
Evaluating Data Driven Character Animation

Paul S. A. Reitsma

CS-CMU-06-161

October 2006

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Nancy S. Pollard, Chair

Jessica K. Hodgins
James J. Kuffner

Michiel van de Panne (UBC)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2006 Paul S. A. Reitsma

This research was sponsored by the National Science Foundation under grant no. IIS-0326322.

The views and conclusions contained in this document are those of the author and should not be interpreted
as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: computer graphics, animation, experimentation, measurement, reliability,
motion capability, capability metrics, motion capture, human motion, motion graphs, mo-
tion graph embedding, editing model

Abstract

Humanlike characters are an important area of computer animation. These
characters are vital components of many applications, such as computer games,
cinematic special effects, virtual reality training, and artistic expression. There
are two main challenges to animating humanlike characters. First, our daily
familiarity with human motion makes creating realistic humanlike motion par-
ticularly difficult, since viewers have an extremely high sensitivity to artifacts
or errors in human motion; this is the problem of producing animation of suf-
ficient quality. Second, animators require a motion generation system that can
produce all motions required to animate the character through the full range
of tasks in the target application; this is the problem of ensuring the motion
generation system has sufficient capability.

While several technologies have been developed to address these prob-
lems, our understanding of such technologies is still developing. Accordingly,
techniques for producing high-quality animations—such as motion capture—
and for producing high-capability animation systems—such as motion graphs—
typically rely heavily on the intuition and abilities of a skilled animator to
achieve acceptable results, and hence are difficult to use or automate. The
goal of this work was to augment the animator’s intuition by providing ways
to more objectively quantify and measure a system’s capability to produce the
required motion, and the quality to viewers of the motion so produced.

We present a technique for evaluating motion quality by measuring user
sensitivity to editing-based artifacts in captured motion, derive practical ani-
mation guidelines from the results, and discuss several interesting systematic
trends we have uncovered in the experimental data. We also present an effi-
cient technique for evaluating the capability of a motion graph to fulfill the
requirements of a given scenario, along with an examination of capability de-
ficiencies it uncovers and the effect on those deficiencies of some methods
commonly used to improve motion graphs. Finally, we propose a wide range
of extensions and applications enabled by these new evaluation tools, such as
automatic optimization and vetting of motion graphs.

iv

Acknowledgments

For Markus, who would have appreciated the complexities inherent in adding another D.

For Dave, who would have appreciated the heft of this thing when rolled up tightly.

For Schelte and Albert, who would (I hope) have been pleasantly surprised by their role.

For family and friends who have not yet abandoned me despite my years cloistered in an
ivory tower. Prior work [Rapunzel et al., 1812] suggests that perhaps I should have forgone
the haircut.

v

vi

Contents

1 Introduction 1

1.1 Animation Applications . 1

1.1.1 Challenges of Animation . 2

1.2 Motion Capture and Motion Graphs .3

1.2.1 Motion Graphs . 4

1.2.2 Choosing Motion Graphs . 6

1.3 Motion Editing . 7

1.3.1 Types of Motion Editing . 8

1.3.2 Implications of Motion Editing 10

1.3.3 Perceptible Flaws in Motion Quality10

1.4 Gaps in Motion Capability .12

2 Approach 15

2.1 Problem Statement .16

3 Related Work 19

3.1 Motion Quality . 19

3.1.1 Perception of Human Motion .20

3.1.2 Evaluation of Motion Quality20

3.1.3 Evaluation of Quality of Human Motion21

3.2 Motion Capability .22

vii

3.2.1 Animation Generation Techniques22

3.2.2 Motion Graph Manipulation .24

3.2.3 Environment Effects on Motion Graphs24

3.3 Differences and Contributions .25

4 Perceptual Metrics 27

4.1 Introduction .27

4.2 Experiment: Errors in Ballistic Motion28

4.2.1 Method .29

4.2.2 Study 1: Acceleration .29

4.2.3 Study 2: Gravity .31

4.2.4 Study 3: Effect of Character Animacy on Error Sensitivity31

4.3 Error Generation .33

4.4 Results .36

4.5 Estimating Acceptable Error .39

4.6 A Ballistic Error Metric . 42

4.7 Discussion .44

4.8 Conclusions .48

5 Evaluating Motion Graphs 55

5.1 System Overview .55

5.1.1 Capturing Motion Graph/Environment Interaction56

5.1.2 Visual Quality Requirements .58

5.1.3 Editing Footprints .60

5.1.4 Motion Capability Requirements61

5.2 Embedding into the Environment .61

5.2.1 Requirements for Embedding62

5.2.2 Discretization .63

5.2.3 One-Step Unrolling .66

viii

5.2.4 Space-Efficient Unrolling .66

5.2.5 Space Complexity .69

5.2.6 Time Complexity .71

5.2.7 Correctness of the Embedding Algorithms72

5.2.8 Obstacles and Annotation Constraints73

5.2.9 Selective Actions .74

5.3 Motion Graph Capability Metrics .75

5.3.1 Environment Coverage .75

5.3.2 Action Coverage .78

5.3.3 Path Efficiency .79

5.3.4 Action Efficiency . 81

5.3.5 Local Maneuverability .82

5.4 Results .85

5.4.1 Example Scenarios .85

5.4.2 Transition Selection .87

5.4.3 Baseline .90

5.4.4 Improving Motion Graphs .92

5.4.5 Scaling Behavior of the Methods103

5.4.6 Validity of the Evaluations .107

5.5 Discussion .113

5.5.1 Findings .113

5.5.2 Identified Causes .117

5.5.3 Scaling Behavior .121

5.5.4 Improving Runtime .124

5.5.5 Validity .125

5.6 Conclusions .126

6 Future Work 129

6.1 Dynamic Task Domains .129

ix

6.2 Optimizing Motion Graphs .130

6.2.1 Optimizing Motion Quality .131

6.2.2 Optimizing Motion Capability131

6.2.3 Optimizing Motion Capture .131

6.3 Graph Property Measurement .132

6.4 Motivating Goals .133

7 Conclusions 135

7.1 Measuring Motion Quality .136

7.2 Measuring Motion Graph Capability .136

7.3 Ensemble .137

A Dynamic Obstacles 139

A.1 Reactive Obstacles .140

A.2 Cyclic Obstacles .141

B Motion Graph Optimization 145

B.1 Graph Requirements .146

B.2 Construction Approaches .146

B.2.1 Constrained Optimization .147

B.2.2 Local Search .148

B.2.3 Divide and Cull .149

B.3 Requirements Satisfaction Evaluation149

Bibliography 151

x

List of Figures

1.1 An actor prepared for a motion capture session with bodysuit and reflective
markers. 3

1.2 A motion graph is formed from the additional transitions added between
frames of motion capture data. The frames of Motion 1 fromip to iq repre-
sent one clip in the motion graph. In this diagram, each vertical hashmark
is a frame of motion; connecting arrows represent these additional transi-
tions. 4

1.3 An example of an editing-caused artifact in a clip. The two motions being
spliced are not sufficiently similar in this data channel, and the result—
even after smoothing—will be jerky motion.11

1.4 An abstract view of a character reaching a dead end in the environment
due to a lack of appropriate motion capability.12

1.5 An overhead view of a cluttered environment showing two paths between
a randomly chosen start and end point. The best path available to the char-
acter using the motion graph (green) is unnaturally circuitous as compared
to the ideal reference path between start and end positions (red).13

2.1 A schematic diagram of the overall evaluation approach.15

3.1 A motion graph may be constructed using a reference frame local to the
character to preserve flexibility in the character’s motion. However, driv-
ing the character through this motion graph in an environment with ob-
stacles can result in dead ends that might thwart a local planner. In other
words, forming a strongly connected component (SCC) in original motion
graph does not guarantee that the character can wander through a given
environment indefinitely. .25

xi

4.1 Example of a motion used in the first two user studies.27

4.2 An example of one of the motions used in the third user study, depicted
on each of the two characters used, a human figure (top) and a cannonball
(bottom) which followed the same center of mass trajectory. The second
frame is the takeoff point where the character transitions into ballistic mo-
tion. 28

4.3 Examples of velocities with and without errors. (Top) Horizontal veloci-
ties with and without added acceleration in the horizontal direction. (Mid-
dle) Vertical velocities with and without added acceleration in the vertical
direction. (Bottom) Vertical velocities with and without decreased gravity.35

4.4 Mean ratings of motions with horizontal, vertical, and gravity errors from
studies 1 and 2. The mean rating for unchanged motions is plotted for
reference. Each plot is broken out by error direction and error magnitude.
Error bars show standard error of the mean.49

4.5 Mean ratings for all errors from all studies. Error bars show standard error
of the mean. .50

4.6 Mean sensitivities for all errors from studies 1 and 2, with best-fit linear
approximation. Error bars show standard error of the mean.51

4.7 Results for composite errors are approximately bounded by results for the
types of errors from which they are derived.52

4.8 Mean sensitivity for study 1 for all seven source motions (middle), the
three shortest jumps (left), and the three longest jumps (right). Accelera-
tions are comparatively easier to detect for longer jumps.52

4.9 Mean sensitivities for all errors from all studies. Error bars show standard
error of the mean. .53

5.1 A task that cannot be accomplished in a natural way by a simple walking-
based motion graph used in some of our tests. The red (dark) path is the
desired path. The green (pale) path is the shortest path available using this
motion graph. .56

5.2 Example environments. The upper obstacle (blue) in environments (b) and
(c) is annotated as a chasm or similar obstacle, meaning it can be jumped
over. The environment shown in (c) and (d) is our baseline reference envi-
ronment. .57

xii

5.3 From an initial root positionp and facing direction of the characterθ, a
motion clip can be edited to place its endpoint anywhere within its foot-
print (yellow region). Dotted arrows show the edited paths corresponding
to the possible endpoints(pi, θi) and(pk, θk). 59

5.4 (Left) A motion graph may be constructed using a reference frame local
to the character to preserve flexibility in the character’s motion. (Right)
Using this motion graph to drive the character through an environment
with obstacles can result in dead ends. Because obstacle information is not
available in the local reference frame (left), extracting a strongly connected
component (SCC) from the original motion graph does not guarantee that
the character can move through a given environment indefinitely.62

5.5 Computing edges from a single node; the endpoints of valid edges are
marked as green circles. Note that not all nodes within a clip’s footprint
are the endpoints of edges, as obstacles can obstruct the edited path from
the source to the target node (dotted path).65

5.6 Example of forming links for an embedding. The grid lies in a 4D space,
indexed by 3D workspace configuration(x, z, θ) and by incoming motion
clip (A, B, or C). Links from node[7, 1, θ1, a] are formed by looping over
all motion clips that follow from A and finding the destination nodes that
are within the corresponding editing footprints.65

5.7 Steps of the embedding algorithm. (a) A seed node (green “S”) is chosen.
(b) First pass of the reachable flood marks nodes reachable in one step
from the seed node. (c) Second pass marks additional nodes reachable in
two steps. (d) All reachable nodes are marked (blue vertical hashes). (e)
First pass of the reaches flood marks nodes which reach the seed node in
one step. (f) Second pass marks additional nodes reaching in two steps.
(g) All reaching nodes are marked (red horizontal hashes). (h) Intersection
of set of reachable nodes and set of reaching nodes (purple “+”) is the SCC
of the embedded graph. .68

5.8 In our grid-based algorithm, the end of each motion segment is snapped
to the centers of grid points inside the editing footprint for that motion
segment. This figure compares how growth in this theoretical edit region
compares to the regions actually used in the grid-based algorithm.72

5.9 A grid cell is covered by a clip if that clip’s footprint includes the cell’s
center. (Covered grid cells are in green.)76

xiii

5.10 Holes in coverage for a simple environment. The brightest regions are the
farthest distance from covered, collision-free cells. This figure shows at
eachx, z position the maximum distance over all orientationsθ. Arrows
indicate orientations of some of the local maxima.77

5.11 Coverage over a simple environment. Obstacles are in red; covered areas
are in grey. Lighter grey means more coverage (i.e., the grid location is
covered by more clips). .78

5.12 Paths through a simple environment. Obstacles are in bright red, themin-
PathLengthpath is in deep red, and thepathLengthpath is in green (start-
ing point is marked with a wider green dot). (Left) A typical path. (Right)
The theoreticalminPathLengthpath can head directly into the wall, while
the pathLengthpath, which relies on motions in the SCC, must end in a
state that allows for further movement.80

5.13 Evaluation environments of increasing complexity. The upper obstacle
(blue) in environment (c) is annotated as a chasm or similar obstacle,
meaning it can be jumped over. .85

5.14 Representative character navigation paths in the baseline scenario. Actual
paths are in green, ideal reference paths are in dark red. The starting point
of the actual path is drawn slightly widened.93

5.15 Representative character pick paths in the baseline scenario. Paths ending
in a pick action are in dark green and ideal reference paths are in dark red.
The starting point of the actual path is drawn slightly widened.94

5.16 XZ Coverage locations for ducking, kicking, punching, and picking-up in
the baseline scenario. Section 5.5.2 examines the poor coverage of the
punching action. .95

5.17 (a) XZ Coverage for the baseline scenario. (b) XZ Coverage for a ver-
sion of the baseline scenario with the environment shortened from 15m to
14m. (c) XZ Coverage for the shortened environment with a larger motion
graph. .96

5.18 40m by 10m environment partitioned into rooms by 8m-long walls. 10m
by 10m, 20m by 10m, and 80m by 10m environments of the same format
were also used to evaluate scaling behavior of the algorithm in equivalently-
dense environments. .103

xiv

5.19 Distributions of a representative pair of metric values for the random en-
vironments evaluated. Y axis is count of number of environments in each
bin. .113

5.20 Representative examples of the random environments created for testing.114

5.21 An environment which could be hard to navigate with semantically-invariant
editing methods. .119

5.22 (Left) The character is following a random path through a motion graph
that has been embedded into an environment tiled with a repeating pattern.
(Right) A random path wraps around from left to right, bottom to top, then
right to left. .126

xv

xvi

List of Tables

1.1 Comparison of automatic motion graphs vs. hand-designed motion net-
works. 5

4.1 F-values and probabilities for horizontal, vertical, and gravity errors from
studies 1 and 2. All degrees of freedom are of the formF (1, N); for
example,F (1, 862) = 128.7 for all horizontal errors. 40

4.2 Mean sensitivity levels (and standard error of the mean) for horizontal
(H), vertical (V), and gravity (G) errors. A sensitivity of zero means that
participants cannot detect errors. The last column contains lines fit to the
sensitivity data, also including the point(0, 0). E is the magnitude of the
error, inm/s for horizontal or vertical errors and inm/s2 for gravity errors. 41

4.3 Error thresholds resulting from a desired sensitivity level of 0.25 or less.
For reference, average initial velocities in the original jumps were approx-
imately2m/s in the vertical direction and1.5m/s in the horizontal direc-
tion. 42

5.1 Clips, transitions, and total amount of motion contained by the different
motion graphs created for our main evaluations. The full motion database
contained 439 seconds of motion. .89

5.2 Evaluation results for the three basic test scenarios. Capability steadily
worsens as the environment become more congested with obstacles. . . .92

5.3 Evaluation results by size of motion graph.97

xvii

5.4 Frames of source motion, frame size of the motion graph, and coverage
comparison for the different motion datasets. XZ coverage indicates the
fraction of the collision-free ground plane that can be reached at some
orientation. XZA coverage is the fraction of all collision-free 3D configu-
rations(x, z, θ) that can be reached. .99

5.5 Path Efficiency comparison for the different motion datasets. The median
column lists median path length as a fraction of the minimum path length.
The 95% column lists 95th percentile values forEP . The “EP > 1.1”
column lists the percent of paths tested having a path length ratio greater
than 1.1, and the “EP > 1.25” column lists the percent of paths with path
length ratios greater than 1.25. .100

5.6 Evaluation results for the baseline scenario with different sizes of editing
footprint. .100

5.7 Effect of allowable motion editing on coverage for a simple walking dataset
in a small environment (Figure 5.1). Editing size is the value ofrx andrz

in cm/meter and also the value ofrθ in degrees/m (see Equation 5.1;α
was zero for this dataset, so clip duration was ignored). “Always connect”
means to always connect to at least one grid point. “Respect edit bounds”
means only connect to grid points within the editing footprint. Results
depend on grid spacing, which was 20cm forx andz and 20 degrees forθ. 101

5.8 Evaluation results for the Baseline Environment with either the baseline
motion graph or a smaller, hub-based one.102

5.9 Time and memory requirements for evaluation of environments of differ-
ent sizes. “Edges/sec” is the number of edges in the embedded graph
divided by the total embedding time. For comparative purposes, an NBA
basketball court is approximately430m2, and an NFL football field is ap-
proximately5, 300m2. .104

5.10 Time to compute the embedded graph is approximately linear with area
across environments with equivalent obstacle densities. (Additional “fake
obstacles” (which had no effect on edge validity) were added to the smaller
environments to equalize collision-detection overhead between environ-
ments.) .104

5.11 Time and memory requirements for embedding different sized motion
graphs in the Baseline Environment. .106

xviii

5.12 Time and memory requirements for different edge-caching schemes. All
times are in seconds. Explicit caching refers to the algorithm of Reitsma
and Pollard 2004. The ”+” notation is used as we replicated only the first
parts of their algorithm for comparative purposes; some additional com-
putation beyond the amount timed is required by their algorithm.108

5.13 Evaluation results at different discretization levels.109

5.14 Practical Local Maneuverability results for the baseline environment when
each possible sample in the environment has the given chance of being
evaluated. .110

5.15 Metric results for different numbers of path efficiency and pick efficiency
tests run in the baseline environment. Baseline number was 150/50. . . .111

5.16 Mean values and standard deviations for evaluation results of randomly-
generated environments. .112

xix

xx

Chapter 1

Introduction

1.1 Animation Applications

Character animation has a prominent role in many applications, from entertainment in

games or movies to safely training for dangerous situations in virtual reality to expanding

the range of artistic expression. Realistic and directable humanlike characters are an ongo-

ing goal in computer animation, playing vitally important roles in all types of applications

that use computer animation.

One very common use of such animated characters is in computer games such as

“Prince of Persia: the Sands of Time”, “Madden NFL 2004”, or “Max Payne 2”, to name

a few examples. As with many games, these titles focus the player’s attention on hu-

man characters for the large majority of the playing experience. Similarly, many training

scenarios, such as the first-responder trainer “Project Biohazard” [Brooks et al., 2003] or

the military virtual reality conflict-resolution training “Mission Rehearsal Exercise” [Hill

et al., 2003] rely on interaction with realistic humanlike characters. Many special effects

for movies or television require realistic and directable humanlike characters, such as the

background character scenes now common to many movies, or the foreground characters

in such movies as “Spiderman 2” or “Van Helsing”. Artistic endeavors are often similar;

even such a highly stylized piece as “Ryan” (Chris Landreth, 2004) makes use of real-

1

istic human motion as a counterpoint to the fantastical visual effects. Some applications

even fill multiple roles, such as the US military’s “Full Spectrum Warrior”, which is used

for entertainment, recruitment, and training. In all of these applications, realistic human

motion is important to create an immersive and engaging result. Similarly, directable char-

acters are vital for interactive applications where no human intervention is possible, and

tremendously useful for authoring in other situations.

1.1.1 Challenges of Animation

Animating such realistic and directable characters is a particularly challenging goal; be-

cause we are so intimately familiar with human motion from our day-to-day lives, even

untrained viewers have strict requirements for what they will consider to be realistic hu-

man movement. Our sensitivity to subtle details of human motion is very high [Kozlowski

and Cutting, 1977], meaning seemingly minor details of human motion carry significant

information and impact.

A character with unrealistic motion or whose motion contains details that are ill-suited

to the scenario can detract significantly from the goal of the application. Entertainment

applications—which often rely on engaging and immersing the viewer—suffer when a mo-

tion appears implausible or ill-suited, and training applications—particularly those which

require the emotional involvement of the trainee (e.g., Hill et al. [2003])—may suffer sim-

ilar reductions in effectiveness. Possibly worse, a training application meant to teach skills

with a physical component could be unreasonably hard to learn from or could even teach

bad practices if the animated character’s motion cannot be made sufficiently similar to the

motion of the human teacher from which the lesson was originally derived. Similarly, in-

appropriate subtle details to a motion can adversely affect the artistic or emotional impact

of an animation, necessitating labor-intensive manual alteration of sub-standard motions.

Interactive or online applications have an additional requirement, namely that the ani-

mated character must have the capability to perform all required tasks; in other words, the

requirement that a user interacting with the system can cause the character to undertake

the desired motion at the proper time and without undue delay. For example, a ball-carrier

2

Figure 1.1: An actor prepared for a motion capture session with bodysuit and reflective

markers.

in a football game should always be able to turn or sidestep to avoid a tackle; if the char-

acter lacks the capability to undertake evasive motion in a timely manner, the game will

be frustrating to play and is likely to be less successful commercially.

1.2 Motion Capture and Motion Graphs

One promising technology for acquiring high-quality human motion that has become avail-

able in recent years ismotion capture. In a nutshell, motion capture directly records the

motion of an actor for later playback through an animated character. For optical mo-

tion capture—the most common type—the actor is prepared with several dozen reflective

markers placed on specific locations on the body (see Figure 1.1). A set of 6–12 calibrated

near-infrared cameras track the 3D position of these markers at 30–120Hz, after which

this raw positional data is combined with anatomical knowledge about the character to

generate a sequence of character poses that—when played back at the same rate as the

original data capture—will result in a very close approximation of the actor’s movements.

This pose information is stored in joint angle format (i.e., the left elbow is at X degrees at

frame 43, at Y degrees at frame 44, and so on).

3

Figure 1.2: A motion graph is formed from the additional transitions added between

frames of motion capture data. The frames of Motion 1 fromip to iq represent one clip in

the motion graph. In this diagram, each vertical hashmark is a frame of motion; connecting

arrows represent these additional transitions.

Typical accuracy for 3D tracking of motion capture markers is a few millimeters; com-

bined with the known anatomical restrictions of the situation (e.g., the lengths of the actor’s

bones remain constant), this level of accuracy allows detailed reconstruction of the actor’s

motion. The result is a portrayal of the original actor that is sufficiently accurate and

captures enough subtle details that observers can typically distinguish between different

actors—or recognize a familiar actor—quickly and easily.

1.2.1 Motion Graphs

The intention of a motion graph is to allow additional flexibility when using motion capture

data. Normally, motion capture data is played sequentially; to replay the motion of clipi,

the animation transitions from frameik to frameik+1 for k = 1, 2, ...n− 1. Motion graph

data structures take motion capture data, break the motions into short clips, and allow

the clips to be pieced back together in any order and combination that does not require

transitions between clips whose measured quality is below a certain threshold. To create a

motion graph, the data is examined to find additional transitions of the formik to jm (i.e.,

clip i, framek to clip j, framem) that will result in acceptable motions. One common

4

Automatic Hand-Tuned

Motion Graph Network

Setup Fast, automatic Slow, manual

Transitions Natural Hand-tuned

Capabilities Not known Known by design

Table 1.1: Comparison of automatic motion graphs vs. hand-designed motion networks.

criterion for selection of such transitions is that framesik andjm are sufficiently similar

(e.g., the sum of the squared differences between the joint angles and joint angle velocities

of the two characters is below a threshold).

A motion graph is formed by considering these additional transitions to be the edges

of a directed graph (see Figure 1.2), with nodes in the graph representingclips (sequences

of frames extending between two of these additional transitions within an original source

motion; i.e., frameip to frameiq). Traversing this graph consists of playing a sequence of

these clips, with all clip-to-clip boundaries being at one of these additional transitions. For

example, a clip of a character walking three steps might be broken into three clips—one

for each step—and a five-step sequence could be synthesized by piecing together the three

steps in the order 12321, 32321, or even 12121. To allow continuous motion generation,

which is crucial for applications where the entire motion plan is not known in advance

(e.g., interactive applications), only the largest strongly connected component (SCC) of

the motion graph is used.

Motion graphs hold much promise for achieving the goals we have set out for ani-

mation generation systems. One particular advantage is their direct reliance on motion

capture, meaning that motion graphs can easily benefit directly from the skills of a par-

ticular actor, capturing the nuances of his or her performance to generate realistic motion

evoking the desired responses in the viewer. When coupled with motion capture and mo-

tion editing, motion graphs have the potential to allow automatic and efficient construction

of realistic character animations in response to user or animator control.

5

Unfortunately, many of these potential benefits are difficult to realize with motion

graphs. In particular, motion graphs often suffer from a lack of flexibility in terms of

character capabilities. This problem is sometimes addressed with hand-tuned motion net-

works [Mizuguchi et al., 2001], which are carefully designed to give characters the nec-

essary motion capabilities. These networks, however, have the disadvantages that they

require extensive manual effort on the part of skilled animators, and can suffer from less

natural transitions than an automatic motion graph would have, due to the latter’s ability to

automatically process very large motion databases and pull from the database appropriate

transitions that the actor actually performed. Table 1.1 gives a summary of the comparison

between automatically-generated motion graphs and hand-tuned motion networks.

1.2.2 Choosing Motion Graphs

We chose to work with motion graphs due to their following advantages:

1. Leverage and preserve inherent realism of motion capture

2. Largely preserve subtleties of actors’ performances

3. Function effectively for many different types of actions

4. Large body of supporting work

5. Modest computational and resource requirements

6. Modest requirements for animator time and effort

7. Modest requirements for animator skill

In particular, we believe that motion graphs can offer an excellent mix of easy motion

creation for naive users and actor-derived control over motion subtleties for more demand-

ing tasks.

One reason we used motion graphs in our research is due to a long-term goal of provid-

ing guaranteed-good online motion generation. Motion graphs stitch together high-quality

6

motion capture data, meaning that motion quality and motion-generation capability can be

somewhat decoupled in the system, and hence can be reduced to some extent into simpler

sub-problems. We address these two sub-problems in the two evaluation threads of our

research.

Additionally, we selected motion graphs for the initial implementation of our work

because they are well-supported by high-quality research from many other researchers,

they tend to produce good results, and they are fast and efficient to use. All of these

contribute to our final reason, which is that motion graphs and similar technologies are

already in use in several applications which we believe would benefit from our work.

It is worth noting that, while this research deals only with motion graphs, it could be

applied to the other motion generation methods, at least in a general sense. Any motion

generation method could be used to create sample motions from which a motion graph

could be formed, and this motion graph could be evaluated as we describe (although the

capabilities and task space coverage of the other motion generation method might be un-

derestimated, depending on the quality of the sample motions generated). Additionally,

results from studies on the perceptual quality of single motions will need to be reinter-

preted for different types of motion editing used by each motion generation method to

ensure the correctness of the algorithm we describe.

1.3 Motion Editing

Motion capture data, while detailed and realistic, is also extremely inflexible; by itself, the

data can only be replayed to animate exactly the motions the original actor performed. Due

to this rigidity, virtually every application that uses motion capture data edits and changes

that data because the recorded motion clips need to be tweaked to fit the requirements of

the particular scenario. Even very simple applications, such as making a character walk

forward five meters, will require motion editing unless precisely that action was captured.

7

1.3.1 Types of Motion Editing

There are four major categories of motion editing:

1. Splicing two clips together

2. Warping a single clip

3. Interpolating between multiple clips

4. Transplanting body parts from one clip into another

The key motion editing techniques for motion graphs are splicing and warping, so our

work focuses on those approaches. Future work involving alternative motion generation

algorithms may place more emphasis on interpolating or transplanting as methods of mod-

ifying clips.

Splicing

Splicing motion capture data refers to combining two motion clips. This edit involves

taking two clips of motion capture data and attaching the beginning of one motion to the

end of the other. The result is a longer animation than either input clip, possibly creating an

overall motion that the original actor never performed. For example, splicing a two-meter

walk onto the end of another two-meter walk would produce a four-meter walk, even

if the actor was only ever recorded walking two meters at once. Similarly, animating a

character for an extended period of time requires splicing together motion clips, otherwise

the animation driving the character will hit the end of the clip and simply stop.

Splicing motion clips together in this way tremendously increases the range of anima-

tions possible from a collection of motion capture data, and is the key technique behind

motion graphs. Accordingly, splices are an indispensable type of motion editing.

8

Warping

Warping motion capture data refers to altering details of a single motion clip. For example,

one could take a motion clip that makes the character walk directly forward two meters

and warp it into a motion clip where the character walks 1.8 meters at an angle of ten

degrees from forward.

This type of motion editing is crucial for having a character perform tasks as specified

by the animator. Raw motion capture data—even when pieces are spliced together—is

limited to replaying what the actor originally performed. If the actor was captured reaching

for an object at waist height and at head height, but was not captured reaching for an object

at shoulder height, no amount of splicing or replaying of the original data will produce

that shoulder-height reach. Warping the head-height reach clip, however, can produce

the required shoulder-height reach. Warping of motion clips is similarly important for

locomotion to a specified target point, and for almost all similar tasks where motion must

be generated that closely fulfills requirements set by the animator. Accordingly, motion

warping is also an indispensable type of motion editing.

Interpolating

Interpolating motion capture data refers to combining two or more captured motions to

create a new motion that is different from any of the sources. For example, one could take

a motion clip that makes the character punch at head height and a motion clip that makes

the character punch at chest height, and interpolate between to make a new motion clip

that makes the character punch at shoulder height. Interpolation and warping share many

similarities, and interpolation is valuable in many of the same circumstances.

Transplanting

Transplanting refers to taking motion for different parts of the character’s body from dif-

ferent motion clips, and is used to enrich a motion database. For example, a clip of a

character running and a clip of a character catching a ball can be combined by transplant-

9

ing the ball-catching torso onto the running legs to create a new clip of a character catching

a ball while running.

1.3.2 Implications of Motion Editing

Motion graphs rely heavily on splicing clips together to form the additional transitions

among the source motions, and on motion warping to make the resulting motions general

enough to fulfill task requirements. This need for splicing transitions and warping motion

clips means that motion graphs require extensive use of motion editing; unfortunately, that

motion editing is problematic because it undermines the key benefit of motion capture

data: the realistic portrayal of the original actor’s motion. Due to the way motion editing

changes both large and small details of a motion captured clip, there is no longer any

assurance that the resulting motion will be at all realistic or acceptable to a viewer.

The benefit of motion editing is that the character’s capabilities are greatly enhanced,

making it possible for motion capture data to be used to achieve animator (or user) goals

for a character’s motion.

These two effects of motion editing largely oppose each other, creating a tension that

must be carefully understood and controlled as the animator tries to deal with the twin

problems of motion quality and motion capability.

1.3.3 Perceptible Flaws in Motion Quality

While measurement error of the motion capture markers and approximation error incurred

when fitting human motion to a simplified skeletal representation both result in less-than-

perfect human motion, the largest and most perceptually important problems in most appli-

cations that use motion capture stem from motion editing. Motion editing techniques can

often introduce artifacts into the motions they produce, and such artifacts can be detectable

by and even disturbing to viewers. Figure 1.3 shows how a mismatch when splicing to-

gether motion capture data can lead to an artifact. It is not yet well understood how much

motion editing can be applied to a motion before artifacts are introduced that violate the

10

Figure 1.3: An example of an editing-caused artifact in a clip. The two motions be-

ing spliced are not sufficiently similar in this data channel, and the result—even after

smoothing—will be jerky motion.

particular application’s quality and verisimilitude requirements, and motion editing is cur-

rently applied largely according to rules of thumb. Two common examples of such editing

errors are footsliding and jerkiness in the motion.

The common approach taken to examine the quality of motion produced by an anima-

tion system is for the animator to become familiar with the system and use their intuition

to judge the applications in which the motion should be acceptable. Unfortunately, for

most applications the animator is not able to exhaustively test the range of motions the

system could produce, leading to the constant threat of motions being produced that are

far from acceptable under the application’s requirements. Additionally, typical viewers of

animation may perceive an animated character’s motion differently than skilled animators

do, much like a skilled martial artist will understand a movie fight scene differently than

an average viewer. Accordingly, the animator’s intuition may be too harsh, throwing out

acceptable animations and wasting resources, or may simply be inappropriate to judge

what will or will not be acceptable to actual average viewers.

11

Figure 1.4: An abstract view of a character reaching a dead end in the environment due to

a lack of appropriate motion capability.

1.4 Gaps in Motion Capability

Even before the animator can worry about how viewers will perceive the quality of a

motion, that motion must first be created by the animation system. If a required motion

cannot be created without using excessive motion editing, the animator may be faced with

an unpleasant choice between a bad-looking motion and no motion at all. Even worse

is when this dilemma comes up during interactive motion creation applications—such as

games—when no animator is present to make the best choice in a bad situation. One

example of this problem is the motion graph lacking the movements required to navigate

the character into and out of a restricted location in the environment, such as a narrow

passage (see Figure 1.4); a second example is the motion graph lacking sufficient flexibility

to have the character follow natural and reasonable paths within a cluttered environment

(see Figure 1.5).

Again, addressing this problem commonly relies heavily on animator intuition and

skill. A typical approach is for the animator to carefully hand-tune or even hand-craft a

system which their intuition tells them can create all the necessary motions. This suffers

from the same pitfalls, however, of the animator not being able to exhaustively test the

system’s ability to produce adequate character capabilities, leading to the risk of necessary

motions being unavailable. Generally, unpleasant motions are considered preferable to

12

Figure 1.5: An overhead view of a cluttered environment showing two paths between a

randomly chosen start and end point. The best path available to the character using the

motion graph (green) is unnaturally circuitous as compared to the ideal reference path

between start and end positions (red).

13

unavailable motions, and this risk is avoided by unconstrained use of motion editing, with

a predictable effect on motion quality.

One of the key parts of this major stumbling block is a lack of understanding of the

space of motions created by the motion graph data structure; it is not known with any

confidence what a character can or cannot do when animated by a particular motion graph

in a particular environment. Due to this lack of knowledge of a motion graph’s capabili-

ties, they are not reliable enough for many applications, especially interactive applications

where the character must always be in a flexible and controllable state regardless of the

control decisions of the user. Even if a particular motion graph does happen to fulfill all

our requirements, that reliability will go unknown and – for a risk-averse application –

unused without a method to evaluate and certify the capability of the motion graph.

14

Chapter 2

Approach

Figure 2.1: A schematic diagram of the overall evaluation approach.

Figure 2.1 shows a diagram of our approach. Motion capture provides the source

15

motions for our evaluations. Our Perceptual Metrics approach (Chapter 4) allows us to

examine the perceptual quality of motion necessary for humanlike or simple object char-

acters to effectively depict realistic motion of one particular type. We use this approach

to build insight into how carefully details of a motion must be controlled for different ap-

plications, and how this can be exploited for practical animation tasks (arrows to Motion

Graph and Editing Model in Figure 2.1). Our method for evaluating the capability of a

motion graph (Evaluate Character Capability in Figure 2.1) permits us to evaluate how

well-suited a particular motion graph is for a particularscenario, by which we mean the

motion task space, specific environment, and animator requirements for tasks the character

must perform in a particular application. This method provides insight on what properties

of motion graphs are necessary to ensure desirable properties such as the ability to animate

a character with sufficient motion capability to perform all required tasks. This capability

evaluation uses the motion graphs and editing models informed by the perceptual met-

rics evaluation, as shown in Figure 2.1. We conclude with a selection of future research

directions enabled by this work (Chapter 6), representing directions this work might be

extended either separately or by using the two evaluation techniques in conjunction.

2.1 Problem Statement

We investigated the following key questions:

1. How does one measure the subjective quality of a motion clip?

• How can those measurements be used to derive practical animation guidelines?

• Do differences in character type between a human figure and a simple rigid

body affect a user’s sensitivity to errors in that motion?

2. How does one measure the capability of a motion graph to fulfill a scenario’s re-

quirements?

• What is a functional and actionable definition of capability?

16

• How can this evaluation be efficiently applied to the large scenarios practical

use demands?

• What specific deficiencies in capability can be identified from the resulting

measurements?

• How well do common techniques resolve these deficiencies?

17

18

Chapter 3

Related Work

The two main threads of our work – evaluating a motion’s subjective quality and evaluating

a motion graph’s capability – draw largely from substantially different bodies of related

work, and so we address them individually. For each of the two threads, we examine

important prior or background work in the area and how that work is used by or differs

from our work.

3.1 Motion Quality

The first of our key questions is: how does one measure the subjective quality of a motion

clip?

A substantial quantity of work in multiple fields has addressed the problem of under-

standing perception of human motion (Section 3.1.1); however, that work does not address

the notion of the subjectivequality of the motion. Work evaluating the quality or realism

of a motion has been undertaken (Section 3.1.2), but generally in terms of rigid bodies

and similar objects; only recently has such work addressed the problem of evaluating the

quality of a human motion (Section 3.1.3).

Our work is one of a few studies that examines the questions of how perceptual sensi-

19

tivity to errors in full-body motion varies with changes in parameters such as error magni-

tude, and how that information can be applied to create practical guidelines for animators.

We focus on the ballistic motion of human and rigid-body characters.

3.1.1 Perception of Human Motion

Light dot experiments, in which small points of light attached to key areas of a human’s

body are the only information given to the subjects about that human’s motion, have

yielded interesting insights. Researchers have found that observers can make very fine

discriminations when presented with a sparse representation of actual human motion, for

example accurately estimating lifted weight [Runeson and Frykholm, 1981] and pulled

weight [Michaels and de Vries, 1998] from light dot displays. It is argued that a high

level of performance is possible because the relevant complexity of the motion is small;

the weight of the manipulated object correlates well with observable parameters such as

elbow velocity [Bingham, 1987] or center of mass position and velocity [Michaels and

de Vries, 1998].

Brain imaging studies (e.g., Grossman et al. [2000], Pelphrey et al. [2003]) carried out

with point light displays demonstrate that there are differences in the regions of the brain

activated when subjects view biological motion as compared to coherent non-biological

motion. We were motivated to examine whether this insight might play a role in the

sensitivity of viewers to errors in animated motion.

3.1.2 Evaluation of Motion Quality

Perception of physically unrealistic motions has been studied extensively for rigid bodies

and simple mechanisms. It is generally acknowledged that people perform poorly on ab-

stract physical reasoning tasks [Proffitt, 1999], even about something as apparently simple

as constant velocity (Michotte [1963], Cohen [1964], Runeson [1974]), although there is

evidence that richer stimuli can improve performance for some tasks [Stappers and Waller,

1993].

20

Animation has also been shown to improve performance [Kaiser et al., 1992, Hecht

and Bertamini, 2000], but good performance is observed only for simple motions. In the

study of Kaiser et al., for example, animation improved performance for discriminating

correct and incorrect ballistic motion of a spherical body, but anomalies in a spinning mo-

tion that involved changing inertia (a satellite with extending and retracting solar panels)

were not identified unless the spinning motion completely stopped or reversed direction.

Degradation of performance with complexity was also noted by O’Sullivan and Dingliana

[2001], who showed that anomalies in collisions between complex objects were more dif-

ficult to detect than anomalies in collisions with spherical objects.

3.1.3 Evaluation of Quality of Human Motion

Hodgins et al. [1998] varied a synthetic running motion and were able to show that for

the types of variations tested—torso rotation, arm swing magnitude, or additive noise—

subjects were more sensitive to these variations when the character was rendered using a

polygonal model than when a stick figure was used for rendering. Oesker et al. [2000]

showed that perceived skill level of animated soccer players increased when more detailed

and realistic motion was used for the players.

Wang and Bodenheimer used viewer perception of animation quality to validate their

transition-point selection method [2003], and to examine the effect of transition length

on motion quality [2004]. Harrison et al. [2004] studied the ability of viewers to de-

tect changes of length during animation under the influence of differing attention levels.

Recently, researchers have compared the results of motion-naturalness classifiers to the

classifications of users [Ren et al., 2005, Ikemoto et al., 2006, Arikan et al., 2005]. Mc-

Donnell et al. [2006] studied how user preference varied with level-of-detail simplification

of clothing simulations for characters in animated crowds.

21

3.2 Motion Capability

The second of our key questions is: how does one measure the capability of a motion

graph to fulfill a scenario’s requirements?

Many techniques for generating animation have been examined by researchers (Sec-

tion 3.2.1), although none have been able to completely solve the problem of creating

human animations. For the reasons given in Section 1.2.1, we are using motion graphs

as the testbed for our evaluation system. However, motion graphs have several important

deficiencies, such as a poor ability to respond rapidly to interactive control or to create

the precise motion sequence requested. A number of researchers have looked at address-

ing these problems (Section 3.2.2), but our work is unique in that it is the first systematic

evaluation of the problems associated with motion graphs.

Evaluating a motion graph requires taking the details of the environment in which

it is to be used into account. Several researchers have developed methods for taking the

environment into account for an animation system (Section 3.2.3); however, our evaluation

goals required a new algorithm that would allow the full capabilities of the motion graph

to be examined efficiently enough to be used in large and complex environments.

3.2.1 Animation Generation Techniques

Many techniques have been suggested to address the problem of creating high-quality

animated characters which are capable of fulfilling user requirements. Unfortunately, none

of the methods currently available have done so with complete success.

Motion graph approaches to motion generation (e.g., Molina-Tanco and Hilton [2000],

Lee et al. [2002], Kovar et al. [2002a], Arikan and Forsyth [2002], Li et al. [2002], Kim

et al. [2003], Arikan et al. [2003], Kwon and Shin [2005], Lee et al. [2006]) maintain

much of the realism and quality of the underlying motion capture data, but often suffer

from poor controllability due to their use of discrete motion clips.

Planning approaches to motion generation (e.g., Kalisiak and van de Panne [2001],

Hsu et al. [2002], Julien Pettre Jean-Paul Laumond [2003], Yamane et al. [2004]) create

22

a collision-free path through an environment with arbitrary obstacles by searching the

configuration space of the system. Heuristic planning systems can successfully operate on

systems with high degree of freedom, but such systems can be difficult to construct and

control, computationally expensive, and even when informed by motion capture data can

fail to find a natural-looking solution.

Controller approaches to motion generation (e.g., Wooten and Hodgins [2000], Falout-

sos et al. [2001], Zordan and Hodgins [2002], Zordan et al. [2005]) can conceivably gen-

erate arbitrary motion that conforms to the laws of physics to the extent that the animator

specifies. However, controllers are often complex and difficult to construct, even for ex-

perienced users, and are often only reliable and stable within a relatively narrow space of

motions.

Optimization approaches to motion generation (e.g., Witkin and Kass [1988], Gleicher

[1997], Lo and Metaxas [1999], Popović and Witkin [1999], Liu and Popović [2002], Fang

and Pollard [2003], Safonova et al. [2004]) again can conceivably generate arbitrary mo-

tion conforming to arbitrary physical laws. Motion that is largely specified by the laws of

physics (such as jumping) are particularly well-suited to optimization techniques as they

are already highly constrained. Motions that are less heavily dependent on the body’s dy-

namics (such as gesturing) require possibly very complicated user-specified constraints to

force the solution to move in the desired manner, and may be less well-suited to optimiza-

tion methods. Additionally, there is no guarantee that the optimization will converge to an

acceptable solution.

Interpolation approaches to motion generation (e.g., Wiley and Hahn [1997], Rose

et al. [1998], Rose. et al. [2001], Sloan et al. [2001], Zordan and Hodgins [2002], E. Drumwright

[2004], Kovar and Gleicher [2004], Mukai and Kuriyama [2005]) ensure that motion can

be generated for any point in a parameter space. However, there are situations where in-

terpolation will produce poor results if there are too few samples (e.g., ballistic motion

[Reitsma and Pollard, 2003]). To assist artists in creating an interpolation function that

produces pleasing results, Sloan and his colleagues [Sloan et al., 2001, Rose. et al., 2001]

provide an interactive editing environment for adjusting example motions, creating new

examples, and placing the new examples in the parameter space.

23

3.2.2 Motion Graph Manipulation

Some previous research has looked at the problem of altering motion graphs to overcome

their disadvantages. Mizuguchi et al. [2001] examined a common approach used in the

production of interactive games, which is to build a motion-graph-like data structure by

hand and rely heavily on the skills and intuition of the animators to tune the results. Gle-

icher et al. [2003] developed tools for editing motion data in a similar manner, in par-

ticular the creation of transition-rich “hub” frames. Lau and Kuffner [2005, 2006] use a

hand-tuned hub-based motion graph to allow rapid planning of motions through an envi-

ronment. Ikemoto et al. [2006] use multi-way blending to improve the transitions available

within a set of motion capture data. Recently, some research has examined the problem of

how to make motion graphs more responsive at a local level, allowing limited interpolation

[Shin and Oh, 2006, Heck and Gleicher, 2006].

3.2.3 Environment Effects on Motion Graphs

It can be advantageous to embed a motion graph into a particular environment (e.g., see

Figure 3.1). Embedding a motion graph into an environment reveals how the specific

features of that environment will affect the properties and capabilities of the motion graph.

Four other projects have considered embedding a motion graph into an environment

in order to capture its interaction with objects. Research into this area was pioneered by

Lee et al. [2002]. Their first approach captured character interactions with objects inside

a restricted area of the environment. A second approach [Choi et al., 2003] demonstrated

how to embed a portion of a motion graph into an environment by unrolling it onto a

roadmap [Kavraki and Latombe, 1998] constructed in that environment. Suthankar et al.

[2004] embedded a motion graph to model the physical capabilities of a synthetic agent.

Lee et al. [2006] embedded motion data into repeatable tiles.

Our evaluations required a new approach which would embed the full set of options

available to the motion graph into all parts of the environment. In order to make embedding

large motion graphs into large environments a tractable task, we use a grid-based approach

24

C

B

A

SCC, local reference frame

A

B C

random walk in task domain
original motion graph

Figure 3.1: A motion graph may be constructed using a reference frame local to the charac-

ter to preserve flexibility in the character’s motion. However, driving the character through

this motion graph in an environment with obstacles can result in dead ends that might

thwart a local planner. In other words, forming a strongly connected component (SCC) in

original motion graph does not guarantee that the character can wander through a given

environment indefinitely.

inspired by grid-based algorithms used in robotic path-planning (e.g., [Latombe, 1991,

Lozano-Ṕerez and O’Donnell, 1991, Donald et al., 1993]).

3.3 Differences and Contributions

This work is, to our knowledge, first in several ways:

1. First to measure perceptual quality of full-body human motion with a goal of pro-

ducting concrete animator guidelines for amount of allowable error [Reitsma and

Pollard, 2003]

2. First to derive practical guidelines for animation of human characters from percep-

tual data of human motion [Reitsma and Pollard, 2003]1

1Additional work in this area has since appeared [Harrison et al., 2004].

25

3. First to define and evaluate the capability of a motion graph to fulfill scenario re-

quirements [Reitsma and Pollard, 2004]

The main contributions of this work are the following:

• A statement of the problem of evaluating the perceptual magnitude of errors in

animated human motion.

We demonstrated how to measure the perceptual quality of an animated human motion,

and how to derive practical animation guidelines from those results. Our experiments

uncovered a number of systematic trends in user sensitivity to errors in animated human

motion, including significant differences between error types, error directions, and char-

acter types.

• A statement of the problem of evaluating global properties of motion generation

algorithms.

We provided a concrete method for evaluating global task-space properties for motion

graphs in a manner efficient enough to be carried out in scenarios of practical size. Our

experiments uncovered a number of systematic trends, including the tendency of a motion

graph’s capability to degrade rapidly with increasing complexity in either required tasks or

target environment and the effect on a motion graph’s capability of using some common

motion graph improvement techniques.

26

Chapter 4

Perceptual Metrics

4.1 Introduction

This chapter presents the results of three studies of user sensitivity to errors in the ballistic

phase of motion. Errors were added to motion captured jumps by manipulating the trans-

lational velocity of the center of mass in a systematic way, and user sensitivity to these

errors was measured.

For the first two studies, we found that sensitivity varied with the level and variety of

error added and that a significant level of error may be acceptable for many applications.

Our specific results are subject to many factors, such as the complexity of the geometric

model we used for testing [Hodgins et al., 1998]. However, for the specific circumstances

Figure 4.1: Example of a motion used in the first two user studies.

27

Figure 4.2: An example of one of the motions used in the third user study, depicted on

each of the two characters used, a human figure (top) and a cannonball (bottom) which

followed the same center of mass trajectory. The second frame is the takeoff point where

the character transitions into ballistic motion.

of our test, we define a perceptual metric for evaluating translational errors in animated

ballistic human motion.

In addition, this chapter also presents the results of a study comparing user sensitivity

regarding errors in the ballistic phase of human jumping motion to errors in the ballistic

trajectory of a ball with identical center-of-mass trajectories. Source motions and errors

were the same as those used in the first two studies. We found that user sensitivity did

not vary systematically between the two types of animations for localized errors (i.e.,

additional velocity added over a short time window), but varied significantly for altered

levels of gravity. This result suggests it may be possible to leverage the work done on user

perception of animations of simple objects to infer reasonable guidelines for animation of

humanlike characters, but only for types of errors for which user sensitivity does not vary

substantially between the two types of characters.

4.2 Experiment: Errors in Ballistic Motion

We chose to study motion containing a flight phase because errors in ballistic motion can

be controlled easily and precisely, and because anomalies in ballistic motion are a com-

mon result of motion processing techniques. Once the character has left the ground, the

trajectory of the center of mass is fully determined. Any changes to that trajectory vio-

28

late the laws of physics. Such changes can result, however, when motions with differing

root velocities are spliced together, creating an anomalous acceleration, or when the ef-

fective gravitational constant changes as the result of an editing operation. An incorrect

gravitational constant arises, for example, when the height of a jump is changed while

timing remains the same. Scaling motion to characters of different sizes can also change

the effective gravitational constant.

4.2.1 Method

Three studies were performed, the first to test perception of anomalous accelerations and

decelerations, the second to test perception of errors in effective gravity, and the third to

compare the sensitivity of users to errors in motions presented on two different characters

(a textured human figure and a plain ball).

4.2.2 Study 1: Acceleration

Participants. Participants were obtained by university-wide advertising. Five women and

seven men ranging in age from 18 to 42 participated in the study.1

Stimuli. Animations of human jumping motions were created as stimuli. All animations

were shown in the same rendering style, with the same (fixed) camera configuration (Fig-

ure 4.1), with the character beginning the motion at the same position and jumping in the

same direction. Shadows were rendered, and a small amount of motion blur was added.

Errors were created by modifying human jumping motion obtained from optical mo-

tion capture. Seven different source motions were used. These source motions were per-

formed by the same actor and were similar in overall character, although they varied in

distance and height. Error variables were as follows:

• Error level. Small, medium, or large.

• Error variety. Horizontal or vertical.
1One additional subject did not follow instructions and was excluded from the analysis.

29

• Error direction. Acceleration or deceleration.

To generate a horizontal acceleration error, for example, a fixed change in velocity was

applied to the character root in the direction of horizontal motion. This change in velocity

was added smoothly over a small window of time early in the flight phase of the motion.

Details on how errors were created can be found in Section 4.3.

Procedure. Participants were told that they would see a sequence of animated human

jumping motions created from motion capture data. They were given some background

information on how motion capture data is created and told that some of the motions they

would see would contain errors. They were also told that all motions are jumps, slightly

less than half have no error, and all errors would appear during the flight phase of the

motion. Participants were then shown 12 representative motions. They were told that half

contained errors but were not told which specific motions in this training set contained

errors.

Tests were prepared by placing motions on video tape in random order. Two tapes were

used. Tape order differed for different subjects, and no order effects were observed. Mo-

tions included each combination of error variables presented 3 times; an equal number of

original motions; and 12 motions with composite errors. Composite errors included both

horizontal and vertical acceleration and were introduced to test our intuitions about these

interactions. Stimuli were presented on a projection screen in a small conference room.

Participants were instructed to categorize each motion as either “no error (unchanged)”

or “error” and mark their level of confidence in their answer using a rating scale that

ranged from 0 (most confident an error is present) through 9 (most confident an error is

not present). Participants categorized training motions as well as test motions, but the data

from the training motions was not used for any analyses.

At the end of the study, participants were asked to describe their experience in the

study of motion, including involvement in sports, dance, video games, etc. No significant

effect of level of experience or gender was noted for this study.

30

4.2.3 Study 2: Gravity

Participants. Participants were obtained by university-wide advertising. Nine women and

two men ranging in age from 19 to 29 participated in the study.2

Stimuli. Stimuli were prepared in the same manner as in the first study, with error varieties

including increased and decreased gravity.

Procedure. The procedure was identical to that of the first study, except that all partici-

pants were shown one tape consisting of 60 motions, including 18 motions with gravity

errors, 6 with vertical errors, 6 with horizontal errors, 4 with composite errors, and 26

with no errors. Motions with vertical, horizontal, and composite errors were included to

test the validity of comparing data across studies, and performance was consistent with

that observed in the first study.

No significant effect of level of experience or gender was noted for this study.

4.2.4 Study 3: Effect of Character Animacy on Error Sensitivity

We extended the method used in the previous studies to examine the effect on user sen-

sitivity to errors of two different character types (a simple ball and a human model; see

Figure 4.2), as opposed to the model used previously (Figure 4.1), which was a rough

human figure constructed from ellipsoids.

Participants. Participants were obtained by university-wide advertising. 9 women and 13

men ranging in age from 18 to 33 participated in the study.3

Stimuli. Animations of human jumping motions were created as stimuli. All animations

were shown in the same rendering style, with the same (fixed) camera configuration (Fig-

ure 4.2), with the character beginning the motion at the same position and jumping in the

same direction. Shadows were rendered, and a small amount of motion blur was added.

2Three additional subjects did not follow instructions and were excluded from the analysis.
34 additional subjects did not follow instructions and were excluded from the analysis.

31

These parameters were chosen to be as close as possible to those used in the first two

studies (Section 4.2). The motions for the human character were created in an identical

manner to those created for the first two studies, using the same source motions.

Motions for the ball consisted of three parts linked together in a C1-continuous manner,

corresponding to the takeoff, ballistic, and landing phases of the jumps performed by the

human character. The takeoff phase for the ball consisted of smooth linear acceleration

from a fully-hidden position inside the cannon’s barrel to the point where the ball was half-

emerged from the mouth of the cannon (first and second frame respectively of Figure 4.2).

The ball then entered its ballistic phase, and followed the center of mass trajectory of

the human character performing that motion (frames three through five of Figure 4.2).

Finally, the frame where the human character’s feet touch the ground marks the beginning

of the landing phase; during this phase, the ballistic motion of the ball was extended by

continuing its constant acceleration until it entered a basket placed on the ground plane

and disappeared from view (last two frames of Figure 4.2).

Procedure. Participants were given largely the same instructions as for the studies in

Chapter 4, with minor differences. Participants were told they would see two types of

motions: a human jumping, or a ball traveling through similar arcs; that half of the motions

had errors; and that errors were similar in each of the two types of animations. Participants

were then shown a training set of 24 motions, consisting of the each of the two characters

(human and ball) being used to display the same 12 representative error treatments as used

for the first two studies. Source motions for each error treatment were chosen at random,

and the presentation order of the full set of 24 animations was randomly permuted.

Each test consisted of 72 unique motions – 2 examples of each error treatment shown

on two different source motions, plus the corresponding error-free motions – displayed on

each of the two characters, for a total of 144 test motions. The order of presentation of

the 144 animations was randomly permuted, and then split into four blocks of 36 trials for

display purposes.

All motions were placed on DVD in movie format and played on a commercial DVD

player, as that appeared to minimize playback hitches compared to playback from either a

32

video file on computer or from a DVD in a computer DVD drive. Six DVDs were used,

each with a different random assignment of source motions to error treatments, and each

with a unique permutation of presentation order for the resulting animations. Each DVD

was seen by between 3 and 5 subjects. Stimuli were presented on the same projection

screen as for the prior studies, and participants were given the same style of response

sheets.

No significant effect of level of experience was noted for this study, but female subjects

gave the animations higher ratings than male subjects (F (1, 3153) = 8.39, P = 0.0038).

The difference came from their ratings of motions containing errors (F (1, 1574) = 27.81, P <

0.0001), as there was no difference in their ratings of error-free motions (F (1, 1577) =

1.81, P = 0.179). However, this difference was not reflected in a difference in ability to

correctly discriminate between errors (F (1, 20) = 5.19, P = 0.034, which is not signifi-

cant for a two-tailed distribution).

4.3 Error Generation

To create a motion with error, we must add the required error velocity or acceleration to the

flight phase while minimizing undesirable artifacts. Our primary goals were to ensure that

character motion before and after the flight phase was unchanged (except for horizontal

landing position) and that the resulting motion had continuous second derivatives (smooth

velocities). Achieving these goals required different processing for each error type. As-

sume a motionM whose flight phase starts at frameT and ends at frameL, sampled at

FPS frames per second. Procedures with names in italics are described at the end of the

section. All processing is performed on the translational parameters of the character root.

Examples of velocity curves with and without errors are shown in Figure 4.3.

Horizontal Errors. Assume motion M sampled at 120Hz, with horizontal directionH.

Use routineAddError(E,H,M, T+12,T+24)to add a horizontal velocity error with mag-

nitudeE to the motion from 0.1s to 0.2s after the start of the flight phase. To prevent

a velocity discontinuity at landing, remove this error velocity over the remainder of the

33

motion withAddError(-E,H,M,T+25,L).

Gravity Errors. Compute new durationtn = Duration(M,G′,0) for the new gravity level,

and Timewarp(M,N,tm,tn) M to create a new motionN . Finally, Deseam(N,dY,dV)to

remove position discontinuitydY and velocity discontinuitydV at landing. These dis-

continuities are relatively small and result from discretization errors, motion capture data

errors, and differences between takeoff and landing height of the center of mass. Note

that preserving average horizontal velocity and initial vertical velocity leads to jumps that

cover a shorter horizontal distance in higher gravity cases and a longer distance in lower

gravity cases.

Vertical Errors. Compute new durationtn = Duration(M,G,E) for the vertical velocity er-

rorE, andTimewarp(M,N,tm,tn) M to create a new motionN . AddError(E,V,N,T+12,T+24)

to add a vertical velocity error of magnitudeE to the motion over the period from 0.1s to

0.2s after the jump starts. Finally,Deseam(N,dY,dV)according to the position discontinu-

ity dY and velocity discontinuitydV at landing. As with gravity errors, preserving the

horizontal velocity and gravity and applying these effects over the new duration of the

flight phase leads to jumps that travel greater or lesser horizontal distances.

General Processing and Procedure Definitions.Errors were added to the motions at

120Hz, and the motions were downsampled to 30Hz for display. All motions were trans-

lated to align the root positions of their first frames and rotated to align their jump direc-

tion. The flight phase of a jump was defined as the first frame where the lowest joint was

above 7cm from the ground plane through the first frame where the lowest joint was below

7cm. For all motions, the position change of the last frame of the flight phase was added to

all subsequent frames to align the landing with the end of the jump. Procedure definitions

follow.

AddError(E,D,M,a,b):Add an error velocity of magnitudeE along directionD to the root

translation of motionM . Rampin(E,U,a,b), thenGetPosition(U,V), then simply add the

34

140 160 Takeoff 180 200 220 Landing 250
0

0.5

1

1.5

2

Frame

H
o

ri
zo

n
ta

l R
o

o
t

V
el

o
ci

ty
 (

m
/s

) Horizontal Acceleration Error

Error
Original

120 140 160 Takeoff 200 Old Land New Land 280 300
−3

−2

−1

0

1

2

3

Frame

V
er

tic
al

 R
oo

t V
el

oc
ity

 (
m

/s
)

Vertical Acceleration Error

Error
Original

120 150 Takeoff 200 Old Land 250 New Land 300
−3

−2

−1

0

1

2

3

Frame

V
er

tic
al

 R
oo

t V
el

oc
ity

 (
m

/s
)

Decreased Gravity Error

Error
Original

Figure 4.3: Examples of velocities with and without errors. (Top) Horizontal velocities

with and without added acceleration in the horizontal direction. (Middle) Vertical ve-

locities with and without added acceleration in the vertical direction. (Bottom) Vertical

velocities with and without decreased gravity.

35

motions:M [i] = M [i] + V [i] ∗D.

Duration(M,G,E):Compute the new flight time for root motionM given gravityG, verti-

cal velocity errorE, and initial vertical velocityVi using basic kinematics:

t′ = b(1

G
(−(Vi + E)−

√
(Vi + E)2 + 2G(

E

20
+

E ∗ FPS

L− T − 0.2 ∗ FPS
))c (4.1)

Timewarp(M,N,tm,tn): Timewarp the flight phase ofM from tm to tn seconds in an ease-

in/ease-out manner so as not to cause discontinuities in joint velocities, and place the result

in N . First, remove gravity and average horizontal velocity from root translation ofM ,

resulting inM ′. Perform the timewarp. Add back in the average horizontal velocity and

gravity removed earlier but applied over the whole of the new motion, resulting inN .

Deseam(M,dY,dV):Some error types lead to a vertical velocity discontinuity at landing,

which is fixed in this postprocessing step. For a given required position correctiondY and

a given required velocity correctiondV , let

D[T + 0.2 ∗ FPS + i] = (−2dY + 0.1 ∗ dV)t3 + (3dY − 0.1 ∗ dV)t2 (4.2)

wheret = i+1
L−T−0.2∗FPS

for 0 ≤ i < L−T−0.2∗FPS. D is then added to root translation

M to make the corrections specified bydY anddV : M [i] = M [i] + D[i].

Rampin(E,U,a,b):Using the spline−2x3 + 3x2, smoothly transition from0 at framea to

E at frameb, and place the result in arrayU .

GetPosition(U,V):Integrate a velocity error in arrayU up into a change in position in array

V .

4.4 Results

Figure 4.4 shows mean ratings for horizontal errors (top), vertical errors (middle), and

gravity errors (bottom) for studies 1 and 2. Blue lines are acceleration (or decreased grav-

ity) and green lines are deceleration (or increased gravity). Results are broken out by

36

small, medium, and large error levels. The plots show the mean ratings of motions at each

magnitude of added error, including unchanged motions. Figure 4.5 shows mean ratings

for all error varieties and directions from all studies.

A repeated measures analysis of variance (ANOVA) was run for study 1 with 3 error

levels x 2 error varieties (horizontal and vertical) x 2 error directions. All error treatments

could be detected atp < 0.01 except for small vertical decelerations. A second ANOVA

was run for study 2 with 3 error levels x 2 error directions. All error treatments could be

detected atp < 0.01 except for small and medium levels of increased gravity. A third

ANOVA was run for study 3 with 3 error levels x 2 character types (human and ball) x

3 error varieties x 2 error directions. All error treatments of large magnitude could be

detected atp < 0.01; 9 of 12 error treatments of medium magnitude could be detected at

p < 0.01 (exceptions: vertical deceleration for both characters, and decreased gravity for

the human character); 5 of 12 error treatments of small magnitude could be detected at

p < 0.01.

No significant interactions were observed between error variety and error direction in

study 1 or error variety and error magnitude in studies 1 or 2. There was an interaction

between error direction and error level (study 1:F (2, 426) = 5.7, p = 0.003; study 2:

F (2, 192) = 5.5, p = 0.005). This interaction can be seen in Figure 4.4: added accelera-

tion or decreased gravity is proportionately easier to detect for large errors. There was an

interaction between error variety and error magnitude for study 3, which was only signifi-

cant for horizontal errors with small vs. medium error magnitudes (t = 4.20, P < 0.0001);

this can be seen in the comparatively low level of sensitivity for medium horizontal errors

(Figure 4.9). There was an interaction between error variety and error direction in study

3, but it was only significant for gravity. There was a weak interaction between error va-

riety x error direction x character type in study 3 which was only close to significant for

horizontal errors (t = 1.98, P = 0.048). This can be seen in the higher sensitivity to the

human character for horizontal accelerations, but the higher sensitivity to the ball character

for horizontal decelerations, which is explored in Section 4.7.

In addition, we found four main effects, reported as F-value differences in the ratings,

37

and also as paired-t-values on the per-subject sensitivities for study 3:

(1) Subjects found added acceleration easier to detect than added deceleration

Study 1:F (1, 430) = 38.2, P < 0.001, mean rating 2.6(0.2) vs. 4.1(0.2) respectively

Study 3 human:F (1, 524) = 33.8, P < 0.0001, paired-t = 3.71, P = 0.0013, mean

rating 2.71(0.16) vs. 4.00(0.16)

Study 3 ball:F (1, 522) = 18.3, P < 0.0001, paired-t = 4.24, P = 0.0004, mean rating

2.80(0.15) vs. 3.78(0.17)

(2) Subjects found low gravity easier to detect than high gravity

Study 2:F (1, 196) = 41.9, P < 0.001, mean rating 2.7(0.2) vs. 4.7(0.2) respectively

Study 3 human:F (1, 260) = 24.86, P < 0.0001, paired-t = 3.84, P = 0.0009, mean

rating 2.50(0.22) vs. 4.02(0.21)

Study 3 ball:F (1, 262) = 9.99, P = 0.0018, paired-t = 2.15, P = 0.043, mean rating

3.61(0.23) vs. 4.57(0.20)

(3) Subjects found errors in horizontal velocities easier to detect than errors in verti-

cal velocities

Study 1:F (1, 430) = 18.1, P < 0.001, mean rating 2.8(0.2) vs. 3.9(0.2) respectively.

Study 3 human:F (1, 524) = 14.40, P = 0.0002, paired-t = 4.90, P < 0.0001, mean

rating 2.93(0.16) vs. 3.79(0.16)

Study 3 ball:F (1, 522) = 15.71, P < 0.0001, paired-t = 3.56, P = 0.0018, mean rating

2.83(0.16) vs. 3.74(0.16)

(4) Subjects found gravity errors easier to detect with human characters than with

ball characters

F (1, 524) = 13.97, P = 0.0002, paired-t(1, 21) = 7.3, P < 0.001, mean rating 3.26(0.16)

vs. 4.09(0.16) respectively.

The studies gave very comparable overall results. Sensitivity to horizontal and ver-

tical errors did not differ significantly between the studies (F (1, 53) = 1.64, P = 0.20

for ANOVA on subject sensitivity vs. study 1, study 3 human, or study 3 ball). Sensi-

38

tivity to gravity errors did not differ significantly between study 2 and the study 3 hu-

man (F (1, 31) = 3.58, P = 0.068) or between study 2 and the study 3 ball (F (1, 31) =

3.82, P = 0.060). This result is especially interesting in light of the difference between

the study 3 human and the study 3 ball (main effect 4), suggesting that perhaps the rough

human figure used in study 2 was perhaps “perceptually in between” the realistic human

figure and the simple ball used in study 3. Since the studies with the ellipsoidal human

figure and the studies with the textured human figure and the ball were run separately,

however, such a relationship is at this point just conjecture.

4.5 Estimating Acceptable Error

From our results, we can form an estimate of a level of error that should be acceptable. We

propose a method for calculating error thresholds based on detection theory [Macmillan

and Creelman, 1991]. The ratings given by a subject to unchanged motions form an ap-

proximately normal distribution, and the ratings given to motions containing errors form

a second, also approximately normal distribution. The subject’s sensitivity is the distance

between the means of these two distributions, in units of standard deviation. For a simple

yes/no classification, sensitivityd is easily calculated from the hit rate (H), the fraction of

motions containing errors that are correctly judged to contain errors, and false alarm rate

(F), the fraction of original motions that are incorrectly judged to contain errors:

d = z(H)− z(F) (4.3)

wherez is the inverse of the normal distribution function. (See Macmillan and Creelman

[1991] for details.) For example, a hit rate of 69% with a false alarm rate of 31% gives a

sensitivity of 1.0. Sensitivity does not reflect the biases of the subject, so a hit rate of 26%

and a false alarm rate of 5% also represents a sensitivity of 1.0. As a result, sensitivities

determined with one set of biases (such as a test setting) may be applied to a situation

with different biases (such as playing a game). We computed sensitivities from subjects’

ratings using the method in Macmillan and Creelman [1991]. In cases where the sparse

data led to a degenerate distribution (e.g., if a participant marked only zeroes and nines),

39

DoF F-value Probability

All 862 310.9 0.0001

Accel Small 28.8 0.0001

Accel Medium 116.1 0.0001

Horizontal Accel Large 682 196.2 0.0001

Decel Small 14.3 0.0002

Decel Medium 64.7 0.0001

Decel Large 77.8 0.0001

All 862 128.7 0.0001

Accel Small 8.1 0.0045

Accel Medium 65.5 0.0001

Vertical Accel Large 682 186.4 0.0001

Decel Small 0.1 0.7125

Decel Medium 14.8 0.0001

Decel Large 21.5 0.0001

All 493 63.7 0.0001

Incr Small 9.6 0.2077

Incr Medium 50.3 0.9321

Gravity Incr Large 328 128.6 0.0009

Decr Small 1.6 0.0021

Decr Medium 0.0 0.0001

Decr Large 11.2 0.0001

Table 4.1: F-values and probabilities for horizontal, vertical, and gravity errors from stud-

ies 1 and 2. All degrees of freedom are of the formF (1, N); for example,F (1, 862) =

128.7 for all horizontal errors.

40

Small Medium Large Regression Line

H Accel 1.02 (0.27) 1.89 (0.29) 2.53 (0.19) 0.00 + 2.44E

H Decel 0.69 (0.24) 1.36 (0.26) 1.53 (0.29) 0.05 + 1.52E

V Accel 0.45 (0.07) 1.25 (0.17) 2.48 (0.19) −0.25 + 2.32E

V Decel 0.34 (0.21) 0.60 (0.12) 0.85 (0.29) 0.00 + 0.81E

G Decr 0.47 (0.20) 1.20 (0.27) 1.87 (0.22) −0.12 + 0.48E

G Incr 0.16 (0.14) 0.02 (0.14) 0.50 (0.28) −0.05 + 0.10E

Table 4.2: Mean sensitivity levels (and standard error of the mean) for horizontal (H),

vertical (V), and gravity (G) errors. A sensitivity of zero means that participants cannot

detect errors. The last column contains lines fit to the sensitivity data, also including the

point (0, 0). E is the magnitude of the error, inm/s for horizontal or vertical errors and in

m/s2 for gravity errors.

we calculated sensitivity using the participant’s classification of the motion as “no error

(unchanged)” vs. “error” rather than using the numerical ratings.

We apply this technique to the data from studies 1 and 2. Sensitivity levels from these

studies are plotted in Figure 4.6 and listed for all error treatments in Table 4.2, along with

regression lines fit to these values plus the origin (zero sensitivity at zero error). The F-

values and probabilities of these errors are given in Table 4.1. As an example of how error

thresholds can be set from these values, consider a hypothetical application. Suppose that

for unmodified motion capture data we expect users to think that the motion looks incorrect

10% of the time (a false alarm rate of 10%). Then suppose that for motions containing

error, we are willing to tolerate users thinking that the motion looks incorrect half again

as often, or 15% of the time (a hit rate of 15%). The resulting sensitivity would be 0.25.

Estimating acceptable errors at this sensitivity level results in the threshold values shown

in Table 4.3. We emphasize that this is just an example. The actual desired sensitivity (and

resulting threshold values estimated from our data) would depend on the application.

41

Variety Threshold

Horizontal error over0.1s interval [−0.13m/s, 0.10m/s]

Vertical error over0.1s interval [−0.32m/s, 0.22m/s]

Gravitational constant [−12.7m/s2, − 9.0m/s2]

Table 4.3: Error thresholds resulting from a desired sensitivity level of 0.25 or less. For

reference, average initial velocities in the original jumps were approximately2m/s in the

vertical direction and1.5m/s in the horizontal direction.

Composite Errors. Composite errors—those with both horizontal and vertical components—

did not produce any surprises. Figure 4.7 plots mean ratings for vertical, horizontal, and

composite errors. Results for composite errors fall approximately within the bounds of

those for the two types of errors from which they are derived.

4.6 A Ballistic Error Metric

We briefly describe how an error metric for ballistic motion might be designed based on

our results, and based on the example sensitivity requirement of 0.25.

First, consider errors in gravity. Gravity is an average effect, and a metric designed to

detect incorrect gravity captures errors where the motion is well behaved throughout the

flight phase, but the timing of the motion is wrong. From the vertical takeoff velocity of

the center of massvv(ti), the vertical landing velocity of the center of massvv(tf), and

elapsed time(tf − ti), we can compute the effective gravity represented by a motion:

geff =
vv(tf)− vv(ti)

(tf − ti)
(4.4)

Results from our second study suggest that under circumstances similar to this study, val-

ues forgeff between−12.7m/s2 and−9.0m/s2 should lead to sensitivity levels below

0.25, resulting in the following constraint:

−12.7m/s2 < geff < −9.0m/s2 (4.5)

42

Anomalous accelerations and decelerations are shorter term phenomena, where the

motion during the flight phase is not well-behaved over some window in time. One strat-

egy for measuring errors of this type would be to compute error in horizontal or vertical

velocity over a sliding time window, checking this error against the given thresholds. For

example, horizontal velocity should be constant during flight, and so any change in hori-

zontal velocity during flight is an error.

vh,err(t) = vh(t + 0.1s)− vh(t) (4.6)

−0.13m/s < vh,err(t) < 0.10m/s (4.7)

wherevh(t) is the horizontal velocity measured at timet, andvh,err(t) is the horizontal ve-

locity error for the time window of0.1s starting att. Changes in velocity outside this range

would flag potentially anomalous motion. The time window of0.1s is chosen because our

study results are based on this value.

The metric for vertical velocity is similar, but must accommodate expected change in

velocity due to gravity. For a time window of0.1s:

vv,err(t) = vv(t + 0.1s)− vv(t) + 0.98m/s (4.8)

−0.32m/s < vv,err(t) < 0.22m/s (4.9)

wherevv(t) is the vertical velocity measured at timet andvv,err(t) is the vertical velocity

error for the time window of0.1s starting att. When measuring errors against a gravita-

tional constant different from−9.8m/s2, the equation forvv,err(t) should be adjusted for

the new value.

Our composite results suggest that vertical and horizontal velocity errors may com-

bine in a straightforward way. The following metric would place limits on combinations

of horizontal and vertical errors, which should be an improvement over treating them sep-

arately. One possibility is to work with the sum of squares of normalized error values. For

example, if the error at timet is a horizontal acceleration (with threshold0.10m/s) and a

43

vertical deceleration (with threshold−0.32m/s), the appropriate constraint would be:[(
vh,err(t)

0.10m/s

)2

+

(
vv,err(t)

0.32m/s

)2
]

< 1 (4.10)

The expression on the left hand side of this equation is a squared distance in velocity space,

with horizontal and vertical velocities weighted differently. Values in the denominators

would change when the direction of the corresponding error changed.

4.7 Discussion

In these studies, we measured sensitivity of human subjects to errors in animated ballistic

human and ball motion. We found that sensitivity was correlated with the level of added

error, errors in the horizontal component of the motion were easier to detect than errors in

the vertical component, added accelerations were easier to detect than added decelerations,

decreased gravity was easier to detect than increased gravity, and changes in the level

of gravity were easier to detect with a human character than with a ball character. By

contrast, there was no significant difference in sensitivity between human characters and

ball characters for horizontal or vertical motions.

Why might it be easier to hide errors in the vertical component of the motion than

in the horizontal component? One possible explanation is that horizontal velocity during

flight, which should be constant, behaves in a simpler manner than vertical velocity, which

should have a constant derivative (gravitational acceleration). This difference may make

anomalies in horizontal velocity more visually salient.

The acceleration / deceleration discrepancy seemed to us to be less intuitive. One

possible explanation is that it may be easier to detect errors when distance or total time

of the jump is increased and more difficult when one or both of these parameters are

decreased.

It is important to point out that jump heights and distances alone could not have ac-

counted for the effects we observed. For the first two studies, 69% of the motions contain-

ing errors were within 10% of the range of heights and distances spanned by unchanged

44

motions. In addition, although 4 subjects in study 1 mentioned making use of jump dis-

tance, timing, or similar indirect observations of error, 11 of the 12 subjects mentioned

direct observation of errors, such as changes in jump trajectory. However, overall jump

distance does appear to have been a contributing factor in participant ratings. Our study

was not designed to test the effect of source motion—source motion was not fully crossed

with other error variables. However, we did check for interactions between source motion

and other error variables considered individually. The only significant interaction found

was between source motion and error direction in study 1 (F (6, 418) = 4.5, p < 0.001).

Examination of the data (shown in Figure 4.8) suggests that added accelerations are pro-

portionately easier to detect for jumps that cover a longer distance. However, it is inter-

esting to note that sensitivity for accelerations is higher than for decelerations even for the

shortest jumps, which would not be the case if jump distance were the primary factor used

to detect errors. Because we did not fully cross source motions with all other variables in

the study, however, further investigation is required to verify this trend and to understand

its implication for designing error metrics.

We note several systematic differences in user sensitivity between motions using the

human character and motions using the ball character (Figure 4.9): sensitivity to errors was

in general slightly higher when the human character was used (paired-t(1, 21) = 3.47, P =

0.0023); however, all of this difference is attributable to the difference for gravity errors

(paired-t(1, 21) = 7.306, P < 0.0001), as the difference for horizontal and vertical errors

was negligible (paired-t(1, 21) = 0.694, P = 0.495).

Several possible explanations could account for the systematic difference between sen-

sitivity to gravity errors between motions using the human and the ball characters. One

possibility is that because gravity errors correspond to incorrect behavior over the entire

jump, rather than a localized disruption, subjects’ greater familiarity with human jump-

ing motion than ball trajectories would account for the difference, especially because it is

known that humans have a poor intuitive sense for the physics of the ballistic trajectories

of simple objects such as balls [Hecht and Bertamini, 2000]. Another possibility is that be-

cause a change in the force of gravity corresponds to timescaling of the jump, the animated

motions of the limbs and head of the human character offered additional information that

45

was not present in the ball character. Stappers and Waller [1993] note that richer stimuli

improved accuracy and reliability in using the free fall of objects under gravity to esti-

mate visual depth, suggesting that the additional information offered by the limbs of the

human character may have improved user results in our experiment. They also note how

observed gravity can vary with perceived scale and distance, suggesting the possibility that

the human jumping innately embodies a sense of scale, whereas subjects may have some

freedom to interpret the size and distance of the cannonball to suit the observed motion,

notwithstanding the human figure placed beside the cannon.

The interaction noted in Section 4.4 between character type and error direction for

horizontal errors may have its underpinnings deep in the human visual system. Michotte

[1963] and Runeson [1974] note that a simple object appears to slow down when receding

from a stationary object in its path and speed up when approaching it, and Cohen [1964]

reports that this occurs only when the subject fixates on the stationary object. As the

test scene we used opened with the ball hidden inside the barrel of the cannon (Figure

4.2), it is likely that our subjects fixated on the cannon to begin with, and hence they

may have observed this spurious perceived deceleration. If so, the deceleration caused by

this effect could be expected to enhance the perceptual salience of the deceleration actually

undergone in the horizontal deceleration error condition, raising the sensitivity to that error

treatment. No similar increase in sensitivity would have occurred for the human character,

due to the lack of a fixed object in its path, potentially explaining the inversion of their

usual sensitivity relationship.

Another, related, difference between the human character and the ball character is that

the landing point of the ball is signalled by the basket (Figure 4.2), and hence is known

before the motion takes place, but the precise landing point of the human is not displayed

beforehand. The slight difference observed between sensitivity to horizontal errors for

the human and ball characters, however, suggests that subjects were likely fixating on the

cannon at the start of the motion, potentially limiting the extent to which the basket may

have affected their judgements. In additional, errors in the motions occurred early in the

trajectory of the character (as well as in the rest of the trajectory, for gravity errors), and

hence one might suspect that errors would tend to be observed early in the flight phase,

46

before the ball neared the basket and perhaps before the subject’s attention shifted away

from the region near the cannon to the region near the basket. Moreover, subject responses

in the questionnaire suggested direct observation of errors due to particular characteristics

of the motion, rather than inference of error due to indirect factors. For these reasons,

we consider it unlikely that signalling the landing point of the ball made a significant

difference to measured sensitivity; however, we are considering the design of potential

followup experiments to test this hypothesis.

Many parameters can be expected to affect perception of anomalies in animated human

motion. There is some evidence that improved graphical quality of animations, for exam-

ple, may increase the ability of users to detect anomalous motions [Stappers and Waller,

1993, Hodgins et al., 1998, Oesker et al., 2000, Hecht and Bertamini, 2000] We focused

on errors added to the character’s root motion in hopes that the results would be robust

with respect to detail in the rest of the animation, but this assumption remains to be tested.

We note also that camera angle [O’Sullivan and Dingliana, 2001] and camera motion

[Strawn et al., 2006] can have a substantial effect on the perceptual salience of errors. To

allow our experiments to focus on other aspects of perceptual sensitivity, we used only

a single stationary camera angle, selected so as to offer a balanced and representative

viewpoint of all error varieties with no apparent bias for or against any one variety.

Perception of anomalies also varies with task [Oesker et al., 2000, Watson et al., 2001].

The task presented to subjects in our study was simply to observe the motion and indicate

whether it appeared to be incorrect. We would expect that sensitivity to errors might

be higher if the character was a target in a game environment, for example, and lower

if the character was not the focus of attention (e.g. a background character in a virtual

environment). More research is required to understand how sensitivity to error in the

physics of human motion varies with task.

47

4.8 Conclusions

This work offered a statement of the problem of evaluating the perceptual magnitude of

errors in animated human motion, and demonstrated how to measure that perceptual mag-

nitude and to use it to derive practical animation guidelines.

Our experiments demonstrated several interesting asymmetries in the perceptual mag-

nitude of errors, suggesting different error types may become perceptually salient at dif-

ferent rates, allowing a more efficient tradeoff when creating animations. Our experiments

also demonstrated a surprising similarity between user sensitivity to some types of errors –

such as added horizontal or vertical velocity over a short window – regardless of the char-

acter type on which those errors were shown. We are interested in the notion that results

from perceptual studies on one character type, such as a rigid body, may be able to inform

animations of other character types, such as human figures.

48

None (0.0) Small (0.45) Medium (0.73) Large (1.1)
0
1
2
3
4
5
6
7
8
9

Error Magnitude (m/s) applied over 0.1s

M
ea

n
 R

at
in

g

Mean Ratings for Horizontal Errors

Accel
Decel

None (0.0) Small (0.45) Medium (0.73) Large (1.1)
0
1
2
3
4
5
6
7
8
9

Error Magnitude (m/s) applied over 0.1s

M
ea

n
 R

at
in

g

Mean Ratings for Vertical Errors

Accel
Decel

None (0.0) Small (1.7) Medium (2.7) Large (4.0)
0
1
2
3
4
5
6
7
8
9

Error Magnitude (m/s/s)

M
ea

n
 R

at
in

g

Mean Ratings for Gravity Errors

Decreased
Increased

Figure 4.4: Mean ratings of motions with horizontal, vertical, and gravity errors from

studies 1 and 2. The mean rating for unchanged motions is plotted for reference. Each

plot is broken out by error direction and error magnitude. Error bars show standard error

of the mean.

49

Figure 4.5: Mean ratings for all errors from all studies. Error bars show standard error of

the mean.

50

None (0.0) Small (0.45) Medium (0.73) Large (1.1)
0

0.5

1

1.5

2

2.5

3

Error Magnitude (m/s) applied over 0.1s

S
en

si
ti

vi
ty

Sensitivity to Horizontal Errors

Accel
Decel

None (0.0) Small (0.45) Medium (0.73) Large (1.1)
0

0.5

1

1.5

2

2.5

3

Error Magnitude (m/s) applied over 0.1s

S
en

si
ti

vi
ty

Sensitivity to Vertical Errors

Accel
Decel

None (0.0) Small (1.7) Medium (2.7) Large (4.0)
0

0.5

1

1.5

2

2.5

3

Error Magnitude (m/s/s)

S
en

si
ti

vi
ty

Sensitivity to Gravity Errors

Decreased
Increased

Figure 4.6: Mean sensitivities for all errors from studies 1 and 2, with best-fit linear ap-

proximation. Error bars show standard error of the mean.

51

Medium (0.73) Sm+Md (0.85) Md+Md Large
0

0.5

1

1.5

2

2.5

3

Error Magnitude (m/s) applied over 0.1s

M
ea

n
 R

at
in

g

Mean Rating for Composite Errors

Horiz
Vert
Comp

(1.0) (1.1)

Figure 4.7: Results for composite errors are approximately bounded by results for the

types of errors from which they are derived.

Short (0.82) All (0.99) Long (1.16)
0

0.5

1

1.5

2

2.5

Jump Distance (m)

S
en

si
ti

vi
ty

Sensitivity vs. Jump Distance

Accel
Decel

Figure 4.8: Mean sensitivity for study 1 for all seven source motions (middle), the three

shortest jumps (left), and the three longest jumps (right). Accelerations are comparatively

easier to detect for longer jumps.

52

Figure 4.9: Mean sensitivities for all errors from all studies. Error bars show standard

error of the mean.

53

54

Chapter 5

Evaluating Motion Graphs

This chapter proposes a definition for the notion of a motion graph’s capability to create

required animations, and describes a method to quantitatively evaluate that capability. The

method identifies motion graphs with unacceptable capability and also identifies the nature

of their deficiencies, shedding light on possible remedies. One important finding is that

the capability of a motion graph depends heavily on the environment in which it is to be

used. Accordingly, it is necessary to embed a motion graph into its target environment, and

we introduce an efficient algorithm for this purpose. In addition, the information obtained

from this evaluation approach allows well-informed tradeoffs to be made along a number

of axes, such as trading off motion graph capability for visual quality of the resulting

animations or for motion graph size (i.e., answering “how much motion capture data is

enough?”). Finally, we conduct experiments to examine the space/time scaling behavior

of the evaluation method, as well as its overall stability and validity over various scenarios.

5.1 System Overview

Our system takes as input(1) a set of motion capture data,(2) visual quality requirements

for the animations (represented as a model of acceptable motion editing),(3) a set of

motion capability requirements (i.e., what tasks the character must be able to accomplish),

55

Figure 5.1: A task that cannot be accomplished in a natural way by a simple walking-based

motion graph used in some of our tests. The red (dark) path is the desired path. The green

(pale) path is the shortest path available using this motion graph.

and (4) an environment in which the character is to perform those tasks. These inputs

define thescenariounder analysis.

The motion capture data is processed to form a motion graph (see Section 1.2.1). We

further process this motion graph to capture interactions with the target environment (Sec-

tion 5.1.1 and Section 5.2), based on a model of motion editing (Section 5.1.2). The

resulting data structure is used to measure the animated character’s ability to successfully

complete the required tasks in the given environment (Section 5.1.4 and Section 5.3).

5.1.1 Capturing Motion Graph/Environment Interaction

The details of a particular environment can have a very significant impact on the capabili-

ties imparted to an animated character by a motion graph. The simplest example of this is

to consider two environments (Figure 5.2(a) and 5.2(b)), one of which has a deep trench

bisecting it that must be jumped over; for a motion graph with no jumping motions, the

two environments will induce a very different ratio between the total space of the envi-

ronment and the space which can be reached by a character starting in the lower portion.

A more complex example is shown in Figure 5.2(c) and 5.2(d), where small changes to

the sizes and positions of obstacles—changes that may appear superficial—produce very

56

(a) Empty envi-

ronment

(b) Environment

with trench

(c) More complex

environment

(d) Complex environment (3D)

Figure 5.2: Example environments. The upper obstacle (blue) in environments (b) and

(c) is annotated as a chasm or similar obstacle, meaning it can be jumped over. The

environment shown in (c) and (d) is our baseline reference environment.

57

large differences in the ability of the character to navigate through the environment. Due

to this strong environmental influence on the capabilities of a motion graph, the only way

to understand how a motion-graph-driven animated character will actually perform in a

given environment is to analyze the motion graph in the context of that environment.

For any given scenario to be evaluated, we need a way to capture the influence of the

environment on the capabilities of the motion graph. We do this byembeddingthe motion

graph into the environment—unrolling it into the environment in the manner described in

Section 5.2. After that, we will be able to define how to measure the capabilities of interest

of a motion graph, and examine the results of that measurement.

5.1.2 Visual Quality Requirements

Embedding a motion graph into an environment so that its capabilities can be measured

requires making a choice of editing model. Generally, the visual quality of motions created

in a motion graph will start at a high base due to the verisimilitude of the underlying motion

capture data, and will be degraded by any editing done to the motion, either due to the

loss of subtle details or to the introduction of artifacts such as foot sliding. Such editing

is necessary to transition between the different motion clips of the motion graph and to

precisely target the character to achieve certain goals (such as picking up an object or

walking through a narrow doorway). Additionally, allowing motions to be edited increases

the range of motions available to the animation system, increasing the capabilities of the

available animations while decreasing their visual quality.

We assume that current and future research on motion editing (e.g., Kovar et al. [2002b],

Mukai and Kuriyama [2005]) and on perceptual magnitude of editing errors (e.g., Reitsma

and Pollard [2003], Harrison et al. [2004]) will allow animators to determine the extent to

which a motion clip can be edited while maintaining sufficient visual quality to meet the

given requirements. Given those bounds on acceptable editing, a motion clip starting at a

point p and character facingθ which would normally terminate at a pointp′ and facingθ′

can be edited to terminate at a family of points and facings{pi, θi} containing{p′, θ′}. In

general, the better the editing techniques and the lower the visual quality requirements, the

58

Figure 5.3: From an initial root positionp and facing direction of the characterθ, a motion

clip can be edited to place its endpoint anywhere within its footprint (yellow region).

Dotted arrows show the edited paths corresponding to the possible endpoints(pi, θi) and

(pk, θk).

larger this family of valid endpoints for a given clip. This family of points is known as the

footprintof the motion clip; given a specific starting point and direction, the footprint of a

clip is all of the endpoints and ending directions which it can be edited to achieve without

breaching the visual quality requirements (see Figure 5.3).

Design of motion editing models is an open problem; we use a simple linear model,

meaning the amount of acceptable editing grows linearly with both distance traveled and

motion clip duration. The intuition behind this model is the observation that taking an

error of constant size and spreading it out over more motion will result in a smaller error

per unit motion (per metre of distance or per second of duration). To a first approximation,

the perceptual results from Chapter 4 suggest that the perceptual magnitude of an error

will tend to decrease approximately linearly with decreases in its per-unit magnitude, at

least for certain types of error. While this linear model may be somewhat simplistic, we

59

note that it only affects the size and shape of the editing footprint of a motion, and that the

rest of the evaluation system can be used as-is with any alternative method of defining a

clip’s editing footprint.

5.1.3 Editing Footprints

The editing model is based on the intuition that the amount a motion can be changed will

tend to grow with the distance it covers, as well as with the time spanned by the clip—in

essence, we assume an error will be acceptably small if it is small relative to the rate at

which other actions are taking place.

We specify the amount thatV , the root position and orientation, can be adjusted as a

linear function of both distance traveled and number of frames in the clip:

abs (Vi − V ′) < (s + αd)

 rx

rz

rθ

 (5.1)

where(Vi − V ′) is the vector difference between the new and original root configurations,

s is the arclength of the original motion clip,d is the duration of the motion clip,α is a

scaling factor used to weight arc length vs. duration in terms of editing importance, and

(s + αd)[rx rz rθ]
T is the size of the ellipsoidal footprint representing allowable edits to

root configuration.

The new path taken by the clip is computed by adding the currently-accumulated por-

tion of (Vi − V ′) to each frame:

Vi(k) = V ′(k) +
(s(k) + αd(k))

s + αd
(Vi − V ′) (5.2)

whereVi(k) is the edited (position,orientation) of the character’s root at framek, V ′(k) is

the unedited (position,orientation) of the character’s root at framek (i.e., corresponding to

original endpoint(p′, θ′)), s(k) is the arclength of the path through framek, andd(k) is

the duration of the path through framek.

60

5.1.4 Motion Capability Requirements

We define thecapabilityof a motion graph within an environment as its ability to create

motions that fulfill our requirements within that environment. The appropriate metric for

evaluating character capabilities depends on the tasks the character is expected to perform.

For localized tasks such as punching a target or kicking an object, the task may be to

efficiently navigate to the target and contact it with an appropriate velocity profile, while

for some dance forms the task may be to string together appropriate dance sequences

while navigating according to the rules of the dance being performed. This paper focuses

on navigation and localized actions (such as punching, ducking, or picking up an object).

We focus on the following requirements, chosen so as to approximate the tasks one might

expect an animated character to be required to perform in a dynamic scenario, such as a

dangerous-environment training simulator or an adventure game:

• Character must be able to move between all major regions of the environment.

• Character must be able to perform its task suite in any appropriate region of the

environment; for example, picking up an object from the ground regardless of that

object’s location within the environment.

• Character must take a reasonably efficient path from its current position to any spec-

ified valid target position.

• The previous two items should not conflict; i.e., a character tasked with performing

a specific action at a specific location should still do so efficiently.

• Character must respond quickly, effectively, and visibly to user commands.

5.2 Embedding into the Environment

The manner in which a motion graph can move a character around an environment is

strongly affected by the particulars of that environment, such as impassable obstacles

(walls), obstacles which can by bypassed only by using particular types of motions (jumpable

61

C

B

A

SCC, local reference frame

A

B C

random walk in task domain
original motion graph

Figure 5.4: (Left) A motion graph may be constructed using a reference frame local to

the character to preserve flexibility in the character’s motion. (Right) Using this motion

graph to drive the character through an environment with obstacles can result in dead ends.

Because obstacle information is not available in the local reference frame (left), extracting

a strongly connected component (SCC) from the original motion graph does not guarantee

that the character can move through a given environment indefinitely.

chasms), or regions where only specific styles of motion are permitted (sneaking). To cap-

ture this influence, we must embed the motion graph into the environment, “unrolling” it

to see how it interacts with the environment.

5.2.1 Requirements for Embedding

To illustrate the design considerations for an embedding approach, consider attempting to

compute the value of a sample metric: Simple Coverage. The value of this metric is just

the fraction of the environment through which the character can navigate freely.

One immediate challenge is to form a compact description of the space of character

trajectories – simply unrolling the motion graph will rapidly lead to an exponential explo-

sion in the number of paths being considered. A second key challenge is to consider only

paths which do not unnecessarily constrain the ability of the character to navigate. For ex-

ample, avoiding dead ends is necessary for an autonomous character with changing goals,

or for a character subject to interactive control. Even though the original motion graph has

no dead ends, obstacles can cause dead ends in the environment (see Figure 5.4).

62

In order to meet these challenges, we discretize the environment, approximating it

with a regular grid of cells. At each cell, we embed all valid movement options available

to the character. This embedding forms a directed graph, of which we only use the largest

strongly connected component (SCC). Note that this SCC is in theembeddedgraph, not

within the original motion graph. For example, in Figure 5.4, link A is not valid at that

position within the environment, and so would be discardedfor that position only; link

A may not be blocked in other parts of the environment, and hence may be a part of the

(embedded) SCC in some positions and not in others.

While computing the embedded SCC has a high one-time cost, that cost is amortized

over the many tests run to compute the metrics of interest, each of which is made more

efficient by having the information embodied in the SCC available. Computing this SCC

in advance, then, allows efficient and correct computations of the capabilities of the motion

graph under investigation.

5.2.2 Discretization

We discretize the environment along the following dimensions, representing the state of

the character:

X The x-axis groundplane position of the character’s root.

Z The z-axis groundplane position of the character’s root.

Θ The facing direction of the character.

C The clip which brought the character to this(X, Z, Θ) point (i.e., the character’s

pose).

C is inherently discrete, but the groundplane position indices(X, Z) are determined

by discretizing the environment into a grid with fixed spacing distance between adjacent

X or Z bins. Similarly, the facing of the character is discretized into a fixed number of

angular bins.

63

Typically, a ground-plane position specified by onlyX andZ is referred to asgrid

location; adding the facing angleΘ denotes agrid point; finally, specifying the pose of the

character by including the motion clip that brought the character to that point specifies a

grid nodein the 4D state space.

Each grid node can be considered a node of a directed graph, where[x, z, θ, c] has an

edge to[x′, z′, θ′, c′] if and only if:

• Clip c can transition to clipc′ in the original motion graph

• Given a character with root position(x, z) and facingθ, animating the character with

clip c′ places(x′, z′, θ′) within the footprint ofc′.

• The character follows a valid path through the environment (i.e., avoids obstacles

and respects annotations) when being animated from(x, z, θ) to (x′, z′, θ′) by the

edited clipc′.

A pair of nodes(u, v) is known as anedge candidateif the first two criteria hold (i.e.,

the edge will exist unless the environment renders it invalid).

For example, suppose clipA can be followed by either clipB or clip C in the original

motion graph. In the environment represented in Figure 5.5, the starting point([1, 1, π
2
, A]

is marked with a blue star, endpoints of valid edges with green circles, and edge candidates

which are not valid edges are marked with red squares. The edge([1, 1, π
2
, A], [5, 1, π

2
, C])

is in the embedded graph, since its endpoint is withinC ’s footprint and the path to it is

valid. By contrast, there is no edge from([1, 1, π
2
, A], [5, 0, π

2
, C]), since the edited path of

clip C (dotted arrow) is not valid in the environment (it intersects an obstacle).

Note that this discretization approach offers a tradeoff between precision and compu-

tation. Our metrics generally give broadly similar results across a range of grid sizes (see

Section 5.4.6), suggesting that the values computed in a discretized setting are reasonable

approximations of those values in the continuous case.

64

Figure 5.5: Computing edges from a single node; the endpoints of valid edges are marked

as green circles. Note that not all nodes within a clip’s footprint are the endpoints of edges,

as obstacles can obstruct the edited path from the source to the target node (dotted path).

θ1, A z

x

coords
[7, 1, , A]

z

B
B

z x

x

C C C

θ2, B

θ3, C

θ1

Figure 5.6: Example of forming links for an embedding. The grid lies in a 4D space,

indexed by 3D workspace configuration(x, z, θ) and by incoming motion clip (A, B, or C).

Links from node[7, 1, θ1, a] are formed by looping over all motion clips that follow from

A and finding the destination nodes that are within the corresponding editing footprints.

65

5.2.3 One-Step Unrolling

For motion clips that originate and terminate only at grid cell centers, embedding a motion

graph into a task domain can be accomplished using a one-step unrolling process. Figure

5.6 shows an example of this process on the 4D state space defined in Section 5.2.2, with

node[7, 1, θ1, A] being the state in which the character has arrived at position(7, 1) and

orientationθ1 after playing clipA. For each grid node in the 4D state space, all edge

candidates out of that node are created.

Note that repeating this process just once for each grid node results in forming all edges

in the graph. All starting configurations, all motion clips, and all of the editing variations

that are allowed in our model are taken into account. Note further that many nodes will

have multiple incoming edges; while node[7, 1, θ1, A] can only ever be reached as a result

of playing clipA, it can potentially be reached by playingA from any of several different

locations, due to the allowable editing modeled.

After this one-step unrolling process has been performed for all nodes, we use Depth-

First Search (DFS) to find the largest strongly connected component (SCC) in the resulting

directed graph [Cormen et al., 2001]; this SCC is the desired embedded graph.

5.2.4 Space-Efficient Unrolling

The main limitation of the one-step algorithm (Section 5.2.3) is that it requires explicitly

storing all edges needed to compute the embedded graph. While this is an efficient and

sensible approach for smaller environments or coarser grids, due to memory considerations

it significantly limits the size of environments and the resolution at which they can be

processed.

As an alternative that requires much less memory, we propose a flood-based algorithm

which takes advantage of the fact that edges outgoing from or incoming to a node can be

computed only as needed. For grid nodesu andv, an edge candidate(u, v) will be in

the SCC if and only if nodesu andv are both in the SCC, and(u, v) is an edge of the

embedded graph (i.e., its associated path is valid within the environment), so storing only

66

the nodes in the SCC allows computation of the correct edges as needed. Note that the set

of incoming edges can be defined exactly analogously, and that these sets must agree.

Finding the SCC for use with this on-the-fly approach can be done efficiently in the

discretized environment (see Figure 5.7):

• Choose a source nodes (green ”S”).

• Flood out froms, tagging all reachable nodes (blue vertical hashes).

• Flood intos, tagging all nodes reaching it (red horizontal hashes).

• Intersection of the two tagged sets is the SCC (purple ”+”).

The flood out froms is referred to as the “reaches flood” (i.e., flooding into the places

which can be reached froms), and the flood intos is referred to as the “reaching flood”.

In practice, motion graphs embedded into environments typically result in an embed-

ded graph with a single SCC whose number of nodes is linear in the total number of nodes

in the environment which are not obstructed by obstacles1; 10-25% of the total number

of nodes in the environment is a typical size for an SCC. Accordingly,s can be chosen

uniformly at random until a node inside the SCC is found without an asymptotic increase

in time2.

Flooding is done using a multi-pass Breadth-First Search. For finding the set of Reach-

able nodes, bit arrays are used to tag which nodes are Active or Reached. Initially onlys

has its Active bit set, and no nodes have their Reached bits set. At each pass, the algorithm

iterates through each nodek in the environment. If Active(k) is set, thenk is expanded.

Expanding a node consists of setting Reached(k) to true, setting Active(k) to false, and

finding the set of edges fork. For each of those edgesj, Active(j) is set if and only if

1There is some evidence this should be expected; see, for example, Muthukrishnan and Pandurangan

[2005] regarding this property in random geometric graphs.
2 In practice, the actual overhead is minimal if fast-fail tests are used. Testing that source nodes have at

least 5,000 reaching and reachable nodes efficiently rejects most nodes outside the SCC; in our experiments,

testing that the source node can reach itself was the only other fast-fail test required.

67

(a) Seed node (b) Reachable pass 1 (c) Reachable pass 2 (d) Reachable nodes

(e) Reaching pass 1 (f) Reaching pass 2 (g) Reaching nodes (h) SCC

Figure 5.7: Steps of the embedding algorithm. (a) A seed node (green “S”) is chosen. (b)

First pass of the reachable flood marks nodes reachable in one step from the seed node.

(c) Second pass marks additional nodes reachable in two steps. (d) All reachable nodes

are marked (blue vertical hashes). (e) First pass of the reaches flood marks nodes which

reach the seed node in one step. (f) Second pass marks additional nodes reaching in two

steps. (g) All reaching nodes are marked (red horizontal hashes). (h) Intersection of set of

reachable nodes and set of reaching nodes (purple “+”) is the SCC of the embedded graph.

68

Active(j) and Reached(j) are both false (i.e.,j has not been tagged or expanded yet). The

algorithm ends when there is no nodek such that Active(k) is set.

Since any node’s Active bit is set to true at most once, the algorithm terminates. Since

all nodes reachable froms will have their Active bit set, the algorithm correctly computes

the set of nodes reachable froms. Each pass of the algorithm touches each node in the

environment, but each edge is expanded only once per flood direction. Accordingly, the

runtime of the algorithm is the cost of computing whether each edge is valid in the en-

vironment plus the cost of reading each node’s tags for each iteration until the search is

complete; i.e.,Θ(e) + Θ(D ∗ N), for e the number of edges in the SCC,N the number

of nodes in the environment, andD the diameter of the embedded graph (i.e., the maxi-

mum depth of the Breadth-First Search). In practice, theΘ(e) term dominates, making the

algorithm approximately as efficient as regular Breadth-First Search.

The set of nodes which can reachs is computed analogously; however, since the set

of reachable nodes in already known, only those nodes need to be expanded, as no other

nodes can be in the SCC. This offers substantial computational savings.

Note that storing the Reachable and Reaching sets requires two bits of storage per

node, and that another bit is required as scratch memory for the Active set, for a total

memory requirement of three bits per node.

5.2.5 Space Complexity

We can estimate the theoretical space complexity of the embedded graph with respect to

the parameters affecting it. For a given environment, the number of nodes in the embedded

graph is

O(n) = O(AxzaC) (5.3)

and the number of edges in the embedded graph is

O(e) = O(Ax2z2a2Cb) = O(nxzab) (5.4)

where:

69

A = the accessible (i.e., character would not collide with an obstacle) area of the envi-

ronment, inm2.

x = the discretization of the X axis, in grid cells per m.

z = the discretization of the Z axis, in grid cells per m.

a = the discretization of the character’s facing angle, in grid cells per2π radians.

C = the number of motion clips used (i.e., the number of nodes in the original motion

graph).

b = the mean branching factor of the original motion graph.

Equation 5.3 simply notes that the number of nodes in the SCC is linear in the total

number of nodes into which the environment is discretized. Equation 5.4 demonstrates

how the average number of edges per node is constant with increasing environment size,

but increases linearly with increasing resolution (in each dimension), due to more grid

points being packed under each clip’s editing footprint. Note that a clip’s editing footprint

increases in size with the length and duration of the clip, but that enforcing a minimum

and maximum clip duration when creating the motion graph ensures two clips’ footprints

will differ in area by at most a constant factor.

The one-step unrolling algorithm presented in Section 5.2.3 stores the edges of this

embedded graph explicitly, and so has space complexityO(nxzab). By contrast, the flood-

based algorithm presented in Section 5.2.4 has space complexityO(n); i.e., linear in the

number of nodes in the embedded graph, rather than in the number of edges, meaning the

amount of memory required is reduced by a factor ofΘ(xzab). In practice, the asymptotic

nature of the big-Theta notation hides an additional large constant factor of improvement,

as only a few bits are required to compute and store each node.

The empirical scaling behavior of these two algorithms with respect to environments

of increasing size is examined in Section 5.4.5.

70

5.2.6 Time Complexity

While the space-efficient algorithm requires asymptotically less space than the one-step

unrolling algorithm, it typically does not require asymptotically more time.

The one-step algorithm computes each edge candidate in the environment once, stores

valid edges, and accesses each cached edge twice when using Depth-First Search to find

the SCC. The runtime for this algorithm is:

Trp04 = Θ(oNbf + 2E) = Θ(oE + 2E) = Θ(oE) (5.5)

whereN is the number of unobstructed nodes in the environment,f is the mean number

of nodes under the footprint of a clip,E is the number of edges in the environment, ando

is the mean number of obstacle-intersection tests required when computing each edge.

When expanding a node, the algorithm of Section 5.2.4 computes either incoming

edge candidates or outgoing edge candidates. As a node will be expanded only once in

each direction (Reachable/Reaching), each outgoing edge candidate from that node and

each incoming edge candidate to that node will be computed only once when finding the

SCC. Accordingly, the runtime of our algorithm is:

Tflood = Θ(onrbf + onbf ′) = O(oE) (5.6)

wherenr is the number of nodes reachable from the SCC, andf ′ is the mean number of

nodes under thereverse footprintof a clip (i.e., the set of start points{p, θ} such that the

footprint of clip c played from that point will contain the end point(p′, θ′)).

In the typical case, wheren = Θ(N) (i.e., the number of nodes in the SCC is linear in

the number of unobstructed nodes in the environment), the runtimes forTrp04 andTflood

are asymptotically equivalent. Substantial runtime differences can occur from two sources:

first, f ′ will typically be larger thanf , due to the manner in which angular edits are made

to clips; second,nr and especiallyn will typically be smaller thanN . Empirical runtimes

are examined in Section 5.4.5.

71

Figure 5.8: In our grid-based algorithm, the end of each motion segment is snapped to

the centers of grid points inside the editing footprint for that motion segment. This figure

compares how growth in this theoretical edit region compares to the regions actually used

in the grid-based algorithm.

5.2.7 Correctness of the Embedding Algorithms

Our embedding algorithm is resolution complete in the sense that a sufficiently fine grid

will capture all significant variations in character paths that are possible given our motion

graph, task domain, and motion editing model. However, at practical grid resolution, some

possible paths will be lost. Figure 5.8 shows an example. Consider a straight walking mo-

tion that can repeat. Figure 5.8 shows a sketch of edit regions grown using our approach,

which requires forcing motion clips to terminate at cell centers. The theoretical edit region

that would result from playing the same motion clip twice in succession is also shown.

Eventually, (after playing the motion clip three or four times in succession), the theoret-

ical edit region will contain grid centers that are not captured by our algorithm. As the

grid is made finer, the practical effect of this approximation will decrease, and we discuss

the results of experiments testing the stability to changes in grid resolution of our analysis

approach in Section 5.4.6.

The embedding algorithms are made conservative by making connections only to grid

centers within the edit region associated with a motion segment. When the algorithms are

72

implemented in this way, no paths can be generated that are not possible given the motion

graph, task domain, and motion editing model.

5.2.8 Obstacles and Annotation Constraints

Obstacles and other constraints are required to make an environment interesting and realis-

tic. We do collision detection with a cylinder of radius0.25m around the character’s root;

hence, all obstacles can be described as 2D shapes (such as circles, axis-aligned rectangles,

or general quadrilaterals) with annotations. Annotations can be used to define very general

constraints on the motions usable in the environment; annotations we used included:

• Obstacle can not be traversed (high wall).

• Obstacle can be traversed by jumping motions (chasm).

• Obstacle can be traversed by jumping or stepping motions (low wall).

• Region can be traversed by only sneaking motions (area near guard).

• Region can not be traversed by jumping motions (normal locomotion should not be

assumed to include jumping for no reason).

• Picking-up motions should not be used unless the user selects the action.

Most of these annotations—either defining different obstacle types which interact dif-

ferently with different motion types, or defining regions where the character must act

in a certain way—are self-explanatory, and are handled automatically during collision-

detection; any path which violates an annotation constraint will not be expanded, and

hence cannot contribute to the embedded graph. Annotations such as the last one are more

complicated, as some motions need to be designated as strictly-optional (and hence cannot

be used to connect parts of the embedded graph) but readily-available. We refer to these

asselective actions.

73

5.2.9 Selective Actions

Selective actions are those actions which must be strictly optional (i.e., selectable by the

user at will, but otherwise never occurring in unconstrained navigation). A user may

choose to have the character perform a picking-up action when there are no nearby objects

on the floor, for example, but it would look very strange for such a spurious pick-up action

to show up in automatically-generated navigation.

An embedded graph created from all motions will not respect this requirement; in

particular, parts of the environment may be reachable only via paths which require selec-

tive actions, rather than by regular locomotion, and hence those parts of the environment

should not be considered reachable.

Selective actions are handled by a slight modification to the embedding algorithm.

First, the embedding algorithm described previously is run with only those actions deemed

“locomotion” permitted; all other actions are deemed “selective”, and are not expanded,

although any selective-action nodes reached are marked as such. An exception is made

for selective actions which are necessary for traversing an annotated obstacle; e.g., jump-

ing motions are permitted only insofar as they are required to traverse obstacles such as

the jumpable-chasm obstacle in Figure 5.2(b). This creates a backbone embedded graph

composed of locomotions.

Next, each reachable selective action is tested to see if it can reach the current em-

bedded graph; if so, all paths of reasonable length linking it into the SCC are added to

the embedded graph. For reasons of efficiency, these paths are added in an approximate

manner; i.e., not all paths from the selective action which are added will actually be in the

SCC. Accordingly, the embedding algorithm is rerun to ensure an SCC; this time, how-

ever, the resulting SCC must be a subset of the previous embedded graph (i.e., the original

SCC plus the added paths). Hence, that information can be used to substantially reduce

the number of nodes expanded by the embedding algorithm.

The cost for creating thisaugmented SCCis the cost for creating the initial SCC, plus

the cost of adding in paths from each selective action out to a fixed depth, plus the cost of

74

re-running the flooding algorithm on this subset of nodes. The total cost is:

Taug = Tflood + Tpaths + T ′
flood = O(oE) + O(onbfh) + O(oE) = O(oE) (5.7)

whereh is the mean depth in edges of the added paths. Comparing to Equation 5.6,

computing the augmented embedded graph is asymptotically equivalent to computing the

regular motion graph with all motions treated equally, and in practice requires about twice

as much computation time. In addition, storing the “selective” actions during computation

of the initial embedded graph and storing that initial SCC during computation of the final,

augmented SCC requires an extra bit of storage per node, for a total cost of four bits per

node in the environment.

We used this type of embedded graph for all of our experiments.

5.3 Motion Graph Capability Metrics

To measure the capability of a motion graph, we define metrics which evaluate the motion

graph’s ability to fulfill the requirements identified in Section 5.1.4.

5.3.1 Environment Coverage

The most basic problem a motion graph can have in an environment is simply that it is

unable to navigate the character effectively enough to access large regions of that envi-

ronment. Accordingly, the environment coverage metric is designed to capture the ability

of the character to reach every portion of its workspace without becoming irretrievably

stuck, similar to the viability domain from viability theory (see below). For navigation,

this workspace is represented by discretized grid points{X, Z, Θ} (see Section 5.2.2).

We define grid point(X, Z, Θ) ascoveredby clip c if the center of(X, Z, Θ) is within

the footprint ofc (see Figure 5.9).3 From this occupancy information we compute Envi-

3An alternative definition of coverage is that any grid point containing any root position of any frame of

any clip is covered. In practice, these definitions give essentially identical results, but the former definition

is significantly faster to compute.

75

Figure 5.9: A grid cell is covered by a clip if that clip’s footprint includes the cell’s center.

(Covered grid cells are in green.)

ronment Coverage as:

CXZA =

∑
i covered(i)∑

i collisionFree(i)
(5.8)

where the numerator contains a count of all 3D grid points which are covered by at least

one clip in the embedded graph, and the denominator contains a count of all grid posi-

tions which are theoretically valid for character navigation (i.e., some motion type exists

for which the character would not collide with an obstacle or violate an annotation con-

straint; see Figure 5.11).CXZA is a discretized estimate of the fraction of viable(x, z, θ)

workspace through which the character can navigate under arbitrary control.CXZ , the 2D

equivalent, can be defined analogously.

In order to assist a user in diagnosing and understanding potential problems in a

dataset, we use a brushfire algorithm (e.g., Lengyel et al. [1990]) to identify local maxima

in terms of distance to the nearest covered grid position (see Figure 5.10). This algorithm

can be used to display the locations of the largest gaps or holes. Arrows indicate orien-

tation at local maxima and typically point toward or away from the nearest obstacle. The

most obvious problem that can be inferred from this figure is that there are no motions in

the simple walking-based dataset used for this example that allow the character to stop and

turn in place in this simple example scenario.

Regions with low or no coverage typically indicate that the entrances to those regions

76

Figure 5.10: Holes in coverage for a simple environment. The brightest regions are the

farthest distance from covered, collision-free cells. This figure shows at eachx, z position

the maximum distance over all orientationsθ. Arrows indicate orientations of some of the

local maxima.

from the rest of the environment are highly constricted, and/or there are few ways to place

the motions required to enter or move within that region without colliding with obstacles

or violating annotation constraints.

Viability Theory

Viability theory (see, for example, Aubin [1990]) examines some concepts similar to those

we evaluate with our metrics, albeit in a different domain. In particular, our use of a

strongly connected component (SCC) for the embedded graph is analogous to evaluating

our metrics on the viability kernel of the system, although slightly more restricted. SCCs

have theviability property, which means that for any start state inside the SCC there exists

a path of arbitrary length which stays inside the SCC. Our embedded SCC is hence a

viability domainof the set of states in the discretized environment which could legally be

occupied by the character (i.e., without colliding with an obstacle).

We note, however, that our SCC may not be theviability kernel– maximum-size via-

bility domain – of the system; since we take only the largest SCC, a system with a second,

77

Figure 5.11: Coverage over a simple environment. Obstacles are in red; covered areas

are in grey. Lighter grey means more coverage (i.e., the grid location is covered by more

clips).

much smaller SCC would include that second, spurious SCC in the viability kernel. In

addition, viability theory tends to concern itself with non-deterministic systems where

knowledge of the future is difficult or impossible to obtain, and hence cannot take advan-

tage of some of the simplifying properties of our problem, such as the known connectivity

of the initial motion graph. Nevertheless, viability theory is potentially an interesting lens

through which to view our work and the general question of capability.

5.3.2 Action Coverage

The coverage for action k is defined analogously to Environment Coverage. The 2D ver-

sion is:

CXZ,k =

∑
i coveredk(i)∑

i collisionFree(i)
(5.9)

wherecoveredk(i) is true if and only if there exists an edge in the embedded graph such

that animating the character with that edge causes the central frame of action k to occur in

grid locationi.

78

5.3.3 Path Efficiency

The path efficiency metric is designed to evaluate the ability of the motion graph to allow

the character to navigate efficiently within the accessible portion of the environment. Each

path will have a particular value for path efficiency, and hence the goal is to estimate the

distribution of path efficiencies over the set of all possible paths through the environment.

To estimate this distribution, we must make an assumption about the manner in which

paths will be specified. In this chapter, we examine the problem of point-to-point naviga-

tion, where the(X,Z) values of start and end points are specified (such as with a mouse)

and a path must be found for the character to travel between these two points4. Ideally, a

near-minimal-length path would exist for all pairs of start and end positions. The metric

for relative path length in point-to-point navigation is:

EP =
pathLength

minPathLength
(5.10)

wherepathLength is the length of the shortest path available to the character from the

start point to the end point andminPathLength is the length of an ideal reference path

between those two points (see Figure 5.12).

When evaluating the path efficiency ratio of a(start, end) pair, we work with the

embedded graph described in Section 5.2. Using this graph ensures that only paths which

do not result in dead ends are considered, and also significantly improves the efficiency of

shortest path calculations.

Given this embedded graph, we use Monte Carlo sampling to estimate the distribution

of path efficiency ratios within the 4D space defined by all valid(start, end) pairs. Start

and end positions are selected uniformly at random from the set of grid positions which

have non-zero coverage (see Section 5.3.1). ValuepathLength, the shortest path avail-

able to the character, is computed using A* search through the embedded graph. Value

minPathLength, the shortest path irrespective of available motions, is estimated using

4Several similar definitions of this metric are possible, such as accepting paths that pass through the

target point, rather than only ones ending there. In practical embedded graphs, the results will tend to be

very similar, but the definition used here can be computed more quickly, and is closer to the “go to the click”

interaction paradigm which motivates the metric.

79

Figure 5.12: Paths through a simple environment. Obstacles are in bright red, theminPath-

Lengthpath is in deep red, and thepathLengthpath is in green (starting point is marked

with a wider green dot). (Left) A typical path. (Right) The theoreticalminPathLengthpath

can head directly into the wall, while thepathLengthpath, which relies on motions in the

SCC, must end in a state that allows for further movement.

A* search over the discretization grid imposed on the environment, with each 2D(X, Z)

grid location being connected to all neighbors within five hops in eitherX or Z (i.e.,

an 11x11 box). Path efficiency is then computed as in Equation 5.10. By default, paths

through the embedded graph are computed using all available motions (i.e., all motions

which are not specifically banned by annotations in the environment); an alternative ap-

proach is to evaluate paths using only a restricted subset of the available motions, such as

only pure locomotions (i.e., sneaking and running).

Due to the highly discrete nature of motion graphs, extremely short paths may have

unrepresentative path efficiency ratios according to the presence or absence of a clip of

particular length in the motion graph; to reduce this erratic influence and to consider

paths more representative of typical user-controlled navigational tasks, we throw away

(start, end) pairs whose linear distance is less than4m and re-select start and end can-

didates. Since the space complexity ofA∗ grows exponentially with path depth and we

expect more sophisticated planning algorithms will be used in practice, we similarly throw

out (start, end) pairs whoseminPathLength is greater than7m. We believe such longer

paths will not have significantly different path efficiency distributions from paths in the

4 − 7m range, due to the ability to chain shorter paths together to create long ones. Note

80

also that extremely slow-moving motions, such as idling in place, can skew the results.

We treat each clip as having a minimum effective speed of 0.5m/s for the purposes of min-

imum path computation in order to help filter out spurious paths such as ones which make

all turns by stopping and turning in place. Note that this speed is virtual only; while a

path which includes two seconds of idling would have an additional 1m added to its length

during the search for the shortest path, if selected its true length would be used to calculate

the path efficiency ratio.

A poor score on the Path Efficiency metric usually results from the most direct route

between the start and end locations passing through areas of very limited coverage (and,

hence, very limited path options). A common reason for this type of bottleneck is that all

paths connecting one region to the rest of the environment are channeled through a small

number of connecting motions, sharply restricting the breadth of valid paths.

5.3.4 Action Efficiency

This metric measures the efficiency overhead required to execute a desired action, such as

picking up an object lying on the floor across the room. The metric is measured in a Monte

Carlo fashion exactly analogous to that described for Path Efficiency, and computes a very

similar ratio:

AEa =
pathLengtha

minPathLength
(5.11)

wherea is the action type in question,minPathLength is the length of the reference path

computed exactly as per the path efficiency metric, andpathLengthA is the length of the

shortest path through the embedded graph that ends in a clip which executes an instance

of actiona in the end location.

High values of this metric as compared to the Path Efficiency value for the same

(start, end) pair typically represent actions which are inflexibly linked into the motion

graph, such as a ducking motion which can only be accessed after running straight for

several meters, and which are coupled with or consist of motions which do not fit well into

regions of the environment (such as a region requiring twisty paths between obstacles).

81

A* Planner

Our A* planner uses the following as a conservative distance estimate:

Dest = DS→X + ||X − E|| (5.12)

whereDest is the heuristic estimate of distance from the start pointS to the end point

E, DS→X is the length of the path currently being examined, and||X − E|| is the linear

distance betweenX, the end of the current path, andE.

In practice, rapidly culling paths which stray too far from the straight line between

the start and end locations is critical for efficient path planning. We first look for paths

which are at most 10% longer than the optimal distance, which creates a very narrow

oval of paths being explored and hence can be searched very efficiently. If no such path

exists, the oval is progressively widened to allow examination of paths which stray further

and further from the straight line between the start and end points. We use four passes,

examining paths with a maximum length of 110%, 150%, 250%, and 600% of the ideal

path length.

Note that our A* path planner returns the optimal path between the specified start and

end locations; applications which use a different style of planner which sometimes returns

sub-optimal paths will have commensurately-worse path-based metric results. In the more

demanding environments, some of the optimal paths initially move a substantial distance

away from the end location, so a path planner with a limited horizon would generate paths

that were longer or even substantially longer than optimal, which would result in a worse

score on both the Path Efficiency and the Action Efficiency metrics.

5.3.5 Local Maneuverability

Inspired by the idea of local controllability[Luenberger, 1979], the local maneuverability

metric is designed to evaluate the responsiveness of the character to interactive user con-

trol. In many interactive applications, a highly responsive character is critical; if a user

playing an interactive game is unable to evade traps because the animated character re-

sponds too sluggishly to user control, the game will be rendered almost unplayable. A key

82

requirement for an animated character being controlled interactively by a user is that the

character must be able to rapidly and visibly respond to user controls.

The instantaneous local maneuverability of a character is simply the mean amount of

time required for that character to perform any other action which is currently valid. At a

particular moment, the instantaneous local maneuverability of the character with regard to

action k is:

LMk(t) = (1− α(t)) ∗Dc0 + MDPk (5.13)

wherec0 is the currently-playing clip,α(t) is the fraction of that clip already played at

time t, Dc is the duration in seconds of clipc, andMDPk is the shortest possible time to

reach an instance of motion typek from the end of the current path while following paths

from the motion graph. For example, if the character is 0.3s from the end of a running clip

and the minimum-time path from the end of that clip to an instance of punching is 1s, then

the character’s Local Maneuverability with respect to punching is 1.3s.

The character’s overall Local Maneuverability is the weighted sum of its per-action

Local Maneuverabilities:

LM(t) =
1

||K||
∑

k∈K,k 6=Tc0

(wk ∗ LMk) (5.14)

where K is the set of actions which are in the motion graph and currently valid, andwk

is the weight for action typek. This gives an overall measure of the character’s ability

to respond to external control, taking into account the different reactivity needs of the

different motion types (i.e., evasive actions such as ducking may need to be available

much more rapidly than actions such as picking up an object).

There are two ways to measure expected overall local maneuverability. The first is

TheoreticalLocal Maneuverability, which is measured in the original motion graph:

LMT,k =
1

||C||
∑
c∈C

(0.5 ∗Dc + MDMPc,k) (5.15)

whereC is the set of all clips in the motion graph andMDMPc,k is the duration in sec-

onds of the minimum duration path through the motion graph from the end of clipc to

83

any instance of motion typek. This gives a baseline for what instantaneous local ma-

neuverability a character can be expected to have at any time under ideal conditions (i.e.,

the environment does not invalidate any of the minimum-duration paths). Poor theoretical

local maneuverability values typically indicate poor connectivity between motion types in

the motion graph.

By contrast, in-practice orPractical Local Maneuverability computes the expected

instantaneous local maneuverability from each node of theembeddedgraph:

LMP =
1

||G||
∑
n∈G

(0.5 ∗Dcn + MDEPcn,k) (5.16)

whereG is the set of nodes in the embedded graph,cn is the clip associated with em-

bedded graph noden, andMDEPc,k is the duration in seconds of the minimum duration

path through the embedded graph from the end of clipc to an instance of motion typek.

This gives an expectation for what instantaneous local maneuverability a character can be

expected to have at any time when navigating through the environment in question. Com-

paring this to its theoretical equivalent can provide information about the restrictions the

environment places on responsiveness to user control.

Note that computing local maneuverability for every node is computationally expen-

sive; in practice, we use a subset of nodes selected uniformly at random (i.e., 1% sampling

means any particular node was used in the calculation with probability 0.01). The stability

of the result at different sampling densities is examined in Section 5.4.6.

Finally, note that local maneuverability can be computed for many slices of the data;

of note are:

• Computing the local maneuverability for a single action which needs to be rapidly

accessible at all times (such as evasive ducking).

• Computing the local maneuverability from one subset to another, such as from lo-

comotions to all evasive maneuvers.

• Computing the local maneuverability from locomotions to same-type locomotions

with the character’s facing turned more thanN degrees clockwise from the starting

84

facing, in order to gain a local measure of the character’s ability to respond rapidly

to a user’s navigational directions (such as “run into that alcove to the left to avoid

the boulder rolling at you”).

• Computing statistical information on any of the above by examining the distribution

of local maneuverability values at each node. Information about extremal values,

such as how often it would take greater than 3 seconds to reach an evasive motion,

can be particularly informative.

5.4 Results

5.4.1 Example Scenarios

(a) Empty (b) Random (c) Baseline

Figure 5.13: Evaluation environments of increasing complexity. The upper obstacle (blue)

in environment (c) is annotated as a chasm or similar obstacle, meaning it can be jumped

over.

The two components of a test scenario are the motion graph used and the environment

85

in which it is embedded. Our primary test environment was a large room with varying

levels of clutter (Figure 5.13(c)). This room measures 15m by 8m, and our primary testing

resolution used a grid spacing of 20cm by 20cm for the character’s position and 20 degrees

for the character’s facing angle. We include results from other environments, including

tests on randomly-generated environments of varying sizes and configurations, and other

discretization grid resolutions. To take into account obstacles, we do collision detection

with a cylinder of radius0.25m around the character’s root; hence, all obstacles can be

described as 2D shapes with annotations.

All motion graphs used were computed using motions downloaded from the CMU

motion capture database (mocap.cs.cmu.edu). Our primary dataset consisted of 50 motion

clips comprising slightly over seven minutes of captured motion, with significant amounts

of unstructured locomotion (running, sneaking, and idling), several examples each of sev-

eral actions (jumping, ducking, picking up an object from the floor, punching, and kicking

an object on the floor), and transitions between the locomotions and some of the (loco-

motion,action) pairs (sneak+duck, run+duck, run+punch, run+kick, sneak+pickup, etc.).

Each source motion was labeled with the types of motions it contained as well as the start,

center, and ending times of actions. For example, a clip consisting of running, ducking,

and then running again would be labeled as running until the character visibly started tran-

sitioning to ducking, would be labeled as ducking until it was undergoing normal running

movement again, and would be labeled as running motion after that point. In addition, the

“duck” action would be labeled as starting when the character was fully ducking, ending

when the character started to rise, and centered at the midpoint between those two times.

The per-pair values of adding a transition between any pair of frames were computed

using the technique of Lee et al. [2002]. The resulting matrix of transition costs was

processed in a globally-greedy manner to identify local maxima (see Section 5.4.2) and to

enforce user-specified minimum and maximum clip lengths. Our primary motion graph

consisted of 98 nodes (clips) connected by 288 edges, representing 1.5 minutes of motion

capture data with eight distinct types of motion.

A secondary dataset consisted of 23 walking and stepping-over motions downloaded

from the same repository. This secondary database consisted of 77 seconds of motion, and

86

was used exclusively with the step-obstacle environment (Figure 5.1).

Our embedding algorithm was implemented in Java and used a simple hash table of

fixed size to cache nodes’ edge lists during metric evaluation, with hash table collisions

being resolved by a simple hit-vs.-miss heuristic. Running on a 3.2GHz Xeon computer,

finding the final (augmented) embedded graph required about 6.7 minutes and produced

an embedded graph with 218K nodes and 1.88M edges.

When playing back motion through the embedded graph, transitioning from the end

of motion clipA to the start of clipB was done by warping the first frame of clipB to

match the last frame of clipA, and then using quaternion splines to smoothly remove that

warping over the following 0.5s. Motion editing to warp clips to grid centers was done

using displacement splines on the root translation and facing angle. This editing technique

of course creates footsliding artifacts, which should be cleaned up in post-processing.

5.4.2 Transition Selection

To create the motion graphs used in our experiments, we used a globally-greedy algorithm

that attempted to coalesce nearby edges into hubs of high-quality transitions.

First, we find the frame-to-frame similarity matrix in a manner similar to Lee et al.

[2002]. From this data, we consider only the local maxima (each maxima dominates a

5-frame radius in the matrix), and consider only maxima above a pre-set threshold. This

defines a set ofcandidate transitions, and could be used directly to form a motion graph.

The resulting motion graph would have no guarantees on minimum or maximum clip

length, however, whereas we wished to enforce a minimum length of 0.5s and a maximum

of 1.5s.

Enforcing the minimum length is accomplished bycoalescingnearby candidate transi-

tions; i.e., deleting all candidate transitions within a window of frames and replacing them

with transitions to a single frame within that window. The algorithm for this is given in

detail below; in brief, the approach is to examine each window of frames (i.e., every set

of sequential frame of length 0.5s) and select the optimal frame within that set to reroute

all of the transitions in that set through; this frame is given a score equal to the sum of the

87

quality of all acceptable (i.e., above threshold) transitions which will be re-routed through

it. Once this value is calculated for all windows of frames, the globally-highest value is se-

lected, the transitions in the corresponding window are coalesced, and the process iterates

until no window contains more than one transition (i.e., all clips are at least 0.5s long). A

maximum clip length of 1.5s is enforced as a post-processing step by splitting long clips.

AlthoughO(n4) in a naive implementation, the coalescing step can be implemented to

incrementally update the window values based only on changes since the last step, making

the process run inO(n2) and, in practice, only a few hours even for our largest motion

graphs.

Coalescing Candidate Transitions

Repeat

• Find windoww with count(w) > 1, framec ∈ w that maximizesvalue(w, c)

• coalesce(w, c)

Until count(w) ≤ 1 ∀ windowsw

window(s, f, m): the set ofm frames in source files ranging fromf to f + m− 1. Here,

m is always the minimum clip size, andw will always refer to a window of this sort.

count(w): the number of framesf ∈ w s.t.∃ frameg ∈ DB s.t. equivalency(f, g) > 0.

DB: the set of frames of the input source motion files

value(w,c):
∑

g equivalency(c, g) ∀g s.t. ∃f ∈ w s.t. equivalency(f, g) > 0. i.e., the

value of windoww if all transitions must go through framec.

equivalency(f,g): the similarity of framesf andg, if that value is greater than the accep-

tance threshold, else 0.

coalesce(w,c): ∀g ∈ DB s.t.∃f ∈ w s.t.equivalency(f, g) > 0 recomputeequivalency(c, g)

and setequivalency(f, g) to 0. i.e., force all transitions inside windoww to use framec

or no frame at all.

88

Motion Graph

Clips Transitions Motion

98 288 87s

190 904 163s

282 1,712 248s

389 3,198 350s

Table 5.1: Clips, transitions, and total amount of motion contained by the different motion

graphs created for our main evaluations. The full motion database contained 439 seconds

of motion.

Crafting Representative Motion Graphs

The frame-to-frame similarity matrix computed above will depend strongly on the precise

details of the input motion capture clips. In practice, even a relatively small change in

the transition qualities between an input file and other files in the database can result in a

substantially different motion graph. If one running motion is replaced by another, for ex-

ample, or even if the same running motion is used but with a different transition-selection

threshold, a very different motion graph can result due to the discrete nature of taking

local maxima in the similarity matrix, coalescing them to enforce minimum clip lengths,

and taking the largest strongly connected component of the result.

In order to ensure that high-quality and representative motion graphs were used for

our tests, each of the 50 input files was assigned a “desirability” weight which directly

modified the relative quality of any transitions to or from that motion. These weights

were manually adjusted until an acceptable motion graph was obtained. Our baseline

motion graph was crafted via these weights to have a representative mix of all available

motion types, with an emphasis on the two main locomotions (running and sneaking), a

smaller amount of idling motion, and one to four examples of each of the actions (jumping,

picking-up, ducking, punching, kicking) in the database. In addition, we ensured that each

instance of an action was directly accessible from locomotion (i.e., it was not necessary to

pass through a kicking motion to reach a ducking motion, for example), and that all three

89

types of locomotion (including idling) could be reached from each other without passing

through an action clip (i.e., the motion graph consisting of just the three locomotions was

also a strongly connected component).

Three larger motion graphs were created from the primary motion database in the

manner detailed above (see Table 5.1).

5.4.3 Baseline

Table 5.2 shows evaluation results from our basic test scenarios. XZ Coverage is the

fraction of collision-free (X,Z) grid cells in the environment which contain at least one

node of the embedded graph; XZA Coverage is the analogous quantity taking into ac-

count character facing (see Section 5.3.1). Local Maneuverability (Section 5.3.5) is the

minimum-duration path to an instance of the “pick” action in either the original motion

graph (Theoretical LM) or the embedded graph (Practical LM). Path Efficiency is the ratio

of the distances of the shortest point-to-point path in the embedded graph vs. an ideal

reference path (Section 5.3.3), and Action Efficiency is the ratio of the distances of the

shortest path ending in a “pick” motion vs. the shortest path ending in any motion (Sec-

tion 5.3.4). All of these paths are optimal for their particular start and end locations, so the

Median Path Efficiency, for example, is the efficiency of theoptimalpath for a typical pair

of start and end points. Accordingly, any scenario with poor Path Efficiency has a poor

value for that metric in the optimal case, so a path at “90% Path Efficiency” means the

optimal path for that particular start and end location was less efficient than the optimal

paths for 90% of the other(start, end) pairs chosen.

Results for the environment with no obstacles are excellent, suggesting that the process

of discretization and analysis does not unduly affect the capabilities of the motion graph.

Note, however, how Practical Local Maneuverability and Action Efficiency show mobility

is slightly affected, largely by the walls surrounding the environment removing some path

options.

The environment with randomly-placed obstacles is relatively open, but represents a

much more realistic environment, with more interesting evaluation results. XZ Coverage is

90

still high (94.3%), but XZA Coverage is much lower (66.5%), reflecting congested regions

which the character can only traverse along a single axis. Median Path Efficiency is still

very close to the optimum, but the mean path is over 20% longer than the reference path,

meaning that some regions of the environment are difficult for navigation and require very

long paths. This is reflected more strongly in the sharply higher values for Practical Local

Maneuverability and especially for Action Efficiency. The latter is especially interesting;

even the median paths were much (85%) longer than the reference paths, suggesting that

the motion graph requires a sizeable open region to efficiently set up and use motions such

as “pick”s.

The performance of the default motion graph in the Baseline Environment – the most

obstacle-dense of the three – is quite poor, especially with respect to having the character

use specific actions in specific parts of the environment. The high XZ Coverage value

(95.7%) indicates that the character can reach almost any point in the environment; how-

ever, the lower XZA Coverage value (60.6%) – reflecting restrictions on the character’s

facing at many points in the environment – indicates the character may have a restricted

ability to maneuver at many points. We see that most point-to-point paths through the

embedded graph are still relatively efficient (median was 11% longer than reference), al-

though interactions with highly congested regions of the environment cause a significant

number of exceptions (Figure 5.14).

By contrast, the mean time from any frame to the nearest “pick” action in the em-

bedded graph is almost doubled (3.6s to 6.6s) from its already-high value in the original

motion graph, and is substantially worse than the equivalent measurement in the relatively-

cluttered Random Environment. Accordingly, we observe substantial difficulty in creating

efficient point-to-point paths which end in a specific action, such as a “pick” motion; even

typical paths (Figure 5.15) are about 160% longer than the ideal reference paths.

Of the discrete actions available in our motion graph (i.e., pick, duck, kick, punch), the

range of areas in which each could be used varied widely (see Figure 5.16). In addition,

a slight modification to the Baseline Environment radically changed the coverage pattern

(see Figure 5.17).

Section 5.4.4 examines several potential approaches for improving the performance of

91

Environ Coverage(%) Local Maneuv Path Efficiency Action Efficiency

XZ XZA Theory Prac Mean Median Mean Median

Empty 99.8 94.1 3.6s 4.4s 1.00 1.00 1.25 1.11

Random 94.3 66.5 3.6s 5.6s 1.21 1.03 1.93 1.85

Baseline 95.7 60.6 3.6s 6.6s 1.87 1.11 2.85 2.59

Table 5.2: Evaluation results for the three basic test scenarios. Capability steadily worsens

as the environment become more congested with obstacles.

motion graphs in this environment. Section 5.4.5 explores how this evaluation approach

scales with increasing size and complexity of scenarios, as well as the effects of our on-

demand edge computation algorithm. Finally, specifying a set of metrics required making

several assumptions, the validity of which are examined in Section 5.4.6.

5.4.4 Improving Motion Graphs

We examine the effects of three common techniques which can be used to improve the

flexibility of a character’s performance when using a motion graph:

1. Adding more motion data

2. Allowing more motion editing

3. Increasing inter-action connectivity

Larger Motion Graphs

Table 5.3 shows the evaluation results for motion graphs of approximately 200%, 300%,

and 400% the size (in terms of number of clips) of the baseline motion graph (first row).

Larger motion graphs were created from the original dataset by allowing progressively

lower-quality transitions to be included in the motion graph. Larger motion graphs allow

more flexibility in creating motions, and improve the metrics across the board; however,

92

(a) Good path

(10th percentile)

(b) Median path

(50th percentile)

(c) Bad path

(90th percentile)

Figure 5.14: Representative character navigation paths in the baseline scenario. Actual

paths are in green, ideal reference paths are in dark red. The starting point of the actual

path is drawn slightly widened.

93

(a) Good path

(10th percentile)

(b) Median path

(50th percentile)

(c) Bad path

(90th percentile)

Figure 5.15: Representative character pick paths in the baseline scenario. Paths ending in

a pick action are in dark green and ideal reference paths are in dark red. The starting point

of the actual path is drawn slightly widened.

94

(a) Duck cover-

age

(b) Kick coverage (c) Punch cover-

age

(d) Pick coverage

Figure 5.16: XZ Coverage locations for ducking, kicking, punching, and picking-up in

the baseline scenario. Section 5.5.2 examines the poor coverage of the punching action.

95

(a) Baseline (b) Shortened (c) Larger motion

graph

Figure 5.17: (a) XZ Coverage for the baseline scenario. (b) XZ Coverage for a version of

the baseline scenario with the environment shortened from 15m to 14m. (c) XZ Coverage

for the shortened environment with a larger motion graph.

96

Coverage(%) Local Maneuv Path Efficiency Action Efficiency

Clips XZ XZA Theory Prac Mean Median Mean Median

98 95.7 60.6 3.6s 6.6s 1.87 1.11 2.85 2.59

190 98.3 90.3 3.3s 4.6s 1.11 1.01 2.36 2.10

282 98.3 91.5 3.6s 3.9s 1.06 1.01 1.47 1.37

389 98.3 95.5 2.6s 3.0s 1.02 1.00 1.20 1.11

Table 5.3: Evaluation results by size of motion graph.

no substantial improvement to the efficiency of paths ending in a “pick” action was noted

until the size of the motion graph had tripled from the original, and adequate performance

was not obtained until a motion graph of quadruple size was used.

In addition, even the motion graph of 200% baseline size allowed sufficient flexibility

to navigate efficiently within the Baseline Environment, and to restore the capability lost

in the shortened environment (see Figure 5.17).

Unfortunately, our primary method of generating larger motion graphs – by lowering

the threshold for acceptable transitions when creating the motion graph – tended to lower

the overall quality of motions generated from that motion graph, due to the larger amount

of editing needed to smooth over the lower-quality transitions. In practice, some of the

paths generated from the largest motion graph were very efficient and looked good at a

global level, but contained poor-quality motion and looked poor at a more local level,

suggesting that increased capability from lower transition thresholds should be balanced

against this potential quality loss.

Restricted Motion Databases

We examine the character’s ability to navigate in the secondary test environment (Figure

5.1) with the secondary test motion graph (23 walking motions with a stepping-over mo-

tion) for test motion sets with different types of motions removed from the secondary test

database.

97

We begin by comparing different motion data sets. How much motion is really needed

to allow the character to perform reasonably in the environment? To explore the value of

having duplicate motions and different types of turns, we examined results from 5 different

motion sets, starting from the original set of 23 motions containing straight walks, gradual

turns, sharp turns, and stepping:

1. the original dataset: 23 motions

2. half of the motions of each type removed: 12 motions

3. one motion of each type retained: 6 motions

4. all sharp turns removed: 15 motions

5. all gradual turns removed: 15 motions

The number of frames in the resulting motion graphs is shown in Table 5.4. Note that

the number of frames in these motion sets does not vary as much as might be expected.

Because we enforce a minimum clip length of 0.333 seconds when forming the motion

graph, doubling the number of motions does not always lead to doubling the number of

frames in the motion graph. Through experimentation, we found that when enforcing

a minimum clip length, short source motions (2–3s) tended to provide far fewer usable

clips as compared to longer source motions (4–5s) than their relative sizes would suggest.

TheHalf MotionsandNo Duplicatessets of source motions do not contain these shorter

motions, accounting for their more efficient utilization of the available frames.

Table 5.4 also shows the differences in coverage obtained from different motion sets.

Coverage was quite high for all examples, and only pruning the motion set all the way

down to 6 clips had a sizable effect.

Table 5.5 shows the differences in Path Efficiency in the secondary test environment

with different types of motions knocked out of the secondary test database. In all cases,

the median motion is quite good. Motions with no gradual turns show the poorest perfor-

mance, especially in the number of paths more than 25% longer than the minimum (EP

(Path Efficiency)> 1.25). Motions with no sharp turns produce a relatively large motion

98

Motion Set Source MoGraph Coverage Fraction

Frames Frames XZ XZA

Full Set 2304 1177 0.951 0.904

Half Motions 1424 1010 0.955 0.905

No Duplicates 733 537 0.922 0.879

No Sharp Turns 1551 948 0.942 0.893

No Gradual Turns 1543 682 0.958 0.896

Table 5.4: Frames of source motion, frame size of the motion graph, and coverage compar-

ison for the different motion datasets. XZ coverage indicates the fraction of the collision-

free ground plane that can be reached at some orientation. XZA coverage is the fraction

of all collision-free 3D configurations(x, z, θ) that can be reached.

graph and good coverage (Table 5.4), but produce many poor paths due to the inability to

take sharp corners. (This problem is especially apparent in theEP > 1.1 column.) All

of the motion sets tested have some combinations of start and end positions that produce

poor results.

Increasing Allowed Editing

Table 5.6 shows the evaluation results for the baseline motion graph with varying assump-

tions about the maximum allowable amount of motion editing. The results show that a

minimum level of editing is necessary to form a well-connected embedded graph. After

that point, however, capability improves at a decreasing rate. Even the highest level of

editing does not adequately resolve the problems with poor Practical Local Maneuverabil-

ity and Action Efficiency, with transitioning from running to a “pick” action taking a mean

of almost 5 seconds, and paths ending in a “pick” being over 60% longer than the ideal

reference paths.

While allowing more motion editing permits greater coverage of the environment, in

practice there are limits on the extent to which a motion can be edited while remaining

of high enough quality to meet the requirements of the application. When editing size is

99

Motion Set Path Efficiency % Poor Efficiency

Median 95% EP > 1.1 EP > 1.25

Full Set 1.0066 1.124 7.0 2.0

Half Motions 1.0063 1.131 6.6 2.8

No Duplicates 1.0083 1.140 8.2 2.2

No Sharp Turns 1.0066 1.133 9.0 2.2

No Gradual Turns 1.0082 1.180 8.8 3.8

Table 5.5: Path Efficiency comparison for the different motion datasets. The median col-

umn lists median path length as a fraction of the minimum path length. The 95% column

lists 95th percentile values forEP . The “EP > 1.1” column lists the percent of paths

tested having a path length ratio greater than 1.1, and the “EP > 1.25” column lists the

percent of paths with path length ratios greater than 1.25.

Edit Coverage(%) Local Maneuv Path Efficiency Action Efficiency

Size XZ XZA Theory Prac Mean Median Mean Median

75% 40.5 17.2 3.6s 10.3s 2.67 2.67 5.12 5.39

88% 51.5 28.9 3.6s 9.0s 1.54 1.24 3.29 3.31

100% 95.7 60.6 3.6s 6.6s 1.87 1.11 2.85 2.59

112% 96.8 69.4 3.6s 5.9s 1.55 1.05 2.34 1.89

125% 97.2 75.9 3.6s 5.7s 1.25 1.02 1.98 1.48

150% 98.3 84.0 3.6s 4.9s 1.18 1.02 1.61 1.19

Table 5.6: Evaluation results for the baseline scenario with different sizes of editing foot-

print.

100

Editing Coverage Fraction(%)

Size Always connect Respect edit bounds

XZ XZA XZ XZA

5 55.7 25.6 0.0 0.0

10 77.2 53.8 24.1 14.5

15 88.2 73.7 62.4 40.5

20 93.8 87.5 89.7 82.1

25 95.1 90.4 94.9 89.6

30 96.9 94.3 96.9 94.2

35 97.4 95.4 97.4 95.4

Table 5.7: Effect of allowable motion editing on coverage for a simple walking dataset

in a small environment (Figure 5.1). Editing size is the value ofrx andrz in cm/meter

and also the value ofrθ in degrees/m (see Equation 5.1;α was zero for this dataset, so

clip duration was ignored). “Always connect” means to always connect to at least one

grid point. “Respect edit bounds” means only connect to grid points within the editing

footprint. Results depend on grid spacing, which was 20cm forx andz and 20 degrees for

θ.

101

Motion Coverage(%) Local Maneuv Path Efficiency Action Efficiency

Graph XZ XZA Theory Prac Mean Median Mean Median

Baseline 95.7 60.6 3.5s 6.6s 1.87 1.11 2.85 2.59

Tuned 93.0 40.0 2.9s 5.2s 1.51 1.17 2.48 2.39

Table 5.8: Evaluation results for the Baseline Environment with either the baseline motion

graph or a smaller, hub-based one.

larger than 125% of baseline, we observe unacceptable footsliding artifacts in the result-

ing motion. Although our current estimate of a reasonable amount of motion editing is

subjective, it is our hope that it will be possible to develop perceptually based algorithms

to automatically compute such estimates.

Note that low levels of allowable editing with short motion clips can potentially result

in clips whose editing footprints sometimes contain no grid points at all. While it is pos-

sible to increase the size of each footprint until it contains at least one grid point, doing

so would compromise the conservative nature of the embedding (Section 5.2.7). As Ta-

ble 5.7 shows, however, such a relaxation of the embedding algorithm’s guarantees is not

necessary in scenarios where the discretization size is reasonable compared to the amount

of editing allowed, and in practice was never necessary in our test scenarios.

User-Modified Motion Graphs

Table 5.8 compares the baseline motion graph with a small but densely-connected hub-

based motion graph which was carefully edited to have highly-interconnected motion types

in a manner similar to that of Lau and Kuffner [2005].

While the hub-based motion graph has superior Local Maneuverability, its Path Ef-

ficiencies are only slightly better than that of the baseline motion graph. In general, the

hub-based motion graph did not offer as much improvement as expected, some reasons for

which are examined in Section 5.5.2.

102

Figure 5.18: 40m by 10m environment partitioned into rooms by 8m-long walls. 10m by

10m, 20m by 10m, and 80m by 10m environments of the same format were also used to

evaluate scaling behavior of the algorithm in equivalently-dense environments.

5.4.5 Scaling Behavior of the Methods

Realistic scenarios often include large environments with complex motion graphs, and a

practical method for evaluating motion graphs must be able to scale to meet these de-

mands. We examined the scaling behavior of the evaluation method in terms of increasing

demands of several different types.

Scaling with Increasing Area

Table 5.9 shows the time and memory requirements for evaluating environments of differ-

ent sizes. Embedding Time is the total computation time required to obtain the strongly

connected component of the final embedded graph. Metrics time is the computation time

required to compute all metrics. Base memory is the memory use reported by the Java

Virtual Machine (JVM) after the graph embedding. Peak memory is the maximum mem-

ory use reported by the JVM; path search is the main contributor to the difference between

peak and base memory, with some effect from dynamic edge caching. Each environment

was populated with randomly-selected and randomly-placed obstacles in the manner of

the Random Environment (Figure 5.13(b)) of a size appropriate to the environment (i.e.,

larger environments tended to have both more and larger obstacles). Graph embedding

dominated the running time of larger environments, increasing from 28% of processing

time for the smallest environment to 66% for the largest.

103

Time(s) Edges Memory Used

Area(m2) Total Embedding Metrics /sec /m2 Base Peak

56 612 163 470 3.5k 10k 182MB 204MB

120 1,769 742 1,010 5.8k 36k 182MB 283MB

240 4,709 2,137 2,550 8.2k 73k 183MB 382MB

1,000 24,337 15,667 8,653 8.3k 130k 190MB 361MB

5,000 417,075 274,052 142,955 10.2k 560k 222MB 542MB

Table 5.9: Time and memory requirements for evaluation of environments of different

sizes. “Edges/sec” is the number of edges in the embedded graph divided by the total

embedding time. For comparative purposes, an NBA basketball court is approximately

430m2, and an NFL football field is approximately5, 300m2.

Size(m) Embedding Time(s) Edges

Time(s) /m2 /sec /m2

10x10 1,007 10.5 3.7k 38k

20x10 2,190 11.0 3.5k 39k

40x10 4,076 10.2 3.8k 39k

80x10 9,571 12.0 3.7k 44k

Table 5.10: Time to compute the embedded graph is approximately linear with area across

environments with equivalent obstacle densities. (Additional “fake obstacles” (which had

no effect on edge validity) were added to the smaller environments to equalize collision-

detection overhead between environments.)

104

In this experiment, runtime scaled approximately quadratically with area, but actually

decreased on a per-edge basis (“Edges/sec” column in Table 5.9). The apparent reason for

this quadratic scaling with area is that the size of each obstacle increased with the size of

the environment, making successive environments closer and closer approximations of an

unconstrained environment; accordingly, the size of the embedded graph (and hence the

computation time) increased faster than the size of the environment (“Edges/m2” column).

To factor out the effects of different obstacle densities, we examined a set of envi-

ronments designed to have approximately equal obstacle density (see Figure 5.18). All

environments in the set were 10m long, with widths of 10m, 20m, 40m, and 80m. Each

obstacle was partitioned into 10m by 10m sections by a series of narrow 8m-long walls

(so movement between sections was possible only through the 2m gaps beside the walls);

these partitions made the larger environments approximate a series of the smallest 10m by

10m environment, rather than having large regions away from the constraining influence

of side walls. Each environment was populated with an equal density of random obstacles

drawn from the same population (i.e., comparable sizes). Finally, each environment con-

tained enough “fake” obstacles (requiring collision tests but not affecting edge validity) to

bring the total obstacle count up to the number of obstacles present in the largest environ-

ment. These fake obstacles made per-edge collision detection costs comparable across the

environments.

By contrast with the largely unconstrained environments seen previously, embedding

time for these environments divided into “rooms” scaled close to linearly with area (Table

5.10). The partitioned environments maintain approximately the same embedded graph

density at all sizes, and hence their computational requirements scaled linearly with area,

as the theoretical analysis suggested. We note, however, that there was a small upwards

trend in embedded graph density and per-m2 embedding time (about 15% over an 8x size

increase), suggesting that even the small 2m openings between adjacent rooms may have

slightly changed the obstacle density of the environments. We conclude that different

configurations of obstacles – such as long, thin walls partitioning the interior of a building

vs. small, scattered bushes or tree trunks in a field – may have qualitatively different effects

on the capability of an animated character.

105

Motion Graph Time(s) Memory Used

Clips Edges Motion Total Embedding Metrics Base Peak

98 288 87s 1,613 399 1,201 182MB 200MB

190 904 163s 10,616 1,602 9,001 352MB 594MB

282 1,712 248s 19,214 4,014 15,185 523MB 995MB

389 3,198 350s 29,519 8,204 21,303 741MB 1,246MB

Table 5.11: Time and memory requirements for embedding different sized motion graphs

in the Baseline Environment.

Finally, we note that the embedded graph in the largest environment evaluated (100m

by 50m) contained 122,368,278 nodes and 2,798,837,985 edges. Explicitly storing this

embedded graph would have required approximately 11GB of memory, whereas comput-

ing it via the one-step algorithm would have required approximately 50GB, as compared

to the 0.5GB used by the space-efficient method.

Scaling with Increasing Motion Graph Size

Table 5.11 shows the time and memory requirements for evaluating the Baseline Environ-

ment with motion graphs of various sizes. Larger motion graphs were formed from the

same database of motions by progressively lowering the threshold for acceptable transi-

tions. As with the baseline motion graph, per-file transition weights were manually ad-

justed to give reasonable and representative motion graphs.

Total running times ranged from under half an hour to over six hours, with metric

evaluation taking approximately 75% of the overall time. Much of the heightened re-

quirements were due to the path searches through the large motion graphs required for the

Efficiency metrics, as A* search is exponential in the branching factor, which tends to be

higher in larger motion graphs.

106

On-Demand Edge Computation Overhead

Table 5.12 shows the time and memory requirements for evaluating environments using

different levels of edge caching. Default caching places edge-lists into a very simple hash

table of fixed size, using usage-frequency information to determine which list to keep in

the event of a collision. Full caching stores all edges prior to metric computation, so

stored edges are included in base memory. Explicit caching computes all candidate edges

and uses Depth-First Search to find the embedded graph as in Reitsma and Pollard [2004].

Explicit computation of the embedded graph rapidly becomes intractable due to the

memory requirements. Moreover, the minimum possible time such an algorithm could

take – conservatively estimated by adding together the time to find the edges, find the

largest SCC (without augmentations), and compute the metrics with fully-cached edges,

but ignoring any other necessary operations – is at best lower than the flood-based algo-

rithm used in this paper by a small constant factor, due to the smaller number of nodes

expanded by the flood-based algorithm (see Section 5.2.6).

For the flood-based algorithm, the three caching regimes tested offer a tradeoff between

storage space and computation time. Caching all edges in the embedded graph before

computing the metrics is only a small amount of memory overhead for small scenarios and

results in almost a 50% reduction in computation time, but memory requirements become

increasingly costly as environments or motion graphs grow larger, for increasingly smaller

gains in computation time (only 30% for the larger environment). Caching frequently used

edges (the default) provides a tradeoff that maintains most of the speed benefits for only a

fraction of the memory.

5.4.6 Validity of the Evaluations

While the results of these metrics seem intuitively reasonable, one of the key goals of this

work was to reduce the reliance on animator intuition by providing objective and verifiable

evaluations.

107

Time(s) Memory Used

Cache Area(m2) Total Metrics Base Peak

None 56 992 822 182MB 200MB

Default 56 612 437 182MB 204MB

Full 56 504 324 191MB 209MB

Explicit 56 499+ 324 572MB 590MB

None 120 2,791 2,118 182MB 258MB

Default 120 1,736 1,068 182MB 289MB

Full 120 1,412 690 235MB 306MB

Explicit 120 1,181+ 690 1,064MB 1,135MB

None 240 6,934 4,076 183MB 325MB

Default 240 5,496 2,639 183MB 382MB

Full 240 4,307 1,302 357MB 498MB

Explicit 240 3,192+ 1,302 2,070MB 2,211MB

None 1,000 41,780 15,117 189MB 274MB

Default 1,000 30,027 9,870 189MB 361MB

Full 1,000 27,859 5,954 1,305MB 1,390MB

Explicit 1,000 13,747+ 5,954 9,832MB 9,917MB

Table 5.12: Time and memory requirements for different edge-caching schemes. All

times are in seconds. Explicit caching refers to the algorithm of Reitsma and Pollard

2004. The ”+” notation is used as we replicated only the first parts of their algorithm for

comparative purposes; some additional computation beyond the amount timed is required

by their algorithm.

108

Grid Cells per Coverage(%) Local Path Efficiency Action Efficiency

Meter 2π Radians XZ XZA Maneuv Mean Median Mean Median

4 15 47.1 25.0 7.5s 1.78 1.45 3.88 3.62

5 18 95.7 60.6 6.6s 1.87 1.11 2.85 2.59

6 20 96.0 65.0 6.7s 1.55 1.04 2.70 2.10

7 24 96.3 74.1 6.8s 1.59 1.02 2.35 1.80

Table 5.13: Evaluation results at different discretization levels.

Finer Discretization Resolution

Past a minimum threshold resolution, the metrics are relatively stable, with evaluation

results steadily but slowly improving with increasingly fine resolution; however, the prob-

lems identified in the default resolution remain in the finer resolution analyses (see Table

5.13). This trend suggests that the baseline evaluation at which our initial tests were per-

formed should be a reasonable (if pessimistic) estimate of the metric values that would be

obtained in the limit as grid sizes went to zero. While drastic improvements in the metric

values do not occur, such improvements are possible, making this approach a conservative

estimate.

In addition, while Local Maneuverability results are only given for the running-to-

pick-up action transition and Action Efficiency results are only given for paths ending in

a picking-up motion, several other actions were tested (run-to-duck, sneak-to-duck, paths

ending in a duck, etc.), with substantially similar results to those reported for picks. Sim-

ilarly, the Path Efficiency and Action Efficiency metrics gave essentially the same results

regardless of whether path-planning was unbounded or limited to a generous horizon. For

efficiency, both metrics were run with a horizon of six times the length of the reference

path; failure to find a path within that distance resulted in an effective path length equal to

the horizon distance for metric purposes.

109

Sampling Compute Local Maneuverability

Density Time(s) Mean Median StdDev StdErr

Baseline 6 6.6s 5.3s 4.7s 0.14s

0.03% 1 7.3s 6.2s 5.4s 1.33s

0.1% 1 8.5s 7.1s 6.1s 0.87s

0.3% 2 6.6s 5.3s 4.6s 0.36s

1.0% 3 7.0s 5.9s 4.8s 0.21s

3.0% 6 6.7s 5.3s 4.7s 0.12s

10.0% 13 6.7s 5.3s 4.9s 0.07s

30.0% 38 6.8s 5.3s 4.8s 0.03s

100.0% 122 6.7s 5.3s 4.8s 0.02s

Table 5.14: Practical Local Maneuverability results for the baseline environment when

each possible sample in the environment has the given chance of being evaluated.

Effect of Metric Sampling Density

Practical Local Maneuverability was tested at sampling densities ranging from 100% (i.e.,

the true value) down to 0.03% (see Table 5.14). The computed values were highly stable

past approximately 1% sampling density, validating our probabilistic sampling approach.

The baseline at which our evaluations were performed was 10 samples per square meter

of the environment, or about 2.3% sampling density for the Baseline Environment.

Path Efficiency and Action Efficiency metrics were run with between 50 and 500 sam-

ples, as compared to the baseline of 150 sample paths (Table 5.15). Metric results were

stable across different numbers of samples, suggesting that the default number of samples

evaluated should provide a reasonable estimate of the true metric values.

Other Aspects of Path Sampling

The paragraphs above discuss the effect of varying the sampling density for different met-

rics; however, Path Efficiency is never exhaustively evaluated. While such an exhaus-

110

Samples Path Efficiency Pick Efficiency

Path Pick Time(s) Mean Median Mean Median

50 17 386 1.92 1.09 2.95 2.59

100 33 696 1.86 1.09 2.93 2.59

150 50 1,109 1.87 1.11 2.85 2.59

200 67 1,447 1.86 1.10 3.04 2.68

300 100 2,022 1.92 1.10 2.96 2.61

500 167 3,036 1.96 1.12 2.95 2.39

Table 5.15: Metric results for different numbers of path efficiency and pick efficiency tests

run in the baseline environment. Baseline number was 150/50.

tive evaluation would make an excellent basis for validation of the Monte Carlo sampling

method we use, we note that such evaluation would not be computationally feasible.

Consider, for example, the Baseline Environment detailed in Section 5.4.1. At the

default discretization resolution, the environment has roughly 2,000 valid start location

and a slightly lower number of valid end locations, resulting in approximately 3,000,000

possible(start, end) pairs on which to run the Path Efficiency metric. At approximately

10 seconds per path evaluated, an exhaustive evaluation of those 3,000,000 pairs would

require just under a year to compute.

While a stochastic sampling approach is necessary to evaluate metrics such as Path

Efficiency, we note that sampling schemes other than the ones we chose are possible. For

example, one could imagine using a constant sampling density per square metre of the

environment (as is used to estimate Practical Local Maneuverability) to estimate Path Effi-

ciency, rather than the constant number of samples per environment as was actually used.

Such an approach might be more accurate for large and non-homogeneous environments,

as more paths would be sampled more evenly over the environment; however, the observed

stability of our current sampling method suggests there would not be a substantial change

in metric values for our test environments.

A second type of alternative approach would be to evaluate the Path Efficiency metric

111

Total Times(s) XZ Cvgs(%) Prac LM Path Efficiencies Action Efficiencies

Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

1,535 260 90.3 3.1 5.8s 0.55s 1.25 0.11 2.11 0.36

Table 5.16: Mean values and standard deviations for evaluation results of randomly-

generated environments.

without discretization; i.e., simply unroll the motion graph from the selected start location

until a path is found which comes within a pre-selected tolerance of the end location. As

noted in Section 5.2.1, dispensing entirely with discretization is infeasible, due to the man-

ner in which possible paths increase exponentially with distance. For example, evaluating

one instance of Path Efficiency in a situation where the optimal path is at least 20m (which

occurred several times in the Baseline Environment with the baseline motion graph) by

using no discretization while unrolling a motion graph with mean branching factor of 3

and mean per-clip distance of 1m (similar to the baseline motion graph) would result in

over 3 billion paths to be examined – even before considering the effects of motion editing

or dead-end checking – which could pose difficulties for computational time as well as

memory requirements. By contrast, finding and evaluating a 20m optimal path in the em-

bedded graph could be done rapidly and efficiently, typically requiring the evaluation of a

few hundred thousand path segments (equivalent to about 10,000-20,000 paths) and could

be accomplished with minimal memory overhead in 10-30s. Moreover, as the embedded

graph is required anyway for the computation of the different Coverage metrics, using it

for evaluating Path or Pick Efficiency incurs no additional overhead.

Measurement Stability Across Different Environments

Table 5.16 gives the distributions of evaluation results for the baseline motion graph run

in 20 randomly-generated environments. The area (120m2) of the environments and types

of obstacles placed were the same as those in the Random Environment used for initial

testing (see Figure 5.13(b)), although configuration details (height/width of environment

112

(a) XZ Coverage (b) Action Efficiency

Figure 5.19: Distributions of a representative pair of metric values for the random envi-

ronments evaluated. Y axis is count of number of environments in each bin.

as well as number/size/shape/placement of obstacles) were determined randomly. Figure

5.20 shows the XZ Coverage overlaid on three representative environments.

In contrast to the drastic changes seen with the shortened Baseline Environment (Fig-

ure 5.17), results were relatively stable across different environment configurations, with

no drastic changes in the capability of the motion graph. As Figure 5.19 shows, the dis-

tribution of values for metrics evaluated on the randomly-generated environments was ap-

proximately normally distributed. This result suggests motion graph capability will tend

to be strongly correlated across many classes of similar environments.

5.5 Discussion

5.5.1 Findings

When using regular motion graphs on general environments, our experiments identified

several problems.

113

(a) Difficult environment (b) Typical environment (c) Easy envi-

ronment

Figure 5.20: Representative examples of the random environments created for testing.

114

Effects of Complexity

One fundamental result of our experiments is the observation that when working with a

motion graph data structure,easy tasks are easy; more complex tasks are hard. For a

simple task, such as basic locomotion in an obstacle-free environment, all motion graphs

we tested performed well, with extremely good coverage and average paths under 1%

longer than ideal reference paths.

Making either the task or the environment more complex, however, had a substantial

effect on the capabilities of the motion graph. More complex tasks, such as transitioning

to a particular action type or performing a particular action type at a designated location

in the environment, were more difficult to perform in even the obstacle-free environment,

with Local Maneuverability and Action Efficiency values both higher by about 20% (Ta-

ble 5.2). Moreover, both measures degraded rapidly even in the relatively-open random

environments, and especially in the highly-congested Baseline Environment. Similarly,

even basic locomotion suffered in the relatively-open random environments, going from

near-perfect efficiency to an average path length 25% longer than the ideal reference, and

locomotion in the Baseline Environment was extremely inefficient, with average paths

generated by the baseline motion graph being over 85% longer than the reference paths.

We note that one approach to handling this complexity has been pioneered by Lee and

his colleagues [Lee et al., 2002, 2006]). Briefly, their approach is to collect substantial

quantities of motion data interacting with each obstacle or cluster of obstacles in close

proximity in the environment, in a sense forming a specialized motion graph for each

unique region in the environment. As this technique relies on re-using motions captured

for the specific parameters of each object cluster, however, it is unclear how the technique

might apply to more general environments.

While generic motion graphs are effective for simple animations in simple environ-

ments, we note that the ability to deal with increased complexity of both task and environ-

ment is necessary to make motion graphs a more general tool. In particular, simple tasks

in environments with few or no obstacles may not provide an adequate test of a motion

generation algorithm’s abilities.

115

Reactivity

Even the Theoretical Local Maneuverability of a typical motion graph is quite poor, and

embedding the motion graph in even a relatively open environment degrades this measure

of reactivity substantially (Table 5.2). For example, changing from a running motion to

an evasive action (ducking) in the baseline motion graph took an average of 3.6s even in

theory, increasing to an average of 5.8s in the random environments (Table 5.16) and 6.6s

in the Baseline Environment. Considering that interactive environments such as games

and training scenarios will tend to operate at timescales driven by users’ recognition and

choice reaction times (approximately 0.5s, rising to 1s for unexpected stimuli; see Green

[2000a,b], Kosinski [2005]), substantial improvements in the ability of motion graphs to

react to interactive control are necessary.

Currently, this is often handled by immediately transitioning to the target behavior,

regardless of the detrimental effects on motion quality. While we would like to avoid this

drastic measure when using motion graphs, the unfortunate fact is that most motion graphs

give the character insufficient ability to react quickly, as evidenced by their poor The-

oretical Local Maneuverability and even worse Practical Local Maneuverability scores.

Ikemoto et al. [2006] examine one possible approach to this problem.

Embedding

We note the importance of embedding a motion graph into its target environment in or-

der to evaluate its capability. Our experiments with variants of the Baseline Environment

(Figure 5.17) show that minor changes to an environment can potentially cause drastic

changes in the effective capability of one motion graph – in this case making the upper

portion of the environment largely inaccessible – while causing virtually no changes in the

effective capability of another motion graph. However, our experiments with randomly-

generated environments (Table 5.16) demonstrate that there is a strong correlation between

the capability of a motion graph in environments with similar types and densities of small

obstacles. The capability of a motion graph in one of our randomly-generated environ-

ments was distributed approximately normally (Figure 5.19). Based on the results with

116

the Shortened Baseline Environment and the set of partitioned environments, however,

(Figure 5.17 and Table 5.10, respectively) it appears that smaller numbers of longer or

wider obstacles will lead to less predictable capability than the larger numbers of smaller

obstacles used in the randomly-generated environments.

5.5.2 Identified Causes

Our experiments suggested three main problems with the motion graphs tested.

First, many clips, especially those of actions such as picking-up, ducking, or jump-

ing, were effectively “set pieces” – i.e., they were linked into the motion graph in such

a way that substantial amounts of specific motion was unavoidable both before and after

the action itself. Both instances of punching actions, for example, required abouteight

metersof mostly straight-line movement to perform, resulting in the almost complete in-

ability to perform punches in the Baseline Environment (Figure 5.16(c)). By contrast,

other actions were embedded in linear paths through the motion graph consisting of about

2-4m of movement, which was much easier to place within the environment (Figure 5.16).

Lengthy “set pieces” of motion such as these are not only easily disrupted by obstacles,

reducing the coverage of the action in the environment, but also drastically worsen Local

Maneuverability.

Similarly, actions of these sorts tend to have only a few instances in the motion graph

in order to keep the overall size of the graph down as the variety of actions it contains in-

creases. Unfortunately, the paths corresponding to the instances of these actions are often

poorly linked into the motion graph, with the start of the branchless portion of the path

often being accessible from only two other clips in the motion graph. In a congested envi-

ronment, however, the ability to take any particular transition from the character’s current

location can easily be blocked by obstacles, meaning that the small number of direct paths

through the motion graph to the desired action can easily be rendered unavailable. This

makes the character’s Local Maneuverability unacceptably fragile and variable, as well as

contributing to the inefficiency of paths.

Finally, many obstacles in close proximity, such as the lower-left region of the Baseline

117

Environment (Figure 5.13(c)), create a need for paths with specific patterns of left-and-

right turning in order to wend between the obstacles. Motion graphs, due to their heavy

reliance on the source data, have trouble substantially changing the curvature patterns of

their constituent paths, although some of this is possible during clip transitions.

We examined three common approaches to resolving these problems: adding more

data to the basic motion graph; allowing more extensive motion editing at clip transitions;

and using a small but highly-connected, hub-based motion graph.

Generality from Motion Graph Size

We note that in our experiments the most effective method for improving the capability of

a motion graph was simply to add more data, increasing the number of nodes while keep-

ing the density of the graph roughly constant. The apparent reason for this improvement

was the way the increased variety of actions allowed increased flexibility in navigating

constrained areas (i.e., higher or lower curvature of turns allows threading between obsta-

cles), as well as the larger number of target nodes in the motion graph for paths constrained

to end in a specific actions. Both of these factors made it more likely that an appropriate

clip of motion would be available for any given point in the environment.

In particular, this had an especially large effect on the ability of the motion graph to

efficiently reach specific actions. For the largest motion graph, Practical Local Maneu-

verability improved sharply to only about 15% higher than Theoretical Local Maneuver-

ability, and Action Efficiency for “pick” actions was only 20% above the ideal (Table 5.3).

Reducing the effect of “set piece” actions is only part of this improvement, however, as the

shortest of the available “pick” action sets was still 3.0m, vs. 3.7m in the baseline motion

graph.

This was also, however, one of the most computationally expensive methods, espe-

cially for tasks using the motion graph, such as path-planning. Accordingly, to scale to

very large motion databases will require either separating out distinct behaviors as sug-

gested by Kovar et al. [2002a] or pursuing an approach that involves clustering and/or

multiple levels of resolution, as in the work of Arikan et al. [2003] or Lau and Kuffner

118

Figure 5.21: An environment which could be hard to navigate with semantically-invariant

editing methods.

[2005].

Generality from Motion Editing

Increasing the amount of motion editing permitted had a significant effect on the capability

of the motion graph, but did not resolve the problems identified, especially for tasks requir-

ing specific actions: even when allowing 50% more motion editing – a level at which we

observed substantial visible artifacts in the animations – Practical Local Maneuverability

for “pick” actions was still nearly five seconds, with average paths required to end in a

“pick” action being over 60% longer than the ideal reference (Table 5.6).

We note that our motion editing model assumes editing is largelysemantically-invariant;

i.e., edits are conducted purely at a local level, using incremental changes to produce ac-

ceptable variations of a source motion. Editing approaches of this type, while commonly

used, have limited flexibility. Consider Figure 5.21; only source motions with the correct

number of turns in nearly the correct places can easily navigate this environment when

only local edits are permitted.

By contrast, editing techniques which have some notion of what anatural pathis for

human movement allow much more flexibility in the set of valid paths that can be gener-

ated from an input motion. Global edits at the level of a whole motion path rather than

at the local level of a few frames of motion would allow much more sophisticated inter-

action between environments and motion paths, potentially allowing adequate capability

to be obtained with substantially smaller datasets. In addition, such an explicit model of

119

what is or is not natural at a larger, path-level scale would complement lower-level nat-

uralness metrics such as those of Reitsma and Pollard [2003] and Ren et al. [2005], and

would help prevent locally-natural but globally-unnatural paths that semantically-invariant

editing techniques can create. Some promising work in this direction has been done by

Warren and his colleagues [Warren et al., 2001, Fajen and Warren, 2003] in the cognitive

science community, and by Vieilledent, Bertoz, and their colleagues [S. et al., 2001, H.

et al., 2005] in the neuroscience community.

Generality from Motion Graph Connectivity

We note that the densely-connected, hub-based motion graph we used has slightly better

performance than the larger automatically-generated motion graph, but that the difference

is surprisingly small; both produced poor paths in the baseline and random environments,

with poor Local Maneuverability.

One reason for the smaller-than-expected improvement is that the lengths of the avail-

able pieces of motion are not altered by this increased connectivity, and the character must

often travel a significant distance before returning to a hub pose and becoming able to tran-

sition to a new clip of motion. For example, performing a “pick” action required playing

approximately 3.7m of motion in the baseline motion graph before a choice of which clip

to transition to next was available, vs. 3.5m in the hub-based motion graph. Due to this, the

immediate-horizon ability of the character to navigate through a congested environment is

not greatly improved.

Accordingly, a highly-connected, hub-based motion graph which does not address the

problem of long “set piece” chunks of motion does not appear to adequately address the

deficiencies observed.

One potential solution would be to increase the degree of connectivity not only at the

ends of clips, butinsideclips as well. This approach would allow the character to move

between actions such as locomotion with different radius of curvature more freely, per-

mitting a greater ability to navigate in highly-congested environments. Unfortunately, this

approach would substantially increase the size and density of the motion graph. The result-

120

ing graph would be significantly harder to reason about, either intuitively or analytically,

and would be much more expensive to use for operations such as path planning. Both of

these drawbacks undermine some of the important benefits of motion graphs, suggesting

the importance of a careful and well-informed tradeoff.

5.5.3 Scaling Behavior

One-Step vs. Space-Efficient Embedding

In our experiments, the backwards footprint (f ′ in Equation 5.6) covered more nodes than

the (forwards) editing footprint by about a factor of three, suggesting the one-step embed-

ding algorithm takes approximately one-fourth the time that the space-efficient algorithm

takes to embed a node. In practice, however, the one-step algorithm expands every node,

whereas the space-efficient algorithm expands only those reachable from the seed node.

Since a typical size for a strongly connected component is 10-20% of the total number

of nodes in an environment, the flood-based algorithm can be competitive or even faster

than the one-step algorithm in some cases, since it will usually expand significantly fewer

nodes. In typical environments, the runtime of the algorithms will differ by at most a small

constant factor.

This big-Theta time equality also holds for evaluating the metrics. The reason for

this is that running large numbers of probabilistically-sampled tests (such as searching for

minimum paths between two randomly-chosen points) typically requires a search through

the graph, in which case time is spent for each edge of each node processed (for example,

putting the distance of a path through that edge into a heap), so the overhead to compute

those edges on the fly is only a constant factor. In our tests, a search on the embedded

graph took approximately three times as long when edges were computed on the fly as

opposed to being retrieved from a lookup table.

In practice, other computational aspects of the evaluation process, such as the A*

search to find the minimal reference path for Path Efficiency, tend to reduce the overall

difference between the methods; experimentally, the slowdown for using the flood-based

121

algorithm is approximately a factor of two. A tradeoff also exists between storage space

and computation time. Caching the edge lists of frequently-accessed nodes can also pro-

vide a significant speedup, with the speed of this on-the-fly algorithm approaching the

speed of the one-step algorithm as the amount of memory allocated to caching approaches

the amount required to store all edges of the graph in the cache (see Section 5.4.5).

Memory

As noted in the theoretical analysis of memory requirements (Section 5.2.5), base memory

required increases linearly with the size of the target environment Only the storage re-

quired for computing the embedded graph – about four bits per node – increases linearly,

but is not a significant limitation (with the default motion graph and discretization, 1GB

can store the information necessary to compute the embedded graph for about50, 000m2,

or ten football fields).

Base memory is overwhelmingly due to the caching of pre-rotated motion clips, and

increases linearly with the amount of motion data in the motion graph; an optimized im-

plementation could reduce the base memory requirement by a significant constant factor.5

For comparative purposes, and considering only memory to store the embedded graph,

the one-step algorithm can store at most an embedding consisting of approximately ten

million nodes (for example, the 7m by 8m environment in Reitsma and Pollard [2004]

examined at discretization10cm by10cm by π
15

radians by 64 clips, or the 20m by 12m

environment in Section 5.4.5 examined at discretization20cm by20cm by π
9

radians by 98

clips). For the flood-based algorithm, either of these environments requires less than 7MB

of memory to store the embedded graph. Storing the embedded graph data for a 10m by

10m environment discretized at2cm by2cm by 5 degrees by 100 clips would require 1GB

for the flood-based algorithm, but approximately 5 terabytes of memory for the one-step

5Our implementation includes substantial display-related data structures; initial experiments suggest that

a computation-only implementation could reduce the memory required to store a clip by at least a factor

of five, making even our largest motion graph comfortably fit within 200MB. Without display-related data

structures, our largest motion graph (about 6 minutes of motion) at our highest resolution (12cm by 12cm

by 12 degrees) with a basketball court environment (430m2) would require about 350MB of base memory.

122

algorithm.

Peak memory requirements are driven by the A* search technique used to evaluate the

ability of the motion graph to produce efficient paths in the target environment. Due to the

exponential nature of A*, this value is highly sensitive to parameters such as the planning

horizon, and in practice memory limitations can be significantly lessened by appropriate

parameter settings and heuristics. Moreover, applications using motion graphs will already

have a path-planning method in place to plan motions created from the motion graph, and

that method will be the most appropriate one to use when evaluating scenarios for that

application. As such, more detail on the peak memory requirements can be found in the

path planning and search references.

Computation Time

For larger and more complex scenarios, computation time is typically a stronger con-

cern than memory requirements. For larger environments, computation time is increas-

ingly dominated by the time required to embed the graph in the environment (increasing

from under 30% for the smallest environment to over 60% for the largest). In practice,

larger environments are often qualitatively different from smaller environments (see Sec-

tion 5.4.5), and their greater openness leads to denser embedded graphs. The embedded

graph is asymptotically linear in the size of the environment, although in practice it tends

to be sublinear for smaller environments, due to the mobility-restricting effect of the walls

around the environment.

By contrast, larger motion graphs continue to have the large part of their runtime

(around 70%) come from path search. As with memory requirements, computational re-

quirements for path search and path planning have been a subject of much research, and

whatever method is intended for use in the application employing the motion graph can be

used efficiently in the embedded graph.

123

5.5.4 Improving Runtime

Two options we have examined for reducing the runtime requirements of the evaluation

process areparallelizationandtiling.

Parallelization

We note that all major steps in the evaluation process are highly parallelizable, allowing a

tradeoff between computation time and required hardware.

All aspects of the analysis consist of many disjoint computations (and hence are im-

mediately parallelizable) other than the flooding algorithm used to mark the base and aug-

mented strongly connected components (representing 75% of the time required for em-

bedding). This algorithm, however, can be parallelized simply by splitting up the set of

frontier nodes to expand in each pass. Since the result of expanding a node is setting the

“active” bit of that node to 0 and status bits of the node’s unvisited children to 1, results

from disjoint computation can be merged simply by doing an AND operation or operating

into shared memory. Accordingly, the analysis should parallelize extremely efficiently, po-

tentially reducing computation times to a matter of hours even for very large and complex

scenarios.

Tiling

A second option for reducing runtime is to divide the environment into segments, either

examining only those segments required (such as in the case of localized changes to ob-

stacles) or forming the environment out of a number of repeatable tiles (see Figure 5.22),

such as the work of Lee et al. [2006].

With the first form of segmentation, the environment is simply broken up into overlap-

ping chunks, each of which is analyzed as if it were a self-contained environment. This is

possible with the current system; however, it only provides an approximation of the true

SCC within the region, since paths which exit the region and then return are not captured.

To minimize this error, each chunk consists of a central core surrounded by buffer zones.

124

These buffer zones capture the effect of paths which leave the central core and later re-

turn; hence, the depth of the buffer zone allows a tradeoff between computational cost and

accuracy of estimation. Also, we note that paths which stray too far from the central core

will generally be undesirable paths for a character to take anyway. Computing the values

of the metric in this central core provides an accurate estimate of the values of the metrics

for that region as computed in the full environment; accordingly, tiling the environment

with such central cores and combining the results allows the evaluation of environments

of arbitrary size.

5.5.5 Validity

We note that metric results typically improve broadly with increasing resolution, but that

the identified problems with the capabilities of the baseline motion graph in the Baseline

Environment largely remain. This suggests that not only can a lower-resolution analysis

be used to find problems that will be present in the continuous analysis, will tend to do

soconservatively; i.e., since any path in a discretized analysis must also be present in the

continuous analysis, a motion graph with acceptable capability in any discretized analysis

is guaranteed to have acceptable capability in the continuous analysis. (Note that this is a

probabilistic guarantee, due to the use of Monte Carlo methods in the metrics.)

One benefit of this one-sided error is that it opens up the possibility of automated

quality-assurance of a motion graph. Once the tasks and requirements for a target scenario

have been specified, motion graphs can be created and vetted without human intervention,

with a passing motion graph being guaranteed to (with high probability) offer acceptable

capability within the target environment. Such an analysis and guarantee will remove

much of the risk of deploying motion graphs in demanding, risk-averse animation appli-

cations such as interactive games and training scenarios, since it will be known that an

acceptable motion always exists.

Some care must still be taken while using the motion graph in the non-discretized en-

vironment; an acceptable discretized analysis guarantees an expectation of efficient paths

between any twogrid cells, and not necessarily between any two points; however, any

125

Figure 5.22: (Left) The character is following a random path through a motion graph that

has been embedded into an environment tiled with a repeating pattern. (Right) A random

path wraps around from left to right, bottom to top, then right to left.

point covered by the discretized analysis is always within a grid cell width – and within

the clip’s acceptable editing distance – of a point which was a grid cell center, and hence

is covered by the guarantee.

5.6 Conclusions

The results presented in this chapter, along with the earlier version in Reitsma and Pollard

[2004], are to our knowledge the first attempts to evaluate global properties of a motion

graph data structure such as ability to efficiently reach all points in an environment and

ability to quickly respond to user control in a complex environment.

Embedding a motion graph into the environment and assessing global properties of

this data structure allows us to compare motion datasets and identify weak points in these

motion datasets and problematic areas in the environments.

We also provide a method for determining a reasonable answer to the standard ques-

tion of “how much motion is enough?” Our analysis techniques, coupled with task-based

metrics representing the application at hand, can be used to evaluate the capabilities of a

motion graph, allowing one to be selected that is neither too big for efficient searching and

planning nor too small for effective task performance.

Our experiments highlighted several important considerations regarding generating an-

126

imations with motion graphs.

First, capability degrades surprisingly rapidly with increasing complexity. Tasks more

complex than basic navigation and environments with obstacles in close proximity sharply

narrow the options available when path-planning with a motion graph. Accordingly, test-

ing an animation system with only simple tasks or relatively unconstrained environments

may not provide the full picture of the system’s abilities.

Additionally, reactivity for characters animated by motion graphs is often poor even

in theory, and is easily degraded further by complex tasks or environments. The ability to

react rapidly to user control, however, is crucial to interactive applications, and an inability

to move efficiently between motion types lessens the capability of motion graphs with

regards to more complex tasks.

Furthermore, while several approaches can help alleviate these problems (e.g., denser

motion graphs (perhaps with shorter clips or edges transitioning from the inside of clips),

path-level editing, and adding more data to motion graphs), these approaches tend to offer

performance tradeoffs, however, increasing capability while increasing the computational

cost of using a motion graph.

Our hope is that analysis methods such as the one in this chapter will be useful in

managing tradeoffs such as these. In addition, such methods potentially allow a motion

graph to be certified as sufficient for a particular environment and set of tasks, or even

certified as suitable for a class of environments (e.g., environments whose obstacles do

not cluster more tightly than a certain threshold). Additionally, a conservative estimation

of capability may allow deemed-acceptable motion graphs to be used with confidence in

their target environments.

In summary, the techniques shown here provide a way to evaluate a character’s capa-

bilities that is more sound than the trial and error approach commonly used. Evaluation

techniques such as these can help a user to compare alternative data structures and pro-

vide detailed information on performance to aid the user in refining their motion graph or

motion generation algorithm.

127

128

Chapter 6

Future Work

Dynamic obstacles are an important part of many scenarios (Section 6.1). An application

we are eager to explore is using our evaluations in a feedback loop for automatic optimiza-

tion of motion graphs or motion capture sessions (Section 6.2). A deeper understanding of

how graph-theoretic properties of embedded graphs correspond to their evaluation results

could allow the use of machinery from graph theory to improve our ability to evaluate and

synthesize effective motion graphs (Section 6.3). Finally, in Section 6.4 we end with some

speculative, long-range goals which motivate our future directions for this research.

6.1 Dynamic Task Domains

The algorithms presented here are appropriate for the portion of the task domain that is

static. Moving obstacles are more complicated, as some notion of time is required to fully

take into account their effect on the capabilities of the motion graph in the environment.

We have determined how to extend this approach to environments containing simple

combinations ofreactive obstaclesor cyclic obstacles. Reactive obstacles allow events to

be keyed to the behaviour of characters traversing the environment, and are often used to

build tension or to present a hazard which must be responded to rapidly. Cyclic obstacles,

by contrast, allow the environment to be dynamic in ways unconnected to the character’s

129

behaviour, and are often used to make environments feel more “alive”, as well as to present

a hazard which must be responded to carefully. These types of obstacles significantly ex-

tend the range of annotations usable in the scenario to be evaluated, allowing evaluation of

scenarios containing many of the moving obstacles used in applications such as interactive

games.

The augmented SCCs defined in Section 5.2.9 can be extended to take into account

the passage of time since triggering a reactive obstacle. It can also be shown that, for

embedded graphs encountered in practice, a cyclic obstacle which caneverbe navigated

can alwaysbe navigated, regardless of where in its cycle the obstacle was initialized;

accordingly, the evaluation of environments with cyclic obstacles can be accomplished

using the same type of augmented SCCs as reactive obstacles. More details can be found

in Appendix A.

6.2 Optimizing Motion Graphs

A logical next step, now that we have a method for evaluating motion graphs, is to use that

information to automatically optimize motion graphs. The result would be motion graphs

that not only use the available source motions more effectively to improve both the quality

and capability of the animations they can generate, but also have a known level of quality,

and hence can be relied upon in a wider range of applications.

We envision three main requirements for automatically creating high-quality motion

graphs:

1. Optimizing motion quality

2. Optimizing motion capability

3. Optimizing motion capture

130

6.2.1 Optimizing Motion Quality

To adequately optimize the motion graph for motion quality, it will be necessary to broaden

the range of motions for which we have perceptually-derived guidelines; one possible

approach to keeping the number of required studies down to a manageable number would

be to examine the space of motions in terms of external forces and torques applied by the

environment.

These improved metrics will replace the heuristic editing model currently used for

evaluation, while also allowing an effective online motion filter for additional applications.

6.2.2 Optimizing Motion Capability

We are considering several approaches for this optimizing process, including a bottom-up

construction which progressively adds the motions or connectivity which most improve

the motion graph or a top-down approach which culls away the least important motions

or connectivity. We theorize that the former may be well-suited to making small, effi-

cient motion graphs, whereas perhaps the latter is more suited to motion graphs where

high capability and motion quality is more important. More detail on these approaches is

presented in Appendix B.

6.2.3 Optimizing Motion Capture

An adequate motion graph cannot be made if adequate source motions are not available.

If the system cannot simultaneously meet the requirements of the user in terms of quality,

capability, and efficiency, it should be able to calculate the motions which would most

improve the motion graph if they were available. Provided the runtime of the system

was fast enough, these requested motions could be used to drive a motion capture shoot,

resulting in an iterative process whereby the system requests a motion, a similar motion

is captured, and that motion is added to the database and evaluated, resulting in either an

adequate motion graph or a new motion to capture. This process would have the benefit

131

of capturing a set of motions which efficiently spanned the space of required actions,

potentially resulting in highly efficient motion graphs.

6.3 Graph Property Measurement

Based on our initial motion graph evaluation work, our intuition suggests that embedded

graphs which embody good capability in a scenario will tend to share some similar graph

properties. Our Local Maneuverability measure examines this to some extent, but we are

interested in applying the machinery of graph theory to further understand the graph prop-

erties which indicate good capability, and potentially using that to derive and synthesize

graph properties which indicate motion graphs which will result in good capability when

embedded.

A general and more task-independent method of evaluation such as measuring the

second eigenvalue of the embedded graph (Fiedler’s Eigenvalue [Fiedler, 1973], a general

measure of connectivity) is only useful if the method truly does correspond to our other,

more task-specific measurements of interest. To determine the extent to which measuring

such global graph properties accurately evaluates the capabilities of a motion graph or

embedded graph, we will examine the correlation between those properties and the motion

graph’s score on other, more task-dependent, measures, as well as the predictive power of

the general graph properties. If those general properties effectively encapsulate the results

of the direct tests of required tasks, we can have confidence that our general measures are

effective.

Graph-theoretic properties also offer promise for task-specific metrics. For example,

a slight modification on the Max Flow/Min Cut algorithm could be used to evaluate the

degree of redundancy present in the connectivity of the embedded graph. Areas of the

embedded graph grid with low flow capacity will be regions of the environment in which

the character is restricted to a small number of possible paths between the source and

sink regions of the environment, regardless of the local number of actions available. This

metric would offer information on the variability of the motion graph’s coverage of the task

132

space – i.e., the degree to which a few motion paths will be relied upon, possibly to the

extent of making the generated motions look too repetitive – and would also give valuable

information regarding the robustness of the motion graph’s coverage in the environment.

In general, we theorize that a motion graph whose embedded graph has a large min cut

between regions of interest value will tend to be relatively densely connected, and hence

will be robust to small changes in the configuration of the environment (e.g., changes in

the shape or position of the obstacles); by contrast, an embedded graph with a small min

cut between important regions is likely to be much more fragile; the connectivity between

the two regions is due to a small number of motion paths, suggesting that even small

changes to the environment could have large effects on the capability of the motion graph,

similar to that seen with the Shortened Environment (Section 5.4.6). Computing the static

probability distribution over the embedded graph (using some assumption for probability

distribution over edge choices, such as a uniform random walk) could provide a different

view on this information.

6.4 Motivating Goals

Taking a broad view of the area of evaluation of human animation, we see several highly-

speculative but enticing possible applications as motivation for our continuing research.

In the long term, we are excited by the potential for understanding human motion that

animation offers. Psychophysical studies can take advantage of the unique opportunity

offered by animation to carefully manage and control all aspects of the motions seen by

subjects. While substantial work remains to be done uncovering how different rendering

styles and characters will influence the results, we are already aware of psychologists and

cognitive scientists who are keenly interested in these possibilities.

An additional possibility springing from a greater understanding of animated human

motion is the ability to synthesize stylizednon-realisticmotion. Japanese anime and Chi-

nese martial arts movies are two well-known examples of stylized non-realistic motion that

is nevertheless internally consistent. The ability to deviate from realism in well-understood

133

and reliable ways may open up a wealth of artistic opportunities, from recreating well-

known styles without the need for laborious hand-drawing of animations to a whole new

range of styles to explore.

One very interesting application of an understanding of the overall capability of a

humanoid character is to apply that understanding back to the real world and use it to

inform the design ofusable spaces. Applying this type of analysis to the capabilities of

people with movement restrictions – whether due to age or injury – could potentially be

especially valuable. Not only could the evaluation detect simple problems, such as the

inability of a person in a wheelchair to make the tight turns required to utilize the designed

wheelchair ramp – a process that now relies on a human poring over the designs and asking

the right questions – the evaluation could also assess the design for response time (in high-

performance work stations), for ergonomics (in repetitive factory positions), or for simple

comfort and ease of use (in a retirement community). As the developed world undergoes

an unprecedented demographic shift towards an older population over the coming decades,

design of spaces that will allow elderly residents to maximally care for their own needs

may be particularly appreciated and important in our future.

134

Chapter 7

Conclusions

Our overall research approach is to measure and evaluate important and under-explored

areas of animation, and to derive practical results from the data obtained. The key research

problems addressed by our work are summarized below, and followed by a brief listing of

our contributions:

1. How does one measure the subjective quality of a motion clip?

• How can those measurements be used to derive practical animation guidelines?

• Do differences in character type affect a user’s sensitivity to errors in that mo-

tion?

2. How does one measure the capability of a motion graph to fulfill a scenario’s re-

quirements?

• What is a functional and actionable definition of capability?

• How can this evaluation be efficiently applied to the large scenarios practical

use demands?

• What specific deficiencies in capability can be identified from the resulting

measurements?

• How well do common techniques resolve these deficiencies?

135

7.1 Measuring Motion Quality

Given a target set of motions, an environment in which they will be used, and a target

category of perceptual errors in the motions, we showed how to measure the sensitivity of

viewers to those errors. Using this approach, viewer sensitivity can be determined for a

wide variety of scenarios.

We have demonstrated a technique for using this information to derive practical guide-

lines for animators to take into account. Given a set of measurements of user sensitivity

to errors in animated human motion, we showed how to derive acceptability thresholds on

measurable properties of those errors.

Our experiments uncovered a variety of interesting perceptual effects, including the

systematic differences between types of errors (e.g., acceleration vs. deceleration) and

between types of characters (e.g., gravity errors are more noticeable in a realistic human

than in a simple cannonball).

7.2 Measuring Motion Graph Capability

Our first contribution with regard to motion graph capability was simply to show that not

only is it an entity which can be sensibly defined, it can be measured and evaluated to

obtain useful results.

Given a motion graph and a model of how motion editing can be applied to the results

of that graph, we showed how to evaluate global properties of the motion graph, such as

task-space coverage and local maneuverability. Our algorithms are sufficiently efficient to

be used on large enough scenarios to be practical.

Our experiments demonstrate how to use quantitative measurements to gain insight

into the particular deficiencies present in a motion graph intended for use in a given sce-

nario, and we demonstrate how common, brute-force techniques for improving motion

graphs address these deficiencies partially or inefficiently, leaving substantial room for

well-informed improvement. In addition, our evaluation is conservative, allowing ade-

136

quate motion graphs – if the method deems them acceptable – to be used with substantially

more confidence than was available previously.

7.3 Ensemble

Together, these techniques provide new tools for understanding animation algorithms and

data structures, and also understanding the perceptual issues related to them. It is our hope

that the new insights and applications produced by continuing research on animation, per-

ception, and human motion will offer substantial benefits, both in terms of pure knowledge

and in terms of applied solutions.

137

138

Appendix A

Dynamic Obstacles

We have determined how to extend our evaluation approach to environments containing

simple combinations of reactive obstacles or cyclic obstacles. These types of obstacles sig-

nificantly extend the range of annotations usable in the scenario to be evaluated, including

annotations such as:

• Obstacle can be traversed by any motion sequence in which the character is ducking

during the period[2.2s, ..., 2, 9s] after entering the obstacle (pressure-plate-activated

wall blade).

• Obstacle can be traversed by any motion sequence in which the character is ducking

during the0.4s danger phase of a three-second cycle (swinging bladed pendulum

with 3-second period).

While a large portion of environments found in games and similar applications fall into

this category, accommodating truly general moving obstacles is an area of future work. We

are interested in examining whether techniques related tooccupancy grids([Elfes, 1989])

might help provide a way to expand the range of dynamic environments our system can

evaluate.

139

A.1 Reactive Obstacles

Reactive obstacles—such as a blade which scythes out of the wall when the character steps

on a pressure plate, a laser which blasts down a corridor when a motion sensor is tripped,

or a crushing block which trembles and smashes down when someone passes under it—

are common in action games and can play an important role in other applications, such as

dangerous-environment simulators. Their defining characteristic is that the environment

reacts to the character’s movements, typically triggering a hazard shortly after the char-

acter reaches a certain location (such as a pressure-sensitive floor region), and can only

be avoided by taking quick evasive action of a few types (such as diving out of the way

or ducking under the attack). Once the triggered threat has occurred, the danger is over

until the character leaves the triggering region, at which point the hazard may reset. These

interactive hazards add excitement and interactivity to an environment.

One way to augment the basic system described above to include these obstacles is to

compute augmented SCCs for evasive actions, in the same manner as is done for selective

actions (see Section 5.2.9). Given a regionR annotated to allow only paths which are

doing actionD during time period[t1, ..., t2] after entering the region, we can compute the

augmented SCC forD:

• Compute a maximal SCCMD, which is computed as per the regular SCC but with

locomotion andD permitted withinR.

• Keep track of the edges ofMD which enterR; search forward from these edges

throughMD, throwing away nodes insideR which are not reachable via a valid path

(i.e., a path which exitsR beforet1 or which performsD for exactly one interval

which must contain[t1, ..., t2]). The result is an intermediate graphID which may

not be strongly connected.

• The largest SCC inID is SD, the augmented SCC forD, and takes into account the

character’s ability to traverse regionR.

Note thatID can be computed efficiently fromMD only if the regionR is not too

large, since path computation is more complex than the reachability computation used to

140

determine SCCs. In that case,SD can also be computed efficiently fromID, since the

difference outsideR is likely to be minimal.

A.2 Cyclic Obstacles

Cyclic obstacles—such as a floor which electrifies for 2s after being off for 2s, a spiked

log which swings across the corridor in a pendulum motion, or a series of crushing blocks

which smash down in different but linked cycles—are perhaps the most common type of

obstacle in adventure games. Like reactive obstacles, they add excitement and interest to

an environment, but with a stronger element of planning, as a player carefully times their

run at the obstacle.

Due to this planning, a path traverses a cyclic obstacle if it successfully traverses the

obstacle at any point in its cycle (i.e., a path that works when starting at the beginning of

the obstacle’s cycle may well not work when started 1s into the cycle, and vice versa).

Accordingly, cyclic obstacles are processed as for reactive obstacles (see above), but with

their more-general path-selection criteria.

Note that this assumes any entry point to the cyclic obstacle region can be accessed

by the character at any point in the cycle. We note that this is true if the cycles in the

base SCC form agenerating setfor the obstacle’s cycle; i.e., the available cycles can be

repeated zero or more times in combination to allow any edge entering the cyclic obstacle

region to be traversed starting at any frame in the obstacle’s cycle. For two cycles, the

relevant objects are:

• A cyclic obstacleO, with periodP (an integral number of frames).

• The first cycle, with periodc1.

• The second cycle, with periodc2.

• The motion sequence transitioning from the end of the first cycle to the beginning

of the second cycle, with lengthl1.

141

• The motion sequence transitioning from the end of the second cycle to the beginning

of the first, with lengthl2.

• The motion sequence transitioning from the end of the first cycle to the entry point

to the cyclic region, with lengthl3.

Lengthl3 is irrelevant, since it is applied only once and hence simply relabels the cycle.

Since for two integersA andB which are relatively prime,A is a generating element for

the cyclic group of orderB and vice versa, one way to be sure we have a generating set

of cycles is to find a solution tod = n1c1 + n2(l1 + l2) + (n2 + n3)c2 with ni ∈ Z and

gcd(d, P) = 1. Given this,{n1, n2, n3} define set of traversals of the available cycles

which will allow the entry point ofO to be accessed at any point inO’s period, since

applying the composite cycle associated withd 1, 2, 3, ...P times is guaranteed to put the

character at the entry point toO at a different point ofO’s cycle each time.

Of course, such a solution is not always possible; however, any significant portion of

an SCC will tend in practice to have many cycles, making the lack of an appropriate pair

vanishingly unlikely1. Perhaps the easiest way to ensure compliance with this assumption

that we can enter the obstacle at any point in its cycle is to give obstacles cycles with a

period which is a prime number of frames of motion; the visual difference between a 3s

cycle and a 2.97s cycle (89 frames at 30fps) is minimal, but the existence ofanycycle in

the embedded graph reaching this obstacle’s entry points withany period that is not an

integral multiple of 89 guarantees our assumption is correct. The existence of such a cycle

is virtually certain if any cycles exist.

Finally, we note that there are obstacle configurations where no cycles will exist; for

example, if all access to an obstacle with periodP1 is blocked by an obstacle with period

P2 with no space in between the two obstacles, it is likely that no cycles of motion will ex-

ist in the space occupied by the second obstacle, foiling this approach. Such combinations

of obstacles can be treated as a single composite obstacle (i.e., only paths which success-

1 The probability of any two randomly-chosen integers being relatively prime to each other is
6

π2 [Weisstein]; accordingly, in practice the presence of thousands of cycles in any reasonable embedded

graph will virtually ensure an appropriate pair of cycles.

142

fully navigate both obstacles are considered), although each such type of obstacle must be

implemented separately in our current system. Fortunately, the existence of idling-in-place

cycles in most realistic datasets prevents such composite obstacles from being necessary

too often, as any safe space between the two obstacles is likely to contain a generating set.

143

144

Appendix B

Motion Graph Optimization

Using our evaluation system itself as well as insight gained from it into what makes for

a good motion graph, we will undertake to create a method for generating motion graphs

that automatically fulfill many of the criteria for which we evaluate motion graphs. In par-

ticular, we intend to create motion graphs that have the property of local maneuverability,

following our earlier hypothesis that this property will be a good predictor across a wide

range of scenarios of motion graph appropriateness for that scenario.

The ultimate goal for this line of research is to understand how to automatically gen-

erate motion graphs which possess specified properties, such as guarantees of local ma-

neuverability. Accomplishing this goal would make motion graphs significantly faster and

easier to use; an animator would only need to specify a few requirements (such as local

maneuverability and coverage over the given environment) before enough information was

available to automatically construct a motion graph suited to the task, rather than engage

in laborious manual crafting involving only a fraction of the available data. Making a few

assumptions about user requirements in common scenarios would allow user requirements

to be specified through a straightforward set of choices, allowing even a naive user to pro-

duce graphs well-suited to their needs. Allowing users to simply create motion graphs

in this way would allow realistic, capable, interactive characters to be used much more

widely than is now possible.

145

Several daunting challenges must be overcome before this goal can be achieved; in

particular:

• Determine the requirements necessary for well-suited motion graphs

• Define these requirements in terms amenable to motion graph construction or opti-

mization

• Create a method to automatically construct motion graphs fulfilling these require-

ments

B.1 Graph Requirements

What features of a motion graph are necessary in order to ensure it provides the motions

needed for a particular application? While we expect that being able to evaluate the suit-

ability of a motion graph for an application and environment will provide guidance for our

examination of this question, our intuition suggests that local maneuverability—having

very rapid access to the different types of motions—will be a very important characteristic

of good motion graphs.

Our initial hypothesis is that a motion graph with local maneuverability will prove

highly suitable for a wide variety of applications.

B.2 Construction Approaches

First, the set of actions available to the character needs to be identified. We intend to iden-

tify the actions in the original data set, either by hand or using automated techniques [Bar-

bic et al., 2004] as a pre-processing step.

Maximizing this objective function (equation 5.14) via global search on the space of

motion graphs is likely to be extremely computationally expensive, even with a good

model of how much motion editing is permissible cutting down the number of possible

146

transitions. Accordingly, the search requires further restrictions and tactics, and we intend

to look at several approaches:

1. Constrained optimization

2. Local search from a feasible solution

3. Divide-and-conquer then graph culling

B.2.1 Constrained Optimization

The requirements formulation specified in section 5.3.5 can be approached from a con-

strained optimization framework. The two main constraints we will place on the system

are:

1. Reuse: constrain the number of times a frame in the original motion database can be

used in a clip in the motion graph (usually to 1).

2. Size: constrain the overall number of frames, clips, or edges in the motion graph.

Initially, we intend to investigate a slight simplification of the requirements as an opti-

mization problem:

• Given a set ofactionsa ∈ A

• Given initial motion databaseDB with actions inA marked

• Given yes/no frame-to-frame transition matrix based on motion editing model

• Given minimum clip lengthL

• Given nodesn in motion graphN

• Minimize V =
∑

n∈N

∑
a∈A time(n, a, m)2

147

• Over the set of valid motion graphsm ∈ M formable fromDB

• Wheretime(n,a,m)is the time (in seconds) required to reach any instance of action

labela from noden in motion graphm

The initial motion database is divided into a setT of potential transition points. Each

of these transition points belongs to one or moreexclusion sets, which are simply the list

of transition points which are within the minimum clip distance of each other, and hence

cannot both be included in the same valid motion graph. For example, if the minimum clip

length was 10 frames, viable transitions at frames 20 and 25 would be in the exclusion set

centered at frame 23’s transition, but viable transitions at frame 33 and frame 13 would not

be in that exclusion set. Selecting a set of transitions to include defines the motion graph

defined from the motion database, and also defines the exclusion sets selected. Accord-

ingly, the goal is to cover a subset of exclusion sets (i.e., ensure every possible transition

is within at most one exclusion set of a selected transition) while performing the above

minimization.

One simple approach to this problem is selecting transitions in a greedy manner. To

do this, we select the still-valid (i.e. not in an exclusion set of any previously-selected

transition) transition from the original motion database that most lowers the evaluation

sumV . (For this purpose, we consider a result of “cannot reach actiona” to have a large

but finite cost.)

B.2.2 Local Search

Mutation of an existing viable solution is another possible approach. Local moves within

the search space would consist of small changes in the set of transition points used to create

the motion graph. For example, we could remove all transition points between framesi

and j of the motion database from the motion graph, selecting new transition points to

take their place. A second type of local move would be to relax the constraint of non-reuse

of motion, allowing one or more frames of the original motion database to be reused; this

type of move would typically put heavier reliance on the size constraint for the motion

148

graph.

Searches could be directed using standard techniques such as genetic algorithms or

simulated annealing, using changes in the value of the evaluation sumV to determine the

value of moves within the search space.

B.2.3 Divide and Cull

The idea with this approach is to build a large, overlapping motion graph by individually

linking together actions, combining the result, and then pruning out unnecessary motions.

First For each pair of actionsa, b ∈ A, connect each instance ofa to any instance ofb

using the best combination of clips and transitions in the original motion database.

This will form a large (possibly disconnected) motion graph.

SecondGreedily add clips from the original motion database to turn this motion graph into

a strongly connected component.

Third Iteratively prune the clip that adds the least to the evaluation sumV until the motion

graph is within the reuse and size constraints specified.

B.3 Requirements Satisfaction Evaluation

While our goal is automatic and complete satisfaction of user requirements with the con-

structed motion graph, some runs of the algorithm may not result in a perfect motion graph.

For many applications, especially those requiring online motion generation, it is crucial to

have confidence in the quality of the motion graph before using it. Accordingly, we will

use our embedding framework to evaluate the extent to which a constructed motion graph

satisfies the user’s requirements, providing both quantitative and qualitative information

on the extent to which the user can rely on the motion graph for their application, as well

as information on how to improve the motion graph should it not be sufficient.

149

150

Bibliography

O. Arikan and D. Forsyth. Interactive motion generation from examples. InProceedings

of ACM SIGGRAPH 2002, 2002. 3.2.1

O. Arikan, D. Forsyth, and J. O’Brien. Motion synthesis from annotations. InProceedings

of ACM SIGGRAPH 2003, 2003. 3.2.1, 5.5.2

Okan Arikan, David A. Forsyth, and James F. O’Brien. Pushing people around. InSCA

’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer

animation, pages 59–66, New York, NY, USA, 2005. ACM Press. ISBN 1-7695-2270-

X. 3.1.3

Jean-Pierre Aubin. A survey of viability theory.Society for Industrial and Applied Math-

ematics Journal of Control and Optimization, 28(4), p.749-788, 1990. 5.3.1

Jernej Barbic, Alla Safonova, Jia-Yu Pan, Christos Faloutsos, Jessica K. Hodings, and

Nancy S. Pollard. Segmenting motion capture data into distinct behaviors. InProceed-

ings of Graphics Interface 2004, 2004. B.2

G. P. Bingham. Kinematic form and scaling: Further investigations on the visual per-

ception of lifted weight.Journal of Experimental Psychology: Human Perception and

Performance, 13(2):155–177, 1987. 3.1.1

Brooks, Fay, Heller, Moncror, Yeung, and Schell. Project Biohazard.

http://www.etc.cmu.edu/projects/biohazard/spring03/BIOHAZARD2about.htm,

2003. 1.1

151

M. G. Choi, J. Lee, and S. Y. Shin. Planning biped locomotion using motion capture data

and probabilistic roadmaps.ACM Transactions on Graphics, 22(2):182–203, 2003.

3.2.3

R. L. Cohen. Problems in motion perception.Uppsals, Sweden: Lundequistska, 1964.

3.1.2, 4.7

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algorithms.

MIT Press, 2001. 5.2.3

B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning.Journal of the

ACM, 40(5):1048–1066, 1993. 3.2.3

M. J. Mataríc E. Drumwright, O. C. Jenkins. Exemplar-based primitives for humanoid

movement classification and control. InProc. IEEE Intl. Conference on Robotics and

Automation, 2004. 3.2.1

Alberto Elfes.Occupancy grids: a probabilistic framework for robot perception and nav-

igation. PhD thesis, Carnegie-Mellon University, 1989. A

B. R. Fajen and W. H. Warren. The behavioral dynamics of steering, obstacle avoidance,

and route selection. InJournal of Experimental Psychology: Human Perception and

Performance, volume 29(2), pages 343–362, 2003. 5.5.2

P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable controllers for physics-

based character animation. InSIGGRAPH 01 Proceedings, Annual Conference Series.

ACM SIGGRAPH, ACM Press, August 2001. 3.2.1

A. C. Fang and N. S. Pollard. Efficient synthesis of physically valid human motion. In

ACM Transactions on Graphics 2, 3, 2003. 3.2.1

M. Fiedler. Algebraic connectivity of graphs.Czechoslovak Math. Journal 23 (1973), pp.

298–305, 1973. 6.3

152

M. Gleicher. Motion editing with spacetime constraints. InProceedings of the 1997

Symposium on Interactive 3D Graphics, pages 139–148, Providence, RI, April 1997.

3.2.1

Michael Gleicher, Hyon Joon Shin, Lucas Kovar, and Andrew Japsen. Snap-together

motion: Assembling run-time animations. InProceedings of 2003 Symposium on Inter-

active 3D Graphics, 2003. 3.2.2

Marc Green. Driver reaction time.http://www.visualexpert.com/Resources/reactiontime.html,

2000a. 5.5.1

Marc Green. How long does it take to stop? methodological analysis of driver perception-

brake times.Transportation Human Factors, 2(3), 195-216, 2000b. 5.5.1

E. Grossman, M. Donnelly, R. Price, D. Pickens, V. Morgan, G. Neighbor, and R. Blake.

Brain areas involved in perception of biological motion.Journal of Cognitive Neuro-

science, 12:5, pp. 711-720, 2000. 3.1.1

Hicheur H., Vieilledent S., Richardson M.J.E., Flash T., and Berthoz A. Velocity and

curvature in human locomotion along complex curved paths: A comparison with hand

movements. InExperimental Brain Research, vol 162, pp. 145-154, number 162, pages

145–154, 2005. 5.5.2

Jason Harrison, Ronald A. Rensink, and Michiel van de Panne. Obscuring length changes

during animated motion. InACM Transactions on Graphics 23, 3, 2004. 3.1.3, 1, 5.1.2

H. Hecht and M. Bertamini. Understanding projectile acceleration.Journal of Experi-

mental Psychology: Human Perception and Performance, 26(2):730–746, 2000. 3.1.2,

4.7

Rachel Heck and Michael Gleicher. Parametric motion graphs.In proceedings of Euro-

graphics/ACM SIGGRAPH Symposium on Computer Animation, 2006. 3.2.2

R.W. Jr. Hill, J. Gratch, S. Marsella, J. Rickel, W. Swartout, and D.R. Traum. Virtual

humans in the mission rehearsal exercise system. InKI special issue on Embodied

Conversational Agents, 2003. 1.1, 1.1.1

153

J. K. Hodgins, J. F. O’Brien, and J. Tumblin. Perception of human motion with different

geometric models.IEEE Transactions on Visualization and Computer Graphics, 4(4):

307–316, October 1998. 3.1.3, 4.1, 4.7

D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Randomized kinodynamic motion planning

with moving obstacles. InInt. J. of Robotics Research, 21(3):233-255, 2002. 3.2.1

Leslie Kanani Michiko Ikemoto, Okan Arikan, and David Forsyth. Quick mo-

tion transitions with cached multi-way blends. Technical Report UCB/EECS-

2006-14, EECS Department, University of California, Berkeley, February 13

2006. URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/

EECS-2006-14.html . 3.1.3, 3.2.2, 5.5.1

Thierry Simeon Julien Pettre Jean-Paul Laumond. A 2-stages locomotion planner for

digital actors. InProceedings of ACM Symposium on Computer Animation 03, 2003.

3.2.1

M. K. Kaiser, D. R. Proffitt, S. M. Whelan, and H. Hecht. Influence of animation on

dynamical judgments.Journal of Experimental Psychology: Human Perception and

Performance, 18(3):669–690, 1992. 3.1.2

M. Kalisiak and M. van de Panne. A grasp-based motion planning algorithm for character

animation. Journal of Visualization and Computer Animation, 12(3):117–129, 2001.

3.2.1

L. E. Kavraki and J.-C. Latombe. Probabilistic roadmaps for robot path planning. In

K. Gupta and A. del Pobil, editors,Practical Motion Planning In Robotics: Current

Approaches and Future Directions, pages 33–53. John Wiley, 1998. 3.2.3

T. Kim, S. I. Park, and S. Y. Shin. Rhythmic-motion synthesis based on motion-beat

analysis. InACM Transactions on Graphics 22, 3, 2003. 3.2.1

Robert J. Kosinski. A literature review on reaction time.

http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm, 2005. 5.5.1

154

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-14.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-14.html

L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. InProceedings of ACM SIGGRAPH

2002, 2002a. 3.2.1, 5.5.2

L. Kovar, M. Gleicher, and J. Schreiner. Footskate cleanup for motion capture editing. In

Proceedings of ACM Symposium on Computer Animation 2002, 2002b. 5.1.2

Lucas Kovar and Michael Gleicher. Automated extraction and parameterization of motions

in large data sets. InACM Transactions on Graphics 23, 3, 2004. 3.2.1

L. T. Kozlowski and J. E. Cutting. Recognizing the sex of a walker from a dynamic point-

light display.Perception & Psychophysics, 21(6):575–580, 1977. 1.1.1

Taesoo Kwon and Sung Yong Shin. Motion modeling for on-line locomotion synthesis. In

Proceedings of ACM Symposium on Computer Animation 2005, 2005. 3.2.1

J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.

3.2.3

Manfred Lau and James Kuffner. Behavior planning for character animation. InProceed-

ings of ACM Symposium on Computer Animation 2005, 2005. 3.2.2, 5.4.4, 5.5.2

Manfred Lau and James J. Kuffner. Behavior planning for character animation. InPro-

ceedings of ACM Symposium on Computer Animation 2006, 2006. 3.2.2

J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard. Interactive control of avatars

animated with human motion data. InProceedings of ACM SIGGRAPH 2002, 2002.

3.2.1, 3.2.3, 5.4.1, 5.4.2, 5.5.1

Kang Hoon Lee, Myung Geol Choi, and Jehee Lee. Motion patches: Building blocks for

virtual environments annotated with motion data. InProceedings of SIGGRAPH 2006,

2006. 3.2.1, 3.2.3, 5.5.1, 5.5.4

J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot motion plan-

ning using rasterizing computer graphics hardware.Proceedings of ACM SIGGRAPH

90, 24(4):327–335, 1990. 5.3.1

155

Y. Li, T. Wang, and H.-Y. Shum. Motion texture: a two-level statistical model for character

motion synthesis. InProceedings of SIGGRAPH 2002, pages 465–472, 2002. 3.2.1

C. Karen Liu and Zoran Popović. Synthesis of complex dynamic character motion from

simple animations.ACM Transactions on Graphics, 21(3):408–416, July 2002. 3.2.1

J. Lo and D. Metaxas. Recursive dynamics and optimal control techniques for human

motion planning. InProceedings of Computer Animation ’99, pages 220–234, 1999.

3.2.1

T. Lozano-Ṕerez and P. A. O’Donnell. Parallel robot motion planning. InProc. IEEE Intl.

Conference on Robotics and Automation, 1991. 3.2.3

D. G. Luenberger.Introduction to Dynamic Systems: Theory, Models, and Applications.

John Wiley & Sons, 1979. 5.3.5

N. A. Macmillan and C. D. Creelman.Detection Theory: A User’s Guide. Cambridge

University Press, New York, 1991. 4.5, 4.5

R. McDonnell, S. Dobbyn, S. Collins, and C. O’Sullivan. Perceptual evaluation of lod

clothing for virtual humans.Proceedings of Eurographics/ACM SIGGRAPH Sympo-

sium on Computer Animation, 2006. 3.1.3

C. F. Michaels and M. M. de Vries. Higher order and lower order variables in the vi-

sual perception of relative pulling force.Journal of Experimental Psychology: Human

Perception and Performance, 24(2):526–546, 1998. 3.1.1

A. Michotte. The perception of causality.Metheun, London, 1963. 3.1.2, 4.7

M. Mizuguchi, J. Buchanan, and T. Calvert. Data driven motion transitions for interactive

games. InShort Presentation, Eurographics 2001, 2001. 1.2.1, 3.2.2

Luis Molina-Tanco and Adrian Hilton. Realistic synthesis of novel human movements

from a database of motion capture examples. InIn proceedings of IEEE Workshop on

Human Motion 2000, 2000. 3.2.1

156

Tomohiko Mukai and Shigeru Kuriyama. Geostatistical motion interpolation.ACM Trans.

Graph., 24(3):1062–1070, 2005. ISSN 0730-0301. 3.2.1, 5.1.2

S. Muthukrishnan and G. Pandurangan. The bin-covering technique for thresholding ran-

dom geometric graph properties. InProceedings of SODA 2005, 2005. 1

M. Oesker, H. Hecht, and B. Jung. Psychological evidence for unconscious processing

of detail in real-time animation of multiple characters.Journal of Visualization and

Computer Animation, 11:105–112, 2000. 3.1.3, 4.7

C. O’Sullivan and J. Dingliana. Collisions and perception.ACM Transactions on Graph-

ics, 20(3):151–168, July 2001. 3.1.2, 4.7

Kevin A. Pelphrey, Teresa V. Mitchell, Martin J. McKeown, Jeremy Goldstein, Truett

Allison, and Gregory McCarthy. Brain activity evoked by the perception of human

walking: Controlling for meaningful coherent motion.The Journal of Neuroscience,

23(17):6819-6825, 2003. 3.1.1

Zoran Popovíc and Andrew P. Witkin. Physically based motion transformation. InPro-

ceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Se-

ries, pages 11–20, August 1999. 3.2.1

D. R. Proffitt. Naive physics. In R. Wilson and F. Keil, editors,The MIT Encyclopedia of

the Cognitive Sciences, pages 577–579. MIT Press, 1999. 3.1.2

Paul S. A. Reitsma and Nancy S. Pollard. Perceptual metrics for character animation:

sensitivity to errors in ballistic motion. InACM Transactions on Graphics 2, 3, 2003.

3.2.1, 1, 2, 5.1.2, 5.5.2

Paul S. A. Reitsma and Nancy S. Pollard. Evaluating motion graphs for character naviga-

tion. In Proceedings of ACM Symposium on Computer Animation 2004, 2004. 3, 5.4.5,

5.5.3, 5.6

Liu Ren, Alton Patrick, Alexei Efros, Jessica Hodgins, and James Rehg. A data-driven

approach to quantifying natural human motion.ACM Trans. Graph., 24(3), 2005. 3.1.3,

5.5.2

157

C. F. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimensional

motion interpolation.IEEE Computer Graphics and Applications, September/October:

32–40, 1998. 3.2.1

Charles F. Rose., Peter-Pike J. Sloan, and Michael F. Cohen. Animation: Artist-directed

inverse-kinematics using radial basis function interpolation. InComputer Graphics Fo-

rum 20, 3, 2001. 3.2.1

S. Runeson and G. Frykholm. Visual perception of lifted weight.Journal of Experimental

Psychology: Human Perception and Performance, 7(4):733–740, 1981. 3.1.1

Sverker Runeson. Constant velocity – not perceived as such.Psychological Research,

37(1), pp. 3-23, 1974. 3.1.2, 4.7

Vieilledent S., Kerlirzin Y., Dalbera S., and Berthoz A. Relationship between velocity and

curvature of a human locomotor trajectory. InNeuroscience Letters, volume 305, pages

65–69, 2001. 5.5.2

A. Safonova, J. K. Hodgins, and N. S. Pollard. Synthesizing physically realistic human

motion in low-dimensional, behavior-specific spaces. InACM Transactions on Graphics

23, 3, 2004. 3.2.1

Hyun Joon Shin and Hyun Seok Oh. Fat graphs: Constructing an interactive character with

continuous controls.In proceedings of Eurographics/ACM SIGGRAPH Symposium on

Computer Animation, 2006. 3.2.2

Peter-Pike J. Sloan, Charles F. Rose, and Michael F. Cohen. Shape by example. InPro-

ceedings of the 2001 ACM Symposium on Interactive 3D Graphics, 2001. 3.2.1

P. J. Stappers and P. E. Waller. Using the free fall of objects under gravity for visual depth

estimation.Bulletin of the Psychonomic Society, 31(2):125–127, 1993. 3.1.2, 4.7

Jordan Strawn, Ronald A. metoyer, and Aaron Schnabel. Perceptual thresholds for foot

slipping in animated characters. Technical report, Oregon State University, 2006. 4.7

158

Gita Suthankar, Michael Mandel, Katia Sycara, and Jessica K. Hodgins. Modeling physi-

cal capabilities of humanoid agents using motion capture. InAAMAS 2004 Proceedings,

2004. 3.2.3

J. Wang and B. Bodenheimer. An evaluation of a cost metric for selecting transitions

between motion segments. InProceedings of ACM Symposium on Computer Animation

2003, 2003. 3.1.3

J. Wang and B. Bodenheimer. Computing the duration of motion transitions: An empirical

approach. InProceedings of ACM Symposium on Computer Animation 2004, 2004.

3.1.3

W. Warren, B. Fajen, and D. Belcher. Behavioral dynamics of steering, obstacle avoidance,

and route selection. InJournal of Vision, 2001. 5.5.2

B. Watson, A. Friedman, and A. McGaffey. Measuring and predicting visual fidelity. In

SIGGRAPH 01 Proceedings, 2001. 4.7

Eric W. Weisstein. Relatively Prime. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/RelativelyPrime.html. 1

D. J. Wiley and J. K. Hahn. Interpolation synthesis of articulated figure motion.IEEE

Computer Graphics and Applications, Nov/Dec:39–45, 1997. 3.2.1

Andrew Witkin and Michael Kass. Spacetime constraints. InComputer Graphics (Pro-

ceedings of SIGGRAPH 88), volume 22, pages 159–168, August 1988. 3.2.1

W. L. Wooten and J. K. Hodgins. Simulating leaping, tumbling, landing, and balancing

humans. InProc. IEEE Intl. Conference on Robotics and Automation, 2000. 3.2.1

K. Yamane, J. J. Kuffner, and J.K. Hodgins. Synthesizing animations of human manipu-

lation tasks. InACM Transactions on Graphics 23, 3, 2004. 3.2.1

V. B. Zordan and J. K. Hodgins. Motion capture-driven simulations that hit and react. In

Proceedings of ACM Symposium on Computer Animation 2002, 2002. 3.2.1

159

Victor B. Zordan, Anna Majkowska, Bill Chiu, and Matthew Fast. Dynamic response for

motion capture animation.ACM Transaction on Graphics, 24(3):697–701, 2005. 3.2.1

160

	1 Introduction
	1.1 Animation Applications
	1.1.1 Challenges of Animation

	1.2 Motion Capture and Motion Graphs
	1.2.1 Motion Graphs
	1.2.2 Choosing Motion Graphs

	1.3 Motion Editing
	1.3.1 Types of Motion Editing
	1.3.2 Implications of Motion Editing
	1.3.3 Perceptible Flaws in Motion Quality

	1.4 Gaps in Motion Capability

	2 Approach
	2.1 Problem Statement

	3 Related Work
	3.1 Motion Quality
	3.1.1 Perception of Human Motion
	3.1.2 Evaluation of Motion Quality
	3.1.3 Evaluation of Quality of Human Motion

	3.2 Motion Capability
	3.2.1 Animation Generation Techniques
	3.2.2 Motion Graph Manipulation
	3.2.3 Environment Effects on Motion Graphs

	3.3 Differences and Contributions

	4 Perceptual Metrics
	4.1 Introduction
	4.2 Experiment: Errors in Ballistic Motion
	4.2.1 Method
	4.2.2 Study 1: Acceleration
	4.2.3 Study 2: Gravity
	4.2.4 Study 3: Effect of Character Animacy on Error Sensitivity

	4.3 Error Generation
	4.4 Results
	4.5 Estimating Acceptable Error
	4.6 A Ballistic Error Metric
	4.7 Discussion
	4.8 Conclusions

	5 Evaluating Motion Graphs
	5.1 System Overview
	5.1.1 Capturing Motion Graph/Environment Interaction
	5.1.2 Visual Quality Requirements
	5.1.3 Editing Footprints
	5.1.4 Motion Capability Requirements

	5.2 Embedding into the Environment
	5.2.1 Requirements for Embedding
	5.2.2 Discretization
	5.2.3 One-Step Unrolling
	5.2.4 Space-Efficient Unrolling
	5.2.5 Space Complexity
	5.2.6 Time Complexity
	5.2.7 Correctness of the Embedding Algorithms
	5.2.8 Obstacles and Annotation Constraints
	5.2.9 Selective Actions

	5.3 Motion Graph Capability Metrics
	5.3.1 Environment Coverage
	5.3.2 Action Coverage
	5.3.3 Path Efficiency
	5.3.4 Action Efficiency
	5.3.5 Local Maneuverability

	5.4 Results
	5.4.1 Example Scenarios
	5.4.2 Transition Selection
	5.4.3 Baseline
	5.4.4 Improving Motion Graphs
	5.4.5 Scaling Behavior of the Methods
	5.4.6 Validity of the Evaluations

	5.5 Discussion
	5.5.1 Findings
	5.5.2 Identified Causes
	5.5.3 Scaling Behavior
	5.5.4 Improving Runtime
	5.5.5 Validity

	5.6 Conclusions

	6 Future Work
	6.1 Dynamic Task Domains
	6.2 Optimizing Motion Graphs
	6.2.1 Optimizing Motion Quality
	6.2.2 Optimizing Motion Capability
	6.2.3 Optimizing Motion Capture

	6.3 Graph Property Measurement
	6.4 Motivating Goals

	7 Conclusions
	7.1 Measuring Motion Quality
	7.2 Measuring Motion Graph Capability
	7.3 Ensemble

	A Dynamic Obstacles
	A.1 Reactive Obstacles
	A.2 Cyclic Obstacles

	B Motion Graph Optimization
	B.1 Graph Requirements
	B.2 Construction Approaches
	B.2.1 Constrained Optimization
	B.2.2 Local Search
	B.2.3 Divide and Cull

	B.3 Requirements Satisfaction Evaluation

	Bibliography

