
Enabling Secure High-Performance
Wireless Ad Hoc Networking

Yih-Chun Hu
CMU-CS-03-144

May 29, 2003

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee

David B. Johnson, Chair
Edward W. Knightly

Srinivasan Seshan
Peter Steenkiste

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

c©2003 Yih-Chun Hu

This work was supported in part by the NSF under grant CCR-0209204 at Rice University, by NASA un-
der grant NAG3-2534 at Rice University, by a gift from Schlumberger to Rice University, by the Air Force
Materiel Command (AFMC) under DARPA contract number F19628-96-C-0061, and by an NSF Graduate
Fellowship. The views and conclusions contained here are those of the author and should not be interpreted
as necessarily representing the official policies or endorsements, either express or implied, of NSF, NASA,
Schlumberger, AFMC, DARPA, Rice University, Carnegie Mellon University, or the U.S. Government or any
of its agencies.

ii

Keywords: ad hoc networks, mobility, performance, security, wireless

Contents

Illustrations ix

List of Tables xi

Acknowledgements xiii

1 Introduction 1
1.1 Why is Service Important in Ad Hoc Networks? 1
1.2 Description of Several Ad Hoc Network Routing Protocols 2

1.2.1 Distance-Vector Routing Protocols . 2
1.2.2 Dynamic Source Routing (DSR) . 2
1.2.3 Ad-hoc On-Demand Distance Vector (AODV) 3
1.2.4 Other On-Demand and Periodic Protocols 4

1.3 Thesis Contributions . 4
1.4 Thesis Overview . 5

I Improving Service in Trusted Environments 7

2 Using Link-State Caching in Ad Hoc Networks 9
2.1 Caching Strategy Design Choices . 9

2.1.1 Cache Structure . 9
2.1.2 Cache Capacity . 10
2.1.3 Cache Timeout . 11

2.2 Caching Algorithms Studied . 11
2.2.1 Path Caches . 11
2.2.2 Link Caches . 11
2.2.3 Omniscient Expiration Cache . 12

2.3 Methodology . 12
2.3.1 Simulator . 12
2.3.2 Communication Model Used . 13
2.3.3 DSR Performance Metrics . 13

2.4 Mobility Metrics . 13
2.5 Mobility Models Studied . 14

2.5.1 Mobility Model Specifications . 14
2.5.2 Evaluation of Mobility Metrics . 17

2.6 Simulation Results . 18
2.6.1 Overview of the Results . 18

iii

iv CONTENTS

2.6.2 Effects of Cache Structure . 20
2.6.3 Effects of Cache Capacity . 21
2.6.4 Effects of Cache Timeout . 22

2.7 Related Work . 24
2.8 Chapter Summary . 24

3 Implicit Source Routes 27
3.1 Implicit Source Routing Operation . 28

3.1.1 Correctness . 30
3.2 Evaluation Methodology . 31
3.3 Results . 32
3.4 Related Work . 34
3.5 Chapter Summary . 35

4 Exploiting MAC Layer Information 37
4.1 MAC Layer Utilization Information . 38

4.1.1 Measuring MAC Layer Utilization . 38
4.1.2 Uses within the Network Layer . 38
4.1.3 Uses within the Transport Layer . 39
4.1.4 Uses within Other Higher Layer Protocols 40

4.2 Evaluation within DSR and TCP . 40
4.2.1 Modifications to DSR Route Discovery 40
4.2.2 Modifications to DSR Packet Salvaging 41
4.2.3 Use within TCP . 42

4.3 Evaluation Methodology . 42
4.4 Results . 44

4.4.1 Suppressing Salvaging . 44
4.4.2 Suppressing Route Discovery . 46
4.4.3 TCP Fairness . 46

4.5 A Quality-of-Service Demonstration . 47
4.5.1 Preemptive Route Maintenance . 47
4.5.2 Using SNR to Limit Route Discovery . 49
4.5.3 Per-Hop Flow State Maintenance . 49
4.5.4 Demonstration Design and Configuration 50
4.5.5 Protocol Implementation . 51
4.5.6 Demonstration Results . 52
4.5.7 Related Work . 54
4.5.8 Demo Summary . 54

4.6 Chapter Summary . 55

II Improving Service in Untrusted Environments 57

5 Security in Ad Hoc Networks 59
5.1 Security . 59

5.1.1 Hash Functions . 60
5.1.2 Hash Trees . 60
5.1.3 One-Way Hash Chains . 61

CONTENTS v

5.1.4 The TESLA Broadcast Authentication Protocol 61
5.1.5 Hash to Obtain Random Subset (HORS) 62
5.1.6 Amortized Authentication . 63

5.2 Ad Hoc Network Routing Security . 63
5.2.1 Attacker Model . 63
5.2.2 General Attacks on Ad Hoc Network Routing Protocols 63
5.2.3 Goals in Securing Ad Hoc Network Routing 65

6 SEAD: Secure Efficient Distance Vector Routing 67
6.1 Distance Vector Routing and DSDV . 68
6.2 Assumptions . 69
6.3 Attacks . 70
6.4 Securing Distance Vector Routing . 70

6.4.1 Basic Design of SEAD . 70
6.4.2 Metric and Sequence Number Authenticators 71
6.4.3 Neighbor Authentication . 73

6.5 Evaluation . 74
6.5.1 Security Analysis . 74
6.5.2 Simulation Evaluation Methodology . 75
6.5.3 Simulation Results . 76

6.6 Related Work . 76
6.7 Chapter Summary . 77

7 Ariadne: A Secure On-Demand Routing Protocol 79
7.1 Assumptions . 80

7.1.1 Network Assumptions . 80
7.1.2 Node Assumptions . 80
7.1.3 Security Assumptions and Key Setup . 81

7.2 Ariadne . 82
7.2.1 Notation . 82
7.2.2 Design Goals . 82
7.2.3 Basic Ariadne Route Discovery . 83
7.2.4 Basic Ariadne Route Maintenance . 85
7.2.5 Thwarting Effects of Routing Misbehavior 87
7.2.6 Thwarting Malicious Route Request Floods 88
7.2.7 An Optimization for Ariadne . 88

7.3 Ariadne Evaluation . 89
7.3.1 Simulation-Based Performance Evaluation 89
7.3.2 Security Analysis . 91

7.4 Related Work . 94
7.5 Chapter Summary . 95

8 Efficient Mechanisms for Securing Routing Protocols 97
8.1 Assumptions . 98

8.1.1 Node Assumptions . 98
8.1.2 Security Assumptions and Key Setup . 99

8.2 Mechanisms for Securing Distance Vector Protocols 99
8.2.1 Remaining Challenges in Securing Distance Vector Routing 99

vi CONTENTS

8.2.2 Hash Tree Chains for Preventing Same-Distance Fraud 100
8.2.3 Tree-Authenticated One-Way Chains . 103
8.2.4 The MW-Chains Mechanism . 104
8.2.5 Skipchains for Faster Hash Chain Authentication 106
8.2.6 Efficiency Evaluation . 108
8.2.7 Bootstrapping New Chains and Trees . 109
8.2.8 Combining Our Primitives . 110

8.3 A Mechanism for Securing Path-Vector Protocols 111
8.3.1 Overview of Path Vector Routing . 111
8.3.2 Cumulative Authentication . 111
8.3.3 Performance Evaluation . 112

8.4 Chapter Summary . 112

9 Packet Leashes: A Defense against Wormhole Attacks 115
9.1 Problem Statement . 116
9.2 Assumptions and Notation . 117
9.3 Detecting Wormhole Attacks . 118

9.3.1 Geographical Leashes . 118
9.3.2 Temporal Leashes . 119
9.3.3 Discussion . 119

9.4 Temporal Leashes and the TIK Protocol . 120
9.4.1 Temporal Leash Construction Details . 120
9.4.2 TIK Protocol Description . 121
9.4.3 MAC Layer Considerations . 124

9.5 Evaluation . 124
9.5.1 TIK Performance . 124
9.5.2 Security Analysis . 125
9.5.3 Comparison Between Geographic and Temporal Leashes 126

9.6 Related Work . 126
9.7 Conclusions . 127

10 Rushing Attacks and Defense 129
10.1 The Rushing Attack against Ad Hoc Network Routing Protocols 130
10.2 Assumptions . 131

10.2.1 Network Assumptions . 131
10.2.2 Security Assumptions and Key Setup . 132

10.3 Secure Routing Requirements and Protocol . 133
10.3.1 Notation . 133
10.3.2 Secure Neighbor Detection . 133
10.3.3 Secure Route Discovery . 135
10.3.4 Integrating Secure Route Discovery with DSR 136
10.3.5 Integrating Secure Route Discovery with AODV 136
10.3.6 Integrating Secure Route Discovery with Secure Ad Hoc Network Routing

Protocols . 137
10.4 Evaluation . 137

10.4.1 Simulation Evaluation . 137
10.4.2 Security Analysis . 140

10.5 Related Work . 141

CONTENTS vii

10.6 Chapter Summary . 142

11 Securing QoS Routing in Ad Hoc Networks 143
11.1 QoS-Guided Route Discovery . 143
11.2 Mechanisms for Securing QoS Routing . 144

11.2.1 Broadcast Authentication for REQUEST Packets 144
11.2.2 Enforcing Monotonicity . 144
11.2.3 Limiting Overhead of QoS-Guided Route Discovery 145

11.3 Related Work . 145
11.4 Chapter Summary . 146

12 Thesis Summary and Conclusions 147
12.1 Conclusions . 149

Bibliography 151

viii CONTENTS

Illustrations

2.1 Alternative Cache Data Structures . 10
2.2 Correlation of Mobility Metrics to Packet Overhead and Number of ROUTE ERRORs 16
2.3 Performance of Caching Optimizations . 19
2.4 Correlation Between Mobility Metric and DSR Routing Performance 23

3.1 Performance of Implicit Source Routing . 33
3.2 Overhead of Implicit Source Routing . 34

4.1 Performance of Improved Cross-Layer Information Flow to DSR (1500 m×300 m) 43
4.2 Performance of Improved Cross-Layer Information Flow to DSR (1000 m×1000 m) 45
4.3 Performance of Improved Cross-Layer Information Flow to TCP (1000 m×1000 m) 46
4.4 Location of nodes in the demonstration . 50

5.1 Tree authenticated values . 60

6.1 SEAD Simulation Results . 75

7.1 Route Discovery in Ariadne . 85
7.2 Route Maintenance in Ariadne . 87
7.3 Ariadne Performance Results . 90

8.1 Metric and Sequence Number Authentication Using Hash Tree Chains 101
8.2 Sample Network Vulnerable to the Sequence Number Rushing Attack 103
8.3 Tree-Authenticated One-Way Chain Construction 104
8.4 MW-Chain Generation and Usage . 105
8.5 Skipchain Generation and Usage . 107
8.6 Bootstrapping a New Chain . 109
8.7 Bootstrapping a New Tree . 110
8.8 Combining Primitives . 110
8.9 Example of Cumulative Authentication . 111

9.1 Timing of a packet in transmission using TIK . 123

10.1 Example network illustrating the rushing attack 130
10.2 Our design to secure a protocol against the rushing attack 133
10.3 Neighbor dection between S and R . 134
10.4 B forwarding the REQUEST from A . 135
10.5 Unoptimized RAP performance . 138
10.6 Example network topology used in RAP security analysis 140

ix

x ILLUSTRATIONS

10.7 An example of a successful Route Discovery . 140

List of Tables

2.1 Mobility Pattern Parameters: Brownian Motion 14
2.2 Mobility Pattern Parameters: Random Gauss-Markov Motion 15
2.3 Mobility Pattern Parameters: Random Waypoint Motion 15
2.4 Mobility Pattern Parameters: Pursue Motion . 17
2.5 Correlation Between Mobility Metrics and DSR Performance 18

4.1 MAC Layer Utilization Levels for Triggering Optimizations 42

6.1 Parameters for SEAD Simulations . 74

7.1 Parameters for Ariadne Simulations . 89

8.1 Performance of Our Mechanisms . 108

xi

xii LIST OF TABLES

Acknowledgements

First, I’d like to thank my parents for all their support over the years; it goes without saying that
without them, I wouldn’t be where I am today (or even extant, for those interested in technicali-
ties). I’m also grateful for my sister, Yih-Mei, who has in many things preceded me and passed her
experiences back to me. Cathy Lu’s support and encouragement throughout much of my time in
graduate school is also much appreciated. Thanks to the Father for the incomparable riches of His
grace, in which I have life to the fullest.

Academically, I’m deeply indebted to the mentorship of my advisor, Dave Johnson. The long
hours he dedicated to working on papers and talking through ideas helped seed and solidify many
of the new concepts in this thesis. His effort in shielding me from undesirable red tape redeemed
many hours for research (and recreation). I’m also thankful for the opportunity to work with Adrian
Perrig, who provided much motivation, ideas, and insight into our work on security.

I’d also like to thank my other committee members: Ed Knightly, Srini Seshan, and Peter
Steenkiste. Their feedback on my proposal and my thesis, their time in reading this monstrosity,
and their understanding throughout the various changes of direction, are greatly appreciated.

The members of my research group, the Monarch Project, have also been a great help in this
work: Dave Maltz and Josh Broch laid the framework for the simulations and implementations de-
scribed in this thesis, and Dave also initially designed two of the mechanisms which I later finalized
and reduced to practice for this thesis. Jorjeta Jetcheva and Qifa Ke provided indispensable help
with the preparations for the Quality-of-Service demonstration. Amit Saha helped validate the im-
plicit source routing simulations and provided some source code for it as well. Santashil PalChaduri
has always been a fun target to bounce ideas off of, and his work on the Ad Hoc City simulations is
greatly appreciated and highly motivating.

I’d also like to thank all the referees that reviewed this work as pieces of it were submitted to var-
ious conferences. Their suggestions have improved both the presentation and content. Dawn Song
also provided valuable feedback to many of the security chapters in their paper forms. Additionally,
I’d like to thank Victor Bahl and Dan Wallach for their unwavering insistence that I graduate as soon
as possible.

I’d like to thank my friends, who have provided me much support, both in working on this
thesis and otherwise. Dave Matsumoto and Esther Chen helped directly in helping with the QoS
demo, Edwin Chan pushed me to work on my thesis proposal, and friends too numerous to mention
supported me through good times and bad.

On the administrative side, Sharon Burkes and Catherine Copetas helped coordinate many
events leading up to my graduation, from speaking requirement talks to thesis proposals to my
defense. Debbie Cavlovich put up with my travel reimbursements while I was at CMU, and the sup-
port staff at the Information Networking Institute was instrumental in aquiring the needed hardware
for the QoS demo. I finished this thesis as a visiting student at Rice University, where the support
staff there helped me navigate the maze of regulations; in particular, Iva Jean Jorgensen, Rhonda
Guajardo, Tammy Luc, Darnell Price, and Lena Sifuentes were of great help during my time at Rice.

xiii

xiv ACKNOWLEDGEMENTS

Financially, I’d like to thank the NSF for supporting me through the NSF Graduate Fellowship
program, as well as under grant CCR-0209204. I’d also like to thank NASA for their support under
grant NAG3-2534 at Rice University, Schlumberger for their support in the form of a gift to Rice
University, and the Air Force Materiel Command (AFMC) for their support under DARPA contract
number F19628-96-C-0061.

Parts of chapters 2, 3, 5, and 7 are copyright ACM, parts of chapters 4.5, 5, 9, and 6 are copyright
IEEE, and parts of chapters 5 and 8 are copyright ISOC and are included with permission.

Chapter 1

Introduction

1.1. Why is Service Important in Ad Hoc Networks?

A revolution has occurred in wireless communications over the last decade. Advances in process-
ing power have enabled widespread deployment of radio networks as well as portable devices that
can make use of such networks. Wireless networks have become more convenient and affordable
and have spread to even fairly stationary applications, such as home networking and community
networking. At the same time, the importance of networking as a field of computer science has
greatly increased, as the Internet’s exponential growth demonstrated Metcalfe’s law: the usefulness
of a network is proportional to the square of the number of users. Network connectivity is more
frequently than ever the most important use of a computer, due to the development of many useful
networked applications, such as email, the World Wide Web (WWW), peer-to-peer file sharing, and
presense and instant messaging. Even mobile devices are increasingly expected to support some
level of data network connectivity; Palm and Pocket PC devices, RIM Blackberries, and many cell
phones are capable of connecting to the Internet.

Wired networks use routing because it is impractical to have all hosts connected to the same
physical wire; similarly, in wireless networks, it is often undesirable to increase propagation range,
due to increased propagation delay, reduced utilization, higher power requirements, and increased
interference that results from such an approach. Routing protocols are used to automatically find
routes between nodes that wish to communicate. A number of routing protocols have been proposed
as the Internet transitioned from research network into the commercial network that it is today.
Even today, many different routing protocols are used in the Internet. Unfortunately, previously
proposed wired network routing protocols are generally unsuitable for ad hoc networks. An ad hoc
network is a network in which nodes cooperate to dynamically establish routing among themselves;
a packet sent by one node may be forwarded in turn by a sequence of other nodes, allowing the
packet to reach a destination beyond the sender’s wireless transmission range. An ad hoc network
routing protocol is protocol designed to operate in this environment. Such protocols must continue
to function when node mobility, node failure, and changing wireless propagation conditions cause
rapid topology change. It is also desirable for an ad hoc network routing protocol to continue to
function when malicious nodes are present.

This thesis discusses improvements to service in ad hoc network routing. Since different
networks require different types of service, I propose several mechanisms to improve service in
various network conditions. One example of service is Quality-of-Service (QoS), since certain
networks may desire some flows to have priority over other flows. Many of the mechanisms pre-
sented here make no distinction between lower and higher priority traffic, and in my evaluation, I

1

2 CHAPTER 1. INTRODUCTION

only examine performance metrics aggregated over all flows, rather than the performance of a few
select flows.

Another area encompassed by service is security. In particular, when an attacker is present in the
network, a protocol that provides security against such an attacker should provide better service than
one that does not. For example, a secure protocol should deliver more packets, incur less overhead,
or conserve overall network power usage better than in insecure protocol when the network is under
attack. As a network experiences attack, a secure network routing protocol may continue to provide
some level of service, whereas a traditional network routing protocol may fail completely.

Since service can be judged by many metrics, an increase in service measured by some metrics
may result in a decrease in service as measured by other metrics. For example, our secure routing
protocols have significantly higher overhead due to the authentication information that they carry.
In this thesis, analyze the performance of each mechanism I present to clarify the circumstances
under which the use of each mechanism may be desirable.

1.2. Description of Several Ad Hoc Network Routing Protocols

1.2.1. Distance-Vector Routing Protocols

The idea of treating each wireless node as a router was first developed by DARPA PRNET [91].
PRNET introduced many ideas for optimizing distance-vector routing protocols for use in an ad hoc
network. In a distance-vector protocol, each node keeps a routing table. Each entry in this table
contains all the information necessary to route packets to a single destination; in a distance vector
protocol, a table entry typically contains the destination address, the number of hops to the destina-
tion (called the metric), and the next hop along the route to the destination. Each node periodically
sends its routing table to its neighbors in a packet called an advertisement. When a node receives a
routing table from its neighbor, it checks to see if the table contains any destinations that this node
does not yet have a route to, or if the table provides a better route. In particular, if a node receives
an advertisement from node A indicating some metric x to a destination D, it has learned a route
through A with metric x + 1. If this route of metric x + 1 is better than this node’s current route, it
updates its routing table to use this newly found route, by setting its metric to x+1 and its next-hop
destination to A. This algorithm is called the distributed Bellman-Ford algorithm [12, 53].

In 1994, two new ad hoc network routing protocols were introduced: the Destination Sequence
Distance Vector (DSDV) protocol [140], and the Dynamic Source Routing (DSR) protocol [87–90].
DSDV is based on distance-vector routing, but introduces a sequence number in addition to the met-
ric. This destination sequence number prevents loops, but requires hard state: that is, the protocol
requires that nodes retain state for an unbounded period of time. In particular, DSDV cannot re-
cover from a reboot without knowing its previous sequence number. A node increases its sequence
number each time it sends an update. A routing update with a higher sequence number takes prior-
ity, and updates with equal sequence numbers are chosen based on metric. DSDV also imposes a
delay between the receipt of an advertisement and the readvertisement of a new route based on that
advertisement; however, this delay does not necessarily improve performance (Chapter 6).

1.2.2. Dynamic Source Routing (DSR)

DSR is a completely on-demand protocol; that is, control packets are sent in DSR only when needed.
DSR divides the routing problem into two parts: Route Discovery and Route Maintenance.

In DSR, a node sending a packet includes in that packet a source route selected from the source’s
Route Cache. This Route Cache is populated using Route Discovery. In Route Discovery, a node

1.2. DESCRIPTION OF SEVERAL AD HOC NETWORK ROUTING PROTOCOLS 3

that wishes to send a packet to a destination, but does not have a route to that destination in its Route
Cache, initiates Route Discovery by broadcasting a ROUTE REQUEST packet to its neighbors. The
ROUTE REQUEST packet includes the addresses of the initiator (this node) and target (the destina-
tion this node wishes to reach) of the Discovery, a unique identifier from the initiator, and a route
record listing the nodes traversed by this packet. A node hearing a REQUEST checks if it is the target
of the REQUEST. If so, it returns a ROUTE REPLY to the initiator, containing the route from the route
record in the received REQUEST. This ROUTE REPLY can be routed by searching the target’s Route
Cache, by reversing the route recorded in the REQUEST, or by piggybacking the ROUTE REPLY

on another Route Discovery with a target of the original initiator. Otherwise, the node checks the
unique identifier to determine if it has previously rebroadcasted a REQUEST from the same Route
Discovery, and if so, it silently drops the REQUEST. The node also checks if its address already
appears in the route record carried in the REQUEST, and if so, it discards the REQUEST. Finally,
since the node is not the target, and has not previously rebroadcasted a REQUEST from this Route
Discovery, then it appends its address to the route record in the REQUEST and rebroadcasts it.

Route Maintenance is the mechanism by which DSR detects that a route has stopped working.
Each node forwarding a packet along a source route performs Route Maintenance by attempting to
confirm that the forwarded packet successfully reaches the next-hop destination. This confirmation
can be received through a link-layer acknowledgement such as in IEEE 802.11 [84], through a
passive acknowledgement [91], or through an explicit network-layer acknowledgement. If a node
is unable to confirm receipt at the next-hop destination, the node returns a ROUTE ERROR to the
source of the packet, indicating that its link to the next-hop destination is broken. Any node hearing
this ERROR removes that link from its Route Cache.

A number of optimizations have been proposed to improve the performance of DSR; this thesis
discusses interactions between the work described here and two optimizations: salvaging and auto-
matic route shortening. In salvaging, a node that detects a broken link and returns a ROUTE ERROR

then the node may attempt to salvage the packet if it has in its own Route Cache a different route to
the packet’s destination; to do so, the node replaces the original route with the route from its cache
and transmits the packet to the new next-hop node. As another optimization, DSR supports auto-
matic route shortening to allow source routes in use to be shortened when two nodes in the source
route move close enough together so that one or more intermediate hops are no longer necessary.
With this optimization, each node operates its network interface in promiscuous mode, such that
each packet wirelessly received by the network interface is passed to the network protocol stack,
regardless of the packet MAC-layer destination address. If a node is able to promiscuously receive
a packet not intended for it as the next hop, but for which this node is listed in the unused portion
of the packet’s source route, then this node returns a “gratuitous” ROUTE REPLY to the original
sender of the packet; this REPLY gives the shorter route that does not include the intermediate nodes
between the node that transmitted the packet and this node. For example, if a packet was sent along
a source route (A,B,C,D), and node C overhears node A’s transmission, then C returns a REPLY to
A giving the route (A,C,D).

1.2.3. Ad-hoc On-Demand Distance Vector (AODV)

In 1999, the Ad-hoc On-Demand Distance Vector (AODV) protocol [141] was introduced. AODV
turns DSDV into an on-demand protocol, borrowing many features from DSR. AODV performs
on-demand Route Discovery, using ROUTE REQUEST and ROUTE REPLY packets (called RREQ
and RREP packets in AODV). Rather than accumulating in the ROUTE REQUEST a route record
listing the nodes traversed by this request and then returning this route record in a ROUTE REPLY,
AODV uses these packets to propagate distance vector updates, providing routing information back

4 CHAPTER 1. INTRODUCTION

to the node initiating the Discovery. For example, if node A sends an RREQ for target node D, the
RREQs establish routes to A, and the RREP sent by D establish routes to D. These packets establish
routes on a hop-by-hop basis so no source routes are needed. Because AODV does not send RREQs
and RREPs periodically, it also needs a mechanism for link breakage notification; AODV borrows
DSR’s ROUTE ERROR (called RERR in AODV). A node detecting link breakage transmits an RERR
to each upstream node that is using that link. Because of its similarity to DSR, many optimizations
I present for DSR can also be used in AODV.

1.2.4. Other On-Demand and Periodic Protocols

A number of other ad hoc network routing protocols have been proposed [13, 19, 36, 47, 55, 62,
99, 129, 137, 154, 181]. Some of these protocols exchange messages periodically, and some only
exchange messages only on-demand. On-demand routing protocols are often more suitable than
periodic protocols for ad hoc network routing for two reasons. First, a periodic protocol that does
not adapt the rate at which it transmits routing information is unable to successfully route packets to
their destinations when the rate of network topology change between the source and the destination
is too high, whereas on-demand protocols automatically scale their use of routing packets to adapt to
the rate of topology change. Second, in scenarios with a lower rate of topology change, on-demand
protocols transmit routing packets only when a topology change affects a route actually in use or
when a packet is sent to a new destination, whereas periodic protocols require the transmission of
routing packets even when no topology change occurs and when there are no packets to be deliv-
ered. These additional routing packets reduce the bandwidth available to applications and require
battery power to transmit and receive. Numerous simulation results have confirmed that on-demand
protocols provide higher performance than periodic protocols in most situations. As a result, in this
thesis, I focus on service in on-demand protocols. I focus my protocol-specific discussions on DSR
and AODV, since they are the leading proposals for on-demand ad hoc network routing protocols.

1.3. Thesis Contributions

This thesis presents a number of contributions to the area of improving service in on-demand pro-
tocols for wireless ad hoc network routing. For scenarios without attackers and without real-time
requirements, I present the mechanism of link-state caching, which improves the ability of source-
routed on-demand routing protocols to retain much of the information useful for routing while dis-
carding potentially stale information. I show that this can be done in an adaptive manner, and that
an adaptive cache can often outperform a statically parameterized cache. I also contribute implicit
source routes, which improve performance by removing a major disadvantage of source routing (in
particular, the per-hop overhead of carrying source routes) while retaining the advantages of source
routing.

This thesis also presents contributions to the area of providing real-time services in networks
that are not under attack. I contribute the use of implicit source routing for packet classification,
allowing the selection of per-hop behavior based on which flow to which a packet belongs. I also
contribute a technique that uses physical layer information (specifically, the Signal-to-Noise Ratio)
to choose routes, allowing the protocol to choose longer-lived routes, and also enabling the routing
protocol to find new routes before old ones break. Finally, I show how MAC layer utilization infor-
mation can be used to choose less congested paths, thus enabling higher network-wide throughput
and providing significantly improved TCP fairness.

Finally, I provide contributions to secure ad hoc network routing which allow improved service
in hostile environments. These contributions include SEAD and Ariadne, two routing protocols

1.4. THESIS OVERVIEW 5

resiliant to a wide variety of attacks. I also contribute general mechanisms for efficiently securing
distance-vector routing and Quality-of-Service routing, and mechansisms for resisting the tunneling
and rushing attacks. In addition, I contribute skiplists, an alternative to very long hash chains, which
significantly reduces the computational cost of following a long hash chain at the cost of increased
storage overhead.

1.4. Thesis Overview

In this thesis, I present two types of service improvements. Part I covers improvements originally
designed for a trusted environment. I present link-state caching (Chapter 2), which improves packet
delivery and overhead in source-routed protocols. This technique allows higher levels of service for
applications less tolerant of packet loss (such as TCP), and also provides an approach to improving
other types of on-demand protocols. Implicit source routing (Chapter 3) substantially reduces the
overhead of source routing and marginally improves packet loss and latency. More importantly,
the use of implicit source routes allows trivial packet classification, so forwarding nodes can iden-
tify packets belonging to high-priority flows and can forward such packets with higher priority.
Finally, implicit source routing supports multipath routing without additional support from inter-
mediate nodes, allowing a node to spread its traffic across multiple disjoint routes for improved
throughput. In preemptive Route Maintenance (Chapter 4.5), forwarding nodes can preemptively
warn a source of impending link breakage, which can reduce the latency caused by route break-
age. This technique can improve service to real-time applications such as videoconferencing and
Voice-over-IP. I present a mechanism for limiting Route Discovery based on Signal-to-Noise Ratio
(SNR) (Chapter 4.5), which prevents the discovery of routes that are likely to break quickly or that
may not work at all. Such routes might otherwise be discovered due rapid channel fluctuation often
experienced in real-world radio propagation. Finally, I present cross-layer interactions (Chapter 4),
which use measurements from lower layers to improve service to higher-layer protocols.

In Part II, I present mechanisms for securing ad hoc network routing protocols. First, I intro-
duce some security primitives and define an attacker model in Chapter 5. I then present two secure
ad hoc network routing protocols. In Chapter 6, I present SEAD, which is based on DSDV but can
be extended to support on-demand distance vector protocols such as AODV. Chapter 7 presents
Ariadne, a secure on-demand routing protocol based on DSR that resists many kinds of attacks.
In Chapter 8, I present several efficient security mechanisms: hash chains for metric and sequence
number authentication, hash tree chains to force a router to increase the distance when forwarding
a route update, tree-authenticated one-way chains for more efficient routing update authentication,
skiplists for cases in which the maximum metric is large, and cumulative authentication, which sub-
stantially reduces Ariadne’s network overhead. I then present packet leashes (Chapter 9), which
protect against a powerful attack against ad hoc network routing protocols, called the “wormhole
attack.” Finally, I present mechanisms for securing QoS-guided Route Discovery (Chapter 11),
which allows a node to find a route meeting its QoS requirements, limiting an attacker’s ability to
inflating the service level provided by the path that it is on.

6 CHAPTER 1. INTRODUCTION

Part I

Improving Service
in Trusted Environments

7

Chapter 2

Using Link-State Caching in Ad Hoc
Networks

Section 1.2.2 gives a brief overview of Dynamic Source Routing (DSR). As originally evaluated [26,
88], DSR worked essentially as a path-vector routing protocol. A path vector routing protocol dif-
fers from a distance vector routing protocol in that instead of only retaining the metric, or distance,
to each destination, each node maintains the entire path to the destination. In DSR, as it had been
evaluated prior to this work, each Route Discovery provided several paths for the Route Cache.
Each path could be used in whole or in part, but information from different paths was never joined
together. This Route cache had a limited capacity, statically chosen to work well for the scenarios
tested. Intuitively, this cache of paths (called a path cache) is less powerful than a link cache which
contains links and uses a shortest path algorithm such as Dijkstra’s algorithm to find routes as neces-
sary. Furthermore, the use of a static capacity required tuning depending on how many destinations
each source sent to. In this chapter, we explore several options for cache design, specifically in the
areas of cache structure, cache capacity, and cache timeout. These choices substantially affect the
service provided by a network, in the areas of packet loss and routing overhead. We explore these
differences in service level through detailed simulation of the interaction between DSR and various
cache designs.

2.1. Caching Strategy Design Choices

2.1.1. Cache Structure

In developing a caching strategy for an on-demand routing protocol for wireless ad hoc networks,
one of the most fundamental design choices that must be made is the type of data structure used
to represent the cache. In DSR, the route returned in each ROUTE REPLY that is received by the
initiator of a Route Discovery represents a complete path (a sequence of links) leading to the desti-
nation node. By caching each of these paths separately, a path cache can be formed; Figure 2.1(a)
illustrates an example path cache for some node S in the ad hoc network. Alternatively, a link
cache could be created, in which each individual link in the routes returned in ROUTE REPLY pack-
ets is added to a unified graph data structure of this node’s current view of the network topology;
Figure 2.1(b) illustrates an example link cache for node S.

A path cache is very simple to implement and easily guarantees that all routes are loop-free,
since each individual route from a ROUTE REPLY is loop-free. To find a route in a path cache, the
sending node can simply search its cache for any path (or prefix of a path) that leads to the intended

9

10 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

A B C

A B D

F G H

E

I

S

S

S

(a) Path Cache

A B C

D EF G

H I

S

(b) Link Cache

Figure 2.1: Alternative Cache Data Structures for a Node S

destination node. On the other hand, to find a route in link cache, a node must use a much more
complex graph search algorithm, such as the well-known Dijkstra’s shortest-path algorithm, to find
the current best path through the graph to the destination node. Such an algorithm is more difficult
to implement and may require significantly more CPU time to execute.

However, a path cache data structure cannot effectively utilize all of the potential information
that a node might learn about the state of the network. In a link cache, links learned from different
Route Discoveries or from the header of any overheard packets can be merged together to form new
routes in the network, but this is not possible in a path cache due to the separation of each individual
path in the cache. For example, if node S with the cache as shown in Figure 2.1(b) learns of a new
link from node A to node G, it can use this link to also form new routes to nodes H and I (through A
and G) that it could use if the link from F to G later breaks, but a node using a path cache would be
unable to take advantage of these additional routes.

2.1.2. Cache Capacity

The capacity of a route cache is another important area of choice in designing a caching strat-
egy for on-demand routing protocols. For a link cache, the logical choice is to allow the cache
to store any links that are discovered, since there is a fixed maximum of N 2 links that may exist
in an ad hoc network of N nodes. However, for a path cache, the maximum storage space that
could be required is much larger, since each path is stored separately and there is no sharing in
the data structure even when two paths share a number of common links. We thus consider the
effects of different limits on the capacity of path caches in terms of the number of individual paths
it can store. In general, our intuition was that the larger the capacity of a path cache, the better the
routing protocol should perform, since it is able to keep a more complete set of routes. However,
as we show in Section 3.3, a smaller cache size actually can have an indirect effect in improving
performance.

An additional design choice with respect to cache capacity that we consider is the division of the
cache into two halves: one half for paths that have been used by this node (the primary cache) and
a second half for paths that have not yet been used since being learned (the secondary cache); when
a path (or a prefix of a path) in the secondary cache is first used, that path (or prefix) is promoted
to the primary cache. This division of the cache avoids forcing out of the cache paths that this node
has found useful, when attempting to insert some new path into the cache that has just been learned
and has not yet been used (and may never be used). Old paths in the secondary cache are removed
due to the natural operation of the cache when adding new paths as they are learned, whereas old
paths in the primary cache are more actively removed due to the operation of Route Maintenance

2.2. CACHING ALGORITHMS STUDIED 11

as they are used. We refer to such a divided cache as a generational cache, in a manner similar to
the way a generational garbage collector works in a language runtime system with dynamic storage
allocation.

2.1.3. Cache Timeout

As with cache capacity, cache timeout policy introduces a number of design choices to consider in
a caching strategy. Because a path cache generally has a mechanism for removing entries through
a capacity limit, we did not implement a timeout for path caches. For link caches, the timeout on
each link in the cache may be either fixed or adaptive.

For a fixed timeout, each link is removed from the cache after a specified amount of time has
elapsed since the link was added to the cache. For an adaptive timeout, a node adding a link to its
cache attempts to determine a suitable timeout after which the link will be deleted from the cache,
and this timeout value should be based on properties of the link or the nodes that are the endpoints
of the link. Finally, similar to the generational path caching alternative, it is possible to allow a link
that is being used to not expire by increasing its timeout when it is used.

2.2. Caching Algorithms Studied

From the caching strategy design choices given in Section 2.1, we chose a collection of path caches
and link caches to simulate and evaluate. We also simulated an “omniscient expiration” cache,
which although unimplementable in a real system, gives us a benchmark against which our other
cache algorithms can be compared.

2.2.1. Path Caches

Path caches store a set of complete paths (sequences of links), each starting at the caching node. We
analyzed the following algorithms that use path caches:

• Path-Inf is a path cache with no capacity limit.

• Path-FIFO-64 is a path cache with a 64-path capacity limit. The cache replacement policy
used on paths in the cache is FIFO.

• Path-FIFO-32 is the same as Path-FIFO-64, except that it uses a 32-path capacity limit.

• Path-Gen-64 is a generational path cache that employs a 30-element FIFO primary cache to
store paths that have been used or were returned directly to this node in a ROUTE REPLY, and
a separate 64-element FIFO secondary cache to store other paths; the total capacity of this
cache is 94 elements.

• Path-Gen-34 is the same as Path-Gen-64, except that the size of the secondary cache is 34-
elements; the total capacity of this cache is 64 elements, the same as Path-FIFO-64. This
specific caching algorithm, of this size, is the same as that used in our original ns-2 simulation
of DSR [26].

2.2.2. Link Caches

Link caches store a set of individual links, organized as a graph data structure. We analyzed the
following algorithms that use link caches:

12 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

• Link-NoExp is a link cache with no timeout.

• Link-Static-5 is a link cache in which links normally are expired 5 seconds after they are put
into the cache. This is a generational cache, with links that are used to source packets sent by
this node marked to not timeout.

• Link-Adapt-1.25 is a link cache in which a link’s timeout is chosen according to a stabil-
ity table. Each node keeps a table recording the stability of each other node. When a link
is used, the stability metric for both endpoints is incremented by the amount of time since
that link was last used, multiplied by some factor; when a link is observed to break, the sta-
bility metric for both endpoints is multiplicatively decreased by a different factor. A link
entering the cache is given a lifetime equal to the stability of the less-“stable” endpoint of
the link, except that a link is not allowed to be given a lifetime under 1 second. As with
Link-Static-5, this is a generational cache, with links that are used to source packets sent
by this node marked to not timeout. For this cache, the additive increase factor is 4, and
the multiplicative decrease factor is 1.25. The stability table for each node is initialized to
25 seconds.

• Link-Adapt-2 is the same as Link-Adapt-1.25, except that the multiplicative decrease factor
is 2.

• Link-MaxLife is the same as Link-Adapt-2, except that when a node chooses a route, it chooses
the shortest-length route that has the longest expected lifetime (highest minimum timeout of
any link in the path), as opposed to an arbitrary route of shortest length.

2.2.3. Omniscient Expiration Cache

For comparison against the other caching algorithms that we studied, we also analyzed the following
“omniscient expiration” caching algorithm:

• OmniExp is a link cache that performs omniscient expiration of cached links, such that a
link is removed from the cache exactly when it ceases to physically exist. The simulator has
omniscient knowledge of the location of all nodes, and OmniExp bases cache expiration on a
nominal wireless transmission range for each link of 250 m.

2.3. Methodology

2.3.1. Simulator

We analyzed the effects the different caching strategy design choices through detailed simulation
of the different caching algorithms described in Section 2.2. The experiments were conducting
using the ns-2 network simulator [50], extended to support the simulation of wireless and mo-
bile networks [26]. The simulator properly models signal strength, RF propagation, propagation
delay, wireless medium contention, capture effect, interference, and arbitrary continuous mobil-
ity. The radio model is based on the Lucent Technologies WaveLAN 802.11 product, providing a
2 Mbps transmission rate and a nominal transmission range of 250 m. The link layer modeled is the
Distributed Coordination Function (DCF) of the IEEE 802.11 wireless LAN standard [84]. Each
of our simulations were run using 50 nodes moving over a simulated time of 900 seconds, and all
nodes were confined to a 1500 m×300 m space.

2.4. MOBILITY METRICS 13

2.3.2. Communication Model Used

The communication model simulated in all scenarios was a script consisting of 20 Constant Bit Rate
(CBR) data connections, each transmitting 4 packets per second; the size of each packet is 64 bytes.
Each node was the source of at most 2 CBR connections.

2.3.3. DSR Performance Metrics

We evaluated the performance of DSR on each of the caching algorithms according to four metrics:

• Packet Delivery Ratio: The fraction of packets sent by the “application layer” on a source
node that are received by the “application layer” on the corresponding destination node.

• Packet Overhead: The total number of packets transmitted by the routing protocol. This
includes routing packets forwarded, but not data packets forwarded.

• Average Latency: The average delay from when a packet is sent by the “application layer” on
a source node until it is received by the “application layer” on the corresponding destination
node. This can only computed for packets that are successfully delivered.

• Path Optimality: The difference between the number of hops over which a packet was routed
and the number of hops in the shortest route that physically existed when the packet was sent.
The simulator is able to determine this theoretical shortest route at all times, based on the
nominal wireless transmission range for each link of 250 m.

2.4. Mobility Metrics

When we performed these evaluation studies, the random waypoint mobility model modulated by
the pause time was criticised as not being significantly different than Brownian motion. To ver-
ify that out mobility models were reasonable, we examined our movement patterns using mobility
metrics. Previously, Johansson et al [86] had proposed one mobility metric, which we found did
not correlate well with the difficulty of routing in any given movement pattern. As a result, we
developed some mobility metrics to more accurately assess the relative difficulty of routing given
multiple movement scenarios.

Johansson et al [86] describe a geometric mobility metric that is computed for a given scenario
by

2

n(n − 1)T

n
∑

i=1

n
∑

j=i+1

∫ T

t=0

∣

∣

∣

∣

d‖Pj(t) − Pi(t)‖2

dt

∣

∣

∣

∣

dt

where each Pk(t) is the position of a node k at time t, n is the number of nodes, T is the length
of the simulation, and the sum is calculated over all pairs of nodes over all time. For the results in
their paper, they approximated this metric by computing it with a 0.1-second time granularity and
rearranged [104] the equation to compute

n
∑

i=1

n
∑

j=i+1

∫ T

t=0

∣

∣

∣

∣

d‖Pj(t) − Pi(t)‖2

dt

∣

∣

∣

∣

dt ≈

1

2

n
∑

i=1

10T
∑

t=0

∣

∣

∣

∣

∣

n
∑

j=1

∥

∥

∥

∥

Pj

(

t

10

)

− Pi

(

t

10

)
∥

∥

∥

∥

2

−
n

∑

j=1

∥

∥

∥

∥

Pj

(

t − 1

10

)

− Pi

(

t − 1

10

)
∥

∥

∥

∥

2

∣

∣

∣

∣

∣

This approximation, however, can lead to a very inaccurate calculation in some cases. For exam-
ple, on scenarios generated using Brownian motion, as described in Section 2.5.1, the approximate
mobility metric (with 0.1-second granularity) was too small by more than a factor of 2.2.

14 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

Table 2.1: Parameters for Brownian Motion

Movement interval duration 0.1 s
vmax 20 m/s

Instead, we used to following technique to calculate their geometric mobility metric precisely:
split the integral so that each integral is along an interval in which there is no change in the velocity
of either i or j. Define f(t) = ‖Pj(t) − Pi(t)‖2. We want

∫ t2
t1

∣

∣

∣

df(t)
dt

∣

∣

∣
dt. If there is no relative

velocity, then the integral is 0. If f has no local minima on [t1, t2], then the integral evaluates to
∣

∣f(t)|t2t=t1

∣

∣. Otherwise, if t′ ∈ [t1, t2] is a local minima of f , then the integral is f(t1) + f(t2) −
2f(t′).

A difficulty with the geometric mobility metric [86] is that it cannot distinguish between mo-
bility that changes the network topology and mobility that instead has no effect on any links in the
network. If we have information about the nominal wireless transmission range of the radios used
in the network, we can more accurately determine how mobility affects the difficulty of routing.
The minimal shortest route-change metric for a pair of nodes i and j is the minimum number of
times that i and j would need to change routes in order to always have a shortest (least hops) path
to each other, assuming all links are bi-directional. An alternate metric, that we call the minimal
route-change metric, is the same as the minimal shortest route-change metric, except that a route
counted by the metric only changes when it breaks, not when a shorter route begins to exist. The
minimal shortest route-change metric and the minimal route-change metric both provide a number
per pair of nodes; to arrive at a metric for a scenario, we can either sum over only those node pairs
that communicate at least once during the scenario, or simply over all pairs of nodes regardless of
communication behavior.

2.5. Mobility Models Studied

2.5.1. Mobility Model Specifications

We chose the parameters for our different mobility models to make the average speed of a node 10
m/s, and to keep the nodes as randomly distributed as the scenario would allow. Unless otherwise
noted, the initial position of each node is chosen as (x0, y0), with x0 uniformly distributed over
[0, 1500 m] and y0 uniformly distributed over [0, 300 m]. Ten different scenarios were generated
for each of the five models we studied: Brownian motion, Column motion, Random Gauss-Markov
motion, Random Waypoint motion, and Pursue motion. A description of each of these mobility
models and their parameterizations is given below.

Nodes in our Brownian motion mobility model change speed and direction at discrete time in-
tervals, such that at the beginning of each interval, each node chooses r ∈ [0, vmax] and θ ∈ (−π, π]
and moves with velocity vector (r sin θ, r cos θ) during that interval. If this movement would cause
a node to end the interval beyond the boundaries of the rectangular area, the node instead picks the
point within the rectangular boundary closest to the intended destination and moves to that point at
the originally chosen velocity. The parameters used in our implementation of this model are given
in Table 2.1.

The column mobility model was developed by Sanchez [167]. In our implementation of this
model, each node is either moving in the positive x direction or the negative x direction. The initial
position of each node i is (10i, 10i), and all nodes start moving in the positive x direction. The

2.5. MOBILITY MODELS STUDIED 15

Table 2.2: Parameters for Random Gauss-Markov Motion

Movement interval duration 0.1 s
Initial Velocities 0 m/s
vx = vy 0 m/s
σvx

= σvy
10.484 m/s

α 0.9

Table 2.3: Parameters for Random Waypoint Motion

vmax 20 m/s
Pause time 0 s

motion of the nodes is divided into discrete intervals, such that at the beginning of each interval,
each node chooses r ∈ [0, vmax] and moves with that speed in the same direction as it has been
moving. If this movement would cause the node to cross the boundary of the rectangular area, the
direction is instead flipped, and the node moves with speed r in the new direction rather than in the
original direction. The parameters used in our implementation of this model the same as those used
in Brownian motion.

The random Gauss-Markov mobility model was developed by Liang and Haas [107] and was
described by Sanchez [168]. The motion of the nodes is divided into discrete time intervals, such
that at the beginning of each interval, a node updates its velocity vector as

vxt = αvxt−1
+ (1− α)vx + R

√

1− α2

vyt = αvyt−1
+ (1− α)vy + R

√

1− α2

at interval t, where R is a normally distributed random variable with mean 0 and variance σvx .
When a movement would cause a node to exceed the boundaries of the rectangular area, the sign
of the velocity vector in that dimension is flipped. The parameters used in our implementation of
this model are given in Table 2.2. The choice of σvx and σvy was made to have the median of
‖(Rx, Ry)‖2 be 10 m/s. α was chosen to be equal to its value in Sanchez’ implementation [169].

The random waypoint mobility model was developed by Johnson and Maltz [88]. In this model,
a node chooses a destination with a uniform random distribution over the area, moves there with
velocity v uniformly distributed over [0, vmax], waits there for a pause time, and then repeats this
behavior. We use a pause time of 0, meaning continuous motion of all nodes, and chose vmax =

20 m/s. The parameters used in our implementation of this model are given in Table 2.3.
The pursue mobility model was developed by Sanchez [167]. In our implementation of this

model, there are 10 groups of 5 nodes each. The motion of the nodes is divided into discrete time
intervals, such that in each group, one node moves according to the random waypoint model, and
the others attempt to “intercept” that node by choosing their velocity vector at each interval to be
toward the point that the target node would be at at the end of the interval, given that the target
node would continue to move with the same velocity. The velocity of the pursuing nodes is chosen
uniform random for each interval to be in the range [vpmin, vpmax]. The parameters used in our
implementation of this model are given in Table 2.4.

16 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

100

120
R

ou
tin

g
O

ve
rh

ea
d

(th
ou

sa
nd

s
of

 p
ac

ke
ts

)

Normalized Mobility Metric

Actual Link−MaxLife
Quadratic Fit to Link−MaxLife
Actual Path−Gen−34
Quadratic Fit to Path−Gen−34

(a) Geometric Mobility Metric
(Packet overhead)

0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

R
ou

te
 E

rr
or

s
(th

ou
sa

nd
s)

Normalized Mobility Metric

Actual Link−MaxLife
Quadratic Fit to Link−MaxLife
Actual Path−Gen−34
Quadratic Fit to Path−Gen−34

(b) Geometric Mobility Metric
(ROUTE ERRORs)

0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

100

120

R
ou

tin
g

O
ve

rh
ea

d
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

Normalized Mobility Metric

Actual Link−MaxLife
Quadratic Fit to Link−MaxLife
Actual Path−Gen−34
Quadratic Fit to Path−Gen−34

(c) Minimal Route-Change Metric,
All Pairs of Nodes (Packet overhead)

0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10
R

ou
te

 E
rr

or
s

(th
ou

sa
nd

s)

Normalized Mobility Metric

Actual Link−MaxLife
Quadratic Fit to Link−MaxLife
Actual Path−Gen−34
Quadratic Fit to Path−Gen−34

(d) Minimal Route-Change Metric,
All Pairs of Nodes (ROUTE ERRORs)

0 0.2 0.4 0.6 0.8 1
 0

 20

 40

 60

 80

100

120

R
ou

tin
g

O
ve

rh
ea

d
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

Normalized Mobility Metric

Actual Link−MaxLife
Quadratic Fit to Link−MaxLife
Actual Path−Gen−34
Quadratic Fit to Path−Gen−34

(e) Minimal Route-Change Metric,
Communicating Pairs (Packet overhead)

0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

R
ou

te
 E

rr
or

s
(th

ou
sa

nd
s)

Normalized Mobility Metric

Actual Link−MaxLife
Quadratic Fit to Link−MaxLife
Actual Path−Gen−34
Quadratic Fit to Path−Gen−34

(f) Minimal Route-Change Metric,
Communicating Pairs (ROUTE ERRORs)

Figure 2.2: Correlation of Mobility Metrics to Packet Overhead and Number of ROUTE ERRORs

2.5. MOBILITY MODELS STUDIED 17

Table 2.4: Parameters Pursue Motion

Movement interval duration 0.1 s
vmax 20 m/s
vpmin 5 m/s
vpmax 15 m/s
Pause time 0 s

2.5.2. Evaluation of Mobility Metrics

We evaluated the mobility metrics described in Section 2.4 for each of the scenarios used through-
out this chapter. The geometric mobility metric was evaluated with infinite precision using the
technique described in Section 2.4. The mobility metrics were normalized so that over all 50 sce-
narios, the metrics would lie in [0, 1]. Figure 2.5.2 summarizes the degree to which the mobility
metrics accurately characterize the difficulty of routing across the range of scenarios. Figure 2.2(a)
shows the relationship between the normalized all-pairs geometric mobility metric and the routing
packet overhead for DSR, for the Link-MaxLife and Path-Gen-34 caching algorithms. Also shown
in Figure 2.2(a) is the best quadratic fit to the individual data points, in a least-squares sense, for
these two caching algorithms. We show the results for these two caching algorithms here, since
Link-MaxLife generally performs the best of the adaptive link caching algorithms, and Path-Gen-34
is representative of the path caching algorithms. Figure 2.2(c) shows the same relationship and
type of quadratic fit for the normalized all-pairs minimal route-change metric, and Figure 2.2(e)
shows this for the normalized minimal route-change metric summed only over communicating pairs.
Similarly, Figures 2.2(b), 2.2(d), and 2.2(f) show the relationship between these three mobility met-
rics, respectively, and the number of ROUTE ERRORs originated during the simulations. Table 2.5
shows the norm of residuals for the respective quadratic fit for each mobility metric, including also
the all-pairs minimal shortest route-change metric and the minimal shortest route-change metric
summed only over communicating pairs.

The minimal shortest route-change metric does not reflect well the challenge presented to DSR,
since DSR does not attempt to always discover the shortest route. Instead, DSR will continue to use
its best route until it breaks or until it overhears a better route.

As shown in Figure 2.5.2 and Table 2.5, the four minimal route-change metrics correlate signif-
icantly better, for both routing packet overhead and number of ROUTE ERROR packets, than does
the geometric mobility metric, since route changes are a more direct cause of overhead and ROUTE

ERRORs than is just geometric mobility. Of the four minimal route-change metrics, the minimal
route-change metric summed only over communicating pairs (Figure 2.2(e) and 2.2(f)) correlates
best, since summing only among communicating pairs removes pairs which may undergo many
route changes but that do not affect the routing algorithm. In addition, since the individual data
points on the graphs relative to this metric are reasonably well spread and not tightly clustered, we
conclude that the particular movement scenarios used in our study are generally representative of a
fairly broad array of possible scenarios within the bounds used by these scenarios.

Although the four minimal route-change metrics correlate well to both the routing packet over-
head and the number of ROUTE ERRORs, it correlates better for the number of ROUTE ERRORs. We
believe this difference is due to the variable number of ROUTE REQUEST packets that may be sent
as part of a Route Discovery, depending on the degree of containment of the ROUTE REQUEST flood
that DSR is able to acheive for each individual Discovery attempt. We also examined the correla-
tion of these metrics specifically to the number of Route Discoveries performed, and found fairly

18 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

Table 2.5: Norm of Residuals for Quadratic Fits of Packet Overhead and Number of ROUTE ERRORs

Path-Gen-34 Packet Overhead ERRORs

Geometric 120,248 9,189
Min Route-Change over All Pairs 111,699 5,973
Min Route-Change over Comm Pairs 77,144 2,877
Min Shortest Route-Change over All Pairs 168,729 10,799
Min Shortest Route-Change over Comm Pairs 160,027 9,782

Link-MaxLife

Geometric 53,392 12,896
Min Route-Change over All Pairs 40,988 8,282
Min Route-Change over Comm Pairs 32,478 5,219
Min Shortest Route-Change over All Pairs 64,697 15,291
Min Shortest Route-Change over Comm Pairs 65,668 14,814

OmniExp

Geometric 18,963 116
Min Route-Change over All Pairs 17,616 105
Min Route-Change over Comm Pairs 17,885 106
Min Shortest Route-Change over All Pairs 19,988 116
Min Shortest Route-Change over Comm Pairs 23,093 122

good correlation for Path-Gen-34 but not for Link-MaxLife, which we attribute to the very small,
statistically insigificant number of Route Discoveries needed by Link-MaxLife. Even a change as
small as 1 in number of Route Discoveries for any scenario with Link-MaxLife will result in a large
relative change in the total, making correlation of any mobility metric difficult.

Another exception in the degree of correlation of the mobility metrics is those results obtained
using the OmniExp caching algorithm, for all of the performance indicators that we studied for
the routing protocol. For all indicators, OmniExp had relatively low correlation, since this caching
algorithm creates very few Route Discoveries and even fewer ROUTE ERROR packets (and thus
very small total routing packet overhead). As with the number of Route Discoveries needed by
Link-MaxLife, as described above, all of the performance indicators that we studied for the routing
protocol with OmniExp are not statistically sigificant.

2.6. Simulation Results

2.6.1. Overview of the Results

For each of the caching algorithms presented in Section 2.2, we ran 10 different scenarios of each
mobility model described in Section 2.5.1. Figure 2.3(a) shows the packet delivery ratio achieved
by each caching algorithm, averaged over the 10 scenarios for each mobility model. Figure 2.3(b)
shows the average routing packet overhead, Figure 2.3(c) shows average latency, and Figure 2.3(d)
shows the path optimality for each of the caching algorithms over the 10 scenarios from each mo-
bility model, normalized and averaged over the 5 mobility models.

The Link-Static-5 caching algorithm uses only a single fixed value for the cache timeout,
although in general, no single value can perform best for all nodes in all ad hoc networks in all
circumstances. In addition to the timeout value of 5 seconds shown in our results, we also evaluated
a number of other timeouts ranging from 1 second to 40 seconds, and found that in our scenarios,

2.6. SIMULATION RESULTS 19

brownian column gauss pursue waypoint
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
ac

ke
t D

el
iv

er
y

R
at

io

Mobility Model

Link−NoExp
Link−Adapt−1.25
Link−Adapt−2
Link−MaxLife
Link−Static−5
OmniExp
Path−Inf
Path−FIFO−64
Path−FIFO−32
Path−Gen−64
Path−Gen−34

(a) Packet Delivery Ratio vs. Cache Type

brownian column gauss pursue waypoint
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

R
ou

tin
g

O
ve

rh
ea

d
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

Mobility Model

Link−NoExp
Link−Adapt−1.25
Link−Adapt−2
Link−MaxLife
Link−Static−5
OmniExp
Path−Inf
Path−FIFO−64
Path−FIFO−32
Path−Gen−64
Path−Gen−34

(b) Routing Packet Overhead vs. Cache Type

brownian column gauss pursue waypoint
0

100

200

300

400

500

600

A
ve

ra
ge

 L
at

en
cy

 (m
s)

Mobility Model

Link−NoExp
Link−Adapt−1.25
Link−Adapt−2
Link−MaxLife
Link−Static−5
OmniExp
Path−Inf
Path−FIFO−64
Path−FIFO−32
Path−Gen−64
Path−Gen−34

(c) Average Latency vs. Cache Type

0 1 2 3 4 5 6 7+
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 N
or

m
al

iz
ed

 N
um

be
r o

f P
ac

ke
ts

 D
el

iv
er

ed

Path Length Difference From Shortest (hops)

Link−NoExp
Link−Adapt−1.25
Link−Adapt−2
Link−MaxLife
Link−Static−5
OmniExp
Path−Inf
Path−FIFO−64
Path−FIFO−32
Path−Gen−64
Path−Gen−34

(d) Normalized Path Optimality vs. Cache Type

Figure 2.3: Performance of the Different Caching Algorithms on the Mobility Models

the 5-second timeout performed best in terms of packet delivery ratio. As shown in Figure 2.6.1,
our scenarios represent a range of different challenges for the routing protocol, but in each of our
individual scenarios, all nodes in a given scenario move according to the same pattern. Thus, the
advantage of an algorithm that can adapt to different timeouts for different links (between different
pairs of nodes) was not fully exercised. As a result, we simply present the results for Link-Static-5
and omit further discussion of them in this chapter.

Although the column mobility model creates a large amount of motion among the nodes, there
is very little relative motion among them and thus very little challenge to any of the caching algo-
rithms. In fact, in each of our scenarios using the column mobility model, only 18 Route Discoveries
were performed, regardless of the caching algorithm used. This property of the column model can
also be seen using our new mobility metrics defined in Section 2.4; for example, the average geo-
metric mobility metric over our column scenarios is 79.35% that of our random waypoint scenarios,
appearing to indicate a comparable amount of mobility, yet when compared using our all-pairs min-
imal route-change mobility metric, this number drops to only 2.82%.

In the pursue mobility model, the network remains partitioned much of the time; the 5 nodes
in each group stay very close to each other, while the 10 separate groups are free to move over the

20 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

entire simulation area, often leaving large, unoccupied spaces between the groups. For example,
across all of our scenarios using the pursue mobility model, the network is partitioned on average
76.07% of the time. Due to this high occurrence of partition, the behavior of any caching algo-
rithm used with DSR will be very different than in more typically connected networks, making
comparison of different caching algorithms in these scenarios difficult.

In the remainder of this chapter, we therefore focus in our analysis on only the scenarios using
the Brownian, random Gauss-Markov, and random waypoint mobility models. As mentioned above,
we ran 10 different scenarios for each of these mobility models for each of our caching algorithms.

2.6.2. Effects of Cache Structure

For the packet delivery ratio metric (Figure 2.3(a)), the Link-Adapt-2 and Link-MaxLife link caching
algorithms outperform all path caches, obtaining higher packet delivery ratio than the best path
cache, evaluated individually for each mobility model. In most cases, Link-MaxLife performs some-
what better than Link-Adapt-2.

Similarly, for the packet overhead metric (Figure 2.3(b)), Link-Adapt-2 and Link-MaxLife out-
perform all path caches, obtaining in most cases a reduction in packet overhead by a factor of about 2
or more over the best path cache for each mobility model. In addition, Link-Adapt-1.25 performs
better than the best path cache for each mobility model, although not by as much as do Link-Adapt-2
and Link-MaxLife. This is consistent with the design intent of link caches over path caches, as link
caches remove only a single link in response to a ROUTE ERROR (rather than removing a whole
path) and are able to combine information from different Route Discoveries to form new routes
from the cached information.

In the scenarios that we studied, two primary factors contribute to the total latency experienced
by a packet: the time spent by the packet waiting for a Route Discovery to complete before the
packet can be sent, and the time spent in Route Maintenance detecting (through retransmissions)
broken links and performing salvaging. For our Brownian motion scenarios, the dominant factor
of these two is Route Discovery, which favors the link caches for low latency, since link caches
generally perform fewer Discoveries than path caches due to the increase in information that can be
represented in the cache. For example, Link-Adapt-1.25 (the highest-latency adpative link cache)
performs on average 431.5 fewer Route Discoveries than Path-FIFO-32 (the lowest-latency path
cache) in these scenarios, but it sends on average only 130.7 more ROUTE ERRORs. For the Gauss
and random waypoint scenarios, however, the number of ROUTE ERRORs becomes significant in
the link caches, particularly for the Link-NoExp and Link-Adapt-1.25. For example, Link-NoExp
and Link-Adapt-1.25, respectively, cause 31,117 and 10,652 ROUTE ERRORs, yet Path-FIFO-32
(the highest-latency non-infinite path cache) causes only 1,973 ROUTE ERRORs.

All of the caching algorithms achive good path optimality, and the differences between the re-
sults with different caching algorithms is small. In particular, the 5 path caching algorithms perform
almost identically on most scenarios. However, for the link caching algorithms, path optimality dif-
fers for the Link-NoExp and Link-Adapt-1.25 algorithms; these algorithms deliver a greater fraction
of packets along optimal routes (path optimality 0) than do the other caching algorithms, yet also
deliver a greater fraction of packets along routes 6 and 7 or more hops longer than optimal than do
the other algorithms.

Both of these algorithms are able to keep a large number of unused links in the cache, as
Link-NoExp never times out such links and Link-Adapt-1.25 increases the node stability metrics
(and thus the link cache lifetimes) much more aggressively than it decreases them. As such, these
algorithms are able to opportunistically combine results from different Route Discoveries and from
other routing information learned from packets forwarded or overhead, in order to more often find

2.6. SIMULATION RESULTS 21

the shortest route that exists. However, the many unused links that these algorithms can keep in
the cache also at times are a liability; many of these links may be broken, increasing the number of
packets that must be salvaged multiple times, and thus increasing the total hop count for salvaged
packets that are ultimately successfully delivered. In our simulations, each packet was prevented
from being salvaged more than 15 times, in order to prevent the packet from possibly looping yet
also allow alternate routing and backtracking of the packet in the presence of some stale cached
links.

Overall, Link-MaxLife outperforms the other caching algorithms on the set of performance met-
rics and scenarios studied. As an adaptive algorithm, it is able to adjust the cache timeout values
for each node individually, depending on the node’s behavior, and is not limited to a static timeout
or a fixed capacity cache replacement policy. By also taking advantage of the lifetime values in
the route selection algorithm to differentiate between multiple routes of equal length, Link-MaxLife
attempts to avoid using routes that may soon result in a ROUTE ERROR and a possible new Route
Discovery. For example, in 26 of the 30 scenarios, Link-MaxLife experiences fewer Route Errors
than Link-Adapt-2, where Link-Adapt-2 is the same algorithm as Link-MaxLife without the use of
lifetimes in route selection. In addition, this route selection tends to spread the use of routes over
all cached routes of equal length; the route selection in Link-Adapt-2, on the other hand, is based
only on Dijkstra’s algorithm and thus always finds the first route from a total order on all routes of
shortest length.

2.6.3. Effects of Cache Capacity

For 3 of the 5 types of mobility models, the Path-Inf caching algorithm, with its unlimited cache
size, performs much worse than the other path caches (with limited cache sizes) with respect to
packet delivery ratio, as shown in Figure 2.3(a). These 3 types of mobility models (Gauss, pursue,
and waypoint), are generally quite dynamic, creating many broken links, all of which are retained in
each node’s cache once discovered or overheard. Many of the routes that these nodes select to use
from their caches, are thus likely to be broken even before the first packet is sent on them, severely
reducing the effectiveness of DSR’s packet salvaging mechanism and resulting in many dropped
packets. Movement scenarios from the other two mobility models (Brownian and column) involve
substantially less relative mobility, and all path caches perform well on these scenarios.

Average latency and routing packet overhead metrics for the Path-Inf algorithm also suffer in
dynamic situations, as shown in Figures 2.3(b) and 2.3(c). Sending a ROUTE ERROR typically
counts as several packets of overhead since it must in general traverse several hops. In addition,
when a packet is salvaged, the combined route traveled by the packet will typically be longer than
the original route with which the packet was sent; when a packet must be salvaged multiple times,
the resulting routes can be quite long, causing significant increases in latency, and for each time a
packet is salvaged, another ROUTE ERROR is returned to the original sender of the packet.

For the FIFO cache replacement policies studied here for path caches, no one cache size pro-
vides the best packet delivery ratio for all mobility models. For mobility models with large amounts
of relative mobility, many Route Discoveries take place, causing a rapid turnover in each node’s
cache as it replaces existing cache entries with new entries learned from its own Route Discoveries
or from others that it has overheard. This cache replacement is in effect a form of adaptation in the
caching algorithm, since as the amount of mobility in the network increases, the average number of
broken routes created in the network increases and the average time that entries remain in a node’s
cache decreases with the cache turnover. However, with cache capacity as the limiting factor caus-
ing increased cache turnover, the FIFO caching algorithm has little control over which cache entry
is replaced at which time. In particular, in a movement scenario with highly non-uniform behavior

22 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

between different nodes, FIFO cache replacement forces the replacement of all paths (containing
nodes with different behaviors) to be treated equally.

2.6.4. Effects of Cache Timeout

The use of a timeout on each cache entry in a link cache has a similar effect in cache replacement
as the use of limited capacity has in a path cache, as described above. For example, the Link-NoExp
algorithm, which has no timeout on cache entries, performs poorly with respect to packet delivery
ratio for scenarios from the Gauss, pursue, and random waypoint mobility models, as shown in
Figure 2.3(a). The movement in these 3 models are generally quite dynamic, causing many of the
routes that a node selects to use from its cache to be broken even before the first packet is sent on
it, causing the same type of ineffective salvaging and dropped packets as occurred when using the
Path-Inf algorithm, with its unlimited path cache size. In addition, for algorithms using an adaptive
cache timeout, since the timeout used for a cache entry is a function of the expected future lifetime
of that entry, based on the ROUTE ERRORS observed by this node, as the amount of mobility in the
network increases, the average number of broken routes created in the network increases and the
average time that entries remain in a node’s cache decreases.

In order to assess the effect of different link cache entry timeout values on the number of ROUTE

REQUESTS initiated and the number of ROUTE ERRORS sent, we ran additional simulations to col-
lect results for each of 7 different static cache timeout values: 1, 2, 5, 10, 20, 40 seconds, and no
timeout. For each of these timeout values, we simulated each of the 10 Gauss and 10 waypoint sce-
narios used in the previous sections. Figure 2.6.4(a) shows the packet delivery ratio vs. the number
of ROUTE REQUESTS initiated for the these Gauss simulations together with the Gauss simulations
using Link-Adapt-1.25, Link-Adapt-2, and Link-MaxLife described above. Figure 2.6.4(b) shows the
routing packet overhead, and Figure 2.6.4(c) shows the number of ROUTE ERRORS generated, for
these same simulations.

As the average cache timeout value decreases, nodes generally initiate more Route Discoveries
and cause more ROUTE REQUEST packets to be sent, since entries in the cache needed for future
packets may be deleted. Since the results shown in Figure 2.4(a) are all simulated from the same
set of 10 Gauss scenarios (with the same communication scenario and with movement scenarios all
generated from the same Gauss mobility model), the results are all roughly comparable except for
the differences in the cache timeout values used. That is, for these scenarios, below some average
rate of initiating ROUTE REQUESTS, the routing protocol is unable to discover new routes at the
rate at which the links needed for routing break. For example, if a very long cache timeout is used,
a broken link may stay in a node’s cache and may be used in an attempt to route a future packet,
hurting the overall packet delivery ratio; if a very short cache timeout is used, links will be deleted
from the cache before they are broken, creating extra overhead due to increased numbers of Route
Discoveries, but the packet delivery ratio will not be affected since packets are buffered until a
pending Route Discovery completes and a ROUTE REPLY is received (unless the ROUTE REQUEST

load is extremely high, in which case network congestion may result). In Figure 2.4(a), if less than
about 350 ROUTE REQUESTS are initiated in a scenario, the packet delivery ratio decreases sharply.

A similar effect is shown in Figure 2.4(c), where below about 350 ROUTE REQUESTS initiated,
the routing packet overhead rises sharply. This effect is due to the increased number of ROUTE

ERRORS that arise from using an increased number of cached links that are broken but have not
yet been removed from the cache due to the long cache timeout value. In addition, as the number
of ROUTE REQUESTS initiated increases, the routing packet overhead increases, since each trans-
mission of each ROUTE REQUEST packet contributes to this overhead; above about 350 ROUTE

REQUESTS initiated, the routing overhead in Figure 2.4(c) gradually rises.

2.6. SIMULATION RESULTS 23

0 500 1000 1500 2000
0.4

0.5

0.6

0.7

0.8

0.9

 1

Number of Route Requests Initiated

P
ac

ke
t D

el
iv

er
y

R
at

io

(a) Packet Delivery Ratio vs. Number of
ROUTE REQUESTs Initiated
(Gauss mobility model)

0 200 400 600 800 1000
 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

Number of Route Requests Initiated

P
ac

ke
t D

el
iv

er
y

R
at

io

(b) Packet Delivery Ratio vs. Number of
ROUTE REQUESTs Initiated
(Random waypoint mobility model)

0 500 1000 1500 2000
 20

 30

 40

 50

 60

 70

 80

 90

100

Number of Route Requests Initiated

O
ve

rh
ea

d
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

(c) Packet Overhead vs. Number of
ROUTE REQUESTs Initiated
(Gauss mobility model)

0 200 400 600 800 1000
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

100

Number of Route Requests Initiated

O
ve

rh
ea

d
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

(d) Packet Overhead vs. Number of
ROUTE REQUESTs Initiated
(Random waypoint mobility model)

0 500 1000 1500 2000
 0

 5

10

15

20

25

30

Number of Route Requests Initiated

R
ou

te
 E

rr
or

s
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

(e) Number of ROUTE ERRORs vs. Number of
ROUTE REQUESTs Initiated
(Gauss mobility model)

0 200 400 600 800 1000
 0

 5

10

15

20

25

30

35

40

45

Number of Route Requests Initiated

R
ou

te
 E

rr
or

s
(th

ou
sa

nd
s

of
 p

ac
ke

ts
)

(f) Number of ROUTE ERRORs vs. Number of
ROUTE REQUESTs Initiated
(Random waypoint mobility model)

Figure 2.4: Correlation between Number of Route Requests Initiated and Three Different Performance
Factors of the Routing Protocol, for Gauss and Random Waypoint Mobility Models

24 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

The effect shown in Figure 2.4(e) is also similar to that shown in Figure 2.4(a). Below about
350 ROUTE REQUESTS initiated, many cached links that have broken have not been removed from
the cache, resulting in a rising number of ROUTE ERRORS generated. As the number of ROUTE

REQUESTS initiated increases above about 350, the number of ROUTE ERRORS generated gradually
decreases, up to about 1100 ROUTE REQUESTS initiated, beyond which there is a diminishing return
from additional ROUTE REQUESTS initiated.

Finally, Figure 2.4(b) shows the results from a set of simulation runs the same as Figure 2.4(c),
but using the random waypoint mobility model rather than the Gauss model. The basic results are
very similar to those shown for Gauss, but the inflection point, where the routing packet overhead
begins to rise, is lower. This difference suggests that a single average rate of initiating ROUTE

REQUESTS and a single average cache timeout value is not optimal for all mobility models.

2.7. Related Work

This work has been expanded in many ways since it was published [74]; Camp et al [28] further
study mobility models and metrics, Boleng et al [18] study cache adaptation strategies, Turget et
al [185] approximate link lifetime given knowledge of the mobility pattern and Marina et al [115]
study other cache-related optimizations to DSR. In recent work, we have examined the possibility
of using epoch numbers to impose a strict ordering link discovery and link breakage at each link.
This information can be used to somewhat reduce the spread of stale cache information, though it
substantially increases the overhead of passing routes around, especially in the source route [76].

2.8. Chapter Summary

Key to the performance of many on-demand ad hoc network routing protocols is the design of an
appropriate caching strategy for the protocol that can make effective use of the state information
about the network collected by the protocol as part of the process of discovering routes to other
nodes. Caching is important in order to avoid the overhead of discovering a new route before send-
ing each data packet, but caching also brings with it the risk and associated expenses of retaining
routing information in a cache after the information is no longer valid due to changes in different
nodes’ positions or changes in the wireless propagation environment.

This chapter has presented an analysis of the effects of different design choices in caching strate-
gies for on-demand routing protocols in wireless ad hoc networks, dividing the problem into choices
of cache structure, cache capacity, and cache timeout. Our analysis is based on the Dynamic Source
Routing protocol (DSR) which operates entirely on-demand. Using detailed simulations of wireless
ad hoc networks of 50 mobile nodes, we studied a large number of different caching algorithms that
utilize a range of caching strategy design choices, and simulated each cache primarily over a set
of 50 different movement scenarios drawn from 5 different types of mobility models. Our evalua-
tions include the packet delivery ratio, routing packet overhead, average latency, and path optimality
relative to the shortest path, achieved by each caching algorithm.

We found that adaptive caches are often able to significantly outperform static caches, and that
by utilizing a cache data structure based on a graph representation of individual links, rather than
based on complete paths through the network, the routing protocol was much better able to make
use of the potential information available to it. In addition, we identified some subtle relationships
between cache timeout policies and cache capacity limits, and between these choices and some
performance metrics for the routing protocol, most notably the packet delivery ratio and the routing
packet overhead caused by the routing protocol. Somewhat unexpectedly, we also found a strong

2.8. CHAPTER SUMMARY 25

indication that caches of unlimited capacity or with no cache timeout perform substantially worse
than caches with reasonable capacity or timeout limits.

26 CHAPTER 2. USING LINK-STATE CACHING IN AD HOC NETWORKS

Chapter 3

Implicit Source Routes

In an ad hoc network, the use of source routing can provide many advantages, including simplicity,
correctness, and flexibility [87–90]. For example, since all routing decisions for a packet are made
by the sender of the packet, intermediate nodes that forward it need not maintain up-to-date, consis-
tent routing tables for the destination. Forwarding at each hop consists simply of locally transmitting
the packet to the next address indicated in the source route in the packet’s header; the sequence of
hops over which any packet is forwarded can easily be guaranteed to be loop-free by not allowing
duplicates in the list of hops. By including the source route in the packet’s header, additional routing
information is also partially spread around the network without requiring additional packets to be
transmitted. In addition, for reasons such as load balancing or differentiated treatment of different
types or classes of packets for Quality of Service (QoS), it is possible for the sender to use different
routes for different packets, without requiring coordination or explicit support by the intermediate
nodes.

However, source routing has the disadvantage of increased per-packet overhead. With source
routing, the size of each packet is increased in order to carry the source route of hops through which
the packet is to be forwarded. Since the source route is always present in the packet, the extra
network overhead caused by the presence of the source route is incurred not only when the packet is
originated, but also each time it is forwarded to the next hop. This extra network overhead decreases
the bandwidth available for transmission of data, increases the transmission latency of each packet,
and consumes extra battery power in the network transmitter and receiver hardware.

In this chapter, I describe and analyze the use in ad hoc networks of implicit source routing. This
technique preserves the advantages of source routing while improving service in source routing pro-
tocols in two ways: first, it greatly simplifies packet classification by allowing a flow identifier to
be correlated with each packet, and second, it reduces network overhead, providing better through-
put and latency. In a manner in part similar to techniques used for MPLS [166] or ATM virtual
circuits [179], each packet is tagged with a flow identifier when the packet is sent by its original
sender. The flow identifier indicates the route to be followed by this and all packets belonging to a
logical flow from this sender to the destination of the packets. Intermediate nodes along the route
retain soft state indicating the next hop to which packets belonging to that flow should be forwarded,
avoiding the need to carry the full source route in each packet. This soft state should be retained
until the specified timeout but may be discarded earlier, for example due to node failures, without
impacting correctness.

We base our design and analysis of implicit source routing on extending the Dynamic Source
Routing protocol (DSR) (Section 1.2.2), since it is based on source routing and has been shown
by a number of groups to perform well when compared to other protocols [26, 86]. DSR allows
nodes to dynamically discover, on demand, source routes to nodes to which they send packets, and

27

28 CHAPTER 3. IMPLICIT SOURCE ROUTES

allows these source routes to be maintained when links between nodes break due to node mobility,
wireless propagation changes, or other factors. Our implicit source routing mechanism fits naturally
into the existing structure of the DSR protocol [77] and preserves the important fundamental prop-
erties of DSR’s operation. To evaluate our implicit source routing design, we conducted a set of
detailed simulations of DSR, both with and without use of implicit source routing, and we analyze
the differences in the behavior of these two protocols in terms of packet delivery ratio, latency, path
optimality, and packet and byte routing overheads.

The addition of implicit source routing to DSR described in this chapter preserves the basic
operation of DSR’s Route Discovery and Route Maintenance mechanisms, including all of these
important resulting properties of DSR. Although DSR with implicit source routing may be seen as
similar to other on-demand routing protocols that do not use source routing, in practice all routes
used in either version of DSR are still discovered and established as source routes, with the complete
sequence of hops determined from the source to the destination. For example, AODV [141] borrows
features of DSR’s on-demand Route Discovery mechanism, but it uses only hop-by-hop routes and
is not based on source routing; none of the properties of DSR described in this section hold for
AODV.

3.1. Implicit Source Routing Operation

Conceptually, in implicit source routing, a tuple 〈source address, destination address, flow identifier〉
takes the place of the full source route in each packet. The source address and destination address
can be placed in the IP header, and the flow identifier is placed in a special header. Each node
participating in implicit source routing has a Flow Table, with one entry for each flow forwarded
by that node. A Flow Table entry minimally must record the next hop address to which a packet
for this flow should be forwarded, in addition to the source address, destination address, and flow
identifier for this flow.

A source can establish a new flow by sending a flow establishment packet. A flow establishment
packet is a packet with two headers (i.e., extension headers or options): one containing the flow
identifier, and the other containing a source route and a timeout for the flow. When an intermediate
node forwards such a packet, in addition to forwarding it according to the source route information,
it creates a Flow Table entry for this flow and inserts the necessary information from the packet. A
flow establishment packet is normally sent by including these two headers in an existing packet to
be sent along that source route; it is also possible (but not necessary) to send the flow establishment
packet as a special control packet along the source route.

A node is required to remove a flow’s entry from the Flow Table when that node has not for-
warded packets for that flow for a period of time specified by the timeout for the flow. As a result,
a Flow Table entry is also required to keep the timeout, as well as the time at which this flow is to
expire.

A source that has already sent one or more flow establishment packets for a given flow may
decide that each node along that flow has established a Flow Table entry for that flow. This source
may then send any subsequent packets routed solely by implicit source routing by adding a flow
identifier header in lieu of a source route in each packet. A node forwarding a packet sent using
implicit source routing checks its Flow Table for an entry corresponding to the flow identifier in the
packet. If the node finds one, it forwards the packet by setting the MAC-layer destination address
to the MAC address of the next hop indicated in the matching Flow Table entry. Otherwise, it sends
a FLOW UNKNOWN error back to the source of the packet.

A source node receiving a FLOW UNKNOWN error addressed to itself marks its Flow Table entry
for this flow to indicate that the flow must be reestablished. For the purposes of our simulation, we

3.1. IMPLICIT SOURCE ROUTING OPERATION 29

send three establishment packets when the flow is first created, and three establishment packets each
time a FLOW UNKNOWN error is received; each flow establishment packet is sent only when there
is data to be transmitted along the flow. By repeating the flow establishment packet for the first three
data packets sent when the flow is established or reestablished, the protocol is able to tolerate loss
of some flow establishment packets without triggering the overhead of a FLOW UNKNOWN error
and the resulting latency for re-establishment.

When a packet is sent using implicit source routing forwarding, it still requires some small
amount of overhead in the packet. These additional header bytes in the packet can be entirely
eliminated by the use of default flows. Conceptually, a node is most likely to use a flow more
recently established. Therefore, our protocol allows the use of the most recently established flow
with no per-packet overhead for most packets.

To enable this, each node keeps a Default Flow Table. For each 〈source address, destination
address〉 pair, a node keeps the greatest flow identifier for which it has sent or forwarded packets, as
well as the expected TTL value of packets sent along the default flow (alternatively, expected TTL
value can be stored in the Flow Table).

In order to allow the same flow to be used for both default flow forwarding as well as basic
flow forwarding, the expected TTL in the Default Flow Table must be set only upon hearing a flow
establishment packet. Additionally, we constrain a source wishing to use a given flow as a default
flow to set the TTL of all flow establishment packets for that flow to the same value, and we disallow
the use of default flow routing along paths that do not reduce the TTL value in forwarded packets
by exactly one at each hop.

When a source node originates a packet along a route that is the default flow for that 〈source,
destination〉 pair, and that packet has the same TTL as the flow establishment packets for that flow,
it transmits the packet to the next hop specified in the Flow Table.

When a node receives a packet with neither a source route nor a flow identifier header, and it
is not the node named in the IP Destination Address field, it checks its Default Flow Table; if it
finds a flow for the 〈source, destination〉 pair specified in the IP header, and if the expected TTL
matches the actual IP header TTL, the packet is processed as if it had a flow header specifying
the flow identifier found in the Default Flow Table as the packet’s flow identifier. Otherwise, a
DEFAULT FLOW UNKNOWN error is returned to the source of the packet. A source node receiving
a DEFAULT FLOW UNKNOWN error addressed to itself marks its Flow Table entry for the default
flow to indicate that the flow must be reestablished.

A Default Flow Table entry at a node times out when all flows corresponding to the
〈source, destination〉 pair time out at that node, although this is necessary for correctness only
when nodes may crash and lose their state, or when flow identifiers may wrap around.

As described in Section 1.2.2, in the base version of DSR [90], a mechanism exists by which
routes actively being used can be shortened in certain ways. Specifically, when the transmission
of a packet is promiscuously overheard by a node in the source route, that node determines if the
packet is downstream of it (that is, has already been forwarded by it) or upstream of it (that is, has
yet to be forwarded by it). If the packet is upstream of it, the route can be shortened by removing the
intervening hops not yet traversed leading to this node’s receipt of the packet. In this case, the node
generates a DSR “gratuitous” ROUTE REPLY to the source of the packet, indicating the shortened
route. For example, suppose node S is using the route S→ A→ B→ C→ D to send packets to
destination node D; if node C overhears a packet from S being forwarded by node A, node C can
return a gratuitous ROUTE REPLY to S providing the shorter route S→ A→ C→ D for use with
subsequent packets to D.

This mechanism, called automatic route shortening, takes advantage of the source route in each
packet to determine whether or not a packet is upstream of a node that promiscuously overheard

30 CHAPTER 3. IMPLICIT SOURCE ROUTES

the packet. In order to enable automatic route shortening when no source route is present, a Hop
Count field is added to the flow identifier header. A source node originating a packet initializes the
Hop Count field to 0, and each node forwarding this packet using implicit source routing increments
the Hop Count by 1. At each node, the expected Hop Count value, as well as the complete source
route, is stored in the node’s Flow Table during flow establishment. Packets overheard upstream are
determined to be those that have a Hop Count less than the Hop Count in the corresponding Flow
Table entry.

Similarly, automatic route shortening is possible for packets sent along default flows by exam-
ining the TTL; if the TTL value is greater than expected, it is considered to be upstream. Using
the IP TTL for automatic route shortening for packets sent along a default flow avoids the need to
carry any header information in the packet not normally already present in an IP header; we use
an explicit Hop Count rather than the IP TTL in non-default flow routed packets to avoid placing
any restriction on how the IP TTL field is used in forwarding the packet and to handle the case in
which the IP TTL is used in some non-standard way by some hop along the flow (e.g., for nodes
that decrement the TTL by more than 1 when forwarding the packet).

When a node promiscuously overhears a packet, it searches the packet for a flow identifier by
looking in the flow header, if present, or by searching its Default Flow Table. If the packet is
determined to be upstream of this node, the node stores a record in its limited-size Automatic Route
Shortening Table, with the source and destination addresses, the flow identifier, the packet, and the
number of hops by which the route could have been shortened. In order to reduce the possibility
of polluting the source’s Route Cache, a gratuitous ROUTE REPLY is sent only when the packet is
forwarded by the node that previously overheard the packet.

DSR takes advantage of aggressively caching overheard routes in order to maintain high packet
delivery ratio and low overhead. However, with implicit source routing, source routes do not appear
in the majority of packets, lessening the opportunity for these routes to be overheard and cached by
other nodes. As a heuristic to give DSR with implicit source routing a better ability to utilize these
optimizations, we chose to send any data packet sent along a flow as a flow establishment packet
(containing both a flow identifier header and a source route header) if an establishment packet has
not been sent along that flow within the last 5 seconds.

Implicit source routing also has an effect on DSR’s salvaging optimization. Since packets sent
with both a flow identifier header and a source route header are considered to be establishment
packets, a salvaging node must remove any existing flow identifier header. Furthermore, since flow
identifiers may only be assigned at the source, intermediate nodes may not salvage by using a flow
header and must instead use a full source route header for salvaging.

3.1.1. Correctness

In this section, we give a proof of the correctness properties of the implicit source routing mecha-
nism.

Claim 1. No packet will be received by a single node twice while being forwarded using a flow
identifier header.
Proof 1. Proof is by contradiction. Consider the first node that received a packet twice; call it A.
Node A must have been sent the packet the first time by some node B and some second time by some
node C. Now B and C are distinct nodes, since otherwise that node would have received the packet
twice, prior to A receiving the packet twice. Since the next hop for an explicitly specified flow is
the next hop in the source route of the flow establishment packet, then in the source route of the
flow establishment packet, the address of A occurred immediately after the address of node B, and

3.2. EVALUATION METHODOLOGY 31

occurred immediately after the address of node C. Since we require source routes to be loop-free,
this is impossible, which completes the proof.

Claim 2. After a packet p has been received by the same node A twice since the most recent default
route change for that packet’s 〈source, destination〉 pair at A, packet p will no longer be forwarded
using default flow forwarding.
Proof 2. Proof is by contradiction. Assume that there is a packet p that has been received by A
twice since the time of the most recent default route change at A. We define ts to be the time of the
most recent default route change for this 〈source, destination〉 pair at A.

Both times packet p was received, A’s default flow had the same expected TTL, since no default
flow changes occurred since ts. Let this expected TTL be TTLe.

The first time p was received after ts, the TTL must have been equal to TTLe, since otherwise
A would not have forwarded the packet using the default flow mechanism. Also, since TTL is
strictly monotone decreasing, the second time A receives p, its TTL must be some value less than
TTLe. Node A would see that p does not have the correct TTL for this default flow and would stop
forwarding the packet using default flow forwarding.

Claim 3. A routing loop in the default flow forwarding mechanism cannot persist indefinitely after
the last default route change at any point in the network.
Proof 3. Whenever a transient routing loop is stopped in the way described in Proof 2, a DEFAULT

FLOW UNKNOWN error is sent to the source of the packet. After one of those errors reaches the
source, the source will attempt to reestablish the default flow. When the default flow has been
reestablished across the entire source route, packets sent along it will not loop until there are further
routing changes.

Protocols that rely entirely on hop-by-hop, per-flow state to forward packets are unable to detect
routing loops if routing state continues to change in certain ways while the packet is in transit. In the
implicit source routing extensions described above, a source particularly concerned about looping
in such a fashion can send all packets with a flow identifier header for 4 bytes of overhead per packet
for the flow identifier header.

3.2. Evaluation Methodology

To evaluate our implicit source routing mechanism, we utilized the ns-2 network simulator [50],
together with our Monarch Project wireless and mobile ns-2 extensions (Section 2.3.1), to compare
the behavior and performance of DSR with implicit source routing against the original operation of
DSR without it. Our simulation parameters are as described in Section 2.3 with the exception of
those parameters described here. In this chapter, we present results from 40 randomly generated sce-
narios at each mobility level (pause time). Nodes in our simulations move according to the Random
Waypoint model (Section 2.5.1), with maximum speed of 20 m/s. We varied pause time between 0 s
(a continuously moving network) and 900 s (a stationary network). Specifically, the following seven
pause time values were used in our simulations: 0, 30, 60, 120, 300, 600, and 900 s. Each of the
280 scenarios used in our simulations was generated in advance, allowing identical scenarios to be
used in the simulations of each version of the protocol. We used the same communication pattern as
in Section 2.3.2, except that our packets had a 512 byte data payload rather than a 64 byte payload.

For the base version of DSR without implicit source routing, we used the simulation code from
the simulations described in Section 2. The Route Cache we used is the “Link-MaxLife” cache,
which is a link state cache in which link timeouts are chosen dynamically based on observed usage
and errors. The cache also attempts to choose the longest-lived shortest path when searching the

32 CHAPTER 3. IMPLICIT SOURCE ROUTES

cache for a path to the destination. As described in Section 2, the base version of DSR with this
Route Cache to performs very well. For example, in ad hoc networks of 50 mobile nodes moving
continuously at maximum speeds of 20 m/s (average 10 m/s), over 98% of originated data packets
are delivered.

The simulated implicit source routing protocol is based on the same version of the DSR simu-
lation code, using the same Link-MaxLife cache (Section 2.2.2). However, in this case, the route
selection made by the cache does not override the default route unless the selection is shorter than
the current default route. All packets are sent using implicit source routing, and when a flow has not
had an establishment packet sent for 5 or more seconds, the following packet originated along that
flow includes the extra header to make it an establishment packet.

In addition to the four metrics described in Section 2.3.3, we also evaluated the implicit source
routing mechanism using the byte overhead metric, which is defined as the total number of bytes of
routing overhead, including the size of all routing overhead packets and the size of any routing head-
ers added to data packets. The bytes are counted on transmission (whether original or forwarding)
for each packet.

3.3. Results

Packet delivery ratio is an important measure of the overall operation of any routing protocol. We
measured the packet delivery ratio averaged over the 40 randomly generated scenarios for each
pause time. These results are shown in Figure 3.1(a), with the error bars in the graph representing
the 99% confidence interval of the average shown.

The use of implicit source routing marginally improves the packet delivery ratio. Two competing
factors cause the difference in packet delivery ratio between the base version of DSR and DSR with
implicit source routing. Since implicit source routing sends most packets without a source route,
less-complete routing information is propagated through the network, reducing the success ratio of
salvaging; across all 280 runs of each protocol, implicit source routing drops a packet due to the
inability to find a route 70% more often (although both protocols drop very few packets). The other
factor is congestion: since the packets transmitted by implicit source routing are smaller on average,
each node is able to drain its network interface transmit queue more quickly, resulting in fewer drops
from full interface queues; across a random sample of 140 runs of each protocol, implicit source
routing drops 17% fewer packets as a result of full interface queues. Since drops resulting from
inability to find a route are much less common, DSR with implicit source routing generally has
slightly higher packet delivery ratio.

Another measure of the overall operation of the routing protocol is average latency. Our simu-
lation results for average latency are shown in Figure 3.1(b). In general, DSR with implicit source
routing has slightly better latency than does base DSR, due to the smaller average size of each
packet without the source routing header present. The reduced packet size directly decreases the
transmission time for the packet and also indirectly improves latency due to reduced contention for
transmission bandwidth from other packets.

Finally, a third measure of the routing protocol’s overall operation is the path optimality. As
shown in Figure 3.1(c), however, the introduction of implicit source routing into DSR did not sig-
nificantly alter DSR’s path optimality.

Beyond these three overall measures, the packet overhead and byte overhead provide an internal
measure of the operation of the protocol. These metrics indirectly affect the three overall metrics
discussed above and also contribute to other measures of the protocol such as CPU efficiency and
battery power consumption. Figure 3.2(a) shows the packet overhead for base DSR and for DSR
with implicit source routing, and Figure 3.2(b) shows this comparison for byte overhead.

3.3. RESULTS 33

0 100 200 300 400 500 600 700 800 900
0.97

0.975

0.98

0.985

0.99

0.995

1

P
ac

ke
t D

el
iv

er
y

R
at

io
 (a

ve
ra

ge
 o

ve
r 4

0
ru

ns
)

Pause Time

Base DSR
DSR with Implicit Source Routing

(a) Effect of Implicit Source Routing on Packet
Delivery Ratio

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

 L
at

en
cy

 (m
s,

 a
ve

ra
ge

 o
ve

r 2
0

ru
ns

)

Pause Time

Base DSR
DSR with Implicit Source Routing

(b) Effect of Implicit Source Routing on
Average Latency

 0 1 2 3 4 5 6 7 8 9 10 >10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n

of
 P

ac
ke

ts

Actual Path Length Minus Optimal

Base DSR
DSR with Implicit Source Routing

(c) Effect of Implicit Source Routing on Path
Optimality

Figure 3.1: Effect of Implicit Source Routing on Performance

For packet overhead, we did not count flow establishment packets as overhead since they also
contain data. In comparing DSR with and without implicit source routing, we found that im-
plicit source routing incurs 12.3% more packet overhead. These overhead packets came from
three sources: FLOW UNKNOWN errors, DEFAULT FLOW UNKNOWN errors, and additional Route
Discoveries. The number of FLOW UNKNOWN errors and DEFAULT FLOW UNKNOWN errors,
however, is quite small, since we do not model a limit on the Flow Table size, nor do we model
nodes crashing and restarting. Most of the additional overhead packets thus are the result of addi-
tional Route Discoveries, which are required because fewer packets are sent with full source routes,
lessening the ability of other nodes to cache overheard routes.

For counting byte overhead, we modeled packet sizes in our simulations according to the packet
formats defined in our IETF Internet-Draft specifications for DSR [77, 90]. The byte overhead in-
cludes all bytes in overhead packets, plus the overhead such as any source routes and flow identifiers
carried in data packets. In contrast to the packet overhead described above, the byte overhead with
implicit source routing decreased substantially over the base version of DSR. For example, with

34 CHAPTER 3. IMPLICIT SOURCE ROUTES

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

P
ac

ke
t O

ve
rh

ea
d

(a
ve

ra
ge

 o
ve

r 4
0

ru
ns

)

Pause Time

Base DSR
DSR with Implicit Source Routing

(a) Effect of Implicit Source Routing on Packet
Overhead

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 106

B
yt

e
O

ve
rh

ea
d

(a
ve

ra
ge

 o
ve

r 4
0

ru
ns

)

Pause Time

Base DSR
DSR with Implicit Source Routing

(b) Effect of Implicit Source Routing on Byte
Overhead

Figure 3.2: Effect of Implicit Source Routing on Overhead

continuous mobility of all nodes, the byte overhead for DSR decreased by 44% with implicit source
routing, and in a stationary network, byte overhead decreased by 86%.

Furthermore, by avoiding the need to include a source route header in every data packet, the
savings in byte overhead becomes proportional to the offered data packet load; in our simulations,
each node originated only 4 packets per second in order to test the routing protocol’s ability to find
and maintain routes in a moving network, but many real applications would generate greater rates
of data packets, further increasing the savings in byte overhead with implicit source routing.

3.4. Related Work

Before this work was published [75], the concept of routing flows using per-hop state had been
included in Multi-Protocol Label Switching (MPLS) [166] and ATM [179]. However, unlike such
protocols, our implicit source routing technique is designed for use in an ad hoc network, where
nodes may move and the network topology may change often (or continuously) and nodes generally
forward packets over the same wireless network interface on which they received them. In addition,
in MPLS and ATM, the flow identifier changes at each hop. This change prevents the use of default
flows as defined in implicit source routing.

On-demand routing based on per-hop state is also present in AODV [141]; however, nodes using
AODV are unable to take advantage of multiple paths to the same destination and cannot choose
which sequence of hops a packet will take, though it may be desirable to do so as different hops
have different characteristics, such as security, cost, and available bandwidth. AODV also relies on
the hard state of a sequence number at each node to ensure loop-freedom of its routing, while all
of the state in DSR with implicit source routing is soft state. In addition, AODV cannot utilize uni-
directional links in the network for communication between nodes, whereas DSR, with or without
implicit source routing, can fully support unidirectional links.

Many additional optimizations have been proposed for various portions of DSR, such as core
routing [173] and Location Aided Routing (LAR) [99]. All of these modifications can be used with

3.5. CHAPTER SUMMARY 35

DSR with implicit source routing, although any optimizations that attempt to achieve better perfor-
mance through improved route selection may conflict with optimal route selection for minimizing
overhead.

3.5. Chapter Summary

The use of source routing in an ad hoc network has many advantages, yet these advantages come at
the cost of increased packet header size and thus increased routing overhead bytes. In this chapter,
we have presented the design and evaluation of implicit source routing, a technique that preserves
the advantages of source routing while avoiding the associated per-packet overhead in most cases.
In a manner in part similar to techniques used for MPLS [166] or ATM virtual circuits [179], the
originator of a packet tags the packet a flow identifier implicitly indicating the sequence of hops
through which the packet is to be forwarded on its way to its intended destination. All per-hop
forwarding state is dynamically established when forwarding the first packet along this route and is
maintained by each node along the route only as soft state; the soft state is automatically established
as needed, and loss of any portion of this state has no effect on the correct operation of the protocol.

In addition, our implicit source routing mechanism includes support for DSR’s automatic route
shortening mechanism, allowing routes in use to be automatically shortened if one or more inter-
mediate hops in the route become unnecessary, and DSR’s salvaging mechanism, allowing packets
to be forwarded along alternate routes if the original route for the packet encounters a broken link
at some intermediate node. Implicit source routing also supports use of default flows, avoiding the
need for a flow identifier header in the packet and thus avoiding all routing overhead in that packet.

We have evaluated this technique by extending the Dynamic Source Routing protocol (DSR)
to include use of implicit source routing. Routing in DSR is based on source routing that is dy-
namically established on-demand when a sender needs a new route to some destination. The DSR
protocol is simple and has been shown by a number of groups to perform well when compared
to other protocols [26, 86]. Our implicit source routing mechanism fits naturally into the existing
structure of the DSR protocol [77] and preserves the important fundamental properties of DSR’s
operation, including sender-selected routes, allowing the use of multiple routes to any destination,
providing guarantees of loop-freedom even for packets sent with minimal overhead, routing based
entirely on soft state, and the ability to use unidirectional links.

Although DSR makes extensive use of overheard routes for a number of important optimiza-
tions, applying implicit source routing to DSR improved both packet delivery ratio and average
latency; although packet overhead increased slightly, byte overhead was reduced substantially. In
particular, although packet overhead increased by about 12.3% with implicit source routing, byte
overhead decreased by between 44 and 86%; on all other metrics evaluated, the performance of
DSR either did not change significantly or actually improved somewhat, due to indirect effects of
the reduced routing overhead.

36 CHAPTER 3. IMPLICIT SOURCE ROUTES

Chapter 4

Exploiting MAC Layer Information in
Higher Layer Protocols

Making use of information from one network protocol layer within other protocol layers has been
used to improve performance in both wired and wireless networking (e.g., [24, 157]), and such
cross-layer optimization techniques are regarded as one approach for best working within the con-
straints of the challenging wireless and mobile environment. However, in multihop wireless ad hoc
networking, few specific cross-layer optimization techniques have been proposed other than those
using physical layer information such as received signal strength.

In this chapter, we examine several cross-layer optimization techniques for exploiting informa-
tion from the Medium Access Control (MAC) layer to improve service to higher layer protocols in
the network. The MAC layer of a multiaccess network such as a wireless channel coordinates the
transmissions of different nodes on the network, for example to avoid packet collisions when two
or more nodes transmit at once [60]. As such, the MAC layer at a node must typically be able to
determine the degree to which the wireless medium around that node is idle or busy. We describe
in this chapter a number of general techniques for utilizing this MAC layer utilization information
in a multihop wireless ad hoc network to improve performance at the network and transport layers,
and we evaluate these techniques through detailed simulation of ad hoc networks.

Many different wireless MAC layers have been proposed and implemented, including ones
based on methods such as random access, TDMA, and polling. In this chapter, we use the IEEE
802.11 Distributed Coordination Function (DCF) MAC protocol [84], since it has been adopted as
a wireless LAN standard and is widely used in both traditional wireless systems and in multihop
ad hoc networking research. Our techniques using MAC layer utilization information could also
be applied easily with similar random access collision avoidance wireless MAC protocols such as
MACA [94] and MACAW [16], and could be adopted with other types of MAC protocols as well.

The specific network and transport layer protocols we used in our study of exploiting MAC
layer utilization information are the Dynamic Source Routing protocol (DSR) (Section 1.2.2) and
the TCP transport protocol [150]. We make use of wireless medium utilization information from the
MAC layer at a node to improve routing decisions in two areas: first, we modify Route Discovery
to prevent the discovery of routes over which it is undesirable to carry additional traffic since the
wireless medium over those hops is already quite busy, and second, we use this utilization informa-
tion from the MAC layer to control the use of certain routing protocol optimizations such as packet
salvaging. Finally, we also use MAC layer utilization information to influence the setting of the
Explicit Congestion Notification (ECN) bits [155] in the IP header of packets carried through por-
tions of the network where the wireless medium is particularly busy; this use of ECN allows higher
layer protocols such as TCP to also make use of this MAC layer information.

37

38 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

4.1. MAC Layer Utilization Information

In this chapter, we focus specifically on cross-layer optimization techniques exploiting utilization
information obtained from the MAC layer at a node, within higher layer protocols at that node.
In this section, we describe in detail one method for obtaining this type of information. We also
discuss a range of general possible uses of MAC layer utilization measurements in higher layer
protocols within a node; Section 4.2 later describes three specific uses of such measurements within
the context of the Dynamic Source Routing protocol (DSR) and TCP, and Section 4.3, evaluates
these three techniques in detail through simulation.

4.1.1. Measuring MAC Layer Utilization

The average MAC layer utilization level at a node indicates the degree to which the wireless medium
around that node is busy or idle. We define the average MAC layer utilization as measured by a node
to be the fraction of time during which that node either

• has one or more packets to transmit in its transmission queue for that network interface, or

• if that node had attempted to transmit, it would not have been able to do so then, according to
the rules of the MAC layer at that node.

Since the instantaneous MAC layer utilization at a node is either 0 or 1, we average this value over
a period to obtain an average indication of the use of the wireless medium around that node. In our
work, we average MAC layer utilization level at a node over a window size of 10 seconds.

The intuition behind this definition of MAC layer utilization is that the instantaneous value of
this metric should be 0 only when the wireless medium around the node is available for the node
to begin transmission of a new packet not already in that node’s network interface transmission
queue. Measuring this value requires the node to monitor the state of its own MAC layer. Although
many current wireless network interface products such as commonly available IEEE 802.11 wireless
LAN cards do not provide a MAC layer interface to support this monitoring by the operating system
software in the node, it is supported by some interfaces such as the DARPA GloMo Radio API [15],
and additional future wireless products may provide such an interface if it is proven useful.

As an example of measuring MAC layer utilization, we simulate it in this chapter based on a
detailed model of the IEEE 802.11 DCF MAC protocol [84]. We consider instantaneous MAC layer
utilization level at a node to be 1 at any time that the MAC layer at that node detects physical carrier
to be present, and at any time that this node’s MAC layer is deferring due to virtual carrier sensing,
interframe spacing, or backoff. Instantaneous MAC layer utilization at the node is also 1 at any time
that the node has at least one packet in transmission queue for its wireless network interface.

4.1.2. Uses within the Network Layer

Within the network layer, one use of measurements of the MAC layer utilization at a node is to
allow the routing protocol to attempt to affect the routes chosen, such as to avoid choosing routes
through portions of the network where the wireless medium is particularly busy. Routing protocols
for ad hoc networks can be grouped into two types: proactive (or periodic) protocols, and reactive
(or on-demand) protocols. Nodes using a proactive routing protocol exchange routing information
with each other (e.g., periodically) such that each node attempts to always know a current route to
all possible destinations (e.g., [91, 140]). In contract, nodes using a reactive routing protocol do not
exchange routing information until necessary, and instead attempt to discover all routes on-demand

4.1. MAC LAYER UTILIZATION INFORMATION 39

by an active search within the network (e.g., [88, 141]). Hybrid routing protocols, that combine
these two approaches, are also possible (e.g., [63]).

In a proactive routing protocol, nodes can affect the routes chosen by the protocol by using the
local measurement of MAC layer utilization to alter the metric for certain routing table entries that
it exchanges with other nodes. For example, in a distance vector routing protocol, the node could
include an expression of its MAC layer utilization level in each of its own routing advertisements;
neighbor nodes receiving such advertisements could use this value to treat the link from this node
as having a metric that is a function of the advertised MAC layer utilization level, rather than as is
common, treating each such link as having a metric of 1. For a link state routing protocol, a node
could use its local measurement of MAC layer utilization similarly to increase the metric that it
includes for its neighboring links in its own routing update packets to other nodes.

In a reactive routing protocol, nodes can affect the routes chose by the protocol through changes
in the operation of the dynamic route discovery process. We describe this approach in the context
of DSR in Section 4.2.1. In a hybrid routing protocol, a node may naturally use a combination of
mechanisms using MAC layer utilization measurements, based on either the proactive or reactive
portions of the hybrid protocol, to affect the routes chosen.

Another use of measurements of MAC layer utilization within the routing protocol at a node
is to modify in general the behavior of the routing protocol itself, based on the level to which the
wireless medium around the node is busy. For example, depending on the MAC layer utilization
measured by a node, optional features or optimizations within the routing protocol can be enabled or
disabled, if their effectiveness might depend on whether or not the wireless medium around the node
is particularly busy. We describe a specific example of this type of optimization in Section 4.2.2 in
the context of DSR.

Another example of such protocol modification would be an adaptive distance vector routing
protocol, in which a node modifies the periodic transmission of its own routing advertisement pack-
ets. If the wireless medium around the node is particularly busy, the node could reduce the frequency
of its own advertisements, and could reduce the number of routing table entries included in each ad-
vertisement to include only the most important or most recently changed entries. The ADV ad hoc
network routing protocol [19] performs similar adaptive optimizations, but the adaptation in ADV
is based on “trigger meter” values that use network layer information, not information directly from
the MAC layer as we propose here.

As a final example in this section, the AODV routing protocol [141] could be modified such that
a node does not attempt local route repair when the wireless medium around the node is particularly
busy. If a node attempts and is successful at local repair, then the route to that destination will
continue to pass through that node. If instead, in such cases, the node simply treated the link as
broken as normal, the new route discovered for that destination could be made to route around that
area of the network, when combined with modifications to Route Discovery similar to those we
define in Section 4.2.1.

4.1.3. Uses within the Transport Layer

Within the transport layer, a number of different uses of MAC layer utilization measurements at
a node are possible. Section 4.2.3 describes one approach in detail for TCP, based on setting the
Explicit Congestion Notification (ECN) bits in a packet’s IP header [155]; this same approach would
also be applicable for any other transport layer that supported use of the ECN bits [46]. Below we
suggest some other possible uses within the transport layer for MAC layer utilization measurements.

Beyond setting ECN bits to improve TCP performance, it may be possible to use information
about the MAC layer utilization levels at nodes along a multihop ad hoc network route to allow

40 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

TCP to gain additional information about network conditions. Such information about the degree
to which the wireless medium around nodes is busy might enable TCP to react better by helping to
differentiate conditions of wireless packet loss, congestion packet loss, or simple wireless medium
contention-based packet delay.

As a final example of use at the transport layer, the IETF Reliable Multicast Transport (RMT)
Working Group, in attempting to standardize reliable multicast for the Internet, is considering solu-
tions based on negative acknowledgements and on positive acknowledgements [85]. Each of these
approaches represents a tradeoff of factors such as overhead and latency; with additional infor-
mation such as MAC layer utilization measurements, it might be possible to adaptively balance
between these two approaches.

4.1.4. Uses within Other Higher Layer Protocols

Above the transport layer, information on the MAC layer utilization at a node or along a path, as sug-
gested in Section 4.1.3, can be used to adapt some traditional functions of of the presentation layer,
such as data compression. If the MAC layer utilization level indicates that the wireless medium is
particularly busy, a sending node could decide to compress the data before transmission. Such use
of compression represents a tradeoff between the bandwidth used for transmission versus the CPU
time consumed for compression and decompression and the latency in time taken for these func-
tions. Based on the measured MAC layer utilization level, a sending node could more productively
make such tradeoff decisions.

If an application programming interface (API) is available to pass the MAC layer utilization
measurement values to user-level programs, these measurements could also, for example, be used
to aid middleware application adaptation systems such as Odyssey [133] and Puppeteer [42].

4.2. Evaluation within DSR and TCP

This section describes the specific uses of MAC layer utilization measurements that we examined in
our evaluation of these cross-layer optimization techniques within DSR and TCP. We modified the
protocol behavior based on a combination of two metrics, the measured level of MAC layer utiliza-
tion at a node and the interface queue length at that node; the interface queue length is the number
of packets waiting buffered at that node for transmission over its wireless network interface. The
first of these metrics provides the node with a view of the current condition of the shared wireless
medium around the node; the second of these metrics indicates a prediction of the future load that
this node will place on the wireless medium.

4.2.1. Modifications to DSR Route Discovery

In Route Discovery in DSR, a node searches for a route to the target destination node by perform-
ing a controlled flood of the network with ROUTE REQUEST packets. When one of the ROUTE

REQUEST packets from this Route Discovery reaches the destination node or reaches another node
with a route to the destination cached, this node returns a ROUTE REPLY packet to the originator of
the Discovery.

Allowing this flood of ROUTE REQUEST packets from a Route Discovery to traverse an area of
the network in which the wireless medium is already particularly busy creates several risks. First, the
additional broadcast packets from the Route Discovery flood further increases the use of the wireless
medium in those areas. Second, the route discovered by a Route Discovery is the sequence of hops
through which the ROUTE REQUEST packet was forwarded that generated the ROUTE REPLY in

4.2. EVALUATION WITHIN DSR AND TCP 41

response, and thus, any route discovered by forwarding a ROUTE REQUEST through an area of the
network in which the wireless medium is already particularly busy can only result in a discovered
route through this same area; such routes are less desirable than other routes. Finally, the addi-
tional traffic resulting from a new flow of data packets using a route through such an area can cause
the wireless medium in this area to be used even more heavily, possibly leading to performance
degradation for all users.

To alleviate these problems, we explored the effect of modifying DSR so that nodes do not
process or forward a ROUTE REQUEST packet if the node determines that the wireless medium
around itself is too busy; however, if the node is the target of the ROUTE REQUEST, it processes it
and returns a ROUTE REPLY as usual.

This optimization is simple to implement, although in this form, it has two limitations. First, it
may cause a node to be unable to discover a route to some destination, even when a route actually
exists, if the only existing routes go through busy areas of the network. Second, by forcing the
Route Discovery to route around busy areas, it may cause a node to discover a route that is longer
than the minimum number of hops that could have been discovered; in saving overhead within busy
areas of the network, this optimization may create additional overhead totaled across other areas of
the network.

A modification to this optimization that could be made to address these limitations, is to add a
flag to each ROUTE REQUEST, indicating whether or not to use this optimization. A node that has
a packet to send to a destination would first check its Route Cache, and if it did not have a route,
would initiate a Route Discovery with the flag off; that is, such that nodes in busy areas would not
forward ROUTE REQUEST packets from that Route Discovery. If the source node does not receive
a ROUTE REPLY from that Discovery, it would initiate another Discovery, this time turning the
flag on, allowing all nodes to forward REQUESTS belonging to this Discovery. This modification
is somewhat similar to an expanding ring search, although the search here expands into busy areas
rather than simply into areas at a greater hop count from the source. In our simulation, we did not
implement this modification to the Route Discovery optimization, since the performance of ordinary
Discovery was sufficient.

4.2.2. Modifications to DSR Packet Salvaging

In DSR, packet salvaging is a mechanism used by an intermediate node to avoid dropping a packet
when it detects that the next hop for the packet along its original route is broken. The intermediate
node opportunistically checks its own Route Cache for a route to the packet’s destination, contribut-
ing its own cache information to enhance the probability of successful delivery of the packet.

However, the route that this intermediate node may select from its own Route Cache for sal-
vaging may not be a valid route to the destination, since the Cache is not actively maintained and
some nodes may have moved since this route was cached. Packet salving usually is beneficial,
though, because the nodes involved may not have moved extensively recently and because nodes
update their Route Cache with routing information in forwarded and overheard packets, but in some
cases, the extra overhead caused by forwarding the packet along the new route may not be worth
the chance that the packet will be delivered correctly rather than just being dropped.

We explored the effect of modifying packet salvaging to not salvage a packet at an intermediate
node (and to drop the packet instead when the next hop on the original route has broken) if the wire-
less medium around the node is particularly busy. This condition is an indication that attempting to
salvage the packet may create more harm than good, since sending the packet along the new route
will add more overhead to the wireless medium in the area.

42 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

Table 4.1: MAC Layer Utilization Levels for Triggering Optimizations

Optimization MAC Layer Interface
Utilization Queue Length

Suppressing ROUTE REQUEST forwarding 15% 10
Suppressing salvaging 5% 20
Setting IP header ECN bits 1% 30

This modification to packet salvaging also addresses two related potential problems with sal-
vaging in this situation. First, at a node where the wireless medium has been particularly busy,
packets which could otherwise have been overheard may have a higher chance of loss, due to fac-
tors such as collision and increased noise floor. As a result, such a node will have been able to
overhear less routing information from other packets and may thus have lower-quality routes in its
Route Cache for any routes for which it is not directly involved in forwarding, making salvaging in
this case even less desirable. Second, when a node attempts to transmit a packet to a next-hop node
that is no longer a neighbor, an RTS packet is repeated several times (when using a MAC protocol
like IEEE 802.11); each of RTS packets causes this node’s neighbors to sense virtual carrier for the
intended duration of the intended data packet. If several RTS attempts are made before determining
that the link to the next hop has broken, possibly further increasing congestion around those nodes.

4.2.3. Use within TCP

Ramakrishnan and Jain [156] proposed Explicit Congestion Notification (ECN) as a mechanism
for signaling congestion, in packets traversing congested nodes or links. Floyd [51] presented a
mechanism to use the ECN mechanism to improve the performance of TCP.

We made use of ECN as a mechanism for an intermediate node to signal to the TCP sender
that the wireless medium around the node is particularly busy. Using ECN for TCP provides two
benefits: first, it may prevent the loss of packets along that flow due to queue overflow, and second,
it may allow better fairness for other flows also traversing this node.

In typical use of ECN, routers use active queue management [21, 52] to set the Congestion
Experienced (CE) codepoint [155] in a packet’s IP header when the average queue length at that
node exceeds some threshold. Instead, we set the CE codepoint in a packet based on our combined
metrics of MAC layer utilization and queue length. When a TCP sender receives a packet with the
CE codepoint set in its IP header, the TCP sender responds using its congestion control algorithm
as it would to a packet drop [155]. Since our MAC layer utilization measurement represents an
average of the recent level to which the wireless medium around the node is busy, the setting of
the CE codepoint in a packet by an intermediate node indicates a sustained congestion condition
needing action from the TCP sender.

4.3. Evaluation Methodology

We based our evaluation of the use of MAC layer utilization measurements in DSR and TCP on
the version of DSR that uses implicit source routing and flow state, as described in Section 1.2.2,
since this version shows the best reported performance for the DSR protocol (Chapter 3). Using the
ns-2 network simulator (Section 2.3.1), we simulated this version of the DSR protocol, both with

4.3. EVALUATION METHODOLOGY 43

0 5 10 15 20 25 30
 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

Base DSR
Salvage Only
Salvage and Reply
Base No Salvage

PSfrag replacements

P
ac

ke
tD

el
iv

er
y

R
at

io

Number of Flows

(a) Packet Delivery Ratio for 1500 m×300 m

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 D

el
iv

er
ed

 P
ac

ke
ts

Base DSR
Salvage Only
Salvage and Reply
Base No Salvage

PSfrag replacements
≥5

Number of Hops Longer than Shortest

(b) Path Optimality for 1500 m×300 m

0 5 10 15 20 25 30
 0

 5

10

15

20

25

30

35
Base DSR
Salvage Only
Salvage and Reply
Base No Salvage

PSfrag replacements

P
ac

ke
tO

ve
rh

ea
d

(P
ac

ke
ts
×

1
0

3
)

Number of Flows

(c) Packet Overhead for 1500 m×300 m

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

La
te

nc
y

(s
ec

on
ds

)

Base DSR
Salvage Only
Salvage and Reply
Base No Salvage

PSfrag replacements

Number of Flows

(d) Average Latency for 1500 m×300 m

Figure 4.1: Simulation results for CBR traffic in 1500 m×300 m scenarios with 50 mobile nodes, with
each source node sending 4 512-byte CBR packets per second; results are averaged over 40 simulation
runs, with the error bars representing the 95% confidence interval of the mean.

and without the specific modifications for use of MAC layer utilization information within DSR and
TCP described in Section 4.2. All behavior of TCP in our simulations was created by ns without
modification, based on our setting of the ECN bits in the IP header of packets as appropriate.

Due to the varying affect that contention in the wireless medium and congestion has on each of
our several optimizations, we chose different levels at which to enable each. Table 4.1 shows the
measured MAC layer utilization and interface queue lengths at which we enabled each optimiza-
tion. We chose these values by intuition and have not yet undertaken any attempt to tune them for
performance.

We evaluated the performance of these modifications over a wide range of scenarios, with nodes
moving according to the random waypoint mobility model (Section 2.5.1). We choose the same
parameters for the random waypoint model as in Section 2.5.1.

The data traffic in our simulations was based both on Constant Bit Rate (CBR) sources and TCP
sources. We performed three sets of experiments.

The first two sets of experiments used CBR traffic and evaluated the effect of our protocol mod-
ifications using MAC layer utilization measurements in DSR. One of these sets of experiments was

44 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

performed using 50 mobile nodes in a simulation area of 1500 m×300 m modeling 900 seconds of
simulated time for each run, and the other set was performed using 100 mobile nodes in an area of
1000 m×1000 m modeling 1000 seconds of simulated time for each run; in both of these sets of
experiments, we simulated a number of CBR traffic sources, varying from 2 to 30 CBR sources per
run, with each source sending 4 512-byte packets per second.

Our final set of simulation experiments evaluated the effect of our protocol modifications in
DSR and TCP on a set of TCP flows; these experiments were performed using 100 mobile nodes
in a simulation area of 1000 m×1000 m modeling 1000 seconds of simulated time for each run.
In these experiments, we simulated 20 TCP streams per run, with each TCP source sending data
continuously during the execution of the simulation.

In the first two sets of experiments, we measured the four metrics described in Section 2.3.3. In
the third set of experiments, we measured the goodput and fairness of the set of TCP connections.
We define the goodput of each TCP stream here as the number of bytes of the TCP data stream
correctly delivered to the receiver, such that that byte and all previous bytes of the stream were
delivered with no missing TCP segments.

4.4. Results

The results from the first two sets of simulation experiments described in Section 4.3 are shown in
Figures 4.3 and 4.3. We defer the presentation of the results from our third set of experiments until
Section 4.4.3, where we discuss those results.

Figure 4.3 shows the four metrics defined in Section 4.3 for simulation runs of 50 nodes in an
area of 1500 m×300 m, and Figure 4.3 shows the corresponding set of results for simulation runs
of 100 nodes in an area of 1000 m×1000 m. In these graphs, the error bars shown represent the
95% confidence interval of the mean. We discuss these results below in Sections 4.4.1 and 4.4.2.

4.4.1. Suppressing Salvaging

When salvaging was disabled based on high MAC layer utilization levels, as in Section 4.2.2, per-
formance was identical with lower load, but packet delivery ratio, overhead, and average latency all
showed substantial improvements at higher load. For example, in the 1000 m×1000 m scenarios,
at the high load of 26 flows, representing a data rate of 426 kbps, the unoptimized version of DSR
delivers just 80% of its packets, while the optimized version of DSR delivers almost 88% of its
packets. At the same load, packet overhead decreased by over 25%, and average latency dropped
by more than a factor of 4.

To evaluate the effectiveness in using MAC layer information in making decisions about whether
or not to salvage, we also compared our scheme to a version of DSR that never salvages. We ran
these simulations only for the 1500 m×300 m scenarios. When compared to a version of DSR that
never salvages, the salvaging optimization based on MAC layer information show significantly bet-
ter performance at lower loads. For example, with 20 flows, representing a data rate of 327 kbps,
the version of DSR using MAC layer information delivered 99.21% of offered packets, where on
the same scenarios, the version of DSR that never salvaged delivered just 96.93% of packets. At the
same load, packet overhead is also slightly lower without salvaging, due to the positive effects of
spreading cache information through source routes. At higher loads, salvaging actually decreases
packet delivery ratio relative to the base version of DSR; choosing whether or not to salvage based on
MAC layer utilization level retains much of the benefit to packet delivery ratio of not salvaging when
the utilization is low, without sacrificing the ability to salvage when congestion is not a problem.

4.4. RESULTS 45

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

 1

Base DSR
Salvage Only
Salvage and Reply

PSfrag replacements

P
ac

ke
tD

el
iv

er
y

R
at

io

Number of Flows

(a) Packet Delivery Ratio for 1000 m×1000 m

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 D

el
iv

er
ed

 P
ac

ke
ts

Base DSR
Salvage Only
Salvage and Reply

PSfrag replacements
≥5

Number of Hops Longer than Shortest

(b) Path Optimality for 1000 m×1000 m

0 5 10 15 20 25 30
 0

 20

 40

 60

 80

100

120

140

160

180

200
Base DSR
Salvage Only
Salvage and Reply

PSfrag replacements

P
ac

ke
tO

ve
rh

ea
d

(P
ac

ke
ts
×

1
0

3
)

Number of Flows

(c) Packet Overhead for 1000 m×1000 m

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

La
te

nc
y

(s
ec

on
ds

)

Base DSR
Salvage Only
Salvage and Reply

PSfrag replacements

Number of Flows

(d) Average Latency for 1000 m×1000 m

Figure 4.2: Simulation results for CBR traffic in 1000 m×1000 m scenarios with 100 mobile nodes,
with each source node sending 4 512-byte CBR packets per second; results are averaged over 10 simu-
lation runs, with the error bars representing the 95% confidence interval of the mean.

A possible improvement to this scheme would be to not forward salvaged packets at congested
nodes; a node could examine the “salvage count” field in the DSR header of each packet that it
forwards, and make forwarding decisions based on salvage count and local measured MAC layer
utilization level. This technique would provide even more of the benefits of never salvaging, but
only at nodes where not salvaging is beneficial. Preliminary results show that such an approach
could split the difference between never salvaging and using MAC layer utilization information at
higher levels of congestion, while maintaining the higher performance of using MAC layer utiliza-
tion levels at lower congestion. This approach cannot fully achieve the benefits of not salvaging
in congested areas because a congested node may have a neighbor that is not congested; if that
neighbor salvages a packet and sends it to the node, the node would not forward it, so the initial
transmission was wasted. It may also be possible to “push” MAC layer information one hop farther,
allowing neighbors to see congestion levels of neighboring nodes, either by piggybacking the infor-
mation on existing data and routing packets, or by including it as part of an RTS/CTS handshake,
but such pushed information may be stale.

46 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

0 50 100 150 200
103

104

105

106

107

108

Base DSR
Discovery and Salvage Opts
All Optimizations

PSfrag replacements

Flow Number

B
yt

es
D

el
iv

er
ed

Figure 4.3: Number of bytes delivered per TCP flow in 1000 m×1000 m scenarios with 100 mobile
nodes and 20 TCP flows in each run; each TCP flow over 10 simulation runs is shown separately, sorted
by the number of bytes of goodput delivered to the receiver for that flow.

The version of DSR that never salvages always has better latency and path optimality, since no
packets are rerouted in-flight; however, at lower traffic loads, this is at the cost of some packets not
being successfully delivered.

Using MAC layer utilization levels to influence salvaging decisions provides, to a large extent,
the advantages of both choices.

4.4.2. Suppressing Route Discovery

When ROUTE REQUEST propagation was determined based on MAC layer utilization level, our
simulations showed a slight but statistically significant increase in packet delivery ratio in the
1500 m×300 m runs, as well as a more substantial improvement in packet overhead for both sets
of scenarios. For example, in the 1500 m×300 m scenarios, with an offered load of 26 flows, rep-
resenting a data rate of 426 kbps, the packet delivery ratio with both salvaging and Route Discovery
optimizations enabled was 94.29%, and was only 93.50% with just the salvaging optimizations;
enabling Route Discovery optimizations also reduced overhead by 12%. At the same load in the
1000 m×1000 m scenarios, enabling Route Discovery suppression based on MAC layer informa-
tion increased packet delivery ratio from 87.91% to 90.41%, while decreasing overhead by 32%.

By using measured MAC layer utilization levels to avoid congested areas in discovered routes,
DSR can more evenly spread the offered load across different forwarding paths in the network.

4.4.3. TCP Fairness

Figure 4.3 shows the results of our third set of experiments, described in Section 4.3, evaluating
the effect on a set of TCP flows when using our protocol modifications using MAC layer utilization
measurements. These experiments used all protocol modifications to DSR and TCP described in
Section 4.2. This graph shows the number of bytes of goodput delivered for each TCP flow over 10
simulation runs with 20 TCP flows per run, or 200 total TCP flows; the y-axis scale on this graph is
logarithmic, in order to show the detail in the curves plotted.

In these simulations, as described in Section 4.2.3, we caused each TCP sender to react using
ECN when an area of the network through which that flow was routed experienced congestion in
terms of high levels of usage of the wireless medium in that area or long queue length at an inter-
mediate forwarding node on the route. In addition, since in an ad hoc network, routes can change

4.5. A QUALITY-OF-SERVICE DEMONSTRATION 47

frequently, to help ensure fairness, we also cause a TCP sender to begin slow-start as soon as that
node receives a new ROUTE REPLY, indicating a change in the route for that TCP connection.

When ECN bits are set in congested areas of the network, flows traversing many hops, and other
flows traversing few hops, are evenly penalized, improving TCP fairness. In our simulations, this
ECN behavior substantially increased total throughput for more than half the total flows, relative
to the results when this ECN modification is not used but all other protocol modifications are still
present. Though setting ECN bits slightly decreases the overall throughput, more flows receive a
reasonable level of service. This result is expected in any system designed to increase fairness: a
multi-hop TCP flow will require more aggregate wireless bandwidth for the same amount of end-
to-end delivered bandwidth, so increasing the throughput for connections traversing more hops will
have an adverse effect on TCP connections traversing fewer hops.

4.5. A Quality-of-Service Demonstration

Ad hoc networks have the potential to provide effective communication services for groups of wire-
less mobile users, without requiring the aid of any centralized administration or fixed infrastructure
such as base stations or access points. Certain applications of ad hoc networks require levels of ser-
vice beyond best-effort packet delivery, such as the ability to support real-time multimedia streams
such as live audio and video over the network. Examples of such applications include video con-
ferencing, remote site monitoring, and unmanned vehicle operation. However, such support in an
ad hoc network is particularly challenging due to the rapid changes in routing that may occur with
node motion and due to occurrences of interference and congestion in the shared radio spectrum
used by the nodes. Although a number of mechanisms for providing the necessary Quality of
Service (QoS) support for such applications in ad hoc networks have been proposed, these mech-
anisms introduce complexity into the system and generally increase system overhead. In addition,
published reports of testbed implementations or demonstrations of ad hoc networks [4, 114] do not
provide mechanisms supporting these types of real-time multimedia streams.

In this section, I describe the design and demonstration of a set of three mechanisms we added
to the Dynamic Source Routing protocol (DSR) for ad hoc networks (Section 1.2.2) to improve
service by supporting live audio and video streams. DSR is a simple and efficient protocol for
routing in ad hoc networks, which has been previously demonstrated through simulation and testbed
implementation to perform well [26, 86, 113, 114]. Our goal in this work was to develop a set of
lightweight extensions for DSR that perform well and that preserve the basic operation of the DSR
protocol. These extensions can also be applied to other similar ad hoc network routing protocols
such as AODV [141].

Our demonstration at the final DARPA Global Mobile Information Systems (GloMo) Principal
Investigators Meeting in July 2000 showed smooth audio and clear video performance over a
continuously moving multihop wireless ad hoc network, using off-the-shelf Microsoft Windows
NetMeeting [125] audio and video software. Since our implementation and demonstration of these
mechanisms at the GloMo PI meeting, some simulation results have been shown for these and
simular mechanisms [57, 75], but this section presents the first and we believe currently only im-
plementation of these mechanisms; this work thus represents the only experimental results showing
the effectiveness of these mechanisms in a real mobile ad hoc network.

4.5.1. Preemptive Route Maintenance

The standard DSR Route Discovery and Route Maintenance procedures work very well for most
types of data, but when a route in use breaks, some latency is introduced before the data can begin

48 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

flowing again over a new route. Route Maintenance must attempt a number of retransmissions over
the broken link before sending a ROUTE ERROR to the source of the data, and Route Discovery
requires a network round-trip between the source node and the target node to discover a new route
to the target. Although the total of this added latency when a route breaks is small (typically less
than 100 ms total, with our hardware), its effect on real-time multimedia streams such as live audio
and video is undesirable.

To avoid this latency, we used the measured signal-to-noise ratio (SNR) for received pack-
ets to detect when a route in use is likely to break soon. For the wireless LAN cards used by
the nodes in our implementation (IEEE 802.11 Lucent WaveLAN), for each received packet, the
card reports to the network interface device driver software the measured signal strength and noise
values along with the contents of the packet; this is a common feature supported by most com-
mercial wireless LAN cards and other radio devices. The term preemptive Route Maintenance
refers to a number of possible approaches that make use of this SNR information to detect the
likely imminent failure of a link, in order to use an alternate route if already known, or to be able
to initiate a new Route Discovery in time to discover a new route before the old route actually
breaks.

One approach to preemptive Route Maintenance is for each node to keep statistics of the SNR
for recent packets it has received from each of its neighbors. When the node receives a new packet
with an SNR below some threshold, it may choose to send a warning of this to the original sender of
the packet. For example, if this packet and the last several packets received from this neighbor have
all been below the threshold, it is likely that the link from that neighbor will soon break. To send
the warning to the sender of the packet, this node could send a special type of ROUTE ERROR as a
warning, indicating that the link may fail soon. A node receiving such a notification may continue
to use the specified link, but if it is routing real-time multimedia packets over routes including that
link, it should initiate a new Route Discovery to find a more suitable route soon.

A number of additional sources of SNR information are also available for use with preemptive
Route Maintenance. For example, if a node makes use of passive acknowledgements for Route
Maintenance, the SNR of a received passive acknowledgement from the next-hop node forwarding
a packet transmitted by this node, can serve as an indication of the quality of the link from this node
to that next-hop node. Furthermore, the measured SNR for any other packet overheard by this node
(e.g., a broadcast packet or any packet received by this node while operating its network interface
in “promiscuous” mode) may also provide an indication of the quality of the link between this node
and the node transmitting that packet.

In some environments, it may be important to distinguish the meaning of these SNR measure-
ments for the direction of transmission over the link. In particular, due to effects such as differing
sources of wireless interference or possible differences in the radio and antenna hardware at both
ends of a wireless link, wireless propagation may not work equally well in both directions be-
tween two nodes. For the SNR of a packet received by this node for forwarding along a route,
the measured value directly indicates the quality of the link being used to forward this packet and
future packets along the same route. For the SNR of a received passive acknowledgement, how-
ever, the measured value only directly indicates the quality of the link from this next-hop node to
this node, for example as might be used in a reverse route used for end-to-end communication in
the opposite direction between the same two end nodes (e.g., for the return of an end-to-end TCP
acknowledgement packet). Similarly, the SNR value measured for any other packet overheard by
this node only directly indicates the quality of the link from the node transmitting this packet to
this node. In each of these cases, though, these SNR values also may be useful indirectly in help-
ing to assess the quality of the link for future packets transmitted to that neighbor node by this
node.

4.5. A QUALITY-OF-SERVICE DEMONSTRATION 49

4.5.2. Using SNR to Limit Route Discovery

The ability of the network interface hardware to measure the signal-to-noise ratio (SNR) for each
received packet, as described above in Section 4.5.1, can also be used to improve the behavior of
the Route Discovery process for real-time multimedia streams such as live audio and video. Due
to natural fluctuations in received signal strength from effects such as multipath propagation, some
packets may be able to be received by nodes much further away from the transmitting node than is
typical for packets transmitted by that node.

This phenomenon creates a potential problem for Route Discovery in that a ROUTE REQUEST

packet may sometimes be received by a node that would not be able to receive most other packets
transmitted by that same node. If this ROUTE REQUEST is processed normally by that node as part
of this Route Discovery attempt, the discovered route may be very unreliable, since this node may
not be able to receive most data packets sent along that route to it or through it as an intermediate
node.

In addition, in the same way as preemptive Route Maintenance attempts to find alternate routes
when a link in a route in use falls below the SNR threshold, Route Discovery should avoid finding
such routes, if possible. That is, if a route is discovered by Route Discovery in which one or more
links have a very low SNR, this may be an indication that such links in the route are likely to break
soon; in this case, it may be much more efficient and cause much less disturbance to real-time
multimedia streams over this route, for Route Discovery to be able to find a different route instead.

To address these problems, the processing of a Route Discovery when attempting to find a route
for use by a multimedia stream could be modified to limit the spread of the ROUTE REQUESTs based
on SNR. In this case, a node that receives a ROUTE REQUEST such that the SNR of this received
packet falls below the threshold should not forward the REQUEST. Thus, all routes discovered will
consist entirely of links with adequate SNR at the time that the route is discovered.

4.5.3. Per-Hop Flow State Maintenance

Audio and video applications tend to send very small packets to minimize the buffering latency at
the transmitter. Unfortunately, this means that the source route normally present in the header of
each DSR packet could represent considerable total overhead. In addition, we would like to be able
to differentiate packets belonging to real-time multimedia flows and ordinary data packets.

We have designed a general mechanism called flow state to support these goals (Chapter 3) We
provide a summary of the basic flow state mechanism here. With flow state, most DSR packets do
not contain a source route header. Once a node sending a packet to some destination has discovered
a source route to that destination, the node sends the packet as a normal DSR packet containing the
full source route header. As the packet is forwarded to the destination based on this source route,
the flow state mechanism allows each node forwarding the packet to remember the address of the
next hop along this source route. Subsequent packets from this sender may then be forwarded along
the same route to this destination with no source routing information present in packet header of
any of these packets. The flow state established at each hop along the route is “soft state” and thus
automatically expires when no longer needed.

Our current design of the flow state mechanism is more general than what we used in our demon-
stration, but for the use to which we put it here, the two versions are functionally the same. Each
node maintains a Flow Table, which associates a (source address, flow identifier) pair with a full
source route to the destination for that flow. To establish Flow Table entries, packets are sent with a
source route as normal, except that a flow identifier is also included. A node receiving such a packet
adds the new flow information to its Flow Table.

50 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

Figure 4.4: Location of nodes in the demonstration

To send a packet along that flow once all intermediate nodes have associated the flow identifier
with the source route, the sending node replaces the destination address in the packet’s standard IP
header with a special encoding of the flow identifier for that flow. If a node receives a packet for
forwarding without a source route in the packet’s header, the node forwards the packet to the next
hop indicated in this node’s Flow Table entry for that flow identifier. If, however, the node has no
corresponding Flow Table entry, it returns a special form of ROUTE ERROR packet to the source
node; the source then reestablishes the flow state as when initially beginning to use that route. The
flow state also allows a forwarding node to differentiate real-time multimedia packets from ordinary
data packets, as this state can also be represented in the Flow Table entry.

4.5.4. Demonstration Design and Configuration

In our demonstration ad hoc network at the GloMo PI meeting, we used Microsoft Windows
NetMeeting [125] to provide live audio and video between a stationary node and a moving car
over multiple wireless hops. The demonstration was performed at the Sheraton hotel in Eatontown,
New Jersey, a large 6-story hotel surrounded by parking lot on all sides; Figure 4.4 illustrates the
configuration of the nodes in our ad hoc network. The stationary endpoint node was located in the
hotel as shown on the right in Figure 4.4, with the moving car endpoint (shown on the left) driving in
the hotel parking lot, continuously circling the hotel building (counterclockwise) without stopping.
All routing in the ad hoc network was done using the Dynamic Source Routing protocol (DSR)
integrated with the extensions for real-time multimedia support described above.

The ad hoc network allowed these two endpoint nodes to remain connected as the moving car
endpoint circled the hotel. Each of the other six nodes in the ad hoc network shown in Figure 4.4
was implemented as a car parked in the hotel parking lot, with a FreeBSD Unix laptop in each
car implementing DSR. Although these other nodes were stationary during the demonstration, the
multihop wireless ad hoc network route between the stationary hotel endpoint node and the moving
car endpoint changed rapidly throughout the demonstration. When the moving car endpoint node
was near the hotel endpoint, the best route between these two nodes was a direct one-hop DSR route.
As the moving car passed this point in circling the hotel, the route continued to change to incorporate
more of the intermediate nodes, until the car reached the halfway point around the hotel. At this
point, the best route between the moving car and the hotel endpoint switched to route around the
hotel building in the opposite (shorter) direction, and this route then became progressively shorter as
the moving car returned to near the hotel endpoint on its way again around the building. Keeping the
intermediate nodes stationary also simplified the operation of the demonstration within the crowded
hotel parking lot.

4.5. A QUALITY-OF-SERVICE DEMONSTRATION 51

As mentioned, the two endpoint nodes in our demonstration (the moving car and the stationary
node in the hotel) ran Microsoft Windows and NetMeeting. All application and operating system
software on these two nodes were the standard, unmodified commercial version, and all communi-
cation was through standard IP packets. The DSR protocol and our implementation of it are thus
entirely compatible with this commercial off-the-shelf software.

All wireless links in the ad hoc network were implemented using Lucent WaveLAN-II wireless
LAN PCMCIA cards [93]. The radios support a maximum bitrate of 2 Mbps and are compatible
with the IEEE 802.11 wireless LAN standard [84]; they operate in the 2.4 GHz ISM band with
a transmitter power level of 15 dBm (30 mW). In setting up the network, we measured signal
strength and packet transmission reliability between the stationary cars, and placed these nodes
such that each was normally able to communicate only with its directly adjacent nodes around the
hotel building

In order to provide DSR routing functionality at the two endpoint nodes, we used an additional
laptop at each endpoint. At the moving car endpoint node, one laptop ran Microsoft Windows and
NetMeeting, and the other ran FreeBSD Unix and DSR. The two laptops were connected by a short
wired Ethernet segment, using static IP routing configuration on these two laptops: the Windows
laptop’s IP default router was the FreeBSD laptop, and the FreeBSD laptop was configured with a
static route to the Windows laptop. The stationary endpoint in the hotel was configured in the same
way, except that the connection between the two in this case used a 2 Mbps point-to-point wireless
link based on Lucent WaveLAN-II hardware with Yagi directional antennas. This link was wireless
rather than wired as in the moving car endpoint, in order to extend the signal outside the hotel into
the parking lot where the ad hoc network operated; we used a different IEEE 802.11 frequency
channel for this link than used in the ad hoc network nodes, so that this link was isolated to the two
laptops implementing the stationary hotel endpoint.

4.5.5. Protocol Implementation

We implemented the DSR protocol extensions described above by modifying our existing DSR
implementation in the FreeBSD Unix kernel. FreeBSD is a freely available open-source version
of Unix based on the Berkeley 4.4BSD-Lite Release 2 Unix distribution. In total, we changed
approximately 1600 lines of source code in our DSR kernel to support these changes.

For both preemptive Route Maintenance (Section 4.5.1) and using SNR in Route Discovery
(Section 4.5.2), we needed a way to get the necessary SNR information out of the network interface
device driver into the DSR routing code. When a packet is received, the device driver places the
packet in a kernel memory buffer known as an mbuf [119]. Since the design of our extensions de-
pend on the SNR of a received packet only in order to check if it is below threshold, we simply added
a new flag to the mbuf header to indicate that the packet in this mbuf was received with low SNR.
The use of this flag avoids major changes to the format of packets in mbufs and significantly reduces
any compatibility concerns for this functionality with the rest of the protocol handling source code.

In implementing preemptive Route Maintenance, we took advantage of the node configuration
used for our demonstration. Since we had only one moving node, we implemented preemptive
Route Maintenance only for that node. When the SNR to the next hop for the moving node was
fading, this node could then initiate a new Route Discovery itself, eliminating the need to actually
send a special ROUTE ERROR packet when the SNR dropped below the threshold. In addition, in our
implementation, the node reacted when just one packet fell below the SNR threshold. Though this
approach may result in a number of unnecessary Route Discoveries, it reacts quickly to degrading
link quality. In addition, it did not require an additional data structure to keep track of how many
recent packets had signal strength below the threshold.

52 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

In implementing the flow state extensions to DSR (Section 4.5.3), we added a Flow Table to each
node to track all of the flows originating at or being forwarded by that node. When a node forwards
a packet using a source route, it checks to see if the packet also contains an option specifying a
flow identifier for this flow. If so, the node adds the route to its Flow Table. At the sender, we
added an application program that allowed real-time multimedia flows to be identified, using a flow
specification similar to RSVP [22]. An entry was added to the Flow Table for each flow identified
in this way. When a sending node begins to use a new route for some flow in its Flow Table (e.g.,
when first using the flow or after the route in use is changed due to Route Maintenance), for the
next ten packets that the node sends along that flow, the node includes a normal full DSR source
route header and the new flow identifier in each packet; all other packets were sent using only a
flow identifier. Repeating the full source route on each of these initial packets helps ensure that all
of the nodes along the route have received the new routing information and associated it with the
new flow identifier. If a node receives a packet for forwarding without a source route in the packet,
but this node has no corresponding Flow Table entry (e.g., because it did not receive the earlier
packet establishing that flow), the node returns a special ROUTE ERROR to the source, which then
reestablishes the flow state, as described in Section 4.5.3.

To send a packet using a flow identifier, we used an encoding of the flow identifier in the packet
header that allowed such packets to carry no per-packet overhead for DSR. Each flow identifier is
16 bits long. In the packet header, we represented the flow identifier in the packet’s IP Destination
Address field as an address of the form 127.0.xxx.yyy, where xxx.yyy is the flow identifier. Such
addresses are normally reserved for the loopback network interface [159] and thus do not otherwise
appear in the Destination Address field of a packet sent over the network. Since each node in
our ad hoc network supported DSR and flow state, this address could in our implementation be
recognized as a special case. Alternatively, the flow identifier could be represented in a special small
header in the packet, but in our implementation, we opted for the representation in the Destination
Address to further reduce overhead for carrying the audio and video streams.

Finally, in this implementation, we modified the FreeBSD WaveLAN device driver and our DSR
code to allow DSR Route Maintenance to utilize the link-layer acknowledgements built into the
IEEE 802.11 MAC protocol. Specifically, after completing transmission (and any link-layer retrans-
mission attempts) for a packet, the device driver calls a new procedure within Route Maintenance to
indicate the success (802.11 acknowledgement received) or failure (no acknowledgement received)
for that packet transmission; if a transmission failure is indicated, DSR’s Route Maintenance re-
acts by sending a ROUTE ERROR as appropriate. This ability to use link-layer feedback is a part
of DSR’s design [87] but to our knowledge has not been implemented before on 802.11 for DSR
or other routing protocols for ad hoc networks. Since this acknowledgement is already required
for all IEEE 802.11 transmissions, DSR is then able to perform Route Maintenance with no extra
overhead.

4.5.6. Demonstration Results

We set up the ad hoc network for the demonstration and tested it over one day and demonstrated it
for different groups of people at the meeting frequently over the following two days. In each run
of the demonstration, we operated the ad hoc network continuously, with most runs lasting several
hours or more; during each run, the moving car continued to drive around the hotel building, with
brief breaks only to change drivers of the car, without resetting the laptops or restarting the network.
The routing between the stationary endpoint node in the hotel and the opposite endpoint node in
the moving car thus continued to change frequently during the operation of the demonstration. In

4.5. A QUALITY-OF-SERVICE DEMONSTRATION 53

all runs of the demonstration, all aspects of the protocols and extensions for live audio and video
support worked extremely well in almost all respects.

Observers of the demonstration in the hotel could converse with the driver of the car and could
see the view from a camera in the car pointed out the car’s front windshield. All audio and video to
support this was provided through standard Microsoft Windows NetMeeting being transmitted in IP
packets over the ad hoc network. A microphone, audio headset, and video camera were located in
the moving car, and a microphone and speakers were located in the hotel; we did not provide video
from the hotel to the car since the driver of the car could not watch the video while driving. The
video camera used was a Logitech QuickCam Pro camera with a USB computer interface.

In addition to the NetMeeting audio and video data traffic on the ad hoc network, we generated
additional background traffic by using one of the stationary cars to “ping” each of the other cars; the
source node of the ping was changed every 5–10 minutes, and within this time, each other car was
used as a destination of the ping, dividing the time approximately equally between the other cars for
this source node.

In most operation of the demonstration, the routes over the ad hoc network ranged up to 3
hops in length. Until the moving car reached the halfway point around the hotel, DSR generally
discovered the route of 1, 2, or 3 hops around the “top” side of the hotel, as shown in Figure 4.4;
as the moving car continued around the hotel, DSR generally discovered the route of 3, 2, or 1
hops around the “bottom” side of the hotel. At one point during the demonstration, the laptop in
one stationary car was shut down and not restarted, forcing DSR to discover routes up to 5 hops in
length in order to route all the way around the hotel building past this disabled intermediate node.

Throughout all runs of the demonstration with our multimedia extensions enabled in DSR, the
audio quality received through the speaker was excellent, and sounded roughly the same as for a
NetMeeting connection over a standard 56 kbps modem not using DSR. The video quality displayed
was also very good, although at times not quite of the same quality as the audio. These observations
of the audio and the video quality in general seemed not to be affected by the frequent routing
changes in the multihop wireless ad hoc network as the moving car endpoint node circled the hotel
building.

The one factor that did seem to affect the perceived video quality while operating with our
multimedia extensions enabled was the behavior of the video camera and NetMeeting as the moving
car node turned a corner as it drove around the building. At such times, the rate of change in the
video scene captured by the camera that must be encoded by NetMeeting was quite large relative
to the behavior when simply driving roughly straight forward. The data rate required by the video
during these times thus increased [125]; since NetMeeting gives priority for use of a fixed portion
of the available bandwidth for audio data, using only what bandwidth is left available for video, the
video image degraded during these times, whereas the audio seemed unaffected.

When we disabled our multimedia extensions in testing during the demonstration, however, the
audio and video qualities both suffered significantly. The audio appeared to drop or substantially
delay some packets, creating gaps of silence in the audio played through the speakers. During these
tests, the video image on the screen also became “blocky” and inconsistent. This is due to the
video encoding used by NetMeeting: NetMeeting transmits a full video frame every 15 seconds,
but otherwise sends only deltas between these full frames [125]. If a packet is dropped leading to
the loss of a full frame, the deltas until the next full frame could not be displayed correctly. After
this time, the video image on the screen returned to normal, but after a short while, the degradation
would reoccur. Once we re-enabled the multimedia extensions in DSR, both audio and video quality
quickly returned to normal and maintained their performance.

54 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

4.5.7. Related Work

After our design and implementation of this demonstration, Goff et al independently developed
a similar form of preemptive Route Maintenance and of using SNR in Route Discovery [57].
However, they have not implemented their techniques in any real ad hoc network, and instead evalu-
ated them only through simulation. In addition, they based their techniques only on received signal
strength, not on signal-to-noise ratio (SNR).

For preemptive Route Maintenance, they used a sequence of explicit request/response packets
(which they refer to as “ping” and “pong” packets) to probe the quality of a link after receiving
a packet below the signal strength threshold. Although this link probing can avoid some cases
in which the link only falls below the threshold for a short time (e.g., due to transient channel
fading), it also increases network overhead at the point of detecting the impending link failure,
and adds latency before a new Route Discovery can then initiated if needed. We believe the best
approach may be an adaptive probing mechanism that varies the use of probing based on channel
measurements.

Also since our demonstration, we have studied the design and use of per-hop flow state mainte-
nance in more detail (Chapter 3) but like Goff et al’s work, we evaluated it in that work only through
simulation, not through implementation in a real ad hoc network. In addition, our simulation work
there studied mainly only the use of this technique for reducing routing overhead in packet headers,
not specificly for QoS support.

Many researchers have proposed schemes for QoS on IP networks, including Integrated
Services [20], RSVP [22], RSVP over LSP [7], Multi-Protocol Label Switching [165], and
Differentiated Services [132]. Some QoS routing protocols also have been designed for ad hoc
networks [30, 32, 71, 83, 105, 108, 175, 188]. These protocols use relatively heavyweight mech-
anisms to achieve general QoS, and tend to somewhat increase the amount of routing traffic and
overhead. In this work, we instead use lightweight mechanisms based on slight modifications to the
existing behavior of DSR to achieve our more specific goals.

4.5.8. Demo Summary

This section has described the design and demonstration of a set of routing protocol mechanisms that
substantially improve the transmission of real-time multimedia streams over a multihop wireless
mobile ad hoc network. These mechanisms were implemented in the Dynamic Source Routing
protocol (DSR) (Section 1.2.2) and could also be applied to other on-demand ad hoc network routing
protocols such as AODV [141]. We described the implementation of these mechanisms and their
public demonstration carrying live audio and video streams over a DSR ad hoc network at the final
DARPA Global Mobile Information Systems (GloMo) Principal Investigators Meeting in July 2000.
The demonstration consisted of an ad hoc network of 8 nodes, with one node in a moving car driving
continuously for periods of several hours or more around the hotel building where the demonstration
was held; the endpoint node in the moving car operated a Microsoft Windows NetMeeting session
over the multihop ad hoc network to another endpoint node located in the hotel, showing the view
from a video camera pointed out the front window of the car, and allowing observers in the hotel to
converse interactively with the driver of the car.

Although a number of general mechanisms for providing Quality of Service (QoS) support in
ad hoc networks have been proposed, these mechanisms introduce complexity into the system and
generally increase system overhead. In addition, published reports of testbed implementations or
demonstrations of ad hoc networks [4, 114] do not support these QoS mechanisms. Our goal in this
work was to develop a set of lightweight extensions for DSR that perform well and that preserve the

4.6. CHAPTER SUMMARY 55

basic operation of the DSR protocol, and to gain actual experience with the effect of these mecha-
nisms in a real ad hoc network implementation. The resulting audio and video performance were
both very good to excellent, limited mainly by the performance of the video camera and NetMeeting
rather than by the frequent routing changes taking place while the moving car continued to drive
around the hotel building. In addition, all application and operating system software on the two
endpoint nodes in our demonstration were the standard, unmodified commercial version, and all
communication was through standard IP packets, thus demonstrating that the DSR protocol and our
implementation of it are entirely compatible with this commercial off-the-shelf software.

4.6. Chapter Summary

In this chapter, we have explored a type of cross-layer optimization in multihop wireless ad hoc
networks. Whereas most previous proposals for such optimizations have been based on informa-
tion from the physical layer of the network, in this chapter, we examined the use of MAC layer
information in our optimizations. By monitoring the operation of the MAC layer on its own wire-
less network interface, a node can establish an approximation of the degree to which the wireless
medium in its area is busy. This measurement reflects not only the behavior of the node itself, but
also the behavior of other nodes around it sharing the same wireless medium.

We suggested a number of uses of such measurements of MAC layer utilization in an ad hoc
network, in the network, transport, and higher layers, and we simulated a set of such uses in the
Dynamic Source Routing protocol (DSR) and TCP. Our simulations demonstrated substantial im-
provement to DSR and TCP in the areas of scalability, packet delivery, overhead, and fairness re-
sulting from this use of MAC layer information. Although we applied our changes to some areas of
DSR to quantitatively demonstrate the usefulness of these optimizations, similar techniques could
be applied to other routing protocols and a number of other optimizations are possible as well. For
example, a node using a distance vector routing protocol such as DSDV [140] or ADV [19] could
increase the time between advertisements during periods in which the wireless medium around the
node is particularly busy, and a node using AODV [141] could choose to not attempt local repair
during periods such as this.

Many choices are made at the MAC and physical layers, such as specific contention and priority
schemes, multiple data rates, multiuser detection, and directional antennas. Generally, network
interfaces present an Ethernet-like interface to the higher layers; however, in this chapter, I show that
higher layers can make effective use of information available at lower layers. Future work includes
a more detailed analysis of TCP performance, examining how other lower-layer information can
be used in the routing and transport layer, and whether or not a small set of metrics can provide
sufficient information to upper layer protocols. If such a set of metrics could be isolated, upper
layer protocols could gain much of the performance advantage of using lower layer information,
while maintaining the abstraction benefits of layer separation.

56 CHAPTER 4. EXPLOITING MAC LAYER INFORMATION

Part II

Improving Service
in Untrusted Environments

57

Chapter 5

Security in Ad Hoc Networks

5.1. Security

Security represents an important part of any routing protocol, and is especially important in wireless
ad hoc network routing, due to the inherent increased vulnerability of a wireless channel. In a wired
network, it is possible to secure a piece of wire by enclosing it in a pressurized pipe and detecting
the resultant change in pressure when the pipe is cut [48]. In addition, mechanisms such as checking
the Time-to-Live (TTL) field in the IP header may allow an endpoint to verify that a packet came
directly from a neighboring router. In a wireless network, there are no such physical restrictions on
which nodes can directly communicate with some destination.

Security is generally designed around three properties: integrity, authentication, and non-
repudiation. Each of these properties is stronger than the previous: message integrity requires
only that the message was the same when transmitted and received. With authentication, a node
can determine who sent the message, and that the message has not been modified. Finally, non-
repudiation allows a receiver to store data, and later prove to a court of law that the sender really did
send the corresponding data.

Currently, mechanisms for assuring non-repudiation are quite computationally expensive, espe-
cially on resource-constrained nodes [10, 148]. For example, Brown et al analyze the computation
time of digital signature algorithms on various platforms [27]: on a Palm Pilot or RIM pager, 163-bit
Elliptic Curve Cryptography (ECC) [120] signature algorithms require 1.0–2.2 seconds of compu-
tation for one signature generation and 1.8–5.4 seconds for verification; a 512-bit RSA [163] sig-
nature requires 2.4–5.8 seconds of computation for generation and 0.1–0.6 seconds for verification,
depending on the public exponent. Some other approaches provide efficient on-line signature gener-
ation but assume off-line preparation [49, 171, 172]. More recent signature algorithms provide short
or efficient signatures, but their verification is slower than verification in RSA [40, 72, 151, 152].
Even on faster devices, link-speed signature generation and verification is not generally practical,
especially when using high-speed links. In particular, the use of asymmetric primitives in routing
protocols enables a number of denial-of-service attacks. For example, an attacker can flood a victim
with bogus signatures at a rate faster than the victim could possibly verify them; this attack could
prevent the verification of legitimate routing messages.

Because asymmetric primitives are so inefficient, we base the security of our secure routing
protocols on efficient symmetric authentication primitives. In this chapter, we review those previ-
ously discovered symmetric primitives that we use in our protocols. In Chapter 8, we present the
primitives that we developed for more efficient secure routing protocols.

59

60 CHAPTER 5. SECURITY IN AD HOC NETWORKS

PSfrag replacements

v0 v1 v2 v3 v4 v5 v6 v7

v′0 v′1 v′2 v′3 v′4 v′5 v′6 v′7

m01 m23

m03

m45 m67

m47

m07

Figure 5.1: Tree authenticated values

5.1.1. Hash Functions

A hash function H is a “one-way” function, in that it is easy to compute but computationally in-
feisable to invert. Practically, if a hash function has ρ bits of output, for a given y, finding x such
that H(x) = y should require 2ρ−1 effort on average. Hash functions are also expected to be
collision-resistant; that is, finding x and x′ such that H(x) = H(x′) should require 2

ρ
2 effort on

average. Numerous such functions, such as MD5 [161] and SHA-1 [131], have been proposed, and
are typically quite simple to compute.

5.1.2. Hash Trees

In this section, we review the efficient hash tree authentication mechanism. Merkle first presented
this mechanism, also known as Merkle hash tree [122]. To authenticate values v0, v1, . . . , vw−1 we
place these values at the leaf nodes of a binary tree. (For simplicity we assume a balanced binary
tree, so w is a power of two.) We first blind all the values with a one-way hash function H to prevent
disclosing neighboring values in the authentication information (as we describe below), so v ′

i =
H[vi]. We then use the Merkle hash tree construction [122] to commit to the values v′0, . . . , v

′
w−1.

Each internal node of the binary tree is derived from its two child nodes. Consider the derivation
of the parent node mp from the left and right child nodes ml and mr: mp = H[ml || mr]. We
compute the levels of the tree recursively from the leaf nodes to the root node. Figure 5.1 shows this
construction over the eight values v0, v1, . . . , v7, e.g., m01 = H(v′0 || v′1), m03 = H[m01 || m23],
etc.

The root value of the tree is used to commit to the entire tree, and in conjunction with additional
information can be used to authenticate any leaf value. To authenticate a value vi the sender dis-
closes i, vi, and all the nodes necessary to verify the path up to the root. For example, if a sender
wants to authenticate key v2 in Figure 5.1, it includes the values v′3,m01,m47 in the packet. A
receiver with an authentic root value m07 can then verify that

H

[

H
[

m01 || H
[

H[v2] || v′3
]]

|| m47

]

equals the stored m07. If the verification is successful, the receiver knows that v2 is authentic.
The extra v′0, v

′
1, . . . , v

′
7 in Figure 5.1 are added to the tree to avoid disclosing (in this example)

the value v3 for the authentication of v2.

5.1. SECURITY 61

5.1.3. One-Way Hash Chains

One-way hash chains are a widely used cryptographic primitive. One of the first uses of one-
way chains was for one-time passwords by Lamport [103]. Haller later used the same approach
for the S/KEY one-time password system [64]. These chains are also used in efficient one-time
signature algorithms [49, 123, 124, 164], (micro-)payment mechanisms [3, 66, 138, 162], server-
supported non-repudiation [6], conditional anonymity [67], and to authenticate link-state routing
updates [33, 65, 191]. Coppersmith and Jakobsson present efficient mechanisms for storing and
generating values of hash chains [38].

We create a one-way chain by selecting the final value vn at random, and repeatedly apply a
one-way hash function H , such that vi = H[vi+1]. (In our description, we discuss the one-way
chain from the viewpoint of usage: so the first value of the chain is the last value generated, and the
initially randomly chosen value is the last value of the chain.) The first value (last value generated)
is called the anchor; generally, an authentic anchor is published to allow verification of hash chain
elements. One-way chains have two main properties (assuming H is a cryptographically secure
one-way hash function):

• Anybody can authenticate that a value vj really belongs to the one-way chain, by using an
earlier value vi of the chain by checking that H j−i(vj) equals vi.

• Given the latest released value vi of a one-way chain, an adversary cannot find a later value vj

such that Hj−i(vj) equals vi. Even when value vi+1 is released, a second pre-image collision
resistant hash function prevents an adversary from finding v ′

i+1 different from vi+1 such that
H[v′i+1] equals vi.

These two properties result in authentication of one-way chain values: if the current value vi

belongs to the one-way chain, and we see another value vj with the property that H j−i(vj) equals
vi, then vj also originates from the same chain and was released by the creator of the chain.

5.1.4. The TESLA Broadcast Authentication Protocol

TESLA [145, 147] provides efficient broadcast authentication using hash chains and loose time syn-
chronization. To provide broadcast authentication, some asymmetry must be created: that is, the
sender must be able to authenticate packets and the receiver must be able to verify this authenti-
cation, but the receiver must not be able to authenticate packets as the sender. Unlike traditional
digital signatures such as RSA [163], which rely on computationally expensive one-way trapdoor
functions to create asymmetry, TESLA creates asymmetry using loose time synchronization and ef-
ficient symmetric primitives. In particular, TESLA only requires one Message Authentication Code
in each packet.

Each sender using TESLA for authentication randomly generates a one-way hash chain, as de-
scribed in Chapter 5.1.1. Each element in this chain is used as a key, so we refer to this chain as
a TESLA one-way key chain, and refer to the i-th element ei as Ki. The sender also determines a
schedule for the release of keys in this chain; that is, the time ti when each key Ki will be published.
For example, a simple key disclosure schedule may be ti = t0 + i · t. The sender then securely
distributes the first element of its key chain K1, together with the values of t0 and t.

Central to TESLA’s security is a receiver’s ability to determine which keys a sender may have
already published. A receiver using TESLA relies on loose time synchronization, together with a
known maximum time synchronization error between any two nodes ∆, to determine the maximum
time at the sender. If a sender discloses its first key K0 at time T0 (on its clock) and discloses an
additional key each time interval, then the receiver can determine, based on its clock, ∆, and T0,
whether or not some key Ki has yet been disclosed.

62 CHAPTER 5. SECURITY IN AD HOC NETWORKS

To send a packet, the sender first estimates a pessimistic upper bound on the end-to-end network
delay. The sender then picks a key Ki from its one-way key chain which the receiver will believe
is still secret at the time the receiver is expected to receive the packet. For example, if the sender
believes the end-to-end delay would at worst be τ , it could choose a key Ki that would not be
disclosed until a time at least τ + 2∆ in the future. The sender adds a message authentication code
(MAC), computed using key Ki, to the packet, and sends it to the receiver.

The value 2∆ is added to τ (rather than ∆), since the receiver’s clock may be ahead of the
sender’s clock by ∆, so at time ts at the sender, it is ts +∆ at the receiver. When the packet reaches
the receiver, it could be as late as ts + τ + ∆ at the receiver, and the receiver will discard the packet
if the key might have been released; since the sender’s clock may be ∆ ahead of the receiver, the
receiver will reject the packet if the key was to be released at time ts + τ + 2∆ or earlier. Even if
the end-to-end delay is larger than τ , TESLA is still secure, but some receivers will need to discard
the packet because the sender may have already disclosed the key, as we describe below.

When a receiver receives a packet authenticated with TESLA, it first verifies that the key Ki

used to authenticate that packet is still secret. For example, given the packet arrival time t ′ and
the maximum time synchronization error ∆, the receiver checks that the time elapsed between time
T0 and t′ − ∆ does not exceed i time intervals. If the check fails, the sender may have already
published Ki and an attacker may have forged the packet contents; the receiver thus discards the
packet. However, if the check is successful, the receiver buffers the packet and waits for the sender
to publish key Ki. When the receiver receives Ki, it first authenticates Ki, and then authenticates
stored packets authenticated with a key Kj , where j ≤ i.

5.1.5. Hash to Obtain Random Subset (HORS)

Reyzin and Reyzin proposed the HORS broadcast authentication scheme [160]. To generate a key
for authentication, the node randomly selects t values b1, b2, . . . , bt. The node then blinds these
values by hashing them: b′i = H(bi). These blinded values are published, and form a “public key”
with which authenticators can be verified.

To authenticate a value v, the node performs a hash function on v which chooses a subset k
of the t values it originally chose. Reyzin and Reyzin discuss in greater detail properties that are
required of this hash function. The node receiving this authentication verifies that the correct subset
of values was disclosed by computing the hash function and verifying that the

If each set of t values is used for r authentications, and each authentication includes k values,
then the scheme has k(ln t− ln r− ln k) bits of security in the worst case. As a result, it is necessary
to restrict any given set of t values to authenticate a fixed number of messages.

To provide a larger number of authentications when a single public key is provided, each value
bi in HORS can be replaced by a hash chain bi,0, bi,1, . . . , bi,n. The anchor of each hash chain
bi,n is published in the same way that the blinded values were published in the unchained version.
During the first time interval, the values b1,n−1, b2,n−1, . . . , bt,n−1 are used in place of b1, b2, . . . , bt.
During the second time interval, the values used are b1,n−2, b2,n−2, . . . , bt,n−2. In general, the ith
value during the jth time slot is bi,n−j .

In order to use this chained version of HORS, nodes need to be time synchronized with a maxmi-
mum error of ∆, and must estimate a network propagation time τ . (When the network propagation
requires more than τ , security is not compromised, but some authentic packets may be rejected as
forged.) Nodes also need to choose a network-wide schedule for the use of these values. For exam-
ple, one schedule would be to use values from time interval j from time T0 + (j − 1)I until time
T0 + jI . A receiver then rejects values from time interval j after time T0 + jI + τ + ∆, under the
assumption that even if the sender’s clock was ∆ behind the receiver’s clock, and even if the packet

5.2. AD HOC NETWORK ROUTING SECURITY 63

took τ to traverse the network, a packet sent at time T0 + jI on the sender’s clock will reach all
receiveres by T0 + jI + τ + ∆.

To obtain the same level of security as in unchained HORS, at most r authentications may be
performed within a time of I + τ + ∆. This is because values disclosed during time interval j + 1
can be used to generate values valid during time interval j.

5.1.6. Amortized Authentication

It is possible to amortize the cost of authenticating messages by computing a Merkle hash tree
(Section 5.1.2) over the messages to be authenticated, and authenticating only the root. In this
construction, the messages are placed at the leaves of a binary tree, and interior nodes are formed
by hashing the two children of that node together. If the root of this tree is authenticated, then each
message can be authenticated by including the authentication of the root, combined with the path in
the Merkle tree from the root to the leaf.

5.2. Ad Hoc Network Routing Security

In this section, we define a taxonomy of types of attackers and discuss specific attacks against ad hoc
network routing. This approach allows us to categorize the security of an ad hoc network routing
protocol based on the strongest attacker it withstands.

5.2.1. Attacker Model

We consider two main attacker classes, passive and active. The passive attacker does not send
messages; it only eavesdrops on the network. Passive attackers are mainly threats against the privacy
or anonymity of communication, rather than against the functioning of the network or its routing
protocol, and thus we do not discuss them further here.

An active attacker injects packets into the network and generally also eavesdrops. We charac-
terize the attacker based on the number of nodes it owns in the network, and based on the number
of those that are good nodes it has compromised. We assume that the attacker owns all the crypto-
graphic key information of compromised nodes and distributes it among all its nodes. We denote
such an attacker Active-n-m, where n is the number of nodes it has compromised and m is the
number of nodes it owns. We propose the following attacker hierarchy (with increasing strength)
to measure routing protocol security: Active-0-1 (the attacker owns one node), Active-0-x (the at-
tacker owns x nodes), Active-1-x (the attacker owns one compromised node and distributes the
cryptographic keys to its x − 1 other nodes), and Active-y-x. In addition, we call an attacker that
has compromised nodes an Active-VC attacker if it owns all nodes on a vertex cut through the
network that partitions the good nodes into multiple sets, forcing good nodes in different partitions
to communicate only through an attacker node. This attacker is particularly powerful, as it controls
all traffic between nodes of the disjoint partitions.

Our protocols do not require a trusted Key Distribution Center (KDC) in the network, but some
ad hoc networks may use one for key setup. We do not consider the case in which an attacker com-
promises the KDC, since the KDC is a central trust entity, and a compromised KDC compromises
the entire network.

5.2.2. General Attacks on Ad Hoc Network Routing Protocols

Attacks on an ad hoc network routing protocols generally fall into one of two categories: rout-
ing disruption attacks and resource consumption attacks. In a routing disruption attack, the attacker

64 CHAPTER 5. SECURITY IN AD HOC NETWORKS

attempts to cause legitimate data packets to be routed in dysfunctional ways. In a resource consump-
tion attack, the attacker injects packets into the network in an attempt to consume valuable network
resources such as bandwidth, or to consume node resources such as memory (storage) or computa-
tion power. From an application-layer perspective, both attacks are instances of a Denial-of-Service
(DoS) attack.

An example of a routing disruption attack is for an attacker to send forged routing packets to cre-
ate a routing loop, causing packets to traverse nodes in a cycle without reaching their destinations,
consuming energy and available bandwidth. An attacker may similarly create a routing black hole,
in which all packets are dropped: by sending forged routing packets, the attacker could route all
packets for some destination to itself and then discard them, or the attacker could cause the route at
all nodes in an area of the network to point “into” that area when in fact the destination is outside the
area. As a special case of a black hole, an attacker could create a gray hole, in which it selectively
drops some packets but not others, for example, forwarding routing packets but not data packets.
An attacker may also attempt to cause a node to use detours (suboptimal routes) or may attempt to
partition the network by injecting forged routing packets to prevent one set of nodes from reaching
another. An attacker may attempt to make a route through itself appear longer by adding virtual
nodes to the route; we call this attack gratuitous detour, as a shorter route exists and would other-
wise have been used. In ad hoc network routing protocols that attempt to keep track of perceived
malicious nodes in a “blacklist” at each node, such as is done in watchdog and pathrater [116], an
attacker may blackmail a good node, causing other good nodes to add that node to their blacklists,
thus avoiding that node in routes.

A more subtle type of routing disruption attack is the creation of a wormhole in the network
(Chapter 9), using a pair of attacker nodes A and B linked via a private network connection. Every
packet that A receives from the ad hoc network, A forwards through the wormhole to B, to then be
rebroadcast by B; similarly, B may send all ad hoc network packets to A. Such an attack potentially
disrupts routing by short circuiting the normal flow of routing packets, and the attackers may also
create a virtual vertex cut that they control.

The rushing attack is a malicious attack that is targeted against on-demand routing protocols that
use duplicate suppression at each node [80]. An attacker disseminates ROUTE REQUESTs quickly
throughout the network, suppressing any later legitimate ROUTE REQUESTs when nodes drop them
due to the duplicate suppression.

An example of a resource consumption attack is for an attacker to inject extra data packets into
the network, which will consume bandwidth resources when forwarded, especially over detours or
routing loops. Similarly, an attacker can inject extra control packets into the network, which may
consume even more bandwidth or computational resources as other nodes process and forward such
packets. With either of these attacks, an Active-VC attacker can try to extract maximum resources
from the nodes on both sides of the vertex cut, for example by forwarding only routing packets and
not data packets, such that the nodes waste energy forwarding packets to the vertex cut, only to have
them dropped.

If a routing protocol can prevent an attacker from inserting routing loops, and if a maximum
route length can be enforced, then an attacker that can inject extra data packets has limited attack
power. In particular, if routes are limited to ν hops, then each data packet transmitted by the attacker
only causes a fixed number of additional transmissions; more generally, if at most one control packet
can be sent in response to each data packet (e.g., a ROUTE ERROR), and that control packet is limited
to ν hops, then an individual data packet can cause only 2ν individual transmissions. We consider
an attack a DoS attack only if the ratio between the total work performed by nodes in the network
and the work performed by the attacker is on the order of the number of nodes in the network. An

5.2. AD HOC NETWORK ROUTING SECURITY 65

example of a DoS attack is where the attacker sends a single packet that results in a packet flood
throughout the network.

5.2.3. Goals in Securing Ad Hoc Network Routing

In my work in securing ad hoc networks, I design protocols of varying strength, for use in different
environments. For example, a military network would want to defend against all levels of attack,
regardless of expense, whereas a sensor network may choose a cheaper form of security. Even when
signficant resources are available, such as in the military environment, it does not suffice to secure
only the physical layer, because node compromise is often possible, and secure hardware is often
breakable with sufficient effort.

In this thesis, I present protocols with varying levels of security. SEAD (Chapter 6) provides
basic security at little cost; Ariadne (Chapter 7) provides a higher level of security. Techniques such
as Packet Leashes and Rushing Attack Prevention (Chapters 9 and 10) provide a much higher level
of security, but at substantially increased cost.

66 CHAPTER 5. SECURITY IN AD HOC NETWORKS

Chapter 6

SEAD: Secure Efficient Distance Vector
Routing

An insecure routing protocol can be subverted by an attacker in order to deny or reduce service
available to participating nodes. In networks under attack, service can often be improved by using
a secure routing protocol. The nature of many applications of ad hoc networking is such that some
entity has a motive to attack the network. Such applications of ad hoc networking require security in
order to guard against attacks such as malicious routing misdirection, but prior to the work described
in this chapter, relatively little work had been done in securing ad hoc network routing protocols.

One reason for the slow development of secure ad hoc network routing protocols is that such
protocols are difficult to design, due to the generally highly dynamic nature of an ad hoc network
and due to the need to operate efficiently with limited resources, including network bandwidth and
the CPU processing capacity, memory, and battery power (energy) of each individual node in the
network. Existing insecure ad hoc network routing protocols are often highly optimized to spread
new routing information quickly as conditions change, requiring more rapid and often more frequent
routing protocol interaction between nodes than is typical in a traditional (e.g., wired and stationary)
network. Expensive and cumbersome security mechanisms can delay or prevent such exchanges of
routing information, leading to reduced routing effectiveness, and may consume excessive network
or node resources, leading to many new opportunities for possible Denial-of-Service (DoS) attacks
through the routing protocol.

In this chapter, we present a secure, periodic ad hoc network routing protocol based on a dis-
tance vector routing protocol. Our protocol, which we call the Secure Efficient Ad hoc Distance
vector routing protocol (SEAD), is robust against multiple uncoordinated attackers creating incor-
rect routing state in any other node, even in spite of active attackers or compromised nodes in the
network. We base the design of SEAD in part on the Destination-Sequenced Distance-Vector ad hoc
network routing protocol (DSDV) (Section 1.2.2). In order to support use of SEAD with nodes of
limited CPU processing capability, and to guard against Denial-of-Service attacks in which an at-
tacker attempts to cause other nodes to consume excess network bandwidth or processing time, we
use efficient one-way hash functions and do not use asymmetric cryptographic operations in the
protocol.

Our mechanisms for securing SEAD can also be extended to on-demand versions of distance
vector protocols, such as AODV (Section 1.2.2). In addition, in certain circumstances, periodic
distance-vector protocols may be preferable, since distance vector routing protocols are easy to
implement, require relatively little memory or CPU processing capacity compared to other types of
routing protocols, and are widely used in networks of moderate size within the (wired) Internet [68,
110, 111].

67

68 CHAPTER 6. SEAD: SECURE EFFICIENT DISTANCE VECTOR ROUTING

6.1. Distance Vector Routing and DSDV

A distance vector routing protocol finds shortest paths between nodes in the network through a dis-
tributed implementation of the classical Bellman-Ford algorithm. Distance vector protocols are easy
to implement and are efficient in terms of memory and CPU processing capacity required at each
node. A popular example of a distance vector routing protocol is RIP [68, 111], which is widely used
in IP networks of moderate size. Distance vector routing can be used for routing within an ad hoc
network by having each node in the network act as a router and participate in the routing protocol.

In distance vector routing, each router maintains a routing table listing all possible destinations
within the network. Each entry in a node’s routing table contains the address (identity) of some
destination, this node’s shortest known distance (usually in number of hops) to that destination, and
the address of this node’s neighbor router that is the first hop on this shortest route to that destination;
the distance to the destination is known as the metric in that table entry. When routing a packet to
some destination, the node transmits the packet to the indicated neighbor router, and each router in
turn uses its own routing table to forward the packet along its next hop toward the destination.

To maintain the routing tables, each node periodically transmits a routing update to to each of
its neighbor routers, containing the information from its own routing table. Each node uses this
information advertised by its neighbors to update its own table, so that its route for each destination
uses as a next hop the neighbor that advertised the smallest metric in its update for that destination;
the node sets the metric in its table entry for that destination to 1 (hop) more than the metric in that
neighbor’s update. A common optimization to this basic procedure to spread changed routing infor-
mation through the network more quickly is the use of triggered updates, in which a node transmits
a new update about some destination as soon as the metric in its table entry for that destination
changes, rather than waiting for its next scheduled periodic update to be sent.

Distance vector routing protocols are simple, but they cannot guarantee not to produce routing
loops between different nodes for some destination. Such loops are eventually resolved by the
protocol through many rounds of routing table updates in what is known as “counting to infinity”
in the metric for this destination; to reduce time needed for this resolution, the maximum metric
value allowed by the protocol is typically defined to be relatively small, such as 15 as is used in
RIP [68, 111]. To further reduce these problems, a number of extensions, such as split horizon
and split horizon with poisoned reverse [68, 111], are widely used. These extensions, however, can
still allow some loops, and the possible problems that can create routing loops are more common
in wireless and mobile networks such as ad hoc networks, due to the motion of the nodes and the
possible changes in wireless propagation conditions.

The primary improvement for ad hoc networks made in DSDV over standard distance vector
routing is the addition of a sequence number in each routing table entry. The use of this sequence
number prevents routing loops caused by updates being applied out of order; this problem may be
common over multihop wireless transmission, since the routing information may spread along many
different paths through the network. Each node maintains an even sequence number that it includes
in each routing update that it sends, and each entry in a node’s routing table is tagged with the most
recent sequence number it knows for that destination. When a node detects a broken link to a neigh-
bor, the node creates a new routing update for that neighbor as a destination, with an “infinite” metric
and the next odd sequence number after the even sequence number in its corresponding routing table
entry. When a node receives a routing update, for each destination in the update, the node prefers
this newly advertised route if the sequence number is greater than in the corresponding entry cur-
rently in the node’s routing table, or if the sequence numbers are equal and the new metric is lower
than in the node’s current table entry for that destination; if the sequence number in the update is less
than the current sequence number in the table entry, the new update for that destination is ignored.

6.2. ASSUMPTIONS 69

DSDV sends both periodic routing updates and triggered updates. These updates may be ei-
ther a “full dump,” listing all destinations, or an “incremental” update, listing only destinations for
which the route has changed since the last full dump sent by that node. A node in DSDV chooses to
send a triggered update when important routing changes should be communicated as soon as pos-
sible, although there are multiple interpretations suggested in the published description of DSDV
as to which changes should cause a triggered update. One interpretation suggests that the receipt
of a new metric for some destination should cause a triggered update, while the alternative inter-
pretation suggests that the receipt of a new sequence number also should cause a triggered update.
The latter interpretation has been shown to outperform the former in detailed ad hoc network sim-
ulations [26, 86] and is referred to as DSDV-SQ (for sequence number) to distinguish it from the
interpretation based only on metrics.

6.2. Assumptions

As a matter of terminology in this chapter, we use the acronym “MAC” to refer to the network
Medium Access Control protocol at the link layer, and not to a Message Authentication Code used
for authentication.

We assume that all wireless links in the network are bidirectional, since this is necessary for the
distributed Bellman-Ford algorithm of distance vector routing to function correctly. Specifically, if
a node A’s wireless transmissions reach B, then B’s transmissions would reach A. Wireless links
are often bidirectional, and many MAC layers require bidirectional frame exchange to avoid colli-
sions [84].

Network physical layer and MAC layer attacks are beyond the scope of this chapter. Use of
spread spectrum has been studied for securing the physical layer against jamming [149]. MAC pro-
tocols that do not employ some form of carrier sense, such as ALOHA and Slotted ALOHA [1], are
less vulnerable to Denial-of-Service attacks, although they generally use the channel less efficiently.

We assume that the wireless network may drop, corrupt, duplicate, or reorder packets. We also
assume that the MAC layer contains some level of redundancy to detect randomly corrupted packets;
however, this mechanism is not designed to replace cryptographic authentication mechanisms.

The network diameter of an ad hoc network is the maximum, across all pairs of nodes in the
network, of the length of the optimal route between that pair of nodes. As noted in Section 6.1,
standard distance vector routing protocols limit the maximum metric value (and thus the maximum
network diameter supported by the protocol). We also limit the maximum network diameter, and we
use m− 1 to denote this upper bound, such that all routes that can be used by the routing protocol
are of length less than m hops. Internal to a node’s routing table, the value m can be used to denote
the infinity metric in distance vector routing, although in SEAD, entries in the routing table with an
infinite metric are not included in routing update messages sent by a node.

We assume that nodes in the ad hoc network may be resource constrained. Thus, in securing our
distance vector ad hoc network routing protocol SEAD, we use efficient one-way hash chains [103]
rather than relying on expensive asymmetric cryptographic operations. Especially on CPU-limited
devices, symmetric cryptographic operations (such as block ciphers and hash functions) are three to
four orders of magnitude faster than asymmetric operations (such as digital signatures). One-way
hash chains are described in Section 5.1.3.

To use one-way hash chains for authentication, we assume some mechanism for a node to dis-
tribute the anchor from its generated hash chain. A traditional approach for this key distribution is
for a trusted entity to sign public-key certificates for each node; each node can then use its public-
key to sign new a hash chain element for itself. Hubaux, Buttyán, and Čapkun bootstrap trust

70 CHAPTER 6. SEAD: SECURE EFFICIENT DISTANCE VECTOR ROUTING

relationships from PGP-like certificates without relying on a trusted public key infrastructure [82].
Alternatively, a trusted node can securely distribute an authenticated hash chain element using only
symmetric-key cryptography [79, 148] or non-cryptographic approaches [178].

Since in SEAD, a node uses elements from its one-way hash chain in groups of m, we assume
that a node generates its hash chain so that n is divisible by m. When a node first enters the network,
or after a node has used most of its available hash chain elements, it can generate a new hash chain,
and send the anchor of the new hash chain to a trusted entity or an alternative authentication and
distribution service, as described above.

6.3. Attacks

In Section 5.2.2, we presented several general attacks against ad hoc network routing protocol. In
this section, we discuss attacks specific to distance vector routing; many of the attacks discussed
earlier

An attacker can attempt to reduce the amount of routing information available to other nodes, by
failing to advertise certain routes or by destroying or discarding routing packets or parts of routing
packets. A node failing to advertise a route indicates its unwillingness to forward packets for those
destinations. We do not attempt to defend against this attack, since the attacker could also otherwise
drop data packets sent to those destinations. A node can drop routing packets it receives, in which
case it becomes ignorant of links available to it and fails to pass potentially improved knowledge to
its neighbors. This ignorance attack has even more limited impact than failing to advertise routes
that the node itself knows. Finally, an intruder can jam routing packets; we will disregard such
attacks in this chapter, since prevention of such attacks begins at the physical layer.

An attacker can modify an advertisement by changing the destination, metric, or source address
(and hence next-hop). For example, an attacker advertising a zero metric for all destinations can
cause all nodes around it to route packets for all destinations toward it rather than toward each
actual destination. Alternatively, an attacker can modify the source address of the advertisement,
thus spreading inaccurate next-hop information.

An attacker can mount a replay attack by sending an old advertisement to some node, in an
attempt to get that node to update its routing table with stale routes.

6.4. Securing Distance Vector Routing

6.4.1. Basic Design of SEAD

We base the design of our secure routing protocol SEAD on the DSDV-SQ version [26] of the
DSDV ad hoc network routing protocol, as described in Section 6.1. In particular, to avoid long-
lived routing loops in SEAD, we use destination sequence numbers, as in DSDV; we also use
these destination sequence numbers to provide replay protection of routing update messages in
SEAD.

We differ from DSDV in that we do not use an average weighted settling time in sending trig-
gered updates. To reduce the number of redundant triggered updates, each node in DSDV tracks,
for each destination, the average time between when the node receives the first update for some new
sequence number for that destination, and when it receives the best update for that sequence number
for it (with the minimum metric among those received with that sequence number); when deciding
to send a triggered update, each DSDV node delays any triggered update for a destination for this
average weighted settling time, in the hope of only needing to send one triggered update, with the
best metric, for that sequence number.

6.4. SECURING DISTANCE VECTOR ROUTING 71

SEAD does not use such a delay, in order to prevent attacks from nodes that might maliciously
not use the delay. Since a node selects the first route it receives with highest sequence number and
lowest metric, an attacker could otherwise attempt to cause more traffic to be routed through itself,
by avoiding the delay in its own triggered updates. Such an attack could otherwise put the attacker
in a position to eavesdrop on, modify, or discard other nodes’ packets.

In addition, unlike DSDV, when a node detects that its next-hop link to some destination is
broken, the node does not increment the sequence number for that destination in its routing table
when it sets the metric in that entry to infinity. Since higher sequence numbers take priority, this
node’s routing update with this new sequence number must be authenticated, but we did not include
a mechanism for authenticating these larger sequence numbers. Instead, the node flags its routing
table entry for this destination to not accept any new updates for this same sequence number, ef-
fectively preventing the possible routing loop and traditional distance vector “counting to infinity”
problem [68, 111] that could otherwise occur in this case.

6.4.2. Metric and Sequence Number Authenticators

In addition to the differences between our SEAD protocol and DSDV-SQ described in Section 6.4.1,
the lower bound on each metric in a routing update in SEAD is secured through authentication; in
addition, the receiver of SEAD routing information also authenticates the sender (ensures that the
routing information originates from the correct sender). We describe the authentication of the lower
bound on the distance metric in this section and the neighbor authentication in the following section.
Whereas DSDV-SQ (and DSDV) are subject to all of the attacks in Section 6.3, SEAD thus resists
those attacks. SEAD is robust against multiple uncoordinated attackers creating incorrect routing
state in any other node, even in spite of active attackers or compromised nodes in the network. A
description of the detailed security properties provided by the complete SEAD protocol is provided
in Section 6.5.1.

One possible approach that could be used for authenticating routing updates in a distance vector
routing protocol is for each node to sign each of its routing updates using asymmetric cryptography.
However, this approach raises three distinct problems for use in an ad hoc network.

First, an attacker could send a large number of arbitrary forged routing updates to some vic-
tim node, such that the victim is forced to spend all of its CPU resources attempting to verify
this stream of updates, creating an effective Denial-of-Service attack; this attack would be par-
ticularly easy in many ad hoc networks, since ad hoc network nodes tend to have less powerful
CPUs than workstations in wired networks. Second, an attacker who has compromised a node
can send updates claiming that any other node is a neighbor (metric 1), causing other nodes to
incorrectly direct packets for this destination node toward the attacker. Finally, even with no at-
tacker present, the larger signatures and longer signature generation and verification times of asym-
metric cryptography would reduce the resources that could otherwise be used for running useful
applications and doing useful communication; this problem is more severe in an ad hoc network
than in a traditional (i.e., wired and stationary) network due to the limited resources of nodes
and links in an ad hoc network, such as available bandwidth, CPU capacity, and battery power
(energy).

Instead, in securing routing in SEAD, we use efficient one-way hash chains [103]. The basic
operation of a one-way hash chain was described in Section 6.2. Each node in SEAD uses a specific
single next element from its hash chain in each routing update that it sends about itself (metric 0).
Based on this initial element, the one-way hash chain conceptually provides authentication for the
lower bound of the metric in other routing updates for this destination; the authentication provides
only a lower bound on the metric, since it does not prevent a malicious node from claiming the

72 CHAPTER 6. SEAD: SECURE EFFICIENT DISTANCE VECTOR ROUTING

same metric as the node from which it heard this route. In particular, the one-way hash function
provides the property that another node can only increase a metric in a routing update, but cannot
decrease it. Due to the properties of the one-way hash function, given any value in the hash chain,
an attacker cannot generate any value in the chain that will be used by this node in a future update
that it sends about itself (a value to the “left” of the given value in the chain, with larger subscript).
Similarly, for each entry in its routing update describing a route to another destination, the hash
chain of that destination node allows the metric in that entry to be authenticated by nodes receiving
it.

As noted in Section 6.2, we assume that an upper bound can be placed on the diameter of the
ad hoc network, and we use m − 1 to denote this bound. Thus, within the routing protocol, all
metrics in any routing update are less than m. The method used by SEAD for authenticating an
entry in a routing update uses the sequence number in that entry to determine a contiguous group of
m elements from that destination node’s hash chain, one element of which must be used to authen-
ticate that routing update. The particular element from this group of elements that must be used to
authenticate the entry is determined by the metric value being sent in that entry. Specifically, if a
node’s hash chain is the sequence of values

hn, hn−1, hn−2, hn−3, . . . , h0

and n is divisible by m, then for a sequence number i in some routing update entry, an element from
the group of elements

hmi, hmi−1, . . . , hm(i−1)+1

from this hash chain is used to authenticate the entry; if the metric value for this entry is j, 0 ≤
j < m, then the value hmi−j here is used to authenticate the routing update entry for that sequence
number.

When a node in SEAD sends a routing update, the node includes one hash value with each
entry in that update. If the node lists an entry for itself in that update, it sets the address in that
entry to its own node address, the metric to 0, the sequence number to its own next sequence
number, and the hash value to the first element in the group of its own hash chain elements cor-
responding to that sequence number. In the example given above for sequence number i, the node
sets the hash value in that entry to its hmi. If the node lists an entry for some other destination
in that update, it sets the address in that entry to that destination node’s address, the metric and
sequence number to the values for that destination in its routing table, and the hash value to the
hash of the hash value received in the routing update entry from which it learned that route to that
destination.

This use of a hash value corresponding to the sequence number and metric in a routing update
entry prevents any node from advertising a route to some destination claiming a greater sequence
number than that destination’s own current sequence number, due to the one-way nature of the
hash chain. Likewise, no node can advertise a route better than those for which it has received an
advertisement, since the metric in an existing route cannot be decreased.

Nodes receiving any routing update can easily authenticate each entry in the update, given any
earlier authentic hash element from the same hash chain, as described in Section 6.2. In order to
guard against attacks in which a malicious update claiming a high sequence number attempts to
force a receiving node to perform a large number of hash operations in order to authenticate the
update, a receiving node may limit the number of hashes it is willing to perform for each such
authentication, discarding updates that cannot be authenticated; since DSDV-SQ (and thus SEAD)
spreads new routing information across the network, this limit assumes a bound on the number of
routing updates about a destination that the receiving node may have missed before any authentic

6.4. SECURING DISTANCE VECTOR ROUTING 73

update is received. A similar solution to such an attack would be to have each node tie its own
sequence number generation to a loosely synchronized clock value, thus allowing a receiving node
to determine if a claimed sequence number in an update could be authentic before performing the
implied hashes to confirm that fact.

When a node receives a routing update, for each entry in that update, the node checks the authen-
tication on that entry, using the destination address, sequence number, and metric in the received
entry, together with the latest prior authentic hash value received by this node from that destina-
tion’s hash chain. Based on the sequence number and metric in the received entry and the sequence
number and metric of this latest prior authentic hash value for that destination, the node hashes the
hash value received in this entry the correct number of times, according to the description above
as to which hash value must be used for any given sequence number and metric, to confirm that
the resulting value equals the prior authentic hash value. If so, the entry is authentic and the node
processes it in the routing algorithm as a normal received routing update entry; otherwise, the node
ignores the received entry and does not modify its routing table based on it.

It may be possible for an attacker to modify routing update messages in transit, and such an
attacker would be able to prevent certain routes from being advertised; however, such an attacker
would also be able to corrupt the entire routing update, which is equivalent to a jamming attack.
The protocol can also be secured against modification of the source address for a routing update and
against wormhole attacks, by use of other mechanisms at the MAC layer, including mechanisms that
rely only on symmetric cryptography [81]. In particular, these MAC layer approaches authenticate
the transmitting source of a packet and ensure that this transmitting source is within some distance
of the receiver.

6.4.3. Neighbor Authentication

The source of each routing update message in SEAD must also be authenticated, since otherwise,
an attacker may be able to create routing loops. Any efficient broadcast authentication mechanism,
such as TESLA [145, 147], HORS [160], or TIK [81], can be used to authenticate the neighbor. The
drawbacks of these approaches are that they require synchronized clocks, and that they incur either
an authentication delay or a relatively high communication overhead.

An alternative approach that does not require time synchronization is to assume a shared se-
cret key among each pair of nodes, and to use the respective key in conjunction with a Message
Authentication Code. The sender would include one Message Authentication Code for each neigh-
bor with each routing update. Since SEAD includes periodic neighbor sensing functionality, each
node knows the set of neighbors for which it needs to authenticate routing updates. In particular,
each node trusts any zero-metric update with a valid authenticator; if a node has received such
an update from another node for a recent sequence number, it considers that node a neighbor and
computes a Message Authentication Code for it in subsequent updates.

When two nodes first become neighbors, one of the two nodes will transmit a routing update
first. That update will cause the receiving node to detect the new neighbor. As a result of hearing
this update, the receiving node will send a triggered routing update, allowing the other node to detect
the new neighbor.

74 CHAPTER 6. SEAD: SECURE EFFICIENT DISTANCE VECTOR ROUTING

Table 6.1: Parameters for SEAD performance study

SEAD Parameters
Periodic Route Update Interval 15 seconds
Periodic Updates Missed before Link is Declared Broken 3
Maximum Packets Buffered per Node per Destination 5
Hash Length (ρ) 80 bits

6.5. Evaluation

6.5.1. Security Analysis

Securing a distance vector protocol seems fundamentally harder than securing link-state or on-
demand protocols such as DSR [88]. Since distance vector protocols compress the route informa-
tion into a hop count value and a next hop, it is challenging to verify the correctness of the hop count
value. In this section, we discuss some of the security properties of the SEAD protocol.

Using SEAD, given an advertisement for a route with a metric of h hops and a sequence num-
ber of s, a malicious node can generate advertisements for h-hop or longer routes with sequence
number s, or for arbitrary-length routes with sequence number less than s. Specifically, a malicious
node cannot generate an advertisement with sequence number greater than s, nor can it generate an
advertisement with sequence number s and metric less than h. A malicious node can generate an
advertisement for distance h because it can simply resend the same one-way hash chain element it
received from the previous node; a legitimate node would advertise a distance of h+1 and generate
the authenticator for it by hashing the received authenticator.

An attacker that has not compromised any node (and hence does not possess any cryptographic
keys from a node), cannot successfully send any routing messages, since an uncompromised neigh-
bor node will reject the messages due to the failed neighbor authentication. A repeater can function
as a one-node wormhole; this is not addressed by SEAD, though TIK [81] can prevent this at-
tack.

A collection of a number of attackers that have compromised one or more nodes can only redi-
rect the path from a source to a destination through one or more attackers if the length of the best
(minimum metric) attacker-free route for which the source receives an advertisement is at least as
large as the number of nodes between the destination and the first attacker, plus the number of nodes
between the last attacker and the destination.

If each node using SEAD (including attackers) keeps routing tables where the next-hop for a
given destination is set to the authenticated source address of the first advertisement received by that
node containing the minimum metric for the greatest sequence number, then the next-hop pointers
in all nodes’ routing tables will describe a route back to the destination.

With SEAD, no routing loop is possible, unless the loop contains one or more attackers.
Furthermore, no loop is possible unless no non-attacker node on the loop has received a better
advertisement (in terms of sequence number and metric) for this destination than the best advertise-
ment received by some attacker on the loop.

If a collection of attackers form a vertex cut between two groups of nodes in the network [79],
the attackers can arbitrarily control the routes between any node in one group and a node in the
other group. Since in a vertex cut, any packet between such nodes must physically pass through a
node on the vertex cut, no routing protocol can eliminate such attacks.

6.5. EVALUATION 75

0 100 200 300 400 500 600 700 800 900
0.7

0.75

0.8

0.85

0.9

0.95

1

Pause Time

DSDV−SQ
SEAD

PSfrag replacements

P
ac

ke
tD

el
iv

er
y

R
at

io

(a) Packet Delivery Ratio

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Pause Time

DSDV−SQ
SEAD

PSfrag replacements

M
ed

ia
n

La
te

nc
y

(m
se

c)

(b) Median Latency

0 100 200 300 400 500 600 700 800 900
40

41

42

43

44

45

46

Pause Time

DSDV−SQ
SEAD

PSfrag replacements

P
ac

ke
tO

ve
rh

ea
d

(P
ac

ke
ts
×

1
0

3
)

(c) Packet Overhead

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

Pause Time

DSDV−SQ
SEAD

PSfrag replacements

B
yt

e
O

ve
rh

ea
d

(B
yt

es
×

1
0

6
)

(d) Byte Overhead

Figure 6.1: SEAD performance evaluation results (average over 65 runs)

6.5.2. Simulation Evaluation Methodology

To evaluate the performance impact of our security approach in SEAD without attackers, we mod-
ified the DSDV-SQ implementation in our extensions to ns-2 (Section 2.3.1). Specifically, we in-
creased the size of each routing update to represent the authentication hash value in each table entry.
We also removed the settling time and the sequence number changes, as described in Section 6.4.1.

Our simulation parameters were identical to those described in Section 3.2, except that we
generated 65 scenarios for each pause time. We evaluated SEAD by comparing it to DSDV-SQ,
as described in Section 6.1. We measured performance along four metrics: packet delivery ratio
(Section 2.3.3), packet overhead (Section 2.3.3), byte overhead (Section 3.2), and median latency,
defined to be the median latency of delivered packets, where latency is calculated as the elapsed
time between the application layer passing a packet to the routing layer and that packet first being
received at the destination.

76 CHAPTER 6. SEAD: SECURE EFFICIENT DISTANCE VECTOR ROUTING

6.5.3. Simulation Results

The results of our performance study of SEAD are shown in Figure 6.5.2 as a function of pause
time in the random waypoint mobility model. Each figure represents the average over 65 randomly
generated runs at each pause time, and the error bars show the 95% confidence intervals; the runs
used for SEAD and those for DSDV-SQ were identical. On the right side of each graph (pause
time 900), the nodes are stationary, and on the left side of each graph (pause time 0), the nodes are
all in continuous motion.

The packet delivery ratios for SEAD and DSDV-SQ are shown in Figure 6.1(a), and the me-
dian latency of delivered application-level packets for these simulations is shown in Figure 6.1(b).
Surprisingly, SEAD consistently outperforms DSDV-SQ in terms of packet delivery ratio. By not
using a weighted settling time delay in sending triggered updates in SEAD, the number of routing
advertisements sent by SEAD generally increases relative to DSDV-SQ, allowing nodes to have
more up-to-date routing tables.

However, SEAD also increases overhead, both due to this increased number of routing adver-
tisements, and due to the increase in size of each advertisement from the addition of the hash value
on each entry for authentication. This increased overhead is shown in Figures 6.1(c) and 6.1(d),
which show the number of routing overhead packets and the number of routing overhead bytes, re-
spectively, caused by the two protocols in these same simulations. The vertical scale in Figure 6.1(c)
is magnified to show the difference between the two protocols; the vertical scale here ranges only
between 40 and 46.

The increased overhead in SEAD causes some congestion in the network in these simulations,
as shown in the latency results in Figure 6.1(b). At all pause times, SEAD exhibits higher latency
than DSDV-SQ, due to the decreased available network capacity from the increased overhead in
SEAD. The rise in latency at higher pause times is due to the nonuniform distribution of nodes in
space caused by node motion in the random waypoint model. Although the initial node locations
and the locations to which each node moves during the run are uniformally chosen over the space,
the straight line path of a node from one location to the next tends to distribute nodes on average
closer to the center of the space; at higher pause times, nodes spend most (or all) of the time in their
initial uniformally distributed locations. For example over the 65 simulation runs, the average route
length used by SEAD at pause time 900 was about 28% longer than at pause time 0 (for DSDV-
SQ, the average route length at pause time 900 was about 33% longer than at pause time 0). This
increased route length, together with SEAD’s increased overhead, created additional congestion at
higher pause times in the simulations.

6.6. Related Work

Prior to the publication of our work [78], a number of techniques had been proposed for securing
distance-vector protocols and ad hoc network routing protocols.

Kumar [102] discusses attacks against distance vector routing protocols, and describes mecha-
nisms to secure them using Message Authentication Codes. Although these mechanisms ensure the
integrity of router-to-router communications, they do not withstand node compromise. In particular,
they do not secure the metric in each routing table entry, and thus a compromised router could claim
routes of any length to any destination.

Smith et al [177] discuss attacks against distance vector routing protocols, and present counter-
measures that provide security. However, their techniques do not apply well in an ad hoc network
since they require knowledge of which links are possible, whereas in an ad hoc network, any pair of
nodes could be within range and form a link.

6.7. CHAPTER SUMMARY 77

Zapata [190] proposes security extensions to AODV, using a new one-way hash chain for each
Route Discovery to secure the metric field in an RREQ packet. Our protocol uses a single hash chain
for a node’s routing information and can therefore authenticate sequence number information, and
also minimizes the overhead of authenticating new hash chains.

A number of security protocols have been designed for RIPv2 [8, 111]. These protocols protect
the integrity of the packet from modification, but they do not prevent a node from advertising a route
that does not actually exist.

Several researchers have proposed the use of asymmetric cryptography to secure both wired
and ad hoc network routing protocols [96, 143, 170, 190, 192]. However, when the nodes in an
ad hoc network are unable to verify asymmetric signatures quickly enough, these protocols may not
be suitable and may create Denial-of-Service (DoS) attacks; these protocols also generally require
more network bandwidth than does SEAD with its hash values.

Cheung [33] and Hauser et al [65] describe symmetric-key approaches to the authentication of
updates in link state protocols, but neither work discusses the mechanisms for detecting the status
of these links. In wired networks, a common technique for authenticating HELLO packets is to
verify that the the incoming network interface is the expected interface and that the IP TTL of the
packet is 255. In a wireless network, this technique cannot be used. Heffernan [69] and Basagni et
al [10] use shared keys to secure routing communication, which is vulnerable to some single-node
compromises. Perrig et al [148] use symmetric primitives to secure routing only between nodes and
a trusted base station.

As mentioned in Section 6.2, some researchers have explored the establishment of trust rela-
tionships and authenticated keys in ad hoc networks [79, 82, 148, 178].

Marti et al [116] consider the problem of detecting intermediate nodes that do not forward pack-
ets. However, their scheme is limited to certain types of network Medium Access Control layers
and may trigger false alarms in congested networks.

6.7. Chapter Summary

In this chapter, we have presented the design and evaluation of SEAD, a new secure ad hoc network
routing protocol using distance vector routing. Many previous routing protocols for ad hoc networks
have been based on distance vector approaches (e.g., [19, 55, 62, 91, 129, 140]), but they have
generally assumed a trusted environment. Instead, in designing SEAD, we carefully fit inexpensive
cryptographic primitives to each part of the protocol functionality to create an efficient, practical
protocol that is robust against multiple uncoordinated attackers creating incorrect routing state in
any other node, even in spite of active attackers or compromised nodes in the network. Together
with existing approaches for securing the physical layer and MAC layer within the network protocol
stack, the SEAD protocol provides a foundation for the secure operation of an ad hoc network.

We base the design of SEAD in part on the DSDV ad hoc network routing protocol [140], and
in particular, on the DSDV-SQ version of the protocol, which has been shown to outperform other
DSDV versions in previous detailed ad hoc network simulations [26, 86]. For security, we use ef-
ficient one-way hash functions and do not use asymmetric cryptographic primitives. Consequently,
SEAD is efficient and can be used in networks of computation- and bandwidth-constrained nodes.
SEAD actually outperforms DSDV-SQ in terms of packet delivery ratio, although it does create
more overhead in the network, both due to an increased number of routing advertisements it sends,
and due to the increase in size of each advertisement due to the addition of the hash value on each
entry for authentication.

78 CHAPTER 6. SEAD: SECURE EFFICIENT DISTANCE VECTOR ROUTING

In future work, we plan to also consider mechanisms to detect and expose nodes that advertise
routes but do not forward packets, and to merge this work with our other work in securing on-
demand routing protocols to create a secure protocol based on ZRP [62]. We are also considering
the possibility of extending DSDV to behave like a path-vector routing protocol, allowing the source
address of each advertisement to be more readily authenticated.

Chapter 7

Ariadne: A Secure On-Demand Routing
Protocol

One metric for measuring the service provided by an ad hoc network routing protocol is according to

its ability to deliver packets in the presence of hostile nodes. SEAD (Chapter 6) provides some level

of resiliance against a single compromised node, or against multiple compromised nodes that do not

collaborate. However, in certain types of network, an attacker may be reasonably able to compro-

mise more than one node. In this chapter, we discuss two contributions to the area of secure routing

protocols for ad hoc networks which provide a stepping stone for achieving security even when

multiple nodes have been compromised. First, we give a model for the types of attacks possible in

such a system, and we describe several new attacks on ad hoc network routing protocols. Second,

we present the design and performance evaluation of a new on-demand secure ad hoc network rout-

ing protocol, called Ariadne, that withstands node compromise and relies only on highly efficient

symmetric cryptography. Relative to previous work in securing ad hoc network routing protocols

(e.g., [10, 116, 136, 148, 170, 190, 192]), Ariadne provides better service, either by being more

secure, more efficient, or more general (e.g., Ariadne does not require trusted hardware and does

not require powerful processors). In particular, Pebblenets [10] requires specialized hardware and

detection schemes [116] are prone to failure when nodes collude. SRP [136] can be broken with-

out compromising a single node, since SRP relies on most nodes being legitimate; an attacker that

can masquerade as many other nodes can severely degrade the security of this approach. Finally,

ARAN [170], SAODV [190], and the schemes proposed by Zhou and Haas [192] use asymmetric

cryptography, which makes them significantly less efficient. This reduced efficiency exposes them

to denial-of-service attacks, as described in Section 7.4.

Ariadne can authenticate routing messages using one of three schemes: shared secrets between

each pair of nodes, shared secrets between communicating nodes combined with broadcast authen-

tication, or digital signatures. We primarily discuss here the use of Ariadne with TESLA [147, 148],

an efficient broadcast authentication scheme that requires loose time synchronization. Using pair-

wise shared keys avoids the need for synchronization, but at the cost of higher key setup overhead;

broadcast authentication such as TESLA also allows some additional protocol optimizations.

79

80 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

7.1. Assumptions

7.1.1. Network Assumptions

The physical layer of a wireless network is often vulnerable to denial of service attacks such as
jamming. Mechanisms such as spread spectrum [149] have been extensively studied as means of
providing resistance to physical jamming, and we thus disregard such physical layer attacks here.

We assume that network links are bidirectional; that is, if node A is able to transmit to some
node B, then B is able to transmit to A. It is possible to use a network with unidirectional links if
such links are detected and avoided; such detection may also otherwise be necessary, since many
wireless Medium Access Control protocols require bidirectional links, as they require the exchange
of several link-layer frames between a source and destination to help avoid collisions [16, 84].

Medium Access Control protocols are also often vulnerable to attack. For example, in IEEE
802.11, an attacker can paralyze nodes in its neighborhood by sending Clear-To-Send (CTS) frames
periodically, setting the “Duration” field of each frame greater than or equal to the interval between
such frames. Less sophisticated Medium Access Control protocols, such as ALOHA and Slotted
ALOHA [1], are not vulnerable to such attacks but have lower efficiency. In this chapter, we disre-
gard attacks on Medium Access Control protocols.

We assume that the network may drop, corrupt, reorder, or duplicate packets in transmission.
When Ariadne is used with a broadcast authentication protocol, we inherit all of its assump-

tions. For example, when TESLA is used, each node in the network must be able to estimate the
end-to-end transmission time to any other node in the network; TESLA permits this value to be cho-
sen adaptively and pessimistically. When this time is chosen to be too large, authentication delay
increases, reducing protocol responsiveness; when it is chosen to be too small, authentic packets
may be rejected, but security is not compromised.

7.1.2. Node Assumptions

The resources of different ad hoc network nodes may vary greatly, from nodes with very little com-
putational resources, to resource-rich nodes equivalent in functionality to high-performance work-
stations. To make our results as general as possible, we have designed Ariadne to support nodes
with few resources, such as a Palm Pilot or RIM pager.

Most previous work on secure ad hoc network routing relies on asymmetric cryptography such
as digital signatures [190, 192]. However, computing such signatures on resource-constrained nodes
is expensive, and we assume that nodes in the ad hoc network may be so constrained. For example,
Brown et al analyze the computation time of digital signature algorithms on various platforms [27];
on a Palm Pilot or RIM pager, a 512-bit RSA [163] signature generation takes 2.4–5.8 seconds and
signature verification takes 0.1–0.6 seconds, depending on the public exponent.

When Ariadne uses TESLA for broadcast authentication, we assume that all nodes have loosely
synchronized clocks, such that the difference between any two nodes’ clocks does not exceed ∆;
the value of ∆ must be known by all nodes in the network. Accurate time synchronization can be
maintained with off-the-shelf hardware based on GPS [35, 183], although the time synchroniza-
tion signal itself may be subject to attack [54]. We assume that nodes compensate clock drift with
periodic re-synchronization. Microcomputer-compensated crystal oscillators [14] can provide sub-
second accuracy for several months; if normal crystal oscillators are used, ∆ can be chosen to be as
large as necessary, though a corresponding reduction in protocol responsiveness will result.

7.1. ASSUMPTIONS 81

We do not assume trusted hardware such as tamperproof modules. Secure routing with trusted
hardware is much simpler, since node compromise is assumed to be impossible.1

7.1.3. Security Assumptions and Key Setup

The security of Ariadne relies on the secrecy and authenticity of keys stored in nodes. Ariadne relies
on the following keys to be set up, depending on which authentication mechanism is used:

• If pairwise shared secret keys are used, we assume a mechanism to set up the necessary
n(n + 1)/2 keys in a network with n nodes.

• If TESLA is used, we assume a mechanism to set up shared secret keys between communi-
cating nodes, and to distribute one authentic public TESLA key for each node.

• If digital signatures are used, we assume a mechanism distribute one authentic public key
for each node.

To set up shared secret keys, we can use a variety of mechanisms: a key distribution center
shares a secret key with each node and sets up shared secret keys with communicating nodes, such
as in Kerberos [100] or SPINS [148]; bootstrap shared secret keys from a Public Key Infrastructure
(PKI) using protocols such as TLS [44]; or pre-load shared secret keys at initialization, possibly
through physical contact [178]. Menezes et al discuss several key setup protocols [121].

To set up authentic public keys, we can either embed all public keys at initialization in each
node, or assume a PKI and embed the trusted Certification Authority’s public key in each node and
then use that key to authenticate the public keys of other nodes. Another approach proposed by
Hubaux et al [82] bootstraps trust relationships based on PGP-like certificates.

Ariadne also requires that each node have an authentic element from the Route Discovery chain
(Section 7.2.6) of every node initiating Route Discoveries. These keys can be set up in the same
way as a public key.

Key setup is an expensive operation. Setting up shared secret keys requires authenticity and
confidentiality, whereas setting up public keys only requires authenticity. Furthermore, fewer public
keys are generally needed, because in a network with n nodes only n public keys are needed, and
can potentially be broadcast, whereas n(n+1)/2 secret keys need to be set up in the case of pairwise
shared secret keys.

We outline here a mechanism to set up these keys without relying on Ariadne, thus avoiding
the circular dependency between key setup and a routing protocol. We assume for this a trusted
Key Distribution Center (KDC) that either shares a secret key with each node, or uses its private or
TESLA key to broadcast authenticated public keys of nodes. In either case, a star-based routing pro-
tocol that allows routing between nodes and the trusted entity suffices. To bootstrap authenticated
keys between pairs of nodes, the KDC node initiates a Route Discovery with a special, reserved
address (not the address of any actual node) as the target of the Discovery. The Route Discovery
is processed as in Ariadne (Section 7.2), except that each node receiving the ROUTE REQUEST for
the first time also returns a ROUTE REPLY. The KDC can then use each returned route to send
encrypted, authenticated keys to each node in the network.

1In the terms of the attacker classification we present in Section 5.2.1, the strongest attacker in such an environment is
Active-0-x. As we discuss in Section 7.2.2, we can thus secure a network with tamperproof hardware through a network-
wide shared secret key for all message authentication, with packet leashes (Chapter 9) (both implemented within the
secure hardware).

82 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

7.2. Ariadne

7.2.1. Notation

We use the following notation to describe security protocols and cryptographic operations:

• A,B are principals, such as communicating nodes.

• KAB and KBA denote the secret MAC keys shared between A and B (one key for each
direction of communication).

• MACKAB
(M) denotes the computation of the message authentication code (MAC) of

message M with the MAC key KAB, for example using the HMAC algorithm [11].

For notational convenience we assume hash and MAC functions that take a variable number of
arguments, simply concatenating them in computing the function.

7.2.2. Design Goals

We aim for resilience against Active-1-x and Active-y-x attackers. Ideally, the probability that the
routing protocol delivers messages degrades gracefully when nodes fail or are compromised. Our
goal is to design simple and efficient mechanisms achieving high attack robustness. These mecha-
nisms should be sufficiently general to allow application to a wide range of routing protocols.

Defending against an Active-0-x attacker is relatively easy. A network-wide shared secret key
limits the attacker to replaying messages. Thus the main attacks remaining are the wormhole and
rushing attacks (Section 5.2.2). Packet leashes (Chapter 9) can prevent both attacks because they
prevent an Active-0-x attacker from retransmitting packets.

Most routing disruption attacks we present in Section 5.2.2 are caused by malicious injection or
altering of routing data. To prevent these attacks, each node that interprets routing information must
verify the origin and integrity of that data, that is, authenticate the data. Ideally, the initiator of the
Route Discovery can verify the origin of each individual data field in the ROUTE REPLY.

We need an authentication mechanism with low computation and communication overhead.
An inefficient authentication mechanism could be exploited by an attacker to perform a Denial-of-
Service (DoS) attack by flooding nodes with malicious messages, overwhelming them with the cost
of verifying authentication. Thus, for point-to-point authentication of a message, we use a message
authentication code (MAC) (e.g., HMAC [11]) and a shared key between the two parties. However,
setting up the shared keys between the initiator and all the nodes on the path to the target may be ex-
pensive. We thus also propose using the TESLA broadcast authentication protocol (Section 5.1.4)
for authentication of nodes on the routing path. However, we also discuss MAC authentication
with pairwise shared keys, for networks capable of inexpensive key setup, and we discuss digital
signatures for authentication, for networks with extremely powerful nodes.

As a general design principle, a node trusts only itself for acquiring information about which
nodes in the network are malicious. This approach helps avoid blackmail attacks, where an attacker
constructs information to make a legitimate node appear malicious.

In our design, we assume that a sender trusts the destination with which it communicates, for
authenticating nodes on the path between them. This assumption is straightforward, as the desti-
nation node can control all communication with the sender anyway. However, the destination node
can potentially blackmail nodes on the path to the sender. The sender thus needs to keep a separate
blacklist for each destination.

In general, ad hoc network routing protocols do not need secrecy or confidentiality. These prop-
erties are required to achieve privacy or anonymity for the sender of messages. Even in the Internet,
it is challenging to achieve sender anonymity, and this area is still the subject of active research.

7.2. ARIADNE 83

Our protocol does not prevent an attacker from injecting data packets. As we describe in
Section 5.2.2, injecting a packet results in a DoS attack only if it floods the network. Since data
packets cannot flood the network, we do not explicitly protect against packet injection. However,
malicious ROUTE REQUEST messages that flood the network do classify as a DoS attack, and we
thus prevent this attack with a separate mechanism that we describe in Section 7.2.6.

7.2.3. Basic Ariadne Route Discovery

We present the design of the Ariadne protocol in three stages: we first present a mechanism that
enables the target to verify the authenticity of the ROUTE REQUEST; we then present three alter-
native mechanisms for authenticating data in ROUTE REQUESTs and ROUTE REPLYs; and finally,
we present an efficient per-hop hashing technique to verify that no node is missing from the node
list in the REQUEST. In the following discussion we assume that the initiator S performs a Route
Discovery for target D, and that they share the secret keys KSD and KDS , respectively, for message
authentication in each direction.

Target authenticates ROUTE REQUESTs. To convince the target of the legitimacy of each field
in a ROUTE REQUEST, the initiator simply includes a MAC computed with key KSD over unique
data, for example a timestamp. The target can easily verify the authenticity and freshness of the
route request using the shared key KSD.

Three techniques for data authentication. In a Route Discovery, the initiator wants to authen-
ticate each individual node in the node list of the ROUTE REPLY. A secondary requirement is that
the target can authenticate each node in the node list of the ROUTE REQUEST, so that it will return a
ROUTE REPLY only along paths that contain only legitimate nodes. In this section, we present three
alternative techniques to achieve node list authentication: the TESLA protocol, digital signatures,
and standard MACs.

When Ariadne Route Discovery is used with TESLA, each hop authenticates new information
in the REQUEST. The target buffers the REPLY until intermediate nodes can release the correspond-
ing TESLA keys. The TESLA security condition is verified at the target, and the target includes
a MAC in the REPLY to certify that the security condition was met. TESLA requires each packet
sender to choose a τ as the maximum end-to-end delay for a packet. Choices of τ do not affect the
security of the protocol, although values that are too small may cause the Route Discovery to fail.
Ariadne can choose τ adaptively, by increasing τ when a Discovery fails. In addition, the target of
the Discovery could provide feedback in the ROUTE REPLY when τ was chosen too long.

Ariadne Route Discovery using digital signatures differs in that no Route Discovery chain
element is required (Section 7.2.6). In addition, the MAC list in the REQUEST becomes a signature
list, where the data used to compute the MAC is instead used to compute a signature. Rather than
computing the target MAC using a Message Authentication Code, a signature is used. Finally, no
key list is required in the REPLY.

Ariadne Route Discovery using MACs is most efficient, but requires pairwise shared keys be-
tween all nodes. When Ariadne is used in this way, the MAC list in the REQUEST is computed
using a key shared between the target and the current node, rather than using the TESLA key of the
current node. The MACs are verified at the target and are not returned in the REPLY. As a result, the
target MAC is not computed over the MAC list in the REQUEST. In addition, no key list is required
in the REPLY.

84 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

Per-hop hashing. Authentication of data in routing messages is not sufficient, as an attacker could
remove a node from the node list in a REQUEST. We use one-way hash functions to verify that no
hop was omitted, and we call this approach per-hop hashing. To change or remove a previous
hop, an attacker must either hear a REQUEST without that node listed, or must be able to invert the
one-way hash function.

Ariadne Route Discovery with TESLA We now describe in detail the version of Ariadne Route
Discovery using TESLA broadcast authentication. We assume that every end-to-end communicat-
ing source-destination pair of nodes A and B share the MAC keys KAB and KBA. We also assume
that every node has a TESLA one-way key chain, and that all nodes know an authentic key of the
TESLA one-way key chain of each other node (for authentication of subsequent keys, as described
in Section 5.1.4). Route Discovery has two stages: the initiator floods the network with a ROUTE

REQUEST, and the target returns a ROUTE REPLY. To secure the ROUTE REQUEST packet, Ariadne
provides the following properties: (1) the target node can authenticate the initiator (using a MAC
with a key shared between the initiator and the target); (2) the initiator can authenticate each entry
of the path in the ROUTE REPLY (each intermediate node appends a MAC with its TESLA key);
and (3) no intermediate node can remove a previous node in the node list in the REQUEST or REPLY

(a one-way function prevents a compromised node from removing a node from the node list).
A ROUTE REQUEST packet in Ariadne contains eight fields: 〈ROUTE REQUEST, initiator, tar-

get, id, time interval, hash chain, node list, MAC list〉. The initiator and target are set to the address
of the initiator and target nodes, respectively. As in DSR, the initiator sets the id to an identifier that
it has not recently used in initiating a Route Discovery. The time interval is the TESLA time interval
at the pessimistic expected arrival time of the REQUEST at the target, accounting for clock skew;
specifically, given τ , a pessimistic transit time, the time interval could be set to any time interval
for which the key is not released within the next τ + 2∆ time. The initiator of the REQUEST then
initializes the hash chain to MACKSD

(initiator, target, id, time interval) and the node list and MAC
list to empty lists.

When any node A receives a ROUTE REQUEST for which it is not the target, the node checks
its local table of 〈initiator, id〉 values from recent REQUESTs it has received, to determine if it
has already seen a REQUEST from this same Route Discovery. If it has, the node discards the
packet, as in DSR. The node also checks whether the time interval in the REQUEST is valid: that
time interval must not be too far in the future, and the key corresponding to it must not have been
disclosed yet. If the time interval is not valid, the node discards the packet. Otherwise, the node
modifies the REQUEST by appending its own address, A, to the node list in the REQUEST, replacing
the hash chain field with H [A, hash chain], and appending a MAC of the entire REQUEST to the
MAC list. The node uses the TESLA key KAi

to compute the MAC, where i is the index for the
time interval specified in the REQUEST. Finally, the node rebroadcasts the modified REQUEST, as
in DSR.

When the target node receives the ROUTE REQUEST, it checks the validity of the REQUEST by
determining that the keys from the time interval specified have not been disclosed yet, and that the
hash chain field is equal to

H [ηn,H [ηn−1,H [. . . ,H [η1,
MACKSD

(initiator, target, id, time interval)] . . .]]]

where ηi is the node address at position i of the node list in the REQUEST, and where n is the number
of nodes in the node list. If the target node determines that the REQUEST is valid, it returns a ROUTE

REPLY to the initiator, containing eight fields: 〈ROUTE REPLY, target, initiator, time interval,

7.2. ARIADNE 85

S : h0 = MACKSD
(ROUTE REQUEST, S,D, id, ti)

S → ∗ : 〈ROUTE REQUEST, S,D, id, ti, h0, (), ()〉

A : h1 = H [A, h0]
MA = MACKAti

(ROUTE REQUEST, S,D, id, ti, h1, (A), ())

A→ ∗ : 〈ROUTE REQUEST, S,D, id, ti,h1, (A), (MA)〉

B : h2 = H [B, h1]
MB = MACKBti

(ROUTE REQUEST, S,D, id, ti, h2, (A,B), (MA))

B → ∗ : 〈ROUTE REQUEST, S,D, id, ti,h2, (A,B), (MA,MB)〉

C : h3 = H [C, h2]
MC = MACKCti

(ROUTE REQUEST, S,D, id, ti, h3, (A,B,C), (MA,MB))

C → ∗ : 〈ROUTE REQUEST, S,D, id, ti,h3, (A,B,C), (MA,MB ,MC)〉

D : MD = MACKDS
(ROUTE REPLY, D, S, ti, (A,B,C), (MA,MB ,MC))

D → C : 〈ROUTE REPLY, D, S, ti, (A,B,C), (MA,MB ,MC),MD, ()〉

C → B : 〈ROUTE REPLY, D, S, ti, (A,B,C), (MA,MB ,MC),MD, (KCti
)〉

B → A : 〈ROUTE REPLY, D, S, ti, (A,B,C), (MA,MB ,MC),MD, (KCti
,KBti

)〉

A→ S : 〈ROUTE REPLY, D, S, ti, (A,B,C), (MA,MB ,MC),MD, (KCti
,KBti

,KAti
)〉

Figure 7.1: Route Discovery example in Ariadne. The initiator node S is attempting to discover a route
to the target node D. The bold underlined font indicates changed message fields, relative to the previous
message of that type.

node list, MAC list, target MAC, key list〉. The target, initiator, time interval, node list, and MAC list
fields are set to the corresponding values from the ROUTE REQUEST, the target MAC is set to a
MAC computed on the preceding fields in the REPLY with the key KDS, and the key list is initial-
ized to the empty list. The ROUTE REPLY is then returned to the initiator of the REQUEST along
the source route obtained by reversing the sequence of hops in the node list of the REQUEST.

A node forwarding a ROUTE REPLY waits until it is able to disclose its key from the time
interval specified; it then appends its key from that time interval to the key list field in the REPLY

and forwards the packet according to the source route indicated in the packet. Waiting delays the
return of the ROUTE REPLY but does not consume extra computational power.

When the initiator receives a ROUTE REPLY, it verifies that each key in the key list is valid, that
the target MAC is valid, and that each MAC in the MAC list is valid. If all of these tests succeed, the
node accepts the ROUTE REPLY; otherwise, it discards it. Figure 7.1 shows an example of Route
Discovery in Ariadne.

7.2.4. Basic Ariadne Route Maintenance

Route Maintenance in Ariadne is based on DSR. A node forwarding a packet to the next hop along
the source route returns a ROUTE ERROR to the original sender of the packet if it is unable to
deliver the packet to the next hop after a limited number of retransmission attempts. In this section,
we discuss mechanisms for securing ROUTE ERRORs, but we do not consider the case of attackers
not sending ERRORs (Section 7.2.5).

86 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

To prevent unauthorized nodes from sending ERRORs, we require that an ERROR be authenti-
cated by the sender. Each node on the return path to the source forwards the ERROR. If the authen-
tication is delayed, for example when TESLA is used, each node that will be able to authenticate
the ERROR buffers it until it can be authenticated.

When using broadcast authentication, such as TESLA, a ROUTE ERROR packet in Ariadne
contains six fields: 〈ROUTE ERROR, sending address, receiving address, time interval, error MAC,
recent TESLA key〉. The sending address is set to the address of the intermediate node encountering
the error, and the receiving address is set to the intended next hop destination of the packet it was
attempting to forward. For example, if node B is attempting to forward a packet to the next hop
node C, if B is unable to deliver the packet to C, node B sends a ROUTE ERROR to the original
sender of the packet; the the sending address in this example is set to B, and the receiving address is
set to C. The time interval in the ROUTE ERROR is set to the TESLA time interval at the pessimistic
expected arrival time of the ERROR at the destination, and the error MAC field is set to the MAC
of the preceding fields of the ROUTE ERROR, computed using the sender of the ROUTE ERROR’s
TESLA key for the time interval specified in the ERROR. The recent TESLA key field in the ROUTE

ERROR is set to the most recent TESLA key that can be disclosed for the sender of the ERROR. We
use TESLA for authenticating ROUTE ERRORs so that forwarding nodes can also authenticate and
process the ROUTE ERROR.

When sending a ROUTE ERROR, the destination of the packet is set to the source address of the
original packet triggering the ERROR, and the ROUTE ERROR is forwarded toward this node in the
same way as a normal data packet; the source route used in sending the ROUTE ERROR packet is
obtained by reversing the source route from the header of the packet triggering the ERROR. Each
node that is either the destination of the ERROR or forwards the ERROR searches its Route Cache
for all routes it has stored that use the 〈sending address, receiving address〉 link indicated by the
ERROR. If the node has no such routes in its Cache, it does not process the ROUTE ERROR further
(other than forwarding the packet, if it is not the destination of the ERROR). Otherwise, the node
checks whether the time interval in the ERROR is valid: that time interval must not be too far into
the future, and the key corresponding to it must not have been disclosed yet; if the time interval is
not valid, the node similarly does not process the ROUTE ERROR further.

If all of the tests above for the ROUTE ERROR succeed, the node checks the authentication on
the ERROR, based on the sending node’s TESLA key for the time interval indicated in the ERROR.
To do so, the node saves the information from the ERROR in memory until it receives a disclosed
TESLA key from the sender that allows this. During this time, the node continues to use the routes
in its Route Cache without modification from this ERROR. If the sender stops using that route, there
will be no need to complete the authentication of the ERROR. Otherwise, each subsequent packet
sent along this route by this node will trigger an additional ROUTE ERROR, and once the TESLA
time interval used in the first ERROR ends, the recent TESLA key field in the next ERROR returned
will allow authentication of this first ERROR; alternatively, the node could also explicitly request
the needed TESLA key from the sender once the interval ends. Once the ROUTE ERROR has been
authenticated, the node removes from its Route Cache all routes using the indicated link, and also
discards any saved information for other ERRORs for which, as a result of removing these routes, it
then has no corresponding routes in its Route Cache.

To handle the possible memory consumption attack of needing to save information from many
pending ROUTE ERRORs, the following technique is quite effective: each node keeps in memory
a table containing the information from each ROUTE ERROR awaiting authentication. We manage
this table such that the probability that the information from an ERROR is in the table is independent
of the time that this node received that ROUTE ERROR.

7.2. ARIADNE 87

B → S : 〈B,C, ti, MACKBti
(B,C, ti),Kti−1〉

Figure 7.2: Route Maintenance in Ariadne. B finds a broken link and reports the ROUTE ERROR to
the sender S. The ERROR is authenticated with TESLA, and includes a previous key, in case the same
ERROR had been sent previously, but they key had not been disclosed yet.

When the wireless link capacity is finite, an attacker can inject only a finite number of ROUTE

ERRORs within a TESLA time interval plus 2∆ + τ. As a result, the probability of success for
our defense against memory consumption attacks for received ROUTE ERRORs in any time interval
is given by ps = 1− (y/(x + y))N, where N is the number of ROUTE ERRORs that can be held
in the node’s table, x is the number of authentic ROUTE ERRORs received, and y is the number
of ERRORs sent by the attacker. The maintenance of a link therefore follows a geometric distri-
bution, and the expected number of time intervals before success is (1− (y/(x + y))N)−1. For
example, in a network using a 1-second TESLA time interval and an 11 Mbps wireless link, if
the size of a ROUTE ERROR packet is 60 bytes, then a node with a 5000-element table receiv-
ing just one authentic ROUTE ERROR per second can successfully authenticate and process one of
the authentic ROUTE ERRORs within 5.1 seconds on the average, even when an attacker is oth-
erwise flooding the node with malicious ROUTE ERRORs. This 5.1 second recovery time repre-
sents a worst-case scenario, and minimal node resources are consumed while the node waits to
validate one of these ROUTE REQUESTs. Figure 7.2 shows an example of Route Maintenance in
Ariadne.

When digital signatures or pairwise shared keys are used, this memory consumption attack is
not possible, and the authentication is more straightforward. A ROUTE ERROR need not include a
time interval or recent TESLA key. Furthermore, the error MAC is changed to a digital signature
when digital signatures are used. When pairwise shared keys are used, the error MAC is computed
based on the key shared between the original sender of the packet and the sender of the ROUTE

ERROR, rather than on the TESLA key of the sender of the ERROR.

7.2.5. Thwarting Effects of Routing Misbehavior

The protocol described so far is vulnerable to an Active-1-1 attacker that happens to be along the
discovered route. In particular, we have not presented a means of determining whether intermedi-
ate nodes are in fact forwarding packets that they have been requested to forward. Watchdog and
pathrater [116] attempt to solve this problem by identifying the attacking nodes and avoiding them
in the routes used. Instead, we choose routes based on their prior performance in packet delivery.
Introducing mechanisms that penalize specific nodes for routing misbehavior (such as is done in
watchdog and pathrater) is subject to a blackmail attack (Section 5.2.1), where a sufficient number
of attackers may be able to penalize a well-behaved node.

Our scheme relies on feedback about which packets were successfully delivered. The feedback
can be received either through an extra end-to-end network layer message, or by exploiting proper-
ties of transport layers, such as TCP with SACK [117]; this feedback approach is somewhat similar
that used in IPv6 for Neighbor Unreachability Detection [130]. Stronger properties are obtained
when the routing protocol sends such feedback packets along a route equal to the reversed route of
the triggering packet; otherwise, a malicious node along one route may drop the acknowledgment
for a packet transmitted along a functioning route.

A node with multiple routes to a single destination can assign a fraction of packets that it orig-
inates to be sent along each route. When a substantially smaller fraction of packets sent along any
particular route are successfully delivered, the node can begin sending a smaller fraction of its over-
all packets to that destination along that route. However, if the fraction of packets chosen to be

88 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

sent along a route that appears to be misbehaving were to reach zero, a short-lived jamming attack
that is now over could still prevent the future use of that route. To avoid this possible DoS attack,
we choose the fraction of packets sent along such a route to be some small but nonzero amount, to
allow the occasional monitoring of the route. A packet sent for this purpose can be a normal data
packet, or, if all packets are secured using end-to-end encryption, a padded “probe” packet can be
used.

Because DSR often returns multiple ROUTE REPLY packets in response to a Route Discovery,
the presence of multiple routes to some destination in a node’s Route Cache is quite common.
Tsirigos and Haas [184] also discuss the use of multiple routes for increasing reliability, although
they do not discuss this technique with respect to secure routing protocols.

Malicious nodes can also be avoided during Route Discovery. Each ROUTE REQUEST can
include a list of nodes to avoid, and the MAC that forms the initial hash chain element (h0) is then
also computed over that list of nodes. Malicious nodes cannot add or remove nodes from this list
without being detected by the target. Choosing which nodes to avoid in this way is beyond the scope
of this chapter.

7.2.6. Thwarting Malicious Route Request Floods

An active attacker can attempt to degrade the performance of DSR or other on-demand routing pro-
tocols by repeatedly initiating Route Discovery. In this attack, an attacker sends ROUTE REQUEST

packets, which the routing protocol floods throughout the network. In basic Ariadne (Sections 7.2.3
and 7.2.4), a ROUTE REQUEST is not authenticated until it reaches its target, thus allowing an
Active-1-1 attacker to cause such network-wide floods. (An Active-0-1 can be thwarted by using a
network-wide authentication key, as described in Section 7.3.2.)

To protect Ariadne from a flood of ROUTE REQUEST packets, we need a mechanism that en-
ables nodes to instantly authenticate ROUTE REQUESTs, so nodes can filter out forged or excessive
REQUEST packets. We introduce Route Discovery chains, a mechanism for authenticating Route
Discoveries, allowing each node to rate-limit Discoveries initiated by any node.

Route Discovery chains are one-way chains generated, as in TESLA (Section 5.1.4), by choos-
ing a random KN , and repeatedly computing a one-way hash function H to give Ki = HN−i[KN].
These chains can be used in one of two ways. One approach is to release one key for each
Route Discovery. Each ROUTE REQUEST from that Discovery would carry a key from this Route
Discovery chain, and duplicates could be suppressed using this value. Because of the flooding na-
ture of Route Discovery, a node that is not partitioned from the network will generally hear each
chain element that is used, preventing an attacker from reusing that value in the future. An alterna-
tive approach, similar to TESLA, is to dictate a schedule at which Route Discovery chain elements
can be used, and to use loosely synchronized clocks to prevent even partitioned nodes from prop-
agating an old ROUTE REQUEST. The latter approach is computationally slightly more expensive,
but it is secure against an attacker replaying an old chain element to a formerly partitioned node,
causing that node to ignore REQUESTs from the spoofed source for some period of time.

7.2.7. An Optimization for Ariadne

When Ariadne is used with broadcast authentication such as TESLA, additional route caching is
possible. In the basic Route Discovery mechanism described in Section 7.2.3, only the initiator of
the Discovery can use the route in the REPLY, since the target MAC field of the REPLY can only be
verified by the initiator. However, if the appropriate data is also broadcast authenticated, any node
along a path returned in a REPLY can use that route to reach the target. For example, if TESLA is

7.3. ARIADNE EVALUATION 89

Table 7.1: Parameters for Ariadne Simulations

Scenario Parameters
Number of Nodes 50
Maximum Velocity (vmax) 20 m/s
Dimensions of Space 1500 m × 300 m
Nominal Radio Range 250 m
Source-Destination Pairs 20
Source Data Pattern (each) 4 packets/second
Application Data Payload Size 512 bytes/packet
Total Application Data Load 327 kbps
Raw Physical Link Bandwidth 2 Mbps

DSR Parameters
Initial ROUTE REQUEST Timeout 2 seconds
Maximum ROUTE REQUEST Timeout 40 seconds
Cache Size 32 routes
Cache Replacement Policy FIFO

TESLA Parameters
TESLA Time Interval 1 second
Pessimistic End-to-End Propagation Time (τ) 0.2 seconds
Maximum Time Synchronization Error (∆) 0.1 seconds
Hash Length (ρ) 80 bits

used as the broadcast authentication protocol, a target authenticator is placed the packet in addition
to the target MAC, and is computed using a TESLA key that is not expected to be disclosed until
∆ after the last REPLY reaches the initiator (where ∆ is the maximum time difference between two
nodes). That TESLA key is then disclosed, after appropriate delay, by sending it to the initiator
along each path traversed by a REPLY.

7.3. Ariadne Evaluation

7.3.1. Simulation-Based Performance Evaluation

To evaluate the Ariadne without attackers, we used the ns-2 simulator, with our mobility extensions
(Section 2.3.1). The parameters used for our simulation are given in Table 7.1.

We evaluated the version of Ariadne that uses TESLA for broadcast authentication and shared
keys only between communicating nodes (without the optimization described in Section 7.2.7). We
modeled this version of Ariadne by modifying our ns-2 DSR model in several ways: we increased
the packet sizes to reflect the additional fields necessary for authenticating the packets, and modi-
fied the handling of Route Discovery and Maintenance for the additional authentication processing
defined in Ariadne; we adjusted retransmission timeouts for ROUTE REQUESTs to compensate for
the delay necessary for the disclosure of TESLA keys; and we treated routes learned from Route
Discovery in an atomic fashion that did not allow the use of prefixes of routes in the Route Cache.
We compare this version of Ariadne versus a recent version of DSR (Chapter 2), which we call
simply “Base DSR,” and with an unoptimized version of DSR, which we call “DSR-NoOpt.” In
DSR-NoOpt, we disabled all protocol optimizations not present in Ariadne. By comparing Ariadne
with this unoptimized version of DSR, we can examine the performance impact of adding security,
independent of the performance impact of the DSR optimizations removed to allow the security
changes.

90 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

0 100 200 300 400 500 600 700 800 900
 0.7

0.75

 0.8

0.85

 0.9

0.95

 1

Pause Time

Ariadne
PSfrag replacements

Base DSR

DSR-NoOpt

P
ac

ke
tD

el
iv

er
y

R
at

io

(a) Packet Delivery Ratio

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n

of
 D

el
iv

er
ed

 P
ac

ke
ts

Number of Hops More Than Optimal

Ariadne

PSfrag replacements

Base DSR

DSR-NoOpt

≥5

(b) Path Optimality

0 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

100

120

140

160

180

200

Pause Time

Ariadne

PSfrag replacements

Base DSR

DSR-NoOpt

P
ac

ke
tO

ve
rh

ea
d

(P
ac

ke
ts
×

1
0

3
)

(c) Packet Overhead

0 100 200 300 400 500 600 700 800 900
 0

 5

10

15

20

25

30

Pause Time

Ariadne

PSfrag replacements

Base DSR

DSR-NoOpt
B

yt
e

O
ve

rh
ea

d
(B

yt
es
×

1
0

6
)

(d) Byte Overhead

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Pause Time

La
te

nc
y

(s
ec

on
ds

)

Ariadne

PSfrag replacements

Base DSR

DSR-NoOpt

(e) Average Latency

0 100 200 300 400 500 600 700 800 900
0

5

10

15

20

25

30

35

40

45

Pause Time

La
te

nc
y

(s
ec

on
ds

)

Ariadne

PSfrag replacements

Base DSR

DSR-NoOpt

(f) 99.99th Percentile Latency

Figure 7.3: Performance results comparing Ariadne with the standard DSR protocol and with a version
of DSR with all DSR optimizations not present in Ariadne disabled. Results are based on simulation
over 60 runs, and the error bars represent the 95% confidence interval of the mean.

7.3. ARIADNE EVALUATION 91

Our simulation parameters were identical to those described in Section 3.2, except that we gen-
erated 60 scenarios for each pause time. We computed six metrics for each simulation run: the four
metrics from Section 2.3.3, byte overhead (Section 3.2), and 99.99th Percentile Latency, computed
as the 99.99th percentile of the packet delivery latency.

Figure 7.3(a) shows the Packet Delivery Ratio (PDR) for each protocol. Removing the opti-
mizations from Base DSR to produce DSR-NoOpt reduces PDR by an average of 15.2%; adding
Ariadne security further reduces PDR by just an additional 0.66% on average, and does not re-
duce PDR by more than an additional 4% at any pause time. Ariadne delivers fewer packets than
DSR-NoOpt at higher levels of mobility for two reasons. First, since Route Discovery operates
more slowly, packets are more likely to time out waiting for a ROUTE REPLY, and the route con-
tained in a ROUTE REPLY will have a shorter lifetime. Second, because ROUTE ERRORs cannot
be processed until the TESLA key used is disclosed, additional data packets continue to be sent
along the broken route for on average half of the TESLA time interval after the ERROR is re-
ceived.

Surprisingly, Ariadne outperforms DSR-NoOpt at lower levels of mobility. This improved
performance results from the average half-second delay (one half the TESLA time interval) that
Ariadne introduces between the target receiving a ROUTE REQUEST and sending a ROUTE REPLY.
Specifically, when a REQUEST traverses a short-lived link, DSR-NoOpt immediately returns the
REPLY, but the new route can be used for only its brief lifetime, contributing additional overhead
for forwarding the REPLY and for sending and forwarding the ERROR. In Ariadne, links are tested
twice: once when the REQUEST traverses the network, and once when the REPLY is sent along
the reverse path. If one of these links breaks between these tests, the REPLY with this route is not
received by the initiator. It is this additional route confirmation that allows Ariadne to find more
stable routes than DSR-NoOpt.

Figures 7.3(c) and 7.3(d) show the packet and byte overhead, respectively. Ariadne has consis-
tently lower packet overhead than DSR-NoOpt, because Ariadne tends to find more stable routes
than DSR-NoOpt, reducing the number of ROUTE ERRORs that are sent. This advantage is some-
what countered by the increase in number of ROUTE ERRORs used by Ariadne: since ERROR

processing is delayed, more redundant ERRORs are sent. Unfortunately, byte overhead in Ariadne
is significantly worse than in either Base DSR or DSR-NoOpt, due to the authentication overhead
in ROUTE REQUEST, REPLY, and ERROR packets.

Figure 7.3(b) shows Path Optimality. In Base DSR, the average number of hops along a route
used by a packet is 0.6853 hops more than the minimum possible, based on the nominal wireless
transmission range of 250 m per hop. In DSR-NoOpt, routes used are on average 0.2705 hops longer
than in Base DSR, and in Ariadne, routes used average 0.0044 hops longer than in DSR-NoOpt.
DSR-NoOpt performs slightly better than Ariadne because it initiates more Route Discoveries and
thus tends to more quickly find shorter routes when they become available than does Ariadne.

Figures 7.3(e) and 7.3(f) show the average and 99.99th percentile latency for the protocols,
respectively. Because of the reduced number of broken links that get used in Ariadne relative to
DSR-NoOpt, Ariadne generally has better latency than DSR-NoOpt.

7.3.2. Security Analysis

In this section, we discuss how Ariadne resists attacks by certain attacker types, according to the
taxonomy we present in Section 5.2.1.

Intuitively, Ariadne Route Discovery is successful when at least one of the REPLYs returned by
the target is a working route. Since the target of a Route Discovery returns a route for each of its

92 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

neighbors, if the first REQUEST from a particular Discovery to reach any neighbor of the target has
passed through no malicious nodes, that Discovery will succeed.

To more formally characterize the security offered by Ariadne, we define a minimum broadcast
latency path between a source and a destination to be any path that forwards a Route Discovery
most quickly from the source to the destination. We call a route that only consists of uncom-
promised nodes an uncompromised route. Ariadne prevents compromised nodes from disturbing
uncompromised routes. In particular, Ariadne provides two properties assuming reliable broadcast:

• If there exists an uncompromised neighbor of a destination such that the minimum latency
path between the initiator of the Discovery and that neighbor is uncompromised, then an
uncompromised route from the initiator to the target will be returned in a ROUTE REPLY.

• If at least one REPLY returned as a result of the first property represents a shortest route from
the initiator to the target, Ariadne may route packets along one such uncompromised route.

To argue for the correctness of the first property, we note that if the minimum latency path
between the initiator and a neighbor of the destination is uncompromised, then the first REQUEST

to reach that neighbor comes over an uncompromised route. Since it is the first REQUEST, it will not
be filtered by duplicate REQUEST detection, so it will be rebroadcast, and heard by the target. Since
the target returns a REPLY for each REQUEST it receives, without performing duplicate detection,
a REPLY will be returned. The second property trivially follows from the use of shortest paths and
the first property.

Although it may not be possible to achieve reliable broadcast securely or efficiently, we assume
that most broadcast packets are received, and hence the properties listed above generally hold.

We now consider Ariadne using our taxonomy of attacks that we present in Section 5.2.1. We
list different attacker configurations in increasing strength, and discuss how Ariadne resists these at-
tacks. Ariadne resists many more attacks, but due to space constraints, only a representative sample
are discussed here.

Since Ariadne does not attempt to provide anonymous routing, passive attackers can eavesdrop
on all routing traffic sent by nodes within range of those attackers. They can also perform traffic
analysis on any packets sent or forwarded by nodes within range of the attackers.

When replay protection and a global MAC key are used, an Active-0-x attacker (for x ≥ 1) can
at most perform wormhole and rushing attacks. Packet leashes can prevent these attacks (Chapter 9).

An Active-1-1 attacker may attempt the following attacks:

• Create a gray hole or black hole by removing nodes in a ROUTE REQUEST; however, the per-
hop hash mechanism in each REQUEST prevents such tampering. An attacker may fabricate
nodes to insert in the accumulated route list of a REQUEST packet, such fabricated nodes
would not have known keys at the source, and the REPLY would thus not be authenticated. If
the attacker tries to replace the MAC and keys in the reply, such tampering will be detected
as a result of the target MAC field in the REPLY.

• Create routing loops. Intuitively, the use of source routes prevents loops, since a packet pass-
ing through only legitimate nodes will not be forwarded into a loop. An attacker can create a
routing loop by modifying the source route each time around the loop; this behavior, however,
is no worse than if the attacker were to source packets with period equal to the propagation
time around the loop. In particular, if there are n nodes in the routing loop, and a single
packet is forwarded around the loop m times, the attacker participates in m forwards, and
the total expended effort is mn forwards. Had the attacker instead sourced m packets along
n-hop routes, the total attacker effort is m transmissions, and the total network effort is mn
forwards, an identical result.

7.3. ARIADNE EVALUATION 93

• Flood network with many ROUTE REQUESTs. Since the source address of each REQUEST

is authenticated, and since each new Route Discovery needs to carry a new one-way Route
Discovery chain value, the compromised node can only produce ROUTE REQUESTs with
its own source address. An upper bound on the sending rate can be enforced either by rate
limiting of REQUESTs at each node or synchronizing Route Discovery chain elements with
time (Section 7.2.6).

• Perform a rushing attack (Section 5.2.2). Rushing attacks can be probabilistically prevented
by slightly modifying the Route Discovery protocol [80].

Multiple attackers that have compromised one node (Active-1-x, for x > 1) may attempt to
construct a wormhole, but append the address and key of the compromised node in each REQUEST

forwarded across this wormhole. Packet leashes alone cannot prevent this attack, but packet leashes
and GPS can be used in conjunction to ensure that an Active-1-x wormhole attack can be no worse
than an Active-1-1 attacker positioned correctly. In particular, if each node forwarding a ROUTE

REQUEST includes its alleged GPS coordinates in that REQUEST, then a node can detect if it should
be reachable from the previous hop, and if the hop before the previous hop should be able to reach
the previous hop. If both of these checks succeed, then the attacker could have placed the compro-
mised node at the position it specified in the packet, and that node would have been able to hear the
original REQUEST, append its address, and forward it to the next hop.

Multiple attackers that know all the keys of multiple nodes (an Active-y-x attacker configura-
tion, where 1 < y ≤ x) may perform the following attacks:

• Lengthen the route in the REQUEST by adding other compromised nodes to the route. If the
source finds a shorter route, it will likely prefer that route, so the protocol behaves as if the
attacker were not there.

• Attempt to force the initiator to repeatedly initiate Route Discoveries. Suppose an Active-y-x
attacker had the keys of multiple compromised nodes, and that one such attacker were on the
shortest path from the source to the destination. When the attacker receives its first ROUTE

REQUEST packet as part of some Discovery, it adds its address and MAC, as normal, but
also adds the address of another node it has compromised. When data packets are sent along
that route, the attacker replies with a ROUTE ERROR from its first hop to its second hop.
In subsequent Route Discoveries, the attacker can use different addresses for the additional
address. Since other routes may have been returned as part of any of these Route Discoveries,
this attack is not guaranteed to be successful.

To prevent such starvation, the initiator may include data in the ROUTE REQUEST. To be part
of the path, the attacker must forward routing messages, so the initiator can send data to the
target. If the attacker alters the data in the ROUTE REQUEST, the destination will detect the
alteration (using the shared key and a MAC on the data) and reject that route.

A set of attackers that control a vertex cut of the network (an Active-VC attacker) may perform
the following additional attacks:

• Make nodes on one side of the vertex cut believe that any node on the other side is attempting
to flood the network. By holding and not propagating ROUTE REQUESTs from a certain node
for some time, then initiating many Route Discoveries with the chain values from the old
Discoveries, an Active-VC attacker can make that node appear to be flooding the network.
When the use of individual elements of a Route Discovery chain are time-synchronized, this
attack simply causes the REQUESTs associated with the stale chain elements to be discarded.

94 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

• Only forward ROUTE REQUEST and ROUTE REPLY packets. A sender is then unable to
successfully deliver packets. This attack is only marginally different from not participating in
the protocol at all, differing only in that the sender and some intermediate nodes continue to
spend power to send packets, but none of those packets are successfully received.

7.4. Related Work

Prior to the publication of Ariadne [79], several researchers proposed secure routing protocols.
Perlman [143] proposed flooding NPBR, an on-demand protocol designed for wired networks that
floods each packet through the network. Flooding NPBR allocates a fraction of the bandwidth along
each link to each node, and uses digital signatures to authenticate all packets. Unfortunately, this
protocol has high overhead in terms of the computational resources necessary for digital signature
verification and in terms of its bandwidth requirements. Furthermore, estimating and guaranteeing
available bandwidth in a wireless environment is difficult [97].

Other wired network protocols have secured periodic routing protocols with asymmetric cryp-
tography, such as Kent et al [96], Perlman’s link-state NPBR, Kumar’s secure link-state proto-
col [102], and Smith et al [176, 177]. However, nodes in an ad hoc network may not have sufficient
resources to verify an asymmetric signature; in particular, an attacker can trivially flood a victim
with packets containing invalid signatures, but verification can be prohibitively expensive for the
victim. In addition, these protocols may suffer in some scenarios because periodic protocols may
not be able to cope with high rates of mobility in an ad hoc network. Kumar also discusses threats
to both distance-vector protocols and link-state protocols, and describes techniques for securing
distance-vector protocols. However, these techniques are vulnerable to the compromise of a single
node.

Zhou and Haas [192], Zapata [190], and Dahill et al [170] propose the use of asymmetric cryp-
tography to secure on-demand ad hoc network routing protocols. However, as above, when the
nodes in an ad hoc network are generally unable to verify asymmetric signatures quickly enough,
or when network bandwidth is insufficient, these protocols may not be suitable.

Cheung [33], Hauser et al [65], and Zhang [191] describe symmetric-key approaches to the
authentication of link-state updates, but they do not discuss mechanisms for detecting the status of
these links. In wired networks, a common technique for authenticating HELLO packets is to verify
that the the incoming network interface is the expected interface and that the IP TTL of the packet
is 255. In a wireless ad hoc network, this technique cannot be used. Furthermore, these protocols
assume the use of periodic routing protocols, which are not always suitable in ad hoc networks.
Cheung [33] uses cryptographic mechanisms similar to those used in Ariadne with TESLA, but
optimistically integrates routing data before it is authenticated, adversely affecting security.

A number of other researchers have also proposed the use of symmetric schemes for authenticat-
ing routing control packets. Heffernan [69] proposes a mechanism requiring shared keys between all
communicating routers. This scheme requires O(n2) keys in an n-node network, and is vulnerable
to single-node compromise. Perrig et al [148] use symmetric primitives to secure routing between
nodes and a trusted base station. Basagni et al [10] use a network-wide symmetric key to secure
routing communication, which is vulnerable to a single node compromise, although they specify the
use of secure hardware to limit the damage that can be done by a compromised node. Papadimitratos
and Haas [136] present work that secures against non-colluding adversaries, and they do not authen-
ticate intermediate nodes that forward ROUTE REQUESTs, and thus do not handle authorization. Yi
et al [189] discuss authorization issues. Our previous work, SEAD (Chapter 6), uses hash chains to
authenticate routing updates sent by a distance-vector protocol; however, that approach builds on a

7.5. CHAPTER SUMMARY 95

periodic protocol, and such protocols tend to have higher overhead than on-demand protocols and
may not be suitable in highly mobile networks.

Yi, Naldurg, and Kravets [189] present the notion of security requirements for paths carrying
certain traffic, and briefly discuss mechanisms for securing routing, such as network-wide encryp-
tion of ROUTE REQUESTs and use of digital signatures.

Routing protocol intrusion detection has also been studied as a mechanism for detecting mis-
behaving routers [23, 34, 116]. Cheung and Levitt [34] and Bradley et al [23] propose intrusion
detection techniques for detecting and identifying routers that send bogus routing update messages.
In this chapter, we attempt to authenticate packets before processing them, instead of relying on
the delayed reaction of an intrusion detection system. Marti et al [116] consider the problem of
detecting intermediate nodes that do not forward packets. Our approach differs in that we choose
routes that we have found to work, rather than relying on watching as nodes forward traffic from
arbitrary sources.

7.5. Chapter Summary

This chapter has presented the design and evaluation of Ariadne, a new ad hoc network routing
protocol that provides security against one compromised node and arbitrary active attackers, and
relies only on efficient symmetric cryptography. Ariadne operates on-demand, dynamically discov-
ering routes between nodes only as needed; the design is based on the basic operation of the DSR
protocol. Rather than generously applying cryptography to an existing protocol to achieve security,
however, we carefully re-designed each protocol message and its processing. The security mecha-
nisms we designed are highly efficient and general, so that they should be applicable to securing a
wide variety of routing protocols.

Because we did not secure the optimizations of DSR in Ariadne, the resulting protocol is less
efficient than the highly optimized version of DSR that runs in a trusted environment. However,
we also compared Ariadne to a version of DSR in which we disabled all protocol optimizations
not present in Ariadne, allowing us to evaluate and analyze the effect of the optimizations and the
security separately. The byte overhead of Ariadne was 26.19% higher than for unoptimized DSR,
due to the overhead of the authentication information in Ariadne’s routing packets. As explained in
our results, however, Ariadne actually performs better on some metrics (e.g., 41.7% lower packet
overhead) than for unoptimized DSR, and about the same on all other metrics, even though Ariadne
must bear the added costs for security not present in unoptimized DSR.

We found that source-routing facilitates securing ad hoc network routing protocols. Source
routing empowers the sender to circumvent potentially malicious nodes, and enables the sender
to authenticate every node in a ROUTE REPLY. Such fine-grained path control is absent in most
distance-vector routing protocols, which makes such protocols more challenging to fully secure.

96 CHAPTER 7. ARIADNE: A SECURE ON-DEMAND ROUTING PROTOCOL

Chapter 8

Further Efficient Mechanisms for
Securing Routing Protocols

Routing protocols are difficult to efficiently secure. An attacker may, for example, attempt to inject
forged routing messages into the system, or may attempt to modify legitimate routing messages sent
by other nodes. An attacker may also attempt to exploit mechanisms in the routing protocol, such
as those intended to quickly spread new routing information, to instead consume large amounts of
network and router resources. Even the addition of cryptographic mechanisms to a routing protocol
may make the protocol vulnerable to such attacks, since traditional security mechanisms are gen-
erally expensive in terms of CPU time; an attacker may be able to cripple several routers simply
by flooding each router with large numbers of randomly generated, forged routing messages, which
then must be authenticated and rejected by the router, leading to a denial of service by consuming
all router CPU time.

Current routing protocols in use in the Internet today, such as the Border Gateway Protocol
(BGP) [158] or the Routing Information Protocol (RIP) [111], were originally designed to operate
in a trusted environment, assuming no malicious nodes. However, with the growing importance
and usage of the Internet, an increasing number of corporations and public services are becoming
dependent on the correct functioning of the Internet, and routing protocol security has become a
significant issue. The command and control of critical infrastructures (such as the control of the
power grid) and the emerging use of the Internet to carry voice traffic are two examples of this
trend. The importance of securing Internet routing has also been illustrated by recent BGP miscon-
figurations [109], in which non-malicious BGP speakers have been able to disrupt Internet routing
as a result of incorrect configuration.

Several researchers have proposed secure network routing protocols, but most have used stan-
dard digital signatures to authenticate routing update messages [96, 101, 102, 143, 174, 176, 177].
Similarly, in the area of secure multihop wireless ad hoc network routing, most researchers use stan-
dard digital signatures to authenticate routing messages [170, 190, 192]. Unfortunately, generation
and verification of digital signatures is relatively inefficient, and it is thus challenging to design a
scalable, efficient, and viable secure routing protocol based on such asymmetric cryptography. In
particular, the use of asymmetric cryptography exposes

Symmetric cryptographic primitives are much more efficient than asymmetric primitives, but so
far, few security mechanisms based on symmetric cryptography have been designed for the require-
ments of routing protocols. We now discuss the exceptions of which we are aware.

Three mechanisms based on symmetric cryptography have been proposed to secure link state
routing updates. Cheung [33] presents an efficient time-based authentication protocol to authenti-
cate link state routing updates. The proposed authentication is optimistic, though, and routers use

97

98 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

the routing update before it is authenticated. Hauser, Przygienda, and Tsudik [65] propose to use
efficient one-way hash chains to authenticate link state routing updates. Zhang [191] subsequently
improves their mechanism and presents a chained Merkle-Winternitz one-time signature [123, 124],
similar to our basic MW chains scheme that we present in Section 8.2.4, although our technique is
more space-efficient.

Heffernan [69] assumes that neighboring routers share secret keys, and routers use MD5 to au-
thenticate each other’s messages. This approach allows BGP to protect itself against the introduction
of spoofed TCP segments into the connection stream (TCP resets are of particular concern).

Basagni et al. [10] present a protocol with a network-wide shared key for use in routing, purely
based on symmetric cryptography. However, their approach assumes secure hardware to protect the
key.

We have previously developed two efficient secure routing protocols based on symmetric cryp-
tography. Our SEAD protocol (Chapter 6) introduces a new efficient mechanism, based on one-way
hash chains, to secure distance vector routing updates. Our Ariadne routing protocol (Chapter 7) is
a secure on-demand ad hoc network routing protocol using source routing.

In this chapter, we present four new security mechanisms based on efficient symmetric crypto-
graphic techniques, that can be applied to strengthen current distance vector and path vector routing
protocols or can be incorporated into the design of new secure routing protocols. For securing dis-
tance vector protocols, our hash tree chain mechanism forces a router to increase the distance (met-
ric) when forwarding a routing table entry. To provide authentication of a received routing update in
bounded time, we present a new mechanism, similar to hash chains, that we call tree-authenticated
one-way chains. For cases in which the maximum metric is large, we present skipchains, which
provides more efficient initial computation cost and more efficient element verification; this mech-
anism is based on a new cryptographic mechanism, called MW-chains, which we also present. For
securing path vector protocols, our cumulative authentication mechanism authenticates the list of
routers on the path in a routing update, preventing removal or reordering of the router addresses
in the list; the mechanism uses only a single authenticator in the routing update rather than one
per router address. We also present a simple mechanism to securely switch one-way chains, by
authenticating the next one-way chain using the previous one.

8.1. Assumptions

In designing our mechanisms to build secure routing protocols, we make the following assumptions
on node capability and key setup.

8.1.1. Node Assumptions

The computational resources of network nodes vary greatly, from a high-end Internet backbone
router to a tiny ad hoc network node. To make our results as general as possible, we design our
mechanisms to be extremely lightweight and efficient. This allows our mechanisms to be used
on resource-constrained ad hoc network nodes and enables large Internet routers to scale to high
bandwidth links. In particular, we design our mechanisms from purely symmetric cryptographic
functions, such as message authentication codes (MACs) or cryptographic hash functions. In con-
trast, mechanisms based on asymmetric cryptography are often 3 to 4 orders of magnitude slower
than hash functions.

Most previous work on secure Internet and ad hoc network routing relies on asymmetric cryptog-
raphy [96, 102, 143, 174, 176, 177]. However, computing such signatures on resource-constrained

8.2. MECHANISMS FOR SECURING DISTANCE VECTOR PROTOCOLS 99

nodes is expensive, and such high overhead computations may hinder the routing protocol’s scala-
bility to large networks.

We do not assume trusted hardware such as tamperproof modules. Secure routing with trusted
hardware is much simpler, since node compromise is assumed to be impossible.

8.1.2. Security Assumptions and Key Setup

We assume a mechanism that enables the secure and authentic distribution of keying material. Most
of our mechanisms require the distribution of authentic public values to enable authentication of
subsequent values. However, the cumulative authentication mechanism assumes pairwise shared
secret keys, or authentic public keys of other nodes if a broadcast authentication system such as
TESLA [145, 146] is used.

Digital signatures and a public-key infrastructure may be used to set up the authenticated pub-
lic values, as well as to establish pairwise shared secret keys if used in conjunction with a key
agreement protocol such as Diffie-Hellman [45].

We assume protection against the immediate replay of routing packets. In a wired network or a
static wireless network, each router can be configured with a list of possible neighbors; a router that
receives an update from a node not on this list can silently discard that update. In mobile wireless
networks, such as ad hoc networks, we have developed packet leashes which restrict such immediate
replay (Chapter 9). In this chapter, we assume that one of these mechanisms is used.

8.2. Mechanisms for Securing Distance Vector Protocols

In this section, we discuss the remaining research challenges in the area of securing distance vector
routing. We then present new mechanisms that address these challenges in the context of SEAD
(Chapter 6).

The utility of the mechanisms we present is not limited to routing protocols. In particular, the
skipchains mechanism we present in Section 8.2.5 allows highly efficient generation and verification
of elements in long hash chains, giving a constant factor speedup in both generation and verification.
Skipchains are thus particularly useful for protocols that use long one-way hash chains, such as
TESLA [145, 146] or BiBa [144].

8.2.1. Remaining Challenges in Securing Distance Vector Routing

SEAD is a recent secure distance vector routing protocol we designed, that is particularly effi-
cient because it uses one-way hash chains and no asymmetric cryptography. SEAD is described in
Chapter 6. We discuss the remaining research challenges.

Although SEAD does prevent a number of attacks, some attacks and shortcomings remain:

• SEAD does not prevent same-distance fraud: that is, a node receiving an advertisement for
sequence number s and distance (metric) d can re-advertise the same sequence number s and
distance d. Section 8.2.2 presents an approach that prevents this same-distance fraud.

• Another drawback of SEAD is that an attacker can force a victim node to verify a hash chain
as long as O(ks), where k is the maximum number of hops and s is the maximum number of
sequence numbers represented by a hash chain. Section 8.2.3 describes the tree-authenticated
one-way chains mechanism, which bounds this effort by O(k + lg s). The same scheme
prevents the sequence number rushing attack, which we present in Section 8.2.3.

100 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

• The overhead to verify authentication values can be large if a node has missed several routing
updates. An attacker can exploit this overhead to perform a denial-of-service attack by send-
ing bogus routing updates, forcing a node to spend considerable effort verifying the authen-
ticity. In Section 8.2.4, we introduce a novel authentication scheme that is a hybrid between
a one-way chain and a one-time signature which we call an MW-chain. Based on the MW-
chain, we introduce in Section 8.2.5 a one-way chain that is very efficient to verify in case of
missed routing updates. In a network with maximum diameter k, this approach reduces the
verification overhead to O(c c

√
k + lg s) for arbitrary positive integers c. Finally, we reduce

the overhead of setting up a single hash chain from O(ks) to O(s).

We now discuss mechanisms that can solve these remaining challenges. Our mechanisms can
be generalized to secure many other distance vector protocols.

8.2.2. Hash Tree Chains for Preventing Same-Distance Fraud

We present an alternative called hash tree chains to one-way hash chains for authenticating the
distance metric in distance vector protocols, to prevent the same-distance fraud attack introduced
above. Our new mechanism forces a node to increase the distance to the destination when send-
ing a routing update. As noted in Section 8.1, we use packet leashes (Chapter 9) to prevent an
adversary from replaying a routing update in wireless networks, so that the adversary would be a
“stealth node” on that route. The packet leash also provides hop-by-hop authentication, preventing
an adversary from impersonating another node.

To prevent same-distance fraud, we need to prevent an attacker from replaying the same hash
value (thus without increasing the metric) but replacing the node id with the attacker’s node id. We
construct a special one-way chain, which we call a hash tree chain, where each element of the chain
encodes the node id, thus forcing a node to increase the distance metric if it wants to encode its own
id. Each step in this one-way chain contains a collection of values, one or more of which are used
to authenticate any particular node. These values are authenticated using a Merkle tree, and the root
of that Merkle tree is used to generate the collection of values in the next step. This approach is
similar to that used in the HORS signature scheme [160]. These values are authenticated using a
Merkle tree, and the root of that Merkle tree is used to generate the collection of values in the next
step.

A hash tree chain is a hybrid between a hash tree and a one-way chain. The one-way chain
property is used in the same way as in SEAD (to enforce that nodes cannot decrease the distance
metric), and the hash tree property is used to authenticate the node id. We construct the hash tree
between each pair vi−1, vi of one-way chain values as follows. From the value vi, we derive a set
of values b0, . . . , bn, using a one-way hash function H as bj = H[vi || j], for each j. We then
build a hash tree above those values as described in Section 5.1.2. The root of the tree becomes
the previous value of the one-way chain vi−1 = b0n. Figure 8.1 shows an example. The node with
the id 1 forwards the shaded values b′0, b1, and b23 to the neighboring nodes, which can compute
the one-way hash tree chain forward to verify the authenticity of values b′0, b1, and b23, and use the
value b03 to sign their own id when forwarding the route update, thus automatically increasing the
distance metric.

We now present two examples of how the hash tree chain can be used: when a single value
corresponds to a node, and when a γ-tuple of values corresponds to a node. For notational and
analytic convenience, we describe hash tree chains for which the number of values between each
hash chain value is a power of two.

In a small network, each value bj can correspond to a single node; since no two nodes share
a single value, an attacker has no way to derive its value from the advertisements of neighboring

8.2. MECHANISMS FOR SECURING DISTANCE VECTOR PROTOCOLS 101

PSfrag replacements

vi

b0 = H[vi || 0]

b1 = H[vi || 1]

b2 = H[vi || 2]

b3 = H[vi || 3]

b′0 = H[b0]

b′1 = H[b1]

b′2 = H[b2]

b′3 = H[b3]

b01 = H[b′0 || b′1]

b23 = H[b′2 || b′3]

vi−1 = b03 =
H[b01 || b23]

Generation

Usage

Figure 8.1: Authenticating one distance metric within a sequence of a hash tree chain. In this example,
each element bi stands for one router, so this hash tree chain supports 4 routers.

nodes, and hence it must follow the hash tree chain to the next step in order to provide a valid
authenticator.

In larger networks, with n nodes, the O(n) overhead of generating each step of the chain may be
too great; as a result, we authenticate each node with a γ-tuple of values. Although two nodes share
the same γ-tuple of values, an attacker could learn each of its γ values from different neighbors
that advertise the same metric, and could then forge an advertisement without increasing the metric.
We show that an attacker’s probability of success may be sufficiently small. We also change the
encoding of a node id for each update, so that an attacker in a static network cannot continue to forge
updates once it finds an appropriate set of values from its neighbors. Consider a hash tree chain with
2m values in each step (and thus a hash tree of height m+1). For example, if each node has a unique
node id between 0 and

(

2m

γ

)

− 1, then the γ-tuple encodes x = (node id + H[sequence number])

mod
(

2m

γ

)

, such that the γ-tuple changes for each sequence number.
We now analyze the security of hash tree chains as the probability that a malicious node can

forge an advertisement based on the advertisements from its neighbors. Clearly, if each value cor-
responds to a single node id, no forgery is possible. We now consider the case in which a pair of
values (i.e., γ = 2) represents each node. For our analysis, we consider a hash tree chain with 2m

values at each step, used in a network with n =
(

2m

2

)

nodes. We compute the probability that an
attacker can claim the same metric after it has heard the same metric advertised from q other nodes.
For each of the two values the attacker must produce, there are 2m − 2 other nodes that have that
particular value. It follows that the attacker has

((n−1)−(2m−2)
q

)

=
(

n−2m+1
q

)

ways of failing to get
a predetermined one of the two values. We now compute the probability that the attacker is unable

102 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

to obtain either value. Since the set of nodes from which an attacker can receive either value are
disjoint, there are 2(2m − 2) nodes that have one of those two values. As a result, the attacker
has

(

(n−1)−2(2m−2)
q

)

=
(

n−2m+1+3
q

)

ways of failing to get either of the two values. Applying the
inclusion-exclusion principle, we now compute the number of ways the attacker can fail to obtain
both values it needs: 2

(

n−2m+1
q

)

−
(

n−2m+1+3
q

)

, of
(

n−1
q

)

possible distributions. The probability of
successful defense, then, is

2
(

n−2m+1
q

)

−
(

n−2m+1+3
q

)

(

n−1
q

) .

For example, when m = 8, then n = 32640, and an attacker that hears q = 3 advertisements has
a 0.000361 (3.61× 10−4, or 1.49× 2−12) probability of forging a valid authenticator from the three
advertisements, without increasing the distance to the destination. In other words, an attacker can
decrease its advertised metric by 0.00036 in expectation, or on average once every 2752 rounds. To
improve security and reduce route oscillations, we can also require that a node advertise a particular
metric for several consecutive sequence numbers before we choose that route. For example, if we
require a route to be advertised three consecutive times before we accept it, and if routing updates
are sent (and accepted if valid) once per second, then the attacker can successfully send a forged
routing update on average only once in over 660 years, given the parameters of n, m, and q above.

To generalize our analysis, we consider the security of the hash tree chain scheme, where a node
corresponds to a set of β values. First, we consider the number of ways that an attacker can fail to
obtain a specific set of γ different values. There are

(2m−γ
β

)

nodes that do not help the attacker, so

there are a total of
((2

m
−γ

β)
q

)

ways to pick q nodes that do not help the attacker.
Let Ai be the set of combinations of nodes that do not include value bi needed by the attacker.

The attacker, then, has | ∪γ
i=1 Ai| ways to fail. We now apply the inclusion-exclusion principle:

∣

∣

∣

∣

γ
∪

i=1
Ai

∣

∣

∣

∣

=
∑

i

|Ai| −
∑

i1,i2

|Ai1 ∩Ai2 |+ · · ·+ (−1)γ+1

∣

∣

∣

∣

γ
∩

i=1
Ai

∣

∣

∣

∣

=

γ
∑

i=1

(−1)i+1

(

γ

i

)(
(

2m−i
γ

)

q

)

Then the probability of a successful defense is

γ
∑

i=1
(−1)i+1

(

γ
i

)((2m
−i

γ)
q

)

((2m

γ)−1
q

)

We can now use this to analyze variants of the scheme described earlier. In particular, we look
for n > 32000.

When m = 6, γ = 3. (This represents a four-fold reduction in computation, in exchange for a
17% increase in overhead). Using q = 3 as before, an attacker has a 1.675 × 10−3 probability of
success; when three consecutive advertisements are required for the same metric before a routing
change is made, the attacker succeeds once every 6.74 years.

When m = 5, γ = 4. (This represents a eight-fold reduction in computation, in exchange for
a 33% increase in overhead). Using q = 3 as before, an attacker has a 8.023 × 10−3 probability
of success; when four consecutive advertisements are required for the same metric before a routing
change is made, the attacker succeeds once every 7.65 years.

8.2. MECHANISMS FOR SECURING DISTANCE VECTOR PROTOCOLS 103
PSfrag replacements

A B C DE

F GS N

Figure 8.2: A sample network to demonstrate the sequence number rushing attack.

8.2.3. Tree-Authenticated One-Way Chains for Preventing the Sequence Number
Rushing Attack

In protocols such as SEAD, a node that has missed a number of sequence numbers may need to
perform a large number of hash operations to bring its chain up-to-date. This creates a potential
denial-of-service vulnerability: if an attacker knows that a victim missed several recent updates for
a destination, the attacker can flood the victim with updates containing recent sequence numbers
but bogus authenticators; the victim must then perform many hash operations for each update re-
ceived in an attempt to verify each update. Alternatively, the attacker can fabricate an update with
sequence numbers far in the future, thus requiring each node receiving such an update to perform
a large number of hash operations to determine that the update is bogus, although this attack can
be somewhat mitigated using loose time synchronization, and rate limiting the use of new sequence
numbers.

Another attack is the sequence number rushing attack. We explain this attack with an example.
Consider the case in which a malicious node A tries to attract traffic flowing from a source S to a
destination D through S’s neighbor N . Figure 8.2 shows the network setup. Let the attacker A be
4 hops from D, and N be 3 hops from D. If A hears new routing updates from D before they reach
N , A can rush the routing update to N . If we use the policy that a node always uses the routing
update with the most recent sequence number, N will forward traffic from S to D through A until it
hears the routing update with the new sequence number from F which contains a shorter route. To
remedy this rushing attack, we adapt a delayed route update adoption policy: always use the shortest
route from the previous sequence number. For example, when node N hears the first routing update
with sequence number i for destination D, it will use the shortest update of sequence number i− 1.
Unfortunately, this approach is still vulnerable to an attack in which A sends two routing updates to
N after it hears the update for sequence i: it forges an update with distance 0 of sequence number
i − 1, followed by an update of distance 3 for sequence number i. The tree-authenticated one-
way chain mechanism we present in this section prevents A from forging low distance metrics for
previous route updates. Together with the delayed route update adoption policy, we can prevent the
sequence number rushing attack.

We describe here our efficient tree-authenticated one-way chain mechanism, which has two
properties in addition to those of the hash chain in SEAD: first, it bounds the effort to verify an
update; and second, it prevents a node with fresh sequence number information from fabricating
lower metric authenticators for old sequence numbers.

In our new scheme, we use a new hash chain for each sequence number. A node using this
scheme generates a random hash chain root h0,s for each sequence number s, for example by using
a PRF F and a secret master key X to derive h0,s = F(X , s). Given the authentic anchor of this
hash chain hk,s = Hk[h0,s] (where k is the maximum metric), any node can authenticate hm,s,
which is the authenticator for sequence number s and metric m.

104 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

PSfrag replacements

v01 = F(X , 0)

v11 = F(X , 1)

v21 = F(X , 2)

v31 = F(X , 3)

v02 = H[v01]v03 = H[v02]v04 = H[v03]m0 = H[v04]

v12 = H[v11]v13 = H[v12]v14 = H[v13]m1 = H[v14]

v22 = H[v21]v23 = H[v22]v24 = H[v23]m2 = H[v24]

v32 = H[v31]v33 = H[v32]v34 = H[v33]m3 = H[v34]

m01 = H[m0 || m1]

m23 = H[m2 || m3]

m03 = H[m01 ||m23]

Figure 8.3: Example tree-authenticated one-way chain construction for authenticating a sequence of
one-way chains. The instance in this figure allows 4 sequence numbers to be authenticated, and metrics
up to 3. The shaded values represent sequence number 1 metric 1.

To allow nodes to authenticate these anchors hk,s, each node builds a hash tree, using the hash
chain anchors as leaves (Section 5.1.2). When a node sends an update with a new sequence number
s, it includes the root of the hash chain h0,s, the anchor of the hash chain hk,s, and the path to the root
of the hash tree. To authenticate any update, the node verifies the anchor by following the path to
the root of the hash tree. It then verifies the hash value hm,s by verifying that hk,s = Hk−m[hm,s].
Since the maximum hash chain length is k and the anchor verification requires O(log(s)) effort,
where s is the number of sequence numbers represented by any root, the computation required to
verify any update is bounded by k + log(s).

8.2.4. The MW-Chains Mechanism

In this section, we present a new cryptographic mechanism, which we use in the next section to
improve the efficiency of secure network routing and to prevent a class of denial-of-service attacks.
This mechanism is an extension to the Merkle-Winternitz one-time signature construction [123].
That construction was subsequently used and extended by Even, Goldreich, and Micali [49], and
by Rohatgi [164]. Our extension to this signature construction, which we call a one-way Merkle-
Winternitz chain, or MW-chain, provides instant authentication and low storage overhead. This
one-way chain contains a list of values, called heads, and between any two heads are a set of sig-
nature branches and a set of checksum branches. To achieve low storage overhead, we derive these
branches from a single head using a one-way hash function H .

The most basic way to construct an MW-chain is with one signature branch and one checksum
branch between each head. Assuming we want one set of branches to sign up to N values, we
choose the length of the signature branch and the checksum branch to be N ; that is, we choose
`1 = `′1 = N . A random value that is ρ bits long is chosen as the first head value vn. Next, the
signature and checksum branches are computed using

s1,`1 = H [vi || “s” || 1]
s1,x−1 = H [s1,x]

c1,`′
1

= H [vi || “c” || 1]
c1,x−1 = H [c1,x]

for 2 ≤ x ≤ `1. Finally, the next head value is vn−1 = H [s1,1 || c1,1]. The signature of a value n
using this MW-chain is the ordered set {s1,n, c1,N−n}. An attacker can produce s1,j , for j < n, but

8.2. MECHANISMS FOR SECURING DISTANCE VECTOR PROTOCOLS 105

PSfrag replacements

s1,4 =H [vi||“s”||1] s1,3 =H [s1,4] s1,2 =H [s1,3] s1,1 =H [s1,2]

s2,4 =H [vi||“s”||2] s2,3 =H [s2,4] s2,2 =H [s2,3] s2,1 =H [s2,2]

s3,4 =H [vi||“s”||3] s3,3 =H [s3,4] s3,2 =H [s3,3] s3,1 =H [s3,2]

c1,4 =H [vi||“c”||1] c1,3 =H [c1,4] c1,2 =H [c1,3] c1,1 =H [c1,2]

c2,4 =H [vi||“c”||2] c2,3 =H [c2,4] c2,2 =H [c2,3] c2,1 =H [c2,2]

Head vi Head vi−1 =
H [s∗,1||c∗,1]Branches

Generation

Verification

Figure 8.4: An example MW-chain being used to sign the value 58

then cannot produce c1,N−j . Similarly, an attacker can produce c1,N−j for j > n, but then cannot
produce s1,j .

More generally, an MW-chain can have m signature branches and m′ checksum branches. We
call the lengths of the signature branches `1, `2, . . . , `m and the lengths of the checksum branches
`′1, `

′
2, . . . , `

′
m′ . The signature for some value n is the ordered set

{s1,n1
, s2,n2

, . . . , sm,nm , c1,n′

1
, c2,n′

2
, . . . , cm′,n′

m′

}

where ni =

(⌊

n
∏i

j=1
`j

⌋

mod `i

)

+ 1, and n′
i =

(⌊

∑m
j=1

`j−nj−1
∏i

j=1
`′j

⌋

mod `′i

)

+ 1.

For example, Figure 8.4 shows an example MW-chain being used to sign the value 58. In this
example, there are 3 signature chains, each of length 4, and 2 checksum chains, also each of length
4. To sign the value 58 in this case, n1 = (58 mod 4) + 1 = 3, n2 =

(⌊

58
4

⌋

mod 4
)

+ 1 = 3,
and n3 =

(⌊

58
16

⌋

mod 4
)

+ 1 = 4, so n′
1 = ((12− (2 + 2 + 3)) mod 4) + 1 = 2 and n′

2 =
(⌊

12−(2+2+3)
4

⌋

mod 4
)

+1 = 2. The signature is thus the ordered set {s1,3, s2,3, s3,4, c1,2, c2,2}.
Every signature chain i can sign log2(`i) bits. All signature chains together can sign b =

m
∑

i=1
log2(`i) bits. To sign a message M of b bits, the signer splits the message into m chunks

M1, . . . ,Mm, each of size log2(`) bits. The signer adds the values si,Mi+1 to the signature. Note
that the first value of a signature chain signs the number 0, the second value a 1, and so on.

To prevent an attacker from forging a message M ′, where Mi ≥ M ′
i , 1 ≤ i ≤ m (because

anybody can compute the one-way chain into that direction to know the previous values) the sender
uses a checksum chain that moves in the opposite direction of the signature chains. Consequently,
an attacker that tries to sign M ′ as described above would need to invert the checksum chain, which

106 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

is computationally infeasible. The checksum chains need to be long enough to sign the maximum

sum that might occur in the signature chains:
m′

∏

i=1
`′i ≥ 1 +

m
∑

i=1
(`i − 1).

The signer computes the checksum of the signature chains by summing all the values that it

signed with the signature chains: s =
m
∑

i=1
Mi. The signer splits the checksum into m′ checksum

chunks. The checksum chunks are encoded in reverse in the checksum chains, compared to how
the message chunks are encoded n the signature chains. For checksum chunk si, the signer adds the
value ci,`′−si

to the signature.
Rohatgi [164] proposes a concrete instantiation to sign an 80-bit message: 20 signature chains

of length 16, and 3 checksum chains of length 16. Zhang [191] presents a similar mechanism,
except that he does not bring the multiple hash chains together into heads. As a result, MW-chains
have an advantage in reduced storage overhead.

In retrospect, it may seem that the development of hash tree chains was unnecessary: a node
could use an MW-chain to sign its node identifier, thus preventing a node from directly replaying its
authenticator. Unfortunately, using MW-chains in this context is not secure, since an attacker receiv-
ing several advertisements of equal metric can recover many values of the signature and checksum
chains. For example, we performed a Monte Carlo simulation for a scenario in which n = 32640

nodes are represented using 5 signature chains of length 8, and 2 checksum chains of length 4, and
each attacker hears 3 advertisements. In this case, an attacker was able to forge a valid signature
with a probability of 0.196, in contrast to the hash tree chain, where the probability of successful
forgery was 3.6 × 10−4.

8.2.5. Skipchains for Preventing Denial-of-Service Attacks and for Faster Hash Chain
Authentication

In Section 8.2.3, we described a mechanism that allows each node to verify a hash chain without
needing to perform a large number of hash functions. However, the amount of effort required to
verify an element is O(k +lg s), where k is the length of the hash chain and s is the number of hash
chains. The network overhead is O(lg s), and initial computation cost is O(ks). If the maximum
metric is large, this approach may be prohibitively expensive, either in terms of initial computation
cost or for element verification.

In this section, we describe an approach which, when combined with the Merkle tree authenti-
cation described in Section 8.2.3, has O(c c

√
k + lg s) verification cost and O(s c

√
k) generation cost,

at the cost of O(c + lg s) overhead, where c is any positive integer. We achieve this by creating
a skipchain, which is a chain that, when followed for one step, skips over many steps in a virtual
hash chain. In the most basic version, a skipchain is

√
k long, and each step in a skipchain repre-

sents
√

k steps in a hash chain, which represents c = 2. In general, skipchains can be embedded
inside skipchains, allowing values of c > 2. Skipchains can also be used in protocols such as
TESLA [145, 146] and BiBa [144], to improve the efficiency of following long hash chains.

Each skipchain is represented by an MW-chain capable of signing enough bits to ensure security
(for example, 80 bits). Each step in this MW-chain represents m steps in a virtual hash chain. To
generate the hash chain (or skipchain) associated with this step, a new head is chosen by hashing
the head of this step. The anchor of this hash chain (or skipchain) is computed, and that step in the
MW-chain is used to sign this new anchor. For example, if the head of one step in a skipchain is vi,
a node forms h0,i = H[vi], computes the corresponding anchor (for example hm,i = Hm(h0,i), if
this is the last level of skipchains). It signs this anchor using vi, as described in Section 8.2.4.

8.2. MECHANISMS FOR SECURING DISTANCE VECTOR PROTOCOLS 107

PSfrag replacements
vi vi−1

h0,i = H[vi]

h1,i = H[h0,i]

h2,i = H[h1,i]

h3,i = H[h2,i]

h4,i = H[h3,i]

S (h4,i)

Generation

Usage

Figure 8.5: One step in a skipchain with k = 4

More concretely, we consider the case in which there is one level of skipchain, and each step in
the skipchain corresponds to m steps in the virtual hash chain. If the MW-chain is n steps long, then
the virtual hash chain is mn steps long. The leftmost element in this virtual hash chain is vn, from
which all chain elements can be derived. An alternative representation is the pair (h0,n, Svn(hm,n)),
where Svn(hm,n) represents hm,n signed using vn. The next element is the pair (h1,n, Svn(hm,n)).
The element at position (m + 1) from the left is (h1,n−1, Svn−1

(hm,n−1)). In general, the xth
element from the left is represented by the pair (hx mod n,y, Svy(hm,y)), where y = n− b x

m
c.

To verify a hash element, a node follows the hash chain to the anchor, and verifies the signature
of the anchor. If there are multiple levels of skipchains (that is, if c > 2), the signature is verified
recursively: that is, the verification of the signature requires the verification of a signature in a
higher level chain. For example, if there are two levels of skipchains (c = 3), then the hash chain is
followed to its anchor, the second level skipchain signature is checked by following that skipchain
to its anchor, and the anchor of that skipchain is verified by verifying the signature in the top-level
skipchain.

Skipchains can be generalized to allow skipping over any type of one-way chain that is formed
from a single arbitrary head and can be verified using a single anchor. For example, hash tree chains
can be used in conjunction with skipchains. This generalized skipchain is generated in the same
way as skipchains over hash chains: at the lowest level of skipchain, the head of one step is used to
seed the head of the one-way chain, and the anchor of that one-way chain is signed by that step in
the skipchain.

Another possible application of such skipchains is to choose the top-level skipchain to represent
k steps, where k is the maximum diameter of the network. This would reduce the initial cost of
setting up a Merkle tree (as described in Section 8.2.3) from O(s c

√
k) to O(s), where s is the number

of sequence numbers covered by the tree. This increases overhead and computation cost by O(1)

for each update sent and verified, respectively.

108 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

Table 8.1: Our mechanisms compared with public key equivalents

Initialization Computation Per-Hop Computation Overhead (Bits)
Hash tree chain M·120 µs (M-m)·120 µs 1680
RSA Equivalent (CPU Optimized) .235 µs .235 µs +m·401 µs 1024m + 80mlg2 Nη
RSA Equivalent (Minimal Overhead) 7669 µs η·7669 µs +m·401 µs 1040m
Tree Authenticated One-Way Chains 1.5 µs 3 µs 1600
RSA Equivalent 7669 µs 401 µs 1024
Skipchain (M/α)·120 µs + α·step (M/α)·120 µs + 2α·step 1920
RSA Equivalent (M/α)·7669 µs + α·step 401 µs + 2α·step (M/α)·1024

Notation: M is the maximum metric, m is the metric at a hop, n is the total network size, η is the average number of neighbors, α is the
number of hops covered by one skipchain hop, and step is the cost of one hash chain step. RSA timings were performed with 1024-bit
keys, using OpenSSL [135]. Hash tree chain performance is based on a network of size 32640, roughly the number of ASes in the
Internet, and uses hash tree of size 26, with 3 values corresponding to each node. CPU optimized RSA equivalent combines all routing
table elements using a Merkle tree, amortizing signature costs across all routing table elements. Tree-authenticated one-way chain is of
size 220, and the calculation of initialization cost is amortized over all elements.

8.2.6. Efficiency Evaluation

To evaluate the efficiency of our mechanisms, we implemented generation and verification proce-
dures for the three mechanisms described in this section. For efficiency, our hash function is based
on the Rijndael block cipher [41] in the Matyas, Meyer, and Oseas construction [118], with a 128-
bit key and a 128- or 192-bit block size, depending on the number of bits to be hashed. With a
single block to be hashed, the hash output is the following (with an initialization vector (IV) as
the initial key K): H(x) = EK(x) ⊕ x. We built our implementation on top of Gladman’s im-
plementation [56]. We implemented hash tree chains with 64 leaves, which represents a 64-node
network with a single element per node, or a 2016-node network, when using two elements per
node. Our skipchain was based on Rohatgi’s construction [164] of 20 signature chains of length 16
and 3 checksum chains of length 16.

We ran our tests on a laptop with a Mobile Pentium 4 CPU running at 1.6GHz. Verifying a
node in a tree-authenticated one-way chain took 3.08 µs on average, computing one step in a hash
tree chain took 120 µs on average, and computing one step of an MW-chain took 145 µs on average.
As a result, in a network with maximum metric 16 using skipchains of length 4, the worst case
verification takes just over one millisecond. Another advantage of our approach is that most of
the computation needed for verification can be used for generation; in particular, the worst case
authentication plus verification operation takes just 480 µs more than verification alone.

To compare these results to the efficiency of public-key cryptography, we analyzed the func-
tionality provided by each mechanism. A summary of our analysis is shown in Table 8.1. The tree-
authenticated one-way chain essentially provides a signature: given a public key (the root value),
private values can be authenticated. Tree-authenticated one-way chains are significantly more effi-
cient than existing approaches [190] that authenticate each anchor using RSA.

A hash tree chain uses cryptographic mechanisms to ensure that only nodes authorized to adver-
tise a particular metric can advertise that metric. In particular, only nodes that hear an advertisement
with metric m (or lower) can advertise metric m + 1. A public-key approach to this problem can
be adapted from the solution proposed by Kent et al [96]: each node signs the list of nodes that
are allowed to advertise a particular metric. Each routing table element includes a signature chain,
with a length equal to the metric, which shows the delegation of authority for advertising partic-
ular metrics. A node verifying this chain would need to verify a number of signatures equal to
the distance to the destination. In addition, each node needs to run a secure neighbor discovery
protocol in order to know which neighbors to authorize. Though such a protocol may be easy to

8.2. MECHANISMS FOR SECURING DISTANCE VECTOR PROTOCOLS 109

PSfrag replacements

Old AnchorNew Anchor

MW-Chain Element

Signed By

Generation

Usage

Figure 8.6: Bootstrapping a new hash chain. The new anchor is signed using the MW-chain element at
the far left side of the old chain.

design in a wired network or a fixed wireless network, where a list of potential neighbors is easily
generated, it could be prohibitively expensive in a mobile wireless environment such as an ad hoc
network.

Finally, an alternative to skipchains is signatures. For example, in a network with maximum
metric 16 and one step in a skipchain is used to skip over 4 elements, a sender can sign not only
the anchor (metric 16 authenticator), it can also sign metric 4, 8, and 12 authenticators. Naturally,
when a node sends an advertisement with metric 5, it will not include the signature of the metric 4
authenticator, and in general, a node advertising metric n will not include signatures on any metric
m authenticators for m < n. Although skipchains may be slower than public key mechanisms on
general-purpose processors, they have four advantages: first, they may require less network over-
head for long chains; second, signature generation overhead is reduced, especially at the sender;
third, they are easier to implement in hardware; and fourth, verification is easily parallelizable.

8.2.7. Bootstrapping New Chains and Trees

As time progresses, the elements of one-way hash chains or hash trees eventually run out and the
node needs to securely distribute the anchor of a new chain or the root of a new tree. Recall that
the security of our schemes relies on the secure distribution of these initial values, as they are used
to authenticate all subsequent values. One solution to this problem is to compute a chain that is
long enough to outlast the network; unfortunately, such a computation may be relatively expen-
sive.

An alternative solution is to use the old chain or tree to authenticate the new anchor or root. To
achieve this, we place a single MW-chain element at on the left-hand side of each hash chain or hash
tree chain, or as the last element of a tree-authenticated one-way chain (as used in Section 8.2.3).
When a node comes close to running out of its current chain, it generates a new chain, and uses
the MW-chain element from its old chain to form a one-time signature on the anchor of the newly
generated chain. It then distributes this new anchor by piggybacking it on several updates around
the time the old chain expires. Figure 8.6 shows the use of a skipchain element in a hash chain

110 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

PSfrag replacements
Old Tree

New Root

MW-Chain Element

Signs

Figure 8.7: Bootstrapping a new tree-authenticated one-way chain. The new root is signed using the
MW-chain element embedded in the old tree.

Figure 8.8: The Big Picture. Each leaf (except the bottom leaf) of the hash tree is identical to the top
leaf, but the structure is omitted for clarity.

for authenticating a new hash chain anchor, and Figure 8.7 shows the use of a skipchain element
in a tree-authenticated one-way chain for authenticating a new tree-authenticated one-way chain
root.

This approach can be extended in several ways: each chain could contain several MW-chain
elements to allow nodes to more easily reenter the network should they miss an entire chain of
another node. Furthermore, a node may choose to piggyback a newly authenticated anchor often,
when it first switches to the new chain, and progressively less often as the node consumes that
chain. For example, the node may distribute the authentication information whenever the chain
element used is a power of 2 from the anchor; this approach reduces overhead while still allowing
nodes to rejoin the network after an extended time away.

8.2.8. Combining Our Primitives

Two of our primitives (hash tree chains described in Section 8.2.2 and tree-authenticated one-way
chains in Section 8.2.3) protect against specific attacks (namely, same-metric fraud and the rushing
attack); in addition, we provide skipchains (Section 8.2.4) for more efficient traversal of long hash
chains. In order to prevent both of the above attacks, we can combine our approaches as shown in
Figure 8.8. At the highest level, shown on the right side of the figure, we use a tree-authenticated
one-way chain, which is a Merkle tree. The root of this Merkle tree is bootstrapped on each node.
Each leaf in the Merkle tree is the anchor of another chain, with each leaf representing a single
sequence number. In this case, the chains are skipchains built on top of hash tree chains; the chains

8.3. A MECHANISM FOR SECURING PATH-VECTOR PROTOCOLS 111

PSfrag replacements

A B C D E T

ha = MACTA(0||p)
hb = MACTB(ha||p)

hc = MACTC(hb||p)
hd = MACTD(hc||p)

he = MACTE(hd||p)

Figure 8.9: Cumulative authentication of packet p to a target T

could also be implemented as hash tree chains, or, if same-metric fraud is not a concern, as hash
chains. Finally, at the bottom of the figure is an MW-chain element, which is later used for authen-
ticating the root of the next tree-authenticated one-way chain.

8.3. A Mechanism for Securing Path-Vector Protocols

8.3.1. Overview of Path Vector Routing

Path vector protocols are similar to distance vector protocols, except that in place of the metric,
each routing update includes a list of routers (or, in the case of BGP, a list of Autonomous Systems)
on the route. By default, a path vector protocol will choose a route with the shortest recorded path;
policies may also specify specific routers to prefer or to avoid. As a result, a node may wish to
authenticate each hop that the routing update has traversed as recorded in the path, and to assure
that no hops were removed from that recorded path.

A traditional way to perform this authentication is to have each node insert an authenticator
in the packet, and to have the recipient individually verify each authenticator when the packet is
received. This approach requires the network overhead of carrying a message authentication code
(MAC) for each node in the path. In this section, we present a cumulative authentication mechanism
that has the property that the message can be authenticated with only a single MAC, together with
an ordered list of nodes traversed by the packet.

8.3.2. Cumulative Authentication

First, we describe the cumulative authentication mechanism in the case in which private keys are
shared between the authenticating node and each node on the path. Each packet authenticated in
this way maintains a path authenticator and an address list. When the packet traverses a node, the
node appends its address to the address list. It authenticates its position in the list by replacing
the path authenticator with a MAC computed over the received path authenticator and the packet’s
immutable fields.

When the packet reaches the receiver, if the path authenticator was originally initialized to a
well known value (such as 0), then the receiver can reconstruct an expected final path authenticator
value, given the address list. If the reconstructed value matches the received value, then the packet
is deemed to be authentic and to have in fact traversed each node in the address list.

Figure 8.9 shows an example of cumulative authentication for a packet p. In addition to updating
the path authenticator, each node also appends its own address to address list in the packet. If each
node authenticates the packet using a shared MAC with T, then T can verify the path the packet
traversed by verifying the received path authenticator he by checking that

he = MACTE(MACTD(MACTC(MACTB(MACTA(0 || p)
|| p) || p) || p) || p) .

112 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

Cumulative authentication also resists the removal of previous nodes from the address list. For
example, in Figure 8.9, if an attacker C wishes to remove B from the address list, it must obtain ha

to derive a valid hc = MACTC(ha||p). Since inverting B’s MAC is infeasible, an attacker generally
must have the cooperation of the node immediately before the node to be removed. This mechanism
does not prevent the second node from removing the first node, but since the first node is the source
node, this is equivalent to the second node dropping the original packet and originating a packet of
the same type to the destination.

Instead of using private, shared keys for authentication, it is also possible to use our cumulative
authentication mechanism in the case in which the TESLA broadcast authentication protocol [145,
146] is used for authentication; the authentication can be performed either by the sender of the
packet to be authenticated or by each recipient. To perform the authentication at each recipient, as
may be desirable with a proactive routing protocol, such as BGP, each node along the path verifies
the TESLA “security condition” (that the TESLA keys have not yet been released) and updates a
address list and path authenticator as described above using its current TESLA key. The node then
buffers the packet for verification. Later, the sender transmits the key, required for the verification
of its authentication, to each node to which the sender transmitted the original routing packet. Each
node receiving such an authentication packet verifies the authentication information. After the node
performs that authentication, it appends its previous TESLA key to the authentication packet and
transmits the new authentication packet to each neighbor to which it sent the original routing packet.

In an on-demand protocol, such as Ariadne (Chapter 7) an initiator floods a route request packet
when it needs a route to a destination; the initiator may then wish to perform the authentication. In
this case, each node along the path updates a address list and path authenticator as described above.
When the packet reaches the destination, the destination verifies the TESLA security condition.
Alternatively, the destination can include a timestamp, and allow the source to verify the security
condition. The destination then adds an authenticator to the path authenticator and address list (and
possibly the timestamp), and sends the packet along the reverse of the route along which it came.
Each node receiving such a packet includes in the packet a key that allows the original authenticator
to be reconstructed. If the end-to-end authentication is also performed using TESLA, the TESLA
key used by the destination for authenticating the path authenticator, address list, and timestamp
must be sent to the original sender.

8.3.3. Performance Evaluation

To evaluate the performance of cumulative authentication, we examined the overhead reduction re-
sulting from using cumulative authentication together with Ariadne (Chapter 7) We performed 140
simulations, each running over 900 simulated seconds, and examined the number of bytes of over-
head transmitted within control packets. When Ariadne was run without cumulative authentication,
the total overhead across 50 nodes and 126000 simulated seconds was 1997 megabytes, whereas
with cumulative authentication the same total overhead was 1491 megabytes. This result represents
a 25% reduction in routing overhead.

8.4. Chapter Summary

In this chapter, we have presented four new mechanisms as building blocks for creating secure
distance vector and path vector routing protocols. These mechanisms not only protect the routing
protocol against standard routing attacks, they are based on highly efficient symmetric cryptographic
techniques; our mechanisms thus also help to protect the routing protocol against denial of service

8.4. CHAPTER SUMMARY 113

attacks based for example on simply by flooding large numbers of randomly generated, forged rout-
ing messages, which then must be authenticated and rejected by the routers.

For securing distance vector protocols, our hash tree chain mechanism forces a router to increase
the distance (metric) when forwarding a routing table entry. To provide authentication of a received
routing update in bounded time, we presented a new mechanism, similar to hash chains, that we call
tree-authenticated one-way chains. For cases in which the maximum metric is large, we presented
skipchains, which provide more efficient initial computation cost and more efficient element ver-
ification; this mechanism is based on a new cryptographic mechanism, called MW-chains, which
we also presented. For securing path vector protocols, our cumulative authentication mechanism
authenticates the list of routers on the path in a routing update, preventing removal or reordering of
the router addresses in the list; this mechanism uses using only a single authenticator in the routing
update rather than one per router address.

As our economy and critical infrastructure increasingly rely on the Internet, securing routing
protocols becomes of critical importance. The routing security mechanisms we have described can
be applied to conventional routing protocols such as those in use in the Internet today, as well as
to specialized routing protocols designed for new environments such as multihop wireless ad hoc
networking. Our mechanisms provide a foundation on which efficient secure routing protocols can
be designed, and we leave the development of such protocols to future work.

114 CHAPTER 8. EFFICIENT MECHANISMS FOR SECURING ROUTING PROTOCOLS

Chapter 9

Packet Leashes: A Defense against
Wormhole Attacks

The promise of mobile ad hoc networks to solve challenging real-world problems continues to
attract attention from industrial and academic research projects. Applications are emerging and
widespread adoption is on the horizon. Most previous ad hoc networking research has focused on
problems such as routing and communication, assuming a trusted environment. However, many ap-
plications run in untrusted environments and require secure communication and routing. Applications
that may require secure communications include emergency response operations, military or police
networks, and safety-critical business operations such as oil drilling platforms or mining operations.
For example, in emergency response operations such as after a natural disaster like a flood, tornado,
hurricane, or earthquake, ad hoc networks could be used for real-time safety feedback; regular com-
munication networks may be damaged, so emergency rescue teams might rely upon ad hoc networks
for communication.

Ad hoc networks generally use a wireless radio communication channel. The main advantages
of such networks are rapid deployment and low cost of operation, since the nodes and wireless hard-
ware are inexpensive and readily available, and since the network is automatically self-configuring
and self-maintaining. However, wireless networks are vulnerable to several attacks. In most wire-
less networks, an attacker can easily inject bogus packets, impersonating another sender. We refer
to this attack as a spoofing attack. An attacker can also easily eavesdrop on communication, record
packets, and replay the (potentially altered) packets.

In this paper, we define a particularly challenging attack to defend against, which we call a
wormhole attack, and we present a new, general mechanism for detecting and thus defending against
wormhole attacks. In this attack, an attacker records a packet, or individual bits from a packet,
at one location in the network, tunnels the packet (possibly selectively) to another location, and
replays it there. The wormhole attack can form a serious threat in wireless networks, especially
against many ad hoc network routing protocols and location-based wireless security systems. The
wormhole places the attacker in a very powerful position, able for example to further exploit any of
the attacks mentioned above, allowing the attacker to gain unauthorized access, disrupt routing, or
perform a Denial-of-Service (DoS) attack. We introduce the general mechanism of packet leashes
to detect wormhole attacks, and we present two types of leashes: geographic leashes and temporal
leashes. Finally, we design an efficient authentication protocol, called TIK, for use with temporal
leashes. We focus our discussion in this paper on wireless ad hoc networks, but our results are
applicable more broadly to other types of networks, such as wireless LANs and cellular networks.

115

116 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

9.1. Problem Statement

In a wormhole attack, an attacker receives packets at one point in the network, “tunnels” them to
another point in the network, and then replays them into the network from that point. For tunneled
distances longer than the normal wireless transmission range of a single hop, it is simple for the
attacker to make the tunneled packet arrive sooner than other packets transmitted over a normal
multihop route, for example through use of a single long-range directional wireless link or through
a direct wired link to a colluding attacker. It is also possible for the attacker to forward each bit over
the wormhole directly, without waiting for an entire packet to be received before beginning to tunnel
the bits of the packet, in order to minimize delay introduced by the wormhole. Due to the nature of
wireless transmission, the attacker can create a wormhole even for packets not addressed to itself,
since it can overhear them in wireless transmission and tunnel them to the colluding attacker at the
opposite end of the wormhole.

If the attacker performs this tunneling honestly and reliably, no harm is done; the attacker actu-
ally provides a useful service in connecting the network more efficiently. However, the wormhole
puts the attacker in a very powerful position relative to other nodes in the network, and the attacker
could exploit this position in a variety of ways. The attack can also still be performed even if the
network communication provides confidentiality and authenticity, and even if the attacker has no
cryptographic keys. Furthermore, the attacker is invisible at higher layers; unlike a malicious node
in a routing protocol, which can often easily be named, the presence of the wormhole and the two
colluding attackers at either endpoint of the wormhole are not visible in the route. As such, the
effect of the wormhole on legitimate nodes may even change as nodes move; two legitimate nodes
previously connected only by routes through the wormhole and thus possibly unable to communi-
cate, will be able to communicate normally if they come within direct wireless transmission range
of each other.

The wormhole attack is particularly dangerous against many ad hoc network routing protocols
in which the nodes that hear a packet transmission directly from some node consider themselves to
be in range of (and thus a neighbor of) that node. For example, when used against an on-demand
routing protocol such as DSR [89] or AODV [141], a powerful application of the wormhole attack
can be mounted by tunneling each ROUTE REQUEST packet directly to the destination target node
of the REQUEST. When the destination node’s neighbors hear this REQUEST packet, they will fol-
low normal routing protocol processing to rebroadcast that copy of the REQUEST and then discard
without processing all other received ROUTE REQUEST packets originating from this same Route
Discovery. This attack thus prevents any routes other than through the wormhole from being dis-
covered, and if the attacker is near the initiator of the Route Discovery, this attack can even prevent
routes more than two hops long from being discovered. Possible ways for the attacker to then ex-
ploit the wormhole include discarding rather than forwarding all data packets, thereby creating a
permanent Denial-of-Service attack (no other route to the destination can be discovered as long as
the attacker maintains the wormhole for ROUTE REQUEST packets), or selectively discarding or
modifying certain data packets.

The neighbor discovery mechanisms of periodic (proactive) routing protocols such as DSDV [140],
OLSR [154], and TBRPF [13] rely heavily on the reception of broadcast packets as a means for
neighbor detection, and are also extremely vulnerable to this attack. For example, OLSR and
TBRPF use HELLO packets for neighbor detection, so if an attacker tunnels through a wormhole to
a colluding attacker near node B all HELLO packets transmitted by node A, and likewise tunnels
back to the first attacker all HELLO packets transmitted by B, then A and B will believe that they are
neighbors, which would cause the routing protocol to fail to find routes when they are not actually
neighbors.

9.2. ASSUMPTIONS AND NOTATION 117

For DSDV, if each routing advertisement sent by node A or node B were tunneled through a
wormhole between colluding attackers near these nodes, as described above, then A and B would
believe that they were neighbors. If A and B, however, were not within wireless transmission range
of each other, they would be unable to communicate. Furthermore, if the best existing route from
A to B were at least 2n + 2 hops long, then any node within n hops of A would be unable to
communicate with B, and any node within n hops of B would be unable to communicate with A.
Otherwise, suppose C were within n hops of A, but had a valid route to B. Since A advertises a
metric of 1 route to B, C would hear a metric n + 1 route to B. C will use that route if it is not
within n + 1 hops of B, in which case there would be an n-hop route from A to C , and a route of
length n + 1 from C to B, contradicting the premise that the best real route from A to B is at least
2n + 2 hops long.

The wormhole attack is also dangerous in other types of wireless networks and applications.
One example is any wireless access control system that is based on physical proximity, such as
wireless car keys, or proximity and token based access control systems for PCs [39, 98]. In such
systems, an attacker could relay the authentication exchanges to gain unauthorized access.

One partial approach for preventing wormhole attacks might be to use a secret method for mod-
ulating bits over wireless transmissions; once a node is compromised, however, this approach is
likely to fail unless the radio is kept inside tamper-resistant hardware. Another approach, known
as RF watermarking, authenticates a wireless transmission by modulating the RF waveform in a
way known only to authorized nodes [43]. RF watermarking relies on keeping secret the knowledge
of which RF waveform parameters are being modulated; furthermore, if that waveform is exactly
captured at the receiving end of the wormhole and exactly replicated at the transmitting end of the
wormhole, the signal level of the resulting watermark is independent of the distance it was tunneled.
As a result, the watermark may still be intact, even though the packet was made to travel beyond the
normal wireless transmission range. Although intrusion detection could be used in some cases to de-
tect a wormhole attacker, it is generally difficult to isolate the attacker in a software-only approach,
since the packets sent by the wormhole are identical to the packets sent by legitimate nodes. In
contrast to these approaches, the approach we present in this paper, called packet leashes, and the
specific protocol we present, called TIK, provide a general solution that does not suffer from these
problems.

9.2. Assumptions and Notation

The acronym “MAC” may in general stand for “Medium Access Control” protocol or “Message
Authentication Code.” To avoid confusion, we use “MAC” in this paper to refer to the network
Medium Access Control protocol at the link layer, and we use “HMAC” to refer to a message au-
thentication code used for authentication (HMAC is a particular instance of a message authentication
code [11]).

For reasons such as differences in wireless interference, transmit power, or antenna operation,
links between nodes in a wireless network may at times successfully work in only one direction;
such a unidirectional wireless link between between two nodes A and B might allow A to send
packets to B but not for B to send packets to A. In many cases, however, wireless links are able
to operate as bidirectional links. A MAC protocol generally is designed to support operation over
unidirectional links or is designed only for bidirectional links; the introduction of our TIK protocol
does not affect the capability of the MAC protocol to operate over unidirectional links.

Security attacks on the wireless network’s physical layer are beyond the scope of this paper.
Spread spectrum has been studied as a mechanism for securing the physical layer against jam-
ming [149]. Denial-of-Service (DoS) attacks against MAC layer protocols are also beyond the

118 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

scope of the paper; MAC layer protocols that do not employ some form of carrier sense, such as
pure ALOHA and Slotted ALOHA [1], are less vulnerable to DoS attacks, although they tend to use
the channel less efficiently.

We assume that the wireless network may drop, corrupt, duplicate, or reorder packets. We also
assume that the MAC layer contains some level of redundancy to detect randomly corrupted packets;
however, this mechanism is not designed to replace cryptographic authentication mechanisms.

We assume that nodes in the network may be resource constrained. Thus, in providing for
wormhole detection, we use efficient symmetric cryptography, rather than relying on expensive
asymmetric cryptographic operations. Especially on CPU-limited devices, symmetric cryptographic
operations (such as block ciphers and hash functions) are three to four orders of magnitude faster
than asymmetric cryptographic operations (such as digital signatures).

We assume that a node can obtain an authenticated key for any other node. Like public keys
in systems using asymmetric cryptography, these keys in our protocol TIK (Section 9.4) are pub-
lic values (once disclosed), although TIK uses only symmetric (not asymmetric) cryptography. A
traditional approach to this authenticated key distribution problem is to build on a public key sys-
tem for key distribution; a trusted entity can sign public-key certificates for each node, and the
nodes can then use their public-key to sign a new (symmetric) key being distributed for use in
TIK. Zhou and Haas [192] propose such a public key infrastructure; Hubaux, Buttyán, and Čapkun
bootstrap trust relationships from PGP-like certificates without relying on a trusted public key in-
frastructure [82]; Kong et al [101] propose asymmetric mechanisms for threshold signatures for
certificates. Alternatively, a trusted node can securely distribute an authenticated TIK key using
only symmetric-key cryptography [148] or non-cryptographic approaches [178].

9.3. Detecting Wormhole Attacks

In this section, we introduce the notion of a packet leash as a general mechanism for detecting
and thus defending against wormhole attacks. A leash is any information that is added to a packet
designed to restrict the packet’s maximum allowed transmission distance. We distinguish between
geographical leashes and temporal leashes. A geographical leash ensures that the recipient of the
packet is within a certain distance from the sender. A temporal leash ensures that the packet has an
upper bound on its lifetime, which restricts the maximum travel distance, since the packet can travel
at most at the speed of light. Either type of leash can prevent the wormhole attack, because it allows
the receiver of a packet to detect if the packet traveled further than the leash allows.

9.3.1. Geographical Leashes

To construct a geographical leash, in general, each node must know its own location, and all nodes
must have loosely synchronized clocks. When sending a packet, the sending node includes in the
packet its own location, ps, and the time at which it sent the packet, ts; when receiving a packet,
the receiving node compares these values to its own location, pr, and the time at which it received
the packet, tr. If the clocks of the sender and receiver are synchronized to within ±∆, and ν is
an upper bound on the velocity of any node, then the receiver can compute an upper bound on the
distance between the sender and itself, dsr. Specifically, based on the timestamp ts in the packet, the
local receive time tr, the maximum relative error in location information δ, and the locations of the
receiver pr and the sender ps, then dsr can be bounded by dsr ≤ ||ps−pr||+2ν · (tr− ts +∆)+ δ.
A regular digital signature scheme, e.g., RSA [163], or other authentication technique, can be used
to allow a receiver to authenticate the location and timestamp in the received packet.

9.3. DETECTING WORMHOLE ATTACKS 119

In certain circumstances, bounding the distance between the sender and receiver, dsr, cannot
prevent wormhole attacks; for example, when obstacles prevent communication between two nodes
that would otherwise be in transmission range, a distance-based scheme would still allow worm-
holes between the sender and receiver. A network that uses location information to create a geo-
graphical leash could control even these kinds of wormholes. To accomplish this, each node would
have a radio propagation model. A receiver could verify that every possible location of the sender
(a δ + ν(tr − ts + 2∆) radius around ps) can reach every possible location of the receiver (a
δ + ν(tr − ts + 2∆) radius around pr).

9.3.2. Temporal Leashes

To construct a temporal leash, in general, all nodes must have tightly synchronized clocks, such that
maximum difference between any two nodes’ clocks is ∆. The value of the parameter ∆ must be
known by all nodes in the network, and for temporal leashes, generally must be on the order of a few
microseconds or even hundreds of nanoseconds. This level of time synchronization can be achieved
now with off-the-shelf hardware based on LORAN-C [126], WWVB [127], or GPS [35, 183];
although such hardware is not currently a common part of wireless network nodes, it can be de-
ployed in networks today and is expected to become more widely utilized in future systems at
reduced expense, size, weight, and power consumption. In addition, the time synchronization sig-
nal itself in such systems may be subject to certain attacks [17, 54]. Esoteric hardware such as
cesium-beam clocks, rubidium clocks, and hydrogen maser clocks, could also be used in special
applications today to provide sufficiently accurate time synchronization for months. Although our
general requirement for time synchronization is indeed a restriction on the applicability of temporal
leashes, for applications that require defense against the wormhole attack, this requirement is justi-
fied due to the seriousness of the attack and its potential disruption of the intended functioning of
the network.

To use temporal leashes, when sending a packet, the sending node includes in the packet the
time at which it sent the packet, ts; when receiving a packet, the receiving node compares this value
to the time at which it received the packet, tr. The receiver is thus able to detect if the packet
traveled too far, based on the claimed transmission time and the speed of light. Alternatively, a
temporal leash can be constructed by instead including in the packet an expiration time, after which
the receiver should not accept the packet; based on the allowed maximum transmission distance and
the speed of light, the sender sets this expiration time in the packet as an offset from the time at
which it sends the packet. As with a geographical leash, a regular digital signature scheme or other
authentication technique can be used to allow a receiver to authenticate a timestamp or expiration
time in the received packet.

9.3.3. Discussion

An advantage of geographical leashes over temporal leashes is that the time synchronization can
be much looser. Another advantage of using geographical leashes in conjunction with a signature
scheme (i.e., a signature providing non-repudiation), is that an attacker can be caught if it pre-
tends to reside at multiple locations. This use of non-repudiation was also proposed by Sirois and
Kent [174]. When a legitimate node overhears the attacker claiming to be in different locations that
would only be possible if the attacker could travel at a velocity above the maximum node velocity ν,
the legitimate node can use the signed locations to convince other legitimate nodes that the attacker
is malicious.

We define δ′(t) to be a bound on the maximum relative position error when any node determines
its own location twice within a period of time t. By definition, δ ′(t) ≤ 2δ. In addition, when t is

120 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

small, δ′(t) should be small, since the algorithm a node uses to determine its location should be
aware of physical speed limits of that node. If some node claims to be at locations p1 and p2 at
times t1 and t2, respectively, that node is an attacker if ||p2−p1||−δ′(|t2−t1|)

|t2−t1|
> ν. A legitimate node

detecting this from these two packets can also broadcast the two packets to convince other nodes that
the first node is indeed an attacker. Each node hearing these messages can check the two signatures,
verify the discrepancy in the information, and rebroadcast the information if it has not previously
done so. To easily perform duplicate suppression in rebroadcasting this information, each node
can maintain a blacklist, with each entry in the blacklist containing a node address and the time at
which that blacklist entry expires. When a node receives a message showing an attacker’s behavior,
it checks if that attacker is already listed in its blacklist. If so, it updates the expiration time on its
current blacklist entry and discards the new message; otherwise, it adds a new blacklist entry and
propagates the message.

A potential problem with leashes using a timestamp in the packet is that in a contention-based
MAC protocol, the sender may not know the precise time at which it will transmit a packet it is send-
ing. For example, a sender using the IEEE 802.11 MAC protocol may not know the time a packet
will be transmitted until approximately one slot time (20 µs) prior to transmission. Generating
an inefficient digital signature, such as RSA with a 1024-bit key, could take three orders of mag-
nitude more time than this slot time (on the order of 10 ms). The sender, however, can use two
approaches to hide this signature generation latency: either increase the minimum transmission unit
to allow computation to overlap with transmission, or use a more efficient signature scheme, such
as Schnorr’s signature [171], which enables efficient signature generation after pre-processing.

9.4. Temporal Leashes and the TIK Protocol

In this section, we discuss temporal leashes in more detail and present the design and operation of
our TIK protocol that implements temporal leashes.

9.4.1. Temporal Leash Construction Details

We now discuss temporal leashes that are implemented with a packet expiration time. We consider
a sender who wants to send a packet with a temporal leash, preventing the packet from traveling
further than distance L. (All nodes are time synchronized up to a maximum time synchronization
error ∆.) Thus, L > Lmin = ∆ · c, where c is the propagation speed of our wireless signal (i.e., the
speed of light in air, which is very close to the speed of light in a vacuum). When the sender sends
the packet at local time ts, it needs to set the packet expiration time to te = ts + L/c −∆. When
the receiver receives the packet at local time tr, it further processes the packet if the temporal leash
has not expired (i.e., tr < te); otherwise it drops the packet. This assumes that the packet sending
and receiving delay are negligible, such that the sender can predict the precise sending time ts and
the receiver can immediately record tr when the first bit arrives (or derive tr during reception since
the bitrate of transmission is known).

The receiver needs a way to authenticate the expiration time te, as otherwise an attacker could
easily change that time and wormhole the packet as far as it desires.

In unicast communication, (point-to-point) nodes can use message authentication codes for au-
thentication: the sender S and receiver R must share a secret key K , which they use in conjunction
with a message authentication code function (for example HMAC [11]) to authenticate messages
they exchange. To send a message M to a receiver R, the sender S sends

S → R : 〈M, MACK(M)〉 ,

9.4. TEMPORAL LEASHES AND THE TIK PROTOCOL 121

where the notation MACK(M) represents the message authentication code computed over message M
with key K . The packet sent from S to R contains both the intended message M and MACK(M).
When R receives this message, it can verify the authenticity of the message by comparing the re-
ceived HMAC value to the HMAC value that it computes for itself over the received message with
the secret key K it shares with the sender S.

However, using message authentication codes in the standard way has two major drawbacks.
First, in a network with n nodes, we would need to set up n(n−1)

2 keys, one for each pair of nodes.
Key setup is an expensive operation, which makes this approach impractical in large networks.
Second, this approach cannot efficiently authenticate broadcast packets. To secure a broadcast
packet, the sender would need to add to the packet a separate message authentication code for each
receiver, making the packet extremely large (and likely exceeding the network’s maximum packet
size). The need to include separate message authentication codes in the packet could be avoided by
having multiple receivers share the same key, but this might allow a subset of colluding receivers to
impersonate the sender [29].

Instead, attaching a digital signature to each packet could be used to solve the two problems
discussed above: each node needs to have only one public-private key pair, and each node needs to
know only the public key of every other node. Thus, only n public keys need to be distributed in a
network with n nodes. Furthermore, a digital signature provides non-repudiation and authentication
for broadcast packets in the same way as for unicast packets.

However, digital signatures have several drawbacks. First, digital signatures are usually based
on computationally expensive asymmetric cryptography. For example, the popular 1024-bit RSA
digital signature algorithm [163], roughly equivalent to use of a 72-bit key in a symmetric encryption
algorithm [106], requires about 10 ms on an 800 MHz Pentium III processor for signature genera-
tion. Signature verification is more efficient, but still requires about 0.5 ms on a fast workstation.
Adding a digital signature to each packet is computationally expensive for the verifier (receiver), but
overwhelmingly expensive for the signer (sender). On less powerful CPUs, each digital signature
generation and verification takes on the order of seconds [27].

Since many wireless applications rely heavily on broadcast communication, and since setting
up O(n2) keys is expensive, we design the TIK protocol in Section 9.4.2, based on a new protocol
for efficient broadcast authentication that simultaneously provides the functionality of a temporal
leash.

9.4.2. TIK Protocol Description

Our TIK protocol implements temporal leashes and provides efficient instant authentication for
broadcast communication in wireless networks. TIK stands for TESLA with Instant Key disclosure,
and is an extension of the TESLA broadcast authentication protocol [147]. We contribute the novel
observation that a receiver can verify the TESLA security condition (that the corresponding key has
not yet been disclosed) as it receives the packet (explained below); this fact allows the sender to
disclose the key in the same packet, thus motivating the protocol name “TESLA with Instant Key
disclosure.”

TIK implements a temporal leash and thus enables the receiver to detect a wormhole attack.
TIK is based on efficient symmetric cryptographic primitives (a message authentication code is a
symmetric cryptographic primitive). TIK requires accurate time synchronization between all com-
municating parties, and requires each communicating node to know just one public value for each
sender node, thus enabling scalable key distribution.

We now describe the different stages of the TIK protocol in detail: sender setup, receiver boot-
strapping, and sending and verifying authenticated packets.

122 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

Sender Setup

The sender uses a pseudo-random function (PRF [58]) F and a secret master key X to derive a
series of keys K0,K1, . . . ,Kw, where Ki = FX (i). The main advantage of this method of key
generation is that the sender can efficiently access the keys in any order. Assuming the PRF is
secure, it is computationally intractable for an attacker to find the master secret key X , even if
all keys K0,K1, . . . ,Kw−1 are known. Without the secret master key X , it is computationally
intractable for an attacker to derive a key Ki that the sender has not yet disclosed. To construct the
PRF function F , we can use a pseudo-random permutation, i.e., a block cipher [59], or a message
authentication code, such as HMAC [11].

The sender selects a key expiration interval I , and thus determines a schedule with which each
of its keys will expire. Specifically, key K0 expires at time T0, key K1 expires at time T1 = T0 + I ,
. . . , key Ki expires at time Ti = Ti−1 + I = T0 + i · I .

The sender constructs the Merkle hash tree we describe in Section 5.1.2 to commit to the keys
K0,K1, . . . ,Kw−1. The root of the resulting hash tree is m0,w−1, or simply m. The value m com-
mits to all keys and is used to authenticate any leaf key efficiently. As we describe in Section 5.1.2,
in a hash tree with log2(w) levels, verification requires only log2 w hash function computations (in
the worst case, not considering buffering), and the authentication information consists of log2 w

values.

Receiver Bootstrapping

We assume that all nodes have synchronized clocks with a maximum clock synchronization error
of ∆. We further assume that each receiver knows every sender’s hash tree root m, and the associ-
ated parameters T0 and I . This information is sufficient for the receiver to authenticate any packets
from the sender.

Sending and Verifying Authenticated Packets

To achieve secure broadcast authentication, it must not be possible for a receiver to forge authenti-
cation information for a packet. When the sender sends a packet P , it estimates an upper bound tr

on the arrival time of the HMAC at the receiver. Based on this arrival time, the sender picks a key
Ki that will not have expired when the receiver receives the packet’s HMAC (Ti > tr + ∆). The
sender attaches the HMAC to the packet, computed using key Ki, and later discloses the key Ki

itself, along with the corresponding tree authentication values (as discussed in Section 5.1.2), after
the key has expired.

Because of the time synchronization, the receiver can verify after receiving the packet that the
key Ki used to compute the authentication has not yet been disclosed, since the receiver knows
the expiration time for each key and the sender only discloses the key after it expires; thus, no at-
tacker can know Ki, and therefore if the packet authentication verifies correctly once the receiver
later receives the authentic key Ki, the packet must have originated from the claimed sender. Even
another receiver could not have forged a new message with a correct message authentication code,
since only the sender knew the key Ki at the time tr that the receiver received the packet. After the
key Ki expires at time Ti, the sender then discloses key Ki (and the corresponding tree authentica-
tion values); once the receiver gets the authentic key Ki, it can authenticate all packets that carry
a message authentication code computed with Ki. This use of delayed key disclosure and time
synchronization for secure broadcast authentication was also used by the TESLA protocol [147].

9.4. TEMPORAL LEASHES AND THE TIK PROTOCOL 123

PSfrag replacements

Ki

Ki

M

M

T

T

HMAC

HMAC

ts

≤ (ts + τ + ∆) ≤ (Ti −∆)

Ti

Sender

Receiver

Time at Sender

Time at Receiver

Figure 9.1: Timing of a packet in transmission using TIK

The above protocol has the drawback that message authentication is delayed; the receiver must
wait for the key before it can authenticate the packet. We observe that we can remove the authenti-
cation delay in an environment in which the nodes are tightly time synchronized. In fact, the sender
can even disclose the key in the same packet that carries the corresponding message authentication
code.

Figure 9.1 shows the sending and receiving of a TIK packet. The figure shows the sender’s and
receiver’s timelines, which may differ by a value of up to the maximum time synchronization er-
ror ∆. The time ts here is the time at which the sender S begins transmission of the packet, and time
Ti is the disclosure time for key Ki. The packet contains four parts: a message authentication code
(shown as HMAC in Figure 9.1), a message payload (shown as M), the tree authentication values
necessary to authenticate Ki (shown as T), and the key used to generate the message authentication
code (shown as Ki). The TIK packet is transmitted by S as

S → R : 〈MACKi
(M),M, T,Ki〉 ,

where the destination R may be unicast or broadcast. After the receiver R receives the HMAC
value, it verifies that the sender did not yet start sending the corresponding key Ki, based on the
time Ti and the synchronized clocks. If the sender did not yet start sending Ki, the receiver verifies
that the key Ki at the end of the packet is authentic (using the hash tree root m and the hash tree
values T), and then uses Ki to verify the HMAC value in the packet. If all these verifications are
successful, the receiver accepts the packet as authentic.

The TIK protocol already provides protection against the wormhole attack, since an attacker
who retransmits the packet will most likely delay it long enough that the receiver will reject the
packet because the corresponding key has already expired and the sender may have disclosed it.
However, we can also add an explicit expiration timestamp to each packet for the temporal leash,
and use TIK as the authentication protocol. For example, each packet could include a 64-bit times-
tamp with nanosecond resolution, allowing over 580 years of use starting from the epoch. Since the
entire packet is authenticated, the timestamp is authenticated.

A policy could be set allowing the reception of packets for which the perceived transmission
delay, i.g., the arrival time minus the sending timestamp, is less than some threshold. That threshold
could be chosen anywhere between τ−∆ and τ+∆, where the more conservative approach of τ−∆

124 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

never allows tunnels but rejects some valid packets, and the more liberal approach of τ + ∆ never
rejects valid packets, but may allow tunneling of up to 2c∆ past the actual normal transmission
range.

With a GPS-disciplined clock [183], time synchronization to within ∆ = 183 ns with probabil-
ity 1−10−10 is possible. If a transmitter has a 250 m range, the τ −∆ threshold accepts all packets
sent less than 140 m and some packets sent between 140 and 250 m; the τ + ∆ threshold accepts
all packets sent less than 250 m but allows tunneling of packets up to 110 m beyond that distance.

9.4.3. MAC Layer Considerations

A TDMA MAC protocol may be able to choose the time at which a frame begins transmission,
so that the message authentication code is sent by time Ti − r

c
− 2∆. In this case, the minimum

payload length is r
c

+ 2∆ times the bit rate of transmission. For additional efficiency, different
nodes should have different key disclosure times, and the MAC layer should provide each node
with the MAC layer time slot it needs for authenticated delivery.

As mentioned in Section 9.4.2, a CSMA MAC protocol may not be able to control that time
at which a frame is sent relative to the key disclosure times. In this case, the minimum payload
length needs to be chosen so that a key disclosure time is guaranteed to occur somewhere during
the packet’s transmission. For example, if the network physical layer is capable of a peak data rate
of 100 Mbps and a range of 150 m, and if the key disclosure interval is chosen to be 25 µs and time
synchronization is achieved to within 250 ns, then the minimum packet size must be at least 325
bytes. However, if each value in the hash tree is 80 bits long, and the depth of the tree is 31, then
the minimum payload size is just 15 bytes.

If a MAC protocol uses a Request-to-Send/Clear-to-Send (RTS/CTS) frame handshake, the
minimum packet size can be reduced by carrying the message authentication code inside the RTS
frame. In this case, the frame exchange for transmitting a data packet would be

A→ B : 〈RTS, MACKi
(M)〉

B → A : 〈CTS〉
A→ B : 〈DATA,M, tree values,Ki〉 .

In particular, instead of having a minimum message size of r
c
+ 2∆ + I times the transmission data

rate, where I is the duration of a time interval, the minimum message size is just 2∆ + I − 2t turn
times the data rate, where tturn is the minimum allowed time between receiving a control frame (i.e.,
the RTS or CTS) and returning a corresponding frame (the CTS or DATA frame, respectively).
This minimum message length includes the length of the CTS, DATA header, payload, and hash
tree values.

9.5. Evaluation

9.5.1. TIK Performance

To evaluate the suitability of our work for use in ad hoc networks, we measured computational
power and memory currently available in mobile devices. To measure the number of repeated hashes
that can be computed per second, we optimized the MD5 hash code from ISI [182] to achieve
maximum performance for repeated hashing.

Our optimized version performs 10 million hash function evaluations in 7.544 s on a Pentium III
running at 1 GHz, representing a rate of 1.3 million hashes per second; the same number of hashes
using this implementation on a Compaq iPaq 3870 PocketPC running Linux took 45 s, representing

9.5. EVALUATION 125

a rate of 222,000 hashes per second. Repetitive, simple functions like hashes can also be efficiently
implemented in hardware; Helion Technology [70] claims a 20k gate ASIC core design (a third the
complexity of Bluetooth [5] and less than a third the complexity of IEEE 802.11 [95]) capable of
more than 1.9 million hashes per second and a Xilinx FPGA design using 1650 LUTs capable of
1 million hashes per second. In terms of memory consumption, existing handheld devices, such as
the iPaq 3870, come equipped with 32 MB of Flash and 64 MB of RAM. Modern notebooks can
generally be equipped with hundreds of megabytes of RAM.

A high-end wireless LAN card such as the Proxim Harmony 802.11a [153] has a transmission
range potentially as far as 250 m and data rate as high as 108 Mbps. With time synchronization
provided by a Trimble Thunderbolt GPS-Disciplined Clock [183], the synchronization error can be
as low as 183 ns with probability 1−10−10. If authentic keys are re-established every day, with a
20-byte minimum packet size and an 80-bit message authentication code length, the tree has depth
33, giving a minimum payload length of 350 bytes (a transmisison time of 25.9 µs) and a time
interval of 24.7 µs. Assuming that the node generates each new tree while it is using its current tree,
it requires 8 megabytes of storage and needs to perform fewer than 243,000 operations per second to
maintain and generate trees. To authenticate a received packet, a node needs to perform only 33 hash
functions. To keep up with link-speed, a node needs to verify a packet at most every 25.9 µs, thus
requiring 1,273,000 hashes per second, for a total computational requirement of 1,516,000 hashes
per second. This can be achieved today in hardware, either by placing two MD5 units on a single
FPGA, or with an ASIC. Many laptops today are equiped with at least 1.2 GHz Pentium III CPUs,
which should also be able to perform 1.5 million hash operations per second.

Current commodity wireless LAN products such as commonly used IEEE 802.11b cards [2]
provide a transmission data rate of 11 Mbps and a range of 250 m. Given the same time synchro-
nization, rekeying interval, minimum packet size, and message authentication code length, the tree
has depth 30, giving a minimum payload length of 320 bytes (a transmission time of 232 µs) and
a time interval of 231.5 µs. Assuming that the node generates each new tree while it is using its
current tree, it requires just 2.6 megabytes of storage and needs to perform just 26,500 operations
per second. To authenticate a received packet, a node needs to perform only 30 hash functions.
Since any IP packet authenticated using TIK would take at least 232 µs to transmit in this example,
TIK can authenticate packets at link-speed using just 13,000 hashes per second, for a total of 39,500
hash functions per second, which is well within the capability of an iPaq, with 82.2% of its CPU
time to spare.

In a sensor network such as Hollar et al’s weC mote [92, 187], nodes may only be able to achieve
time synchronization accurate to 1 s, have a 19.6 kbps link speed, and 20 m range. In this case, the
smallest packet that can be authenticated is 4900 bytes; since the weC mote does not have sufficient
memory to store this packet, TIK is unusable in such a resource-scarce system. Furthermore, the
level of time synchronization in this system is such that TIK could not provide a usable wormhole
detection system.

9.5.2. Security Analysis

Packet leashes provide a way for a sender and a receiver to ensure that a wormhole attacker is
not causing the signal to propagate farther than the specified normal transmission distance. When
geographic leashes are used, nodes also detect tunneling across obstacles such as mountains that
are otherwise impenetrable by radio. As with other cryptographic primitives, a malicious receiver
can refuse to check the leash, just like a malicious receiver can refuse to check the authentication
on a packet. This may allow an attacker to tunnel a packet to another attacker without detection;

126 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

however, that second attacker cannot then retransmit the packet as if it were the original sender
without then being detected.

A malicious sender can claim a false timestamp or location, causing a legitimate receiver to have
mistaken beliefs about whether or not the packet was tunneled. When geographic leashes are used
in conjunction with digital signatures, nodes may be able to detect a malicious node and spread
that information to other nodes, as discussed in Section 9.3.3. However, this attack is equivalent
to the malicious sender sharing its keys with the wormhole attacker, allowing the sending side of
the wormhole to place appropriate timestamps or location information on any packets sent by the
malicious sender that are then tunneled by the wormhole attacker.

9.5.3. Comparison Between Geographic and Temporal Leashes

Temporal leashes have the advantage of being highly efficient, especially when used with TIK, as
described in Section 9.4. Geographic leashes, on the other hand, require a more general broadcast
authentication mechanism, which may result in increased computational and network overhead.
Location information also may require more bits to represent, further increasing the network over-
head.

Geographic leashes have the advantage that they can be used in conjunction with a radio prop-
agation model, thus allowing them to detect tunnels through obstacles. Furthermore, geographic
leashes do not require the tight time synchronization that temporal leashes do. In particular, tempo-
ral leashes cannot be used if the maximum range is less than c∆, where c is the speed of light and ∆
is maximum clock synchronization error; geographic leashes can be used until the maximum range
is less than 2ν∆, where ν is the maximum movement speed of any node.

To evaluate the practicality of geographic leashes, we consider a radio of range 300 m, maxi-
mum movement speed of 50 m/s, a relative positioning error of 3 m, and time synchronization error
of 1 ms. Then tr − ts ≤ 2 ms, since the propagation time is at most 1 ms and the time synchroniza-
tion error is at most 1 ms. Then dsr ≤ ||ps − pr|| + 100 m/s · 2 ms + 3 m = ||ps − pr|| + 3.2 m.
Since ||ps − pr|| could be as much as 3 m, the effective transmission range of the network interface
is reduced by at most 6.2 m.

To compare the effectiveness of geographic leashes and temporal leashes, we compare the dis-
tance derived using each approach: dsr ≤ ||ps−pr||+2ν · (tr− ts +∆)+ δ for geographic leashes
and dsr ≤ c · (tr − ts + ∆) for temporal leashes. We use dmax

c
to denote the maximum propagation

time. Then the maximum error is bounded by δ + 2ν(dmax

c
+ 2∆) + δ = 2δ + 4ν∆ + 2ν dmax

c
for

geographic leashes, and by 2c∆ for temporal leashes. Geographic leashes are then more effective
when δ < c∆ − 2ν∆ − ν

c
dmax. In general, ν is much smaller than c. Given sufficient computing

power and network bandwidth, geographic leashes should be used when δ < c∆, and temporal
leashes should be used when δ ≥ c∆.

9.6. Related Work

Radio Frequency (RF) watermarking is another possible approach to providing the security de-
scribed in this paper. Since we are aware of no published specific details, it is difficult to assess
its security. If the radio hardware is kept secret, such as through tamper-resistant modules, some
level of security can be provided against compromised nodes; however, if the radio band in which
communications are taking place is known, then an attacker can attempt to tunnel the entire signal
from one location to another.

It may be possible to modify existing intrusion detection approaches to detect a wormhole at-
tacker; since the packets sent by the wormhole are identical to the packets sent by legitimate nodes,

9.7. CONCLUSIONS 127

such detection would more easily be achieved jointly with hardware able to specify some sort of
direction of arrival information for received packets. To the best of our knowledge, no work has
been published regarding the possibility of using intrusion detection systems specifically to detect
wormhole attackers.

TESLA generally chooses longer time intervals than TIK does, in order to reduce the amount
of computation needed to authenticate a new key. As a result, TESLA is capable of functioning
with much looser time synchronization than is required by TIK. Given a sufficient level of time
synchronization, TIK provides an advantage over hop-by-hop authentication with TESLA, with
respect to latency and packet overhead, but it suffers with respect to byte overhead. In particular,
since TIK key disclosure always occurs in the same packet as the data protected, packets can be
verified instantly; with TESLA, on the other hand, packets must wait, on average 1.5 time intervals,
which is especially significant when packets are authenticated hop-by-hop, as may be required in a
multi-hop ad hoc network routing protocol.

The IEEE 802.11i Task Group is designing modifications to IEEE 802.11 [84] to improve se-
curity. These modifications generally use a single shared key, or, when multiple keys are used, the
keys are used between multiple clients and a single base station. Since base stations are not present
in ad hoc networks, and since a single shared key does not prevent any attacks launched from a
compromised node, these proposals do not sufficiently address authentication for ad hoc network
routing. Furthermore, none of the current proposals within IEEE 802.11i address the wormhole
attack.

Other Medium Access Control protocols also specify privacy and authenticity mechanisms.
These mechanisms typically use one or more shared keys, allowing compromised nodes to forge
packets. Furthermore, to the best of our knowledge, none of these mechanisms protect against
wormhole attacks.

9.7. Conclusions

In this paper, we have introduced the wormhole attack, a powerful attack that can have serious con-
sequences on many proposed ad hoc network routing protocols; the wormhole attack may also be
exploited in other types of networks and applications, such as wireless access control systems based
on physical proximity. To detect and defend against the wormhole attack, we introduced packet
leashes, which may be either geographic or temporal leashes, to restrict the maximum transmission
distance of a packet. Finally, to implement temporal leashes, we presented the design and perfor-
mance analysis of a novel, efficient protocol, called TIK, which also provides instant authentication
of received packets.

TIK requires just n public keys in a network with n nodes, and has relatively modest storage, per
packet size, and computation overheads. In particular, a node needs to perform only between 3 and
6 hash function evaluations per time interval to maintain up-to-date key information for itself, and
roughly 30 hash functions for each received packet. With commodity hardware such as 11 Mbps
wireless links, TIK has computational and memory requirements that are easily satisfiable today;
2.6 megabytes for hash tree storage represents, for example, less than 3% of the standard memory on
an Compaq iPaq 3870 with no external memory cards, and since the StrongARM CPU on the iPaq
is capable of performing 222,000 symmetric cryptographic operations per second, TIK imposes no
more than an 18% load on CPU time, even when flooded with packets at the maximum speed of the
wireless network, and normally uses less CPU load than that in normal operation.

When used in conjunction with precise timestamps and tight clock synchronization, TIK can
prevent wormhole attacks that cause the signal to travel a distance longer than the nominal range of

128 CHAPTER 9. PACKET LEASHES: A DEFENSE AGAINST WORMHOLE ATTACKS

the radio, or any other range that might be specified. Sufficiently tight clock synchronization can be
achieved in a wireless LAN using commercial GPS receivers [183], and wireless MAN technology
could be sufficiently time-synchronized using either GPS or LORAN-C [126] radio signals.

A MAC layer protocol using TIK efficiently protects against replay, spoofing, and wormhole
attacks, and ensures strong freshness. TIK is implementable with current technologies, and does
not require significant additional processing overhead at the MAC layer, since the authentication of
each packet can be performed on the host CPU.

Our geographic leashes are less efficient than temporal leashes, since they require broadcast
authentication, but they can be used in networks where precise time synchronization is not easily
achievable. The dominant factor in the usability of geographic leashes is the ability to accurately
measure location; because node movement is very slow relative to the speed of light, the effects of
reduced time synchronization accuracy are slight.

Chapter 10

Rushing Attacks and Defense

An ad hoc network is a collection of mobile computers (or nodes) that cooperate to forward packets
for each other to extend the limited transmission range of each node’s wireless network interface. A
routing protocol in such a network finds routes between nodes, allowing a packet to be forwarded
through other network nodes towards its destination. In contrast to traditional network routing pro-
tocols, for example for wired networks, ad hoc network routing protocols must adapt more quickly,
since factors such as significant node movement and changing wireless conditions may result in
rapid topology change.

This problem of routing in ad hoc networks is an important one, and has been extensively stud-
ied. This study has resulted in several mature protocols [37, 90, 134, 139]. Ad hoc networks are tar-
geted at environments where communicating nodes are mobile, or where wired network deployment
is not present or not economical. Many of these applications may run in untrusted environments and
may therefore require the use of a secure routing protocol. Furthermore, even when the presence
of an attacker is not forseen, a secure ad hoc network routing protocol can also provide resilience
against misconfigured nodes. In the current Internet, for example, misconfigured routing tables con-
tribute to the majority of routing instabilities [109]. Similarly, a software or hardware failure should
cause only the affected node to fail, and not perturb the stability of routing in the remainder of the
network. Mission or safety-critical networks can use secure ad hoc routing protocols so that config-
uration errors, software bugs, or hardware failures do not disturb routing at other nodes. As a result,
several secure ad hoc network routing protocols have been proposed [31, 78, 79, 136, 148, 170, 190].

In this paper, we present a new attack, the rushing attack, which results in denial-of-service
when used against all previously published ad hoc network routing protocols. Specifically, all previ-
ously published secure on-demand routing protocols are unable to find routes longer than two-hops
when subject to this attack.

Because on-demand protocols generally have lower overhead and faster reaction time than other
types of routing based on periodic (proactive) mechanisms, on-demand protocols are better suited
to many applications of ad hoc networks. To defend this important class of protocols against the
rushing attack, we develop a generic secure Route Discovery component, called Rushing Attack
Prevention (RAP), that can be applied to any existing on-demand routing protocol to allow that
protocol to resist the rushing attack.

Our main contributions in this paper are the presentation of this new attack, the development
and analysis of our new secure Route Discovery component that demonstrates that it is possible
to secure against the rushing attack, and a general design that uses this component to secure any
on-demand Route Discovery mechanism against the rushing attack.

129

130 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

PSfrag replacements

initiator

target

Figure 10.1: Example network illustrating the rushing attack

10.1. The Rushing Attack against Ad Hoc Network Routing Protocols

We introduce here a new attack, which we call the rushing attack, that acts as an effective denial-of-
service attack against all currently proposed on-demand ad hoc network routing protocols, including
protocols that were designed to be secure. In an on-demand protocol, a node needing a route to a
destination floods the network with ROUTE REQUEST packets in an attempt to find a route to the
destination. To limit the overhead of this flood, each node typically forwards only one ROUTE

REQUEST originating from any Route Discovery. In particular, existing on-demand routing proto-
cols, such as AODV [139], DSR [90], LAR [99], Ariadne [79], SAODV [190], ARAN [170], AODV
secured with SUCV [31], and SRP [136], only forward the REQUEST that arrives first from each
Route Discovery. In the rushing attack, the attacker exploits this property of the operation of Route
Discovery.

We now describe the rushing attack in terms of its effect on the operation of DSR Route
Discovery [87, 88, 90]; other protocols such as AODV [141], Ariadne [79], SAODV [190], and
ARAN [170] are vulnerable in the same way. In the network shown in Figure 10.1, the initiator
node initiates a Route Discovery for the target node. If the ROUTE REQUESTs for this Discovery
forwarded by the attacker are the first to reach each neighbor of the target (shown in gray in the fig-
ure), then any route discovered by this Route Discovery will include a hop through the attacker. That
is, when a neighbor receives the rushed REQUEST from the attacker, it forwards that REQUEST, and
will not forward any further REQUESTs from this Route Discovery. When non-attacking REQUESTs
arrive later at these nodes, they will discard those legitimate REQUESTs. As a result, the initiator
will be unable to discover any usable routes (i.e., routes that do not include the attacker) containing
at least two hops (three nodes).

In general terms, an attacker that can forward ROUTE REQUESTs more quickly than legitimate
nodes can do so, can increase the probability that routes that include the attacker will be discovered
rather than other valid routes. Whereas the discussion above has used the case of nodes that forward
only the first ROUTE REQUEST from any Route Discovery, the rushing attack can also be used
against any protocol that predictably forwards any particular REQUEST for each Route Discovery.

A rushing attacker need not have access to vast resources. On-demand routing protocols delay
ROUTE REQUEST forwarding in two ways. First, Medium Access Control (MAC) protocols gen-
erally impose delays between when the packet is handed to the network interface for transmission
and when the packet is actually transmitted. In a MAC using time division, for example, a node
must wait until its time slot to transmit, whereas in a MAC using carrier-sense multiple access, a
node generally performs some type of backoff to avoid collisions; protocols like IEEE 802.11 also
impose an interframe spacing time before transmission actually begins. Second, even if the MAC
layer does not specify a delay, on-demand protocols generally specify a delay between receiving

10.2. ASSUMPTIONS 131

a REQUEST and forwarding it, in order to avoid collisions of the REQUEST packets. In particular,
because REQUEST packets are broadcast, and collision detection for broadcast packets is difficult,
routing protocols often impose a randomized delay in REQUEST forwarding. An attacker ignoring
delays at either the MAC or routing layers will generally be preferred to similarly situated non-
attacking nodes. One way to thwart an attacker that rushes in this way is to remove these delays
at both the MAC and routing layers, but this approach does not work against all types of rushing
attackers and is not general. For example, in a dense network using a CSMA MAC layer, if a node
A initiates a Route Discovery, and B is two hops away from A, and C and D are neighbors of
both A and B, then then B will likely not receive the ROUTE REQUEST due to a collision between
REQUESTs forwarded by C and D. In a dense network, such collisions may often prevent the dis-
covery of any nontrivial routes (routes longer than a direct link), which is even more severe than the
rushing attack, which prevents the discovery of routes longer than two hops.

Another way that a relatively weak attacker can obtain an advantage in forwarding speed is to
keep the network interface transmission queues of nearby nodes full. For example, if each node
processes the packets it receives in order, and an inefficient REQUEST authentication mechanism is
used, the attacker can keep other nodes busy authenticating REQUESTs containing bogus authenti-
cation, thus slowing their ability to forward legitimate REQUESTs. Protocols employing public key
techniques are particularly susceptible to these attacks, since they require substantial computation
to validate each received REQUEST.

A relatively weak attacker can also achieve faster transit of its REQUEST packets by transmitting
them at a higher wireless transmission power level, thus reducing the number of nodes that must
forward that REQUEST to arrive at the target. Since packet transit time at each hop is dominated by
the processing time at the forwarding node, reducing the path to the target by just one hop is likely
to provide a significant latency advantage, thus strengthening the attackers position.

A more powerful rushing attacker may employ a wormhole [81] to rush packets. In this case,
the attacker simply forwards all control packets (but not data packets) received at one node (the
attacker) to another node in the network (e.g., a second attacker). This forms a tunnel in the network,
where packets reaching one end of the tunnel are broadcast out the other end. If the tunnel provides
significantly faster transit than legitimate forwarders, nodes near one end of the tunnel generally
will be unable to discover working routes to the other end of the tunnel, since it will generally
discover routes through the tunnel. In general, a wired tunnel (in which the two attackers have a
wired connection between themselves) will provide faster transit than native wireless (multihop)
forwarding, since node processing delay in forwarding is much longer than the propagation time.

The rushing attack applies to all proposed on-demand protocols because such protocols must
limit the number of packets that any node will transmit in response to a single Route Discovery.
Currently proposed protocols choose to forward at most one REQUEST for each Discovery; any
protocol that allows an attacker to predict which ROUTE REQUEST(s) will be chosen for forwarding
at each hop will be vulnerable to some variant of the rushing attack.

10.2. Assumptions

10.2.1. Network Assumptions

We make the common assumption that most network links are bidirectional. More specifically,
we require that the network remain connected when unidirectional links are ignored. Our Secure
Neighbor Detection protocol rejects unidirectional links, so underlying routing protocols can as-
sume that the network is free of unidirectional links. If another Secure Neighbor Detection tech-
nique is used, and that technique supports unidirectional links, then the ability of our Secure Route

132 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

Discovery mechanism to discover and use unidirectional links is limited only by the underlying
routing protocol.

Wireless physical layers for sending data from one node to another are often vulnerable to jam-
ming. Mechanisms such as spread spectrum modulation [149], or directional antennas have been
extensively studied as means of improving resistance to physical jamming. In addition, an effective
jamming attack usually requires additional hardware; in contrast, a rushing attack is much simpler
to do because the attacker can use the same hardware as legitimate nodes. An attacker can even re-
motely break into a legitimate node and perform these attacks. Moreover, the rushing attack allows
for far more selective denial-of-service, and is thus harder to detect. Jamming attacks are relatively
broad (they deny service to a large number of participants) and are thus also easier to detect. Though
a jamming attack is also an important denial-of-service attack, we present mechanisms to defend
against the rushing attack because we believe that the rushing attack is more easily performed.

Medium Access Control protocols are also often vulnerable to attack. For example, in IEEE
802.11, an attacker can paralyze nodes in its neighborhood by sending Clear-To-Send (CTS) frames
periodically, setting the “Duration” field of each frame equal to the interval between such frames [79].
Less sophisticated Medium Access Control protocols, such as ALOHA and Slotted ALOHA [1],
are not vulnerable to such attacks but have lower efficiency. In this paper, we disregard attacks on
Medium Access Control protocols.

Prior work has shown that ad hoc network routing in general does not scale well [61]. Most
existing simulation of ad hoc network routing protocols consider scenarios of 50 to 500 nodes.
In this work, we focus on such medium-sized networks, and will not consider scalability issues;
however, we believe that mechanisms such as clustering, which improve the scalability of other
on-demand ad hoc network routing protocols, can also improve the scalability of our approach.

10.2.2. Security Assumptions and Key Setup

The protocols discussed in this paper require an instantly-verifiable broadcast signature. However,
any signature used should be able to keep up with verification at line speed, to avoid a denial-of-
service attack where an attacker floods the victim with bogus messages and thus overwhelms the
victim. One example of a protocol which should be fast enough on many nodes is the the HORS
broadcast authentication protocol by Reyzin and Reyzin [160], when used in conjunction with a
Merkle hash tree [122] to generate one signature over multiple messages. As used in our simulation
evaluation, HORS requires an average of 156, 760 hashes per second to sign and verify all messages
in a 100 node network, a rate easily achievable even by PDAs. We assume that the keys necessary
for broadcast authentication are distributed in advance; a number of techniques for distributing such
information have been proposed [9, 79, 82, 178]. To escape the circular dependency of secure
routing and key distribution, Hu et al propose a simple routing protocol that discovers a route to a
trusted third party, which can in turn bootstrap the initial keys [79].

If a wormhole attack, in which an attacker selectively tunnels packets from one place in the
network to another, is considered a possible threat, our Secure Neighbor Detection requires a mech-
anism to detect such a tunnel between any two legitimate nodes. A number of mechanisms for
preventing the wormhole attack, such as TIK, geographical leashes and RF watermarking, have
been proposed. Depending on the mechanism used to implement packet leashes, this requirement
benefit other parts of the protocol: TIK [81], for example, authenticates each packet in a lightweight
manner, thus protecting the more expensive signature verification from a denial-of-service attack.
In particular, if a node A receives an authenticated packet containing a bogus signature from node
B, then A can lower the priority with which it checks signatures sent by B. As a result, an attacker
can only cause each node to verify one bogus signature for each node compromised by that attacker.

10.3. SECURE ROUTING REQUIREMENTS AND PROTOCOL 133

Single-Hop? Secure Neighbor
Detection

Gather n
Requests,
Choose 1

Old Routing
Protocol

No

Yes

Figure 10.2: Our design to secure a protocol against the rushing attack

We do not assume tamper-proof hardware; the attacker can thus compromise nodes and steal
their cryptographic keys. We assume a powerful attacker, which we call coordinated attacker. This
is an attacker that compromised multiple nodes (and thus knows all their cryptographic keys), with
a fast channel to route packets amongst themselves.

10.3. Secure Routing Requirements and Protocol

In this section, we describe a generic protection mechanism that prevents the extremely powerful
rushing attack. We also describe a technique to secure any protocol using an on-demand Route
Discovery mechanism. Our design is shown in Figure 10.2.

10.3.1. Notation

We use the following notation:

• A or B denote communicating nodes.

• A : η
R←{0, 1}` denotes that node A randomly selects an `-bit long nonce η.

• A → B : 〈M,H(A || η)〉 means that node A sends B the message M and the hash of A’s
identifier concatenated with the nonce η.

• A→ ∗ : 〈M,ΣM 〉 means that node A broadcasts message M with its signature ΣM .

10.3.2. Secure Neighbor Detection

The functionality of Neighbor Detection, in which two nodes detect a bidirectional link between
themselves, is present in almost every routing protocol. For example, a node participating in a
periodic protocol generally broadcasts advertisements, allowing its neighbors to detect it. Most
on-demand routing protocols, on the other hand, perform Neighbor Detection implicitly. In those
protocols, a node receiving a ROUTE REQUEST considers itself to be a neighbor of the transmitter.
When that node propagates the REQUEST, it claims a link between the transmitter and the recipient.
Unfortunately, this does not provide acceptable security; a node receiving a REQUEST can simply
replay it. In addition, the address of the previous node is unauthenticated, so an attacker can claim
to be any node propagating a REQUEST, and the next hop will trust that information.

Requirements for Secure Neighbor Detection. Two nodes detect themselves as neighbors only
if they are within transmission range. The secure Neighbor Detection protocol thus prevents an at-
tacker from: 1) introducing two nodes that are not in transmission range as neighbors; and 2) claim-
ing that it is a neighbor of another node without being able to hear packets directly from that node.
From the first requirement it follows that an attacker should not be able to tunnel a neighbor so-
licitation from one compromised node to another uncompromised node. The second requirement

134 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

S : η
R←{0, 1}`

M1 = 〈NEIGHBOR SOLICITATION, S, η〉
ΣM1

= Sign(M1)
S → ∗ : 〈M1,ΣM1

〉
R : M2 = 〈NEIGHBOR REPLY, R,H(R || η)〉

ΣM2
= Sign(M2)

R→ S : 〈M2,ΣM2
〉

S : M3 = 〈NEIGHBOR VERIFICATION, S,R,H(η)〉
ΣM3

= Sign(M3)
S → R : 〈M3,ΣM3

〉

Figure 10.3: Neighbor detection between S and R. M2 can be authenticated using a shared key, if
available.

demands that a node needs to hear the neighbor solicitation, otherwise it cannot claim to be a
neighbor. Finally, the protocol should not introduce a denial-of-service opportunity, for example by
flooding nodes with neighbor requests.

A Generic Secure Neighbor Detection Protocol. Our secure Neighbor Detection protocol re-
quires three messages. First, the soliciting node sends a New Neighbor Solicitation packet, either
by unicasting that packet to a specific neighbor, or by broadcasting the packet. Next, a node receiv-
ing the New Neighbor Solicitation packet sends a New Neighbor Reply packet. Finally, the node
initiating the Neighbor Detection sends a Neighbor Verification, which includes broadcast authen-
tication of a timestamp and the link from the source to the destination. If wormhole attacks are
considered a possible threat, we build our secure Neighbor Detection protocol above a mechanism,
such as packet leashes, which prevent wormholes between legitimate nodes.

To prevent a node from deriving a well-formed Neighbor Reply based on the Neighbor Reply
from another node, we include a nonce η in each New Neighbor Solicitation, and require the
Neighbor Reply to include the hash of the nonce and the source address. To prevent forgery of
New Neighbor Solicitation and New Neighbor Reply packets, we require some form of authentica-
tion. If desired, a packet leash can be added to the New Neighbor Solicitation and New Neighbor
Reply packets to prevent wormhole attacks. Finally, we rate-limit New Neighbor Solicitations to
prevent an attacker from flooding its neighbors. Figure 10.3 shows the full protocol.

Integration with an On-Demand Protocol. In an on-demand protocol, neighbor verification
is performed during each Route Discovery. As a result, we can defend against New Neighbor
Solicitation floods, by relying on the underlying protocol to defend against ROUTE REQUEST

floods; a node responds to any New Neighbor Solicitation presented with a valid REQUEST. If de-
sired, REQUEST flood prevention can be achieved through the use of a hash chain, as in Ariadne [79].

When a node A forwards a REQUEST, it includes in that REQUEST a broadcast Neighbor
Solicitation. Each node B forwarding that REQUEST returns a Neighbor Reply, and piggybacks
on the Neighbor Reply a unicast Neighbor Solicitation for A. If A decides that B is a neighbor
based on the wormhole prevention mechanism used, A returns a signed Neighbor Verification that
verifies the link from A to B. A also includes in packet a Neighbor Reply to the unicast Neighbor
Solicitation sent by B. If B decides that A is a neighbor based on the wormhole prevention mech-
anism used, B forwards the REQUEST, including the Neighbor Verification for the A → B link
signed by A, and also including a Neighbor Verification for the B → A link signed by itself. B
need not return a Neighbor Verification, since A is likely to hear the forwarded REQUEST, which
includes the B → A Neighbor Verification. Figure 10.4 shows how B forwards a REQUEST from
A.

10.3. SECURE ROUTING REQUIREMENTS AND PROTOCOL 135

A : ηA
R←{0, 1}`

M1a = 〈ROUTE REQUEST . . .〉
M1b = 〈NEIGHBOR SOLICITATION, A, ηA〉
ΣM1

= Sign(M1a ||M1b)
A→ ∗ : 〈M1a,M1b,ΣM1

〉

B : η′B
R←{0, 1}`

M2a = 〈NEIGHBOR REPLY, B,H(B || ηA)〉
M2b = 〈NEIGHBOR SOLICITATION, B, η′

B〉
ΣM2

= Sign(M2a ||M2b)
B → A : 〈M2a,M2b,ΣM2

〉
A : M3a = 〈NEIGHBOR VERIFICATION, A,B,H(ηA)〉

M3b = 〈NEIGHBOR REPLY, A,H(A || η′
B)〉

ΣM3
= Sign(M3a || H(M3b))

A→ B : 〈M3a,M3b,ΣM3
〉

B : ηB
R←{0, 1}`

M4a = 〈ROUTE REQUEST . . .〉
M4b = 〈NEIGHBOR SOLICITATION, B, ηB〉
M4c = 〈NEIGHBOR VERIFICATION, B,A,H(ηA)〉
ΣM4

= Sign(H(M4a) || H(M4b) ||M4c)
B → ∗ : 〈M4a,M4bΣM1

〉

Figure 10.4: B forwarding the REQUEST from A. ΣM2
can be generated using a shared key, if available.

The ROUTE REQUESTin M4a includes the bidirectional Neighbor Verification messages M3a and M4c,
together with the necessary authenticators (H(M3b) and ΣM3

). The use of H(M3b) in ΣM3
allows

the verification of M3a without needing M3b, which decreases the overhead caused by the REQUEST
packet. The same technique is used in creating ΣM4

.

10.3.3. Secure Route Discovery

In this section, we describe how Secure Route Discovery uses Secure Neighbor Discovery to pre-
vent the rushing attack. The intuition behind Secure Route Discovery is to make the forwarding
of REQUEST packets less predictable by buffering the first n REQUESTs received, then randomly
choosing one of those REQUESTs. However, we need to prevent an attacker from filling too many of
these n REQUESTs, since otherwise the attacker could simply rush n copies of a REQUEST, rather
than a single REQUEST, and our scheme would once again be vulnerable to the rushing attack.

To limit the number of REQUESTs that traverse an attacker, we exploit the fact that legitimate
nodes forward only one REQUEST in any Discovery. First, we require that each REQUEST carry a
list of nodes traversed by this REQUEST. Second, we require a bidirectional Neighbor Verification
for each link represented by this list of nodes, for a total of two signed Neighbor Verifications per
hop. Third, to authenticate the node list, we require each node to authenticate the REQUEST it
forwards, though it can piggyback this authentication together with the Neighbor Verification that it
signs. Finally, we require buffered REQUESTs be duplicate-suppression-unique: that is, if the route
record of any two REQUESTs contain any node A, the route prefix leading up to (and including) A
must be the same. These three requirements constrain an attacker to the extent that an attacker that
has compromised m nodes can rush at most m REQUESTs.

To prevent replay of old Neighbor Verification messages, each message is tied to a specific
Route Discovery. Specifically, when a node S sends a Neighbor Verification for the link from S to
R, S signs not just S and R (as in Figure 10.3), but also ties a unique Route Discovery identifier
to the Neighbor Verification. For example, in AODV, the RREQ ID and Originator IP Address in
an RREQ form a unique identifier; in DSR, the Target Address and Identifier fields from a ROUTE

REQUEST, together with the IP Source Address, form a unique identifier. To address wraparound
in these Identifier fields, if the nodes in the network have very loosely synchronized clocks (within

136 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

a few days), the node can include a timeout in addition to this unique identifier. If network nodes
have more tightly synchronized clocks (within a few seconds), the node can include a timeout in
place of any unique identifier.

In some areas of some networks, a node will not have n distinct paths to the source of the
REQUEST. To enable the Discovery of routes to or through such nodes, we allow a node to forward
a REQUEST after some time, even if it has not yet received n REQUESTs. In certain cases, however,
a fixed timeout allows an attacker to prevent the discovery of a correct route. One way to avoid
such an attack is to choose a random timeout between tmin and tmax. Alternatively, we can prefer
early release when a node has buffered more REQUESTs, for example by choosing a random timeout
between tmin +(n− j)tadd and tmax +(n− j)tadd, where j is the number of REQUESTs buffered so
far. Choosing a timeout when location information is available can provide better properties. If the
initiator of each REQUEST includes a timestamp t and its location, intermediate nodes can choose
a timeout of t + fixed timeout + propagation speed · distance to initiator. After a node chooses a
timeout, either randomly or based on optional location information, the node randomly chooses one
received REQUEST for forwarding.

We implement two additional security optimizations to this basic scheme. In general, these opti-
mizations are based on using the property of nonrepudiation to spread information about malicious
nodes. First, we require that each REQUEST be signed by the forwarding node. A node detect-
ing an attacker forwarding more than one REQUEST can expose the attacker by flooding the two
REQUESTs. Second, if location information is available, and used for example to implement geo-
graphic packet leashes, an attacker claiming to be in two places at the same time can be blacklisted
in the same way. For example, if each REQUEST includes in the node list location information
and time information for each forwarding node, a node can keep a database of previous location
information, and find two location claims that significantly exceed the maximum speed achievable
by legitimate nodes. In particular, if location information is accurate to δ, and time information is
consistent to ∆, and maximum speed is ν, then two locations claimed t time apart is maliciously
claimed if the distance between the two locations is greater than 2δ + ν(t + 2∆). Our blacklist
mechanisms do not need authentication, since the nonrepudiation of contradicting information can
be can be verified by any nodes. We route blacklist information by flooding: contradictory infor-
mation is rebroadcast by any node that verifies the nonrepudiation and did not have this malicious
node on its blacklist. This approach is similar to the blacklist mechanism used by Ariadne [79].

10.3.4. Integrating Secure Route Discovery with DSR

To integrate rushing prevention with DSR [87] or other secure protocols based on DSR, we limit
Route Discovery frequency as in Ariadne [79]. Each time a node forwards a ROUTE REQUEST, it
first performs a Secure Neighbor Detection exchange with the previous hop. When it forwards the
REQUEST, it includes in the REQUEST a bidirectional Neighbor Verification for the previous hop.

As in DSR, the target of a Route Discovery returns a ROUTE REPLY for each distinct ROUTE

REQUEST it receives. Each such ROUTE REPLY is sent with a source route selected by reversing
the route in the ROUTE REQUEST. This route is likely to work if there are no attackers on the route,
since Neighbor Detection only finds bidirectional neighbors.

10.3.5. Integrating Secure Route Discovery with AODV

In AODV [141], as well as other secure protocols based on AODV [31, 170, 190], Route Request
(RREQ) packets do not carry a node list. However, in order to filter excessive malicious RREQs, we
require each RREQ to carry a node list. Instead of forwarding the first RREQ received, nodes using

10.4. EVALUATION 137

our Secure Route Discovery randomly select one of the first n RREQs it receives and treats it as
the RREQ to forward. More specifically, it places the initiator of the Route Discovery in its routing
table using the previous hop of the RREQ selected as the next-hop destination. It then appends its
address and authentication information to the node list, and forwards it as in DSR.

Since AODV is a distance-vector protocol, it cannot make use of multiple routes. As a result,
the target of a Route Discovery also waits for n RREQ packets before returning a single RREP. The
target signs the RREP, and includes in the RREP neighbor authentication for each hop in the chosen
path. This authentication allows nodes forwarding the RREP to authenticate the entire path back to
the source of the RREP. Each node authenticating this information establishes a route back to the
source of the RREP (the target of the RREQ). When this RREP reaches the destination, it will have
established a bidirectional route between the initiator and target of the Route Discovery.

Because AODV does not support multiple routes, the security properties of AODV using Secure
Neighbor Discovery will be somewhat worse than the properties of DSR using Secure Neighbor
Discovery.

10.3.6. Integrating Secure Route Discovery with Secure Ad Hoc Network Routing
Protocols

When using our rushing attack prevention together with a secure on-demand routing protocol, a
node can first attempt Route Discovery using that secure protocol. If a rushing attacker prevents the
discovery of any working routes, the node can then set a flag indicating that it wants to use routing
attack prevention, though it must also authenticate that flag to prevent modification. This approach
is similar to the principle of expanding ring search: first, a node uses a cheaper, but sometimes
unsuccessful, search. The node only uses a more expensive search when the cheaper search does
not find a route. This optimization provides benefits in two cases: first, when there are no rushing
attackers, existing secure routing protocols should be able to find a route. Secondly, a rushing
attacker does not have any advantage in one- and two-hop routes.

10.4. Evaluation

To evaluate our techniques, we analyzed the cost and effectiveness through simulation and analysis.
Our simulation was designed to show the cost of our techniques in a non-adversarial environment,
whereas our analytical evaluation shows provable bounds on the extent to which an attacker can
disrupt a protocol using our techniques.

10.4.1. Simulation Evaluation

To evaluate the overhead of using our secure neighbor discovery mechanism in a non-adversarial
environment, we simulated our scheme using the ns-2 simulator, using Ariadne [79] as our underly-
ing routing protocol. We call this modified protocol RAP (Rushing Attack Prevention). We did not
implement the optimizations described in Section 10.3.6, because our simulations did not include
an attacker, so our results would be equivalent to just using Ariadne. We used the original Ariadne
source code [128], and modified it to use digital signatures based on HORS and geographical leashes
for wormhole protection [81]. We compared our results with Ariadne and DSR in order to determine
the added costs of RAP when there are no attackers. However, when a rushing attacker is present,
existing on-demand ad hoc network routing protocol would in general be unable to deliver packets
over paths longer than two hops (Section 10.1). RAP, on the other hand, would be able to discover

138 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Pause Time

DSR
Ariadne
RAP
RAP 1 Flow

PSfrag replacements

P
ac

ke
tD

el
iv

er
y

R
at

io

(a) Packet Delivery Ratio

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

Pause Time

DSR
Ariadne
RAP
RAP 1 Flow

PSfrag replacements

M
ed

ia
n

La
te

nc
y

(s
ec

on
ds

)

(b) Median Latency

0 100 200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

Pause Time

DSR
Ariadne
RAP
RAP 1 Flow

PSfrag replacements

P
ac

ke
tO

ve
rh

ea
d

(P
ac

ke
ts
×

1
0

3
)

(c) Packet Overhead

0 100 200 300 400 500 600 700 800 900
0

20

40

60

80

100

120

140

160

180

200

Pause Time

DSR
Ariadne
RAP
RAP 1 Flow

PSfrag replacements

B
yt

e
O

ve
rh

ea
d

(B
yt

es
×

1
0

6
)

(d) Byte Overhead

Figure 10.5: Unoptimized RAP performance evaluation results in non-adversarial environment.
Optimized RAP would have same results as Ariadne, except that it would perform better when un-
der attack. Under attack, optimized RAP and Ariadne would perform identically for one- and two-hop
routes, but in finding longer routes, RAP should significantly outperform Ariadne, since RAP finds
working routes with moderate probability, but Ariadne and DSR can never find routes. “RAP 1 Flow”
refers to RAP with the lighter communications pattern of one CBR source. Results based on averages
over 50 simulation runs; the error bars represent the 95% confidence interval of the mean.

working paths much of the time, and as a result, would generally outperform existing on-demand
routing protocols.

We chose HORS as our broadcast signature, using a time interval of 5 seconds and allowing
each node to authenticate up to 20 messages per time interval. We assumed a time synchroniza-
tion error of 1 second, and used 180 byte signatures. As a result, each public key is 78380 bytes,
and each node has an amortized workload of 156760 hash operations per second at each node for
generating signatures, as well as verifying all signatures from all nodes. (This level is well within
the capability of modern PDAs, and represents around 10% CPU utilization on modern worksta-
tions). Our parameters were chosen to provide an 80 bit security level; that is, an attacker must
guess 280 signatures to forge one signature in expectation. When signatures were needed at a faster
rate than permitted by HORS, we used a multi-signature scheme based on Merkle hash trees [122].
We simulated packet leashes based on optional location information, and waited for 2 REQUEST

10.4. EVALUATION 139

packets, or a 0.2 seconds fixed timeout plus the distance to the initiator times a propagation speed
of 1500 meters per second.

Because a square area is more likely to support multiple routes between a source an a destina-
tion, our simulations used 100 nodes in a 1000 m×1000 m space moving according to the random
waypoint model [88]. In this model, each node is randomly placed; at the beginning of the sim-
ulation, it waits for a pause time, then chooses a velocity uniformly between 0 and 20 meters per
second. It then proceeds to a random location at that velocity, and upon arriving, waits for the pause
time and repeats. We simulated pause times of 0, 30, 60, 120, 300, 600, and 900 seconds.

We chose a workload of 5 flows, each producing 4 packets per second, using 64-byte packets.
This workload was sufficient to cause significant congestion with our scheme, even though normal
ad hoc network routing protocols can deliver four or more times the load at lower loss rate; however,
secure neighbor discovery incurs significantly higher overhead due to the four-way handshake and
speed-of-light delays associated with it. We simulated a link-layer data rate of 2 Mbps.

RAP has significantly worse performance than both Ariadne and DSR because of the added
load of the Secure Neighbor Discovery. Figure 10.5(a) shows the Packet Delivery Ratio of the three
protocols. DSR delivers between 99.8% and 100% of offered traffic. Ariadne delivers between
95.0% and 100% of offered traffic; a significant improvement over previous simulation results [79].
This suggests that previous simulations used too high a traffic load to fairly evaluate Ariadne in the
absence of congestion. Even with this light traffic load, RAP was able to deliver just 7.6% to 47.7%
of offered load. This performance is primarily due to congestion. At higher movement speeds
(lower pause time), the lower packet delivery ratio is caused by an even higher packet overhead,
which results from the on-demand nature of the protocol. We also simulated RAP carrying a lower
load of just one flow. At higher pause times, Ariadne with RAP has sufficiently low overhead to
deliver between 73.7% and 74.5% of traffic. Even with these pause times, 92.1% of drops were due
to MAC-layer congestion, compared to just 4.15% due to the node’s inability to find a route. This
MAC-layer congestion severely hampers our protocol’s ability to deliver application-layer packets.

Figure 10.5(b) shows the median latency of delivered packets. DSR and Ariadne appear to have
zero mean latency, since their median latencies of 4.3ms and 3.8ms respectively are significantly
lower than the 1050ms median latency of RAP. Two factors contribute to the higher latency of RAP:
first, congestion increases the time each node must wait to acquire the medium, and second, if a node
receives just one ROUTE REQUEST packet from a Route Discovery, it waits a significant amount of
time before forwarding that REQUEST in an attempt to collect enough REQUESTs and choose one
at random.

Figures 10.5(c) and 10.5(d) show the Packet Overhead and Byte Overhead of the three protocols.
At higher pause times, RAP has more than five times as much overhead when it uses five flows.
This indicates that the congestion caused by the protocol significantly reduces the usefulness of the
routing protocol packets. When congestion is not an issue, we actually expect that overhead should
be less than a factor of five, because nodes can cache information they overhear, thus improving
efficiency.

Our performance evaluation shows that in non-adversarial environments, RAP adds significant
costs relative to other secure routing protocols. Many of these costs are due to the congestion cre-
ated at lower bit rates. However, RAP is designed to be used only when necessary (Section 10.3.6),
so these higher costs are only incurred when the underlying protocol is otherwise unable to dis-
cover a working route. Specifically, RAP incurs no cost until the underlying protocol is completely
prevented from finding a working route. It then allows that protocol to use a higher cost approach
to successfully deliver packets even against a rushing attacker. In the next section, we show how
RAP performs under a rushing attack, in which DSR and Ariadne would be unable to find routes
containing more than three nodes (two hops).

140 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

PSfrag replacements

initiator target

Figure 10.6: Example network topology used in RAP security analysis

X

PSfrag replacements

x = 1 x = 2 x = 3 x = 4

initiator target

Figure 10.7: An example of a successful Route Discovery. Each gray node chose a valid REQUEST
and belonged to a route for which a REPLY was sent. Each line represents a hop in a path chosen by a
legitimate REQUEST; the network topology is shown in Figure 10.6.

10.4.2. Security Analysis

This section discusses the security properties achieved with RAP when n distinct routes (both le-
gitimate and attacking) exist between the originator and each other node in the network. (As in
Section 10.3.3, two routes are considered distinct if they end in different nodes.) Since routes are
required to end in different nodes, an attacker with access to the keys of m compromised nodes can
generate at most m distinct, maliciously injected ROUTE REQUESTs for the purpose of denial-of-
service.

To analyze the probability of a node subverting a Route Discovery, we assume that the attacker
rushes m distinct REQUESTs to each node in the network. As a result, each node needs only n −
m additional distinct REQUESTs. We also suppose that the network topology of these legitimate
requests is represented by Figure 10.6, such that the ` hops from the source to the target form a
sequence of tiers, such that the n−m neighbors of the source form the first tier, the n−m neighbors
of the target form the last tier, and any two adjacent tiers form a complete, bipartite graph.

We denote the probability of successfully finding a route at tier x given y nodes at that tier to be
Sx,y. In particular, we seek the probability S`,n−m. Since one-hop neighbors cannot be subverted,
S1,y = 1 for all y > 0. At any other level (that is, when x 6= 1), the probability that i of the
y neighbors will choose one of the m bogus ROUTE REQUESTs is given by the binomial PDF
(

y
i

) (

m
n

)y−i (n−m
n

)i. For example, in Figure 10.7, at x = 4, y = 3 nodes received a valid ROUTE

REPLY, but only i = 2 of them forwarded a valid REQUEST.
Each of the i nodes that do not choose bogus REQUESTs chooses one of the REQUESTs it

received. Some of these REQUESTs may overlap; the probability of choosing exactly j distinct pre-
vious hops is given by pn−m−j(n −m, i), where pr−j(r, i) is the probability that when i balls are
thrown into r boxes, exactly r− j boxes are empty (that is, exactly j boxes are full). The solution to

the classical occupancy problem [186] gives pr−j(r, i) =
(

r
r−j

)

j
∑

k=0

(−1)k
(

j
k

)

(

j−k
r

)i

. For example,

in Figure 10.7, at x = 4, i = 2 nodes chose j = 2 distinct previous hops, and at x = 3, i = 2 nodes
chose j = 1 distinct previous hops.

10.5. RELATED WORK 141

When, at a level x 6= 1, i nodes do not choose bogus REQUESTs but instead choose a total of j
distinct, legitimate REQUESTs, the probability that the Route Discovery will be successful is Sx−1,j

by definition. Then

Sx,y =
y
∑

i=1

[

(

y
i

) (

m
n

)y−i (n−m
n

)i
min(i,n−m)

∑

j=1
Sx−1,jpn−m−j(n−m, i)

]

=
y
∑

i=1

[

(

y
i

) (

m
n

)y−i (n−m
n

)i
min(i,n−m)

∑

j=1

{

Sx−1,j

(

n−m
n−m−j

)

j
∑

k=0

(−1)k
(

j
k

)

(

j−k
n−m

)i
}]

For example, when n = 6, m = 2 and ` = 5, the probability of a successful Route Discovery is
46%.

We now argue that the case above reflects a worst case analysis by analyzing some potential
variations. First, the n−m additional incoming nodes could come from earlier tiers (e.g., tiers with
lower x). However, since Sx,y is monotone decreasing with increasing x and fixed y, the opportunity
to choose nodes from earlier tiers only provides a benefit. Second, there may not be as much overlap
between the predecessors of the nodes in a single tier; however, this only reduces the number of
collisions at the previous tier. Fewer collisions at the previous tier improves performance, since
Sx,y is monotone increasing with fixed x and increasing y. Third, an attacker can choose to reduce
the number of bogus REQUESTs it sends to each node; this has the effect of reducing m, which
again increases the probability of success. A final attack allows a powerful attacker to monitor
the REQUESTs forwarded by each node legitimate node. Some of these legitimate nodes will have
randomly chosen REQUESTs that represent compromised routes. The attacker can then attempt to
forward such REQUESTs to nodes that did not hear that REQUEST directly from that node. This
attack will be prevented by wormhole detection.

As mentioned in Section 10.3.5, if only one ROUTE REPLY is returned with any discovery,
security is somewhat lower. In particular, only one route is returned, and each hop after the first has
a n−m

n
probability of choosing a nonattacking node under the attacker model used in this section.

In a working route, all nodes must forward a nonattacking REQUEST. As a result, the probability of
choosing a working route is

(

n−m
n

)`, where ` is the number of intermediate nodes (excluding the
initator and target).

This section presented an extremely conservative security analysis. In particular, an attacker
as aggressive as the one described here would need to propagate the ROUTE REQUEST from each
Route Discovery from many different locations, subjecting it to the intrusion detection mechanism.
A real attacker considering the tradeoff between an improved probability of subversion and an in-
creased probability of being caught is unlikely to use such a powerful attack.

10.5. Related Work

We have already discussed the vulnerability of current secure on-demand ad hoc network rout-
ing protocols [31, 79, 136, 170, 190] to the rushing attack in Section 10.1. Perlman’s Flooding
NPBR [143] routing protocol for wired networks does not suffer from this attack, since the protocol
does not depend on the actual path of the flood for routing; rather, it requires that each packet be
flooded through the the network.

Other secure routing protocols have been proposed based on periodic (proactive) mechanisms,
for wired networks [33, 65, 69, 96, 102, 176, 177] as well as for wireless ad hoc networks [78, 148].
Although these protocols typically are not vulnerable to rushing attacks, such periodic protocols are
often less desirable for ad hoc network routing due to their higher overhead and slower adaptivity.

142 CHAPTER 10. RUSHING ATTACKS AND DEFENSE

Other areas in secure ad hoc network routing have been explored, such as trust establishment [9,
79, 82, 178], key generation [10], nodes that maliciously do not forward packets [116], and security
requirements for forwarding nodes [189]. These areas are beyond the scope of this paper.

Routing protocol intrusion detection has been studied in wired networks as a mechanism for
detecting misbehaving routers. Cheung and Levitt [34] and Bradley et al [23] propose intrusion
detection techniques for detecting and identifying routers that send bogus routing update messages.
In this paper, we describe one invariant of legitimate node behavior, and introduce a distributed
mechanism to exclude nodes that have been caught violating that invariant.

10.6. Chapter Summary

In this paper, we have described the rushing attack, a novel and powerful attack against on-demand
ad hoc network routing protocols. This attack allows an attacker to mount a denial-of-service attack
against all previously proposed secure on-demand ad hoc network routing protocols. We have also
presented RAP (Rushing Attack Prevention), a new protocol that thwarts the rushing attack.

We found that the widely used duplicate suppression technique makes the rushing attack possi-
ble, and we designed a new Route Discovery protocol called RAP that replaces the standard mecha-
nism and thwarts the rushing attack. Our approach is generic, so any protocol that relies on duplicate
suppression in Route Discovery can use our results to fend off rushing attacks. More importantly,
we demonstrated that there are mechanisms that can defend against the rushing attack, even though
all previous attempts at secure on-demand ad hoc network routing protocols have been vulnerable.

When integrated with a secure routing protocol, RAP incurs no cost unless the underlying secure
protocol cannot find valid routes. When RAP is enabled, it incurs higher overhead than do standard
Route Discovery techniques, but it can find usable routes when other protocols cannot, thus allowing
successful routing and packet delivery when other protocols may fail entirely. We have also shown
that existing on-demand routing protocols can be retrofitted using our technique to resist the rushing
attack.

Chapter 11

Securing Quality-of-Service Routing in
Ad Hoc Networks

In an ad hoc network, some applications may require higher levels of service than can be achieved
using best-effort routing, cross-layer interactions (Chapter 4), or other lightweight mechanisms
(Chapter 4.5). In addition, unlike wired networks, where overprovisioning is quite straightforward,
overprovisioning in a wireless network may not be possible, due to constraints on radio spectrum
and power level, or because of noise within that radio spectrum. As a result, carefully choosing paths
with sufficient resources may be the only way to provide sufficient resources for many applications.

Though a number of protocols have been proposed for Quality-of-Service routing in ad hoc
networks (e.g. [25, 30, 32, 105, 112, 142, 188]), these protocols are intended for operation in a
trusted environment, and do not consider the disruptions that can be caused by an attacker. In this
chapter, we discuss general mechanisms for securing QoS routing, and applying these to DSR’s
QoS-guided Route Discovery [25, 112] and the very similar AODV extensions [142].

11.1. QoS-Guided Route Discovery

In many on-demand routing protocols such as DSR and AODV, a node wishing to establish a QoS
flow to a destination generally will only be able to route packets along the path that had mini-
mum latency at the time of the Route Discovery. However, a QoS flow may have bandwidth or
jitter needs that cannot be satisfied by the path ordinarily returned by Route Discovery. To allow
Route Discovery to discover paths satisfying QoS constraints, Maltz introduced QoS-Guided Route
Discovery [112], which allows a node to specify QoS metrics that must be satisfied by a path dis-
covered using QoS-Guided Route Discovery. In this section, we review the previous work in QoS-
guided Route Discovery.

In QoS-guided Route Discovery, ROUTE REQUEST packets are constrained to paths fulfilling
certain requirements. When a node has a cached route, it may either perform a QoS-guided Route
Discovery, or it may attempt to establish a new flow along the cached route. If the node chooses
to use the cached route and the flow establishment is successful, it is not necessary to perform a
QoS-guided Route Discovery, although one may be performed in an attempt to find a better route.
The decision about whether or not to perform such a Discovery may be made based on resources
available along a cached route or the node’s estimate of the probability of successful setup along
that route. Alternately, a node may choose to always perform a second search requesting a slightly
higher level of resources than is available along the cached route.

143

144 CHAPTER 11. SECURING QOS ROUTING IN AD HOC NETWORKS

To use this QoS-guided Route Discovery mechanism, a node sending a ROUTE REQUEST also
inserts an optional QoS Request Header for each type of resource required. Each QoS Request
Header indicates the type of resource, the minimum acceptable resource level, and the desired re-
source level. For example, an audio flow may require at least 2.4 kilobits per second of bandwidth
but desire up to 128 kilobits per second.

A node receiving a ROUTE REQUEST containing one or more QoS Request Headers processes
each QoS Request Header to determine whether or not the node can provide a new flow with re-
sources at a level at least equal to the minimum requested. If it is unable to provide the minimum re-
quested resource level for any requested resource, the node silently discards the ROUTE REQUEST.
If it is unable to provide the desired level specified in any QoS Request Header in the packet, the
node modifies the header by setting the desired level equal to the maximum resource level it can
provide, and then forwards the ROUTE REQUEST normally. A node able to provide the desired level
specified in all QoS Request Headers contained in the packet forwards the ROUTE REQUEST packet
normally without modifying the QoS Request Header.

A node that propagates a ROUTE REQUEST containing QoS Request Headers may temporarily
reserve the resources specified in the request in order to improve the likelihood that the resources
are present when the source begins using this route.

11.2. Mechanisms for Securing QoS Routing

Our key observation is that properties of interest in QoS routing are generally monotone, and that
any metrics used with QoS-guided Route Discovery must be monotone. For example, the resources
of bandwidth, latency, and jitter all are monotone. In this chapter, we present mechanisms that
enforce monotonicity and strict monotonicity in QoS metrics.

11.2.1. Broadcast Authentication for REQUEST Packets

Our mechanisms require the network to arrange some form of broadcast authentication for the im-
mutable fields of REQUEST packets. This authentication can be provided by an efficient, instant
broadcast authentication mechanism such as HORS [160]. Alternatively, this authentication can be
integrated with a flooding prevention mechanism. In particular, since QoS-Guided Route Discovery
requires a flood of the network and hence provides a means for an attacker to perform a Denial-
of-Service attack, a secure ad hoc network routing protocol must enforce limits on the frequency
at which a node can perform such flooding. Ariadne [79] uses a hash chain to provide this rate-
limit. To authenticate the immutable fields of the REQUEST, we replace the hash chain with a
MW-chain. A node uses one MW-chain step for each Route Discovery, and uses the value au-
thenticated by the hash chain to authenticate the immutable fields of the REQUEST. For example,
if the MW-chain allows the authentication of 280 different values, then an 80-bit one-way hash
of the immutable fields of the packet can be encoded as a single value authenticated using this
MW-chain.

11.2.2. Enforcing Monotonicity

To ensure monotonicity, the initiator of a QoS-Guided Route Discovery creates a virtual hash chain
for each QoS metric requested. This virtual hash chain can be a traditional hash chain, as described
in Section 5.1.3, a skiplist (which allow for more efficient authentication of large changes in met-
ric) [73], or a hash tree chain (which prevent same-metric fraud, effectively requiring each forwarder
to change the QoS metric) [73].

11.3. RELATED WORK 145

To generate this hash chain, the initial value (value farthest from the anchor) is chosen to au-
thenticate the maximum level of service requested by this QoS-Guided Route Discovery for this
metric. Each step in the hash chain authenticates one quanta, and the hash chain is generated to
represent each possible value between the maximum level of service (the initially generated value)
and the minimum level of service (the anchor) requested by the QoS-Guided Route Discovery.
A ROUTE REQUEST packet includes only the authenticator for the metric currently claimed in
that REQUEST Each anchor is included in the Route Discovery, sent with broadcast authentication
(as described in Section 11.2.1), allowing each recipient to authenticate each claimed QoS met-
ric.

The quantization of integer or fixed point values is simpler than for floating point values. For
example, the smallest step representable with an integer is 1, and the range of a 32-bit signed
integer value is 232, whereas a 32-bit signed floating point value in the IEEE 754 standard can
represent a step as small as 2−149 with a range of 2129. We overcome this difficulty by using
a variable quanta: since n bits can represent at most 2n values, we conceptually sort all repre-
sentable values, and correlate one step in a virtual hash chain with one element in this conceptually
sorted list. This sorting can be achieved at low cost with proper data representation; for example,
postitive floating point values in the IEEE 754 standard can be converted into their integer ranks
simply by reading the value in as an unsigned integer of the same length (ignoring non-numeric
values).

11.2.3. Limiting Overhead of QoS-Guided Route Discovery

In QoS-guided Route Discovery, a forwarding node does not perform duplicate suppression in the
same way in standard Route Discovery. In normal Route Discovery, nodes having already for-
warded a REQUEST from a Route Discovery ignore further REQUESTs from the same Discovery.
In QoS-guided Route Discovery, a node should only ignore a REQUEST if it has forwarded a better
REQUEST. This raises two problems: first, an intermediate node may not know which tradeoffs
are preferred by the source, and second, an attacker can force a node to forward a large number
of REQUESTs by playing a single REQUEST multiple times, using progressively better metrics.
However, the source knows the tradeoffs it prefers. As a result, a node can include an evaluation
function in each REQUEST. This evaluation function can take the form of a function selected from a
list, or can be more general, such as has been proposed for Active Networks [180]. Each evaluation
function should take the metrics of interest and a maximum value, and return an integer between 0

and the maximum value. A node then can forward an additional REQUEST only when the evaluation
function returns a larger value than it did the previous time, thus allowing each node to bound the
number of times it forwards a REQUEST from any single Discovery.

11.3. Related Work

A number of distance-vector protocols have been proposed that use hash chains to prevent malicious
nodes from reducing the advertised distance to the destination. For example, Zapata and Asokan
propose the use of a hash chain in each packet with the anchor authenticated using a public key
signature [190]. In this chapter, we extend this approach by enforcing that each node counted is in
fact a legitimate node, to resist an attacker attempting to decrease the apparent average of some QoS
metric over a path. Furthermore, we use more than one anchor in each packet, and build a Merkle
tree over each anchor, which improves authentication efficiency.

146 CHAPTER 11. SECURING QOS ROUTING IN AD HOC NETWORKS

11.4. Chapter Summary

In this chapter we present a mechanism for securing QoS metrics that can be discovered using QoS-
guided Route Discovery. These metrics all have the property that they are monotone, so we prevent
an attacker from reducing monotonely increasing metrics, and prevent an attacker from increasing
monotonely decreasing metrics. As a result, an attacker cannot claim a better metric than it has
heard. Without secure hardware, it is impractical to force each node to claim a correct metric, but
using this technique, an attacker cannot gain an arbitrary advantage over non-attacking routes.

Chapter 12

Thesis Summary and Conclusions

This thesis has presented two types of service improvements in ad hoc network routing: those for
trusted environments and those for untrusted environments. In a trusted environment, the work
in this thesis covers improvements that help all traffic types, as well improvements that allow on-
demand protocols to classify and priortize real-time traffic. We also present mechanisms for secur-
ing routing, including efficient mechanisms to secure distance-vector and path-vector protocols, to
thwart wormhole attackers, and to secure QoS-guided Route Discovery.

Chapter 2 describes the link-state cache which allows a source-routing protocol such as DSR
make better use of information gathered through Route Discovery. In our simulations, link-state
caches outperformed the previously used path-state caches by a factor of two in packet overhead,
while simultaneously improving packet delivery performance. I also provide mechanisms for adapt-
ing cache parameters to the observed network behavior. I found that caches using adaptive parameter
choices can often outperform statically tuned caches.

In Chapter 3, I presented implicit source routes which can remove all the per-packet overhead
associated with source routes while still maintaining source control of routes. Our simulations
showed a factor of two improvement in byte overhead, with moderate gains in packet delivery ratio
and latency, at the cost of a slight increase in packet overhead.

Chapter 4 shows that MAC layer information, particularly utilization information, can be used
at higher layers to significantly improve performance. With these optimizations, our simulated
network could deliver 30% more traffic with the same packet delivery ratio. Alternatively, our
optimizations halved the packet loss rate and decreased packet overhead by 25% in some scenar-
ios. Using MAC layer information to provide congestion notification to TCP also significantly
improved TCP fairness. Chapter 4.5 describes the use of physical layer link properties to change
routing behavior. In particular, I used the Signal-to-Noise Ratio to modify Route Discovery and
Route Maintenance behavior. My modification to Route Discovery allows nodes to discover routes
that are likely to have a longer lifetime, whereas my modification to Route Maintenance allows a
node to learn about a failing link and discover a new one before the old link breaks. These two mod-
ifications, combined with the use of implicit source routes and priority forwarding, can substantially
improve the responsiveness of an on-demand protocol to link changes. In particular, following the
implementation of these mechanisms in an ad hoc network testbed, we found that audio and video
sent over the testbed was received with significantly better quality.

Chapter 6 presents SEAD, a secure ad hoc network routing prtoocol based on DSDV. SEAD
secures against most attacks by uncoordinated attacker nodes, and uses only efficient (symmet-
ric) cryptographic primitives. SEAD is generally able to deliver a larger fraction of packets than
DSDV, though it experiences significantly higher byte overhead and median latency due to the

147

148 CHAPTER 12. THESIS SUMMARY AND CONCLUSIONS

overhead caused by the inclusion of hash values in each advertisement. SEAD provides rela-
tively strong security with low computational overhead, and is relatively simple, making it suit-
able for use in computationally constrained nodes and environments where there is low mobil-
ity.

Chapter 7 presents Ariadne, a secure on-demand routing protocol based on DSR. Ariadne pro-
vides stronger security properties than SEAD, but can also have higher overhead. Since Ariadne
does not secure optimizations to DSR, we compared it to an unoptimized version of DSR. Ariadne
performs at least as well as the unoptimized version of DSR across all metrics, and exhibits signifi-
cantly lower packet overhead.

In Chapter 8, I present several efficient security mechanisms. Several of these mechanisms pre-
vent certain attacks possible against SEAD. When these mechanisms are used, SEAD is no longer
vulnerable to same metric fraud, wherein a node readvertises the same metric it received, rather
than increasing the metric by one. These mechanisms also prevent a number of Denial-of-Service
attacks. I present skiplists, a general primitive that can be used in many applications of hash chains
to reduce the computation required to verify certain hash chain elements. Finally, we describe an op-
timization for path-state protocols using symmetric primitives, such as Ariadne. This optimization,
called cumulative authentication, reduces byte overhead by around 25%.

Chapter 9 describes packet leashes, which protect against the powerful “wormhole attacker.”
We describe both temporal and geographical leashes to limit the distance a packet can travel. We
also design an efficient broadcast authentication mechanism to be compatible with the stringent
requirements of temporal leashes.

In Chapter 10, I present a mechanism which defends against the powerful rushing attack. The
rushing attack exploits the predicitability of which REQUEST will be forwarded by an on-demand
ad hoc network routing protocol. Since this mechanism deliberately randomizes its responses, it
exhibits substantially worse behavior than our other protocols; however, our analytical evaluation
shows that our mechanism is quite robust, even in the presence of a large number of attackers.

Finally, Chapter 11 presents mechanisms for securing QoS-guided Route Discovery . These
mechanisms exploit the monotonicity of many Quality-of-Service specifications (such as latency,
jitter, available bandwidth). As in my work for securing distance vector protocols, I use efficient
one-way hash chains to to prevent a node from claiming a route better than it actually has. As a result
of this work, QoS-Guided Route Discovery can be secured against a malicious node attempting to
claim a significantly better route than it actually has.

Within a trusted environment, the work in this thesis has improved service by reducing packet
loss, packet overhead, and byte overhead by a factor of two in uncongested environments. In addi-
tion, this thesis has enabled trivial packet classification and prioritization, and supports 30% more
traffic at the same loss rate (around 5%). Finally, this thesis has substantially reduced the latency
and jitter caused by route breakage, enabling the use of audio and video over constantly moving
ad hoc networks.

This thesis has also improved service in networks in untrusted environments, by defending
against many attacks. The wormhole attack can now be detected, and non-coordinating attackers in
distance vector protocols cannot claim lower metrics than they would be able to if they were honest
nodes. Ariadne provides mechansims to defend against many types of attacks, even when multiple
attackers coordinate to prevent routing. Finally, when QoS-guided Route Discovery is used to find
routes meeting certain QoS metrics requirements, uncoordinated attackers cannot claim to have a
better path then they would if they were honest nodes with infinite resources.

12.1. CONCLUSIONS 149

12.1. Conclusions

In this thesis, I show that it is possible to achieve a higher level of service than previously demon-
strated with ad hoc network routing protocols, including the use of real-time applications such as
videoconferencing. I also show that interactions with lower layers can substantially improve the
performance of routing and transport layers. Finally, I demonstrate that ad hoc network routing can
be secured, thus providing service even in a malicious environment.

150 CHAPTER 12. THESIS SUMMARY AND CONCLUSIONS

Bibliography

[1] Norman Abramson. The ALOHA System—Another Alternative for Computer
Communications. In Proceedings of the Fall 1970 AFIPS Computer Conference, pages 281–
285, November 1970.

[2] Agere Systems Inc. Specification sheet for ORiNOCO World PC Card. Allentown,
PA. Available at ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/
BROCHURES/US/World%20PC%20Card%20US.pdf.

[3] Ross Anderson, Charalampos Manifavas, and Chris Sutherland. NetCard – A Practical
Electronic Cash System. In Security Protocols — International Workshop, edited by Mark
Lomas, volume 1189 of Lecture Notes in Computer Science, pages 49–57. Springer-Verlag,
April 1997.

[4] APE Project. The APE Testbed. Available at http://apetestbed.sourceforge.
net/.

[5] ARC International. ARC releases BlueForm, a comprehensive solution for Bluetooth
systems on a chip. Press Release 6-04-01, Elstree, United Kingdom. Available at
http://www.arccores.com/newsevents/PR/6-04-01-2.htm, June 4, 2001.

[6] N. Asokan, Gene Tsudik, and Michael Waidner. Server-Supported Signatures. Journal of
Computer Security, 5(1):91–108, 1997.

[7] Daniel O. Awduche, Lou Berger, Der-Hwa Gan, Tony Li, Vijay Srinivasan, and George
Swallow. RSVP-TE: Extensions to RSVP for LSP Tunnels. Work in progress, draft-ietf-
mpls-lsp-tunnel-09.txt, August 2001.

[8] Fred Baker and Randall Atkinson. RIP-2 MD5 Authentication. RFC 2082, January 1997.

[9] Dirk Balfanz, D. K. Smetters, Paul Stewart, and H. Chi Wong. Talking To Strangers:
Authentication in Ad-Hoc Wireless Networks. In Symposium on Network and Distributed
Systems Security (NDSS 2002), February 2002.

[10] Stefano Basagni, Kris Herrin, Emilia Rosti, and Danilo Bruschi. Secure Pebblenets. In
Proceedings of the Second Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc 2001), pages 156–163, October 2001.

[11] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for Message
Authentication. In Advances in Cryptology — CRYPTO ”96, edited by Neal Koblitz, number
1109 in Lecture Notes in Computer Science, pages 1–15. Springer-Verlag, 1996.

[12] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16(1):87–90,
1958.

151

ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/BROCHURES/US/World%20PC%20Card%20US.pdf
ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/BROCHURES/US/World%20PC%20Card%20US.pdf
http://apetestbed.sourceforge.net/
http://apetestbed.sourceforge.net/
http://www.arccores.com/newsevents/PR/6-04-01-2.htm

152 BIBLIOGRAPHY

[13] Bhargav Bellur and Richard G. Ogier. A Reliable, Efficient Topology Broadcast Protocol for
Dynamic Networks. In Proceedings of the Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’99), pages 178–186, March 1999.

[14] A. Benjaminson and S. C. Stallings. A Microcomputer-Compensated Crystal Oscillator
Using a Dual-Mode Resonator. In Proceedings of the 43rd Annual Symposium on Frequency
Control, pages 20–26, May 1989.

[15] Dave Beyer, Thane Frivold, Darren Lancaster, John Hight, Mark Lewis, and Fred Templin.
Radio Device API. DARPA Global Mobile Information Systems (GloMo) Program, Defense
Advanced Research Projects Agency, Arlington, VA.

[16] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. MACAW: A Media
Access Protocol for Wireless LAN’s. In Proceedings of the SIGCOMM ’94 Conference on
Communications Architectures, Protocols and Applications, pages 212–225, August 1994.

[17] Matt Bishop. A Security Analysis of the NTP Protocol Version 2. In Sixth Annual Computer
Security Applications Conference, November 1990.

[18] Jeff Boleng, William Navidi, and Tracy Camp. Metrics to Enable Adaptive Protocols for
Mobile Ad Hoc Networks. In Proceedings of the International Conference on Wireless
Networks (ICWN’02), pages 293–298, 2002.

[19] Rajendra Boppana and Satyadeva P. Konduru. An Adaptive Distance Vector Routing
Algorithm for Mobile, Ad Hoc Networks. In Proceedings of the Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM 2001), pages
1753–1762, March 2001.

[20] Bob Braden, David Clark, and Scott Shenker. Integrated Services in the Internet Architecture:
an Overview. RFC 1633, June 1994.

[21] Bob Braden, David D. Clark, Jon Crowcroft, Bruce Davie, Steve Deering, Deborah
Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Partridge, Larry Peterson, K. K.
Ramakrishnan, Scott Shenker, John Wroclawski, and Lixia Zhang. Recommendations on
Queue Management and Congestion Avoidance in the Internet. RFC 2309, April 1998.

[22] Bob Braden, Lixia Zhang, Steve Berson, Shai Herzog, and Sugih Jamin. Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification. RFC 2205, September
1997.

[23] Kirk A. Bradley, Steven Cheung, Nick Puketza, Biswanath Mukherjee, and Ronald A.
Olsson. Detecting Disruptive Routers: A Distributed Network Monitoring Approach. In
Proceedings of the IEEE Symposium on Research in Security and Privacy, pages 115–124,
May 1998.

[24] Eric A. Brewer, Randy H. Katz, Elan Amir, Hari Balakrishnan, Yatin Chawathe, Armando
Fox, Steven D. Gribble, Todd Hodes, Giao Nguyen, Venkata N. Padmanabhan, Mark Stemm,
Srinivasan Seshan, and Tom Henderson. A Network Architecture for Heterogeneous Mobile
Computing. IEEE Personal Communications, 5(5):8–24, October 1998.

[25] Josh Broch, David B. Johnson, and David A. Maltz. The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks. Internet-Draft, draft-ietf-manet-dsr-03.txt, October 1999.
Work in progress.

BIBLIOGRAPHY 153

[26] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. A
Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols. In
Proceedings of the Fourth Annual International Conference on Mobile Computing and
Networking (MobiCom 1998), pages 85–97, October 1998.

[27] Michael Brown, Donny Cheung, Darrel Hankerson, Julio Lopez Hernandez, Michael Kirkup,
and Alfred Menezes. PGP in Constrained Wireless Devices. In Proceedings of the 9th
USENIX Security Symposium, August 2000.

[28] Tracy Camp, Jeff Boleng, and Vanessa Davies. Mobility Models for Ad Hoc Network
Simulations. Wireless Communication & Mobile Computing (WCMC): Special issue on
Mobile Ad Hoc Networking: Research, Trends and Applications, 2002.

[29] Ran Canetti, Juan Garay, Gene Itkis, Daniele Micciancio, Moni Naor, and Benny Pinkas.
Multicast Security: A Taxonomy and Some Efficient Constructions. In Proceedings of
INFOCOMM’99, March 1999.

[30] Derya H. Cansever, Arnold M. Michelson, and Allen H. Levesque. Quality of Service
Support in Mobile Ad-Hoc IP Networks. In Proceedings of the Military Communications
Conference (MILCOM 1999), pages 30–34, October 1999.

[31] Claude Castelluccia and Gabriel Montenegro. Protecting AODV against Impersonation
attacks. IETF MANET Mailing List, Message-ID 006601c1eb8c$f279c560$1d1fc7c2@
charmette.inrialpes.fr, https://www1.ietf.org/mail-archive/working-
groups/manet/current/msg00186.html, April 2002.

[32] Shigang Chen and K. Nahrstedt. Distributed Quality-of-Service Routing in Ad Hoc
Networks. IEEE Journal on Selected Areas in Communications, 17(8):1488–1505, August
1999.

[33] Steven Cheung. An Efficient Message Authentication Scheme for Link State Routing. In
13th Annual Computer Security Applications Conference, December 1997.

[34] Steven Cheung and Karl Levitt. Protecting Routing Infrastructures from Denial of Service
Using Cooperative Intrusion Detection. In The 1997 New Security Paradigms Workshop,
pages 94–106, September 1998.

[35] Tom Clark. Tom Clark’s Totally Accurate Clock FTP Site. Greenbelt, Maryland. Available
at ftp://aleph.gsfc.nasa.gov/GPS/totally.accurate.clock/.

[36] Thomas Clausen, Philippe Jacquet, Anis Laouiti, Pascale Minet, Paul Muhlethaler, Amir
Qayyum, and Laurent Viennot. Optimized Link State Routing Protocol. Internet-Draft, draft-
ietf-manet-olsr-05.txt, October 2001. Work in progress.

[37] Thomas Clausen, Philippe Jacquet, Anis Laouiti, Pascale Minet, Paul Muhlethaler, Amir
Qayyum, and Laurent Viennot. Optimized Link State Routing Protocol. Internet-Draft, draft-
ietf-manet-olsr-06.txt, September 2001. Work in progress.

[38] Don Coppersmith and Markus Jakobsson. Almost Optimal Hash Sequence Traversal. In
Proceedings of the Fourth Conference on Financial Cryptography (FC ’02), Lecture Notes
in Computer Science, 2002.

[39] Mark Corner and Brian Noble. Zero-Interaction Authentication. In Proceedings of the Eighth
ACM International Conference on Mobile Computing and Networking (MobiCom 2002),
pages 1–11, September 2002.

https://www1.ietf.org/mail-archive/working-groups/manet/current/msg00186.html
https://www1.ietf.org/mail-archive/working-groups/manet/current/msg00186.html
ftp://aleph.gsfc.nasa.gov/GPS/totally.accurate.clock/

154 BIBLIOGRAPHY

[40] Nicolas Courtois, Louis Goubin, and Jacques Patarin. Flash, a fast multivariate signature
algorithm. In Progress in Cryptology — CT-RSA 2001, edited by David Naccache, number
2020 in LNCS. Springer-Verlag, April 2001.

[41] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael, March 1999.

[42] Eyal de Lara, Dan S. Wallach, and Willy Zwaenepoel. Puppeteer: Component-based
Adaptation for Mobile Computing. In Proceedings of the 3rd USENIX Symposium on Internet
Technologies and Systems, March 2001.

[43] Defense Advanced Research Projects Agency. Frequently Asked Questions v4 for BAA
01-01, FCS Communications Technology. Washington, DC. Available at http://
www.darpa.mil/ato/solicit/baa01 01faqv4.doc, October 2000.

[44] Tim Dierks and Christopher Allen. The TLS protocol version 1.0. RFC 2246, January 1999.

[45] Whitfield Diffie and Martin Hellman. New Directions in Cryptography. IEEE Transactions
on Information Theory, IT-22:644–654, November 1976.

[46] A. Dracinschi and S. Fdida. Efficient Congestion Avoidance Mechanism. In Proceedings of
the 25th Annual IEEE Conference on Local Computer Networks (LCN’00), November 2000.

[47] Rohit Dube, Cynthia D. Rais, Kuang-Yeh Wang, and Satish K. Tripathi. Signal
Stability based Adaptive Routing (SSA) for Ad-Hoc Mobile Networks. IEEE Personal
Communications, 4(1):36–45, February 1997.

[48] Donald E. Eastlake. Physical Link Security Type of Service. RFC 1455, May 1993.

[49] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures.
In Advances in Cryptology — CRYPTO ”89, edited by Gilles Brassard, pages 263–277.
Springer-Verlag, 1989. Lecture Notes in Computer Science Volume 435.

[50] Kevin Fall and Kannan Varadhan, editors. ns Notes and Documentation. The VINT
Project, UC Berkeley, LBL, USC/ISI, and Xerox PARC, November 1997. Available from
http://www-mash.cs.berkeley.edu/ns/.

[51] Sally Floyd. TCP and Explicit Congestion Notification. ACM Computer Communication
Review, 24(5):10–23, 1994.

[52] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[53] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
New Jersey, 1962.

[54] Eran Gabber and Avishai Wool. How to Prove Where You Are: Tracking the Location
of Customer Equipment. In Proceedings of the 5th ACM Conference on Computer and
Communications Security (CCS ’98), pages 142–149, November 1998.

[55] J.J. Garcia-Luna-Aceves, Chane L. Fullmer, Ewerton Madruga, David Beyer, and Thane
Frivold. Wireless Internet Gateways (WINGS). In Proceedings of the Military
Communications Conference (MILCOM 1997), pages 1271–1276, November 1997.

[56] Brian Gladman. Cryptography Technology: Implementations of AES (Rijndael) in
C/C++ and Assembler, June 2002. Available at http://fp.gladman.plus.com/
cryptography technology/rijndael/.

http://www.darpa.mil/ato/solicit/baa01_01faqv4.doc
http://www.darpa.mil/ato/solicit/baa01_01faqv4.doc
http://www-mash.cs.berkeley.edu/ns/
http://fp.gladman.plus.com/cryptography_technology/rijndael/
http://fp.gladman.plus.com/cryptography_technology/rijndael/

BIBLIOGRAPHY 155

[57] Tom Goff, Nael B. Abu-Ghazaleh, Dhananjay S. Phatak, and Ridvan Kahvecioglu.
Preemptive Routing in Ad Hoc Networks. In Proceedings of the Seventh Annual International
Conference on Mobile Computing and Networking (MobiCom 2001), pages 43–52, July
2001.

[58] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, October 1986.

[59] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography. Summer Course
“Cryptography and Computer Security” at MIT, 1996–1999, August 1999.

[60] Ajay Chandra V. Gummalla and John O. Limb. Wireless Medium Access Control
Protocols. IEEE Communications Surveys & Tutorials, Second Quarter 2000. Available
at http://www.comsoc.org/livepubs/surveys/.

[61] Piyush Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on
Information Theory, 46(2):388–404, March 2000.

[62] Zygmunt J. Haas. A Routing Protocol for the Reconfigurable Wireless Network. In
Proceedings of the 1997 IEEE 6th International Conference on Universal Personal
Communications Record: Bridging the Way to the 21st Century (ICUPC ’97), volume 2,
pages 562–566, October 1997.

[63] Zygmunt J. Haas and Marc R. Pearlman. The Performance of Query Control Schemes
for the Zone Routing Protocol. In Proceedings of the ACM SIGCOMM ’98 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,
pages 167–177, June 1998.

[64] Neil M. Haller. The S/KEY One-Time Password System. In Proceedings of the 1994
Symposium on Network and Distributed Systems Security (NDSS ’94), pages 151–157,
February 1994.

[65] Ralf Hauser, Antoni Przygienda, and Gene Tsudik. Reducing the Cost of Security in Link
State Routing. In Proceedings of the 1997 Symposium on Network and Distributed Systems
Security (NDSS ’97), pages 93–99, February 1997.

[66] Ralf Hauser, Michael Steiner, and Michael Waidner. Micro-Payments based on iKP.
Research Report 2791 (# 89269), IBM Research, February 1996.

[67] Ralf Hauser and Gene Tsudik. On Shopping Incognito. In Second USENIX Workshop on
Electronic Commerce, November 1996.

[68] C. Hedrick. Routing Information Protocol. RFC 1058, November 1988.

[69] Andy Heffernan. Protection of BGP Sessions via the TCP MD5 Signature Option. RFC 2385,
August 1998.

[70] Helion Technology Ltd. High performance Solutions in Silicon — MD5 core. Cambridge,
England. Available at http://www.heliontech.com/core5.htm.

[71] Ying-Kwei Ho and Ru-Sheng Liu. On-Demand QoS-Based Routing Protocol for Ad Hoc
Mobile Wireless Networks. In Proceedings of the Fifth IEEE Symposium on Computers and
Communications, 2000 (ISCC 2000), pages 560–565, July 2000.

http://www.comsoc.org/livepubs/surveys/
http://www.heliontech.com/core5.htm

156 BIBLIOGRAPHY

[72] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NSS: An NTRU Lattice-Based
Signature Scheme. In Advances in Cryptology — EUROCRYPT ’2001, edited by Birgit
Pfitzmann, number 2045 in Lecture Notes in Computer Science. Springer-Verlag, 2001.

[73] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Efficient Security Mechanisms for
Routing Protocols. In Proceedings of the 2003 Symposium on Network and Distributed
Systems Security (NDSS ’03), February 2003.

[74] Yih-Chun Hu and David B. Johnson. Caching Strategies in On-Demand Routing Protocols
for Wireless Ad Hoc Networks. In Proceedings of the Sixth Annual International Conference
on Mobile Computing and Networking (MobiCom 2000), pages 231–242, August 2000.

[75] Yih-Chun Hu and David B. Johnson. Implicit Source Routing in On-Demand Ad Hoc
Network Routing. In Proceedings of the Second Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2001), pages 1–10, October 2001.

[76] Yih-Chun Hu and David B. Johnson. Ensuring Cache Freshness in Source-Routed Ad Hoc
Network Routing Protocols. In Proceedings of the Workshop on Principles of Mobile
Computing (POMC 2002), pages 25–30. ACM, October 2002.

[77] Yih-Chun Hu, David B. Johnson, and David A. Maltz. Flow State in the Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft, draft-ietf-manet-dsrflow-
00.txt, February 2001. Work in progress.

[78] Yih-Chun Hu, David B. Johnson, and Adrian Perrig. SEAD: Secure Efficient Distance
Vector Routing in Mobile Wireless Ad Hoc Networks. In Fourth IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA ’02), pages 3–13, June 2002.

[79] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks. In Proceedings of the Eighth Annual
International Conference on Mobile Computing and Networking (MobiCom 2002), pages
12–23, September 2002.

[80] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Rushing Attacks and Defense in
Wireless Ad Hoc Network Routing Protocols. Technical Report TR01-403, Department of
Computer Science, Rice University, June 2002.

[81] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Packet Leashes: A Defense
against Wormhole Attacks in Wireless Ad Hoc Networks. In Proceedings of the Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2003). IEEE, April 2003.

[82] Jean-Pierre Hubaux, Levente Buttyán, and Srdjan Čapkun. The Quest for Security in Mobile
Ad Hoc Networks. In Proceedings of the Second Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc 2001), pages 146–155, October 2001.

[83] P’ei hung Chuang, Hsiao kuang Wu, and Ming kuang Liao. Dynamic QoS Allocation
for Multimedia Ad Hoc Wireless Networks. In Proceedings of the Eighth International
Conference on Computer Communications and Networks, pages 480–485, October 1999.

[84] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11-1997. The
Institute of Electrical and Electronics Engineers, New York, New York, 1997.

BIBLIOGRAPHY 157

[85] IETF RMT Working Group. Reliable Multicast Transport (RMT) Charter. Available at
http://www.ietf.org/html.charters/rmt-charter.html.

[86] Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, and Mikael Degermark.
Scenario-based Performance Analysis of Routing Protocols for Mobile Ad-hoc Networks.
In Proceedings of the Fifth Annual International Conference on Mobile Computing and
Networking (MobiCom 1999), pages 195–206, August 1999.

[87] David B. Johnson. Routing in Ad Hoc Networks of Mobile Hosts. In Proceedings of the
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’94), pages 158–
163, December 1994.

[88] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc Wireless
Networks. In Mobile Computing, edited by Tomasz Imielinski and Hank Korth, chapter 5,
pages 153–181. Kluwer Academic Publishers, 1996.

[89] David B. Johnson, David A. Maltz, and Josh Broch. The Dynamic Source Routing Protocol
for Multihop Wireless Ad Hoc Networks. In Ad Hoc Networking, edited by Charles E.
Perkins, chapter 5, pages 139–172. Addison-Wesley, 2001.

[90] David B. Johnson, David A. Maltz, Yih-Chun Hu, and Jorjeta G. Jetcheva. The Dynamic
Source Routing Protocol for Mobile Ad Hoc Networks. Internet-Draft, draft-ietf-manet-dsr-
07.txt, February 2002. Work in progress.

[91] John Jubin and Janet D. Tornow. The DARPA Packet Radio Network Protocols. Proceedings
of the IEEE, 75(1):21–32, January 1987.

[92] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile networking for
Smart Dust. In International Conference on Mobile Computing and Networking (MobiCom
’99), pages 271–278, August 1999.

[93] Ad Kamerman and Leo Monteban. WaveLAN-II: A High-Performance Wireless LAN for
the Unlicensed Band. Bell Labs Technical Journal, pages 118–133, Summer 1997.

[94] Phil Karn. MACA — A New Channel Access Method for Packet Radio. In Proceedings of
the 9th Computer Networking Conference, pages 134–140, September 1990.

[95] Dean Kawaguchi and Sarosh Vesuna. Symbol Technologies, Inc. Automates Ssystem-
To-Gates Design Flow For Wireless LAN ASIC with COSSAP and Behavioral Compiler.
Mountain View, California. Available at http://www.synopsys.com/news/pubs/
bctb/sep98/frame art1.html, September 1998.

[96] Stephen Kent, Charles Lynn, Joanne Mikkelson, and Karen Seo. Secure Border Gateway
Protocol (S-BGP) — Real World Performance and Deployment Issues. In Proceedings of the
2000 Symposium on Network and Distributed Systems Security (NDSS ’00), pages 103–116,
February 2000.

[97] Minkyong Kim and Brian Noble. Mobile Network Estimation. In Proceedings of the Seventh
Annual International Conference on Mobile Computing and Networking (MobiCom 2001),
pages 298–309, July 2001.

[98] Tim Kindberg, Kan Zhang, and Narendar Shankar. Context Authentication Using
Constrained Channels. In Proceedings of the Fourth IEEE Workshop on Mobile Computing
Systems and Applications (WMCSA 2002), pages 14–21, June 2002.

http://www.ietf.org/html.charters/rmt-charter.html
http://www.synopsys.com/news/pubs/bctb/sep98/frame_art1.html
http://www.synopsys.com/news/pubs/bctb/sep98/frame_art1.html

158 BIBLIOGRAPHY

[99] Young-Bae Ko and Nitin Vaidya. Location-Aided Routing (LAR) in Mobile Ad Hoc
Networks. In Proceedings of the Fourth Annual International Conference on Mobile
Computing and Networking (MobiCom 1998), pages 66–75, October 1998.

[100] John Kohl and B. Clifford Neuman. The Kerberos Network Authentication Service (V5).
RFC 1510, September 1993.

[101] Jiejun Konh, Petros Zerfos, Haiyun Luo, Songwu Lu, and Lixia Zhang. Providing Robust
and Ubiquitous Security Support for Mobile Ad-Hoc Networks. In Ninth International
Conference on Network Protocols (ICNP ’01), pages 251–260, November 2001.

[102] B. Kumar. Integration of Security in Network Routing Protocols. SIGSAC Review, 11(2):18–
25, 1993.

[103] Leslie Lamport. Password authentication with insecure communication. Communications of
the ACM, 24(11):770–772, November 1981.

[104] Tony Larsson. Personal communication, February 8, 2000.

[105] Seoung-Bum Lee and Andrew T. Campbell. INSIGNIA: In-Band Signaling Support for QoS
in Mobile Ad Hoc Networks. In Proceedings of the 5th International Workshop on Mobile
Multimedia Communications (MoMuC 98), October 1998.

[106] Arjen K. Lenstra and Eric R. Verheul. Selecting Cryptographic Key Sizes. Journal
of Cryptology: The Journal of the International Association for Cryptologic Research,
14(4):255–293, September 2001. Available at http://www.cryptosavvy.com/.

[107] Ben Liang. Personal communication, February 4, 2000.

[108] Chunhung Richard Lin and Jain-Shing Liu. QoS Routing in Ad Hoc Wireless Networks.
IEEE Journal on Selected Areas in Communications, 17(8):1426–1438, August 1999.

[109] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding BGP Misconfiguration.
In Proceedings of the SIGCOMM ’02 Conference on Communications Architectures,
Protocols and Applications, August 2002.

[110] Gary Scott Malkin. RIP Version 2 Protocol Applicability Statement. RFC 1722, November
1994.

[111] Gary Scott Malkin. RIP Version 2. RFC 2453, November 1998.

[112] David A. Maltz. Resource Management in Multi-hop Ad Hoc Networks. Technical Report
CMU-CS-00-150, School of Computer Science, Carnegie Mellon University, 1999.

[113] David A. Maltz, Josh Broch, Jorjeta Jetcheva, and David B. Johnson. The Effects of On-
Demand Behavior in Routing Protocols for Multi-Hop Wireless Ad Hoc Networks. IEEE
Journal on Selected Areas in Communications, 17(8):1439–1453, aug 1999.

[114] David A. Maltz, Josh Broch, and David B. Johnson. Quantitative Lessons From a Full-
Scale Multi-Hop Wireless Ad Hoc Network Testbed. In Proceedings of the IEEE Wireless
Communications and Networking Conference, September 2000.

[115] Mahesh K. Marina and Samir R. Das. Performance of Route Caching Strategies in Dynamic
Source Routing. In Proceedings of the 2nd Wireless Networking and Mobile Computing
(WNMC), April 2001.

http://www.cryptosavvy.com/

BIBLIOGRAPHY 159

[116] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker. Mitigating Routing Misbehaviour in
Mobile Ad Hoc Networks. In Proceedings of the Sixth Annual International Conference on
Mobile Computing and Networking (MobiCom 2000), pages 255–265, August 2000.

[117] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP Selective
Acknowledgment Options. RFC 2018, October 1996.

[118] Stephen Matyas, Carl Meyer, and Jonathan Oseas. Generating Strong One-Way Functions
with Cryptographic Algorithm. 27:5658–5659, 1985.

[119] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John S. Quarterman. The
Design and Implementation of the 4.4BSD Operating System. Addison-Wesley, Reading,
Massachusetts, 1996.

[120] Alfred J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,
July 1993.

[121] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press Series on Discrete Mathematics and its Applications. CRC Press,
1997.

[122] Ralph C. Merkle. Protocols for Public Key Cryptosystems. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages 122–133, April 1980.

[123] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Advances in Cryptology — CRYPTO ”87, edited by Carl Pomerance, pages 369–378, Berlin,
1987. Springer-Verlag. Lecture Notes in Computer Science Volume 293.

[124] Ralph C. Merkle. A certified digital signature. In Advances in Cryptology — CRYPTO ”89,
edited by Gilles Brassard, pages 218–238, Berlin, 1989. Springer-Verlag. Lecture Notes in
Computer Science Volume 435.

[125] Microsoft Windows NetMeeting 3.0 Resource Kit. Available at http://www.
microsoft.com/windows/NetMeeting/Corp/reskit/.

[126] David L. Mills. A Computer-Controlled LORAN-C Receiver for Precision Timekeeping.
Technical Report 92-3-1, Department of Electrical and Computer Engineering, University of
Delaware, March 1992.

[127] David L. Mills. A Precision Radio Clock for WWV Transmissions. Technical Report 97-8-1,
Department of Electrical and Computer Engineering, University of Delaware, August 1997.

[128] The Monarch Project. Rice Monarch Project: Mobile Networking Architectures, project
home page. Available at http://www.monarch.cs.rice.edu/.

[129] Shree Murthy and J. J. Garcia-Luna-Aceves. An Efficient Routing Protocol for Wireless
Networks. Mobile Networks and Applications, 1(2):183–197, 1996.

[130] Thomas Narten, Erik Nordmark, and William Allen Simpson. Neighbor Discovery for IP
Version 6 (IPv6). RFC 2461, December 1998.

[131] National Institute of Standards and Technology. Secure Hash Standard, May 1993. Federal
Information Processing Standards (FIPS) Publication 180-1.

[132] Kathleen Nichols, Steven Blake, Fred Baker, and David L. Black. Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474, December
1998.

http://www.microsoft.com/windows/NetMeeting/Corp/reskit/
http://www.microsoft.com/windows/NetMeeting/Corp/reskit/
http://www.monarch.cs.rice.edu/

160 BIBLIOGRAPHY

[133] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric Tilton, Jason Flinn,
and Kevin R. Walker. Agile Application-Aware Adaptation for Mobility. In Proceedings of
the 16th ACM Symposium on Operating System Principles, October 1997.

[134] Richard G. Ogier, Fred L. Templin, Bhargav Bellur, and Mark G. Lewis. Topology Broadcast
Based on Reverse-Path Forwarding (TBRPF). Internet-Draft, draft-ietf-manet-tbrpf-05.txt,
March 2002. Work in progress.

[135] OpenSSL Project team. OpenSSL, May 2000. http://www.openssl.org/.

[136] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure Routing for Mobile Ad Hoc
Networks. In SCS Communication Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002), January 2002.

[137] Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing algorithm for
mobile wireless networks. In Proceedings of the Sixteenth Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM ’97), pages 1405–1413, April
1997.

[138] Torben Pryds Pedersen. Electronic Payments of Small Amounts. In Security Protocols —
International Workshop, edited by Mark Lomas, volume 1189 of Lecture Notes in Computer
Science, pages 59–68. Springer-Verlag, April 1997.

[139] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. Ad Hoc On Demand
Distance Vector (AODV) Routing. Internet-Draft, draft-ietf-manet-aodv-10.txt, January
2002. Work in progress.

[140] Charles E. Perkins and Pravin Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. In Proceedings of the
SIGCOMM ’94 Conference on Communications Architectures, Protocols and Applications,
pages 234–244, August 1994. A revised version of the paper is available from
http://www.cs.umd.edu/projects/mcml/papers/Sigcomm94.ps.

[141] Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On-Demand Distance Vector Routing. In
Proceedings of the Second IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA’99), pages 90–100, February 1999.

[142] Charles E. Perkins, Elizabeth M. Royer, and Samir R. Das. Quality of Service for Ad hoc
On-Demand Distance Vector Routing. Internet-Draft, draft-ietf-manet-aodvqos-00.txt, July
2000. Work in progress.

[143] Radia Perlman. Interconnections: Bridges and Routers. Addison-Wesley, 1992.

[144] Adrian Perrig. The BiBa One-Time Signature and Broadcast Authentication Protocol. In
Proceedings of the Eighth ACM Conference on Computer and Communications Security
(CCS-8), pages 28–37, November 2001.

[145] Adrian Perrig, Ran Canetti, Dawn Song, and J. D. Tygar. Efficient and Secure Source
Authentication for Multicast. In Proceedings of the 2001 Symposium on Network and
Distributed Systems Security (NDSS ’01), February 2001.

[146] Adrian Perrig, Ran Canetti, J. D. Tygar, and Dawn Song. The TESLA Broadcast
Authentication Protocol. RSA CryptoBytes, 5 (Summer), 2002.

http://www.openssl.org/
http://www.cs.umd.edu/projects/mcml/papers/Sigcomm94.ps

BIBLIOGRAPHY 161

[147] Adrian Perrig, Ran Canetti, J.D. Tygar, and Dawn Song. Efficient Authentication and Signing
of Multicast Streams over Lossy Channels. In IEEE Symposium on Security and Privacy,
May 2000.

[148] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Tygar. SPINS:
Security Protocols for Sensor Networks. In Proceedings of the Seventh Annual International
Conference on Mobile Computing and Networking (MobiCom 2001), Rome, Italy, July 2001.

[149] Raymond L. Pickholtz, Donald L. Schilling, and Laurence B. Milstein. Theory of
Spread Spectrum Communications — A Tutorial. IEEE Transactions on Communications,
30(5):855–884, May 1982.

[150] Jon Postel. Transmission Control Protocol: DARPA Internet Program Protocol Specification.
RFC 793, September 1981.

[151] Guillaume Poupard and Jacques Stern. Security Analysis of a Practical “on the fly”
Authentication and Signature Generation. In Advances in Cryptology — EUROCRYPT ’98,
edited by Kaisa Nyberg, number 1403 in Lecture Notes in Computer Science, pages 422–436.
Springer-Verlag, 1998.

[152] Guillaume Poupard and Jacques Stern. On The Fly Signatures based on Factoring. In 6th
ACM Conference on Computer and Communications Security, pages 37–45, November 1999.

[153] Proxim, Inc. Data sheet for Proxim Harmony 802.11a CardBus Card. Sunnyvale, CA.
Available at http://www.proxim.com/products/all/harmony/docs/ds/
harmony 11a cardbus.pdf.

[154] Amir Qayyum, Laurent Viennot, and Anis Laouiti. Multipoint Relaying: An Efficient
Technique for flooding in Mobile Wireless Networks. Technical Report Research Report
RR-3898, INRIA, February 2000.

[155] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The Addition of Explicit Congestion
Notification (ECN) to IP. RFC 3168, September 1991.

[156] K. K. Ramakrishnan and Raj Jain. A Binary Feedback Scheme for Congestion Avoidance
in Computer Networks with a Connectionless Network Layer. In Proceedings of the ACM
SIGCOMM ’98 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 303–313, 1988.

[157] Bhaskaran Raman, Pravin Bhagwat, and Srinivasan Seshan. Arguments for Cross-Layer
Optimizations in Bluetooth Scatternets. In Proceedings of the 2001 Symposium on
Applications and the Internet (SAINT 2001), January 2001.

[158] Yakov Rekhter and Tony Li. A Border Gateway Protocol 4 (BGP-4). RFC 1771, March
1995.

[159] Joyce K. Reynolds and Jon Postel. Assigned Numbers. RFC 1700, October 1994.

[160] Leonid Reyzin and Natan Reyzin. Better than Biba: Short One-Time Signatures with Fast
Signing and Verifying. In Information Security and Privacy — 7th Australasian Conference
(ACSIP 2002), edited by Jennifer Seberry, number 2384 in Lecture Notes in Computer
Science. Springer-Verlag, July 2002.

[161] Ronald L. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, April 1992.

http://www.proxim.com/products/all/harmony/docs/ds/harmony_11a_cardbus.pdf
http://www.proxim.com/products/all/harmony/docs/ds/harmony_11a_cardbus.pdf

162 BIBLIOGRAPHY

[162] Ronald L. Rivest and Adi Shamir. PayWord and MicroMint: Two simple micropayment
schemes. In Security Protocols — International Workshop, edited by Mark Lomas, volume
1189 of Lecture Notes in Computer Science, pages 69–88. Springer-Verlag, April 1997.

[163] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

[164] Pankaj Rohatgi. A Compact and Fast Hybrid Signature Scheme for Multicast Packet
Authentication. In Proceedings of the 6th ACM Conference on Computer and
Communications Security (CCS ’99), pages 93–100, November 1999.

[165] Eric C. Rosen and Yakov Rekhter. BGP/MPLS VPNs. RFC 2547, March 1999.

[166] Eric C. Rosen, Arun Viswanathan, and Ross Callon. Multiprotocol Label Switching
Architecture. RFC 3031, January 2001.

[167] Miguel Sanchez. RE: Mobility pattern in a MANET, June 25, 1998. IETF MANET Mailing
List, Message-ID: <000a01bda055$d84f9380$11352a9e@msanchez.disca.upv.es>.

[168] Miguel Sanchez. Re: Node Movement Models in Ad hoc, July 15, 1999. IETF MANET
Mailing List, Message-ID: <378DC8F6.B01CF351@disca.upv.es>.

[169] Miguel Sanchez. Personal communication, February 1, 2000.

[170] Kimaya Sanzgiri, Bridget Dahill, Brian Neil Levine, Elizabeth Royer, and Clay Shields. A
Secure Routing Protocol for Ad hoc Networks. In Proceedings of the 10th IEEE International
Conference on Network Protocols (ICNP ’02), November 2002.

[171] Claus P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3):161–174, 1991.

[172] Adi Shamir and Yael Tauman. Improved Online/Offline Signature Schemes. In Advances
in Cryptology — CRYPTO ’2001, edited by Joe Kilian, number 2139 in Lecture Notes in
Computer Science, pages 355–367. Springer-Verlag, 2001.

[173] Prasun Sinha, Raghupathy Sivakumar, and Bharghavan Vaduvur. Enhancing Ad Hoc
Routing with Dynamic Virtual Infrastructures. In Proceedings of the Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM 2001), April
2001.

[174] Karen E. Sirois and Stephen T. Kent. Securing the Nimrod Routing Architecture.
In Proceedings of the 1997 Symposium on Network and Distributed Systems Security
(NDSS ’97), February 1997.

[175] R. Sivakumar, P. Sinha, and V. Bharghavan. CEDAR: A Core-Extraction Distributed Ad Hoc
Routing Algorithm. IEEE Journal on Selected Areas in Communications, 17(8):1454–1465,
August 1999.

[176] Bradley R. Smith and J.J. Garcia-Luna-Aceves. Securing the Border Gateway Routing
Protocol. In Proceedings of Global Internet’96, pages 81–85, November 1996.

[177] Bradley R. Smith, Shree Murthy, and J.J. Garcia-Luna-Aceves. Securing Distance Vector
Routing Protocols. In Proceedings of the 1997 Symposium on Network and Distributed
Systems Security (NDSS ’97), pages 85–92, February 1997.

BIBLIOGRAPHY 163

[178] Frank Stajano and Ross Anderson. The Resurrecting Duckling: Security Issues for Ad-hoc
Wireless Networks. In Proceedings of the 7th International Workshop on Security Protocols,
volume 1796 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

[179] Andrew S. Tanenbaum. Computer Networks. Prentice Hall, New Jersey, third edition, 1996.

[180] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall, and
Gary J. Minden. A Survey of Active Network Research. IEEE Communications Magazine,
35(1):80–86, January 1997.

[181] Chai-Keong Toh. Associativity Based Routing for Ad-Hoc Mobile Networks. Wireless
Personal Communications Journal, Special Issue on Mobile Networking and Computing
Systems, 4(2):103–139, March 1997.

[182] Joseph D. Touch. Performance Analysis of MD5. In Proceedings of the ACM SIGCOMM
’95 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pages 77–86, August 1995.

[183] Trimble Navigation Limited. Data Sheet and Specifications for Trimble
Thunderbolt GPS Disciplined Clock. Sunnyvale, California. Available at
http://www.trimble.com/thunderbolt.html.

[184] Aristotelis Tsirigos and Zygmunt J. Haas. Multipath Routing in Mobile Ad Hoc Networks
or How to Route in the Presence of Topological Changes. In Proceedings of the Military
Communications Conference (MILCOM 2001), pages 878–883, October 2001.

[185] Damla Turgut, Sajal K. Das, and Mainak Chatterjee. Longevity of Routes in Mobile
Ad hoc Networks. In Proceedings of the IEEE 53rd Vehicular Technology Conference
(VTC Spring 2001), 2001.

[186] Richard von Mises. Über Aufteilungs- und Besetzungswahrscheinlichkeiten. Revue de la
Faculté des Sciences de l’Université d’Istanbul, 4:145—163, 1939.

[187] Alec Woo. CS294-8 Deeply Networked Systems Mote Documentation and Development
Information. Berkeley, CA. Available at http://www.cs.berkeley.edu/˜awoo/
smartdust/.

[188] Hannan Xiao, W.K.G. Seah, A. Lo, and K.C. Chua. A Flexible Quality of Service Model
for Mobile Ad-Hoc Networks. In Proceedings of the IEEE 51st Vehicular Technology
Conference (VTC Spring 2000), pages vol.1 445–449, May 2000.

[189] Seung Yi, Prasad Naldurg, and Robin Kravets. Security-Aware Ad hoc Routing for Wireless
Networks. Technical Report UIUCDCS-R-2001-2241, Department of Computer Science,
University of Illinois at Urbana-Champaign, August 2001.

[190] Manel Guerrero Zapata and N. Asokan. Securing Ad Hoc Routing Protocols. In Proceedings
of the ACM Workshop on Wireless Security (WiSe), pages 1–10, September 2002.

[191] Kan Zhang. Efficient Protocols for Signing Routing Messages. In Proceedings of the 1998
Symposium on Network and Distributed Systems Security (NDSS ’98), San Diego, California,
March 1998.

[192] Lidong Zhou and Zygmunt J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine,
13(6):24–30, November/December 1999.

http://www.trimble.com/thunderbolt.html
http://www.cs.berkeley.edu/~awoo/smartdust/
http://www.cs.berkeley.edu/~awoo/smartdust/

	Illustrations
	List of Tables
	Acknowledgements
	Introduction
	Why is Service Important in Ad Hoc Networks?
	Description of Several Ad Hoc Network Routing Protocols
	Distance-Vector Routing Protocols
	Dynamic Source Routing (DSR)
	Ad-hoc On-Demand Distance Vector (AODV)
	Other On-Demand and Periodic Protocols

	Thesis Contributions
	Thesis Overview

	Improving Service in Trusted Environments
	Using Link-State Caching in Ad Hoc Networks
	Caching Strategy Design Choices
	Cache Structure
	Cache Capacity
	Cache Timeout

	Caching Algorithms Studied
	Path Caches
	Link Caches
	Omniscient Expiration Cache

	Methodology
	Simulator
	Communication Model Used
	DSR Performance Metrics

	Mobility Metrics
	Mobility Models Studied
	Mobility Model Specifications
	Evaluation of Mobility Metrics

	Simulation Results
	Overview of the Results
	Effects of Cache Structure
	Effects of Cache Capacity
	Effects of Cache Timeout

	Related Work
	Chapter Summary

	Implicit Source Routes
	Implicit Source Routing Operation
	Correctness

	Evaluation Methodology
	Results
	Related Work
	Chapter Summary

	Exploiting MAC Layer Information
	MAC Layer Utilization Information
	Measuring MAC Layer Utilization
	Uses within the Network Layer
	Uses within the Transport Layer
	Uses within Other Higher Layer Protocols

	Evaluation within DSR and TCP
	Modifications to DSR Route Discovery
	Modifications to DSR Packet Salvaging
	Use within TCP

	Evaluation Methodology
	Results
	Suppressing Salvaging
	Suppressing Route Discovery
	TCP Fairness

	A Quality-of-Service Demonstration
	Preemptive Route Maintenance
	Using SNR to Limit Route Discovery
	Per-Hop Flow State Maintenance
	Demonstration Design and Configuration
	Protocol Implementation
	Demonstration Results
	Related Work
	Demo Summary

	Chapter Summary

	Improving Service in Untrusted Environments
	Security in Ad Hoc Networks
	Security
	Hash Functions
	Hash Trees
	One-Way Hash Chains
	The TESLA Broadcast Authentication Protocol
	Hash to Obtain Random Subset (HORS)
	Amortized Authentication

	Ad Hoc Network Routing Security
	Attacker Model
	General Attacks on Ad Hoc Network Routing Protocols
	Goals in Securing Ad Hoc Network Routing

	SEAD: Secure Efficient Distance Vector Routing
	Distance Vector Routing and DSDV
	Assumptions
	Attacks
	Securing Distance Vector Routing
	Basic Design of SEAD
	Metric and Sequence Number Authenticators
	Neighbor Authentication

	Evaluation
	Security Analysis
	Simulation Evaluation Methodology
	Simulation Results

	Related Work
	Chapter Summary

	Ariadne: A Secure On-Demand Routing Protocol
	Assumptions
	Network Assumptions
	Node Assumptions
	Security Assumptions and Key Setup

	Ariadne
	Notation
	Design Goals
	Basic Ariadne Route Discovery
	Basic Ariadne Route Maintenance
	Thwarting Effects of Routing Misbehavior
	Thwarting Malicious Route Request Floods
	An Optimization for Ariadne

	Ariadne Evaluation
	Simulation-Based Performance Evaluation
	Security Analysis

	Related Work
	Chapter Summary

	Efficient Mechanisms for Securing Routing Protocols
	Assumptions
	Node Assumptions
	Security Assumptions and Key Setup

	Mechanisms for Securing Distance Vector Protocols
	Remaining Challenges in Securing Distance Vector Routing
	Hash Tree Chains for Preventing Same-Distance Fraud
	Tree-Authenticated One-Way Chains
	The MW-Chains Mechanism
	Skipchains for Faster Hash Chain Authentication
	Efficiency Evaluation
	Bootstrapping New Chains and Trees
	Combining Our Primitives

	A Mechanism for Securing Path-Vector Protocols
	Overview of Path Vector Routing
	Cumulative Authentication
	Performance Evaluation

	Chapter Summary

	Packet Leashes: A Defense against Wormhole Attacks
	Problem Statement
	Assumptions and Notation
	Detecting Wormhole Attacks
	Geographical Leashes
	Temporal Leashes
	Discussion

	Temporal Leashes and the TIK Protocol
	Temporal Leash Construction Details
	TIK Protocol Description
	MAC Layer Considerations

	Evaluation
	TIK Performance
	Security Analysis
	Comparison Between Geographic and Temporal Leashes

	Related Work
	Conclusions

	Rushing Attacks and Defense
	The Rushing Attack against Ad Hoc Network Routing Protocols
	Assumptions
	Network Assumptions
	Security Assumptions and Key Setup

	Secure Routing Requirements and Protocol
	Notation
	Secure Neighbor Detection
	Secure Route Discovery
	Integrating Secure Route Discovery with DSR
	Integrating Secure Route Discovery with AODV
	Integrating Secure Route Discovery with Secure Ad Hoc Network Routing Protocols

	Evaluation
	Simulation Evaluation
	Security Analysis

	Related Work
	Chapter Summary

	Securing QoS Routing in Ad Hoc Networks
	QoS-Guided Route Discovery
	Mechanisms for Securing QoS Routing
	Broadcast Authentication for Request Packets
	Enforcing Monotonicity
	Limiting Overhead of QoS-Guided Route Discovery

	Related Work
	Chapter Summary

	Thesis Summary and Conclusions
	Conclusions

	Bibliography

