
From Indexed Lax Logic to Intuitionistic Logic

Deepak Garg1 Michael Carl Tschantz2

January 7, 2008
CMU-CS-07-167

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We present translations from a logic with indexed lax modalities to first-order intuitionistic logic
and intuitionistic linear logic. These translations rely on a continuation passing style encoding for
the lax modalities. We show that our translations preserve provability of formulas.

1This author was partially sponsored by the Air Force Research Laboratory under grant no. FA87500720028.
The views and conclusions contained in this document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

2This author was partially sponsored by the Army Research Office through grant number DAAD19-02-1-0389
(“Perpetually Available and Secure Information Systems”) to Carnegie Mellon University’s CyLab and by a generous
gift from the Hewlett-Packard Corporation. The views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government, or any other entity.

Keywords: Lax Logic, Affirmations, Logical Transformations

1 Introduction

Lax logic is a modal logic extending intuitionistic propositional logic with a single modality lax
(©A) satisfying the following axioms.

` A ⊃ ©A

` ©©A ⊃ ©A

` ©(A ⊃ B) ⊃ (©A ⊃ ©B)

In this report we describe two simple translations of lax logic with multiple modalities: a first-order
translation into first-order intuitionistic logic and a linear translation into intuitionistic linear logic.
We show that our translations preserve provability. The essence of these translations is a continu-
ation passing style (CPS) encoding of the lax modality.

Background. In its propositional form, lax logic was introduced by Mendler et al [FM97] as a
means of modeling digital circuits. Subsequently, a first-order version was developed for use in
constraint logic programming [FW97, FMW97]. The semantics and proof theory of lax logic are
well studied [PD01, FM97, How01, BBdP98, GP06, AMdPR01] and the propositional fragment
is decidable [FM97, How01]. Lax logic corresponds (under the Curry-Howard isomorphism) to
monads from functional programming [BBdP98].

Our primary interest in lax logic is its application to representing decentralized access-control
systems where different users, machines, programs, etc (abstractly called principals) request access
to secure resources like files or devices under the control of other principals such as administrators or
the operating system. The policies governing access to resources are formalized as logical formulas
in a suitably chosen logic. Access is granted to a resource if a particular proposition such as
can read(Bob, foo.pdf) is provable in the logic from the given policy.

A quintessential requirement on a logic of access control is a notion of statements made by a
principal [ABLP93, LABW92]. For instance, we may want to formalize the following statements in
the access control policy of a file system:

- Administrator says Bob can read foo.pdf

- Administrator says that any user X can read foo.pdf if X is a member of the group of privileged
users

One convenient way of formalizing such statements is to introduce for each principal K, a modality
〈K〉A (read “K says A”) with the intended meaning that K says that A is true. Then the above
statements can be encoded as follows.

- 〈administrator〉can read(Bob, foo.pdf)

- 〈administrator〉(∀X. privileged(X) ⊃ can read(X, food.pdf)).

Here privileged(X) is a predicate indicating that X is a privileged user and can read(Bob, foo.pdf)
means that Bob is allowed to read foo.pdf.

There is reasonable flexibility in choosing the logical rules governing the modality 〈K〉A and a
number of proposals have been made [LABW92, ABLP93, Aba03, GP06, Aba06]. For instance the
2 operator from modal logic K can be used. However, more recently, an increasingly large number

1

of proposals [GP06, Aba06, CCD+07, GBB+06, LLFS+07, GA08] have chosen 〈K〉A to be a lax
modality, with the rules described earlier:

` A ⊃ 〈K〉A

` 〈K〉〈K〉A ⊃ 〈K〉A

` 〈K〉(A ⊃ B) ⊃ (〈K〉A ⊃ 〈K〉B)

With these rules, the access control logic becomes an indexed lax logic, with one lax modality
for every principal. We briefly mention the merits of making 〈K〉A a lax modality, referring
the interested reader to existing work for more details on modeling access control systems in the
logic [LABW92, ABLP93, GP06].

- Owing to a well studied proof theory, the notion of proof is well understood for lax logic. This
is crucial in access control systems that often rely on the existence of proof of a certain propo-
sition (like can read(Bob, foo.pdf)) in order to grant access to resources. This is particularly
the case with proof-carrying authorization architectures [AF99, Bau03].

- The axiom A ⊃ 〈K〉A forces every principal to state every true statement A. This indicates
that proof is irrefutable evidence, i.e., if A has a proof, then every principal will believe it.
This is not the case in a number of modal logics, such as K.

- It is not the case that (〈K〉⊥) ⊃ ⊥. Thus, individual principals may make inconsistent
statements without making the logic inconsistent. This is important since principals may be
malicious.

In this report, we present a translation from an access control logic with lax modalities (called
INLL for INdexed Lax Logic here) to two different logics: first-order intuitionistic logic and intu-
itionistic propositional linear logic. We show in each case that the translations preserve provability
of formulas. In particular, we prove two complementary theorems in each case: soundness, which
states that a translated formula is provable only if the original formula is, and completeness which
states the converse.

The main motivation for studying these translations is automation of the proof search procedure
for INLL, which is central to implementations of access control systems using the logic. Rather than
prove a formula in INLL (for which theorem provers are not known), one could simply translate it
to (say) first-order logic and use a standard theorem prover. Besides automation, our results are
interesting from a theoretical perspective. To the best of our knowledge, these are the first sound
and complete translations from lax logic to logics without any modalities (with the exception of
translations based on explicit encodings of Kripke interpretations at first-order).

Related Work. Our translations rely on encoding the lax modalities in a continuation passing style
(CPS). Our translations extend a complete but unsound translation from lax logic to propositional
logic proposed by Mendler et al [FM97], which maps ©A to (pAq ⊃ C) ⊃ C, where C is a fixed
formula. Special cases of our translations suggest that soundness can be recovered in two different
ways. The first is to add a universally quantified parameter, mapping ©A to ∀x. (pAq ⊃ C(x)) ⊃
C(x). The other possibility is to allow linearity and translate ©A to (pAq ⊃ C) (C.

It is well known in functional programming that all monads (the Curry-Howard equivalents
of the lax modality) can be encoded using similar CPS transformations [Fil89, Fil94]. These

2

translations preserve equality of proofs under βη-reduction. We show that CPS translations of
lax modalities also preserve the existence of proofs. This expands earlier results from the level
of proof terms to the level of provability. The correctness of our linear translation critically uses
the fact that continuations arising from the translation have to be used exactly once. This is well
understood in functional programming [DDP99, BORT02, Ber04].

There is rather limited work on translating logics for access control into simpler logics. We are
aware of only one substantial effort in this direction [GA08]. However, this work is targeted at
modal S4 rather than intuitionistic logic. Other previous work on translating lax logic has targeted
intuitionistic S4 [PD01].

Organization of the Report. Section 2 describes the syntax and proof-system of the access
control logic INLL. Section 3 describes the translation from INLL to first-order logic. In section 4
we modify this translation to obtain the linear translation. Section 5 concludes the report with
directions for future work.

2 INLL: Indexed Lax Logic

In this section we describe indexed lax logic INLL, which is the source of our translations. INLL
extends intuitionistic propositional logic with a number of lax modalities, indexed by elements of a
countable domain of principals. We use A,B to denote arbitrary formulas and P to denote atomic
formulas. The letter K ranges over principals.

A,B ::= P | A ⊃ B | A ∧B | A ∨B | ⊥ | > | 〈K〉A

The axioms governing the lax modalities 〈K〉A have been described in section 1. Both natural
deduction and sequent calculus presentations of the proof theory are known for this logic [PD01,
FM97, How01, BBdP98]. In the following we describe a cut free sequent calculus from an earlier
work by one of the authors [GP06] to an extent necessitated by further discussion. Details of the
proof theory may be found in earlier papers.

The sequent calculus for INLL is presented in judgmental style, where the subjects of knowledge
are statements about propositions called categorical judgments. We use two categorical judgments:
A true, meaning that proposition A is true, and K affirms A meaning that principal K states that
A is true. Based on these categorical judgments, we construct hypothetical judgments which are
the subjects of proofs. Hypothetical judgments take one of the following two forms:

A1 true, . . . , An true⇒ B true
A1 true, . . . , An true⇒ K affirms B

The judgments A1 true, . . . , An true are called hypotheses or assumptions, and the intended mean-
ing is that if these judgments hold, then the judgment to the right of ⇒ (B true or K affirms B)
holds. We use the symbol Γ to denote a set of hypothesis, and γ to denote the judgment on the
right of ⇒ when its exact form does not matter. We elide the judgment name true from A true.

Connectives are described in the sequent calculus using left and right rules. As an example, the
rules for implication ⊃ are:

Γ, A⇒ B

Γ ⇒ A ⊃ B
⊃ R

Γ, A ⊃ B ⇒ A Γ, A ⊃ B,B ⇒ γ

Γ, A ⊃ B ⇒ γ
⊃ L

3

Rules for the connectives ∧,∨,>,⊥ are standard, and may be found in Appendix A. The rules for
〈K〉A are:

Γ ⇒ K affirms A

Γ ⇒ 〈K〉A
〈〉R

Γ, 〈K〉A,A ⇒ K affirms C

Γ, 〈K〉A⇒ K affirms C
〈〉L

The first rule states that in order to establish that 〈K〉A is true, it is enough to establish that
K affirms A. The second rule states that if we assume that 〈K〉A is true, then we are justified in
assuming that A is true provided we are trying to prove a goal of the form K affirms C. Note the
accordance of principal K on the left and right of ⇒ in this rule. The final rule connects the two
basic judgments:

Γ ⇒ A

Γ ⇒ K affirms A
affirms

This rule states that if A is true, then it is also the case that K affirms A. Together these three
rules capture the lax nature of the modality 〈K〉A. Appendix A summarizes the sequent calculus.
It can be shown that this sequent calculus is equivalent to the three axioms described earlier, and
that in the degenerate case where we consider only one principal, this logic reduces to lax logic.
The following cut admissibility theorem was proved in [GP06].

Theorem 2.1 (Admissibility of Cut).

1. If Γ ⇒ A and Γ, A⇒ γ, then Γ ⇒ γ.

2. If Γ ⇒ K affirms A and Γ, A⇒ K affirms B, then Γ ⇒ K affirms B.

3 Translation to First-Order Intuitionistic Logic

Now we present the translation from INLL to first-order intuitionistic logic (FOIL). The syntax
and proof theory of intuitionistic first-order logic are standard. A cut free sequent calculus is
summarized in appendix B. We write Σ; Γ ⇒ A to mean that from assumptions Γ, A is provable
in FOIL. The set Σ records all first-order constants occurring in Γ and A.

Our translation (p·q) is described in Figure 1. It maps all intuitionistic connectives of INLL to
themselves. The core of our work is the translation of 〈K〉A. We assume the existence of a binary
predicate af(K,x), which does not occur in INLL formulas. Its first argument is a principal. The
second is assumed to have an arbitrary fixed type. We often call the second argument a nonce. We
define

p〈K〉Aq = ∀x.(pAq ⊃ af(K,x)) ⊃ af(K,x)

This resembles a CPS transformation of the lax modality. The formula pAq ⊃ af(K,x) is the “type”
of the continuation, and af(K,x) is type of the result. It is necessary to universally quantify over
the nonce x in order to preserve provability. Figure 1 also shows the translation of hypotheses Γ
and sequents. The non-trivial part is the translation of the sequent Γ ⇒ K affirms A, which is
defined as Σ, a; pΓq, (pAq ⊃ af(K,a)) ⇒ af(K,a) where a is a fresh constant.

We prove two complementary correctness theorems for the translation. Completeness states that
whenever a formula is provable in INLL, its translation is provable in FOIL. The dual theorem,
soundness, states the converse. Completeness is easy to establish. We only need to show that each

4

pPq = P
pA1 ∧A2q = pA1q ∧ pA2q

pA1 ∨A2q = pA1q ∨ pA2q

pA1 ⊃ A2q = pA1q ⊃ pA2q

p>q = >
p⊥q = ⊥

p〈K〉Aq = ∀x.(pAq ⊃ af(K,x)) ⊃ af(K,x)

pΓ = {A1, . . . , An}q = {pA1q, . . . , pAnq}

pΓ ⇒ Aq = Σ; pΓq ⇒ pAq

pΓ ⇒ K affirms Aq = Σ, a; pΓq, (pAq ⊃ af(K,a)) ⇒ af(K,a) (a fresh)

Σ contains all constants mentioned in Γ, A and K.

Figure 1: First-Order Translation

inference rule in the sequent calculus for INLL can be simulated in FOIL after translation. The
formal proof is a straightforward induction on a given INLL proof.

Theorem 3.1 (Completeness). Suppose Σ contains all first-order constants mentioned in Γ, A
and K.

1. If Γ ⇒ A in INLL, then Σ; pΓq ⇒ pAq in FOIL.

2. If Γ ⇒ K affirms A in INLL, then Σ, a; pΓq, (pAq ⊃ af(K,a)) ⇒ af(K,a) in FOIL for every
fresh constant a.

Proof. See Appendix D.

Soundness states that if pΓq ⇒ pAq in FOIL, then Γ ⇒ A in INLL. Establishing this theorem
is non-trivial. Our approach is to identify a syntactic class of FOIL sequents which can occur in
proofs of translated INLL sequents. Then we define an inverse translation (x·y) from this class of
sequents to INLL, such that xp·qy is the identity. Finally we induct on proofs of sequents in this
class to show that their inverse translation is provable in INLL. The formal soundness theorem is
shown below.

Theorem 3.2 (Soundness). Suppose Σ contains all first-order constants mentioned in Γ, A and
K.

1. If Σ; pΓq ⇒ pAq in FOIL, then Γ ⇒ A in INLL.

2. If Σ, a; pΓq, (pAq ⊃ af(K,a)) ⇒ af(K,a) and a 6∈ Σ, then Γ ⇒ K affirms A.

Proof. See Appendix E.

Importance of Nonces. The universally quantified nonce x in the translated formula ∀x.(pAq ⊃
af(K,x)) ⊃ af(K,x) is essential for the proof of soundness. A translation without the nonce is

5

unsound. We show this by means of a counterexample. Suppose that we omit the nonce, so that
af is a unary predicate expecting only one principal as argument and define

p〈K〉Aq = (pAq ⊃ af(K)) ⊃ af(K)

Consider the INLL formula ((A ⊃ 〈K〉B) ⊃ A) ⊃ 〈K〉A. It is quite easy to verify that this formula
is not provable in general in INLL. However its translation is provable in FOIL for any A, B and
K, as the following derivation shows.

pAq ⇒ pAq
init

af(K) ⇒ af(K)
init

pAq ⊃ af(K) , pAq, pBq ⊃ af(K) ⇒ af(K)
⊃ L ∗ ∗

pAq ⊃ af(K), pAq ⇒ p〈K〉Bq
⊃ R+

pAq ⊃ af(K) ⇒ pA ⊃ 〈K〉Bq
⊃ R

pAq ⇒ pAq
init

p((A ⊃ 〈K〉B) ⊃ A)q , pAq ⊃ af(K) ⇒ pAq
⊃ L

af(K) ⇒ af(K)
init

p((A ⊃ 〈K〉B) ⊃ A)q, pAq ⊃ af(K) ⇒ af(K)
⊃ L∗

p((A ⊃ 〈K〉B) ⊃ A)q ⇒ p〈K〉Aq
⊃ R

· ⇒ p((A ⊃ 〈K〉B) ⊃ A) ⊃ 〈K〉Aq
⊃ R

In each application of the ⊃ L rule, we have put the principal formula in a box . This proof uses
the continuation pAq ⊃ af(K) twice: once in the rule marked ∗ and then in the rule marked ∗∗.
If we used a universally quantified nonce in the predicate af(K,x), this proof would be invalid
because the goal af(K) generated from p〈K〉Bq (rule marked +) would contain a fresh nonce that
would not match the nonce in the continuation.

4 Translation to Intuitionistic Linear Logic

The counterexample at the end of section 3 demonstrates that the nonce x is essential in the first-
order translation. We now describe an alternate possibility. Instead of adding the nonce, we could
make the continuation (pAq ⊃ af(K)) linear forcing it to be used exactly once in the proof. The
rule marked ∗ would consume the continuation, making it unavailable in the rule marked ∗∗. This
would invalidate the proof and eliminate the need for a first-order quantifier. Formally, we translate
INLL to propositional intuitionistic linear logic (ILL) instead of first-order intuitionistic logic.

There are several presentations of intuitionistic linear logic [dPH93, CCP03, Wad93, Bar96]. We
use a two-context presentation [CCP03, Bar96]. Appendix C summarizes the syntax and semantics
of ILL. The judgment Γ;∆ ⇒ A means that under the linear assumptions ∆ and unrestricted
assumptions Γ, A can be established. The assumptions in ∆ must each be used exactly once.
Those in Γ may be used zero or more times. We use the symbol (for linear implication, and ⊃
for non-linear implication. One may think of A ⊃ B as being (!A) (B. The other connectives we
need are & (additive conjunction), ⊕ (additive disjunction), > and 0.

Our linear translation (pp·qq) is described in Figure 2. For intuitionistic connectives, our trans-
lation mirrors Girard’s translation from intuitionistic logic to linear logic [Gir87]. For translating
〈K〉B, we assume a unary predicate af(K) whose argument is a principal and define

pp〈K〉Bqq = (ppBqq ⊃ af(K)) (af(K)

6

ppPqq = P
ppB1 ∧B2qq = ppB1qq & ppB2qq

ppB1 ∨B2qq = !(ppB1qq)⊕ !(ppB2qq)
ppB1 ⊃ B2qq = ppB1qq ⊃ ppB2qq

pp>qq = >
pp⊥qq = 0

pp〈K〉Bqq = (ppBqq ⊃ af(K)) (af(K)

ppΓ = {A1, . . . , An}qq = {ppA1qq, . . . , ppAnqq}

ppΓ ⇒ Aqq = ppΓqq; · ⇒ ppAqq

ppΓ ⇒ K affirms Aqq = ppΓqq; ppAqq ⊃ af(K) ⇒ af(K)

Figure 2: Linear Translation

Observe the use of (in the translation. For sequents, the interesting part is the translation of
Γ ⇒ K affirms A, where the continuation (ppAqq ⊃ af(K)) is a linear assumption. It is instructive
to check that by making the translation linear in this manner, the counterexample at the end of
section 3 no longer holds.

Correctness of the translation is established by proving soundness and completeness. It is
straightforward to establish completeness by showing that each proof in INLL can be simulated in
ILL.

Theorem 4.1 (Completeness).

1. If Γ ⇒ A in INLL, then ppΓqq; · ⇒ ppAqq in ILL.

2. If Γ ⇒ K affirms A in INLL, then ppΓqq; ppAqq ⊃ af(K) ⇒ af(K) in ILL.

Proof. See Appendix F.

Soundness is harder, but can be established using methods similar to section 3.

Theorem 4.2 (Soundness).

1. If ppΓqq; · ⇒ ppAqq in ILL, then Γ ⇒ A in INLL

2. If ppΓqq; ppAqq ⊃ af(K) ⇒ af(K) in ILL, then Γ ⇒ K affirms A in INLL

Proof. See Appendix G.

5 Conclusion

We have presented translations of propositional indexed lax logic to first-order intuitionistic logic
and intuitionistic linear logic, and showed that they preserve provability. The essence of our trans-
lations is a CPS encoding of lax modalities. We conclude this report with a discussion of extensions

7

and future work.

First-order and linear extensions. INLL is a propositional logic. Our translations can be
extended to extensions of INLL with first-order universal and existential quantifiers, including those
over principals, by mapping these quantifiers to themselves. In the case of the linear translation
this requires corresponding connectives in the target linear logic. For the first-order case, one must
also assume that the type of nonces is fresh, i.e., nonces do not appear in INLL formulas.

It is also possible to translate a linear logic with indexed lax modalities to linear logic without
any modalities. In this case, every linear connective is mapped to itself, and 〈K〉A is mapped to
(ppAqq (af(K)) (af(K). This is interesting because applications of linear logic in access control
have been studied recently [GBB+06, BBG+07].

Future Work. An immediate subject of future work is to actually use our translations for theorem
proving in access control systems. We would like to see if this idea scales to large access control
policies that are used in practice.

On a more theoretical note, we would like to use our translation to explore Kripke semantics
for lax logic. Since Kripke semantics of first-order logic are well understood, we should be able to
derive semantics for lax logic using the translation. It would be interesting to explore how these
relate to existing Kripke semantics [FM97, AMdPR01, GA08], and whether these derived semantics
have some practical application in the context of access control.

In a related direction, it is possible to obtain translations from lax logic into first-order in-
tuitionistic logic by taking existing Kripke semantics and encoding their accessibility relations as
explicit predicates. It would be interesting to see if these translations relate to ours in a meaningful
way.

Acknowledgments

We are grateful to Frank Pfenning for discussions and feedback on an earlier draft of this work,
and to Mart́ın Abadi for feedback on related work.

References

[Aba03] Mart́ın Abadi. Logic in access control. In Proceedings of the 18th Annual Symposium
on Logic in Computer Science (LICS’03), pages 228–233. IEEE Computer Society
Press, June 2003.

[Aba06] Mart́ın Abadi. Access control in a core calculus of dependency. In ICFP ’06: Pro-
ceedings of the eleventh ACM SIGPLAN international conference on Functional pro-
gramming, pages 263–273, New York, NY, USA, 2006. ACM Press.

[ABLP93] Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for
access control in distributed systems. ACM Trans. Program. Lang. Syst., 15(4):706–
734, 1993.

8

[AF99] Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In CCS ’99:
Proceedings of the 6th ACM conference on Computer and communications security,
pages 52–62, New York, NY, USA, 1999. ACM Press.

[AMdPR01] Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. Categorical
and Kripke semantics for constructive S4 modal logic. In CSL ’01: Proceedings of
the 15th International Workshop on Computer Science Logic, pages 292–307, London,
UK, 2001. Springer-Verlag.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,
University of Edinburgh, 1996.

[Bau03] Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis,
Princeton University, November 2003.

[BBdP98] P. N. Benton, Gavin Bierman, and Valeria de Paiva. Computational types from a
logical perspective. Journal of Functional Programming, 8(2):177–193, 1998.

[BBG+07] Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Reiter.
Consumable credentials in logic-based access-control systems. In In Proceedings of
the 14th Annual Network and Distributed System Security Symposium (NDSS 2007),
2007.

[Ber04] Josh Berdine. Linear and Affine Typing of Continuation-Passing Style. PhD thesis,
Queen Mary, University of London, 2004.

[BORT02] Josh Berdine, Peter O’Hearn, Uday Reddy, and Hayo Thielecke. Linear continuation-
passing. Higher Order Symbol. Comput., 15(2-3):181–208, 2002.

[CCD+07] J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and G. Lenzini.
Audit-based compliance control. Int. J. Inf. Secur., 6(2):133–151, 2007.

[CCP03] Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental anal-
ysis of linear logic. Technical Report CMU-CS-03-131R, December 2003.

[DDP99] Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On proving syntactic proper-
ties of CPS programs. In Andrew Gordon and Andrew Pitts, editors, HOOTS ’99,
Higher Order Operational Techniques in Semantics, volume 26 of Electronic Notes in
Theoretical Computer Science, pages 21–33. Elsevier, 1999.

[dPH93] Valeria de Paiva and Martin Hayland. Full intuitionistic linear logic. Annals of Pure
and Applied Logic, 64(3):273–291, 1993.

[Fil89] Andrzej Filinski. Declarative continuations and categorical duality. Technical Report
89/11, University of Copenhagen, 1989.

[Fil94] Andrzej Filinski. Representing monads. In POPL ’94: Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 446–
457, New York, NY, USA, 1994. ACM.

9

[FM97] Matt Fairtlough and Michael Mendler. Propositional lax logic. Information and Com-
putation, 137(1):1–33, 1997.

[FMW97] Matt Fairtlough, Michael Mendler, and Matt Walton. First order lax logic as a frame-
work for constraint logic programming. Technical Report MIPS-9714, University of
Passau, 1997.

[FW97] Matt Fairtlough and Matt Walton. Quantified lax logic. Technical Report CS-97-11,
University of Sheffield, 1997.

[GA08] Deepak Garg and Mart́ın Abadi. A modal deconstruction of access control logics. In
Proceedings of the 11th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2008), 2008. To appear.

[GBB+06] Deepak Garg, Lujo Bauer, Kevin D. Bowers, Frank Pfenning, and Michael K. Reiter.
A linear logic of authorization and knowledge. In Computer Security—ESORICS 2006:
11th European Symposium on Research in Computer Security, volume 4189 of Lecture
Notes in Computer Science, pages 297–312, September 2006.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[GP06] Deepak Garg and Frank Pfenning. Non-interference in constructive authorization
logic. In CSFW ’06: Proceedings of the 19th IEEE Workshop on Computer Security
Foundations, pages 283–296, Washington, DC, USA, 2006. IEEE Computer Society.

[How01] Jacob M. Howe. Proof search in lax logic. Mathematical Structures in Computer
Science, 11(4):573–588, 2001.

[LABW92] Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber. Authen-
tication in distributed systems: theory and practice. ACM Trans. Comput. Syst.,
10(4):265–310, 1992.

[LLFS+07] Chris Lesniewski-Laas, Bryan Ford, Jacob Strauss, Robert Morris, and M. Frans
Kaashoek. Alpaca: Extensible authorization for distributed services. In Proceedings of
the 14th ACM Conference on Computer and Communications Security (CCS-2007),
Alexandria, VA, October 2007. To appear.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511–540, 2001. Notes to an invited
talk at the Workshop on Intuitionistic Modal Logics and Applications (IMLA’99),
Trento, Italy, July 1999.

[Wad93] Philip Wadler. A taste of linear logic. In MFCS ’93: Proceedings of the 18th Interna-
tional Symposium on Mathematical Foundations of Computer Science, pages 185–210,
London, UK, 1993. Springer-Verlag.

10

A INLL

INLL has all the inference rules of intuitionistic propositional logic:

Γ, P ⇒ P
INIT

Γ, A,A ∧B ⇒ C

Γ, A ∧B ⇒ C
∧ L1

Γ, B,A ∧B ⇒ C

Γ, A ∧B ⇒ C
∧ L2

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧B
∧ R

Γ ⇒ A

Γ ⇒ A ∨B
∨ R1

Γ ⇒ B

Γ ⇒ A ∨B
∨ R2

Γ, A⇒ C Γ, B ⇒ C

Γ, A ∨B ⇒ C
∨ L

Γ, A ⊃ B ⇒ A Γ, A ⊃ B,B ⇒ C

Γ, A ⊃ B ⇒ C
⊃ L

Γ, A⇒ B

Γ ⇒ A ⊃ B
⊃ R

Γ,⊥⇒ A
⊥ L

Γ ⇒ >
>R

To these we add inference rules mirroring the left rules of intuitionistic propositional logic:

Γ, A,A ∧B ⇒ K affirms C

Γ, A ∧B ⇒ K affirms C
∧ L′

1

Γ, B,A ∧B ⇒ K affirms C

Γ, A ∧B ⇒ K affirms C
∧ L′

2

Γ, A⇒ C Γ, B ⇒ K affirms C

Γ, A ∨B ⇒ K affirms C
∨ L′

Γ, A ⊃ B ⇒ A Γ, A ⊃ B,B ⇒ K affirms C

Γ, A ⊃ B ⇒ K affirms C
⊃ L′

Γ,⊥⇒ K affirms C
⊥ L′

Finally, we add rules connecting the two judgment forms:

Γ ⇒ A

Γ ⇒ K affirms A
affirms

Γ ⇒ K affirms A

Γ ⇒ 〈K〉A
〈〉R

Γ, 〈K〉A,A⇒ K affirms C

Γ, 〈K〉A⇒ K affirms C
〈〉L

B Intuitionistic First-Order Logic

Σ;Γ, P ⇒ P
INIT

Σ;Γ, A⇒ C

Σ;Γ, A ∧B ⇒ C
∧ L1

Σ;Γ, B ⇒ C

Σ;Γ, A ∧B ⇒ C
∧ L2

Σ;Γ ⇒ A Σ;Γ ⇒ B

Σ;Γ ⇒ A ∧B
∧ R

Σ;Γ ⇒ A

Σ;Γ ⇒ A ∨B
∨ R1

Σ;Γ ⇒ B

Σ;Γ ⇒ A ∨B
∨ R2

Σ;Γ, A⇒ C Σ;Γ, B ⇒ C

Σ;Γ, A ∨B ⇒ C
∨ L

Σ;Γ, A ⊃ B ⇒ A Σ;Γ, A ⊃ B,B ⇒ C

Σ;Γ, A ⊃ B ⇒ C
⊃ L

Σ;Γ, A⇒ B

Σ;Γ ⇒ A ⊃ B
⊃ R

Σ;Γ,⊥⇒ A
⊥ L

Σ;Γ ⇒ >
>R

Σ;Γ,∀x.A, [t/x]A ⇒ C

Σ;Γ,∀x.A⇒ C
∀L

Σ, a; Γ ⇒ [a/x]A a 6∈ Σ

Σ;Γ ⇒ ∀x.A
∀R

Σ, a; Γ,∃x.A, [a/x]A ⇒ C a 6∈ Σ

Σ;Γ,∃x.A⇒ C
∃L

Σ;Γ ⇒ [t/x]A

Σ;Γ ⇒ ∃x.A
∃R

11

C Linear Logic

The syntax of intuitionistic propositional linear logic follows:

A,B ::= P | B (B | B ⊃ B | B ⊗B | B ⊕B | B &B | 0 | 1 | > | !B

where ranges P over atomic propositions.
To express truth, the judgment form B true is needed. The sequent form Γ;∆ ⇒ B true

expresses hypothetical judgments. It means that under the unrestricted assumptions Γ and the
restricted (linear) assumptions ∆, B is true. The two contexts have the following form:

Γ ::= · | Γ, B Unrestricted Context
∆ ::= · | ∆, B Linear Context

The inference rules of the logic are as follows.

Judgmental Rules

Γ;P ⇒ P true
init

Γ, A;∆, A ⇒ C true

Γ, A;∆ ⇒ C true
copy

Multiplicative Connectives

Γ;∆1 ⇒ A true Γ;∆2 ⇒ B true

Γ;∆1,∆2 ⇒ A⊗B true
⊗ R

Γ;∆, A,B ⇒ C true

Γ;∆, A⊗B ⇒ C true
⊗ L

Γ; · ⇒ 1 true
1R

Γ;∆ ⇒ C true

Γ;∆,1 ⇒ C true
1L

Γ;∆, A ⇒ B true

Γ;∆ ⇒ A(B true
(R

Γ;∆1 ⇒ A true Γ;∆2, B ⇒ C true

Γ;∆1,∆2, A(B ⇒ C true
(L

Γ, A;∆ ⇒ B true

Γ;∆ ⇒ A ⊃ B true
⊃ R

Γ; · ⇒ A true Γ;∆, B ⇒ C true

Γ;∆, A ⊃ B ⇒ C true
⊃ L

Additive Connectives

Γ;∆ ⇒ A true Γ;∆ ⇒ B true

Γ;∆ ⇒ A&B true
& R

Γ;∆, A ⇒ C true

Γ;∆, A&B ⇒ C true
& L1

Γ;∆, B ⇒ C true

Γ;∆, A&B ⇒ C true
& L2

Γ;∆ ⇒ > true
>R no >L rule

Γ;∆ ⇒ A true

Γ;∆ ⇒ A⊕B true
⊕ R1

Γ;∆ ⇒ B true

Γ;∆ ⇒ A⊕B true
⊕ R2

Γ;∆, A ⇒ C true Γ;∆, B ⇒ C true

Γ;∆, A⊕B ⇒ C true
⊕ L

Γ;∆,0 ⇒ C true
0L

Exponential Connective

Γ; · ⇒ A true

Γ; · ⇒ !A true
!R

Γ, A;∆ ⇒ C true

Γ;∆, !A ⇒ C true
!L

12

D Proof of Completeness for First-Order Translation

Before proving completeness, we must prove a lemma.

Lemma D.1. p[t/x]Aq = [t/x]pAq where t ranges over terms.

Proof. By induction on the structure of A.

Now we prove completeness. By the definition of pΣ,Γ ⇒ γq, this may be shown by proving

1. if Σ; Γ ⇒ C, then Σ; pΓq ⇒ pCq; and

2. if Σ; Γ ⇒ K affirms C, then for any fresh a, Σ, a; pΓq, pCq ⊃ af(K,a) ⇒ af(K,a).

We prove these statements by simultaneous induction over the derivations D of Σ; Γ ⇒ A or
Σ; Γ ⇒ K affirms C:

Case: D =
Σ;Γ, P ⇒ P

INIT

1. Σ; Γ, P ⇒ P by INIT
2. Σ; pΓ, Pq ⇒ pPq by definition of p·q

Case: D =
Σ;Γ,⊥⇒ C

⊥ L

1. Σ; pΓq,⊥⇒ pCq by ⊥L
2. Σ; pΓ,⊥q ⇒ pCq by definition of p·q

Case: D =
Σ;Γ,⊥⇒ K affirms C ⊥ L′

1. Σ, a; pΓq,⊥, pCq ⊃ af(K,a) ⇒ af(K,a) by ⊥L
2. Σ, a; pΓ,⊥q, pCq ⊃ af(K,a) ⇒ af(K,a) by definition of p·q

Case: D =

D1

Σ;Γ, A ⊃ B ⇒ A
D2

Σ;Γ, A ⊃ B,B ⇒ C

Σ;Γ, A ⊃ B ⇒ C
⊃ L

1. Σ; pΓ, A ⊃ Bq ⇒ pAq by i.h. on D1

2. Σ; pΓq, pAq ⊃ pBq ⇒ pAq by definition of p·q
3. Σ; pΓ, A ⊃ B,Bq ⇒ pCq by i.h. on D2

4. Σ; pΓq, pAq ⊃ pBq, pBq ⇒ pCq by definition of p·q
5. Σ; pΓq, pAq ⊃ pBq ⇒ pCq by ⊃L
6. Σ; pΓ, A ⊃ Bq ⇒ pCq by definition of p·q

Case: D =

D1

Σ;Γ, A ⊃ B ⇒ A
D2

Σ;Γ, A ⊃ B,B ⇒ K affirms C

Σ;Γ, A ⊃ B ⇒ K affirms C ⊃ L′

1. Σ; pΓ, A ⊃ Bq ⇒ pAq by i.h. on D1

2. Σ; pΓq, pAq ⊃ pBq ⇒ pAq by definition of p·q
3. Σ, a; pΓq, pAq ⊃ pBq, pCq ⊃ af(K,a) ⇒ pAq by weakening
4. Σ, a; pΓ, A ⊃ B,Bq, pCq ⊃ af(K,a) ⇒ af(K,a) by i.h. on D2

5. Σ, a; pΓq, pAq ⊃ pBq, pBq, pCq ⊃ af(K,a) ⇒ af(K,a) by definition of p·q
6. Σ, a; pΓq, pAq ⊃ pBq, pCq ⊃ af(K,a) ⇒ af(K,a) by ⊃L
7. Σ, a; pΓ, A ⊃ Bq, pCq ⊃ af(K,a) ⇒ af(K,a) by definition of p·q

13

Case: D =

D1

Σ;Γ, A⇒ B

Σ;Γ ⇒ A ⊃ B
⊃ R

1. Σ; pΓ, Aq ⇒ pBq by i.h. on D1

2. Σ; pΓq, pAq ⇒ pBq by definition of p·q
3. Σ; pΓq ⇒ pAq ⊃ pBq by by ⊃R
4. Σ; pΓq ⇒ pA ⊃ Bq by definition of p·q

Case: D =

D1

Σ;Γ ⇒ C

Σ;Γ ⇒ K affirms C
affirms

1. Σ; pΓq ⇒ pCq by i.h. on D1

2. Σ, a; pΓq, pCq ⊃ af(K,a) ⇒ pCq by weakening
3. Σ, a;af(K,a) ⇒ af(K,a) by INIT
4. Σ, a; pΓq, pCq ⊃ af(K,a),af (K,a) ⇒ af(K,a) by weakening
5. Σ, a; pΓq, pCq ⊃ af(K,a) ⇒ af(K,a) by ⊃L

Case: D =

D1

Σ;Γ ⇒ K affirms C

Σ;Γ ⇒ 〈K〉C
〈〉R

1. Σ, a; pΓq, pCq ⊃ af(K,a) ⇒ af(K,a) where a is fresh by i.h. on D1

2. Σ, a; pΓq ⇒ (pCq ⊃ af(K,a)) ⊃ af(K,a) by ⊃R
3. Σ; pΓq ⇒ ∀x.(pCq ⊃ af(K,x)) ⊃ af(K,x) by ∀R (a is fresh)
4. Σ; pΓq ⇒ p〈K〉Cq by definition of p·q

Case: D =

D1

Σ;Γ, 〈K〉A,A ⇒ K affirms C

Σ;Γ, 〈K〉A⇒ K affirms C
〈〉L

1. Σ, a; pΓ, 〈K〉A,Aq, pCq ⊃ af(K,a) ⇒ af(K,a)

by i.h. on D1

2. Σ, a; pΓq, p〈K〉Aq, pAq, pCq ⊃ af(K,a) ⇒ af(K,a)
by definition of p·q

3. Σ, a; pΓq, p〈K〉Aq, pCq ⊃ af(K,a) ⇒ pAq ⊃ af(K,a)
by ⊃R

4. Σ, a; pΓq, p〈K〉Aq, (pAq ⊃ af(K,a)) ⊃ af(K,a), pCq ⊃ af(K,a) ⇒ pAq ⊃ af(K,a)
by weakening

5. Σ, a;af(K,a) ⇒ af(K,a)
by INIT

6. Σ, a; pΓq, p〈K〉Aq, (pAq ⊃ af(K,a)) ⊃ af(K,a), pCq ⊃ af(K,a),af (K,a) ⇒ af(K,a)
by weakening

7. Σ, a; pΓq, p〈K〉Aq, (pAq ⊃ af(K,a)) ⊃ af(K,a), pCq ⊃ af(K,a) ⇒ af(K,a)
by ⊃L

8. Σ, a; pΓq,∀x.(pAq ⊃ af(K,x)) ⊃ af(K,x), (pAq ⊃ af(K,a)) ⊃ af(K,a), pCq ⊃ af(K,a)
⇒ af(K,a)

by definition of p·q
9. Σ, a; pΓq,∀x.(pAq ⊃ af(K,x)) ⊃ af(K,x), pCq ⊃ af(K,a) ⇒ af(K,a)

14

· pleasant

Γ pleasant

Γ, pCq pleasant

Γ pleasant

Γ,af(K, t) pleasant

Γ pleasant

Γ, pCq ⊃ af(K, t) pleasant

Γ pleasant

Γ, (pCq ⊃ af(K, t)) ⊃ af(K, t) pleasant

Table 1: The formal definition of pleasant.

by ∀L
10. Σ, a; pΓq, p〈K〉Aq, pCq ⊃ af(K,a) ⇒ af(K,a)

by definition of p·q
11. Σ, a; pΓ, 〈K〉Aq, pCq ⊃ af(K,a) ⇒ af(K,a)

by definition of p·q

E Proof of Soundness for First-Order Translation

E.1 A Lemma

Before we can prove soundness, we need to define a few forms in which various terms may be found.
We define these forms to focus our attention on only those formulas that can arise from proving a
the translated sequent.

• Let the proposition D be called (K, t)-nice if it has the form pCq, af(K, t), pCq ⊃ af(K, t),
or (pCq ⊃ af(K, t)) ⊃ af(K, t).

• Let the proposition A be called (K, t)-mean if it has the form af(K ′′, t′′), pBq ⊃ af(K ′′, t′′),
or (pBq ⊃ af(K ′′, t′′)) ⊃ af(K ′′, t′′) where K ′′ 6= K or t′′ 6= t.

• Let a hypothesis context Γ be called pleasant if Γ is empty or Γ has the form Γ′, E for some
proposition E where Γ′ is pleasant and E has the form pCq, af(K, t), pCq ⊃ af(K, t), or
(pCq ⊃ af(K, t)) ⊃ af(K, t).

Pleasant is more formally defined in Table 1.

Lemma E.1. Let D be a derivation of Σ;Γ, A ⇒ D where D is (K, t)-nice, Γ is pleasant, and A
is (K, t)-mean. There exists a derivation D′ of Σ;Γ ⇒ D that is a shorter or equal in length to D.

Proof. Now we simultaneously induct on the given derivation D for all values of K and t.

Case: D =
Σ;Γ, A⇒ D

INIT

Since D is (K, t)-nice, it ranges over pCq, af(K, t), pCq ⊃ af(K, t), and (pCq ⊃ af(K, t)) ⊃
af(K, t). Since A is (K, t)-mean, A cannot be equal to D. Thus, D is in Γ and Σ; Γ ⇒ D by
INIT.

15

Case: D =
Σ;Γ, A⇒ D

⊥ R

A cannot be ⊥ since A is (K, t)-mean. Thus, ⊥ must be in Γ and Σ;Γ ⇒ D follows in one
step by ⊥R.

Case: ⊃R

Subcase: D =

D1

Σ;Γ, A, pCq ⊃ af(K, t) ⇒ af(K, t)

Σ; Γ, A⇒ (pCq ⊃ af(K, t)) ⊃ af(K, t)
⊃ R

Γ, pCq ⊃ af(K, t) is pleasant, af(K, t) is (K, t)-nice, and A is (K, t)-mean. Thus, the
i.h. applies to D1. By the i.h. on D1, Σ; Γ, pCq ⊃ af(K, t) ⇒ af(K, t) has a derivation
D′

1 with a length less than or equal to that of D1. Make D′ by extending D′

1 with ⊃R
to prove Σ; Γ ⇒ (pCq ⊃ af(K, t)) ⊃ af(K, t). Since D is one step longer than D1, D

′

1 is
equal to or less than D1 in length, and D′ is one step longer than D′

1, D
′ is equal to or

less than D in length.

Subcase: D =

D1

Σ;Γ, A, pCq ⇒ af(K, t)

Σ; Γ, A⇒ pCq ⊃ af(K, t)
⊃ R

By the i.h. on D1, Σ; Γ, pCq ⇒ af(K, t) has a derivation D′

1 with a length no greater
than that of D1. Make D′ by extending D′

1 with ⊃R to prove Σ; Γ ⇒ pCq ⊃ af(K, t) in
no more steps than D.

Subcase: D =

D1

Σ;Γ, A, pEq ⇒ pFq

Σ;Γ, A⇒ pEq ⊃ pFq
⊃ R

By the i.h. on D1, Σ; Γ, pEq ⇒ pFq has a derivation D′

1 with a length no greater than
that of D1. Make D′ by extending D′

1 with ⊃R to prove Σ; Γ ⇒ pEq ⊃ pFq in no more
steps than D.

Case: When ⊃L is the last rule in D, either A can be principal or not.

Subcase: A is principal. In this case, A has the form pBq ⊃ af(K ′′, t′′) or (pBq ⊃
af(K ′′, t′′)) ⊃ af(K ′′, t′′) where K ′′ 6= K or t′′ 6= t since A is (K, t)-mean. That is
A is of the form E ⊃ af(K ′′, t′′) where E is either pBq or pBq ⊃ af(K ′′, t′′). Either way,

D =

D1

Σ;Γ, E ⊃ af(K ′′, t′′) ⇒ E
D2

Σ;Γ, E ⊃ af(K ′′, t′′),af (K ′′, t′′) ⇒ D

Σ;Γ, E ⊃ af(K ′′, t′′) ⇒ D
⊃ L

Γ,af(K ′′, t′′) is pleasant. By the i.h. on D2, Σ; Γ,af(K ′′, t′′) ⇒ D has a derivation D′

2

with a length no greater than that of D1. Since D′

2 is no greater in size than D2 and
af(K ′′, t′′) is (K, t)-mean, we may select af(K ′′, t′′) as A and again apply the i.h. This
yields that Σ; Γ ⇒ D has a derivation of D′′

2 with a size no greater than that of D′

2.
Since D′

2 must also be no larger than D2, which is smaller than D, we are done.

Subcase: A is not principal. In this case the principal formula must be in Γ. Since Γ is
pleasant and the principal formula is an implication, it must have one the following
forms: pEq ⊃ pFq, pEq ⊃ af(K ′, t′), or (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′). First, we
consider when the principal formula has one of the first two forms. Second, we consider
when it has the last form.

16

Subsubcase: Let B range over pFq and af(K ′, t′).

D =

D1

Σ;Γ, pEq ⊃ B,A⇒ pEq

D2

Σ;Γ, pEq ⊃ B,B,A⇒ D

Σ;Γ, pEq ⊃ B,A⇒ D
⊃ L

pEq is (K, t)-nice and Γ, pEq ⊃ B is pleasant. By the i.h. on D1, Σ; Γ, pEq ⊃ B ⇒
pEq has a derivation D′

1 with a length no greater than that of D1. Γ, pEq ⊃ B,B
is pleasant. By the i.h. on D2, Σ; Γ, pEq ⊃ B,B ⇒ D has a derivation D′

2 with a
length no greater than that of D2. Make D′ by combining D′

1 and D′

2 with ⊃L to
prove Σ; Γ, pEq ⊃ B ⇒ D in no more steps than D.

Subsubcase: The only remaining case is when principal formula has the form (pEq ⊃
af(K ′, t′)) ⊃ af(K ′, t′). This means that D has the form

F1 F2

Σ;Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′), A⇒ D
⊃ L

where F1 = D1

Σ;Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′), A⇒ pEq ⊃ af(K ′, t′)
and F2 = D2

Σ;Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′),af (K ′, t′), A ⇒ D
Since A is (K, t)-mean, A must have one of the following forms af(K ′′, t′′), pBq ⊃
af(K ′′, t′′), or (pBq ⊃ af(K ′′, t′′)) ⊃ af(K ′′, t′′) where K ′′ 6= K or t′′ 6= t. We now
consider two cases:

Subsubsubcase: K ′′ = K ′ and t′′ = t′. Since K ′ 6= K or t′ 6= t, af(K ′, t′) is
(K, t)-mean. We may use the i.h. on D2 to delete A and produce a derivation
D′

2 of Σ; Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′),af (K ′, t′) ⇒ D that is no longer than
D2. Since af(K ′, t′) is also (K, t)-mean, the i.h. may be used again on D′

2 to
produce a derivation D′′

2 of Σ; Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′) ⇒ D that is no
longer than D′

2 or D2. D′′

2 is the needed derivation D′ in the required length.

Subsubsubcase: K ′′ 6= K ′ or t′′ 6= t. A is (K ′, t′)-mean. Furthermore, pEq ⊃
af(K ′, t′) is (K ′, t′)-nice and Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′) is pleasant. Thus,
we may use the i.h. with K ′ and t′ instead of K and t on D1 to produce a
derivation D′

1 of Σ; Γ, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′) ⇒ pEq ⊃ af(K ′, t′) with a
length no greater than that of D1.
We may use the i.h. withK and t on D2 to produce a derivation D′

2 of Σ; Γ, (pEq ⊃
af(K ′, t′)) ⊃ af(K ′, t′),af(K ′, t′) ⇒ D with a length no greater than that of D2.
To make D′ of the required length combine D′

1 and D′

2 with ⊃L.

Case: When ∀L is the last rule applied in D, the principal formula cannot be A since A is (K, t)-
mean. Thus, it must be in Γ. Since Γ is pleasant, the principal formula must have one of the
following forms: p〈K ′〉Eq = ∀x.(pEq ⊃ af(K ′, x)) ⊃ af(K ′, x) or p∀x.Eq = ∀x.pEq.

Subcase: D =

D1

Σ;Γ, p〈K ′〉Eq, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′), A⇒ D

Σ;Γ, p〈K ′〉Eq, A ⇒ D
∀L

Γ, p〈K ′〉Eq, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′) is pleasant. By the i.h. on D1, we know that
Σ; Γ, p〈K ′〉Eq, (pEq ⊃ af(K ′, t′)) ⊃ af(K ′, t′) ⇒ D has a derivation D′

1 with a length no
greater than that of D1. Make D′ by extending D′

1 with ∀L to prove Σ; Γ, p〈K ′〉Eq ⇒ D
in no more steps than D.

17

Subcase: D =

D1

Σ;Γ,∀x.pEq, [t′/x]pEq, A⇒ D

Σ;Γ,∀x.pEq, A ⇒ D
∀L

By Lemma D.1, [t′/x]pEq is equal to p[t′/x]Eq. Thus, Γ,∀x.pEq, [t′/x]pEq is pleasant.
By the i.h. on D1, Σ; Γ,∀x.pEq, [t′/x]pEq ⇒ D has a derivation D′

1 with a length no
greater than that of D1. Make D′ by extending D′

1 with ∀L to prove Σ; Γ,∀x.pEq ⇒ D
in no more steps than D.

Case: ∀R is the last rule in D. In this case D must have the form p〈K〉Cq or ∀x.pCq since D is
(K, t)-nice.

Subcase: D =

D1

Σ, a; Γ, A⇒ (pCq ⊃ af(K,a)) ⊃ af(K,a)

Σ; Γ, A⇒ p〈K〉Cq
∀R

Note that a is fresh and does not equal t, and that p〈K〉Cq is ∀x.(pCq ⊃ af(K,x)) ⊃
af(K,x). Since A is (K, t)-mean and a is fresh and not in A, A is (K,a)-mean. (pCq ⊃
af(K,a)) ⊃ af(K,a) is (K,a)-nice. By i.h. on D1, Σ, a; Γ ⇒ (pCq ⊃ af(K,a)) ⊃
af(K,a) has a derivation D′

1 with a length no greater than that of D1. Make D′ by
extending D′

1 with ∀R to prove Σ; Γ ⇒ ∀x.(pCq ⊃ af(K,x)) ⊃ af(K,x), which is
Σ; Γ ⇒ p〈K〉Cq, in no more steps than D.

Subcase: D =

D1

Σ, a; Γ, A⇒ [a/x]pCq

Σ;Γ, A⇒ ∀x.pCq
∀R

Note that [a/x]pCq is equal p[a/x]Cq by Lemma D.1. Thus, [a/x]pCq is (K, t)-nice.
So we may use the i.h. on D1 to conclude that Σ, a; Γ ⇒ p[a/x]Cq has a derivation D′

1

with a length no greater than that of D1. Make D′ by extending D′

1 with ∀R to prove
Σ; Γ ⇒ ∀x.pCq in no more steps than D.

E.2 More Definitions

To prove soundness, we will prove a stronger statement of formulas of a certain form. A sequent
Σ; Γ ⇒ γ is regular iff one of the following sets of conditions hold:

1. (a) γ = pAq and

(b) All assumptions in Γ have the form pBq

2. (a) γ = af(K,a) for a parameter a,

(b) all assumptions in Γ have the form pBq or (pCq ⊃ af(K,a)) ⊃ af(K,a), and

(c) a occurs only inside assumptions of 2nd form.

Let the inverse translation xAy be defined by Table 2 and xΓ, Ay = xΓy, xAy and x·y = ·. Note
that A = xpAqy for all propositions A of INLL.

If the hypothesis context Γ is pleasant, then every formula in Γ has the form pCq, af(K, t),
pCq ⊃ af(K, t), or (pCq ⊃ af(K, t)) ⊃ af(K, t). Let Γ↓ denote Γ restricted to only those formulas
of the form pCq. Let Γ↑ denote those formulas of the remaining three forms. So Γ = Γ↓,Γ↑.

18

xPy = P

xA1 ∧A2y = xA1y ∧ xA2y

xA1 ∨A2y = xA1y ∨ xA2y

xA1 ⊃ A2y = xA1y ⊃ xA2y

x>y = >

x⊥y =⊥

x∀x.(A ⊃ af(K,x)) ⊃ af(K,x)y = 〈K〉xAy

x(A ⊃ af(K,a)) ⊃ af(K,a)y = 〈K〉xAy

Table 2: Inverse Translation Rules

E.3 The Theorem

Soundness is corollary to the following theorem.

19

Theorem E.2.

1. if Σ; pΓq ⇒ pAq, then Γ ⇒ A.

2. if Σ, a; Γ, pDq ⊃ af(K,a) ⇒ af(K,a) and Σ, a; Γ ⇒ af(K,a) is regular, then xΓy ⇒
K affirms D.

Note that since Σ; Γ ⇒ A and Σ, a; Γ ⇒ af(K,a) is regular, xΓy and xAy are defined.
Since xpAqy = A, the statement (i) is equivalent to

(i’) if Σ; Γ ⇒ A and Σ; Γ ⇒ A is regular, then xΓy ⇒ xAy.

Proof. Now we prove (i) and (ii) by simultaneous induction on the derivation D of Σ; Γ ⇒ A and
E of Σ, a; Γ, pDq ⊃ af(K,a) ⇒ af(K,a).

Case: D =
Σ; pΓ, Pq ⇒ pPq

INIT

1. Γ, P ⇒ P by INIT

Case: E =
Σ, a; Γ, pDq ⊃ af(K,a) ⇒ af(K,a)

INIT

Since Γ is regular, it will not contain af(K,a) as an assumption. Thus, INIT cannot be
applied and need not further consider this case.

Case: D =
Σ; pΓ,⊥q ⇒ pAq

⊥ L

1. Γ,⊥⇒ A by ⊥L

Case: E =
Σ, a; Γ,⊥, pDq ⊃ af(K,a) ⇒ af(K,a)

⊥ L

1. xΓy,⊥⇒ K affirms D by ⊥L’

Case: D ends with ∀R.

Subcase: D =

D1

Σ, a; pΓq ⇒ [a/x]pCq

Σ; pΓq ⇒ ∀x.pCq
∀R

No B exists such that pBq is equal to ∀x.pCq = p∀x.Cq. Thus, we need not further
consider this case.

Subcase: D =

D1

Σ, a; pΓq ⇒ (pCq ⊃ af(K,a)) ⊃ af(K,a)

Σ; pΓq ⇒ ∀x.(pCq ⊃ af(K,x)) ⊃ af(K,x)
∀R

Note that p〈K〉Cq = ∀x.(pCq ⊃ af(K,x)) ⊃ af(K,x). We know that Σ, a; pΓq, pCq ⊃
af(K,a) ⇒ af(K,a) has a derivation E1 by inversion on premise. Thus, Γ ⇒ K affirms C
by i.h. (ii) on E1. This yields Γ ⇒ 〈K〉C by 〈〉R and since xpΓqy = Γ.

Case: E ends with ∀R. This cannot happen since af(K,a) does not have the form ∀x.C. We need
not further consider this case.

Case: D ends with ∀L.

20

Subcase: D =

D1

Σ; pΓq,∀x.pCq, p[t/x]Cq ⇒ pAq

Σ; pΓq,∀x.pCq ⇒ pAq
∀L

No B exists such that pBq is equal to ∀x.pCq = p∀x.Cq. Thus, we need not further
consider this case.

Subcase: D =

D1

Σ; pΓq, p〈K〉Cq, (pCq ⊃ af(K,a)) ⊃ af(K,a) ⇒ pAq

Σ; pΓq, p〈K〉Cq ⇒ pAq
∀L

pΓq, p〈K〉Cq is pleasant. (pCq ⊃ af(K,a)) ⊃ af(K,a) is (K ′, t′)-mean and pAq is
(K ′, t′)-nice for any K ′ 6= K and t′ 6= a. Thus, Σ; pΓq, p〈K〉Cq ⇒ pAq has a derivation
D′

1 that is shorter than or equal to D1 in length by Lemma E.1. We may use i.h. (i) on
D′

1 to yield Γ, 〈K〉C ⇒ A.

Case: E ends with ∀L.

Subcase: E =

E1

Σ, a; Γ,∀x.pCq, p[t/x]Cq, pDq ⊃ af(K,a) ⇒ af(K,a)

Σ, a; Γ,∀x.pCq, pDq ⊃ af(K,a) ⇒ af(K,a)
∀L

∀x.pCq cannot be in Γ since Γ is regular and no B exists such that pBq is equal to
∀x.pCq. Thus, we need not further consider this case.

Subcase: E is

E1

Σ, a; Γ, p〈K ′〉Cq, (pCq ⊃ af(K ′, t′)) ⊃ af(K ′, t′), pDq ⊃ af(K,a) ⇒ af(K,a)

Σ, a; Γ, p〈K ′〉Cq, pDq ⊃ af(K,a) ⇒ af(K,a)
∀L

Now we consider the following cases:

Subsubcase K ′ 6= K or t′ 6= a.
Γ, p〈K ′〉Cq, pDq ⊃ af(K,a) is pleasant since Γ is regular, af(K,a) is (K,a)-nice,
and (pCq ⊃ af(K ′, t′)) ⊃ af(K ′, t′) is (K,a)-mean. Thus, Σ, a; Γ, p〈K ′〉Cq, pDq ⊃
af(K,a) ⇒ af(K,a) has a derivation E ′

1 that is shorter than or equal to E1 in length
by Lemma E.1. By h.i. (ii) on E ′

1, we prove xΓ, p〈K ′〉Cqy ⇒ K affirms D.

Subsubcase K ′ = K and t′ = a.
1. xΓ, p〈K〉Cq, (pCq ⊃ af(K,a)) ⊃ af(K,a)y ⇒ K affirms D

by i.h. (ii) on E1

2. xΓy, 〈K〉C, 〈K〉C ⇒ K affirms D
by definitions of x·y and p·q

3. xΓy, 〈K〉C ⇒ K affirms D
by strengthening

Case: D =

D1

Σ; pΓq, pAq ⇒ pBq

Σ; pΓq ⇒ pAq ⊃ pBq
⊃ R

1. Γ, A⇒ B by i.h. (i) on D1

2. Γ ⇒ A ⊃ B by ⊃R

21

Case: E ends with ⊃R. This cannot happen since af(K,a) is not an implication. We need not
further consider this case.

Case: D =

D1

Σ; pΓq, pBq ⊃ pCq ⇒ pBq

D2

Σ; pΓq, pBq ⊃ pCq, pCq ⇒ pAq

Σ; pΓq, pBq ⊃ pCq ⇒ pAq
⊃ L

1. Γ, B ⊃ C ⇒ B by i.h. (i) on D1

2. Γ, B ⊃ C,C ⇒ A by i.h. (i) on D2

3. Γ, B ⊃ C ⇒ A by ⊃L

Case: E ends with ⊃L.

Subcase: E = F1 F2

Σ, a; Γ, pBq ⊃ pCq, pDq ⊃ af(K,a) ⇒ af(K,a)
⊃ L

where F1 = D1

Σ, a; Γ, pBq ⊃ pCq, pDq ⊃ af(K,a) ⇒ pBq

and F2 = E2

Σ, a; Γ, pBq ⊃ pCq, pCq, pDq ⊃ af(K,a) ⇒ af(K,a)

Γ, pBq ⊃ pCq is pleasant since Γ is regular. For all t 6= a, pDq ⊃ af(K,a) is (K, t)-
mean and pBq is (K, t)-nice. By Lemma E.1 on D1, there exists a derivation D′

1 of
Σ, a; Γ, pBq ⊃ pCq ⇒ pBq that has a length no greater than that of D1.

Since no formula can contain every term t, every formula in Γ↑ is (K, t)-mean for some
t. Furthermore, pBq is (K, t)-nice for all t. Removing formulas from Γ will never result
in Γ no longer being pleasant. Thus, we may use Lemma E.1 over and over again to
remove every formula in Γ↑ from the hypothesis context starting on D′

1. This results in
a derivation D′′

1 of Σ, a; Γ↓, pBq ⊃ pCq ⇒ pBq with a length no greater than that of
D′

1. Since Γ↓ has only formula of the form pEq, we can use i.h. (i) on D′′

1 to prove that
xΓ↓y, B ⊃ C ⇒ B.

By i.h. (ii) on E2, xΓy, B ⊃ C,C ⇒ K affirms D. Combining xΓ↓y, B ⊃ C ⇒ B and
xΓy, B ⊃ C,C ⇒ K affirms D with ⊃L and weakening produces a proof of xΓy, B ⊃
C ⇒ K affirms D as needed.

Subcase: E is

D1

Σ, a; Γ, pDq ⊃ af(K,a) ⇒ pDq

E2

Σ, a; Γ, pDq ⊃ af(K,a),af (K,a) ⇒ af(K,a)

Σ, a; Γ, pDq ⊃ af(K,a) ⇒ af(K,a)
⊃ L

Γ is pleasant since Γ is regular. For all t 6= a, pDq ⊃ af(K,a) is (K, t)-mean and pBq

is (K, t)-nice. By Lemma E.1 on D1, there is a derivation D′

1 of Σ, a; Γ ⇒ pDq with a
length no greater than that of D1. As above, we may apply Lemma E.1 over and over
again to remove every formula of Γ↑. This yields the derivation D′′

1 of Σ, a; Γ↓ ⇒ pDq.
By i.h. (i) on D′′

1 , xΓ↓y ⇒ D. Using the inference rule affirms and weakening yields
xΓy ⇒ K affirms D as needed.

Subcase: E = F1 F2

Σ, a; Γ, (pCq ⊃ af(K,a)) ⊃ af(K,a), pDq ⊃ af(K,a) ⇒ af(K,a)
⊃ L where

F1 is the derivation

D1

Σ, a; Γ, (pCq ⊃ af(K,a)) ⊃ af(K,a), pDq ⊃ af(K,a) ⇒ pCq ⊃ af(K,a)

22

Γ, A ` A
hyp

Γ, A ` B

Γ ` A ⊃ B
⊃ I

Γ ` A ⊃ B Γ ` A

Γ ` B
⊃ E

Γ ` A Γ ` B

Γ ` A ∧B
∧I

Γ ` A ∧B

Γ ` A
∧E1

Γ ` A ∧B

Γ ` B
∧E2

Γ ` A

Γ ` A ∨B
∨I1

Γ ` B

Γ ` A ∨B
∨I2

Γ ` A ∨B Γ, A ` γ Γ, B ` γ

Γ ` γ
∨E

Γ ` >
>R

Γ,⊥` γ
⊥ L

Γ ` A

Γ ` K affirms A
affirms

Γ ` K affirms A

Γ ` 〈K〉A
〈〉I

Γ ` 〈K〉A Γ, A ` K affirms C

Γ ` K affirms C
〈〉E

Figure 3: Natural Deduction for INLL

and F2 is the derivation

E2

Σ, a; Γ, (pCq ⊃ af(K,a)) ⊃ af(K,a), pDq ⊃ af(K,a),af (K,a) ⇒ af(K,a)

Σ, a; Γ, (pCq ⊃ af(K,a)) ⊃ af(K,a), pDq ⊃ af(K,a), pCq ⇒ af(K,a) has a deriva-
tion D′

1 by inversion of the first premise. From i.h. (ii) on D′

1, we can prove that
xΓ, (pCq ⊃ af(K,a)) ⊃ af(K,a), pCqy ⇒ K affirms D. By the definitions of p·q and
x·y, we get xΓy, 〈K〉C,C ⇒ K affirms D. 〈〉L produces xΓy, 〈K〉C ⇒ K affirms D as
needed.

F Proof of Completeness for Linear Translation

We first construct a natural deduction system for INLL. This is provably equivalent to the sequent
calculus of Section A. The proof is relatively straightforward and we omit it here. The basic
hypothetical judgments has the form Γ ` γ where γ = A or γ = K affirms A. The system is shown
in Figure 3.

Theorem F.1 (Equivalance). Γ ` γ if and only if Γ ⇒ γ.

Proof. Straightforward extension of standard proofs. See for instance [How01].

Theorem F.2 (Completeness).

1. If Γ ` A in INLL, then ppΓqq; · ⇒ ppAqq in ILL.

2. If Γ ` K affirms A in INLL, then ppΓqq; ppAqq ⊃ af(K) ⇒ af(K) in ILL.

23

Proof. We perform a simultaneous induction on the given derivations, and analyze cases on the
last rule.

Case:
Γ, A ` A

hyp

To show: ppΓqq, ppAqq; · ⇒ ppAqq.

1. ppΓqq, ppAqq; ppAqq ⇒ ppAqq by init
2. ppΓqq, ppAqq; · ⇒ ppAqq by copy on 1

Case:
Γ, A ` B

Γ ` A ⊃ B
⊃ I

To show: ppΓqq; · ⇒ ppAqq ⊃ ppBqq.

1. ppΓqq, ppAqq; · ⇒ ppBqq by i.h.
2. ppΓqq; · ⇒ ppAqq ⊃ ppBqq by Rule ⊃ R on 1

Case:
Γ ` A ⊃ B Γ ` A

Γ ` B
⊃ E

To show: ppΓqq; · ⇒ ppBqq.

1. ppΓqq; · ⇒ ppAqq ⊃ ppBqq by i.h. premise 1
2. ppΓqq; · ⇒ ppAqq by i.h. premise 2
3. ppΓqq; ppBqq ⇒ ppBqq by Rule init
4. ppΓqq; ppAqq ⊃ ppBqq ⇒ ppBqq by Rule ⊃ L on 2,3
5. ppΓqq; · ⇒ ppBqq by Cut 1,4

Case:
Γ ` A Γ ` B

Γ ` A ∧B
∧I

To show: ppΓqq; · ⇒ ppAqq & ppBqq.

1. ppΓqq; · ⇒ ppAqq by i.h. premise 1
2. ppΓqq; · ⇒ ppBqq by i.h. premise 2
3. ppΓqq; · ⇒ ppAqq & ppBqq by Rule &R on 1,2

Case:
Γ ` A ∧B

Γ ` A
∧E1

To show: ppΓqq; · ⇒ ppAqq.

1. ppΓqq; · ⇒ ppAqq & ppBqq by i.h.
2. ppΓqq; ppAqq ⇒ ppAqq by Rule init
3. ppΓqq; ppAqq & ppBqq ⇒ ppAqq by Rule &L1 on 2
4. ppΓqq; · ⇒ ppAqq by Cut 1,3

Case:
Γ ` A ∧B

Γ ` B
∧E2

To show: ppΓqq; · ⇒ ppBqq.

Similar to previous case.

24

Case:
Γ ` A

Γ ` A ∨B
∨I1

To show: ppΓqq; · ⇒ (!ppAqq) ⊕ (!ppBqq).

1. ppΓqq; · ⇒ ppAqq by i.h.
2. ppΓqq; · ⇒!ppAqq by Rule !R on 1
3. ppΓqq; · ⇒ (!ppAqq) ⊕ (!ppBqq) by Rule ⊕R1 on 2

Case:
Γ ` B

Γ ` A ∨B
∨I2

To show: ppΓqq; · ⇒ (!ppAqq) ⊕ (!ppBqq).

Similar to previous case.

Case:
Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
∨E

To show: ppΓqq; · ⇒ ppCqq.

1. ppΓqq, ppAqq; · ⇒ ppCqq by i.h. premise 2
2. ppΓqq; !ppAqq ⇒ ppCqq by Rule !L on 1
3. ppΓqq, ppBqq; · ⇒ ppCqq by i.h. premise 3
4. ppΓqq; !ppBqq ⇒ ppCqq by Rule !L on 3
5. ppΓqq; (!ppAqq) ⊕ (!ppBqq) ⇒ ppCqq by Rule ⊕L on 2,4
6. ppΓqq; · ⇒ (!ppAqq) ⊕ (!ppBqq) by i.h. premise 1
7. ppΓqq; · ⇒ ppCqq by Cut 6,5

Case:
Γ ` A ∨B Γ, A ` K affirms C Γ, B ` K affirms C

Γ ` K affirms C
∨E

To show: ppΓqq; ppCqq ⊃ af(K) ⇒ af(K).

1. ppΓqq, ppAqq; ppCqq ⊃ af(K) ⇒ af(K) by i.h. premise 2
2. ppΓqq; !ppAqq, ppCqq ⊃ af(K) ⇒ af(K) by Rule !L on 1
3. ppΓqq, ppBqq; ppCqq ⊃ af(K) ⇒ af(K) by i.h. premise 3
4. ppΓqq; !ppBqq, ppCqq ⊃ af(K) ⇒ af(K) by Rule !L on 3
5. ppΓqq; (!ppAqq) ⊕ (!ppBqq), ppCqq ⊃ af(K) ⇒ af(K) by Rule ⊕L on 2,4
6. ppΓqq; · ⇒ (!ppAqq) ⊕ (!ppBqq) by i.h. premise 1
7. ppΓqq; ppCqq ⊃ af(K) ⇒ af(K) by Cut 6,5

Case:
Γ ` >

>R

To show: ppΓqq; · ⇒ >.

Follows immediately by rule >R.

Case:
Γ,⊥` C

⊥ L

To show: ppΓqq,0; · ⇒ ppCqq.

1. ppΓqq,0;0 ⇒ ppCqq by Rule 0L
2. ppΓqq,0; · ⇒ ppCqq by Rule copy on 1

25

Case:
Γ,⊥` K affirms C

⊥ L

To show: ppΓqq,0; ppCqq ⊃ af(K) ⇒ af(K).

1. ppΓqq,0;0, ppCqq ⊃ af(K) ⇒ af(K) by Rule 0L
2. ppΓqq,0; ppCqq ⊃ af(K) ⇒ af(K) by Rule copy on 1

Case:
Γ ` A

Γ ` K affirms A
affirms

To show: ppΓqq; ppAqq ⊃ af(K) ⇒ af(K).

1. ppΓqq; · ⇒ ppAqq by i.h.
2. ppΓqq;af (K) ⇒ af(K) by Rule init
3. ppΓqq; ppAqq ⊃ af(K) ⇒ af(K) by Rule ⊃ L

Case:
Γ ` K affirms A

Γ ` 〈K〉A
〈〉I

To show: ppΓqq; · ⇒ (ppAqq ⊃ af(K)) (af(K).

1. ppΓqq; ppAqq ⊃ af(K) ⇒ af(K) by i.h.
2. ppΓqq; · ⇒ (ppAqq ⊃ af(K)) (af(K) by Rule (R on 1

Case:
Γ ` 〈K〉A Γ, A ` K affirms C

Γ ` K affirms C
〈〉E

To show: ppΓqq; ppCqq ⊃ af(K) ⇒ af(K).

1. ppΓqq, ppAqq; ppCqq ⊃ af(K) ⇒ af(K) by i.h. premise 2
2. ppΓqq; ppCqq ⊃ af(K) ⇒ ppAqq ⊃ af(K) by Rule ⊃ R on 1
3. ppΓqq;af (K) ⇒ af(K) by Rule init
4. ppΓqq; (ppAqq ⊃ af(K)) (af(K), ppCqq ⊃ af(K) ⇒ af(K) by Rule (L on 2,3
5. ppΓqq; · ⇒ (ppAqq ⊃ af(K)) (af(K) by i.h. premise 1
6. ppΓqq; ppCqq ⊃ af(K) ⇒ af(K) by Cut 5,4

Proof of theorem 4.1.

1. Suppose Γ ⇒ A. By theorem F.1, Γ ` A. Hence by theorem F.2, ppΓqq; · ⇒ ppAqq.

2. Suppose Γ ⇒ K affirms A. By theorem F.1, Γ ` K affirms A. Hence by theorem F.2,
ppΓqq; ppAqq ⊃ af(K) ⇒ af(K).

G Proof of Soundness for Linear Translation

To prove soundness, we need some basic properties of proofs in INLL and ILL. We mention these
properties below. The proofs of these properties are straightforward.

Lemma G.1 (Structural Properties of INLL Proofs). The following hold in INLL.

26

1. (Weakening) If Γ ⇒ γ, then Γ, A⇒ γ.

2. (Strengthening) If Γ, A,A⇒ γ, then Γ, A⇒ γ.

Proof. Both properties follow by a straightforward induction on the given derivations.

Lemma G.2 (Inversion in ILL). The following hold in ILL.

1. If Γ;∆, !A ⇒ B, then Γ, A;∆ ⇒ B by a shorter or equal derivation.

2. If Γ;∆ ⇒ A ⊃ B, then Γ, A;∆ ⇒ B by a shorter or equal derivation.

Proof. Both properties follow by a straightforward induction on the given derivations.

Finally, we prove soundness. We have to generalize the statement of the theorem to facilitate
induction.

Theorem G.3 (Soundness). Let ψ = {af(K1), . . . ,af(Kn)} be a multi-set of assumptions for
some n ≥ 0. The following hold:

1. If ppΓqq; pp∆qq, ψ ⇒ ppAqq, then Γ,∆ ⇒ A.

2. If ppΓqq; pp∆qq, ψ ⇒!ppAqq, then Γ,∆ ⇒ A.

3. If ppΓqq; pp∆qq, ppAqq ⊃ af(K), ψ ⇒ af(K) and af(K) /∈ ψ, then Γ,∆ ⇒ K affirms A.

4. If ppΓqq; pp∆qq, ψ ⇒ af(K) and af(K) /∈ ψ, then Γ,∆ ⇒ K affirms⊥.

Proof. We prove this theorem by a simultaneous induction on the depth of the given derivations.

Proof of statement (1)

Case:
ppΓqq; ppPqq ⇒ ppPqq

init

To show: Γ, P ⇒ P .

This follows immediately by rule init.

Case:
ppΓqq, ppAqq; pp∆qq, ppAqq, ψ ⇒ ppBqq

ppΓqq, ppAqq; pp∆qq, ψ ⇒ ppBqq
copy

To show: Γ, A,∆ ⇒ B.

1. Γ, A,∆, A⇒ B by i.h.
2. Γ, A,∆ ⇒ B by Strengthening on 1

Case:
ppΓqq; pp∆qq, ψ ⇒ ppAqq ppΓqq; pp∆qq, ψ ⇒ ppBqq

ppΓqq; pp∆qq, ψ ⇒ ppAqq & ppBqq
&R

To show: Γ,∆ ⇒ A ∧B.

1. Γ,∆ ⇒ A by i.h. premise 1
2. Γ,∆ ⇒ B by i.h. premise 2
3. Γ,∆ ⇒ A ∧B by Rule ∧R on 1,2

27

Case:
ppΓqq; pp∆qq, ppAqq, ψ ⇒ ppCqq

ppΓqq; pp∆qq, ppAqq & ppBqq, ψ ⇒ ppCqq
&L1

To show: Γ,∆, A ∧B ⇒ C.

1. Γ,∆, A⇒ C by i.h.
2. Γ,∆, A ∧B ⇒ C by Rule ∧L1 on 1

Case:
ppΓqq; pp∆qq, ppBqq, ψ ⇒ ppCqq

ppΓqq; pp∆qq, ppAqq & ppBqq, ψ ⇒ ppCqq
&L2

To show: Γ,∆, A ∧B ⇒ C.

Similar to previous case.

Case:
ppΓqq; pp∆qq, ψ ⇒!ppAqq

ppΓqq; pp∆qq, ψ ⇒ (!ppAqq) ⊕ (!ppBqq)
⊕R1

To show: Γ,∆ ⇒ A ∨B.

1. Γ,∆ ⇒ A by i.h.
2. Γ,∆ ⇒ A ∨B by Rule ∨R1

Case:
ppΓqq; pp∆qq, ψ ⇒!ppBqq

ppΓqq; pp∆qq, ψ ⇒ (!ppAqq) ⊕ (!ppBqq)
⊕R2

To show: Γ,∆ ⇒ A ∨B.

Similar to previous case.

Case:
ppΓqq; !ppAqq, pp∆qq, ψ ⇒ ppCqq ppΓqq; !ppBqq, pp∆qq, ψ ⇒ ppCqq

ppΓqq; (!ppAqq) ⊕ (!ppBqq), pp∆qq, ψ ⇒ ppCqq
⊕L

To show: Γ, A ∨B,∆ ⇒ C.

1. ppΓqq, ppAqq; pp∆qq, ψ ⇒ ppCqq by Inversion premise 1
2. ppΓqq, ppBqq; pp∆qq, ψ ⇒ ppCqq by Inversion premise 2
3. Γ, A,∆ ⇒ C by i.h. on 1
4. Γ, B,∆ ⇒ C by i.h. on 2
5. Γ, A ∨B,∆ ⇒ C by Rule ∨L on 3,4

Case:
ppΓqq; pp∆qq, ψ ⇒ >

>R

To show: Γ,∆ ⇒ >.

Follows immediately by rule >R.

Case:
ppΓqq; pp∆qq,0, ψ ⇒ ppAqq

0L

To show: Γ,∆,⊥⇒ A.

Follows immediately by rule ⊥ L.

Case:
ppΓqq; pp∆qq, ψ, ppAqq ⊃ af(K) ⇒ af(K)

ppΓqq; pp∆qq, ψ ⇒ (ppAqq ⊃ af(K)) (af(K)
(R

To show: Γ,∆ ⇒ 〈K〉A.

28

1. Γ,∆ ⇒ K affirms A by i.h.
2. Γ,∆ ⇒ 〈K〉A by Rule 〈〉R on 1

Case:
ppΓqq; pp∆1qq, ψ1 ⇒ ppAqq ⊃ af(K) ppΓqq; pp∆2qq, ψ2,af(K) ⇒ ppCqq

ppΓqq; pp∆1qq, pp∆2qq, ψ1, ψ2, (ppAqq ⊃ af(K)) (af(K) ⇒ ppCqq
(L

To show: Γ,∆1,∆2, 〈K〉A⇒ C.

1. Γ,∆2 ⇒ C by i.h. premise 2
2. Γ,∆1,∆2, 〈K〉A⇒ C by Weakening on 1

Case:
ppΓqq, ppAqq; pp∆qq, ψ ⇒ ppBqq

ppΓqq; pp∆qq, ψ ⇒ ppAqq ⊃ ppBqq
⊃ R

To show: Γ,∆ ⇒ A ⊃ B.

1. Γ, A,∆ ⇒ B by i.h.
2. Γ,∆ ⇒ A ⊃ B by Rule ⊃ R on 1

Case:
ppΓqq; · ⇒ ppAqq ppΓqq; pp∆qq, ppBqq, ψ ⇒ ppCqq

ppΓqq; pp∆qq, ppAqq ⊃ ppBqq, ψ ⇒ ppCqq
⊃ L

To show: Γ,∆, A ⊃ B ⇒ C.

1. Γ ⇒ A by i.h. premise 1
2. Γ,∆, B ⇒ C by i.h. premise 2
3. Γ,∆, A ⊃ B ⇒ C by Rule ⊃ L on 1,2

Other cases do not apply.

Proof of statement (2)

Case:
ppΓqq, ppAqq; pp∆qq, ppAqq, ψ ⇒!ppBqq

ppΓqq, ppAqq; pp∆qq, ψ ⇒!ppBqq
copy

To show: Γ, A,∆ ⇒ B.

1. Γ, A,∆, A⇒ B by i.h.
2. Γ, A,∆ ⇒ B by Strengthening on 1

Case:
ppΓqq; pp∆qq, ppAqq, ψ ⇒!ppCqq

ppΓqq; pp∆qq, ppAqq & ppBqq, ψ ⇒!ppCqq
&L1

To show: Γ,∆, A ∧B ⇒ C.

1. Γ,∆, A⇒ C by i.h.
2. Γ,∆, A ∧B ⇒ C by Rule ∧L1 on 1

Case:
ppΓqq; pp∆qq, ppBqq, ψ ⇒!ppCqq

ppΓqq; pp∆qq, ppAqq & ppBqq, ψ ⇒!ppCqq
&L2

To show: Γ,∆, A ∧B ⇒ C.

Similar to previous case.

29

Case:
ppΓqq; !ppAqq, pp∆qq, ψ ⇒!ppCqq ppΓqq; !ppBqq, pp∆qq, ψ ⇒!ppCqq

ppΓqq; (!ppAqq) ⊕ (!ppBqq), pp∆qq, ψ ⇒!ppCqq
⊕L

To show: Γ, A ∨B,∆ ⇒ C.

1. ppΓqq, ppAqq; pp∆qq, ψ ⇒!ppCqq by Inversion premise 1
2. ppΓqq, ppBqq; pp∆qq, ψ ⇒!ppCqq by Inversion premise 2
3. Γ, A,∆ ⇒ C by i.h. on 1
4. Γ, B,∆ ⇒ C by i.h. on 2
5. Γ, A ∨B,∆ ⇒ C by Rule ∨L on 3,4

Case:
ppΓqq; pp∆qq,0, ψ ⇒!ppAqq

0L

To show: Γ,∆,⊥⇒ A.

Follows immediately by rule ⊥ L.

Case:
ppΓqq; pp∆1qq, ψ1 ⇒ ppAqq ⊃ af(K) ppΓqq; pp∆2qq, ψ2,af(K) ⇒!ppCqq

ppΓqq; pp∆1qq, pp∆2qq, ψ1, ψ2, (ppAqq ⊃ af(K)) (af(K) ⇒!ppCqq
(L

To show: Γ,∆1,∆2, 〈K〉A⇒ C.

1. Γ,∆2 ⇒ C by i.h. premise 2
2. Γ,∆1,∆2, 〈K〉A⇒ C by Weakening on 1

Case:
ppΓqq; · ⇒ ppAqq ppΓqq; pp∆qq, ppBqq, ψ ⇒!ppCqq

ppΓqq; pp∆qq, ppAqq ⊃ ppBqq, ψ ⇒!ppCqq
⊃ L

To show: Γ,∆, A ⊃ B ⇒ C.

1. Γ ⇒ A by i.h. premise 1
2. Γ,∆, B ⇒ C by i.h. premise 2
3. Γ,∆, A ⊃ B ⇒ C by Rule ⊃ L on 1,2

Case:
ppΓqq; · ⇒ ppAqq

ppΓqq; · ⇒!ppAqq
!R

To show: Γ ⇒ A.

Follows immediately by i.h. on premise.

Other cases do not apply.

Proof of statement (3)

Case: Rule init does not apply since the consequent af(K) cannot occur in pp∆qq (by definition)
or ψ (by assumption).

Case:
ppΓqq, ppAqq; pp∆qq, ppAqq, ppBqq ⊃ af(K), ψ ⇒ af(K)

ppΓqq, ppAqq; pp∆qq, ppBqq ⊃ af(K), ψ ⇒ af(K)
copy

To show: Γ, A,∆ ⇒ K affirms B.

1. Γ, A,∆, A⇒ K affirms B by i.h.
2. Γ, A,∆ ⇒ K affirms B by Strengthening on 1

30

Case:
ppΓqq; pp∆qq, ppAqq, ppCqq ⊃ af(K), ψ ⇒ af(K)

ppΓqq; pp∆qq, ppAqq & ppBqq, ppCqq ⊃ af(K), ψ ⇒ af(K)
&L1

To show: Γ,∆, A ∧B ⇒ K affirms C.

1. Γ,∆, A⇒ K affirms C by i.h.
2. Γ,∆, A ∧B ⇒ K affirms C by Rule ∧L′

1 on 1

Case:
ppΓqq; pp∆qq, ppBqq, ppCqq ⊃ af(K), ψ ⇒ af(K)

ppΓqq; pp∆qq, ppAqq & ppBqq, ppCqq ⊃ af(K), ψ ⇒ af(K)
&L2

To show: Γ,∆, A ∧B ⇒ K affirms C.

Similar to previous case.

Case:

ppΓqq; !ppAqq, pp∆qq, ppCqq ⊃ af(K), ψ ⇒ af(K)
ppΓqq; !ppBqq, pp∆qq, ppCqq ⊃ af(K), ψ ⇒ af(K)

ppΓqq; (!ppAqq) ⊕ (!ppBqq), pp∆qq, ppCqq ⊃ af(K), ψ ⇒ af(K)
⊕L

To show: Γ, A ∨B,∆ ⇒ K affirms C.

1. ppΓqq, ppAqq; pp∆qq, ppCqq ⊃ af(K), ψ ⇒ af(K) by Inversion premise 1
2. ppΓqq, ppBqq; pp∆qq, ppCqq ⊃ af(K), ψ ⇒ af(K) by Inversion premise 2
3. Γ, A,∆ ⇒ K affirms C by i.h. on 1
4. Γ, B,∆ ⇒ K affirms C by i.h. on 2
5. Γ, A ∨B,∆ ⇒ K affirms C by Rule ∨L′ on 3,4

Case:
ppΓqq; pp∆qq,0, ppAqq ⊃ af(K), ψ ⇒ af(K)

0L

To show: Γ,∆,⊥⇒ K affirms A.

Follows immediately by rule ⊥ L′.

Case:
ppΓqq; pp∆1qq, ψ1 ⇒ ppCqq ⊃ af(K ′) ppΓqq; pp∆2qq, ppAqq ⊃ af(K), ψ2,af(K

′) ⇒ af(K)

ppΓqq; pp∆1qq, pp∆2qq, ψ1, ψ2, pp〈K
′〉Cqq, ppAqq ⊃ af(K) ⇒ af(K)

(L

To show: Γ,∆1,∆2, 〈K
′〉C ⇒ K affirms A.

We have two possibilities: either K = K ′ or K 6= K ′.

Subcase: K = K ′

1. ppΓqq, ppCqq; pp∆1qq, ψ1 ⇒ af(K) by Inversion premise 1
2. Γ,∆1, C ⇒ K affirms⊥ by i.h. on 1
3. Γ,∆1,∆2, 〈K〉C ⇒ K affirms C by Reasoning in INLL
4. Γ,∆1,∆2, 〈K〉C ⇒ K affirms⊥ by Theorem 2.1 on 3,2
5. ⊥⇒ K affirms A by Rule ⊥ L′

6. Γ,∆1,∆2, 〈K〉C ⇒ K affirms A by Theorem 2.1 on 4,5

Subcase: K 6= K ′

1. Γ,∆2 ⇒ K affirms A by i.h. premise 2
2. Γ,∆1,∆2, 〈K

′〉C ⇒ K affirms A by Weakening on 1

Case:
ppΓqq; pp∆1qq, ψ1, ppAqq ⊃ af(K) ⇒ ppCqq ⊃ af(K ′) ppΓqq; pp∆2qq, ψ2,af(K

′) ⇒ af(K)

ppΓqq; pp∆1qq, pp∆2qq, ψ1, ψ2, pp〈K
′〉Cqq, ppAqq ⊃ af(K) ⇒ af(K)

(L

31

To show: Γ,∆1,∆2, 〈K
′〉C ⇒ K affirms A.

We have two possibilities: either K = K ′ or K 6= K ′.

Subcase: K = K ′

1. ppΓqq, ppCqq; pp∆1qq, ψ1, ppAqq ⊃ af(K) ⇒ af(K) by Inversion premise 1
2. Γ,∆1, C ⇒ K affirms A by i.h. on 1
3. Γ,∆1,∆2, 〈K〉C ⇒ K affirms C by Reasoning in INLL
4. Γ,∆1,∆2, 〈K〉C ⇒ K affirms A by Theorem 2.1 on 3,2

Subcase: K 6= K ′

1. Γ,∆2 ⇒ K affirms⊥ by i.h. premise 2
2. ⊥⇒ K affirms A by Rule ⊥ L′

3. Γ,∆2 ⇒ K affirms A by Theorem 2.1 on 1,2
4. Γ,∆1,∆2, 〈K

′〉C ⇒ K affirms A by Weakening on 3

Case:
ppΓqq; · ⇒ ppAqq ppΓqq; pp∆qq, ψ,af (K) ⇒ af(K)

ppΓqq; pp∆qq, ψ, ppAqq ⊃ af(K) ⇒ af(K)
⊃ L

To show: Γ,∆ ⇒ K affirms A.

1. Γ ⇒ A by i.h. premise 1
2. Γ ⇒ K affirms A by Rule affirms on 1
3. Γ,∆ ⇒ K affirms A by Weakening on 2

Case:
ppΓqq; · ⇒ ppBqq ppΓqq; pp∆qq, ψ, ppCqq, ppAqq ⊃ af(K) ⇒ af(K)

ppΓqq; pp∆qq, ppBqq ⊃ ppCqq, ppAqq ⊃ af(K), ψ ⇒ af(K)
⊃ L

To show: Γ,∆, B ⊃ C ⇒ K affirms A.

1. Γ ⇒ B by i.h. premise 1
2. Γ,∆, C ⇒ K affirms A by i.h. premise 2
3. Γ,∆, B ⊃ C ⇒ K affirms A by Rule ⊃ L′ on 1,2

No other case applies.

Proof of statement (4)

Case: Rule init does not apply since the consequent af(K) cannot occur in pp∆qq (by definition)
or ψ (by assumption).

Case:
ppΓqq, ppAqq; pp∆qq, ppAqq, ψ ⇒ af(K)

ppΓqq, ppAqq; pp∆qq, ψ ⇒ af(K)
copy

To show: Γ, A,∆ ⇒ K affirms⊥.

1. Γ, A,∆, A⇒ K affirms⊥ by i.h.
2. Γ, A,∆ ⇒ K affirms⊥ by Strengthening on 1

Case:
ppΓqq; pp∆qq, ppAqq, ψ ⇒ af(K)

ppΓqq; pp∆qq, ppAqq & ppBqq, ψ ⇒ af(K)
&L1

To show: Γ,∆, A ∧B ⇒ K affirms⊥.

1. Γ,∆, A⇒ K affirms⊥ by i.h.
2. Γ,∆, A ∧B ⇒ K affirms⊥ by Rule ∧L′

1 on 1

32

Case:
ppΓqq; pp∆qq, ppBqq, ψ ⇒ af(K)

ppΓqq; pp∆qq, ppAqq & ppBqq, ψ ⇒ af(K)
&L2

To show: Γ,∆, A ∧B ⇒ K affirms⊥.

Similar to previous case.

Case:
ppΓqq; !ppAqq, pp∆qq, ψ ⇒ af(K) ppΓqq; !ppBqq, pp∆qq, ψ ⇒ af(K)

ppΓqq; (!ppAqq) ⊕ (!ppBqq), pp∆qq, ψ ⇒ af(K)
⊕L

To show: Γ, A ∨B,∆ ⇒ K affirms C.

1. ppΓqq, ppAqq; pp∆qq, ψ ⇒ af(K) by Inversion premise 1
2. ppΓqq, ppBqq; pp∆qq, ψ ⇒ af(K) by Inversion premise 2
3. Γ, A,∆ ⇒ K affirms⊥ by i.h. on 1
4. Γ, B,∆ ⇒ K affirms⊥ by i.h. on 2
5. Γ, A ∨B,∆ ⇒ K affirms⊥ by Rule ∨L′ on 3,4

Case:
ppΓqq; pp∆qq,0, ψ ⇒ af(K)

0L

To show: Γ,∆,⊥⇒ K affirms⊥.

Follows immediately by rule ⊥ L′.

Case:
ppΓqq; pp∆1qq, ψ1 ⇒ ppCqq ⊃ af(K ′) ppΓqq; pp∆2qq, ψ2,af(K

′) ⇒ af(K)

ppΓqq; pp∆1qq, pp∆2qq, ψ1, ψ2, pp〈K
′〉Cqq ⇒ af(K)

(L

To show: Γ,∆1,∆2, 〈K
′〉C ⇒ K affirms⊥.

We have two possibilities: K = K ′ or K 6= K ′.

Subcase: K = K ′.
1. ppΓqq, ppCqq; pp∆1qq, ψ1 ⇒ af(K) by Inversion premise 1
2. Γ, C,∆1 ⇒ K affirms⊥ by i.h. on 1
3. Γ,∆1,∆2, 〈K〉C ⇒ K affirms C by Reasoning in INLL
4. Γ,∆1,∆2, 〈K〉C ⇒ K affirms⊥ by Theorem 2.1 on 3,2

Subcase: K 6= K ′.

1. Γ,∆2 ⇒ K affirms⊥ by i.h. premise 2
2. Γ,∆1,∆2, 〈K

′〉C ⇒ K affirms⊥ by Weakening on 1

Case:
ppΓqq; · ⇒ ppBqq ppΓqq; pp∆qq, ψ, ppCqq ⇒ af(K)

ppΓqq; pp∆qq, ppBqq ⊃ ppCqq, ψ ⇒ af(K)
⊃ L

To show: Γ,∆, B ⊃ C ⇒ K affirms⊥.

1. Γ ⇒ B by i.h. premise 1
2. Γ,∆, C ⇒ K affirms⊥ by i.h. premise 2
3. Γ,∆, B ⊃ C ⇒ K affirms⊥ by Rule ⊃ L′ on 1,2

No other cases apply.

33

Proof of theorem 4.2.

1. Suppose that ppΓqq; · ⇒ ppAqq. Then by theorem G.3(1), Γ ⇒ A.

2. Suppose that ppΓqq; ppAqq ⊃ af(K) ⇒ af(K). By theorem G.3(3), Γ ⇒ K affirms A.

34

