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Abstract

We present a technique for approximating the free energy of protein structures using Generalized
Belief Propagation (GBP). The accuracy and utility of these estimates are then demonstrated in
two different application domains. First, we show that the entropy component of our free energy
estimates can be used to distinguish native protein structures from decoys — structures with sim-
ilar internal energy to that of the native structure, but otherwise incorrect. Our method is able to
correctly identify the native fold from among a set of decoys with 87.5% accuracy over a total of
48 different immunoglobin folds. The remaining 12.5% of native structures are ranked among the
top 4 of all structures. Second, we show that our estimates of ∆∆G upon mutation for three differ-
ent data sets have linear correlations between 0.63-0.70 with experimental values and statistically
significant p-values. Together, these results suggests that GBP is an effective means for computing
free energy in all-atom models of protein structures. GBP is also efficient, taking a few minutes to
run on a typical sized protein, further suggesting that GBP may be an attractive alternative to more
costly molecular dynamic simulations for some tasks.





1 Introduction
This paper describes a technique for modeling protein structures as complex probability distribu-
tions over a set of torsion angles, represented by a set of rotamers. Specifically, we model protein
structures using probabilistic graphical models. Our representation is complete in that it models
every atom in the protein. A probabilistic representation confers several advantages including that
it provides a framework for predicting changes in free energy in response to internal or external
changes. For example, structural changes due to changes in temperature, pH, ligand binding, and
mutation, can all be cast as inference problems over the model. Recent advances in inference al-
gorithms for graphical models, such as Generalized Belief Propagation (GBP), can then be used
to efficiently solve these problems. This is significant because GBP is a rigorous approximation
to the free-energy of the system [30]. We will show that these free energy estimates are accu-
rate enough to perform non-trivial tasks within structural biology. In particular, we use GBP to
a) identify native immunoglobin structures from amongst a set of decoys with 87.5% accuracy,
and b) compute changes in free energy after mutation that have a linear correlation of upto 0.69 to
laboratory measurements.

The Gibbs Free energy is defined asG = E−TS, whereE is the internal energy of the system,
T is the absolute temperature, and S is the entropy of the system. There are numerous internal
energy functions (i.e., E) from which to choose. These functions often model inter- and intra
molecular interactions (e.g., van der Waals, electrostatic, solvent, etc.). Unfortunately, entropy
estimates can be difficult to compute because they involve sums over an exponential number of
states. For this reason, the entropy term is often ignored altogether, under the assumption that
it does not contribute significantly to the free energy. This is equivalent to modeling the system
at 0 Kelvin. Not surprisingly, this simplification can sometimes limit the accuracy, and thus the
utility, of the energy calculations. For example, it has been conjectured [25, 3] that energy functions
comprising sums of pairwise interactions cannot distinguish a protein’s native structure from decoy
structures within about 1 Å RMSD. If true, one likely explanation is that entropy contributions
become significant when structures are similar. Our findings are consistent with this hypothesis.
In particular, we find that the native structure is usually the one with the highest entropy.

Numerous investigators have observed and attempted to address the limitations of energy func-
tions. Statistical potentials are common alternative (e.g., [6, 23]). Such potentials do not model
the physics directly, but instead use statistics mined from the Protein Data Bank [2] under the
assumption that these statistics encode both the entropy and the internal energy. Carter and co-
workers [6], for example, have developed a 4-body statistical potential that predicts ∆∆Gs upon
mutations with significant accuracy. There are, however, those that doubt the ultimate utility of
statistical potentials (e.g., [24]). Our ∆∆G predictions achieve a high linear correlation (0.71)
with experimentally measured quantities. This is consistent with the findings of others who have
have demonstrated the practical benefits of including entropy in energy calculations (e.g., [13]).

We note that the contributions of this paper do not lie in the suggestion that a protein’s structure
be treated as a probability distribution — clearly this is the very essence of statistical physics.
Rather, our contribution lies in the demonstration that an inference-based approach to free energy
calculations is sufficiently accurate to perform non-trivial tasks. Additionally, our technique is
efficient and runs in minutes on typical-sized proteins, suggesting it is well-suited for large-scale
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proteomic studies.

2 A Markov Random Field Model for Protein Structure
In what follows, random variables are represented using upper case variables, sets of random vari-
ables appear in bold face while lower case variables represent specific values that the random
variables can take. Thus, the random variables representing the position of all the backbone atoms
is denoted by Xb, those representing all the side chain atoms, by Xs, X i

s is the random variable
representing the side chain conformation of the ith residue and xi

b represents a particular value that
the backbone of the ith residue takes.

Let X = {Xb,Xs} be the random variables representing the entire protein structure. Xb can
be represented by a set of 3-d coordinates of the backbone atoms, or equivalently, by a sequence of
bond lengths and dihedral angles. Thus, Xb is typically a continuous random variable. Each X i

s, is
usually represented by a set of dihedral angles 1 . While this too is a continuous random variable,
due to steric clashes not all dihedral angles are energetically favorable, allowing a discretization of
this state space into a set of discrete favorable conformations called rotamers.

The probability of a particular conformation x can be written as

p(X = x|Θ) = p(Xb = xb)p(Xs = xs|Xb,Θ)

or more compactly,
p(X|Θ) = p(Xb)p(Xs|Xb,Θ)

where Θ represents any parameters used to describe this model, including sequence information,
temperature etc. Frequently the backbone is assumed to be rigid with a known conformation.
Therefore Xb = xb for some particular xb. The term of interest then becomes, p(Xs|Xb = xb,Θ).

This can be further simplified. Specifically, it is possible to list out conditional independen-
cies that the above probability distribution must satisfy. Consider the random variables X i

s, X
j
s

representing the side chain conformations of residues i, j. Due to the underlying physics, if the
residues are not close to each other, their direct influence on each other is negligible. Also, if
the residues that directly influence these residues are in specific conformations, X i

s, X
j
s become

conditionally independent of each other. Similar independencies can be listed between side chain
variables and backbone variables. These conditional independencies can be compactly encoded
using an undirected probabilistic graphical model, also called a Markov Random Field(MRF).

For example, consider a particular backbone conformation xb of Lysozyme(pdb id: 2lyz)
shown in Fig. 1(a) with a few residues highlighted. Fig. 1(b) shows that part of the markov random
field that is induced by the highlighted set of residues. Two variables share an edge if they are
closer than a threshold distance. Edges can thus be present between backbone atoms, between
backbone and side chain atoms and between side chain atoms.

1This is a slight abuse of notation, since it is actually the differences Xi
b −Xi−1

b and Xi
s −Xi

b that are represented
using bond lengths and angles.
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(a) (b)

Figure 1: (a) Structure of lysozyme (pdb id: 2lyz) with a few residues highlighted (b) Part of the
random field induced by the highligted residues: X i

s’s are the hidden variables representing the
rotameric state, the visible variables are the backbone atoms in conformations xi

b

In general, a markov random field encodes the following conditional independencies for each
vertex Xi and for any set of vertices X′ not containing Xi.

p(Xi|X′, Neighbors(Xi)) = p(Xi|Neighbors(Xi))

That is, a random variable Xi is conditionally independent of every other set of nodes in the graph,
given its immediate neighbors in the graph.

Given this representation, the probability of a particular side chain conformation xs given the
backbone conformation xb can be expressed as

p(Xs = xs|Xb = xb) =
1

Z

∏
c∈C(G)

ψc(x
c
s ,x

c
b)

where C(G) is the set of all cliques in G, ψ is a potential defined over the variables, and Z is the
so called partition function.

To completely characterize the MRF, it is necessary to define the potential function ψ. A com-
mon simplifying assumption is that of a pair-wise potential. We use the Boltzmann Distribution to
define a pairwise potential function in the following manner:

ψ(X ip
s , X

jq
s ) = exp(−E(xip

s , x
jq
s )/kBT )

where Eip,jq is the energy of interaction between rotamer state p of residue X i
s and rotamer state

q of residue Xj
s and kB is the Boltzmann constant. Similarly, we can define the potential function

between a side chain random variable X i
s and a backbone random variable Xj

b which is in an
observed state xj

b

ψ(X ip
s , X

j
b ) = exp(−E(xip

s , x
j
b)/kBT )
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Finally, we define the potential function between two backbone random variables to have the trivial
value of 1, since both are observed, i.e. ψ(X i

b, X
j
b ) = 1.

Figure 2: Factor graph representation for the graph shown in Fig. 1(b). The observed variables
corresponding to the backbone atoms can be replaced by a factor at each side chain variable

This undirected graphical model, characterized by (X, E, ψ) can also be represented more
conveniently, as a bipartite graph (X, F ) , called a factor graph. If we restrict ourselves to pairwise
potentials, as we have done already by our form of potential function, the equivalent factor graph
for the MRF of Fig. 1(b) is shown in Fig. 2. Each edge between side chain variables has been
replaced by edges to a factor representing the interaction between these variables. Also, it can be
shown that the observed backbone variables can be dropped from the factor graph by replacing their
interactions with each side chain variable by a factor. The probability of a particular conformation
can then be expressed using the factor notation, as

p(xs) =
1

Z

∏
fa∈F

fa(x
a
s )

where Xa
s is the set of variables connected to factor fa in the factor graph.

3 Approximating Free Energy
A corollary of the second law of thermodynamics is that a physical system seeks to minimize its
free energy. Thus, the most accurate entropy estimates are obtained when the system has the least
free energy. Under the assumption of constant temperature, the Gibbs free energy of a system is
given by

G = E − TS

where E is the enthalpy of the system, T the temperature and S, the entropy. If we associate a
belief b(x) with state x, this can be rewritten as

G =
∑
x∈S

b(x)E(x) + T
∑
x∈S

b(x)ln(b(x))
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where the first term and second terms on the right are the enthalpic and entropic contributions
respectively. Intuitively, the enthalpic term corresponds to the energy of the system. However,
the second law of thermodynamics dictates that not all energy can be used to do work. The free
energy is the energy left to be used to do work after deducting the energy that is “lost” which is the
entropic deduction mentioned above.

There has been a considerable amount of work by physicists at developing approximations
to estimate these terms [4, 10, 18, 19]. The popular methods are based on approximating the
free energy using a region based free energy. Intuitively, the idea is to break up the factor graph
into a set of regions R, each containing multiple factors fR and variables XR, compute the free
energy over the region using estimates of the marginal probability over XR, and then approximate
the total free energy by the sum of the free energies over these regions. Since the regions could
overlap, contributions of nodes – factors or variables – which appear in multiple regions have to be
subtracted out, so that each node is counted exactly once. This can be done by associating weights
cR to the contribution of every node in region R, in such a way that the sum of weights of the
regions that the node appears in, sums to one.

This region graph formalism is fairly general and one can create approximations of varying
degrees. For example, the Bethe approximation[4] is a region graph with each region containining
atmost one factor, while the Kikuchi approximation is a region graph where the regions are created
using the so-called cluster variational approach that allows regions to contain more than one factor,
and is therefore a better approximation[10, 30].

While the Kikuchi approximation has been extensively studied, until recently, there was a
dearth of algorithms that could compute such region graph based approximations efficiently. See
[20] for a recent survey of previously used methods and their performance relative to GBP. In
fact, even computing exact marginals for the purpose of computing these approximations is NP-
Hard, if the graph, like the MRF described above, has cycles. The Junction Tree algorithm for
exact inference has a running time that is exponential in the tree width of the graph, which can be
prohibitively expensive in large graphs. However, recent advances within the Machine Learning
community on approximate algorithms for inference now allow efficient computation of these
approximations [30, 28].

3.1 Generalized Belief Propagation
Generalized Belief Propagation(GBP) is a message passing based algorithm that approximates the
true marginals. As the name suggests, it is a generalization of the famous Belief Propagation(BP)
algorithm, due to Pearl, and differs from the latter in the size of its regions that estimate the Free
Energy. While BP attempts to find a fixed point of the Bethe approximation to the free energy
mentioned above, GBP computes fixed points of the more general region based free energy.

There are many variants of GBP; we focus on the so called Two-Way [30] algorithm since
it naturally extends BP. The algorithm can be viewed as running BP on the region graph, with
one crucial difference in the messages – since the same node can appear in multiple regions, its
contribution to each region must be weighed in such a way as to ensure it is counted only once.
This is done, by first defining the “pseudo” messages for a regionRwith parents P (R) and children
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C(R)

n0
R→P (xr) = f̃R(xR)

∏
P ′∈P (R)\P

mP ′→R(xr)
∏

C∈C(R)

nC→R(xC)

m0
R→C(xC) =

∑
xR\xC

f̃R(xR)
∏

P∈P (R)

mP→R(xR)
∏

C′∈C(R)\C

nC′→R(xC′),

where f̃R(xR) = (
∏

a∈Ar
fa(xa))

cR and then compensating for overcounting by defining the actual
messages as

nR→P (xr) = (n0
R→P (xr))

βR(m0
R→C(xC))βR−1

mP→R(xr) = (n0
R→P (xr))

βR−1(m0
R→C(xC))βR

where cR is the weight given to region R, pR the number of parents of region R, and βR =
pR/(2pR + cR − 1). The beliefs at R, are then given by

bR(xR) = f̃R(xR)
∏

C∈C(R)

nC→R(xC)
∏

P∈P (R)

mP→R(xP)

Note that if βR = 1, this algorithm becomes equivalent to running BP directly on the region
graph.

The algorithm is typically started with randomly initialized messages and run until the beliefs
converge. If it does converge, GBP is guaranteed to find a fixed point of the region based free
energy. While convergence isn’t guaranteed, in practice, it has been found to converge successfully
in many cases, even when BP doesn’t [27, 29] .

3.2 Related Work
Probabilistic graphical models have been used to address a number of problems in structural bi-
ology, primarily in the area of secondary structure prediction (e.g., [7]). Applications of graph-
ical models to tertiary structure are generally limited to applications of Hidden Markov Models
(HMMs) (e.g., [9]). HMMs make severe independence assumptions to allow for efficient learning
and inference, the result of which is that long-range interactions cannot be modeled. Long-range
interactions are, of course, found in all protein structures. Our method models these long range in-
teractions. Graphical models have also been used in the area of fold recognition/threading [14]. An
important difference between threading and our work is that we model every atom in the structure,
while threading is generally performed over reduced representations.

We focussed on the problem of computing entropy using marginal probabilities for the unob-
served variables, Xs. This however isn’t the only interesting inference problem. If our task was to
find the single most likely structure, the problem reduces to Side Chain Placement. Indeed, one of
the recent approaches to this problem of placing side chains [26] can be viewed as a variant of the
Junction Tree algorithm for computing the most likely estimate.

It must be noted that our model is essentially similar to that of [27]. While they use it in a study
to evaluate inference algorithms and perform Side Chain Placement, our task is to use it to obtain
entropy and free energy estimates.
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Recent work [16] has shown that most message passing algorithms can be viewed as minimiz-
ing the divergence between the actual probability distribution and a family of distributions suitably
parametrized. The different algorithms differ in their choice of the divergence measure and their
parametrization of the family of distributions. [11] attempts to solve the same problem using a
mean-field approach. Mean field methods minimize the Kullback-Leibler Divergence while Gen-
eralized Belief Propagation (and BP) minimize an “inclusive” divergence. While the former is
more accurate at capturing the zeros of the actual distribution, the latter performs better at pre-
dicting marginals. As we have shown in this section, marginal probabilities allow us to compute
estimates of the entropy and free energy of the distribution. Thus, Generalized Belief Propagation
is more suitable for the problem at hand.

4 Implementation and Results
We implemented the Two-way GBP algorithm described earlier, to compute region graph estimates
of free energy and entropy. We parsed the pdb files using the pdb parser in the Molecular Biology
Toolkit [17]. We then created the factor graph by computing interatomic distances and creating a
factor between residues if the Cα distance between them was lesser than a threshold value. This
threshold is largely dictated by the sensitivity of the energy function. For the energy terms we used,
we found a threshold of 8.0 Åto be adequate. In the few datasets that we tested, our results were not
affected by small changes in this threshold. We used the backbone dependent library provided by
[5] and a linear approximation to the repulsive van der Waals force used by [5, 27]. Each rotamer
in the library also had an associated apriori probability which we incorporated into the factor as
a prior. We set the Temperature of the system to be 300K, which corresponds to normal room
temperature.

We used a region graph construction which created two levels of regions. The top level con-
tained “big” regions – regions with more than one variable – while the lower level contained regions
representing single variables. Since we expect the interaction between residues closest in sequence
to be very strong, we placed all factors and nodes between residues within two sequence positions
of each other in one region. Each of the rest of the factors, representing edges between residues
connected in space, formed “big” regions with two nodes in them. Thus, in the example shown in
Fig. 2, (X1

s , X
2
S, X

3
S, f1, f2, f3, f12, f23), (X2

s , X
3
S, X

4
S, f2, f3, f4, f23, f34) and (X1

s , X
7
s , f17) would

be examples of big regions which appear in the top level, while (X1
s ) would be an example of

a small region in the lower level. Finally, we add edges from “big” regions to all small regions
that contain a strict subset of the “big” region’s nodes. In our example, the region encompassing
X1

s , X
2
s , X

3
s would thus be connected to the small regions corresponding to each of X1

s ,X2
s , and

X3
s .

Since the region graph formalism is very flexible, other equally valid alternatives for creating
the graph exist. The best choice of regions will largely depend on the application at hand and the
computational constraints. Our choice of regions reflects a balance between accuracy and running
time by focussing on residues which are expected to be closely coupled together and placing them
in bigger regions. [1] studies this class of region graphs in more detail.

We initialized the GBP messages to random starting points and ran until beliefs converged or
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a maximum number of iterations(100) was reached. It must be noted that we did not have any
problems with convergence: the beliefs converged in all cases.

We ran our program on datasets obtained from the “Decoys R Us” database[22]. We used the
immunoglobin datasets from the “multiple decoy sets”. Each such dataset consisted of multiple
decoy structures along with the native structure of a protein. We selected immunoglobin because
it had a large number of decoys close to the native structure and has been used extensively to test
methods for decoy detection[23].

Under our assumption of a rigid backbone, our estimates of entropy of different structures will
be comparable only when the other sources of entropy are largely similar. Thus, our estimates will
be most relevant only when the structures have largely similar backbones. To ensure that we didn’t
have backbones very different from the native structure among our decoys, we removed all decoys
with a Cα RMSD greater than 2.0 Åto the native structure, from each dataset. We then removed
any dataset that ended up with less than 5 decoys so that we didn’t end up with too few decoys
in a dataset. We also removed three datasets where our program crashed on the native structure
due to missing backbone atoms. Since this happened on very few small fraction of the cases, we
donot expect this to affect our results. At the end of this pruning, there were 48 datasets left with
an average of around 35 decoys per data set.

(a) (b)

Figure 3: (a) Histogram shows the distribution of the rank of the native structure, when ranked
in decreasing order of entropy for the culled immunoglobin decoy dataset. Over this dataset, the
native structure has the highest entropy 87.5% of the time(b) Entropy estimates for 1mlb and its
decoys with the value of the entropy along the Y-axis and the rmsd to native structure along the
X-axis. The horizontal line indicates the value of the entropy of the native structure; all other
structures have a lower entropy in this dataset

Fig. 3 shows our results on the immunoglobin dataset. When we ranked the structures in
the decreasing order of their entropy, the native structure ended up at the top in 42 of the 48
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datasets(87.5%). In no dataset was the native structure ranked higher than 4. Fig. 3(b) shows the
scatter plot of the entropy estimates for a dataset where the native structure(1mlb) has the highest
entropy.

To study the structures further, we ran PROCHECK[12] – a program for structure validation
that runs a suite of structural tests. PROCHECK reported a very high number of main chain bond
angles (nearly 13 angles on an average) as “off graph” – bond angles so far away from the mean
that they don’t show up on the output plots of PROCHECK – for the four native structures which
have a rank three or four. For example, a total of 27 angles were determined to be “off graph” for
1igc. In contrast, there were an average of around 2 such angles, among the rest of the structures.
It must be noted that, not all datasets in which the native structure had bad main chain bond angles
had a decoy as the best rank. 1jel, for example, had 21 main chain bond angles “off graph” and yet
had the best rank among its dataset. This is not unexpected, since the rank of the native structure
is not only determined by its quality, but also by the quality of the decoys. Thus, our results seem
to be affected, but not solely determined, by unusual main chain conformations.

Since the structures have very similar backbones, we expect that the entropic contributions
from the backbone atoms and our entropy estimates to be most meaningful in relative order and
magnitude. However, in order to test the efficacy of these estimates in decoy detection, we re-run
our experiments on the entire immunoglobin dataset. Our hope is that while the magnitudes of the
entropy estimates might not be meaningful, the relative order of the native structure will still be
useful.

Figure Fig. 4(a) shows the results of our experiments on the entire immunoglobin dataset. As
can be seen, despite the addition of the dissimilar backbones, the ranking of the native structure
isn’t affected much – in 84% of the datasets, the native structure has the highest entropy. We then
compare our results to various different energy functions as reported in [23]. Again, our entropy
estimate, calculated using a simple linear potential function outperforms all other methods on this
dataset.

Thus these results show that our entropy estimates are very successful in detecting the native
structure from a set of decoys. However, they do not provide any evidence about the relative mag-
nitude of these estimates. To test this, we perform a different experiment. We compare experimen-
tally determined values of difference in the free energy between the native structures of Barnase,
T4 Lysozyme and Staphylococcal Nuclease(pdb ids: 1BNI, 1L63 and 1STN respectively) and
multiple single point mutants of them, selected from the ProTherm database[?]. Only mutations in
buried positions were considered in order to minimize the effects of the solvent. Care was taken to
ensure that the ∆∆G experiments were conducted at similar pH values.

Since these mutants have different sequences, the entropy of the denatured state has to be
estimated along with that of the crystal structure, in order to estimate ∆∆G values. We estimate
the free energy of the denatured state by computing the free energy of the system before inference.
Fig. 5 shows our results on the three datasets. The correlation coefficient between our estimates of
∆∆G and the experimentally determined values varied from 0.63 to 0.70 with p values between
1.5*10−5 to 0.0063. This compares favorably with the estimates – correlations between 0.7 and
0.94 – obtained using the four body potential of [6] over all their (smaller) datasets. This gives
evidence that our estimates predict both the sign and the magnitude of ∆∆G with reasonable
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(a) (b)
Figure 4: (a) Histogram showing the distribution of the rank of the native structure. (b) Comparison
of Results using various energy functions as reported in [23], along with rankings based on our
Entropy estimates. 4body refers to the four body atomic potential described in [23]. The other
energy functions are described in detail in [23]. These results are on the 51 Immunoglobin datasets
for which data was available, including decoys with RMSD greater than 2.0 Å. Overall, the entropy
estimates outperform all energy functions.

accuracy.

5 Conclusions
We have shown that free energy calculations for all-atom models of protein structures can be com-
puted efficiently using Generalized Belief Propagation. Moreover, these estimates are sufficiently
accurate to perform non-trivial tasks. We first demonstrated that it is possible to identify native
immunoglobin structure from a set of decoys, with high accuracy, by comparing the computed
entropies. We then demonstrated that our ∆∆G predictions for a set of mutations achieved high
linear correlations with experimentally measured quantities. This suggests that our predictions for
the change in entropy are not only in the right general direction, but are approximately the right
order of magnitude.

Our results have implications for a number of problem domains. First, we believe that our
method could be used in the contexts of protein structure prediction and comparative modeling.
Our decoy-detection results suggest that our method could be used in conjunction with protein
structure prediction programs that produce multiple putative folds, like ROSETTA [21]. The accu-
racy of existing homology modeling methods is acknowledged to be an important issue in structural
biology (e.g., [15, 8]). We are presently extending our technique to allow backbone flexibility. This
would facilitate refining of homology models towards a lower free-energy configuration, and po-
tentially higher accuracy. Second, we note that one of the advantages of a graphical model is that it
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is easily extended. For example, we could enhance our edge potentials to incorporate experimental
measurements from X-ray crystallography, Nuclear Magnetic Resonance, or Cryogenic Electron
microscopy. These enhancements could be very beneficial in the context of structure determination
experiments where the data are sparse or low-resolution. Third, we can also extend our model to
include ligands by adding nodes to our graph. This, plus a combination of a backbone flexibility
and a somewhat more sophisticated energy potential may lead to more accurate ∆∆G calculations
which, in turn, may be useful in the context of ligand binding and docking studies. Finally, while
our experiments assumed a known protein sequence, it is possible to simultaneously perform in-
ference over the sequence and structure, leading to new techniques for performing protein design.
We are actively pursuing these goals as part of ongoing research into the application of graphical
models to protein structures.
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(a)

(b)

(c)
Figure 5: Plots showing variation of experimental ∆∆G (on the X-axis) with computed estimates
of ∆∆G, along with a least squares fit for (a) thirty one mutants of barnase (pdb id: 1BNI) (b)
twenty eight mutants of T4 Lysozyme(pdb id:1L63) and (c) fourteen mutants of staphylococcal
nuclease(pdb id:1STN)
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