Applications of Graph-Theoretical Properties in Algorithms

Stephen Guattery
September 5, 1995
CMU-CS-95-187

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
Jor the degree of Doctor of Philosophy

Thesis Committee:
Gary Miller, Chair
Guy Blelloch
Doug Tygar
John Reif, Duke University

Copyright ©) 1995 Stephen Guattery

This work was supported in part by NSF Grant CCR-9505472.

This work was also supported in part by the Air Force Materiel Command (AFMC) and the Advanced Re-
search Projects Agency (ARPA) under contract number F19628-93-C-0193. In addition, IBM, Motorola, and the
NSF/Presidential Young Investigator Award under Grant NoCCR-8858087, TRW, and the U.S. Postal Service gave their
support.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the U.S. Government, its agencies, or other funders.

Keywords: Algorithms, Graph Theory, Graph Algorithms, Spectral Methods, Numerical
Linear Algebra, Eigenvalues, Planar Graphs, Parallel Algorithms

School of Computer Science

DOCTORAL THESIS
in the field of -
Computer Science

Applications of Graph-Theoretical Properties
in Algorithms

STEPHEN GUATTERY

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

S Il 7 f/ff
%ﬂfs I J - wi

DEAN . DATE

12 9-29- 95
l 4

Abstract
Graphs are an important means of representing problems of interest to computer science; the
relationship between graphs and algorithms is a close one. Many theorems in graph theory have
algorithmic proofs in nature; conversely, many algorithms depend on graph-theoretic properties.
In this thesis, I introduce and apply graph properties in the analysis of one type of graph algorithm
and the design of another.
First, I examine the structure of the eigenvectors of the Laplacian matrix representation of a graph
to analyze some commonly-used spectral algorithms for finding separators, an important step in
many graph algorithms. There is little previous analysis of the quality of the separators produced by
this technique; instead it is usually claimed that spectral methods “work well in practice.” I present
an initial analysis, considering two popular spectral separator algorithms plus a generalization of
such algorithms, and provide counterexamples showing these algorithms perform poorly on certain
graphs similar to those arising in practice.
Second, I examine the consequences of the Poincaré index formula for planar directed graphs,
Application of the formula leads to a method for reducing a planar DAG to a constant size and then
expanding it back. This method can be used to implement an algorithm for testing reachability
in a planar DAG in parallel on a CRCW PRAM in O(lognlog* n) time (O(logn) time using
randomization) using O(n) processors. In conjunction with Kao’s strongly-connected components
algorithm, multiple-source reachability for planar digraphs can be computed in O(log?n) time
using O(n) processors. This improves the previous algorithm of Kao and Klein, which solved this
problem in O(log® n) time using O(n) processors.

Acknowledgements

Special thanks are due Gary Miller, my advisor and thesis committee chair. Although I use the
pronoun “I” throughout this thesis, this work was joint work with Gary and shows his influence
and ideas. Gary has all the attributes of a great advisor: deep knowledge of the field, enthusiasm,
and an interest in new problems. He has tremendous intuition about mathematical and algorithmic
problems and a way of distilling them to their essence. Quite often I’ve gone to talk to Gary when
I was stuck, and returned with a clear idea of directions to pursue. Gary has never hesitated to
give me a push when I got bogged down, or when I was ready to abandon some problem because
it looked too hard. He always supported my work, and provided good advice on career directions.

Doug Tygar also deserves special thanks. He was my advisor in my early days at CMU; he
taught me many things that helped build a foundation for later work. Doug has both great recall
and and a great library. I don’t recall ever asking him a question that he didn’t either answer or
find a reference with the answer. He co-advised me after I started working with Gary, providing
financial support and good advice on practical issues such as schedules, preparing documents for
job search, etc.

I’d also like to thank the other members of my committee, Guy Blelloch and John Reif, for
their careful reading and comments on my thesis.

Ming Kao deserves thanks for reading and commenting on Chapter 3. I'd also like to thank
Dafna Talmor for reading parts of the thesis and providing valuable comments about presentation
and readability.

There are many others who should be mentioned; I'm sorry that space and memory limitations
prevent this.

Parts of this work have appeared in the Sixth Annual ACM/SIAM Symposium on Discrete
Algorithms (SODA ’95) ([GM95b], [GM94]) and the Fourth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA ’92) ([(GM92], [GM95a)).

Chapter 1

Algorithms and Graph Properties

1.1 Introduction

Graphs are a fundamental way of representing many interesting computer science problems. Some
important examples include:

e circuit layout;

e compiler optimization;

e the structure of finite element meshes in numerical computation;

e the representation of constraints in scheduling and other optimization problems; and
¢ network representation.

Graphs and algorithms are closely related. Many theorems in graph theory have algorithmic
proofs. Conversely, many algorithms depend on graph-theoretic properties. For example, graph
theory proves the existence of a particular graph structure; the algorithm then works on the
structure to get the desired result. Examples include the max-flow min-cut theorem for network
flows, the use of augmenting paths in matching theory, and the detection of articulation points in
biconnected components algorithms (these are described in basic algorithms texts such as [AHU74]
or [CLR90]). In other cases, the properties are combinatorial; they are used to bound the running
time of an algorithm (e.g., planar graphs have bounded average degree) or show that a certain
property does or does not exist (e.g., the use of interlacing bridges in the planar graph embedding
algorithm) (see, e.g., basic graph theory texts such as [BM76]).

In this thesis, I introduce and apply graph properties in the analysis of one type of graph
algorithm and the design of another type. The first property has to do with Laplacian eigenvector
structure and is covered in the Section 1.2; the second is a topological property of embedded planar
directed graphs and is covered in Section 1.3.

1.2 Properties of Laplacian Eigenvectors

T'use a set of properties of the eigenvectors of a particular matrix representation — the Laplacian — of
a connected graph, to analyze the performance of spectral separator algorithms on various classes
of graphs. In particular, I prove there are classes of graphs (similar to graphs arising in practice)
for which three commonly-used spectral separator algorithms perform poorly.

To understand how these properties are used, one needs to understand the meaning of “spectral
separator algorithms”.

A separator is a set of edges or vertices that, if removed from a graph, breaks the graph into
two (not necessarily connected) components. I focus on edge separators in this thesis, and further
references to separators in this chapter are to edge separators. Good separators are small and
break the graph into two pieces of comparable size. Small separators are important because many
algorithms do work proportional to the separator size. Breaking the graph into pieces of comparable
size is important in recursive algorithm design to limit recursion depth.

Separators have many useful applications in VLSI layout, testing, and verification; assignment
of tasks to processors in paralle]l computation; and design and analysis of divide-and-conquer
algorithms. However, separators are difficult to compute: finding optimal separators for useful
definitions of “small” and “comparable size” is typically NP-hard (see, e.g., [LR88] for details).
Thus practical separator algorithms are heuristic in nature.

Spectral methods use the eigenvalues and eigenvectors of a matrix representation of a graph.
These methods have a long history, and are used to solve many problems other than finding graph
separators. Various matrix representations of graphs are used; in this thesis I focus on the application
of spectral techniques to finding separators, and more particularly on spectral techniques applied to
the Laplacian of a graph. The algorithms I analyze are widely used in practice because the needed
software is available and often fairly fast.

The Laplacian B of a graph G on n vertices is the n X n matrix with the it diagonal entry
equal to the degree of vertex 4, and entry (z,7) (for ¢ # j) equal to —1 if edge (v;, v;) exists and 0
otherwise. Laplacians have a number of useful properties, including:

o Laplacians are symmetric.
e Laplacians are positive semidefinite.
e Zero is simple eigenvalue for the Laplacian of a connected graph.

All row sums (and, by symmetry, all column sums) are zero since the diagonal entry is the
vertex degree and there is a minus one in the row for each incident edge; hence, the vector
with all entries equal to 1 (denoted as 1) is the eigenvector for the eigenvalue 0.

The following identity also holds:

x'Bx = Z (z; — ;)% (1.1)
(vi,vy)€E(G)

This last fact provides some intuition for why spectral techniques are used. Consider the set of
vectors with all entries either 1 or —1. Such vectors can represent partitions: vertices with value 1

3

are on one side of the partition, vertices with value —1 are on the other. When a partition vector is
plugged into Equation 1.1, edges between a pair of vertices that both lie on one side of the partition
contribute 0 to the sum. Edges across the partition contribute 4. Thus Equation 1.1 evaluates to 4
times the number of edges across the partition.

Now I can formally state a particular separator problem, the problem of finding a minimum
-bisection. A bisection is a separator dividing the graph into two equal-size sets of vertices. The
bisection problem can be stated as follows:

Minimize x” B x subject to:

5 € {+1,-1) (1.2
xI'1=0 (1.3)

Constraint 1.2 specifies that x is a partition vector; Constraint 1.3 forces the number of vertices on
each side of the partition to be equal.

Solving this problem exactly is NP-complete [PSL90], and there are no known algorithms that
provide an optimal solution in polynomial time. Thus, to get a (very likely suboptimal) separator
in a reasonable amount of time, heuristic techniques are applied. One possibility is to relax one of
the constraints to get an easier problem to solve; the solution of this problem can be converted into
a bisection.

Consider relaxing Constraint 1.2. Then, the solution can be a real vector. However, one
must avoid the problem that scaling the vector by an amount between zero and one reduces the
objective function. Thus, a normalization condition is added to get the following problem statement:

Minimize x7 B x subject to:
xTx=1
xI'1=0

The solution to this problem is a vector of considerable interest in this paper: it is the eigenvector
corresponding to the second smallest eigenvector of B (often called the second smallest eigenvector
of B), which I denote by us. Note that each vertex has a corresponding entry in uy (or in any
vector); I will sometimes to this as the vertex’s value.

How does one get a partition vector from this solution? A common way is to partition the
vertices of the graph according to the values of their corresponding entries in u, [PSL90, HK92].
All vertices with a value greater or equal to the median entry of u, go on one side of the partition;
all vertices with value less than the median go on the other. This is the first of three spectral
algorithms considered in Chapter 2.

While this algorithm works well for some graphs, there are fairly simple graphs for which it
does quite poorly. Ishow a class of bounded-degree planar graphs with constant-size separators for
which the above spectral bisection algorithm gives ©(n)-size separators: roach graphs. The roach
graph looks like a ladder with the top 2/3 of its rungs kicked out (see Figure 1.2); a straightforward
spectral bisection algorithm cuts the remaining rungs, whereas the optimal bisection is made by
cutting across the ladder above the remaining rungs. (I refer to this graph as the “roach graph”
because its outline looks roughly like the body of a cockroach with two long antennae.) It is obvious

4

v v
2k+1 5k+1

vV
3k Vek

Figure 1.1: The Roach Graph

that the roach graph has a bisection of size 2 (cut the antennae off at the appropriate places); I show
that the spectral bisection algorithm cuts through the edges across the body.

To prove this, I show some properties of graphs with particular graph automorphisms. A
graph automorphism is an edge-preserving permutation ¢ on the graph vertices: if (v;,v;) is an
edge, then (vqs(,‘-), V(. j)) must also be an edge. The roach graph has an automorphism mapping one
side of the roach to the other. I define odd and even vectors with respect to an automorphism ¢:
Let the graph have n vertices. An even vector x with respect to ¢ has z; = T (i) for all ¢ in the
range 1 < ¢ < =; an odd vector y with respect to ¢ has y; = —yy(;) for all 5.

Intuitively, it is easy to see that if uy for the roach graph is an odd vector, then the spectral
bisection algorithm cuts all the edges across the body: In that case, there are an equal number of
positive and negative entries, and the positive entries go on one side of the partition, the negative
entries on the other. Since endpoints of the edges across the body are images of each other under ¢,
they lie in different parts of the partition, and all these edges are cut (this explanation is extremely
simplified; Chapter 2 contains the technical details).

There are easy ways to modify the spectral bisection algorithm to give good cuts for the roach
graph. These modifications produce separators that do not necessarily divide the vertices into two
equal sets. How should one measure the quality of such separators?

Any quality metric for separators must balance the notions of “small separator” against “vertex
sets of comparable size”. Intuitively, one would like the ratio of the number of edges cut to the
size of the smaller set of vertices to be as small as possible (the size of the cut can be thought of
as the boundary size of the vertex set; the number of vertices in the smaller set can be thought of
as its volume). This notion is formalized in the definition of the cut quotient. Let .S be an edge
separator that divides G into the vertex sets G and . Then the cut quotient q is

s s
min (|G1|, IGQD
The minimum of ¢ over all edge separators is the isoperimetric number; I denote it as ¢(G).

Separator quality with respect to a graph is measured by the ratio between its cut quotient and the
isoperimetric number.

With these definitions, one can define a new heuristic for extracting separators from the second
eigenvector uy: the “best threshold cut” algorithm (see, e.g., [HK92]). Index the vertices in order
based on their value from u;. For each index 1 < ¢ < n — 1, consider the cut quotient of the
separator produced by splitting the vertices into those with sorted index < ¢ and those with sorted
index > ¢ (a set of vertices with the same value are considered a single vertex in this process; only
cuts that separate vertices with different values need be considered). Choose the split giving the
best cut quotient. I denote the best cut quotient as g,,,;,. “Best threshold cut” is the second spectral
algorithm that I analyze.

It is well known that the isoperimetric number can be bounded in terms of \,, the second
smallest eigenvalue of the Laplacian; there is a straightforward lower bound, and an upper bound
that can be shown as a consequence of Cheeger’s inequality ([Alo86]). Mohar gives a slightly
different upper bound on the isoperimetric number using a strong discrete version of the Cheeger
inequality [Moh89]. Let G be any connected graph with maximal vertex degree A. Further, let G
not be any of Ky, K3, or K3, the complete graphs on 1, 2, and 3 vertices. Then

2 <i(@) < \/m2a -). (1.4)

Mohar’s proof is particularly interesting because it has implications for threshold cuts: his proof
implies the same upper bound holds for ¢, .

Using the bounds on #(G) and ¢, I show a class of graphs for which the “best threshold
cut” algorithm performs poorly. In particular, I present graphs for which the isoperimetric number
is at the low end of the range, while g, is at the upper end. For these graphs the ratio ¢, /i(G)
is as large (to within a constant) as possible with respect to the bounds.

These graphs are all graph crossproducts. A crossproduct is a graph constructed from two
graphs G and H and denoted G' X H. I provide a formal definition in Chapter 2; here is an informal
definition: Replace every vertex in G with a copy of H. Each edge e in G is then replaced by | H|
edges, one between each pair of corresponding vertices in the copies of H that have replaced the
endpoints of e. That is, for each edge (v;, v;) in G, there is a copy ¢ and a copy j of H. For each
vertex v in M, add an edge between vertex u in copy ¢ and the vertex u in copy j. An example is
shown in Figure 1.2.

It is well known that the eigenvalues of the Laplacian of G x H are all pairwise sums of the
eigenvalues of G and H (see e.g. [Moh88]). It is also well known that the eigenvectors of G x H
can be constructed from the eigenvectors of G and /I: Let A = p + v be an eigenvalue of the
crossproduct, where p is an eigenvalue of G with eigenvector « and v is an eigenvalue of H with
eigenvector w. Each vertex in G X H corresponds to exactly one vertex from G (say g;) and one
vertex from H (say h;); thus each vertex in G x H can be written as (g;, ;). The value of vertex
(gs, h;) in the crossproduct eigenvector is the product of the values for g; and %; from w and w
respectively.

For an example, suppose that zero is an eigenvalue of . Then in the resulting crossproduct
eigenvector, all vertices in any one copy of GG have the same value, because all vertices in a copy
of G correspond to the same vertex from H; thus their values are the product of 1 (from the
eigenvector for the O eigenvalue) times the H eigenvector value for the H vertex.

A crossproduct that causes the “best threshold cut” spectral algorithm to perform poorly is the
tree-cross-path graph (Figure 1.2). A tree-cross-path graph consists of the crossproduct of a double

6

Figure 1.2: Graph Crossproduct

tree and a path graph; a double tree is a pair of complete binary trees of the same size joined by an
edge between their roots. Assume that the double tree has p vertices. In Chapter 2, I prove that if
the path Iength is ¢ p% for ¢ in the range 3.5 < ¢ < 4, then A, of the tree-cross-path graph is the
sum of the second smallest eigenvalue of the path and the O eigenvalue of the double tree. Thus
uy of the crossproduct assigns a single value to all vertices in any copy of the double tree, and
any threshold cut must separate some pair of double trees. The resulting separator has at least p
edges; however, cutting the edge between the roots of the complete binary trees in each double tree
produces a separator of size ¢ p%. The resulting ratio of the spectral cut to the better cut is G)(p%),
which is as large (to within a constant factor) as possible by the bound from Mohar (given in 1.4
above). '

The final algorithm I consider is based on a general definition of purely spectral separator
algorithms subsuming the two preceding algorithms. An algorithm purely spectral if:

1 0 -1

@ @ .

1 0 -1

1@ @ &]
p=0 1 i i
& e . 4

1 0 -1

Ay=1+0=1

Figure 1.3: Formation of Graph Crossproduct Eigenvector

o It computes a value for each vertex using only the eigenvector components for that vertex
from eigenvectors corresponding to the £ smallest non-zero eigenvalues (henceforth, the
k smallest eigenvectors). The function computed can be chosen arbitrarily as long as its
output depends only on these inputs.

o It partitions the graph by choosing some threshold ¢ and then putting all vertices with values
greater than ¢ on one side of the partition and the rest of the vertices on the other side.

e It is free to compute the break point ¢ in any way; e.g., checking the separator ratio for all
possible breaks and choosing the best one is allowed.

Purely spectral algorithms suffer from similar problems to those afflicting the “best threshold
cut” algorithm. In particular, if the number of eigenvectors used by the algorithm is some fixed
number k, then the path in the tree-cross-path graph can be made long enough so that all &
eigenvalues correspond to eigenvalues from the path. The resulting eigenvectors all assign a single
value to all vertices in a single double tree. As a result, the function applied to these values will
also assign a single value to all vertices in a single double tree, and the resulting cut must again
separate two copies of the double tree. The analysis is similar to that for the “best threshold cut”
algorithm. Since the path length is stretched by a constant factor, the resulting ratio of cut quotient
to isoperimetric number is as bad (to within a constant) as the result for the “best threshold cuts”
algorithm.

If k£ grows as a small function of n (i.e., a function less that n4l), performance is still bad,
though the ratio of the spectral cut to the isoperimetric number is not not as large as in the previous
two cases. For sufficiently large # and 0 < ¢ < %, there exists a bounded-degree graph GG on
n vertices such that any purely spectral algorithm using the 2¢ smallest eigenvectors produces a

1
separator S for G having a cut quotient greater than 7(G) by at least a factor of n(rc) — 1. The
counterexample graph is still the tree-cross-path, and the analysis is similar to that used for the

8

“best threshold cut” algorithm.
Full details of the arguments summarized above are provided in Chapter 2.

1.3 The Poincaré Index Formula

The Poincaré index formula, is a topological property of embedded planar directed graphs. It is
closely related to the Euler characteristic. Chapter 3 discusses the index formula itself, which
has a number of implications about the types of faces and vertices that can occur in an embedded
digraph; these implications in turn can be used to bound the running time of a digraph reduction
algorithm. This reduction algorithm is like tree contraction in that it is a general framework on
which applications can be overlaid. In particular, I present a multi-source reachability for planar
DAGs built on top of the reduction algorithm that improves the running time compared to previous
parallel planar digraph reachability algorithms

I will start by explaining the Poincaré index formula and its implications (this name is drawn
from the Poincaré index formula from combinatorial topology; see Chapter 3 for more details).

Let G(V, A) be a connected embedded planar digraph with faces F'. A vertex of G is a source
if its indegree is zero; it is a sink if its outdegree is zero. The alternation number of a vertex
is the number of direction changes of the arcs (i.e., “out” to “in” or vice versa) as we consider in
cyclical order the arcs radiating from that vertex. The alternation number is always even. A source
or sink has alternation number zero. A vertex is a flow vertex if its alternation number is two. Itisa
saddle vertex if the alternation number is 4 or more. Vertex alternations are indicated by asterisks
in Figure 1.4. The alternation number of a face is defined in a similar way; here alternations are

4

\

source flow vertex saddle vertex

Figure 1.4: Vertex Types

defined in terms of the number of time the arcs on the boundary change direction with respect to a
traversal of its boundary. Thus, a cycle face has alternation number zero, a flow face has alternation
number two, and a saddle face has an alternation number greater than two. Face alternations are
indicated by asterisks in Figure 1.5. I denote the alternation number of vertex v by a(v), and the
alternation number of face f by a(f) (it is clear from the context whether a refers to a vertex or a

face).

*
* *
2 *
cycle face flow face saddle face

Figure 1.5: Face Types

A concept related to alternation number is index. The index of a vertex v (denoted index(v))
is defined as index(v) = a(v)/2 — 1. The corresponding definition holds for the index of a face.
Once again I do not differentiate the notation used in these two cases.

Theorem 1.3.1 [Poincaré Index Formula] For every embedded connected planar digraph, the

Jollowing formula holds:
> index(v) + Y index(f) = ~2.
vEV fEF

This formula implies a great deal about the structure of a planar digraph embedding. For
example,

¢ Sinks, sources, and cycle faces each contribute —1. These are the only structures that make
negative contributions to the sums in the formula; since the total must be —2, it is clear that
every embedded planar digraph must have at least two of them. For example, a strongly
connected planar digraph cannot have any sinks or sources, so it must have two cycle faces.

e Flow faces and flow vertices have index 0; they contribute 0 to the sums in the formula.
There can be an arbitrary number of such structures. It is easy to see that a flow face has two
alternations on its boundary, one of which looks like a source with respect to the boundary,
the other of which looks like a sink. Thus, at most one source and at most one sink can lie
on the boundary of a flow face.

o Saddle vertices and saddle faces have positive indices that depend on their alternation num-
bers. Since the formula total must always be —2, the embedded graph must contain a sink,
source, or cycle face for every pair of alternations beyond the first on some saddle.

1.3.1 The DAG Reduction Algorithm

I use the index formula to prove properties about the running time of a parallel planar DAG
reduction algorithm. The algorithm consists of two parts: a general reduction algorithm that
provides a method for reducing a planar DAG to a constant size and then expanding it back, and

10

an application overlaid on the reduction algorithm, much as specific algorithms are overlaid on the
basic tree contraction mechanism. The reduction algorithm consists of a set of rules for reducing
the size of planar DAG. It removes a constant fraction of the arcs in each pass through the main
reduction loop. Thus, a logarithmic number of reduction steps reduce the DAG to constant size.
The reduction process converts a graph into a smaller graph in order to recursively solve the desired
problem. Once the problem is solved for the reduced graph, the graph is expanded back out in
reverse order to generate a solution for the original graph.

The reduction rules fall into two groups: those that typically apply when the graph has relatively
few sources and sinks, and those that apply when there are relatively many sources and sinks.

When the number of sources and sinks is relatively small, the graph has lots of flow faces. The
main rule in this case operates on arcs that, when removed, combine two flow faces into one. This
is shown in Figure 1.6. I use the Poincaré index formula to show that there are many such arcs.

Figure 1.6: Merging Two Flow Faces

Removing arcs can affect graph connectivity, however. Therefore I associate flow faces with
a data structure that maintains connectivity information consistent with the original graph. This
data structure consists of a set of pointers (note: the graph represented by these pointers may be
non-planar).

When there are relatively many sources and sinks, there may not be many removable arcs
between flow faces. Therefore the rules operate in this case on arcs out of sources and into
saddle vertices and arcs into sinks and out of saddles. “Operating” involves removing, combining,
contracting, etc. The Poincaré index formula implies that if there are not many operable arcs
between flow faces, then there must be many arcs to which these additional rules apply.

Here a complication arises: the connectivity pointers. Contracting arcs incident to such
pointers can introduce paths that do not exist in the original graph (In particular, problems occur
when a pointer enters an arc below a pointer leaving that arc, and the arc is contracted to a single
vertex. Then a new path is created from these pointers when they both become incident to this
vertex). I solve this problem by adding an algorithm to clean up problem pointers. For many arcs
operable by the second class of rules, there are ways to determine all effects these pointers have
with respect to application-specific processing; the problem pointers can then be discarded.

11

There is one further issue to address: applications of different rules may interfere with each
other (i.e., application of one rule may make inoperable an arc previously operable by a second
rule), and applications of a single rule may interfere with each other (i.e., removing two arcs from
one flow face may create a saddle face). The solution is a set of conflict resolution procedures. The
basic idea is, for each type of conflict, to find a maximal independent set in a graph representing
the conflicts. Typically the conflict graphs have bounded degree. I show that the conflict resolution
procedures do not reduce the number of arcs removed by much.

After I specify the reduction procedure, I prove that the reduction procedure given above works
in O(logn log* n) time using O(n) processors, provided that the application-specific processing
takes at most constant time per reduction phase.

1.3.2 Planar Digraph Reachability

Once the description and analysis of the reduction process is complete, I give an application.
In particular, I show the abstract reduction procedure can be extended to solve the many-source
reachability problem for planar DAGs. The problem can be stated as follows: given a planar DAG
and an initial set of vertices, compute the set of vertices reachable via directed paths from the initial
set. I refer to the vertices reachable in this way as the solution set; the initial set is a subset of
the solution set. The solution to this problem consists of a set of application-specific actions taken
at various points in the reduction algorithm (These actions primarily involve vertex marking and
mark propagation; initial vertices are marked, the marks are propagated over arcs and pointers,
and vertices that receive a mark are listed as reachable). To show it works I introduce invariants
allowing me to prove that the result is correctly computed.

The resulting algorithm tests reachability in a planar DAG in parallel on a CRCW PRAM
in O(logn log* n) time (O(logn) time using randomization) using O(n) processors. Used in
conjunction with the strongly-connected components algorithm of Kao [Kao93], multiple-source
reachability for general planar digraphs can be computed in O(log®) time using O(n) processors.
This improves the results of Kao and Klein [KK90] who showed that this problem could be solved
in O(log’ n) time using O(n) processors.

Why is this application interesting? In particular, why is an algorithm limited to planar graphs
interesting? For sequential algorithm design the two classic methods for solving problems related
to reachability are breadth-first search (BFS) and depth-first search (DFS). They require time
proportional to the size of the graph. Parallel polylogarithmic time algorithms for such problems
currently compute the transitive closure of the graph, which requires O (M (n)) processors, where
M(n) is the number of processors needed to multiply two n X n matrices together in parallel.
Since the best known value for M (n) is O(n?-*7¢), a parallel algorithm using transitive closure
for computing reachability does much more work than the corresponding sequential algorithm.
For sparse graphs the situation is better, though still not optimal: Ullman and Yannakakis give a
probabilistic parallel algorithm running in O(+/n) time using n processors [UY90]. This blow-up
in the amount of work for parallel algorithms, often referred to as the transitive closure bottleneck,
makes work with general directed graphs on fine grain parallel machines virtually impossible.

One possible way around this dilemmais to find useful classes of graphs for which the problem
can be solved efficiently. In pioneering papers, Kao [Ka093], Kao and Shannon [KS89] [KS93],

12

and Kao and Klein [KK90] showed that the reachability problem and many related problems could
be solved in polylogarithmic time using only a linear number of processors for planar digraphs.
The planar reachability problem for multiple start vertices is specifically addressed in [KK90].
The methods in that paper involve a series of reductions between related problems; each reduction
introduces more logarithmic factors to the running time. In the end it takes O (log5 n) time to solve

this problem.

Directed planar graphs are important for at least two reasons. First, this class includes several
important subclasses including tree and series parallel graphs. Second, the flow graphs for many
structured programming languages without function calls are planar. One goal for future work is
the development of basic algorithms for a class of planar graphs so that a theory of planar flow

graphs could be based on it.
The specifics of the general reduction procedure and its application in multi-source DAG

reachability are provided in Chapter 3.

1.4 Future Work

The thesis concludes with Chapter 4, which covers extensions and potential future work.
Future work for spectral separators includes research on the following questions:

e How can spectral partitioning algorithms be modified to improve their performance?

¢ How can the eigenvector properties of specific graphs be used to generate a new taxonomy
of graphs that relates graph properties to the quality of spectral separators?

e How can the techniques from Chapter 2 be used in other ways?

The work on the Poincaré index formula and on planar digraph algorithms offers the following
areas for research:

e Extending the reduction algorithm from planar DAGs to all planar digraphs.
e Using the reduction algorithm to implement other planar digraph algorithms.

¢ Using algorithms built on the reduction algorithm in practical applications. This may require
modifying the algorithm for easier implementation and faster execution.

1.5 Contributions

The contributions of this thesis are:
¢ New properties about the structure of Laplacian eigenvectors.

¢ Analysis of three commonly-used spectral separator algorithms showing that there are graphs
similar to those that arise in practice for which spectral separator algorithms produce poor

separators.

13

e The Poincaré index formula.

o A general parallel planar DAG reduction algorithm that can be used in the design of algo-
rithms.

e A parallel multi-source reachability algorithm for planar digraphs with better asymptotic
performance than previous algorithms.

14

Chapter 2

On the Quality of Spectral Separators

2.1 Introduction

Spectral methods (i.e., methods that use the eigenvalues and eigenvectors of a matrix representation
of a graph) are widely used to compute graph separators. Typically, the Laplacian matrix is used;
the Laplacian B of a graph G on n vertices is the n X n matrix with the degrees of the vertices of
G on the diagonal, and entry b;; = —1 if G has the edge (v;, v;) and O otherwise. The eigenvector
uy corresponding to A, (the second-smallest eigenvalue of B) is computed, and the vertices of the
graph are partitioned according to the values of their corresponding entries in u, [PSL90, HK92].
The goal is to compute a small separator; that is, as few edges or vertices as possible should be
deleted from the graph to achieve the partition. Additionally, the sizes of the resulting components
should be roughly comparable.

Although spectral methods are popular, there is little analysis of how well they do in producing
small separators. Instead, it is usually claimed that such methods “work well in practice,” and
tables of results for specific examples are often included in papers (see e.g. [PSL90]). Thus there
is little guidance for someone wishing to compute separators as to whether or not this technique
is appropriate. Ideally, practitioners should have a characterization of classes of graphs for which
spectral separator techniques work well; this characterization might be in terms of how far the
computed separators can be from optimal. This chapter represents a first step in this direction. I
consider two spectral separation algorithms that partition the vertices on the basis of the values of
their corresponding entries in uy, and provide counterexamples for which each of the algorithms
produces poor separators. I further consider a generalized definition of spectral methods that allows
the use of more than one of the eigenvectors corresponding to the smallest non-zero eigenvalues,
and show that there are graphs for which any such algorithm does poorly.

The first algorithm is a popular technique that consists of bisecting a graph by partitioning
the vertices into two equal-sized sets based on each vertex’s entry in the eigenvector u;. A graph
in this first counterexample class looks like a ladder with the top 2/3 of its rungs kicked out (see
Figure 2.1); a straightforward spectral bisection algorithm cuts the remaining rungs, whereas the
optimal bisection is made by cutting across the ladder above the remaining rungs. (I refer to this
graph as the “roach graph” because its outline looks roughly like the body of a cockroach and two

15

long antennae.)

\"
2k+1 V5k+1

V
3k Vek

Figure 2.1: The Roach Graph

The spectral bisection algorithm can be modified to generate a better separator for the roach
graph. Some modifications are presented in [HK92]; they still use a partition based on u,. I
consider a simple spectral separator algorithm, the “best threshold cut” algorithm, based on the
most general of these suggested modifications, and present a second class of graphs that defeats
this algorithm. This class consists of crossproducts of path graphs and graphs consisting of a pair
of complete binary trees connected by an edge between their roots.

Finally, T consider a more general definition of purely spectral separator algorithms that
subsumes the two preceding algorithms. This definition allows the use of some specified number
of eigenvectors corresponding to the smallest eigenvalues of the Laplacian. For any such algorithm
that uses a fixed nuinber of eigenvectors I show there are graphs for which it does no better than
using the “best threshold cut” algorithm. Further, the separator produced when the “best threshold
cut” algorithm is applied to these graphs is as bad as possible (to within a constant) with respect
to bounds on the size of the separators produced. I also show that if a purely spectral algorithm
uses up to n* eigenvectors for 0 < ¢ < %, there exist graphs for which the algorithm fails to find a
separator with a cut quotient (i.e., the ratio between the number of edges cut and the size of the
smaller set in the vertex partition) within ni~¢ — 1 of the optimum (the optimum cut quotient is
called the isoperimetric number). I also argue that the counterexample graphs can be extended to
graphs that could conceivably be used as three-dimensional finite-element meshes — that is, graphs
that could be encountered in practice.

This thesis makes one additional contribution: While the counterexamples have simple struc-
tures and intuitively might be expected to cause problems for spectral separator algorithms, the
challenge is to provide good bounds on A, for these graphs. For this purpose I have developed
theorems about the spectra of graphs with particular symmetries that exist in the counterexamples.

Specifics are given in the text that follows. Section 2.2 gives the history of spectral methods
and the details of the algorithms discussed in this paper. Section 2.3 gives some graph and matrix
terminology, and presents some useful facts about Laplacians. Section 2.4 gives the counterexample
for the spectral bisection algorithm; Section 2.5 gives the counterexample for the “best threshold
cut” algorithm. Section 2.6 discusses the generalized definition of spectral separator algorithms, and

16

shows that there are graphs for which any such algorithm performs poorly. Section 2.7 concludes
the discussion of spectral methods; it summarizes the contributions of this work. Future work is
discussed in Chapter 4.

2.2 Spectral Methods for Computing Separators

The roots of spectral partitioning go back to Hoffmann and Donath [DH73], who proved a lower
bound on the size of the minimum bisection of a graph, and Fiedler [Fie73][Fie75], who explored
the properties of A, and its associated eigenvector for the Laplacian. There has been much
subsequent work, including Barnes’s partitioning algorithm [Bar82], Boppana’s work that included
a stronger lower bound on the minimum bisection size [Bop87], and the particular bisection and
graph partitioning problems considered in this paper [HK92] [PSL90] [Sim91]. (Note that spectral
methods have not been limited to graph partitioning; work has been done using the spectrum
of the adjacency matrix in graph coloring [AG84] and using the Laplacian spectram to prove
theorems about expander graph and superconcentrator properties [AM85] [Alo86] [AGMS87]. The
work on expanders has explored the relationship of A; to the isoperimetric number; Mohar has
given an upper bound on the isoperimetric number using a strong discrete version of the Cheeger
inequality [Moh89]. Reference [CDS79] is a book-length treatment of graph spectra, and it predates
many of the results cited above.)

A basic way of computing a graph bisection using spectral information is presented in [PSL90].
I refer to this algorithm as spectral bisection. Spectral bisection works as follows:

¢ Represent G by its Laplacian B, and compute uy, the eigenvector corresponding to A, of B.

o Assign each vertex the value of its corresponding entry in u;. This is the characteristic
valuation of G.

¢ Compute the median of the elements of u,. Partition the vertices of GG as follows: the vertices
whose values are less than or equal to the median element form one part of the partition; the
rest of the vertices form the other part. The set of edges between the two parts forms an edge
separator.

e If a vertex separator is desired, it is computed from the edge separator as described in the
next section.

Since the graph bisection problem is NP-complete [GJ79], spectral bisection may not give
an optimum result. That is, spectral bisection is a heuristic method. A number of modifications
have been proposed that may improve its performance. These modified heuristics may give splits
other than bisections. In such cases, one can use the cut quotient or separator ratio (the separator
ratio is the ratio between the number of edges cut and the product of the sizes of the two sets in
the vertex partition) to judge how close the split is to optimal. Computing the separator with the
minimum ratio is NP-hard (see, e.g., [LR88]). The following modifications, all of which use the
characteristic valuation, are presented in [HK92]:

¢ Partition the vertices based on the signs of their values;

17

o Look for a large gap in the sorted list of eigenvector components, and partition the vertices
according to whether their values are above or below the gap; and

e Sort the vertices according to value. For each index 1 < ¢ < n — 1, consider the ratio for the
separator produced by splitting the vertices into those with sorted index < 4 and those with
sorted index > 7. Choose the split that provides the best separator ratio.

Note that the last idea subsumes the first two. I consider a variant of this algorithm below. Since
this algorithm does not specify what to do when multiple vertices have the same value, I restrict it
to consider only splits between vertices with different values (such cuts are called threshold cuts).
This restricted version is the “best threshold cut” algorithm; the slight change from the definition
above does not alter its performance with respect to the counterexamples below (other than slightly
simplifying the analysis).

Also note that the idea of cutting at an arbitrary point along the sorted order can be extended to
choosing two split points, where the corresponding partitions are the vertices with values between
the split points, and those with values above the upper or below the lower split point. Again, the
pair yielding the best ratio is chosen.

The algorithms mentioned so far have only used the eigenvector us. Another possibility is to
look at partitions generated by the set of eigenvectors for some number of smallest eigenvalues: for
each vertex, a value is assigned by computing a function of that vertex’s eigenvector components.
Partitions are then generated in the same way as they are for u; in the various algorithms given
above.

Given the variety of heuristics cited above, it would be nice to know which ones work well
for which classes of graphs. It would be particularly useful if it were possible to state reasonable
bounds on the performance of these heuristics for classes of graphs commonly used in practice
(e.g., planar graphs, planar graphs of bounded degree, three-dimensional finite element meshes,
etc.). Unfortunately, this is not the case. I start by proving that spectral bisection may produce a
bad separator for a bounded-degree planar graph in Section 2.4; first, however, I need to introduce
some terminology and background results.

2.3 Terminology, Notation, and Background Results

I assume that the reader is familiar with the basic definitions of graph theory (in particular, for
undirected graphs), and with the basic definitions and results of matrix theory. A graph consists of
a set of vertices V and a set of edges E; I denote the vertices (respectively edges) of a particular
graph G as V(@) (respectively F(G)) if there is any ambiguity about which graph is referred to.
The notation |G| is sometimes be used as a shorthand for |V (G)|. When it is clear which graph is
referred to, I'use n to denote |V|.

Capital letters represent matrices and bold lower-case letters represent vectors, For a matrix A,
a;; or [A];; represents the element in row ¢ and column j; for the vector x, z; or [x]; represents the
™ entry in the vector. The notation with square brackets is useful in cases where adding subscripts
to lower-case letters is awkward (e.g., where the matrix or vector name is already subscripted). The
notation x = 0 indicates that all entries of the vector x are zero; 1 indicates the vector that has 1 for

18

every entry. For ease of reference, the eigenvalues of an » X n matrix are indexed in non-decreasing
order. A represents the smallest eigenvalue, and A, the largest. For1 < ¢ < n, A;_1 < A; < Ajp1.
The notation \;(A4) (respectively \;(G)) indicates the 1™ eigenvalue of matrix A (respectively of
the Laplacian of graph) if there is any ambiguity about which matrix (respectively graph) the
eigenvalue belongs to. u; represents the eigenvector corresponding to A;.

The term path graph denotes a tree that has exactly two vertices of degree one. That is, a path
graph is a graph consisting of exactly its maximal path.

The crossproduct of two graphs G' and H (denoted G x H) is a graph on the vertex set
{(u,v) | v € V(G),v € V(H)}, with ((u,v),(+,v")) in the edge set if and only if either v = v’
and (v,v') € E(H) or v = ¢/ and (u,v’) € E(G). Itis easy to see that G x H and H x G are
isomorphic. One way to think of a graph crossproduct is as follows: Replace every vertex in G
with a copy of H. Each edge e in G is then replaced by |H| edges, one between each pair of
corresponding vertices in the copies of H that have replaced the endpoints of e. That is, for each
edge (v;, v;) in G, there is a copy ¢ and a copy j of H. For each vertex in A, add an edge between
vertex u in copy ¢ and the vertex u in copy j. An example is shown in the figure below.

For a connected graph (G, an edge separator is a set S of edges that, if removed, breaks the
graph into two (not necessarily connected) components 1 and G, such that there are no edges
between G'1 and G2. (An edge separator is defined to be a minimal set with respect to the particular
G1 and (7.) A vertex separator is a set 5 of vertices such that if these vertices and all incident
edges are removed, the graph is broken into two components G; and G, such that there are no
edges between Gy and G (again, such a separator is a minimal such set). The goal in finding
separators is to find a small separator that breaks the graph into two fairly large pieces; often this
notion of “large pieces” is expressed as a restriction that the number of vertices in either component
be at least some specified fraction of the number of vertices in . For edge separators, this is stated
more generally in terms of the separator ratio p, defined as |S|/ (|G1] - |G2|). The optimum
ratio separator p,,; is the one that minimizes the separator ratio over all separators for a particular
graph [LRE8]. .

A related concept (again, for edge separators) is the isoperimetric number ; (@), defined as:

min(L)
s \min (|G1,|Ga]) }

I refer to the quantity |.S|/ min (|G1[,|G>|) as the cut quotient for the edge separator §. It is easy
to see that npop; > 4(G) > npep:/2. As noted in the chapter introduction, finding a cut with the
minimum separator ratio or with a cut quotient equal to the isoperimetric number is NP-hard.

It is well known that an edge separator S can easily be converted into a vertex separator S’ by
considering the bipartite graph induced by 5 (where the parts of the bipartition are determined by
the components (1 and G), and setting .S’ to be a minimum edge cover for that graph.

Graphs can be represented by matrices. For example, the adjacency matrix A of a graph G
is defined as a;; = 1 if and only if (v;,v;) € E(G); as; = 0 otherwise. (For such representations I
assume that the vertices are numbered to correspond to the indices used in the matrix.)

A common matrix representation of graphs is the Laplacian. Let D be the matrix with
d;; = degree(v;) for v; € V(G), and all off-diagonal entries equal to zero. Let A be the adjacency
matrix for GG as defined above. Then the Laplacian of G is the matrix B = D — A.

19

e S]

Figure 2.2: A Graph Crossproduct Example

The following are some useful facts about the Laplacian matrix;

The Laplacian is symmetric positive semidefinite, so all its eigenvalues are greater than or
equal to O (see e.g. [Moh88]).

A graph G is connected if and only if 0 is a simple eigenvalue of the Laplacian of GG (see
e.g. [Moh88]).

The following characterization of A, holds (see e.g. [Fie73]):

. xTAx
A2 = min t
xlI X°X

If G is a crossproduct of two graphs G and H, then the eigenvalues of the Laplacian of G
are all pairwise sums of the eigenvalues of G and H (see e.g. [Moh88]).

20

e For any vector x and Laplacian B of graph G, the following holds (see e.g. [HK92]):

xTBx = Z (z; — z;)? (2.1)
(vi,v;)€E(G)

e For a graph GG and its Laplacian B, A, of B figures in upper and lower bounds on the
isoperimetric number for G [Moh89]. In particular, if G is not one of K, K5, or K3 (the
complete graphs on 1, 2, and 3 vertices respectively), then:

% <i(G) < /M2A— N, (2.2)

where A is the maximum degree of any vertex in . This implies the size of any bisection
is at least %1.

The proof of the upper bound in (2.2) has interesting implications about the threshold cuts
based on the second eigenvector. For any connected graph (, consider the characteristic valuation.
The vertices of G receive k < n distinct values; let £; > 5 > ... > t be these values. For each
threshold ¢;, ¢ < k, divide the vertices into those with values greater than t;, and those with values
less than or equal to ¢;. Compute the cut quotient ¢; for each such cut, and let ¢,,;,, be the minimum
over all g;’s. The following theorem can be derived from the proof of Theorem 4.2 in [Moh89]:
Theorem 2.3.1 Let G be a connected graph with maximal vertex degree A and second smallest
eigenvalue Ay. If G is not any of K1, K», or K3, then

%2 < in < \Mal28—).

This can be extended to the separator ratio for the best u; cut in the obvious way.

A weighted graph is a graph for which a real value w; is associated with each vertex v;, and
a real, nonzero weight w;; is associated with each edge (v;, v;) (a zero edge weight indicates the
lack of an edge). For my analysis, I need a matrix representation for weighted graphs. Fiedler
extended the notion of the Laplacian to graphs with positive edge weights [Fie75]; he referred to this
representation as the generalized Laplacian. However, I need an even more general representation
that can be used for any weighted graph. Hence I define the standard matrix representation B
of a weighted graph G as follows: B has b; = w;; for i # j and (v;,v;) € E(GQ), bij = —w;j,
and b;; = 0 otherwise. Note that the Laplacian matrix of a graph is also the standard matrix
representation of the graph with vertex weights set to be the degrees of the vertices, and all edge
weights setto 1.

Note that the standard matrix representation of any weighted graph is a real symmetric matrix,
and that any such matrix can be represented as a specific weighted graph. Any theorems about
symmetric, real matrices apply to standard matrix representations of graphs. The following two
theorems about the interlacing of eigenvalues are particularly useful when applied to standard
matrix representations.

The First Interlacing Property states that if A, denotes the leading » X r principal submatrix
of an n X » symmetric matrix A, thenfor r = 1 : » — 1 the following holds:

)\'r+1(A7'+1) >)\T(A'r) 2 AT(A’I'—}—I) Z ...
w2 M(Arg1) 2 M1(4r) 2 M(Arga)

21

(the preceding statement is from page 411 of reference [GL89]; the proof is in [Wil65]).

The Second Interlacing Property is stated as follows: Suppose B = A + acc?, where A is
areal symmetric n X n matrix, c is a real unit-length vector, and « is real and greater than 0. Then
forallt, 1<i<n—-1

Ai(A) < Ai(B) < Aig1(4)

(the preceding statement is a restricted version of a theorem from page 412 of reference [GL89];
the proof is in [Wil65]). The Second Interlacing Property implies that if an edge e is added to a
graph G to produce the graph G’, then A2(G) < A2(G).

2.3.1 The Structure of Laplacian and Standard Matrix Representation Eigenvectors

The theorems and lemmas presented in this section are useful in proving results about the eigen-
vectors of the families of graphs presented in later sections. The proofs of some of these results
are long and technical; a reader who is interested only in understanding the counterexamples and
their implications presented later in this report is advised to look at the theorem statements and
examples, and to skip the proofs (although the rules for constructing odd and even components at
the end of Theorem 2.3.4 may be of interest to some readers). ,

The first set of results concerns eigenvalues of Laplacians of graphs with automorphisms of
order 2. A graph automorphism is a permutation ¢ on the vertices of the graph G such that
(vi,v;) € E(G)if and only if (v4(;),vg(j)) € E(G). The order of a graph automorphism is the
order of the permutation on the vertices.

For weighted graphs, there are two additional conditions: the weights of vertices v; and vy(;)
must be equal for all 7, and the weights of edges (v;, v;) and (vg;), v4(;)) must be equal.

The next two theorems concern the structure of eigenvectors with respect to automorphisms of
order 2. They hold both for Laplacians of graphs under the standard definition of automorphism,
and for standard matrix representations of weighted graphs under the definition of automorphisms
for weighted graphs.

Let G be a graph with an automorphism ¢ of order 2 and Laplacian B. A vector x that has
z; = zg(;) for all 7 in the range 1 < ¢ < n is an even vector with respect to the automorphism ¢;
an odd vector y has y; = —yy;) for all <. It is easy to show that for any even vector x and odd
vector y (both with respect to ¢),x and y are orthogonal.

Theorem 2.3.2 [Even-Odd Eigenvector Theorem] Let B be the Laplacian of a graph G that has
an automorphism ¢ of order 2. Then there exists a complete set U of orthogonal eigenvectors of B
such that any eigenvector w € U is either even or odd with respect to ¢. This also holds if G is a
weighted graph, B the standard matrix representation of G, and ¢ a weighted graph automorphism
of order 2.

Proof: Let P be the permutation matrix that corresponds to the automorphism ¢. Then PTBP =
B. If u is an eigenvector of B with eigenvalue A, then so is Pu. The following holds by the
definition of automorphism:

(PTBP)u=Bu=)u

Since the automorphism is of order 2, PP = I and P¥ = P~! = P. Multiplying each side of the

22

equation above by P thus gives
B (Pu) = P(Au) = A (Pu).

For an even vector x, Px = x; for an odd vector y, Py = —y.
P allows us to uniquely decompose any vector x into an odd component X,4q and an even
component X, as follows:

x — Px x + Px
) 3 and Xeyen = T

Xodd =
For any non-zero x, at least one of the even or odd parts must also be non-zero.

Let U’ be any complete set of eigenvectors of B. For an eigenvector u € I/, it is easy
to see that a non-zero even or odd component is an eigenvector for the same eigenvalue. Since
Uodd + Ueven = U, the set of odd and even eigenvectors resulting from decomposing all the
eigenvectors spans the same space as /. This implies the claimed result. '

The proof generalizes to weighted graphs.

O

Corollary 2.3.3 Let B be the standard matrix representation of a weighted graph G that has one
or more automorphisms of order 2. Then the eigenvector for any simple eigenvalue is either even
or odd with respect to every such automorphism.

Proof: Let u be the eigenvector for some simple eigenvalue A. Consider the decomposition of
u into odd and even parts with respect to some automorphism ¢ with order 2. If both parts were
non-zero, they would be orthogonal and eigenvectors for A. Therefore either the odd part or the
even part must be zero.

O

Since Laplacians can be considered to be standard matrix representations given the right weight
assignments, the preceding result also holds for Laplacians.

Theorem 2.3.4 [Even-Odd Graph Decomposition Theorem] For every weighted graph G with
standard matrix representation B and an automorphism ¢ of order 2, there exist two smaller
weighted graphs G oqq and G eyer, (the odd and even components respectively) such that the eigen-
values of Boqq (the standard matrix representation of G,qq) are odd eigenvalues of B, the eigen-
values of Beyen (the standard matrix representation of Geyern) are even eigenvalues of B, and
\V(Godd)|l + |V(Geven)| = |V(G)|. Further, a complete set of eigenvectors of B can be con-
structed from the eigenvectors of B,qq and Beyey in a straightforward way.

Proof: I demonstrate a similarity transform that when applied to B gives a reducible matrix with
two blocks corresponding to B,gq and Beyer. First I introduce some notation.

The vertices of G can be divided into two disjoint sets on the basis of how ¢ operates on them.
Let V; be the set of vertices v; such that ¢(i) = ¢ (i.e., the vertices fixed by ¢), and let V,,, be the
set of vertices v; such that ¢(j) # j (ie., the vertices moved by ¢). V,,, consists of vertices in
orbits of length 2. I call a subset of V,,, that consists of exactly one vertex from each such orbit a
representative set and denote it V,. In the rest of the proof assume that a particular V,. has been
arbitrarily specified. Iuse n¢, ny,, and n, respectively to denote the number of vertices in each of
these sets.

23

Without loss of generality, number the vertices in the following way: the vertices in V; are
numbered 1 through ny; the vertices in V,. are numbered from ny + 1to ny + n,. If v; € V,, set
#(i) = i + n,; that is, the vertices in V;, \ V; are numbered ns 4+ n, + 1 to n in the same order
as the vertices in ¥, with which they share orbits. Using this ordering and the definition of the
automorphism, B can be written in the following block form

F Efr -Efr*
B=|El, R Eyuun|,
L Lroy R

where

e Fis an ny X ny submatrix containing the diagonal entries for the vertices in V; and the
entries for edges between pairs of vertices in Vy;

e Risann, X n, submatrix containing the diagonal entries for the vertices in V;. and the entries
foredges between pairs of vertices in V. (recall that the definition of an automorphism and the
vertex numbering together imply that the same submatrix applies for the vertices in V,,, \ V,.);

o [Fy, contains the entries of B for edges between vertices in Vy and V; (the vertex numbering
plus the automorphism condition that (v;,v;) is an edge of G if and only if (vg;), Vg(s)) 18
also an edge imply that the submatrix with entries for edges between V; and V,,, \ V; are the
same); and

o F.4(r) contains the entries of B for edges between vertices in V; and V;\ V; (again, the vertex
numbering, the condition that edges are preserved under automorphism, and the symmetry
of B imply that E,.4(,) = EZ;S(T) = Eg(r)r)-

I now define the orthogonal matrix 7' used to transform B. T has the following form:

Inf 0 0
o L7t N
T = \/(2) nir \/(2) T)
o —L =1

In In
VO e

where the I’s are identity matrices with the dimension specified in the subscript. B is transformed
as follows:

B' = TTBT |
[Inf 0 0 1 r F .E E Inf 0 0
o L _Lrp - fr fr 0 —Lr1, -Lp
= \/1(2) " \ﬂlz) " E,}r B Eryr) \/1(2) T \/(12) r
o L1, —=Lr ET E.g»n R 0 LI, —=LI,
i Jal Jalv | LEr B Vo™ Ve
(I,, O o 11 F V2E4, 0
1 1 T _1_ 1 (p_
— 0 \/(2) Inr (2) I'n-r Efr \/z2) (R + ET¢'(‘7‘)) \/EZ) (R ET¢(T))
M i T ‘1 1
L0 el ol | L B Jo Bt Eee) 7Rt Er)

24

- V2ET R4+ Erg(r) 0
0 0 R — E.y)

Note that the resulting matrix is reducible. That is, when viewed as a weighted graph, that
graph has two components. I show that the blocks of this matrix correspond to Bye,, and B,q4 as

follows: 3
F 2E;,]
Beven = T and Bygg = R — E,4(,y-
[V2E%, R (")

Since B’ is similar to B, it has a number of useful properties. Because B’ is reducible, every
eigenvalue of B,44 is an eigenvalue B’; likewise every eigenvalue of Beyer is an eigenvalue B’.
By similarity, they are also eigenvalues of B.

Now consider an eigenvector u of Beyen. Define v as follows: for 1 < ¢ < ny + n, let
v; = u;; let v; = 0 otherwise. v is obviously an eigenvector of B’. Multiplication by the matrix 7'
transforms v into an eigenvector w of B:

I, 0 0 vy
o L 17 Vi 1y,
W = TV — \/(2) Ty \/(2) ir Vy = \/(2) r
o -1 =17 0 1

In n T YT
Vot Yo VoM

By the vertex numbering, it is easy to see this is an even vector. Since u, v, and w all have the
same eigenvalue A, the claim about eigenvalues of B, corresponding to even eigenvalues of
B holds. It is easy to show that if two eigenvectors uy and up of Bg,., are orthogonal, then the
corresponding eigenvectors wy and wo are also orthogonal. Thus if an eigenvalue of B.,., has
multiplicity 2, there are two orthogonal even eigenvectors of B with that eigenvalue.

Now consider an eigenvector u of B,44. As before, one can construct an eigenvector v of B’
forng +n, + 1 < ¢ < nlet v; = u;; let v; = O otherwise. Multiplication by the matrix 7" again
transforms v into an eigenvector w of B:

L, 0 0 0 0
B B o L1, —L I, . L v #(r)
w=Tv= \[1(2) v \412) r 0 | = \412)
0 7(2—)Inr %Inr Ve(r) VoM.

This is clearly an odd vector. Since u, v, and w all have the same eigenvector A, the claim about
eigenvalues of B,4g corresponding to odd eigenvalues of B holds. It is easy to show that if two
eigenvectors uy and ug of B,g4 are orthogonal, then the corresponding eigenvectors w1 and wo
are also orthogonal. Thus of an eigenvalue of B,y has multiplicity 2, there are two orthogonal
odd eigenvectors of B with that eigenvalue.

Note that if all eigenvectors of B.y., and B,z are transformed in this way the result is n
orthogonal eigenvectors of B (i.e., a full set).

It is easy to construct the components G',gq and Geyern, from G. 1 now give the rules for these
constructions; they are easy to verify from the matrix entries of B’.

25

Godd is a weighted graph on V;.. Start with the subgraph of G induced by V., with the weight
of vertex v; equal to the weight of »; in G and the weight of edge (v;,v;) equal to its weight in G.
Adjust the weights according to the following two rules:

¢ Degree weight adjustment rule: For each vertex v; € V,, if there is an edge in G from v;
to vg(;) (i.e., there is an edge from v; to its image under the automorphism), then increase the
weight of v; in G4q by Wig(s)-

o Edge weight adjustment rule: For each pair of distinct vertices v;, v; € V, and ¢ < j, if
there is an edge (v;, 'u¢(j)) in G (i.e., if there is an edge from v; in the representative set to
the image of v; outside of the representative set), add an edge (v;, v;) with weight —W;,4(3)
t0 G4 (if there is already an edge (v;, v;) in Goqq, subtract w; 4(;) from its weight). To see
that this rule is well-formed with respect to permutations of the vertex numberings, note that
since ¢ is an automorphism of order 2, the existence of an edge (v;, Vg(j)) in G implies the
existence of an edge (vy(;), v;) in E(G) with the same weight. That is, for any i < j

Godd

= w@ _w@ . = w@ WG .
Wi = Wiy — W) = Wi — Wiga)

where the superscripts on the weights indicate the graph for which they are defined. Thus,
renumbering the vertices in a way that assigns v; an index less than the new index of v; does
not affect the weight of the corresponding edge in G,44.

Delete any zero-weight edges from Gyq4.

Gleven is a weighted graph on V. U V. Start with the subgraph of G induced by V,. U Vy, with
the weight of vertex v; € V; UV equal to its degree in G and the weight of each edge (v;, v;)
equal to its weight in . Adjust the weights according to the following three rules:

o Degree weight adjustment rule: For each vertex v; € V,, if there is an edge in G from v;
to vy(;) (Le., there is an edge from v; to its image under the automorphism), then decrease
the weight of v; in Geyen by wig(s)-

o V,-to-V¢ Edge weight adjustment rule: For each edge (v;, ;) in Geyep, such that v; € V,
and v; € V; (i.e., for each edge between the fixed vertices and the representative vertices),
multiply its weight by v/2.

¢ V. -to-V, Edge weight adjustment rule: For each pair of distinct vertices v;, v; € V; and
i < j, if there is an edge (v;, vg(;)) in G (i.e., if there is an edge from v; in the representative
set to the image of v; outside of the representative set), add an edge (v;,v;) with weight
W; 4(5) t0 Geven (if there is already an edge (vi,vj) in Geyen, add w; ¢(;) to its weight). I
leave it to the reader to check that this rule is well-formed with respect to permutations of
the vertex numberings; the argument is the same as for the edge weight adjustment rule in
the odd case.

Delete any zero-weight edges from G yep,.

Since
[V(Goad)|l + [V(Geven)| = [Vi| + 2IVi| = [Vi| + |Vin| = [V(G)],

26

the claim about the combined size of the two graphs holds.
O

It is useful to consider an example of even-odd graph decomposition before proceeding. I
demonstrate one way in which a complete binary tree of three levels can be decomposed. The initial
graph is shown in Figure 2.3.1 below. The first automorphism maps leaves with the same parent

Figure 2.3: The Initial Graph

to each other. Applying the rules given above for constructing the odd and even components gives
the result shown in Figure 2.3.1. The odd component is fully decomposed; one can apply one more
step of decomposition to the even component using the automorphism that maps the corresponding
vertices at the lowest two levels to each other. The result is shown in Figure 2.3.1. This example is
also useful in arguments about bounding the smallest nonzero eigenvalue of complete binary trees
below.

The following technical lemmas about the eigenvalues and eigenvectors of weighted path
graphs are useful in subsequent results.

Lemma 2.3.5 [Zero Entries of Path Graph Eigenvectors Lemma] Let B be the standard matrix
representation of a weighted path graph G on n vertices. For any vector X such that Bx = Ax for
some real A, x, = 0 implies x = 0. Likewise, 1 = 0 implies x = 0. If there are two consecutive
elements z; and z; that are both zero, then X = 0.

Proof: The first result is proved by induction. The base case is for a 2 X 2 matrix with diagonal
entries b1 and by, and off-diagonal entries b1 = b3; = —c. Let x and A be as specified by
the lemma statement, and assume that o = 0. The second element of the vector resuiting from
multiplying Bx = Axis —¢ - 21 = Azy = 0. Since ¢ # 0 by definition (G is a weighted path
graph), it must be the case #; = 0, which implies that x = 0.

For the induction step, assume that the result holds for all 7 < k, and consider the standard
matrix representation of a weighted path graph on k£ + 1 vertices. Let the weight of the edge from
v to vg41 be c. Let x and A be as stated, and assume that 5,1 = 0. The k + 1% entry of Bx is
—c¢ -z = Azg1 = 0. Thus z; = 0. Let x’ be the subvector of x consisting of the first &k entries.
Note that with z;4; = 0 it is the case that x’ and A meet the lemma conditions for the principle
leading minor By, of B, and that 2}, = 0. But the leading principle minor By, is the standard matrix
representation for the weighted path graph derived from G by deleting the last edge and vertex.

27

3 y 3
@ @
1 1
«/5 — -f— «/E
i
1 1
Even Component 0dd Component

Figure 2.4: After the First Decomposition Step

Thus, by the induction hypothesis x’ must be 0; because zx1 = O this implies that x = 0

A symmetric argument implies the result for z; = 0.

Again let B be the standard matrix representation of a weighted path graph G. Let x be a
vector meeting the lemma conditions for A, and assume that x has two consecutive zero elements
z; and x;41. If either ¢ = 1 or ¢ 4 1 = n, x = 0 by the previous argument. Otherwise, z;1 = 0
implies that the first 7 elements of x and A meet the lemma conditions for the leading principle
minor B; of B. Note that B; is the standard matrix representation for some weighted path graph.
Thus by the previous result the first ¢ entries of x are zero. By a symmetric argument for the trailing
principle minor, the last » — 7 entries must also be zero, which gives x = 0.

O

Since eigenvectors are by definition not equal to the zero vector, the theorem above implies
that for eigenvectors of the standard matrix representation B of any weighted path graph, neither
the first nor the last entry is zero. Likewise, such an eigenvector cannot have two consecutive zero
entries. These facts can be used to give a simple proof of the following lemma (for a different
proof, see e.g. pp. 910-911 of [YG73]).

Lemma 2.3.6 All eigenvalues of the standard matrix representation B of a weighted path graph
G on n vertices are simple (i.e., have multiplicity one).

Proof: Let u and u’ be any two eigenvectors of B for the eigenvalue A\. By the Zero Entries
of Path Graph Eigenvectors Lemma (Lemma 2.3.5), u,, # 0 and u}, # 0. Let a be] /u,; o is
non-zero and real. Then B (au — u’) = A (eu — u’). But the n™ element of (au — u’) is 0, so
by Lemma 2.3.5, it must be the case that cu = u/, so u must be a scalar multiple of u’; it is not a

28

@
- 2
3 T 3
- 2 2 —
¢
1 1
New Even Component New Odd Component
Figure 2.5: Result of Decomposing Odd Component
distinct eigenvector.

O
A path graph on n vertices has exactly one automorphism of order two: ¢(i) = n — ¢ + 1.
Thus one can talk about odd and even eigenvectors of a path graph without ambiguity; they are
always with respect to this automorphism.
Lemma 2.3.7 The eigenvector wy corresponding to the second smallest eigenvalue)\, of the
Laplacian B of a path graph G on n vertices is odd.
Proof: By Lemma 2.3.6, u; is simple, so by Corollary 2.3.3, up must be either even or odd.
Assume that it is even. I show this leads to a contradiction.
Recall the characterization
. xT Ax
A2 = min -
xll X°X

There are two cases to keep track of: n is odd, and = is even. If » is odd, there is a single center
vertex vz (index the vertices along the path from 1 to n). If n is even, there are two center vertices
with indices 7 and % + 1; since u; is assumed to be even, their entries in u; are equal. Thus, by
Lemma 2.3.5, if = is even the eigenvector entries corresponding to the center vertices are non-zero.
If » is odd, u; is even, and the eigenvector entry for the center vertex is 0, then it is easy to check
that changing the signs of all eigenvector entries with index less than the center index gives an odd
eigenvector with eigenvalue A;, which contradicts the simplicity of A,. Thus, the assumption that
uy is even implies that the eigenvector entries corresponding to the center vertex or vertices must
be non-zero. Let this value be c.

29

Now consider the vector x = (—c) - I + uy. Recall that u, is orthogonal to 1. It is easy to see
that x is even, and since ¢ # 0,

2 (7T AT T
xT Ax _ - (1 Al) + uj Aup _ ugAuz ugAug
Ty - T - - 2 T T .
X (- THuw) ((mo)T4w) Ot wmuw
However, the entries of x corresponding to the center vertex or vertices are 0, so as above, one can
create an odd vector y such that

yT Ay B xT Ax
yly = xTx

as follows: sety; = z;, ¢ < 5 and y; = —z;, ¢ > %. y is orthogonal to 1, so it meets the criteria
for the characterization of A;, so the assumption that u; is even gives A» < A,, a contradiction.
a

2.3.2 Bounds on A; for Trees and Double Trees

I now use the results from the preceding section to prove some upper and lower bounds on A, for
the Laplacian of the complete binary tree and for the Laplacian of a graph I call the double tree. A
double tree is two complete binary trees of k levels for some k > 0 connected by an edge between
their respective roots. The bounds developed below are useful in Section 2.5.

To bound the size of A, of a complete binary tree, I first apply the Even-Odd Decomposition
Theorem (Theorem 2.3.4) k£ — 1 times to show that the eigenvalues of a balanced binary tree can
be computed from a few simple types of weighted graphs. I then bound the eigenvalues for these
types of graphs using the interlacing theorems and matrix perturbation techniques. The result is
a proof that for £ > 3, a complete binary tree on k levels with n = 2F — 1 vertices, Ay = @(%)
More specifically, % <A< %

For the following argument, assume that the initial graph is a complete binary tree of & > 2
levels. As above, n = 2% — 1.

Start by applying the Even-Odd Graph Decomposition Theorem with respect to the automor-
phisms that each map one pair of sibling leaves to each other. There are 2¥~1 leaves and 2¥~2 such
automorphisms. For the odd eigenvalues, A = 1 for each of the 2%~2 single-vertex graphs that
comprise the odd components. The result for £ = 3 was shown above in Figure 2.3.1.

To help in understanding the structure of the resulting even component, I introduce the follow-
ing terminology: for i > 3, the i odd collapsed tree graph is a weighted graph on i — 1 vertices,
with every edge having weight /2, vertex v, having weight 1, and all other vertices having weight
3 (the odd collapsed tree graph for ¢ = 5 is shown in Figure 2.3.2 below). With this terminology,
G even can be described in the following way: .the even component after the first decomposition
step has the structure of a complete binary tree of k& — 1 levels, except that the leaves of the tree
are replaced by the odd collapsed tree graph for 7 = 3; the vertices at level £ — 2 are connected by
edges of weight 1 to the vertices v; of the odd collapsed tree graphs. This is illustrated for & = 3
in Figure 2.3.1 above.

Now repeat the process for the 2¢~3 automorphisms that map neighboring pairs of the odd
collapsed tree graphs to each other. The odd eigenvalues from these decompositions are the

30

Figure 2.6: Odd Collapsed Tree Graph, ¢ = 5§

eigenvalues of the odd collapsed tree graph for ¢ = 3, each occurring 2*—3 times; the even
eigenvalues come from a new even component, a weighted graph that looks like a complete binary
tree with £ — 2 levels, except that the leaves are replaced by odd collapsed tree graphs for i = 4.
Once again, each odd collapsed tree is connected to its parent by an edge of weight 1 from vertex
v3 of the odd collapsed tree graph.

Continue this process; at the 5% series of reductions the odd eigenvalues are those of the odd
collapsed tree graph for ¢« = j + 1; the even component is a weighted graph that looks like a
complete binary tree with £ — j levels, except that the leaves are replaced by odd collapsed tree
graphs fori = 7 + 2.

At the last decomposition step, start with a weighted graph that looks like a complete binary
tree with 2 levels, except that the leaves have been replaced by odd collapsed tree graphs for ¢ = k.
Apply the Even-Odd Decomposition Theorem one last time; the eigenvalues for this graph are
those of the odd collapsed tree graph for ¢ = k plus the eigenvalues for a graph on & vertices that
consists of the odd collapsed tree graph for 7 = k plus vertex vy with weight 2, and edge (vg—1, vx)
with weight V2 (I refer to this latter graph as the even collapsed tree graph for ¢ = k; the even
collapsed tree graph for « = 5 is shown in Figure 2.3.2 below). Recall that the original tree’s
eigenvalues that are not represented by either of these final components are either 1 (from the first
set of decompositions) or eigenvalues for the odd collapsed tree graphs for¢, 3 < ¢ < k.

Let ,u(’“) be the smallest eigenvalue of the odd collapsed tree graph for ¢ = k. I claim that \,
for the complete binary tree on k levels is equal to z(*). u(*) is less than p® for any i < & by
the First Interlacing Theorem. The argument below shows that ,u(k) < 1for k > 3. Itis easy to
show that the standard matrix representation for the even collapsed tree graph for ¢ = k is singular,
so its smallest eigenvalue is 0. Thus, an application of the First Interlacing Theorem shows that
the smallest eigenvalue of the odd collapsed tree graph for ¢ = k is less than or equal to the first
non-zero eigenvalue of the even collapsed tree graph for ¢ = k (the standard matrix representation
of the former is a leading principle submatrix of the latter).

Bounds on p(*) are computed using matrix perturbation techniques. Note that the standard
matrix representation for the odd collapsed tree is nonsingular, so the smallest eigenvalue is the
one of interest.

31

Figure 2.7: Even Collapsed Tree Graph, : = 5

The rest of this argument uses two matrices. The first, B, is the standard matrix representation
for the odd collapsed tree graph for ¢ = k. The determinant of B is 1 (this is easily proved by
induction on k). The vertex ordering is as given in the description of the graph above. The second
matrix, B’, has

—1_ 1 ~n-—3
k=11 7 2kl_1 -1’
and all other entries are the same as for B. The determinant of B’ is O (again, easily shown via
induction).

Let v be the eigenvector of B’ corresponding to A = 0 (assume without loss of generality that
it is scaled to unit length). Then

byy =bn -

2
1

w1_q -0

vIB'v =vIBv -
2
By the Courant-Fischer Minimax Theorem (see, e.g., [GL89]), zk—fh is an upper bound on
p*Y = X(B). The next step is to show that for k& > 3, this upper bound is strictly less than 2,
Note that this immediately implies that u(*) is less than 1.
2
Because 2¢-1 — 1 = "2;1, the inequality E,g_v}—_l < % holds if 'vf < 2=l Assume that

n
'v% > 2=1. [show that this assumption contradicts the fact that v is unit length. Since B'v = 0,

n b

the definition of B’ implies that

n—3

b11’01 - \/5’02 =

1 -3
vl—\/ET)z:O—)’Uz:ﬁ(n >Ul,

n—1 n—1

and by the assumption on v%,

2 2
_- - — > ——
2 2() Ui 2n n—1

32

Since v is unit length, the assumption yields

k—1 2
1 1(n-3)
1= T = 2 > 2 2 = — -1 A=/ 1
vV i§=lvz_vl+vz - n + n >1,
a contradiction (the last inequality holds because if £ > 3, then » > 7, and thus L”?__—Slﬁ > 2).

To get a lower bound on ,u(k), let u be the unit-length vector such that u? Bu is minimized

(.e., ufBu = u(k)):

T pt T “% (%) ’“%
uBu:uBu—sz_l-:,u _Q,ICT—IZO
The last inequality holds by a version of the Second Interlacing Property with o < 0; B’ has a zero
eigenvalue, and all its other eigenvalues are greater than or equal to the (positive) eigenvalues of
B. B’ is thus positive semidefinite.
The above equation implies that if u; > ﬁ, then p(*) > zkl_z > % Since B is tridiagonal,

this is easily done by using B and () to generate a recurrence for the entries of u.

Consider the first entry of Bu. Using the fact that u is an eigenvector and the structure of B,
it is clear that u; — v/2uy = p®u;. Since 1 > ulk) > 0, this yields uy < % This provides the
base case for a proof by induction that u;;1 < % The details are left to the reader; the previous
inequality serves as the induction hypothesis. The further entries of the product Bu are expressed

by the equations
3u; — V2(uict + wigp1) = pPu;,

which can be used to prove the desired result for ;4.
Since u is unit length,

- -1) k-1 1 2(i-1)) 2k—l 1 (i-1) s
1= = u; < (—) Uy =1u (—) < 2ui,
uu Z: ; \/5 1 1§) 1

k
i=1
which gives the desired result that u) > %

The preceding argument proves the following lemma:
Lemma 2.3.8 For a complete balanced binary tree on k > 3 levels and n = 2% — 1 vertices,
% <A< %

For double trees where each of the component trees has & levels and n = 25+ — 2 vertices,
the following lemma applies:

Lemma 2.3.9 For a double tree on n > 14 vertices, % <A< %.
Proof: The proof uses a number of facts from the proof of the A; bounds for complete binary
trees given above.

Start by noting that one can apply the Even-Odd Decomposition Theorem starting from the
leaves of the trees as done above. The odd eigenvalues determined at each step are the same as for
the complete binary tree.

The last decomposition step (the one that divides between the two roots) results in two
components: the even component G, which is the same as the even component for a tree of &

33

levels, and the odd component G, which is like the k + 1% odd collapsed tree graph, except that
the weight of vertex k is 4 rather than 3. Again, the standard matrix representation is singular for
G. and non-singular for G,; an application of the Second Interlacing Theorem thus implies that A,
for the double tree is the smallest eigenvalue for G,,.

Next, note that the standard matrix representation of the odd collapsed tree for ¢ = k is a
principle submatrix of the standard matrix representation for G,. The First Interlacing Theorem
and the analysis of the odd collapsed tree above immediately imply that Ay < ﬁ; since the
double tree has n = 2511 — 2 vertices, this implies that A, < %.

Finally, note that G, is the odd collapsed tree for ¢ = £+ 1 with 1 added to the weight of vertex
k. One can thus apply the Second Interlacing Theorem and the results for the odd collapsed tree
above (recall that in the proof it was shown that ,u(k) > 2k1_2) to show that A, > ,u(k"'l) > 2k+11_2;

since the double tree has n = 2¥+! — 2 vertices, this implies that A, > %
O

2.4 A Bad Family of Bounded-Degree Planar Graphs for Spectral Bi-
section

In this section I present a family of bounded-degree planar graphs that have constant-size separators.
However, the separators produced by spectral bisection have size @(n) for both edge and vertex
separators. Since there are algorithms that produce O(+/r) vertex separators for planar graphs,
and hence O(+/n) edge separators for bounded-degree planar graphs, spectral bisection performs
poorly on these graphs relative to other algorithms.

The family of graphs is parameterized on the positive integers. G/, consists of two path graphs,
each on 3k vertices, with a set of edges between the two paths as follows: label the vertices of one
path from 1 to 3% in order (the upper path), and label the other path from 3% + 1 to 6k in order (the
lower path). For 1 < i < k there is an edge between vertices 2k + 7 and 5k + 7. This was shown
in Figure 2.1 in the Introduction. It is obvious that G, is planar for any %, and that the maximum
degree of any vertex is 3.

Note that the graph has the approximate shape of a cockroach, with the section containing
edges between the upper and lower paths being the body, and the other sections of the paths being
antennae. This terminology allows easy references to parts of the graph.

G’ has one automorphism of order 2 that maps the vertices of the upper path to the vertices
of the lower path and vice versa. For the rest of this section, the terms “odd vector” and “even
vector” are used with respect to this automorphism. Thus, an even vector x has z; = z3j4; for all
tin the range 1 < ¢ < 3k; an odd vector y has y; = —yag+; forall ¢, 1 < ¢ < 3k.

I can now discuss the structure of the eigenvectors of the Laplacian of G.

Lemma 2.4.1 Any eigenvector w; with eigenvalue X; of the Laplacian By, of G, can be expressed
in terms of linear combinations of even and odd eigenvectors with eigenvalue A;. In particular, v;
can be expressed as a linear combination of:

e an even eigenvector of By in which the values associated with the upper path are the same
as for the eigenvector with eigenvalue \; (if it exists) of a path graph on 3k vertices, and

34

o an odd eigenvector of By, in which the values associated with the upper path are the same as
Jfor the eigenvector with eigenvalue X; (if it exists) of a weighted graph that consists of a path
graph on 3k vertices for which the vertex weights of vog+1 through vsy have been increased
by 2.

Proof: The first claim follows by the Even-Odd Eigenvector Theorem applied with respect to the
automorphism that maps the vertices of the upper path to the vertices of the lower path and vice
versa.

The claim about the specific structure of the u;’s follows by a direct application of the
construction used in the proof of the Even-Odd Graph Decomposition Theorem with respect to the
same automorphism.

a

I now give the proof that spectral bisection gives bad separators for the family of graphs Gy.

Theorem 2.4.2 Spectral bisection produces ©(n) edge and vertex separators for Gy, for any k.
Proof: The first step is to show that u; is odd. Intuitively, this implies that the spectral method
splits the graph into the upper path and the lower path.
Recall that A; = min_ | 7 xi—fﬁ-’s. I construct an odd vector x such that the quotient ")Tc—f% is
less than % for any even eigenvectory orthogonal to f(fis the smallesteven eigenvector). This
requires a proof that xi—fg is less than the second smallest even eigenvalue. From Lemma 2.4.1
above, the second smallest even eigenvalue of B, is the same as the second smallest eigenvalue of
the Laplacian of a path graph on 3% vertices; it is well-known that this value is 4 sinz(&) (see for
example [Moh8§]).

Let z be the eigenvector corresponding to the second smallest eigenvalue i, for the Laplacian

B of the path graph G on 4k vertices (uz = 4 sin®({)). Construct x as follows:

2; 1 <1< 2k,
T; = 27k—iv1 3k+1<1i< 5k, and
0 otherwise.

That is, assign the first 2% values from the path G to the upper antenna of the roach, working in the
direction towards the body, and assign the last 2k entries from G to the lower antenna, working from
the body outward. Since z and x have the same set of non-zero entries, x/x = z!z. Likewise,
since z is orthogonal to the “all-ones” vector, s0 is x.

To see that x” Byx < z7 Bz, recall (2.1) from Section 2.3: for Laplacian A and vector y,

yidy= > (wi-w)
('”iv'”j)eE

For every edge in G except one, there is an edge in G, that contributes the same value to this sum.
The one exception is the edge (vak, v2k+1). Since z is an odd vector by Lemma 2.3.7, and since
z has an even number of entries, zp; = —2z2k41. By the Zero Entries of Path Graph Eigenvectors
Lemma (Lemma 2.3.5), it is not possible for both 2z and 2354 to be zero, so 2, is equal to some
non-zero value ¢, and this edge contributes 4¢? to the value of zZ Bz. On the other hand, there are

35

two edges in G, that contribute non-zero values and that do not have corresponding edges in G-
(v2k, vak+1) and (vsg, vsk41). Each of these edges contributes ¢? to x” By x. Thus

xTka = zT Bz — 4c* +2¢% = 2T Bz — 2¢% < 2T Ba.

T T

Since x'x =z'z,

xTByx z'Bz T T
< — 4gin?(— in2(—).
M(Gr) < Tx < 2T, sin (Sk) < 4sin (6k)

That is, the second smallest eigenvalue of By, is less than any non-zero even eigenvalue, and is thus
odd by the Even-Odd Eigenvector Theorem (Theorem 2.3.2).

There are a few details to finish off. In particular, it is necessary to show that there are not too
many zero entries in uy (spectral bisection as defined in this paper does not separate vertices with
the same value). Since u; is an odd vector and since the odd component of Gy, is a weighted path
graph, Lemmas 2.3.5 (the Zero Entries of Path Graph Eigenvectors Lemma) and 2.4.1 imply that
uy cannot have consecutive zeros, and the values corresponding to vertices 3k and 6k are non-zero.
Thus the edge separator generated by spectral bisection must cut at least half the edges between the
upper and lower paths; since none of these edges share an endpoint, the cover used in generating
the vertex separator must include at least this number of vertices.

O

2.5 A Bad Family of Graphs for the “Best Threshold Cut” Algorithm

While the roach graph defeats spectral bisection, the second smallest eigenvector can still be used
to find a small separator using the “best threshold cut” algorithm. In particular, Theorem 2.3.1
implies that considering all threshold cuts induced by u; produces a constant-size cut: If g, is
the minimum cut quotient for these cuts, then

Gmin S \/’\2(2A -)‘2) S _\:.%’
which implies ¢y,;r, is O(%) Since the denominator of g,,;-, is less than or equal to %, the number
of edges in this cut must be bounded by a constant.

In this section I show that there is a family of graphs for which the “best threshold cut”
algorithm does poorly. Recall that Section 2.3.2 defined a double tree as a graph that consists
of two complete binary trees of k levels for some & > 0, connected by an edge between their
respective roots. The tree-cross-path graph consists of the crossproduct of a double tree on p;
vertices and a path graph on p; vertices. I show below that there are tree-cross-path graphs that
defeat the “best threshold cut” algorithm. To do so, I use the bounds from Section 2.3.2 on), for
trees and double trees.

I formally state the result for this section as follows:

Theorem 2.5.1 There exists a graph G for which the “best threshold cut” algorithm finds a
separator S such that the cut quotient for S is bigger than i(G) by a factor as large (to within a
constant) as allowed by the bounds from Theorem 2.3.1.

36

Proof: Let (5 be the tree-cross-path graph that is the crossproduct of a double tree of size p and a
path of length cp% for some c in the range 3.5 < ¢ < 4. To insure that the double tree and the path
have integer sizes, restrict p to integers of the form 2% — 2 for k > 2. Then choose ¢ in the range
specified such that cp% is an integer (the choice of p insures there is an integer in this range).
Recall that the eigenvalues of a graph crossproduct are all pairwise sums of the eigenvalues
from the graphs used in the crossproduct operation. Let v, be the second smallest eigenvalue of the
double tree on p vertices, and let p; be the second smallest eigenvalue for the path on Cp% vertices.
If 42 < vy, then A; for the crossproduct is pp (i.e., o added to the zero eigenvalue of the double
tree). But uo = 4 sinz(z—“%—), and 1, is greater than or equal to ;—). Therefore it is necessary to show
cp

that
1
4sin2(7r1) < -
2cp? p

Reorganizing, simplifying, and noting that sin(#) < 6 for 0 < @ < Z, it is sufficient to show that

T 1
<_
2p

, or < c.

=

2cp%
Clearly by the choice of ¢ this inequality holds.

Since path graph eigenvalues are simple (Lemma 2.3.6), the second smallest eigenvalue of G
is also simple.-

Note that the tree-cross-path graph can be thought of as cp% copies of the double tree, each
corresponding to one vertex of the path graph. Each vertex in the s copy of the double tree is
connected by an edge to the corresponding vertex in copies ¢ — 1 and ¢ + 1. This description allows
one to construct the eigenvector for the second smallest tree-cross-path eigenvalue as follows:
Assign each vertex in double tree copy ¢ the value for vertex in the path graph eigenvector for u,.
Note that this is the only possible eigenvector since the eigenvalue is simple.

Now consider any copy of the double tree: every vertex in that copy gets the same value in the
characteristic valuation. Thus the cut .5 made by the “best threshold cut” algorithm must separate
at least two copies of the double tree, and thus must cut at least p edges. There is a bisection $*
of size cp% (cut the edge between the roots in each double tree); because this cut is a bisection, the
ratio between the cut quotient ¢ for § and i(G) is at least as large as the ratio between the sizes of

these cuts: 5]
q p 1
4> 2L P _q(p).
W(G) |5 cp% ()

From Theorem 2.3.1, \ -
T <i(G) < ¢ < (/228 = X).

This plus the fact that the tree-cross-path graph has bounded degree (A = 5) implies that

q 2/ 002A -) R L
i(_@s__“i)_z__i._o(\//_z>_0(p).

37

These two bounds imply that, to within a constant factor, the ratio is as large as possible, and the

theorem holds.
O

2.6 A Bad Family of Graphs for Generalized Spectral Algorithms

The results of the previous section can be extended to more general algorithms that use some
number k& (where k£ might depend on n) of the eigenvectors corresponding to the k smallest
non-zero eigenvalues. In particular, consider algorithms that meet the following restrictions:

o The algorithm computes a value for each vertex using only the eigenvector components
for that vertex from k& eigenvectors corresponding to the smallest non-zero eigenvalues (for
convenience, I refer to these as the k smallest eigenvectors). The function computed can be
arbitrary as long as its output depends only on these inputs.

o The algorithm partitions the graph by choosing some threshold ¢ and then putting all vertices
with values greater than ¢ on one side of the partition, and the rest of the vertices on the other

side.

o The algorithm is free to compute the break point ¢ in any way; e.g., checking the separator
ratio for all possible breaks and choosing the best one is allowed.

I call such an algorithm purely spectral.

The following theorem gives a bound on how well such algorithms do when the number of
eigenvectors used is a constant:
Theorem 2.6.1 Consider the purely spectral algorithms that use the k smallest eigenvectors for
k a fixed constant. Then there exists a family of graphs G such that G € G has a bisection S*
with |5*| > (k*n) 3, and such that any purely spectral algorithm using the k smallest eigenvectors

produces a separator S for G such that | S| > (%)2

Proof: Ishow that G is the set of tree-cross-path graphs that are the crossproducts of double trees
of size p (where p is an integer of the form 2% — 2 for k¥ > 3) and paths of length cp%, where cis a
constant chosen such that 7k < ¢ < 7k + 1 and cp% is an integer.

Recall that the eigenvalues of a graph crossproduct G X H are all pairwise sums of the
eigenvalues from the graphs G and H. Assume for the moment that the & smallest nonzero
eigenvalues of any G € G are the same as the k smallest nonzero eigenvalues of the path graph
used in defining GG. This clearly holds if these k eigenvalues are smaller than A, of the double tree;
in that case the k smallest non-zero eigenvalues of the crossproduct are these eigenvalues from the
path graph added to the zero eigenvalue of the double tree. Since the path graph eigenvalues are
simple (Lemma 2.3.6), the corresponding tree-cross-path eigenvalues are also simple.

Note that the tree-cross-path graph can be thought of as cp% copies of the double tree, each
corresponding to one vertex of the path graph. Each vertex in the i copy of the double tree
is connected by an edge to the corresponding vertex in copies ¢ — 1 and ¢ 4+ 1. This description
allows the construction of an eigenvector for each of these & tree-cross-path eigenvalues as follows:

38

Assign each vertex in double tree copy ¢ the value for vertex ¢ in the path graph eigenvector for this
eigenvalue. Note that these are the only possible eigenvectors since these eigenvalues are simple.

The purely spectral algorithm produces a cut S with cut quotient g. Recall the assumption
about the k smallest eigenvectors and consider any copy of the double tree: since every vertex in
that copy gets the same value from each eigenvector, the algorithm assigns the same value to each
vertex in this copy. This implies that S must separate at least two copies of the double tree, and
thus must cut at least p edges.

There is bisection S* of size cp% (it cuts the edge between the roots in each double tree);

3 . 2 1o .
because n = cp? and ¢ > k, it is the case that [$*| > k3n3. It is obvious that

5] > (LS;_’)Z;

since ¢ < 7k + 1, the claim in the theorem statement holds if the éssumption holds.
To prove that the assumption about the form of the & smallest eigenvectors holds for all G € G,
I still need to prove that a path graph on cp% vertices has k nonzero eigenvalues smaller than A, for

a double tree on p vertices. Recall that the eigenvalues of a path graph on ! vertices are 4 sin® %)

for 0 < 7 < [, and that A, for a double tree on p vertices is greater than or equal to %. Therefore it

is sufficient to show that
k 1
4sin2(T 1) < -
2cp5 Yy

Reorganizing, simplifying, and noting that sin(#) < 8 for0 < 8 < 7 gives

k 1
- < —, or Tk <ec.
2cpz 2p2

Clearly this inequality holds.
O
Note that for the case in which % is constant, the following results apply:

o the cut quotient gg is no better than the best cut quotient g,,;, produced by considering all
threshold cuts for u;, and

e the gap between ¢(G) and gy, is as large as possible (within a constant factor) with respect
to Theorem 2.3.1.

These results can be shown using techniques from the previous section. Thus, G is a graph for
which using k eigenvectors does not improve the performance of the “best threshold cut” algorithm.

These results also hold for certain variants of the definition of “purely spectral”. For example,
Chan, Gilbert, and Teng have proposed using the entries of eigenvectors 2 through d + 1 of the
Laplacian as spatial coordinates for the corresponding vertices of a graph [CGT94]. The graph
is then partitioned using a geometric separator algorithm [MTV91],[GMT95]. If this technique is
applied (using a fixed) to the counterexample graph used in the proof above, all vertices in a
particular copy of the double tree end up with the same coordinates; the geometric algorithm then
cuts between copies of the double tree, yielding the same bad cuts as in the proof.

39

2.6.1 Purely Spectral Algorithms that Use More than a Constant Number of Eigen-
vectors

There are still a number of open questions about the performance of purely spectral algorithms that
use more than a constant number of etgenvectors (in particular, how well can such algorithms do if
they use all the eigenvectors?). However, just using more than a constant number of eigenvectors
is not sufficient to guarantee good separators. In particular, the counterexamples and arguments in
the previous sections can be extended to prove the following theorem:

Theorem 2.6.2 For sufficiently large n and 0 < € < }P there exists a bounded-degree graph G on
n vertices such that any purely spectral algorithm using the n¢ smallest eigenvectors produces a

separator S for G with a cut quotient greater than i(G) by at least a factor of n(i_e) - 1.
Proof: Once again, let G be the tree-cross-path graph. As in the previous two proofs, choose p; (the
double-tree size) and p; (the path size) such that the smallest n¢ eigenvalues of the crossproduct are
the same as the smallest ¢ eigenvalues of the path graph. Once again, a purely spectral algorithm
separates two adjacent double trees, while the edges between the roots of the double trees comprise
a better separator. It remains to choose p; and p, such that the claim about the smallest eigenvalues
of the crossproduct holds, and to show that the resulting cut is bad.

Set p; to some arbitrary p, subject to the conditions presented below to insure that p is

sufficiently large. Then set p» = [p(%‘ne)-' . Note that p can be chosen sufficiently large such that

4429

p>p(+1>po.

This implies that p > n%, where n = p;p;. Note that this allows one to show easily that
n¢ < p*¢ < p, (i.e., the argument requires the path graph to have at least that many eigenvalues,

and thus be at least that long). Also note that even for fairly small p, p; < 2p(%+25) , which implies

that \
n < 2p(5+26). (2.3)

Now consider the ratio of the size of the cut produced by cutting the double-tree edges to the
size of the cut produced by a purely spectral method under the .assumption that the n¢ smallest
eigenvalues are the same as for the path graph. As in previous proofs, this ratio is at least as large
as the ratio between the number of edges cut. Thus, for sufficiently large p, the ratio is at least

ﬁ > p(%—Ze) — 1.
]
Using the fact that p is also big enough that p > n%,

p(372) _ 15 p3(32) g = i) g

All that is left to prove is the assumption about the smallest eigenvalues. If o = % — 2¢, then
a > 0 and inequality 2.3 above can be written as

n < 2p?=2), (2.4)

40

Recall that the eigenvalues of a path graph on k vertices are 4 sinz(;—,’;) for 0 < ¢ < k, and that A,
for a double tree on p vertices is greater than or equal to %. It remains to show that for p sufficiently
large,

Tnt

2 [p(%“f)-l

Reorganizing, simplifying, noting that sin(f) < @ for 0 < 6 < %, and applying inequality 2.4
above, it is sufficient to show that there is a sufficiently large p such that

1
4 gin? < -,
¥4

¢ T 2p(2_°‘) ‘ €, —QE
Z < (-) :7r2pl <Ll or m2° < p°c.
2 (p(%“ﬁ)] 2p(3+2¢) 2p? 2p2

Clearly this inequality holds for sufficiently large p.
0

2.6.2 A Final Note About Tree-Cross-Path Graphs

While the tree-cross-path graph appears to be very specialized, the following argument suggests
that it has some relation to practice: Section 3 noted that the Second Interlacing Theorem implies
that adding an edge to a graph G gives a new graph G’ with A greater than or equal to A, for
G. Therefore the preceding results holds if each tree in the double trees is replaced with a graph
that has a complete binary tree as a spanning tree (the edge between the two graphs connects the
vertices at the roots of the spanning trees, and connections between copies of the “double graphs”
in the crossproduct are between corresponding vertices in the spanning trees). One could therefore
construct a three-dimensional finite element mesh from our example that represents the channel
tunnel (the Chunnel) between England and France; the chunnel is a pair of long tubes with a small
connection between the center.

2.7 Spectral Methods: Summary and Contributions

In this chapter I have provided some initial analysis of the quality of the separators produced by
spectral methods based on the eigenvectors of the Laplacian matrix. In particular, I have shown
that spectral bisection can do very poorly even on bounded-degree planar graphs, and that there are
graphs for which using threshold cuts based on the second smallest eigenvector can do as poorly as
theoretically possible. I have also shown that generalizing the algorithm and allowing the use of a
constant number of smallest eigenvectors does not improve the quality of the separators for these
families of graphs.

I have also introduced some facts about the structure of eigenvectors of Laplacian and sym-
metric matrices, particularly those with automorphisms of order 2. I have also shown how those
facts can be used, both in demonstrating the structure of the second smallest eigenvector, and in
proving upper and lower bounds on A, for complete binary trees and double trees.

A discussion of future work based on these results is included in Chapter 4.

41

Chapter 3

Planar DA G Reachability

In this chapter, I introduce the Poincaré index formula, and show how it can be used in the design
and analysis of a reduction procedure for planar DAGs. I also show how this reduction procedure
can be used to implement a many-source reachability algorithm for planar DAGs, which in turn
can be used in a multi-source reachability algorithm for planar digraphs that has a faster running
time than previous published versions.

3.1 Introduction

Testing if there exists a path from a vertex z to a vertex y in a directed graph is known as the
reachability problem. Many graph algorithms either implicitly or explicitly solve this problem.
For sequential algorithm design the two classic methods for solving this problem are breadth-first
search (BFS) and depth-first search (DFS). They only require time proportional to the size of the
graph. Parallel polylogarithmic time algorithms for the problem now use approximately O(M (n))
processors, where M (n) is the number of processors needed to multiply two n X n matrices
together in parallel. For sparse graphs the situation is better, though still not optimal with respect
to work: Ullman and Yannakakis give a probabilistic parallel algorithm that works in O(y/n)
time using n processors [UY90]. This blow-up in the amount of work for parallel algorithms
makes work with general directed graphs on fine grain parallel machines virtually impossible. One
possible way around this dilemma is to find useful classes of graphs for which the problem can
be solved efficiently. In pioneering papers Kao [Kao93], Kao and Shannon [KS89] [KS93], and
Kao and Klein [KK90] showed that the reachability problem and many related problems could be
solved in polylogarithmic time using only a linear number of processors for planar digraphs. The
planar reachability problem for multiple start vertices is specifically addressed in [KK90]. That
paper presents a series of reductions between related problems; each reduction introduces more
logarithmic factors to the running time. In the end, it takes O(log® n) time to solve this problem.
In this thesis I give a general method for reducing planar directed acyclic graphs (DAGs) to
a constant size. I show that after O(logn) rounds of reduction an n-node directed planar DAG is
reduced to a constant size. There have been several reduction rules proposed for undirected planar
graphs [Phi89, Gaz91] but this is the first set for a class of directed planar graphs. Once the rules

42

for reduction have been presented, it is a relatively simple matter to “overlay” rules necessary to
compute multiple-source reachability.

The results in this thesis are part of a larger effort to develop a set of reduction rules for arbitrary
planar directed graphs (i.e., those with cycles as well as DAGs). The class of directed planar
graphs are important for at least two reasons. First, the class includes several important subclasses
including tree and series parallel graphs. Second, the flow graphs for many structured programming
languages without function calls are planar. My goal is to develop the basic algorithmic foundation
for a class of planar graphs in order to support a theory of planar flow graphs.

This thesis presents the details of the reduction technique for the planar DAG case. The
algorithm for planar DAGs is interesting in its own right. First, it alone is sufficient to improve
the computation of many-source reachability by a factor of log2 n time by simply using the strong
connectivity of Kao [Ka093] (our algorithm for general planar digraphs should remove one further
log n factor). Second, it uses new topological techniques, in particular, the Poincaré index formula.
This should be of interest in parallel algorithm design for digraphs. Finally, the algorithm itself
contains many interesting ideas. (In Chapter 4 I do briefly discuss changes needed to extend the
reduction procedure to general planar digraphs.)

Throughout the thesis I assume that the graph G = (V, A) is a directed embedded planar graph.
If an embedding is not given it is possible to construct one in O(log =) time using » processors
using the work of Gazit [Gaz91] and Ramachandran and Reif [RR89]. I assume that the embedding
is given in some nice combinatorial way such as the cyclic ordering of the arcs radiating out of
each vertex.

The following six sections cover the reachability algorithm and related results. The next
section (Section 3.2) gives the main definitions necessary to define and analyze the directed graph
reduction algorithm. Section 3.3 gives the reduction algorithm for special case of of a planar DAG.
The theorems in Sections 3.4 and 3.5 show that the reduction algorithm for planar DAGs works
in a logarithmic number of reduction steps: Section 3.4 shows that at any step of the reduction
process, a constant fraction of the edges are candidates for removal or contraction; Section 3.5
shows that a constant fraction of these candidates can be operated on without affecting a set of
invariants required of the graph’s structure. Section 3.6 explains how the reduction procedure can
be applied to the many-sources reachability problem and calculates the running time. Finally, in
Section 3.7 I discuss the contribution of this work. Future work is discussed in Chapter 4.

3.2 Preliminaries

3.2.1 Planar Directed Graphs

I assume that the reader is familiar with basic definitions and results from graph theory that apply
to undirected graphs (see, for example, textbooks such as the one by Bondy and Murty [BM76]).
A directed graph (digraph) G(V, A) is a set of vertices V and a set of arcs A. Eacharca € A
is an ordered pair drawn from V x V. Arc a = (u,v) is directed from u to v; u is the tail and v
is the head of the arc. An arc is out of its tail and into its head. An arc a is incident to a vertex
v if v is the head or the tail of a. The degree of a vertex v is the number of arcs incident to it; I
represent this number as degree(v). The indegree of a vertex v is the number of arcs that have v

43

as their head; the outdegree of v is the number of arcs with v as their tail.

For any directed graph G, I define an undirected graph G’ on the same set of vertices in the
following way: for each arc (u,v) in G, include an edge (u, v) in G'. Irefer to G’ as the underlying
graph of G. In this chapter I distinguish between edges and arcs: edges are undirected and lie in
the underlying graph, while arcs are directed. When I refer to arcs in G as edges, I am actually
referring to the associated edges in G'. (The notation F represents the set of edges of an undirected
graph.)

A directed path is a sequence of vertices (vp, v; ... vg) such that the v;’s are distinct (with
the exception that the case vy = vy, is allowed) and for all 0 < ¢ < k the arc (v;_y,v;) isin A. A
directed cycle is a directed path such that vg = v;. A digraph that contains no directed cycles is
called a directed acyclic graph (DAG).

For a directed path p that is not a cycle, the rank of a vertex v on p is the number of vertices
on p that precede v.

A planar directed graph is a directed graph that can be drawn in the plane in such a way
that its arcs intersect only at vertices. There may be many different ways to draw a digraph in
the plane; any particular way can be specified by giving the cyclic ordering (either clockwise or
counterclockwise) of the arcs incident to each vertex. Such a specification is called a planar
embedding of the digraph.

If the points corresponding to the arcs in an embedded planar digraph are deleted, the plane is
divided into a number of connected regions. These regions are called faces. The boundary of a
face is the set of arcs adjacent to that face. The size of a face is the number of arcs encountered in a
traversal of the face’s boundary (note that a single arc could be counted more than once in the size
of some face). The set of faces is denoted by F'. (The definitions of these terms are essentially the
same for an undirected embedded planar graph.)

In an embedded planar digraph I define parallel arcs as two arcs that form a face of size 2.
Parallel edges in an embedded planar graph are defined in the same way. This relation can be
extended by making it transitive; in that case I say that a set of arcs or edges is mutually parallel.

There is an important formula developed by Euler (not surprisingly referred to as Euler’s
formula) that relates the numbers of edges, vertices, and faces in embedded, connected planar
graphs:

V| —|E|+ |F| = 2. (3.1)

If the graph is also simple (i.e., it has no loops and no parallel edges) and has 3 or more vertices, then
each face has at least three edges in its boundary, and it is easy to prove the following inequality:

|E| <3-|V|-6. (3.2)

Proofs that these formulas hold can be found in basic graph theory textbooks (e.g., [BM76]). The
formula corresponding to (3.1) (with | A| substituted for | E|) holds for embedded planar digraphs
that have a connected underlying graph since the orientations of the arcs do not affect the quantities
involved. The inequality corresponding to (3.2) (with | A| substituted for | £|) holds for an embedded
planar digraph G' with a connected underlying graph if G' has no loops or parallel edges. Note
that this implies that it holds for embedded planar DAGs with connected underlying graphs if the
DAGs contain no parallel arcs.

44

3.2.2 The Poincaré Index Formula

Let G(V, A) be a connected embedded planar digraph with faces F'. A vertex of G is a source(sink)
if its indegree(outdegree) is zero. The alternation number of a vertex is the number of direction
changes of the arcs (i.e., “out” to “in” or vice versa) as the arcs incident to that vertex are considered
in cyclic order. Observe that the alternation number is always even. Thus, a source or a sink has
alternation number zero. A vertex is said to be a flow vertex if its alternation number is two. It is a
saddle vertex if the alternation number is 4 or more. Vertex alternations are indicated by asterisks
in Figure 3.1. The alternation number of a face can be defined in a similar way. Here the number

4

source flow vertex saddle vertex

Figure 3.1: Vertex Types

of alternations is the number of times the arcs on the boundary change direction as that boundary
is traversed. Thus, a cycle face has alternation number zero, a flow face has alternation number
two, and a saddle face has an alternation number greater than two. Face alternations are indicated
by asterisks in Figure 3.2 below. 1 denote the alternation number of vertex v by a(v), and the

*
k
%
cycle face flow face saddle face

Figure 3.2: Face Types

alternation number of face f by a(f) (it will be clear from the context whether o refers to a vertex
or a face).

45

A concept related to alternation number is index. The index of a vertex v (denoted indez(v))
is defined as index(v) = a(v)/2 — 1. The corresponding definition holds for the index of a face.
Once again the usage will be clear from context.

My approach depends on combinatorial arguments based on the following simple but fun-
damental theorem that I refer to as the Poincaré index formula. (The name is drawn from the
Poincaré index formula from combinatorial topology that relates the number of critical points of a
vector field inside a closed curve to the winding number of the curve; intuitively, the arcs of the
graph are like vectors and the vertices like critical points.) I show that it follows directly from
Euler’s formula.

Theorem 3.2.1 For every embedded connected planar digraph,

> index(v) + Y index(f) = —2.

veV fer

Proof: Consider the situationat any vertex as one cycles through its incident arcs in order according
to the embedding. Each transition from one arc to the next results in exactly one alternation either
for the vertex or for the face for which the two arcs lie on the boundary (see Figure 3.3). If the

*
*
%k
*
vertex alternations face alternations
at a vertex at a vertex

Figure 3.3: Alternations

number of alternations is summed over all vertices, the total number of alternations in the graph is
equal to the sum of the degrees of all the vertices, which is equal to twice the number of arcs in the

graph:
S alv)+ > al(f) =) degree(v) =2-]A|.
vEV feF veV
Dividing by two and applying Euler’s formula gives
alv a(f
> Ay s A g =i iR -,

veV 2 feF

46

which gives

S e -

veV feF

which with some rearrangement and an application of the definition of index gives

a(v) a(f) . _
Z (T E 1) + > (—2— -1)= Z index(v) + E index(f) = —2.
veV feF veV jeF
a
This formula implies a great deal about the structure of a planar digraph embedding. For
example,

¢ Sinks, sources, and cycle faces each contribute —1. These are the only structures that make
negative contributions to the sums in the formula; since the total must be —2, it is clear that
every embedded planar digraph must have at least two of them. For example, a strongly
connected planar digraph cannot have any sinks or sources, so it must have two cycle faces.

e Flow faces and flow vertices have index 0O; they contribute 0 to the sums in the formula.
There can be an arbitrary number of such structures. It is easy to see that a flow face has two
alternations on its boundary, one of which looks like a source with respect to the boundary,
the other of which looks like a sink. Thus, at most one source and at most one sink can lie
on the boundary of a flow face.

¢ Saddle vertices and saddle faces have positive indices that depend on their alternation num-
bers. Since the formula total must always be —2, the embedded graph must contain a sink,
source, or cycle face for every pair of alternations beyond the first on some saddle.

I use the formula below to develop invariants and to help us count (for example, I use it to count
particular types of arcs).

3.2.3 Models of Parallel Computation

The reduction algorithm is specified for the Parallel Random-Access Machine (PRAM) model of
computation using concurrent reads and concurrent writes (i.e., the CRCW PRAM). I also assume
the ARBITRARY model for concurrent writes (i.e., an arbitrary one of the values being written to
a memory location during a concurrent write ends up in that location).

3.3 Graph Reduction

In this section I introduce a collection of reduction rules and an associated data structure for planar
DAGs. The reduction rules allow a graph to be converted into a smaller graph in order to recursively
solve a problem. Once the problem is solved for the reduced graph, the graph is expanded out
in reverse order to generate a solution for the original graph. In Sections 3.4 and 3.5 I show that
at each stage the reduction process removes a constant fraction of the arcs; thus, the rules could

47

be implemented as an O(log | A|)-step reduction procedure for planar DAGs. Since I require that
the inputs have no parallel arcs, inequality (3.2) in Section 3.2.1 thus implies that the reduction
procedure takes O(logn) steps (where n = |V| in the original graph). The rules listed below
represent an abstraction of the reduction procedure that can be applied with slight variations to
implement different algorithms. These variations involve algorithm-specific actions performed as
each rule is applied; I specify such actions in the algorithm descriptions in a later section.

I assume that the input is a connected, embedded planar DAG G that has no parallel arcs
(and hence no parallel edges). G is preprocessed such that it has the following properties (these
properties remain true throughout the algorithm):

1. G has only flow faces. This is accomplished by putting a source in each saddle face, and
putting an arc from this source to every vertex that is a local source with respect to the saddle
face boundary (Figure 3.4). It is straightforward to show that the number of arcs and hence
the number of vertices increases by at most a constant factor.

4’ (]
\\//
before preprocessing after preprocessing

Figure 3.4: Preprocessing Saddle Faces

2. No vertex has both indegree and outdegree of 1 (i.e., there are no degree-2 flow vertices).
Such vertices are considered to be internal vertices of topological arcs; such arcs are treated
as single arcs with respect to the algorithm, though operations on these arcs may require the
internal vertices to perform operations such as splicing connectivity pointers.

It is not hard to see that any connected, embedded planar DAG can be transformed in O(log n)
time so that these conditions are true without changing the reachability of the graph.

3.3.1 Terminology

In order to simplify the presentation of the reduction rules, I first introduce some concepts and

terminology. |
Let f be a flow face; then the arcs on its boundary decompose into two paths, a left and a right
(I refer to any arc that is both on the left and the right path of a particular face as an internal arc).

48

There is also a unique top and a unique bottom vertex on f. Thus the left path starts at the top
vertex and in a counter-clockwise fashion (with respect to the face) goes to the bottom vertex, and
the right path goes from top to bottom in a clockwise fashion'. A top(bottom) arc of f is any arc
out of(into) the top(bottom) vertex. An arc may be both a top and a bottom arc for the same face.
An arc is referred to simply as top(bottom) if it is the top(bottom) arc for some flow face. I mark
top arcs with “T”” and bottom arcs with “B.”

Applying the rules may modify the connectivity of the graph. Therefore I associate flow faces
with a data structure that allows connectivity information to be maintained. -For each vertex on a
flow face that is neither a top or bottom vertex there is a cross-pointer, pointing from left to right or
right to left. Initially each cross-pointer is set to the bottom vertex. Intuitively, the connectivity on
f as determined by its cross-pointers and boundary arcs should be the same as obtained using using
arcs and vertices on the boundary of f or those removed from the interior of f by the reduction
rules. For each vertex other than top and bottom on a flow face the algorithm also keeps the highest
and lowest vertex on the opposite side of the face that points to this vertex (initially the high point
in is set to bottom and the low point in is set to top).

For both the left and right path of each flow face, the top arc serves as the leader of the path
(if the top arc is internal it serves as leader for both sides); each arc knows the two faces common
to it and the leaders on those faces. Leader is defined similarly for topological arcs: the leader is
the first arc from the original graph in the topological arc (i.e., the arc into the first internal vertex
of the topological arc). The rank of the vertices is maintained on each topological arc.

Using concurrent reads, a leader for each face and topological arc, and the ranking of vertices
internal to topological edges, the vertices can now coordinate their actions. For example, cross-
pointers can now be tested in constant time to see if they have become forward pointers: simply test
if the head and tail are on the same side of the face. (The coordination actions I use take constant
time in the CRCW model.)

Saddle vertices are referred to by their indices. For example, “saddle vertices with index 1”
represents the set of saddle vertices with fewest alternations.

Some reduction rules depend on knowing whether an arc is the unique arc into some vertex
or the unique arc out of some vertex. I call such arcs unique-in unique-out arcs. Note that it
is possible for an arc to be both unique-in and unique-out. In some cases an arc ¢ might not be
unique-in, but at the head of a the next arcs in both the clockwise and counterclockwise cyclic
ordering may be out-arcs. In that case I say that ¢ is locally unique-in; a symmetric definition holds
for locally unique-out. Note that “locally” implies that there is at least one other edge into(out of)
the head(tail), though that edge is not adjacent in the cyclic order.

The existence of topological arcs and the introduction of reachability pointers as described
above leads to complications in the application of reduction rules. In particular, the algorithm
needs to distinguish certain unique-in and locally unique-in arcs out of a source. Such an arc @ out
of a source is clean if it has the following properties: (1) a has no internal vertices, and (2) for
each face f that has a on its boundary, there are no pointers across f into the head of a. Clean
unique-out and clean locally unique-out arcs into sinks are defined similarly, with the exception

Clockwise and counterclockwise with respect to a face can be understood in terms of the dual graph; the clockwise
order of arcs on the boundary of a face is the same as the order of the corresponding arcs in the clockwise cyclic order at
the dual vertex corresponding to the face.

49

that the second condition prohibits pointers across adjacent faces out of the tail of the arc.

The operation of arc contraction is defined as follows: the contracted arc is removed from
the graph, and the head and tail vertices are combined into a single vertex. The cyclic order of the
arcs at this new vertex is the cyclic order at the tail with the arcs at the head vertex inserted (in their
original order) where the contracted arc was.

3.3.2 Reduction Rules

I now list the reduction rules:

[TB Rule] If an arc a is marked both T and B then remove a. If a is topological, it may
have crosspointers incident to its internal vertices. A crosspointer into an internal vertex v is
adjusted by a process referred to as pointer splicing: the cross-pointer into v is set to point to the
vertex pointed to by the cross-pointer out of v on the opposite side of a. The remaining pointers are
unchanged. Information on the structure of the face must be updated (e.g., the left and right leaders
must be updated), and any new or changed topological arcs must be updated. Pointer updating is
shown in Figure 3.5 (the lighter arrows indicate pointers, the darker ones arcs). [Degree-1 Rule]

Figure 3.5: TB Rule Pointer Splicing

If a source or a sink is of degree 1 then remove it and its arc. The leaders on the left and right
boundaries of the face are reset if necessary.

[Unique-in(Unique-out) Arc Contraction Rule] If ¢ is a clean unique-in arc out of a source,
contract a. The leaders on the affected faces are reset as necessary. The corresponding rule holds
for unique-out arcs into sinks.

[Adjacent Degree-2 Sources and Sinks Rule] If a degree-2 source and a degree-2 sink inci-
dent to clean arcs are in the configuration shown in Figure 3.6, remove the source and sink and

50

their arcs as shown.

Figure 3.6: Adjacent Degree-2 Sources and Sinks Rule

[Source-Sink-Sour ce (s-t-s)/Sink-Source-Sink (t-s-t) Rule] Let s be a degree-2 or degree-3 source
incident only to clean locally unique-in arcs. Further, at two of the saddle vertices %; and u, adja-
cent to s let there be locally unique-out arcs (respectively a; and a3) such that a; (a;) is adjacent
in the cyclic order at u; (up) to the arc incident to s. If @ and a, are also incident to distinct sinks
{1 and 1, take the following actions:

o If s has degree 2, remove the source and its arcs, and combine the two sinks into a single
sink (see Figure 3.7 — since all faces are flow faces, each sink is at the bottom of one of the
two faces on the boundaries of which s lies).

o If s has degree 3, remove the arc out of s common to the two faces on the boundaries of
which the two sinks lie, then combine the two sinks into a single sink (Figure 3.8).

A corresponding rule applies for sinks and adjacent sources. If a large number of vertices are
combined into a single vertex, a processor must be selected to represent that vertex. Although this
could take time O(logn), this computation can be done in parallel with the rest of the algorithm
without affecting the running time.

[Consecutive Rule] Let s be a source incident to a clean locally unique-in arc a. At the head
of a, if the next arcs in both the clockwise and counterclockwise directions are clean locally
unique-out arcs into sinks, do the following: remove a, and combine the two sinks into a single

sink (see Figure 3.9). A corresponding rule applies for a sink and adjacent sources.

[Index-1 Saddle Rule] If a source has a clean arc to a saddle vertex of index 1 and if the

51

o’ ajz .

. Uy .

—p ¢t o » .

. aZ 1 .
og

Figure 3.7: Sink-Source-Sink Rule (Degree-2 Source)

Figure 3.8: Sink-Source-Sink Rule (Degree-3 Source)

Figure 3.9: Consecutive Rule

52

only other arc into the saddle is a clean arc from another source, then contract one or both? of the
in-arcs (see Figure 3.10). A corresponding rule holds if there are exactly two clean out-arcs to sinks
(Fig. 3.11). As for the s-t-s and t-s-t Rules, a processor must be selected to represent that vertex if
a large number of vertices are combined into a single vertex.

If a source (sink) of degree 2 or 3 has two clean arcs to (from) a single index-1 saddle, note
that these two arcs divide the plane into two pieces. Split the graph into two pieces as follows:

¢ the arcs and vertices in the interior piece of the plane (i.e., the piece not including the exterior
face), including the vertex that was an index-1 saddle in the graph prior to rule application;
and

o if the source or sink has degree 2, the arcs and vertices in the exterior piece of the plane
(including the vertex that was the saddle prior to rule application); if the source or sink
has degree 3, the arcs and vertices in the exterior piece of the plane with the third source
arc incident to the vertex that was the index-1 saddle. The resulting graph in either case
corresponds to the result of deleting the arcs and vertices in the interior piece and then
contracting the two arcs incident to the saddle.

Each of the two graphs has strictly fewer arcs than the graph prior to splitting (see Figure 3.12
below).

A
as as éo
57 +——p S; el =
/ X

Figure 3.10: Index-1 Saddle Rule Applied to Sources — only arc @ contracted

In the CRCW model it is easy to determine in constant time if the conditions for rule application
are met. These conditions can be checked locally in the graph. Ignoring the time to do conflict
resolution for now, rule applications can be done in constant time.

3.3.3 Cleaning Up the Graph

Many of the rules above operate only on clean arcs. Arcs in the configurations corresponding to
particular rules are not necessarily clean, however. Therefore I introduce a parallel algorithm for

2Whether one or both are contracted is determined by the conflict resolution procedure as discussed in Section 3.5.1.

53

Y -

Figure 3.11: Index-1 Saddle Rule Applied to Sinks — both arcs contracted

Figure 3.12: Index-1 Saddle Rule — Single Degree-3 Source Case

54

cleaning up arcs out of sources(into sinks) that runs in constant time in the CRCW model. The
cleanup algorithm is run as a subroutine in the reduction algorithm. Because the cleanup algorithm
can change the structure of the graph, it may be required to preserve some invariant specific to
the problem being solved (e.g., in the case of many-source reachability the invariant is that the
vertices in the current version of the graph that are reachable from one of the original sources are
either marked as reachable or have a path consisting of pointers and arcs from some vertex with
an active mark). Applying cleanup with respect to the invariant adds computation to the cleanup
algorithm; in general, one should try to choose an invariant in such a way that it does not increase
the asymptotic running time of the basic cleanup algorithm.

Not all sources and sinks are cleaned up. To insure that cleanup does not take too long
(i.e., cleanup activities other than application-specific processing should take constant time), only
sources (respectively sinks) of degree less than or equal to a constant d (to be specified later) that
are incident only to unique-in or locally unique-in (respectively unique-out or locally unique-out)
arcs are cleaned. Note that such sources and sinks are not incident to parallel arcs. I explain the
rationale for these restrictions in Section 3.4; intuitively, a planar DAG has few high-degree sources
and sinks that are not incident to parallel arcs. No arcs are removed from such vertices because the
arcs are not clean; however, since there are few such sources and sinks, this is not a problem.

3.34 The Cleanup Algorithm

Define the frontier of a source s as the set of vertices at the heads of the arcs out of s. The frontier
of a sink 7 is the set of vertices at the tails of the arcs into ¢.

The cleanup algorithm consists of several steps. Application-specific processing can be added
prior to or after any step; I defer further discussion to Section 3.6, where I discuss a particular
application in detail.

- At the first cleanup step, each source (respectively sink) determines if it has degree less than or
equal to d, and if so, whether all incident arcs are either unique-in or locally unique-in (respectively
unique-out or locally unique-out). Any source or sink not meeting these conditions drops out of
the cleanup algorithm.

At the second cleanup step, for each arc out of each source still involved in the cleanup it is
necessary to find the highest vertex on that arc (including its head) that can be reached from some
other frontier vertex. Here “highest”” means closest to the source, and “reached” means there exists
a path of pointers from the frontier vertex to the high point, where each pointer has as its head and
tail some vertex that lies between the source and the frontier (inclusive of frontier vertices). It is
also necessary to compute which frontier vertex can reach this high point, and whether the pointer
path proceeds in a clockwise or counterclockwise direction relative to the source. These things can
be determined by following the high pointer chains out of each frontier vertex first in the clockwise
direction and then in the counterclockwise direction. If more than one frontier vertex can reach
the high point with respect to a single direction (e.g., clockwise around the source), the one at
the greatest distance in terms of the cyclic ordering is chosen. The high point can be determined
by comparing the location of the clockwise and counterclockwise high points relative to the rank
ordering along the topological arc. If the same high point can be reached from both the clockwise
and counterclockwise directions, the tie can be broken arbitrarily.

55

The case for sinks is symmetric. For each arc into each sink still involved in the cleanup it is
necessary to find the lowest vertex on that arc (including its tail) that can reach some frontier vertex.
Here “reach” means there exists a path of pointers from the low point to the frontier vertex, where
each pointer has as its head and tail some vertex that lies between the frontier and the sink (inclusive
of frontier vertices). Again, it is necessary to compute which frontier vertex can be reached from
this low point, and whether the pointer path proceeds in a clockwise or counterclockwise direction
relative to the sink. These things can be determined by following the chain of low pointers in
reverse order, first in the clockwise direction and then in the counterclockwise direction. Note
that if more than one frontier vertex can be reached from the low point with respect to a single
direction (e.g., counterclockwise with respect to the sink), the one at the greatest distance in terms
of the cyclic ordering is chosen. The low point can be determined by comparing the location of the
clockwise and counterclockwise low points relative to the rank ordering along the topological arc.
If the same low point can reach the frontier in both the clockwise and counterclockwise directions,
the tie can be broken arbitrarily.

Note that for any cleaned source there must be at least one arc a out that has no high point.
Similarly, for any cleaned sink there must be at least one arc b such that b has no low point. To see
this for sources, note that if an arc a has a high point there is another frontier vertex v that has a
path to the head of a consisting of the pointer path to the high point plus the segment of a between
the high point and the head. One can construct a directed graph consisting of the frontier vertices
for this source and arcs representing the existence of a path from one frontier vertex to another.
Since the original graph is a DAG, the constructed graph must be acyclic. But if every arc out of
the source has a high point, then every frontier vertex in this graph has an arc in, which contradicts
the fact that it is acyclic.

At the third step the graph is realigned as shown in Figure 3.13 below (the presentation here
is in terms of sources; the actions for sinks are symmetric). First consider arcs that are reachable

Figure 3.13: Cleanup: Realignment at a Source

from another frontier vertex: Each arc (if the high point is a frontier vertex) or arc segment (if the
high point is internal to a topological arc) from the source to the high point is replaced by an arc
(or, if internal, an arc segment) from the most distant frontier vertex. If a frontier vertex reaches
multiple high points, the cyclic order of the new arcs at the frontier vertex is same as the cyclic
order of the deleted arcs to those vertices at the source. All pointers to vertices at or below the high
point are retained.

56

For arcs that are not reachable from another frontier vertex, if the arc is topological, replace
the arc with an arc containing no internal vertices (i.e., all internal vertices are deleted).

Each source and sink that has been cleaned up is now marked “cleaned up”. Each arc out of a
cleaned source or into a cleaned sink is marked as “cleaned”.

It is easy to verify the following claims: Every cleaned source has at least one arc out; every arc
out of a cleaned source is clean. Likewise every cleaned sink has at least one arc in; every arc into
a cleaned sink is clean, All the resulting faces are flow faces. The number of arcs and vertices in
the graph does not increase. The reachability for every vertex remaining in the graph is unchanged
in the following sense: Let « and v be any two vertices that are not internal to topological arcs. If
there is a path of arcs and crosspointers from u to v prior to cleanup, then there is such a path after

cleanup.
In order to avoid any conflicts between arcs common to both a source and a sink these steps

can be run twice, once for sources and once for sinks.

These steps could be implemented in a number of ways. Because the degree of any cleaned
source or sink is bounded by a constant and because the leader of each topological arc can keep track
of bookkeeping information, the cleanup algorithm can be programmed to execute in a constant
number of steps in the CRCW model provided that any application-specific processing added
executes in constant time, '

3.3.5 Overview of the General Reduction Process
The general algorithm for reducing an embedded planar DAG can now be stated:

1. Preprocess the graph to make it consistent with the algorithm invariants.

2. Main Reduction Loop: While there are arcs left in the graph, repeat the following sequence
of steps:

¢ Clean up the current graph, performing any application-specific actions where needed.
o Apply the reduction rules in the order they are listed in Section 3.3.2. Application-
specific processing may be required as each rule is applied.

3. Perform any application-specific processing needed prior to the expansion phase.

4. Reconstruct the graph by reversing the steps in the reduction process (note that this requires
that the algorithm has stored, in order, all changes made during the reduction process).

This process takes constant time given that the conflict resolution steps noted take constant
time using randomization in the CRCW model; the deterministic algorithm takes time O(log" n)
for each reduction step. The proof that the graph is reduced by applying this process O(logn)
times (thus giving an O(logn) time randomized algorithm or an O(logn log* n) deterministic
algorithm) is presented in the rest of this chapter.

57

3.4 Operability Lemmas

In the next two sections I prove that the reduction procedure given above works in O(log n log™ n)
time using O(n) processors, provided that the application-specific processing takes at most constant
time per reduction phase. (I use the convention that n = |V| throughout the rest of this section.)
The main result of this section is that at each pass through the main reduction loop a constant
fraction of the arcs are candidates for removal (I refer to such arcs as operable). I start with two
preliminary lemmas.

Lemma 3.4.1 [Flow Face Operability] An arc a between two flow faces is operable if it is neither
unique-in, locally unique-in, unique-out, nor locally unique-out.

Proof: Such an arc ¢ must have an adjacent out-arc in the cyclic ordering at its tail vertex, which
must be the top vertex of one of the flow faces. Therefore a is a T arc. A symmetrical argument
shows that a is also a B arc. Thus, a is operable by the TB rule. O

Lemma 3.4.2 [Unique-In and Unique-Out Arc Count] In a connected, embedded planar DAG
consistent with the algorithm invariants the number of unique-in and unique-out arcs not incident
to degree-1 vertices is less than or equal to 2 /3 the number of arcs in the graph.

Proof: Note that in an embedded DAG the unique-in arcs (respectively unique-out arcs) form a
forest. For the purposes of this proof, the term unique-in(unique-out) tree refers to a maximal
subgraph of such a DAG that consists of a tree induced by unique-in(unique-out) arcs in the DAG.
The unique-in(unique-out) tree may contain vertices that have degree 1 in the original DAG; if
these vertices and their incident arcs are deleted from the unique-in(unique-out) tree, the trimmed
unique-in(unique-out) tree results. I start by counting the number of arcs to which each trimmed
unique-in tree is incident in the current graph G that either 1) are neither unique-in nor unique-out,
or 2) are into degree-1 vertices, and proving that this number is greater than the number of arcs in
the tree (the proof for unique-out trees is symmetric).

I first claim that every leaf v of a trimmed unique-in tree must have at least two arcs out in &,
each of which either is a unique-in arc to a degree-1 vertex or is neither unique-in nor unique-out.
To see that there must be two or more arcs out, note that if v were of degree 1 in G, that would
contradict the fact that the tree is trimmed; if » were of degree 2, the second arc would have to be an
arc out, and v would be a degree-2 flow vertex, contradicting the conditions of the lemma. I further
claim that these arcs out of v either are unique-in arcs to degree-1 vertices or are neither unique-in
nor unique-out. Since there are two out-arcs, they cannot be unique-out; if they are unique-in they
must be into degree-1 vertices or else this contradicts the assumption that v is a leaf of a trimmed
unique-in tree, which by definition is maximal. Therefore the claim must hold.

Next I pair each arc in the trimmed tree with a distinct arc ¢ in G out of some tree vertex v such
that a either is into a vertex of degree 1 or is neither unique-in nor unique-out. Note that each tree
arc must be either into an internal node of the tree or into a leaf node. I pair each arc into a leaf v
with one of the arcs out of v in (7; this leaves one additional arc out of each leaf. To handle internal
nodes, I introduce the following terminology: if an internal node has exactly one tree arc out, it
is a path node; otherwise it is a branch node. (I do not count the root as an internal node, though
it makes only minor technical differences in the statement of the following.) Each path node in
a unique-in tree must have at least one arc out in G that either is incident to a degree-1 vertex or
is neither unique-in and nor unique-out; I pair one such arc with the unique tree arc into the path

58

node. The only arcs left to pair up are those into branch nodes, which I associate with distinct arcs
from the set of arcs out of the leaves as follows: The number of leaves in a tree is easily shown
to be greater than the number of branch nodes. Therefore, since there is exactly one unique-in arc
into any branch node, there are fewer arcs into branch nodes than there are unpaired arcs left at the
leaves. Thus all tree arcs are paired as claimed. The arcs associated with each trimmed unique-in
tree arc are clearly distinct, and, since I only count arcs out of trimmed unique-in trees, no arc is
counted for more than one such tree. Therefore there is at least one distinct arc of one of the two
claimed types for every unique-in arc in the graph that is not incident to a vertex of degree 1. This
completes the argument.

By a symmetric argument, there is either a distinct unique-out arc out of a node of degree
1 or a distinct neither-unique-in-nor-unique-out arc for every unique-out arc in the graph that is
not incident to a vertex of degree 1. To finish the proof, observe that each neither-unique-in-nor-
unique-out arc out of a2 unique-in tree could also be an arc into a unique-out tree; thus, in the worst
case each of these arcs is counted twice. In that case the number of these arcs is at least 1/3 the
number of arcs in the graph, from which the lemma follows. O

I now state the main lemma of this section:

Lemma 3.4.3 [Operability Lemma] /n any connected, embedded planar DAG that has been
cleaned up and that is consistent with the algorithm invariants, a constant fraction of the arcs are
operable.

Proof: The lemma follows immediately from Lemmas 3.4.4 and 3.4.8 below, which prove the
result for the cases in which the number of sources and sinks is less than n/14 and greater than or
equal to n/14 respectively. O

Before proving these two lemmas, I briefly sketch their proofs. Lemma 3.4.4 deals with the
case in which the number of sources and sinks is less than a specified fraction of the number of
vertices in the graph. Its proof first shows that there are many arcs that either are unique-in or
unique-out and incident to degree-1 sources and sinks, or are neither unique-in nor unique-out. This
follows from the Unique-In, Unique-Out Arc Count Lemma (Lemma 3.4.2 above). This is not quite
enough to prove Lemma 3.4.4, however; it is necessary to show that most of the non-unique-in,
non-unique-out arcs are neither locally unique-in nor locally unique-out. This follows from the
Poincaré index formula and the conditions of the lemma. By the Flow Face Operability Lemma
(Lemma 3.4.1 above), this is sufficient to show that a constant fraction of the arcs in the graph are
operable by the TB Rule.

Lemma 3.4.8 covers the case in which the number of sources and sinks is at least a specified
fraction of the vertices in the graph. I prove it using a counting argument. First I show that a high
degree source or sink v (i.c., a source or sink with degree greater than the constant d introduced in
Section 3.3.3) either is incident to a TB arc or is uncommon in the sense that the total number of
such sources and sinks is less than a constant fraction of the total number of sources and sinks in
the graph. Next I show that at least a constant fraction of the sources and sinks with degree < d are
incident to an operable arc. This is clearly true for such sources and sinks that are either degree-1
or incident to a TB or arc. Any other such sources or sinks are processed in the cleanup phase. 1
show that at least a constant fraction of the cleaned sources and sinks are incident to an operable arc
by a counting argument based on the Poincaré€ index formula. I then show that, excluding parallel
arcs, a constant fraction of the arcs are operable, and since all parallel arcs are both T and B (and

59

hence operable), the lemma follows.

I now proceed with complete proofs:
Lemma 3.4.4 In any connected, embedded planar DAG consistent with the algorithm invariants
and in which the number of sources and sinks is less than n /14, 1/6 of the arcs are operable.
Proof: To prove this lemma I show that in graphs meeting the stated conditions there are many
arcs that either are incident to degree-1 sources or sinks, or are operable by the TB Rule.

Let £ be the number of sources and sinks in the graph. To make the proof easier to read, I use
the following notation to refer to specific sets of arcs:

e A is the set of arcs incident to degree-1 vertices.
o Ajisthe setof arcs notin A; (A; = A\ 4y).
e Aj is the set of arcs in A, that are neither unique-in nor unique-out. Lemma 3.4.2 can be

stated as follows:
|A|

|As| + | A41| > 3

Ay is the set of operable arcs in Aj.

e As is the set of inoperable arcs in A3 (A5 = Az \ Ay).
e A,, is the set of all operable arcs.

Before proceeding, it is useful to recall that graphs meeting the algorithm invariants have
no degree-2 flow vertices (such vertices become parts of topological arcs), so every vertex other
than a source or sink has degree 3 or more. Thus the number of arcs in the graph is at least
3(n—k)/2+ k/2 = 3n/2 — k. I give a lower bound on |A;| + |A4|; since all arcs in A; are
operable, this is a lower bound on the number of operable arcs.

To get a lower bound on the size of Ay, I first note that the graph only has flow faces, so every
arc in Az lies between two flow faces. Thus by Lemma 3.4.1 an arc in A3 is operable if it is not
locally unique-in or unique-out. Recall that a locally unique-in or unique-out arc must be incident
to a saddle vertex.

I now apply the Poincaré index formula. The graph has no cycle or saddle faces, so this
involves only the indices of sources, sinks, and saddle vertices. Since sources and sinks each
contribute —1 to the sum and saddles each contribute a positive amount, the total number of saddles
is less than or equal to k¥ — 2. The formula implies that for each source or sink beyond the first
two there are two alternations on some saddle vertex; there are also two additional alternations
per saddle vertex. Thus, the graph can have at most 4k — 8 alternations at saddles vertices. I
associate each alternation with a single arc in the following way: A vertex alternation is associated
with a pair of arcs; associate the alternation with the second arc of the alternation with respect
to the cyclic ordering of arcs around the saddle vertex (I refer to this arc as the one “following
the alternation”; the first arc of the alternation “precedes the alternation”). Note that each locally
unique-in or unique-out arc must have an alternation associated with it: such arcs are by definition
immediately preceded and followed by alternations. Since each inoperable arc in Aj is locally
unique-in or unique-out, each has an alternation associated with it. Each alternation is associated

60

with exactly one arc, so there are at most 4k — 8 inoperable arcs in A3. This gives us an upper
bound on the size of As; since A5 and A4 partition A3,

| As| = |As] — |As| > |A3] — 4k + 8 > |A3] — 4k.

I now use the fact above with Lemma 3.4.2:

Aoy > A1) A4 > A+ 15 4k > 2L
The lemma follows when substitutions are made using the assumption that £ < 7/14 and the fact
that |A| > 3n/2 — k:
Aop>%—4k> g—%> %

O

To prove Lemma 3.4.8 and thus complete the proof of Lemma 3.4.3, I first need to introduce
some terminology and preliminary lemmas. I assume that the graph has been cleaned up.

For analysis purposes I associate a value of ¢ with each saddle vertex, where ¢ is equal to the
index of that saddle vertex. This value is distributed equally among the alternations at the saddle;
each alternation gets ¢/2(¢ + 1). The alternations assign their values to sources or sinks in the

following way:

e Value is assigned only to cleaned sources with only locally unique-in arcs out, or to cleaned
sinks with only locally unique-out arcs in. I refer to such sources and sinks as eligible.

e Value from a particular saddle vertex is assigned only to eligible sources (or eligible sinks)
that are the tails (respectively heads) of arcs incident to that saddle (i.e., only to eligible
sources and sinks at distance 1 from that saddle).

¢ If only one source or sink can be assigned value from a particular saddle, that source or sink
receives that saddle’s full value. If value from a saddle can be assigned to more than one
source or sink, it is done so in the following way: for each eligible source or sink at distance
1 from this saddle, count the number of alternations between it and the next such eligible
source or sink in both the clockwise and counterclockwise directions around the saddle. The
source or sink is assigned the value for half that number of alternations.

Clearly each saddle vertex assigns a total value of either O or its index to sources and sinks. Note
that the minimum value that an eligible source or sink can be assigned per locally unique-in or
locally unique-out arc is 1/4. '

I refer to the total value assigned to a source or sink as the value of that source or sink. Under
certain conditions presented in Lemma 3.4.6, particular sources or sinks transfer some or all of their
value to other sinks or sources. This transfer is done in such a way that the total value summed
over all sources and sinks remains constant.

I call a source or a sink with a value of 9/8 or greater uncommon; other sources and sinks are
common. In the arguments below, I associate a distinct operable arc with each common source and
with each common sink. Since each such arc can be associated with at most one common source
and one common sink, this proves that the number of operable arcs is proportional to the number
of common sources and sinks.

61

Lemma 3.4.5 In an embedded planar DAG with a total of k sources and sinks, more than k /9 of
the sources and sinks are common.
Proof: It follows from the remarks above and the Poincaré index formula that the total value
that can be assigned by all alternations at all saddle vertices is bounded above by £ — 2. Each
uncommon source or sink gets value greater than or equal to 9/8. If 8/9 of the sources and sinks
were uncommon, their total value would be greater than or equal to (8&/9) - (9/8) = k, which is
greater than the total value available for assignment. O
Lemma 3.4.6 In an embedded planar DAG meeting the algorithminvariants, every source incident
only to clean locally unique-in arcs is either uncommon or at the tail of an operable arc. Similarly,
every sink incident only to clean locally unique-out arcs is either uncommon or at the head of an
operable arc.
Proof: The sources and sinks meeting the conditions of the lemma are the eligible sources and
sinks as described above. I argue on the basis of the degree of the eligible source or sink. Note first
that if an eligible source or sink is of degree 1, the incident arc is operable by the Degree-1 Rule.
Further, if an eligible source or sink is of degree 5 or greater, it is uncommon (the minimum value
that an eligible source or sink can get from each adjacent saddle vertex is 1/4). If an eligible source
or sink has degree 3 or 4, then either one of the incident arcs meets the conditions for removal by
the Consecutive Rule or it is uncommon (an eligible source or sink gets the value of at least 3/2
alternation (each with value of at least 3/8) from any saddle vertex where the Consecutive Rule
does not apply). Thus it is only necessary to prove that the result holds for eligible sources and
sinks of degree 2 to complete the proof. I prove the result for the case of sources; the proof for
sinks is symmetric. To simplify the arguments below, I refer to an eligible sink ¢ as adjacent to an
eligible source s at a saddle vertex u if ¢ is incident to arc a;, s is incident to arc a,, and a,; and a,
are adjacent in the cyclic order at .

For eligible sources of degree 2 where each arc out is incident to a different saddle, the
following cases apply:

¢ There are no adjacent eligible sinks at either saddle vertex. In this case the source gets the
value of at least 4 alternations. If either saddle has index greater than 1 then the source is
uncommon (recall that the value of an alternation at a saddle of index 7 is ¢ /2(¢ + 1)). If both
saddles are index 1 and the source has value 1, then each saddle must have an arc in from
another eligible source. In this last case the Index-1 Saddle Rule holds and the source has an
operable arc out.

o There is a single adjacent eligible sink (i.e., an eligible sink is at the end of exactly one
edge out of one saddle). In this case. the source gets the value of at least three and one-half
alternations. There are three subcases: First, if both saddles have index of 2 or greater the
source is uncommon. Second, if the saddle with no adjacent eligible sinks has index 1, then
either there is another eligible source with an edge into that saddle (in which case the Index-1
Saddle Rule holds and the source under consideration has an operable arc out) or the source
gets the value of all alternations at that saddle (in which case the source is uncommon).
Third, the saddle without the adjacent eligible sink has index greater than 1 and the saddle
with the adjacent eligible sink has index 1. Again, at the index-1 saddle either there is a
second eligible source with edge into the saddle (in which case the Index-1 Saddle Rule

62

applies at the source under consideration) or the source gets a value of 1/2 from this saddle
and is uncommon.

e There are at least two adjacent eligible sinks. In this case there are two possibilities. If two of
the sinks are distinct then either the t-s-t Rule or the Consecutive Rule holds and the source
has an operable arc out. Otherwise the source is in the situation shown in Figure 3.14 below.
There are numerous subcases to consider. In the first two the source has an operable arc out:

Figure 3.14: Degree-2 source with common adjacent eligible sink

— The sink has degree 2. Then the Adjacent Degree-2 Sources and Sinks Rule applies
and the source has an operable arc out.

— The sink has degree 3 or greater and one saddle has index 1 and another eligible source
with an arc in. Then the Index-1 Rule applies and the source has an operable arc out.

In the remaining subcases there are no rules that apply at the source and it must be shown
uncommon (I refer to this as the problem source configuration:

— the source has degree 2 and the arcs out are incident to different saddles;
— asingle eligible sink of degree 3 or greater is adjacent at each saddle; and
— neither adjacent saddle has index 1 and is also adjacent to another eligible source).

Note that such a source has a value of at least 1 (it gets two alternations from saddles of index
1 and at least 3/2 alternations at saddles of index 2 or greater). In some of these subcases
value is transferred between sources and sinks as mentioned above. In all cases where value
is transferred from sinks to sources, the sources must be in the problem source configuration.
When a sink transfers value, it divides the value equally among all adjacent sources in such
a configuration. Now consider the remaining subcases:

— The sink is operable. In this case it transfers all its value. The sink has a value of at
least degree(t)/4; since the number of problem configurations any sink can be involved
in is less than or equal to its degree, each source in a problem configuration with this
sink gets additional value of at least 1/4, making it uncommon.

63

~ The sink ¢ has degree 3 or greater and is not operable. In this case the sink transfers
value equal to 1/4 to the source, making the source uncommon. I show below that such
a sink has sufficient value to transfer 1/4 to all such sources to which it is adjacent and
still remain uncommon.

For eligible sources of degree 2 where both arcs are incident to the same saddle, the following
cases apply:

o If the saddle has index 1, then the Index-1 Rule holds and the arcs out are operable.

o If the saddle has index 2 and there are no adjacent eligible sinks with respect to the source,
then the source gets at least 4 alternations and is uncommon.

e If the saddle has index 2 and there is at least one eligible adjacent sink, there are two subcases.
The first is as follows: Let the two arcs out of the source be a; and a; respectively. The cyclic
order around the saddle is divided into two segments, one between a1 and a, and the other
between a; and ¢; in clockwise order. Since the source is eligible, two of the alternations
must fall in one segment and four in the other. Note that there can be an adjacent eligible
sink in the segment with two alternations only if it is a degree-1 sink that is adjacent to both
a and ay. In this case the Consecutive Rule applies. This is shown in Figure 3.15 below.

dn

aj

Figure 3.15: Adjacent eligible sink ¢ in two-alternation segment

o The only remaining case where the saddle has index 2 is when there are adjacent eligible
sinks only on the segment with 4 alternations. Note that if there is not an eligible sink
adjacent to both @) and a,, then the source gets at least 7/2 alternations (each with value of
at least 1/3) and is uncommon. Otherwise, there must be an arc to an eligible sink adjacent
to each arc out of the source. Further, since thé sink at the end of each such arc lies on the
same face as the source, it must be a single sink (there is at most one sink on any flow face).
This situation can be resolved by looking at the degree of the sink:

64

— If the sink is of degree 2, then the Adjacent Degree-2 Source and Sink Rule applies,
and the arcs out of the source are operable.

'— If the sink has degree 3 or greater, then this is a variant of the problem source configu-
ration, and the sink transfers value of 1/4 to the source, making the source uncommon.
Once again, the proof that making such a transfer is reasonable is given at the end of
the proof of the lemma.

o If the saddle has index 3 or greater, then either the Consecutive Rule applies, or else each arc
out of the source gets 3/2 alternations, which gives the source value at least 9/8 and thus
makes it uncommon.

To complete the argument for degree-2 sources, and thus complete the proof of the lemma,
I must show that in the cases in which value is transferred, each inoperable vertex transferring
value retains enough value to stay uncommon. I start by noting that all transfers are from sinks of
degree 3 or higher to sources of degree 2, or (in the symmetrical argument for sinks) from sources
of degree 3 or higher to sinks of degree 2. Thus there are no conflicting transfers. I prove that in
the sink-to-source transfers, inoperable sinks retain enough value; the argument for source-to-sink
transfers is symmetrical.

Note that each such sink has a value of at least degree(t)/2. The sink must receive value
of at least 1/2 for each arc out of a saddle (if the saddle has index 1 neither the Index-1 Rule
nor the Consecutive Rule can apply to ¢, which is inoperable, so there is at most one adjacent
eligible source at that saddle and ¢ gets value of at least 1/2; if the saddle has index 2 or greater the
Consecutive Rule cannot apply, so ¢ gets at least 3/2 alternations (each with value of at least 1/3),
which supplies a value of 1/2 or more for that arc).

Next consider a sink ¢ that transfers- value to one or more sources. Observe that each arc a into
t can be adjacent (in the cyclic order at the saddle at the a’s tail) to at most one arc out of some
source (if not, the Consecutive Rule would apply at that sink, which is inoperable). Since each
source that receives value from ¢ is incident to two arcs, each of which is adjacent to a distinct arc
into ¢, the number of such sources can be at most |degree(t)/2]. If ¢ transfers 1/4 to each such
source, ¢’s remaining value is at least

degree(t) degree(t) 1 3 -degree(t)
2 2 4 8 ’
which is greater than or equal to 9/8 for sinks with degree 3 or greater. Thus the sinks that transfer

value remain uncommon.
ad

Lemma 3.4.6 deals with sources and sinks that have been cleaned up. However, the cleanup
algorithm is not applied to all sources and sinks. Lemma 3.4.7 shows that there are not too many
sources and sinks that have not been cleaned and that are not adjacent to an operable arc. This,
along with the fact that there are not too many uncommon sources and sinks, allows a proof that
the number of operable arcs is suitably large. The argument starts with some definitions and
observations.

A problem high-degree source is a source of degree greater than the constant d (introduced
in Section 3.3.3) with all arcs out either unique-in or locally unique-in. A problem high-degree

65

sink is a sink of degree greater than d with all arcs in either unique-out or locally unique-out. Such
vertices are problems in the sense that they may have no operable arcs and they cannot be cleaned
up in constant time.

A simplified underlying graph of an embedded planar DAG G = (V, A) is the embedded
planar graph G” = (V”, E") that results when each set of parallel edges in G’ (the underlying
graph of () is replaced by a single edge. G" has the following properties:

¢ Any problem high-degree source or sink in G has no parallel arcs, and hence has the same
degree in G” as it has in G.

e Allfaces in G” have boundaries of length 3 or longer because there are no loops and because
faces in G’ with boundaries of length 2 are formed by parallel edges. Thus Inequality (3.2)
in Section 3.2.1 holds.

e The number of vertices is the same in G” and in G.

Given these facts, it is easy to prove the following lemma:
Lemma 3.4.7 In any embedded planar DAG consistent with the algorithm invariants the number
of problem high-degree sources and sinks is less than 6n/d.
Proof: Let [be the number of vertices in G” that have degree greater than d. Because Inequal-
ity (3.2) from Section 3.2.1 holds for G”,

d-l " 6

T<|E |<3n—>l<E-n.
Since every problem high-degree source or sink in G has degree greater than d in G, the number
of such sources and sinks must also be less than 6n/d.
O

Now set d = 1512, which by the argument in the preceding lemma implies that the number of
problem high-degree sources and sinks in the graph is less than n/252.

Lemma 3.4.8 Inany cleaned-up embedded planar DAG G consistent with the algorithm invariants
in which the number of sources and sinks is greater than or equal to n/14, a constant fraction of
the arcs are operable.

Proof:

As in previous proofs, let £ be the number of sources and sinks.

I start with some preliminary observations: The arcs can be partitioned into two sets: those
that have another parallel arc and those that do not. Since GG has no cycles, every arc parallel to
some other arc is both T and B with respect' to the face common to the two arcs, and is hence
operable by the TB Rule. From the discussion above about the simplified underlying graph G”,
the number of arcs in G without parallels plus the number of sets of mutually parallel arcs is less
than 3n (this number is | E"| < 3n). '

The goal is to specify a set of operable arcs such that the size of this set is a constant fraction
of the number of sources and sinks in the graph (i.e., a constant fraction of k). The operable arcs
specified correspond to edges in G”; they are either arcs without parallels or single representatives
of sets of parallel edges. Because k is at least a constant fraction of n by the conditions of the

66

lemma, and because the arcs in G that do not correspond to unique edges in G” are all parallel arcs
(and thus operable), specifying this set of operable edges implies that a constant fraction of the arcs
in G are operable.

Specify the set of operable arcs in the following way: For each source(sink) at the tail(head)
of at least one TB arc, put one such arc in the set; the arc is operable by one of the TB Rules.
(To be consistent with the condition that only one arc corresponding to any edge in G” is chosen,
if the arcs specified for a source and a sink both come from the same parallel set, then a single
arc representing the parallel set is used for both the source and sink.) If the source or sink has
degree 1, then the incident arc is operable by the Degree-1 Rule and is added to the operable set.
The remaining sources all have only unique-in and locally unique-in arcs out; the remaining sinks
only have unique-out and locally unique-out arcs in. Ignore problem high-degree sources and
sinks for the moment, and assume that all edges out of sources and into sinks are clean. Thus, for
any other source incident to a unique-in arc or sink incident to a unique-out arc it is possible to
add such an arc to the set of operable arcs because of the Unique-In/Unique-Out Arc Contraction
Rule. This leaves only sources with clean locally unique-in arcs out and sinks with clean locally
unique-out arcs in; by Lemma 3.4.6 every such source or sink is either uncommon or at the tail or
head respectively of an operable arc.

An operable arc has been specified for every source or sink that is not either a high degree
problem or uncommon. The number of problem high-degree sources and sinks is less than n/252
by Lemma 3.4.7 and the choice of d; this is less than &£/18 by the conditions of this lemma. The
number of uncommon sources and sinks is less than 8%/9 by Lemma 3.4.5. Thus the number of
sources and sinks for which an operable arc has not been specified is less than 17%/18, which
means that an operable arc has been specified for more than 1/18 of the sources and sinks.

In order to complete the proof, I must show that there are not too many duplicate arcs in the
set. Since every operable arc specified is incident to a source or a sink, duplicates are included only
when an arc in the set is specified for both a source and a sink. In that case arc is included at most
twice; thus, the size of the set is at least a constant fraction of k. O

3.5 Conflict Resolution

In the previous section I showed that in any embedded connected planar DAG meeting certain
invariants a constant proportion of the arcs are operable once the graph has been cleaned up.
However, applying the reduction rules to these operable arcs leads to two types of conflicts that the
algorithm must deal with: intra-rule conflict, and inter-rule conflict.

Intra-rule conflict arises when a single rule is applied in parallel to all arcs operable by that
rule. Doing so leads to cases in which either invariants are not maintained or in which the rule
applications cannot be completed in some specified amount of time (for DAG reduction, this is
constant time). For example, removing two arcs, both of which are marked T and B, can result in a
graph that does not meet the invariant that all faces are flow faces (see Figure 3.16 below). Another
potential problem is that removing multiple arcs via the TB Rule could leave an arbitrary number
of arcs that must be combined into a single topological arc (see Figure 3.17 below). Updating the
information for all the internal components (e.g., determining leader information and rank ordering)

67

saddle
face

Figure 3.16: Example of intra-rule conflict for TB Rule

could thus take time O(log|A|). Likewise, it must be possible to combine faces in constant time

TB
B
TB
TB
TB +
TB
TB
TB
TB

Figure 3.17: Creation of topological arc with arbitrarily many segments

(since rank orders are not kept on face boundaries, it is possible to combine an unbounded number
of faces into a single face, but it must be shown that this does not require excessive time).

Inter-rule conflict arises when applications of a particular rule make arcs that were operable by
another rule inoperable. Both types of conflict affect the counting argument that shows a constant
proportion of the arcs are removed in each pass through the main loop.

Before discussing conflicts and conflict resolution in detail, recall the following observation
made in Section 3.2.2, which is useful in a number of subsequent arguments: A flow face has at
most one source and one sink on its boundary.

3.5.1 Resolution of Intra-Rule Conflict

The algorithm deals with conflicts between applications of a single rule by building a conflict graph
that relates the conflicting arcs. The graph consists of a vertex for each arc operable by the rule in
question, and an edge between each pair of these vertices where the removal of the corresponding

68

arcs causes a conflict. The edges can be undirected or directed, depending on whether the conflicts
are symmetric or asymmetric. It is clear that choosing an independent set from the conflict graph
gives a set of arcs that do not conflict with each other. I show how to find an independent set
that includes at least a constant proportion of the vertices in the conflict graph, and thus a constant
proportion of the arcs operable by a particular rule. In general, the conflict graphs have bounded
degree, so finding a maximal independent set (MIS) in the conflict graph suffices.

The intra-rule conflict definitions for each rule follow. In all cases but one I state the maximum
degree of the conflict graph. I argue that the “flow faces only” invariant is preserved. 1 also argue
that any changes resulting from removing non-conflicting arcs can be processed in constant time
in the CRCW model; in particular, I show that the algorithm never has to combine arbitrarily many
arcs into a single topological arc, and that it never has to splice the arcs from arbitrarily many
vertices into consecutive places in the cyclic order at some vertex. Also, I must show that where
rules combine faces, the associated work can be done in constant time. The rule-by-rule conflict
definitions are as follows:

[TB Rule] For the TB Rule, the conflict resolution is broken into four stages. In each stage
the algorithm determines conflicts for a particular type of TB arc, then removes non-conflicting
arcs of that type. For purposes of the counting argument, I assume that the algorithm first determines
all TB arcs, then applies the conflict resolution procedure. At the time that conflict resolution for
a particular type of TB arc occurs, arcs of that type are specified. The reason for this is that as TB
arcs are removed, the formation of topological arcs can change the characteristics of a particular
arc. For example, an arc meeting the conditions for Type II TB arcs prior to arc removal could
meet the conditions Type III TB arcs after the removal of a Type I TB arc. The four types are as
follows:

e A Type I TB arc is not marked both T and B for any single face.

o A Type II TB arc is marked both T and B for exactly one face f, and the other T and B
marks for f are not common to a single arc.

o A Type III TB arc is marked both T and B for exactly one face f, and the other T and B
marks for f are common to a single arc.

¢ A Type IV TB arc is any TB arc that is marked both T and B for two faces.
I describe the conflict resolution for each of these types in turn:

[Type I TB Arcs] A Type I TB arc « conflicts with any other Type I TB arc that is marked
T or B with respect to a face for which « is marked T or B, Each Type I arc conflicts with
at most 6 other arcs (an arc can lie on two different faces and there are up to 3 arcs on each
face with which it conflicts); these conflicts are symmetric (an example of a conflict graph is
shown in Figure 3.18 below). A MIS is selected from the conflict graph and the associated
arcs are selected for removal.

Note that removal of these Type I arcs might either make certain Type Il and Type IV TB arcs
inoperable, or might make them into Type I arcs that are not removed during this arc-removal

69

phase. For this to happen, however, these arcs must be marked T, B, or both T and B on a
face from which a Type I TB arc is removed. Thus vertices corresponding to these arcs can
be added to the Type I conflict graph without increasing its maximum degree and without
changing the fact that the MIS is maximal. (This extension of the conflict graph is not
necessary in the actual algorithm; it is a counting mechanism used only in the proof. The
fact that a Type II or Type III arc has become inoperable can be detected in a subsequent arc
removal step.) An example of how Type Il TB arcs are added to the conflict graph is shown
in Figure 3.18.

Conflict Graph for Type I TB Results for Type I TB Arcs:
Arcs: Heavy Arcs are Type I; Heavy Arcs are Type I MIS; Light
Light Lines Indicate Conflicts Lines Indicate Type II Conflicts

Figure 3.18: TB Rule Conflict Graphs

To see that this conflict resolution procedure preserves the “flow faces only” invariant, note
that saddles result only if the removal of some set of arcs effectively changes the marks on
some other removed arc so that it is no longer marked both T and B. To create such a conflict
with a Type I TB arc q, it is necessary to remove an arc a’ that is common to a face f with a,
and that has the same mark as a with respect to f. Since the algorithm only removes Type I
TB arcs at this time, such an arc must be Type I, and the conflict procedure rules this out.

The TB Rule can never create cycle faces in a DAG, since it only removes arcs.

The following lemma shows that this procedure combines at most a constant number of arcs
into a topological arc:

Lemma 3.5.1 At most 3 arcs are combined into a single topological arc as a result of

70

removing Type I TB arcs.

Proof: Number the arcs that are incorporated into a new topological arc according to their
order of occurrence on this new arc, with the arc closest to the tail being numbered 1. I
refer to the i arc as a;. Suppose v is the tail of some a;, and that v becomes internal to the
new topological arc. Then every arc incident to v other than a;_; and a; must be removed
at the same time. Note that if two such incident arcs were adjacent in the cyclic order, the
conflict resolution procedure for Type I TB arcs would prevent the removal of one of them.
Therefore in the cyclic ordering at v in the clockwise direction, there is at most one Type I
TB arc between a,_1 and a;, and at most one between a; and a;_1.

Now assume that removing Type I TB arcs causes four or more arcs to be combined into a
single new topological arc (the following argument is illustrated in Figure 3.19 below). This
implies that at least one arc incident to v, the tail of a4, is removed. I refer to this arc as
bs. Without loss of generality, assume that b4 lies between a3 and a4 in the clockwise cyclic
order at v4. b4 and a3 are common to a face fj.

Another arc b3 incident to bg,, the tail of a3, must also be removed. If b3 lies between @, and
a3 in the clockwise cyclic order at 3, then it also is common to f;, and conflict resolution
prevents the simultaneous removal of b3 and b4. Therefore b3 must liec between a3 and a5 in
the clockwise cyclic order at »3. b3 and a, arc common to a face f5.

Finally, a Type I TB arc incident to vy, the tail of a;, must also be removed. However, if
this arc lies between a; and a in the clockwise cyclic order at v5, it is common to face f,
and conflicts with bs; if it is lies between ay and a, in the clockwise cyclic order at v,, it is
common to face f; and conflicts with b4 because there is no arc between a, and a3 in the
clockwise cyclic order at v3. Thus the assumption leads to a contradiction.

O
by 4
./ -
, e
V4

£
as

aj az
e———pFo e
Vi V2 V3
£,

bs

A Type I TB arc at v2 causes intra-rule conflict

Figure 3.19: Example for Topological Arc Formation

71

To see that at most two crosspointers get spliced into one, first note that if more than two
pointers are spliced together, then for any pointer other than the first or last, the arcs at both
its head and tail must be removed. This requires the removal of two arcs from one face,
which is prevented by the conflict resolution procedure.

Since the algorithm never removes more than one arc from any face, it is obvious that it
never removes two arcs that are consecutive in the cyclic order at any vertex. Likewise, it
never combines more than two faces into one.

[Type II TB Arc] The conflict resolution procedure for Type II TB arcs differs from the
procedure for most other rules because it constructs two conflict graphs in sequence, and
it differs from all other rules because the first conflict graph is a forest and may not have
bounded degree. The vertices of the first conflict graph represent Type II TB arcs that remain
operable after conflict resolution (including arc removal) for Type I TB arcs. (Recall that the
algorithm considers arcs that were operable prior to the removal of any Type I TB arcs; any
newly-created Type I TB arcs are considered inoperable, as are those made inoperable by
Type I conflict resolution. Also note that the algorithm only considers arcs that are currently
Type II; any operable Type 11 arcs that became Type HI when Type I arcs were removed are
considered later.) It is easy to see that any such arc meets two easily-tested conditions: it
was operable prior to Type I removal, and it currently meets the conditions for Type I TB
arcs. Each such Type II arc @ is on the boundary of a unique face f for which a is not both T
and B. If the opposite side of f is an operable Type Il arc b, direct an arc in the conflict graph
from the vertex representing a to the vertex representing b. The result is a directed forest
(see Figure 3.20). Removing Type II TB arcs does not affect the operability of Type III or
Type IV TB arcs.

Conflict graph shown in lighter color

Figure 3.20: Conflict Graph for First Phase of Type II TB Conflict Resolution

Tree contraction could be used to find an independent set in the forest that contains at least

72

half the vertices. However, that could take time O(log|A|). Therefore the algorithm uses a
simpler method that runs in constant time in the ARBITRARY CRCW model. To simplify
the exposition, I first introduce some terminology: a chain vertex is any vertex in the conflict
forest with indegree 1, provided that the arc in is not incident to a leaf. The first conflict
resolution algorithm for Type II TB arcs can now be stated:

— Add all leaves in the forest to the set of arcs to be operated on.

— Form the subgraph induced by the chain vertices and replace the directed arcs by
undirected arcs. This subgraph has maximum degree 2. Find a MIS in the subgraph
and add the corresponding arcs to the set of arcs to be removed.

The argument that this yields at least 1/3 of the operable Type IT TB arcs is straightforward.
I first note that since the subgraph induced by the chain vertices has maximum degree 2, the
MIS has at least 1/3 of these vertices. Next I count the vertices other than chain vertices.
There are three types:

1. leaves

2. vertices with indegree 2 or greater. The proof to Lemma 3.4.2 noted that the number
of such vertices must be less than the number of leaves.

3. vertices with indegree 1 for which the arc in is incident to a leaf. The number of such
vertices is at most the number of leaves.

Thus the number of non-chain vertices is less than three times the number of leaves. Since
all arcs corresponding to leaves are operated on, this is greater than 1/3 of the remaining
arcs, and the claim is proved.

The second phase of conflict resolution prevents the creation of topological arcs out of more
than some constant number of arcs. The conflict rule is as follows: for each Type II TB arc
a selected in the first round of conflict resolution, consider the other T and B arcs on the face
f for which a is marked both T and B. Each lies on the boundary of another face (f; and f,
respectively; they need not be distinct). If the T arc is marked either T or B on fi, and if
the boundary of f; opposite from the T arc is a Type II TB arc marked both T and B on f;
and chosen in the first round, put an edge between the vertices representing it and « in the
conflict graph. Likewise, if the B arc is marked either T or B on f,, and if the boundary of
f» opposite from the B arc is a Type II TB arc marked both T and B on f, and chosen in
the first round, put an edge between the vertices representing it and a in the conflict graph.
These conflicts are symmetric, so the degree of any vertex in the conflict graph is at most 2,
and a MIS from this graph corresponds to a set of arcs that is at least a constant fraction of
the Type II TB arcs that were operable at the start of this conflict resolution stage.

To see that the two-step conflict resolution procedure preserves the “flow faces only” invari-
ant, note that saddles result only if the removal of some set of arcs effectively changes the
marks on some other removed arc a so that « is no longer marked both T and B. If ¢ is a
Type I TB arc, this requires the removal of at least one arc marked either T or B on the face

73

for which « is marked both T and B. Since only Type II arcs are removed at this stage, this
is ruled out by the first conflict rule.

Removal of the arcs selected by this process causes at most three consecutive crosspointers
to be spliced into one. If more than two pointers are spliced, then some pointer p must
lie between two arcs that are removed; these arcs must be common to a single face. The
reduction rules insure that if two arcs are removed from a single face then neither is marked
both T and B on that common face (if both are, they are not Type II TB arcs; if one is then
the two arcs conflict in the first half of the conflict resolution step). Therefore, any pointer
spliced to p must cross a face to or from the side of a Type II TB arc that is marked both T
and B. But the Type II TB arc is the only one removed from such a face, and the chain of
splices cannot extend any further. Thus at most three pointers get spliced into one (one to a
Type 1I arc, one from one Type Il arc to a second, and-one from the second Type II arc).

The same sort of argument shows that the maximum number of arcs consecutive in the cyclic
order that are removed at some vertex is at most two. Any two such arcs are common to a
face f. If the arcs have the same orientation (i.e., both are in-arcs), then by the argument
above neither is both T and B on the common face. If they have opposite orientations, then
neither can be both T and B on the common face. Therefore in either case they must be
marked both T and B on the other faces; no other arcs are removed from those faces, so the
next arcs in the cyclic order in either direction are not removed.

Istill need to show that the number of arcs combined into a single topological arc is bounded
by a constant. I have just shown that the algorithm never removes three consecutive arcs
in the cyclic order at any vertex. I can apply this fact at any v that becomes internal to a
topological arc, so only cases in which one or two consecutive arcs are removed need be
considered. If two consecutive arcs are removed, I can limit the possibilities to four as shown
in Figure 3.21 below. The unlabeled arcs are components of the topological arc. In (a) both
a1 and @2 could be Type I TB arcs and could both be removed without conflict. In (b) and
(c), there is exactly one way in which both arcs could be Type II TB arcs; in those cases the
arcs conflict by the first conflict resolution step. In (d) there is no way that the two labeled
arcs could both be Type II TB arcs.

Now consider the possible configurations of arcs incident to a vertex v that becomes internal
to a topological arc. At least one arc incident to v must be removed. The configuration of
arcs at one side of v (i.e., either clockwise in the cyclic order between the arc into » and the
arc out of v, or clockwise in the cyclic order between the arc out of » and the arc into v) can
be one of four things: no arcs, an arc in, an arc out, or two arcs as specified above. Note
that if there is an in arc on each side of the topological arc at v then these two arcs conflict
by the second conflict resolution step; this is also the case if there is an arc out on each side.
Therefore four possibilities (plus their mirror images) are left; they are shown in Figure 3.22
below.

Finally consider the configurations possible at two consecutive vertices « and v that become
internal to a topological arc. Specifically, let there be an arc from « to v that becomes part
of the topological arc, and let the arc out of v be the last arc in the sequence that becomes

74

TB TB

/ aq aq aj aj

TB

TB
7B TB

2

(a) (b) (c) (d)

Figure 3.21: Consecutive Type IT TB Arc Incidences at a Vertex

aq a; / aq
aq az a,
(1) (2) (3) (4)

Figure 3.22: Nonconflicting Type II TB Arc incidences at vertices that could become internal

75

the new topological arc. First consider the case in which there is an in-arc a;,, incident to
v. This in-arc conflicts with an out-arc on the opposite side of u, and an out-arc at % on the
same side of the topological arc as a;, cannot be a Type II TB arc. If there is no out-arc at
u, there must be an in-arc at v. However, such an arc conflicts with a;,, if it lies on the same
side of the topological arc. Thus, if configurations (1), (3), or (4) shown in Figure 3.22, or
their mirror images, occur at v, there is only one allowable configuration that can occur at
u: configuration (1), with the arc on the opposite side of the topological arc from a;,. By
the same argument, the only configuration that can occur at the vertex preceding « on the
topological arc is configuration (1), with the arc on the same side of the topological arc as
@;n. But such an arc must conflict with a;,, by the first conflict resolution rule. Thus in this
case at most three arcs can be combined into a single topological arc.

Now consider the case in which the configuration at v is (2). If configuration (1), (3), or (4)
occurs at u, the previous argument says that at most three arcs preceding the arc out of v
are combined into the topological arc, limiting the total number of arcs combined to four. If
configuration (2) occurs at u, the arc out of # must be on the opposite side of the topological
arc from the arc out of v; if not, they would conflict by the first conflict resolution rule. This
implies that configuration (2) cannot occur at the vertex preceding u; if one of the other
configurations does occur at the preceding vertex, this is again the case discussed above, and
at most three more arcs can be included in the new topological arc. Thus, at most five arcs
can be combined into a single arc as a result of removing Type IT TB arcs.

Type II TB arc removal is one case where an unbounded number of faces can be combined
into one. Let f be a face such that an arc marked both T and B with respect to f is
removed. The conflict resolution rules prevent f from being combined with another such
face. However, several faces such as f can be combined with a face f’ such that no Type II
TB arc marked both T and B with respect to f” is removed. If this occurs, the processor for
f’ becomes the processor for the new face. To create this new face, f’ needs to determine
if the leaders have changed as a result of the removal of a Type Il TB arc. Then the various
faces to be combined with f/ need to set the processor of f’ as the new processor. The edges
on the remaining boundaries of these faces can read the new processor number to complete
the change. This can all be done in constant time in the CRCW model, so combining an
arbitrary number of faces in this way is not a problem.

[Type III TB Arc] Recall that a Type III TB arc is marked both T and B for exactly one
face f, and the other T and B marks for f are common to a single arc b. Apply the conflict
rules for Type III TB arcs to any such arc that is currently operable. Such an arc a meets the
following two conditions: ¢ was marked both T and B prior to the start of TB arc conflict
resolution, and « currently meets the conditions for Type III TB arcs.

The first conflict rule says that if b is also an operable Type III TB arc, a conflicts with b and
vice versa.

In addition, conflict rules are needed to prevent the formation of topological arcs from
arbitrarily many arcs. To understand these rules, it is first useful to discuss the situations in
which vertices can become internal as a result of Type IIl TB arc removal.

76

The first conflict rule assures that if Type HI TB arc « is removed, then an arc parallel to
a remains in the graph. This implies that the alternation number of any vertex in the graph
does not decrease as a result of Type III TB arc removal. Thus only flow vertices can become
internal to topological arcs.

Also, for each arc b remaining after Type III TB removal, at most two Type III arcs parallel
to b have been removed. Thus if the outdegree (respectively indegree) of a flow vertex is
four or more, that vertex cannot become internal as a result of the removal of Type III arcs.

The additional conflict rules thus apply to operable Type III TB arcs that are incident to flow
vertices with indegree and outdegree less than or equal to 3. Let ¢ be such an arc and v be
such a flow vertex at the tail of a. Once again, b denotes the TB arc common to the face for
which ¢ is marked both T and B.

To determine these additional conflicts, consider the next arc in the cyclic order at v, where
the direction of the order is specified as & followed by a. If ¢ is out of v, then « has no
conflicts with respect to its tail. If ¢ is into v, the following cases apply:

— If ¢ is a Type III TB arc, the following conflicts can occur: a and ¢ conflict if ¢ is
operable; if the arc d opposite ¢ on ¢’s TB side is an operable Type III TB arc, then a
also conflicts with d (this last condition applies whether or not ¢ is operable).

— If cis not a Type III TB arc, then consider the indegree of v. If the indegree is greater
than one, @ has no more conflicts with respect to v. If ¢ is the only arc in, then consider
the vertex u at the tail of ¢ (if the indegree of v is greater than one in this case, v does
not become internal). If u is a flow vertex with indegree 3 or less and ¢ is the only
arc out, then consider the arcs into % (if » does not meet these conditions, « does not
become an internal vertex). Let d be the arc into « on the face common with a. If d is
a Type III TB arc, the following conflicts can occur: a and d conflict if d is operable; if
the arc e opposite d on d’s TB side is an operable Type III TB arc, then ¢ also conflicts
with e (this last condition applies whether or not d is operable). If d is not a Type 1II
TB arc, no conflicts occur.

These conflicts are illustrated in Figure 3.23 below. A symmetric set of conflicts occur for
arcs out of the head of a.

As in previous cases the algorithm builds a conflict graph with vertices corresponding to
the Type HI TB arcs, and edges corresponding to conflicts. In this case conflicts may not
be symmetric; however, for any operable Type III TB arc there are at most five arcs with
which it can conflict and that can conflict with it. The degree of any vertex in the conflict
graph is at most five. Thus it is possible to find a constant proportion of the vertices in the
conflict graph by finding a MIS. As was the case for Type I arcs, removal of Type III arcs
can affect the operability of other types of TB arcs. In particular, certain Type IV TB arcs
can either become inoperable, or can become Type III TB arcs that are not removed during
this phase of arc removal. However, all such Type IV arcs are common to a face for which a
removed Type Il arc is marked both T and B. As was the case for Type I conflict resolution,
the conflict graph can be extended to include these arcs after a MIS has been selected: If a

77

ca d a
P V' P U\
P
d b e

b

a conflicts with ¢; a conflicts with d;
may conflict with d may conflict with e

Figure 3.23: Type III TB Arc Conflicts

is represented by a vertex in the MIS in the conflict graph, and if a is labeled both T and B
on aface f, and the opposite side of f is a Type IV TB arc b, add a corresponding vertex and
edge to the conflict graph (again, this is done for counting purposes in the proof and need not
be done in the actual algorithm). This does not increase the maximum degree of the conflict
graph, and, since every added edge is incident to an element of the MIS, the MIS remains a
MIS.

To see that this preserves the “flow faces only” invariant, note that saddles result only if the
removal of some set of arcs effectively changes the marks on some other removed arc a so
that ¢ is no longer marked both T and B. This can only occur for Type III TB arcs if the
algorithm removes two arcs both of which are marked both T and B on a common face. This
is ruled out by the conflict rules.

Removal of the arcs selected by this process causes at most three consecutive crosspointers
to be spliced into one. If more than two pointers are spliced, then some pointer » must lie
between two arcs that are removed; these arcs must be common to a single face. The conflict
rules insure that if two arcs are removed from a single face then neither is marked both T
and B on that common face (if either is, then by the definition of Type III TB arcs both are,
and they conflict). Therefore, any pointer spliced to p must cross a face to or from a the
side of a Type III TB arc that is matked both T and B. But the Type III TB arc is the only
one removed from such a face, and the chain of splices cannot extend any further. Thus at
most three pointers get spliced into one (one to a Type III arc, one from one Type I arc to a
second, and one from the second Type III arc).

It is easy to see that no more than two arcs consecutive in the cyclic order at any vertex are
removed. The conflict rules insure that if a Type III arc a is removed, then the other arc on
the face for which a is marked both T and B is not removed. If two consecutive Type III arcs
are removed, then neither can be marked both T and B on the face they share. Further, the
next arc in either direction in the cyclic order remains.

To see that no more than three arcs are combined into a single topological arc, first recall
that if a vertex becomes internal, either its outdegree, its indegree, or both are reduced to one

78

(either the indegree or the outdegree could be one already). Because of the first conflict rule,
if the outdegree (respectively indegree) is reduced, one can conclude that it was two or three
prior to removal, and that the removed arcs were parallel to the remaining arc. It is easy to
see that if a vertex v has both indegree and outdegree of two or three, then the additional
conflict rules insure that v does not become internal (an example of such a vertex is included
in Figure 3.24 below as the “excluded” case; the arcs labeled @ and b conflict since the other
two arcs must both be Type III TB arcs even if they are no longer operable).

This allows the number of cases considered to be reduced. There are four basic cases as shown
in Figure 3.24 below (cases 1 and 3 each represent two mirror-symmetric configurations).
Assume that v is the last vertex that becomes internal in the newly formed topological arc.

\ b
a a b ! v v
v
v v
a a b
a
"oy .
(1) (2) (3) (4) excluded

Figure 3.24: Cases for showing that Type III TB conflict resolution prevents the formation of long
topological arcs

Let a;,, be the arc with v as its head that is included in the topological arc, and let u be the
tail of a;,,. If u also becomes internal and the configuration at v is either 3 or 4, then the
configuration at » has to be 1 or 2 respectively (operable arcs out of » would be arcs into
v; this is not consistent with the assumed configuration). In either case conflicts occur and
not all the arcs incident to % and v are removed (note that for configurations 1 and 3, the arc
parallel to the Type III TB arc must also be a Type I1I arc). If the configuration at v is 1 or 2,
then either configuration 3 or 4 occurs at u (the arcs out of w are the arcs into v); in this case
its clear that at the next vertex back from u on the desired topological arc there are conflicts
as described above. In this case it is possible to combine three topological arcs into a single
arc. '

Removal of Type 111 TB arcs can lead to the combination of an unbounded number of faces in

the same way as for Type II TB arc removal. The method of combination and the argument
that it takes constant time are the same as in the Type II case above.

[Type IV TB Arc] Recall that a Type IV TB arc is marked both T and B for two faces. The
Type IV arcs that are removable at this step meet the easily-tested conditions that they were
marked both T and B prior to TB arc removal, and that they currently meet the conditions

for Type IV TB arcs.

79

Each Type IV TB arc a lies on the boundary of two faces. If a is operable, it conflicts with
any operable Type IV TB arc that forms the opposite side of either of these faces. Thus
each such arc can conflict with at most two other arcs, and all conflicts are symmetric. The
conflict graph has a maximum degree of 2.

Itis easy to see that two arcs consecutive in the cyclic order are never removed: if the opposite
sides of the faces bounded by a removed arc are not Type IV arcs, they are unaffected; if they
are Type IV arcs they conflict with the removed arc and are not removed. Thus at most one
arc is removed from any face. When a single Type IV TB arc between two faces is removed,
the two faces are merged into a single flow face, so no saddle faces are formed. Also, at most
two pointers can be spliced into one; if longer pointer chains were formed, two arcs would
have to be removed from some face, which is not possible.

It is also clear that removal of a Type IV arc cannot create a topological arc. In general the
conflict rules assure that both the top and bottom arcs on two faces stay incident to the head
and tail of the removed arc. In the degenerate case in which the graph consists of two parallel
arcs, the arc that remains is not combined with any other arc.

The conflict procedure for Type IV TB arcs prevents the removal of more than one such
arc from any face. Therefore at most two faces are combined. This can easily be done in
constant time.

This completes the conflict rules for various types of TB arcs. I now argue that this four-step
procedure is sufficient to remove a constant fraction of the TB arcs: First note that the
maximum degree of the conflict graph for Type I TB arcs is 6, so the conflict resolution
procedure discussed in Section 3.5.1 above yields a MIS that is at least 1/7 the size of the
set that includes (1) arcs operable by this rule and (2) Type II and Type IV TB arcs that are
not removed because of the removal of Type I arcs corresponding to vertices in the MIS.
The arcs not in this set are Type II, Type III, and Type IV TB arcs that remain operable after
Type Itemoval.

The conflict resolution procedure for Type II TB arcs removes a constant proportion of the
remaining operable Type II arcs without affecting the operability of the remaining Type III
and Type IV TB arcs.

The conflict resolution procedure for Type III TB arcs removes a number of arcs equal to a
constant proportion of the remaining operable arcs that are either (1) Type III or (2) Type IV
arcs that are not operated on because of the removal of Type III arcs. The argument is as for
the Type I case.

Finally, the Type IV conflict resolution procedure allows the removal of a constant fraction
of the remaining arcs. Thus a constant proportion of the arcs that were TB arcs prior to
conflict resolution are removed.

[Degree-1 Rule] There are no conflicts between arcs operable by this rule, so the con-
flict graph has no edges. To see that no saddle or cycle faces are created, note that the
removal of such an arc @ changes only the face of which « is on the boundary. Furthermore,
removing a degree-1 vertex and its arc causes the number of face alternations either to stay

80

the same or to decrease. Thus, given that all faces are flow faces, each starts with two
alternations on the face. If the number of alternations goes down it must go to zero (there
is always an even number of face alternations on a face), which would mean the face is a
cycle. But that implies that the remaining boundary formed a cycle in the original graph,
which contradicts the fact that the graph is a DAG.

Given that the graph being reduced contains no directed cycles and that there is at most one
source and one sink on a flow face, it is easy to show that there are at most two arcs operable
by this rule on any face and these arcs cannot be adjacent in the cyclic order at any vertex.
There are no problems with processing time (i.e., with respect to pointer splicing or updating
topological arc information) in this case.

The remaining rules affect only clean arcs. Therefore there is no need to worry about splic-
ing pointers: A clean arc has no pointers through internal vertices, so its removal does not
cause any splicing. If it is contracted, the head becomes top (respectively, the tail becomes
bottom), and any incident pointers can be deleted (the conditions on clean arcs insure they
do not become self-loops or backpointers). However, it is necessary to be careful that no
more than a constant number of faces get combined into a single face as the result of the
application of some rule.

[Unique-In(Unique-Out) Are Contraction Rule] An arc a operable by this rule conflicts
with its two neighbors in the cyclic order at the source(sink). The conflicts are symmetric,
so the degree of any vertex in the conflict graph is at most 2. Contraction of a unique-
in(unique-out) arc does not create a cycle or saddle face: Only the two faces that have this
arc on a boundary are affected. Since the next arcs in a traversal of these faces have the
same orientation on the boundary as the contracted arc, the face remains a flow face, and
the “all flow faces” invariant holds. The conflict rule insures that consecutive arcs in the
cyclic order are not contracted, so changes in the cyclic order can be processed in constant
time in the CRCW model. There are no problems with either combining too many arcs into
a topological arc or combining too many faces together: no topological arcs can be formed
and no faces can be combined by this rule.

(Note that there are no conflicts in which this rule applies to an arc at both a source and a
sink; if a unique-out arc from a source is the unique arc into a sink, then these vertices plus
the arc form a complete connected component.)

[Adjacent Degree-2 Sources and Sinks Rule] A conflict graph can be constructed as
follows: Vertices in the conflict graph are the operable degree-2 sources. Each such source
s checks for each sink ¢ with which it is operable (there are at most 2) whether there is a
second source s that is operable with ¢, and if so adds an edge to s’ in the conflict graph.

In addition, it may be the case that s lies on a face f that has a degree-2 sink ¢ as its bottom,
and s is not operable with t. However, ¢ may be operable with another source s'; if this is the
case, then s and s’ conflict. This conflict is defined in a symmetrical way with respect to s’
if &’ is operable with with a sink ¢, and if ¢ lies on a face f such that the top of f is a source s
that is operable, but not with ¢, then s’ and s conflict. These conflicts are included to prevent

81

the combination of more than a constant number of faces or the creation of a topological arc
from arbitrarily many arcs.

Since the conflicts are symmetric, the maximum degree of any vertex in the conflict graph is
2. If any source selected for removal during conflict resolution is operable with more than
one sink, it chooses one of the sinks arbitrarily.

If only non-conflicting sources and their corresponding sinks are removed from a graph that
contains only flow faces, the conflict rules insure that each removal affects only three faces:
face f; for which the source is top and the sink is bottom; face f, for which the source is top
and the sink is not on the boundary, and face f3 for which the sink is bottom and the source is
not on the boundary (these faces are easily identifiable in Figure 3.3 in Section 3.3.2). When
the source and sink are removed, the remaining face consists of the paths from the top of
f2 to the two saddle vertices and the paths from the two saddles to the bottom of f3. This
forms a new flow face; the “all flow faces” invariant continues to hold. The conflict rules
also insure that no more than these three faces are combined into a single face.

It is obvious that no more than two consecutive arcs in the cyclic order at any vertex are
removed at once. Arcs are removed in pairs, so if more than two were removed simultaneously
there would have to be at least two conflicting sources.

It is straightforward to show that at most three arcs are combined into a single topological
arc. To see this, assume that four arcs could be combined into a topological arc consistent
with the conflict rules, and let u, », and w be the vertices that become internal in the order
from tail to head of the topological arc. Since w is not already internal, some incident arcs
must be removed. Assume that the removed arcs lie on a particular side of the topological
arc. The conflict rules do not allow all arcs to be removed from either v or « on the same
side of the topological arc. Therefore all arcs must be removed from v and « on the other
side of the topological arc, and at least one arc must be removed at each of those vertices.
But this would remove conflicting arcs, contradicting the assumption.

[Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule] To make the exposition sim-
pler, I refer to the source involved in a potential application of the t-s-t rule as the “operable
source”, and the sink involved in a potential s-t-s Rule application as the “operable sink”.

To prevent problems such as removing an arbitrary number of consecutive arcs in the cyclic
order at some vertex or combining an arbitrary number of faces, the algorithm applies these
two rules in sequence (assume the t-s-t Rule is applied first, though the order is not important).
The specific procedure is as follows: first, mark all sources and sinks that are operable by
these rules. Apply the t-s-t Rule (there are no conflicts between operable sources). Test
whether the sinks marked operable remain operable, and apply the s-t-s Rule to those that
do (again, there are no conflicts between operable sinks). I define conflicts between sources
and sinks, though no conflict graph need be constructed - this is another case where conflicts
are used for counting purposes only. To understand these conflicts, note that applications of
the t-s-t Rule could leave a neighboring operable sink inoperable either because the number
of neighboring sources drops to one, or because that sink ends up with too high a degree.

82

Thus, every operable sink conflicts with every operable source with which it is common to
a face. Since operable sources have degree 3 or less, the number of sinks that can become
inoperable by a single s-t-s Rule application is clearly bounded.

For a particular source at which the t-s-t Rule applies there may be more than one way to
apply the rule. The source can arbitrarily pick one of the ways; this is not a conflict in the
sense I use the term. The same holds for applying the s-t-s Rule at some sink.

Each merging of cyclic orders at a source (for the s-t-s Rule) or a sink (for the t-s-t Rule)
occurs between two arcs that are not removed, so consecutive merges do not occur. Thus
there is no problem if a particular source appears in multiple s-t-s Rule applications or if a
sink appears in multiple t-s-t applications (note that a high-degree vertex may be created as
mentioned in the discussion of this rule in Section 3.3.2).

To see that the remaining graph has only flow faces, note that the removal of the arc (or arcs)
out of any source affects only the structure of the two faces it borders (the case for sinks is
symmetric). These two faces are replaced by two new flow faces. The same observation
makes it clear that no arbitrarily large set of faces is merged into one.

It is obvious that no topological arcs are formed.

[Consecutive Rule] Let ¢ be an arc that is a candidate for removal by this rule, and let
the two faces of which « lies on the boundary be f; and f>. Then a conflicts with any other
arcs that lie on the boundaries of f; and f; that are operable by the Consecutive Rule. These
conflicts are symmetric. The conflict graph in this case has maximum degree 6.

It is obvious that this rule prevents the removal of successive arcs in the cyclic order at a
source, sink or saddle vertex, and that the cyclic order at combined sources or sinks can be
updated in constant time.

It is easy to see that the application of this rule cannot produce saddle or cycle faces. Any
single application of this rule affects only the two faces of which the removed arc lies on the
boundary. These two flow faces are reconfigured into two new flow faces; the rest of the
graph is unaffected. The same argument shows that a Consecutive Rule application never
combines more than a constant number of faces into a new face. Also, no topological arcs
are produced since all removed arcs are incident only to saddle vertices and sources or sinks.

[Index-1 Saddle Rule] An arc a operable by this rule conflicts with at most its two neighbors
in the cyclic order at the source(sink), provided that those neighbors are incident to different
saddles. It also may conflict with two arcs adjacent in the cyclic order at the saddle if these
arcs are incident to sinks(sources) at the saddle (i.e., when this rule is applied at a source
there may be two sinks at the index-1 saddle that also are operable by this rule). The degree
of any vertex in the conflict graph is at most 4 (the conflicts are symmetric).

This conflict rule insures that if an arc is contracted then none of the adjacent arcs in the
cyclic order at either end are affected, so there is no problem with splicing cyclic orders.
Applications of this rule that involve two sources(sinks) only contract arcs, so no topological

83

arcs are formed, and faces are not combined. In this case, the argument that no saddle or
cycle faces are created is the same as for the Contraction Rule above.

Applications that involve a single source or sink adjacent to a saddle affect at most three
faces. The separation of the graph does not create any topological arcs, and the affected faces
all remain flow faces, though their boundaries are changed. The cyclic orders at the affected
vertices can be modified in constant time.

With the exception of the first step of conflict resolution for Type II TB arcs, the degree of each
vertex in the conflict graphs for each reduction rule is bounded by a constant. The conflict graphs
are not necessarily planar, however (e.g., it is easy to construct graphs for which the Type I TB arc
conflict graphs are not planar). All conflict graphs are easily constructed in constant time in the
CRCW model.

It is obvious that a maximal independent set (MIS) of vertices from a conflict graph represents
a set of vertices that can be removed in parallel without problems; it is also obvious that a MIS in
a bounded-degree graph contains a constant fraction of the vertices. Therefore the algorithm can
apply the techniques developed by Goldberg, Plotkin, and Shannon [GPS87] to resolve conflicts in
O(log* n) time.

If randomization is used, the running time can be reduced to constant time in the CRCW model.
In particular, Luby’s Monte Carlo Algorithm A (described in [Lub86]) can be used to find a MIS
in constant time.

3.5.2 Conflict Resolution Between Rules

The second type of conflict is dealt with via the conflict resolution rules provided in the proof of
the following lemma:

Lemma 3.5.2 Given the order of rule application specified in the algorithm description, a sin-
gle application of any reduction rule reduces the number of arcs operable by subsequent rules
(excluding the arcs removed by this rule application) by at most a constant number.

Proof: The proof is by examining all cases.

The TB Rule affects the Degree-1 Rule either where it lengthens (by making topological or by
adding a new topological segment) the arc incident to a degree-1 vertex, or where it creates a new
degree-1 vertex. There is no reduction in the number of arcs operable by the Degree-1 Rule.

All of the other reduction rules operate on clean unique-in or locally unique-in arcs incident
to sources (respectively unique-out or locally unique-out arcs incident to sinks); the s-t-s/t-s-t Rule
additionally requires some locally unique-in/locally unique-out arcs that are not necessarily clean.
Such arcs are not removed by the TB Rule. Further, it is obvious that a unique-in arc out of a source
remains unique-in if other arcs incident to its head are removed. It is possible that such an arc could
become part of a topological arc if the TB Rule removes all but one arc out of its head, however.
Any TB arc removed affects at most one unique-in arc at its tail. (The symmetric argument holds
for unique-out arcs into sinks.)

Recall that locally unique-in (respectively locally unique-out) arcs are incident to saddle
vertices. Thus a locally unique-in arc a remains locally unique-in: An arc adjacent in the cyclic
order at the head of « is marked both T and B only if the next arc in the cyclic order has the same

84

orientation.. However, at each step of TB arc removal, the conflict resolution procedure does not
allow the removal of two arcs with the same orientation that are adjacent in the cyclic order at
some vertex. Finally note that if @ is clean it remains clean. If a pointer into its head were to be
created across a face of which it lies on the boundary, an in-arc adjacent at the head would have
to be removed. But the existence of such an adjacent arc would contradict the fact that this arc is
locally unique-in. The arguments for locally unique-out arcs are symmetric.

Thus the application of the TB Rule does not conflict with any arcs operable by subsequent
rules.

For Degree-1 Rule conflicts with subsequent rules, first note that removal of an arc by this rule
does not make any clean arc dirty. Also note that the removal of such an arc changes the structure
of only one face. Thus it is easy to see that at most one conflict can occur with the Adjacent
Degree-2 Source and Sink Rule, and at most one with either the s-t-s or t-s-t Rule. Since a degree-1
arc is adjacent to at most one other source or sink at a saddle vertex, at most one application of
the Consecutive Rule can be in conflict. A degree-1 arc can be adjacent to at most one index-1
saddle, so there can be at most three conflicts with the Index-1 Saddle Rule. It is obvious that any
arc operable by the Unique-In/Unique-Out Arc Contraction Rule is unaffected by the removal of
an arc by the Degree-1 Rule.

For the Unique-In/Unique-Out Arc Contraction Rule, two key observations are that contraction
of such an arc never changes the face structure of the graph (e.g., top and bottom of every face
stay the same), and that arcs incident to saddle vertices never are contracted. It is therefore easy to
see that arcs operable by the Adjacent Degree-2 Source and Sink Rule, the Consecntive Rule, and
the Index-1 Rule are not affected. Recall that the s-t-s/t-s-t Rule is only applied at sources or sinks
that have either two or three locally unique-out (respectively locally unique-in) arcs; this plus the
observation that the face structure is unchanged imply that there are no Unique-In/Unique-Out Arc
Contraction Rule conflicts with s-t-s/t-s-t Rule applications.

Next consider the Adjacent Degree-2 Source and Sink Rule. Since the arcs incident to the
source and sink involved are all removed, there is no conflict with the Consecutive Rule applied
with either the source or sink as the center. This leaves at most four conflicts: a sink adjacent to
the source in the cyclic order at either saddle vertex, or a source adjacent in the cyclic order to the
sink at either saddle. For the s-t-s/t-s-t Rule there is a conflict if the sink might be involved in a
t-s-t Rule application and the source in an s-t-s application (recall from the lemma statement that if
an arc is operable by both rules it is not counted as a conflict). Since the s-t-s and t-s-t Rules apply
to sources and sinks that share faces, and since the source and sink in question each have degree
2, there is at most one conflicting t-s-t Rule application involving the sink, and at most one s-t-s
conflict involving the source. Finally, the source and sink each are adjacent to at most two vertices,
so the number of Index-1 Saddle Rule applications affected is clearly bounded.

For the s-t-s/t-s-t Rule, first consider the Consecutive Rule. I give the argument for an
application of the t-s-t Rule; the argument for an application of the s-t-s Rule is symmetric. There
are two ways to conflict with a potential application of the Consecutive Rule: make one of the
arcs involved “dirty” or remove one of the arcs involved. In applying the t-s-t Rule, no clean arcs
are made dirty, so only the second case applies. The t-s-t Rule removes at most two arcs out of
a source, so at most four potential applications of the Consecutive Rule are affected (again, I do
not count cases in which the arc operable by a subsequent rule is operable by the current rule).

85

For t-s-t/s-t-s Rule conflicts with the Index-1 Saddle Rule, consider the case of an application of
the t-s-t Rule. At most two arcs incident to the source are removed; the two sinks are combined.
The only possible effects on potential Index-1 Saddle Rule applications are if the removed arcs are
incident to index-1 saddles. No more than three conflicts are possible at each saddle. The argument
for the s-t-s Rule is symmetric.

For Consecutive Rule conflicts with potential Index-1 Saddle Rule applications, note that the
only way conflict can occur is through the removal of an arc incident to an index-1 saddle. Since a
Consecutive Rule application removes exactly one arc that is incident to a source or sink, exactly
one index-1 saddle can be affected. As in previous cases of conflict with the Index-1 Saddle Rule,
there are at most three conflicts at that saddle.

Since the Index-1 Saddle Rule is applied last, there is nothing else to prove.

a

3.5.3 Proof of Main Lemma

It can now be shown that the reduction algorithm runs in a logarithmic number of iterations of the
main loop.

Lemma 3.5.3 [Main Lemma] For any embedded connected planar DAG consistent with the
algorithm invariants, the generalized reduction algorithm works in O(log n) iterations of the main
loop.

Proof: This follows if I show that the reduction algorithm removes a constant proportion of the
arcs in each pass through the main loop.

Consider the graph at the start of the main loop. After some application-specific processing
(which does not change the graph), the graph is cleaned up. Cleanup leaves the number of vertices,
sources, and sinks unchanged. The number of arcs does not increase; therefore it is sufficient to
show that the algorithm removes a constant proportion of the arcs left after cleanup. Lemma 3.4.3
implies that a constant proportion of these remaining arcs are operable. All that is left is to show
that the algorithm removes at least a constant proportion of the operable arcs.

To show this, I argue that the total number of operable arcs “knocked out” by conflicts (i.e.,
made inoperable) is bounded by some constant times the number of arcs removed. In most cases
this is obvious because the total number of interrule and intrarule conflicts is bounded by a constant.
The exception is TB arcs (the first Type II conflict graph does not have bounded degree). However,
I'have argued above that a constant fraction of such operable arcs are removed, which implies that
the total number of arcs knocked out by intrarule conflicts is at most a constant times the number
of TB arcs removed. Since the number of interrule conflicts with TB arcs is bounded by a constant,
the result holds. Since every operable arc is either removed or is subject to a conflict with an arc
that is removed, this implies at least a constant proportion of the operable arcs are removed.

O

3.6 Applications

In this subsection I present an application that uses the abstract reduction procedure presented
above. I also present the running time and number of processors needed to run this application.

86

3.6.1 Planar DAG Many-Source Reachability

The abstract reduction procedure can be used to solve the many-source reachability problem for
planar DAGs. The problem can be stated as follows: given a planar DAG and an initial set of
vertices in that DAG as the input, compute the set of vertices that are reachable via directed paths
from the initial set. I refer to the vertices reachable in this way as the solution set; I include
the initial set as a subset of the solution set. My solution to this problem consists of a set of
application-specific actions taken at various peints in the reduction algorithm; to show that it works
I introduce invariants that allow me to prove that the result is correctly computed.

I introduce two flags at each vertex: a “reachable” flag indicating whether or not the vertex
has been marked as reachable from one of the initial vertices, and an “active mark” flag that is used
to determine whether or not to propagate marks during the reduction phase. The algorithm starts
with the input set of vertices having both their “active mark” and “reachable” flags set. I use the
term correctly marked to indicate that a vertex in the solution set has its “reachable” flag set, and
that a vertex not in the solution set does not.

The basic reduction algorithm combines vertices as the graph is processed. The algorithm
needs to keep track of such vertices while it computes reachability. Therefore I introduce the
following terminology: A vertex in the current graph is an original vertex if it corresponds to
exactly one of the vertices in the graph prior to the start of the reduction process (I consider sources
added during preprocessing to be original vertices). The remaining vertices in the current graph
correspond to two or more vertices that have been combined by various reduction rules; I refer to
them as combined vertices. For each combined vertex I refer to the original vertices that have
been combined into it as its components.

For the purpose of proving that the algorithm for the reachability application works, define the
set of active vertices, which includes all original vertices that are not sources or sinks, plus any
original sources that have active marks.

For the reachability application the algorithm keeps track of the status of each vertex (combined
or original).

Define a reduction propagation step as follows:

e If a vertex v is at the head of either a connectivity pointer or a directed arc that has an active
mark at its tail, v sets both of its flags (I say that the mark is propagated or passed over the
arc or crosspointer). This rule also applies to internal vertices.

o If the directed arc over which a mark is passed is topological, all internal vertices of that arc
are marked as reachable.

e Ifany internal vertex of a topological arc @ receives a mark, the “active mark” and “reachable”
flags of the head of a are both set.

¢ The “reachable” and “active mark” flags are unset for every sink and combined vertex.
¢ Any source that propagates an active mark unsets its “active mark” flag.

An expansion propagation step is defined similarly, except that all active vertices propagate their
marks whether or not the “active mark” flag is set or not.

87

The following application-specific processing is added to the basic reduction algorithm:

o At the start of each cleanup phase d propagation steps are performed, where d is the degree
limit introduced in Section 3.3.3. For each topological arc out of a source, if an active mark
exists at an internal vertex higher than the high point, then the high point gets an active mark
(this can be done in constant time in the CRCW model using the rank order on the topological
arc). During the realignment phase, if a topological segment-seg of an arc out of a source
is removed or replaced by a segment with no internal vertices, and if seg contains a marked
vertex, then the head of seg is given an active mark (i.e., both flags are set).

e Whenever the TB Rule creates a topological arc a, if any internal vertex of a has an active
mark, the head of a is given an active mark.

¢ Just prior to the application of specific rules, various numbers of propagation steps are done
as follows:

— One step is done before each of the Degree-1, Adjacent Degree-2 Source and Sink,
s-t-s/t-s-t, and Consecutive Rules.

— Two steps are done before the Unique-In/Unique-Out Contraction and Index-1 Saddle
Rules.

— For the TB Rule, one step is done prior to removing Type I TB arcs; two steps are done
prior to removing each of Types II, IIT, and IV TB arcs.

e In rules where sources or sinks are combined with other vertices, the state of the vertices
before combination is saved for the expansion phase, and the combined vertex is unmarked
(i.e, neither of its flags are set).

o For the case of the Index-1 Saddle Rule in which the graph is split, the index-1 saddle vertex
becomes a source. The active flag at this new source is unset.

Between the reduction and expansion phases, each topological arc that was removed marks

itself according to any marks at any of its vertices. More specifically, all vertices beyond the first
vertex marked reachable are marked reachable.

The application-specific steps added to the algorithm for the expansion phase are as follows:

¢ One expansion propagation step is done after arcs are restored for the Unique-In/Unique-Out
Contraction and the Index-1 Saddle Rules; two are done for the Degree-1 Rule.

e As TB arcs are added back to the graph their internal vertices may need to be marked.
This involves checking crosspointers and checking the tail of the arc. If the tail is marked
reachable, all the internal vertices set themselves reachable. Otherwise, each internal vertex
checks the lowest point that can reach it on each face it borders and sets its “reachable”
flag accordingly. Also during expansion any vertices that became components of combined
vertices are marked as necessary as they revert to original vertices. Note that the “active
mark” flag is not used in this process. This step is done twice after Type IV TB arcs, twice
after Type III TB arcs, twice after Type II TB arcs, and once after Type I TB arcs are restored.

88

At the end of the expansion phase the algorithm removes the restriction that sinks cannot be
marked and does one more expansion propagation step to mark the sinks correctly.

It is easy to see that given the information on faces and topological arcs all of these application-
specific actions can be done in constant time in the CRCW model.

The following lemma is useful in the proof that the reduction invariant holds through the
cleanup phase (cleanup is discussed in Section 3.3.4, and some of the terminology used below is
introduced there as well). A similar argument is used to show that the expansion invariant holds
through the reverse of the cleanup phase during expansion. For simplicity, in the text below I
refer to the highest points reachable from the frontier or beyond as “high points”; if no vertex is
reachable from the frontier or below, then the frontier vertex is the high point.

Lemma 3.6.1 For each topological arc a out of a source of degree < d, let v be the the highest
internal vertex on a that both lies above the high point of a and is reachable from an active mark.
Then during reduction, after d — 1 mark propagation steps v is marked correctly.

Proof: Such a vertex v is reachable only from marks that lie above the high points for this
source, so I can prove this claim by looking at the subgraph consisting of the source and all arcs
(or segments of arcs) out to the high point, and all pointers that lie between two vertices in this
subgraph. Note that there is such a » for each arc in the subgraph that is reachable from an active
mark. If v is the source, the result is trivial. If v already has an active mark, the result is again
trivial. If the source does not have an active mark and v is not yet marked, then the last link in the
path from any mark must be a crosspointer. In particular, there must be a crosspointer from o', the
highest point reachable from a marked vertex on the other side of one of the adjacent faces: v must
be at the head of a crosspointer from some vertex u reachable from a mark; if « is not the highest
reachable vertex on its arc ¢/, then the pointer rules indicate that the highest reachable vertex on
a’ must have a crosspointer to a vertex on a that is at least as high as v. Since such a crosspointer
cannot point to a higher vertex than v (that would contradict the fact that v is the highest point
reachable from a mark), the crosspointer must be to v.

Continue extending this path of crosspointers back until it reaches a marked vertex. Note that
the path can never backtrack to an arc that has previously been visited: no higher point on such an
arc can lie on such a path (this contradicts the fact that the path includes only the highest reachable
vertices); no lower vertex or one already on the path lies on such a path because that would imply
the existence of a cycle in the original graph, which is a DAG. Thus the path can have length at
most d — 1, and the phase of propagation across pointers causes the highest points reachable from
marks to be marked.

O

To prove that the marking process specified above correctly marks the reachable vertices, T
use the following invariants, one for the reduction phase and one for the expansion phase. The
reduction invariant is as follows:

Lemma 3.6.2 During the reduction phase, the following two conditions hold:

1. There is no path from one active vertex to another through a vertex that is not in the active
set (i.e., an original source with no active mark, a combined vertex, or a sink).

2. One or both of the following conditions hold for a vertex v in the active set if and only if v is
in the solution set:

89

o v is marked; or

o there exists a path of arcs or crosspointers from an active mark at an active vertex to v,
and the vertices on this path are all active vertices.

Proof: The proof proceeds by induction. The base case is the initial graph. The first part of the
invariant is obviously true since all vertices are in the active set. The second part of the invariant
holds by the definition of the problem (note that preprocessing adds only sources, so no added
vertices violate the invariant).

For the induction step consider the effects of the mark propagation steps, cleanup, and applying
each rule in a single pass through the main loop. By the induction hypothesis, the invariant holds
at the start of a pass through the main loop; by the argument below, it holds at the end as well,

O

Cleanup: The first cleanup phase is application-specific processing, which for the current
application consists of d rounds of mark propagation. Since mark propagation does not change any
path in the graph or combine any vertices, the first part of the invariant obviously remains true.,

It is also obvious that the second part of the invariant continues to hold because it holds prior
to propagation by the induction hypothesis, and because marks are propagated only over paths of
arcs and crosspointers through active vertices.

At this point any sources or sinks with degree higher than d (the cleanup degree constant) drop
out of the cleanup process. Since they are unaltered by further cleanup steps, no changes to the
invariant occur. Only sources and sinks that are cleaned up need be considered.

The determination of the highest internal vertex on an arc out of a source reachable from the
frontier (respectively lowest internal vertex on an arc into a sink that can reach the frontier) does
not affect the invariant.

To show that the invariant holds after realignment, first note that if » is an active vertex that
lies between a high point and its cleaned source or below a low point and its cleaned sink, then
v 1s removed. Second, it is straightforward to see that there is a path between two vertices after
realignment only if there was a path between those vertices prior to realignment. In conjunction
with the induction hypothesis and the previous arguments, this implies both that the first part of the
invariant continues to hold, and that there is no path from an active mark to any active vertex not
in the solution set (i.e., the second part of the invariant holds for vertices not in the solution set).
Third, the second part of the invariant continues to hold for any marked active vertex. All that is
left to show is that the second part of the invariant continues to to hold for unmarked vertices in
the solution set.

Consider any path P from an active mark to a remaining unmarked active vertex such that P
exists prior to realignment. Since the realignment actions do not disturb paths that do not include
any vertices above high points or below low points, if P is such a path it remains after realignment.
By definition of low point, once a path reaches a vertex below the low point on an arc into some
sink, all subsequent vertices on that path must be below the low point on some arc into that sink.
Thus, P cannot pass through a vertex below the low point at any sink (recall that no vertices below
low points remain after cleanup). The only remaining case to consider is if P passes through
vertices above the high point at some source. By the definition of high point, such a path cannot
include a vertex above a high point on an arc out of some source unless the path starts at such a

90

vertex at that source. Thus if P is such a path it starts at an active mark above a high point at
some source. Assume that this is the case. I need to show that any vertex on P that remains after
realignment remains reachable from an active mark.

Note that Lemma 3.6.1 above implies that any high point & reachable by such an active mark
at the same source gets an active mark as a result of the application-specific processing:

¢ cither some vertex above h is reachable by such a mark, in which case the lemma shows that
the highest reachable point above A is marked, which implies 4 will be marked when marks
are propagated to high points,

e or h is the highest point on its arc a reachable by such a mark. In this case the last link on the
path from the mark to 4 must be a crosspointer from some vertex on an arc a’. But then the
crosspointer from w, the highest reachable point above the high point on ¢/, must also have
h as its head (it must point at least as high as &, but no higher point on @ is reachable from
such a mark). By the lemma, u has been marked after d — 1 propagation steps; then h has
been marked after the d propagation steps.

Thus the second part of the invariant holds for paths that go through high points.

If P does not go through a high point, there must be a first vertex v on the path that lies below
a high point, and the path must follow a crosspointer from a vertex « above a high point to ». But
this implies that there is a crosspointer p from u’, the highest point marked on u’s arc, to some
point v’ at or above v on ©’s side of the flow face. If v is above the high point, the high point is
marked as per the previous paragraph. Otherwise Lemma 3.6.1 says that »/ is marked by the time
d — 1 propagation steps have occurred, so v’ has been marked by the time d propagation steps have
occurred. Either way, the claim holds.

TB Rules: The TB Rule does not combine vertices or create new paths, so the first part of the
invariant continues to hold.

To show that the second part of the invariant continues to hold, I show that it holds after each
step in the rule application/conflict resolution procedure.

The rule is first applied for Type I TB arcs. Note that the conflict resolution for this step
ensures that at most one arc per face is removed in this step. First consider the paths left after
Type I TB arcs are removed. In particular, I want to show that for any pair of active vertices u and
v that remain after Type I arcs are removed, if there was a path P from v to v prior to removal then
there is a path P’ from u to v after removal. Since the first part of the invariant holds at the time of
removal, the path left after removal includes only active vertices. There are four cases to consider
on the basis of how a removed Type I arc « is involved in the original path P:

o The path includes a. There are two possibilities: First, « may be replaced by a crosspointer,
which replaces a in the path. Second, the tail of @ may already have a crosspointer to a point
above a’s head on the other side of the face. In this case ¢ is not replaced by a crosspointer.
However, there is a path from the tail of @ to the head of @ across the crosspointer and down
the opposite side of the face. This path was in existence prior to the removal of a. Since the
second half of the invariant held previously, and since the head and tail of « are active, all
vertices on this path must be active. Since no other arcs on this face are removed, this path
is not broken by the removal of any other Type I TB arc.

91

¢ The path enters the tail of a and leaves a via a crosspointer out of an internal vertex across
face f. In this case it is necessary to consider whether @ is marked T or B on f (recall that
Type I TB arcs are marked T on one adjacent face and B on the other, and that they are not
both T and B on any face). If it is marked T, then the tail of « is the top of the face and there
is a path from the tail of ¢ to the head of the crosspointer along the opposite side of the face
prior to a’s removal. Since at most one arc per face is removed, this path is not affected by
Type I arc removal. If it is marked B, the crosspointer at the tail of a points to a vertex on
the opposite face as high or higher than the crosspointer involved in the original path. Thus
using the crosspointer at the tail of @ and part of the opposite side of the face boundary gives
an alternative path; again, this path is not affected by Type I arc removal.

¢ The path enters an internal vertex of a via a cross pointer across face f and leaves via a’s
head. Let w be the internal vertex on a where the crosspointer enters.- Again, consider the
cases in which a is marked T or B with respect to f. If it is marked T, then the crosspointer
out of w on the other face f’ adjacent to a reaches a point at or above the head of a (a is
marked B with respect to f'); this provides that alternative path and is not affected by other
Type I arc removals. If ¢ is marked B with respect to f, then there is a path from the tail of
the crosspointer to the head of a along the side of f opposite to a. As in previous cases, this
path is not affected by removal of any other Type I TB arc.

e The path enters an internal vertex w of a via a crosspointer p across face f and leaves a
via a crosspointer p’ across face f’ out of internal vertex w’. By the specification of the
crosspointers, the crosspointer p” out of w across f’ reaches a point on the opposite side of f/
that is as high or higher than the point reached by p’. Thus after arc removal the crosspointer
that results from splicing p and p” and possibly a segment of what was the opposite face of
f! provides the alternative path.

The only other problem that could occur during Type I arc removal is that an active mark at an
internal vertex might be deleted when the associated arc is removed. It is necessary to show that
this does not affect the invariant by leaving some unmarked active vertex in the solution set without
a path from an active mark. I show that this is prevented by the single step of mark propagation is
done prior to Type I arc removal.

To see that any vertex reachable from an active mark is still reachable after the Type I TB arcs
are removed, consider the situation just after removal. Any active mark removed must be at an
internal vertex v of some topological arc a. There are two cases to consider. The first case is that
the mark started at . In this case the propagation rules insure that if the head is an active vertex,
it is marked with an active mark, which, given the argument above, implies that the invariant
continues to hold for any path from v through the head of the arc. The other paths out of v are via
crosspointers. Note that the pointers. out of v reach as high or higher than the crosspointers out of
vertices lower than v on a. Thus for any path out of a lower vertex it is possible to find a path out
of a crosspointer at v and down the opposite side of some face; it is only necessary to consider the
crosspointers out of ». The heads of v’s crosspointers are marked by the propagation phase, and
since they lie on a face common to a, they are not removed when the Type 1 TB arcs are.

The second case to consider is when v receives an active mark as the result of the propagation

92

phase. If the mark propagates in via the tail of a, then a’s head is marked. Furthermore, since
a source cannot be at the tail of a Type I TB arc, the active mark remains at the tail. Thus, any
remaining vertex that was on the boundary of the face f for which a is marked T is reachable
from this active mark. The only paths left to consider are those that leave v through a crosspointer
on f’, the face for which a is marked B. But the crosspointer out of &’s tail reaches as high as
the crosspointer out of v and provides a path from the active mark at a’s tail to any vertex on the
opposite side of f reachable from v. Since no other arcs on f or f’ are removed, the claim holds.
If v received the active mark across a crosspointer p, then again the head of « is marked. If p is
across face f, v’s crosspointer on f is to a point below the tail of p since the graph is a DAG.
Thus the only paths left to worry about are those that cross a second face f’ of which a is on the
boundary. Such paths are via a crosspointer p’ out of v. However, p and p’ are spliced into a new
pointer that provides a path from the tail of p (where the active mark remains) to the head of p’.

The invariant therefore holds after Type I TB arc removal. Next consider the situation when
Type II, Type III, and Type IV TB arcs are removed. These cases are similar and can be treated
together.

Start with the useful observation that an arc of these types is marked both T and B on at least
one face f, and that the conflict rules assure that no arcs are removed from the opposite side of f.
Thus, when such an arc is removed a path from the tail to the head remains undisturbed.

I again need to show that if a path from a vertex u to a vertex v exists before TB arcs of any
of these types are removed, then it exists after the arcs are removed. The arguments to show this
are similar to those used for Type I TB arcs. However, in this case there is the added complication
that two such arcs connected by a crosspointer can be removed simultaneously. As a result, there
are more cases to consider when an arc ¢ is removed:

o The path enters the tail of ¢ and exits the head.
o The path enters the tail of @ and exits a crosspointer to a vertex that is not removed.
e The path enters a via a crosspointer from a vertex that is not removed and exits via the head.

e The path enters @ via a crosspointer from a vertex that is not removed and exits via a
crosspointer to a vertex that is not removed.

o The path enters the tail of a and exits a crosspointer to a vertex on b, and exits via the head
of b.

o The path enters the tail of a¢ and exits a crosspointer to a vertex on b, and exits b via a
crosspointer to a vertex that is not removed.

o The path enters a via a crosspointer from a vertex that is not removed, exits via a crosspointer
to a vertex on b, and exits the head of b.

e The path enters a via a crosspointer from a vertex that is not removed, exits via a crosspointer
to a vertex on b, and exits b via a crosspointer to a vertex that is not removed.

The details of the arguments for these cases are similar to those for the Type I TB arc arguments,
and are left to the reader.

93

The arguments that no active marks are lost are also similar to the arguments in the Type I
TB arc case. There may be one additional crosspointer to deal with; however, the two propagation
steps for these three types are sufficient to insure that the marks reach vertices that are not removed.
Once again the details are left to the reader.

This proves the claim for the TB Rule.

Degree-1 Rule: Once again note that application of this rule does not create any new paths, so
by the induction hypothesis and the preceding arguments, the first part of the invariant continues to
hold. Also, no paths from active marks to vertices not in the solution set exist after rule application,
so the second part of the invariant continues to hold for active vertices not in the solution set.

To show that the second part of the invariant continues to hold for active vertices in the solution
set, first consider a degree-1 source. Note that one cannot assume that ¢, the arc out, is clean,
because the application of the TB rules may have made the arc out a longer topological arc. Because
all faces are flow faces, a, is both the left path and the right path of the boundary of a flow face, and
is the top arc on both sides of the face. Thus there are no pointers into a; from any vertex outside
it; such a pointer would be a backpointer and would imply that the input DAG had a cycle, which
is impossible. Thus the only paths between active vertices that include internal vertices on a4 or
its head are those that start at such a vertex. Therefore if there is no mark internal to the removed
arc, the invariant continues to hold; if there is an active mark internal to the arc then any vertex
reachable from the mark is reachable via a path through the head of the arc, which either gets an
active mark as a result of the propagation step for this rule application, or has one already.

The case for a sink is simple. The arc a; into a degree-1 sink is the bottom arc on both sides of
a flow face. Therefore there can be no paths out of any vertices on ¢ to higher points on the face
because the graph started as a DAG. This implies that these vertices are not included in any path
between active vertices that remain after this rule application, nor does any such path start at one of
these vertices. The arc a; can be removed without affecting paths from active marks to remaining
active vertices,

Unique-In(Unique-Out) Arc Contraction Rule: Note that a necessary condition for arc
contraction to change the connectivity of the graph is that there be a path out of some point on the
arc at or below its tail, and a path into some point on the arc at or above its head. If the arc is not
topological, this translates to a path into the head of the arc and a path out of the tail of the arc.

First consider a unique-in arc a incident to a source s. Since this rule is only applied if a is
clean, it is easy to show that the contraction of a does not change the connectivity of the graph:
Because « is clean, there are no pointers into « or its head across the faces of which a is on the
boundary, and, since a is the unique arc into its head, any pointers across any other faces into the
head of @ would be backpointers and contradict the fact that the graph is a DAG. By the condition
stated above, contraction of ¢ cannot create any new paths, so the first part of the invariant and the
invariant condition on vertices not in the solution set continue to hold. It is also easy to see that if
P is any path from an active mark to an active vertex such that neither s nor the head of ¢ lie on
P, then P is unaffected by the contraction. The only cases left are if either s or the head of @ had
an active mark prior to contraction. These cases are handled by the two propagation steps prior
to rule application, which either mark the vertices reachable from these vertices or leave an active
mark at an intermediate active vertex that i$ not affected by the application of this rule.

For sinks, a symmetric argument shows that no new paths are added, which implies that the first

94

part of the invariant and the invariant condition on active vertices not in the solution set continue
to hold. Also, any path that does not pass through the tail of the contracted arc is unaffected (the
sink is never an active vertex and has no paths through it). Since the only paths through the tail of
a must next cross « and terminate at the sink, the condition on active vertices in the solution set is
unaffected.

Adjacent Degree-2 Sources and Sinks Rule: For this rule the algorithm removes a source
and a sink and their (clean) incident arcs. No new paths are created, so the first part of the invariant
continues to-hold, and the second part of the invariant continues to hold for active vertices not in
the solution set. I also need to show no paths from active marks to active vertices are broken. The
only such paths that can be broken are those that start at an active mark at the removed source, so
the propagation step insures that any vertex reachable from a mark at the source is either marked
or reachable from an active mark at an intermediate vertex along the original path.

Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule: First consider the s-t-s rule. Two
sources get combined into a single vertex, which is not active. The only new paths created are
those that start at one or the other of these sources, so no paths are created that violate the invariant
condition for active vertices not in the solution set. Since there is a propagation step, neither of
these sources remains active and the first part of the invariant continues to hold. It is also necessary
to worry about breaking paths from active marks to active vertices in the solution set to complete
the argument that the invariant holds for applications of this rule. But the only such paths affected
by this rule are those that start at the sources (the sink is not in the active set, so removal of an
arc into it does not break any such paths). The propagation step arguments used for previous rules
apply here and give the desired result.

For the t-s-t Rule, two sinks get combined into a single vertex, which is not active. No new
paths are created to any active vertex, so no paths are created that violate the invariant condition for
active vertices not in the solution set, nor are any created that violate the first part of the invariant.
I again only need to worry about breaking paths from active marks to active vertices in the solution
set to complete the argument that the invariant holds for applications of this rule. But the only
such paths that are affected by this rule are those that start at the source that loses an arc. The
propagation step arguments used previously again apply and give the desired result.

Consecutive Rule: The arguments here are essentially the same as those for the s-t-s and t-s-t
Rules: a clean arc is deleted and two sources or sinks are combined. No new paths are created, so
the first part of the invariant is unaffected, as is the condition on vertices not in the solution set.
No paths from active vertices to other active vertices are affected with the exception of paths from
active marks at sources involved in the rule application; as in previous cases, the propagation step
for this rule insures that the invariant still holds for active vertices in the solution set.

Index-1 Saddle Rule: There are two basic cases to consider: application with respect to
sources and application with respect to sinks. In the situation where the rule is applied with respect
to sources, there are two subcases: applications that contract arcs, and applications that separate
the graph.

First consider the case of two distinct sources s; and s; with clean arcs into the saddle. By
the same kind of arguments used in the Unique-In/Unique-Out Arc Contraction Rule, the only
paths into the saddle are the two arcs out of the sources. If both arcs are contracted by the rule
application, the same argument applies as for the Contraction Rule; if only one arc is contracted

95

(w.l.o.g. assume the arc incident to s;), then the only new paths created are those starting at s, and
exiting the combined vertex via.an arc that was out of s;. However, since two propagation phases
were performed prior to contracting the arc, s, no longer has an active mark (remember that the
“active mark” flag at a source is unset after propagation) and thus is not an active vertex, so the
invariant is not violated. The rest of the argument proceeds as for the Contraction Rule.

Next consider the case where the Index-1 Saddle Rule is applied at a source that is incident
to the only two arcs into the saddle. In this case the two arcs from the source to the saddle are
deleted and the graph is separated into two graphs. First consider the case for a degree-2 source.
By previous arguments used for other rules in which arcs were only deleted, the first part of the
invariant and the second part of the invariant’s condition on active vertices not in the solution set
continues to hold since no new paths are created. If the source has degree 3, the tail of the third arc
out of the source becomes the former saddle, thus creating new paths. However, the former saddle
becomes a source and (as part of the application specific processing) loses any active mark. Thus
the new paths do not violate either the first part of the invariant or the second part of the invariant’s
condition on active vertices not in the solution set, which continue to hold. The rest of the argument
is the same in the case of either degree-2 or degree-3 sources: For active vertices in the solution
set I need to show that no paths from active marks to unmarked vertices are broken. Since the only
paths broken by splitting the graph are those that go through the saddle, and since the only arcs
into the saddle are from the source, I only need to worry about the case in which the source has an
active mark. However, by the same arguments used above, the two propagation steps prior to rule
application insure that the invariant continues to apply for active vertices in the solution set, which
are either marked or are reachable from some intermediate active vertex not affected by the rule
application.

Third, consider the case of two distinct sinks ¢; and ?; with clean arcs out of the saddle. By
arguments used for the Unique-In/Unique-Out Arc Contraction Rule, the only paths out of the
saddle are into the sinks. If both arcs are contracted, no new paths are added, which implies that
the first part of the invariant and the invariant condition on active vertices not in the solution set
continue to hold. If only one arc is contracted, the only new paths created are those that extend a
path into the combined vertex created from the contracted sink (say ;) and the saddle. These paths
all either end at the combined vertex or at ¢,. Since sinks and combined vertices are not in the
active set, the the first part of the invariant and the condition on active vertices not in the solution
set are again unaffected. For active vertices in the solution set, no paths are broken and the second
part of the invariant continues to hold.

Finally, consider the case where one sink is incident to the two clean arcs out of the saddle. In
this case the two arcs from the saddle to the sink are deleted and the graph is separated into two
graphs. First consider the case for a degree-2 sink. By previous arguments used for other rules in
which arcs were only deleted, the first part of the invariant and the invariant condition on active
vertices not in the solution set continue to hold since no new paths between active vertices are
created. If the sink has degree 3, the head of the third arc into the sink becomes the former saddle,
thus creating new paths. However, the former saddle becomes a sink, which is not in the active set
and will not be marked as part of the reduction application-specific processing. Thus the new paths
do not violate either the first part of the invariant or the second part of the invariant’s condition
on active vertices not in the solution set, which continue to hold. The rest of the argument is the

96

same in the case of either degree-2 or degree-3 sinks: For active vertices in the solution set I need
to show that no paths from active marks to unmarked vertices are broken. Since the only paths
broken by splitting the graph are those that go through the saddle, and since the only arcs out of the
saddle are to the sink, it is clear that for active vertices in the solution set, no paths are broken and
the invariant continues to hold.

O

At the end of the reduction phase, consider the active vertices. If reduction stops when the
graph is some constant size, all active vertices reachable from an active mark can then be marked
in constant time.

As noted above, between the reduction and expansion phases all removed topological arcs are
correctly marked by propagation of any marks on internal vertices. Since the rank order of the
vertices on the topological arc is known at the time of removal, standard techniques can be applied
to determine the first marked internal vertex in constant time in the CRCW model. All vertices can
read this rank and mark themselves if they have a higher rank. Thus all this processing can be done
in constant time in the CRCW model.

At this point the expansion phase begins. Expansion proceeds by reversing the steps of the
basic reduction algorithm, with application-specific steps added as specified above. The moving
of vertices between various sets for analysis purposes is also be reversed. Recall that during the
expansion phase all marks at original vertices are allowed to propagate.

The expansion invariant is as follows:

Lemma 3.6.3 During the expansion phase, all active vertices are correctly marked.

Proof: This proof also works by induction on backward passes through the main loop. The
base case follows from the discussion above and the following observations about the reduction
procedure: First, since there are no active marks at vertices not in the active set, and since all mark
propagation is from vertices with active marks to active vertices, the reduction invariant therefore
implies that no active vertices are incorrectly marked.

Note that for the Source-Sink-Source (s-t-s)/Sink-Source-Sink (t-s-t) Rule, the Consecutive
Rule, and the Adjacent Degree-2 Sources and Sinks Rule, the only change to the active set when
these rules were applied in the reduction phase was that some sources dropped from the active set.
In particular, sources that had an active mark propagated that mark out. By the argument above,
these vertices were correctly marked priorto rule application, and thus are marked correctly when
they are returned to the set of active vertices. Therefore, in reversing these steps the expansion
invariant remains unchanged.

For the Unique-In(Unique-Out) Arc Contraction Rule and the Index-1 Saddle Rule, note that
the only vertices that could be dropped from the active set when these rules are applied are those
at the head (respectively tail) of an arc contracted into a source (respectively sink), plus any active
source involved in the contraction. (In the case of the Index-1 Rule, these arcs may have been
removed rather than contracted).

Start by considering the case where an arc a incident to a source was contracted. In expanding,
if the source becomes active, then by the definition of the active set it must have had an active
mark prior to contraction, and is thus marked. Because the reduction invariant held at the time
of contraction this mark is correct. If v, the head of a, becomes active, then since the reduction
invariant held prior to contraction either v is marked correctly or there was an active mark at some

97

vertex with a path (through active vertices) to v. But I proved above that v is reachable only from
the one or two sources that have arcs into it, in which case if v was in the solution set but was
unmarked prior to rule application, then there must have been an active mark at such a source. This
mark would have marked v during the propagation step for this rule.

In the case of an arc @ with tail v that was contracted with a sink ¢, recall that sinks are never
in the active set, and thus it is only necessary to consider the case when v becomes active upon rule
reversal. First consider the case when v is not in the solution set. Since the reduction invariant held
prior to contraction, v is not marked, nor are any active vertices that have paths to ». Therefore
after the expansion propagation step v is still unmarked. If v is in the solution set, either v was
marked prior to contraction, or there was an active mark at some vertex v and a path form u to v
through active vertices. This implies that prior to contraction there was an active vertex w with an
arc (or perhaps a pointer) into v. By the induction hypothesis and the fact that w was not combined
during this rule (i.e., it remained active), w is correctly marked when a is restored, so v is correctly
marked during the subsequent expansion propagation step.

For cases in which the Index-1 Rule separates the graph, first consider the case of a source
incident to both arcs into an index-1 saddle v. If after restoring these arcs v is active, the following
cases could occur:

¢ v is in the solution set and is already marked. The invariant obviously holds here.

¢ v is not in the solution set. Note that the only paths into v are the arcs from the source. Then
the reduction invariant implies the sources cannot be marked. Thus v is not marked by the
propagation step and the invariant holds.

e v is in the solution set and not marked. By the reduction invariant that held prior to
rule application, the source must have been marked and the propagation step prior to rule
application would have marked v, so this case does not occur.

Now consider the case of a sink incident to both out arcs from an index-1 saddle v. Each copy
of v (one in each of the graphs left after separation) became a sink and was subsequently inactive.
If v becomes active when the rule is reversed, the situation is basically the same as in the case of
expansion of a unique-out arc incident to a sink. In this case if v is in the solution set but unmarked,
it is guaranteed that an adjacent vertex remained active when this rule was applied (this follows
from the conflict resolution procedure for the Index-1 Rule and the two steps of propagation done
prior to applying this rule in the reduction process), and is now marked. This insures that v is
marked during the expansion propagation step.

Degree-1 Rule: When a degree-1 arc is restored, vertices internal to that arc may become
active. Consider such an arc a. As was noted above in the argument for the reduction invariant,
there are no crosspointers into the internal vertices on a. To see that the invariant continues to hold,
consider the following sets of vertices that become active:

e Vertices in the solution set that are marked. It is obvious that the invariant holds for these
vertices.

o Vertices in the solution set that are unmarked. Note that if these are internal vertices, at
the time of their removal the only path to them was through a higher vertex on the arc.

98

If @ is incident to a source, then the reduction invariant implies that there must be a mark
somewhere on a that was propagated to all reachable vertices in the step between expansion
and reduction. If a is incident to a sink, then either the situation described above occurred,
or the tail of a was active. In this case there is a marked vertex with an arc or pointer to the
tail of a, and the two expansion propagation steps insure that the vertices of this type are
marked (the tail becomes a sink when a is removed, so two steps are necessary).

e Vertices that are not in the solution set. Recall that the reduction invariant implies that these
vertices are not marked, no higher vertex on the arc can be marked, and no vertex incident
to an arc into any vertex on ¢ can have a mark. Thus these vertices remain unmarked.

TB Rules: As in previous cases, the reduction invariant allows one to argue that vertices not
in the solution set are not marked. Thus one need only consider restored active vertices that are in
the solution set. Such vertices that are already marked are consistent with the invariant, so I only
need to consider unmarked restored vertices in the solution set.

In the expansion phase the algorithm may restore a topological arc with internal vertices in the
solution set that were not marked at the time of removal. To see that these vertices are properly
marked after the propagation step following the arc’s restoration, first note that any marks at internal
vertices were propagated correctly between the reduction and expansion phases. Thus I only need
to consider marks that come from outside the arc. By the reduction invariant, the only paths through
which such marks can reach the arc must be through active vertices either at the tail of this arc or
at the tails of pointers incident to internal vertices on the arc (as noted above, the marks could be
at the tail of a path of pointers through internal vertices on restored arcs, but such paths can have
length two at most). By the induction hypothesis these active vertices are correctly marked, so
in the case where there is a mark at the tail of some restored arc, the interal vertices are marked
correctly by the expansion propagation step.

Now consider the case in which there is an unmarked vertex v on restored arc a such that v is
in the solution set and the tail of ¢ is unmarked. As noted above, there must be a path from some
marked vertex that first crosses a crosspointer into a, then travels along some (possibly empty)
segment of a to v. I now use the following fact, which is easy to prove: There is a marked vertex
u on the opposite side of a face f from v such that there is 4 path from u to v of the form described
above if and only if the lowest vertex across f that can reach v is marked. Therefore the marking
process described in the application-specific processing works (note that the restoration of Type I
TB arcs can break pointers into three pieces, so two steps are necessary in that case).

Cleanup: In reversing the cleanup process, the algorithm can restore some vertices that lie
above high points or below low points to the active set. As in previous cases, vertices not in the
solution set are not marked, nor will they be marked upon restoration. Thus I again only need
worry about vertices in the solution set. If such vertices are marked, the reduction invariant implies
they are correctly marked; thus I only need to worry about unmarked vertices in the solution set
that become active.

For such vertices above high points, I argued above that the highest such points on each
topological arc at a cleaned source were marked prior to removal. This implies that all lower
vertices on the topological were marked in the step between reduction and expansion, so no
unmarked vertices of the type I am considering remain above high points.

99

Thus I need only to show that unmarked vertices below low points and in the solution set are
correctly marked after the d expansion propagation steps following the restoration of the previous
graph structure. The argument is similar to that in Lemma 3.6.1. The claim follows by noting that
for each arc containing a vertex that should be marked, there is a highest point at or below the low
point that should be marked. If this highest point is already marked, the mark can be propagated
along the topological arc to mark every active vertex on the arc as described below. If the highest
point v reachable by a mark is not yet marked, then the last link in the path from a mark must be
over a crosspointer. In particular, there must be a crosspointer from the highest point reachable
from a marked vertex on the other side of one of the adjacent faces: there must be a crosspointer
from a vertex u reachable from a mark; if » is not the highest reachable vertex on its arc, then
the pointer rules indicate that the highest reachable vertex on u’s arc must have a crosspointer to
a vertex on v’s arc that is at least as high as ». Since such a crosspointer could not be to a higher
point than v (that would contradict the fact that v is the highest point reachable from a mark), the
crosspointer must be to v.

Continue extending this path back until it reaches a marked vertex. Note that the path can
never backtrack to an arc that has previously been visited: no higher point on such an arc can lie
on such a path (this contradicts the fact that the path includes only the highest reachable vertices);
no lower vertex or one already on the path could lie on such a path because that would imply the
existence of a cycle in the original graph, which is a DAG. There are two cases to consider. First,
the path works its way back to some marked vertex at or below the low point. Since no arc can
appear in the path more than once, the path has length at most d, and the phase of propagation
across pointers causes the highest points reachable from marks to be marked. The propagation of
marks along topological arcs marks the rest of the vertices on the arc. If the last vertex at or below
a low point is not marked, then the path from a mark must go higher than the low point through
some active vertex. In particular the path from a mark into this last vertex must be a crosspointer;
the vertex at the tail of the crosspointer must be active (otherwise the reduction invariant would
have been contradicted) and thus must be marked by the induction hypothesis. The low point on
bottom arc of the side of the face below the marked vertex is not on this path by the construction
since it is marked or not active; thus the path is again of length at most d, and is marked by the
propagation steps.

To see that it is possible to propagate marks at internal vertices along topological arcs, recall
that the algorithm keeps a rank ordering of the vertices on the topological arc. Thus, in the CRCW
ARBITRARY model standard techniques can be applied to determine in constant time the highest
marked internal vertex, and therefore in constant time every lower vertex can mark itself.

a

These invariants are sufficient to prove that at the completion of the algorithm the graph is
correctly marked.

Theorem 3.6.4 The marking procedure specified above solves the many-source reachability prob-
lem.

Proof: By Lemma 3.6.3, every vertex in the graph is correctly marked at the end of the expansion
phase except sinks. Thus, the last step of marking sinks marks each sink if and only if it is in the
solution set.

O

100

3.6.2 Running Time and Processor Count

The running time is determined by observing that the main loop is executed O(logn) times in the
reduction and expansion phases. The running time of the main loop is dominated by the O(log* n)
time it can take to resolve conflicts for some of the reduction rules. Preprocessing time is dominated
by the time for the main loop, so the running time is O(log n log*) (this can be reduced to O(logn)
through the use of randomization as noted above). The algorithm can be run using one processor
per face, vertex, and arc, which is linear in the size of the input graph. When combined with Kao’s
strongly connected components algorithm [Ka093] the running time becomes O(log> n).

3.7 Planar DAG Reduction: Summary and Contributions

In this chapter I have presented the Poincaré index formula, a combinatorial property of embedded
planar directed graphs, and have shown that it can be applied in the design and analysis of parallel
algorithms.

I have also shown a reduction scheme for planar DAGs that allows such a graph to be reduced
to constant size and expanded back. This reduction process allows the overlaying of applications
in a fashion similar to parallel tree contraction. I have demonstrated such an application and
shown that computing multi-source reachability in a planar DAG can be performed in parallel in
O(logn log* n) time (O(logn) time using randomization) using O (=) processors. In conjunction
with the strongly-connected components algorithm of Kao [Kao93] it is possible to compute
multiple-source reachability for general planar digraphs in O(log> n) time using O () processors,
an improvement over previous results.

101

Chapter 4

Open Problems and Future Work

Both Chapters 2 and 3 present results suggesting a broad range of possibilities for further work. I
discuss some of these possibilities in this chapter, starting with extensions to the work on spectral
partitioning.

4.1 Further Work on Spectral Separator Algorithms

There are many ways to build on the Laplacian spectrum work, including the following:
¢ finding ways to improve current spectral partitioning algorithms;

o further analysis of Laplacian spectra, and of the partitions produced by spectral separator
algorithms for various graph classes; and

o extending the techniques developed in Chapter 2 to solve additional problems.

The first two are closely intertwined, so I discuss them together.

An interesting question is why the spectral algorithms considered in Chapter 2 do poorly on
certain graphs. Intuitively, the orientation of u,, the second smallest eigenvalue, reflects two
properties of a graph: u; tends to lie along long paths and across bottlenecks. If it lies across a
bottleneck, the spectral algorithms tend to give good separators; if it lies along a long path, things
can go wrong. This latter case occurs for the tree-cross-path graph; in that case, the bottleneck
does not coincide with the long path. Note, however, that all the graphs I consider have some
eigenvector that gives a good cut when the “best threshold cut” algorithm is applied to that vector.

This suggests the following question: Is there always an eigenvector that gives (via the “best
threshold cut” heuristic) a separator with a cut quotient within a reasonable factor (say, O(logn))
of the isoperimetric number? If so, is there a means for computing this eigenvector efficiently? If
not, what does a counterexample look like?

Assuming for the moment that such an eigenvector does exist, it may have some particular
form. To understand one such possible form, one ought to read Fiedler’s fundamental paper [Fie75]
in which he proves the following beautiful property of uy: the vertices that receive value O or greater
from the eigenvector form a connected component; likewise, the vertices that receive value 0 or

102

less form a connected component. Other eigenvectors can have this property, which I call the
Fiedler property. I refer to such vectors as Fiedlerian; while it would be nice to call them “Fiedler
vectors”, that term is already in common use to denote uy. Another possibility is that only certain
graphs have Fiedlerian vectors that provide good cuts. The crossproduct examples I consider above
do; is there a general “crossproduct-like” class for which this is true?

Even if every Laplacian has a Fiedlerian vector that gives a good cut for the associated graph,
the question of how to find Fiedlerian vectors efficiently remains open.

Another way to approach the analysis of Laplacian spectra is to develop results about specific
classes of graphs. For example, I have shown that spectral bisection does quite poorly for bounded-
degree planar graphs; however, the counterexamples for the other algorithms are all non-planar.
This raises the question of how well the “best threshold cut” algorithm does for planar graphs.

There are many interesting related questions: Are there ways to classify graphs that include
classes for which the spectral methods considered in Chapter 2 provide good cuts? It would be
interesting to categorize which spectral algorithms work well for which sorts of graphs; this may
require the definition of new properties for classifying graphs.

Another potential way to improve the performance of spectral separator algorithms is to use
information about the graph’s structure. The algorithms use only eigenvector values; they do
not consider structural properties of the graph. It may be possible to process some additional
information (e.g., geometrical information) to improve the quality of the separators produced.

It is also interesting to consider if there are implications for other spectral methods in this
work. For example, Bruce Hendrickson of Sandia National Laboratories has noted that the roach
graph is a counterexample for spectral algorithms intended to produce small-profile orderings of
sparse matrices.

Another area for work is extending the results and techniques in this section to solve additional
problems. For example, questions about the results from Chapter 2 have led to a technique for
generating lower bounds on A, based on embedding the clique into the graph of interest. That
work in turn has led to work on determining how far such lower bounds can be from the actual A,.
Results will be documented in a future paper.

The lower bound work grew out of comments by practitioners that the double tree was not
the best graph to use in my counterexample crossproducts if I wanted graphs like those arising
in practice. Replacing the complete binary trees with square grids was suggested. The resulting
graph is a crossproduct between a path graph and the double grid, pictured in Figure 4.1 below.
I call the resulting graph the “twin towers” graph based on its resemblance to the World Trade
Center towers in New York. The bounding technique is necessary in bounding A, of the double
grid within a constant. The subsequent analysis of the twin towers graph is similar to the analysis
for the tree-cross-path graph. The result for the “best threshold cut” algorithm, however, no longer
has the ratio of g, to ¢(G) as large as possible; instead, the ratio is less by a factor logarithmic in
the size of the graph. Still, the spectral cut in this case is poor.

103

Figure 4.1: The Double Grid Graph

4.2 Further Work on Parallel Planar DAG Reachability Algorithms

There are also many opportunities to explore issues raised by my work on parallel planar DAG
reachability.

The reduction algorithm is intended to be a general framework for developing parallel planar
digraph algorithms. Thus it is reasonable to consider algorithms that it might be used to implement.
Possible applications include the following:

e directed ear decomposition;
¢ topological ordering; and
¢ computing dominators in reducible flow graphs

Most of these algorithms have a connection to the general problem of reachability; this is not
surprising given the original motivation for the reduction algorithm.

Application possibilities also extend to using algorithms built on the general reduction pro-
cedure into larger pieces of software. For example, one of the initial motivations for this work
was a set of questions that arose from parallel compilation work. For structured languages without
procedure calls, the reducible flow graphs of programs should be planar. An interesting question is
whether a suitable set of restrictions on procedure calls can be formulated such that the flow graphs
remain planar. Questions of what tasks (e.g., particular optimizations) can be implemented using
the reduction procedure.

104

Implementation provides another area for exploration. The algorithm is quite complicated
given the number of rules, the maintenance of connectivity pointers, and the need for cleanup. Can
the algorithm be simplified in ways that make it easier to implement? Possible ways to simplify
the algorithm are included in the following list:

o Reduce the number and the complexity of the rules needed to get an algorithm with provable
performance on all inputs. This may be possible, though I have not yet had success in doing
it.

o Drop certain rules, even though the bounds on running time may not be provable for all

inputs. This approach is particularly interesting if one can demonstrate classes of inputs for
which the running time is unchanged.

¢ Change other aspects of the algorithm such as cleanup. Is there some way to handle connec-
tivity pointers in application-specific processing such that they no longer cause problems for
the reduction rules? A danger in this approach is that it may just shift work (or complexity)
from one place to another.

An area that I have investigated with success, but have not yet documented, is expanding
the reduction algorithm to work with planar graphs containing cycles. This is particularly useful
because it allows the development of algorithms for problems such as computing strongly connected
components. With such an algorithm, my techniques would be sufficient for computing many-
source reachability for any planar digraph: first compute strongly connected components, contract
them, compute many-source reachability for the resulting DAG, then expand the DAG back out to
the original graph, extending the reachability information to each strongly connected component.

The reduction algorithm for the general case is more complicated, as are the proofs of its
correctness. I summarize.some of the differences below:

e Two new rules (an arc contraction rule and an arc removal rule) for cycle faces are needed.
The structural invariant changes to allow cycle faces as well as flow faces.

¢ In addition to crosspointers on flow faces, it is necessary to keep backpointers to the highest
point reachable on the same side of the face.

¢ Cleanup is more complex because of the backpointers. One must now clean up two levels of
arcs from sources or sinks. In addition, it takes O(logn) time to determine the connectivity
implied by the backpointers during cleanup.

e The operability proofs must be modified to take into account the existence of cycle faces in
the graph.

105

Bibliography

[AG84]

[AGME7]

[AHU74]

[Alo86]
[AMSS5]

[Bar82]

[BM76]

[Bop87]

[CDS79]

[CGT94]

[CLR90]

[DH73]

[Fie73]

B. Aspvall and J. R. Gilbert. Graph coloring using eigenvalue decomposition. SIAM
Journal on Algebraic and Discrete Methods, 5(4):526-538, December 1984.

N. Alon, Z. Galil, and V. D. Milman. Better expanders and superconcentrators. Journal
of Algorithms, 8:337-347, 1987.

A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96, 1986.

N. Alon and V. D. Milman. A;, isoperimetric inequalities for graphs, and superconcen-
trators. Journal of Combinatorial Theory, Series B, 38:73-88, 1985.

Earl R. Barnes. An algorithm for partitioning the nodes of a graph. SIAM Journal on
‘Algebraic and Discrete Methods, 3(4):541-550, December 1982,

J. A.Bondy and U. S. R. Murty. Graph Theory with Applications. North-Holland, New
York, 1976.

R. Boppana. Eigenvalues and graph bisection: An average-case analysis. In 28th
Annual Symposium on Foundations of Computer Science, pages 280-285, Los Angeles,
October 1987. IEEE.

D. M. Cvetkovi¢, M. Doob, and H. Sachs. Spectra of Graphs. Academic Press, New
York, 1979. .

Tony F. Chan, John R. Gilbert, and Shang-Hua Teng. Geometric spectral partitioning.
Technical Report CSL-94-15, Xerox PARC, July 1994. Revised January 1995.

Thomas Cormen, Charles Leiserson, and Ronald Rivest. Introduction to Algorithms.
The MIT Press and Mcgraw-Hill Book Company, 1990.

W. E. Donath and A. J. Hoffman. Lower bounds for the partitioning of graphs. IBM
Journal of Research and Development, 17:420-425, 1973.

M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal,
23(98):298-305, 1973.

106

[Fie75]

[Gaz91]

[GI79]

[GL89]

[GM92]

[GM94]

[GM95a]

[GM95b]

[GMT95]

[GPS87]

[HK92]

[Kao93]

[KK90]

M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its
application to graph theory. Czechoslovak Mathematical Journal, 25(100):619-633,
1975.

H. Gazit. Optimal EREW parallel algorithms for connectivity, ear decomposition and
st-numbering of planar graphs. In Fifth International Parallel Processing Symposium,
May 1991. To appear.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP—Completeness. Freeman, San Francisco, 1979.

G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, 1989.

Stephen Guattery and G.L. Miller. A contraction procedure for planar directed graphs. In
4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 431441,
San Francisco, January 1992. ACM-SIAM.

Stephen Guattery and G.L. Miller. On the performance of spectral graph partitioning
methods. Technical Report CMU-CS-94-228, Carnegie Mellon University, December
1994.

Stephen Guattery and G.L. Miller. A contraction procedure for planar directed graphs.
Technical Report CMU-CS-95-100, Carnegie Mellon University, May 1995.

Stephen Guattery and G.L. Miller. On the performance of spectral graph partitioning
methods. In 6th ACM-SIAM Symposium on Discrete Algorithms, pages 233-242, San
Francisco, January 1995. ACM-SIAM.

John Gilbert, G.L. Miller, and Shang-Hua Teng. Geometric mesh partitioning: Tmple-
mentation and experiments. In 9tk International Parallel Processing Symposium, Santa
Barbara, April 1995. IEEE.

Andrew Goldberg, Serge A. Plotkin, and Gregory Shannon. Parallel symmetry-breaking
in sparse graphs. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 315-324, New York, May 1987. ACM.

Lars Hagen and Andrew B. Kahng. New spectral methods for ratio cut partitioning and
clustering. IEE Transactions on Computer-Aided Design, 11(9):1074~1085, September
1992.

Ming-Yang Kao. Linear-processor NC algorithms for planar directed graphs I: Strongly
connected components. SIAM Journal on Computing, 22(3):431-459, June 1993.

Ming-Yang Kao and Philip N. Klein. Towards overcoming the transitive-closure bot-
tleneck: Efficient parallel algorithms for planar digraphs. In Proceedings of the 22th
Annual ACM Symposium on Theory of Computing, pages 181-192, Baltimore, May
1990. ACM.

107

[KS89]

[KS93]

[LRE8]

[Lub86]

[Moh88]

[Moh89]

[MTV91]

[Phi89]

[PSL90]

[RR89]

[Sim91]

[UY90]

[Wil65]

Ming-Yang Kao and Gregory E. Shannon. Local reorientation, global order, and planar
topology. In Proceedings of the 21th Annual ACM Symposium on Theory of Computing,
pages 286-296. ACM, May 1989.

Ming-Yang Kao and Gregory E. Shannon. Linear-processor NC algorithms for planar
directed graphs II: Directed spanning trees. SIAM Journal on Computing, 22(3):460-
481, June 1993.

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform
multicommodity flow problems with applications to approximation algorithms. In 29t
Annual Symposium on the Foundations of Computer Science, pages 422-431. IEEE
Computer Society, October 1988.

M. Luby. A simple parallel algorithm fot the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036-1053, November 1986.

B. Mohar. The Laplacian spectrum of graphs. In Sixth International Conference on the
Theory and Applications of Graphs, pages 871-898, 1988.

Bojan Mohar. Isoperimetric numbers of graphs. Journal of Combinatorial Theory,
Series B, 47:274-291, 1989.

Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric approach
to graph separators. In 32nd Annual Symposium on Foundations of Computer Science,
pages 538-547, Puerto Rico, Oct 1991. IEEE.

Cynthia Phillips. Parallel graph contraction. In Proceedings of the 1989 ACM Sympo-
sium on Parallel Algorithms and Architectures, pages 148-157, Santa Fe, June 1989.
ACM.

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM Journal on Matrix Analysis and Applications, 11(3):430-
452, July 1990.

Vijaya Ramachandran and John Reif. An optimal parallel algorithm for graph planarity.
In 30th Annual Symposium on Foundations of Computer Science, pages 282-287, NC,
Oct-Nov 1989. IEEE.

H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2(2/3):135-148, 1991.

Jeffery Ullman and Mihalis Yannakakas. High-probability parallel transitive closure
algorithms, In Proceedings of the 1990 ACM Symposium on Parallel Algorithms and
Architectures, pages 200-209, Crete, July 1990. ACM.

J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford,
1965.

108

[YG73] D. M. Young and R. T. Gregory. A Survey of Numerical Mathematics, volume I of
Addison-Wesley Series in Mathematics. Addison-Wesley, Reading, MA, 1973.

109

