-molecular simulations. The reconstruction error e plotted against the tensor number (time) is
shown in Figure 10. As seen from the plot, the errors are not that high, however, there are several
points of interest across the entire trajectory where the contact maps have significantly deviated
(beyond the second standard deviation interval plotted in dark red) from the mean reconstruction
error. These time points indicate an event where the contact map significantly varied from the
original structure. For example, in the plot shown below, the structures from tensor 14 (snapshots
700-750) were interesting, since they show significant deviation in the arrangement of the substrate
(CAN ) within the active site location of CypA. Similar observations can be made with respect to
the structures from tensor 59 (snapshots 2950-3000), tensor 86 (snapshots 4300-4400), tensor 202
(10100-10150) and many others. Note that of these tensors, tensor 202 is quite interesting because
it represents structures that are close to the transition state of the enzymatic reaction.

3.3 Analysis of CypA-CAN dynamics with STA
We investigated the applicability of STA to CypA-CAN dynamics by analyzing the core matrices
from STA, and also looking at the clustering of the core matrices. We also test the use of STA by
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Figure 10: The reconstruction error plotted as a function of the tensor snapshot from the MD
simulation. Every tensor snapshot is a representation of 50 snapshots from the MD trajectory.

varying the sample from the current tensor to provide an estimate of the best results that can be
compared with DTA. We varied the sampling parameter for STA from a minimum of 10% to 80%
in increments of 10% to understand the implications of sampling and its impact on predicting the
dynamic domains in CypA-CAN complex. One of the very first observations from STA was that
the clustering was more diffuse compared to that of the DTA. This meant that a number of residues
that would have otherwise belonged to CypA were clustered to belong to CAN and vice-versa, as
shown in Figure 11(a). However, the maximum length of these clusters that were misclassified
were about 8 in each segment, and hence we used a cluster refining method where by we assigned
the smaller clusters into their respective domains. This led to a good improvement in the clustering
as illustrated in Figure 11(b). However, STA does not seem to perform as well as DTA when we
increase the cluster size to k = 2, 3, 4 and so on.
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(a) k = 2 (b) k = 3

Figure 11: k-means clustering of the core matrix U1 from STA mapped onto the structure of
CypA-CAN complex (1AWQ). The colors are arbitrarily selected via the k-means implementation
in MATLAB. The significance of the clustering is discussed in the text.

4 Discussion

4.1 Biological significance of DTA in interpreting contact dynamics
The contact matrix representation is a measure of how much each residue moves with respect to its
local environment. DTA successfully captures the spatial and temporal behavior of residues with
respect to their respective environments, and can learn how the enzyme and substrate are coupled.
It cannot (and does not) however capture any physical correlations with respect to the dynamics
of a protein, as one would expect from a correlation matrix observed from MD simulations. It
can clearly identify regions coupled with respect to contacts, meaning, residues that are moving
similarly in their environment are typically identified to belong to a cluster. This is especially
clear, if one observes the clustering with k = 2,from DTA (Figure 8(a)). Clearly DTA identifies
the enzyme and substrate to be in their respective clusters, whereas the loop regions within CAN

in contact with CypA are identified to be coupled with respect to the CypA cluster.
The residues at the interface of two clusters, i.e., cluster boundaries indicate residues where

there is a significant deviation from the current cluster in terms of its contact dynamics. These
residues and/ or its neighbors ones may play an important role in modulating a protein’s func-
tion. Note that within CypA-CAN complex, His252 (His87 in CAN ) and Gln260 (Gln95 in CAN )
are both identified to be making contacts with CypA, especially with residues 25-132. This se-
quence of residues in CypA contain most of the functionally implicated (and highly conserved)
residues, which are known to be important to modulate the protein’s function. It is also interesting
to note that the rest of the enzyme (CypA) is clustered into a separate group, where conservation
of sequence is quite variable, indicating that the role of this cluster may be only to stabilize the
hydrophobic core of the protein.

As noted in the results section, DTA can extract the relative time scales of contact map dynam-
ics. We had also shown that the rate at which contacts evolve within CypA are faster than that of
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CAN . This can be further examined with respect to the secondary structure content of the proteins
in the complex. Note that CAN is a compact, α-helical protein, with just two loop structures, one
from the N-terminal part of the protein (166-182) and the part of the protein that makes contact
with the enzyme (248-266). On the other hand, CypA is composed of a β-barrel and two α-helices
flanking the hydrophobic core of the protein on either side. This gives rise to an interesting con-
sequence observed from Figure 7: since the values of the core matrix U1 is lower for CAN than
in CypA, the change in contact maps occurs slower and is much lesser in CAN than in CypA.
If we assume that a contact made by a residue with its neighboring environment is a measure of
its communicability, then CypA (and the loop regions of CAN ) have a higher communicability
than CAN . Thus, a protein with more β-strands represents its ability to transfer more information
across regions in a protein than a more compact α-helical protein like CAN . This also corresponds
well with the idea about secondary structural elements, since in an α-helical protein the side-chain
atoms are more constrained by their locality to move, than in a β-sheet/ barrel protein, where the
packing of the atoms allows for freer movements between side-chain atoms [11].

One may also want to interpret the contact map dynamics in terms of how various residues are
tethered to their respective environments. One may classify residues as contact tethered: residues
that are relatively constrained by their locality (as seen in CAN ) and contact untethered: residues
that are relatively easy to move in their local environment. This classification of residues allows
one to interpret some more observations from the dynamics. Since on an average, CypA under-
goes more contact rearrangements than CAN , CAN may be more rigid than CypA. This structural
rigidity of the substrate may also be a biologically required aspect of enzyme catalyzed reactions,
where by the placement of the substrate in the enzyme may control the reaction. CypA on the other
hand exhibits potential flexibility to accommodate the substrate, while undergoing conformational
changes that allow it to catalyze the reaction. However, the overall structure of CypA remains
more or less the same, except for the regions in the protein implicated in catalysis [10, 6].

4.2 DTA as an unsupervised learning algorithm for MD-simulations
DTA is ideally suited for providing both an analysis tool as well as a tracking tool for MD-
simulations. Clearly, by using the core matrices from DTA, one can understand physically im-
portant details with respect to protein dynamics as well as make reasonable predictions about the
system regarding how contact dynamics evolve over time. This provides the incentive of using
DTA as an unsupervised learning method for MD-simualtions. Part of the difficulty in interpret-
ing the data from an MD-simulation lies in the fact that it is high-dimensional as well as noisy.
But, DTA can overcome this obstacle and provide reasonable insights into protein dynamics while
being independent of any parameters that the user has to pre-define.

DTA also corresponds well with other existing methods to analyze protein structure. Especially
interesting to note is the similarity between DTA and the domain-partitioning algorithm via spectral
clustering (SCK) [26]. The analysis of the core matrices in DTA correspond well with the domains
that are identified by SCK, which is especially encouraging since both these methods use k-means
clustering to partition the graph into domains. Similar observations can also be made with respect
to other domain partitioning algorithms such as [25, 40]. The advantage of using DTA however
is that it clearly captures a spatio-temporal dependency in how contacts evolve with respect to
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different parts of the protein, providing a clear insight into the various interactions and how they
may be affecting its overall function.

5 Conclusion
We have outlined the development of a novel representation of protein dynamics using contact
maps, and analyzed the same using tensor analysis techniques to capture specific spatial depen-
dencies as well as temporal evolution. The use of DTA to capture these dependencies can be
useful in a wide variety of applications including steered molecular dynamics as well as tracking
applications real-time in the several experimental techniques including multi-dimensional NMR.
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