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Abstract

Assuring and evolving concurrent programs requires understanding the concurrency-

related design decisions used in their implementation. In Java-style shared-memory

programs, these decisions include which state is shared, how access to it is regulated,

and the policy that distinguishes desired concurrency from race conditions. Source

code often does not reveal these design decisions because they rarely have purely local

manifestations in the code, or because they cannot be inferred from code. Many pro-

grammers believe it is too difficult to explicate the models in ordinary practice. As a

result, this design intent is usually not expressed, and it is therefore generally infeasible

to assure that concurrent programs are free of race conditions.

This thesis is about a practicable approach to capturing and expressing design in-

tent, and, through the use of annotations and composable static analyses, assuring con-

sistency of code and intent as both evolve. We use case studies from production Java

code and a prototype analysis tool to explore the costs and benefits of a new annotation-

based approach for expressing design intent. Our annotations express “mechanical”

properties that programmers must already be considering, such as lock–state associ-

ations, uniqueness of references, and conceptual aggregations of state. Our analyses

reveal race conditions in a variety of case study samples which were drawn from li-

brary code and production open source projects.

We developed a prototype tool that embodies static analysis techniques for assuring

consistency between code and models (expressed as code annotations). Our experience

with the tool provides some preliminary evidence of the practicability of our approach

for ordinary programmers on deadlines. The dominant design consideration for the

tool was adherence to the principle of “early gratification”—some assurance can be

obtained with minimal or no annotation effort, and additional increments of annotation

are rewarded with additional increments of assurance.

The novel technical features of this approach include (1) regions as flexible ag-

gregations of state that can cross object boundaries, (2) a region-based object-oriented

effects system; (3) analysis to track the association of locks with regions, (4) policy

descriptions for allowable method interleavings, and (5) an incremental process for

inserting, validating, and exploiting annotations.
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Chapter 1

Introduction

Reasoning about concurrent programs is a challenge for both programmers and software tool de-

signers: What data is shared? Is it accessed safely? What locks should be held when the data is

accessed? A fundamental aspect of the challenge of concurrency is that the information needed to

understand a concurrent program is non-local—that is, there is no single place in the code where

there is an expression of the design commitments necessary to ensure safe concurrency. Because

many of these design commitments are not expressed, programmers developing and evolving con-

current code may be more likely to wander from the original design, resulting in concurrency-

specific errors, such as race conditions, deadlock, and failure to comply with threading conventions

of library API’s. To make matters worse, when errors occur, they may be hard to localize. They may

appear to be manifest in portions of code that, in fact, correctly apply the discipline. Concurrent

programs are thus hard to understand and reason about, hard to evolve, and hard to assure, test, and

debug.

1.1 Missing Design Information

The absence of explicit concurrency-related design information means that programmers risk intro-

ducing hard-to-find concurrency-errors during maintenance and evolution because they are forced

to infer or make guesses about non-local design attributes such as lock–state association, aliasing,

locking responsibility, and lock order. For any given lock, for example, the programmer must guess

what is the state it protects. Inspection of the extant critical sections defined by that lock can suggest

which variables are protected by the lock. But what about the objects referred to by those variables?

Is their state separately protected? Are the references unaliased, and if so is the uniquely referenced
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object considered to be part of the same abstraction as the referring object? What about state that

is sometimes accessed in a critical section, but sometimes not: is it meant to be protected by a lock

and the program is unsafe, or are the accesses from critical sections only coincidental? For any pair

of locks, in what order should they be acquired to prevent deadlock?

For any particular segment of state, source code analysis can help the programmer deduce this

information from the code, but it requires inspecting all the portions of the code that might access

that state. Such comprehensive inspection is necessary, for example, because

• A thread that accesses shared data outside of a critical section may produce data races with

threads that correctly access the data from within a critical section, rendering the attempts at

mutual exclusion of the correctly implemented threads irrelevant.

• Object orientation distributes conceptual resource state across multiple objects. To effectively

reason about thread-safety due to object-orientation, the programmer must have a good un-

derstanding of the design intent behind class and object relationships, in particular whether

the state stored across many objects, of possibly different classes, is meant to be aggregated

into a single abstraction.

• A resource cannot always be reasoned about in the absence of its clients because the correct

usage of the resource may depend on the design goals of its client. For example, the length,

get, and remove methods of java.util.Vector do not interfere with each other because

the implementation of Vector uses locks. But two threads sharing a Vectormust coordinate

at a higher level—one thread removing an element can interfere with another thread iterating

over a vector.

This non-local character of lock–state design information frustrates the later recovery of program-

mer design intent. Comprehensiveness also goes against the practices of using libraries and com-

ponent-based architectures where the intent is to simplify program understanding by introducing

abstraction boundaries. In addition, it is frequently the case that the internals of libraries and compo-

nents are hidden from the client programmer, making it difficult to perform comprehensive analysis,

particularly when objects are passed through abstraction boundaries.

Programmers must also guess about whether a reference is meant to be aliased, particularly in

object-oriented programs. For a programmer to know that a reference to an object is unaliased is

highly advantageous. Programmers frequently make this assumption, for example, when building

data structures from aggregations of objects because it allows the structure to be destructively al-

tered or objects to be reused internally without affecting clients of the data structure. In a concurrent

program, the encapsulation that may be obtained by uniqueness simplifies reasoning about safety
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because it limits the segments of code that might alter the uniquely referenced object. If we know

that a variable holds a unique reference to an object then we know that that object cannot be refer-

enced concurrently except through the encapsulation. Thus it is enough to rely on the encapsulation

to protect access to the reference and the referenced object.

Unfortunately, because aliasing is a non-local design attribute, reasoning about whether a ref-

erence intended to be unaliased is actually unaliased is non-trivial, and the property is easy to in-

validate accidently. Inspection of the code can provide clues about the intent, but, once again, all

uses of the field must be examined, and it is difficult to determine if an alias might inadvertently be

“leaked.” A programmer trying to understand the code and its design during an inspection process

might think that such leaks are intentional and thus assume the reference is intended to be aliased.

Explicit expression of whether a variable is intended to be unaliased would aid a programmer’s

understanding during maintenance and evolution, and would also enable static analysis to assure

that usage is consistent with intent. Because aliasing is such a fundamental design choice for data

structures, analyses assuring the correct use of a variable not intended to be aliased would be funda-

mental for supporting additional analyses related to other design commitments, such as lock–state

association.

In general, programming languages and processes do not facilitate the capture of program design

information in ways amenable or appreciable by practicing programmers. Nor do they readily

provide the means to assure that captured design information is consistent with source code and vice

versa. As a result, design information may be lost or out of sync with the reality of the code. Missing

or incorrect design information impedes explicit assurance of the safety of concurrent programs,

because the properties to assure are obscured, as well as their safe evolution. For example, absent

explicit knowledge of how existing state is intended to be protected, that is, associated with locks, it

is unclear how to manage the addition of new state. Is the new state to be covered by existing locks,

or does it require a fresh association?

1.1.1 Kinds of Software Information

Assurance and safe evolution of concurrent programs would be easier if we could document the

missing design information so that it is readily available to the programmer. Examples include

aliasing, the extent of different segments of shared state, associations between locks and state, and

which locks a method assumes the caller holds. By missing we mean “not easily inferable from the

source code.” We focus on one aspect of software design information: models that describe intended

properties of an implementation. More specifically, we distinguish between three kinds of software
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(a) public synchronized void enqueue( Object o ) {
if( size < capacity ) {

buf[tail] = o;
if( ++tail == buf.length ) tail = 0;
size += 1;

}
}

(b) “The lock on the queue object should be acquired before accessing any of its fields”
(c) “tail should always point to the next free location in the array referenced by buf”

Figure 1.1: Examples of software information: (a) source code, (b) design intent, and (c) design
rationale.

information:

1. The source code of the software artifact. Source code is the ground truth with respect to

what the program actually does. While analyses can be used to infer design information from

source code, code is not in general fully self revealing, as we shall discuss below.

2. The design intent behind the source code. These are the policies that an implementation

should adhere to. As discussed above, design intent is rarely captured, and even less often

kept consistent with code. This research is about providing a means and incentive to capture,

maintain, and exploit concurrency-related design intent. Design intent formally describes

models that source code should adhere to.

3. The design rationale behind the policies and models that guide implementation. Design ra-

tionale is the why behind the what of the design intent. We are not attempting to capture

rationale.

Consider, for example, the method in Figure 1.1(a) taken from a typical Java implementation

of a queue. The actuality of implementation is that the method enqueue executes with the lock

on the queue object held, and accesses the fields size, capacity, tail, and buf, as well as

indexing into the array referenced by buf. The source code is consistent with the design intent—

locking model—that the lock on the queue object should be acquired before accessing any of its

fields. We can document this design intent by adding the formal annotation “@lock QLock is

this protects Instance” to the declaration of the class. This intent is based, in part, on

the representation invariant that tail should always point to the next free location in the array

referenced by buf. This invariant is part of the rationale that we do not attempt to capture.

Less obvious is the design intent behind the array referenced by buf: the array is not intended

to be shared with any other objects. More specifically, buf holds the only reference to the array: it

is considered unshared or unaliased, and thus the entirely separate array object is intended to be part
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of the queue object. It is this intent that allows the implementation to access the contents of the array

without acquiring additional locks. This design intent can be formally documented by annotating

the declaration of field buf with “@unshared” and “@aggregate [] into Instance.” These

formal annotations modify the aliasing model with which source code must be consistent as well

as refine the model of object state used by the previously declared locking model. These aspects of

design intent are also based in part on the unstated representation invariants relating the contents of

the array to the values of the head and tail indices that make up the design rationale.

The boundary between what is source code and what is design intent is not distinct. It is in-

fluenced, for example, by the kinds and levels of abstraction supported by the target programming

language. Consider types in the Java and C programming languages. C has poor support for en-

capsulation: in spite of a facade of type definitions and structural types, data is still treated as an

aggregation of bytes, as evidenced by the ubiquity of void* and char* declarations. Operations

are not well associated with the data structures they are intended to apply to. Elaborate conventions

on the usage of header files have evolved to address this issue. Java, on the other hand, uses classes

to strongly type and encapsulate the structure of representations. Class types define the legal oper-

ations for an encapsulated data object. Information that is tacitly captured by source code artifacts

in Java must be explicitly documented in C. Thus in Java, deliberate and accidental attempts to cir-

cumvent encapsulation boundaries or invoke incorrect operations lead to compile-time errors, while

in C, the programmer must use tools such as Splint [EL02] and Rational’s Purify1 to document

formally encapsulation-related design intent and to check consistency between code and intent.

1.1.2 Recording Design Intent

Similarly, concurrency is not well abstracted in Java (or in any other language in general use).

Therefore, source code is not self-revealing with regards to concurrency-related design intent. Con-

tributing to this problem is the lack of generally accepted practical intermediate notations and meth-

ods for expressing and reasoning about routine concurrency properties. Notations and diagrams

exist and are widely used for other aspects of design knowledge, including architecture [GMW97],

class and object design, sequencing, and state transition [BRJ99]. This dissertation thus introduces

formal annotations for describing models of concurrency-related design intent such as lock–state

associations, state organization and aggregation, locking responsibility, and allowable execution

interleavings. Program analyses assure that code and expressed design intent are consistent, im-

1http://www.rational.com
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proving assurance of code safety and the programmer’s ability to safely evolve concurrent code.

We recognize that producing any kind of source code annotation, including types and Java

throws clauses, is a burden for programmers. Programmers have shown, however, a willingness to

accept this burden by adopting languages that provide sufficient payback for the annotation effort.

The most successful example of a program annotation scheme is types. Programmers are willing

to annotate their programs with types because it helps them understand, for example, what are the

appropriate values that may be stored in a variable and what are the operations available on an

object. Static compile-time type checking helps the programmer use types consistently throughout

the program. In addition to being rewarded with better program understanding, the programmer

is also rewarded with type safety, such as the assurance that no floating point value is going to be

interpreted as an object reference. Other successful annotation schemes follow this reward model,

e.g., Hungarian notation [SH91], Eiffel’s design-by-contract [Mey97], Java’s final modifier, and

Java’s throws clause.

Our annotation and analysis scheme is design to offer similar incentives. We expect the bur-

den of introducing an annotation to be low—that is, any particular annotation is relatively easy to

understand and conceive. Each annotation is meant to provide immediate value to a programmer

by answering a question the programmer might have about the code. A dominant design consid-

eration for our approach is the principle of “early gratification”—some assurance can be obtained

with minimal or no annotation effort, and additional increments of annotation are rewarded with

additional increments of assurance. Guided by these considerations, we have developed a prototype

tool that uses static analyses to assure that source code is consistent with the models described by

our annotations.

1.1.3 Intent vs. Accident

Like type information, documented design intent is an exploitable contract in the program’s API.

Once expressed, it is thus incumbent on the source code to be consistent with the intent. As part of

the API, design intent is meant to change more slowly than implementation, and hence can be engi-

neered against in other program components. Source code, as mentioned already, reflects the truth

with respect to what the program does. It is sometimes possible to infer design intent from code.

For example, locks typically protect something, so analysis can be used to guess the association

between locks and state. Heuristics based on common programming patterns could be used to infer

relationships between objects. Even brute force can be used to exhaustively try all possible annota-

tions [FF01]. In this work, however, we deemphasize annotation inference. From our point of view,
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inference has two problems: (1) it is not always possible, and (2) it is not necessarily desirable.

The expense of analysis and the unavailability of source code are among the reasons why an-

notations might not be inferable. Most interesting program properties can only be conservatively

approximated by analysis and thus we cannot rely exclusively on inference for deriving the respec-

tive intent. Many of the properties we are interested in are, as previously discussed, non-local, that

is, manifest across multiple software components and abstractions. Expensive in time and space

whole-program analyses are needed to infer information in such situations. In addition, code may

not be analyzable because it is part of a library distribution, because it is “native,” i.e., written in

a language other than Java, such as Java AWT peer objects, or because it has not yet been written.

Thus, explicit expression of design intent is still required to document intent at API boundaries.

More important is resolving what is intent from what is accident. That is, just because a field

happens to be unaliased in the implementation, does not mean that the field is guaranteed to be

unaliased. Inferred models will necessarily reflect the reality of the source code, but code does

not necessarily reflect the actual design intent. Not all inferred models necessarily correspond to

programmer design intent, hence the use of the word intent. Documenting implementation accident

as design intent unnecessarily limits program evolution because of the contractual nature of design

intent. Expressing more intent than is necessary thus creates more implementation obligations,

and possibly—depending on the nature of the design intent—limits implementation flexibility. The

benefits of expressing design intent, however, are that clients are able to exploit the stated behavior.

In an earlier example, we saw how the knowledge that the array referenced by the buf field is

unaliased simplified the overall protection of the queue’s shared state.

Inference of formal annotations from source code, if performed at all, must thus be supervised

by the programmer, who is responsible for determining what is design intent and what is implemen-

tation accident.

1.1.4 Assuring Consistency Between Intent and Code

Once intent is documented, maintenance and evolution tasks can be made easier because static

analysis can be used to prevent the introduction of bugs into production code by assuring that

source code is consistent with documented design intent. Thus code–design intent consistency can

be preserved during maintenance and evolution which becomes focused on the aggregate of code

and representations of models of design intent.

Analyses will fail to assure the annotated program when stated intent and source code are in-
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consistent, that is, when the stated intent fails to accurately reflect the actuality of the code. An

assurance failure may be due to the source code being incorrect and unsafe, in which case consis-

tency can be restored by the programmer by correcting the code. Assurance may also fail because

the stated intent describes an incorrect model of the intended program behavior, in which case the

programmer needs to correct the model describing the intent. In other words, the assurance pro-

vided is of consistency of the code with the models of intent.

In short, concurrent programming is difficult because design information describing non-local

properties of the concurrent program is missing and it cannot be recovered from the code itself. We

believe that tools to assist programmers with assuring and evolving concurrent programs must be

informed by this missing concurrency-related design intent and be able to maintain the consistency

between stated intent and source code as both evolve.

1.2 Concurrency-Related Design Intent

Maintaining consistency between stated intent and source code is a fundamental goal of this work—

otherwise capturing design intent in source code is no more useful than the paper design documents

that age on the programmer’s shelf. More specifically, this dissertation is about (1) the nature of

concurrency-related design knowledge; (2) the consequent failures of code safety that can result

from the failure to express the missing design information; (3) a practicable approach to captur-

ing and expressing the design knowledge; and (4) techniques for providing assurance that code is

consistent with the captured intent as they both evolve.

The technical approach is based on source code annotation and static program analysis. A

critical success factor is the feasibility and adoptability of the approach for practicing software

engineers. A working programmer, who is always on a deadline should want to introduce anno-

tations because the benefits of annotation are both useful and nearly immediate. We therefore ask

the programmer to record design intent in terms of properties the programmer is already concerned

about. As an example of what are these properties, and as anecdotal evidence that programmers are

interested in them, we offer this excerpt from an article aimed at practicing Java programmers:

One of the most important behaviors you should document—and which almost never is—is

thread safety. Is this class thread-safe? If not, can it be made thread-safe by wrapping calls

with synchronization? Must those synchronizations be relative to a specific monitor, or will

any monitor used consistently be good enough? Do methods acquire locks on objects that are
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visible from outside the class?2

Specifically, we use annotations

• To name and hierarchically organize the state of a program, with aggregates that may span

multiple objects.

• To describe which state is affected by a method (or other code segment), and what is the

nature of the effects.

• To describe uniqueness of object references.

• To associate locks with abstract aggregations of state, and provide names for the locks.

• To specify which methods may be executed concurrently.

• To delineate responsibility for acquiring locks (e.g., caller vs. callee).

1.2.1 Establishing Safe Concurrency

We can interpret code safety loosely to mean that, when APIs are used as intended, “nothing bad

happens.” Concurrent programming errors lead to erroneous runtime behavior that is nondetermin-

istic and hence difficult to repeat and localize. Discovery and prevention of these programming

errors and their runtime manifestations are not well covered by existing testing, debugging, and

assurance techniques. We believe this is because concurrent programming errors are difficult to

identify without design knowledge regarding the locking model. Current practice does not provide

the incentive, the models, or a language for programmers to record this information.

Current recommended best practice for safe concurrency is to avoid using it [Lea00]. Non-

expert programmers are advised to write only sequential programs. Even experts are often advised

to use concurrency sparingly because it is too hard to produce large and correct concurrent programs.

Consequently, less problematic alternatives to concurrency such as event-based callbacks have been

advocated by researchers [Ous96]. Non-expert programmers can produce safe concurrent programs

by rigorously adhering to programming patterns, such as those described in [Bir91, Lea00, Blo01a].

By following well established programming patterns known to guarantee thread safety, the program-

mer may feel freed from having to design the locking scheme for the program. But the programmer

must still (1) implement the pattern correctly, and (2) make decisions about which patterns should

be followed. Which objects should be aggregated into other objects, which objects should be im-

2Brian Goetz, “I have to document THAT?” http://www.ibm.com/developerworks/java/library/
j-jtp0821.html.
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mutable, and which objects should be shared by threads, for example. Pattern-based approaches

break down when the programmer needs to do something not well covered by an existing pattern.

They also have the problem that they trade assurance of thread safety for assurance of pattern com-

pliance, and for assurance of the safety of the pattern itself.

Testing and debugging techniques that work for sequential programs do not work well for con-

current programs because of the nondeterminism in how threads may interleave their executions

[MH89]. Any testing approach that attempts to cover all possible interleavings quickly becomes

intractable. Testing, however, is with respect to some specification, embodied in the test cases,

and thus requires knowledge of design intent. Concurrency errors are difficult to detect using code

inspection because of their non-local character. But once again, for code inspection to assure the

safety of the code, the programmer design intent must be known. Source level-debuggers face

an additional challenge: reliably replaying a race condition once it has been discovered. This is

typically done by recording event histories. Unfortunately, such approaches introduce additional

nondeterminism into the program being debugged because they cause accesses to shared state that

are not present in the original program. This problem has been identified as the “Heisenberg un-

certainty principle” [LP85] or the“probe effect” [Gai85]. Applying model checkers to concurrent

programs can be effective for discovering liveness errors, e.g., deadlock, but programs must first

be abstracted to produce tractable models [CDH+00]. The static analyses necessary for reducing

the size of the models benefit from knowledge of concurrency-related design intent, such as lock–

state associations and state aggregation, although this intent is conservatively inferred in practice

[Cor00]. In summary, traditional debugging techniques (1) are generally foiled by the nondetermin-

ism and non-locality inherent in concurrent programs, and (2) typically require the knowledge of

concurrency-related (and other) design intent to be fully effective.

1.3 Example: Missing Models

Let us consider as an example the models of design intent used by a collection of Java classes from

the Jakarta Log4j logging library [Apa]. This library facilitates debugging by providing a frame-

work for components to write messages of various priorities to any number of configurable logging

abstractions, e.g., files, consoles, e-mail. Implementations of the Appender interface handle the

specific logging details. Appenders may be “chained” together, that is, an appender may feed into

another appender to achieve additional functionality. A sophisticated logging setup could adversely

affect the performance of the program: the appender may have to wait for network or disk resources



1.3. EXAMPLE: MISSING MODELS 11

that are not otherwise required by the program being examined, for example.

A multi-threaded asynchronous appender implementation AsyncAppender shields the pro-

gram from logger latencies as much as possible—indeed, concurrency is often used to hide and

manage latency is systems programs. When placed at the head of a chain of appenders, this appen-

der decouples the logging call from the logging action by insuring that the logging activity executes

in a thread distinct from the thread executing the logging request. An AsyncAppender simply

enqueues a logging event into a buffer and returns, allowing the program to proceed with minimal

interruption. The appender shares the event buffer with a distinguished dispatcher thread. This dis-

patcher thread removes events from the buffer when they are available and passes them to the next

appender in the chain.

In this example, we concern ourselves primarily with the buffer shared between the Async-

Appender and its dispatcher thread. In the following, we examine the models that describe the

state, the aliasing relationships, and the locking conventions necessary to access the buffer in a

thread-safe manner. We also describe an evolution scenario of the class and its relationship to the

design models. This example illustrates (1) the non-local nature of concurrent design knowledge;

the difficulties of (2) recovering the design knowledge and (3) knowing whether the intent has

been correctly understood when the models are not explicit; and (4) how misunderstanding can

compromise the safety of a class when it is evolved. In particular, these problems arise even when

designing and using a seemingly small and simple class.

1.3.1 Class BoundedFIFO

The class BoundedFIFO, shown in Figure 1.2, taken from version 1.0.4 of Log4j, implements

the buffer shared between AsyncAppender and its dispatcher thread. An instance of the class is a

circular queue represented by an array referenced by buf and head and tail indices first and next.

An instance of BoundedFIFO is shared by two objects, the appender object and the dispatcher

thread object. A buffer instance may be accessed by code executing in at least two threads: the

dispatcher thread and any thread from the rest of the program that might generate logging events—

appenders may be referenced by many objects in many threads. Synchronization among the clients

of BoundedFIFO objects is necessary, therefore, to avoid potential race conditions.

Two concurrent executions of put, for example, could result in the loss of an event, because the

two different events could be written to the same buf location. This would occur if both threads

executed the statement on line 24 that reads the tail index before either thread executed the statement
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1 public class BoundedFIFO {
2 LoggingEvent[] buf;
3 int numElts = 0, first = 0, next = 0, size;
4
5 /** Create a new buffer of the given capacity. */
6 public BoundedFIFO(int size) {
7 if(size < 1) throw new IllegalArgumentException();
8 this.size = size;
9 buf = new LoggingEvent[size];

10 }
11
12 /** Returns <code>null</code> if empty. */
13 public LoggingEvent get() {
14 if(numElts == 0) return null;
15 LoggingEvent r = buf[first];
16 if(++first == size) first = 0;
17 numElts--;
18 return r;
19 }
20
21 /** If full, then the event is silently dropped. */
22 public void put(LoggingEvent o) {
23 if(numElts != size) {
24 buf[next] = o;
25 if(++next == size) next = 0;
26 numElts++;
27 }
28 }
29
30 /** Get the capacity of the buffer. */
31 public int getMaxSize() { return size; }
32
33 /** Get the number of elements in the buffer. */
34 public int length() { return numElts; }
35
36 /** Returns <code>true</code> if the buffer was empty before last put operation. */
37 public boolean wasEmpty() { return numElts == 1; }
38
39 /** Returns <code>true</code> if the buffer was full before the last get operation. */
40 public boolean wasFull() { return numElts+1 == size; }
41
42 /** Is the buffer full? */
43 public boolean isFull() { return numElts == size; }
44 }

Figure 1.2: Class BoundedFIFO.
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on line 25 that increments that index. Alternatively, concurrent calls to put could cause an Array-

IndexOutOfBoundsException to be thrown:

1. Suppose initially next == size-1.

2. The first thread puts its new element in the array by executing the statement on line 24 and

then partially executes the statement on line 25 by incrementing next to be equal to size.

3. The second thread also executes the array operation on line 24 using the new value of next

which results in an exception because next is now beyond the end of the array referenced by

buf.

1.3.2 The State of BoundedFIFO

Before we consider how clients should synchronize their access to a BoundedFIFO instance, we

need to answer the question of what is the state of a buffer instance? The five fields of the class are

obviously part of the buffer’s state. Traditional practice and the races described above suggest that

accesses to these fields need to be coordinated. Less obvious, perhaps, is that the array referenced

by buf should also be considered to be part of the state of the buffer because each buffer has its

own unaliased array. The original implementor of the class clearly had this in mind, but is unlikely

to have recorded it because Java does not provide a means for expressing this kind of information,

and thus the programmer may not even have been explicitly aware of the design decision. We now

have two elements of the concurrency model of the BoundedFIFO class that we can document:

1. The field buf is unshared, that is, it refers to an unaliased object

2. The state of a buffer is all its fields plus the state of the uniquely referenced array.

Describing these models in the code allows our tool to assure the source code of BoundedFIFO

is consistent with the programmer’s intent. If the implementation is changed so that the array

is allowed to be aliased then assurance will fail. This assurance is critical to assuring that the

buffer class is thread-safe. If the array is allowed to be aliased, the techniques used by clients to

synchronize access to the buffer object must evolve.

1.3.3 Protecting BoundedFIFO

Now that we have a model of the state of a BoundedFIFO object we can consider how to

synchronize access to it. The existing Log4j clients of BoundedFIFO are implemented to use lock-

based synchronization to prevent such race conditions. Figure 1.3 reorganizes code from several
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public class PutterClient { ...
private final BoundedFIFO fifo;
...
public PutterClient(BoundedFIFO bf, ...) { fifo = bf; ... }
...
public void putter(LoggingEvent e) {
synchronized(fifo) {

while(fifo.isFull()) {
try { fifo.wait(); } catch(InterruptedException ie) { }

}
fifo.put(e);
if(fifo.wasEmpty()) fifo.notify();

}
}

}

public class GetterClient { ...
private final BoundedFIFO fifo;
...
public GetterClient(BoundedFIFO bf, ...) { fifo = bf; ... }
...
public LoggingEvent getter() {
synchronized(fifo) {

LoggingEvent e;
while(fifo.length() == 0) {

try { fifo.wait(); } catch(InterruptedException ie) { }
}
e = fifo.get();
if(fifo.wasFull()) fifo.notify();
return e;

}
}

}

Figure 1.3: Canonical clients of BoundedFIFO.

Log4j classes into canonical producer and consumer clients. If we wish to add another client or to

extend the functionality of BoundedFIFO we need to conform to the locking model used by the

existing clients. This model is currently undocumented, although cursory inspection of the clients

suggests that they use the convention of locking the BoundedFIFO object before invoking any of

its methods. There is no single place in the code where this information is evident: a programmer

trying to understand BoundedFIFO is forced to deduce this information by inspecting the clients of

the class.

The locking model for BoundedFIFO thus requires that clients of a BoundedFIFO instance

acquire the lock on that instance before invoking any methods on the object. That is, the state of the

buffer, as delineated by the model given above, is protected by the lock on the object itself, and it is

the responsibility of the clients to acquire that lock before invoking any of the object’s methods.

In the absence of a documented model, details of the locking convention are lost. For exam-

ple, is there anything significant about using the BoundedFIFO object as the lock? Must the lock

be acquired before invoking any method, or just some of them? Is locking to protect the FIFO

instance, or is it to protect the clients from inconsistent views of the FIFO? This non-locality not
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1 /** Resize the buffer to a new size. If the new size is smaller than
2 * the old size events might be lost. */
3 public synchronized void resize(int newSize) {
4 if(newSize == size) return;
5 LoggingEvent[] tmp = new LoggingEvent[newSize];
6 // we should not copy beyond the buf array
7 int len1 = size - first;
8 // we should not copy beyond the tmp array
9 len1 = min(len1, newSize);

10 // er.. how much do we actually need to copy?
11 // We should not copy more than the actual number of elements.
12 len1 = min(len1, numElts);
13 // Copy from buf starting a first, to tmp, starting at position 0, len1 elements.
14 System.arraycopy(buf, first, tmp, 0, len1);
15 // Are there any uncopied elements and is there still space in the new array?
16 int len2 = 0;
17 if((len1 < numElts) && (len1 < newSize)) {
18 len2 = numElts - len1;
19 len2 = min(len2, newSize - len1);
20 System.arraycopy(buf, 0, tmp, len1, len2);
21 }
22 this.buf = tmp;
23 this.size = newSize;
24 this.first = 0;
25 this.numElts = len1+len2;
26 this.next = this.numElts;
27 if(this.next == this.size) // this should never happen, but again, it just might.
28 this.next = 0;
29 }

Figure 1.4: Method resize.

only complicates our understanding of the program, but complicates maintenance as well because

all client implementations must follow the same convention to maintain the integrity of the shared

BoundedFIFO object. If the conventions change, then all the clients need to be updated to insure

safety.

1.3.4 Evolution and Misunderstood Intent

The actual evolution of the Log4j library provides an interesting example of a change to Bound-

edFIFO that could be unsafe if the locking model of the class is misunderstood. Between versions

1.0.4 and 1.1b1 of Log4j, a resize method, shown in Figure 1.4, was added to the class. As the

name implies, this method alters the capacity of the buffer. Unlike the other methods in the class,

resize is synchronized, meaning that the implementation runs inside a critical section locked

on the receiver object, i.e., the BoundedFIFO object itself. A client of a FIFO object does not have

to lock the FIFO before invoking this method, and indeed updated clients of BoundedFIFO objects

do not acquire any locks before invoking it.

The implementation of method resize is consistent with the locking model for the class: the

lock on the object is acquired before the state of the object is accessed. But the overall locking
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model evolves to indicate that resize does not require its caller to acquire the lock on the object.

The implementation is also consistent with the aliasing model: the array referenced by buf remains

unaliased, even though it may be a different array object after resize terminates. Assurance of this

consistency requires assuming that System.arraycopy does not produce aliases to its two array

parameters. This intent is recorded by annotating those two parameters as being “borrowed” which,

in fact, constrains the implementation of the method.

If the locking model for the class had been misunderstood by an author of a client, then this

use of the resize method by that client could cause a race condition. That is, supposed an au-

thor of a client misunderstood the intent, for example, by consistently, but incorrectly, using some

other object as the lock to protect a BoundedFIFO instance. Now, because locking on some other

object would not prevent get and resize from executing concurrently, resize could throw an

IndexOutOfBoundsException. This would happen if get incremented first (Figure 1.2,

line 16) after resize used first to determine the number of elements to copy (Figure 1.4, line 7)

but before resize uses first as the index of where to start copying (Figure 1.4, line 14). This

would cause arraycopy to throw an IndexOutOfBoundsException.

Having access to the code of BoundedFIFO we can deduce from this change that acquiring the

lock on the BoundedFIFO object in clients is significant—now to do otherwise would compromise

the safety of the class. If the programmer is unable to examine the source code of BoundedFIFO

and thus unable to learn that the implementation of resize is synchronized, the situation is less

clear: Is resize acquiring locks at all? Why do callers of the resize method not acquire any

locks? Why must callers of the other methods acquire a lock? Is the choice of lock significant? In

the absence of any explicit expression of design intent, the misunderstanding could have been on the

part of the programmer who added resize: perhaps it was intended that clients have the freedom

to use arbitrary locks—as long as all clients use the same lock—in which case resize should not

have been made synchronized.

1.3.5 Summary

We have identified the following concurrency-related deign intent for BoundedFIFO:

• The state of a BoundedFIFO object must only be accessed when the object itself is locked.

• The state of a BoundedFIFO object includes the distinct array object referenced by buf; that

is, the FIFO object encapsulates the array.

• We are assured that no other object has a reference to the array buf and thus the state of the
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1 /** @lock FIFOLock is this protects Instance */
2 public class BoundedFIFO {
3 /** @unshared
4 * @aggregate Instance into Instance */
5 LoggingEvent[] buf;
6 int numElts = 0, first = 0, next = 0, size;
7
8 /** Create a new buffer of the given capacity. */
9 public BoundedFIFO(int size) { ... }

10
11 /** Returns <code>null</code> if empty.
12 * @requiresLock FIFOLock */
13 public LoggingEvent get() { ... }
14
15 /** If full, then the event is silently dropped.
16 * @requiresLock FIFOLock */
17 public void put(LoggingEvent o) { ... }
18
19 /** Get the capacity of the buffer.
20 * @requiresLock FIFOLock */
21 public int getMaxSize() { ... }
22
23 /** Get the number of elements in the buffer.
24 * @requiresLock FIFOLock */
25 public int length() { ... }
26
27 /** Returns <code>true</code> if the buffer was empty before last put operation.
28 * @requiresLock FIFOLock */
29 public boolean wasEmpty() { ... }
30
31 /** Returns <code>true</code> if the buffer was full before the last get operation.
32 * @requiresLock FIFOLock */
33 public boolean wasFull() { ... }
34
35 /** Is the buffer full?
36 * @requiresLock FIFOLock */
37 public boolean isFull() { ... }
38
39 /** Resize the buffer to a new size. If the new size is smaller than
40 * the old size events might be lost. */
41 public synchronized void resize(int newSize) { ... }
42 }

Figure 1.5: Annotated class BoundedFIFO.

array is also protected by locking the BoundedFIFO object that refers to it.

• The implementation of resize acquires the lock appropriately, so clients do not need to

acquire the lock before calling the method.

• Clients must acquire the lock before calling the other methods because they do not acquire

the lock themselves. Furthermore, the clients must specifically acquire the lock that protects

the state of the FIFO: the FIFO object itself.

Failure to understand and respect this intent can lead to errors during program maintenance and

evolution. For example, misunderstanding the significance of the choice of lock could lead to race

conditions between previously safe client code and newly added code, as described above.
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1.4 Evolution and Unknown Intent

The above example illustrates some of the model elements, as well as some of the problems of

recovering design intent. We now consider an example, taken from Sun’s JDK, that exposes a dif-

ferent set of problems related to expectations about how objects are intended to be used concurrently.

In particular, what methods are intended/expected to interleave safely when invoked concurrently,

and what methods are intended to exclude each other. We call this attribute the concurrency pol-

icy of a class. An actual evolution scenario for the class BufferedInputStream of the package

java.io provides an interesting example of the dangers of evolving an inadequately documented

“thread-safe” class. This example shows another danger of inadequate documentation of design

intent: when descriptions are inadequate, client programmers may develop their own design con-

ventions based on extant component behavior, regardless of whether the behavior is intended to be

a fundamental attribute of the component or not. Specifically, this example shows how insufficient

documentation of design intent (1) leads to a race condition, (2) interferes with the evolution of the

class, and (3) encourages clients to develop their own expectations about the concurrent behavior of

the class.

The Java input–output model is stream based. Stream objects are wrapped by other stream im-

plementations to compose functionality. A BufferedInputStream instance is a wrapper around

another input stream object that provides buffered block-reads instead of byte-by-byte reads from

the underlying stream. Documentation for the class, including the documentation for its superclass

InputStream, is silent regarding whether the class is meant to be thread-safe. That is, is the class

intended to be concurrently accessed, and if so, whose responsibility is it, caller or callee, to acquire

the necessary lock(s)? Early versions of the documentation combined with inspection of the actual

source code suggest that some concurrent uses are allowable and intended to be safe because some

methods are synchronized.

The read method of InputStream is defined to block until data is available. This is a problem

when using a stream backed by a network socket: if the network connection becomes hung then a

read may block indefinitely. Java programmers developed a convention to handle this, based on

the inspection process just discussed and based on observed behavior of stream implementations.

The convention is to invoke close on the stream object from another thread to abort and unblock a

read to a “stalled” socket stream. Because streams gain functionality from wrappers, this conven-

tion makes the general assumption that the methods read and close can always have interleaved

executions, i.e., that they do not completely exclude the execution of the other. It is also based on the

assumption that closing a socket stream will affect a blocked read. Neither of these assumptions
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is grounded in behavior described in JDK documentation; they are based on empirically observed

implementation-specific behavior.

In JDK 1.2, the implementation of BufferedInputStream was modified to prevent a race

condition that could occur when the methods read and close are concurrently invoked on the

same instance. The race condition occurs when close sets the field referring to the wrapped stream

to null after read checks if the field is null but before read attempts to dereference the field. The

result is a NullPointerException in the thread that invoked read. This can only happen when

the stream being closed is not blocked. To prevent the occurrence of this race condition, the method

close was made synchronized. Because read was already synchronized, this prevented the

two methods from executing simultaneously.

This change does not appear to have been made in response to a publicly viewable bug report.

A bug report related to the fix, however, was filed:3

As of JDK 1.2, BufferedInputStream’s close() method has had the synchronized modifier added

to it. The Javadoc does not indicate that it is synchronized, but the source code does. (Actually

this is pretty scary—why isn’t it the same?) [...]

This change in 1.2 breaks code that worked in 1.1. One technique that can be used to “free” a

thread blocked on a read() is to use a second thread to close() the stream. This causes the read()

to break out of its blocked state and to throw an IOException. [...]

Please remove the synchronized modifier from the close() method of BufferedInputStream.

This “bug” in the fix was itself fixed by unsynchronizing close in the JDK 1.3 release. It remains

unsynchronized in JDK 1.4. In this case, inadequate documentation of design intent (1) led to a

race condition in BufferedInputStream; (2) caused client programmers to develop their own

conventions about normative concurrent usages of the class; and (3) caused the safety of the class

to be compromised for the sake of these unanticipated conventions. We note that it is possible to fix

the race condition in such a way that still allows close to be used to unblock read.

This scenario occurred because of inadequate documentation of the behavior of Buffered-

InputStream objects when accessed concurrently. The bug reporter points out that the Javadoc

documentation for the class does not indicate that close is synchronized, and is disturbed that

the documentation does not match the source code. It was a deliberate decision on the part of the

3Bug Id 4225348, “java.io.BufferedInputStream: Attempt to close while reading causes deadlock.” http://
developer.java.sun.com/developer/bugParade/index.jshtml.
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Javadoc tool designers, however, to not include this information in the generated documentation:4

Javadoc generates an API specification. [The keyword synchronized does] not belong in

the signatures of a specification, because [it is] implementation-specific. ... The keyword

synchronized indicates thread-safe behavior that should instead be described in the method

descriptions. A thread-safe method itself might not use the synchronized keyword but might

call private methods that are.

The authors of the class did not follow the above advice: BufferedInputStream’s method

descriptions do not describe the concurrent behavior of the methods. Without this information,

developers cannot understand how the class is thread-safe. That is, what resource–client conventions

are expected to be followed to prevent the invariants of the class from being violated. In fact, they

cannot know that the class is thread-safe at all.

1.5 Locking Design and Representation Invariants

Ultimately locking design conventions are rooted in design decisions about the maintenance of

representation invariants: predicates over the state of an object that define when the object is in a

self-consistent state. Operations on an object should always move the object from one consistent

state to another, perhaps temporarily putting the object into inconsistent states. For example, a

representation invariant for BoundedFIFO objects is that next always has a value between 0 and

size. The put method might temporarily violate this invariant when it increments next, but then

it resets next to 0 if it gets too big (Figure 1.2, line 25).5 Because an operation should only be

performed on an object in a consistent state, a thread must not be allowed to operate on an object if

another thread may have put the object into an inconsistent state. Threads thus acquire locks when

they are about to access the state of any object so that:

• They do not operate on an object that is in an inconsistent state. An object should always

be in a consistent state when an operation begins, and the operation should return the object

to a consistent state. Locking also prevents another thread from further modifying the state

of an object while it is already inconsistent, which, by causing a violation of some internal

precondition of the first operation, would generally make it impossible to return the object to

4“What’s New in Javadoc 1.2.: Provides More API Information and Links.” http://java.sun.com/
products/jdk/1.2/docs/tooldocs/javadoc/whatsnew.html#moreinfo.

5This accounts for the more specific invariant that next be equal to the number of put operations modulo the size of
the queue.
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a consistent state. The race condition between read and close described in Section 1.4 is

an example of this.

• They do not view an object that is temporarily in an inconsistent state. This is why even simple

“getter” methods should be synchronized. For example, a getter might reveal an intermediate

value if it could read the value of a field while that field is being used as an accumulator. Or,

in the above example, another thread might view next when it points beyond the end of the

array, before it is reset to 0. Viewing an inconsistent state generally violates the expectations

of the client.

A race condition is a manifestation of a failure to respect these consistency requirements. For

example, concurrent puts cause an ArrayIndexOutOfBounds exception when one of the execu-

tions observes the BoundedFIFO object in the inconsistent state where next is not less than size.

Concurrent executions of get and resize can interfere as described above when get alters first

in such a way that it falsifies a precondition necessary for executing the arraycopy method on

line 14: first + len1 < size. The point is the locking design for a class is informed by the

invariants that need to be maintained for objects of the class to remain consistent. If the represen-

tation invariants were made explicit, then elements of the necessary locking design would be more

clear and the rationale of the design would be more self-evident, particularly the points in the code

where it is necessary to acquire locks. The designer would still have much freedom in choosing

what are the particular locks associated with invariants and in delegating caller vs. callee locking

responsibility.

Representation invariants exist at each level of abstraction. Particularly with respect to concur-

rency, a resource cannot always be reasoned about fully in the absence of an expression of the design

expectations of its clients. For example, there is no reason why two clients cannot simultaneously

invoke methods on a shared BoundedFIFO object, as long as the individual calls are properly syn-

chronized. Proper locking will cause the methods to execute in some serialized order, but that order

may not preserve the higher-level intent of the clients. A client trying to enqueue an event needs to

ensure that it has a consistent view of the BoundedFIFO: if another client were able to invoke put

between the time that the first client verifies that the queue is not full and the time the first client

invokes put, the second client could cause the FIFO to be full again and the first client will have its

event silently dropped. This is why the getter and putter methods in the FIFO client example,

Figure 1.3, perform several FIFO actions within a single synchronized block. Understanding

this, we can also hypothesize that the reason clients of BoundedFIFO objects are given the respon-

sibility for acquiring the lock is that they are going to have to make a series of calls to the FIFO from
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within a single critical section, and thus any locking performed by the FIFO implementation would

be redundant and misleading. In other words, safe implementation of a shared low-level resource

with respect to its own internal invariants does not imply correct use of that resource with respect

to the invariants of a higher-level client resource.

We believe that, in general, it is unreasonable to expect working programmers to make explicit

the representation invariants of a class. It is difficult (1) to identify what are the invariants, (2)

to express the invariants with sufficient formality, and (3) to assure that implementation respects

the alleged invariants. Generally, a separate language of assertions is necessary to express the in-

variants, further raising the barrier to entry. For example, the Houdini invariant inference engine

[FJL01, FL01] was developed to make the invariant documentation process less painful for users of

ESC/Java [FLL+02]; whether it satisfies this goal is still an open question [NE02]. Assuring consis-

tency between source code and general representation invariants, once they are expressed, requires

theorem proving. To make this process realistic for real-world programs, ESC/Java compromises

both soundness and completeness. While in practice these compromises do not detract from the

ability of ESC/Java to find potential programming errors, they make the approach unsuitable for

providing assurance that an implementation is consistent with programmer design intent.

Our approach is to describe, instead, the mechanical attributes of the program, see Section 1.2.

Although this approach is not as expressive as assertions in a general-purpose logic of programs,

it does afford a means to operationalize several important attributes related to code safety and de-

pendability. For example, our concept of concurrency policy—briefly introduced in Section 1.4,

and described in detail in Chapter 6—is intended to replace explicit representation invariants when

reasoning about how components interact in a concurrent setting. Our hypothesis is that the policy

approach is considerably easier to use and is potentially more practicable than the aforementioned

invariant-based approaches.

1.6 Towards A Generative Approach to Concurrency Management

The primary focus of the work described herein is the assurance of concurrency-related safety

properties through the use of composable static analysis and design-intent–capturing program an-

notations. This work, however, provides the foundations for pursuing a more aggressive research

goal: establishing a principled approach to the introduction and management of concurrency, al-

lowing the trading off of performance and concurrency to be explored without disturbing func-

tionality and while keeping program complexity manageable. Our goal is to provide programmers
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with techniques and tool support for increasing and otherwise altering concurrency during software

development and evolution.

As with our assurance techniques, we hypothesize that our approach can be of value even

when only minimal functional specifications are present—indeed, precisely because they cannot

be counted on being present. Annotations documenting design-intent are used to assist in the safe

application by a programming tool of semantics-based, meaning-preserving, source-level program

transformations that alter a program’s use of concurrency. A programmer requires discipline to ap-

ply a library of transformations in such a way that the annotated design intent remains respected.

We have begun to define a such a discipline, termed the generative approach, adherence to which

insures that a concurrent program is always free of the potential for race conditions, as defined by

programmer-specified policy.

1.6.1 Source-level Program Transformation

Current concurrent-programming practice places much responsibility on the programmer. The pro-

grammer is responsible for

• Identifying segments of shared state that must be protected.

• Associating segments of code with the regions of state it accesses.

• Placing the appropriate locks around code segments.

Not only must the programmer do this correctly when the program is initially developed, but the

programmer must also maintain the correctness of the lock placement as the program is evolved. It

is perilous when the programmer wants to modify the concurrent aspects of the program.

For example, increasing the granularity of the shared segments of state, such as by using regions

of objects rather than whole objects, would enable greater concurrent access to the data. Performing

this modification requires identifying all the code segments associated with the data regions be-

ing partitioned, and appropriately adjusting the locking behavior of the code segments. Anecdotal

evidence suggests that while this is in principle a straightforward activity, it is error prone. The

programmer may miss some code segments that need to be changed, and incorrectly change other

code segments, leaving shared data incorrectly protected or not protected at all. If a code segment

makes use of data that is now resident in multiple data regions, and, therefore, under the protection

of multiple locks, the programmer must take care to produce code that consistently acquires the

locks in the same order or risk introducing potential for deadlock.
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The difficulty of the tasks necessary to alter the concurrent aspects of a program can vary. Once

the locks needed to protect the data accessed by a given section of code are identified, ensuring that

the locks are consistently ordered is relatively easy. Identifying the regions of data accessed by a

section of code is more difficult, relying on the programmer’s decisions about allowable concur-

rency.

One of our hypotheses—to be explored separately from this dissertation—is that programmer-

initiated, tool-executed, meaning-preserving, source-level program transformations can assist the

programmer in “safely” evolving a program. Here, in general, by meaning-preserving and safely

we mean that the transformation will not introduce race conditions or the potential for deadlock

into the transformed program. One of our research issues is to develop a precise definition of

meaning-preserving. The safety of any particular transformation is guaranteed by its preconditions

which must be satisfied before it can be performed. We restrict the term transformation to mean

a semantics-based meaning-preserving safe modification made to the source code. This is in con-

tradistinction with modifications to the source code that are not safe.

1.6.2 The Generative Approach

Concurrency-related source-level program transformations by themselves are not enough to main-

tain the safety of a concurrent program as it evolves in a practical engineering approach. The trans-

formations themselves must be applied with respect to a programming discipline that further insures

that the annotations used by the transformations are correct and stay correct, and that manages the

introduction and evolution of concurrency policy. Such a discipline we call the generative approach.

Adherence to the generative approach insures that a concurrent program is always free of the poten-

tial for deadlock and always free of race conditions, as defined by a programmer specified policy.

It is based on the observation that it is easier to stay in such a state than to initially arrive at—be

proven to be in—such a state given an arbitrary concurrent program. So that the concurrent program

is known to be initially safe, the generative approach prescribes a specific technique for increasing

the extent of concurrency in programs: they must be generated from initial sequential programs.

(Prior work, e.g., [CK79, SH93, Her91], has taken this same approach; see Section 8.8.2.)

In our notional generative approach, a sequential class is made concurrent by first turning it into

an approximation of a monitor [Hoa74]. This introduces an easily understood, simply implemented

initial form of parallelism, together with its related annotations and an initial easily understood

policy. Now that the class is “concurrent”—and importantly, known to be safe—concurrency-related

transformations can be applied to the program, e.g., to adjust the granularity of concurrency via a
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split-lock transformation, with the assurance that the program will remain safe. Our approach also

suggests that the introduction of additional threads of control within a program and inter-thread

signaling must also result from transformation. Because concurrent aspects of the program must be

introduced and maintained via transformations, it is not possible for all safely concurrent programs

to be produced using the generative approach. It is a hypothesis of this research, however, that the

discipline provides sufficient flexibility to produce programs that use concurrency in a manner akin

to existing real-world programs.

1.6.3 Tool Support

Transformations are performed by the tool on the behalf of the programmer and their safety is

verified using program analyses. It is our belief that tool support is essential to making our approach

practicable. Scaling properties of the approach are enhanced through the use of program annotations

that support analyses and which provide mechanical information about the program. In particular,

the annotations and analyses intended for safety assurance are reused in this role, and our regions

and effects, described in Chapter 4, have their origin in our tool-supported transformation research.

Responsibility for design intent and safety is partitioned between the programmer and the tool:

the tool strictly regulates the introduction and management of concurrency-related annotations and

transformations, while the programmer is in complete control of the original partitioning of a class

into regions and other expressions of design intent.

1.7 Outline

The remainder of this document is organized as follows. Chapter 2 provides additional background

on concurrent programming in general, and on concurrency in Java, in particular. Chapter 3 de-

scribes the framework, FLUIDJAVA, we use to provide a formal description of our annotations and

analyses. The following chapters focus on specific kinds of design intent: Chapter 4 describes our

models of state, regions, and an object-oriented effects system built on top of it; Chapter 5 describes

our models for associating locks with state; and Chapter 6 describes concurrency policy. Chapter 7

describes our prototype analysis tool and preliminary experience with it. Chapter 8 describes the

generative approach to concurrency management, giving examples of several source code trans-

formations and exemplifying how they might be used to evolve a concurrent program. Finally, we

conclude and discuss open issues in Chapter 9.
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Chapter 2

Concurrency and Java

In this chapter, we summarize (1) the programming challenges raised by concurrent programming,

(2) the advice given to programmers writing concurrent programs, (3) the design intent the pro-

grammer is expected to manage, and (4) the concurrency support of the Java programming language

[AGH00]. Current programming practice is, in general, still guided by recommendations that have

been made since the 1960s, e.g., [Dij68a, Dij68b, Hoa71, Hav68, Bir91]. Programmer adherence to

these recommendations is intended to, and generally does, insure that programs are free from race

conditions and deadlock. Unfortunately, the recommendations place significant responsibility on

the programmer to apply the guidelines consistently and, in many cases, to maintain accurate con-

ceptual models apart from the code itself. This reinforces the role of the annotation and assurance

techniques described in the following chapters with respect to mitigating some of the programming

problems.

Our work is focused on the Java programming language for three reasons. First, it is used by

working programmers on production products. This makes our tools and techniques more directly

adoptable, and also provides us with a large corpus of production source code from which we

can obtain case studies to evaluate our work. Second, Java is a typed language with first-class

encapsulation. Third, Java’s concurrency features are unremarkable among modern languages, such

as Modula-31 [Nel91], Ada 95 [TD97], and the Posix thread library [LB98]. In this regard, Java

is remarkable only because it has forced concurrent programming concerns into the mainstream.

Java’s concurrency support is described in [GJSB00] in terms of a memory model that must be

1While Modula-3 has never developed a widespread programmer base, it has been influential within the research
community. It is mentioned here because it is populated with “simple, safe, proven features” rather than “untried ideas”
and thus it is representative of best practices in systems programming.
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respected by the Java Virtual Machine (JVM), known as the Java Memory Model (JMM). This

model is mostly irrelevant for correctly written concurrent programs, although several exceptions

are noted below. Java’s concurrency API centers around two classes, java.lang.Thread and

java.lang.Object, and is described, along with general concurrent programming techniques, in

many third-party books, including [Har98, Hyd99, LB99, OW99, Lea00, Hol00].

The primary message of concurrent programming guidelines is that efficiency should not be

emphasized over correctness: “It is much easier to start with a correct program and work on making

it efficient, than to start with an efficient program and work on making it correct” [Bir91]. This

dissertation demonstrates techniques for first assuring that a concurrent program is correct (with

respect to programmer design intent), and then suggests how correct concurrent programs can be

systematically evolved using program transformation techniques that preserve the program’s cor-

rectness.

2.1 Shared-Memory Concurrent Programming

The programming model used by Java, and the one we consider herein, is shared-memory concur-

rent programming. In this model, multiple threads of control—hereafter, simply threads—execute

simultaneously, accessing data in a global memory space shared among all present and future

threads. Any thread may have a reference to any object, and if more than one thread references

a particular object, that object is shared, as are any of the objects reachable from that object. In con-

current programming, the problem is to write a single program that performs many “independent”

tasks simultaneously. While concurrency can be used to increase the program performance, it is

often the case that the abstractions in a program conveniently map to multiple tasks.2 Of course, it

is rarely the case that threads are completely independent, and thus they typically do share common

data. It is this sharing of data that makes concurrent programming difficult and error-prone.

A program begins with a single thread, whose body is defined in Java by the static method

main(String[]). Thread lifetimes are dynamic: a new thread can be created and started at

any point by any other thread, and a thread completes execution when its body terminates. A

program terminates when all its threads have completed. In Java, additional threads are created by

instantiating instances of the standard class java.lang.Thread or a subclass thereof. The body

of a thread is defined in one of two ways: (1) by extending Thread and reimplementing the run

2This dissertation does not focus on how to exploit concurrency to improve a program’s performance, but rather on
how to do so safely.
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method, or (2) by implementing the java.lang.Runnable interface, which defines a run method

only, and passing an instance of the runnable to the Thread constructor. Invocation of the start

method causes a thread to begin execution; a thread completes when its run method returns.

The Java Memory Model defines the granularity at which memory accesses are atomic. In

general, only 32-bit variables are guaranteed to be read or written atomically. The programmer must,

therefore, treat shared long and double variables as if they were pairs of two 32-bit variables. If

convention is followed, this is not a significant issue because in most correctly written concurrent

programs all accesses to a shared variable—no matter its size or structure—should be from within

a critical section.

2.2 Lock-Based Concurrency Management

Mutual exclusion is a design approach that limits access to shared data to a single thread at a time.

Asynchrony is always resolved to a linear sequence of accesses to the shared state. That is, im-

plementing mutual exclusion requires assuring that only one thread can access an aggregation of

shared data at any given time. Other threads wait until the resource is available prior to gaining

access. This assures that data invariants are intact prior to any access or mutation operation. This

exclusivity of access, or “mutual exclusion,” is commonly achieved by using locks, also known as

mutexes, that allow threads to coordinate their actions.

A lock supports two operations: acquire and release. A thread may acquire a lock only if no

other thread has already acquired it. If a thread cannot acquire a lock because another thread is

holding it, then it pauses execution until some point in the future when the lock is free. When a

thread releases a lock, exactly one of the threads waiting to acquire the lock is granted the lock. In

Java, every object may be used as a lock, and the acquire and release operations are abstracted into a

single block-structured statement: synchronized(expr) { . . . }. The expression expr is evaluated

first; it is a compile-time error if it is not a Java reference type, and it is a runtime error if it evaluates

to null. Entrance into the block implicitly executes the acquire operation on the lock object, and

exit from the block implicitly executes the release operation. The keyword synchronized may

also be used as a modifier to a method definition. This is syntactic sugar for enclosing the entire

method body within a synchronized block. For a non-static method, the receiver this is used

as the lock. For a staticmethod in class C, the Class object for C is used as the lock; there cannot

be any ambiguity in the locking because static methods cannot be overridden. The expression

C.class evaluates to the Class object for a class C.



30 CHAPTER 2. CONCURRENCY AND JAVA

Entering and leaving a synchronized block additionally has effects on the management of

memory values in the JMM. The practical outcome of these effects is that the only way to be sure

that the most recently written value of a shared variable is read is to (1) always read from that

variable within a synchronized block and (2) always write to that value within a synchronized

block. A correctly written concurrent program should already be following these guidelines, so

this feature of the JMM should not have to be of concern to most Java programmers. The JMM

insures that reads from fields declared to be volatile always return the most recently written

value. Such fields are useful in exceptional cases, see for example Section 7.6.5, but are insufficient

for maintaining representation invariants spanning multiple variables.

2.2.1 Missing Intent

In Java, as in all commonly used programming languages, it is the programmer’s responsibility to

produce mutual exclusion. Every shared data item—global variable, field of an object, etc.—should

be associated with a lock, and that lock should always be used to ensure mutually exclusive access

to its associated data items. It is up to the programmer to choose the granularity of the locking: the

number of locks to use and how much, and which state is identified with any given lock. In practice,

this state corresponds to the segments of state that are associated with particular data invariants.

In Java, locks are most commonly associated with whole objects, although often the scope of a

lock includes the state of a referenced object, consider BoundedFIFO in Section 1.3. It is also not

unusual to protect whole sets of objects with a single lock, see Section 7.6.2. The programmer also

has responsibility to ensure that the proper sections of code are turned into critical sections using the

appropriate locks—the number and scope of the critical sections depend on the lock granularity—

so that the program invariants are preserved. Critical sections are only mutually exclusive with

other critical sections making use of the same lock; that is, inconsistent locking is just as bad as no

locking. If the programmer accesses some shared state while not in a critical section, that access can

be in a race with any of the correct critical sections that access that same state, even though those

critical sections cannot otherwise race with each other. Even an access to a single scalar variable

must be protected by a mutex because it too can be in an inconsistent state. Consider a variable

holding a sum: if that variable is used to hold the running value as the sum is calculated, then the

variable’s value will be inconsistent until the calculation is complete. Unfortunately, it is common

to see unsynchronized “getter” methods in Java code, even in source code from Sun’s JDK [Rou03].

In other words, the programming language does not make locking mandatory within concurrent

programs. Even worse, the programmer is expected to maintain a separate model of the associa-



2.3. CONDITION VARIABLES 31

tion between a particular lock and the portions of state it is meant to protect, and then to identify

the segments of code that access that state. This association and the extent of the state are poorly

documented, easily lost, and hard to recover. One of the contributions of this dissertation is an

annotation-based, tool-assisted process for capturing programmer design intent regarding the as-

sociation between locks and regions of state and assuring that source code is consistent with the

intent.

2.3 Condition Variables

A thread may sometimes have to wait for another thread to make true a predicate over the shared

state before proceeding. The classic example is a shared queue: an item cannot be removed from

the queue if the queue is empty, and an item cannot be placed in the queue if the queue is full.

Thus the dequeue and enqueue operations must wait for the queue to be non-empty and non-full,

respectively, before they proceed. Condition variables are used for this purpose. A thread invokes

the wait operation on a condition variable when it wishes to wait for a predicate to become true. The

waiting thread is removed from scheduling. Another thread invokes the notify operation to alert any

waiters that the condition has become true. A condition variable must always be associated with a

lock that is used to prevent race conditions in the condition variable itself. This lock, but not any

other locks held by the current thread, is released when a thread waits, and is reacquired when the

wait operation returns. In Java, each object is also a condition variable. This is supported by the

wait, notify, and notifyAll methods of Object. The object uses itself as its lock, and thus it

is a runtime error to invoke any of the above methods without first acquiring the lock on the object.

The guarantees provided to the awakened thread vary among implementations of condition vari-

ables [How76b]. Java does not guarantee that the condition is still true when a thread resumes, and

thus the code template

synchronized(mutex} { ...
while(!condition) { mutex.wait(); } ...

}

should be used to wait for the satisfaction of a condition. The template also demonstrates the fact

that a condition variable is only implicitly associated with a predicate over the shared state. Again,

it is the programmer’s responsibility to remember these associations. The capture of design intent

regarding condition variables is beyond the scope of this dissertation.
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2.4 Monitors

The disciplined use of locks and condition variables to encapsulate access to an implementation

of an abstract data structure has come to be known as a monitor [Dis71, Hoa74, BH74, BH75].

A surprising degree of variation in the behavior of monitors has developed, mostly due to how

condition variables are implemented [How76a, How76b, BFC95]. Java’s mutual exclusion and

communication facilities were designed to make it easy to write monitors: simply declare all the

methods of a class to be synchronized and use the receiver this as the one and only condition

variable. If the class has non-final non-private fields, however, this is not enough to insure

that the class is used in a thread-safe manner: non-private fields can be accessed from contexts

other than the body of the class’s methods, and can, therefore, be accessed without the use of

synchronization. Without adhering to a strict discipline, it is, therefore, easy to write a class that may

not be thread-safe. This has caused the language to be criticized [BH99b]; the proposed solution,

however, requires the programmer to use only highly restrictive forms of monitors, eliminating the

potential to implement classes that support high degree of concurrency, and also severely limiting

the usefulness of inheritance in a concurrent setting. One of the goals of this work is to provide a

framework for managing the assurance of state outside such strict encapsulations.

2.5 Additional Risks of Concurrency

The use of mutual exclusion introduces the possibility of deadlock. Because threads using locks

must temporarily pause execution while trying to acquire a lock that is held by another thread, it

is possible for a set of threads to become permanently stalled if they have a cyclic dependency on

each other. Thus, the technique for avoiding one kind of error—race conditions—has the potential

for introducing another kind of error. Programmers are recommended to assign a partial order to

the locks used by a program; locks should always be acquired in an order that respects that partial

order. Similarly, the “components” of a program should be organized in a hierarchical manner

[BH74]. It should not be the case that a process placed in wait by a lower-level component can only

be awakened by an action of a higher-level component. In general, this can be avoided by holding

no mutex when “calling down” through the levels of abstraction, but it is often non-trivial to arrange

the code so that this is the case. This avoids the nested monitor problem [Lis77].

Techniques for capturing design intent that may be used to assure freedom of deadlock are out

of the scope of this dissertation, although the issue is briefly visited in Section 9.2.1.
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Recording Design Intent

Our approach to expressing models of design intent for concurrency and related design issues is to

annotate Java program source code. Annotations are embedded within Java comments. This avoids

any need to alter existing language tools such as compilers and IDEs. This is common practice and

is precedented by such tools as LCLint [EGHT94] (now Splint [EL02]), Extended Static Checking

(ESC) [DLNS98, FLL+02], and Anna [Luc90]. The Java community already accepts the use of

formalized comments via the Javadoc documentation generation standard. In fact, the majority of

our design-intent–capturing annotations take the form of Javadoc tags. This has several advantages:

• Java programmers are already used to encountering and producing Javadoc comments.

• The Javadoc documentation engine is extensible and can be made to incorporate design ra-

tionale based on our annotations into the generated document. (We have not yet done this for

our annotations.)

• Libraries exist for manipulating Javadoc within source code, simplifying our implementation

effort.

3.1 Analysis and Assurance of Design Intent

Static analysis is used to assure that source code is consistent with annotated design intent. When

there is an inconsistency, then either the code, the annotated design intent, or both may be wrong.

In particular, design intent may be incorrectly captured or misunderstood. In general, the process

for assuring consistency between annotated design intent and implementation is iterative.

Static analyses must necessarily be grounded in the semantics of the target language, Java,
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if assurances about program behavior are be meaningful. There is no formal semantics for the

complete Java language. It is standard practice to use scaled-down versions of the Java language

when describing analyses to avoid having to address features of the language that are irrelevant to

the properties of interest. We thus introduce our own scaled-down Java language, FLUIDJAVA, over

which we formalize our analyses. Our analyses primarily resemble type systems, and are presented

as such in our mini language. We say more about the soundness of particular analyses as they are

presented in later chapters.

In the following chapters we introduce annotations for recording concurrency-related design

intent, extend our mini Java language to support those annotations, and describe analyses for pro-

viding assurance based on those annotations. For clarity, source code examples are always in full

Java with annotations; use of FLUIDJAVA language is generally reserved for formal presentations of

analysis.

3.2 The FLUIDJAVA Language

We use a mini-language called FLUIDJAVA1 based on the CLASSICJAVA and CONCURRENTJAVA lan-

guages of [FKF98] and [FF00, BR01, BLR02], respectively. CLASSICJAVA was originally used as

the base language for studying models of inheritance in Java. Features it is missing include scalar

types, mutable local variables, and concurrency. As a small Java-like language, however, it has also

been used by others, e.g., [FF00, BR01, Yat99], as the basis for presenting analyses for Java pro-

grams. In particular, [FF00, BR01, BLR02] derive a mini-language supporting concurrency from

CLASSICJAVA that they call CONCURRENTJAVA.

FLUIDJAVA is basically CLASSICJAVA with the concurrency features, final variables, mutable

local variables, and int and boolean scalar types of CONCURRENTJAVA, but with interfaces re-

moved from the language. Additional differences are noted as relevant. Mutable local variables,

final variables, and scalar types are interesting for effects analysis.

3.2.1 The Language

The grammar for FLUIDJAVA is shown in Figure 3.1. A program is a sequence of class definitions

followed by an initial expression that replaces the standard Java public static void main

method. The class Object is predefined and is the root of the class hierarchy. Programmer-defined

1This research was performed as part of the Fluid Project, hence the name.
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P ::= defn∗ e
defn ::= class cn extends c {field∗ meth∗}
field ::= mod_t fd = e
meth ::= t mn(arg∗) {body}
body ::= e | abstract
arg ::= mod_t x

mod_t ::= [final]opt t
t ::= c | int | boolean
c ::= cn | Object
e ::= null | new c | x | x = e | e.fd | e.fd = e | e.mn(e∗) | super.mn(e∗)

| e1 ; e2 | let mod_t x = e in {e} | if(e) {e} else {e} | synchronized(e) {e} | fork {e}

Identifiers are drawn from the following distinct name spaces:
cn ∈ class names fd ∈ field names mn ∈ method names x ∈ variable names

Figure 3.1: The grammar for FLUIDJAVA.

classes must extend exactly one class; this guarantees that all classes are comparable with Object.

Variable and field declarations always include initialization expressions and may optionally be de-

clared as final. Additional points to note about the language are:

• The receiver this is not treated as a distinguished expression, but is instead a final local vari-

able added to the environment when type checking method bodies.

• Fields and methods do not have visibility modifiers: they are all effectively public.

• The name spaces for methods, fields, classes, and local variables are distinct and disjoint.

• Methods are declared to be abstract via the method body {abstract}.

• Classes do not have constructors. Instead all fields have explicit initializers.

• While CLASSICJAVA allows fields to be shadowed, we have chosen to remove this feature in

order to simplify reasoning about fields, and in later chapters, regions.

• Unlike the full Java language in which threads are special objects, in FLUIDJAVA, threads are

created using an explicit fork expression that executes its body in a newly created thread.

The result of this expression is uninteresting and is typed as an int. Traditional Java Thread

objects can be translated straightforwardly; Figure 3.2 shows one possible translation.

3.2.2 Language Predicates

Several predicates and relations are used to reason over a program P . These are based on the pred-

icates from [FKF98] and are shown in Figure 3.3. These predicates are used to insure the program
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Java FLUIDJAVA

public class MyThread extends Thread {
private int x = 0;

public void run() { ... }

public static void
main(String args[]) {

MyThread t = new MyThread();
t.start();

}
}

class MyThread extends Object {
int x = 0

int run() { ... }
}

let MyThread t = new MyThread
in { fork { t.run() } }

Figure 3.2: One possible translation of a Java thread class into FLUIDJAVA.

ClassOnce(P) ≡ ∀c, c′ : class c · · · class c′ · · · is in P ⇒ c �= c′

FieldsOnce(P) ≡ ∀fd , fd ′ : class · · · {· · · t fd · · · t′ fd ′ · · ·} is in P ⇒ fd �= fd ′

MethodsOnce(P) ≡
∀mn,mn ′ : class · · · {· · ·mn(· · ·){· · ·} · · ·mn ′(· · ·){· · ·} · · ·} is in P ⇒ mn �= mn ′

c ≺c c′ ⇔ class c extends c′ · · · {· · ·} is in P

〈c.fd ,mod_t〉∈∈cc ⇔ class c · · · {· · ·mod_t fd · · ·} is in P

〈mn, t1 . . . tn → t , (x1 . . . xn), e〉∈∈cc ⇔ class c · · · {· · · t mn([final]opt t1 x1 . . . [final]opt tn xn){e} · · ·} is in P

≤c ≡ the transitive, reflexive closure of ≺c

NoShadowing(P ) ≡
〈c.fd ,mod_t〉∈∈cc ⇒ ( � ∃c′,mod_t ′ : c �= c′ ∧ c ≤c c′ ∧ 〈c′.fd ,mod_t ′〉∈∈cc′)

CompleteClasses(P ) ≡ rng(≺c) ⊆ dom(≺c) ∪ {Object}
WFClasses(P) ≡ ≤c is antisymmetric

ClassMethodsOK(P) ≡
∀c, c′, e, e ′,mn,T ,T ′,V ,V ′ : (〈mn,T ,V , e〉∈∈cc ∧ 〈mn,T ′,V ′, e ′〉∈∈cc′) ⇒ (T = T ′ ∨ c �≤c c′)

〈c′.fd ,mod_t〉 ∈c c ⇔ 〈c′.fd ,mod_t〉∈∈cc′ ∧ c ≤c c′

〈mn,T ,V , e〉 ∈c c ⇔
〈mn,T ,V , e〉∈∈cc′ ∧ c′ = min{c′′|c ≤c c′′ ∧ ∃e ′,V ′ : 〈mn,T ,V ′, e ′〉∈∈cc′′}

NoAbstractMethods(P , c) ≡ ∀mn,T ,V , e : 〈mn,T ,V , e〉 ∈c c ⇒ e �= abstract

Figure 3.3: Predicates and relations in the model of FLUIDJAVA. Based on Figure 4 of [FKF98].
The relation “is in” relates arbitrary symbol sequences. Centered ellipses “· · ·” are an arbitrary
sequence of symbols with balanced braces and parentheses, while “. . .” indicate a repeated pattern
or continued sequence. The meta-variable T abbreviates method signatures t1 . . . tn → t, and V is
used for variable lists (x1 . . . xn). Relations are implicitly parameterized by the program P .
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Judgment Meaning
	 P : t Program P yields type t
P 	 defn defn is a well formed definition
P 	 mod_t Type mod_t exists
P 	 field field is a well formed field
P , c 	 meth meth is a well formed method in type c
P ;E 	 e : t expression e has type t

Figure 3.4: Typing judgments for FLUIDJAVA.

is well formed. ClassOnce(P ) insures that class names are declared only once. Within each

class definition, FieldsOnce(P ) and MethodsOnce(P ) insure that field and method names are

unique. Predicate NoShadowing(P ) is satisfied when a class definition does not shadow any

fields declared in its ancestors.

CompleteClasses(P ) checks that classes that are extended are defined; WFClasses(P )

checks that the class hierarchy is an order (no loops). ClassMethodsOK(P ) insures that method

overriding preserves type. Finally, NoAbstractMethods(P,mn) is used as an antecedent to the

new evaluation rule to prevent the instantiation of classes with abstract methods.

The transitive–reflexive closure of the immediate subclass relation ≺c is used to define the

subclass relation: ≤c. The relation ∈∈c records what fields and methods are declared in a particular

class, while the relation ∈c records what fields and methods are contained in a class.

3.2.3 Typing Rules

Typing environments keep track of local named state: they have the form

E ::= ∅ | E ,mod_t x

The predicate x ∈ E tests whether variable x is defined in an environment E:

x ∈ E ⇔ E = E1 ,mod_t x ,E2

Figure 3.4 shows the forms of the typing judgments for FLUIDJAVA. The basic typing rules are

shown in Figure 3.5. These rules are based on those of [FKF98] without the type elaboration, but

are presented in a form more similar to that of [FF00]. Here we briefly describe the typing rules.
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PROG
ClassOnce(P) FieldsOnce(P) MethodsOnce(P) NoShadowing(P) CompleteClasses(P)

WFClasses(P) ClassMethodsOK(P) P = defn1 . . . defnn e P � defni P ; ∅ � e : t

� P : t

CLASS
P � field i P , cn � methi

P � class cn · · · {field1 . . . fieldj meth1 . . .methk}

FIELD
P � t P ; ∅ � e : t

P � [final]opt t fd = e

METHOD
P � t P � mod_ti P ; final c this,mod_t1 x1, . . . ,mod_tn xn � e : t

P , c � t mn(mod_t1 x1 . . .mod_tn xn) {e}

FINALTYPE
P � t

P � final t

INT

P � int

BOOL

P � boolean

OBJ
t ∈ dom(≺c) ∪ {Object}

P � t

SUB
P ;E � e : c′ c′ ≤c c

P ;E � e : c

NULL
P � c

P ;E � null : c

NEW
P � c NoAbstractMethods(P , c)

P ;E � new c : c

VAR
E = E1 , [final]opt t x ,E2

P ;E � x : t

ASSIGN
P ;E � e : t E = E1 , t x ,E2

P ;E � x = e : t

GET
P ;E � e : c 〈c′.fd, [final]opt t〉 ∈c c

P ;E � e.fd : t

SET
P ;E � e : c 〈c′.fd , t〉 ∈c c P ;E � e′ : t

P ;E � e.fd = e′ : t

IF
P ;E � e1 : boolean P ;E � e2 : t P ;E � e3 : t

P ;E � if(e1 ) {e2 } else {e3 } : t

LET
mod_t = [final]opt t x �∈ E P ;E � e1 : t P ;E ,mod_t x � e2 : t ′

P ;E � let mod_t x = e1 in {e2 } : t ′

SYNC
P ;E � e1 : c P ;E � e2 : t

P ;E � synchronized(e1 ) {e2 } : t

FORK
P ;E � e : t

P ;E � fork {e} : int

INVOKE
P ;E � e : c P ;E � ei : ti 〈mn , t1 . . . tn → t,V , eb〉 ∈c c

P ;E � e.mn(e1 . . . en) : t

SUPER
P ;E � this : c′ c′ ≺c c 〈mn , t1 . . . tn → t,V , eb〉 ∈c c eb �= abstract P ;E � ei : ti

P ;E � super.mn(e1 . . . en) : t

SEQ

P ;E � e1 : t1 P ;E � e2 : t2

P ;E � e1 ; e2 : t2

ABSTRACT
P � t

P ;E � abstract : t

Figure 3.5: Typing rules for FLUIDJAVA.
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A program evaluates to type t if all its class definitions are well formed, the previously described

predicates are satisfied, and the body of the program evaluates to type t . A class definition is well

formed if all the field and method declarations it contains are well formed. Field and method

declarations are checked in an environment in which the receiver is declared to be final, preventing

object identity from being changed.

A field is well formed if its declared type exists and the type of its initialization expression is

compatible with the declared type of the field. Proving this may require intervening usages of the

subtyping rule SUB. A field’s initializer is checked in an environment where the receiver this is

not defined. This prevents initialization expressions from referring to fields that have not yet been

initialized. It also prevents them from invoking methods on the object, which is problematic because

methods may also refer to fields that are not yet initialized. A method is well formed if its return

type and the types of its arguments exist and the body of the method can be proven to have the

declared return type. The ABSTRACT typing rule allows abstract method bodies to have any type so

that abstract methods are well formed.

A type exists if it is the primitive type int or boolean, the built in reference type Object, or the

name of a class declared in the program.

The subtyping rule SUB allows the type of an expression to move up the type hierarchy. A null

expression can be typed to any existing class type. A new c expression has type c if c is an existing

non-abstract class type; the syntactic restriction of c to the class name space prevents instantiation

of non-class types.

The type read from a local variable is according to the typing environment. The type of assigning

to a non-final local variable is also according to the typing environment, but only if the rvalue

expression has the appropriate type; a final variable cannot be assigned to.

The type read from an object field is according to the declared type of the field in the object’s

type. Assignment to a non-final field has the type of the field if the rvalue expression is of the

appropriate type.

The typing of the if, let, synchronized, fork, and sequencing expressions is straightforward,

although the following points are worth noting: the let expression allows read-only variables to be

declared and prevents the shadowing of local variable names, e1 must type to a reference type for

the synchronized expression, and the resulting value of fork expression is uninteresting and thrown

away.

A method invocation has the return type of the invoked method if the receiver expression has a
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meth ::= t mn lbl(arg∗) {body}
arg ::= mod_t [x ]lbl
e ::= . . . | [e]lbl

Labels are drawn from a new name space, distinct from the others: lbl ∈ expression labels

Figure 3.6: FLUIDJAVA grammar with labeled expressions.

PROG
ClassOnce(P)

FieldsOnce(P) MethodsOnce(P) NoShadowing(P) CompleteClasses(P) WFClasses(P)
ClassMethodsOK(P) UniqueLabels(P) P = defn1 . . . defnn e P � defni P ; ∅ � e : t

� P : t

METHOD
P � t P � mod_ti

E = final c this,mod_t1 x1, . . . ,mod_tn xn P ;E � e : t EP ⊇ {(lbl , E), (lbl1 , E), . . . , (lbln , E)}
P , c � t mn lbl (mod_t1 [x1]lbl1 . . .mod_tn [xn]lbln ) {e}

LABEL
P ;E � e : t EP ⊇ {(lbl , E)}

P ;E � [e]lbl : t

Figure 3.7: Type rules for labeled expressions.

reference type and the arguments evaluate to the appropriate types. The class member relation ∈c
takes method overriding into account. The superclass invocation expression types similarly except

that it starts the method lookup in the super class and must insure that the found declaration is

non-abstract.

3.3 Labeling Expressions

We wish to be able to identify where in a program an expression comes from. This is used to make

the “context” of an expression implicit, and is also fundamental to our alias resolution scheme. We

thus modify the grammar of FLUIDJAVA so that expressions may be uniquely labeled. The labels

differentiate otherwise lexically identical expressions based on their position in the program. We

also label the formal parameters of method declarations; the method declaration itself is labeled to

provide a label for the implicit parameter this. In our implementation, we use the position of an ex-

pression or declaration in the Java parse tree as the label. Labels are added to the grammar by adding

a new labeled expression, and by modifying the meth and arg productions. This makes labeled ex-

pressions optional, but aliasing resolution and effects comparison as described in Section 4.11 will
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not work in general unless all expressions are labeled. The modifications to the grammar are shown

in Figure 3.6.

For labels to be useful, each expression must be uniquely labeled. UniqueLabels(P) checks

this property, specifically that every label in a program P is unique, and is added to the antecedents

of the PROG rule; see Figure 3.7. The definition of the predicate is obvious, but tedious, and so is

omitted. The definition of ∈∈c for methods is updated to ignore the labels on the formal parameters

(see, for example, the definition in Figure 4.7). Labels allow us to reconstruct the environment of

an expression based on its label. For a well formed program P , i.e., a program with unique labels,

we define the function EP that maps a label to an environment. This function is defined using a

set constraint as an antecedent to the new LABEL rule, which otherwise propagates the type of

the underlying expression; we also modify METHOD to assign an environment to the labels of the

formal parameters.

Labels do not affect the equality of variable names when looking up variables in the environ-

ment. In general, we elide labels when appropriate.

3.4 Binding Context Analysis

We need to be able to track the mutable state references that could occur in local variables. We use

what we call “Binding Context Analysis” to compute a relation between local variables and such

references that each variable may be equal to. The relation also permits a local to be paired with

the initial value of a formal method parameter. This analysis is similar to def–use analysis for local

variables, except that it traces through local variable assignments to determine the ultimate source

of the value that reaches a particular variable use. The set of variable bindings is the set of program

expressions. The binding relations are drawn from the set VB for “variable bindings:”

Bindings = e

VB = 2(this ∪ variable names) × Bindings

The function B e V gives the set of possible bindings for a labeled expression e based on the binding

relation V .
B : e → VB → 2Bindings

B e V =




{b | (x , b) ∈ V } (e ≡ [x ]lbl )

{} (e ≡ [null]lbl )

{e} (Otherwise)
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meth ::= t0 mn lbl (mod_t1 [x1]lbl1 . . .mod_tn [xn]lbln ){[e]lbl}
V −
lbl = {(this, [this]lbl ), (x1, [x1]lbl1 ), . . . , (xn, [xn]lbln )}

e ::= [null]lbl
V +
lbl = V −

lbl

e ::= [new c]lbl
V +
lbl = V −

lbl

e ::= [x ]lbl
V +
lbl = V −

lbl

e ::= [x = [e ′]lbl ′ ]lbl
V −
lbl ′ , V

+
lbl = V −

lbl ,
(
(V +

lbl ′\x ) ∪ {(x , b) | b ∈ B [e′]lbl ′ V +
lbl ′}

)
e ::= [[e ′]lbl ′ .fd ]lbl

V −
lbl ′ , V

+
lbl = V −

lbl , V
+
lbl ′

e ::= [[e0]lbl0 .mn([e1]lbl1 . . . [en]lbln )]lbl
V −
lbl0
, . . . , V −

lbln
, V +

lbl = V −
lbl , V

+
lbl0
, . . . , V +

lbln
e ::= [super.mn([e1]lbl1 . . . [en]lbln )]lbl

V −
lbl1
, . . . , V −

lbln
, V +

lbl = V −
lbl , V

+
lbl1
, . . . , V +

lbln

e ::= [[e1]lbl1 ; [e2]lbl2 ]lbl
V −
lbl1
, V −

lbl2
, V +

lbl = V −
lbl , V

+
lbl1
, V +

lbl2
e ::= [let [final]opt t x = [e1]lbl1 in {[e2]lbl2 }]lbl

V −
lbl1
, V −

lbl2
, V +

lbl = V −
lbl ,

(
(V +

lbl1
\x ) ∪ {(x , b) | b ∈ B [e1]lbl1 V

+
lbl1

}
)
, V +

lbl2

e ::= [if([e1]lbl1 ) {[e2]lbl2 } else {[e3]lbl3 }]lbl
V −
lbl1
, V −

lbl2
, V −

lbl3
, V +

lbl = V −
lbl , V

+
lbl1
, V +

lbl1
, (V +

lbl2
∪ V +

lbl3
)

e ::= [synchronized([e1]lbl1 ) {[e2]lbl2 }]lbl
V −
lbl1
, V −

lbl2
, V +

lbl = V −
lbl , V

+
lbl1
, V +

lbl2
e ::= [fork {[e ′]lbl ′}]lbl

V −
lbl ′ , V

+
lbl = V −

lbl , (V −
lbl ∪ V +

lbl ′)

Figure 3.8: Syntax-based system of equations defining the variable bindings before and after the
execution of an expression. We let V \x = V − {(x, b) | b ∈ Bindings}.
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For each labeled expression [e]lbl , we define two sets of variable bindings V−
lbl and V +

lbl as the

least fixed point solution to the set of equations defined with regard to the syntax of each method

shown in Figure 3.8. We will primarily use binding context analysis to get the values that may be

bound to a local variable. We thus let B [x]lbl be shorthand for B [x]lbl V −
lbl .



44 CHAPTER 3. RECORDING DESIGN INTENT



Chapter 4

An Object-Oriented Effects System

To identify the program state that is intended to be shared, the programmer must be able to name

sections of program state in general. This is challenging because (1) not all state is explicitly named

by program variables, and (2) inappropriate use of private or local program names can violate prin-

ciples of encapsulation and frustrate program evolution. Our approach to identifying state extends

our object-oriented effects system, originally described in [CBS98, GB99, GS02]. Effects systems,

originally studied by Gifford and Lucassen [GL86], answer the question what state is affected. This

question must be answered, for example, to ensure all accesses to shared state are identified so

that locking policies will be complied with. An effects system is an adjunct to a type system and

includes the ability to infer the effects of a computation, to declare the permitted effects of a com-

putation, and to check that the inferred effects are within the set of permitted effects. The effects of

a computation include, for example, the reading and writing of mutable state.

Our object-oriented effects system uses program annotations to identify state hierarchically, to

declare the upper bound of the effects of methods, and to aggregate the state of collaborations of

objects. These annotations capture design intent with respect to how the programmer thinks about

the state of an object, or set of objects, and the operations of those objects. Composable analyses

determine effects and check that the effects of method implementations are consistent with their

declared effects. Declaring the permitted effects of a method necessarily constrains the implemen-

tation of a method and any method that overrides it. Such effects declarations pose two abstraction

problems: (1) we do not want effect declarations to reveal specific implementation details and (2)

we want overriding implementations to be able to access, within reason, newly declared state that

is necessarily unavailable to the original declaration. Thus, one of the requirements for a useful

effects system for an object-oriented language such as Java is that it preserve the ability to hide



46 CHAPTER 4. AN OBJECT-ORIENTED EFFECTS SYSTEM

the names of private fields: it should use abstract names that map to multiple mutable locations.

We use named regions in an object: the regions of an object provide a hierarchical covering of the

notional state of the object. The definition of the region hierarchy thus answers the question what is

the program state. Programmer-declared effects in annotations and analysis-reported effects are in

terms of regions, meeting our abstraction requirement.

In brief, our effects system distinguishes two effects on regions: read and write, where writ-

ing includes the possibility of reading. Our effects annotations specify a superset of the effects

a program segment may have on program state in terms of regions identified by targets—extrinsic

identifiers of regions—and enables comparison of effects to determine if they conflict: if at least one

effect is a write and they affect potentially overlapping targets. Our analyses are composable, e.g.,

a method body can be checked against its annotation using the annotations on the methods it calls.

Similar to type-checking in the context of separate compilation, if all method bodies are checked

at some point, the program as a whole obeys its annotations. To preserve abstraction, an effects

declaration cannot refer to regions that are less visible than the method being annotated. To enable

modular reasoning, a reimplementation of a method in a subclass must conform to the effects decla-

ration in the superclass. There is a subtlety: because subclasses can add fields to existing regions, it

is possible for a method in a subclass to affect more state than the declaration in the superclass might

otherwise seem to allow. To describe the state of collaborations of objects, the region framework is

extended to allow state aggregations. Such aggregations allow portions of state of one object to be

treated as state of another object. As a result, a complex of numerous objects, such as a linked list,

can be handled as a single notional object comprising a few regions of mutable state.

We use regions and effects (1) to associate locks with state, see Chapter 5, (2) to make verifi-

cation of uniqueness annotations, described in Section 4.6, composable, and (3) to support program

transformation, see Chapter 8. In particular, our effects system was originally developed to support

semantics-preserving program manipulations on Java source code: many transformations change

the order in which computations are executed. Assuming no other computations intervene and that

each computation is single-entry single-exit, it is sufficient to require that the effects of the two

computations do not interfere: one computation does not write state that is read or written by the

other.

In the following we first describe in more detail regions, targets, and effects. We then describe

two extensions to our model of state to incorporate aggregations of objects: (1) incorporating the

state of a uniquely referenced object into the state of the object the that refers to it, and (2) param-

eterizing classes by regions to allow part of the state of an object to be incorporated into the state
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of another object. A discussion of soundness issues follows. After a review of related work, we

present a formalization of the effects system in the context of FLUIDJAVA.

4.1 Regions Identify State

To help answer what is the program state, the programmer defines names for extensible groups of

mutable fields called regions. Publicly visible regions represent the abstract data manipulated by

the abstract operations of the class. The read and write effects of a method are reported with respect

to the regions visible to the caller. In this section, we describe the general properties of a region,

and how regions are specified by the programmer.

4.1.1 The Region Hierarchy

The regions of a program are a hierarchy: at the root of the hierarchy there is a single region

Object.All that includes the complete mutable state of the program. In Java, this region includes

all the mutable fields of heap-allocated objects, instance variables, plus all the mutable static

fields, class variables, of loaded classes. At the leaves of the hierarchy are all the mutable fields

which again comprise the entire mutable state of the program.1 Thus we see that each field is itself

a childless region. We call the non-field regions abstract regions.2 A region name is identified with

the class in which it is declared, just as regular Java fields and methods are identified. A region

name should not be confused with a specific region of an object; see the discussion of targets in

Section 4.2.

The programmer declares new regions using class-level program annotations of the form

@region visibility [static] region [extends parentRegion]

This annotation declares a new region region in the annotated class that extends the region parent-

Region that must be visible within the annotated class. The new region may be optionally static,

associating a single new region with the class itself. A non-static declaration defines a set of

regions, one for each instance of the class. The standard Java visibility modifiers apply to region

declarations and retain their usual meaning. If the parent region is not explicitly named then it is

1External state such as file state is beyond the scope of this work. Suffice it that special regions under All can be
used to model this external state.

2We use the term abstract to emphasize the implementation hiding characteristics of these regions, and not in the
usual sense of Java abstract methods which impose implementation requirements on subclasses.
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the static region Object.All for static regions and Object.Instance for non-static in-

stance regions. These defaulting rules apply to unannotated field declarations—region declarations

in their own right—as well.

A field may be placed into a programmer-defined region using the annotation

@mapInto parentRegion

To preserve the tree nature of the region hierarchy, the parent of a static region must be another

static region, otherwise the region would in effect have multiple parents. An instance region may

have a static region as its parent.

As alluded to already, there are several predefined regions. Specifically, they are

• The static region Object.All—the root of the region hierarchy. This region is the default

parent of programmer-declared static regions, and the ultimate ancestor of every region.

Unannotated methods are treated as though they have the effect @writes Object.All—

that is, they are treated as though they might modify anything.

• The region Object.Instance, a subregion of All. Region Instance is the default par-

ent of programmer-declared instance regions. Instance regions are not required to have

Instance as an ancestor.

• The region Array.[], a subregion of Instance. In Java, arrays are objects, so we model

them as instances of a pseudo-class Array with the region [], pronounced element.3 When

a subscripted element of an array is accessed, it is treated as an access of region [].

4.1.2 An Example

The class Point in Figure 4.1a demonstrates the use of region annotations. The annota-

tions declare a new public abstract region Position into which the private fields x and y

are located. An instance p of class Point has four instance regions: p.Instance, which con-

tains p.Position, which in turn contains p.x and p.y. The region Instance of p—and of all

objects—is contained in the static region Object.All.

The class Point has methods getX, getY, and scale (among others). The getter methods

are correctly annotated with @reads Position and @writes nothing, and scale is correctly

annotated with @reads nothing and @writes Position.4 Effects annotations are more fully

3More precision could be obtained by distinguishing the different types of arrays, especially arrays of primitive types.
4Our annotations are consistent with standard Java naming rules and provide for omitting this and the class name
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/**
* A two-dimensional point.
* @region public Position
*/

public class Point { ...
/** @mapInto Position */
private int x;
/** @mapInto Position */
private int y;

/**
* @reads Position */
* @writes nothing
*/

public int getX() { return x; }

/**
* @reads Position */
* @writes nothing
*/

public int getY() { return y; }

/**
* @reads nothing
* @writes Position
*/

public scale(int sc) {
x *= sc;
y *= sc;

}
}

/**
* A colored point.
* @region public Appearance
*/

public class ColorPoint extends Point { ...
/** @mapInto Appearance */
private int color;

}

/** A three-dimensional point. */
public class Point3D extends Point { ...

/** @mapInto Position */
private int z;

/**
* @reads nothing
* @writes Position
*/
public void scale(int sc) {
super.scale(sc);
z *= sc;

}
}

(a) (b)

Figure 4.1: Annotated classes (a) Point; and (b) ColorPoint, and Point3D. Annotations are
shown in boldface.

described in Section 4.3, but we introduce them here to demonstrate the flexibility in state identifi-

cation enabled by the region hierarchy. In general, method declarations are annotated with @read

and @write annotations that list the portions of state that may be affected by executing the method.

Returning to our example, effects in terms of x and y should not be used because the regions x and

y are private but the methods are public. Using an annotation such as @writes x, y breaks

abstraction by revealing private implementation details to clients of the class and thus is disallowed.

The annotations @writes Instance and @writes All—the default annotation—are also pos-

sible, and while they do not break abstraction, they are less precise, as described in the continuation

of this example below.

from region identifiers.
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4.1.3 Regions and Subclasses

Regions are inherited by subclasses, subject to their visibility, and a subclass may declare its own

regions, possibly within an inherited abstract region. Being able to extend existing regions is critical

to being able to specify the effects of a method and later being able to meaningfully override the

method. The intent is that programmers are able to define regions so that fields associated with the

same abstract design concept are identified with the same region. The programmer thus produces a

region hierarchy, which, as alluded to already, is key to the scalability of our approach by permitting

the programmer to describe the state accessed by a computation with varying degrees of precision.

Consider the class ColorPoint in Figure 4.1b that inherits from Point, and declares field

color to be in a new abstract region Appearance, implicitly a subregion of Instance. If

ColorPoint overrode scale, the overriding method would not be allowed to access color, that

is, an analysis to assure consistency between annotated effects and implementation would mark the

method as erroneous. This is because color is not in Position, which is reasonable because color

is not a position-related property. If scale were annotated with the less precise effect @writes

Instance, the limitation would be lifted, because color is indeed in Instance. At the extreme,

if the method were annotated with @writes Object.All then the implementation would be al-

lowed to modify anything. The benefit of a more precise annotation is greater documentation of

programmer design intent, i.e., of what state the method is intended to affect, and thus enables

greater assurance that an implementation is compliant with programmer intent. For example, the

client of a compliant implementation of ColorPoint or a subclass thereof can rely on the fact that

invoking scale is not going to change the color of a point.

We can create a second subclass of Point, Point3D, also in Figure 4.1b. In this case, the class

adds an additional field z to the inherited Position region. The new implementation of scale

is actually allowed to access more state than the original implementation because the Position

region of Point3D objects is expanded to include the additional field. The implementation of

scale thus remains consistent with the original effects specification, while at the same time it is

able to expand its affected state appropriately.

4.2 Targets and State Aliasing

In Java, the handle on an object is a reference. Therefore, it is not possible to name a region of a

particular object, only to name a region of the object referenced by a particular expression. Targets,
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already alluded to, are an extrinsic syntactic mechanism to name references to regions. If variable

p2d refers to a Point object, then target p2d.Position identifies the x and y fields of that object.

But if p2d refers to a Point3D, then that same target identifies the x, y, and z fields. Targets are

used in annotations when it is necessary to name state. For example, in Figure 4.1, the declared

effect of method scale is that it writes the target this.Position. This target identifies the

Position region of the object referenced by the method’s receiver. That the receiver may refer to

objects of different classes is what allows the target to identify more or less state for effects checking

purposes. The effect of an expression is also reported in terms of the targets that may be affected.

In analysis, two targets may be compared to determine if they have a non-null intersection of

state. This comparison of targets involves alias analysis among program variables because multiple

targets may refer to the same region: the region identified by target point1.Position is distinct

from the region identified by target point2.Position only when point1 and point2 are un-

aliased. Similarly, aliasing can cause a single target to resolve to multiple possible regions. This

ambiguity motivates our use of uniqueness annotations—see Section 4.6—to enable alias analyses

to be less conservative [Boy01a]. The results of target comparison in the absence of subclasses

are not violated by the introduction of subclasses. This is because of the region hierarchy and our

requirement that subclass definitions respect the effects declarations in superclasses.

4.2.1 Kinds of Targets

More generally, we distinguish between four forms of targets: (1) local targets, (2) instance targets,

(3) static targets, and (4) any-instance targets.

• A local target identifies the state associated with a local variable or method parameter. This

state contains the value of the variable, which is either a primitive value, e.g., an integer, a

boolean, etc., or a reference to an object, but, in Java, never an object itself. Local targets are

used when reporting the effects of expressions within a method. A local target is simply the

name of the local variable.

• An instance target identifies a region of an object. As described above, it is impossible in

Java to name a specific object; it is only possible to give an expression that evaluates to

the reference to that object. Because many different expressions may evaluate to the same

reference, instance targets may be aliased. An instance target resembles a standard Java field

reference expression, except that abstract region names are allowed to be referenced as well

as field names. For example, if the expression foo.getPoint() returns a Point object,
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then the effect of invoking foo.getPoint().scale(3) is to write the region identified by

the target foo.getPoint().Position. The expression in the target is taken in context, as

described in Section 3.3, and thus the target identifies regions based on the objects that the

expression may evaluate to at a particular point in the program.

• A static target identifies a static region. Unlike an instance region declaration, which

identifies regions across all instances of a class, a static region declaration identifies exactly

one region associated with the class itself. Thus the region identified by a static target can

never be ambiguous and a static target is simply the fully qualified name of a static region,

i.e., the region name plus the name of the class it is declared in, as in Object.All.5

• An any-instance target identifies state based on the name of an instance region, refined by a

class that constrains the set of objects to be considered. An any-instance target of the form

any(class).region identifies all the regions region of all the possibly shared objects of class

class. In particular, the target does not identify the region region of any object that is known

to be uniquely referenced. For example, the target any(Point).Position identifies all the

Position regions of all Point instances, including ColorPoint and Point3D instances.

Whereas the target any(Point3D).Position identifies all the Position regions of all the

Point3D—but not Point—instances.

4.2.2 Targets and Method Effects

The purpose of the any-instance target requires additional explanation. They solve a problem that

occurs when specifying the effects of a method. The declared effects of a method must be in terms

of state identifiers—targets—that are guaranteed to refer to the same state throughout the execution

of the method. Otherwise the declared effects will fail to account for all the effects of the method,

and the effects system will be unsound. Local targets make no sense in the context of method

effects: the method cannot affect the local state of the caller, and the local state of the executing

method disappears once the method returns. Static targets refer to unambiguous state, and are

therefore acceptable in method effect declarations. Instance targets are problematic because they

are in terms of a general object-valued expression. Consider the target o.f.region: if the value

in field f changes during the method’s execution, the caller can only account for the regions that

the target may have referred to when the method was invoked—it has no information about what

may have been assigned to the field—and therefore the declared effects will not account for all the

5Or more pedantically, java.lang.Object.All.
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possible effects of the method execution. Spoto and Poll demonstrate the problems that occur in this

situation in the context of the assignable clause of the Java Modeling Language (JML) [SP03].

In particular, there is little to be gained from the ability to declare more precise effects because they

are difficult to reason about and must generally be expanded into a set of less precise effects.

Because of these difficulties, we restrict instance targets in effect declarations to be of the form

p.region, where p is a method parameter or the receiver this. That said, the declared effects of a

method must still account for the state affected by expressions such as

this.f1.f2 = ...

that appear within a method implementation. When reasoning about effects within the method

implementation, the target this.f1.f2 is useful, but as just described, it cannot be used in the

declared effects. Our effects system thus contains any-instance targets which identify regions based

on classes. They are easier to reason about than the alternatives, and, in practice, no less precise.

4.3 Effects

We distinguish between two kinds of effects: read effects, those that may read the contents of

a region; and write effects, those that may change or read the contents of a region. As seen in

Section 4.1.2, the programmer may annotate a method with its permitted effects; it is an error

for any implementation of the method to have more effects than are declared. The soundness of

static analysis of the effects system would otherwise be compromised. We emphasize that effects

are permissive: an effect describes the upper bound on how state might be affected. Similarly, if a

region is affected by an expression, is it possible that only part of the region is affected. For example,

invoking the method Point.getX in Figure 4.1 has the effect @reads Position even though the

implementation actually affects only the field x. Because effects are permissive, a write effect does

not guarantee that a variable is written. Thus there would be no data-dependency purpose served by

not permitting a write annotation to give permission to read—it would only make the annotations

more verbose.

Effect annotations are introduced in Figure 4.1. In general, effects are specified using the anno-

tations

@reads target1, ..., targetn

and

@writes target1, ..., targetn
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where target is restricted to be a static target, an instance target identifying a region of a method

parameter (including this), an any-instance target, or the special target nothing that identifies

no regions. Section 4.11.2 describes this restriction more formally. As mentioned previously,

our implementation allows this to be omitted in targets, thus @reads Instance is the same

as @reads this.Instance. Unannotated methods are assumed to have the effect @writes

Object.All. The burden of annotating effects is lightened by allowing a partial specification

of effects: if a @reads annotation but not a @writes annotation is present, then the annotation

@writes nothing is assumed, and similarly for a missing @reads annotation.

4.3.1 Computing Effects

Effects are computed in a bottom-up traversal of the syntax tree. Every statement and expression has

an associated set of effects. In general, an effect is produced by any expression that reads or writes

a mutable variable or mutable object field; in Java, immutability is indicated by the final modifier

in field and variable declarations. More specifically, a write effect directly originates from an as-

signment expression, which in Java includes pre- and postfix increment and decrement operators, or

indirectly from a call to a method/constructor with a write effect. A read effect directly originates

from a variable use or a field reference expression, or indirectly from a call to a method/constructor

with a read effect. Recall that array subscripting is treated as a reference to the region [].

The effects of expressions and statements include the union of the effects of all their sub-

expressions. The targets in the computed effects use the most specific regions possible. Thus, for

example, analysis of the expression this.x *= sc from the Point.scale method determines

that local target this is read, instance target this.x is written, and local target sc is read. A more

precise description of how effects are computed for FLUIDJAVA is given in Section 4.11.2.

The analysis is intraprocedural; effects of method calls are obtained from the annotation on the

called method, rather than from an analysis of the method’s implementation. Because the method’s

declared effects are with respect to the formal parameters of the method, the effects of a particular

method invocation are obtained by substituting the actual parameters for the formal parameters in

the declared effects.

4.3.2 Comparing Effects

Assuming the effects system is sound, see Section 4.9, two expressions interfere, that is, have a data

dependency between them, only if they have conflicting sets of effects. Two effects conflict if at
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least one is a write effect and they affect targets that describe state that may overlap, that is, may

refer to the same mutable state at runtime. Two targets may overlap only if they refer to overlapping

regions, and the hierarchical nature of regions insures that regions overlap only if one is included

in the other. Furthermore, an instance target can only overlap another instance target if the objects

they refer to could be identical. The details of our implementation are described in Section 4.11.4.

4.3.3 Checking Declared Effects

The effects of a method implementation must be checked against the declared effects of the method.

Every effect that might be to state that exists prior to the method or constructor being called must

be accounted for by the declared effects. Some implementation effects can be ignored or “masked,”

because they are known to affect state that cannot be observed by the caller:

• Effects on local targets are masked because they are irrelevant outside of the method’s stack

frame.

• Effects on newly created objects are masked because they are imperceivable outside of the

method body. In particular, the state did not yet exist in the calling context.

• For a constructor, effects on the object being constructed can be ignored. Again, this is

because the object did not exist prior to the constructor being called.

Checking that implementation effects are consistent with the declared intended effects is com-

plicated by the limitations discussed in Section 4.2.2: it only makes sense for the declared effects

to use any-instance targets or instance targets restricted to refer to regions of the objects referenced

by the method’s parameters (including the receiver this). Effects inferred from the method’s im-

plementation, however, are in terms of more general targets. We need to be able to determine if

an implementation effect is “covered” by the declared effects. Because any-instance targets cause

effect conflict results to be overly conservative, we would like to maximize the number of effects

that can be determined to be covered by an effect on a region of an object referenced by a method

parameter. We define a general relation covers that relates a set of formal parameter names to an

expression from a method. For a method or constructor m, let e be an expression from the method,

Fm be the set of formal parameters of the method, origf refer to the object bound to the formal

f ∈ Fm on entry to the method m, and N be the set of objects newly allocated during execution of

the method. For a set F ⊆ Fm , we say F covers e if, for any call of the method, the objects that e

may refer to during the course of executing the method, O , are such that O ⊆ N ∪{origf | f ∈ F}.

That is, F covers e if each object that e might refer to that is not a newly allocated object can be
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proved to be equal to origf for some f ∈ F . A simple approximation of the covers relation is




{f } covers f where f is the use of a final formal

{} covers (new c)

Clearly, a write effect must be accounted for by a write effect. Because write effects also give

“permission” to read, however, a read effect can be accounted for by either a read or a write ef-

fect. We thus now discuss informally how the targets describing the affected state are accounted

for. In general, the region hierarchy allows targets at a coarser granularity to account for targets

identifying state at a finer granularity. Accounting for static targets and any-instance targets is thus

straightforward. As mentioned above, local targets are masked. Instance targets are also straight-

forwardly accounted for by static and any-instance targets. The challenge is to account for an effect

on an instance target e.region with a declared effect on an instance target. For this we rely on the

covers relation. If e is a method parameter, then it is may be accounted for by a declared effect on

a method parameter, according to the region hierarchy. Otherwise, if there exists a set F such that

F covers e, then the target may be accounted for by instead accounted for all the instance targets

f.region, where f is an element of F .

4.4 Example: Class AtomicInteger

We now use several examples to demonstrate further the use of region and effect annotations, and

to highlight how the design of the region hierarchy is a reflection of programmer design intent.

Our first example is an “atomic integer” class: an encapsulated integer value that is synchronized

for concurrent use. Such classes exist in popular concurrency libraries, e.g., SynchronizedInt in

util.concurrent [Lea]. The source code for class AtomicInteger is shown in Figure 4.2. Ob-

jects of the class are wrappers around an int field; the methods provide get, set, and testAndSet

access to the value. Access is synchronized by using an object as a lock to protect the data. This

lock may be the AtomicInteger object itself, or some other object that is identified when the

object is constructed.

The state of an AtomicInteger consists of the two fields lock and value. These have been

left unannotated, which by default makes them subregions of Instance. The field lock is final

to prevent the identity of the lock from changing. Both constructors are annotated to have no effects.

This is correct because the constructors only affect the object’s Instance region, via the value

region, so the effects are masked. The getLock method is also declared to have no effects. This
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public class AtomicInteger {
/** Object to use as the mutex to protect <code>value</code>. */
private final Object lock;
/** The encapsulated integer value. */
private int value;

/**
* Create an integer that uses a specific lock.
* @writes nothing
*/

public AtomicInteger( int val, Object l ) {
lock = l;
value = val;

}

/**
* Create an integer that uses itself as the lock.
* @writes nothing
*/

public AtomicInteger( int val ) { this( this, val ); }

/**
* Get the lock used to protect this object.
* @writes nothing
*/

public Object getLock() { return lock; }

/**
* Get the integer value.
* @reads Instance
*/

public int get() { synchronized( lock ) { return value; } }

/**
* Set the integer value.
* @writes Instance
*/

public void set( int val ) { synchronized( lock ) { value = val; } }

/**
* Set the value to <code>newVal</code> only if
* the current value is <code>assumedVal</code>
* @return <code>true</code> if the new value was set.
* @writes Instance
*/

public boolean testAndSet( int assumedVal, int newVal ) {
synchronized( lock ) {

boolean success = (assumedVal == value);
if(success) value = newVal;
return success;

}
}

}

Figure 4.2: Source code for AtomicInteger with effects annotations. Annotations are shown in
boldface.
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declaration is correct even though the implementation of the method clearly accesses a field. The

method body has a single effect: it reads local target thiswhen referencing the field lock. Reading

the field lock produces no effect because the field is final. The effect on the local target is

maskable so the declared effects are correct.

The last interesting method is testAndSet which is declared to have the effects @reads

nothing and @writes Instance. After masking, the computed effects of the body the effects

reads this.value and writes this.value remain. Because a write effect includes the pos-

sibility of reading, both effects are included in the method’s declared effects.

4.5 Example: Class BoundedFIFO

A more sophisticated example is the class BoundedFIFO, originally introduced in Section 1.3, from

the Log4j logging library shown unannotated in Figure 1.2. The class implements a circular queue

using an array buf, with head and tail indices first and next. The buffer is non-blocking: geting

from an empty buffer returns null, and puting to a full buffer silently drops the new event. The

class is intended to be used for communication between threads. Even though it does not contain

any synchronization code, it turns out clients of BoundedFIFO objects are expected to acquire the

lock on the FIFO object. In Chapter 5 we show how to document this design intent. Client-side

blocking is facilitated by the methods isFull, wasFull, and wasEmpty.

The state of a BoundedFIFO consists of some counters that track the size of the buffer and the

head and tail pointers plus the array reference buf. Once again, because there are no annotations,

all the fields are assumed to be subregions of Instance. Because the methods and constructors

are unannotated they are treated as if they had the declared effect @writes Object.All. All the

method implementations are, of course, compatible with this. But reasoning about the class using

effects of this granularity is not very useful. Also, without annotations we lose programmer design

intent. Ideally, we would like to be able to declare that each method affects at most the region

identified by the target this.Instance, that is, it only affects the receiving object.

It is tempting, for someone who understands regions, to subdivide Instance into two regions,

the first containing the fields buf, first, and next, and the second containing the fields numElts

and size. This is reasonable because the “getter” methods getMaxSize, length, wasEmpty,

wasFull, and isFull do not affect the fields in the first group, so they could be given effects

declarations that indicate they only affect a portion of the object. This partitioning of state makes

the design intent more explicit than leaving all the fields as children of Instance. In particular, that
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only get and put should affect the contents of the buffer. However, it does not assist in reasoning

about how uses of BoundedFIFO objects may conflict because (1) all the getter methods have read

effects only and thus never conflict with each other, and (2) get and put potentially write to both

sets of fields so their use would still conflict with uses of the getter methods. Herein, we decide in

favor of brevity of annotation and do not subdivide the Instance region.

4.5.1 Annotating BoundedFIFO

Our first attempt at annotating the effects of BoundedFIFO is shown in Figure 4.3, which also

introduces our notation for easing the annotation of similar methods. The class-level annotation

@methodSetmset = method1, . . .,methodn [, ...]

identifies a set of methods,6 where mset is an identifier not already used as the name of a method or

method set. The optional trailing ellipsis indicates that the specification of the set is incomplete and

that methods may add themselves to the set using the method-level annotation

@inSetmset

An entire set may be annotated using the class-level annotation

@setmset annotation

where annotation is a method-level annotation (without the initial “@”).7 Thus the annotations

in Figure 4.3 succinctly describe the intent that the methods getMaxSize, length, wasEmpty,

wasFull, and isFull all have the effect @reads Instance.

As discussed above, we would like to annotate methods get and put with @reads nothing

and @writes Instance. Unfortunately, if we were to do so, our effects checker would report that

the declared effects do not account for all the effects of the implementation. This is because these

two methods do affect an object that is not the FIFO object: the array object referenced by the field

buf. Expressions such as “... = buf[first]” affect the region [] of the object referenced by

the expression this.buf. The declared effects of the get and put methods must include these

effects. According to the discussion in Section 4.2.2 we are forced to annotate that the get and

put methods can affect the target any(Array).[], i.e., that they can affect any array. These

annotations are not ideal:

6Overloaded names are disambiguated via explicit identification of their parameter types, e.g., println(Object)
vs. println(int).

7A set may be added to another set using the annotation template @set S1 inSet S2. The name of a method set may
also appear to the right of the “=” in a @methodSet annotation.
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/**
* @methodSet readers = getMaxSize, length, wasEmpty, wasFull, isFull
* @set readers reads Instance
*/

public class BoundedFIFO { ...
LoggingEvent[] buf;
int numElts = 0, first = 0, next = 0, size;

/** ...
* @writes nothing */

public BoundedFIFO(int size) { ... }

/** ...
* @writes Instance
* @reads any(Array).[]
*/

public LoggingEvent get() { ... }

/** ...
* @writes Instance, any(Array).[] */

public void put(LoggingEvent o) { ... }
}

Figure 4.3: Our first attempt at annotating class BoundedFIFO. Notice the exposure of the array
effects for methods get and put. Annotations are in boldface.

• From the point of view of reasoning about the effects of the class, the effects of get and

put are surprisingly large. The effects are such that puting an item to any BoundedFIFO

instance will interfere with geting an item from any other BoundedFIFO instance. This is

surprising because there is no reason to believe that distinct FIFO instances share state.

• From the point of view of encapsulation, the effects still leak implementation related details

to clients of the class. Namely, that BoundedFIFO is implemented using an array. This detail

ought to be irrelevant to clients.

• From the point of view of design intent, the annotations fail to capture the intent that the array

referenced by the field buf is part of the FIFO object. This intent is fundamental to how the

programmers think about the class, and is why the previous two points are surprising to both

clients and maintainers of the class.

4.6 State Aggregation through Uniqueness

As the example above shows, the state of a single design abstraction often spans the state of multiple

instantiated objects. This can interfere with the clarity of expressed design intent and force the

principles of encapsulation to be violated. We have two techniques for aggregating state from many

objects into a single region. The first is based on the exploitation of unaliased references, also

known as unique or unshared references. The second technique, presented in the next section, is
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based on parameterizing classes by regions.

A field in Java contains only a reference to an object. Thus a region does not contain the state of

other objects, only references to other objects. The intent for class BoundedFIFO, however, is that

the state of the FIFO also include the entirely separate array object referenced by the field buf. In

Section 4.5 we discuss some of the problems that result from the failure to capture this design intent.

The programmer is inclined to think that the state of the array is part of the FIFO object because of

the additional intent that the array referenced by buf is not intended to be shared with other objects.

That is, the reference is meant to be unique. State of a uniquely referenced object may be considered

to be state of the referencing object. In particular, regions of the referenced object are mapped back

into regions of the referencing object. This mapping can be performed only for uniquely referenced

objects. Consider the case of an object referenced by two different objects that both map its state

into their own. Suppose that the two referring objects are visible in the same scope via variables p

and q, and alias analysis is able to determine that they are not aliased. Because effects on our shared

object through p are now treated as effects on p and because effects on our shared object through q

are now treated as effects on q, we can falsely conclude that two writes to the same region of our

shared object do not conflict.

We use the field-level annotation

@unshared

to record explicitly the design intent that the field has no aliases at all when it is read, that is,

any object read from it is not accessible through any other variable. A separate composable static

analysis, described in [Boy01a], verifies that unshared fields are properly used. The analysis also

supports @unsharedmethod parameters and return values, and @borrowed parameters—variables

for which no new aliases may be created. Further discussion on these features is beyond the scope of

this work, although we rely on the design intent they express for several of the analyses we present

herein. Once a field has been identified as unaliased, it is possible to treat the object referenced by

that field as part of the referring object. The instance regions of a uniquely referenced object may

be aggregated into regions of the referring object using the field-level @aggregate annotation:

@aggregate s1 into d1, . . ., sn into dn

This declares the intent that region si of the uniquely reference object is aggregated into the region

di of the referring object. That is, effects on region si of the referenced object are considered to be

effects on region di of the referring object.

Two regions related by the region hierarchy must not be mapped into unrelated regions. Suppose
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/**
* @methodSet readers = getMaxSize, length, wasEmpty, wasFull, isFull
* @set readers reads Instance
*/

public class BoundedFIFO { ...
/**
* @unshared
* @aggregate Instance into Instance
*/

LoggingEvent[] buf;

/** ...
* @writes Instance */

public LoggingEvent get() { ... }

/** ...
* @writes Instance */

public void put(LoggingEvent o) { ... }
}

Figure 4.4: Class BoundedFIFO annotated to use uniqueness aggregation. The effects of get and
put no longer reveal array effects. Annotations are in boldface.

(1) region p is a subregion of r in an unshared object; (2) they are mapped into regions a and b of

the referencing object, respectively; and (3) neither a nor b is a descendent of the other. A write

to region p of the unshared object should conflict with a write to region r, but via mapping we

can falsely conclude that they do not conflict because regions a and b of the referencing object are

disjoint. We additionally require the mapping to respect the ancestor–descendent relationship to

prevent potential logical inconsistencies and unsoundness in the formalization of the semantics of

the effects system. Specifically, if region r of unshared field u is aggregated into region q of the

referring object, then any descendent of r must be aggregated into a descendent of q, or q itself. We

also require that all regions of the uniquely referenced object must be mapped into some region of

the referring object. That is, for a uniquely referenced object declared to be of class c, we require

that for each region in c there exists a superregion of c that is explicitly mapped into the referring

object.

Returning to class BoundedFIFO we can use annotations to capture the design intent that the

array referenced by buf is meant to be part of the FIFO object itself. The field is declared to be

@unshared and the Instance region of the referenced array, which includes the [] region, is

aggregated into the FIFO’s Instance region; see Figure 4.4. Static analysis assures that buf’s use

is consistent with being unshared. Effects analysis is now able to determine that put and get’s

effects to the array are included in effects to the FIFO object itself. Both methods can thus be

annotated with the more precise effect @writes Instance.

When checking that an implementation’s effects are consistent with the method’s declared ef-
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fects, effects on @unshared parameters can be ignored. Because the method’s caller must “give up”

access to such an object, it cannot observe any future changes to that object’s state. Additionally,

the aggregation mappings of @unshared fields are consulted to reinterpret effects on a referenced

object into effects on the referencing object, which allows effects that would otherwise have to be

accounted for via any-instance targets to be accounted for by effects on regions of the method’s

parameters (including this).

4.7 State Aggregation through Parameterization

A second kind of aggregation is achieved by parameterizing class definitions by regions. This

technique allows portions of an object to be aggregated into another object, and does not impose

any aliasing constraints. We use a notation similar to C++ templates. Figure 4.5 shows a pair

of classes from the Jigsaw open-source Java web server with annotations. Class ThreadCache

maintains a doubly linked list of CachedThread objects. The annotations express the intent that the

backbone of the linked list referenced by ThreadCache.freelist be treated as a single named

abstract entity even though its implementation is distributed over many objects: the freelist

and freetail fields of one ThreadCache and the next and prev fields of the many linked

CachedThreads. The backbone abstraction is made explicit by aggregating all these fields into a

single region Threads of a ThreadCache object. This region is declared on line 2. The head and

tail pointers, freelist and freetail, are declared on line 11 to be subregions of Threads.

To perform the intended aggregation, there must be an identification for each CachedThread

object of which region is to contain its fields next and prev. The region parameter Backbone,

declared in angle brackets on line 34, accomplishes this. Fields next and prev are made children

of the region bound to Backbone on line 41. The parent region (bound to Backbone) is specified

when a CachedThread object is instantiated. This binding conceptually occurs on line 16 when a

new CachedThread instance is created: the constructor call includes the target this.Threads.

Thus CachedThreads created by different ThreadCache objects are parameterized by different

regions.

As in other polymorphic systems, all uses of the class name CachedThread specify a value for

the region parameter (specified by a target); see lines 12, 15, 20, and 42. The declaration on line 42

ensures that a CachedThread can refer only to other CachedThreads parameterized by the same

region.

The parameterization of CachedThread enables enforceable separation between representa-
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1 /**
2 * @region public Threads
3 * @region public CacheInfo
4 */
5 public class ThreadCache {
6 /** @mapInto CacheInfo */
7 protected int threadcount, usedthreads;
8

9 ...
10

11 /** @mapInto Threads */
12 protected CachedThread /*@<this.Threads>*/ freelist, freetail;
13

14 private synchronized
15 CachedThread /*@<this.Threads>*/ createThread() { ...
16 return new CachedThread /*@<this.Threads>*/ (this, ...);
17 }
18

19 /** @writes t.ThreadInfo, this.Instance */
20 synchronized boolean isFree(CachedThread /*@<this.Threads>*/ t, ...) {
21 if(!t.isTerminated()) { ... }
22 else { ...
23 t.prev = freetail;
24 if(freetail != null) freetail.next = t;
25 freetail = t;
26 if(freelist == null) freelist = t;
27 usedthreads--; ...
28 } ...
29 }
30 ...
31 }
32

33 /** @region public ThreadInfo */
34 class CachedThread /*@<region Backbone>*/ extends Thread {
35 private final ThreadCache cache;
36 /** @mapInto ThreadInfo */
37 private boolean alive;
38 /** @mapInto ThreadInfo */
39 private Runnable runner;
40 // [code omitted]
41 /** @mapInto Backbone */
42 CachedThread /*@<Backbone>*/ next, prev;
43

44 /** @writes ThreadInfo */
45 synchronized boolean isTerminated() { ... }
46

47 ...
48 }

Figure 4.5: Annotated versions of ThreadCache and CachedThread.
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tions of distinct ThreadCache aggregations, and also enables effects analysis to be less conserva-

tive with respect to the uses of next and prev fields within the implementation of ThreadCache

because the aggregation adds structure to the region hierarchy.

In Section 5.1, we show how to document the association of a lock with this aggregate region.

Once this association is documented, the combined analyses (primarily effects and aliasing, as noted

above) can provide assurance that the critical shared state is accessed only when the correct locks

are held. In general, a class is parameterized by adding the annotation

/* @<region region1, . . ., region regionn> */

to a class definition. Uses of the class are parameterized by appending to the use the annotation

/* @< target1, . . ., targetn> */

4.8 Java Interfaces

Our effects system must accommodate additional complexities of the Java language if it is to be

adoptable on real programs. In particular, to be more broadly applicable to production code, our

effects system must incorporate Java interfaces, which only declare methods but never provide im-

plementations. A class may implement multiple interfaces. To permit useful annotations on method

headers in interfaces, we must be able to add abstract regions to interfaces and thus we must handle

multiple inheritance of instance regions. Static regions, like static fields, are not inherited and thus

do not complicate matters. Multiple inheritance of instance regions is handled by permitting a class

or interface inheriting regions from an interface to map them into other regions as long as the region

hierarchy is preserved. As with the mapping of regions in uniqueness aggregations, any two regions,

both of which are visible in a superclass or superinterface of the classes or interfaces performing the

mapping, must have the same relationship when mapped to regions in the inheriting class as they

do in their original class or interface. Conflicting relations in superclasses or superinterfaces may

forbid certain inheritance combinations. We have not yet formalized or implemented this aspect of

the effects system.

4.9 Towards Soundness

An important aspect of a static effect system is for it to be sound, that is, it must not say two com-

putations do not interfere through the access of some shared state when in fact they do. Proving
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soundness requires a runtime definition of interference which we must then show is conservatively

approximated by our analysis. The runtime state of the program we are interested in includes fields

of reachable objects as well as the state of local variables and temporaries in all activation frames.

The effects of a computation can then be seen as reads and writes on elements of the state. These ef-

fects can then be compared to that of the second computation. Interference occurs when an element

of state is written by one computation and read or written by the other.

We have not yet formulated such a soundness proof. The primary impediment is the develop-

ment of a type-system and state semantics that adequately incorporates unshared references and

the state aggregation they enable. Even though we present here our effects system as a client of

our system for assuring unique references, the two systems are in fact interdependent. As we have

discussed herein, the effects system uses uniqueness to enable state aggregations. However, as-

suring uniqueness requires effects, in particular to assure that unique references are not read when

borrowed references are live. This interdependence is described in more detail in [Boy01b]. The

interdependence of the two systems means that they cannot be proven sound independently. A satis-

factory combination of uniqueness and effects has not been developed. Capabilities, also known as

permissions, are presently being explored as a solution to this problem. In the realm of uniqueness,

Boyland, et al. [BNR01] use capabilities to give a semantics for uniqueness without effects.

Permissions are useful for describing effects as well, and in fact provide a solution to a tricky

analysis problem. Aliasing frustrates reasoning about effects because effects do not include enough

information to perform interference checking. In our effects system, this is manifest (1) in our use

of targets and (2) the need to use an alias analysis—unrelated to the unique analysis—to compare

targets. Furthermore, we have a non-traditional aliasing problem that we call MayEqual [BG99],

although it can be approximated using more traditional alias analyses: we must determine whether

two expressions, each at a different point in the program, may point to overlapping sets of locations.

Clarke and Drossopoulou have the same problem, but directly incorporate a simple type-based alias

analysis into their effects system [CD02]. Interpreting effects as permissions to read or write mem-

ory locations avoids this problem, but early permission systems could not adequately distinguish

read from writes. Boyland’s “fractional permissions” [Boy03a] overcome this difficulty, and he

shows how to check read and write effects with permissions, although the system does not feature

uniqueness or state aggregation.

The current approach to integrating uniqueness and effects is based on “adoption and focus”

as presented in the context of the Vault programming language [FD02]. This model is attractive

because it combines linearity, e.g., uniqueness, with permissions, but as described is not sufficient
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for modeling our effects system. In [Boy03b], Boyland extends the adoption and focus model with

fractional permissions, multi-focus, and adoption of fields to enable distinguishing of reads from

writes, aggregation of multiple objects at once, and modeling of hierarchical regions, respectively.

In summary, proving the soundness of the effects system is difficult because of the interdependence

of uniqueness and effects. Ongoing research, however, on the integration of permission systems,

linear pointers, and regions appears to be close to producing a system upon which our particular

uniqueness and effects systems can be proved sound.

4.10 Related Work

Reynolds [Rey78] showed how interference in Algol-like programs could be restricted using rules

that prevent aliasing. His technique, while simple and general, requires access to the bodies of

procedures being called in order to check whether they operate on overlapping global variables.

The work includes a type system with mutable records, but the records cannot have recursive type;

in particular, lists and trees are not possible.

Effects were first studied in the FX system [GJLS87], a higher-order functional language with

reference cells. The burden of manual specification of effects is lifted through the use of effects

inference as studied by Gifford, Jouvelot, and Talpin [JG91, TJ92]. The work was motivated by

a desire to use stack allocation instead of heap allocation in mostly pure functional programs, and

also to assist parallel code generation. The approach was demonstrated successfully for the former

purpose in later work [AFL95, TT94]. These researchers also make use of a concept of disjoint

“regions” of mutable state, but these regions are global, as opposed to within objects. In the original

FX system, effects can be verified and exploited in separately developed program components.

Jackson’s Aspect system [Jac95] uses an abstraction mechanism similar to our regions to specify

the effects of routines on abstract data types. He uses specifications for each procedure to allow

checking to proceed in a modular fashion. In his work, however, the specifications are necessary

effects and are used to check for missing functionality.

Extended Static Checking for Java (ESC/Java) [FLL+02, DLNS98] is a theorem-prover–based

approach for verifying general properties of Java programs. Programs, together with annotations

from a subset of the Java Modeling Language [LBR99], are compiled into verification conditions to

be proved. Regarding effects, our system distinguishes both read and write effects and enforces de-

clared effects as an upper bound on the effects of methods, whereas ESC/Java is primarily concerned

with write effects and does not enforce effects declarations. ESC/Java does not support unique ref-
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erences. It is not possible to abstract state—fields—into named aggregates, nor is it possible to

express state abstractions across aggregates of objects.

Leino, et al. [Lei98, LPHZ02] describe “data groups” as a means to abstractly identify object

state. Like our regions, data groups are hierarchical sets of fields. Unlike our regions, a field or data

group may be included in multiple parent groups. This is sound because they are not intrinsically

interested in object-oriented effects, but in using modifies clauses on methods to check program

assertions modularly. Thus their presentation of data groups does not include read effects. State

aggregation akin to our uniqueness aggregation is possible via so-called “rep inclusions” in which

the fields of a referenced object are mapped into the data groups of the referring object. The field

that refers to the mapped object is known as a pivot field. Soundness is maintained by restricting

the use of pivot fields. Like our uniqueness aggregation, these restrictions amount to controlling

aliasing of pivot fields, although in our work we rely on a separately formalized and more general

uniqueness analysis. One restriction “ensures that values in pivot fields are either null or unique,

except possibly for copies stored in [read-only] formal parameters on the call stack.” The second

restriction controls how pivot fields may be passed as parameters: it prohibits the value of a pivot

field from being passed to a method whose modifies clause declares that it may modify the state of

the object referenced by the pivot field.

Object ownership models [CPN98] transitively aggregate the state of an object into the state

of its owner. Object ownership allows aggregation only at the granularity of objects. Our region-

based approach instead models what might be called field ownership and is not primarily concerned

with the objects referenced by fields. Clarke and Drossopoulou [CD02] describe an object-oriented

effects system where state aggregation is based on object ownership instead of unique references,

as is used in our approach. Objects are not subdivided into regions of state, although they briefly

suggest how this might be integrated into their approach. Instead effects are reported using “effect

shapes” that describe sets of objects based on the object-ownership tree. The effect shape this.1,

for example, denotes the set of objects owned by this, whereas the shape under(this.2) is

the set of objects at least two steps from this in the ownership tree. This representation allows

“the abstract representation of effects on unknown parts of an object’s internals, while retaining

some precision when dealing with these internals.” Our use of uniqueness aggregation does not

distinguish between the levels of indirection. Their effect system is thus “orthogonal” to ours:

their precision is horizontal over a tree, ours is vertical. We can distinguish multiple regions of an

object with transitive mapping for ownership. Their system sees only one region for all fields of

an object but can distinguish how far away it is from the root object. Their effect system does not

report effects on local variables—they are always immutable. Aliasing problems are not directly
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addressed, instead type-based disjointness is relied upon.

Boyapati and Rinard describe a ownership-based type-system to enforce locking conventions in

Java [BR01]. Classes are parameterized by owners, which are provided when an object is created.

A special unique owner identifies objects that must always be unaliased; our system is instead

concerned with unaliased variables, which may only hold unique references. The readonly owner

identifies immutable objects. Uniqueness and immutability are enforced through a simple effects

system that records aliasing and write effects that do not occur over specific method parameters or

local variables.

Yates describes preliminary work on a type-and-effect system for encapsulating memory in Java

[Yat99]. His system is closer to that of [LG88] than it is to ours. The state of the program is divided

into disjoint regions that contain objects in their entirety. Objects may refer to objects in other

regions. Read and write effects are not distinguished—an effect is just the name of a region. Yates

gives a type system and semantics for an elaborated language in which methods are elaborated with

the region in which their parameters and return value reside. These elaborations are not polymorphic

and the process by which a program is elaborated is left unspecified. Thus the number of regions

in a program, or even their origin is left unspecified. His goal is not to describe design intent or the

organization of program state but to prove the correct use of encapsulated expressions, identified by

a new keyword. An encapsulated expression is one that “should produce the same result from the

same arguments in any context.”

Bierman and Parkinson [BP03] formalize a subset of our effects system as presented in [GB99]

and provide a effects inference algorithm. The formalization is proved to be sound and the algorithm

correct with respect to an operation semantics of effects. The effects system they formalize does

not distinguish between objects—all abstraction regions are static. Their system also lacks a region

hierarchy, uniqueness, and therefore, uniqueness aggregation.

4.11 Effects in FLUIDJAVA

We now present a subset of our effects system more formally by extending FLUIDJAVAwith regions,

effects declarations, uniqueness, and uniqueness aggregation. We mean to include normally de-

clared fields when we use the term region. We use abstract region when we do not intend to include

fields. Because FLUIDJAVA does not have static fields our presentation of regions does not include

static regions or static targets. In particular we do not have the region Object.All—the target

any(Object).Instance is sufficient to refer to all the heap state in the program. We have not
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defn ::= class cn extends c effect {region∗ field∗ meth∗}
region ::= region argn in argn
field ::= shared_field | unshared_field

shared_field ::= mod_t fd in argn = e
unshared_field ::= unshared mod_t fd in argn aggregate agg+ = e

agg ::= rgn into argn
meth ::= t mn lbl(arg∗) effect {body}
effect ::= reads tgt+ writes tgt+

tgt ::= nothing | x | e.rgn | any(c).rgn

The disjoint name spaces are extended with the set of abstract region names; the set of region names
is the set of abstract region names together with the set of field names.
argn ∈ abstract region names rgn ∈ field names ∪ abstract region names

Figure 4.6: Syntax modifications to FLUIDJAVAwith labeled expressions for regions and effects.

yet formalized region parameters, although in general they could be handled by associating a func-

tion with each parameterized class that represents the portion of the region hierarchy defined by the

region parameters of that class, and by extending the environment to map formal region parameters

to targets. The subregion relation would then be replaced with a subtargeting relation defined in

terms of inferences based on the environment and relevant portions of the region hierarchy.

4.11.1 The Extended Language

The syntax of FLUIDJAVA with labeled expressions is modified as shown in Figure 4.6. Region dec-

larations are added to class definitions, and field declarations must now include a parent region. A

field may be declared to be unshared, and such fields also have a mapping from regions of the refer-

enced object into regions of the referring object. A class declaration now contains a declaration of

effects: these are the effects of constructing a new instance. In real Java, the constructors are anno-

tated with effects just as methods are. Method declarations are extended to include a declaration of

their latent effects. The general syntax for effects and targets is also shown in Figure 4.6 and defines

the set of effects and targets used our in formalizations. Targets are the empty target nothing, the

local target x , the instance target e.rgn , and the any-instance target any(c).rgn . In Section 4.11.2,

we present well formedness rules that restrict the shape of targets in effect declarations.

For convenience, we abuse notation in the following ways

• We treat members of tgt∗ as sets of targets.

• We treat the empty target nothing as the empty set.
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RegionsOnce(P ) ≡
FieldsOnce(P )

∧ (∀argn, argn ′ : class · · · {· · · region argn · · · region argn ′ · · ·} is in P ⇒ argn �= argn ′)
c.rgn ∈∈c c ⇔ (class c · · · {· · · region rgn · · ·} is in P ) ∨ (∃mod_t : 〈c.rgn ,mod_t〉∈∈cc)

c′.rgn ∈c c ⇔ c′.rgn ∈∈c c′ ∧ c ≤c c′

rgn
c�→ c′.rgn ⇔ ∃c′ : c′.rgn ∈c c

c.rgn ≺r c′.rgn ′ ⇔ class c · · · {· · · rgn in rgn ′ · · ·} is in P ∧ c′.rgn ′ ∈c c

≤r ≡ the transitive, reflexive closure of ≺r

rgn ≤r
c,c′ rgn ′ ⇔ rgn

c�→ ĉ.rgn ∧ rgn ′ c′�→ ĉ′.rgn ′ ∧ ĉ.rgn ≤r ĉ′.rgn ′

WFRegions(P ) ≡ ≤r is antisymmetric
CompleteRegions(P ) ≡ rng(≺r) ⊆ dom(≺r) ∪ {Object.Instance}

NoShadowing(P ) ≡ . . . ∧ (c.rgn∈∈cc ⇒ ( � ∃c′ : c �= c′ ∧ c ≤c c′ ∧ c′.rgn∈∈cc′))
AggregationsOK(P ) ≡ ∀c, c′, rgn , argn :

class c′ · · · {· · · unshared [final]opt c · · · aggregate · · · rgn into argn · · · = · · ·} is in P

⇒ rgn
c�→ ĉ.rgn ∧ argn

c′�→ ĉ′.argn
Mc

fd (ĉ.rgn) = ĉ′.argn ⇔
class c′ · · · {· · · unshared [final]opt c fd · · · aggregate · · · rgn into argn · · · = · · ·} is in P

∧ rgn
c�→ ĉ.rgn ∧ argn

c′�→ ĉ′.argn
MapOK(P, M, c) ≡
(∀(c1.rgn , c2.argn) ∈ M, (c3.rgn

′, c4.argn ′) ∈ M : c1.rgn ≤r c3.rgn
′ ⇒ c2.argn ≤r c4.argn

′)
∧ (∀c′.rgn ′ ∈c c : ∃ĉ. ˆrgn ∈ dom(M) : c′.rgn ′ ≤r ĉ. ˆrgn)

〈mn, t1 . . . tn
reads R writes W−→ t, (x1 . . . xn), e〉∈∈cc

⇔
class c · · · {· · · t mn lbl ([final]opt t1 [x1]lbl1 . . . [final]opt tn [xn]lbln ) reads R writes W {e} · · ·} is in P

ClassMethodsOK(P) ≡ ∀c, c′, e, e ′,mn, ti , t
′
i , t , t

′,V ,V ′, ψ, ψ′ :

(〈mn, t1 . . . tn
ψ→ t ,V , e〉∈∈cc ∧ 〈mn, t ′1 . . . t ′n

ψ′
→ t ′,V ′, e ′〉∈∈cc′)

⇒ ((t = t ′ ∧ ti = t ′i ∧ V = V ′ ∧ ψ = ψ′) ∨ (c �≤c c′))

c
fx�→ reads R writes W ⇔ class c · · · reads R writes W {· · ·} is in P

Figure 4.7: Additional predicates and relations for checking FLUIDJAVA extended with regions and
effects. Metavariables R and W are lists (tgt1 . . . tgtn).

• We treat an effect reads tgtR1 , . . . , tgt
R
n writes tgtW1 , . . . , tgtWm as the set

⋃n
i=1{reads tgtRi }∪⋃m

j=1{writes tgtWj }, and vice versa.

• If ψ ∈ effect then ψ[e/v], where v is a variable name or this and e is an expression, is the

set of effects where targets of the form v .rgn are replaced with the target e.rgn . In particular,

substitution does not occur for v’s that appear within an expression e.

Additional predicates and relations necessary for insuring the region hierarchy is well formed

are shown in Figure 4.7. Recall that the set of region names is the union of the set of abstract region

names and the set of field names. We thus replace the predicate FieldsOnce(P ) with the predicate

RegionsOnce(P ) to enforce that region names are unique within a class. To check that regions

form a hierarchy we construct an order over the regions based on the declarations. (1) We extend
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∈∈c and ∈c to relate abstract regions to classes. (2) We assume that Object.Instance ∈∈c Object. (3)

We define new relations ≺r and ≤r over all regions; c.rgn ≺r c′.rgn ′ only when rgn′, the intended

parent region of rgn , is defined in class c. Predicate WFRegions(P ) checks that the regions form

a hierarchy. The triple rgn c�→ c′.rgn looks up the particular region with name rgn that is defined

in class c, and gives its fully qualified name. Similarly, rgn ≤r
c,c′ rgn

′ compares two regions based

on the results of looking up the region names in classes c and c′. To check that the regions used as

superregions are defined we define CompleteRegions(P ). We update NoShadowing(P ) to

additionally prevent shadowing of abstract regions.

For an unshared field fd in class c that references an object of class c′, AggregationsOK(P )

checks that the associated region mapping maps regions defined in c′ to abstract regions defined

in class c. Each unshared field defines a function Mc
fd that represents its aggregation mapping.

The predicate MapOK(P, M, c) insures that this mapping respects the class hierarchy and that

every region of the uniquely referenced object is mapped (perhaps indirectly) into a region of the

referencing object. The relations ∈∈c and ∈c as applied to field declarations are updated in the

obvious and tedious manner (not shown).

We extend the type signature of a method in the relation ∈∈c to include its declared effects; the

relation ∈c, not shown, is also updated in the obvious manner. Predicate MethodsOnce(P),

also not shown, is updated to handle the extended method signature as well. We also extend

ClassMethodsOK(P ) so that method overriding preserves declared effects. Parameter names

can appear in declared effects; we must be careful, therefore, in how we compare the declared

effects. In the interest of simplicity, we deviate from the original definition of the predicate and re-

quire that method overriding preserve parameter names so that the declared effects may be directly

compared. For simplicity, we also require that overriding methods declare exactly the same effects.

An alternative is to allow the declaration of more specific effects, in which case we would have to

check that all the effects of the overriding declaration are accounted for in the original declaration.

The new relation c fx�→ ψ maps a class name to its constructor effects. This is necessary because

FLUIDJAVA does not have formal constructors; if it did we would treat them similarly to methods.

We assume that Object
fx�→ reads nothing writes nothing.

For the full Java language, we also have to check that no static region is a subregion of an

instance region, and that no region is more visible than its parent region.
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Judgment Meaning
	 P : t !ψ Program P yields type t and has effect ψ
P 	 defn defn is a well formed definition
P ;E 	decl effect effect is a well formed effect declaration
P ;E 	decl tgt tgt is a well formed target within an effect declaration
P ;E 	 effect effect is a well formed effect
P ;E 	 tgt tgt is a well formed target
P 	 t t exists
P , c 	 field !ψ field is a well formed field whose initializer has effect ψ
P , c 	 meth meth is a well formed method in type c
P ;E 	 e : t !ψ Expression e has type t and effect ψ

Figure 4.8: Typing judgments for the extended language.

P � tgti ❀ r

P � reads tgt1 . . . tgtj writes tgtj+1 . . . tgtn P � nothing ❀ ·
EP (lbl) = E1 , [final]opt c x ,E2

P � [x ]lbl ❀ ·

P ; EP (lbl) � e : c !ψ c′.rgn ∈c c

P � [e]lbl .rgn ❀ c′.rgn

c′.rgn ∈c c

P � any(c).rgn ❀ c′.rgn

Figure 4.9: Rules for well formed effects and targets.

4.11.2 Typing Rules

Typing judgments must incorporate effects, and now have the forms shown in Figure 4.8. We

now have rules for well formed effects and targets. There are two sets of rules, one that limits the

shape of a target within an effects declaration clause, and a second set for general effects and targets.

Figure 4.9 shows the general rules. An effect is well formed if all its targets are well formed. A target

is well formed if (1) it is the empty target; (2) it is a local target and the variable is defined in the

environment; (3) it is an instance target and the region is defined in the type of the expression; or (4)

it is an any-instance target and the region is defined in the named type. Environments are determined

from the label of the expression contained within the target. Well formed targets, therefore, must

contain labeled expressions. The judgments for well formed instance and any-instance targets also

elaborate to the fully qualified name of the region that is named in the target.

The rules for well formed effects declarations and well formed targets within effect declarations

are shown in figure 4.10. A target in an effects declaration must be the empty target, an instance

target whose expression is a method parameter, including this, or an any-instance target. The limi-
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P ;E �decl tgti

P ;E �decl reads tgt1 . . . tgtj writes tgtj+1 . . . tgtn P ;E �decl nothing

E = E1 , [final]opt c x ,E2 c′.rgn ∈c c

P ;E �decl x .rgn

c′.rgn ∈c c

P ;E �decl any(c).rgn

Figure 4.10: Rules for well formed effect declarations.

NULL
P � c

P ;E � null : c ! ∅

ABSTRACT
P � t

P ;E � abstract : t ! ∅

FINALVAR
E = E1 , final t x ,E2

P ;E � x : t ! ∅

Figure 4.11: Rules for expressions without effects.

tation to method parameters is enforced by checking the well formedness of the effects declaration

in an environment that only contains method parameters; see rule METHOD in Figure 4.15. Rule

CLASS checks the effects of the constructor using an environment containing this only.

We discuss the program type and effects rules bottom up, starting with effect-producing expres-

sions, and moving upward along the syntax to method and class declarations. Figure 4.11 gives

the rules for those expressions that do not produce or propagate any effects. Evaluating the null

expression does not produce any effects, nor does evaluating any other primitive integer or boolean

literal. The abstract expression has no effect—it is treated like an empty method body. Reading a

final local variable produces no effect because such a variable does not represent mutable state.

The rules for expressions that have direct effects are shown in Figure 4.12. These are the expres-

sions that cause effects, as opposed to merely propagating the effects of other expressions. Reading

from and writing to a non-final local variable produce read and write effects, respectively. Reading

from a non-final field causes a read effect to the field and propagates the effects of evaluating the

VAR
E = E1 , t x ,E2

P ;E � [x ]lbl : t ! {reads [x ]lbl}

ASSIGN
P ;E � e : t !ψ E = E1 , t x ,E2

P ;E � [x ]lbl = e : t !ψ ∪ {writes [x ]lbl}

GET
P ;E � [e]lbl : c !ψ 〈c′.fd, t〉 ∈c c

P ;E � [e]lbl .fd : t !ψ ∪ {reads [e]lbl .fd}

SET
P ;E � [e]lbl : c !ψ1 〈c′.fd, t〉 ∈c c P ;E � e′ : t !ψ2

P ;E � [e]lbl .fd = e′ : t !ψ1 ∪ ψ2 ∪ {writes [e]lbl .fd}

Figure 4.12: Rules for expressions with direct effects.
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NEW

P � c c
fx�→ ψ NoAbstractMethods(P , c)

P ;E � new c : c !ψ

INVOKE

P ;E � e : c !ψe P ;E � ei : ti !ψi 〈mn , t1 . . . tn
ψ→ t, (x1 . . . xn), eb〉 ∈c c

P ;E � e.mn(e1 . . . en) : t !ψe ∪ (

n⋃
i=1

ψi) ∪ ψ[e/this][ei/xi]

SUPER

P ;E � this : c′ !ψR c′ ≺c c 〈mn , t1 . . . tn
ψ→ t, (v1 . . . vn), eb〉 ∈c c eb �= abstract P ;E � ei : ti !ψi

P ;E � super.mn(e1 . . . en) : t !ψR ∪ (

n⋃
i=1

ψi) ∪ ψ[ei/vi]

Figure 4.13: Rules for object creation and method calls.

expression describing the receiver. Similarly for assigning to a field.

The rules for object creation and method calls are shown in Figure 4.13. Constructing an object

has the effects declared on the class, obtained using the fx�→ relation. If we had named construc-

tors in our language, then the rule would be similar to the method invocation rule. Invoking a

method causes the latent effects ψ of the method, and also propagates the effects of evaluating the

expressions for the receiver, ψe and the method arguments, ψi. Any parameter names, including the

receiver, in the targets of the method’s effects are simultaneously replaced by the actual expressions.

For example, if method Point.add(Point p) has the effects

{reads this.Location, reads p.Location}

then the expression pt1.add(pt2), has the effects

reads pt1, pt2, pt1.Location, pt2.Location writes nothing

The rule for a invoking a superclass implementation of a method is similar, except that there is no

substitution for this. The receiver effect ψR is always {reads this} because it originates from a

judgment using the local variable this.

Rules for the rest of the expressions are shown in Figure 4.14. The effects of all these expres-

sions are simply the union of the effects of their subexpressions. Reading from a final field does

not produce an effect on that field because it is not considered to be mutable state. Subsumption
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FINALGET
P ;E � e : c !ψ 〈c′.fd, final t〉 ∈c c

P ;E � e.fd : t !ψ

IF
P ;E � e1 : boolean !ψ1 P ;E � e2 : t !ψ2 P ;E � e3 : t !ψ3

P ;E � if(e1 ) {e2 } else {e3 } : t !ψ1 ∪ ψ2 ∪ ψ3

SEQ

P ;E � e1 : t1 !ψ1 P ;E � e2 : t2 !ψ2

P ;E � e1 ; e2 : t2 !ψ1 ∪ ψ2

LET
mod_t = [final]opt t x �∈ E P ;E � e1 : t !ψ1 P ;E ,mod_t x � e2 : t ′ !ψ2

P ;E � let mod_t x = e1 in {e2 } : t ′ !ψ1 ∪ ψ2

SUB
P ;E � e : c′ !ψ c′ ≤c c

P ;E � e : c !ψ

SYNC
P ;E � e1 : c !ψ1 P ;E � e2 : t !ψ2

P ;E � synchronized(e1 ) {e2} : t !ψ1 ∪ ψ2

FORK
P ;E � e : t !ψ

P ;E � fork {e} : int !ψ

LABEL
P ;E � e : t !ψ EP ⊇ {(lbl , E)}

P ;E � [e]lbl : t !ψ

Figure 4.14: Rules for expressions with only indirect effects.

is not allowed to widen the effects of the expression. Fork is interesting because it does not have

an equivalent expression in Java, rather it corresponds to an invocation of the Thread.start()

method. The “body” for the thread is defined by an implementation of the Runnable interface’s

run() method. In general, this means the effect of starting a thread in Java is going to be @writes

Object.All.

Finally, the rules for well formed definitions and programs are in Figure 4.15. The predicate an-

tecedents in rule PROG are updated as previously described. There is an additional rule for unshared

fields: it includes the previously described MapOK predicate as an antecedent. The rules for fields

propagate the effect of field initialization expressions. These effects are gathered in the CLASS rule

and checked against the declared effects of the class. The declared effects of a class must also in-

clude the effects of constructing an instance of its superclass. The effects of the body of a method are

checked against the declared effects of the method. Predicate CheckFX(P , args , ψ, ψ′), where

args is a map from parameter names to their declared types, is true when “all the effects of ψ are

included in the effects of ψ′.”

4.11.3 Checking Declared Effects

We now return to the problem of checking the declared effects of a method against the actual effects

of the method’s implementation. This checking is abstractly described in Section 4.3.3. We use

an “elaboration” that expands a set of effects to take into account the bindings of local variables

and the mapping of unshared fields. This process is defined in Figure 4.16. For each target tgt
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PROG
ClassOnce(P) RegionsOnce(P) MethodsOnce(P) NoShadowing(P) CompleteClasses(P)

WFClasses(P) ClassMethodsOK(P) UniqueLabels(P) WFRegions(P)
CompleteRegions(P) AggregationsOK(P ) P = defn1 . . . defnn e P � defni P ; ∅ � e : t !ψ

� P : t !ψ

CLASS

CheckFX(P , ∅, mask(P, elaborate(P, ψ ∪
j⋃
i=1

ψi), ∅), effect)

P ; final cn this �decl effect P , cn � field i !ψi P , cn � methi c′ fx�→ ψ

P � class cn extends c′ · · · effect {· · ·field1 . . .field j meth1 . . .methk}

FIELD
P � t P ; ∅ � e : t !ψ

P , c � [final]opt t fd in rgn = e !ψ

UNSHAREDFIELD
P � c′ P ; ∅ � e : c′ !ψ MapOK(P, Mc

fd , c
′)

P , c � unshared [final]opt c
′ fd in rgn aggregate agg1 . . . aggn = e !ψ

METHOD
P � t P � mod_ti E = final c this,mod_t1 x1, . . . ,mod_tn xn P ;E � e : t !ψ P ;E �decl effect
mod_ti = [final]opt ti CheckFX(P , {this �→ c, xi �→ ti}, mask(P, elaborate(P, ψ), {this, xi}), effect)

EP ⊇ {(lbl , E), (lbl1 , E), . . . , (lbln , E)}
P , c � t mn lbl (mod_t1 [x1]lbl1 . . .mod_tn [xn]lbln ) effect {e}

Figure 4.15: Rules for well formed definitions with regions and effects. elaborate, mask, and
CheckFX are defined in Figures 4.16, 4.17, and 4.18, respectively.

that describes a region of an object referenced by a local variable, (1) binding context analysis is

used to find the possible source expressions of the reference and (2) new targets—that describe the

same state as tgt—based on these expressions are added to the set of targets. The purpose of this

is to avoid naming state through local variables which are meaningless outside of the method body.

In Java, Binding Context Analysis traces the source of a local’s value to (1) a method parameter,

(2) a new expression, (3) a method call, or (4) a field reference, including an array element. As

previously discussed, and as formalized below, effects on newly created objects are ignored. An

instance target of the form [x]lbl .rgn where x binds to method parameters and new expressions only

can be accounted for by declared effects on regions of those parameters. This is our implementation

of the covers relation of Section 4.3.3.

Elaboration also exploits the mapping of unshared fields. In general, ignoring labels, targets of

the form e.fd .rgn are replaced by targets of the form e.rgn′ when fd is an unshared field and rgn is a

subregion of a region that maps to rgn′. When the region mapping is ambiguous, because two related

regions are both explicitly mapped, we always map into the region closest to the leaves of the region

hierarchy. In combination with Binding Context Analysis expanding references through locals into

references through parameters and fields, this process effectively chases a chain of unique object
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map(P, c.rgn , M) ≡ min≤r {ĉ. ˆrgn | c.rgn ≤r c′.rgn ′ ∧M(c′.rgn ′) = ĉ. ˆrgn}
elaborate(P, reads R writes W ) ≡ reads elaborate(P, R) writes elaborate(P, W )

elaborate(P, T ′) ≡ The smallest set T ⊇ T ′ such that


[x]lbl .rgn ∈ T ⇒ T ⊇ {e.rgn | e ∈ B [x]lbl }

[[e]lbl .fd ]lbl′ .rgn
′ ∈ T ⇒ T ⊇


[e]lbl .rgn

∣∣∣∣∣∣
P ;EP (lbl) � e : c !ψ

∧ P ;EP (lbl ′) � [e]lbl .fd : c′ !ψ′

∧ rgn ′ c′�→ ĉ′.rgn ′ ∧ ĉ.rgn = map(P, ĉ′.rgn , Mc
fd )




Figure 4.16: Effect elaboration.

unshared(P, [e]lbl .fd) ≡
(P ; EP (lbl) � e : c′ !ψ) ∧ fd

c′�→ c.fd ∧ ∃ĉ : class c · · · {· · · unshared [final]opt ĉ fd · · ·} is in P
mask(P, reads R writes W, args) ≡ reads mask(P, R, args) writes mask(P, W, args)

mask(P, T, args) ≡ {tgt ∈ T | mask(P, tgt , args)}

mask(P, tgt , args) ≡




true (tgt ≡ [x]lbl )
x �∈ args (tgt ≡ [x]lbl .rgn)
true (tgt ≡ [new c]lbl .rgn)
unshared(P, e.fd) (tgt ≡ [e.fd ]lbl .rgn)
false (Otherwise)

Figure 4.17: Effect masking.

references to the “largest” aggregation visible within the method body. Ideally this aggregation

would be via an object identifiable through a method parameter (usually this), which would allow

all the effects on the aggregation to be accounted for by a declared effect on a target of the form

x.rgn .

Elaboration is followed by effect masking, defined in Figure 4.17, which in addition to remov-

ing effects based on the criteria described in Section 4.3.3, also removes those effects rendered

redundant because of elaboration.8 More specifically, for FLUIDJAVA,

• We mask effects on local targets.

• We mask effects on instance targets x.rgn where x is not a method parameter. Such effects

are redundant after elaboration and to keep them would require the declared effects to use

any-instance targets.

• We mask effects on newly created objects.

• We mask effects on unshared objects. Such effects are redundant after elaboration, which

replaces them with effects on an aggregated object.

8We cannot remove the redundant effects during elaboration because otherwise it is not possible to reach a fixed point.
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CheckFX(P, args , reads R writes W, reads R′ writes W ′)
≡

(∀tgt ∈ R : CheckTgt(P, args , tgt , R′ ∪W ′)) ∧ (∀tgt ∈W : CheckTgt(P, args , tgt , W ′))
CheckTgt(P, args , any(c).rgn , T ) ≡ ∃any(c′).rgn ′ ∈ T : c ≤c c′ ∧ rgn ≤r

c,c′ rgn ′

CheckTgt(P, args , x.rgn , T ) ≡
c = args(x) ∧

((
∃x.rgn ′ ∈ T : rgn ≤r

c,c rgn ′) ∨
(
∃any(c′).rgn ′ ∈ T : c ≤c c′ ∧ rgn ≤r

c,c′ rgn ′))
CheckTgt(P, args , [e]lbl .rgn , T ) ≡

∃any(c′).rgn ′ ∈ T : (P ; EP (lbl) � [e]lbl : c !ψ) ∧ c ≤c c′ ∧ rgn ≤r
c,c′ rgn ′

Figure 4.18: Predicates for checking implementation effects against declared effects.

The implementation effects of a method are checked against the method’s declared effects by

first elaborating them and masking the results. Each remaining read effect must be accounted for

by a declared read or write effect; each remaining write effect must be accounted for a declared

write effect. An affected any-instance target is accounted for by an any-instance target identifying

a superregion of a superclass. An instance target based on a method parameter can be accounted

for by a target identifying a superregion of the same parameter. Otherwise, in general, an instance

target is accounted for by an any-instance target identifying a superregion of a superclass.

4.11.4 Overlap and Conflict

We conclude by describing how to compare the effects of two expressions to determine if the effects

conflict. That is, if one of the expressions writes something that the other one reads or writes. We

start by defining target overlap in Figure 4.19: we say two targets overlap if they identify state that

may intersect. Two local targets overlap if they refer to the same local variable. Two non-local

targets overlap only if they can refer to overlapping regions of the same object, where two regions

overlap if one is a subregion of the other. Two instance targets can overlap only if the objects they

refer to could be identical. To compare instance targets, we must determine whether two expressions

from different points in the program, may refer to overlapping sets of locations. This observation

has led us to formalize the desired notion of equality, based on the context of the expressions,

as a new alias question MayEqual([e]lbl , [e′]lbl ) [BG99]. More traditional alias analyses, such as

Steensgaard’s “points-to” analysis [Ste96], may be used as a conservative approximation.

Two well formed instance targets overlap if they may refer to overlapping regions of the the

same object. A well formed any-instance target may refer to the same object as a well formed

instance target if the type of the object that the instance target refers to has a subtype that is also a

subtype of the type declared in the any-instance target. That is, it is possible that the object referred
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c.rgn overlapr c′.rgn′ ≡ c.rgn ≤r c′.rgn′ ∨ c′.rgn′ ≤r c.rgn

P � tgt ′ overlapt tgt

P � tgt overlapt tgt ′
P � [x ]lbl P � [x ′]lbl′ x = x′

P � [x ]lbl overlapt [x ′]lbl′

P � [e]lbl .rgn ❀ ĉ.rgn P � [e′]lbl′ .rgn ❀ ĉ′.rgn′ MayEqual([e]lbl , [e
′]lbl′ ) ĉ.rgn overlapr ĉ′.rgn′

P � [e]lbl .rgn overlapt [e′]lbl′ .rgn′

P � [e]lbl .rgn ❀ ĉ.rgn P � any(c′).rgn′ ❀ ĉ′.rgn′ ∃t ′ : t ′ ≤c c ∧ t ′ ≤c c′ ĉ.rgn overlapr ĉ′.rgn′

P � [e]lbl .rgn overlapt any(c′).rgn′

P � any(c).rgn ❀ ĉ.rgn P � any(c′).rgn′ ❀ ĉ′.rgn′ ∃t ′ : t ′ ≤c c ∧ t ′ ≤c c′ ĉ.rgn overlapr ĉ′.rgn′

P � any(c).rgn overlapt any(c′).rgn′

Figure 4.19: Rules for region and target overlap.

∃t ∈ T , t ′ ∈ T ′ : (P � t overlapt t ′)

P � T overlapt T ′
P � elaborate(P, R ∪W ) overlapt elaborate(P, W ′)

P � (reads R writes W ) conflict (reads R′ writes W ′)

P � ψ′ conflict ψ

P � ψ conflict ψ′
P ; EP (lbl) � [e]lbl : t !ψ P ; EP (lbl ′) � [e′]lbl′ : t ′ !ψ′ P � ψ conflict ψ′

P � [e]lbl interfere [e′]lbl′

Figure 4.20: Rules for conflict and interference. We abuse notation by treating elements of tgt∗,
e.g., R and W , as sets of targets.

to by the instance target is included in the class of objects that the any-instance target may refer to.

The rule for two any-instance targets is similar.

In Figure 4.20, we extend target overlap to apply to a set of targets. Target overlap needs to

account for state aggregation from the mapping of regions of unshared fields. This is accomplished

by elaborating the sets of targets before comparing them.9 Specifically, two effects conflict if after

elaborating their respective targets, one of them writes a target that overlaps with a target read or

written by the other. Finally, two expressions interfere if they have conflicting effects.

9Testing for overlap this way is overly conservative. Using a permissions-based state semantics as discussed in
Section 4.9 should enable the use of a less conservative and more intuitive process of testing for overlap.
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Protecting State

A fundamental requirement for assuring the correct use of shared state is the identification of what

state is shared. This state may encompass multiple fields of an object and even span multiple

objects. Chapter 4 describes our use of regions to identify what is the state of an object and for

aggregating the state of several objects into a single named abstraction of state. Having this ground-

work to name state, we can consider protecting portions of state from concurrent access by using

associations of locks with state identified by hierarchical regions to answer how is access to state

synchronized.

Documenting the association between locks and specific portions of state is not a new idea. The

novelty of our technique is the association of locks with abstract aggregations of state. This has

important benefits: (1) the ability to describe locks that protect state across many objects and (2)

direct support for subclassing enabled by the extensible nature of regions. Tool-supported analyses

based on documented lock-related design intent effectively address many of the flaws in Java’s im-

plementation of the monitor concept; see, for example, [BH99b]. In particular, explicit declaration

of shared state and its associated lock enables the assurance of correct access outside of the class

that declares the state. Associating locks with hierarchical regions additionally enables program

transformations that can systematically alter the granularity of data protection by splitting across

subregions (lock-splitting), or vice versa (lock-merging); see Chapter 8.



82 CHAPTER 5. PROTECTING STATE

5.1 Associating Locks with State

Regions are treated like Hoare’s resources [Hoa71]: as abstract groups of shared state. The pro-

grammer identifies a shared region and describes how it is to be protected by annotating a class

with

@lock lockName is representation protects region

This declares that region is potentially shared and thus access to it is mediated via the lock ref-

erenced by representation. The lock is known by the abstract name lockName, hiding the lock’s

representation from clients. We require representation to be either this or a final field we select

to be the canonical reference to our lock object. Immutability via final prevents the object used as

the lock from changing during the lifetime of the referring object. A special case of a final field

is the Java class expression C.class, where C is a class name, that mimics a static field of type

Class and evaluates to the Class object for class C.

In addition to the requirement that the representation of a lock be final, there are several other

conditions that must be satisfied for the declared locking model to be well formed; these are formally

specified in Section 5.11. The representation of the lock that protects a region must be at least as

visible as the shared region. To avoid breaking abstraction, this condition may be met by declaring

methods that return references to locks; see Section 5.4. No region may be associated with more

than one lock. Doing so enables race conditions because different accesses to the region could then

acquire different locks which does not guarantee mutually exclusive access to the region. This rule

has several immediate implications for the locking model: (1) a region cannot be associated with

a lock if it has an ancestor region that is associated with a lock; and (2) a static region must be

protected by a static field.

5.1.1 Identifying Locks

We distinguish between lock names and lock identifiers. A lock name is declared in a class via the

@lock annotation, and, for instances, declares a family of locks, one for each member of the class.

Thus, the lock name refers to a particular region of the class. Much like a target does for regions, a

lock identifier identifies a particular lock for a particular instance. A lock associated with a static

region is identified by the lock name qualified by the name of the class in which it is declared.

A lock associated with an instance, i.e., non-static, region must be identified with respect to a

particular object. An instance lock is thus identified by the pairing of an object-valued expression

with a lock name, e.g., this.fifo.BufLock, which identifies the lock named BufLock of the
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object referenced by expression this.fifo. Instance lock identifiers have the same sort of aliasing

problems as instance targets.

5.1.2 The Locking Model

Lock annotations define a model of state protection for the class that is enforced by static analysis.

In particular, any field that is a member of the region must be accessed only from within a critical

section holding the given lock. If a region is visible in a subclass, any lock requirement associated

with it is binding on the subclass. The obvious caveat is that the representation of the lock must

also be accessible. Unprotected accesses to state that is part of this model are revealed as inconsis-

tencies between the stated design intent and source code. It is unfortunately not possible to detect

shared usage of state not intended to be shared without additional knowledge about the existence of

threads. This is also true for similar tools and analyses, e.g., RACEFREEJAVA and ESC/Java. We

are currently developing “thread coloring” annotations for thread identification that, among other

uses, can address this problem [SGS02].

Fields that are declared to be immutable, final in Java, are exempt from the declared locking

model. Even if a final field is a subregion of a protected region, no lock needs to be held before

accessing the field. Fields declared to be volatile are also exempt from the declared locking

model because volatility expresses the intent that the value of the field can change unpredictably

(because it is not in the thread’s local memory) and thus it cannot participate in an invariant with

another field. Of course, objects referenced through final and volatile fields are not exempt

from the locking model that might be associated with their type.

5.2 Example: Class BoundedFIFO

We return to the class BoundedFIFO from Log4j. Previously, in Chapter 4, we annotated the

class with regions and effects; the results are shown in Figure 5.1. As a reminder, the class is used

to pass LoggingEvent objects between two threads. Clients executing in different threads must

follow an undocumented convention during concurrent use to assure atomic access to the FIFO. For

example, two concurrent executions of put could result in the loss of an event, because the two

different events could be written to the same buf location.

The synchronization convention is that access to a BoundedFIFO instance must be coordinated

by clients synchronizing on the instance. Typical usage requires a critical section within the client
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1 /**
2 * @methodSet readers = getMaxSize, length, wasEmpty, wasFull, isFull
3 * @set readers reads Instance
4 */
5 public class BoundedFIFO {
6 /** @unshared
7 * @aggregate Instance into Instance */
8 LoggingEvent[] buf;
9 int numElts = 0, first = 0, next = 0, size;

10
11 /** Create a new buffer of the given capacity.
12 * @writes nothing */
13 public BoundedFIFO(int size) {
14 if(size < 1) throw new IllegalArgumentException();
15 this.size = size;
16 buf = new LoggingEvent[size];
17 }
18
19 /** Returns <code>null</code> if empty.
20 * @writes Instance */
21 public LoggingEvent get() {
22 if(numElts == 0) return null;
23 LoggingEvent r = buf[first];
24 if(++first == size) first = 0;
25 numElts--;
26 return r;
27 }
28
29 /** If full, then the event is silently dropped.
30 * @writes Instance */
31 public void put(LoggingEvent o) {
32 if(numElts != size) {
33 buf[next] = o;
34 if(++next == size) next = 0;
35 numElts++;
36 }
37 }
38
39 /** Get the capacity of the buffer. */
40 public int getMaxSize() { return size; }
41
42 /** Get the number of elements in the buffer. */
43 public int length() { return numElts; }
44
45 /** Returns <code>true</code> if the buffer was empty
46 * before last put operation. */
47 public boolean wasEmpty() {
48 return numElts == 1;
49 }
50
51 /** Returns <code>true</code> if the buffer was full
52 * before the last get operation. */
53 public boolean wasFull() { return numElts+1 == size; }
54
55 /** Is the buffer full? */
56 public boolean isFull() { return numElts == size; }
57 }

Figure 5.1: Class BoundedFIFO with region and effect annotations.
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1 public class PutterClient { ...
2 private final BoundedFIFO fifo;
3 ...
4 public PutterClient(BoundedFIFO bf, ...) { fifo = bf; ... }
5 ...
6 public void putter(LoggingEvent e) {
7 synchronized(fifo) {
8 while(fifo.isFull()) {
9 try { fifo.wait(); } catch(InterruptedException ie) { }

10 }
11 fifo.put(e);
12 if(fifo.wasEmpty()) fifo.notify();
13 }
14 }
15 }
16
17 public class GetterClient { ...
18 private final BoundedFIFO fifo;
19 ...
20 public GetterClient(BoundedFIFO bf, ...) { fifo = bf; ... }
21 ...
22 public LoggingEvent getter() {
23 synchronized(fifo) {
24 LoggingEvent e;
25 while(fifo.length() == 0) {
26 try { fifo.wait(); } catch(InterruptedException ie) { }
27 }
28 e = fifo.get();
29 if(fifo.wasFull()) fifo.notify();
30 return e;
31 }
32 }
33 }

Figure 5.2: Canonical clients for BoundedFIFO.

spanning a series of calls to a BoundedFIFO. Figure 5.2 reorganizes BoundedFIFO client code

from Log4j into canonical producer and consumer clients. Our use of lock-related annotations in

this chapter make explicit: (1) the delineation of the shared state of an abstract BoundedFIFO, (2)

the locking conventions for safely accessing the state, and (3) the placement of responsibility to

acquire locks.

The region annotations in BoundedFIFO make explicit the design intent that each instance of

the class has a unique private array that is treated as if it were part of the FIFO instance. We now

wish to annotate the additional intent that the state of a FIFO instance is to be protected by the

locking on the instance itself. This is done by annotating the class with

@lock BufLock is this protects Instance

The implementation of BoundedFIFO does not actually acquire this newly declared lock; we ad-

dress this issue in Section 5.4.2.
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5.3 Example: Class ThreadCache

We can easily document the locking design intent of in the classes ThreadCache and Cached-

Thread from the Jigsaw web server. The classes with region and locking annotations are shown

in Figure 5.3. What is potentially surprising to the reader of this code is that part of the state of

a CachedThread object is protected by the thread object itself, but other parts of the thread’s

state are protected by a distinguished ThreadCache object. The region structure developed in

Section 4.7 helps to describe the locking intent. Recall that the class CachedThread is param-

eterized by a region that is used as the parent region of the next and prev fields. As a result,

the “backbone” of the linked list assembled by a ThreadCache object, made up of its freelist

and freetail fields, and the next and prev fields of CachedThread objects, resides entirely in

cache’s Threads region.

The lock annotation on line 12 documents the intent that ThreadCache objects use themselves

as the lock to protect their Instance region. In this case, the Threads region is a subregion of

Instance and, as discussed above, spans multiple objects. This annotation, in combination with

state aggregation documented by the region annotations, captures the design intent that the next

and prev fields are protected by the ThreadCache object that manages the CachedThread object

of which they are a part. The annotation on line 44 documents the intent that the rest of the state

of a thread object is protected by the thread itself. In particular, the region it associates with a lock,

ThreadInfo, does not contain the next and prev fields.

Explicating the design intent regarding the shared state of CachedThread and ThreadCache

objects makes it less likely that a future maintainer will assume that the next and prev fields are

protected by their respective thread object. Static analysis provides the additional assurance that the

implementation does not deviate from the locking model. For example, analysis assures that method

isFree() correctly accesses state the state of the linked list backbone. Both parameter t and field

freetail are declared to have the annotated type CachedThread<this.Threads>. The field

references t.prev and freetail.next are thus, transitively, accesses to the region Instance

of the method’s receiver, and correctly protected because of the synchronized modifier on the

method; see line 20.
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1 /**
2 * @region public Threads
3 * @region public CacheInfo
4 */
5 public class ThreadCache {
6 /** @mapInto CacheInfo */
7 protected int threadcount, usedthreads;
8 // [code omitted]
9 /** @mapInto Threads */

10 protected CachedThread /*@<this.Threads>*/ freelist, freetail;
11
12 /** @lock CacheLock is this protects Instance */
13
14 private synchronized
15 CachedThread /*@<this.Threads>*/ createThread() { ...
16 return new CachedThread /*@<this.Threads>*/ (this,...);
17 }
18
19 /** @writes t.ThreadInfo, this.Instance */
20 synchronized boolean
21 isFree(CachedThread /*@<this.Threads>*/ t, ...) {
22 if(!t.isTerminated()) { ... }
23 else { ...
24 t.prev = freetail;
25 if(freetail != null) freetail.next = t;
26 freetail = t;
27 if(freelist == null) freelist = t;
28 usedthreads--; ...
29 } ...
30 } // [rest of class omitted]
31 }
32
33 /** @region public ThreadInfo */
34 class CachedThread /*@<region Backbone>*/ extends Thread {
35 private final ThreadCache cache;
36 /** @mapInto ThreadInfo */
37 private boolean alive;
38 /** @mapInto ThreadInfo */
39 private Runnable runner;
40 // [code omitted]
41 /** @mapInto Backbone */
42 CachedThread /*@<Backbone>*/ next, prev;
43
44 /** @lock ThreadLock is this protects ThreadInfo */
45
46 /** @writes ThreadInfo */
47 synchronized boolean isTerminated() { ... }
48
49 // [Additional synchronized methods follow]
50 }

Figure 5.3: Classes ThreadCache and CachedThread with lock annotations: lines 12 and 44.
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5.4 Lock Usage Annotations

A method is usually assumed to be responsible for introducing the critical sections necessary for

any shared state that it accesses. This common Java assumption is often relaxed when a private

method assumes its callers already hold locks. This is useful when the method is likely to be

commonly invoked in contexts where the necessary locks are already held. The Javadoc for the copy

method in class java.lang.StringBuffer, for example, states “[This method] should only be

called from a synchronized method.” The Java assertion mechanism includes the ability to test

whether a thread holds a particular lock [Blo01b]; we encounter an example of this in Section 7.6.

These are informal annotations of design intent: the former is not assurable by a analysis; the latter

is not statically assurable, rather it results in a runtime exception when violated.

To enable static assurance of such methods, we use a formal annotation that answers the question

which locks must be held before a method may be invoked. The same information also answers the

converse: what locks are assumed to be held when this method is invoked. We refer to this design

intent as “locking preconditions,” and record it using an annotation on methods:

@requiresLock lockName1 , . . . , lockNamen

This annotation defines an analysis cutpoint. When assuring an implementation of the method,

analysis can assume that the named locks are held. The validity of this assumption is preserved by

assuring that each invocation of the method occurs in a context where the named locks are in fact

held. To preserve modular reasoning, the locking precondition of a method is not allowed to be

extended by a reimplementation of the method.

Locking preconditions are in terms of locks of the receiver or static locks. It is not presently al-

lowed to name locks of other objects as preconditions, but an obvious and straightforward extension

is to allow the naming of locks of parameters.

In addition to requiring locks, a method can also result in a lock. Because locks are objects in

their own right, references to objects used as locks can be method return values. This occurs in the

Java Abstract Window Toolkit (AWT) implementation, for example: class java.awt.Component

has a method getTreeLock. This method “Gets this component’s locking object (the object that

owns the thread synchronization monitor) for AWT component-tree and layout operations.” Meth-

ods that return locks are useful for hiding the exact representation of a lock from clients. By using a

method that is declared to return a specific lock, the field that actually refers to that lock can be kept

private to the implementation of the class. Exposing a lock by increasing the visibility of the field

that refers to it violates more than just the standard principles of encapsulation as applied to locking
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concerns. Because it is often the case that the object used as a lock is also used to implement other

functionality within the class, requiring the lock reference to be exposed would thus require data

abstraction principles to be violated in the service of obtaining assurance about lock-related design

intent.

The design intent that a method returns a particular lock of the receiver is recorded using the

annotation

@returnsLock lockName

The return value from such a method can be used in contexts where the lock lockName is expected;

Section 5.6 discusses this in more detail. A method with a @requiresLock annotation must be

assured to return the named lock.

5.4.1 Methods wait and notify

An interesting case of method preconditions are the methods wait and notify, and their kin, in

java.lang.Object. These methods are used to implement a condition variable. As such, they

require that the lock for the object is held before they are invoked; an exception is thrown at run-

time if the lock is not held. We use our @requiresLock annotation to assure statically that the

appropriate lock is held when they are invoked. In particular, we annotate the class Object1 to

introduce a new public region WaitQueue and associate the lock represented by the receiver with

the region:

@region public WaitQueue extends All
@lock MUTEX is this protects WaitQueue

Methods wait, wait(long), wait(long,int), notify, and notifyAll are all annotated with

the lock precondition

@requiresLock MUTEX

5.4.2 Class BoundedFIFO Revisited

For an instance of BoundedFIFO, (1) the instance itself is locked to protect its state and (2) clients of

the FIFO instance, rather than the FIFO’s methods, are expected to acquire that lock. In Section 5.2

1The mechanism used for annotating preexisting library code is described in Section 7.3.
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we showed how to document the design intent for (1). We now document the design intent for (2).

That this is the intent is supported by the observations

• None of the methods in BoundedFIFO are synchronized

• The clients shown in Figure 5.2 synchronize on the FIFO object before invoking any of its

methods.

We record this design intent by annotating each method of BoundedFIFO with the locking precon-

dition

@requiresLock BufLock

Figure 5.4 shows a fully annotated BoundedFIFO implementation.

Without this annotation, an analysis local to BoundedFIFO would warn of potential race condi-

tions because the method implementations do not acquire the appropriate locks, and there would be

no way to guarantee that all the call sites follow the locking convention. With the annotation, assur-

ance of the implementation of BoundedFIFO’s methods succeeds because each method is analyzed

under the assumption that the lock BufLock is held. Assurance of the clients succeeds because

the block synchronized(fifo) {...} can be determined to acquire the lock fifo.BufLock

necessary to satisfy the preconditions of the methods invoked within the block. Analysis is also

able to assure that the precondition of wait and notify, the lock fifo.MUTEX, is satisfied by the

client code. The same synchronized blocks that satisfy the preconditions for the BoundedFIFO

methods also satisfy the preconditions for the condition variable because the reference fifo also

represents the lock fifo.MUTEX.

Occasionally it is necessary to reorganize code in the service of annotation. For example, if the

implementors of BoundedFIFO do not wish to reveal to clients of the class that BufLock is this,

perhaps because they do not want to be committed to using this representation in the future, they

could introduce a new method into BoundedFIFO:

/** @returnsLock BufLock */
public Object getLock() { returns this; }

Clients would then use getLock instead of fifo when synchronizing access to the buffer; e.g.,

synchronized(fifo.getLock()) {...}

By better encapsulating the representation of BufLock, this approach makes it easier to change

the representation of BufLock in the future. Without this encapsulation, all uses of BoundedFIFO

instances would have to be found and the lock that clients acquire altered to conform to the new
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representation. This is clearly a non-local modification, especially if BoundedFIFO were part of

a library. With this encapsulation however, just a local change to getLock—and its associated

assurance—is required.

As a caveat to the above, we remark that in the case of locks represented by this, the use

of lock-returning methods cannot be enforced by visibility constraints on the lock representation

because the receiver for a method is always available to the caller. In the case of locks represented

by fields of a class, the field can be made private to the implementation and thus the clients will

have to use the method to get a reference to the lock because the standard language semantics will

prevent the clients from referencing the private field. An appealing general solution to this problem

is to require that locks be obtained from method calls only, but this may lead to an awkward coding

style, or at least one that is not commensurate with current Java coding practices. We thus opt not

to impose this requirement.

5.5 Shared State and Object Construction

When an object is constructed it is responsible for initializing the values of its fields. The @lock

annotation associates locks with subsets of fields, via regions, that must be held before those fields

are read or written, and these ought to apply to the field assignments performed during object con-

struction. Common programming practice in Java, however, is to not acquire locks in the imple-

mentation of constructors. In fact, while the Java language allows a method to be declared to be

synchronized, it is illegal to declare a constructor to be synchronized. The actions of a con-

structor are allowed to be fully general, however, and thus there is no general rationale for excusing

constructors from complying with accepted thread-safe programming practices. What explains this

seeming contradiction between recommendation and practice?

A better question is under what circumstances might an object in the process of being con-

structed be accessed by multiple threads? This can only happen if a reference to the newly created

object, the object referenced by this in the implementation of the constructor, is given to another

thread during the process of construction. Truly, it is an unusual constructor that allows this to

happen. Thus, if the constructor does not leak a reference to the object to another thread, it is

impossible for the object to be concurrently accessed during construction. It is thus beneficial to

document explicitly the intent that the constructor does not leak the newly constructed object to any

other threads. We use the annotation

@synchronized
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on constructors for this purpose. This annotation is a misnomer because the constructor does not

acquire locks as a result of the annotation, but is meant to be evocative of synchronized methods

and to address the common complaint of inexperienced Java programmers that constructors cannot

be synchronized.

When a constructor so annotated is analyzed, it is assumed that all the programmer-declared

locks associated with instance regions of the class are held. Specifically, the lock MUTEX defined

in Object is not assumed to be held because this would incorrectly allow the wait and notify

methods to be invoked outside of a critical section. Locks protecting static regions are not as-

sumed to be held because static state exists independently of any instances and can thus already

have references to it from other threads. It remains for analysis to assure that the newly constructed

object is not leaked to any other threads. Our implementation of this analysis is overly conservative.

For a @synchronized constructor, analysis verifies that the receiver is declared to be @borrowed,

that is, that no aliases to the receiver survive when the constructor returns to its caller. Assurance

that the receiver is actually borrowed is performed by the same analysis that assures the correct use

of unshared fields [Boy01a], and is beyond the scope of this work. This analysis is overly conserva-

tive because it does not consider at all the question of whether the surviving aliases are from other

threads. This particular means of assurance is simply a convenient implementation choice, however,

and more discerning analyses, such as those of [Bla99, BH99a, CGS+99, WR99] could be used to

assure the @synchronized annotation.

We observe that short of using a lock external to the object being created, and acquired prior to

invocation of the constructor, it is impossible to guarantee that an object will be constructed within

a single critical section. This is because attempting to synchronize a constructor by enclosing its

body within a synchronized block fails to capture the mandatory invocation of a constructor of

the superclass. Thus the best that can be achieved by synchronizing the body of a constructor is

construction across multiple critical sections, which still allows the possibility of another thread

accessing the object in between constructors.

5.5.1 Constructing BoundedFIFO

As an example, consider the constructor of class BoundedFIFO. The fields size and buf are

initialized by the constructor, and analysis to assure consistency with the stated locking model will

fail to assure the constructor because it does not acquire this. The constructor cannot pass the

responsibility to its callers via a @requiresLock annotation: the caller cannot have a reference to

the required lock—i.e., the object being created—because it does not yet exist at the point where it
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must be acquired. (Constructors can require as a precondition the acquisition of static locks.) It

is obvious that it is impossible for the BoundedFIFO object to be shared while being constructed—

the object is clearly thread-local during construction. We thus document the design intent that the

constructor does not allow the receiver to escape to another thread, and add the supporting aliasing

annotation; the results are in Figure 5.4.

5.6 Identifying Locks

The primary analysis problems for assuring the correct use of shared state are (1) identifying the

portion of shared state that is being accessed, and therefore the lock that is required to access it,

and (2) identifying the locks that are acquired by synchronized statements and methods. The

first problem is addressed by the programmer-declared regions of state and programmer-declared

lock–region associations. Shared state is accessed via field references and indexing into arrays.

The region hierarchy as modified by uniqueness and parameterization aggregations is consulted to

determine if an ancestor region of the field is associated with a lock. If such an ancestor region

exists, then that region’s associated lock is required to access the field. For example, consider the

expression this.buf[this.first] in the get method of BoundedFIFO. The field first is a

subregion of the receiver’s Instance region, which is associated with the lock named BufLock

represented by this. The array access this.buf[...] also accesses the region Instance of

the receiver because of uniqueness aggregation. Thus the lock required by both accesses is the lock

identified by this.BufLock. The process of identifying which lock is required for a particular

field access is formally described in Section 5.11.

To determine which lock is acquired by a synchronized block, an object-valued expression

must be converted into the set of locks that it can represent. A single expression can simultaneously

represent locks for different regions of the same object because the same representation can be

used for many different locks within a class. A field reference e.f, where f is non-static, can

additionally represent locks for two different objects: (1) the locks represented by the field f of the

object referenced by e, and (2) the locks represented by this of the object referenced by e.f. For

a lock expression e (where e may in turn be a field reference expression), the type of e is checked

to determine the lock names, if any, whose representation is this; for each such lock name l, the

lock identifier e.l is added to the set of locks. For a field reference e.f, the type of e is consulted

to determine the lock names, if any, whose representation is the field f. If f is static, then the

trivially constructed lock identifiers are added to the set of possible locks; otherwise, for each such
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1 /**
2 * @methodSet readers = getMaxSize, length, wasEmpty, wasFull, isFull
3 * @methodSet calleeLocked = get, put, readers
4 * @lock BufLock is this protects Instance
5 * @set readers reads Instance
6 * @set calleeLocked requiresLock BufLock */
7 public class BoundedFIFO {
8 /** @unshared
9 * @aggregate Instance into Instance */

10 LoggingEvent[] buf;
11 int numElts = 0, first = 0, next = 0, size;
12
13 /** Create a new buffer of the given capacity.
14 * @writes nothing
15 * @borrowed this
16 * @synchronized */
17 public BoundedFIFO(int size) {
18 if(size < 1) throw new IllegalArgumentException();
19 this.size = size;
20 buf = new LoggingEvent[size];
21 }
22
23 /** Returns <code>null</code> if empty.
24 * @writes Instance */
25 public LoggingEvent get() {
26 if(numElts == 0) return null;
27 LoggingEvent r = buf[first];
28 if(++first == size) first = 0;
29 numElts--;
30 return r;
31 }
32
33 /** If full, then the event is silently dropped.
34 * @writes Instance */
35 public void put(LoggingEvent o) {
36 if(numElts != size) {
37 buf[next] = o;
38 if(++next == size) next = 0;
39 numElts++;
40 }
41 }
42
43 /** Get the capacity of the buffer. */
44 public int getMaxSize() { return size; }
45
46 /** Get the number of elements in the buffer. */
47 public int length() { return numElts; }
48
49 /** Returns <code>true</code> if the buffer was empty
50 * before last put operation. */
51 public boolean wasEmpty() {
52 return numElts == 1;
53 }
54
55 /** Returns <code>true</code> if the buffer was full
56 * before the last get operation. */
57 public boolean wasFull() { return numElts+1 == size; }
58
59 /** Is the buffer full? */
60 public boolean isFull() { return numElts == size; }
61 }

Figure 5.4: Class BoundedFIFO with region, effect, and locking annotations.
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lock name l, the lock identifier e.l is added to the set of locks. A method can return a lock as a

result; an expression e.m(...) is similarly converted to lock identifiers based on the lock name in

m’s @returnsLock annotation.

A static synchronizedmethod is treated as a synchronized block whose lock expression

is the pseudo-field class. A synchronized instance method is treated as a synchronized block

whose lock expression is this. Lock preconditions declared via @requiresLock annotations

must also be converted to lock identifiers; this is a straightforward process.

The lock context for an expression is the set of locks that are held when the expression is evalu-

ated. It is the union of the locks acquired by all surrounding synchronized blocks (also account-

ing for the possibility that the expression is in the body of a synchronized method) and of the

locks assumed to be acquired by any @requiresLock precondition on the method in which the

expression appears.

The general process for checking that a field is accessed according to the locking model is (1)

compute the lock identifier for the field reference; (2) compute the lock context for the expression;

and (3) determine if the lock identifier from (1) must name any of the locks in the lock context.

In general, alias analysis is required to compare two instance locks. We sidestep this problem in

our implementation by restricting the syntactic form of lock expressions. We require them to be

final expressions, by which we generally mean an expression whose value is constant. Such an

expression can be used as a name for an object throughout the scope in which it is defined with out

having to worry that different uses of the expression refer to different objects. The use of a final

local variable, including this, is a final expression; a field reference e.f is a final expression if e

is a final expression and f is a final field; a method invocation e.m(...) is a final expression

if e is final expression and m is a method with a @returnsLock annotation. A program can be

converted to use only final expressions by introducing final local variables.

Only lock expressions that are final expressions are converted into locks. Our prototype analysis

tool outputs warnings when it encounters non-final lock expressions. Our implementation compares

locks by first comparing the lock names, and then checking if the object expressions are syntactically

identical. We do not require that shared state be accessed only via final expressions. However, state

that is not accessed via a final expression will never be assured to have the required lock held. The

details of final expressions and lock comparisons are in Section 5.11.
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5.7 Protecting References

In Java, a class-typed field actually has as its value a reference to an object. As a result, it is in

general the case that an object referenced by the field of one object can also be referenced by a field

of another distinct object. In other words, unlike C++, Java does not provide an explicit mechanism

for incorporating the structure of one object into the structure of another. This situation motivates

the use of uniqueness and @unshared fields within our region and effects system in Chapter 4. This

problem of potential aliases also impacts how state is protected. A lock associated with a region

guards the values of the fields in that region. In case of class-typed fields, therefore, the reference

only is protected, not the object that is referenced. This is not a defect in the locking meta-model: it

is in general unsafe to use the lock that protects the field to also protect the referenced object because

to do so in the absence of additional design information could lead to multiple locks protecting the

same object.

Sometimes this is what is desired by the programmer because it is assumed the referenced ob-

ject is already thread-safe. That is, its implementation performs the actions necessary to protect

the invariants of class instances—e.g., by being immutable or using locks—or otherwise describes

to clients what they must do to preserves an instance’s invariants. These are issues of concurrency

policy and are further discussed in Chapter 6. The problem with this situation is when it is not what

the programmer intends. It is a problem because simply verifying that the reference to an object

is correctly accessed gives no assurance about the thread-safety or lack thereof of the referenced

object. The danger is that because our approach is incremental and does not require all classes to be

thread-safe at all times, unlike for example, RACEFREEJAVA [FF00], Guava [BST00], and Parame-

terized RACEFREEJAVA [BR01], assuring the correct use of a field can be misleading. Instances of

the assured class could still participate in race conditions over the object that they reference because

the referenced object is shared and not thread-safe.

The issue for us, then, is how to make analysis less misleading under these circumstances. Our

solution is to analyze the use of reference-valued fields that are associated with a lock and issue

warnings when the usage appears to make use of a potentially shared object that may be non–

thread-safe. These warnings are not assurance failures: they do not reflect inconsistencies between

source code and annotated design intent. Rather they are requests from the tool for more information

about design intent; they highlight areas where the additional assurance enabled by additional design

intent may be beneficial. The object referenced by the protected field can be dereferenced to access

a field, or to invoke a method. These uses are analyzed differently. To be more concrete, we consider

a field reference e.f where field f with declared type C is within a shared region of the object of



5.7. PROTECTING REFERENCES 97

type D evaluated to by expression e.

For a field reference e.f.g we try to verify that field g is known to be protected. If g is final

or volatile then it does not require protection, and analysis does not issue a warning. Otherwise

analysis checks if within class C the field g is part of a shared region. If so, then no warning is

issued because there is a lock associated with this field, and the standard lock analyses will assure

the correct use of the field. Alternatively, field f may be @unshared and the field g aggregated into

a protected region of the D instance referenced by e. Again, the analysis for assuring the correct use

of fields will handle this case correctly. It is only if g is not declared to be protected that a warning

is issued.

For a method invocation e.f.m(...) we first check if the field f is @unshared. If it is, then

the invocation does not need to be additionally protected because the referenced object cannot be

accessed by multiple threads without going through field f, which is already protected. If the field is

not declared to be @unshared, then we try to determine if objects of class C are thread-safe. Really

what we want to know is whether the method m can be invoked without any client-side locking. But

the absence of a @requiresLock annotation on m’s declaration does not indicate design intent one

way or the other—the concurrency policy of the class needs to be consulted. It is enough to know

that instances of the type “take care of themselves.” The annotation

@selfProtected

on class and interface declarations declares this intent. This annotation and concurrency policy

issues in general are discussed in Chapter 6. If f is not @unshared and type C is not annotated with

@selfProtected then a warning is issued.

We emphasize (1) that these warnings do not correspond to inconsistencies between code and

design intent; (2) that these warnings are intending to provoke the programmer into providing more

design intent; and (3) that the analyses that support these warnings are not intended to be com-

prehensive, but are heuristics intended to prevent the programmer from being misled by positive

assurance results under certain circumstances.

5.7.1 BoundedFIFO’s buf Array

We use BoundedFIFO as an example for why these warnings are interesting. In this example, we

assume that the field buf has not been previously declared to be @unshared. Indexing into the

array, as done in methods get and put would then not be covered by the locking model declared

by the annotation @lock BufLock is this protects Instance. As the code is currently
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written, the consequences of this lack of explicit protection are obscured because the array cannot

be indexed without first dereferencing the field buf, which is explicitly protected. Suppose, how-

ever, that the field buf is declared to be final and thus not protected by the lock associated with

Instance.

When analyzing the code in this modified state, with the uniqueness aggregation removed and

with buf declared to be final, our declared locking model

• Specifically excludes buf from the protection of the lock associated with region Instance.

• Says nothing about how the contents of the array referenced by buf are to be protected.

In particular, the silence of the model on this point cannot be interpreted to mean that the

contents of the array are possibly shared and protected, nor can it be interpreted to mean that

the contents of the array are not intended to be shared with other threads and thus do not

require protection.

Analysis thus has nothing to assure regarding field buf or the array it references. But, as pointed

out above, this is misleading because the array object could be aliased and should be protected.

We observe that there are few scenarios where it would be useful to alias the array referenced by

buf. This is the point: aliasing the array would violate the design intent for the class and this intent

should be made explicit. Analysis augmented with the above heuristics identifies uses of the array

as suspicious because the class BoundedFIFO contains some concurrency intent, the protection of

the Instance region. One way to address these warnings is to introduce protection into the class

of the referenced object, because arrays are a primitive object type, this is not possible. Instead

the array must be aggregated into a protected region of the FIFO object, as originally done in the

example.

5.8 Protecting Aggregated Objects

We show in Section 5.2 how to use uniqueness aggregation to protect the contents of the buf array in

the BoundedFIFO example. Aggregation in this case maps the elements of the array, the region [],

into the Instance region of the BoundedFIFO object; the mapping is indirect, via the Instance

region of the array object. As a result of this mapping, within the implementation of BoundedFIFO,

effects on target this.buf.[] are treated as effects on target this.Instance and thus must

occur within a critical section synchronized on BufLock. Thus, in general, to check that an access to

a region that is aggregated into the region of another object conforms to the locking model, locking

analysis merely has to consult the aggregation mappings, and apply the locking model as applied to



5.9. ESCAPING PROTECTION 99

the incorporating region. While this description provides the intuition behind the interaction of lock

analysis and uniqueness aggregation, there are many complicating issues that must be addressed.

Aggregating the contents of an array represents the simplest and most straightforward case to

handle because (1) arrays have no methods, and as a result (2) all changes to the state of an array

occur by direct access to its state, and (3) arrays do not attempt to protect themselves. We now

consider the issue more generally. Suppose that class Owner has an unshared field u that refers to

an object of class C, and that region Src of class C is mapped into region Dest of class Owner.

The superregion of u is irrelevant to this example. If Dest is not associated with a lock, then

Src is protected, or not, according to the locking model of class C, and aggregation has no role to

play regarding the protection of shared state. On the other hand, if Dest is associated with a lock,

then within the implementation of Owner, the intuitive semantics of state aggregation imply that

accesses to the region identified by target this.u.Src must occur only when the lock associated

with region Dest is held. Furthermore, any lock associated with region Src can be ignored—this

is safe because the uniqueness of field u guarantees that the only way to access the object is through

its associated synchronization-providing Owner object

Applying Owner’s locking model to aggregated C objects, however, is tricky because C is im-

plemented without regard to how it may be aggregated into other objects. This is fundamentally an

issue of encapsulation, scalability, and cutpoints. Returning to our intuitive explanation from above,

to check the implementation of Owner, analysis must rely on the effects of operations on the C ob-

ject referenced by field u. If the operation may affect the region identified by target this.u.Src,

then the operation is considered to affect the region identified by this.Dest, and the appropriate

lock must be held. Direct accesses to fields in the aggregated region, e.g., this.u.f, where f is a

subregion of Src, are simply direct producers of effects. For method calls, e.g., this.u.m(), anal-

ysis must rely on the method’s declared effects; determining whether this.u.Src is affected by

the method is a problem solved in Chapter 4. It may be the case that the declared effects are overly

broad and force the lock for Dest to be acquired unnecessarily: this is an unavoidable consequence

of encapsulation.

5.9 Escaping Protection

It is possible to escape the locking model by abusing upcasts. This is a consequence of our interest in

incrementality: we do not require that all fields of a class be protected by a lock, unlike, for example

RACEFREEJAVA [FF00] and Guava [BST00]. Thus a class can associate an inherited region with a
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lock as long as that region is not already associated with a lock. The intent here is clear: uses of the

region in instances of the ancestor class do not require protection, but uses of the region in instances

of the subclass do. An instance of the protection-requiring subclass may be accessed through a

reference whose type is that of the unprotected superclass, which causes the protection information

to be lost. This is a problem only if the reference is used to directly access fields of the object that

belong to the now-forgotten shared region. Method calls via the upcast reference are not affected

because the preconditions of a method cannot be strengthened by subclasses.

A possible solution to this problem is to propagate region–lock associations up the class hier-

archy. This is unreasonable because multiple subclasses of a class could declare different locking

models, but more importantly because “backwards” propagation of information along the class hi-

erarchy violates principles of modularity and abstraction and is counterintuitive. A more reasonable

approach is for analysis to issue a warning when a reference to an object of a class that adds protec-

tion to an inherited region is explicitly or implicitly upcast. Our prototype tool does not check for

such situations.

5.10 Related work

Warlock [Ste93] is a static analysis tool that checks for the inconsistent use of locks in C programs

written for Solaris. The programmer does not annotate the intended lock–state associations. Instead

the tool determines which locks are held when a variable is accessed. Those variables that are not

consistently accessed are subject to data races. Annotations are used, however, to mark segments

of code where locking is not needed, to declare lock preconditions on functions, and to identify

functions that acquire or release locks as side effects.

Both ESC/Java [DLNS98, LNS00] and RACEFREEJAVA [FF00] associate fields directly with

locks; we associate locks with abstract regions, enabling retention of encapsulation and support for

program evolution and subclassing. ESC/Java incorporates locking information into the verification

condition. RACEFREEJAVA statically checks for unsynchronized access to state using a type-based

approach [FA99a, FA99b]. While [FA99b] describes using existential types in a manner similar to

our “returns lock” annotation, RACEFREEJAVA does not implement this feature because it requires

resolving aliasing among objects. We avoid this problem by identifying canonical lock references.

As discussed in Section 4.10, ESC/Java does not support state aggregations. Classes in RACEFREE-

JAVA may be parameterized by locks, which is similar to our state aggregation, but the system has no

formal model of named object state. The lock that protects access to the elements of an array may be
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identified [FQ03a], but how the identity of the array is preserved is not described. RACEFREEJAVA

supports thread-local classes which are not currently expressible in our system. RACEFREEJAVA

has been extended [FF01] to handle additional programming patterns found to be common sources

of false alarms. New annotations include, for example, an annotation indicating the tool should act

as if the object’s lock is held while the constructor is executing. They do not assure anything as

a result of this annotation; it is merely a flag for turning off “false alarms.” Neither ESC/Java nor

RACEFREEJAVA can represent unique pointers.

As described in Section 4.10, object ownership [CPN98] models transitively aggregate the state

of an object into the state of its owner. Guava [BST00] and Parameterized RACEFREEJAVA [BR01]

use object ownership as the basis for protecting shared state. Object ownership allows protection

only at the granularity of objects. The state of an object cannot be split across multiple owners,

and thus, for example, the classes ThreadCache and CachedThread of Figure 4.5 in their current

form, cannot be expressed in object-ownership–based systems. Guava is a dialect of Java without

a general synchronization construct. Instead, classes belong to one of three categories: sharable

monitors, sharable deep-copied values, and unsharable objects. Object ownership prevents sharing

of objects: each object has exactly one owning monitor or value, and cannot change its owner. Guava

sacrifices flexibility for safety, whereas we ultimately desire to enable implementation flexibility and

evolution while maintaining safety, and to do this for existing code, as in our case studies.

Parameterized RACEFREEJAVA uses a type-system to enforce locking conventions. It is dis-

tinguished by allowing classes to be generic in their protection mechanisms, which are specified

when instances are created. Protection is based on object ownership: every object has exactly one

fixed owner that is specified through parameterization. Objects representing owners may be given

as method preconditions. Before accessing a field of an object or invoking a method with an object

precondition, the lock on the object at the root of the ownership hierarchy of the object must be

held. Thread-local, unique, and immutable objects, cases that do not require synchronization, are

handled using special owners.

The Vault programming language [DF01] statically tracks keys (capabilities) associated with

fields and variables to enforce resource management, such as locking protocols. Keys can model

non-hierarchical regions. The state of an object may be aggregated into multiple other objects by

parameterizing types by keys. However, no general state naming system is provided beyond the

key–field associations the programmer chooses to make. Vault tracks key aliases, and enforces key

uniqueness, but provides no mechanism for ensuring the uniqueness of an object reference. An

advantage of Vault is that it does not require lock management to be syntactically scoped, but it
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defn ::= class cn extends c {region∗ lockdef ∗ field∗ meth∗}
region ::= region argn in argn
lockdef ::= lock ln is lock protects rgn

lock ::= this | fd
field ::= shared_field | unshared_field

shared_field ::= mod_t fd in argn = e
unshared_field ::= unshared mod_t fd in argn aggregate agg+ = e

agg ::= rgn into argn
meth ::= t mn lbl(arg∗) requires ln∗ [returns ln]opt {body}

The disjoint name spaces are extended with the set of abstract region names and lock names. The
set of region names is the set of abstract region names together with the set of field names.
ln ∈ lock names rgna ∈ abstract region names rgn ∈ field names ∪ abstract region names

Figure 5.5: Syntax modifications to FLUIDJAVAwith labeled expressions for regions and locks.

provides no structure in the use of keys for locking purposes. The programmer must describe the

locking conventions, including the lock acquisition and release mechanisms, using key annotations.

It is not possible to describe reentrant locks. Because keys can be used for many purposes, e.g.,

preventing memory leaks, or enforcing object protocols, it cannot be assumed that any particular

key defines a field–lock relationship.

5.11 Safe Locking in FLUIDJAVA

We present named locks as an extension of FLUIDJAVA with labels, and not as a extension of the lan-

guage with effects. This presentation does not consider uniqueness aggregation when determining

which lock is required to access a field, and thus we do not require effects. Removing effects from

consideration simplifies the presentation of locking concerns.

The syntax of FLUIDJAVA is modified as shown in Figure 5.5. Lock declarations associating a

named lock with a representation, either the receiver or a field of the class, and a region of state are

added to class declarations. Methods must now list zero or more required locks that must be held by

the caller in order to invoke the method. A method may optionally have a returns clause declaring

that the object returned by the method is the named lock for the receiver.

We carry over the following notational machinery from FLUIDJAVA extended with effects (see

Figure 4.7):

• The predicates RegionsOnce(P), WFRegions(P), and CompleteRegions(P) for re-

gions, and AggregationsOK(P ) and MapOK for aggregation mappings.
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LocksOnce(P ) ≡ ∀ln, ln ′ : class · · · {· · · lock ln · · · lock ln ′ · · ·} is in P ⇒ ln �= ln ′

c.ln ∈∈c c ⇔ class c · · · {· · · lock ln · · ·} is in P

c′.ln ∈c c ⇔ c′.ln ∈∈c c′ ∧ c ≤c c′

ln
c�→ ĉ.ln ⇔ ∃ĉ : ĉ.ln ∈c c

c.ln is this ⇔ class c · · · {· · · lock ln is this · · ·} is in P
c.ln is c′.fd ⇔ (class c · · · {· · · lock ln is fd · · ·} is in P) ∧ (∃c′, ĉ : 〈c′.fd , final ĉ〉 ∈c c)

c.ln protects c′.rgn ⇔ (class c · · · {· · · lock ln is lock protects rgn · · ·} is in P) ∧ rgn
c�→ c′.rgn

WFLockDefs(P ) ≡(
∀c, ln, fd , rgn : class c · · · {· · · lock ln is fd protects rgn · · ·} is in P

⇒ ∃c′, c′′ : c.ln is c′.fd ∧ c.ln protects c′′.rgn

)

∧ (∀c, ln, rgn : class c · · · {· · · lock ln is this protects rgn · · ·} is in P ⇒ ∃c′′ : c.ln protects c′′.rgn)

NoShadowing(P ) ≡ . . . ∧ (c.ln ∈∈c c ⇒� ∃c′ : (c �= c′ ∧ c ≤c c′ ∧ c′.ln ∈∈c c′))
ProtectedOnce(P ) ≡
∀c, c′, rgn , ln : (c.ln protects c′.rgn) ⇒ ( � ∃ĉ, ĉ′, rgn ′, ln ′ : (c′.rgn ≤r ĉ′.rgn ′ ∧ ĉ.ln ′ protects ĉ′.rgn ′))

LocksOK(P) ≡ ∀c,mn, ln : class c · · · {· · ·mn(· · ·) · · · ln · · · {· · ·} · · ·} is in P ⇒ ln
c�→ c′.ln

〈mn, t1 . . . tn → t, {ln1 . . . lnm}, ∅, (x1 . . . xn), e〉∈∈cc
⇔ class c · · · {· · · t mn lbl ([final]opt t1 [x1]lbl1 . . . [final]opt tn [xn]lbln )

requires ln1 . . . lnm {e} · · ·} is in P
〈mn, t1 . . . tn → t, {ln1 . . . lnm}, {ln ′}(x1 . . . xn), e〉∈∈cc

⇔ class c · · · {· · · t mn lbl ([final]opt t1 [x1]lbl1 . . . [final]opt tn [xn]lbln )

requires ln1 . . . lnm returns ln ′ {e} · · ·} is in P

ClassMethodsOK(P) ≡ ∀c, c′, e, e ′,mn, ti , t
′
i , t , t

′,L,L′, Lret , L
′
ret ,V ,V ′ :

(〈mn, t1 . . . tn → t ,L, Lret ,V , e〉∈∈cc ∧ 〈mn, t ′1 . . . t ′n → t ′,L′, L′
ret ,V

′, e ′〉∈∈cc′)
⇒ ((t = t ′ ∧ ti = t ′i ∧ L = L′ ∧ Lret = L′

ret ∧ V = V ′) ∨ (c �≤c c′))

Figure 5.6: Additional predicates and relations for checking FLUIDJAVA extended with locks.
Metavariable L is a set of lock names.

• The relations ≺r, ≤r, and Mc
fd .

• The triple rgn c�→ c′.rgn .

• The region-related extensions to ∈∈c and ∈c.

Additional predicates and relations related to locks are defined in Figure 5.6. LocksOnce(P )

insures a lock name is unique within a class declaration. The relations ∈∈c and ∈c are extended to

include lock names. The triple ln c�→ ĉ.ln converts a lock name into a qualified lock name relative

to the class c. The new relation is maps a lock to its representation; when the representation is

a field, the relation is only defined if the field is final and a reference to an object, i.e., something

that can be locked. Similarly, the new relation protects maps a lock name to the region it protects,

and is only defined if the region exists in the class in which the lock is declared. The predicate

WFLockDefs(P ) is true only when all the lock declarations in a class are well formed, that is,

have defined is and protects mappings. Predicate NoShadowing(P) is extended to prevent

lock names from being shadowed. Predicate ProtectedOnce(P ) makes sure that if a region is

protected, it is not a subregion of another protected region.
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Predicate LocksOK(P) ensures that all the locks named in requires and returns clauses are

present in the class in which the method is declared. The method structure in relation ∈∈c is altered

to include the set of required locks and the return lock, if any; relation ∈c, not shown, is updated

in the obvious manner. A method can only return a single lock, but we use a set of cardinality zero

or one to more easily handle the case when the method is not declared to return a lock. We update

ClassMethodsOK(P) to require that method overriding preserve lock preconditions and returns

clauses.

5.11.1 Locks and Aliasing

Locks are represented as a pair of an expression with a lock name, e.g., 〈this.f, c.lock〉; this lock is

the lock named “lock” declared in class c of the object referenced by expression this.f . In this way,

locks are similar to instance targets, and have the same aliasing problems. We resort to syntactic

restrictions similar to those of [FF00] to avoid having to resolve lock aliases. An expression that is

interpreted as a lock must be a final expression, by which we generally mean an expression whose

value is constant. Such an expression can be used as a name for an object throughout the scope in

which it is defined with out having to worry that different uses of the expression refer to different

objects. We require that the lock expression in a synchronized block be a final expression. Final

expressions are formally defined in the next section, but in general are built from final local variables

and accesses to final fields.

5.11.2 Type Rules for Locks

We must modify the typing judgment for expressions to incorporate the current lock context or set

of locks known to be held when the expression is evaluated. We also introduce a new judgment

for typing final expressions whose results also include the set of locks that the expression must

represent:

P ;E ;C 	 e : t

P ;E ;C 	final e : t as L

Lock context C and lock result L are sets of locks {〈e′, c.ln〉}.

The well-formedness rules rules for FLUIDJAVA extended with locks are shown in Figure 5.7.

Programs are checked against the additional lock-related predicates and the program body is eval-

uated with an initially empty lock context. For each method, its body is checked using the locks

declared to be required as the initial lock context. The lock names are converted to locks of the
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PROG
ClassOnce(P) RegionsOnce(P) MethodsOnce(P) NoShadowing(P)

CompleteClasses(P) WFClasses(P) ClassMethodsOK(P) UniqueLabels(P)
WFRegions(P) CompleteRegions(P) AggregationsOK(P ) LocksOnce(P) WFLockDefs(P)

ProtectedOnce(P) LocksOK(P) P = defn1 . . . defnn e P � defni P ; ∅; ∅ � e : t

� P : t

CLASS
P , cn � field i P , cn � methi

P � class cn extends c′ · · · {· · · field1 . . .fieldj meth1 . . .methk}

FIELD
P � t P ; ∅; ∅ � e : t

P , c � [final]opt t fd in rgn = e

UNSHAREDFIELD
P � c′ P ; ∅; ∅ � e : c′ MapOK(P, Mc

fd , c
′)

P , c � unshared [final]opt c
′ fd in rgn aggregate agg1 . . . aggn = e

METHOD
P � t P � mod_ti E = final c this,mod_t1 x1, . . . ,mod_tn xn

P ;E; {〈this, ci.lni〉 | lni c�→ ci.lni} � e : t EP ⊇ {(lbl , E), (lbl1 , E), . . . , (lbln , E)}
P , c � t mn lbl (mod_t1 [x1]lbl1 . . .mod_tn [xn]lbln ) requires ln1 . . . lnm {e}

METHODRETURNSLOCK
P � t

P � mod_ti E = final c this,mod_t1 x1, . . . ,mod_tn xn P ;E; {〈this, ci.lni〉 | lni c�→ ci.lni} �final e : t as L

ln
c�→ ĉ.ln {〈this, ĉ.ln〉} ⊆ L EP ⊇ {(lbl , E), (lbl1 , E), . . . , (lbln , E)}

P , c � t mn lbl (mod_t1 [x1]lbl1 . . .mod_tn [xn]lbln ) requires ln1 . . . lnm returns ln {e}

Figure 5.7: Well formedness rules for FLUIDJAVA extended with locks.

receiver using the triple ln c�→ c′.ln . In this way, the body is evaluated assuming that the method

will be called correctly. If a method has a returns clause, the lock declared to be returned is checked

against the set of locks that the body of the method is known to represent. The body of the method

must be a final expression in this case. In real Java, we would instead check the value of each

return statement in the method’s body, and require that each return statement return a final ex-

pression.

Most of the rules for typing expressions just propagate the lock context without using it or

altering its contents. The interesting cases are those expressions that can be interpreted as a locks

or that require lock information. Figure 5.8 shows the rules for reading a local variable. The first

rule VAR is the standard rule for variable use. But the second rule is the first of several judgments

defining final expressions. A final local variable is a final expression. The locks represented by the

expression are derived from those lock names declared in the type of the variable that are represented

by the object itself, i.e., this. This lock generation process is embodied in the helper function

objAsLocks(P , e, t), which returns the empty set when t is a non-object type.

More interesting are the rules for field access, shown in Figure 5.9, because such expressions
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objAsLocks(P , e, t) ≡
{ ∅ when t ∈ {int, boolean}

{〈e, c.ln〉 | t ≤c c ∧ c.ln is this} otherwise

VAR
E = E1 , [final]opt t x ,E2

P ;E ;C � x : t

VARFINALEXPR
E = E1 , final t x ,E2

P ;E ;C �final x : t as objAsLocks(P , x , t)

Figure 5.8: Rules for reading local variables.

lockFor(P , e, c.fd, t) ≡ {〈e, ĉ.ln〉 | t ≤c ĉ ∧ c.fd ≤r c′.rgn ∧ ĉ.ln protects c′.rgn}
fdAsLocks(P , e, c.fd, t) ≡ {〈e, c′.ln〉 | t ≤c c′ ∧ c′.ln is c.fd}

GET
P ;E ;C � e : c 〈c′.fd, t〉 ∈c c lockFor(P , e, c′.fd, c) ⊆ C

P ;E ;C � e.fd : t

GETFINAL
P ;E ;C � e : c 〈c′.fd , final t〉 ∈c c

P ;E ;C � e.fd : t

GETFINALEXPR
P ;E ;C �final e : c as L 〈c′.fd , final t〉 ∈c c

P ;E ;C �final e.fd : t as fdAsLocks(P , e, c′.fd , c) ∪ objAsLocks(P , e.fd, t)

SET
P ;E ;C � e : c 〈c′.fd, t〉 ∈c c P ;E ;C � e′ : t lockFor(P , e, c′.fd , c) ⊆ C

P ;E ;C � e.fd = e′ : t

Figure 5.9: Rules for expressions that access fields.

can both be locks and require the holding of a lock. The function lockFor(P , e, c.fd , t) gives the

lock required, if any, to access the field c.fd of the object referenced by e of type t in program P

by finding an ancestor region of c.fd that is associated with a lock defined in t. Although the result

is a set, the set must have a cardinality of either zero, if the field is not associated with a lock, or

one, if the field is associated with a lock. A set is used to make dealing with the absence of a lock

easier. Reading from a non-final field may require lock. The current lock context is checked to see

if it contains the required lock. Reading from a final field is similar except that no lock is required

to access it. The required lock is checked when writing to a field.

Reading from a final field is a final expression if and only if the subexpression evaluating

to the dereferenced object is a final expression. The field reference can represent locks from

two objects: (1) locks represented by the field fd of the object e , handled by the helper func-

tion fdAsLocks(P , e, c.fd , t); and (2) locks represented by this of the object e.fd , handled by

objAsLocks(P , e.fd , t).

The rules for method invocation are shown in Figure 5.10. A method can only be invoked if the

locks it requires are present in the current lock context. In the case of normal method invocation the
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locksFromSet(P ,L, e, c) ≡ {〈e, c′.ln〉 | ln ∈ L ∧ ln
c�→ c′.ln}

INVOKE
P ;E ;C � e : c

P ;E ;C � ei : ti 〈mn , t1 . . . tn → t, Lreq , Lret , V, eb〉 ∈c c locksFromSet(P , Lreq , e, c) ⊆ C

P ;E ;C � e.mn(e1 . . . en) : t

INVOKEFINALEXPR
P ;E ;C �final e : c as L

P ;E ;C � ei : ti 〈mn , t1 . . . tn → t, Lreq , Lret , V, eb〉 ∈c c locksFromSet(P , Lreq , e, c) ⊆ C

P ;E ;C �final e.mn(e1 . . . en) : t as locksFromSet(P , Lret , e, c)

SUPER
P ;E ;C �final super.mn(e1 . . . en) : t as L

P ;E ;C � super.mn(e1 . . . en) : t

SUPERFINALEXPR
P ;E ;C � this : c′ c′ ≺c c 〈mn , t1 . . . tn → t, Lreq , Lret , V, eb〉 ∈c c
eb �= abstract P ;E ;C � ei : ti locksFromSet(P , Lreq , this, c) ⊆ C

P ;E ;C �final super.mn(e1 . . . en) : t as locksFromSet(P , Lret , this, c)

Figure 5.10: Rules for method invocation.

SYNC
P ;E ;C �final e1 : c as L P ;E ; (C ∪ L) � e2 : t

P ;E ;C � synchronized(e1 ) {e2 } : t

Figure 5.11: Rule for synchronized blocks.

required lock names are converted to locks of the receiver expression e . When invoking a method

on the super class, the receiver is this, and the locks are looked up with respect to the super class. A

method call is a final expression if the receiver expression is a final expression. Super method calls

are always final expressions because the receiver can be named by this. A final method invocation

represents the lock, if any, declared to be returned by the method with respect to the receiver object.

The rule for the synchronized block is shown in Figure 5.11. This rule is the ultimate consumer

of the expression-as-lock information. The lock expression e1 is required to be a final expression,

and the set of locks it must represent are added to the lock context used to evaluate the body of the

block, e2 .

Rules for the remaining expressions are shown in Figure 5.12. These expressions do not re-

quire checking any lock-related properties, nor do they directly result in locks. The fork expression

evaluates its body in an empty lock context: this is because new threads do not hold any locks.
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SUB
P ;E ;C � e : c′ c′ ≤c c

P ;E ;C � e : c

NULL
P � c

P ;E ;C � null : c

NEW
P � c NoAbstractMethods(P , c)

P ;E ;C � new c : c

ASSIGN
P ;E ;C � e : t E = E1 , t x ,E2

P ;E ;C � x = e : t

IF
P ;E ;C � e1 : boolean P ;E ;C � e2 : t P ;E ;C � e3 : t

P ;E ;C � if(e1 ) {e2 } else {e3 } : t

LET
mod_t = [final]opt t x �∈ E P ;E ;C � e1 : t P ;E ,mod_t x;C � e2 : t′

P ;E ;C � let mod_t x = e1 in {e2 } : t′

FORK
P ;E ; ∅ � e : t

P ;E ;C � fork {e} : int

SEQ

P ;E ;C � e1 : t1 P ;E ;C � e2 : t2

P ;E ;C � e1 ; e2 : t2

ABSTRACT
P � t

P ;E ;C � abstract : t

LABEL
P ;E ;C � e : t EP ⊇ {(lbl , E)}

P ;E ;C � [e]lbl : t

LABELFINALEXPR
P ;E ;C �final e : t as L EP ⊇ {(lbl , E)}

P ;E ;C �final [e]lbl : t as L

Figure 5.12: Rules for expressions that are neutral on locks.



Chapter 6

Concurrency Policy

The concurrency-related models, and the annotations expressing them, discussed thus far have been

directly concerned with the mutable state of a program and the locks used to protect it. These

models are sufficient for describing a large portion of the concurrency-related design intent, partic-

ularly in programs that do not make sophisticated use of concurrency. These models are, however,

insufficient for describing important concurrency-related design intent concerning which methods

of a class may execute concurrently while nonetheless maintaining the unstated representation in-

variants of the class. We introduce the notion of concurrency policy to capture this design intent.

The root causes of the problems in the BufferedInputStream example of Section 1.4 are (1) the

failure of the implementors of the class to specify a concurrency policy, and (2) the failure of the

implementors of clients to respect the unstated concurrency policy.

Let us consider an additional example to further motivate the expression of concurrency policy.

Figure 6.1 shows four versions of the class EventQueue, differing only in their use of synchro-

nization. The difference in lock acquisitions does matter, and it affects the value computed by

getSize. Indeed, the whole point is to affect the result of getSize. The extra lock represented by

the field gsLock determines whether getSize accounts for the addition or removal of a priority

event that may be occurring concurrently with the execution of getSize.1 The class in Figure 6.1d

is the simplest of the four—it does not use the lock gsLock. In particular, as a result the methods

enqueuePriority and dequeuePriority can execute after getSize has read from numHigh

but before it has computed the total number of items in the queue by summing the number of priority

and non-priority elements. The other three versions of the class are as follows:

1We acknowledge the contrived nature of this example, particularly with the respect to the extent of lock acquisitions,
but it is useful for explaining the problem that concurrency policy is meant to solve.
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• Figure 6.1a implements an “upper bound” getSize, in which enqueuePriority is not

allowed to execute concurrently with getSize. The computed size is maximized because

priority elements are allowed to be removed from the queue after the number of priority

elements, stored in numHigh, is read, but no priority items are allowed to be added to the

queue.

• Figure 6.1b implements a “lower bound” getSize, in which dequeuePriority is not al-

lowed to execute concurrently with getSize. The computed size is minimized because pri-

ority elements are allowed to be added to the queue after the number of priority elements is

read, but no priority items are allowed to be removed from the queue.

• Figure 6.1c implements an “exact” getSize, in which neither enqueuePriority or de-

queuePriority are allowed to execute concurrently with getSize. Thus no changes to

the number of priority elements in the queue are allowed while the size of the queue is being

calculated.

All four versions of EventQueue acquire the lock represented by the field high before ac-

cessing the fields numHigh and high. Similarly, all four versions acquire the lock represented by

the field normal before accessing the fields numNormal and normal (usages of this field other

than as a lock are elided). We assert that all these usages are consistent with an unshown locking

model. The only real difference between the four classes is in their use of the lock represented by

field gsLock, a lock that is not associated with any state. Without this lock, it is not possible to

obtain the different behaviors in method getSize. The point is that associations between locks

and state are not always sufficient to account for the invariants that must be maintained by a class.

In particular, the internal state of the queue is not corruptible in any of the four versions, but the

meaning of the getSize operation varies among them, and certain interleavings may be acceptable

with respect to internal state and intended client meaning.

To see this problem at a lower level of granularity, consider that models of lock–state association

allow method dequeuePriority to be implemented as shown in Figure 6.2. This implementation

always accesses state according to the locking model but is clearly “broken” because the contents

of the Vector referenced by high cannot be allowed to change after checking that the size of the

Vector is nonzero. Indeed, a program written such that every synchronized block accessed

exactly one protected field would be consistent with its locking model, but in practice full of race

conditions. This is because the point of acquiring locks is to protect representation invariants. Why

then the long-standing practice of associating locks with state? Locks are associated with sets
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public class EventQueue { ...
public int getSize() {

synchronized( gsLock ) {
int s1, s2;
synchronized( high ) {

s1 = numHigh;
}
synchronized( normal ) {

s2 = numNormal;
}
return s1 + s2;

}
}

public class EventQueue { ...
public int getSize() {

synchronized( gsLock ) {
int s1, s2;
synchronized( high ) {

s1 = numHigh;
}
synchronized( normal ) {

s2 = numNormal;
}
return s1 + s2;

}
}

public void
enqueuePriority( Object e ) {

synchronized( gsLock ) {
synchronized( high ) {

high.add( e );
numHigh += 1;

}
}

}

public void
enqueuePriority( Object e ) {

synchronized( high ) {
high.add( e );
numHigh += 1;

}
}

private Object dequeuePriority(){
Object e = null;
synchronized( high ) {

if( numHigh != 0 ) {
e = high.remove( 0 );
numHigh -= 1;

}
return e;

}
}

}

private EQEvent dequeuePriority(){
Object e = null;
synchronized( gsLock ) {

synchronized( high ) {
if( numHigh != 0 ) {
e = high.remove( 0 );
numHigh -= 1;

}
return e;

}
}

}
}

(a) (b)
public class EventQueue { ...
public int getSize() {

synchronized( gsLock ) {
int s1, s2;
synchronized( high ) {

s1 = numHigh;
}
synchronized( normal ) {

s2 = numNormal;
}
return s1 + s2;

}
}

public class EventQueue { ...
public int getSize() {

int s1, s2;
synchronized( high ) {

s1 = numHigh;
}
synchronized( normal ) {

s2 = numNormal;
}
return s1 + s2;

}

public void
enqueuePriority( Object e ) {

synchronized( gsLock ) {
synchronized( high ) {

high.add( e );
numHigh += 1;

}
}

}

public void
enqueuePriority( Object e ) {

synchronized( high ) {
high.add( e );
numHigh += 1;

}
}

private EQEvent dequeuePriority(){
Object e = null;
synchronized( gsLock ) {

synchronized( high ) {
if( numHigh != 0 ) {
e = high.remove( 0 );
numHigh -= 1;

}
return e;

}
}

}
}

private EQEvent dequeuePriority(){
Object e = null;
synchronized( high ) {

if( numHigh != 0 ) {
e = high.remove( 0 );
numHigh -= 1;

}
return e;

}
}

}

(c) (d)

Figure 6.1: Four versions of EventQueue that differ only in the number and scope of critical
sections.
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1 private EQEvent dequeuePriority(){
2 Object e = null;
3 int size;
4 synchronized( high ) { size = numHigh; }
5 if( size != 0 ) {
6 synchronized( high ) { e = high.remove( 0 ); }
7 synchronized( high ) { numHigh -= 1; }
8 }
9 return e;

10 }

Figure 6.2: An implementation of dequeuePriority that follows the locking model of its class
but that obviously has race conditions.

of fields, regions in our locking model, because it is convenient: most of the time the invariants

associated with the set of fields can be preserved by simply acquiring the appropriate lock before

accessing the region.

6.1 Observing State Changes

The missing design intent that would prevent dequeuePriority from being implemented as in

Figure 6.2 is information on which portions of code are allowed to observe changes to shared state.

When explicit representation invariants are available, this information is potentially deducible from

the code, formal pre- and postconditions, and the invariants. Portions of code that temporarily

invalidate invariants should not interleave with other portions of code that access the state whose

invariants are invalidated. Returning to class EventQueue and method dequeuePriority, an

obvious invariant, stated informally, is that “numHigh should always equal the number of elements

in the vector referenced by high.” Clearly, then, no other thread should be allowed to access high

or numHigh between the removal of an element on line 6 and the decrement of the element count

on line 7.

A fundamental premise of this work, however, is that it is generally unreasonable to require

programmers to explicitly express representation invariants. Programming tools based on represen-

tation invariants such as ESC/Java [FLL+02] appear to suffer from poor adoptability, to the extent

that invariant inference engines such as Houdini [FJL01, FL01] have been developed to make the

code annotation process less painful. We introduce the notion of concurrency policy as a surro-

gate for unstated representation invariants that still allows the programmer to differentiate between

“good” and “bad” concurrency. We believe that programmers can specify concurrency policy with-
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out first having to formally express the representation invariants for a class; rather, concurrency

policy can be developed based on informal code-focused arguments based on intuitive notions of

what will “break” the code. Examples of such arguments are given in Sections 6.3.1 and 6.5.1.

6.2 Expressing Concurrency Policy

The concurrency policy of a class implementation specifies which segments of code methods have

potential executions that can be safely interleaved. We choose to focus on interleaved executions

because it is fundamentally this interleaving that allows changes to shared state to be observed

across threads. In the simplest formulation, concurrency policy is expressed as a symmetric boolean

matrix indexed by method names. For larger classes, there is a potential combinatorial challenge

which can be mediated using several possible techniques. These include (1) indexing the matrix by

regions or effects and deriving a method-indexed matrix from this, and (2) indexing the matrix by

sets of related methods, e.g., getters and setters, with obvious derivation of the full matrix. There is a

natural tradeoff between succinctness and expressiveness of these policy descriptions. For example,

the matrix could be indexed by arbitrary code segments of a class, which would provide perhaps

finer-grained interleaving at the expense of more costly policy expression. These options are briefly

revisited in Section 6.5.

Concurrency policy is useful not only to the implementor of a class, but also to the clients of a

class. For example, is the client allowed to invoke methods close and read of class Buffered-

InputStream concurrently? We thus distinguish between two uses of concurrency policy: internal

policy that restricts the implementation of a class, and external policy that restricts the use of a

particular implementation.2 These uses are described in more detail in the following sections.

6.3 Internal Concurrency Policy

The internal concurrency policy of a class sets the upper bound on the extent of interleaving for the

methods of a class and its subclasses. In other words, the internal concurrency policy is an approx-

imation of the representation invariants that define safe vs. unsafe concurrency for a class imple-

mentation. Its focus is on the maintenance of the integrity of the shared state by the implementation

and specifically not on the client-side correct use of the class. Internal policy expresses constraints

2In an earlier presentation [GS02], we refer to these uses as guiding and client policy, respectively.
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but not the mechanisms used to prevent interleaving, which may be resource- or client-side. An

implementation could use any of the following mechanisms, for example: lock-based critical sec-

tions, thread-local usage, immutable encapsulations, enforcement of object protocols, and avoiding

the need for sharing through deep copying. A pair of method implementations may have both safe

and unsafe interleavings. A method-level boolean formulation of internal policy cannot capture this

distinction, and thus two methods must not be allowed to interleave if any of their interleavings is

unsafe.

The internal concurrency policy for a class is captured in a separate design document linked

with the class it describes. An implementation can be checked to verify that the internal concurrency

policy is respected. The checks vary based on the coordination techniques used. For example, an

analysis based on locks actually acquired by the implementation, and assumed to be acquired by

clients, can provide assurance that certain interleavings cannot occur.

In the absence of explicit representation invariants, internal concurrency policy is a design deci-

sion and so must be trusted. While techniques such as those of [OG76, Lam80] may help verify the

appropriateness of an internal policy with respect to explicit representation invariants, our experi-

ence in multiple case studies is that informal reasoning (such as performed below) is often sufficient.

Tools can help with this process, for example, by presenting to the programmer the different inter-

leavings that must be considered.

6.3.1 An Example

We now consider as an example the internal concurrency policy for the class BoundedFIFO, shown

in Figure 6.3. To reduce combinatorics, the methods getMaxSize, isFull, wasFull, wasEmpty,

and length have been aggregated into the set InfoMethods because they all have the same policy

properties. The “S” for InfoMethods × InfoMethods means that any pair in the Cartesian

product is safe, where safe means that their concurrent execution preserves the state’s integrity.

Some of the informal reasoning based on the implementation of BoundedFIFO used to develop this

policy is as follows:

• Method get cannot be allowed to interleave with itself because it could result in both calls to

get returning the same element. Referring to Figure 1.2, this could happen if a second thread

began to execute get after the first thread executed through line 15.

• Method put cannot be allowed to interleave with itself because it could result in two events

being stored in the same location in the underlying array, causing one of the events to be lost.
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get put InfoMethods

get ×
put × ×

InfoMethods S S S
InfoMethods = { getMaxSize, length, wasEmpty, wasFull, isFull }

Figure 6.3: The internal concurrency policy for BoundedFIFO. An “S” indicates allowable safe,
i.e., invariant-preserving, interleaving; “×” that interleaving is unsafe and disallowed.

This could happen if a second thread began to execute put after the first thread had executed

through line 24.

• Methods get and put can be allowed to interleave with each other. The predicate first ==

next is only true when the FIFO is full or empty, in which cases put or get, respectively,

will execute without accessing the contents of the array. Thus it can never be the case that

two threads try to access the same element of the array referenced by buf. In practice this

concurrency is hard to exploit because of the synchronization required to access the shared

state and the exclusions required to prevent get and put from interleaving with themselves.

Because of this difficulty, we make the design decision that the internal policy should prevent

the interleaving.

• The InfoMethods set can clearly be allowed to interleave with itself because all the methods

only read state.

There are other “bad” results that can happen as a result of these interleavings, but these observations

are sufficient to prevent them as well as those explicitly identified.

6.3.2 Internal Policy and Implementation

The reasoning used to develop the internal concurrency policy is necessarily informed by the im-

plementation of the class, and, as we see in Section 6.5, by the external concurrency policy of

referenced classes. The purpose of the internal policy is to describe what interleavings the imple-

mentation of the class, where implementation includes constraints placed on clients of the class,

must not allow to be possible. If any one of the interleavings is allowed by the implementation,

then it would be possible for the representation invariants of the class to be violated. This implies

that the internal policy must actually be developed with respect to some potentially non–thread-safe
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version of the class. This is why the above reasoning uses a version of BoundedFIFO that does

not contain lock annotations. An internal policy developed with respect to the protected version

of the class, as in Figure 5.4, would in fact be fully permissive because all of the methods are al-

ready prevented from interleaving with each other. Section 8.3.3 demonstrates the development of

a non-trivial internal policy from code that contains region-based critical sections.

It is sometimes necessary to introduce a new lock for the purpose of enforcing policy decisions.

The lock represented by gsLock in Figure 6.1 is an example of such a lock. We call a lock used for

this purpose a policy lock and do not associate it with a region. The programmer may document the

intent that a lock is a policy lock using the class annotation

@policyLock lockName is representation

This is basically the same as a @lock annotation but without the region association. Currently there

are no policy-related analyses that take direct advantage of this annotation. The lock analyses de-

scribed in Section 5.6 use this annotation to support lock identification. This prevents “unknown

lock” warnings from being generated when a synchronized block acquiring a policy lock is en-

countered. Section 7.6 gives an example of using a @policyLock annotation.

6.4 External Policy

The responsibility for preventing unsafe interleavings may be shared among a resource and its

clients. That is, the implementation of the resource may permit concurrency that appears “unsafe”

with respect to the internal policy as long as clients can be assured not to exploit it. The external

policy of a class specifies pairs of methods that clients of the class are and are not allowed to invoke

concurrently, constraining the design decisions of clients. Adding the following annotation to the

implementation of a method m

@safeWithmethod1, . . ., methodn

declares that methods m, method1, ..., method n may be invoked concurrently by clients. The name

of a method set may be used in a @safeWith annotation to refer to all the methods in the set. To be

compatible with inheritance, method pairs not mentioned in @safeWith annotations are assumed

to be unsafe: existing assurances are not compromised because unknown methods of subclasses are

assumed to interfere with known methods. Subclasses may declare newly introduced methods to be

@safeWith inherited methods and may also redeclare as safe method pairs previously asserted to

be interfering.
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The external policy thus describes to clients of a class which potentially unsafe method inter-

actions they must avoid. That is, if two methods are not @safeWith each other, then a client that

allows them to be invoked concurrently could cause the representation invariants of the class to be

violated. Pairs of methods that are @safeWith each other are only guaranteed to not cause the

class’s representation invariants to be violated. They specifically are not guaranteed to actually ex-

ecute interleaved; that is they may execute serialized even if they are invoked concurrently. For

example, a class implemented as a monitor takes full responsibility for protecting itself and thus has

an external policy declaring all pairs of methods as safe. External policy is a contract, in that its

safety guarantees need to persist as a class evolves and is subclassed. From the standpoint of design,

this implies that the design of annotations must not be predicated entirely on the particulars of an

implementation, but also on potential evolution trajectories. The external policy clearly must not be

more permissive than the internal policy.

A potential race condition exists if a conservative analysis cannot assure consistent regard for

the policy, i.e., that unsafe method pairs are not used concurrently by a client. The exact analyses

necessary vary with available coordination techniques. Currently we are developing an analysis

based on tracking locks. Our relatively strong restrictions on lock references make this an easier

analysis than general aliasing, for example.

6.4.1 External Policy and Object Composition

For the purposes of analyzing a single client, the external policy alone defines the contract for as-

suring correct usage—there is no need to examine the internal policy or other annotations on the

resource. In the absence of overall guidance on how the external policy is to be enforced, how-

ever, two different clients—separately assured—may use different and incompatible techniques. A

system that simultaneously used both clients could be unsafe even though both appear to be individ-

ually assured safe. Locking annotations and uniqueness annotations ameliorate this composability

problem. Locking preconditions, via @requiresLock annotations, help document design intent of

how the external policy is to be met. If an object whose client is responsible for enforcing policy

is uniquely referenced by its client, then the client may use any technique to enforce the object’s

concurrency policy because no other clients can exist.

As an example, we consider the case of BoundedFIFO and a client class BlockingFIFO,

based on the canonical clients of Figure 5.2, that wraps a BoundedFIFO instance to produce a

blocking FIFO implementation. Figures 6.4 shows BoundedFIFO annotated with external pol-

icy annotations, among others; BlockingFIFO annotated with external policy is shown in Fig-
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1 /**
2 * @methodSet InfoMethods = getMaxSize, length, wasEmpty, wasFull, isFull
3 * @methodSet calleeLocked = get, put, InfoMethods
4 * @lock BufLock is this protects Instance
5 * @set InfoMethods reads Instance
6 * @set calleeLocked requiresLock BufLock
7 * @set calleeLocked safeWith InfoMethods */
8 public class BoundedFIFO { ...
9 /** Returns <code>null</code> if empty.

10 * @writes Instance */
11 public LoggingEvent get() { ... }
12
13 /** If full, then the event is silently dropped.
14 * @writes Instance */
15 public void put(LoggingEvent o) { ... }
16
17 /** Get the capacity of the buffer. */
18 public int getMaxSize() { ... }
19
20 /** Get the number of elements in the buffer. */
21 public int length() { ... }
22
23 /** Returns <code>true</code> if the buffer was empty
24 * before last put operation. */
25 public boolean wasEmpty() { ... }
26
27 /** Returns <code>true</code> if the buffer was full
28 * before the last get operation. */
29 public boolean wasFull() { ... }
30
31 /** Is the buffer full? */
32 public boolean isFull() { ... }
33 }

Figure 6.4: Class BoundedFIFO with external concurrency policy annotations.

ure 6.5. The convention of BoundedFIFO is that clients are responsible for coordinating their use

of BoundedFIFO instances: the external policy of BoundedFIFO is therefore identical to its inter-

nal policy. In addition, the @requiresLock annotations on its methods describe the mechanism

through which clients should coordinate their actions. This insures, for example, that the canonical

clients of Figure 5.2 both use the same coordination technique, avoiding the problem mentioned

above.

The external policy for BlockingFIFO, on the other hand, is fully permissive. This reflects

the implementation, in which synchronization on fifo—in compliance with the external pol-

icy and locking annotations of BoundedFIFO—already prevents the proscribed interleavings of

both BoundedFIFO and BlockingFIFO. Class BlockingFIFO guarantees this to its own clients

through its own external policy, expressed via @safeWith annotations. We note, however, that

while length is safe with put and get, the sensible use of length in conjunction with either get

or put is in the domain of the concurrency policies of the clients of BlockingFIFO.
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1 /** @methodSet WrappedFIFO = put, get, length */
2 public class BlockingFIFO {
3 private final BoundedFIFO fifo;
4
5 public BlockingFIFO(int size) { fifo = new BoundedFIFO(size); }
6
7 /** @safeWith WrappedFIFO */
8 public void put(LoggingEvent e) {
9 synchronized(fifo) {

10 while(fifo.isFull()) {
11 try { fifo.wait(); } catch(InterruptedException ie) { }
12 }
13 fifo.put(e);
14 if(fifo.wasEmpty()) fifo.notify();
15 }
16 }
17
18 /** @safeWith WrappedFIFO */
19 public LoggingEvent get() {
20 synchronized(fifo) {
21 LoggingEvent e;
22 while(fifo.length() == 0) {
23 try { fifo.wait(); } catch(InterruptedException ie) { }
24 }
25 e = fifo.get();
26 if(fifo.wasFull()) fifo.notify();
27 return e;
28 }
29 }
30
31 /** @safeWith WrappedFIFO */
32 public int length() {
33 synchronized(fifo) { return fifo.length(); }
34 }
35 }

Figure 6.5: BlockingFIFO class as a client of BoundedFIFO.

6.4.2 Self-Protected Objects

It is convenient to declare that objects of a particular class take sole responsibility for protecting

their invariants. Such objects are traditionally what one expects when thinking of a “thread-safe”

object. They have the advantage that clients of the object do not need to do anything special before

invoking methods on them. The class annotation

@selfProtected

documents the design intent that a class, and its subclasses, take full responsibility for protecting

themselves. It is like a fully permissive external policy, i.e., every method is safe with every other

method, except that it additionally requires that any method added by a subclass is also safe with all

other methods.

We emphasize again that the techniques used by a class to be compliant with its declared external

policy are unspecified. In general, we envision this annotation to be used on classes that implement

either (1) immutable objects or (2) monitors. The analyses that would be used to verify policy
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compliance in these two case are different, and the @selfProtected annotation by itself does not

provide enough information to know which technique is being used. It has the advantage, however,

of being abstract, and thus, for example, an interface can be annotated as being @selfProtected

and have multiple implementations, some of which are immutable and some of which are monitors.

In Parameterized RACEFREEJAVA [BR01], a class may be “self-synchronized.” Such classes

implement objects that always own themselves, which in the idiom of their system means that

instances of the class must always lock on themselves to protect their state. This is more specific

than what our @selfProtected annotation is declaring; a self-synchronized class is one way in

which a @selfProtected class could be implemented.

6.5 A Policy Mismatch Error

We now give an example from Log4j version 1.1b5 in which the external policy of a provider

class is not followed by the implementations of its clients. This “policy mismatch” creates several

sources of null-pointer and index-out-of-bounds exceptions, as well as enabling a violation of an

internal object protocol [Gre01]. These exceptions can cause the program being logged to terminate

prematurely or portions of the logging functionality to misbehave.

The Log4j library is introduced in Section 1.3; here we describe additional details relevant

to this example. Logging-event sources implement the AppenderAttachable interface, shown in

Figure 6.6; Appender objects are chained together by attaching to classes that implement Append-

erAttachable. The library provides two classes that implement the interface. To avoid duplicat-

ing the implementation, the core functionality of managing event listeners is implemented by the

class AppenderAttachableImpl, partially shown in Figure 6.7. This class does not make use

of synchronization. The AppenderAttachable interface is implemented by classes Category

and AsyncAppender, neither shown, whose instances each have their own unaliased Appender-

AttachableImpl instance to which they delegate calls.

Unlike the case of BoundedFIFO, which also originates from the Log4j library, there is no

discernible convention on client synchronization, even though it is clearly the responsibility of the

clients of AppenderAttachableImpl to protect it from concurrent access. In Category and

AsyncAppender, the methods addAppender, removeAppender(String), removeAppend-

er(Appender), and removeAllAppenders are synchronized. The uses of method append-

LoopOnAppenders, a method which is not part of the AppenderAttachable interface, are syn-

chronized within Category, but not in AsyncAppender. This synchronization is not sufficient to
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1 public interface AppenderAttachable {
2 /** Add an appender. */
3 public void addAppender(Appender newAppender);
4
5 /** Get all previously added appenders as an Enumeration. */
6 public Enumeration getAllAppenders();
7
8 /** Get an appender by name. */
9 public Appender getAppender(String name);

10
11 /** Remove all previously added appenders. */
12 void removeAllAppenders();
13
14 /** Remove the appender passed as parameter from the list
15 * of appenders. */
16 void removeAppender(Appender appender);
17
18 /** Remove the appender with the name passed as parameter from
19 * the list of appenders. */
20 void removeAppender(String name);
21 }

Figure 6.6: Log4j’s AppenderAttachable interface.

1 public class AppenderAttachableImpl implements AppenderAttachable {
2 protected Vector appenderList;
3
4 public void addAppender(Appender newAppender) {
5 if(newAppender == null) return;
6 if(appenderList == null) appenderList = new Vector(1);
7 if(!appenderList.contains(newAppender)) {
8 appenderList.addElement(newAppender); }
9 }

10
11 /** Call the doAppend method on all attached appenders. */
12 public int appendLoopOnAppenders(LoggingEvent event) {
13 int size = 0;
14 Appender appender;
15
16 if(appenderList != null) {
17 size = appenderList.size();
18 for(int i = 0; i < size; i++) {
19 appender = (Appender) appenderList.elementAt(i);
20 appender.doAppend(event);
21 }
22 }
23 return size;
24 }
25
26 public void removeAppender(Appender appender) {
27 if(appender == null || appenderList == null) return;
28 appenderList.removeElement(appender);
29 }
30 ...
31 }

Figure 6.7: A portion of the implementation of Log4j’s AppenderAttachableImpl class.
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Instance

Instance ×
read Instance write Instance

read Instance S
write Instance × ×

(a) (b)

Figure 6.8: (a) Monitor-like and (b) reader–writer external policies for AppenderAttachable-
Impl expressed using regions and effects, respectively. “S” indicates concurrent execution is safe;
“×” indicates concurrent execution is prohibited.

prevent null-pointer and index-out-of-bounds exceptions during concurrent use, as will become ap-

parent when we examine the external concurrency policy we inferred for AppenderAttachable-

Impl. First we infer a correct external policy, then we illustrate how it is violated, and finally we

suggest how analyses might detect the policy violations.

6.5.1 External Policies for AppenderAttachableImpl

Generally speaking, the most conservative external policy is a policy that does not allow the client

to execute any pair of methods concurrently. This is most concisely recorded using the region-

based policy shown in Figure 6.8a: any two methods that access region Instance of the same

AppenderAttachableImpl object are prevented from executing concurrently. An example of a

policy that allows more concurrency in the usage of the class is a reader–writer policy. This is most

naturally recorded using an effects-based policy description, shown in Figure 6.8b, differentiating

methods based on their effects on an AppenderAttachableImpl object. Both of these policies

could also be more verbosely expressed using method sets or a purely method-based policy matrix.

In the general case, region- and effects-based policy descriptions have the advantage that they are

easy and concise to express and they often can be automatically produced based on an analysis of

the effects of the class implementation.

Returning to our example, the most liberal external concurrency policy for AppenderAttach-

ableImpl is shown in Figure 6.9. This policy is identical to the class’s internal concurrency policy,

and is more permissive than the reader–writer policy; differences from the reader–writer policy

are in bold. Three of the allowable interleavings, marked by asterisks, are safe because their only

possible interactions are through the Vector referenced by appenderList, and the external pol-

icy of Vector, were the JDK appropriately annotated, indicates that any one of its methods is

@safeWith any other. An analysis informed by the effects of AppenderAttachableImpl and

the external policy of Vector could deduce the safety of these methods. The other five safe inter-
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(1) (2) (3) (4) (5) (6) (7)
(1) addAppender ×
(2) appendLoopOnAppender S S
(3) getAllAppenders S S S
(4) getAppender S S S S
(5) removeAllAppenders × × × × ×
(6) removeAppender(Appender) S × S∗ × × S∗

(7) removeAppender(String) S × S∗ × × × ×

Figure 6.9: The most liberal external concurrency policy for AppenderAttachableImpl. A bold
“S” indicates differences from the reader–writer policy. Pairs marked∗ are safe due to the underlying
Vector.

leavings require reasoning about changes to the fields of the object itself. Let us review some of the

reasoning for allowing and disallowing interleaving with method addAppender; see Figure 6.7.

• We do not declare addAppender to be @safeWith addAppender. Both executions could

observe appenderList to be null, in which case both would assign a new Vector to the

field: one of the added appenders will be lost.

• We declare addAppender to be @safeWith appendLoopOnAppenders. In developing

this policy we consider two interactions. (1) addAppender can assign a new Vector to

appenderList if there is no existing vector. But appendLoopOnAppenders terminates

when appenderList is null. (2) addAppender can add to the vector once it is present.

But appendLoopOnAppenders invokes appenderList.size before its loop, so iterations

will stop before any newly added element is reached. In both cases, the interleaved methods

execute as if appendLoopOnAppenders executed before addAppender. Thus this pair can

be marked as safe in the external policy.

• We do not declare the Appender-taking version of removeAppender to be @safeWith

appendLoopOnAppenders. If removeAppender removes an element from the list after

appendLoopOnAppenders has read the size of the list, then an index-out-of-bounds ex-

ception can result because appendLoopOnAppenders will iterate past the end of the list

of appenders. This is an example of how even though the methods of a class, in this case

Vector, may be @safeWith each other, their concurrent use must still be coordinated at a

higher level to preserve higher-level invariants.

• We declare removeAppender(Appender) to be @safeWith itself because the the concur-
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(1) (2) (3) (4) (5) (6) (7)
(1) addAppender ×
(2) appendLoopOnAppender S S
(3) getAllAppenders S S S
(4) getAppender S S S S

(5) removeAllAppenders × S S S ×
(6) removeAppender(Appender) × S S S × ×
(7) removeAppender(String) × S S S × × ×

Figure 6.10: The policy enforced by clients of AppenderAttachableImpl. Boxes indicate where
the enforced policy is different from the external policy.

rency policy for Vector indicates that removeElement is @safeWith itself.

6.5.2 Detecting the Mismatch

Failure to use enough synchronization within Category and AsyncAppender enables seven inter-

leavings disallowed by our inferred policy and could thus cause unwanted exceptions. The policy

enforced by these two classes in their usage of an instance of AppenderAttachableImpl is shown

in Figure 6.10. Differences from the external policy are boxed; in particular, the seven occurrences

of an S indicate errors in the implementations of the clients. A static analysis can detect the policy

violations if the following annotations are added (1) an external policy for AppenderAttachable-

Impl, and (2) uniqueness of the delegate references in Category and AsyncAppender. Clearly

the external policy must be specified before it can be enforced. Because AppenderAttachable-

Impl has no locking annotations, it does not provide any hints regarding how clients should enforce

its external policy. By annotating that the delegate references are @unshared, we insure that those

instances will have exactly one client, and thus the client is free to protect the delegate in any man-

ner it chooses. In this particular case, both Category and AsyncAppender lock themselves to

protect the delegate.

A static analysis based on extant locking to enforce the external policy would proceed by iden-

tifying all the locks that must be held at each site where a method on the AppenderAttachable-

Impl instance is called. Let mi be the set of locks that must be held at call site i of method m.

Then for each pair of methods (m,n) that the external policy does not declare as safe, such that m

has call sites drawn from set p and n has call sites drawn from set q, the client correctly enforces

the policy pair if
(⋂

i∈pmi

)
∩

(⋂
j∈q nj

)
�= ∅. That is, there exists a lock that must always be held
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whenever m is called and whenever n is called.

We omit the details of how the policy mismatch can be fixed; see [Gre01]. We do note, how-

ever that it is nontrivial to implement a general-purpose client that is not more conservative than

the policy in Figure 6.9. There is likely to be little performance benefit, because the overhead of

synchronization is likely to outweigh the benefits of concurrency. The benefits of such a liberal

external policy, however, stem from the documentation of design intent. By documenting external

policy, clients are given more information about how the class is intended to be used. For example,

were BufferedInputStream given a policy that indicated that read and close were not safe to

invoke concurrently, the whole scenario described in Section 1.4 would be irrelevant.

6.6 Policy Representation Revisited

The method-based approach to expressing policy has several problems. An obvious problem is that

it does not scale well. For classes with more than a handful of methods, expressing the policy is

likely to be burdensome. Considering the method interactions is more burdensome still. The com-

binatorics of policy expression can be reduced by instead expressing policy in terms of interactions

over regions, as briefly explored in Section 6.5. There is an obvious trade-off between conciseness

of expression and flexibility in expressed policies.

A second problem with method-based policy expression, that can also be addressed by switching

to a region-based policy, is scoping the concurrency policy. Many cases exist where the scope of a

policy must go beyond a single class and its subclasses. For example, classes collaborating via an

enumerator may require policy to be expressed at the level of the classes involved. In Appender-

AttachableImpl, the enumeration-returning method getAllAppenders is @safeWith various

mutator methods of the class, but the resulting enumeration object is not because it is an unprotected

access path to the underlying state of the Vector. Specifying policy in terms of regions enables the

capture of all methods that can affect those regions, and thus captures access paths via enumerations,

for example.

6.7 Related Work

We believe that our presentation of concurrency policy is a novel approach to the specification and

maintenance of unstated representation invariants. In particular, none of the tools discussed in pre-

vious chapters, i.e., ESC/Java [FLL+02], RACEFREEJAVA [FF00], Parameterized RACEFREEJAVA
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[BR01], and Guava [BST00], support the description of concurrency policy.

Noble, Holmes and Potter describe an “algebra of exclusion” for reasoning about exclusion in

composite objects [NHP00]. The underlying semantics of their algebra is identical to that of our

method-based concurrency policy: pairs of methods whose executions must exclude each other.

Their algebra represents the matrix symbolically. A difference is that they are not concerned with

relating the matrix to implementation, rather they are concerned with relating the matrix to the archi-

tecture of a system of objects. They envision that an implementation is derived from unsynchronized

code and a specification of the exclusion constraints via an aspect-oriented programming system.

They are primarily concerned with being able to reason about two things: (1) that the exclusion con-

straints of a composite object satisfy those of its delegate objects, and that therefore the aggregated

objects do not require exclusion in their implementation; and (2) that the exclusion implemented

by delegate objects is sufficient to satisfy the constraints of the composite object. Because they

are not focused on implementation, there is no assurance that implementations actually implement

the exclusions, or that aggregated delegate objects are actually properly contained to satisfy the as-

sumptions of their logic. In this regard, their work complements ours: while our work is concerned

with the assurance that an implementation is consistent with its policy, their work is concerned with

assuring that the interaction of the policies of cooperating objects produces the desired effects.

Several languages contain non–lock-based syntactic constructs for implementing mutual exclu-

sion that superficially resemble concurrency policy. In Path Pascal [CH74], class-level path expres-

sions specify both object protocol and concurrency constraints. In a language proposed by Andrews

and McGraw [AM77] each method is annotated with those methods that may execute concurrently

with it (a.k.a. compatibilities). CEiffel [Löh93], a multi-threaded dialect of Eiffel, uses a similar

annotation. Subclasses may, however, arbitrarily alter the compatibilities of a method, and abstract

methods may not specify any compatibilities: we conclude that these annotations are primarily for

implementing synchronization rather than for describing policy.

Lucassen extends his effects system with monitor-call effects “to give the programmer some

control over the way in which computations are interleaved” [Luc87]. All monitor-call effects are

defined to interfere with each other. Described as an external concurrency policy, the policy would

be at the system granularity and all methods of all monitors would exclude each other.

Schwarz and Spector consider transactions on abstract data types [SS84]. Their technique is

similar to our policy in that their motivation is to be able to reason about the interactions of opera-

tions on abstract types.

Flanagan and Qadeer have developed a type system for specifying and checking atomicity prop-
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erties [FQ03b] and have applied it to Java [FQ03a]. This system is an extension of the race-free type

system used by RACEFREEJAVA, and is meant to solve the problem that race-freedom as defined

by their previous work does not account for the interleaving of critical sections, as discussed in

Section 6.1. Their type system is based upon Lipton’s theory of reduction [Lip75], and categorizes

expressions based on their ability to interleave with the actions of other threads. Programmers must

type a method with its intended atomicity. Such a type system could be adapted for assuring that a

class implementation is consistent with its internal concurrency policy.
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Chapter 7

Tools

We have implemented a prototype tool that embodies the analysis techniques described in previous

chapters. Our experience with the tool provides some preliminary evidence of the practicability of

our approach for ordinary programmers on deadlines. As mentioned throughout, our design deci-

sions are fundamentally influenced by the desire that our approach be adoptable by working pro-

grammers. This influences our approach to recording design intent. Specifically, we avoid recording

explicit representation invariants: we record intent using annotations that describe models of me-

chanical program behavior. These annotations are intended to answer questions that the programmer

is already thinking about. The design of the tool is also influenced by our focus on adoptability. We

wish to provide the programmer using our tool with “early gratification”—some assurance should

be obtained with minimal or no annotation effort, and additional increments of annotation should be

rewarded with additional increments of assurance or warnings of model–code inconsistencies. Our

prototype tool thus supports an interactive and iterative assurance process. The programmer builds

up assurance results by gradually executing assurance analyses and introducing annotations. Thus

for our principle of early gratification to be satisfied, a programmer must be rewarded with useful

analysis results within the first few iterations, and should not have to introduce large amounts of

annotations.

The design of our tool allows assurance to proceed incrementally across the code base and

across the models of intent. Unlike similar tools, such as RACEFREEJAVA and Guava, we do not

require that the entire program to be assured thread-safe at once, a fundamental obstacle to providing

early gratification. These tools use modular type systems, but the assumption is that the whole

program is being made thread-safe at once. This is evident, for example, by the requirement that

all fields be associated with a lock, or the assumption that any reference to an object is going
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to be a safe object. Such assumptions make it difficult to obtain meaningful incremental results

because there is no provision for distinguishing code that is not yet annotated from code that is

annotated and inconsistent with its annotations. These approaches force the programmer to annotate

everything about every class before meaningful results are possible. Our approach, on the other

hand, is to consider annotations as specifications of models with which source code should be

consistent. Additional annotations thus describe additional models of design intent. An unannotated

class is merely a class that has no models that it should be assured against. Assurance of an annotated

class may be compromised by the absence of annotation on another class; we must be careful,

therefore, to place failure appropriately on the lack of design information on the unannotated class,

as well as not to be report misleading results. Our tool thus reports a class of messages, “warnings,”

that do not indicate code–model inconsistency, but rather call to the attention of the programmer

places where additional assurance is probably possible if additional design intent is specified.

An additional distinguishing feature of our approach, and its embodiment in a prototype tool,

is that we wish to go beyond “bug hunting.” It is just as important to provide positive assurance

that source code is consistent with intent as it is to report the inconsistencies. Similar tools such

as ESC/Java are intended to statically find errors that would otherwise only be caught at runtime,

if at all, because their manifestation may be nondeterministic. Such tools, which include model

checkers, therefore, are only interested in negative results, and are typically incapable of providing

explicit positive assurance that the program is consistent with the specified model of design intent.

A run with no warnings must usually be interpreted to mean that the tool was unable to find any

inconsistencies, but cannot reliably be interpreted to mean that the model is satisfied by the program.

Our tool should only be silent when there are no models are assure. Future work is to provide

“chains of evidence” that link together expressed design intent, analysis results, and code segments

to document the reasoning behind each assurance result.

In what follows, we first describe our prototype assurance tool and how it is incorporated into

the Eclipse IDE. We then briefly discuss our framework for representing data in general and for

representing Java programs specifically. This is followed by a discussion of the annotations and

analyses supported by our prototype tool and some notes on their implementation. This chapter

concludes with two examples of using our prototype tool to assure the safety of classes taken from

production Java code.
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7.1 The Fluid Eclipse Plug-Ins

Our prototype assurance tool is implemented as a set of plug-ins to the open source Eclipse1 Inte-

grated Development Environment (IDE).2 Integration with an existing IDE allows our engineering

effort to be focused on the implementation of our analysis and assurance infrastructure rather than

the mundane tasks of maintaining a Java front-end. Incorporation within an IDE is also important

pedagogically because of our desire that the programmer have an incremental and iterative “con-

versation” with the assurance tool: to be adoptable, our tool must integrate well with existing tools

used by a typical programmer.

Figure 7.1 shows an example of an Eclipse workspace window containing our tool, visible as the

“Code Quality Advice” view below the environment’s standard Java editor. Here, the editor shows

a portion of a partially annotated version of the BoundedFIFO class. Our assurance tool has been

run on BoundedFIFO.java and the rest of the “BoundedFIFO Example” project (visible in the

“Package Explorer” view on the left). The results are shown sorted by issue in the “Code Quality

View;” they may also be sorted by file. The presentation of assurance results is a fundamental

issue in the adoptability of our tool and is on-going research. Results in our “Code Quality View”

include:

• Positive assurance of model–source code consistency. These results are marked by an icon

representing an unbroken chain. Specifically, analyses found 11 call sites where methods

annotated with lock preconditions were called with those preconditions satisfied, and 15 field

accesses where the fields are accessed with the appropriate lock held.

• Identification of model–source code inconsistencies, i.e., assurance failures. These results are

marked by a broken chain icon. Here we see that analysis is unable to assure that nine field

accesses are consistent with the annotated locking model. Expanding the top-level node in the

view reveals the specific accesses that may violate the model. As expected, double-clicking

on these results focuses the editor window on the offending line of source code.

• Warnings of missing intent—also (unfortunately) marked by a broken chain icon. In this

case, our tool warns that there are two references to a possible shared unprotected object; see

Section 5.7. This is distinguished from an assurance failure because no annotated model is

actually being violated.

Our prototype assurance tool is implemented as two Eclipse plug-ins. The Fluid Plug-in is

1http://www.eclipse.org/
2The design and implementation of our prototype tool is an on-going effort by all members of the Fluid group.
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Figure 7.2: Data flow in our prototype assurance tool.

a library of our analyses, data structures, and other concerns that are not handled by Eclipse. It

also contains the routines for converting from Eclipse representations to our own. This plug-in

is approximately 160,000 lines of Java code (160kLOC). It does not define any Eclipse views or

other user-visible GUI items. The Fluid Assurance Plug-in defines the “Code Quality View” and

provides the means for an Eclipse user to run assurance analyses and interact with the results. It is

relatively small, only several thousand lines of Java code. Eclipse itself is approximately 600kLOC.

Figure 7.2 shows the general relationship between the two plug-ins and the Eclipse environment.

The programmer, i.e., the Eclipse user, interacts with our tool via the “Code Quality View” pro-

vided by the Fluid Assurance Plug-in. The programmer runs the assurance analyses by clicking on

the flashlight icon in the view’s toolbar. This causes all the Java source files in all the open projects

to be analyzed. This “analyze everything” approach is an artifact of boot-strapping the tool imple-

mentation. We emphasize that our analyses are not interprocedural or whole-program: each class

is analyzed independently using only the annotated interfaces of other classes. Annotations serve

as cutpoints, enabling global analysis to be avoided and opaque components to be integrated safely,

contingent on the validity of their annotations. Eclipse allows analyses to be run automatically as

source code is changed; indeed, this is one of the reasons we chose to integrate our tool with Eclipse.

Using this framework to drive our analyses is on-going work and should enhance the usability and

adoptability of our tool.
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More specifically, the Fluid Assurance Plug-in bridges the functionality of Eclipse and the Fluid

Plug-in and provides our tool’s user interface. The Fluid Assurance Plug-in drives analysis by

querying Eclipse about the workspace and obtaining resource handles to all the Java files in the

workspace. For each Java file, the plug-in has Eclipse parse it into an abstract syntax tree (AST).

From this AST, a parallel AST in our own representation is created; Section 7.2 discusses the ra-

tionale for this. Each analysis, the code for which resides in the Fluid plug-in, is invoked on this

parallel AST. The implementation of our analyses and their interdependencies are discussed in more

detail in Section 7.4.1. Analysis results, i.e., positive assurances, etc., are reported back to the Fluid

Assurance Plug-in via callbacks.

Several of our analyses are data-flow–based and require control-flow graphs (CFGs). Our

Fluid Plug-in provides an infrastructure for building CFGs from our AST representation; see Sec-

tion 7.2.2. Analysis also requires binding information, that is, the binding of lexical names to their

definitions in the AST. Eclipse provides a basic binder, which we wrap in the Fluid Plug-in (1) to

insure that binding results are relative to our AST instead of the the Eclipse-based AST, and (2) to

provide additional information not directly available from the Eclipse binder.

The Fluid Assurance Plug-in gathers analysis results via callbacks and displays the results from

all the analyses in the “Code Quality View” as a tree. Currently, the results may be displayed

sorted by issue, as seen in Figure 7.1, and by package and class. The programmer may browse the

results; double-clicking on a particular issue—positive or negative—focuses the Eclipse editor on

the relevant line of code.

7.2 Representations

Our plug-ins use many special purpose program representations in parallel to those provided by

the Eclipse API. These data structures are built on top of a data representation framework that we

call the Fluid Internal Representation, or IR. This framework predates our work with the Eclipse

IDE and provides sophisticated versioning and persistence features, that while unused by the cur-

rent prototype tool, are critical for the project’s longer term goals of studying tools that manage

program evolution. Here we first briefly describe the IR framework, and then describe the program

representations built on top of it.
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7.2.1 The IR

The IR models general purpose data using a modified version of the standard ternary representation:

unique identifiers, attributes, and values. The modifications we make include (1) ultra-fine grained

tree-structured versioning, (2) abstraction to structured entities such as trees and directed graphs,

and (3) persistence. These are also several other features not used in this prototype.

Our implementation represents the unique identifiers as objects that implement a distinguished

interface, IRNode, that defines a small set of operations for getting and comparing identity, and for

getting and setting the value associated with that identifier and a specific attribute. Attributes are

simply containers for values indexed by unique identifiers, and may optionally be named and typed.

A type in this case refers to an IR data type, not the Java notion of type. IR types are represented

by objects implementing a special interface, which includes methods for determining if an object

should be considered an instance of the type and for persisting members of the type. The framework

provides a set of primitive types including the standard scalar types, e.g., integer, string, etc., as well

as several complex types such as sequences and records. Unfortunately, using this kind of meta-

level type system means that programming for the IR involves an abundance of type casts and, in

general, is unable to take advantage of the type safety provided by the Java programming language.

(The absence of generic type types in Java contributes to this problem.) Attributes are represented

by objects that are maps from unique identifiers to values. Any unique identifier may be given a

value for any attribute. Attributes and identifiers can be created dynamically.

Complex structures are built in the IR by considering a given set of identifiers and a given set

of attributes to define the scope of the data structure. For example, trees can be represented by

mapping each node in the tree to a unique identifier, by defining “parent” and “child” attributes,

and by managing the values of those attributes as appropriate to maintain the structure of the tree.

Maintaining representation invariants over such a diverse collection of objects is difficult. The IR,

therefore, contains classes that provide familiar high-level APIs, implementations of which manage

and abstract the underlying attributes. For example, the Tree class provides expected tree methods,

such as getParent, getChildren, setChild, and depthFirstSearch; these methods manage

the “parent” and “child” attributes “under the hood.” Specifically, the IR provides a sophisticated

library of graph classes built on top of the identifier–attribute abstraction.

Data in the IR actually has a third component: version. Most simply, a complete identifier–

attribute–version triple represents a particular value at particular point in time. Any change to

any value produces a new version. The IR maintains a pointer to the current version, which may

be queried and reset to a previous version. Our implementation is transparently optimized by not
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remembering any versions that are never asked for. An additional feature of IR versioning is that the

version space is tree-structured rather than “time-ordered” linear. A tree-structured version space

allows for experimentation, by providing the ability to return to a previous version and making new

changes to the values, which starts a new branch in the version tree. The IR provides a shadow

model of the version space implemented as an IR tree data structure.

Finally the IR supports persistence, that is, the storage and restoration of subsets of in-memory

IR structures to and from the file system. The intention is that these subsets be defined along the

lines of components and other higher-level abstractions. Persistence preserves identity, in particular

if a particular identifier is persisted into two different (but overlapping) subsets of data, then even if

the two subsets are loaded into two different JVMs the identifier is preserved in both JVMs. Identity

is even preserved through structures such as Java ObjectStreams. The result is the implementation

of the abstraction that all identifiers always exist.

7.2.2 Representing Java Programs

Our tool represents a Java program using an augmented abstract syntax tree (AST). These trees

are stored in the IR. They are represented as IR trees containing an additional “operator” attribute.

In addition to describing the role of the node in the program, e.g., “if statement,” “field reference

expression,” or “method declaration,” the value of this attribute constrains the number of children

the node may have and dictates what their operators may be. It may appear to be redundant to build

our own AST when Eclipse already maintains one. We are motivated to use our own AST for several

reasons. From the point of view of expediency, many of our analyses were written prior to our use

of Eclipse and are based on our AST representation. More to the point, several of our analyses

are control-flow based and therefore require control-flow graphs (CFGs). Eclipse does not provide

CFGs; we already have a framework for generating CFGs from our own ASTs. As a project, we

made the engineering decision to write a component that translates Eclipse ASTs into Fluid ASTs

so that we would not have to modify already existing and working analysis code.

Our decision to continue to use our own AST representation is additionally motivated by longer-

term project goals of developing new techniques for (1) visualizing and browsing source code and

models of design intent and (2) managing program evolution. An IR-based AST is necessary for

both. As previously mentioned, versioning is intrinsic to the IR—but is not native to Eclipse—and

thus an IR-based AST trivially supports evolution management. Our project has also developed a

model–view–controller (MVC) framework on top of the IR that supports elaborate control over how

models, e.g., Java programs as ASTs, are displayed. Eclipse provides an elegant and extensive set
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of GUI components that assist us in the ultimate rendering of our models, but does not provide a

suitable MVC framework. Thus supporting within Eclipse our project’s visualization research still

requires the translation of Eclipse ASTs into Fluid IR representations.

Our control-flow graphs are built from IR-based ASTs following a “cookie cutter” design pattern

in which each node in the AST, via its operator value, defines a control-flow component, that has

one or more “holes” in it filled by the node’s children. More specifically, our control-flow graphs

contain explicit edges and nodes and support traversals bidirectionally. Analysis results are stored

on the edges. The CFG framework is not Java specific: language specific control-flow components

are built out of primitive node types that abstractly determine how lattice values propagate among

subcomponents. The framework provides a generic work-list–based control flow algorithm that is

parameterized by a language and analysis specific transfer function that determines the specifics of

how a particular operator affects the incoming lattice value.

7.3 Annotating Missing Code

For our tool to be practical it is important that it be possible to annotate “missing” source code

with models of design intent. Source code may be missing, for example, because a library is only

distributed in binary form, or because a class may not be implemented yet even though its interface

has been designed. Even when the source code for a library is available, it is convenient to be able to

separate annotations added by the user of the library from the source code of the library itself, such

as in the case of the Java standard libraries. Our tool is capable, therefore, of reading annotations

from external XML-formatted “promise” files. In general, the convention is that the tool looks for

annotations for the class package.class in the file package.class.promises.xml.

Figure 7.3 shows the relevant portions of the java.lang.Object.promises.xml file that

describe the locking preconditions for the wait and notifymethods. A private region WaitQueue

is declared on line 7. The lock MUTEX is declared to protect that region and to be represented by

this on line 9. Finally, the wait and notify methods are given the annotation @requiresLock

MUTEX on lines 17, 22, 27, 32, and 37. We also see that the constructor is annotated to have no

effects, line 12, and to not create aliases to the newly created object, line 13.

ESC/Java also allows the external annotation of source code using specification files [LNS00,

§5.1.2]. Such files are basically annotated Java source files except that (1) only one class may

be described in the file, and (2) method bodies may be elided, and are ignored even if they are

present. The rccjava tool for analyzing RACEFREEJAVA does not support the external annotation
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1 <?xml version="1.0" encoding="UTF-8"?>
2

3 <!DOCTYPE package SYSTEM "promises.dtd">
4

5 <package name="java.lang">
6 <class name="Object">
7 <promise keyword="region" contents="private WaitQueue"/>
8 <promise keyword="lock"
9 contents="MUTEX is this protects WaitQueue"/>

10

11 <constructor>
12 <promise keyword="writes" contents="nothing"/>
13 <promise keyword="borrowed" contents="this"/>
14 </constructor>
15

16 <method name="notify">
17 <promise keyword="requiresLock" contents="MUTEX"/>
18 <promise keyword="reads" contents="nothing"/>
19 </method>
20

21 <method name="notifyAll">
22 <promise keyword="requiresLock" contents="MUTEX"/>
23 <promise keyword="reads" contents="nothing"/>
24 </method>
25

26 <method name="wait">
27 <promise keyword="requiresLock" contents="MUTEX"/>
28 <promise keyword="reads" contents="nothing"/>
29 </method>
30

31 <method name="wait" params="long">
32 <promise keyword="requiresLock" contents="MUTEX"/>
33 <promise keyword="reads" contents="nothing"/>
34 </method>
35

36 <method name="wait" params="long, int">
37 <promise keyword="requiresLock" contents="MUTEX"/>
38 <promise keyword="reads" contents="nothing"/>
39 </method>
40

41 <!-- And so on... --->
42 </class>
43 </package>

Figure 7.3: A portion of the file java.lang.Object.promises.xml that contains annotations
for the class java.lang.Object. The annotations themselves are shown in boldface.



7.4. ANNOTATIONS AND ANALYSES 139

of libraries, and, in fact, specifically suppresses any warnings associated with declarations within

the java.* packages.3

7.4 Annotations and Analyses

Our prototype tool implementation supports a subset of the annotations and analyses described in

the previous chapters. Some of the analyses are integrated into our prototype tool, while others exist

only as stand-alone demos. Table 7.1 lists all the annotations introduced herein and summarizes the

extent to which they are supported by our prototype tool. An annotation that is recognized by

our tool and incorporated into our internal data structures is considered “in tool.” Analysis may use

annotations in two ways, reflecting the use of annotations as cutpoints: (1) to assure that source code

is consistent with the design intent described by the annotation, and (2) to support the assurance of

another kind of design intent. In the table, the first use is considered “assured” and the second

“consumed.” We mark a class of annotations as consumed only if it is used by an analysis actually

present in the tool. Figure 7.4 graphically shows which annotations and analyses depend on each

other, fully considering effects and uniqueness. Region annotations, for example, are used not

only by both lock and effects analysis, but by effect and lock annotations because they provide a

vocabulary for describing state.

There are some caveats to note. (1) Our prototype tool recognizes all the previously described

annotations except for the meta-level method aggregation annotations and those related to region

parameters and external concurrency policy. (2) We also do not yet link the internal concurrency

policy to the code. (3) Robustness is lacking, in particular, the tool does not currently enforce that

the annotations be well formed, so it is possible, for example, to associate a region with multiple

locks, or to extend non-existent regions. The behavior of analyses in such situations is, of course,

undefined and the tool may, as result, throw exceptions during analysis.

Not all of the annotations need to be checked for consistency against the source code. The re-

gion hierarchy annotations define a model of state that influences the assurance of other pieces of

design intent. Thus the @region, @mapInto, and @aggregate annotations have the not appli-

cable marker “n/a” in the “assured” column of Table 7.1. The @methodSet annotation, while not

recognized by our tool, also does not require any intrinsic assurance. Continuing the list of caveats,

(4) we have not yet defined the model defined by @policyLock annotations—although it clearly

must derived from the internal concurrency policy—and thus there is not yet any annotation–source

3Personal communication, Stephen Freund, January 2003.
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Annotations Cutpoint Roles
Annotation In Tool Assured Consumed

Method Aggregation
@methodSetmset = method1, . . .,methodn [, ...] N n/a N
@setmset annotation N n/a N
@inSetmset N n/a N

Region Hierarchy
@region visibility [static] region [extends parentRegion] Y n/a Y
@mapInto parentRegion Y n/a Y

Region Parameters
@<region region1, . . ., regionn> N N N
@<target1, . . ., targetn> N N N

Effects
@reads target1, . . ., targetn Y N* N
@writes target1, . . ., targetn Y N* N

Unshared References
@unshared Y N* Y
@borrowed Y N* Y
@aggregate s1 into d1, . . ., sn into dn Y n/a Y

Locking Model
@lock lockName is representation protects region Y Y Y
@requiresLock lockName1, . . ., lockNamen Y Y Y
@returnsLock lockName Y Y Y
@synchronized Y Y Y

Policy
@safeWithmethod1, . . ., methodn N N N
@policyLock lockName is representation Y n/a Y
@selfProtected Y N Y

Table 7.1: Annotations supported by our prototype tool. An “N*” in the assured column means that
the analysis is implemented but is not currently integrated with our prototype tool.
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Figure 7.4: Flow of annotation and analysis information.

code consistency to assure for them either. Finally, (5) assurance analyses for effects and unshared

references have been implemented, but they are not yet incorporated into our prototype assurance

tool because they do not directly relate to concurrency issues.

7.4.1 Implementation Notes

Our analyses are primarily predicated on the region hierarchy and state aggregations defined by the

@region, @mapInto, and @aggregate annotations. Our internal representations allow queries

based on the tree defined by the annotations, e.g., queries of region inclusion. As previously men-

tioned, region parameterization is not supported in our prototype tool. Above the region abstraction,

we implement representations for targets, which are used extensively by the effects and locking anal-

yses. Effects analysis is implemented, although not integrated with our prototype assurance tool.

The implementation is based on the presentation of effects in [GB99], including uniqueness aggre-

gation. Effects analysis is implemented as a depth-first walk along the syntax tree. Comparison,

elaboration, and other operations are defined as operations on effect, target, and region objects. The

results of comparison operations, e.g., effects conflict, are designed to be helpful for providing feed-

back to the programmer, and thus return bit sets encoding rationale for the result, such as “the first

effect is a write whose target overlaps with the target of the second effect because they are instance
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Positive Assurances: Method returns the correct lock (at method declaration)
Method’s lock preconditions satisfied (at call site)
Field is accessed with the correct lock held (at field reference)
Thread-local constructor keeps receiver from escaping (at constructor)

Assurance Failures: Method does not return the correct lock (at method declaration)
Method’s lock preconditions not satisfied (at call site)
Field is not accessed with the correct lock held (at field reference)
Thread-local constructor may allow receiver to escape (at constructor)

Warnings: Synchronized method does not access any shared state
Synchronized block does not access any shared state
Lock expression is not a final expression
Cannot identify lock
Field references a possible shared unprotected object

Table 7.2: The specific positive assurances, assurance failures, and warnings that our prototype tool
generates.

targets whose object expressions may be aliased and whose regions overlap.” Because our tool does

not currently make use of effect conflict results, we have not yet incorporated an alias analysis. Our

implementation of MayEqual is thus the most conservative possible: it always returns true.

Our implementation of effects uses what we call “binding context analysis,” formally defined in

Section 3.4. This analysis is implemented using our data-flow analysis framework and does not rely

on any annotations.

Uniqueness analysis as described in [Boy01a] is implemented, although not integrated into our

tool. It assures that source code is consistent with @unshared and @borrowed annotations. It is

implemented using our data-flow analysis framework. There is a dependence between the unique-

ness and effects analyses. The cycle of assurance is broken by using separately assured annotations

as cutpoints in the assurance process. That is, effects uses uniqueness annotations trusting that they

are correct, and uniqueness uses method effect annotations trusting that they are correct.

The prototype tool implements a set of lock analyses based on the annotations and analyses of

Chapter 5. We present the analysis as a type system in Section 5.11, although our implementation

is as a suite of separate analyses, so that, for example, it is straightforward to

• Determine the locks held when a given expression is evaluated.

• Determine the lock required to access a field. This exploits uniqueness aggregation in a
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limited way to account for the aggregation of arrays.

• Determine the locks required to invoke a method.

• Determine if a method returns the correct lock.

• Determine what locks an expression may represent.

These building blocks make it easy to check whether any particular field access or method call is

consistent with the locking model. In addition to the assurance analyses, we also implemented the

heuristics of Section 5.7. Table 7.2 lists the specific lock-related positive assurances, assurance

failures, and warnings that our prototype tool generates.

Lock analysis is a consumer not only of lock annotations but also of region annotations, unique-

ness annotations, and policy annotations. The analyses are implemented as traversals over the ab-

stract syntax tree and manipulate lock objects that encapsulate lock identity operations. As described

in Section 5.6, our implementation uses “final expressions” to simplify the identification of locks.

A @synchronized constructor is assured by verifying that it is also annotated with the design in-

tent that it does not produce permanent aliases to the newly created object: @borrowed this. As

previously mentioned, however, our tool does not currently assure @borrowed annotations.

We have not implemented any policy-related analyses. Our tool recognizes the @policyLock

annotation which is used to assist in lock identification. The @selfProtected annotation is also

recognized, and used by lock analysis to determine that a referenced object is not unprotected.

Our prototype does not assure, however, that the annotated class is consistent with the concurrency

policy embodied in this annotation.

7.5 Assuring BoundedFIFO

We now use the familiar BoundedFIFO example to demonstrate the use of our tool to provide pos-

itive assurance of thread-safety. This example demonstrates the incrementality of our approach, in

which a few annotations are added at each step, and analyses provide increments of positive assur-

ance as more annotations are introduced. In addition to exemplifying the programmer’s interaction

with the code and our analysis tool, this section also brings together all the observations we have

made about BoundedFIFO in previous chapters. In particular, assurance issues relating to lock

responsibility, lock acquisition, lock assignment, and state aggregation are addressed.

This example highlights a key difference between our assurance-based approach and the bug-

finding approaches of other similar projects. BoundedFIFO has the unusual characteristic of actu-
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Figure 7.5: Results of applying our prototype tool to the unannotated BoundedFIFO source code.

ally being correctly written with respect to concurrency issues. Use of our approach provides the

evidence that the program is correct. Each step of adding a new element of design intent yields

additional assurances, or narrows the areas of suspicion to smaller segments of code.

Our example involves three classes (1) BoundedFIFO as taken from version 1.0.4 of Log4j,

(2) Our wrapper class BlockingFIFO as a client of BoundedFIFO, and (3) an empty stub class

LoggingEvent as a place holder for the Log4j class LoggingEvent. Initially all the classes are

unannotated; BoundedFIFO is as in Figure 1.2 and BlockingFIFO is as in Figure 6.5. We will

only be adding annotations to the class BoundedFIFO.

Running our analyses on the unannotated source code actually provides assurance because

BlockingFIFO uses wait and notify, which are annotated with lock preconditions. Our tool

reports “4 lock precondition(s) satisfied” as a result of correctly synchronizing on fifo before in-

voking fifo.wait, etc., in BlockingFIFO. The results also include three warnings about “lock

expressions not identifiable as programmer-declared locks; what lock is being acquired?” The out-

put of our analyses is shown in Figure 7.5. These are in reference to the three synchronized

blocks in get, put, and length respectively. No programmer-declared lock (the lock MUTEX de-

clared by the Fluid system does not count) is associated with the bounded FIFO object (indeed, there

are no annotations in the program yet), so analysis cannot determine what lock is being acquired by

these blocks. The warning is intended to prod the programmer into introducing design intent into
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the program.

We annotate BoundedFIFO with our initial locking design intent: (1) the state is protected

by locking on the object itself, and (2) the clients are expected to acquire the locks. The anno-

tation @lock BufLock is this protects Instance is added to the class. Each method is

annotated with @requiresLock BufLock. For the sake of example, we “forget” to annotate the

method get. We rerun the analysis. The results, shown in Figure 7.6, include positive assurances,

assurance failures, and warnings:

• There are now “10 lock precondition(s) satisfied.” Analysis recognizes the use of fifo in the

synchronized blocks of class BlockingFIFO as a possible use of the locks BufLock and

MUTEX. Combined with the new preconditions on the BoundedFIFO methods, this enables

the six additional method callsites to be assured. The assurance message in the results window

identifies the lock expression that satisfies the precondition.

• Within class BoundedFIFO, the locking preconditions enable the assurance that at 15 sites,

fields of the class are accessed consistently with the locking model.

• Unfortunately, analysis also reveals nine sites where fields of BoundedFIFO are not accessed

according to the model. Here the error message indicates the lock that is expected to be held.

• There is a warning that there are 2 sites where a possibly unprotected object is accessed.

Inspection of the unprotected field accesses, by double-clicking on the errors in the results win-

dow, reveals that many of the unprotected accesses are in the method get (see Figure 7.6). This is

because we “forgot” to annotate the method with a locking precondition. In general, the error could

be that the implementation of the method is intended to acquire the lock. Were this the case we could

satisfy the locking model by declaring the method to be synchronized. It is our intent, however,

that the caller of the method acquire the lock, so we annotate the method with @requiresLock

BufLock. We rerun the analyses; the results are shown in Figure 7.7. Introduction of this one anno-

tation increases the number of assured method calls by one, because there is now one more method

with a precondition to be satisfied. The number of assured field accesses increases to 22.

We now inspect the remaining two unsafe field accesses. The unsafe accesses are in the con-

structor of the class. As discussed in Section 5.5, it is usually safe to assume that the object is

only being accessed by a single thread while it is being constructed, and thus synchronization is

unnecessary. We thus annotate this design intent by adding the @synchronized annotation to the

constructor. Rerunning the analysis provides us with additional assurances, but also with a new

error; see Figure 7.8.
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Figure 7.6: Analysis output after an initial attempt to define the locking model.
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Figure 7.7: Analysis output showing “unsafe” field accesses in the constructor.
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Figure 7.8: Analysis output showing the failure to assure the @synchronized annotation.

Figure 7.9: Analysis output showing possible unprotected access to the array this.buf.

• Documentation of the assumption allows lock analysis to assure that the field accesses in the

constructor are consistent with the locking model.

• Unfortunately, analysis is not able to verify that the constructor is single-threaded, so the

assurance failure “’@synchronized’ constructor BoundedFIFO has escaping receiver” is re-

ported.

As discussed in Section 5.5, our tool implementation uses uniqueness analysis to assure the

@synchronized annotation. We introduce the additional annotation @borrowed this on the

constructor. Analysis is now able to assure that the constructor is indeed thread local; see Figure 7.9.

(Our tool does not currently assure the @borrowed annotations. Here we assert that it is obvious

that the constructor does not create any aliases to the newly created object.)
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Figure 7.10: Analysis output showing full positive assurance of BoundedFIFO with respect it to its
annotated locking model.
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We now turn our attention to the remaining warning: “2 protected reference(s) to a possibly

shared unprotected object.” There is one warning for each dereference of the array referenced

by the field buf; see, again, Figure 7.9. The relevant issues of design intent and assurance are

discussed in other places, e.g., Sections 4.6 and 5.7.1. To summarize, the tool is bringing to our

attention the fact that the object referenced by this.buf is (1) not known to be thread-safe (that

is, it does not have design intent describing how to preserve its invariants), and (2) possibly shared

(that is referenced by multiple threads because the reference may be generally aliased). Thus, we

may be accessing a shared object in an unsafe manner. As described previously, the solution in

this case is to document the intent that the object is @unshared and to aggregate its state into the

state of the BoundedFIFO object. We add the annotations @unshared and aggregate [] into

Instance to the declaration of the field buf. One last analysis of the program now provides only

positive assurances, see Figure 7.10:

• The constructor is assured to be thread-local.

• All uses of methods of BoundedFIFO by class BlockingFIFO are consistent with the pre-

conditions of those methods.

• All uses of fields of BoundedFIFO are consistent with the locking model of that state, includ-

ing indexing into the array referenced by buf.

Using our tool, we have now (1) documented concurrency-related design intent for Bounded-

FIFO, (2) associated that design intent with the code, and (3) assured that the code is consistent with

that intent.

7.6 Assuring Logger

As a second, more complex, example of using the tool to assure production Java code, we present

the class Logger from the Java 2 SDK, Standard Edition Version 1.4.1_01 java.util.logging

package. Like Log4j, this package implements a logging/debugging API [Ham01]. There is one

Logger instance for each programmer-defined component of interest. A Logger object thus may

be shared by multiple threads, and in fact, the Javadoc for the class claims that “All methods on

Logger are multi-thread safe.” In this example, we must reverse engineer the original design intent.

In spite of this “worst case” scenario of usage, use of our analysis tool reveals that the class contains

several concurrency-related errors which we must fix before thread-safety can be assured.

We assure Logger in a project that contains the minimum subset of java.util.logging nec-

essary to successfully compile the class. The project contains the source files for ErrorManager,
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Filter, Formatter, Handler, Level, LogManager, LogRecord, Logger, and LoggingPer-

mission. Our analyses will report items of interest in classes other than Logger, but in this

example we are only interested in assuring the single class so we do not focus on the additional

errors and warnings. The class and its related files are too large to be shown here; we highlight the

relevant segments of code as necessary.

This example also demonstrates our need to develop more sophisticated techniques for display-

ing the output of our analyses. Such concerns are beyond the scope of this dissertation, although we

mention them here as a warning to the reader of the lack of useful visual structuring within the tool

output shown in the figures accompanying this example.

7.6.1 A Race Condition on Field filter

As in the previous example, we begin by running our tool on unannotated code. Analysis reports

a total of 47 issues, 21 of which are in the Logger class. Of these, 15 are related to concurrency.4

See Figure 7.11. The first item of interest is the warning “Line 407: Lock expression ‘this’ is not

identifiable as a programmer-declared lock.” We begin our model-building process by identifying

the lock represented by this. Inspection of the contents of the synchronized block reveals that

the field filter is the only state of the object accessed within that critical section. Starting small—

we can always modify our intent later—we annotate the class with the design intent that this is

used to protect the field filter:

@lock L is this protects filter

After reanalysis, there are 19 concurrency-related issues in Logger; see Figure 7.12. Instead of

the warning that this is not identifiable as a lock, analysis now returns some positive assurances,

some assurance failures, and some additional warnings related to our single annotation:

• The two uses of filter in the synchronized block, both now on line 410, are positively

assured to be accessed correctly.

• Two uses of filter, on line 384 (highlighted in Figure 7.12) and line 393, occur in contexts

where the required lock is not held. These are potential race conditions.

• There are seven warnings that “Locks [<>.L, <>.MUTEX] not needed by body of synchro-

nized method.” These occur because these seven methods acquire the lock on this (by virtue

of being synchronized) yet they do not use the region filter (nor do they invoke any of

4Our prototype tool also performs several other “code quality” analyses unrelated to those presented in this disserta-
tion. Further discussion of these analyses is beyond the scope of this work.
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Figure 7.11: Analysis results for assuring Logger with no annotated model.
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Figure 7.12: Analysis results after protecting field filter.



154 CHAPTER 7. TOOLS

the condition-variable–related methods). Thus, the synchronization is suspicious, and sug-

gests that we may need to associate the lock this with additional state.

• There is a single warning that the object referenced by filter may be a shared unprotected

object. This comes from the method invocation shown on line 408 in Figure 7.11.

It turns out that there is a real race condition in the implementation of Logger, which we have

identified as a consequence of this study.5 Consider method setFilter as shown in Figure 7.12

and method log as shown in Figure 7.11. Method setFilter does not acquire the lock before as-

signing a new value that is specifically allowed to be null to filter. This can cause a null-pointer

exception in log because clearly the intent of the synchronized block that it contains is to prevent

filter from becoming null once it has been verified to be non-null. To be compliant with the

locking model and thus to avoid this possibility, methods setFilter and getFilter, the methods

containing the unprotected uses of filter identified above, are declared to be synchronized.

After introducing the missing synchronization, analysis again reports 19 concurrency-related

issues, except that now the two assurance failures regarding setFilter and getFilter, on lines

384 and 393 respectively, are replaced by positive assurances; see Figure 7.13. The race condition

over field filter is now fixed. We do not address the seven warnings related to filter and lock

L until later in this example.

7.6.2 A Global Tree Lock

We continue by documenting the design intent behind additional existing critical sections. Still

referring to Figure 7.13, we see that analysis warns that on lines 1112, 1348, and 1378 “Lock

expression ‘java.util.logging.Logger.treeLock’ is not final.” From these three warnings we learn

that

• The object referenced by the static field treeLock is used as a lock. The state protected

by this lock is not yet unidentified.

• The field treeLock is not final, making it unsafe to use as a lock because the object that

it refers to can change over time.

An obvious first step for us to take to address these warnings is to declare the field treeLock to

be final. While doing this, we find that the declaration of the field is informally annotated with

design intent indicating that the fields parent, kids, and levelObject of all Logger instances

5We reported this race condition to the java bug database: http://developer.java.sun.com/developer/
bugParade/. It has been assigned the bug id 4779253.
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Figure 7.13: Analysis results after fixing the race condition over filter.
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Figure 7.14: Design intent surrounding field treeLock.

are intended to be protected by the lock on the object referenced by Logger.treeLock; see Fig-

ure 7.14.

We thus take the following actions on the source code:

• We declare the static field treeLock to be final.

• We declare a new static region abstracting the logger hierarchy information:

@region public static LoggerHierarchy

• We populate the new region with the fields parent, kids, and levelObject. We also

aggregate the state of the list referenced by kids into the LoggerHierarchy region. We

cannot do the same for the parent field because Logger objects are possibly aliased, if for

no other reason than by virtue of having multiple children.

• We associate the lock represented by treeLock with the new region:

@lock TreeLock is treeLock protects LoggerHierarchy

Reanalyzing the program with the additional design intent results in 37 concurrency-related issues

(out of a total of 43 issues) in class Logger. The three earlier warnings regarding treeLock have

been replaced with 21 new analysis results, highlighted in Figure 7.15:

• Twelve positive assurances that fields levelObject, parent, and kids are accessed ac-

cording to the annotated locking model.

• Eight potential violations of the locking model where TreeLock is needed but not known to

be held.

• An additional warning on line 1426 that levelObject “may be a shared unprotected object.”
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Figure 7.15: Analysis results after declaring the shared region LoggerHierarchy.
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Figure 7.16: Method updateEffectiveLevel. Note the assertion on line 1421.
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Investigation of the eight locking model violations reveals that getLevel, the getter method for

field levelObject, does not acquire TreeLock. We modify the method to conform to the model:

public Level getLevel() {
synchronized(treeLock) { return levelObject; }

}

This takes care of the model violation associated with line 1136. The other seven potential lock-

ing model violations all occur within the implementation of method updateEffectiveLevel, a

private helper method. We are lucky: the method is already informally annotated with design

intent, see line 1421 in Figure 7.16. A comment contains the assertion that the current thread should

hold the lock on the object referenced by treeLock. We declare this design intent formally by

annotating the method with

@requiresLock TreeLock

Reanalysis now assures that the callers of the method adhere to the newly extended locking model.

The complete results are omitted; of particular interest here are (1) the three positive assurances—

and no assurance failures—that updateEffectiveLevel is called consistently with the locking

model; and (2) the 20 positive assurances that the fields in region LoggerHierarchy are accessed

consistently with the locking model.

Regarding the protection of state in region LoggerHierarchy, it remains to address the warn-

ing that field levelObject may be a shared unprotected object. This warning originates from the

method call “levelObject.intValue()” on line 1426 in Figure 7.16. Here, analysis requires

more information about the thread-safety of Level objects. A brief inspection of Level (source

code omitted) suggests that the class is intended to be a type-safe enumeration of immutable objects

[Blo01a]. Thus, Level objects are sharable by multiple threads because they are intended to be

immutable. We annotate class Level with this intent by adding the annotation

@selfProtected

(Recall that this annotation declares that the implementation of the class is completely responsible

for insuring its own thread-safety.) Analysis now reports 45 issues in Logger, 39 of which are

concurrency-related. Again, we omit the complete results, but of specific interest is that the warning

about the possibly shared use of levelObject is no longer reported.
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7.6.3 The Locking Model Thus Far

We have now (1) documented a subset of the locking model for Logger objects, and (2) assured

that the source code is consistent with the model. We used an iterative process of introducing

small numbers of annotations, fixing code to be consistent with the expressed design intent, and

then repeating analysis incrementally to and assure source code–model consistency. Specifically

we have declared the following model, shown graphically in Figure 7.22(a).

• The region filter is protected by locking the Logger object itself. This lock is named “L.”

• The region LoggerHierarchy, the parent region of fields parent, kids, and level-

Object of all Logger objects, is protected by locking the object referenced by the static

field Logger.treeLock. This lock is named “TreeLock.”

• The state of the list referenced by the kids field is aggregated into the region Logger-

Hierarchy, and thus also protected by TreeLock.

• The caller of the method updateEffectiveLevel must acquire TreeLock.

7.6.4 A Policy Lock

We now turn our attention to four warnings, originally reported on lines 206, 234, 284, and 313

in Figure 7.11, that we have ignored thus far: “Class reference ‘.class’ is not associated with a

region.” These warnings identify four static synchronized methods: methods that acquire

the lock on the object referenced by Logger.class. This object has not been explicitly declared

to represent a lock, and thus the analysis is unable to assure anything about the critical sections

defined by these methods. The four methods are factory methods for getting references to Logger

objects, and have the same general form; Figure 7.17 shows, for example, getLogger(String).

These are the only places where the lock represented by the object referenced byLogger.class

is acquired; there would be additional warnings were it used elsewhere. There are no fields that

should obviously be associated with the lock; in particular, no mutable Logger state is directly

accessed in the getLogger method in Figure 7.17. Given this information and the similar structure

of all the methods, we infer the design intent that the lock is used to prevent a race condition during

the creation Logger objects that could cause multiple Logger instances with the same name to be

created, a violation of higher-level abstractions in the API of the package.

This use of the object referenced by Logger.class is consistent with our notion of policy

locks: locks that are not associated with state, but that are used to enforce consistency with a class’s

internal concurrency policy. To document that this is the intent behind this use of Logger.class,
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1 public static synchronized Logger getLogger(String name) {
2 LogManager manager = LogManager.getLogManager();
3 Logger result = manager.getLogger(name);
4 if (result == null) {
5 result = new Logger(name, null);
6 manager.addLogger(result);
7 result = manager.getLogger(name);
8 }
9 return result;

10 }

Figure 7.17: The factory method Logger.getLogger(String).

and as a result to suppress the four warnings, we add to class Logger the annotation

@policyLock SerializeLoggerCreation is class

Analysis now reports 35 concurrency-related issues, highlighted in Figure 7.18:

• Three positive assurances that the lock precondition on updateEffectiveLevel is re-

spected.

• Twenty-four positive assurances that fields are accessed according to the locking model.

• Seven warnings that lock L is acquired but not needed. Specifically, the methods add-

Handler, removeHandler, getHandlers, setUseParentHandlers, getUseParent-

Handlers, findResourceBundle, and setupResourceInfo are synchronized but do

not use the field filter, the sole field associated with the lock represented by this.

• One warning that filter may be a shared unprotected object.

7.6.5 Expanding the Locking Model

The seven warnings about synchronized methods suggest that our reverse-engineered locking

model needs to be expanded to include more state. Five of the methods involved in the warnings,

shown in Figure 7.19, are related to managing a list of Handler objects associated with the Logger.

A brief inspection of the methods, and some surrounding code, suggests additional design intent:

• Field manager is immutable, and ought to be declared final.

• Field handlers is protected by the lock represented by this, as is the state of the Array-

List that it references.

• Field useParentHandlers is protected by the lock represented by this.

We document this intent, which replaces our previous locking model, by
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Figure 7.18: Analysis results after declaring Logger.class to represent a policy lock.
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1 public synchronized void addHandler(Handler handler)
2 throws SecurityException {
3 // Check for null handler
4 handler.getClass();
5 if (!anonymous) {
6 manager.checkAccess();
7 }
8 if (handlers == null) {
9 handlers = new ArrayList();

10 }
11 handlers.add(handler);
12 }
13

14 public synchronized void removeHandler(Handler handler)
15 throws SecurityException {
16 if (!anonymous) {
17 manager.checkAccess();
18 }
19 if (handler == null) {
20 throw new NullPointerException();
21 }
22 if (handlers == null) {
23 return;
24 }
25 handlers.remove(handler);
26 }
27

28 public synchronized Handler[] getHandlers() {
29 if (handlers == null) {
30 return emptyHandlers;
31 }
32 Handler result[] = new Handler[handlers.size()];
33 result = (Handler[]) handlers.toArray(result);
34 return result;
35 }
36

37 public synchronized void
38 setUseParentHandlers(boolean useParentHandlers) {
39 if (!anonymous) {
40 manager.checkAccess();
41 }
42 this.useParentHandlers = useParentHandlers;
43 }
44

45 public synchronized boolean getUseParentHandlers() {
46 return useParentHandlers;
47 }

Figure 7.19: The five “handler”-related methods from class Logger.
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1 /**
2 * A Filter can be used to provide fine grain control over
3 * what is logged, beyond the control provided by log levels.
4 * <p>
5 * Each Logger and each Handler can have a filter associated with it.
6 * The Logger or Handler will call the isLoggable method to check
7 * if a given LogRecord should be published. If isLoggable returns
8 * false, the LogRecord will be discarded.
9 *

10 * @version 1.3, 12/03/01
11 * @since 1.4
12 */
13 public interface Filter {
14 /**
15 * Check if a given log record should be published.
16 * @param record a LogRecord
17 * @return true if the log record should be published.
18 */
19 public boolean isLoggable(LogRecord record);
20 }

Figure 7.20: The Filter interface.

• Declaring that manager is final.

• Declaring a new region, via annotation, LoggerInfo, and populating it with the fields

filter, handlers, and useParentHandlers.

• Annotating that handlers is unaliased, and that the state of the list should be aggregated

into the state of the Logger:
/**
* @mapInto LoggerInfo
* @unshared
* @aggregate Instance into LoggerInfo
*/

private ArrayList handlers;

• Replacing our original @lock annotation

@lock L is this protects filter

with

@lock InfoLock is this protects LoggerInfo

A graphical representation of the modified model is shown in Figure 7.22(b).

We also now deal with the long-ignored warning that filter refers to a possibly shared unpro-

tected object. The field is of type Filter, an interface shown in Figure 7.20. Clearly implemen-

tations of the class must be thread-safe: after all, the filter may be used by many Logger objects.

We thus declare the design intent that implementations of Filter should protect themselves by

annotating the interface with @selfProtected.
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1 // Private utility method to map a resource bundle name to an
2 // actual resource bundle, using a simple one-entry cache.
3 // Returns null for a null name.
4 // May also return null if we can’t find the resource bundle and
5 // there is no suitable previous cached value.
6 private synchronized ResourceBundle findResourceBundle(String name) {
7 // Return a null bundle for a null name.
8 if (name == null) { return null; }
9

10 Locale currentLocale = Locale.getDefault();
11
12 // Normally we should hit on our simple one entry cache.
13 if (catalog != null
14 && currentLocale == catalogLocale
15 && name == catalogName) {
16 return catalog;
17 }
18
19 // Use the thread’s context ClassLoader. If there isn’t one,
20 // use the SystemClassloader.
21 ClassLoader cl = Thread.currentThread().getContextClassLoader();
22 if (cl == null) { cl = ClassLoader.getSystemClassLoader(); }
23 try {
24 catalog = ResourceBundle.getBundle(name, currentLocale, cl);
25 catalogName = name;
26 catalogLocale = currentLocale;
27 return catalog;
28 } catch (MissingResourceException ex) {
29 // Woops. We can’t find the ResourceBundle in the default
30 // ClassLoader. Drop through.
31 }
32
33 // Fall back to searching up the call stack and trying each
34 // calling ClassLoader.
35 for (int ix = 0;; ix++) {
36 Class clz = sun.reflect.Reflection.getCallerClass(ix);
37 if (clz == null) {
38 break;
39 }
40 ClassLoader cl2 = clz.getClassLoader();
41 if (cl2 == null) { cl2 = ClassLoader.getSystemClassLoader(); }
42 if (cl == cl2) {
43 // We’ve already checked this classloader.
44 continue;
45 }
46 cl = cl2;
47 try {
48 catalog = ResourceBundle.getBundle(name, currentLocale, cl);
49 catalogName = name;
50 catalogLocale = currentLocale;
51 return catalog;
52 } catch (MissingResourceException ex) {
53 // Ok, this one didn’t work either.
54 // Drop through, and try the next one.
55 }
56 }
57
58 if (name.equals(catalogName)) {
59 // Return the previous cached value for that name.
60 // This may be null.
61 return catalog;
62 }
63 // Sorry, we’re out of luck.
64 return null;
65 }

Figure 7.21: The method findResourceBundle. Uses of fields catalog, catalogName, and
catalogLocale are in boldface.
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The remaining two methods that acquire InfoLock but that do not access any state in its asso-

ciated region are findResourceBundle and setupResourceInfo. Method findResource-

Bundle, whose implementation is shown in Figure 7.21, can be executed in multiple threads at

once. It is invoked, for example, by several of the public logging methods. It is clear that the values

of catalog, catalogName, and catalogLocale should be kept in sync with each other, and

thus make up the state being protected during execution of the method. We add this design intent to

the class by

• Declaring a new region Catalog as a subregion of LoggerInfo.

• Populating the new region with the fields catalog, catalogName, and catalogLocale.

The modified model is shown graphically in Figure 7.22(c).

7.6.6 Unclear Intent

Method setupResourceInfo, shown in Figure 7.23, is more interesting despite being a very sim-

ple method that only (1) calls findResourceBundle to check that the named resource exists, and

(2) assigns the name of the resource to the field resourceBundleName. The obvious state being

protected is the aforementioned field. The associated getter method, however, is not declared to be

synchronized, and this should be recognized as an error. Were we to add resourceBundleName

to our protected region LoggerInfo, the getter would be identified as being inconsistent with the

model. However, the only other direct uses of the field are in one of the getLogger factory meth-

ods, which is also the only place outside of the constructor where setupResourceInfo is called.

As we have seen already, getLogger is already synchronized, and thus any additional locking

to protect resourceBundleName is overkill. But we cannot have both this and Logger.class

protect the field.

What is the intent of the designers of the class is not clear at this point. We proceed with our

assurance process based on the following additional observation: the value of the field resource-

BundleName does not need to be kept in sync with the values of any other fields. It only needs syn-

chronization (1) for higher-level policy decisions, but this already correctly occurs in getLogger,

and (2) for ensuring that changes to its value propagate in Java’s memory model. But this later

task can also be accomplished by declaring the field to be volatile. Finally, there do not ap-

pear to be any consistency constraints—i.e., internal concurrency policy concerns—that require the

invocation of findResourceBundle and the update of resourceBundleName to occur within

a single critical section. We conclude that the best way to address the remaining warning regard-
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Figure 7.22: Evolution of the state and locking model for Logger. These diagrams do not account
for policy locks or state aggregation. (a) The model after protecting filter and identifying region
LoggerHierarchy. (b) The model after expanding the protected state to include the newly defined
LoggerInfo region. The field manager is removed from the model because it has been declared
to be final. (c) The model after identifying the Catalog region.
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1 private synchronized void setupResourceInfo(String name) {
2 if (name == null) {
3 return;
4 }
5 ResourceBundle rb = findResourceBundle(name);
6 if (rb == null) {
7 // We’ve failed to find an expected ResourceBundle.
8 throw new MissingResourceException(
9 "Can’t find " + name + " bundle", name, "");

10 }
11 resourceBundleName = name;
12 }

Figure 7.23: The method setupResourceInfo.

ing setupResourceInfo is by (1) declaring the field resourceBundleName to be volatile,

which removes it from the scope of the locking model; and (2) removing the synchronized dec-

laration from setupResourceInfo.

Analysis now gives only positive assurance results regarding concurrency related properties of

Logger; see Figure 7.24. We have thus used our tool and iterative assurance process to

• Document the locking model used by class Logger.

• Assure consistency between this model and the source code.

• Discover a race condition that could result in an exception.

• Discover several “minor” race conditions that can result in inconsistent views of memory.

• Uncover an piece of policy intent that probably needs further consideration by the designers

of the class.
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Figure 7.24: Analysis results assuring Logger to be consistent with its declared locking model.
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Chapter 8

Towards a Generative Approach to

Concurrency Management

The assurance techniques described in the previous chapters provide the foundations for using pro-

gram transformation techniques to manage the concurrent attributes of a program. This chapter is a

speculative excursion, and elaborates some of the ideas of this generative approach to concurrency

management using examples of notional transformation scenarios and describes preliminary results

on the required transformations. Semantics-based, behavior-preserving, source-level, concurrency-

related program transformations are a fundamental building block of the generative approach. Our

usage scenario is that, in a programming environment, the application of a transformation is initiated

by the programmer, but it is performed by a software tool along with the necessary analyses, relying

on program annotations expressing programmer design intent. A transformation, by our definition,

is meaning-preserving with respect to the programmer-specified concurrency-related design intent.

This means that a transformation does not result in inappropriate accesses to shared regions, and that

concurrency policy is respected. In general, deadlock avoidance is also an issue. This dissertation

does not present techniques for capturing design intent regarding deadlock avoidance, and thus we

do not consider deadlock any further in this chapter.

We first review what is the generative approach, and give a sample of basic transformations that

make up the approach. We then present a series of examples that demonstrate the use of transforma-

tions within the generative approach. Our intent is to expose the difficulty in determining the proper

preconditions for soundness of a transformation—what we describe are not always transformations

by the above definition because they may fail to preserve program safety relative to the program-

mer’s intent. Through these examples, we also describe some of the techniques a tool might use to
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insure safety, and identify the division of labor between the programmer and tool. The examples

suggest the operation of many of the transformations. We follow the examples with a brief elabo-

ration of the operation of and issues raised by two transformations, split lock and shrink critical

section. Finally, we discuss related work on transformational approaches to concurrent program-

ming.

8.1 The Generative Approach

The goal of the generative approach to concurrency management is to establish a principled ap-

proach to the introduction and management of concurrency, allowing the trading off of performance

and concurrency to be explored without disturbing functionality and while keeping program com-

plexity manageable. Concurrency-related source-level program transformations by themselves are

not enough to maintain the safety of a concurrent program as it evolves in a practical engineering ap-

proach. The transformations themselves must be applied with respect to a programming discipline

that further insures that the annotations used by the transformations are correct and stay correct, and

that manages the introduction and evolution of concurrency policy. The generative approach thus

consists of applying program transformations in a framework of assurance and annotation manage-

ment. Adherence to the generative approach insures that a concurrent program is always free of race

conditions as defined by a programmer specified policy. It is based on the observation that it is easier

to stay in such a state than to initially arrive at—be proven to be in—such a state given an arbitrary

concurrent program. So that the concurrent program is known to be initially safe, the generative

approach prescribes a specific technique for increasing the extent of concurrency in programs: they

must be generated from initial sequential programs.

Transformations are performed by the tool on the behalf of the programmer and their safety

is verified using program analyses supported by programmer-specified design intent. It is our be-

lief that tool support is essential to making our approach practicable. Responsibility for design

intent and safety is partitioned between the programmer and the tool: the tool strictly regulates

the introduction and management of concurrency-related annotations and transformations, while

the programmer is in complete control of the original partitioning of a class into regions and other

expressions of design intent.

We simplify the following discussion by only considering the transformation of final classes,

that is, classes that cannot have subclasses.
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8.1.1 Catalog of Transformations

We have identified a number of transformations that are fundamental to the generative approach to

concurrency management. The generative approach is first applied to a non-concurrent implemen-

tation of a class using the synchronize class transformation. The class is reimplemented as a simple

monitor and given a default concurrency policy with which it is already compliant. The extent of

concurrency supported by the class can then be manipulated by a variety of transformations. Split

lock decreases the granularity at which state is protected by moving it “down” the region hierarchy.

A single shared region is replaced with many shared regions based on its subregions. The gran-

ularity of protection may be moved “up” the region hierarchy using merge locks, which replaces

multiple shared regions with a single ancestor shared region. The scope of a critical section may be

altered using shrink critical section.

Additional opportunities for allowing method interleaving may be introduced using split crit-

ical section to convert a single synchronized block into a sequence of synchronized blocks.

The dual merge critical sections may be used to remove interleaving opportunities. Altering the

programmer-specified concurrency policy based on the modified interleaving opportunities is a sep-

arate step in the generative process. The implement policy transformation is used to reify the policy

in the implementation.

Locking responsibility may be modified using the synchronize method and synchronize call-

site transformations, which move the responsibility to the implementation or the caller, respectively.

These transformations affect a wider body of code because of the necessity of identifying and up-

dating method callsites.

Our approach to annotation, analysis, and transformation is based on regions as shared re-

sources. Transformations that affect the region hierarchy and the aggregation of state are also basic

building blocks of the generative approach.

8.2 Evolving EventQueue

We now use the generative approach to increase the amount of concurrency exploitable by clients

of the class EventQueue. This class implements a simple queue that buffers events, represented as

Objects. Listeners register themselves with the queue using implementations of the EQListener

interface, which receives events from the queue using the dequeued callback. Figure 8.1 shows

the class after it has been made initially concurrent using the synchronize class transformation.
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This transformation modifies the original sequential version of the class by (1) declaring a new

lock that protects the Instance region, see line 3; (2) declaring each non-private method to

be synchronized; and (3) declaring a lock precondition on each private method, such as on

line 46.

Instances of EventQueue have three abstract instance regions: (1) Instance, inherited from

Object; (2) Listeners, a subregion of Instance, contains the state of the List referenced by

listeners; and (3) Queue, a subregion of Instance, contains the field len and the state of the

List referenced by queue. To increase the amount of concurrent access supported by the class

we wish to (1) modify the granularity of locking based on the region hierarchy so that the queue’s

listeners and the queue’s data are separately protected, and (2) minimize the scope of the resulting

critical sections.

8.2.1 Splitting the Lock

Splitting a lock alters a program so that the state within a shared region is protected at the granularity

of the subregions of the original region. For our example, this means replacing the protection

of the single region Instance by the protection of the two subregions Queue and Listeners.

The transformation associated new lock objects with subregions and introduces the appropriate

annotations to reflect the modified design intent. A precondition of the transformation is that all

subregions are identified with a final field of the class or the instance’s receiver to provide the

lock object to be used to protect the subregion. For our example, the object referred to by the field

listeners will protect region Listeners, and the object referred to by the field queue will

protect region Queue.

Generally, the code is changed as follows. (1) All the critical sections for the lock being split

are identified via use of the @lock annotations. (2) Effects analysis is used to identify the most

specific regions affected by the critical section. (3) The subregions of the original region affected

by the critical section determine how the critical section is modified to use the new region–lock as-

signments. For example, the body of method addEQListener has the effect reads Listeners,

so it is modified to lock on listeners instead of this. In a similar manner, the @requiresLock

annotations are updated. The modified EventQueue class is shown in Figure 8.2.
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1 /** @region public Listeners
2 * @region public Queue
3 * @lock Lock is this protects Instance */
4 public final class EventQueue {
5 /** @unshared
6 * @aggregate Instance into Listeners */
7 private final List listeners;
8 /** @unshared
9 * @aggregate Instance into Queue */

10 private final List queue;
11 /** @mapInto Queue */
12 private int len;
13
14 public EventQueue() {
15 listeners = new ArrayList();
16 queue = new LinkedList();
17 len = 0;
18 }
19
20 /** @writes Listeners */
21 public synchronized void addEQListener( EQListener l ) { listeners.add( l ); }
22
23 /** @writes Listeners */
24 public synchronized void removeEQListener( EQListener l ) { listeners.remove( l ); }
25
26 /** @writes All
27 * @requiresLock Lock */
28 private void fireEQEvent( Object o ) {
29 List copy = (List)((ArrayList)listeners).clone();
30 for( int i = 0; i < copy.size(); i++ ) {
31 final EQListener l = (EQListener)copy.get( i );
32 l.dequeued( o );
33 }
34 }
35
36 /** @reads Queue */
37 public synchronized int getSize() { return len; }
38
39 /** @writes Queue */
40 public synchronized void enqueue( Object o ) {
41 queue.add( o );
42 len += 1;
43 }
44
45 /** @writes Queue
46 * @requiresLock Lock */
47 private Object dequeue() {
48 if( len == 0 ) return null;
49 else {
50 len -= 1;
51 return queue.remove( 0 );
52 }
53 }
54
55 /** @writes All */
56 public synchronized void dispatchEvent() {
57 final Object o = dequeue();
58 fireEQEvent( o );
59 }
60 }

Figure 8.1: Initial version of EventQueue that uses a single lock to protect the entire object.
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1 /** @region public Listeners
2 * @region public Queue
3 * @lock QLock is queue protects Queue
4 * @lock ListLock is listeners protects Listeners */

5 public final class EventQueue {
6 /** @unshared
7 * @aggregate Instance into Listeners */
8 private final List listeners;
9 /** @unshared

10 * @aggregate Instance into Queue */
11 private final List queue;
12 /** @mapInto Queue */
13 private int len;
14
15 public EventQueue() {
16 listeners = new ArrayList();
17 queue = new LinkedList();
18 len = 0;
19 }
20
21 /** @writes Listeners */
22 public void addEQListener( EQListener l ) { synchronized( listeners ) { listeners.add( l ); } }

23
24 /** @writes Listeners */
25 public void removeEQListener( EQListener l ) { synchronized( listeners ) { listeners.remove( l ); } }

26
27 /** @writes All
28 * @requiresLock ListLock */
29 private void fireEQEvent( Object o ) {
30 List copy = (List)((ArrayList)listeners).clone();
31 for( int i = 0; i < copy.size(); i++ ) {
32 final EQListener l = (EQListener)copy.get( i );
33 l.dequeued( o );
34 }
35 }
36
37 /** @reads Queue */
38 public int getSize() { synchronized( queue ) { return len; } }

39
40 /** @writes Queue */
41 public void enqueue( Object o ) {
42 synchronized( queue ) {

43 queue.add( o );
44 len += 1;
45 }
46 }
47
48 /** @writes Queue
49 * @requiresLock QLock */
50 private Object dequeue() {
51 if( len == 0 ) return null;
52 else {
53 len -= 1;
54 return queue.remove( 0 );
55 }
56 }
57
58 /** @writes All */
59 public void dispatchEvent() {
60 synchronized( queue ) {

61 synchronized( listeners ) {

62 final Object o = dequeue();
63 fireEQEvent( o );
64 }
65 }
66 }
67 }

Figure 8.2: EventQueue after the split-lock modification. Differences from Figure 8.1 are under-
lined.
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8.2.2 Shrink Critical Section

Another concurrency-related modification is to shrink the computational scope of a critical section.

In general, applying this modification to a set of locks would identify the synchronized statements

that use those locks, and for each one, alter the lexical positions of the beginning and ending of the

critical sections in the program text to remove any statements that do not affect the region associated

with the critical section’s lock. For example, applying it to class EventQueue in Figure 8.2 for

QLock and ListLock would only affect one method, dispatchEvent, transforming it to be

1 /** @writes All */
2 public void dispatchEvent() {
3 Object temp;
4 synchronized( queue ) { temp = dequeue(); }
5 final Object o = temp;
6 synchronized( listeners ) { fireEQEvent( o ); }
7 }

because method dequeue only requires the caller to hold QLock and method fireEQEvent only

requires the caller to hold ListLock. Because there are no direct effects on the regions Queue

and Listener in dispatchEvent, the analysis supporting the transformation makes use of the

@requiresLock annotations on the methods dequeue and fireEQEvent.

8.2.3 Problems

A moment’s thought on the results of shrinking the critical sections in dispatchEvent produces

the conclusion that EventQueue is now broken: the first-in-first-out behavior that made it a queue

has been compromised. By moving the calls of dequeue and fireEQEvent into separate criti-

cal sections, we have enabled the following scenario. Assume there are at least two events in an

EventQueue eq, and that no other threads are concurrently accessing eq:

1. One thread invokes dispatchEvent, which executes through line 5.

2. Now a second thread invokes dispatchEvent. Because the first thread is not in a critical

section, the second thread can begin to execute the method, and, in fact, executes the method

in its entirety.

3. The first thread resumes execution, completing line 6.

This scenario causes events to be sent to listeners out of order, a violation of the intended first-in-

first-out behavior of the queue.
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8.2.4 Missing Policy

Our application of the shrink critical section transformation did not execute safely because it

caused the class to change its behavior in a manner contrary to the intent of the programmer. Clearly

its preconditions need to be improved: the transformation must respect the relevant programmer-

defined concurrency policies. In this case, the programmer needs to specify a policy that forbids

dispatchEvent to interleave with itself so that the FIFO nature of the queue is maintained. Now

shrink critical section will unnest the two critical sections in dispatchEvent, but also introduce

the usage of a new policy lock to prevent the possibility that the method could interleave with itself.

The resulting method implementation is

/** @writes All */
public void dispatchEvent() {
synchronized( this ) {

Object temp;
synchronized( queue ) { temp = dequeue(); }
final Object o = temp;
synchronized( listeners ) { fireEQEvent( o ); }

}
}

8.3 Evolving a Priority Event Queue

We now consider a concrete example of the role of concurrency policy in transformations by evolv-

ing an elaborated version of the EventQueue class, shown in Figure 8.3. The EventQueue now

contains two channels—a priority and a normal channel—each of which behaves as a distinct queue.

When the EventQueue needs to broadcast an event, it always tries to send a priority event; only

if no such event is available is a normal event dequeued. The state of instances of the class is now

divided into three subregions: Listeners, Normal, and Priority. The fields of EventQueue

are distributed among these regions: listeners into Listeners, normal and numNormal into

Normal, and high and numHigh into Priority.

8.3.1 The Initial Policy and EventQueue

Figure 8.4 shows class EventQueue from Figure 8.3 transformed to be concurrent using make

thread safe. As with the previous example, a new annotation is introduced declaring that this

is used as the lock to protect region Instance, and all the non-private methods are made

synchronized; private methods are annotated with @requiresLock annotations. The ini-
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1 /** ...
2 * @lock Lock is this protects Instance */
3 public class EventQueue { ...
4 public EventQueue() { ... }
5
6 /** @writes Listeners */
7 public synchronized void addEQListener( EQListener l ) { ... }
8
9 /** @writes Listeners */

10 public synchronized void removeEQListener( EQListener l ) { ... }
11
12 /** @writes All
13 * @requiresLock Lock */
14 private void fireEQEvent( EQEvent e ) { ... }
15
16 /** @reads Normal, Priority */
17 public synchronized int getSize() { ... }
18
19 /** @writes Normal */
20 public synchronized void enqueue( EQEvent e )
21 throws NullPointerException { ... }
22
23 /** @writes Priority */
24 public synchronized void enqueuePriority( EQEvent e )
25 throws NullPointerException { ... }
26
27 /** @writes Normal, Priority
28 * @requiresLock Lock */
29 private EQEvent dequeue() { ... }
30
31 /** @writes Normal
32 * @requiresLock Lock */
33 private EQEvent dequeueNormal() { ... }
34
35 /** @writes Priority
36 * @requiresLock Lock */
37 private EQEvent dequeuePriority() { ... }
38
39 /** @writes All */
40 public synchronized void dispatchEvent() { ... }
41 }

Figure 8.4: Class EventQueue after being made concurrent. Differences from Figure 8.3 are un-
derlined.

tial internal concurrency policy forbids any non-private method to interrupt any other. The class

is obviously consistent with this policy.

8.3.2 Enabling Liberalized Policy Specification for EventQueue

Before the internal concurrency policy of EventQueue can be liberalized, the class must be modi-

fied to reduce the granularity of the data protections. The split lock transformation is applied to the

class, so that the regions Listeners, Normal, and Priority are separately protected; the objects

referred to by the fields listeners, normal, and high are used as the new locks, respectively.

Unlike the preliminary example in Section 8.2, transformation does not remove the synchronized

declarations from the non-private methods. To do so would cause the class to violate its internal
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concurrency policy. The resulting class is shown in Figure 8.5; notice that this has been turned

into a policy lock. The scopes of the critical sections generated by the split lock transformation

are then shrunk by performing a shrink critical sections transformation. The results are shown in

Figure 8.6.

Now that EventQueue has methods with more than one critical section, it is possible to consider

how its internal concurrency policy might be liberalized. Here we consider the reasoning about

internal policy based on existing state-based critical sections. These are abstracted in Figure 8.7.

In particular, we consider how a critical section for region R in one method might observe changes

made in a critical section for R in a concurrently executing method, and how this observation may

violate higher-level design intentions regarding the behavior of the methods. Methods getSize

and dispatchEvent have potentially interesting interleavings with other methods because they

have multiple critical sections. We consider the derivation of two different internal polices, though

more are possible: (1) getSize always returns a value that is greater than or equal to the actual

size of the queue at the time the method returns; and (2) getSize always returns a value that is less

than or equal to the actual size of the queue at the time the method returns. Both policies insure that

events are dispatched in the same order they are enqueued, and that if a normal event is dispatched,

the queue does not contain a priority event when dispatchEvent returns.

8.3.3 Maximizing getSize

The policy matrix describing the maximizing internal concurrency policy is shown in Figure 8.8.

The methods addEQListener and removeEQListener do not affect the contents of the queue,

i.e., the regions Normal and Priority, so their effects on policy development are not discussed.

Let us consider explicitly the remaining pairwise cases.

Method getSize and itself

Two calls to getSize could interleave in one of two ways: (1) Pgs1; Pgs2; Ngs1; Ngs2 and (2)

Pgs1; Pgs2; Ngs2; Ngs1. Because getSize only reads data, it cannot interfere with itself, and we

thus allow it to execute concurrently with itself.
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1 public class EventQueue { ...
2 public EventQueue() { ... }
3
4 /** @reads Normal, Priority */
5 public synchronized int getSize() {
6 int n, h;
7 synchronized( normal ) { h = numHigh; }
8 synchronized( high ) { n = numNormal; }
9 return n + h;

10 }
11
12 /** @writes Normal */
13 public synchronized void enqueue( EQEvent e ) throws NullPointerException {
14 if( e == null ) {
15 throw NullPointerException( "Cannot enqueue null" );
16 } else {
17 synchronized( normal ) {
18 normal.add( e );
19 numNormal += 1;
20 }
21 }
22 }
23
24 /** @writes Priority */
25 public synchronized void enqueuePriority( EQEvent e ) throws NullPointerException {
26 if( e == null ) {
27 throw NullPointerException( "Cannot enqueue null" );
28 } else {
29 synchronized( high ) {
30 high.add( e );
31 numHigh += 1;
32 }
33 }
34 }
35
36 /** @writes All */
37 public synchronized void dispatchEvent() {
38 EQEvent e = null;
39 synchronized( high ) {
40 synchronized( normal ) { e = dequeue(); }
41 }
42 if( e != null ) synchronized( listeners ) { fireEQEvent( e ); }
43 }
44 }

Figure 8.6: Class EventQueue after a shrink-critical-sections transformation. Differences from
Figure 8.5 are underlined.

Method Critical Sections
addEQListener L

removeEQListener L

getSize P;N

enqueue N

enqueuePriority P

dispatchEvent P(N);L

Figure 8.7: Critical sections accessed by EventQueue’s methods in Figure 8.6. L, N, and P represent
critical sections for regions Listeners, Normal, and Priority, respectively. Sequential accesses
are separated by a ‘;’. Nested accesses are notated within parentheses.
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(1) (2) (3) (4) (5) (6)
(1) addEQListener S
(2) removeEQListner S S
(3) getSize S S S
(4) enqueue S S S S
(5) enqueuePriority S S × S S
(6) dispatchEvent S S S S × ×

Figure 8.8: The internal concurrency policy for maximizing getSize.

Methods getSize and enqueue

A call to enqueue could interleave with getSize in exactly one way: Pgs; Ne; Ngs. Because

getSize would read the number of normal events in critical section Ngs after it is incremented in

Ne, it would return the exact size of the queue. This is consistent with our intended semantics for

getSize so we allow the interleaving.

Methods getSize and enqueuePriority

A call to enqueuePriority could interleave with getSize in exactly one way: Pgs; Pep; Ngs.

Because getSize would read the number of priority events in Pgs just prior to it being incremented

in Pep, which happens before the method returns, it would return a size that is smaller than the actual

size of the queue at the point in time that the method returns. We decide, therefore, to disallow the

possibility of enqueuePriority interleaving with getSize.

Methods getSize and dispatchEvent

Assuming a thread is already executing getSize, a concurrent call to dispatchEvent could in-

terleave with getSize in three ways: (1) Pgs; Pde(Ngs; Nde); Lde, (2) Pgs; Pde(Nde); Ngs; Lde, and

(3) Pgs; Pde(Nde); Lde; Ngs. In all cases, the number of priority events in the queue could be decre-

mented after getSize reads the number of priority events, and thus the number of normal events in

the queue read by getSize would always be exact because it is read after dispatchEvent might

have altered it. Under these conditions, getSize will always return either the exact size or a size

greater than the actual size of the queue at the point in time when it returns.

We have considered how dispatchEvent could “interrupt” execution of getSize. Now we

consider how getSize could “interrupt” execution of dispatchEvent. The possible interleavings
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are: Pde(Nde); Pgs; Ngs; Lde and Pde(Nde); Pgs; Lde; Ngs.1 In both cases, getSize will read the

sizes of the two portions of the queue after dispatchEvent will have made any modifications,

and thus getSize will always return the exact size of the queue at the point in time it returns.

We decide therefore that the two methods are allowed to interleave.

Methods dispatchEvent and enqueue

These methods can interleave in two ways: (1) Pde(Ne; Nde); Lde and (2) Pde(Nde); Ne; Lde.2 In the

first case, the normal event will be enqueue before dispatchEventmay attempt to dequeue one. In

the second case, because the event is enqueued after the attempt to dequeue one, dispatchEvent

may return without having dispatched any events even though it is returning when there is an event

in the queue. For the purposes of our example, we decide that this is acceptable behavior, so allow

the methods to interleave.

Methods dispatchEvent and enqueuePriority

There is only one possible interleaving: Pde(Nde); Pep; Lde. This scenario can result in the dispatch

of a normal event even though a priority event is available so we decide to disallow this interleaving.

Method dispatchEvent and itself

Finally, we consider how dispatchEvent could interleave with itself. The possible interleavings

are: (1) P1(N1); P2(N2); L1; L2 and (2) P1(N1); P2(N2); L2; L1. The first trace is allowable, but

the second trace would cause an event to be sent out of order, and thus must be disallowed. We,

therefore, disallow dispatchEvent from interleaving with itself.

8.3.4 Minimizing getSize

We now consider how to specify the policy that insures getSize will always return a size that is

less than or equal to the actual size of the queue at the point in time that getSize returns. The

policy matrix describing this minimizing policy is shown in Figure 8.9. We describe only the two

cases for which the policy decisions are different from the maximizing case.

1Critical section Ngs cannot interleave with Nde nested inside of Pde, because critical section Pgs must execute before
Ngs, and must appear after Pde has executed in its entirety.

2This is equivalent to Pde(Nde; Ne); Lde.
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(1) (2) (3) (4) (5) (6)
(1) addEQListener S — — — — —
(2) removeEQListner S S — — — —
(3) getSize S S S — — —
(4) enqueue S S S S — —

(5) enqueuePriority S S S S S —
(6) dispatchEvent S S × S × ×

Figure 8.9: The policy matrix for minimizing getSize. Differences from Figure 8.8 are boxed.

1. The programmer can allow enqueuePriority to interrupt getSize. As is previously men-

tioned, there is only one interleaving: Pgs; Pep; Ngs. Because the number of priority events in

the queue is increased after the number of priority events in the queue is read, getSize will

return a size that is too small at the point in time when it returns. This is consistent with the

minimizing policy.

2. The programmer must, however, disallow dispatchEvent from interrupting getSize. Be-

cause it is previously argued that this interruption can cause getSize to return a size that

is larger than the actual size at the point in time that it returns, this interruption is clearly

contrary to the desired minimizing policy.

8.3.5 A Note on Policy Elicitation

The specification of policy is grounded in the programmer’s notion of how the program should

behave. We expect that, in practice, interactive tools will elicit policy specifications from the pro-

grammer by asking precise questions based on existing critical sections and inferred interleaving

possibilities about which method interactions are allowed. In this regard, the programmer does not

have to worry about the behavior until asked about it by the tool.

8.3.6 Implementing Policy

The process of liberalizing a policy specification does not alter the source code. The implement

policy transformation is used to update the code to take advantage of a new internal policy. Con-

sidering a method-based policy representation, one approach to this transformation is to associate

a new lock with each method that is not allowed to interleave with some other method, or more
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concretely, to associate a new policy lock with each method whose column3 in the policy matrix

contains a “×.” If method m has a new policy lock associated with it, the bodies of method m and of

each method n that must not interleave with it are wrapped in synchronized blocks that acquire

the lock associated with m. This locking replaces any previous policy-based locking.

Figure 8.10 shows EventQueue after being transformed to take advantage of the maximiz-

ing getSize policy. The policy lock Serial (formerly represented by this) has been replaced

by the policy locks GSLock, represented by the new field gsLock, and DLock, represented by

this, which prevent methods from interleaving with getSize and dispatchEvent, respec-

tively. The body of method getSize is within a block synchronized on gsLock. This pre-

vents enqueuePriority, which also synchronizes on gsLock, from interrupting its execution.

The body of method dispatchEvent synchronizes on this, which prevents dispatchEvent

from interrupting itself. The implementation is still more conservative than policy allows: method

getSize is allowed to interrupt itself, but the implementation prevents this due to the use of

gsLock within getSize.

8.4 Policy Specification and Transformation (Reprise)

When a class is initially made concurrent, it is assigned a conservative concurrency policy requiring

all the methods of class to execute serially. The class will already be in compliance with the policy:

all bodies of all its visible methods will be declared synchronized. The policy cannot yet be

liberalized because each method only contains one critical section on the same shared region. To

liberalize the policy, the protection of data within the class needs to be restructured by introduc-

ing new shared regions. This restructuring is based on the region hierarchy within the class: finer

grained shared regions generally enable interleavings at a finer granularity of computation. Sev-

eral source-level manipulations assist the programmer with this restructuring. For example, split

lock distributes locking responsibility across the sub-regions of a formerly singularly protected

super-region. Another transformation, shrink critical section, uses effects analysis to contract the

syntactic scope of a critical section by moving its beginning and end past statements that do not

affect the region being protected by the critical section.

The initial definition of regions within the class reflects the programmer’s understanding of how

fields of the class are related. In particular, concurrency opportunities are introduced or eliminated

3We could just as easily associate a lock with a row, the point here is to introduce only one lock for each pair of
methods that must not execute interleaved.
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according to the programmer’s notion of how the different regions of state are related, and the

end policy that the programmer intends to specify. For example, in EventQueue, we adopted a

policy that allows for operations on listeners to execute concurrently with the manipulation of queue

items. The protection of listeners, therefore, was separated from the protection of queue elements.

Similarly, because we wanted to be able to concurrently enqueue both a normal and a high-priority

event, the protection of the two queue segments was made distinct. If we did not need to be able to

manipulate both kinds of events simultaneously, there would be no benefit, from the point of view

of policy, gained from making distinct regions for normal and high-priority events.

Once the protection of state has been restructured, the policy specification can be liberalized.

If a liberal-enough policy is not specifiable, there are two options. The programmer can repeat the

process of altering the structure of shared regions to expose more potential concurrency within the

methods. If this restructuring is not possible, or the additional concurrency results in behavior that

violates the intended behavior of the class, then the programmer may have to reconsider the desired

behavior. Such reconsiderations are translated into policy by enabling pairs of methods to interleave

that were previously not allowed to interleave.

The internal concurrency policy of a class influences which transformations may be applied to

the code: modifications that would enable the class to behave contrary to the policy are meant to

be disallowed. It is important to recognize that in our generative approach the policy evolves along

with the program. A policy might be initially restrictive; as the programmer determines that various

transformations should be applied to the program, the policy can be relaxed—if the programmer de-

cides that relaxing the policy is acceptable—to enable them. Once a satisfactory policy is specified,

the implementation of the class can be transformed to take advantage of newly allowable concur-

rency. Of course, it should also be possible to evolve the policy to be more restrictive. This presents

more difficulty, and may best be addressed by first retreating to a previous state of development that

employs a more restrictive policy than the one desired.

8.5 The Split Lock Transformation

Split lock is parameterized by the @lock annotation of the lock to be split, giving a lock L with

name M associated with a shared region R. The lock annotations within the class are analyzed to

determine all the subregions R1, . . . , Rn of R. For each child region Ri, the programmer is asked

to provide a new mutex name Mi, and to identify a final field of the class or this to be used as

the lock representation Fi for that region.
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We first describe the transformation ignoring the existence of @requiresLock annotations. All

the method and constructor bodies of the class are searched to find all the synchronized blocks

that use lock L. For each such synchronized block, the transformation

• Determines the child regions {Rj} of R that are affected by the body. Effects outside of

region R are not interesting. The exact child regions of R that are affected can be determined

because the exact fields affected are known; any field affecting region R is either a member

of a child of R, or is itself a child of R.

• Replaces the synchronized block with a set of nested synchronized blocks that acquire

the appropriate locks {Lj} for the regions {Rj}.

The class is also modified by the addition and removal of annotations:

• The original @lock annotation is removed.

• Any annotations @returnsLock M are removed—it ought to be the case that any method

so annotated no longer has any callsites.

• For each child region Ri of R, a new lock declaration is added to the class

@lockMi is Fi protects Ri

8.5.1 Handling @requiresLockAnnotations

The easiest way to deal with @requiresLock annotations is to replace any appearance of M in

them with M1, . . . ,Mn. This is always correct, and does not interfere with existing uses of the

methods. This would be done before modifications are made to any synchronized blocks. This

approach, however, can unnecessarily constrain the future use of the methods because they would

require more locks than they may actually need. The difficulty in making the annotations less

restrictive is discerning the programmer’s intent: the programmer might want to use less general

annotations to preserve flexibility for future uses of the method. Analysis of the implementation

of the method can be used to determine the new minimum @requiresLock annotations needed

for all the methods currently using M . Such an analysis would need to be iterative, because the

annotations on one method affect the annotations on the methods that call it. The tool would then

present the minimum annotations to the user, who could then enlarge them if desired.
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8.5.2 Policy Issues

Currently, policy locks are always acquired before locks associated with regions. So, while any

synchronized statement replaced by split lock that occurs within a synchronized statement

acquiring a policy lock can affect the interleavings that are exposed when policy is defined, it will

not alter the interleavings that could actually occur at runtime. Altered synchronized blocks that

do not appear within policy-related synchronized blocks can affect the interleavings that may

occur at runtime. For example, after applying split lock, two critical sections that formerly acquired

a lock L may now acquire locks M and N , respectively. These two critical sections no longer

exclude each other, and their concurrent execution may produce effects contrary to the desired

concurrency policy. To prevent the current policy from being violated, therefore, a new policy lock

needs to be declared in the class and new synchronized blocks that acquire it must be placed

around any synchronized blocks introduced by the manipulation that are not otherwise within

policy-related synchronized blocks.

8.6 The Shrink Critical Section Transformation

In its most basic form, shrink critical section operates on a single synchronized block, limiting

its effects to a single method. The transformation changes the syntactic size of a critical section; a

different transformation is used to split a single critical section into multiple critical sections. Com-

pound variations of the transformation can be assembled that would shrink all the critical sections

of a particular shared region within a method, class, or subtree of the class hierarchy, or that shrink

all the critical sections within a method, class, or subtree of the class hierarchy.

Shrink critical section takes as input a single synchronized block. The block’s expression

must be a final expression so that the lock being used can be identified; see Section 5.6. From the

lock, the shared region being protected can be determined. This operation cannot be applied to a

policy lock.

It seems that this should be an easy transformation to perform: the effects of the statements in

the synchronized block could be used to move the start and end of the block past statements that

do not have effects on the shared region it is protecting. In addition, the synchronized block

could be moved inside of a compound statement if that statement is the only remaining content of

the synchronized block. There are many complicating factors, however:

• The order of nested synchronized statements cannot be changed because of deadlock con-
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cerns.

• The bounds of a synchronized block cannot be moved across looping constructs. This

would split the critical section. Introducing new critical sections alters how methods can

interleave, and would affect policy.

• switch statements are problematic because some cases might “fall through” to others,

which could also cause the possibility of split critical sections.

In short, the transformation’s preconditions, particularly those concerning policy are complicated,

and require further research.

8.7 Developing the Generative Approach

The current presentation is of a notional generative approach to concurrency management: we have

not yet implemented any transformations. Before we can implement a transformation, the precise

details of its specification must be elaborated: what are its preconditions, how does it use analysis

and annotation, how does it appeal to the concurrency policy, what exactly does it do to the source

code, what are the caveats of a successful transformation, etc. In addition, the concurrency-related

transformations mentioned so far consider only a single final class, and affect only the number,

scope, and granularity of critical sections used by its method implementations. These kinds of

manipulations relate to how an object can be manipulated by multiple threads. Transformations

that introduce the definition and use of threads are missing, as are manipulations that introduce and

evolve the use of condition variables. Additional work is needed to understand what form these

manipulations should take, and what their effects should be. These techniques can also be extended

to transform non-final classes.

The generative approach could be expanded to handle the evolution of confederations of in-

stances that cooperate in their use of concurrency; e.g., a class that uses delegates that is intended to

appear to be a single monitor. Transformations that can introduce and evolve such relationships need

to be identified, but first our understanding of the nature of collaborations needs to be improved.

8.8 Related Work

Several areas of research are related to our proposed transformation-based approach to concurrency.

In this section we first discuss Andrews’s global invariant approach to the development of correct
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concurrent programs in which the programmer designs a program first at a coarse granularity of

atomicity, then at a finer granularity, and finally converts the design into a specific implementa-

tion. We next review previous transformational approaches to converting sequential programs into

correct concurrent programs. Finally, we review literature on compiler-based transformations that

optimize—generally by attempting to minimize the number of critical sections—the acquisition of

locks.

8.8.1 The Global Invariant Approach

Andrews’s global invariant approach, introduced in [And89] and elaborated in [And91], is a sys-

tematic method for solving synchronization problems based on viewing processes as invariant main-

tainers. Maintainence of the invariant insures that the processes are interference-free. The method

consists of four steps: (1) define the problem, (2) outline a solution, (3) ensure the invariant, and (4)

implement the atomic actions. In the first step the processes are identified as sequential algorithms,

and the invariant is specified over shared state. This state is often introduced solely to represent ex-

plicitly information about the processes that is otherwise unrelated to the underlying computation,

such as the number of proceseses currently executing a critical section. Follow up work [Miz01a],

discussed below, identifies many common invariant patterns that simplifies this process and frees

the programmer from having to introduce variables for such accounting purposes. In the second

step, the programmer introduces assignments to the shared variables so that the invariant is initially

true and groups assignments into atomic actions.

In the third step, the programmer guards each atomic assignment as necessary to insure that the

state resulting from the assignment statisfies the invariant. The necessary guards can be mechan-

ically derived using Dijkstra’s weakest precondition. Finally, the in the fourth step, the guarded

atomic statements are implemented on top of an underlying synchronization mechanism such as

semaphores or monitors. More recently, Mizuno describes how to perform the fourth step for Java

[Miz99]. His translation presents a solution to the problem of using multiple condition variables

associated with a single mutex in Java, while making efficient use of notification.

The second and third steps are mechanical once the invariant is identified in the first step. Re-

cently published refinements to the process and recently developed tool support make the fourth

step mechanical as well. Mizuno, et al. [Miz01b] have integrated Andrews’s basic method into

scenario-based development methologies, such as the Unified Modeling Language and Rational

Unified Process, and incorporated it into an aspect-oriented programming [KLM+97] framework.

Specification of the invariant and the associated synchronization described in a synchronization as-
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pect distinct from the sequential implementation of processes. Use-case realizations, made up of,

for example, sequence diagrams, collaboration diagrams, and scenarios, describe the collaborations

between classes and objects in the system. The developer identifies synchronization regions in sce-

narios. “A synchronization region is a segment in a scenario (1) in which a thread waits for some

event to occur or some state to hold ... and (2) in which a thread may trigger an event or change a

state for which a thread at some other synchronization region is waiting.” The reflexive transitive

closure of the relation between communicating regions defines equivalence classes called clusters.

The developer identifies a global invariant for each cluster. Course-grained and fine-grained solu-

tions follow, except that they describe only the entry and exit points to each cluster. A final weaving

step integrates the fine-grained synchronization aspect with the component code developed from the

scenarios.

The primary difficulty of the global invariant approach is identifying appropriate invariants.

Mizuno [Miz01a] describes a useful set of global invariant patterns that can be composed to suc-

cintly and more easily specifiy global invariants for clusters. The patterns are all defined in terms

of “in” and “out” counters that track the number of threads that have entered and exited a synchro-

nization region.

Deng, et al. [DDHM02] implement the aspect-oriented synchronization approach for C++ and

Java in the SyncGen tool. The programmer identifies synchronization regions and clusters in the

core functional, i.e., non-synchronization code, using annotations. The programmer specifies a syn-

chronization invariant for each cluster using conjunctions of invariant patterns. The global invari-

ants are automatically translated into implementation-independent coarse-grained solutions. Sync-

Gen can translate the coarse-grained solution into implementation-specific fine-grained solutions

for Java, C, and C++ environments and weave the synchronization code with the core functional

implementation. A final model-checking step uses the Bandera framework [CDH+00] to verify the

translation process.

8.8.2 Sequential to Concurrent Programs

In Path Pascal [CK79], the programmer writes objects in a purely sequential manner. Allowable

concurrency is specified separately, as the class’s path expression. Every method must appear at least

once in the path expression, which specifies the relationships among the methods in the class. For

example, a relative order of execution among a set of methods can be specified, a set of methods can

be made mutually exclusive, or the number of active executions of a given method can be limited.

Rules to generate method prologues and epilogues that make use of counting semaphores from the
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the path expression are provided. Path expressions also require that the ability of a method to run

depend only on what other methods are currently executing or have executed; it can not depend

on the current state of the object. The purpose of path expressions is to encapsulate the abstract

relationship between methods, separate from the methods’ implementations. The preservation of

data invariants is accomplished solely through the specification of the path expression for a class;

there is no such thing as a critical section, and therefore, there is no way to identify statement-level

parallelism.

Wu and Lewis [WL90] apply path expressions to C++ objects to describe the legal concurrent

executions of methods of that object. By checking uses of objects of the class against the path

expression, illegal concurrent uses of the class can be statically identified. Instead of translating

the path expression into code that implements the policy, they use an algorithm based on data de-

pendence information and the path expression to identify regions of code that can be automatically

parallelized because it is known that the parallelized code will invoke methods in a manner that

respects the path expression.

Sims and Hensgen [SH93] describe how to automatically convert a sequential object to a con-

current object that uses two-phased locking. The concurrent object will be free of race conditions

and deadlock. The technique allows for unrelated methods to execute concurrently. Unfortunately,

they omit the details of how to determine what locks are needed, and what state the locks are actually

protecting.

Herlihy [Her91] describes a technique for transforming a sequential implementation of a data

structure into a wait-free and non-blocking concurrent data object. The sequential implementation

is not general, but written with the transformation in mind. The non-blocking transformation is

based on being able to copy object state. Objects are divided into blocks of state, and the sequential

implementation is not allowed to modify anything other than the blocks making up the object. Each

operation supported by the object must be well defined for every legal state of the object. For objects

that occupy more than one block, efficiency is increased by only copying those blocks of the object

that are changed by an operation. This must be done by the implementor who must write each

operation in a functional style. Instead of modifying the blocks directly, a method returns a new set

of blocks representing the new state of the object. The actual transformation from sequential object

to wait-free, non-blocking concurrent object is mechanical, and is intended to be performed by a

pre-processor or compiler.

Alemany and Felten [AF92] and Barnes [Bar93] have followed up on Herlihy’s work, but are

mainly concerned with improving the bounds on the execution time. Barnes’s work does allow
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for concurrent modification of objects under some circumstances, but requires that the original

sequential operations be specifically written in such a way that they can cooperate.

8.8.3 Compiler Optimizations

Plevyak, Zhang, and Chien [PZC95] describe optimizations that a compiler can perform on con-

current object-oriented languages. In the runtime system they optimize for, every object has its

own lock to implement access control on its own state. They focus on inlining method calls to

expose critical sections that can be merged. An inlined method call can execute only if any locks

that it requires are not held. Methods identified for inlining, therefore, are replaced with a condi-

tional statement: the true branch contains the inlined method surrounded by code that acquires and

releases the necessary locks; the false branch invokes the method normally. The expression that

checks if runtime conditions permit inlining together with the true branch of the conditional are

known as an access region. The focus of their work is the enlargement of access regions to reduce

the overhead of critical sections. Access regions are expanded by moving code into the true branch

of the conditional, and by merging adjacent access regions; new, empty access regions can also be

introduced, and then populated by expansion.

Mutual exclusion is maintained by only expanding access regions to include statements whose

locking conditions are subsumed by those of the access region, and by insuring that when storage

accesses for the same object from two distinct access regions are moved into the same region,

they “occur in whole, before or after each other, ensuring locally the mutual exclusion that the

programming model guarantees.” Deadlock introduction is prevented by disallowing a statement

that may block on a resource from being moved into an access region. Also, when an empty access

region is created, all locks are acquired atomically (i.e., either all the locks or none of the locks are

acquired); this prevents new resource dependencies, and thus new sources of deadlock, from being

introduced.

Diniz and Rinard [DR96] present two compiler optimizations that decrease the granularity of

locks used in automatically parallelized object-oriented programs. Every object originally has its

own lock, which is acquired whenever data in that object is accessed. Data lock coarsening, asso-

ciates a single lock with a set of objects that are used together. This is similar to using regions with

uniqueness aggregation in our system. They avoid the aliasing issue by restricting the use of the

classes of nested objects. Computation lock coarsening transforms a computation that repeatedly

acquires and releases the same lock into a computation that acquires and releases the lock only once.

The algorithm they present for data lock coarsening attempts to protect nested objects with the same
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lock as their enclosing object, and results in the introduction of synchronized and synchronization-

free versions of methods. Computation lock coarsening is performed after data lock coarsening, and

can be applied to a method if (1) it does not contain concurrency introducing constructs, (2) only

accesses data in its receiver and the nested objects of the receiver, and (3) all the methods of nested

objects that it invokes are protected by the method’s receiver’s lock. Computation lock coarsening

alters the method so that its first statement acquires the lock, its last statement releases the lock, and

its method calls only invoke synchronization-free methods. Data lock coarsening cannot introduce

deadlock because the original execution model dictates that no method of enclosing-class C can be

called when locks are held, and methods of C will only ever obtain a single lock. Computation lock

coarsening does not introduce deadlock because it only replaces repeated acquisitions of the same

lock with a single acquisition of the lock for a longer period of time.

In follow-up work [DR97], Diniz and Rinard describe generic techniques for increasing the

size of critical sections that replace their previous lock coarsening techniques. Their goal is to

remove synchronization by eliminating adjacent mutex acquire and release operations. Acquires

and releases are first made adjacent by enlarging the size and scope of critical sections: acquires

are moved “upwards” along the control flow graph, while releases are moved “downwards” along

the control flow graph. A mutex acquisition can be moved upwards, past a node n that has multiple

predecessor nodes. In this case, the acquisition is duplicated across all entries into n, and releases are

inserted along all paths out of n except for the one from which the acquisition originated. Similarly,

a release can be moved downwards, past a node with multiple successors. The compiler identifies

pairs of acquire and release operations to move based on reachability within the control flow graph.

Movement and cancellation of acquires and releases are applied in one step based on the intersection

of reachability paths in the control flow graph. The process is repeated until it cannot be applied

any more; termination is assured because the critical sections can only become bigger. To prevent

the introduction of deadlock, a mutex operation is not allowed to be moved past a statement that

is already in a critical section. The order in which critical sections are nested is, therefore, never

altered.
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Chapter 9

Conclusion

The failure to express concurrency-related models impedes programmer understanding, explicit as-

surance of safety, and the safe evolution of concurrent programs. In particular, the design intent

describing intended implementation properties is usually missing, and it is generally impossible to

assure that an implementation conforms to the programmer’s intent, e.g., is free of race conditions.

Experience has shown that it is difficult to safely evolve a program without an explicit expression

of these models. In general, current programming languages and processes do not facilitate the

capture of program design information in ways that are usable—and adoptable—by practicing pro-

grammers. Nor do current tools readily provide the means to assure that captured design information

is consistent with source code and vice versa. As a result, design information may be lost or out of

sync with the reality of the code, obscuring the implementation properties to be assured.

In this dissertation, we present a programmer-oriented approach to safe concurrency in which

• Models of programmer design intent are described using formal program annotations con-

cerning mechanical program properties.

• Consistency between source code and annotated design intent is assured using composable

static analyses supported by an iterative programmer-led process.

A dominant design consideration for our approach is adoptability by practicing programmers, which

influences the design of our annotations and of our prototype analysis tool. In particular, we con-

sider that, at the present state of capability, it is generally unreasonable to require programmers to

explicitly express representation invariants. Instead, we ask the programmer to record design intent

in terms of properties the programmer is already concerned about. In addition to being easier for the

programmer express, these “mechanical” annotations provide value beyond enabling tool-assisted
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assurance by answering design-related questions a programmer reading the source code might ask.

Specifically, we use annotations to express the following model elements:

• To name and hierarchically organize the state of a program, with aggregates that may span

multiple objects.

• To describe which state is affected by a method (or other code segment), and what is the

nature of the effects.

• To identify uniqueness of object references, modulo temporary “borrowed” references.

• To associate locks with abstract aggregations of state, and provide names for the locks.

• To delineate responsibility for acquiring locks (e.g., caller vs. callee).

• To specify which methods may be executed concurrently.

Adoptability strongly influences the design of analysis approach via the principle of “early grat-

ification.” Some assurance can be obtained with minimal or no annotation effort, and additional

increments of annotation are rewarded with additional increments of assurance.

9.1 Summary of Contributions

This dissertation is about (1) the consequences of missing design intent, (2) capturing programmer

design intent via mechanical program annotations, (3) using static analysis to assure consistency

between source code and intent, and (4) doing it in a way that is practicable for working program-

mers. Concurrency provides an excellent problem domain because concurrent programs have so

many unexpressed design commitments that are not local to any particular segment of code, and the

consequences of errors in concurrent programs can lead to security and reliability faults. Our overall

goals are to improve program quality by enabling analyses that assure the safety of programs (with

respect to expressed design intentions), and to enable safe program evolution, eventually through the

use of tool-supported program transformations. New technical and engineering results contributed

by this dissertation include:

• Regions provide flexible encapsulations of object state. Specifically, they provide a hierarchi-

cal covering of the notional state of an object, enabling state to be named at different gran-

ularities. State aggregations can cross object boundaries by (1) the exploitation of unshared

(unaliased) references and (2) the parameterization of classes by regions, enabling parts of

objects to be owned by other objects.

• We describe an object-oriented effects system based on the state named by regions.
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• We explicitly associate locks with regions to protect shared state. Similar approaches in

the literature either lack a state model, or use ownership-based models that are incapable

protecting state at fine granularity or incorporating only a portion of an object into another

object.

• Our notion of concurrency policy enables concise descriptions of allowable method interleav-

ings. In particular, concurrency policy is a surrogate for unstated representations that still

allows the programmer to differentiate between “good” and “bad” concurrency. Furthermore,

it explicitly expresses to clients of a class its intended concurrent behavior.

• Static analyses for assuring the consistency between source code and expressed effect- and

concurrency-related design intent.

• The beginnings of an incremental tool-supported process for inserting, assuring, and ex-

ploiting annotations expressing models of state and concurrency properties. Specifically, we

implemented a set of Eclipse plug-ins providing a prototype tool for assuring that Java pro-

grams are consistent with their associated concurrency-related models. Our tool goes beyond

“bug hunting” by providing both explicit positive and negative assurance results; similar tools

in the literature are interested primarily in negative results and are typically incapable of pro-

viding positive assurance.

• A notional generative approach to concurrency management in which semantics-based, be-

havior preserving, source-level program transformations are used to evolve the amount of

concurrency in a program, allowing the exploration of policy and other design decisions while

keeping program complexity manageable. In particular, our hierarchical model of state en-

ables easy exploration of the granularity at which state is protected. Concurrency policy plays

a fundamental role in preventing transformations from modifying the programmer’s design

intent with respect to consistency of state.

9.1.1 Case Studies

Throughout, we apply our annotation and assurance techniques to examples drawn from production

Java code to experiment with describing design intent, providing assurance of model–code consis-

tency, and finding bugs. In addition to demonstrating the applicability of our approach to production

Java code, our case studies with our prototype assurance tool in Eclipse demonstrate the incremen-

tality of our approach, and provide informal evidence that we are providing “early gratification.”

For example,



202 CHAPTER 9. CONCLUSION

• We capture the models of state and locking intent for the BoundedFIFO class from the Jakarta

Log4j library. Using our prototype assurance tool, we are able to assure that (1) the imple-

mentation of BoundedFIFO and (2) the implementation of a client of BoundedFIFO are

consistent with these models. No modifications to the original source code were required

beyond the introduction of our annotations. We show how we can express both the internal

and external concurrency policies for the class. In addition, we demonstrate notionally how

the design intent captured by our annotations can be exploited to preserve the safety of the

class during an actual evolution scenario.

• We express the state aggregation and locking intent for the pair of classes ThreadCache and

CachedThread from the W3C Jigsaw web server. In particular, the complexities of state in

this example cannot be expressed by similar approaches and tools in the literature.

• We show how to derive and express the internal and external concurrency policies of the class

AppenderAttachableImpl from Log4j, uncover a policy mismatch error between the class

and its clients, and describe how a notional tool could assist in the discovery of this error. This

error was reported to the maintainers of the library and resulted in a bug fix.

• We capture the models of state and locking intent for the Logger class from the Java JDK

java.util.logging package. Using our prototype tool, we incrementally and interactively

introduce annotations into the source code, receiving additional assurance results at each

step. This process required hypothesizing about actual programmer design intent, and making

minor modifications to the source code. We discover a previously unreported race condition,

and identify several areas of questionable design intent.

More generally, an inspection of the JDK packages java.util, java.lang, and java.awt.*,

and java.io indicates that our tool and techniques are sufficient to find and explain known con-

currency errors: both race conditions and policy violations.

9.2 Looking Forward

Possible future directions for this work include: expressing and assuring additional concurrency-

related design intent, expressing patterns of concurrency, incorporating diagrammatic models of

intent, and annotation management.
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9.2.1 Additional Concurrency-Related Models

This dissertation focuses on concurrency-related models related to shared-memory concurrency pro-

gramming, in particular models related to the integrity of state. Specific concurrency concerns not

addressed in this work include reader–writer locks, deadlock, condition variables, and thread iden-

tification.

Greater amounts of concurrency can be obtained by using reader–writer locks, a form of mutex

that distinguishes between read and write operations. Multiple threads can acquire the lock to obtain

read permission while excluding any threads that want to acquire write access, while exactly one

thread at a time can acquire the lock to obtain write access. Java does not natively support reader–

writer locks, but objects providing such functionality can be written and are provided by most

concurrency utility libraries, e.g., [Lea]. Reader–writer locks present several additional assurance

challenges. We must assure that critical sections intended to only read state do not modify the state.

Our effects system makes this straightforward, modulo aliasing concerns. Because lock acquisition

and release are based on distinguished method calls, we must assure that locks are properly released

at the close of critical sections. In general, this is an object protocol problem, e.g., [Nie93], but a

specialized analysis for the particular situation is straightforward to implement, cf. Warlock [Ste93].

We already describe how concurrency policy can describe reader–writer design intent.

It is well known that annotations specifying and managing partial orders for lock acquisition

can assist in assuring deadlock freedom. These annotations are global in character, but can be made

incrementally, i.e., by adding new pairs to the partial order relation. A more challenging ordering

problem is ordering the instances of a class: this is important, for example, when two instances must

be compared. Lea presents a programming idiom based on unique resource identifiers to address

this problem [Lea00]. Boyapati, et al. present a type system that enforces a resource ordering among

nodes in tree structures, and that can even handle dynamic reordering of nodes in the tree [BLR02].

Providing and assuring correct use of resource orderings among instances of the same class remains

an open problem in general.

We have begun to experiment with the expression of design intent related to condition variables.

In [NGS01], we describe how conditions might be explicitly associated with the variable used to

control blocking.

Locking is not the only technique for protecting data in concurrent programs: for example,

immutable objects can be shared without coordination and thread-local objects are not shared at all.

While our notion of concurrency policy is capable of describing some of the design intent embodied
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in such classes, our current techniques are not sufficient for assuring that an implementation of an

object is immutable, or that a reference does not escape a particular thread. Assuring immutability

is an application of our state model and effects system. Additional aliasing assurances can assist in

the problem of thread-locality. In addition, we are exploring “thread coloring” techniques that make

explicit the relationship between threads, data, and code segments [SGS02]. Making thread models

explicit facilitates assurance of code and data thread-locality, as well as the identification of shared

usage of state not intended to be shared.

9.2.2 Concurrency Coding Idioms

Concurrency is often used in a stylized manner, that is, by making use of particular coding patterns,

such as those of [Lea00]. The burden of annotating concurrent programs could be lightened by

developing annotations that describe a program’s use of concurrency at a higher semantic level that

accounts for these programming idioms. Examples include a single annotation that declares the

intent that a class is intended to be a monitor, or an annotation describing the intent that a particular

class is meant to be thread-safe wrapper around another class.

9.2.3 Diagrammatic Models

Models of program behavior can be expressed diagrammatically. We have begun to develop dia-

grams that capture and express concurrency-related design in terms of mechanical program prop-

erties [NGS01]. Such models are an alternative means of expressing and maintaining programmer

design intent—assurance between annotations, source code, and diagrams must be provided. For

example, Figure 9.1 describes how concurrency is used by the class WakeupManager in Sun’s Jini

library, including how state is protected, how locks are ordered, what are the conditions used by the

class, and which locks and conditions are used by various methods. WakeupManager is a queue of

time-stamped tasks sorted by deadline. Nested class Kicker implements a thread responsible for

executing tasks in the queue and requires the locks for both itself and the queue so lock ordering

is used: ContentsLock must be acquired before the KickerLock. Kicker has two condition

variables (stop signs in the diagram): one to abort, and one to signal the addition of a new task.

From the diagram it is easy to see (1) what is the lock orde,r as well as (2) that invoking newTime

may cause a thread blocked in run to unblock by satisfying the newTicket condition.
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Kicker.isDead
Kicker.

newTicket

Kicker.
sleepTimeValid

== false

Kicker.die ==
true

Kicker.this

WakeupManager.contents

ContentsRegion

WakeupManager.contents

WakeupManager.head

KickerInfo
Kicker.sleepTimeValid
Kicker.die

WakeupManager.schedule
WakeupManager.cancel
WakeupManager.cancelAll

Kicker.kill

Kicker.newTime

Kicker.run

Kicker.doTasks

WakeupManager.checkHead

KickerLock

ContentsLock

Figure 9.1: Method concurrency diagram for class WakeupManager. Diagram by Elissa Newman.

9.2.4 Tool Development

Development of our prototype assurance tool is ongoing. Active areas of research include issues of

tool–programmer interaction and truth maintenance of assurance results. In particular, we wish to

present to the user “chains of evidence” that link together expressed design intent, analysis results,

and code segments to document the reasoning behind each assurance result, positive or negative.

While our current case studies suggest that we are on-track towards our goal of providing useful

incremental results and “early gratification,” formal user studies are required to demonstrate this

property more formally.



206 CHAPTER 9. CONCLUSION



Bibliography

[AF92] Juan Alemany and Edward W. Felten. Performance issues in non-blocking
synchronization on shared-memory multiprocessors. In PODC ’92, Proceedings of
the Eleventh Annual ACM Symposium on Principles of Distributed Computing, pages
125–134. ACM Press, August 1992.

[AFL95] Alexander Aiken, Manuel Fähndrich, and Raph Levien. Better static memory
management: Improving region-based analysis of higher-order languages. In
Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 174–185. ACM Press, June 1995.

[AGH00] Ken Arnold, James Gosling, and David Holmes. The Java Programming Language.
The Java Series. Addison-Wesley, third edition, 2000.

[AM77] G. R. Andrews and J. R. McGraw. Language features for process interaction. In
Davd B. Wortman, editor, Proceedings of an ACM Conference on Language Design
for Reliable Software, pages 114–127. ACM Press, March 1977.

[And89] Gregory R. Andrews. A method for solving synchronization problems. Science of
Computer Programming, 13(1):1–21, December 1989.

[And91] Gregory R. Andrews. Concurrent Programming: Principles and Practice. The
Benjamin/Cummings Publishing Company, Inc, 1991.

[Apa] Apache Software Foundation. Log4j project.
http://jakarta.apache.org/log4j/docs/index.html.

[Ass98] Association for Computing Machinery. OOPSLA’98 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications.
ACM Press, October 1998.

[Ass99] Association for Computing Machinery. OOPSLA’99 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications.
ACM Press, November 1999.

[Ass00] Association for Computing Machinery. OOPSLA’00 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications.
ACM Press, October 2000.



208 BIBLIOGRAPHY

[Ass02a] Association for Computing Machinery. OOPSLA’02 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications.
ACM Press, November 2002.

[Ass02b] Association for Computing Machinery. Proceedings of the ACM SIGPLAN ’02
Conference on Programming Language Design and Implementation. ACM Press,
June 2002.

[Ass02c] Association for Computing Machinery. Proceedings of the IEEE International
Conference on Software Engineering (ICSE ’02). ACM Press, May 2002.

[Bar93] Greg Barnes. A method for implementing lock-free shared data structures. In SPAA
’93, Proceedings of the Fifth Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 261–270. ACM Press, June/July 1993.

[BFC95] Peter A. Buhr, Michael Fortier, and Michael H. Coffin. Monitor classification. ACM
Computing Surveys, 27(1):63–107, March 1995.

[BG99] John Boyland and Aaron Greenhouse. MayEqual: A new alias question. Presented at
IWAOOS ’99: Intercontinental Workshop on Aliasing in Object-Oriented Systems.
http://cuiwww.unige.ch/~ecoopws/iwaoos/papers/papers/
greenhouse.ps.gz, June 1999.

[BH74] Per Brinch Hansen. A programming methodology for operating system design. In
Jack L. Rosenfeld, editor, Information Processing 74, number 6 in IFIP Congress
Series, pages 394–397. Elsevier, August 1974.

[BH75] Per Brinch Hansen. The programming language Concurrent Pascal. IEEE
Transactions on Software Engineering, SE-1(2):199–207, June 1975.

[BH99a] Jeff Bogda and Urs Hölzle. Removing unnecessary synchronization in Java. In
OOPSLA’99 Conference Proceedings—Object-Oriented Programming Systems,
Languages and Applications [Ass99], pages 35–46.

[BH99b] Per Brinch Hansen. Java’s insecure parallelism. ACM SIGPLAN Notices,
34(4):38–45, April 1999.

[Bir91] A. D. Birrell. An introduction to programming with threads. In Nelson [Nel91],
chapter 4, pages 88–118.

[Bla99] Bruno Blanchet. Escape analysis for object-oriented languages: application to Java.
In OOPSLA’99 Conference Proceedings—Object-Oriented Programming Systems,
Languages and Applications [Ass99], pages 20–34.

[Blo01a] Joshua Bloch. Effective Java Programming Language Guide. Addison-Wesley, 2001.

[Blo01b] Joshua Bloch. Proposed final draft, JSR-41: A simple assertion facility for the Java
programming language. http://jcp.org/jsr/detail/41.jsp, June 2001.



BIBLIOGRAPHY 209

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. A type system for
preventing data races and deadlocks in Java programs. In OOPSLA’02 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications
[Ass02a], pages 211–230.

[BNR01] John Boyland, James Noble, and William Retert. Capabilities for sharing: A
generalization of uniqueness and read-only. In Jørgen Lindskov Knudsen, editor,
ECOOP’01 — Object-Oriented Programming, 15th European Conference, volume
2072 of Lecture Notes in Computer Science, pages 2–27. Springer, June 2001.

[Boy01a] John Boyland. Alias burying: Unique variables without destructive reads.
Software—Practice and Experience, 31(6):533–553, May 2001.

[Boy01b] John Boyland. The interdependence of effects and uniqueness. Presented at
Workshop on Formal Techniques for Java Programs., June 2001.

[Boy03a] John Boyland. Checking interference with fractional permissions. In Static Analysis
Symposium 2003. Springer, 2003. To appear.

[Boy03b] John Tang Boyland. Connecting effects and uniqueness with adoption. Submitted to
International Workshop on Aliasing, Confinement and Ownership in Object-Oriented
Programming at ECOOP 2003, 2003.

[BP03] G. M. Bierman and M. J. Parkinson. Effects and effect inference for a core Java
calculus. In Workshop on Object-Oriented Developments, co-located with ETAPS
2003, April 2003.

[BR01] Chandrasekhar Boyapati and Martin Rinard. A parameterized type system for
race-free Java programs. In OOPSLA’01 Conference Proceedings—Object-Oriented
Programming Systems, Languages and Applications, pages 56–69. ACM Press,
November 2001.

[BRJ99] Grady Booch, Jim Rumbaugh, and Ivar Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[BST00] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: A dialect of Java
without data races. In OOPSLA’00 Conference Proceedings—Object-Oriented
Programming Systems, Languages and Applications [Ass00], pages 382–400.

[CBS98] Edwin C. Chan, John T. Boyland, and William L. Scherlis. Promises: Limited
specifications for analysis and manipulation. In Proceedings of the IEEE
International Conference on Software Engineering (ICSE ’98), pages 167–176. IEEE
Computer Society, April 1998.

[CD02] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation, and the
disjointness of type and effect. In OOPSLA’02 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications
[Ass02a], pages 292–310.



210 BIBLIOGRAPHY

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn Laubach, Corina S.
Pasareanu, Robby, and Hongjun Zheng. Bandera: Extracting finite-state models from
Java source code. In Proceedings of the IEEE International Conference on Software
Engineering (ICSE ’00), pages 762–765. ACM Press, June 2000.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam
Midkiff. Escape analysis for Java. In OOPSLA’99 Conference
Proceedings—Object-Oriented Programming Systems, Languages and Applications
[Ass99], pages 1–19.

[CH74] R. H. Campbell and A. N. Habermann. The specification of process synchronization
by path expressions. In E. Gelenbe and C. Kaiser, editors, Operating Systems;
Proceedings of an International Symposium, volume 16 of Lecture Notes in Computer
Science, pages 89–102. Springer, April 1974.

[CK79] Roy H. Campbell and Robert B. Kolstad. Path expressions in Pascal. In Proceedings
of the IEEE International Conference on Software Engineering (ICSE ’79), pages
212–219. IEEE Computer Society, September 1979.

[Cor00] James C. Corbett. Using shape analysis to reduce finite-state models of concurrent
Java programs. ACM Transactions on Software Engineering and Methodology,
9(1):51–93, January 2000.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias
protection. In OOPSLA’98 Conference Proceedings—Object-Oriented Programming
Systems, Languages and Applications [Ass98], pages 48–64.

[DDHM02] Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki Mizuno.
Invariant-based specification, synthesis, and verification of synchronization in
concurrent programs. In Proceedings of the IEEE International Conference on
Software Engineering (ICSE ’02) [Ass02c], pages 442–452.

[DF01] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level
software. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation, pages 59–69. ACM Press, June 2001.

[Dij68a] Edsger W. Dijkstra. Co-operating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112. Academic Press, Inc., 1968.

[Dij68b] Edsger W. Dijkstra. The structure of the “THE”-multiprogramming system.
Communications of the ACM, 11(5):341–346, May 1968.

[Dis71] Discussion. Monitors—special discussion. In Hoare and Perrot [HP71], pages 72–93.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended
static checking. Research Report 159, Compaq Systems Research Center, Palo Alto,
California, USA, December 1998.



BIBLIOGRAPHY 211

[DR96] Pedro Diniz and Martin Rinard. Lock coarsening: Eliminating lock overhead in
automatically parallelized object-based programs. In Ninth International Workshop,
Languages and Compilers for Parallel Computing, pages 285–299, August 1996.

[DR97] Pedro Diniz and Martin Rinard. Synchronization transformations for parallel
computing. In Conference Record of the Twenty-fourth Annual ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages, pages
187–200. ACM Press, January 1997.

[EGHT94] David Evans, John Guttag, James Horning, and Yang Meng Tan. LCLint: A tool for
using specifications to check code. In 2nd ACM SIGSOFT Symposium on
Foundations of Software Engineering, pages 87–96. ACM Press, December 1994.

[EL02] David Evans and David Larochelle. Improving security using extensible lightweight
static analysis. IEEE Software, 19(1):42–51, January/February 2002.

[FA99a] Cormac Flanagan and Martín Abadi. Object types against races. In Jos C. M. Baeten
and Sjoule Maw, editors, CONCUR ’99—10th International Conference on
Concurrency Theory, volume 1664 of Lecture Notes in Computer Science, pages
288–303. Springer, August 1999.

[FA99b] Cormac Flanagan and Martín Abadi. Types for safe locking. In S. Doaitse Swierstra,
editor, ESOP’99 — Programming Languages and Systems, 8th European Symposium
on Programming, volume 1576 of Lecture Notes in Computer Science, pages 91–108.
Springer, March 1999.

[FD02] Manuel Fähndrich and Robert DeLine. Adoption and foucs: Practical linear types for
imperative programming. In Proceedings of the ACM SIGPLAN ’02 Conference on
Programming Language Design and Implementation [Ass02b], pages 13–24.

[FF00] Cormac Flanagan and Stephen N. Freund. Type-based race detection for Java. In
Proceedings of the ACM SIGPLAN ’00 Conference on Programming Language
Design and Implementation, pages 219–232. ACM Press, June 2000.

[FF01] Cormac Flanagan and Stephen N. Freund. Detecting race conditions in large
programs. In 2001 ACM SIGPLAN–SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 90–96. ACM Press, June 2001.

[FJL01] Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. Annotation inference for
modular checkers. Information Processing Letters, 77(2–4):97–108, February 2001.

[FKF98] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins.
In Conference Record of the Twenty-fifth Annual ACM SIGACT/SIGPLAN Symposium
on Principles of Programming Languages, pages 171–183. ACM Press, January 1998.

[FL01] Cormac Flanagan and K. Rustan M. Leino. Houdini, an annotation assistant for
ESC/Java. In José Nuno Oliveira and Pamela Zave, editors, Formal Methods Europe
2001: Formal Methods Increase Software Productivity, volume 2021 of Lecture Notes
in Computer Science, pages 500–517. Springer, March 2001.



212 BIBLIOGRAPHY

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. Extended static checking for Java. In Proceedings of the
ACM SIGPLAN ’02 Conference on Programming Language Design and
Implementation [Ass02b], pages 234–245.

[FQ03a] Cormac Flanagan and Shaz Qadeer. Types for atomic interfaces. In Proceedings of
the ACM SIGPLAN ’03 Conference on Programming Language Design and
Implementation, June 2003. To appear.

[FQ03b] Cormac Flanagan and Shaz Qadeer. Types for atomicity. In Proceedings of the 2003
ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, pages 1–12. ACM Press, January 2003.

[Gai85] Jason Gait. A debugger for concurrent programs. Software—Practice and
Experience, 15(6):539–554, June 1985.

[GB99] Aaron Greenhouse and John Boyland. An object-oriented effects system. In Rachid
Guerraoui, editor, ECOOP’99 — Object-Oriented Programming, 13th European
Conference, volume 1628 of Lecture Notes in Computer Science, pages 205–229.
Springer, June 1999.

[GJLS87] D. K. Gifford, P. Jouvelot, J. M. Lucassen, and M. A. Sheldon. FX-87 reference
manual. Technical Report MIT/LCS/TR-407, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, Massachussetts, USA, September
1987.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. The Java Series. Addison-Wesley, second edition, 2000.

[GL86] David K. Gifford and John M. Lucassen. Integrating fuctional and imperative
programming. In Proceedings of the 1986 ACM Conference on Lisp and Functional
Programming, pages 28–38. ACM Press, 1986.

[GMW97] David Garlan, Robert T. Monroe, and David Wile. ACME: An architectural
description interchange language. In The IBM Centre for Advanced Studies
Conference, CASCON ’97, pages 169–183, November 1997.

[Gre01] Aaron Greenhouse. Bug 1507: Improper synchronization in AsyncAppender and
Category causes race conditions. http://nagoya.apache.org/bugzilla/,
April 2001.

[GS02] Aaron Greenhouse and William L. Scherlis. Assuring and evolving concurrent
programs: Annotations and policy. In Proceedings of the IEEE International
Conference on Software Engineering (ICSE ’02) [Ass02c], pages 453–463.

[Ham01] Graham Hamilton. Proposed final draft, JSR-47: Logging API specification.
http://jcp.org/jsr/detail/47.jsp, September 2001.



BIBLIOGRAPHY 213

[Har98] Stephen J. Hartley. Concurrent Programming: The Java Programming Language.
Oxford University Press, 1998.

[Hav68] J. W. Havender. Avoiding deadlock in multitasking systems. IBM Systems Journal,
7:74–84, 1968.

[Her91] Maurice Herlihy. A methodology for implementing highly concurrent data objects.
Technical Report CRL 91/10, Cambridge Research Laboratory, Digital Equipment
Corporation, Cambridge, MA, October 1991.

[Hoa71] C. A. R. Hoare. Towards a theory of parallel programming. In Hoare and Perrot
[HP71], pages 61–71.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549–557, October 1974.

[Hol00] Allen Holub. Taming Java Threads. Apress, Berkeley, California, USA, 2000.

[How76a] John H. Howard. Proving monitors. Communications of the ACM, 19(5):273–279,
May 1976.

[How76b] John H. Howard. Signaling in monitors. In Proceedings of the IEEE International
Conference on Software Engineering (ICSE ’76), pages 47–52. IEEE Computer
Society, October 1976.

[HP71] C. A. R. Hoare and R. H. Perrot, editors. Operating Systems Techniques. Academic
Press, Inc., 1971.

[Hyd99] Paul Hyde. Java Thread Programming. Sams Publishing, 1999.

[Jac95] Daniel Jackson. Aspect: Detecting bugs with abstract dependencies. ACM
Transactions on Software Engineering and Methodology, 4(2):109–145, April 1995.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of types and effects.
In Conference Record of the Eighteenth Annual ACM SIGACT/SIGPLAN Symposium
on Principles of Programming Languages, pages 303–310. ACM Press, January 1991.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-orient programming. In Mehmet
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