
Analyzing the Effect of Prioritized Background Tasks in

Multiserver Systems

Adam Wierman
�

Takayuki Osogami
�

Mor Harchol-Balter
�

Alan Scheller-Wolf
�

December 2003

CMU-CS-03-213

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Computer systems depend on high priority background processes to provide both reliability and security.
This is especially true in multiserver systems where many such background processes are required for data
coherence, fault detection, intrusion detection, etc. From a user’s perspective, it is important to understand
the effect that these many classes of high priority, background tasks have on the performance of lower
priority user-level tasks.
We model this situation as an M/GI/

�
queue with � preemptive-resume priority classes, presenting the first

analysis of this system with more than two priority classes under a general phase-type service distribution.
(Prior analyses of the M/GI/

�
with more than two priority classes are approximations that, we show, can be

highly inaccurate.) Our analytical method is very different from the prior literature: it combines the tech-
nique of dimensionality reduction [10] with Neuts’ technique for determining busy periods in multiserver
systems [21], and then uses a novel recursive iteration technique. Our analysis is approximate, but, unlike
prior techniques, can be made as accurate as desired, and is verified via simulation.

�
Carnegie Mellon University, Computer Science Department. Email: acw@cs.cmu.edu.�
Carnegie Mellon University, Computer Science Department. Email: osogami@cs.cmu.edu.�
Carnegie Mellon University, Computer Science Department. Email: harchol@cs.cmu.edu.	
Carnegie Mellon University, Computer Science Department. Email: awolf@andrew.cmu.edu.

Keywords: reliability, M/GI/k, multiserver queue, priority queue, server farm, matrix analytic methods,

busy periods, multi-class queue, preemptive priority.

1 Introduction

Machines on the Internet are increasingly prone to malicious attacks from viruses, identity thieves, and other

dangers. To protect users from malicious attacks as well as system faults, errors, and failures resulting from

system complexity, computers today typically run an array of background processes for the purposes of fault

recovery, fault isolation, fault masking, intrusion detection, virus checking, etc. (See [1] for a survey of such

tasks.) Many of these processes rely on preemptive error detection, where service delivery is suspended

while checks for latent errors and dormant faults are performed. Thus, in modern systems user-level tasks

may be preempted by a wide range of higher priority, dependability tasks.

Examples of high priority dependability tasks are abundant. In particular, significant research has been

performed for the purposes of system rollback [5, 16], where checkpointing is performed so that at the

detection of a fault or error the system can be rolled back to a stable state. Further, many coherence processes

in distributed systems depend on background tasks for purposes such as synchronizing clocks and ordering

communications [15, 17]. A third example of background processes needed for dependability are exception

handlers, which become important in distributed systems [27]. Finally, a fundamental problem in distributed

dependable systems is that of reaching agreement on the identity of correctly functioning processors. Thus,

background processes must be designed to reach agreement in the presence of faults [2, 26].

Given the necessity of such dependability processes, it is important to understand the impact of these

high priority background tasks on the performance of lower priority user-level tasks, and also how this

impact can be reduced. Since the 1950’s queueing theorists have studied the effect of high priority tasks on

lower priority tasks in the context of an M/GI/1 queue. Over the past couple decades, multiserver systems

(server farms) have increased in popularity due to their low cost, versatility, and reliability benefits. As

server farms have become more ubiquitous, queueing theory has shifted to studying the effect of priorities

in multiserver systems with the aim of improving the design of these systems.

Unfortunately, for multiserver systems, performance results under prioritization have been quite limited.

Only the case of two priority classes with exponential service times has been analyzed. This is insufficient,

as in practice there are many different levels of high priority dependability tasks, requiring more than two

priority classes, and job size distributions are often not exponential. Yet, for this case of more than 2 priority

classes, or for general service times, only ad-hoc approximations exist. Worse still, the accuracy of these

existing approximations has never been established.

This paper provides the first analytical method to evaluate mean class delay
�

in an M/GI/
�

system (i)

with an arbitrary number of preemptive priority classes and (ii) where the job size distribution, � , is a phase-

type (PH) distribution
�
. Neither (i) nor (ii) above have ever been addressed in the prior literature, aside from

�
The delay of a job is the time from when a job arrives until it leaves, minus the time the job spends in service.�
The set of PH distributions is dense in the set of all non-negative general distributions. A PH distribution is the

distribution of the absorption time in a finite state continuous time Markov chain. The figure shows a 4-phase PH
distribution, with ��� � states, where the � th state has exponentially-distributed sojourn time with rate ��� . With

1

the ad-hoc approximations mentioned above. What makes analysis of this problem difficult for an arbitrary

number of priority classes, � , is that the state space of the system grows infinitely in � dimensions, as

one needs to track the number of jobs in each priority class. To overcome this problem, we introduce a

new analytical approach, called Recursive Dimensionality Reduction (RDR), that allows us to recursively

reduce this � -dimensionally infinite state space to a � -dimensionally infinite state space. An important

element of RDR involves approximating a sequence of complex busy periods; RDR is approximate only in

that we compute a finite number of moments (three) of these busy period durations. As we will show, the

RDR method is quite accurate when using three moments, and its accuracy can be increased arbitrarily by

computing more moments.

In theory RDR can handle systems with any number of servers, any number of priority classes, and PH

service times. Practically however, the RDR method increases in complexity with both the number of servers
�

and the number of classes � . Nevertheless, for all the scenarios explored in this paper, the computation

time under RDR is less than 0.1 sec. Because RDR becomes less practical under high � and
�

, we develop

a much simpler, but still accurate, approximation RDR-A. RDR-A simplifies calculations by approximating

an � priority system with a two priority system, which is then solved using RDR — RDR is much easier to

implement in this special case.

The contributions of this paper are four-fold. First, we introduce the RDR technique, providing the

first analysis of an M/GI/
�

system with arbitrary numbers of priorities. Second, we provide a thorough

evaluation of existing � class M/GI/
�

approximation formulas by Buzen & Bondi [3, 4] and by Mitrani &

King [20] for the mean delay. Buzen & Bondi assume that the effect of priorities in multiserver systems

is well-approximated by the effect of priorities in a single-server system, while Mitrani & King aggregate

all the higher priority classes into a single exponential class. Both these approximations are coarse; we

will show exactly when they can lead to significant error. The third contribution of the paper is our new

approximation algorithm RDR-A, which is both computationally efficient and greatly improves upon the

accuracy of prior approximations. The fourth contribution of this paper is a characterization of the behavior

of multiserver systems with priorities. We find this to be very different from a single-server system, and

we contribute a set of design guidelines for setting up (high priority) background processes in a way that

minimizes the unwanted delay on the (lower priority) user tasks in multiserver systems. For example, we

probability ��� � we start in the � th state, and the next state is state � with probability � � � . Each state has some
probability of leading to absorption. The absorption time is the sum of the times spent in each of the states.

1µ 2µ 3µ 4µ p40

p13

p12 p23 p34

p43p32

p42
p31

p21

p10

p20

p30

p01

p02

p03

p04

p41

p14

p24

Exp Exp Exp Exp

2

find that tasks that require more deterministic computation times are much less painful to lower priority

tasks than tasks that are highly variable.

2 Prior work

A large number of papers have been written on the analysis of mean delay in an M/GI/
�

queue with priority

classes. However, most of these papers are restricted to only two priority classes under the additional

constraint that the service distributions are exponential. The few papers that deal with � ��� priority

classes, are coarse approximations based on assuming that the multiserver behaves like a single server

system or assuming identical job size distributions for all classes.

2.1 Approximations for an M/GI/k queue with m � 2 classes

Two types of approximations have been proposed in literature. Buzen and Bondi’s approximation (which

we denote by BB) was originally derived for exponential job size distributions [4] and was later applied to

general job size distributions [3]. The other approximation (which we denote by MK-N) is due to Mitrani

and King [20], and also used by Nishida [23] to extend the latter author’s analysis of two priority classes to

����� priority classes. MK-N is restricted to exponential job size distributions.

The Buzen-Bondi (BB) approximation

The BB approximation is based on an intuitive observation that the “improvement” of priority scheduling

over FCFS scheduling under
�

servers is similar to that for the case of 1 server:

��� 	 M/GI/
 /prio ���� 	 M/GI/
 /FCFS �
�
��� 	 M/GI/1/prio ���� 	 M/GI/1/FCFS ��� scaling factor � (1)

Here
��� 	 M/GI/
 /prio � is the overall mean delay under priority scheduling with

�
servers of speed ��� �

, and��� 	 M/GI/
 /FCFS � is defined similarly for FCFS. This relation is exact when job sizes are exponential with the

same rate for all classes, however it is unclear what happens when this is not the case.

BB analyzes the mean delay of the lowest priority class (
��� 	�� �) by analyzing both the mean delay over

all classes (
��� 	 �) and the mean delay of the higher priority classes (

��� 	�� �) and then using the following

relation:
��� 	 � � ������������

��� 	�� �! ������"�����
��� 	#� �%$ where & � and & � are the arrival rates of the higher and

lowest priority jobs respectively. In analyzing the mean delay of multiple classes, BB aggregates all the

relevant classes into one class and analyzes the corresponding M/GI/
�

/FCFS queue. It then calibrates this

result using the scaling factor in (1) in order to capture the effect of prioritization. Namely,
��� 	 M/GI/
 /prio � ���� 	 M/GI/
 /FCFS �('*) + M/GI/1/prio ,

'() + M/GI/1/FCFS , �
We now provide intuition as to why BB might lead to error in predicting the mean delay. Consider

two classes, high priority (H) and low priority (L), where class H jobs have smaller mean size. Priority

3

scheduling allows small jobs to avoid waiting behind the long jobs, leading to significant decrease in mean

delay as compared to FCFS. However, having multiple servers also allows small jobs to avoid queueing

behind the long jobs (especially if these long jobs are sparse), and thus the decrease in mean delay due to

priority scheduling for the multiserver case may not be as significant as in the single server case.

The Mitrani-King-Nishida (MK-N) approximation

The MK-N approximation analyzes the mean delay of the lowest priority class in an M/M/
�

queue with

��� � priority classes by aggregating all the higher priority classes. Thus, instead of aggregating all jobs

into one class, as BB does, MK-N aggregates into two classes. The job size distribution of the aggregated

class is then approximated with an exponential distribution by matching the first moment of the distribution.

There are two sources of errors in MK-N. The first source of error, which we call priority error, results

from ignoring the priority scheduling among the higher priority classes. The second source, which we call

distribution error, results from the fact that the aggregated job size distribution matches only one moment.

Consider first the priority error. In the case of a single server, there is no priority error. This is because

low priority jobs are excluded from service during busy periods of high priority classes, and the busy period

duration of the higher priority classes is the same regardless of whether or not the higher priority classes are

prioritized. In the case of multiple servers, however, priority error exists: low priority jobs are more likely

to be present at the end of a busy period.

Next consider the distribution error. The distribution error exists even in the case of a single server

unless the first two moments of the aggregated job size distribution are matched, as the mean delay of the

lowest priority jobs,
��� 	 � � , depends on the first two moments of the job size distributions:

��� 	#� � �
� �

��� � �
��� ��� � & ��� � � �

��� ��� � �	� � �
� � �
$ (2)

where � � is the load of high priority jobs, � is the overall load,
��� � � � is the mean size of the lowest priority

jobs, and
��� � � � is the second moment of the overall job size distribution. In the case of multiple servers,

matching even the first two moments is not sufficient in general. This can be gleaned from recent results

illustrating the sensitivity of the stability conditions for the M/GI/
�

systems to the exact tail behavior of the

service distribution [28, 31].

2.2 Analysis of an M/GI/k queue with m = 2 priority classes

In the case of two priority classes, exact numerical and algorithmic approaches have been proposed. Most

approaches are restricted to exponential job size distributions [6, 7, 9, 19, 20], and the only work dealing

with non-exponential service times (limited to hyperexponential distributions) is a paper, not yet published,

by Sleptchenko et. al. [30]. There are a number of approximations based on aggregation or truncation of

the state space [11, 12, 23, 14], sometimes in combination with the matrix analytic method and state space

4

partitioning [22]. All the above papers assume preemptive-resume priorities (as in this paper), but there also

are a few papers on non-preemptive priorities [8, 13, 29].

Exact analyses for two priority classes with exponential job size distributions either use (i) matrix an-

alytic methods or (ii) generating function methods. Matrix analytic methods are unable to directly handle

a two-dimensionally infinite state space; so in order to overcome this, Miller [19] partitions the state space

into blocks and then “super-blocks,” according to the number of high priority jobs in queue. This partition-

ing is quite complex and is unlikely to be generalizable to non-exponential job sizes. In addition, Miller

experiences numerical instability issues when � ��� ��� . All the other exact analyses of two priority classes

under exponential job size distributions capitalize on the exponential job sizes directly by explicitly writing

out the system of balance equations and then finding roots via generating functions. These techniques in

general yield complicated mathematical expressions susceptible to numerical instabilities at higher loads.

For example, Mitrani and King [20] report that for larger systems (eight servers) they begin to experience

numerical stability problems – their solution yields some negative probabilities. Gail, Hantler, and Taylor

[9] follow a similar approach and also report stability problems.

Finally, Sleptchenko et. al. [30] consider a two-priority, multiserver system where, within each priority

class, there may be a number of subclasses, each with its own different exponential job size distribution.

This is equivalent to assuming a hyperexponential job size distribution for each of the two priority classes.

The problem is solved by writing the system balance equations and solving them iteratively. Unfortunately,

their technique does not appear to generalize to distributions other than the hyperexponential distribution.

3 RDR analysis of M/GI/k with m priority classes

In this section, we describe our new analytic method: Recursive Dimensionality Reduction (RDR), which

allows us to analyze the mean delay in an M/GI/
�

/FCFS queue having � preemptive-resume priority classes.

In the case where there are only two priority classes and both classes have exponentially distributed service

times, the RDR technique reduces to an already known technique, introduced in [25], simply called dimen-

sionality reduction, which reduces a two dimensionally infinity state space to a one dimensionally infinite

state space. However, when the number of priority classes is � � � or job sizes are PH distributed, simple

dimensionality reduction does not apply.

In handling the � � � priority classes, the RDR method involves a recursive algorithm that uses the

analysis of the � � � priority class case to analyze the � -th priority class. The recursive algorithm also

requires utilizing Neuts’ algorithm [21] for analyzing busy periods in multiserver systems. Our RDR method

generalizes to PH job size distributions — this discussion is deferred to Appendix A.

5

Lλ Lλ Lλ

LλLλLλ

Lλ Lλ Lλ

LλLλLλ

Hλ

Hλ

Hλ Hλ

Hλ

Hλ Hλ

Hλ

Hλ Hλ

Hλ

Hλ
Hµ Hµ

Hµ Hµ
Lµ

Lµ
Lµ Lµ

L2µ

H2µ H2µ H2µ H2µ

H2µ
H2µH2µH2µ

L2µ
3L,0H2L,0H1L,0H

2L,3H 3L,3H1L,3H0L,3H

0L,2H 1L,2H 2L,2H 3L,2H

3L,1H2L,1H1L,1H0L,1H

0L,0H

(a)

B2µH
B2µH

B2µH
B2µH

+0L,2 H 1L,2 H+ 2L,2 H+ 3L,2 H+

λL

λLλLλL

λL λL

λL λL λL

λH λH λH λH

λHλHλHλH

Hµ Hµ Hµ Hµ

Lµ Lµ Lµ

Lµ L2µ L2µ
1L,0H 2L,0H 3L,0H

0L,1H 1L,1H 2L,1H 3L,1H

0L,0H

(b)

Figure 1: Markov chain for a system with 2 servers and 2 priority classes where all jobs have exponential
sizes. The chain in (a) is infinite in two dimensions. Via the Dimensionality Reduction technique, we arrive
at the chain in (b), which uses busy period transitions, and is only infinite in one dimension.

3.1 Two priority classes, exponential job sizes

We first consider the simple case of two servers and two priority classes, where both high and low priority

jobs have exponentially distributed sizes with rates � � and � � respectively. For this case, the RDR method

reduces to the simpler dimensionality reduction method of [25]. Figure 1 (a) illustrates a Markov chain of

this system, whose states track the number of high priority and low priority jobs; hence this chain grows

infinitely in two dimensions. Observe that high priority jobs simply see an M/M/2 queue, and thus their

mean delay is well-known. Low priority jobs, however, have access to either an M/M/2, M/M/1, or no

server at all, depending on the number of high priority jobs. Thus their mean delay is more complicated.

Figure 1 (b) illustrates the reduction of the 2D-infinite Markov chain to a 1D-infinite Markov chain via

RDR. The 1D-infinite chain tracks the number of low priority jobs exactly. For the high priority jobs, the

1D-infinite chain only differentiates between zero, one, and two-or-more high priority jobs. As soon as

there are two-or-more high priority jobs, a high priority busy period is started. During the high priority busy

period, the system only services high priority jobs, until the number of high priority jobs drops to one.
�

The

length of time spent in this high priority busy period is exactly an M/M/1 busy period where the service rate

is ��� � . We denote the length of this busy period by the transition labeled � ���
� . We use a PH distribution to

match the first 3 moments of the distribution of � ���
� .

�
The limiting probabilities in this 1D-infinite chain

can be analyzed using the matrix analytic method, which in turn gives the mean delay via Little’s law.

Figure 2 shows the generalization to a 3-server system. We simply add one row to the Markov chain

�
Throughout the paper a “higher priority busy period” is defined as the time from when the system has � higher priority jobs

until there are only ���	� higher priority jobs.	
Matching three moments of busy period distributions is often sufficient to guarantee accurate modeling of many queueing

systems with respect to mean performance [24].

6

λL λL λL
Hµ

Lµ

Hµ λH λH Hµ λH λHHµ
Lµ L2µ L3µ

λLλL λL

0H,0L 0H,1L 0H,2L 0H,3L

H2µ λH λHH2µ H2µ λH H2µ λH

B3µH B3µH B3µH B3µH
λHλHλHλH

Lµ Lµ Lµ

λLλLλL

λL λL

L2µ L2µ

λL

1H,0L 1H,1L 1H,2L 1H,3L

2H,0L 2H,1L 2H,2L 2H,3L

3+H,1L 3+H,2L 3+H,3L3+H,0L

Figure 2: This Markov chain illustrates the case of 2 priority classes and 3 servers.

shown in Figure 1, and now differentiate between 0, 1, 2, or 3-or-more high priority jobs. This can be easily

extended to the case of
� ��� servers.

RDR is far simpler and more computationally efficient than methods shown in the prior published litera-

ture for analyzing the mean delay in an M/M/
�

queue with dual priorities exponential job sizes. Furthermore,

RDR allows more classes, allows general PH job sizes, and is highly accurate. (See Section 4 for validation.)

By contrast, the prior literature on the M/M/
�

priority queue has sometimes resulted in numerically unstable

computations [8, 9] or complicated partitions of the state space [19, 22].

3.2 m priority classes, exponential job sizes

Below we describe the RDR solution for systems with multiple servers and priority classes, beginning with

the simpler case of two servers and three priority classes. We denote the 3 priority classes by high-priority

(H), medium-priority (M), and low-priority (L). The mean delay for class H jobs and that for class M jobs

are easy to compute. Class H jobs simply see an M/M/2 queue. Class M jobs see the same system that the

low-priority jobs see in an M/M/2 queue having 2 priority classes. Replacing the L’s by M’s in the chain in

Figure 1 yields the mean delay for the M class jobs.

The analysis of the class L jobs is more difficult. The obvious approach would be to aggregate the H and

M jobs into a single class, so that we we have a 2-class system (H-M and L jobs). Then we could apply the

RDR technique of the previous section, tracking exactly the number of low-priority jobs and maintaining

limited state on the H-M class. This is the approach that we follow in Section 5 in deriving our RDR-A

approximation. However, the above approach is imprecise because the duration of the busy periods in the

H-M class depend on whether the busy period was started by 2H jobs, 1H and 1M job, or 2M jobs in service.

By ignoring the priorities among H’s and M’s, we are ignoring the fact that some types of busy periods are

more likely. Even given the information on who starts the busy period, that still does not suffice to determine

its duration, because the duration is also affected by whether the H-M class has internal prioritization.

Thus a precise delay analysis of class L requires tracking more information. We need to track whether

there are zero, one, or at least two H-M jobs. Given that there is only one H-M job, we need to know whether

it is of type H or type M. Given that there are at least two H-M jobs, we are in an H-M busy period. Thus, we

7

B2

B1

B4

B3

λ p2M,HM

λMMµ λHµH

λ pMH,HH

λ pMH,HM

λ p2H,HH

λ p2H,MH

λ pMH,MH

λ pMH,MM

λ p2M,MM

B6

B5

uL,0M,0H

uL,1M,0H

uL,0M,1H

uL,2M,0H

uL,2M,0H

uL,1M,1H

uL,1M,1H

uL,0M,2H

uL,0M,2H

(u−1)L,0M,0H

(u−1)L,1M,0H

(u−1)L,0M,1H

(u−1)L,2M,0H

(u−1)L,2M,0H

(u−1)L,1M,1H

(u−1)L,1M,1H

(u−1)L,0M,2H

(u−1)L,0M,2H

(u+1)L,0M,0H

(u+1)L,1M,0H

(u+1)L,0M,1H

(u+1)L,2M,0H

(u+1)L,2M,0H

(u+1)L,1M,1H

(u+1)L,1M,1H

(u+1)L,0M,2H

(u+1)L,0M,2H

Figure 3: 1D-infinite chain used to compute mean delay for low-priority jobs in the case of 3 priority
classes and 2 servers, and all exponential service times. The six busy period transitions for this chain will
be computed from the chain in Figure 1 (b).

need to know whether the busy period was started by 2 H jobs, 2 M jobs, or 1H and 1M job. We also need to

know whether the busy period is ended by an H job or an M job. For an M/M/2 with 3 priority classes, six

types of busy periods are possible, depending on the classes of jobs that start the busy period and the class

of the job that is left at the end of the busy period. We derive the busy period duration by first conditioning

on who ends the busy period, which is stochastically equivalent to the unconditioned approach.

Figure 3 shows the level of the 1D infinite Markov chain, where the number of class L jobs is � . In state

(� L, � M, � H), � class M jobs and � H class jobs are in system if � ��� � ; otherwise, the state (� L, � M, � H)

denotes that we are in a H-M busy period that was started by � class M jobs and � class H jobs. When the

Markov chain is in state (� L,0M,0H), an arrival of an M class job triggers a transition to state (� L,1M,0H).

In state (� L,1M,0H), an arrival of an M class job triggers a transition to state (� L,2M,0H). Observe that both

states in the fourth and fifth row are labeled (� L,2M,0H). In both states, two servers are working on jobs of

class M or H, and this busy period is started by two M class jobs. The two states labelled (� L,2M,0H) differ

in the class of the job that is left at the end of the H-M busy period. In state (� L,2M,0H) of the fourth row,

the busy period ends leaving a class H job, and in state of the fifth row, the busy period ends leaving a class

M job. (In our Markov chain, the class of job left at the end of a busy period is probabilistically determined

at the beginning of the busy period and the duration of the busy period is conditioned on the class of the

job left at the end.) Other transitions are defined analogously. The six types of busy periods are labeled

� � , � � , . . . , ��� ; the durations of these busy periods are approximated by PH distributions that match the

first three moments. Finally, � �	��
 � (� � �
 � and � � �
 � , respectively) denotes the probability that the busy

8

period started by two M class jobs (one M class job and one H class job, and two H class jobs, respectively)

ends leaving one H class job; � �	��
 � , � � �
 � , and � � �
 � are defined analogously.

It remains to determine how to analyze the moments of the duration of busy periods, � � , � � , ..., ��� , and

probabilities � �	��
 � , � �	�
 � , � � �
 � , � � �
 � , � � �
 � , and � � �
 � in Figure 3. Observe that the Markov chain

for class H and M jobs (Figure 1 (b)) is a QBD process, and the duration of each busy period in Figure 3

corresponds to the first passage time from a state in level 1 to a state in level 0 in Figure 1 (b). Likewise,

each probability in Figure 3 corresponds to the probability that a certain state is the first state in level 0 given

that we start at a certain state in level 1 of Figure 1 (b). All of these quantities can be calculated using Neuts’

algorithm [21]. We provide a the precise description of how Neuts’ algorithm is applied in Appendix B.

The extension of RDR to ����� classes is trivial. For example, for the case of � � �
classes, we create

a version of the Markov chain in Figure 3 done for 4 classes. This chain tracks exactly the number of jobs in

class 4, and creates busy periods for the three higher priority classes. To derive the busy periods for the three

higher priority classes, we make use of the Markov chain in Figure 3 and compute the busy periods in that

chain using Neuts’ algorithm. Note that for an � -class system with
�

servers, there are ��� �
�� �

 � ��� �
	� �

�� � �
possible busy periods. That is, the number of different types of busy periods is polynomial in

�
if � is

constant (
� � � � �

), and it is polynomial in � if
�

is constant (�
�
�� �

); however, it is exponential in
�

and �

if neither
�

nor � is constant.

RDR can also handle PH job size distributions. In this case class H is easily modeled as a QBD process.

To analyze the mean delay of class M jobs, we need to analyze the busy period of class H jobs, which is is

no longer a busy period in the corresponding M/M/
�

queue. We thus must use Neuts’ algorithm to analyze

this busy period. Lower priority classes are analyzed recursively as described above. Details of the analysis

of case of PH job size distributions are provided in Appendix A.

4 Validation of RDR

We now validate RDR against simulation. We show only a subset of the wide range of validations we

performed. In all cases, the mean delay predicted by RDR is within 2% of the simulated value.

Figure 4 shows a validation of RDR in the case of an M/M/2 queue with four priority classes, where class

1 has the highest priority and class 4 has the lowest priority. The load of each class is one-quarter of the total

load, i.e. each class has the same load. The mean job size of class
 is set
��� ��� � ��
 � � � . Namely,
 � �

implies small high priority jobs, and
 � � implies large high priority jobs. The three columns in Figure 4

correspond to different values of
 : 1/4, 1, and 4. Figure 5 shows the validation of RDR for an M/GI/2

queue with two priority classes. Here we assess the effect of � �
, the squared coefficient of variability of the

job size distribution, defined as the variance divided by the square of the mean.

The plots in the top row of Figure 4 show the mean delay under both RDR and simulation for each class

as a function of total load, � , in log scale. The plots in the top row of Figure 5 also show the mean delay,

9

Mean Delay

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

10
2

class 1

class 2

class 3

class 4

ρ

m
e
a
n
 d

e
la

y

0 0.2 0.4 0.6 0.8 1
10

−4

10
−2

10
0

10
2

class 1

class 2

class 3

class 4

ρ

m
e
a
n
 d

e
la

y

0 0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

10
3

class 1

class 2

class 3

class 4

ρ

m
e
a
n
 d

e
la

y

Percent Error

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

ρ

e
rr

o
r

(%
)

class 2
class 3
class 4

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

ρ

e
rr

o
r

(%
)

class 2
class 3
class 4

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

ρ

e
rr

o
r

(%
)

class 2
class 3
class 4

(a) High prio.: small (
 � ��� �) (b) All same mean (
�� �) (c) High prio.: large (
 � �
)

Figure 4: Validation of RDR against simulation for the case of M/M/2 with 4 priority classes, where the
mean job sizes are

��� � � � � � ,
��� � � � �
 ,

��� � � � �
 �
,
��� � � � �
 �

, and the load of class
 is � � � � � �
for each
 . The three columns show three cases of
 ’s: 1/4, 1, and 4. The top row shows the mean delay
given by RDR (shown in lines) and the mean delay in simulation (shown in dots) in log scale as a function
of total load, � . The bottom row shows the relative difference between RDR and simulation. Class 1 is not
shown because its analysis is by definition exact.

however as a function of � �
. From the top row of Figure 4 and 5, it appears that analysis matches simulation

perfectly across all � ’s, and for all
 ’s under both exponential and general service times.

Taking a closer look, the plots in the bottom row of Figures 4 and 5 show the relative error in the mean

delay, where relative error is defined as

error � � � � � (mean delay by RDR) � (mean delay by simulation)
(mean delay by simulation)

� � � �
We see that the relative error in the mean delay of RDR compared to simulation is within 2% for all classes,

for all � ’s, and for all
 ’s, and within 1% for most cases. On average, RDR tends to underestimate the mean

delay by 0.2% of the simulation.

Finally, we note that RDR is much more computationally efficient than simulation. For each evaluation,

a simulation is run 30 times, and in each run 1,000,000 events are generated. In this setting, simulation takes

a day to generate each figure, while our analysis takes only a few minutes. Further, we need to generate

1,000,000 events to obtain the accuracy shown. For the case of 100,000 events, we see five times as much

inaccuracy. Thus, we conjecture that as we increase the number of events in simulation, the difference in

our analysis and the simulation will decrease even further.

10

Mean Delay

.5 1 2 4 8 16 32
10

−2

10
−1

10
0

10
1

C2

m
e
a
n
 d

e
la

y

class 1

class 2

.5 1 2 4 8 16 32
10

−2

10
−1

10
0

10
1

10
2

C2

m
e
a
n
 d

e
la

y

class 1

class 2

.5 1 2 4 8 16 32
10

−1

10
0

10
1

10
2

C2

m
e
a
n
 d

e
la

y

class 1

class 2

Percent Error

.5 1 2 4 8 16 32
−3

−2

−1

0

1

2

3

C2

e
rr

o
r

(%
)

class 1
class 2

.5 1 2 4 8 16 32
−3

−2

−1

0

1

2

3

C2

e
rr

o
r

(%
)

class 1
class 2

.5 1 2 4 8 16 32
−3

−2

−1

0

1

2

3

C2

e
rr

o
r

(%
)

class 1
class 2

(a) High prio.: small (
 � ��� �) (b) All same mean (
�� �) (c) High prio.: large (
 � �
)

Figure 5: Validation of RDR against simulation for the case of M/GI/2 with 2 priority classes, where the
mean job sizes are

��� � � � � � ,
��� � � � �
 , and the total load is � � � ��� and load is balanced between the

classes. The three columns show three cases of
 ’s: 1/4, 1, and 4. The top row shows the mean delay given
by RDR (shown in lines) and the mean delay in simulation (shown in dots) in log scale as a function of total
load, � . The bottom row shows the relative difference between RDR and simulation.

5 RDR-A approximation for M/GI/k with m priority classes

We have seen that the RDR analysis method is highly accurate. However this method can be computationally

intensive. This motivates us to introduce an approximation based on RDR called RDR-A. RDR-A applies to

� ��� priority classes and PH job size distributions. In Section 5.1 we define RDR-A, and in Section 5.2 we

compare its accuracy against the existing approximations in the literature. We find that throughout RDR-A

predicts results within 5% accuracy, while BB and MK-N can have errors of 50% or more.

5.1 Introducing RDR-A

The key idea behind RDR-A is that the RDR computation is far simpler when there are only two priority

classes: H and L. In RDR-A, under � priority classes, we simply aggregate these classes into two priority

classes, where the � � � higher priority classes become the new aggregate H class and the � th priority class

becomes the L class. We define the H class to have a PH job size distribution that matches the first three

moments of the aggregation of the � � � higher priority classes.

Observe that the RDR-A method is very similar to the MK-N approximation. The only difference is

that in MK-N, both the H and L classes are exponentially-distributed. Thus under MK-N, the H class only

11

matches the first moment of the aggregate � � � classes, whereas under RDR-A three moments are matched.

The reason that we are able to match the first three moments, rather than just the first moment is that we have

the RDR technique, which allows the analysis multiserver priority queues with PH job size distributions.

5.2 Comparing RDR-A with BB and MK-N

We now compare the accuracy of RDR-A with the two existing approximations in the literature: BB and

MK-N. In our comparison we assume
� � � servers and � � �

priority classes. We consider both the case

where each priority class has an exponential job size distribution � �

� � (top half of Figure 6) and the case

of PH job size distributions where � �

� � (bottom half of Figure 6). Each class may have a different mean

job size, and these are chosen to vary over a large range, determined by parameter
 . The mean job size of

class
 is set
��� � � � �
 � � � . Namely,
 � � implies small high priority jobs. We equalize the load between

the classes, i.e., � � � � � � , where � � is the load of class
 . Mean delay is evaluated for each class of jobs.

The error of an approximation is defined as follows:

error � � � � � (mean delay by approximation) � (exact mean delay)
(exact mean delay)

� � � �
Thus, positive error means overestimation and negative error means underestimation of the approximation.

In the case where � �

� � for each class, we compare the results of the approximations against the results

of RDR. This is possible because RDR is highly accurate for this case (within 1-2%). In the case where

� �

� � for each class, we compare the results of the approximations against simulation, because RDR is

less accurate in this case (see Section 4).

In evaluating the BB and MK-N approximations, we use the most accurate methods known to compute

their components. For example, BB relies on knowing the mean delay for the M/GI/
�

/FCFS queue. We

compute this delay precisely for the PH job size distribution using the matrix analytic method [18]. MK-N

relies on being able to analyze the case of two priority classes (since � classes are reduced to two). We

analyze the two class case in MK-N using the RDR method. We first discuss the accuracy of MK-N and

RDR-A, and then discuss the accuracy of BB.

The Mitrani-King-Nishida (MK-N) and RDR-A approximations

Figure 6 shows that the error in MK-N can sometimes exceed 50%. (Note that the MK-N approximation

does not show up in the bottom half of Figure 6 (PH job sizes) because the error is too great — approximating

� � � PH job size distributions by a single exponential clearly does not work.) By contrast, the error in

RDR-A never exceeds 5% for exponential job size distributions and never exceeds 10% for PH job size

distributions. We now discuss the error per class, showing that this error increases as we move towards

lower-priority classes.

For class 2 jobs (Figure 6, column 1) the MK-N and RDR-A approximations are exact when � �

� � .
This is because we use the RDR method in evaluating MK-N with two priority classes. When � �

� � , the

12

Comparison of approximations for M/M/
�

with � priority classes (� �

� �)

� � � � �

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

MK−N
BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

MK−N
BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

MK−N
BB
RDR−A

� � � ���

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

MK−N
BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

MK−N
BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

MK−N
BB
RDR−A

(a) Class 2 (b) Class 3 (c) Class 4

Comparison of approximations for M/GI/
�

with � priority classes (� �

� �)

� � � � �

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)
BB
RDR−A

� � � ���

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

BB
RDR−A

1/4 1 4
−50

−5
0
5

50

γ

er
ro

r
(%

)

BB
RDR−A

(a) Class 2 (b) Class 3 (c) Class 4

Figure 6: Comparison of RDR-A, MK-N, and BB approximations for M/GI/
�

with � priority classes. We
consider

� � � servers and � � �
classes with mean

��� � � � � � ,
��� � � � �
 ,

��� � � � �
 �
, and��� � � � �
 �

, where the squared coefficient of variability of the job size distributions are � �

� � (top two
rows) or � �

� � (bottom two rows) for all classes. Load is balanced among the classes. Note that MK-N
does not appear for � �

� � , because the error is beyond the scale of the graphs for most values of
 .

13

RDR-A approximation is still equivalent to RDR for an M/GI/
�

with two priority classes, and the error for

RDR is always within 5% for this case.

For class 3 (column 2) error in both MK-N and RDR-A becomes apparent. Both approximations aggre-

gate the two higher priority classes, and when � �

� � , the aggregated job size distribution is a 2 branch

hyperexponential distribution. The hyperexponential distribution is approximated by an exponential distri-

bution in the MK-N approximation, while the exact 2 branch hyperexponential distribution is used in the

RDR-A approximation. Therefore, the MK-N approximation has both priority error and distribution er-

ror, while RDR-A has only priority error. We observe that the error in the RDR-A approximation (priority

error only) is orders of magnitude smaller than the error in the MK-N approximation (both priority and

distribution error).

The effect of
 on the error of the MK-N approximation in class 3 is significant. When
 � � and

� �

� � , MK-N is exact, since the aggregated distribution is exponential. As
 gets smaller or larger than

1, the MK-N approximation underestimates the mean delay. This makes intuitive sense because MK-N

ignores the variability among the high priority classes, which leads to a lower mean delay estimate for the

lower priority jobs. We can also observe that the error in MK-N is smaller when the high priority classes

are small (
 � �) as compared to the case when
 � � . This is because when
 is large, approximating the

aggregated higher priority classes by an exponential distribution results in ignoring huge jobs in class 1, and

ignoring huge jobs leads to a great underestimation in the mean delay of the low priority class.

The effect of
 on the error of RDR-A approximation in class 3 is much smaller than the effect on MK-

N. When
 � � and � �

� � , RDR-A is exact as is MK-N. When
 � � and � �

� � , RDR-A does not

have distribution error but does have priority error. However, as for class 2, priority error is very small in

this case as well. For all � ’s and � �
’s, RDR-A tends to slightly overestimates the mean delay for
 � � ,

and it tends to slightly underestimates for
 � � . This is explained by reasoning about the busy periods

made up of the high priority classes. Recall that the busy period of class 1-2 jobs is defined as the period

when both servers have class 1-2 jobs. When smaller jobs have priority, more larger jobs are left at the end

of a busy period. Since larger jobs are less likely to be balanced between two servers, one of the servers

will likely become free sooner, which allows the lower priority class to get service sooner. When larger jobs

have priority, both servers are likely to become free at a similar time as low priority, smaller jobs can fill in

the gaps. This causes the lower priority jobs to wait longer before they get service at either server. When

 � � , smaller jobs have priority, but RDR-A ignores the priority and the busy period estimated by RDR-A

is longer, which in turn yields overestimation of the mean delay. The underestimation for
 � � can be

explained analogously.

Continuing with class 3, we see that the load does not significantly effect the class 3 error, but at higher

load the error in MK-N is slightly larger and the error in RDR-A is slightly smaller. This implies that the

priority error is smaller and the distribution error is larger at higher load. The priority error is due to the

error in estimating the busy period of the higher priority jobs, and at high load the busy period is long and

14

the relative difference between priority scheduling and FCFS with respect to the length of the busy period is

smaller. Larger distribution error at higher loads can be explained through an analogy to the case of a single

server. Recall equation (2), the mean delay of the lower priority class in an M/GI/1 queue with two priority

classes. The distribution error in this case corresponds to the error in the second moment of the job size,��� � � � , and the term with the error, � '() �
� ,

��� � ��� � � � � ��� � , increases as the load, � , approaches 1.

For class 4 (column 3), we observe that the error has a similar trend as in class 3. The only difference

is that the aggregation in RDR-A is no longer exact for class 4, even when � �

� � ; but we still see that

RDR-A always has a small error. We conclude that the priority error is small regardless of the load and the

relative sizes among the classes, but ignoring the variability among the mean job sizes of higher priority

classes leads to significant error.

The Buzen-Bondi (BB) approximation

We now study the accuracy of the BB approximation in Figure 6, starting at low load (� � � � �) and expo-

nential job size distributions (row 1). For all classes, BB is exact when all the classes have the same mean

size (
�� �), but it underestimates the mean delay when the higher priority classes are small (
 � �) or large

(
 � �). This can be explained as follows. BB is based on the observation that the “improvement” of prior-

ity scheduling over FCFS under
� � � server is similar to the case of 1 server (recall equation (1)). When

all the classes have the same mean, priority scheduling provides the same mean delay as FCFS, regardless

of the number of servers; hence (1) is exact, and so is BB. When high priority classes are small, priority

scheduling improves the mean delay over FCFS because it allows small jobs to avoid waiting behind large

jobs. However, the improvement under
� � � servers is smaller than in the case of 1 server, because having

� � � servers also allows small jobs to avoid waiting behind large jobs under FCFS. Since BB assumes that

the improvement is the same, it underestimates the mean delay. When class 1 is larger than class 2, priori-

tizing class 1 worsens the mean delay. However, the penalty due to prioritization under 1 server is smaller

than under
� � � servers, since with 1 server FCFS also forces large jobs to block small jobs, but

� � �
servers often allow small jobs to avoid waiting behind large jobs under FCFS. Again, since BB assumes that

the improvement is the same, it underestimates the mean delay.

For non-exponential job size distributions, BB is no longer exact even when all classes have the same

job size distributions, as shown in Figure 6 rows 3-4. For � �

� � , preemptive priority scheduling and

FCFS yields different mean delay. For example, for job size distributions with decreasing failure rate, low

priority jobs with longer remaining time is more likely preempted by higher priority jobs, which can improve

the overall mean delay. However, this improvement differs between single server systems and multiserver

systems. BB therefore can yields error in predicting the mean delay.

We can also observe that the error in BB is smaller under high load than low load (� � � � � , row 1). This

is because under high load 1-server systems and
�

-server systems behave similarly. Overall, the error in BB

can be as high as 50% under low load (� � � � �) and 20% under high load (� � � ���).

15

6 Heuristics for designing background processes

Up to this point, we have focused on validating the RDR analysis and comparing the RDR-A approxima-

tion with existing approximations for the M/GI/
�

priority queue. In this section, we exploit our analysis to

understand how to improve the performance of modern reliable multiserver systems. In particular, modern

multiprocessor systems run many reliability processes that rely on preemptive error detection, where service

delivery is suspended while checks for latent errors and dormant faults are performed. These preemptions

occur for the purposes of fault recovery, fault isolation, fault masking, intrusion detection, virus checking,

etc.. Thus, in modern systems user-level tasks may be preempted by a wide range of higher priority, de-

pendability tasks. We observe that there are many attributes of background processes that determine the

magnitude of the effect they have on the performance of user-level tasks. By taking care in setting up these

background processes, system architects can provide far superior user-level performance with little sacrifice

to the reliability of the system. Our analyses of the M/GI/
�

priority system provides four heuristics about

how to set up these background processes in order to curb the effect they have on lower priority, user-level

tasks.

A first, somewhat obvious heuristic is that prioritization has a large effect on the performance of low

priority jobs. Figure 4 shows that there is an order of magnitude difference in performance between class 1

and class 2 jobs, another order of magnitude difference between class 2 and class 3 jobs, and so on. In this

figure, the system load is evenly balanced between all priority classes. Obviously, if the load of high priority

classes can be lightened, the effect on low priority user-level processes will be lessened. Thus, one wants to

limit the load made up by background processes of higher priority than user-level tasks.

A second, more surprising heuristic is that the lower priority, user-level performance is relatively unaf-

fected by the ordering of priorities among higher priority background processes. Specifically, if there are two

classes of background tasks with higher priority than user-level tasks, their relative priority is unimportant

to the user. This fact is made apparent in Figure 6 which shows that the error from “priority aggregation”

is small (since the total error in RDR-A is small). The insensitivity to priority ordering of higher priority

classes is surprising since this priority ordering directly effects the length of the busy period in a multiserver

system.

We now move to a discussion of Figure 7, which will illustrate two heuristics related to the number of

servers. The performance metric in this figure is mean response time, defined as the mean delay plus the

mean job size. Mean response time is a more appropriate measure for this discussion because, when we

vary the number of servers while keeping the computation power constant (as in Figure 7), the mean job

size varies as well.

In configuring a multiserver system, one often has a choice of using a few fast (expensive) servers, or

more slow (cheap) servers, with same total capacity. All things being equal, one would go for the cheaper

configuration. It turns out that there is also surprisingly a performance advantage in favor of the cheaper

16

High Priority

Low Priority

0 2 4 6 8 10
0

0.5

1

1.5

Number of Servers

M
ea

n
Re

sp
on

se
 T

im
e

C2
H

=1
C2

H
=4

C2
H

=16
C2

H
=64

0 2 4 6 8 10
2

4

6

8

10

12

Number of Servers

M
ea

n
Re

sp
on

se
 T

im
e

C2
H

=1
C2

H
=4

C2
H

=16
C2

H
=64

(a)
��� � � � � � ,

��� ��� � � � �

0 2 4 6 8 10
0

0.5

1

1.5

Number of Servers

M
ea

n
Re

sp
on

se
 T

im
e

C2
H

=1
C2

H
=4

C2
H

=16
C2

H
=64

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

Number of Servers

M
ea

n
Re

sp
on

se
 T

im
e

C2
H

=1
C2

H
=4

C2
H

=16
C2

H
=64

(b)
��� � � � � � ,

��� ��� � �
�

���

Figure 7: Mean response time as a function of the number of servers, which range from 1 to 10. There are
two priority classes. Column (a) shows the case where low priority jobs have a larger mean job size than
high priority jobs. Column (b) shows the case where low priority jobs have a smaller mean job size than
high priority jobs. The system load in these plots is � � � ��� , and the load is evenly balanced among the
high and low priority classes.

(many server) configuration: As shown in Figure 7, using multiple slow servers significantly curbs the effect

of background processes on lower priority, user-level processes, and furthermore decreases overall mean

response time. The benefit of the many slow cheap server configuration is more apparent when high priority

jobs are large, as shown in Figure 7(b). In this case the multiple servers allow small low priority jobs a

chance to get some service. When the high priority jobs are small, fewer servers are preferable — adding

too many servers in this case is detrimental.

Finally, our analysis shows us that it is possible to structure the sizes of interrupts so as to minimize the

effect of high priority background processes on lower priority user-level processes. In particular, structuring

the high priority interruptions so that tasks require more deterministic computation times is much less painful

to lower priority tasks than having high priority tasks that are highly variable. In Figure 7, we vary the

squared coefficient of variation, � �
, of the high priority jobs. Figure 7 shows that variability has a significant

effect on the mean response time of both high and low priority jobs, and that minimizing the variability of

the background tasks is beneficial for both the background processes and the user-level processes.

17

7 Conclusion

We have presented Recursive Dimensionality Reduction (RDR), the first accurate analysis of the mean delay

under the M/GI/
�

queue with � preemptive priority classes, for arbitrary
�

and � , where � is an arbitrary

PH distribution. The key idea in RDR is to recursively make use of the analysis of the
 -th class to analyze

the �
 �
�
-th class, reducing an � dimensionally infinite state space into a � dimensionally infinite state

space. The accuracy of RDR is always within 2% of simulation. RDR is computationally efficient if either

the number of servers,
�

, or the number of classes, � , is a small constant — requiring less than 0.1 seconds

per data point.

Since the computational complexity of RDR can grow exponentially when we allow both
�

and � to

grow, we have proposed an approximation, RDR-A, that makes use of RDR for the M/GI/
�

queue with two

priority classes. Although RDR-A is a straightforward extension of a known approximation by Mitrani and

King, RDR-A is only made possible by making use of RDR. RDR-A is within 5% of simulation in most

cases. This is very favorable compared with the error in the existing approximations of Mitrani & King

(MK-N) and Buzen & Bondi (BB), which both can exhibit over 50% error.

The three approximations (RDR-A, MK-N, and BB) are studied extensively, and we have provided

intuition as to when these approximations have error and why. The RDR-A and MK-N approximations

aggregate higher priority classes into one, ignoring priorities among these classes, and approximating the

aggregated distribution. We find that the error due to ignoring the priorities is very small. The error due to

approximating the aggregated distribution is large in the case of MK-N, but can be made small (within 5%

in most cases) by matching the first three moments of the distribution, as in RDR-A. The BB approximation

is based on the assumption that the improvement of priority scheduling over FCFS does not depend on the

number of servers. However, we find that the improvement heavily depends on the number of servers.

RDR and RDR-A have increasing importance for dependable systems both as a predictive tool and as

a design tool. Security threats are an ever growing problem, resulting in the necessity of more and more

security processes that make up a growing percentage of system load. Due to the huge effect that these

security tasks have on user-level performance, it is important to be able to both predict their impact on

response time and to design the security processes so as to minimize this impact. What we find is that these

high-priority backgound tasks (e.g., intrusion detection, identity theft detection, and fault recovery) can

have a tremendous impact on the user-perceived delay. For example, we have seen that if load is balanced

between priority classes, each additional high priority class increases the mean delay of the priority classes

below it by an order of magnitude. Under modern computer systems, which run an array of high priority

background tasks to provide dependability, the delay contributed to user-level tasks can be enormous.

Fortunately, however we find that it is possible to significantly lessen these unwanted delays by carefully

designing and scheduling these high-priority dependability tasks. We contribute several guidelines towards

this end. We find that a key cause of delay is the variability of high priority dependability tasks. If the

18

variability of the higher priority tasks is lessened, their impact on the lower priority user-level tasks is also

greatly reduced. Another option for reducing user-level delay is to simply replace a single server system by

a (cheaper) equal capacity multiserver system consisting of many slower servers. This will have two positive

effects: (i) it will greatly reduce the delay induced by high priority tasks on low priority tasks, and (ii) it

will reduce overall mean delay. There are also things that one does not need to worry about in designing

dependable systems. For example, our analysis shows that the relative priorities among the higher priority

background dependability tasks do not have much effect on user-perceived delay. Thus, system architects

should not waste time figuring out the optimal prioritization, and can instead assign priorities as desired.

This paper is set in the context of dependable multiserver systems; however multiserver priority queues

have much broader applicability, particularly in the context of Quality of Service. For any service that is

desired by many users (e.g. retail Web sites, supercomputing centers, online data warehouses), it is common

to utilize server farms to handle the great load. In these settings, customers are frequently willing to pay more

for lower mean delays. The typical mechanism for providing reduced delay is to prioritize jobs. Customers

pay to receive a certain priority level for their jobs. However, it is entirely non-obvious what that priority

buys you in a multiserver system. If a customer pays for priority 2 class service, how much lower will his

delay be than if he only purchases priority 3 class service? The analysis in this paper allows us to accurately

answer this question for the first time, and to give accurate mean performance guarantees to customers.

References

[1] A. Avizienis, J. C. Laprie, and B. Randell. Fundamental concepts of dependability. Technical report,
Research Report N01145, LAAS-CNRS, 2001.

[2] K. Birman. The process group approach to reliable distributed computing. Communications of the
ACM, 36:37–53, 1993.

[3] A. Bondi and J. Buzen. The response times of priority classes under preemptive resume in M/G/m
queues. In ACM Sigmetrics, pages 195–201, August 1984.

[4] J. Buzen and A. Bondi. The response times of priority classes under preemptive resume in M/M/m
queues. Operations Research, 31:456–465, 1983.

[5] J. F. Chiu and G. M. Chiu. Placing forced checkpoints in distributed real-time embedded systems.
Computing & Control Engineering Journal, 13:197–205, 2002.

[6] I. Cidon and M. Sidi. Recursive computation of steady-state probabilities in priority queues. Opera-
tions Research Letters, 9:249–256, 1990.

[7] W. Feng, M. Kawada, and K. Adachi. Analysis of a multiserver queue with two priority classes and
(M,N)-threshold service schedule ii: preemptive priority. Asia-Pacific Journal of Operations Research,
18:101–124, 2001.

[8] H. Gail, S. Hantler, and B. Taylor. Analysis of a non-preemptive priority multiserver queue. Advances
in Applied Probability, 20:852–879, 1988.

[9] H. Gail, S. Hantler, and B. Taylor. On a preemptive Markovian queues with multiple servers and two
priority classes. Mathematics of Operations Research, 17:365–391, 1992.

[10] M. Harchol-Balter, C. Li, T. Osogami, A. Scheller-Wolf, and M. Squillante. Task assignment with
cycle stealing under central queue. In International Conference on Distributed Computing Systems,

19

pages 628–637, 2003.
[11] E. Kao and K. Narayanan. Computing steady-state probabilities of a nonpreemptive priority multi-

server queue. Journal on Computing, 2:211–218, 1990.
[12] E. Kao and K. Narayanan. Modeling a multiprocessor system with preemptive priorities. Management

Science, 2:185–97, 1991.
[13] E. Kao and S. Wilson. Analysis of nonpreemptive priority queues with multiple servers and two

priority classes. European Journal of Operational Research, 118:181–193, 1999.
[14] A. Kapadia, M. Kazumi, and A. Mitchell. Analysis of a finite capacity nonpreemptive priority queue.

Computers and Operations Research, 11:337–343, 1984.
[15] H. Kopetz and R. Obermaisser. Temporal composability. Computing & Control Engineering Journal,

13:156–162, 2002.
[16] C. M. Krishna and A. D. Singh. Reliability of checkpointed real-time systems using time redundancy.

IEEE Transactions on Reliability, 42:427–435, 1993.
[17] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the

ACM, 21:558–565, 1978.
[18] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods in Stochastic Modeling.

ASA-SIAM, Philadelphia, 1999.
[19] D. Miller. Steady-state algorithmic analysis of M/M/c two-priority queues with heterogeneous servers.

In R. L. Disney and T. J. Ott, editors, Applied probability - Computer science, The Interface, volume
II, pages 207–222. Birkhauser, 1992.

[20] I. Mitrani and P. King. Multiprocessor systems with preemptive priorities. Performance Evaluation,
1:118–125, 1981.

[21] M. Neuts. Moment formulas for the Markov renewal branching process. Advances in Applied Proba-
bilities, 8:690–711, 1978.

[22] B. Ngo and H. Lee. Analysis of a pre-emptive priority M/M/c model with two types of customers and
restriction. Electronics Letters, 26:1190–1192, 1990.

[23] T. Nishida. Approximate analysis for heterogeneous multiprocessor systems with priority jobs. Per-
formance Evaluation, 15:77–88, 1992.

[24] T. Osogami and M. Harchol-Balter. A closed-form solution for mapping general distributions to mini-
mal PH distributions. In Performance TOOLS, pages 200–217, 2003.

[25] T. Osogami, M. Harchol-Balter, and A. Scheller-Wolf. Analysis of cycle stealing with switching cost.
In ACM Sigmetrics 2003, pages 184–195, 2003.

[26] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of the
ACM, 27:228–234, 1980.

[27] A. Romanovsky, J. Xu, and B. Randell. Exception handling in object-oriented real-time distributed
systems. In Symposium on Object-oriented Real-time distributed computing, pages 32–42, 1998.

[28] A. Scheller-Wolf. Necessary and sufficient conditions for delay moments in FIFO multiserver queues
with an application comparing s slow servers with one fast one. Operations Research, 51:748–758,
2003.

[29] A. Sleptchenko. Multi-class, multi-server queues with non-preemptive priorities. Technical Report
2003-016, EURANDOM, Eindhoven University of Technology, 2003.

[30] A. Sleptchenko, A. van Harten, and M. van der Heijden. An exact solution for the state probabilities
of the multi-class, multi-server queue with preemptive priorities, 2003 – Manuscript.

[31] W. Whitt. The impact of a heavy-tailed service-time distribution upon the M/GI/s waiting-time distri-
bution. Queueing Systems, 36:71–87, 2000.

20

H
(1)µ H

(2)µH
p

H
q

H1 − p=

(a)

Hλ Hλ Hλ

µH
(2)

µ
H

(1) q
H

Hλ

Hλ

µ
H

(1) q
H

Hλ

µ
H

(1) q
H

µH
(2)

µ
H

(1) p
H

q
HH

(1)2µ
p

HH
(1)2µ

q
HH

(1)2µ

p
HH

(1)2µµH
(2)

µ
H

(1) p
H

H
(2)2µµ

H
(1) p

H
H

(2)2µ

0H

1H,2

1H,1 2H,1,1 3H,1,1

2H,2,2

2H,1,2 3H,1,2

3H,2,2

(b)

B2

B1

B4

B3λ p(1,2),1H

λHµ (1)
H qH

λ p(1,2),2H

λ p(1,1),1H

λ p(1,1),2H

µ (1)
H pH

µ (2)
H

uL,2 H,1,1+

uL,2 H,1,1+

uL,2 H,1,2+

uL,2 H,1,2+

uL,0H

uL,1H,1

uL,1H,2

+
(u+1)L,2 H,1,1

+
(u+1)L,2 H,1,1

+
(u+1)L,2 H,1,2

+
(u−1)L,2 H,1,1

+
(u−1)L,2 H,1,1

+
(u−1)L,2 H,1,2

(u−1)L,2 H,1,2
+ (u+1)L,2 H,1,2

(u+1)L,1H,2

(u+1)L,1H,1

(u+1)L,0H

(u−1)L,1H,2

(u−1)L,1H,1

(u−1)L,0H

+

(c)

Figure 8: (a) A 2-phase PH distribution with Coxian representation. (b) Markov chain which will be used to
compute the high-priority job busy periods, in the case where high-priority job size have a PH distribution
with Coxian representation shown in (a). (c) Markov chain for system with 2 servers and 2 priority classes
where high priority jobs have Coxian service times.

A Analysis of M/PH/k with m priority classes

In this section, we describe how RDR can be applied to analyze the case of PH job size distributions. We
describe RDR for the case of two servers (

� � �) and two priority classes (� � �), but this can be easily
generalized to higher

�
’s and higher � ’s. (To generalize to ����� classes and PH distributions, the recursive

algorithm introduced in Section 3.2 can again be applied.)
The mean delay of high priority jobs can be analyzed as the mean delay in an M/PH/2 queue indepen-

dently of the low priority jobs. In our description, we assume that the job size has a particular 2-phase PH
distribution with Coxian representation, shown in Figure 8 (a). Under this job size distribution, a job starts
in phase 1 where it is processed for a time exponentially distributed with rate �

� � �� , and then either completes
(with probability � � � � � � �) or moves to phase 2 (with probability � �). We can then define a Markov
chain as shown in Figure 8 (b), where states track the number of high priority jobs in the system and the
phases of the jobs being processed. Namely, at state (0H) there are no high priority jobs in the system;
at state (1H,
) there is one high priority job in the system and a job is being processed and in phase
 for
 � � $ � ; at state (� H,
 $��) there are � high priority jobs in the system and two jobs are being processed and
are in phase
 and � , respectively (jobs in queue are all in phase 1) for �
 $�� � � � � $ � � $ � � $ � � $ � � $ � � . The
limiting probabilities in this chain can be solved via the matrix analytic method, and this in turn gives the
mean delay via Little’s law.

The mean delay of low priority jobs can be analyzed via RDR once the busy periods of the high priority
jobs are analyzed. Observe, however, that there are four different types of busy periods of high priority jobs,
depending on the phases of the two jobs starting the busy period (1 & 1 or 1 & 2) and the phase of the job
left at the end of the busy period (1 or 2). (Note that a busy period can never start with two jobs both in
phase 2.) Since these busy periods correspond to the first passage time from a state in level � to a state in

21

level � � � in the Markov chain shown in Figure 8 (b), Neuts’ algorithm can be applied to analyze these busy
periods.

Figure 8 (c) shows a level of the Markov chain that tracks the number of low priority jobs, where the
number of low priority jobs is � . The low priority jobs are assumed to be exponentially distributed, but this
can be generalized to PH distributions. In state (� L,0H), no high priority jobs are in system. An arrival of a
high priority job in state (� L,0H) triggers a transition to state (� L,1H,1). In state (
 L,1H,�), one high priority
job in phase � is in the system for � � � $ � . An arrival of a high priority job in state (� L,1H,�) triggers a
transition to state (
 L, � � H, � $��) for � � � $ � . In state (
 L, � � H, � $��), at least two high priority jobs are in the
system, and the two jobs that started the busy period were in phase � and

�
, respectively, for � � � $ � and

� � � $ � . The four types of busy periods are labeled as � � , � � , � � , and � � , and the duration of these busy
periods is approximated by PH distributions by matching first three moments of the distribution. Finally,
� � �
 � �

 denotes the probability that a busy period started by two jobs in phase
 and � ends with a job in
phase

�
left in the system for
 � � $ � , � � � $ � , and

� � � $ � . This analysis is validated against simulation
in Section 4.

B Moments of busy periods in QBD processes

Neuts’ algorithm [21] is an efficient algorithm that calculates the moments of various types of busy periods
in very general processes, i.e. M/G/1 type semi-Markov processes. Because of its generality, however, the
description of the algorithm in [21] is sophisticated, and thus non-trivial to understand or implement. Since
Neuts’ algorithm can be applied to the performance analysis of many computer and communication systems,
it is a shame that it has not been used more frequently in the literature.

The purpose of this section is therefore to make Neuts’ algorithm more accessible by re-describing his
algorithm restricted to the first three moments of particular types of busy periods in QBD processes. We
omit all proofs, which are provided in detail in [21]; instead we focus on intuition and interpretation. We
include everything needed to apply Neuts’ algorithm within our solution framework, so that readers who
wish to apply our methodology can do so.

In our paper, we consider a QBD process with state space
� �

� �
 $�� ���
 ��� $ ��� � � ��� , which has
generator matrix Q:

� �
	

�

� � � �
�
�

� � � � � �

...

� � � � � . . .
...
�
�

��������
�

where � and � � are �
�

� matrices. Figure 9 shows a particular QBD process with � � � .
We define level
 as denoting the set of states of the form �
 $�� � for � � � $ � � � $ � . Our goal can be roughly

stated as deriving the passage time required to get from state � � $�� � to level 0 conditioned on the particular
state first reached in level 0. More precisely, we seek the first three moments of the distribution of the time
required to get from state � � $�� � to state � � $ � �

, given that state � � $ � �
is the first state reached in level 0. In

the rest of this section, we describe how Neuts’ algorithm can be applied to derive these quantities.

22

1µ 1µ 1µ

2µ 2µ 2µ

λλ λ

βα α βα

1,20,2

λ λλ

2,11,10,1

2,1

β

(a)

��� �����	��

��� �� ���	��
 � �������� � � ������ ���� � � ���	��
�� �

��� �� ���	��
�� �
 � ��� ���� � ��� � ���� � �
(b)

Figure 9: An example of a QBD process: (a) states and transition rates, and (b) submatrices of the generator
matrix.

Notation

We define the transition probability matrix, �"! � , as

 �"! � �
	

�

�"! � $
� �"! � �
�
�
$ � �"! �%$ � �"! �%$

� �"! � ...

�
$ � �"! �%$ � �"! � . . .

...
�
�

��������
�

where the �'& $)(� element, �*,+ �"! � , is the probability that the sojourn time at state �
-* $�� * � is less than or equal
to ! and the first transition out of state �
.* $�� * � is to state �
/+ $�� + � . Note that a state is a pair of numbers, level
and phase, and formally
0* � � * � & ,
1+ � � + � (, and � * $�� + � � hold. Observe also that

�"! � and
$ � �"! �

are each �
�

� submatrices for
 � � $ � $ � .
Next, we define the 2 -th moment of submatrices

$ � �"! � as
$ ��3 �� �5476� ! 398 $ � �"! � for
 � � $ � $ � and2 � � $ � $ � , where an integral of a matrix : is a matrix of the integrals of the elements in : .

Example

Consider the QBD process shown in Figure 9. Let
 � � & � � $
and
 � � & � � #

. Then,
$ � �"! � ’s

and their moments
$ �;3 ��

for 2 � � $ � $ � look as follows:$
� �"! � � < � �>= �@? �1A �

� ���>= �@? � ACB < �? � �
� �? �

B$ � �"! � � < � �>= �@? �1A �
� ���>= �@? �DA B < � E? �F? � � B$ � �"! � � < � �>= �@? �1A �
� ���>= �@? �DACB < � �? � �

�
� �? �

B
and $ �;3 �

� � < 3�G?IH� �
�

3�G? H� B < �? � �
� �? �

B
23

$ �;3 �
� � < 3�G? H� �

�
3�G?IH� B < � E? �F? � � B

$ �;3 �
� � < 3�G? H� �

�
3�G?IH� B < � �? � �

�
� �? �

B
Finally, let � �"! � be an �

�
� matrix whose � � $ � �

element, � �
 �"! � , is the probability that the time to
visit level 0 is at most ! and the first state visited in level 0 is � � $ � �

given that we started at � � $�� � . Also, let

�
�;3 ��
 be the 2 -th moment of � �
 �"! � ; namely, �

�;3 �
� 4 6� ! 3 8 � �"! � for 2 � � $ � $ � .

Matrix � � ����� A�� 6 � �"! � is a fundamental matrix used in the matrix analytic method, and many
algorithms to calculate � have been proposed [18]. The most straightforward (but slow) algorithm is to
iterate

� � � � � �
� � � � � � � � �

� � � (3)

until it converges. Notice that � �
 �"! � is not a proper distribution function and � �
 � ����� A�� 6 � �"! � , which
is the probability that the first state in level 0 is state � � $ � �

given that we start at state � � $�� � , can be less than

1. Therefore, �
��3 ��
 is not a proper moment rather a conditional moment: “the 2 -th moment of the distribution

of the first passage time to level 0 given that the first state in level 0 is state � � $ � �
and given that we start at

state � � $�� � ” multiplied by “the probability that the first state reached in level 0 is state � � $ � �
given that we

start at state � � $�� � .”

Moments of busy periods

The quantities that we need in our methodology are (a) the probability that the first state reached in level 0
is state � � $ � �

given that we start at state � � $�� � and (b) the 2 -th moment of the distribution of the first passage
time to level 0 given that the first state in level 0 is state � � $ � �

and given that we start at state � � $�� � . Quantity

(a) is given by � �
 , and quantity (b) is given by
�	� H�
�
�� ��� . Therefore, our goal is to derive matrices, � and �

��3 �
for 2 � � $ � $ � .

Matrix � is obtained by an iterative substitution of (3). Once � is obtained, matrix �
� � �

is obtained by
iterating

�
� � �
� $ � � �

� $ � � �
� � $ � �

� � � $ � � �
� � � $

� �
� � �
� $

� � �
� � �

(4)

Similarly, matrix �
� � �

is obtained by iterating

�
� � �

� $ � � �
� $ � � �

� � � $ � � �
� �

� � � $ � �
� � �

 $ � � �
� � � � $ � � �

� � �
� � �
� � � � � � � $

� � �
� � �
� � � � � �

�
� � � � � � � � �

(5)

and matrix �
� � �

is obtained by iterating

�
� � �

� $ � � �
� $ � � �

� � � $ � � �
� �

� � � � $ � � �
� �

� � � $ � �
� � �

 $ � � �
� � � � $ � � �

� � �
� � �
� � � � � � � � $ � � �

� � �
� � �
� � � � � �

�
� � � � � � � � �

 $ � � �
� � �
� � � � � �

�
� � � � � � � �

�
� � � � � � � � � � (6)

We now give intuition behind expressions (4), (5), and (6). The right hand side of (4) can be divided into
three parts: [0]

$ � � �
� , [1]

$ � � �
� � $ � �

� � �
, and [2]

$ � � �
� � � $ � �

� � �
� $ � � �

� � �
. For � � � $ � $ � , the � � $ � �

element of part [�] gives “the first moment of the distribution of the time (required to get from state � � $�� � to
state � � $ � �

given that the first transition out of state � � $�� � is to level � and the first state reached in level 0 is

24

� � $ � �
” multiplied by “the probability that the first transition out of state � � $�� � is to level � and the first state

reached in level 0 is � � $ � �
.” Part [1] consists of two terms. The first term,

$ � � �
� � , is the contribution to (

made up of the time until the first transition, and the second term,
$ � �

� � �
, is the contribution to (from when

the first transition occurs until we reach � � $ � �
. Similarly, part [2] consists of three terms. The first term,$ � � �

� � � , is the contribution to (made up by the time until the first transition; the second term,
$

� �
� � �
� ,

is the contribution to (from consisting of the time to return to level 1 from level 2; finally, the third term,$
� � �

� � �
, is the contribution to (of the time required to go from level 2 to level 1.

The right hand sides of (5) and (6) can similarly be divided into three parts: part [0] consists of terms
containing

$ � or
$ ��3 �

� ; part [1] consists of terms containing
$ � or

$ ��3 �
� ; part [2] consists of terms containing$

� or
$ ��3 �
� . The three parts of (5) and (6) can be interpreted exactly the same way as the three parts of (4)

except that “the first moment” in (4) must be replaced by “the second moment” and “the third moment” in
(5) and (6), respectively. The three terms in part [1] of (5) can be interpreted as follows. Let � E be the time
to the first transition and let � � be the time it takes from level 1 to level 0. Then, the second moment of the
distribution of these two times is

��� ��� E � � � � � � ��� ��� E � � � � ��� � E � ��� � � � ��� ��� � � � �%$

since � E and � � are independent. Roughly speaking,
$ � � �

� � corresponds to
��� ��� E � � � , � $ � � �

� �
� � �

corre-
sponds to � ��� � E � ��� � � � , and

$ � �
� � �

corresponds to
��� ��� � � � � . The other terms can be interpreted in the

same way.

Generalizations

Finally, we mention four generalizations that Neuts’ algorithm allows. First, while we restricted ourselves
to the first three moments, Neuts’ method generalizes to any higher moments. Second, while we restricted
ourselves to the first passage time from level 1 to level 0, Neuts’ method generalizes to passage times from
level
 from level � . Third, while we limited our discussion to QBD processes, the results can be generalized
to M/G/1 type semi-Markov processes. Fourth, while we only computed moments of the distribution of the
duration of busy periods, one can also compute moments of the joint distribution of the duration of a busy
period and the number of transitions during the busy period. These four generalizations are all formally
proven in [21].

25

