Automatic Generation of Parallel Programs
with Dynamic Load Balancing
for aNetwork of Workstations

Bruce S. Siegell
May 5, 1995
CMU-CS-95-168

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Daoctor of Philosophy in
Electrical and Computer Engineering

Thesis Committee:

H. T. Kung, Chair
Allan Fisher
Peter Steenkiste
Jaspal Subhlok

Copyright ©1995 by Bruce S. Siegell.

Supported in part by the Defense Advanced Research Projects Agency, Information Science and Technology Office, under the title
“Research on Parallel Computing,” ARPA Order No. 7330. Work furnished in connection with thisresearchis provided under prime
contract MDA 972-90-C-0035 issued by DARPA/CMO to Carnegie Mellon University and under its subcontract, No. 334918-58792
with Networks Systems Corporation.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of Network Systems Corporation, DARPA or the U. S. Government.

Keywords: dynamicload balancing, parallelizing compilers, network of workstations, self-scheduling,
grain size, Nectar

Abstract

Because of their high availability and relatively low cost, networks of workstations are now often considered
asplatformsfor applicationsthat used to be rel egated to dedicated multiprocessors. Parallelizing compilers
have simplified the programming of shared and distributed memory multiprocessors. However, with
networks of workstations, which are more loosely coupled, additional problems of heterogeneity, varying
resource availability, and higher communication costs must be addressed in order to maximize utilization of
system resources. Computational capabilities may vary with time due to other applications competing for
resources, so dynamic load balancing is very important.

Our research explores issues in retargeting a parallelizing compiler for a network of workstations. In
this dissertation, we describe a system that supports dynamic load balancing of distributed applications
consisting of parallelized DOALL and DOACROSS loops. We outline the added compiler functionality
needed to generate parallel programs with dynamic load balancing and demonstrate how parameters for
dynamic load balancing can be selected and controlled automatically at run time with cooperation between
the compiler and runtime system. We have implemented a prototype runtime system on the Nectar system
at Carnegie Mellon University and have evaluated its performance using hand-parallelized applications
running in various environments.

Key performance parameters under our control include the grain size of the application, the frequency
of load balancing, and the amount and frequency of work movement. The optimal grain size is selected
based on computation and communication costs of the application on the particular system on which it is
run. Selecting an appropriate load balancing frequency reguires information about communication costs
and process scheduling by the operating system. The frequency must be adjusted as loads on the processors
change, and controlling the frequency requires the cooperation of the compiler. Making correct decisions

regarding work movement isadifficult problem because of high work movement costs and the unpredictable

nature of the loads on the processors. Our measurements show that dynamic load performance improves
system utilization and reduces execution timesin some cases, but isineffective for others, largely dueto the

costs of moving work.

Acknowledgements

I would like to thank my advisor, H. T. Kung, for his advice, support, and encouragement. | am grateful
to him for allowing me to follow my interests in both hardware and software within the contexts of the
Nectar and iWarp projects. | would also like to thank Peter Steenkiste for advising me after Kung left for
Harvard. Peter is agood sounding board and encouraged me to write papers to help organize my ideas. He
also read my manuscript several times, identifying problem areas and giving useful suggestions about ways
to strengthen its presentation. Thanks al so to the other members of my thesis committee—Allan Fisher and
Jaspal Subhlok—for their invaluable comments and suggestions regarding my dissertation.

Many other people in the ECE! and SCS? communities have helped me with my research and helped
to make my life enjoyable during my time at CMU. | am indebted to the people who listened to and gave
constructive feedback on the practice talks for my defense and to the attendees of the iWarp/Nectar seminars
who listened attentively to my other talks over the years. | thank the members of the Nectar project who
devel oped and maintained the Nectar hardware and software. Michael Gillinov deserves specia thanks for
helping me keep the prototype Nectar system running after everyone else went off to do other things. | aso
thank the SCS Facilities staff for keeping everything else running. My officemates and the SCS Zephyr
community® have also helped me with many day-to-day questions and problems. Finally, I'd like to thank
my friends and family for being supportive during the ups and downs of my graduate studies.

Portions of the work described here have been published previously [54].

Department of Electrical and Computer Engineering.
2School of Computer Science.
3The people who use the Zephyr Notification Service.

Contents

1

Introduction 1
11 Featuresoftargetsystem 3
1.2 Applicationdomainand compilermodel oL 3
121 Notationusedinthisthesis L 5
122 DOALLIOOPS o o o e 6
123 DOACROSSIOOPS . - .« v o o e e e e e 7
124 Dedingwithrecurrences 8
125 Exampleapplications L 8
1.3 Ourloadbalancingapproach 12
1.4 Control theory model of dynamicloadbalancing 14
15 Evauating paralel performance oL 17
1.6 Summary of experimental results L L 21
17 Relaedwork e 21
1.7.1 Compiler supportforloadbalancing 22
172 Sdf-scheduling 22
1.7.3 Diffusonmethods 24
1.7.4 Useof prior performance as estimate of future performance 24
1.8 Organizationof thisdissertation 25
L oad balancing architecture 27
21 Applicationconsiderations 27
2.1.1 Position of distributed loopinloop structure.o 28
212 Loopcarieddependences 28
2.1.3 Dependencesoutsideloop 29
214 Loopbounds. 30
215 IerationsSizes e 31
216 Datasize. e 32
2.2 Environmental considerations 32
221 Hardwareconfiguration 32
222 ComMMUNICAtioN COSES o v e 33
223 Dynamicnessof system L 33
23 Loadbaancingdesignspace e 34

24 Loadbalancingarchitecture 36

241 Globa information. 37
2.4.2 Work distributed among slaveprocessors oL 37
243 Useof applicationknowledge o 37
25 Loadbaancingstrategy 39
2.6 Master-dlaveinteraCtions. e e 39
26.1 PipeinedLoadBaancing 40
2.6.2 Asynchronousloadbalancing 42
2.6.3 Granularity of work movement L L 44
27 SUMMANY o ot e e e e e e e e e e 46
Automatic selection of grain size 47
3.1 Synchronizationtypes 48
3.2 Compiletimecontrol of grainsize L 49
321 Loopsplitting 50
322 Messageaggregation. oo e e 51
323 SUipmining e 51
324 Looptiling 51
3.3 Unidirectional synchronizations 53
3.3.1 Controllinggrainsizeatruntime 53
332 Communication CoSIS oo e 55
3.3.3 Pipdinefillanddraintimeso 55
3.34 Sdectingtheoptimal blocksize 0. 56
3.35 Evauationof grainsizemodel oL 59
336 Optima grainsizevs. fixedgrainsize. 61
3.3.7 Effectof competingloads 62
3.4 Bidirectiona (barrier) synchronizations L oL 64
34.1 Synchronizationoverhead L 65
34.2 Effectof competingloads 67
35 Summary e e 72
Automatic selection of load balancing frequency 75
4.1 Cooperation between compiler andruntimesystem 76
4.2 Compiler placement of load balancingcode L. 77
421 Possiblehooklocations 78
422 Selecting from among possiblehook locations.o, 79
4.2.3 Code restructuring to create better hook locations 81
424 Hook placementalgorithm 82
425 Timingcode 86
4.3 Selection of load balancing frequency atruntime 88
431 Interactionoverhead L 88
432 Costofworkmovement 89
433 Interactionwithtimequantum oL 90

434 Targetload balancingperiod
4.3.5 Effect of load balancing frequency on performance
4.3.6 Effectivenessof frequency selectioninlimitingoverhead
44 SUMMAENY . . . o o o e e e e e e e e e e e e

L oad balancing process
51 High-leveldesign
5.2 Computingtheoptimal distribution L L
5.3 Imbalancedetection
531 Quantifyingloadimbalance L L Lo
5.3.2 Effect of imbalancethresholdonperformance
54 Filteringrateinformation oL
54.1 Effectoffilteringonperformance Lo
55 Instructiongeneration L.
551 Unrestrictedwork movement
552 Redrictedwork movement
5.6 Profitability determination
5.6.1 Estimating costsof work movement
5.6.2 Estimating benefitsof work movement L.
5.6.3 Effect of Profitability Determination on Performance
ST SUMMANY o o e e

Compiler support for load balancing
6.1 Codestructure e
6.2 Changesto distributed loop bounds and distributed data structures
6.21 Basicdatastructure
6.2.2 Efficientaccesstodata.
6.2.3 Selectingthedatastructure oL L
6.3 Dedingwithvaryingloopbounds
6.4 Work movementroutines
6.4.1 Identifyingdatatobemoved. L
6.4.2 Movingdistributed databetweenprocessors. oL
6.5 Workupdateroutines.
6.6 Madificationsto communicationcode Lo
0.7 SUMMAIY o e e e e e e e

Evaluation

7.1 Experimental setup.
711 Targetenvironment L Lo
7.1.2 ApplicationVversions L
7.1.3 Performancewithloadbalancing

7.2 Load balancing overhead in a dedicated homogeneousenvironment

7.3 Load balancing with aconstant competingload

Vii

101
101
103
103
104
105
108
112
114
114
116
119
120
121
123
123

127
128
129
131
131
137
137
140
141
142
143
144
146

74 Loadbalancinginadynamicsystem L 159

7.5 Modeling performancewith oscillatingloads 165
751 Staticloadbalancing. 166
752 Dynamicloadbalancing 167
7.5.3 Improving the model/Improvingthesystem 181
7.6 Limitsof dynamicload balancingapproach 182
T7 SUMMANY . . . o oo e e e e e e e e e 183
Conclusions 185
8.1 Contributions e 185
8.2 Areasforfuturework 187

viii

List of Figures

11
12
13
14
15
16
1.7
1.8
19
1.10
111
112
1.13

2.1
2.2
2.3
24
2.5

31
3.2
3.3
34
35
3.6
3.7
3.8
3.9
3.10
311
3.12
3.13
3.14

Distribution of output matrix by columns.o oL 4
Matrix and vector notation for figuresand equations. L. 5
Representationsfor programexamples.o 6
Distribution of DOALL lo0p. o 7
Distribution of DOACROSSIoop. o o o 8
Replacement of recurrence with reduction operation. 9
Sequential code for matrix multiplication (MM). 10
Sequential code for successiveoverrelaxation (SOR). 11
Dependences and execution order for singleSORphase 11
Sequential code for LU decomposition (LU). 13
Redistribution of output matrix tobalanceload 14
Simplified model of load balancer as adigital feedback control system. 15
Dynamic load balancing control system. 16
Communication requirements for different mappings of loop iterations. 29
Communicationfor loadbalancing. L 38
Interactionsfor load balancing in astable balanced system. 40
Interactions for load balancing in a system where available computation resourcesvary. . . 43
Pipelined vs. asynchronousload balancing for 500 x 500MM. 45
Communication pattern determines synchronizationtype. 48
LU decompositionrow eliminationloop. L. 50
Strip mining transformation. oL L 51
Parallelization optionsfor SOR. 52
Modeling execution time for pipelined application. 57
Upper bound on efficiency for pipelinedloop. 58
Efficiency of pipelined loop in SOR asafunction of block size. 60
Fixed grain size vs. automatically selected grain size for pipelined application. 62
Model of pipelined execution with competingload. 63
Simulation results for pipelined execution with competingloads. 65
Parallelized code with barrier synchronizations. 66
Interaction between barrier synchronizations (grainsize = 70 msec) and competing load. . 69
Interaction between barrier synchronizations (grainsize = 140 msec) and competing load. 70
Simulation results for parallel execution with barrier synchronizations with competing loads. 71

iX

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13

5.1
5.2

53
54

55
5.6
5.7
5.8

59
5.10
511

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3

Codefor load balancinghook. 77
Time line showing computation and load balancing periods. 77
Pseudocode for SOR showing possible locations for load balancing hook. 79
Pseudocode for MM showing possible locations for load balancing hook. 82
Using strip mining and loop interchange to increase control of load balancing hook frequency. 83
Placementof timingcode. 87
Periods affecting selection of load balancingperiod. 89
Sampling of oscillating performance information. 92
Scale factor for amplitude of oscillations for different sasmpling periods. 93
Effect of sampling period on stability of measurements. L. 9
Lower boundson load balancing period. oo 95
Effect of load balancing period on efficiency. 97
Fraction of CPU used on master processor for 500 x 500MM. 98
Theload balancing decisionprocess. o 102
Effect of threshold on work allocation in response to changesin measured rate on processor

with constant competingload. o 105
Effect of using threshold to detect load imbalance. 106
Effect of threshold on work allocation in response to changes in rate on processor with

oscillating load (period =60seconds).o 107
Performance assessment for a constant competingload. 110
Performance assessment for an oscillating competingload. 111
Effect of filtering of rate information on efficiency. 113
Effect of filtering on work allocation in response to changes in rate on processor with

oscillating load (period=60seconds).o 113
Unrestricted work movement using Algorithm5.1. 116
Load balancing of loop withdependences. L. 119
Effect of filtering of rate information on efficiency. 124
Code structure for master and slave processesfor SOR. 129
Commonregular distributions. 130
Sequential version of code used in comparing representations of irregular distributions. . . 130
Basic (scattered) data structure for storing distributeddata. 132
Scattered data structurewithindex array. L oo 134
Packed datastructure. 135
Packed data structure with reverseindex array. 136
Data structure for applications with restricted work movement. 138
Code for deactivating data slices when distributed loop bound decreases. 140
Stepsinload balancing of SORexample. L. 145
TheNectar system. 148
500 x 500 MM running in dedicated homogeneousenvironment. 153
1000 x 1000 SOR running in dedicated homogeneousenvironment. 154

7.4
1.5
7.6
7.7
7.8
79
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21

7.22

7.23

7.24

7.25
7.26

2000 x 2000 SOR running in dedicated homogeneousenvironment. 155

Measured performance and work movement on processor with constant competing load. . . 157
500 x 500 MM running in environment with constant load on first processor. 157
1000 x 1000 SOR running in environment with constant load on first processor. 158
2000 x 2000 SOR running in environment with constant load on first processor. 158
Performance in environment with oscillating load (period = 60 sec.) on one processor. . . . 161
Performance in environment with oscillating load (period = 20 sec.) on one processor. . . . 162
Performance in environment with oscillating load (period = 6 sec.) on one processor. 163
Performance in environment with oscillating load (period = 2 sec.) on one processor. 164
Measured performance and work movement on processor with oscillatingload. 164
Staticallocationof work.o 167
Performance of static load balancing approaches. 167
Dynamic load balancing model for predicting performance. 168
Fraction of total distributed matrix moved with each transition of oscillatingload. 171
Work movement patterns for restricted work movement. L. 172
Predicted efficiency in environment with oscillating load (period = 60 sec) on first processor. 175

Predicted efficiency in environment with oscillating load (period = 20 sec) on first processor. 176
Predicted efficiency in environment with oscillating load (period = 60 sec), assuming unre-
stricted work movement and higher responsetimeestimates. 177
Predicted efficiency in environment with oscillating load (period = 20 sec), assuming unre-
stricted work movement and higher responsetime estimates. 177
Predicted efficiency in environment with oscillating load (period = 60 sec), assuming re-
stricted work movement and higher response time and work movement cost estimates. . . . 178
Predicted efficiency in environment with oscillating |oad (period = 20 sec) on first processor,
assuming unrestricted work movement. L. oL Lo oL 179
Decrease in work movement as number of processorsincreases. 181
Measured performance and work allocation on processor with rapidly oscillating load. . . . 183

Xi

Xii

List of Tables

21

51
52
5.3

6.1
6.2

7.1
7.2
7.3
7.4
1.5

Application properties. e e e 28
Statetablefor computing h. L. 112
All possible ordered sets of instructions sent to each slave for restricted work movement. . 118
Derivation of average number of hopsin linear array of processors. 121
Restructuring transformations. L o 127
Summary of data access costsfor different data structures. 139
Elapsed time measurements for sequential versionsof applications. 150
Application and load balancing parameters selectable at startuptime. 150
Parameters used for load balanced versions of applications. 152
Modeling performance with static allocationof work. 166
Work movement costsused in modeling performance. oL 170

Xiii

Xiv

Chapter 1

| ntroduction

There hasbeen alot of successin developing parallel languages[48, 51, 52, 66] and parallelizing compilers
[25, 62, 67, 79] for MIMD distributed memory machines. These tools have simplified the distribution of
applications ontightly-coupled machines, such asthe Thinking MachinesCM-5 [66], the Intel iWarp[7, 62],
and the Cray T3D [1, 44]. Workstation clusters, in which independent workstations are connected by a
high-speed network, are emerging as a new type of loosely-coupled multicomputer. However, the tools for
managing the distributed resources on these network-based multicomputers are in a primitive state. Many
message passing libraries exist for networks of workstations, suchasPVM [63], Nectarine[57], and Express
[18], but it isnot straightforward to port tools such as parallelizing compilersto workstation clusters because
of the much higher communication costs and the heterogeneity and variability of the available resources.
On workstation clusters, both computation and communication capabilities may vary with time due to other
applications competing for resources. High speed networks, such as FDDI [49], Nectar [3], Gigabit Nectar
[59], or the more recent ATM networks (e.g., [13]), only partialy address the high communication costs
because throughput islimited by software overhead for protocol processing [58] and message assembly and
disassembly on the sending and receiving hosts. Thus, dynamic load balancing and careful management of
communication are essential for efficient parallel execution on workstation clusters. Our research explores
these issuesin retargeting parallelizing compilers for workstation clusters.

On networks of workstations, load balancing tools have been devel oped on an ad-hoc basis for specific
applications and require tuning by the programmer to perform well on specific systems[21, 39, 55]. More

general load balancing packagesmust be devel oped so that awider range of applicationscanberun efficiently

2 CHAPTER 1. INTRODUCTION

on a range of systems. Switching between applications and systems should require minimal interaction
with the programmer. Ideally, the programmer would only need to specify a small set of parametersfor the
system so that applications can use available resources efficiently. In thisthesis, we show that it is possible
for aparallelizing compiler to generate efficient code that can dynamically shift portions of an application’s
workload between processors to improve performance. By using a parallelizing compiler as our starting
point, we can handle many load balancing decisions automatically for a large range of applications. A
parallelizing compiler can a so restructure programs to increase grain size and, thus, reduce communication
overheads. Dynamic load balancing does not always improve application performance. The performance
with dynamic load balancing is limited by incomplete knowledge in the load balancer, delay in responding
to changes in processor performance, and costs of shifting work between processors. The thesis describes
several optimizations which help to address these limiting factors and provides analysis identifying when
load balancing can be profitable for certain types of applications.

We have developed a load balancing system for applications consisting of paralelized DOALL and
DOACROSS loops [54]. The system involves both the compiler and runtime system in selecting load
balancing parameters, with minimal involvement by the programmer. Key performance parametersthat can
be controlled at run time include the grain size of the application, the frequency of load balancing, and the
amount and frequency of work movement.

Therest of thischapter isorganized asfollows. In Section 1.1, wedescribein moredetail our assumptions
regarding our target system, a cluster of workstations. Then, in Section 1.2, we describe the application
domain for our load balancing system and describe how it isparallelized. Section 1.2 also describesnotation
used in this thesis and presents several example applications. In Section 1.3, we introduce our approach
to load balancing. Section 1.4 maps our approach into a control model and identifies areas where control
theory provides insight regarding selection of load balancing parameters. Section 1.5 describes how the
performance of parallel programsis evaluated in this thesis, and Section 1.6 summarizes our measurements
taken on the Nectar system [3]. Section 1.7 discusses related load balancing research. We describe the

organization of the remainder of the thesisin Section 1.8.

1.1. FEATURESOF TARGET SYSTEM 3

1.1 Featuresof target system

The environment targeted by our research is a set of workstations connected by a network. We do not
assumethat we have adedicated set of workstations, but rather a possibly heterogeneous set of independent,
personal workstations. The competing loads on the processors can not be determined until run time. The
processors may be shared with other users, but we assume that there is no other load balanced application
running on the system. Much of our analysis assumes that the workstations run operating systems where
CPU scheduling is based on afixed time quantum and the scheduling mechanism derives from around-robin
approach; thisis typical of multitasking operating systems, such as Unix [4, 32]. For ssimplicity, we assume
that a message passing library for the target system is provided that hides the underlying topology of the
network.

Our research does not address fault tolerance, either for the processors or the network. Both network
and processor performance are expected to vary, but we assume that communication is reliable and that all
processors are available throughout the computation. We assume that communication costs are high relative
to access to local memory (or access to shared memory on a shared memory machine) and, thus, direct
much effort to reducing communication overhead. Our system attempts to hide communication latencies
by overlapping communication costs with computation, but if the network is near saturation, latencies may
be too high to be hidden.

The specific system targeted by our prototype implementation is the Nectar system [3] at Carnegie
Mellon University. Nectar consists of ahigh-speed crossbar network connecting a set of Unix workstations.

Details of the Nectar environment will be presented in Chapter 7.

1.2 Application domain and compiler model

Our target application domain is loop-based code operating on array and scalar data units. Numerical code
operating on matrices (e.g., LINPACK [16]) often fits this description. The applications are parallelized by
distributing the iterations of one or more loops in the loop nest among the processors in the target system;
this thesis considers the case where only one loop is distributed. The application code is replicated on all
processors, but loop bounds of the distributed loop are modified so that the processors operate on mutually

exclusive subsets of the distributed iterations. Aggregate data structures, e.g., arrays, referenced by the

output matrix by columns.

d by the literature [15, 42, 43, 45]: DOALL and
tions (i.e., there is no data dependence between it-
I; al iterations of the loop may execute in parallel.
ces, and a partial ordering of the loop iterations must
be obtained by pipelining multiple executions of the
output dependences, restructuring of codeis necessary
1as DOALL or DOACROSS loops. For example, in
| reduction operation to remove an output dependence

e addressed parallelization of loops with recurrences

\LL and DOACROSS loops on distributed memory
1 parallelizing compilers [25, 62, 67, 79] relieve the
ited data structures and communication. With parallel

= gpplication is to be parallelized and must explicitly

a) matrix notation b) vector notation

Figure 1.2: Matrix and vector notation for figures and equations.

In most cases, program exampleswill be shown in a Fortran-like language (Figure 1.3a) or Fortran-like
pseudocode (Figure 1.3b) for sequential versions of the applications and in C (Figure 1.3c) for parallelized
versions because our assumed input language is Fortran-like (e.g., AL [67] or Fortran D [25]) and the
language of our parallel implementations is C. Matrices are represented as arrays in all cases, with matrix

elements specified by lower case letters followed by individually bracketed subscripts, e.g, a[i][j]. The

a) Fortran-like language b) Fortran-like pseudocode ¢) C language

Figure 1.3: Representationsfor program examples.

1.2.2 DOALL loops

Loops with independent iterations (no flow dependences, output dependences, or anti-dependences) can
be parallelized by assigning the iterations to processors in any fashion. To minimize communication
requirements, the data on which the iterations operate is distributed in the same fashion, according to the
owner computesrule. Also, to reduce communication at run time, input data required by multiple iterations
of the distributed loop may be replicated on all processors that reference the data.

The easiest way to parallelizeaDOALL loop isto assign blocks of consecutiveiterationsto processors.
On a homogeneous, dedicated system, each processor is assigned the same number of iterations. Managing
the parallelism with ablock distribution simply requires adjusting loop bounds so that the appropriate subset
of iterations is executed on each processor (Figure 1.4b).

In some applications, the DOALL loop is executed multiple times, but with monotonically increasing or
decreasing loop bounds. For these applications, theinitial equal distribution of work by ablock distribution
will cause load imbalance as the application executes on a homogeneous, dedicated system. In these cases,
theloop iterations are distributed to the processorsin around-robin, or cyclic, fashion so that processorshave
equal workloads throughout the computation. The stride and offset for the loop bounds must be adjusted so

that each processor gets the appropriate set of iterations (Figure 1.4c).

b) Block distribution ¢) Cyclic distribution

Figure 1.4: Distribution of DOALL loop.

Also, for nested DOALL loops, where the distribution is multi-dimensional, the choice of distribution
method may be made independently for each DOALL loop. Our presentation will not explicitly address
block-cyclic distributions or nested DOALL loops.

1.2.3 DOACROSSIoops

If the iterations of aloop to be distributed have flow dependences, e.g., in the inner loop in Figure 1.53,
the iterations can not be run independently. The partial order of execution of the iterations required by
the dependences must be maintained. If the data for the loop is distributed and iterations are assigned
to processors according to the owner computes rule, a single instance of the loop executes sequentially.
However, when the distributed |oop is nested inside another |oop, parallelism can be obtained by pipelining
the execution of the outer loop. The distributed loop retains the order required by its dependences, but
portions of different instances of the loop are computed in parallel. When a processor finishes with its
portion of the loop it sendsits results to the processor handling the next portion of theloop. Then the sender
proceeds with its portion of the next instance of the loop.

Again, the simplest distribution of the iterations is a block distribution as shown in Figure 1.5b,
although other distributions are possible. The distribution is chosen to minimize communication costs.
For short dependence distances, a block distribution is usually the most efficient because it only requires

communication between logically adjacent processors at the boundaries of the blocks.

a) Sequential loop b) Block distribution
Figure 1.5: Distribution of DOACROSS loop.

1.2.4 Dealingwith recurrences

Loops that have output dependences between iterations, i.e., have recurrences, can not be parallelized as
DOALL or asDOACROSS Ioops. However, in some cases, they can be restructured so that the dependence
is removed from the loop. Much research has been directed towards recognizing parallelizable recurrences
in sequential loops[8, 17, 50]. The basic processisto recognize recurrences(e.g., using pattern recognition)
and then to test whether the recurrence operators have the required properties for parallelization [50]. For
example, if the recurrence operation is associative, it can be replaced with a parallel reduction operation
(Figure 1.6) with time complexity % + log P [8, 17, 50]. The global output variable is replaced by alocal
private variable on each processor, and each processor computes a portion of the recurrence using the data
from the iterations it executes (in O(3) time if work is distributed to processors equally). Then, when the
loop terminates, the partial resultsfrom the processorsare combined to computethe output (in O(log P) time
if acombining treeis used). When all recurrences have been removed from the loop, the loop can be treated
asaDOALL or DOACROSS loop depending on the remaining dependencesin the loop. If the recurrence
is associative and commutative, a cyclic distribution can be used, but if the recurrenceis just associative, a
block distribution must be used. To avoid complicated analysis, some compilers (e.g., AL [67]) providethe
programmer with waysto specify simple parallel reductions such as addition, multiplication, minimum, and
maximum. However, automatic methods make it possible to parallelize many other types of recurrences if

an efficient associative operator can be extracted from the source code [17].

1.2.5 Exampleapplications

\We dicriice |oad halancing iciec 11dna three annlicatione ac evxambnless matrix miiltinlication (MMM

a) Sequential loop with recurrence b) Parallelized loop with reduction

Figure 1.6: Replacement of recurrence with reduction operation.

routines in numerically intensive scientific codes and demonstrate the different types of parallelizable loops

described above. In this section, we describe the three example applications and how they are parallelized.

Matrix multiplication (MM)

Our matrix multiplication routine multiplies two n x n matrices, A and B, to produce athird n x n matrix,
C:
C=AxB

Sequential code for matrix multiplication is shown in Figure 1.7. Each element of the C matrix is the dot
product of arow of the A matrix and acolumn of the B matrix. Because eachiteration of the j loop computes
independent results, the loop can be treated asa DOALL loop. To parallelize the application, we replicate
the A matrix and distribute the columns of the B matrix. The output matrix has the same distribution as
the B matrix. This parallelization is suggested to the compiler using distribution directives. Using this
information, the compiler modifies the loop boundsfor the 5 loop and generates code to distribute the data.
Because the loop isa DOALL loop, the compiler is free to distribute the iterations in any fashion and, at
run time, for load balancing, the iterations may be redistributed in any fashion aswell. In this example, the
distributed loop is executed many times, and the distributed input datais reused with each invocation of the

loop. All iterations of the distributed loop do the same amount of work each time they are executed.

Figure 1.7: Sequential code for matrix multiplication (MM).

Successive overrelaxation (SOR)

Successive overrelaxation (SOR), also called Simultaneous overrelaxation [47], is an iterative method used

to solve Laplace's equation, the partial differential equation

0U (z,y) N U (z,y)
0%z 0%y

=0

on a sguare region with known boundary values. The region is described asan n x n. mesh, represented as
amatrix and initialized to an approximation of the solution. For each relaxation phase, each element of the
mesh is recomputed as a weighted average of the element and its horizontal and vertical neighbors. The
changes between the original and recomputed values are accumulated to compute an error value which is
compared to the convergence condition. The order of computation of the el ements of the mesh can affect the
rate of convergence for the computation [30]. Depending on the order of computation of the mesh paints,
new mesh valuesmay depend entirely on old mesh values(e.g. red/black SOR [30]), or may depend partially
on values computed during the current relaxation phase. We have selected aversion (from [67]) where each
mesh point iscomputed as aweighted average of its old value, the new valuesof itsleft and upper neighbors,
and the old values of its right and lower neighbors (Figure 1.8). The example demonstrates recurrences for
the accumulation of the error and norm values. When the recurrence is replaced by a reduction operation,
the loop still has loop-carried dependences, so it is treated as a DOACROSS loop. Figure 1.9a shows the
dependences and order of execution for the sequential version of a single relaxation phase for an 8 x 8
matrix; each row of the matrix is computed from left to right.

In our parallelization of SOR, the input/output matrix is distributed to processors by columns (Figure

1.9b). Paralelism is extracted by pipelining the loop surrounding the distributed loop (Figure 1.9c). At

(a) Sequential execution (b) Distributed (sequential) execution (c) Pipelined execution
Figure 1.9: Dependences and execution order for single successive overrelaxation (SOR) phase for 8 x 8
matrix. Arrows indicate dependences between iterations. Numbers indicate execution order.

that communication is only needed at block boundaries.

L U decomposition (L U)

Our third application example is LU decomposition, a type of Gaussian elimination. Gaussian elimination
is the first step in solving the equation A x x = b for x. (The other step is backward substitution.) LU
decomposition determines an upper triangular matrix U and alower triangular matrix L suchthat L x U = A.

Then,

12 CHAPTER 1. INTRODUCTION

can be replaced with two simpler equations: L x y = b can be solved for y by forward substitution; then,
U x x =y can be solved for x by backward substitution. L and U need only be computed once when solving
A x x = b with multiple b input values. We have selected a version of LU decomposition (Figure 1.10)
based on the SGEFA routine in the LINPACK benchmark set [16]. (In our version, the BLAS operations
have been inlined and simplified.)

Our LU example is parallelized by distributing the rows of the A matrix. The “row elimination” loop,
the most computation-intensive portion of the application, is split into two loops so that communication for
interchanging values is isolated from the actual elimination computation. The resulting elimination loop
is distributed as a DOALL loop; because it has no loop-carried dependences the execution order of the
iterations is not a concern. However, communication is necessary between executions of the distributed
loop, requiring the processorsto synchronize. Also, because the loop bounds of the distributed loop and on
the loop it contains depend on the indices of outer loops, the number of iterations of the distributed loop and

the size of each iteration change with each execution of the loop.

1.3 Our load balancing approach

Load balancing attempts to minimize the execution time of an application by maximizing the utilization
of available resources for productive work. When poor utilization is detected, our load balancing system
redistributes work by redistributing the distributed aggregate data structures (Figure 1.11); by the owner
computes rule, the distributed loop bounds are modified on each of the processors to correspond with the
datalocal to the processor. This approach to load balancing is beneficial because it keeps communication
costs for the application low: since data and loop iterations are assigned to processors according to the
owner computes rule, most data accessed by the iterationsis local; and, in cases where iterations share data
(i.e., applications with DOACROSS loops), work movement can be constrained so that the iterations are
usually assigned to the same processor. Also, the units of work for load balancing are loop iterations so, by
maintaining the original loop structure of the application, the overhead of switching between tasks is kept
to aminimum, i.e., just incrementing a loop counter.

Load balancing works as follows. At predetermined points in the parallelized application code, the
processors performing the distributed computation—the slave processor s—assesstheir recent performance

and send the performance information to a central load balancing process on the master processor which

Figure 1.10: Sequential code for LU decomposition (LU).

decideshow toredistributework. Performance assessment isbased on measurementsof rates of computation
for recently computed work. The central load balancer computes anew distribution wherework isallocated
to the slaves in proportion to their relative capabilities and computes instructions for the slaves which
specify the movement necessary to attain the new distribution. Slaves then shift work among themselves

according to theinstructions. The cost of interactions between the slaves and the load balancer are removed

g dependencesintheloop nest so that theload bal ancer

\unication.

ompiler and run-time system cooperatein selecting an

ancing codeat appropriatelocationsinthe parallelized

frequency of load balancing.

load balancing

al feedback control system which uses the difference
yand 1.0 asits actuating or error signal. A simplified
2. The central load balancer is the controller for the
he plant. The central load balancer manipulates the
e dave processors. Thedisturbancesinthe system are

of load balancing is the sampling rate for the system.

Figure 1.12: Simplified model of load balancer as adigital feedback control system.

Figure 1.13 shows the control system in more detail. The total time for the computation performed
by the slaves during one cycle of the control loop is the maximum time taken by any of the slaves. The
utilization of each slave, u;, is computed by dividing the computation time for the slave by the maximum
time; thus, the slave (or slaves) with the maximum computation time is 100% utilized (u; = 1.0) and the
other slaves are underutilized (u; < 1.0). The error that is input to the controller is e;, the fraction of
each dave that is underutilized (1.0 — u;). The controller shifts work from more utilized processorsto less
utilized processors until all processorsare fully utilized, i.e., load is balanced.

If we can create a simple control model for our system, we might be able to derive optimal parameters
for the system (for some definition of optimality). Using control system techniques, we might also be able
to accurately characterize the system. We might be able to develop proofs regarding the performance of the
system, e.g., identifying the range of frequencies over which the system workswell, how quickly the system
responds to changes in performance, and how quickly the work distribution convergesto the desired result.

However, several factors make modeling and analysis of our system difficult. The system isa multiple
input multiple output (MIMO) system and can not be uncoupled into simpler systems. MIMO systems
do not have unigue solutions, and trial and error approaches must be used in their design due to the extra
degrees of freedom. In addition, the system is non-linear, making finding exact solutions to the differential

equations for the system unlikely; most methods for solution of nonlinear systems involve engineering

o~ o~

1.5. EVALUATING PARALLEL PERFORMANCE 17

a control system’s response time is too long, its inputs and outputs will be out of phase, and even greater
deviations from the desired output (processor utilization in our case) can result [6]. Often, to reduce the
responsetime, digital control systemssample at several timesthe frequenciesthat are of interest [20]; digital
filters can be used to eliminate the undesired higher frequencies. In our system, performance is sampled as
frequently as possible to reduce the response time, but the frequency is bounded by other factors, such as
the sampling cost.

Another “benefit” of high sampling frequencies is that they make the response to changes smoother
and reduce the magnitude of the control steps [20]. However, in our system, we wish to minimize work
movement costs. Because the fixed, per message costs of sending work between processors are high, we
wish to decrease the smoothness of the response and move work in fewer, larger messages/steps. These
goals are considered in the selection of the sampling period for our system. Also, the sampled datais an
average of the performance over the sampling period rather than the performance at the sampling times; the
averaging results in implicit filtering that can reduce the amount of work moved by the system. Additional
filtering is also used in our system to attenuate high-frequency disturbances and to minimize the impact of
error. To further reduce the number of work movement messages, hysteresis has also been added to the
system. Both filtering and hysteresis can cause the work assignment to lag behind changesin performance
[56], increasing the response time of the system. The filters and hysteresis must be designed to minimize
the added lag.

Although many aspects of the system can be modeled by control theory, because of the nonlinearity
and complexity of the control system, we investigate components of the system separately in this thesis,
and in some cases present only intuitive arguments and/or empirical results to describe the impact of the

components on system performance.

1.5 Evaluating parallel performance

The goal of parallelization and of load balancing is to reduce the execution time—the elapsed time, rather
than CPU time—of the application. We use several additional criteria to evaluate the performance of
different versions of the parallelized application to get an idea of how close the observed performanceisto
the best possible performance given the available computing resources. Speedup relative to the sequential

version of the application is often used to evaluate performance on different numbers of processors, but is

18 CHAPTER 1. INTRODUCTION

most useful when the processors are homogeneous and are running no competing applications. To evaluate
performance in dynamic and/or heterogeneous environments, we have designed an efficiency measure that
measures how well a parallelized application is using available resources. In this section we'll describe

these measuresin detail.

Elapsed time measurements

The elapsed time (t.;qpseq) Of an application is used for comparing different versions of the application and
in computing speedup and efficiency values. Since dynamic load balancing only addresses the computation
portion of the application, the elapsed time measurements used in eval uating load balancing do not include
times for initializing tasks, generating and distributing input data, or unloading output data, which are
common to all parallelized versions of the application. These omitted times, while not a negligible portion
of the parallel execution time, are determined by the distribution of the application and are only dightly
affected by the addition of dynamic load balancing.

Speedup

Thegoal of parallelizationisto reduce the computation time rel ative to the sequential time of the application.
Thus, to evaluate parallelization, we use measures that compare the parallel execution time to the sequential
execution time. The speedup of a parallel version is the elapsed time for the sequential version divided by
the elapsed time for the parallel version:

speedup _ 7fsequential (11)

7felapsed

Again, teqpseqd ONlY includes the computation portion of the application. For the experiments presented
in this thesis, tscquentiar 1S determined by measuring the execution time of an efficient single-processor
implementation of the same algorithm as the parallel version; however, the sequential version is not the
parallel version run on one processor.

The speedup of an application run is often compared to the number of processors involved in the
parallel computation to get an idea of how well the processing resources are being used. We count only
the slave processors when making this comparison. For a dedicated homogeneous environment with each

processor providing the same performance as that used for the sequential version, when graphing speedup

1.5. EVALUATING PARALLEL PERFORMANCE 19

VS. processors, alinear speedup with slope 1 is generally accepted as the best speedup parallelization can
produce, not counting memory effects. The slope of the speedup curveis often used as an efficiency measure

for parallel programs on dedicated homogeneous systems[36, 42]:

speedup _ tsequential

efficiency = =
y P P x 7felapsed

(1.2)

where P isthe number of processors.

In a heterogeneous or dynamic environment, speedup and the efficiency measure based on it do not
include enough information about the system to determine how well resourcesare being used. For example,
if work isdistributed equally to aheterogeneous set of processors, the best possible speedup curve will have
aslope of 1 when calculated using the sequential time measured on the slowest processor, but will have a

smaller slope when the sequential time is measured on a faster processor.

Par allelization efficiency

A deficiency of the efficiency measure based on speedup (Equation 1.2) is that it assumes that the parallel
application can use all of the computing resources of the processors. Thisis not the case if the processors
are shared with other users. When the processors are shared, Equation 1.2 produces an efficiency value
that is too low because it does not account for the resources used by the competing applications. A better
measure of efficiency would take into account only the resources actually available to the application:

efficiency = —productive (1.3)

Cavailable

where ¢, oductive 1S the amount of computational resources (i.e., CPU resources) required to execute the
application, and cqyqi1abie 1S the amount of computational resources that were available to the application
during its execution.

In ahomogeneousenvironment, computation times may be usedin computing the measuresof productive
and available resources. The productive computation time, t,, oductive, 1S the time required to execute the
application on a single, dedicated processor, i.e., the sequential execution time. The computation time
availableto the application, t4,q:1ab1e , iISMore difficult to determine accurately. However, it can be estimated

as the total of the elapsed times on all processors minus time spent on competing applications during the

20 CHAPTER 1. INTRODUCTION

execution of the application. The elapsed time, t.;,p5c4, IS the same on all processors. Thus,

- t . ; _
eff|C|enCyhomo — productive _ sequential (14)

7fava'ilable P
P X tejapsed — Z compete;
i=1
In a heterogeneous environment, computing the efficiency is more complicated because times must
be scaled by the relative processing capabilities of the different processors. For example, the processing
capability of each processor might be the maximum computations per second (cps) measured in computing

some benchmark program:

. Cproductive tsequential,s X Cps
_ Cproduc _ q) s
efficiencyy,ciero = = - (1.5)

Cavailable P
Z(telapsed X CpSL) - Z(Competei X Cpsz)

i=1 i=1
where the additional subscripts on the time variables indicate the processor on which the measurement
was taken. Selecting a universal measure of processing capabilities for different processors is difficult,
especially if the architectures of the processorsin the system vary greatly (e.g., some are RISC and some are
CISC). The system on which we performed our measurements was homogeneous so we use Equation 1.4
to compute efficiencies. For our experiments on the Nectar system [3], competing processes were spawned
by the parallelized application code, and their CPU usage was measured using the getrusage function [12]
provided with Unix.

In the presence of competing loads, the measure of t,,q;1ape USed in Equation 1.4 may be inaccurate
because resources that are available to the application but not used by the application may be used pro-
ductively by the competing loads. Thus, in some cases, Equation 1.4 may give a high estimate of the
efficiency. Equation 1.4 can betreated conservatively as an upper bound on the efficiency, or, with sufficient
knowledge about the interactions in the system, can be treated as an approximation of the efficiency. For
the measurements and analysisin this thesis, competing loads are only added on one of the processors, and
the competing loads use at most half of the resources of the processor. Thus, the error in t,,q;q5. Should be
small, and, since the competing load uses less of the total computation time as more processors are added to
the system, the error decreases as the number of processorsisincreased. Therefore, the efficiency indicated
by Equation 1.4 should closely approximate the actual efficiency. Also, measurements of the CPU usage
of the artificial competing tasks used in our experiments indicate that, in most cases, the competing tasks

do not consume more resources than expected given the artificially generated loads so the competing tasks

1.6. SUMMARY OF EXPERIMENTAL RESULTS 21

are not consuming significant amounts of resources that should be included in t,,4:05.- The efficiency
measure based on speedup, Equation 1.2, uses the most conservative measure of t,yqi1ab1e, @SSUMINgG that
all computing resources are available to the parallelized application, so Equation 1.2 is a lower bound on
the actual efficiency. For reference, efficiency values produced by Equation 1.2 are included along with
the efficiency values produced by Equation 1.4 when presenting our data. For a dedicated homogeneous

system, Equations 1.2 and 1.4 produce the same results because no time is spent on competing processes.

1.6 Summary of experimental results

To demonstrate the feasibility of our approach, we implemented a load balancing run-time system and
two example applications on the Nectar system [3]. We measured performance in several controlled
environments. In a dedicated homogeneous environment, we demonstrated that dynamic load balancing
decisions do not add much overhead to the execution of the application. In an environment with a constant
load added to one of the processors, we demonstrated that the load balancing system redistributes load
correctly and improves application performancerelative to the parall elized application running without load
balancing. We added oscillating loads of varying frequency to one of the processors to give an indication
of the performance of the system in more dynamic environments. Dynamic load balancing improved
performance for slowly changing loads for applications with small work movement costs. In other cases,
the performance of the load balanced applicationsin the dynamic environments was limited by the reaction
time of the system and the costs of work movement. We created a model of the system’s performance with
an oscillating load to show the limits of the approach. In some cases the measured performance was better
than that predicted by the model due to optimizations to prevent excessive work movement, included in the

system, but not in the model. Our experimentswill be explained in detail in Chapter 7.

1.7 Reated work

General taxonomies for load balancing can be found in [10] and [71]. We focus on dynamic load balancing

for distributed loops.

22 CHAPTER 1. INTRODUCTION
1.7.1 Compiler support for load balancing

Existing parallelizing compilers often assume a dedicated, homogeneous environment, and distribute work
equally to all processors. Many compilers [11, 24, 67] support cyclic distribution of iterations so that
when loop bounds vary, as in the LU decomposition example, each processor still gets approximately
the same amount of work. For heterogeneous and dynamic environments, however, equal distribution of
work does not balance the load. Some languages, such as Fortran-D [24], alow irregular distributions,
which could be used for static load balancing in a heterogeneous environment if the characteristics of the
environment are known when the program is written. Fortran-D [24] and Vienna Fortran [11] also include
directives for redistribution so that data can be rearranged to balance load and reduce communication
regquirements as data access patterns change. However, these optimizations are performed at compile time
according to annotations by the programmer and do not address|oad imbal ances dueto adynamic processing
environment.

Express [18], a message passing library and application toolkit that can be targeted by a parallelizing
compiler, supportsdynamicload bal ancing by providing routinesthat automatically distribute dataaccording
to specified weights for the processors. For static load balancing, the weight for each processor isa*“figure
of merit” provided by the user. For dynamic load balancing, Expressincludes a function that automatically
determines weights for the processors; however, the user or compiler must explicitly place the code for

recalibrating weights and redistributing data.

1.7.2 Sdf-scheduling

Many of the approaches for dynamic scheduling of iterations of distributed loops are task queue models,
in which work units are kept in alogically central queue and are distributed to slave processors when the
slave processors have (nearly) finished their previously allocated work. In these models, both control and
work are centralized, and the measure of performanceistask completion. Knowledge about the interactions
between work unitsis often lost dueto the desireto have asinglelist of tasks (e.g., [28, 46]), and most of the
approaches assume that iterations are independent, requiring no communication, and target a homogeneous,
shared memory target architecture.

The different task queue approaches differ mainly in the granularity of work movement. In self-

scheduling [64], work is allocated to processors asingle iteration at atime; this approach has high overhead

1.7. RELATED WORK 23

due to the interaction between the processors and the queue for each iteration. Chunk scheduling addresses
the overhead problem by allocating work a fixed number of iterations at a time, at the risk of increasing
the skew in the finishing times of the processors [45]. Guided Self Scheduling (GSS) [46] attempts to
minimize scheduling overhead and minimize the skew in execution times by allocating a fixed fraction of
the remaining work to a processor when the processor requests more work; this reduces the size of the
work allocation unit as the execution progresses. GSS till has the potential for execution time skew if too
much work is allocated to processors early in the computation so that the remaining smaller chunks do not
constitute enough work to smooth over the finishing times of the initial chunks [28]. Factoring [28] takes
the number of processorsinto account aswell asthe amount of remaining work; it schedulesafixed fraction
of the remaining work in batches of P equal-sized chunks (where P is the number of processors) and uses
probabilistic analysisis used to select the optimal number of iterations per batch. Trapezoid Self-Scheduling
(TSS) [69] isasimpler approach which linearly decreases the chunk size at run time; although and because
GSSismore elaborate, TSS gets better speedups, dueto its flexibility in selecting chunk sizesand its lower
scheduling overhead. Tapering [36] is another variation on GSS that handles tasks with varying execution
times. Tapering selects chunk sizes based on the mean and variance of the task execution times so that the
inefficiency of execution has high probability of staying within a specified bound. All of these approaches
were originally designed for shared-memory architectures.

Recent research [33, 37, 38] has added consideration for processor affinity to the task queue models so
that locality and data reuse are taken into account: iterations that use the same data are assigned to the same
processor unlessthey need to be moved to balanceload. In Affinity Scheduling [37, 38], datais moved to the
local cachewhen first accessed, and the scheduling algorithm assignsiterationsin blocks. In Locality-based
Dynamic Scheduling [33], datais initially distributed in block, cyclic, etc. fashion, and each processor first
executes the iterations which access local data. Both of these approaches still assume a shared memory
environment.

The Tapering approach [36] has also been implemented on a distributed memory machine. Because
scheduling overheadis higher in adistributed memory environment, thedataisinitially distributed according
to some data decomposition, and tasks are initially assigned to processors according to the owner computes
rule; the data decomposition is refined as information is gained about the work distribution. (Thisissimilar

to our approach.) Communication locality is preserved by maintaining a minimum chunk size. For load

24 CHAPTER 1. INTRODUCTION

balancing, the processorsare logically connected as abinary tree, with each processor serving as aleaf node
and some processorsalso serving asinternal nodes; information about progress on the different processorsis
passed up through the tree, and instructions regarding redistribution of tasks are broadcast to all processors.

A hybrid approach that selects from among several load balancing algorithms is proposed by [41] for
distributed memory machines. It usesadistributed version of Factoring [28] for independent, homogeneous

tasks that works in away similar to the distributed version of tapering.

1.7.3 Diffusion methods

Numerous other approaches have been proposed for scheduling loop iterations, especially if the iterations
are independent. In diffusion models, all work is distributed to the processors, and work is shifted between
adjacent processors when processors detect an imbal ance between their load and their neighbors'. In these
models, control is based on near-neighbor information only [72]. Work movement may be initiated by the
sender (Sender Initiated Diffusion) or by the receiver (Receiver Initiated Diffusion) [72]. The Gradient
Model method [34] aso passes information and work by communication between nearest neighbors, but
uses a gradient surface which stores information about proximity to lightly loaded processors so that work
can be propagated through intermediate processors, from heavily |oaded processorsto lightly loaded ones;

global balancing is achieved by propagation and successive refinement of local load information.

1.7.4 Useof prior performance as estimate of future performance

The approaches described so far use either workload or progress to determine how to allocate more work
or redistribute workload. An aternative, used by our approach, is to use rates of computation of previous
work to describe the performance capabilities of different processors[40, 41].

For theimplementation of Dataparallel C onanetwork of workstations[40], |oop iterationsare mapped to
virtual processors, and virtual processorsare shifted between processorsto balanceload. Asin our approach,
relative computation rates are assessed periodically, and work is redistributed to processors in proportion
to their rates. However, Dataparallel C requires the programmer to handle the program partitioning and
communication explicitly; this makes pipelined execution of loops complicated to implement. Also, the
virtual processor abstraction may add run-time overhead, and all processors communicatefor load balancing

so load balancing communication isin the critical path for the computation.

1.8. ORGANIZATION OF THIS DISSERTATION 25

1.8 Organization of thisdissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we discuss the features of
our application domain and run-time environment that have an impact on load balancing and describe
the architecture of our load balancing system. Chapter 3 describes the effects of grain size on parallel
performance and describesways to control the grain size of an application. Chapter 4 describes selection of
an appropriatel oad balancing frequency to minimizeload bal ancing overhead and maximizethe effectiveness
of the load balancer. Chapter 5 presents the details of the load balancing decision making process. Chapter
6 describes the changes that must be made to a parallelizing compiler to support dynamic load balancing.
In Chapter 7, we present performance results for an implementation of our load balancing system on the
Nectar system [3]. Chapter 7 also includes a model of the performance of the load balancing system in an

environment with an oscillating load on one of the processors. We conclude in Chapter 8.

26

CHAPTER 1. INTRODUCTION

Chapter 2

L oad balancing architecture

This chapter presents the architecture of our load balancing system and the motivations for the design
choices we made. We begin with discussion of the features of the application and execution environment
that must be considered when designing a load balancing system. Then we describe major decisions that
must be made to design aload balancing system. Thisisfollowed by a description of the high-level choices
we made when designing our load balancing system. Load balancing decisions that can take advantage of
information about the specific application being executed or the dynamic characteristics of the environment

are delayed until compile time or run time, and are discussed in later chapters.

2.1 Application considerations

Several application features impose constraints on the design of an efficient load balancing system. Table
2.1 summarizesthe presence or absence of several features affecting load balancing for thethree applications
described in the previous chapter. The goal of dynamic load balancing is to minimize the elapsed time of
an application in a multiprocessor system with varying performance characteristics. This goal is attained
by moving work to match the performance characteristics of the processors. This section discusses how the

application features listed in Table 2.1 affect the load balancer’s ability to attain its goal.

27

28 CHAPTER 2. LOAD BALANCING ARCHITECTURE

Property of distributedloop | MM | SOR | LU ||

repeated execution of loop yes | yes | yes
loop-carried dependences no | yes | no
dependences outside loop no | yes | yes

index-dependent loop bounds | no no | yes
data-dependent loop bounds no no | no
index-dependent iteration size | no no | yes
data-dependent iteration size no no | no

Table 2.1: Application properties.

2.1.1 Position of distributed loop in loop structure

The position of distributed loops within the overall loop structure of the application determines the impact
of work movement. If adistributed loop is an inner loop, then the repeated execution of the loop may result
inreuse of locally stored data. Moving the distributed data (or data slices) referenced by aloop iterationto a
different processor may actually move the corresponding iterations from all instances of the loop due to the
owner computesrule. Thisallowsthe costs of moving work to be amortized over alonger period. However,
as computation progresses, fewer loop instances remain over which to amortize the costs of moving the data
and to gain benefits, so it can be more beneficial to move work earlier in the execution of the program than
later. When the distributed loop is the outermost loop, the ratio of work movement to data movement is no
more than one-to-one, and reuse of distributed data elements does not occur.

The position of the distributed loop in the loop nesting also affects which loop iterations can be moved
to balance load. If a distributed loop is an outermost loop, then load balancing must be done during the
execution of the loop, and the only loop iterations that can be moved to balance processing times are those
that have not yet been executed. However, if the loop is an inner loop, load balancing may be done either
during execution of the loop or between executions, and any of the loop iterations can be moved to balance

future processing times.

2.1.2 Loop carried dependences

Distributed loopswith flow dependencesbetween iterations (DOACROSS loops) are parallelized by pipelin-

ing the execution of an outer loop. Communication is needed to handle the dependencesthat cross processor

N mapping.

rent mappings of loop iterations. Arrows indicate

y also exist outside the distributed loop, e.g., if there

y elements. Again, dependences crossing processor

30 CHAPTER 2. LOAD BALANCING ARCHITECTURE

boundaries require communication. Work movement due to load balancing can complicate the handling of
this communication in a distributed memory environment. With a regular distribution, such as a block or
cyclic distribution, processors owning distributed values on the right hand side of an assignment statement
can compute the owner of the destination value based on the array indices on the left hand side of the
statement. In this case, only compile-time information is needed to determine the sending and receiving
processors for the assignment statement and the data transfer can be done in one communication step.
However, if the distribution changes at run time due to dynamic load balancing, each processor must use
run-time information to determine its involvement in the communication, i.e., whether it is involved in
the communication and whether it is the sender or receiver; and severa communication steps may be
required to implement the assignment statement. To handle dynamic distributions, acompiler must generate
communication codeto identify processorsinvolved in moving data, aswell asthe communication code for

the data movement itself.

2.1.4 Loop bounds

The number of iterationsin aloop may be large or small and may change with the indices of outer loops or
with other data values. The bounds of the distributed loop and the loops enclosing it affect load balancing
in severa ways.

For load balancing, we consider iterations of distributed loops to be atomic execution units. Thus, load
can only be balanced to within one iteration. When the number of iterations in a distributed loop is small,
one iteration can be a significant portion of the total execution time for the loop, and it may be difficult
to control the skew in the execution times between processors. For matrix problems, the distributed loops
often haveiteration counts aslarge asthe problem size, the size of the matrices. Since problem sizesmust be
largefor parallelism to be practical, the loopsthat are load balanced will usually have enough iterations that
the skew problem described above will not occur. If the number of iterations of the loops surrounding the
distributed loop is small—i.e., the distributed loop is executed a small number of times—then work moved
by moving data may be small, asin the case when the distributed loop is the outermost loop (Section 2.1.1).

We call distributed data for which there are no future referencesinactive. When the loop bounds of a
distributed loop are not fixed, the load balancer must be careful not to move inactive data. Whether the

bounds of the distributed loop are index-dependent (vary with indices of surrounding loops, asin the LU

2.1. APPLICATION CONSIDERATIONS 31

decomposition example) or data-dependent (depend on other data, e.g., WHILE loops), the load balancing
system must keep track of which distributed data is active. Also, the distribution of work should not be
such that data always becomes inactive on the same processor because work would have to be moved to
that processor again and again to balance the load adding unnecessary overhead. Using acyclic distribution
addresses this problem.

Another concern is that if the number of iterations of a distributed loop or a surrounding loop is data-
dependent, it may be necessary to pass around global information so that all processors handle the loop exit
conditions properly. For example, the outer loop of the SOR example is a WHILE loop, and processors

must communicate to determine the termination condition; thisisimplicit in the reduction operation.

2.1.5 Iteration sizes

The size of distributed loop iterations may be fixed, may be dependent on loop indices, or may be data-
dependent. If load balancing incorrectly assumes equal sized work units when distributing work, variations
in iteration sizes may prevent the load balancer from correctly balancing the load.

When there is a detectable trend in the iteration size, as when the size depends on loop indices, the
load balancer may be able to correctly adjust its assumptions regarding equal-sized work units. In the
LU decomposition example, the amount of work associated with the iterations of the distributed loop
decreases each time the loop isinvoked. The load balancer can still correctly handle this case because, for
each invocation of the distributed loop, all of the iterations require the same amount of computation, and
proportional alocation of iterations still works. However, as the computation progresses, the ratio of the
cost of invoking the load balancer to the cost of executing a loop iteration increases; to compensate, the
frequency of load balancing should be reduced as the size of work units decreases.

The amount of work associated with iterations of a distributed loop may also vary if the loop contains
conditional code. In general, it will not be possible to predict the cost of different iterations and load
balancing mechanisms that rely heavily on predicting the cost of future work are unlikely to do well. This
difficulty also exists with static distributions on dedicated systems. However, if the number of iterationsis
large and the iteration size has a random distribution, variations may average out so that the load balancer’s

predictions are correct.

32 CHAPTER 2. LOAD BALANCING ARCHITECTURE
2.1.6 Datasize

For efficient execution of a program with load balancing, the communication costs of the application and
the communication and computing costs of the load balancer must be kept to a minimum. Maximum
benefits of work movement are attained when the time spent moving data is small compared to the time
spent computing the work associated with the data. The size of data slices and the amount of computation

associated with the slices is determined by the distribution.

2.2 Environmental considerations

Features of the run-time environment determine the need for load balancing, and affect |oad balancing costs
and the accuracy with which a load balancer can balance load. For example, dynamic load balancing is
necessary if the available processing capabilities of the system or the processing requirements of the appli-
cation vary with time; otherwise, efficient use of resources can be achieved with a static work distribution.
This section discusses how the hardware configuration, communication costs, and dynamic properties of

the environment impact load balancing decisions.

2.2.1 Hardware configuration

Several features of the hardware configuration affect the load balancer design and load balancing decisions,

including thetypesof processors, the number of processors, and the topol ogy of the interconnection network.

Typesof processors. On adedicated homogeneous system, work can be distributed equally to all proces-
sors. However, if the system is heterogeneous, then the work must be distributed in proportion to therelative
capabilities of the processors. A measure of performanceis needed for comparing the processors. Different
application reguirements regarding CPU time, memory, and I/O make use of measures such as MFLOPS
or SPECmarks impractical. Task queue approaches work around this difficulty by not directly comparing
processor performance; instead, completion of assigned work is used as the measure of performance. Our

approach uses rate of completion of work as the relative measure.

Number of processors. If load balancing is based on global information, the cost of collecting the infor-

mation increases with number of processors; interacting with the load balancer could become a bottleneck

2.2. ENVIRONMENTAL CONSIDERATIONS 33

for the computation, especially if load balancing isin the critical path. Also, as the number of processors
increases, work movement decisions can become more complicated, and more messages may be required to
move work between the increased number of destinations and sources. However, with more processors, if
data is distributed among the processors, less data may need to be shifted to balance the load because each

processor will have a smaller share of the total distributed data.

Network topology. Theway processors are connected in a distributed memory system affects communi-
cation costs. The latency and bandwidth of the physical connectionsis astrong indicator of communication
costs, but the number of physical connections a message must traverse multiplies these factors. Commu-
nication costs increase with the number of intermediate processors, which is determined by the topology
of the system. If the systemis not fully connected, collection of global information for load balancing can
become very costly. To avoid this problem, diffusion methods (Section 1.7.3) are often used for localy

connected topologies such as arrays or hypercubes.

2.2.2 Communication costs

Several hardware factorsin the cost of communication have already been mentioned. It isalso necessary to
select appropriate communication protocols so that unnecessary hand-shaking and data copies are avoided.
The best way to reduce communication costs, however, isto reduce the amount of communication.

To track performance changes as closely as possible, load balancing should be done as frequently as
possible. However, there is overhead associated with collecting the information to make the load balancing
decisions, and thereis overhead associated with moving work, mostly dueto communication. Thefrequency
of load balancing should be selected to keep the cost of interactions with the load balancer to an acceptable
level and to limit the opportunitiesfor work movement between processors so that the costs of movement do
not exceed the benefits. Also, each decision regarding work movement should consider the costs of shifting

the work between the processors.

2.2.3 Dynamicness of system

Dynamic load balancing is only necessary if either system performance or application requirements vary

with time. Otherwise, static load balancing will suffice to balance load. From the point of view of the

34 CHAPTER 2. LOAD BALANCING ARCHITECTURE

environment, the available performance only varies if there are competing loads on the system.

Theeffect of competing loads on resourcesavailableto the application dependslargely on the scheduling
granularity used by the operating system—the time quantum. The scheduling interacts with the synchro-
nizationsin the application and can interfere with performance measurements used for load balancing. For
example, if application performance on a processor is measured over too short a period, the application
may appear to be getting 100% of the CPU time because its use of the processor is uninterrupted; or it may
appear to be getting asmall fraction of the CPU time because control of the CPU is passed to other processes
during the measurement period. However, if performance is evaluated over a longer period of time, then
these caseswill average out, giving abetter view of the actual load on the system. If load balancing is based
on measured performance, the frequency of measurement should be selected so that scheduling effects are

averaged out.

2.3 Load balancing design space

This section describes major load balancing design choices that must be made based on the application and
environment features described in the previous sections. Several researchers[71, 10] have presented more
general taxonomiesfor load balancing, but here we emphasize choices applicable to our application domain

where units of work are iterations of distributed loops.

Global vs. local information. The first decision that must be made is whether the entity making load
balancing decisions uses global or local information. In most cases, use of global information implies a
centralized controller which combines information from all slave processors, and use of local information
implies distributed control. (Exceptions are possible, such as the Gradient Model [34] where global
information is encoded in a distributed gradient surface.) Use of global information allows the system to
respond quickly and accurately to changes in performance [70]. However, collection of information from
all processors can be expensive, and a central load balancer may become a bottleneck. Task queue methods
generally use global information; and diffusion methods use local information. For other approaches, such

as hierarchical algorithms[72], the dichotomy is less clear.

2.3. LOAD BALANCING DESIGN SPACE 35

Work location. Data for unfinished work may be stored in a central location, or it may be distributed
among the processors. If the datais stored in a central location, asin many task queue approaches, the same
data may need to be shifted back and forth between the central location and the processors many times. In
the shared memory systems for which the task queue approaches were designed, the cost of moving data
between the memory and the processorsis low, but with distributed memory systems the cost can be much
higher. However, if the data is kept distributed among the processors, assignment of work to processors

according to the owner computes rule can improve locality, reducing communication costs.

Use of application knowledge. Another important decision is the degree to which application-specific
information isused to control theload balancing. If theload balancing system takes advantageof information
about reuse of data by the application and sharing of data by different tasks, it can place tasks on processors
so that communication costs are minimized. For example, this distinguishes Affinity Scheduling [37, 38]
and Locality-based Dynamic Scheduling [33] from earlier task queue approaches. In most other task
gueue approaches (e.g., [28]), loops are unrolled to create a single list of tasks, so this application-specific

information is lost.

Load balancing strategy. Load balancers generally attempt to minimize execution time by maximizing
productive utilization of processors. This can be done either by giving processors more work when they
become idle or by attempting to predict how much work each processor can handle and distributing the
work to the processors in advance. Thus, for dynamic load balancing, the load balancer can be invoked
whenever aprocessor finishesitswork, or the load balancer can beinvoked periodically whilethe processors
are computing to redistribute work based on assessments of processor capabilities. Asdiscussed in Section
2.2.1, the latter case requires a performance measure that allows the load balancer to determine the relative

processing capabilities of the slaves.

Control mechanism. Theload balancing entities—the load bal ancer(s) and the computation processes—
must interact to collect performance information, to distribute control information, and to move work.
Decisions must be made regarding the conditions that trigger these interactions and the selection of the
frequency of evaluating these conditions (e.g., to minimize costs or to minimize response time).

Some of these decisions may involve low-level details of the environment. For example, the decisions

36 CHAPTER 2. LOAD BALANCING ARCHITECTURE

involved in collecting performance information include choosing when each computation process will
evaluateits performance and how much information is necessary to trigger the load balancing computations.
Distribution of control information involves deciding whether instructions will be sent and whether the
computation processes will block waiting for instructions. Movement of work involves deciding when and
how to follow received instructions; if instructions are inexact or are based on outdated information, the

slave processors may modify or ignore received instructions.

Granularity of work movement. Granularity of work movement, i.e., the minimum and maximum
amounts of work that may be moved between processors during aload balancing phase, has strong effects
on the overhead added by load balancing. The granularity may be implied by the threshold used to decide
whether a system needs to be rebalanced. Thus it can affect how sensitive load balancing is to fluctuations
in loads in adynamic system. Work movement granularity is the feature that distinguishes many of the task

queue agorithms.

2.4 Load balancing architecture

The entities in our load balancing system are a central load balancer (the master) and the computation
processors (theslaves). Thecomputation processorsrun the application code, periodically send performance
information to the load balancer, and follow instructions sent by the load balancer. The load balancer
combines information from the slavesto generate instructions for work movement to balance load.

Both the master and the slaves alternate between a computation phase and aload balancing phase. The
two phases compose aload balancing cycle. Slave codeissimilar to that generated by existing parallelizing
compilers (e.g., AL [67]), except that load balancing code is added to collect performance information,
send information to the load balancer, receive instructions, and move work. The master code imitates the
structure of the slave code to the extent necessary to test loop termination conditions. Calls to the central
load balancing code are inserted into the master code at points matching the insertion points in the slave
code so that the load balancer is called the appropriate number of times. Details regarding code insertion

are presented in Chapter 6.

24. LOAD BALANCING ARCHITECTURE 37
2.4.1 Global information

Load balancing is based on global information since it allows the load balancer to respond to fluctuations
in system performance more quickly than a load balancer based on local information [70]. The global
information is collected by a central load balancing process which can communicate directly with each of
the computation processes. The central load balancer can respond quickly to performance changes because
it caninstruct overloaded processorsto moveload directly to processorswith surplusprocessing resourcesin
asinglestep. Theload balancing process, the master, periodically interactswith the computation processors,
the slaves, but the frequency of interaction is controlled (Section 4.3) so that the central 1oad balancing does
not become a bottleneck. Also, load balancing can be taken out of the critical path of the application by
overlapping the load balancing costs with the useful computation (Section 2.6). If necessary, the “central”

load balancer could be distributed with minimal effect on the slaves’ view of the system.

2.4.2 Work distributed among slave processor s

Because the target is a distributed memory system, the cost of moving work and its corresponding data back
and forth from a central location to the slaves would make dynamic load balancing unprofitable. Thus,
the work is distributed among the slave processors, and load balancing is done by shifting work directly
between the daves (Figure 2.2a). In some cases, work movement is constrained by characteristics of the
application (Figure 2.2b).

The work units in our application domain are iterations of distributed loops. A set of distributed array
elements is associated with each loop iteration. By the owner computes rule, each processor stores the

distributed data elements referenced by the loop iterations assigned to it.

2.4.3 Useof application knowledge

In our approach, the loop structure of the sequential code is retained to take advantage of data reuse and
data dependences and to minimize administrative costs. Loop bounds of the distributed loop are modified
so that each processor computes its assigned subset of the iterations, and calls to load balancing code are
inserted at appropriate locations. Application information is preserved implicitly in the loop structure.
Preserving application information in this manner pays off in a number of ways. First, data locality

is maximized since iterations that operate on the same data, e.g., iterations of a loop that is executed

(a) Unrestricted (b) Restricted by dependences

Figure 2.2: Communication for load balancing. (The master is the central load balancer.)

multiple times, will be executed on the same processor. Second, knowledge about the loop structure and
data dependences makes it possible to reduce communication since work movement can be restricted to
minimize the number of data dependencesthat span processor boundaries (Figure 2.1). Also, for loops that
are paralelized by pipelining, the synchronizations added by the restructuring caused by unrestricted work
movement could reduce parallel execution so restricted work movement is more than just acommunication
optimization. (When there are no restrictions due to dependences, an alternate, unrestricted approach is
used that attempts to minimize work movement costs.) Finally, we exploit the fact that tasks consist of loop
iterations to minimize the cost of bookkeeping and task switching. Specifically, managing atask queue on
a processor requires keeping track of arange of loop indices (i.e., two values), and task switching consists
of incrementing aloop index. Thereisno real context switch since the entire context is captured in the loop

structure and is automatically in place when proceeding from one iteration to the next.

2.5. LOAD BALANCING STRATEGY 39

2.5 Load balancing strategy

In our load balancing system, the slave processors periodically exchangeinformation with the load balancer
at predetermined points in the application code. At these points, the slaves send information about their
performance since the last information exchange and receive instructions on how to redistribute work.
Slave performance is specified in work units executed per second, where the work units are iterations of
the distributed loop; this computation rate is recomputed at each load balancing point. This provides the
load balancer with a measure that implicitly takes into account both the relative static capabilities of the
processors and the dynamic effects of competing loads on processor performance. However, the measure
assumestemporal locality in the load on the daves.

Using therateinformation provided by the slaves, theload balancer cal cul atesthe aggregate computation
rate of the entire system and computes a new work distribution where the work assigned to each processor
is proportional to its contribution to the aggregate rate. The load balancer then compares the new work
distribution to the current work distribution and computes instructions for redistributing the work. For
applications with loop-carried dependences, the instructions only move work between logically adjacent
daves so intermediate processors may be involved in a shifting of load (Figure 2.2b); this restriction
minimizes the communication created by the loop-carried dependences. For applications without such
restrictions, work may be moved directly between the source slave and the destination slave (Figure 2.2a).
Each slave receives instructions specifying the slaves with which it must exchange work and the number of
iterations it should execute before exchanging information with the load balancer again. After exchanging

work, the slaves continue computing their assigned iterations until the next information exchange.

2.6 Master-daveinteractions

It is important to minimize the cost of interactions between the load balancer and the slaves, since this
overhead is incurred even if the system is well balanced. The simplest mechanism for the interactions
between the load balancer and slaves is a synchronous mechanism in which all slaves send performance
information, status, to the load balancer at each predetermined load balancing point and block waiting
for instructions based on that information (Figure 2.3a). If necessary, work is moved upon receipt of the

instructions (Figure 2.4a). This mechanism responds immediately to measured changesin performance but

(b) Pipelined load balancing

yalanced system. With pipelined load balancing, more
e.

1cing point, the slaves send performance information

With pipelined load balancing, slaves still wait for
ctionsreceived by the slavesare based on performance
les earlier, rather than on the performanceinformation
ill moved upon receipt of instructions. The pipeline
1e receipt of instructions follows the sending of the

e based.

2.6. MASTER-SLAVE INTERACTIONS 41

Pipelining’'s advantage is that it removes load balancing latencies—transferring status from the slaves,
computing instructions, and transferring instructions to the slaves—from the critical path. If load balancing
isinfrequent enough, asingle load balancing cycleis greater than these latencies so a pipeline of depth 1is
sufficient to hide them (Figure 2.3b). The load balancing frequency should be low enough that fluctuations
in the performance of the load balancing processor or in the latencies of the network are hidden as well.
For example, without pipelining, a single competing load on the master processor can cause added delays
of up to one time quantum (the period of processor allocation used by the operating system’s scheduler) or
more each time the load balancer is called. With pipelining and an appropriate load balancing frequency,
the delays can be completely hidden.

The main disadvantage of pipelining is that it delays the effects of load balancing instructions: load
remains unbalanced for an extra load balancing phase (Figure 2.4b), and loads on the slaves could change
again before the instructions take effect. The delay is minimized by making the pipeline depth as small as
possible, i.e., 1, and keeping the load balancing frequency as high as possible. (Frequency tradeoffs will be
discussed in Section 4.3.)

An additional disadvantage of pipelining isthat it requiresthe load balancer to keep track of more state.
In synchronous load balancing, the amount of work assigned to each processor can be sent to the load
balancer along with its rate information. This is not the case for pipelined load balancing because there
are pending instructions on the slave, and the slave does not yet know its work assignment. Therefore, the
load balancer must keep track of the work distribution valid at the time instructions take effect, based on
the instructions already sent. Also, if there are limited communication resources for work movement, e.g.,
limited fan-in on receiving processors due to a limited number of ports, the load balancer must keep track
of resources assigned to pending instructions so that new instructions do not interfere.

Pipelining is most beneficial in a static environment because once work has been distributed appro-
priately to balance the load, the response time of the load balancer is irrelevant. This was confirmed
experimentally in a dedicated homogeneous environment; in that environment, pipelined load balancing
produced higher efficiencies than load balancing without pipelining. In dynamic environments, if the load
balancing frequency is too low, pipelining can be detrimental because of the delayed response to changes
in performance. However, for the load balancing frequencies selected by our system (described in Chapter

4), pipelining did not hurt performance relative to load balancing without pipelining, although pipelining

42 CHAPTER 2. LOAD BALANCING ARCHITECTURE

did not improve the performance either. Since a static or slowly changing environment is a common
case—in effect, made to appear even more common by optimizations used in our system to avoid excessive
work movement—pipelining is preferable over synchronous load balancing, in spite of pipelining's added

implementation complexity.

2.6.2 Asynchronousload balancing

In the synchronous and pipelined mechanisms described above, load balancing synchronizes the slaves at
the point where they receive instructions from the load balancer. Most of these synchronizations can be
removed if the load balancer only sends instructions to the slaves when work needs to be moved. In this
asynchronous load balancing mechanism, load balancing only causes the slaves to synchronize when they
must shift work (Figure 2.4c). Like pipelined load balancing, asynchronous load balancing hides load
balancing latencies, but asynchronous load balancing can be more efficient than synchronous approaches
(pipelined or not) because fewer messages must be sent and processors can continue doing useful work
until instructions to move work arrive. However, also like pipelining, asynchronous load balancing delays
the reaction to changes in performance, but asynchronous load balancing has greater complexity. Also,
for applications in which synchronizations occur frequently, independent of load balancing, there is little
opportunity for processors to keep working if they complete their work sooner than other processors, so
asynchronous|oad balancing can provide little additional benefit over pipelined load balancing in this case.
Thus, asynchronous|oad balancing is applicable to fewer applications—i.e., only applications requiring no
or infrequent synchronizations—than pipelined load balancing.

In addition to needing more state in the load balancer (like the pipelined case), asynchronous load
balancing requires more state to be sent with moved work. The sender of work may not have proceeded as
far into the computation as the receiver, so the data sent may not be in a state consistent with the data on the
receiver. To manageinconsistent data, slavesmust either keep track of the state of each distributed dataslice
or update data upon receipt so that it is in a state consistent with the data already resident. By the time work
is received, data heeded to update the received data may have been modified by later computation phases
so updating received data may sometimes require storage of state information from earlier computations.

For asynchronous load balancing, redistribution of work in proportion to processing rates prevents

processors from falling further behind other processors, but does not necessarily eliminate the lag that

s load balancing

n where available computation resources decrease on

44 CHAPTER 2. LOAD BALANCING ARCHITECTURE

aready exists. The existing lag could be corrected by overcompensating when moving work, but this will
eventually cause the processors that were ahead to lag behind. Also, if the faster processors continue to
work ahead, the sending processor might be delayed waiting for the faster processorsto be ready to receive
the work movement messages, especialy if the work movement messages are too large to be buffered. To
avoid these problems, slaves block when instructed to receive work, as in Figure 2.4c. (Note that, even
though processors P1, P2, and P3 stop computing after they receive instructions to receive work, they are
still ahead of processor PO when the work movement is completed.)

The applicability of asynchronousload balancing is limited by the synchronizations already present in
the parallelized code. A processor can only work ahead of other processors until a synchronization point
is reached; then it must wait for the other processors to catch up. Thus, for applications that synchronize
frequently, such as SOR and LU decomposition, asynchronous|oad balancing is not practical.

Figure 2.5 shows performance measurementsfor pipelined | oad balancing and asynchronousload balanc-
ing for the matrix multiplication application executed in several environments—both static and dynamic—on
the Nectar system.> Asynchronous load balancing is more efficient than pipelined load balancing in some
cases, and less efficient in others. (Note that Equation 1.4 is used to compute efficiencies for the graphs.
However, the ordering of the no balancing, pipelined balancing, and asynchronous balancing efficiency
values is the same if Equation 1.2 is used.) Since asynchronous load balancing does not provide signifi-
cant performance improvement and is only applicable for applicationswith infrequent synchronizations, its

added complexity is not worth the additional effort. Therefore, our system uses pipelined load balancing.

2.6.3 Granularity of work movement

The granularity of work movement in our prototype system is determined by the distribution of the data.
The unit of work in the system is a single loop iteration, but the unit of work movement is the work
associated with an entire slice of the distributed data. Shifting entire data slices is advantageous in that
future computation is balanced and future references to the slice remain local, but when slices are large,
work movement can become very expensive. The load balancer (Chapter 5) includes several optimizations

to ensure that work movement will be profitable.

! The load balancing parameters for the data presented are as follows: load balancing target period is 1 second; 10% predicted
improvement is required for work movement; rate information is filtered using a state machine; cost-benefit analysis is enabled.
The meanings of these parameters will be described later in the thesis.

2.6. MASTER-SLAVE INTERACTIONS 45

> 1.0 . > 1.0 .
IS IS
2 2
S 09 S 09
£ @y—ﬁ—ﬁW £
. 0.8 . 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 ® Sequential 0.3 ® Sequential
0.2 -8- No balancing 0.2 -8- No balancing
. - Pipelined balancing . - Pipelined balancing
01 —%- Asynchronous balancing 01 —%- Asynchronous balancing
0.0 s s s s w w ; 0.0 s s s s w w ;
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) Dedicated homogeneous environment b) Constant load on one processor
> 1.0 . > 10 .
IS IS
2 R
:.L:’ 0.9 ..L:’ 0.9
N N
w 0.8 w 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 ® Sequential 03 ® Sequential
0.2 ~B- No balancing 0.2 ~B- No balancing
. -~ Pipelined balancing . -~ Pipelined balancing
o1 —- Asynchronous balancing 01 —- Asynchronous balancing
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors

¢) Oscillating load (period = 60 seconds) d) Oscillating load (period = 20 seconds)

> 10 . > 10 .
= =

k3 3

:.L:’ 0.9 ..L:’ 0.9

N N

Y Y

0.7 W&M 0.7

0.6 D\S\E_H 0.6

0.5 0.5
04 04
0.3 ® Sequential 03 ® Sequential
0.2 ~B- No balancing 0.2 ~B- No balancing
. -~ Pipelined balancing . -~ Pipelined balancing
o1 —- Asynchronous balancing 01 —- Asynchronous balancing
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors

€) Oscillating load (period = 6 seconds) f) Oscillating load (period = 2 seconds)

Figure 2.5: Pipelined vs. asynchronous|oad balancing for 500 x 500 MM in different environments.*

46 CHAPTER 2. LOAD BALANCING ARCHITECTURE

2.7 Summary

In this chapter, we discussed application and environment features that affect load balancing decisions and
described the major decisions that must be made in designing a dynamic load balancing system. Then we
described the high-level features of our proposed load balancing system for automatically parallelized code

running on a network of workstations:

e The tasks to be load balanced are distributed loop iterations, and the units of work movement are

dlices of the distributed data structures.

e Thework and data are distributed on the processors to avoid the high cost of access to a centralized

task queue.

e The sequential loop structure of the application is preserved to maximize data reuse, to minimize

communication, and to minimize the overhead of switching between tasks.

e For rapid response to changes in performance, decisions are made by a central load balancer using

global information.
e Work isallocated in proportion to measured processing rates.

¢ Periodic, pipelined interactionsbetween the slave processorsand theload balancer occur at presel ected
points in the application code so that all processors will be in a consistent state when load balancing

OCCurs.

Experimentswere conducted to compare the performance of pipelined load balancing with synchronous
(unpipelined) and asynchronous load balancing. We showed that both the pipelined and asynchronous
approaches hide the costs of interactions between the slaves and the load balancer. Also, in some cases,
asynchronous load balancing allows fast processors to work ahead of slower (overloaded) processors. We
found performance with pipelining to be as good as (in dynamic systems) or better than (in stable systems)
performance with synchronous load balancing. Asynchronous load balancing had no clear performance
benefits over pipelined load balancing. Because asynchronous load balancing is more complicated to
implement and is applicable to fewer applications, we chose not to investigate it further. Thus, we selected

the pipelined approach.

Chapter 3

Automatic selection of grain size

We define the grain size of a parallel application to be the amount of computation between the synchro-
nizations required by the application. Selection of an appropriate grain size is a prerequisite for efficient
execution of aparallel application, whether load balanced or not. Generally, alarge grain sizeis considered
desirable to minimize communication overhead [61, 65], but in some cases, parallelism is reduced by in-
creasing the grain size, possibly increasing the executiontime. Also, inthe presence of competing loads, the
grain size can interact with the scheduling of processes by the operating system, affecting the performance
of the application in some cases. This chapter discusses the tradeoffs involved in the selection and control
of the grain size of parallelized applications.

The synchronizations in a parallelized application result from its communication requirements, which
aredetermined by thedistribution of theloop iterations and the dependencesand loop structure of theoriginal
sequential code. Often, the computation between synchronizations, i.e., the grain size, can be increased by
increasing the problem size, but that is not a practical option when solving a problem of a particular size.
In some cases, however, the loop structure of the parallelized code can be modified to change and control
the grain size. The communication patternsin the parallelized code determine how easily the grain size can
be controlled and how the grain size interacts with operating system scheduling. We distinguish different
types of synchronizations based on the different communication patterns, and we distinguish parallelized
applications by their most frequent synchronizations.

In the next section, we identify the types of synchronizations that may be present in a parallelized

application. Then we describe loop restructuring transformations that can be used to control grain size.

47

a) Unidirectional synchronization b) Bidirectional synchronization

Figure 3.1: Communication pattern observed on one of the slave processors. The communication pattern
determines the synchronization type.

We model applicationsas alternating between computation and communi cation/synchroni zation phases.

Inthecaseof unidirectional synchronizations(Figure3.1a), i.e., pipelined applications, datais communicated

3.2. COMPILE-TIME CONTROL OF GRAIN SIZE 49

in only one direction through the processors during a communication phase of the application. The
communication enforces a partial ordering on the computation: processors earlier in the pipeline must
generate data before the later processors can proceed, but processors early in the pipeline can work ahead
of processors later in the pipeline as much as buffering of intermediate data between the processors will
allow. Often, this allows computation to occur in parallel with the communication. We take advantage of
the flexibility of the partial ordering to control the grain size.

In the bidirectional case, acommunication phase does not end until a message based on data sent during
the same phase is received (Figure 3.1b). This does not permit much overlap between computation and
communication for the processorsinvolved in the communication. When all processors are involved in the
synchronization, i.e., none of the processors can exit the synchronization point until all processors have
reached it, the bidirectional synchronizationis abarrier synchronization. Barrier synchronizationsimpose
atotal ordering on the computation phases, making control of grain size difficult. An example of abidirec-
tional/barrier synchronization is the global combination step [67] of a parallel reduction operation because
each processor must contribute its portion of the result and then must receive the combined result. With
dynamic load balancing, even a single assignment statement involving distributed data elementsresultsin a
barrier synchronization becausegloba communicationisneededto identify the processorsowning the source
and destination elements. (This will be described in detail in Section 6.6.) Bidirectional synchronizations
involving only a subset of the processors are not likely to occur in automatically parallelized data parallel

code. Therefore, in our analysis, we treat all bidirectional synchronizations as barrier synchronizations.

3.2 Compile-timecontrol of grain size

L oop restructuring transformations can be used to increase parallelism [29, 43, 74], to increase datalocality
[29, 53, 73, 74, 77], and to reduce communication overhead [61, 65]. Here we limit our discussion
to transformations used to control grain size and communication overhead, especially those that can be
parameterized for control at run time. Grain sizeisincreased by restructuring loops so that communication
is moved out of inner loops. We do not discuss transformations such as loop interchange [2, 25, 43, 76, 78]
and loop skewing [75, 78] because they are difficult to parameterize and are not always applicable. (E.g.,
loop interchange can be parameterized by conditionally selecting different copies of the loop nest [76] but

does not provide a continuum of grain size choices.)

b) After loop splitting ¢) Preparation for message aggregation

Figure 3.2: LU decomposition row elimination loop.

a) Original loop b) Strip-mined loop

Figure 3.3: Strip mining transformation.

3.24 Loop tiling

Tiling the iteration space of 1oop nests [29, 76, 77] is another transformation that can be parameterized to

(b) Pipelined (c) Blocked and pipelined

Figure 3.4: Parallelization options for SOR (simplified version; error computation not shown). Figures
show pipelined execution of asingle relaxation phase. Code portions affected by strip mining and message
aggregation are shaded.

interchange so that memory references by the resulting inner loops are localized. The size of the tilesis
controlled by the block sizes of the strip-mined loops. Tiling is frequently used to increase data locality,
especially on uniprocessors and shared-memory multiprocessors, so that most memory references are to
datain the cache[29, 53, 73, 77]. However, on a distributed memory multiprocessor, when combined with
loop splitting and message aggregation, tiling can also be used to control grain size and communication
overhead [65]. In our system, wheredataisonly distributed in one dimension and work is moved by shifting

distributed data slices, the general tiling transformation makes data management more complicated, so we

o o R o~ e~ o~~~ 1

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 53

applicable to the more general case.

3.3 Unidirectional synchronizations

For applications with loop carried flow dependences, i.e., with DOACROSS loops, paralelism can be
obtained by pipelining multiple instances of the distributed loop. There are two main factorsinfluencing the
efficiency of parallelization by pipelining: the time spent on communication of intermediate values due to
the loop carried dependences; and the time spent filling and draining the pipeline. For a given application,
the minimum execution time is attained with a grain size that is a compromise between parallelism and
communication overhead. We begin this section with a discussion of how grain size is controlled for

applications with DOACROSS loops and then discuss how an appropriate grain size is selected.

3.3.1 Controllinggrain sizeat run time

For applicationswith DOACROSS loops, the compiler strip minestheloop surrounding the distributed |oop
and moves communication out of the inner loop, combining messages when possible. The grain size can
then be controlled at run time by setting the block size of the strip-mined loop. The grain size (tgrain) iS

related to the block size as follows:
tgrain = blOCKSIZe X titeration (3.2)

or

. tarai
blocksize = —%&1

iteration

where t;eration 1S the longest of the execution times for the local portion of the distributed DOACROSS
loop on all of the processors. Once execution of a strip-mined loop has begun, it is very complicated to
modify the block size; thus, the desired block size or grain size must be selected before entering the loop. If
the strip-mined loop is executed multiple times, the block size can be changed between the executions of the
loop, based on measurements taken during previous executions of the loop. The next few sections describe
how the optimal block sizeis selected, but first we describe how block size is selected given adesired fixed
grain size.

Given a desired grain size, an accurate estimate of #;;erqtion, the cost of the portion of the loop body

executed on each processor, is required to select the appropriate block size. Since this estimate is needed

54 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

before entering the loop, the cost can not be measured as the loop is executed. If the compiler has an
accurate model of execution times for the processor, the compiler can determine ¢;e.ation - If NOL, titeration
can be estimated when the application is started by measuring the execution time of a copy of the loop
body (operating on dummy data). If the strip-mined loop is executed multiple times, the estimates of the
loop body costs can be updated between the executions of the loop, based on measurements of the actual
times for executing the loop body during previous executions. In our implementation of SOR, we just use
measurements from executing a copy of the loop body at startup time.

In our implementation of the SOR example, we initially computed an average t;;cration Trom measure-
ments of a fixed number of iterations of the dummy loop body. However, we found inconsistencies in
the values determined with different numbers of slave processors. These inconsistencies are explained and
corrected with some analysis. Assuming a dedicated, homogeneous system, the number of iterations, V;,
assigned to each processor is

n

N; == (3.2)

where n isthe problem size (the number of iterationsin the distributed loop), and P is the number of slave
processors. The L eration Measured on processor ; is proportional to N;, and, thus, varies with the problem
size and number of processors. However, because the total amount of work is constant, we expect the

total of the measurements of ¢;;..4ti0n ON @l the slave processorsto be constant, no matter how many slave

jprocessors there are;
P—1
Z Literation,i X literation XP = kXxn
0 " —— ——
= average measurement MaX titeration,i constant

If titeration,: 1S Measured on each processor by averaging the time over a fixed number of iterations of the
dummy loop body, thereisalot of variability in ¢;;eration X P because of the different ratios between loop
overhead and computation for different numbers of processors. The variability is eliminated by averaging
the execution time of the loop body for a number of iterations proportional to the number of processors so
that each average involves the same amount of computation and has the same ratio of computation and loop
overheads. Experiments verified that with the corrected approach, t;ierqation X P Was much more stable as
the number of processorswas varied. Another way to verify the accuracy of the ;ierqtion Measurementsis
to use them to extrapolate the sequential execution time for the problem and compare the predicted times

with actual measurements. If there are m executions of the distributed loop and the problem is distributeed

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 55

on P processors, the sequential time should be

Lsequential = ™ X P X titeration (33)

For SOR, we found that the predictions of the sequential execution time using this approach are consistent
over different numbers of processorsand are quite close to measurements of the sequential time. Therefore,

our measurements of ;;eration, MUSt be accurate.

3.3.2 Communication costs

Communication is necessary when dependences exist between loop iterations that are assigned to different
processors. If this communication is too frequent, communication costs can dominate the execution time,
eliminating benefits due to paralelism. The frequency of communication depends on the computation
associated with each iteration and the number of loop iterations, NN;, assigned to each processor. The
latter value depends on the problem size, n, and the number of processors, P, for equal distribution of
work (Equation 3.2). The former value can be changed by loop restructuring transformations, such as strip
mining, performed during compilation. Strip mining the pipelined loop and moving communication out
of the resulting inner loop provides a way to control the frequency of communication. Communication
overhead can then be reduced using message aggregation. Increasing the block size reduces the frequency
of communication and increases the number of messages that can be combined. Thus, the larger the block

size, the smaller the communication overhead.

3.3.3 Pipdinefill and drain times

However, if communication of intermediate values is made too infrequent, alarge fraction of the execution
time will be spent filling and draining the pipeline, resulting in reduced parallelism. From Figure 3.5, it can
be observed that, for a m iteration loop divided into M blocks (M = %', where b is the block size), the
elapsed time for the application, ignoring communication costs, is M + P — 1 timesthe time to execute one
block, tyock:

7felapsed = (M +P - 1) * thlock (34)

56 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

Thetimeto fill and drain the pipeline, (P — 1) x ty0ck, iNcreases with the block size and with the number

of processors. The total number of blocksto be executedis P x M so
tsequential = P X M * tyock (3.9)

We can now compute an upper bound on efficiency for a homogeneous environment with no competing

loads, using Equation 1.4:

N B P xX M X tyock
efficiency = Px (M+ P —1) X tyoek
M
T M+P-1 -

Thisupper bound on efficiency is graphed asafunction of the number of blocksin Figure 3.6. Theefficiency
approaches 1.0 as M approachesinfinity. However, M can be no more than the number of iterations, m, in

the pipelined loop.

3.34 Sdecting the optimal block size

The total execution time for the pipelined loop is the sum of the times for the pipelined phases plus the sum
of the communication costs. The loop is executed in M + P — 1 computation phases, and communication
of boundary values occurs between the computation phases (Figure 3.5). Not all processors shift boundary
valueswhenthepipelineisfilling or draining, but to simplify theanalysis, we assumethat all communication

phases take the same amount of time, ¢,,; ;. Thus, the total execution time is modeled as follows:
tiotal = (M +P - 1) X tplock + (M +P - 2) X tshift (37)

To use this model, we need values for M, tyocr, @nd tgp; s

M and ty,1 are related by Equation 3.5. If the compiler has an accurate model of execution times for
the processors, it can predict the sequential execution time. Otherwise, at run time, if all iterations of the
pipelined loop require the same amount of computation, the sequential execution time can be estimated by
measuring the cost of executing several iterations of a copy of the loop and extrapolating, as described in
Section 3.3.1. Our implementation uses the latter approach. Thus, for a given number of processors, P, we

can eliminate t;,.; as an unknown by replacing it with t?@;—e“ﬁ and using the estimate of Zsquential -

Figure 3.5: Pipelined execution of a distributed loop showing parameters for modeling execution time.
Distributed loop has n iterations and pipelined loop (enclosing distributed loop) has m iterations.

tshife Can be estimated by measuring communication costs when the application is started. At each

communication point, communication is modeled as follows:
tshift = tfized + tiner * €l€MENts (3.8)

where ¢ ;.4 is the fixed overhead of sending messages between processors, and ¢;,., is the cost per data

58 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3t
0.2
0.1
0.0

Efficiency

0 50 100 150 200 250 300 350 400 450 500
Number of blocks

Figure 3.6: Upper bound on efficiency for the pipelined loop in the SOR example (1000x1000 matrix, 10
iterations) as afunction of the number of blocks.

isequal to the block size, b:

m
elements= b = i (3.9

1 rizeq 1S €Stimated by measuring the time to shift empty messages through the processors. ;. is estimated
by measuring the cost of sending fixed length messages through the processors, subtracting ¢ f;zeq, and
dividing by the length of the messages.

Substituting for #;o0; and £, ¢ in Equation 3.7,

t%quential

tiotal = (M+P—1)X L

S

m
+(M + P - 2) X (tfized + Liner X M)

tsequential + 75sequential . tsequential
P M PxM

+M x tfixed + P x tfixed —-2X tfixed

m m
Finer X M+ P X tiper X v 2 X tiner X i (3.10)

All values on the right hand side of Equation 3.10 can be determined when the application is started

except for M, the number of blocks. We wish to select M to minimize the total execution time. The value

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 59

of M that minimizes ¢, iS computed by setting the derivative of #;.;,; with respect to M equal to zero:

75sequential
P x M?
P X tiner Xm 2 X tiper X M

M2 e
=0 (3.12)

dtiotal - 00— tsequential
dM M?

+tfized +0—0+0—

+

Solving for M, the shortest execution time and the highest efficiency are attained when

V= \J tsequential X (1- %) + tiner x m x (P —2) (3.12)

tfimed
Theoptimal M iscomputed at application startup time using the known values of P and m and the estimates

Of tsequential s t fized, @Nd ;e determined by executing copies of small portions of the computation. From

this, we determine the optimal block size, b = §; (Equation 3.9).

3.3.5 Evaluation of grain size model

Figure 3.7 shows the efficiency of parallelization for the SOR example (1000x1000 matrix, 10 iterations)
predicted by our model and measured on the Nectar systemwith 4 slave processors. Weran the SOR example
with arange of block sizes and with the block size automatically selected using the computations described
above; artificial delayswere added in Figures 3.7b and 3.7c to show how our execution model responds to
different communication costs. Estimates of ¢sequential Pased on measurements of several iterations of the
pipelined loop are consistent over several measurements and are quite close to measurements of the actual
time for the application running on a single processor (listed in Table 7.1). However, the communication
costs are more variable and are more difficult to measure. To predict the efficiency and to compute the
optimal block size, we use a conservative estimate of the communication costs: the time between the start
of the first communication and the end of the last communication in acommunication phase. This estimate
tends to increase t f;,.q, reduce t;,., and increase the optimal grain size prediction. (The predicted and
measured efficiency curves move closer together if the ¢;,. estimate is increased.) Although this cost
estimate may include some time spent on computation, a less conservative estimate, such as measuring the
communication time from the point of view of a single processor, could result in shifting the optimal grain
size prediction to the left where the slope of the efficiency curve is much greater.

Similar analysis will be done within the Fortran D compiler to select the appropriate block size for

pipelined computations [26, 27]. As in our approach, the optimal block size is determined by setting

N
o

Efficiency

Efficiency

Efficiency

1.0
0.9
0.8
0.7

0.6
0.5}
04+t
0.3t
0.2¢
0.1¢

0.0

1.0
0.9

0.8t

0.7
0.6
0.5
0.4

0.3}

0.2
0.1
0.0

1.0
0.9

0.8t
0.7t
0.6
0.5¢
04+t
0.3}

0.2
0.1
0.0

M ¥4

* &

*C

*Q

CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

* Measured
¢ Predicted
o Upper bound

0 50 100 150 200 250 300 350 400 450 500

Blocksize (iterations)

a) No added delays.

% * Measured
9 4 ¢ Predicted

aeﬁe% o Upper bound

5 S & ¢ ; pp!

* O §

e © §

o

3 §

> g

S g

4

b

b

0 50 100 150 200 250 300 350 400 450 500

Blocksize (iterations)

b) 5 millisecond delay added to each message.

%DD * Measured

° ¢ Predicted

o o Upper bound
m}
m}
* * * o

** <& © ﬁ [u]

* > ¥ " o
* o
* O #
% ©
Lx ©
Ly O

0 50 100 150 200 250 300 350 400 450 500

Blocksize (iterations)

Values used in computing M:
ttizeda = 1716pSEC
tiner = 48N$C

Values used in computing M:
tsequential = 8496640usec
ttizeq = 16633 useC

tiner = 48N$C

Values used in computing M :
tsequential = 8500480usec
tfized = 152360useC

tiner = 48/,L$C

¢) 50 millisecond delay added to each message.

Figure 3.7: Efficiency of the pipelined loop in the SOR example (1000x1000 matrix, 10 iterations) on a4
dave system as a function of the block size. Vertical lines indicate automatically selected block size and
correspond with the peaks of the “ Predicted” curves.

3.3. UNIDIRECTIONAL SYNCHRONIZATIONS 61

the derivative of a model of the execution time for the application equal to zero. However, unlike our
approach, their estimates of computation and communication times for the program are determined by a
static performance estimator which runs atraining set of kernel routines to characterize costsin the system
[23]. The static performance estimator matches computations in the given application with kernels from
the training set. Their approach requires a separate characterization for each machine configuration that
might be used when running the application. Our approach is more flexible in that it measures the costs for
the specific application code being executed on the specific machine configuration being used and could be
extended to update the costs as the application is executed. However, by delaying our characterization of

costs until run time, we add the characterization time to the cost of executing the application.

3.3.6 Optimal grain sizevs. fixed grain size.

To show the effectiveness of considering both communication overhead and parallelism in selecting grain
size, we compared the performance of a version of SOR with a fixed grain size, controlled as described
in Section 3.3.1, with the performance of a version with the automatically-selected “optimal” grain size,
selected using the method described in Section 3.3.4. Figure 3.8 showsefficiency measurements (see Section
1.5) taken on the Nectar system with homogeneous, dedicated processorsfor two different problemsizes. (In
this case, since there are no competing processes on the system, the efficiency measure defined by Equation
1.4 is the same as the traditional, lower bound efficiency measure, Equation 1.2, so the measurements are
neither optimistic nor pessimistic.) We selected afixed grain size of 1.5 time quanta? (150 milliseconds) so
that the communication overhead would be small. The efficiency with thefixed grain sizewasapproximately
the same as that with automatically-selected grain size when the number of processors was small, but as
the number of processors was increased, the total execution time for the problems decreased, increasing
the effect of filling and draining the pipeline, so the automatically-selected grain size, which takes both

communication costs and parallelism into account, resulted in higher efficiency.

2The time quantum or time slice is the unit of scheduling used by the operating system. For Unix systems, the time quantum is
100 milliseconds [32].

62 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

> 10 . > 10
IS IS
2 R
S o9 S 09 %
N N
W 0.8 W 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 ® Sequential 0.2 ® Sequential
. -8- Automatically selected . -8- Automatically selected
01 — Fixed (1.5 quanta) 01 — Fixed (1.5 quanta)
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) 1000 x 1000 (40 iterations) b) 2000 x 2000 (10 iterations)

Figure 3.8: Parallel versions of SOR without load balancing in a dedicated homogeneous environment.
Fixed grain size (1.5 quanta= 150 milliseconds) vs. automatically selected grain size.

3.3.7 Effect of competing loads

For pipelined applications, when a competing load is added to one of the processors, intermediate results
aredelayed for all processorsfollowing that processor in the pipeline. A bubble of inactivity (idle waiting)
passes through the pipeline each time the competing load is given the CPU (Figure 3.98). However, if the
load is balanced, the processor with the competing load is allocated lesswork so that during its allocation of
the CPU, it generates enough data to keep the processors that follow it busy when the competing load has
control of the CPU (Figure 3.9b). The communication required by the application aligns the processors so
that efficiency is not affected adversely by competing loads and pipelined execution can continue without
stalling. Thisistruefor any grain size, aslong asthere is enough buffer space to store the intermediate data.

We confirmedthat grain size haslittle effect on the efficiency of apipelined applicationin aload balanced
environment with competing |oads by simulating theinteractions between the scheduling of processesby the
operating system and the communication between the slave processors, asin Figure 3.9. Our model of the
system assumesthat the operating system all ocates equal portions of the CPU timeto all running processesin
around-robin fashion with afixed time quantum. The simulations do not consider communication costs, but
do model time spent filling and draining the pipeline; therefore the predicted upper bound on efficiency for
adedicated systemis #. Figure 3.10 shows the parallelization efficiencies resulting from simulating
different grain sizes under different conditions. In al of the environments simulated, the efficiencies stay

very closeto the predicated upper bound, regardless of the grain size. On systemswith competing loads, the

b) Load balanced

1 competing load on first processor.

64 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

efficiency sometimes exceeds the predicted upper bound because the length of the blocks varies with each
pipeline stage as the phase difference between the start of the competing load and the start of the pipeline
stage changes. There may be slight degradationsin efficiency (most noticeable in Figure 3.10d) dueto time
spent by the slaves aligning themselves with each other in the early stages of the pipeline. In real systems,
process scheduling is more complicated than round-robin and competing loads may vary over the course of
the application so the slaves may have to realign themselves more than once; however, the natural tendency

for communication to align the processors should prevent efficiency from being affected too adversely.

3.4 Bidirectional (barrier) synchronizations

If at acommunication point, data must be exchanged rather than just shifted in asingle direction, abarrier is
created; none of the processors involved in the communication may continue executing until all processors
have reached the barrier. We call these synchronization points bidirectional or barrier synchronizations.
Since DOALL loops require no communication, the grain size of applications with DOALL loops is
determined by the barrier synchronizations outside the distributed loop. Barrier synchronizations may be
caused by reduction operations, by distributed |oopsthat just shift data between processors, or by assignment
statements that involve data on multiple processors; the LU decomposition example (Figure 1.10) exhibits
all of these features. Barrier synchronizationswith no computation between them can be treated asa single
barrier. With bidirectional synchronizations, grain size can be changed using transformations such as loop
splitting (e.g., Figure 3.2), loop interchange, or loop skewing, but these transformations are difficult to
parameterize. For limited control of the grain size, the compiler could generate several versions of the
code which could be selected at run time [76], but a continuum of grain sizes is not possible as it was in
the case of unidirectional synchronizations. Because of this limitation, our research does not investigate
options for modifying the grain size of problems with bidirectional synchronizations; we leave it to the
programmer or the compiler to decide on the best way to parallelize the application. In the remainder of this
section, we analyze the overhead of bidirectional synchronizations and examine the effects of bidirectional

synchronizations on program performance in the presence of competing loads.

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS

1.0

Efficiency

0.8t

0.7 t

0.6}

0.5}

0.4}

0.3}

0.2}

0.1}

0.9t

0.0 —
00 1.0 20 30 40 50 60 70 80 9.0 100
Grain size (quanta)

a) Competing load on PO

1.0

Efficiency

0.8}
0.7}
0.6
05|
0.4}
0.3}
0.2}

0.1}

0.0 S S —
00 1.0 20 30 40 50 6.0 70 80 9.0 100
Grain size (quanta)

¢) 3 competing loads on PO

— Upper bound
Simulated

0.9t

— Upper bound
Simulated

Efficiency

Efficiency

1.0

0.9}

0.8t

0.7 t

0.6}

0.5}

0.4}

0.3}

0.2}

0.1}

— Upper bound
Simulated

65

0.0 —
00 1.0 20 30 40 50 60 70 80 9.0 100
Grain size (quanta)

b) 2 competing loads on PO

1.0

09|

0.8}

0.7

0.6

0.5}

0.4}

0.3}

0.2}

0.1}

— Upper bound
Simulated

ooL
0.0 1.0 20 3.0 40 50 60 7.0 80 9.0 100

Grain size (quanta)

d) Competing loads: 1 on PO, 2 on P1,
3onP2,40nP3

Figure 3.10: Paralelization efficiency determined from simulation of pipelined execution on a4 processor
system. Upper bound (#) isincluded on al graphs. The sequential execution time of the simulated
problem is 200 time quanta.

3.4.1 Synchronization overhead

Figure 3.11 shows the basic structure of parallelized code with barrier synchronizations. The barrier

synchronizations are on the critical path of the application because they impose a total order on the

Figure 3.11: Parallelized version of DOALL loop followed by global operation.

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS 67
3.4.2 Effect of competing loads

When multiple processors have competing loads, the scheduling of processes on different processors may
not be synchronized, and the application may be inactive on different processors at different times. At each
barrier synchronization, the elapsed time will be the worst case of the times on al the processors, and the
barriers will cause the skews between execution times to accumulate and show up in the total execution
time. Even when work is allocated to processorsin proportion to their available resources, on a system with
competing loads, the application may not be able to use its share of the processing resources productively
due to the interactions between the grain size and the scheduling of processes by the operating system. The
inefficiency is even worse if the work assignment is not proportional (i.e., the load is |eft unbalanced) or if
the systemisdynamic resulting in varying grain sizes. For effective utilization of resources, the computation
assigned to each processor during the period between barrier synchronizations must correspond with the
amount of CPU allocated to that processor during that period. This section identifies the grain sizes that

make this match more likely.

M odeling scheduling inter actions

To evaluate the effects of the barrier synchronizations on performance in the presence of competing loads,
we model the scheduling of processes using the round-robin scheduling model described in Section 3.3.7.
Barrierswork asfollows: each application process enters the barrier after completing a computation phase,
and none of the process may exit the barrier until all processes have entered. Each process must be active,
i.e., have control of its CPU, both when entering and when leaving a barrier, but not all processes must be
active at the same time.3

Figures 3.12 and 3.13 show time lines for afour processor system with a single competing load on one
processor, with different work assignmentsand grain sizes. Thetime linesidentify the different CPU states
(working, waiting, or inactive with respect to the load balanced application) and show the interactions for

the barrier synchronizations. In thefigures, the thick horizontal linesindicate the timeswhen the application

3This model for barrier synchronizations requires that the communication needed for the synchronization is buffered. We could
use a more restrictive, possibly more realistic, model of the synchronizations, such as requiring all processes to be active at the
synchronization point; however, with the simple, but inflexible, round-robin scheduling model, performance predictions would be
too pessimistic. To compensate, the round-robin scheduling model would have to be replaced with amore complicated model, e.g.,
having the application process yield the CPU when waiting for communication and having incoming communication interrupt the
competing processes to return the CPU to the application.

68 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

processes enter a barrier synchronization, and the arrows indicate the times when the processes exit the
barrier. In Figure 3.12, the grain size for the case without load balancing (Figure 3.12a) is 0.7 time quanta.
After load balancing (Figure 3.12b), the grain size on the loaded processor (PO) is 0.4 quanta, and on the
dedicated processors (P1, P2, and P3) the grain sizeis 0.8 quanta. With load balancing, thereis still quite a
bit of time spent waiting at the synchronization points, and the execution time is not reduced much relative
to the case without load balancing; load balancing only increases the efficiency from 60.9% to 76.5%.
However, grain sizes (after balancing) closer to multiples of the time quantum result in higher utilization of
the available CPU time because only occasional small corrections (i.e., small waiting periods) are needed to
keep the synchronizationsand scheduling in phase. In Figure 3.13 where the grain sizes after load balancing
are closer to multiples of the time quantum (0.8 quanta on PO, and 1.6 on the other processors), the time
reduction with load balancing is much greater than in Figure 3.12, where the grain size is 0.4 time quanta (on
processor 0). The efficiency increases from 58.9% without load balancing to 94.6% with load balancing.
Better CPU utilization also results from increasing the grain size. With round-robin scheduling, after
the application process executes for one time quantum, each competing process also executes for one time
guantum. Between consecutive computation phases, the number of times the application is interrupted by
the scheduler may differ by one due to the phase difference between the computation and the scheduling.
Thus, on a processor with constant competing loads, execution times for consecutive computation phases
may differ by afactor of [g]/|g| where g is grain size (based on dedicated use of the CPU) measured in
time quanta. When g is less than one time quantum, consecutive execution times can vary by any factor
depending on the load on the system, but when g is greater than one time quantum, the variability factor is
bounded, e.g., by 2for 1 < g < 2, by % for 2 < g < 3, etc. Thus, if grain size can be controlled, agrain
size aslarge aspossible, but at |east one time quantum (on the loaded processors after balancing), should be

selected.

Simulation of scheduling interactions

To show the effects of varying the grain size on performance, we simulated the interactions between different
grain sizes and the scheduling of processesby the operating system. The simulations model the interactions
between the grain size and scheduling in the same manner used in Figures 3.12 and 3.13, but run for 1000

synchronizations. At the start of the simulations, the parallel application is active and at the beginning

b) Load balanced (efficiency = 0.765)

lizations executing with competing load on first pro-
liseconds. Round robin scheduling ignoring commu-

ws parallelization efficiencies attained with different
mulation results confirm our hypotheses. efficiency

ks with 100% efficiency occur where the grain sizes

3.4. BIDIRECTIONAL (BARRIER) SYNCHRONIZATIONS 71

> >
o 1.0, . . - o 1.0 .
§ | AT S WO/ e el
S 09} %, S 09} 5/ 7 “
= rois = i ”
Yool il Yool ;;
07} o7t
0.6 06| .|
051 0.5 i
o
0.4} 0.4 f:
0.3} 0.31
0.2} 0.2t
0.1t¢ 011
ooL—v o0
00 10 20 30 40 50 60 7.0 80 9.0 100 00 1.0 20 30 40 50 60 7.0 80 9.0 100
Grain size (quanta) Grain size (quanta)
a) Competing load on PO b) 2 competing loads on PO
> >
o 1.0, o 1.0
5 . ///.:’/////‘. 5
S 09} j “ S 09}
E / ZA i / //////
08¢ 0.8} /// v/
o7t | 0.7} /
0.6 ;5 06! /
05f i} 051} //
#
04 ,; 04t 7
ki - 4
03 037
02y 02
01} 01}
oo —o 90—
0.0 1.0 20 30 40 50 60 7.0 80 9.0 100 0.0 1.0 20 30 40 50 60 7.0 80 9.0 100
Grain size (quanta) Grain size (quanta)
¢) 3 competing loads on PO d) Competing loads: 1 on PO, 2 on P1,

3onP2,40nP3

Figure 3.14: Parallelization efficiency for varying grain sizes on a 4 processor system. Simulation results
for round-robin scheduling ignoring communication costs.

the CPU allocation schedule for the whole system repeats every lcm quanta, where [cm is the greatest

common multiple of the loads (load;) on each processor (including the load balanced application). For

lem

100% utilization during one repetition of the schedule, each processor must be allocated w; = ;2%

quantum units of work. The total work during each lem quanta period is thus wye, = Y=~ *w;. Since

72 CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

the x axes of the graphsin Figure 3.14 are the grain sizes before load balancing, the grain sizes with 100%
efficiency are multiples of grain,e, = “#<-. The first 100% efficiency peak on each of the graphs in
Figure 3.14 occurs when the grain size on the most heavily loaded processor after balancing equals onetime
guantum: grai Noeak = 1.75for Figure 3.14a, 2.50 for 3.14b, 3.25 for 3.14c, and 19.25 for 3.14d. Additional
peaks may occur if the schedule for the system can be divided into two or more equal segments for which
each segment has the same amount of active time on each processor as each other segment. E.g., for the

examples with competing loads on only one of the processors, peaks can aso occur at multiples of grajg"eak

(efficiencies near 100% can be observed in Figures 3.144a, 3.14b, and 3.14c. However, for 100% efficiency
to result with these grain sizes, the computation and the scheduling of the processes must be in precisely the
correct phase.

The simulation results confirm that efficiency improves as the grain size is increased, and also show
that the sensitivity of the efficiency to fluctuations in grain size decreases as the grain size increases. In
actual systems, scheduling agorithms more complicated than round-robin are used, making it more difficult
to predict the grain sizes where efficiency peaks occur. Also, normal system activity may cause variations
in the schedule so it is desirable to be out of the range of grain sizes where efficiency fluctuates greatly.
Therefore, the grain size should be as large as possible for applications with barrier synchronizationsif they

areto berunin the presence of competing loads.

35 Summary

This chapter presented several ways grain size can be controlled using loop restructuring transformations
and investigated the interactions between the grain size and scheduling of processesby the operating system.
The selection of an appropriate grain size for applicationsdistributed over networks of workstations requires
both compile-time and run-time information. The ability to control grain size and the factors that must be
considered in selecting an appropriate grain size are determined by the type of synchronizations in the
application.

For applications with unidirectional synchronizations (i.e., with DOACROSS loops), we presented and
evaluated a method for automatically selecting and controlling the grain size based on close cooperation
between the compiler and the runtime system. For an application to use resources efficiently, its grain size

must be selected by evaluating a tradeoff between communication overhead and parallelism. However,

3.5, SUMMARY 73

al the information needed to evaluate the tradeoff is not available until run time. Because our automatic
selection approach takes into account the features of both the application (such as problem size) and the
system on which it is run (such as the number of processors), it selects the optimal grain size for varied
application and system parameters. Our experimental results demonstrate that our automatic selection
approach is effective in selecting an appropriate grain size for an application. Using simulations, we also
showed that, for applications with unidirectional synchronizations, interactions between the grain size and
scheduling by the operating system do not significantly affect performance; therefore the interactions need
not be considered in selecting grain size.

For applicationswith bidirectional (barrier) synchronizations, grain sizeis more difficult to control at run
time. Simulations showed that, to reduce undesirable interactions between bidirectional synchronizations

and scheduling by the operating system, the grain size should be made as large as possible.

74

CHAPTER 3. AUTOMATIC SELECTION OF GRAIN SIZE

Chapter 4

Automatic selection of load balancing

frequency

The frequency at which the daves evaluate their performance and interact with the load balancer affects
the overhead of load balancing and the responsiveness of the system to fluctuations in performance on the
slave processors. Load balancing must be performed often enough that fluctuations in performance on the
processors can betracked, but if load balancing occurstoo often, the added overheads of interacting with the
load balancer and moving work may exceed the benefits of balancing the load. Also, becausethe frequency
of load balancing determines the period over which performance is measured, if the frequency is too high,
measurements may fluctuate greatly due to interactions with the scheduling of processes by the operating
system rather than due to actual changesin load on the processors; this could cause excessive, unnecessary
work movement resulting in excessive overhead.

The load balancing system must be able to select an appropriate load balancing frequency and must
be able to modify the frequency as system and application characteristics change. Control of the load
balancing frequency involves both the compiler and the runtime system because the compiler must specify
points in the code where work can be moved without disrupting the computation or corrupting data. This
ismost easily coordinated if load balancing interactions occur only at points in the parallelized code where
the compiler has inserted load balancing hooks, conditional calls to the load balancing code. The runtime
system determines when the hooks call the load balancing code.

The next section describes how the compiler and runtime system cooperate in controlling the load

75

76 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

balancing frequency. Section 4.2 describes how the compiler places the load balancing hooks into the
application code. Section 4.3 describes the factors considered when selecting the load balancing frequency

and how the frequency is controlled at run time.

4.1 Cooperation between compiler and runtime system

The compiler places conditional calls to the load balancer into the application code in the form of load
balancing hooks. The hookstest conditionsfor calling the load balancing code so that the frequency of load
balancing can be controlled at run time. When conditions for load balancing are met, a hook calls the load
balancing code, which measures the time spent on the computation, sends performance information to the
load balancer, receivesinstructions, and, if necessary, shifts work between the processors. The granularity
at which frequency can be controlled at run time is determined by the placement of theload balancing hooks.

A simple implementation of a load balancing hook is shown in Figure 4.1a. Each time the hook is
executed, a counter, count, isincremented. Load balancing istriggered when the counter reaches aspecified
value, nexthook. The counter is reset each time the load balancing code is called. To control the load
bal ancing frequency, the count that triggers load balancing, nexthook, can be changed each time instructions
are received from the load balancer, according to specifications contained in the instructions. The hook
shown in Figure 4.1a implements synchronous load balancing. If the interactions between the slaves and
load balancer are pipelined (Section 2.6.1), the hook is modified slightly so that two (or more) status
messages are sent before the first set of instructions is received (Figure 4.1b); after the interaction pipeline
has beenfilled (i.e., phase > 1), the modified hook code performs the same functions as the code in Figure
4.1a. For asynchronous load balancing (Section 2.6.2), the hook must be modified so that the hook only
attempts to receive instructions if an instruction message has been detected (Figure 4.1c); otherwise, the
hook just sends status to the load balancer and returns control to the application code.

The run time system determines when the hooks will call the load balancing code, based on a target
load balancing period (period,qe) and the length of the computation periods between the load balancing

hooks (periodegmuute):
peri odtarget

nexthook = -
period

(4.2)
‘compute

Both period;y g and periodgmuue May vary at run time. period,q is selected by the runtime system

balancing periods from point of view of single slave.

cing code

ointsintheparallelized codesothat |oad balancing can
. For the system to be able to respond to performance
n the loop nest as possible so that they are executed
e loop nest it can add too much overhead becausethe
er of magnitude or greater than the time to execute the

1if the hook never callstheload balancing code. Thus,

78 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

placement of load balancing hooks must consider both responsivenessand overhead. A load balancing hook
need only be placed at onelevel of theloop nest because the deepest hook determines the frequency of hook
execution. Therefore, we describe the hook placement decision in two steps: identification of possible hook
locations, and selection of a single location from among the possible locations. If none of the possible hook
locations meets the selection criteria, code may be restructured to create new hook locations. We conclude

this section with a hook placement algorithm that merges the two decision steps.

4.2.1 Possiblehook locations

Theiterations of the distributed loop are treated as atomic units of execution. In the parallelized code, hooks
can be placed anywhere outside the body of the distributed loop. However, al possible hook locations at
the same level of a loop nest are equivalent with regard to frequency of execution. Therefore, we only
identify one potential hook location at each level of aloop nest. Our load balancing only addresses the
distributed portion of the computation—i.e., only the execution time of the distributed portion of the code
is measured—so, as a starting point, we select locations as closely following the distributed computation as
possible. Therefore, theinitial set of possible hook locationsis at the end of the body of the distributed loop,
immediately following the distributed loop, and immediately following each loop enclosing the distributed
loop (e.g., Figure 4.338). The outermost position isimmediately eliminated from consideration because load
balancing can not reduce execution time after the distributed computation has been completed. Thus, if
the distributed loop is an outermost loop, the load balancing hook can only be placed at the end of the
distributed loop body. Also, if the hook is placed at the innermost position, between iterations of the
distributed loop (e.g., IbhookO in Figure 4.3d), controlling the frequency is more complicated because the
number of iterations of the distributed loop on each processor may vary. In this case, the value of nexthook
(Figure 4.1) sent to each processor must be different and must be based on the relative computation rates of
the processors so that all slavesinteract with the load balancer at the same frequency.

Becauseinteracting with theload bal ancer requires communication, when possible, we shift the potential
hook locations to points next to existing communication at the same nest level so that additional synchro-
nization points are not created. Thus, when the application requires communication at some nest level, the
hook location at that level is shifted to the point immediately preceding the first communication following

the distributed loop. If the first such location is the receive operation for a unidirectional synchronization

(a) Original code (b) Strip-mined code

Figure 4.3: Pseudocode for SOR showing possible locations for load balancing hook. The comments
indicate the evaluation of each of the hook locations for SOR, knowing that computing b[7][:] only requires
afew operations.

(an unlikely situation), the hook is shifted to the point immediately preceding the first send operation so
that the load balancing communication does not interrupt the communication required by the application,

possibly creating a deadlock situation.

4.2.2 Selecting from among possible hook locations

A compiler can use simple rules to select the location of the load balancing hook from the list of possible
locations. Thepotential hook locationsare eval uated from the most deeply nested location to the least deeply
nested. To minimize the time for the load balancer to detect and respond to performance changes, the hook
isinserted at theinnermost location that adds a negligible amount of overhead (e.g., lessthan or equal to 1%)
to the computation, assuming that the hook never calls the load balancing code. (Control of the overhead
when load balancing codeis called is handled at run time.) Each hook location is evaluated by comparing
the estimated execution time for a hook (that does not call the load balancing code) with an estimate of the
execution time for the computation between executions of a hook at that location. If the cost of ahook isa
significant fraction (e.g., greater than 1%) of the cost of the code executed between run-time instances of
the potential hook location, then the location is eliminated from consideration. Becausethis decisionisonly

concerned with orders of magnitude, operation counts can be used to estimate execution time, or, if desired,

e ot o o e e 2w Y R 1 PR o e bt Lt et e I E ™M PR D I R | P - P [T <R |

80 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

keep hook overhead negligible. The innermost possible hook location that satisfies this criterion is selected
asthelocation for the hook. If none of the possible hook locations satisfy the criterion, the outermost hook
location is selected, although, in this case, dynamic load balancing is lesslikely to improve performance. If
the code between hook executions includes loops with bounds that can not be determined at compile time,
the compiler can make assumptions about the number of iterations in the loop and/or use hints from the
programmer to estimate the operation count for the code. Or, the compiler can generate multiple copies of
the loop nest, each with the hook placed at a different nest level; at run time, the values of the loop bounds
can be used to select the appropriate version of the loop nest.

In the SOR example in Figure 4.3a, IbhookO would create too much overhead because computing an
element of the B matrix only requires several multiplication and addition operations. For problems of
reasonably large size, Ibhook1 meetsthe overhead constraints, so the compiler would select it asthelocation
for placing the hook. If Ibhook2 were selected, the hook would be executed much less frequently, so the
system could not be very responsive to performance changes on the processors.

In addition to determining the maximum frequency at which load balancing can occur, the hook location
determines the granularity at which frequency can be controlled at run time. For example, if the minimum
computation period due to the hook location is larger than the target load balancing period, the load
balancing period can not be controlled, and the system islikely to be unresponsiveto variationsin processor
performance. If the minimum computation period is of the same order of magnitude as the target period, it
may be possible to control the load balancing period, but not with much accuracy. Ideally, the minimum
computation period should be a small fraction of the target load balancing period (e.g., 10% or less) so that
the load balancing period can be controlled with reasonable accuracy.

A further considerationisthat |oad balancing may add synchronizationsto the application and may affect
thegrain size of the application. If load balancing codeis executed more frequently than the communication
inherent in the application, the grain size for the computation will be reduced. However, load balancing
hooks can be placed so that they are executed more frequently than the inherent communication without
affecting grain size, as long as the hooks are called less than once per computation phase (with respect to
the application’s grain size) and, preferably, are placed adjacent to existing communication. Because load
balancing interactions are likely to be more expensive than the communication required by the application

at each of its synchronization points, the control of the load balancing frequency to limit load balancing

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 81

overheadswill prevent the load balancing interactions from interfering with the grain size of the application
in cases where grain size small enough to be critical to performance (e.g., the unidirectional cases where

grain sizeis controlled by the system).

4.2.3 Coderestructuringto create better hook locations

In some cases, due to large loop bounds, the compiler may have to choose between a possible hook
location with high overhead and a possible hook location that is executed very infrequently. In the matrix
multiplication example shown in Figure 4.4a, the two most promising choices are after each iteration of the
distributed loop (IbhookO) and after the distributed loop (Ibhookl). For some problem sizes, IbhookO has
too much overhead, but many thousands of operations may be executed between executions of [bhookl.
Thus, placing the hook at the deepest level of the loop nesting with low overhead does not always address
responsiveness requirements. In situations where the compiler must choose between locations with high
overhead and poor responsetime, the compiler can use strip mining (Section 3.2.3) to create an intermediate
choice. When alarge loop is split into two nested loops, the bounds of the inner of the loops and thus the
frequency of execution of the new location (IbhookOa) can be controlled by the block size at run time to
give the proper balance of hook overhead, system responsiveness, and granularity in controlling the load
balancing period at run time. (Again, note that it is complicated to control load balancing frequency using
location IbhookO or IbhookOa because these hooks occur between the iterations of the distributed loop. In
our implementation of MM, we placed the hook at Ibhookl, in spite of the fact that it makes control of
frequency less accurate and makesthe system lessresponsive to performance fluctuations.) Inthe SOR case
(Figure 4.3Db), strip mining is aready used to control grain size so, while the possible hook |ocation added
by strip mining (Ibhookla) may be the best location for the load balancing hook, the block size should not
be used to control hook frequency at run time because controlling the grain size for the application is more
important. To avoid dealing with this potential conflict, restructuring to improve grain size should precede
placement of load balancing code.

Strip mining can also be beneficial in the case where loop bounds are unknown at compile time. The
compiler can set the bounds of the inner loop so that it can count the number of statements in the inner
loop and thus evaluate the new possible location for the load balancing hooks. When there are multiple

loops with unknown bounds (Figure 4.5a), in some cases, each of the loops could be strip mined (Figure

a) Original code b) Strip-mined code

Figure 4.4: Pseudocode for MM showing possible locations for load balancing hook. The comments
indicate the evaluation of each of the possible locations for MM.

4.5b), and loop interchange (Figure 4.5¢) could be used so that all of the inner loops created by strip mining
areinside al of the outer loops, allowing the compiler to evaluate several new locations by setting block
sizes. In Figure 4.5¢, the frequencies of possible hook |ocations IbhookOa, Ibhook1, Ibhook1a, Ibhook2, and
Ibhook2a can all be controlled using the block sizes xsize, ysize, and zsize. At run time, if one of the loops
has fewer iterations than expected, the block sizes of the other loops can be adjusted to compensate so that
most of the compiler’s estimates of statement counts remain correct. In figure 4.5b, where loops have been
strip mined but not interchanged, only the frequencies of locations IbhookOa, Ibhookla, and Ibhook2a can

be controlled by the block sizes (zsize, ysize, and xsize, respectively) and with fewer degrees of freedom.

4.2.4 Hook placement algorithm

Algorithm 4.1 isarudimentary algorithm for placing aload balancing hook in aloop nest, assuming known
loop bounds. The algorithm selects the nest level where the hook will be placed, using strip mining to
create an additional nest level when the given structure does not give a good balance of responsiveness and
overhead. The algorithm assumes that the cost of the executing the load balancing hook and the costs of
executing each level of the loop nest can be estimated reasonably accurately. (With known loop bounds,
it should not be difficult for a compiler to calculate the number of operations executed at and below each
level.) Once Algorithm 4.1 identifies the level for hook placement, it calls Algorithm 4.2 to place the hook

at an appropriate point in the level so that load balancing does not create additional synchronization points

b) Strip-mined code ¢) Strip-mined code with loops interchanged

Figure 4.5: Using strip mining and loop interchange to increase control of load balancing hook frequency.

body) in the given level, unless there is communication in the level. If the level has communication, the
hook is placed immediately preceding the first send or barrier synchronization that follows the distributed
loop. Algorithm 4.1 fails to place a hook if the problem is so small that the hook will create too much
overhead if placed anywhere in the loop nest.

In Algorithm 4.1, strip mining is considered if a given nest level meets the overhead constraints but
does not allow the load balancing period to be controlled to allow the desired responsiveness, as determined
by the target load balancing period (target) and the responsiveness fraction (respf). However the strip
mining is not performed unless the new hook location between the two loops resulting from strip mining
can still meet the overhead constraints with at least two iterations of the resulting outer loop (the 0.5 in
the algorithm). In making this additional restriction, we are giving the requirement to minimize overheads
higher priority over the desire for responsiveness when the two goals are in conflict.

The input parametersfor Algorithm 4.1 are chosen heuristically. target is a rough approximation of the

84

CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

Input:

Algorithm 4.1: InsertHook — Place load balancing hook in loop nest.

Loop nest including distributed loop.

ovhf: overhead fraction allowed for hooks.

respf: responsivenessfraction for setting granularity of frequency control.
target: estimate of target |oad balancing frequency.

Output: Inserts hook in loop nest.
Assumptions: Loop bounds are known.

Method:

1.

2.

3.

Number nested loops from distributed loop outwards. The distributed loop is loop 0. The
outermost loop isloop outermost — 1.

Number nest levels from the distributed loop outwards. The body of the distributed loop is
level 0. The outermost level islevel outermost.

Estimate hook cost (hookcost) by counting operations in load balancing hook, assuming that
the load balancer is not called.

Loop through nest levels selecting innermost level at which hook will add negligible overhead.

Cost(level_number) returns estimate of total cost of current level, including lower levels.
Estimate cost by counting the operations executed at the current level and all lower levels.

StripMine(loop) strip mines specified loop creating outer loop loop and inner loop loop'.
Block size (blocksize) of inner loop is set at compile time.

InsertHookL evel (level_number) inserts hook at appropriate location in specified level. (See
Algorithm 4.2.)

pl aced = FALSE;
for (loop = 0; loop < outernost; |oop++) {

/* Decide whether to place hook at |evel |oop+l. Also, */
/* look at level |oop+l to decide whether to strip nine. */
| evel = loop + 1;

/* check whether |evel neets overhead constraint. */

if (Cost(level) * ovhf > hookcost) ({
[* strip mne to maximize ability to control frequency */
/[* at run time. Body of outer |oop of strip-nined |oop
/* must neet overhead constraint. */
if ((Cost(level) > respf * target)
&% (0.5 * target * ovhf > hookcost)) {
StripM ne(l oop);
bl ocksi ze = Max(hookcost / ovhf, respf * target)
/ Cost (1 oop);
I nsert HookLevel (1 oop’);
pl aced = TRUE

*
~

el se {
I nsert HookLevel (| evel);
pl aced = TRUE;

br eak;

}

}
if (placed == FALSE) {
Message(" Problemtoo snall");

4.2. COMPILER PLACEMENT OF LOAD BALANCING CODE 85

Algorithm 4.2: InsertHookL evel — Insert load balancing hook at given level.

Input: Level number.
Output: Inserts hook at specified level.

Method:

1

2.

Number statements at current level. Compound statements (e.g. conditionals and loops) are
treated as single statements.

Identify boundaries of current level.

first: first statement at current level.

precede: last statement at current level preceding loop header for surrounded level.
follow: first statement at current level following end of loop for surrounded level.
last: last statement at current level.

L oop through statements at current level to pick hook location either as early as possible or as
close as possible to existing communication code.

| sSend(statement_number) returns true if the statement is a send operation or a compound
statement containing send operations, but no receive operations.

| SReceive(statement_number) returnstrueif the statement is areceive operation or acompound
statement containing receive operations, but no send operations.

I sBarrier (statement_number) returns true if the statement is a barrier synchronization or a
compound statement containing both send and receive operations.

PlaceH ook (statement_number) places the hook code following the specified statement.
current = follow - 1;

stop = FALSE;
for (s = follow, s <= last; s++) {

if (IsSend(s) || IsBarrier(s)) {
current = s - 1;
stop = TRUE;
br eak;

else if (IsReceive(s)) {
current = s;

}
if (stop == FALSE) {
for (s = first; s <= precede; s++) {

if (IsSend(s) || IsBarrier(s)) {
current = s - 1;
stop = TRUE;
br eak;

}
else if (lIsReceive(s)) {
current = s;

}

Pl aceHook(current);

the scheduling quantum is 100 millisecond, so the target estimate is set to 1 second. (This estimate is made

86 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

based only on information known at compile time, but its rationale is the same as that used in selecting the
target load balancing period at run time, described in Section 4.3.3.) The value of ovhf should be around
1% so that executing the hooks does not result in excessive overhead. respf is set to 10% so that the load
balancing period can be controlled within 10% of the target period.

For applications with infrequent synchronizations, load balancing interactions may be the most frequent
communication in the application, and thus may determine the grain size. In placing load balancing hooks,
Algorithm 4.1 does not explicitly consider the effects of communication added by the hooks on the grain
size of the application. However, the selection of the load balancing frequency at run time considers some of
the same constraints considered in selecting grain size; and these constraints should prevent the placement
of load balancing code from interacting with the grain size of the application in cases where the application
has a grain size that makes parallelization practical. Also, to make the implementation of the load balancer
easier, we avoid placing the hooks between iterations of the distributed loop so that each slave can receive

the same value of nexthook. Algorithm 4.1 must be modified if it isto consider this additional constraint.

4.2.5 Timingcode

In addition to placing code for calling the load balancing routines, the compiler must place code for timing
the computation so that rates of execution can be computed. Timing routines must be inserted before and
after the portion of the code to be timed. If multiple segments of code are to be included in computing the
rate of execution, each segment is surrounded by timing routines and the times from all segments are added
together. Because timing routines can be expensivet, the code should be divided into as few segments as
possible to minimize the number of calls to the timing routines. Also, if too large a portion of the code is
not timed, the timing measurements may not capture load information needed for load balancing because
much of the process switching may occur when the timer is off.

Computing processing rates requires at least one timing measurement per load balancing period. The
measurements should at least include the time spent on the distributed loop iterations because they are the
work units used in computing the rate. Loop overheads can also be included in the measurements because

they are added on a per iteration basis and do not change the relative rates of the different processors.

1The Unix gettimeofday routine takes 30-40 microseconds per call on a Sun 4/330 processor because the routine requires system
cals. Using the Nectar system, the time can be read in 3—4 microseconds because the timer values can be read directly from memory
mapped registers on the Communication Accelerator Board.

Figure 4.6: Placement of timing code. Replicated sequential code isincluded in the timing measurements.

88 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

4.3 Selection of load balancing frequency at run time

To respond quickly to changes in performance on the processors, load balancing should occur as often
as possible. However, load balancing overheads limit the frequency at which load balancing is practical.
Several factors in the execution environment contribute to load balancing overhead. Communication costs
are the main factor in the overhead, as they influence the cost of interactions between the slaves and load
balancer and the cost of work movement. Frequent interactions between the slaves and load balancer can
makethe overhead unacceptable, so their cost putsan upper limit on theload balancing frequency. Moreover,
the overhead associated with moving work meansthat it isimpractical to trace load changesthat happen very
quickly, and trying to do so will result in unnecessary overhead. Another factor influencing the overhead
is the scheduling granularity—the time quantum—used by the operating system; process scheduling by the
operating system interacts with the measurements performed by the slaves for performance evaluation and
with the synchronizations performed by the application. All of these factors (summarized in Figure 4.7)
place lower limits on the load balancing period and, thus, upper limits on the load balancing frequency.
(The load balancing frequency is approximately the inverse of the load balancing period as defined in
Section 4.1.) In this section, we will discuss each of these factors separately, and then describe how they
are combined in selecting atarget load balancing period and controlling the period at run time. The target
period is used to set the count (nexthook in Figure 4.1) that determines when the load balancing hook calls

the load balancing code.

431 |Interaction overhead

Collecting performanceinformation and interacting with the load balancer adds overhead, evenif the system
isbalanced. The cost of each interaction increases with the number of slaves due to increased computation
on the load balancer, and the total overhead is proportional to the number of times the interactions occur.
Theload balancing period should belong enough that the total interaction costs are asmall fraction, kinteract,
e.g., lessthan 5 percent, of the total computation time. For synchronous|oad balancing, the time for aload
balancinginteractionisthe sum of thetimesto collect and send performanceinformation to theload balancer,
to compute instructions, and to deliver the instructions to the slave processors. The average time for an
interaction with the load balancer, t;,s.rqct, CaN be determined at the start of the computation by passing

dummy load balancing information back and forth between the slaves and load balancer. However, during

Figure 4.7: Periods affecting selection of load balancing period. The ovals show the approximate ranges (in
seconds on alogarithmic scale) for the periods for the application examples when run on the Nectar system.
Values are more likely toward the centers of the ovals.

the computation, theinteraction time may vary with loadson the processorsand delaysin the communication
network. With synchronous load balancing, it is convenient to update the estimate of interaction costs as
the program executes. However, for pipelined or asynchronousload balancing, much of theinteraction cost
is hidden so it is difficult to measure. Fortunately, because the costs are hidden, the t;,terqct Measured at
startup time is actually a high estimate for the pipelined and asynchronous cases so variations in loads and
delaysare unlikely to affect the overhead. Thelower limit on the load balancing period dueto theinteraction
costsis computed as follows:
linteract

per _ OQSR%QQ = Kinteract AN_.NV

4.3.2 Cost of work movement

The cost of work movement should also be considered in selecting the frequency of interaction with the load
balancer. However, for responsiveness, it is useful to track performance more frequently than it is profitable
to movework, assuming that work will not be moved every timeload balancinginteractionsoccur. Thework
movement costs can be distributed over several load balancing periods. Also, the average work movement
cost per load balancing period need not be limited to be asmall fraction of the load balancing period because

the work movement has benefits—load balancing resulting in improved utilization of resources—aswell as

m~medt~ Tl ~Aar~fAara +lhhams A~Al At A ~AF LA lAAA LAl A Al vy vt el AlLAcr i Flam F st Ad] vrararls svamt rvavsm vt At 24 I~

90 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

several times the load balancing period:

t movement
ment_ 4.3
workscale (4.3)

periodovement =
tmovement 1S @N estimate of the average work movement costs determined by averaging the costs of the
previous few work movements. (fmovement Can NOt be estimated at startup time because the work movement
costs depend on the load imbalance in the system.) workscale is a scaling factor which accounts for the
typical period over which work movement costs are distributed and is determined by averaging the measured
times between recent work movements. Because rapid response to performance changes is important and
because work movement costs are difficult to determine accurately, workscale is chosen so that the work
movement costs are rarely the critical factor in selection of the target load balancing period; the work

movement costs should only affect the target load balancing period when the costs are so high that work

should not be moved at all.

4.3.3 Interaction with time quantum

Finally, the load balancing period determines the period over which performanceis measured and should be
selected so that the scheduling mechanism used by the operating system does not interfere with performance
measurements. In particular, if the time quantum used for schedulingis small and theloads on the processors
are stable, work should not be redistributed in response to the context switching between processes. For
example, if the load balancing period is smaller than the time quantum and a processor has competing loads,
some measurements on that processor will show the load balanced application getting the full performance
of the CPU and otherswill show the application getting afraction of the CPU. Thus, performancewill appear
to oscillate, resulting in work being moved back and forth between processors. To avoid oscillationsin the
measurements, the load balancing period must be large enough that performance variations due to context
switching average out. The load balancing period must be several times as large as the time quantum for
performance measurements to appear stable on a processor with constant competing loads. Thus, the time

quantum (tquantum) Sets another lower bound on the load balancing period:
Periolghequiing = fquantum X quantumscale (4.4)

To determine an appropriate value for quantumscale, we analyze the effects of the sampling period on

the amplitude of fluctuations in performance. The amplitude of the fluctuations in computation rate due

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 91

to scheduling by the operating system is the difference between the maximum rate for the application, A,
observed when the application has dedicated use of the CPU, and the minimum rate of execution, lo = 0,

when other processes have control of the CPU:
amplitude = hi — lo (4.5)

Sampling over periods higher than the time quantum resultsin averaging of periodsincluding both the maxi-
mum and minimum rates. To determinethe effect of sampling on the amplitude of observed fluctuations, we
subtract an estimate of the minimum rate with sampling, sample,,;,, from an estimate of the maximum rate
with sampling, sample,q.., assuming simple, round-robin scheduling by the operating system. sample,, 4.
is observed when the sampling period, s, begins with the end of the measured application’s time quantum
(Figure 4.8a), and sample,,;, is observed when the sampling period beginswith the start of the application’s

time quantum (Figure 4.8b).

Ix((gxd) xhi+(gxc+r)xlo) ifr<ec

samplemin, = (4.6)
Ix((gxd+(r—c) xhi+(gxc+ec)xlo) ifr>c
Ix ((gxd+r)xhi+(gxc)xlo) ifr<d

samplemar = (4.7)

@ |

X ((gxd+d)xhi+ (¢gxc+ (r—d)) xlo) ifr>d
d is the duration of the portion of the oscillation period (p) dedicated to the measured application, and ¢ is
the remaining portion of the period:

p=d+c (4.8)

¢q is the number of full oscillations that are contained in the sampling period (L%J), and r is the remaining
time in the sampling period (s — ¢ x p). Subtracting sample,,;, from sample,,,,, and dividing by the

oscillation amplitude (hi — lo) yields the scaling factor due to the sampling period:

(

ifr<dandr <c

ifd<r<c
scale =

(4.9)

@0 »|& »|3

ife<r<d

p

T ifr>dandr > ¢

“ ‘

Figure 4.9 shows the scale factor for different sampling periods with different numbers of competing

loads. (We assume that each processis allocated the CPU in full time quantum units.) Independent of the

o« |

ifd<e
(4.10)

@ |0

ifc<d

stem, d < ¢, and the scalefactor is at most m. With no
 has no effect on the range of measurements. Because
and sampl ey, , Observed oscillation amplitudeswill
> maghitude of oscillations in measured performance
ariations in the measured rates due to scheduling by
vel required for load balancing (described in Section
ned when the sampling period is at least 10 times the
0 shows normalized performance measurements with
eting load. Asexpected, the magnitude of oscillations
1 agreement with our model.

ke sense for the load balancing period to be several
y hot run long enough for load balancing to have any

oad balancing period must be about the same size as

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 93

1.0 s 1.0 s

Scale factor

o o
2 2
Q Q
0.9 g 09} ° g 09} °
. S ol 0 S sl
0.8 & o8 & o8
0.7 07t © 0.7
s o
0.6 06t ° 0.6
. o
0.5 o5t % 0.5
04 ° 0.4 ¢ 0.4
S
o o
0.3 & 0.3 ° 0.3
o oo
0.2 PR 0.2 o 0.2
R 8%
0.1 % ‘Z§ % f% 0.1 1;3 % 4 0.1
® 9% ; % © 3§ 2 & %, § AN % & %
0.0 x ¥ R 0.0 x % Yo % LY d 0.0 % >
0 4 6 8 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Sampling period (time quanta) Sampling period (time quanta) Sampling period (time quanta)
a) 1 competing load b) 2 competing loads ¢) 9 competing loads

Figure 4.9: Scale factor for amplitude of oscillations for different sampling periods.

the time quantum or smaller, measured computation rates during one load balancing period will no longer
be a useful measure for making estimates of the processing capabilities for later load balancing periods.
The actual |oads on the processors combined with intimate knowledge of how the loads will be scheduled
by the operating system will give much better indications of performance in future load balancing periods.
In this case, the load balancer will have to be aware of the context switching between processes and will
have to do much more detailed analysis to determine what resources will be available at any given time.
The load balancer will also need to be given measures of the relative computational capabilities of the
processor hardware. To have access to the necessary information regarding scheduling, the load balancer
may have to be integrated into the kernel of the operating system rather than running as a user process.
This approach could be used on systems that use small time quanta as well, but the complexity of the
approach is prohibitive. Fortunately, scheduling on Unix systemsis based on small (100 millisecond) time
guanta so that response times for interactive jobswill be acceptable[32]. Theincreasing trend in processor
speedsindicates that if the length of time quantawill be changed in the future, it will be made smaller, not
larger. Thus, we expect the lower bound on the period given by Equation 4.4 to be valid in most (if not al)

workstation environments.

4.3.4 Target load balancing period

To minimize the time to respond to changes in performance, we set the target load balancing period,

Period;yge to be the maximum of the lower limits:

periOdtarget = max(periOdinteracta periOdmoveworka periOdscheduIing) (4-11)

94 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

Q Q
3 1.00 - g 1.00
5 090} 5 090}
X osof N oso}
T 070} T 070}
§ 0.60 § 0.60
Q : 1 S . H
S 050 S 050
0.40{ 0.40
0.30 0.30
0.20 0.20
0.10f 010t
0.00 0.00
0o 2 4 6 8 10 12 14 16 18 20 0o 2 4 6 8 10 12 14 16 18 20
time (seconds) time (seconds)
(a) period = 0.1 quanta (b) period = 0.2 quanta
Q [
3 1.00 - 3 1.00
5 090 5 090
N oso|] N oso
T 0.70|] T 070
§ 460 § 460
o U o
S o050} S 050
0.40 0.40
0.30 0.30
0.20 0.20}
010t 010}
0.00 0.00
0o 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18
time (seconds) time (seconds)
(c) period = 0.5 quanta (d) period = 1.0 quanta
9] [
& 1.00 3 1.00 -
5 090} 5 090}
N oso} N oso}
T o070} T 070}
§ 460 § 460
o U] o U]
S 050 S 050
0.40 0.40
0.30 0.30
0.20 020!
010} 010}
0.00 0.00
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
time (seconds) time (seconds)
(e) period = 2.0 quanta (f) period = 5.0 quanta
[} [}
§ 1.00 - § 1.00 -
5 090} 5 090}
N osof N osof
T o070l T 070}
g 0.60} g 0.60H
S o050} S 050}
040t 0.40
0.30 0.30}
0.20 0,201
010} 010}
0.00 0.00
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
time (seconds) time (seconds)
(9) period = 10.0 quanta (h) period = 20.0 quanta

Figure 4.10: Effect of sampling period on stability of measurements. The rate of computation of matrix
multiplication iterations is measured with a single competing computation intensive load on the processor.
Rates are normalized against the maximum computation rate for the application on the processor. The
application should receive approximately 50% of maximum computation rate.

For our measurements on the Nectar system, periodgequiing Was usualy the maximum of the limits due to

the small number of processors in the system. The processors in the system are Unix workstations with

Figure 4.11: Lower bounds on load balancing period.

Achieving thetarget |oad balancing period requires converting the period from secondsto the appropriate
number of computation phases to execute between calls to the load balancing routines. The amount of
computation between executions of the load balancing hook may vary due to varying loop bounds in the
application, and the elapsed time for the computations varies with the load on the processors. The number
of computation phases per load balancing period must also change to track these variations. Thus, each
time the load balancer is invoked, the average time for a computation phase, periodgymyte: 1S recomputed.
Then the number of computation phases between calls to the load balancing code, nexthook (Figure 4.1), is

computed using Equation 4.1:
cm:ogﬁamm

nexthook = ——————
peri 8_83_05m

96 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

compensate. New values of nexthook are sent to the slaves as part of their load balancing instructions. If
hooks are placed between iterations of the distributed loop, nexthook must be scaled appropriately for each
processor so that all processors interact with the load balancer the same number of times and with the same
frequency.

Because period e Varies, the actual load balancing period fluctuates around the target period. In our
implementation on Nectar, to reduce the magnitude of the fluctuation, changesin periodgymy are damped

using arecursive discrete-time filter called the exponential smoothing forecast [22]:
periodeompute = 0.5 X Periodgympute + 0.5 X Periodgmpue (4.12)

The target and actual periods may also differ because nexthook must have an integral value, especialy if
period, . IS @ substantial fraction of or greater than periody, 4. Thus, it is important that the load

balancing hook be placed so that it is executed as often as possible.

4.3.5 Effect of load balancing frequency on performance

The length of the period between load balancings has large effects on performance of applications with
load balancing. Fluctuations in performance average out if the period is long enough, resulting in less
work movement. Thus, increasing the load balancing period can improve performance as long as load
balancing is still frequent enough to track significant changes in the computation rate. Figure 4.12 shows
how increasing the load balancing period improves parallelization efficiency for the SOR example. The
load balancing parameters were selected to isolate the effect of changing the load balancing period.? The
period is controlled by changing the value of quantumscal e (Section 4.3.3), the dominant factor in selecting
the period for our target environment. For most of the measurements presented in this thesis, a 1.0 second
period (the middle curve) was used, to allow the system to be responsive to fluctuations in more dynamic
environments; optimizations in the load balancing decision making process raise the efficiency close to the

level attained with quantumscale = 2.0.

2 Theload balancing parametersfor the data presented are asfollows: |oad balancing interactions are not pipelined; 0% predicted
improvement is required for work movement; raw (unfiltered) rate information is used; cost-benefit analysis is disabled. 1.e., no
optimizations are included over the basic load balancing system described in Section 2.5. The grain size for the application is
selected automatically as described in Section 3.3.

4.3. SELECTION OF LOAD BALANCING FREQUENCY AT RUN TIME 97

T.é? 500 g 10
8 450 i ioquanta § 0.9
) quanta E
® —<- 20 quanta
o 400 il 08
£
= 350 0.7
9
S 300 0.6
O
$
aj 250 0.5
200 04
150 0.3
—&- 5 quanta
100 0.2 -o- 10 quanta
-
50 01 20 quanta
0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) Computation time b) Efficiency

Figure 4.12: Effect of load balancing period on efficiency for 1000 x 1000 SOR (40 iterations) with
oscillating load (period = 60 seconds) on one processor.?

4.3.6 Effectiveness of frequency selection in limiting over head

Thecost of interaction with the central 1oad balancer increasesasthe number of slaveprocessorsisincreased.
However, the frequency selection mechanism described above prevents the load balancer from becoming
a bottleneck by limiting the interaction costs to a small percentage, 5%, of the total execution time. To
evaluate the effectiveness of the frequency selection mechanism, we measure the CPU time used by the
master process and divide it by the elapsed time for the application. This measureis agood indicator of the
effectiveness of the frequency selection mechanism because it takes into account all of the load balancing
computation costs and part of the communication costs for the load balancing interactions. (It does not
include the transit time or the portions of the send and receive operations that take place on the slaves.) If
the frequency selection mechanism is working correctly, the CPU used by the master process should be less
than 5% of the elapsed time.

In Figure 4.13, the CPU usage by the master process is presented as a fraction of the elapsed time,
with the lower limit on the load balancing period due to interactions with process scheduling set to 5 time
quanta.®> The CPU usage is measured using the getrusage function [12] provided with Unix. Receives on

the master processor are done using interrupts, because, with polling, CPU usage by the master process

3 The load balancing parameters for the data presented are as follows: pipelined load balancing interactions; load balancing
target period is 0.5 second; 10% predicted improvement required for work movement; rate information filtered with simple filter
(h = 0.8); cost-benefit analysis enabled. A high load balancing frequency is used and all portions of the load balancer are enabled,
so the data should be on the conservative side.

98 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

expandsto fill the time given.

0.030 0.030 0.030

—©- Load balanced
0.025 -8~ No balancing

—©- Load balanced
0.025 -8~ No balancing

—©- Load balanced
0.025 -8~ No balancing

0.020 0.020 0.020

0.015 0.015 0.015

Fraction of CPU used on Master
Fraction of CPU used on Master
Fraction of CPU used on Master

0.010

0.005 // 0.005 0.005
0.000 0.000 / 0.000 /
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors Processors

0.010 0.010

a) dedicated system b) constant load on one ¢) oscillating load
processor (period = 20 seconds)

Figure 4.13: Fraction of CPU used on master processor for 500 x 500 matrix multiplication.

Figure 4.13 shows that load balancing uses only a small fraction of the available cycles—always less
than 5%—for up to the maximum number of slavesin our system. In the graphs, the master CPU usage
increases with the number of processors because interactions with the time quantum (Section 4.3.3) are the
dominant factor in frequency selection for the small number of slaves used in the measurements. The trends
in the data indicate that the master process could handle many more slaves before the central 1oad balancer
would become alimiting factor in system performance. Extrapolating from the data, a 5% overhead would
be observed with about 10-12 slaves. At around that number of slaves, the load balancing interaction
cost will become the dominant factor in frequency selection, and the period between load balancings will
begin to increase as more slaves are added. The CPU usage will level off at about 5%, but eventually, as
the number of processors increases, the frequency will become too low for the system to be responsive to
trackable changes in the processing rates. At that point, distributing the load balancer will be necessary to
keep the system responsive. However, Figure 4.12 indicates that the load balancing frequency can still be
reduced substantially (e.g., from aperiod of 5 quantato a period of 20 quanta) with beneficial results.

Also, the similarity of the three graphs in Figure 4.13 indicates that the fraction used by the master
process is affected only slightly by the loads on the slave processors. In our Nectar implementation, used
for the measurementsin the graphs, the computation done by the load balancer is mostly independent of the
loads on the slaves. The main exception is the case where no imbalance is detected and the generation of
load balancing instructions can be skipped; however, the fixed portions of the load balancing computation

(that depend on the number of slaves but not their loads) are the dominant cost.

4.4, SUMMARY 99

As explained in Section 2.6.1, pipelining of the interactions takes most of the costs of interacting with
the load balancer out of the critical path for the application. This does not affect the CPU usage by the load
balancer on the master processor—in fact, the data in Figure 4.13 is for pipelined load balancing—but it
can make the system immune to competing loads on the master processor, as long as the load balancing
period is long enough that both the load balancing and the competing applications on the master all get a
share of the CPU during the period. The lower bound on the load balancing period due to interactions with
scheduling (Section 4.3.3) should ensure that this is true for reasonable loads (e.g., less than 5 competing

processesfor a5 quantum lower bound) on the master processor.

44 Summary

This chapter described selection of an appropriate frequency for load balancing and described how the
compiler and runtime system cooperate in controlling the load balancing frequency. The compiler places
a load balancing hook as deep in the loop nest as possible without causing substantial overhead, and the
runtime system sel ects which executions of the hook call the load balancer, based on atarget load balancing
period.

The target load balancing period is selected to minimize load balancing overhead and to minimize
the effects of scheduling by the operating system on measurements of performance on the slaves. The
target period is the maximum of lower bounds set by the cost of interactions between the slaves and load
balancer, the cost of work movement, and the time quantum used by the operating system. Because work
movement costs are distributed over several load balancing periods and often result in better resource
utilization, the costs are scaled so that they rarely affect the selection of the load balancing period. Analysis
of the interactions between scheduling by the operating system and observed computation rateswas used in
selecting the lower bound on the target period due to the time quantum. For an environment with a small
number of slaves, the lower bound due to the time quantum determines the target period. As the number
of slaves increases, the cost of interactions between the slaves and load balancer increases, and the target
period is reduced to keep load balancing overhead at a desired level. This adaptation limits the interaction
overhead and preventsthe central |oad balancer from becoming a bottleneck, but increasesthe responsetime
of the system; for systems with very large numbers of processors, the load balancer should be distributed

to reduce the interaction costs. Measurements showed that the automatic frequency selection approach is

100 CHAPTER 4. AUTOMATIC SELECTION OF LOAD BALANCING FREQUENCY

effective in keeping the overhead of load balancing interactions low and in reducing the load balancing

system’s response to performance fluctuations due to scheduling of processes by the operating system.

Chapter 5

L oad balancing process

Theresponsibility of the load balancer isto collect performance information from the slaves and to generate
instructions for the slaves for redistributing remaining work so that computation times on the slaves are
balanced. Each timethe load balancer isinvoked, it computes anew work distribution that allocateswork to
the processors in proportion to their available processing resources. The available processing resources for
each processor are specified asacomputation rate, in work units computed per second, so that heterogeneous
processorswith varying resource availability can be compared on an equal basis. Using therateinformation,
information about the amount of remaining work currently allocated to each slave, and information about
constraints due to the application and environment, the load balancer generates an ordered set of work
movement instructions for each slave. Each instruction specifies the slave to send to or receive from and

the quantity of work to move.

5.1 High-level design

The decision making process used by the load balancer is shownin Figure 5.1. Upon receipt of performance
information from the slaves, the load balancer evaluates the imbalance in the system using a threshold
function. If the imbalance is significant enough to warrant work redistribution, the raw rate information
from the slavesiis filtered to reduce the effects of undesirable fluctuations in the measurements and a new,
optimal distribution is computed. Work movement instructions are generated based on the new distribution.

The current distribution is subtracted from the optimal distribution to determine the quantity of work

101

ancing decision process.

ted by pairing senders of work with receivers using
straints, while attempting to minimize communication
tions, i.e., the costs of moving the specified quantities
ine whether the instructions should actually be sent to
ludes history information regarding past computation

sidea of the current distribution of work.

5.2. COMPUTING THE OPTIMAL DISTRIBUTION 103

5.2 Computingthe optimal distribution

Given the measure of available resources—the computation rate—for each processor and the total number
of work units distributed among the processors, we can compute the “ optimal” distribution of work, where
the work allocated to each slave is proportional to its contribution to the aggregate rate. This computation
is used in quantifying the load imbalance in the system (Section 5.3) and in computing work movement
instructions (Section 5.5).

To compute the optimal work distribution, w;’pt (0 < i < P,where P isthe number of slaves), the load
balancer first sums the computation rates, r;, provided by the slaves and divides the portion contributed by
each slave by the sum, R, to determine the fraction of the total performance that each slave is expected to
provide during the next load balancing period. Each slave's fraction is multiplied by the total number of
iterations to be computed in the next computation phase to determine the number of iterations that should

be allocated to that slave. The total number of iterations, W, is computed from the current distribution, w;.

pP-1
=0
pP-1
W=> w (5.2)
=0
opt _ T oy 5.3
w; 7~ (5.3)

Becausethework units, iterations of the distributed loop, are atomic, the results, w"”t, must be converted

i

to positive integers, but the results still must be consistent with

P-1
w=>" w (5.4)
=0

5.3 Imbalancedetection

The slaves are instructed not to move work if redistributing work into the optimal distribution can not
reduce the projected execution time by a specified threshold fraction, tfract (e.g., 0.1, a 10% reduction).
This provides the system with hysteresis so that small performance fluctuations do not cause work to be
moved back and forth between processors.

The threshold check, which is done based on the raw performance measurements from the slaves,

determines the fraction by which the elapsed time for the computation would be reduced if the assessments

104 CHAPTER 5. LOAD BALANCING PROCESS

of performance for the slave processors match the actual performance for the next computation phase.
This reduction fraction, rfract, is compared to the threshold fraction, tfract, to determine whether load
balancing should be attempted. If rfract < tfract, load is considered to be balanced, and null instructions
(synchronous/pipelined load balancing) or no instructions (asynchronous load balancing) are sent to the
dlaves. Otherwise, the generation of instructions continues.

In our system, we set tfract to 0.1 (10%). Although the choice was somewhat arbitrary, there is also
some intuition behind it. In Section 4.3.3, we set a lower bound on the target load balancing period so
that amplitude of oscillations in performance due to scheduling would be less than 10% of the maximum
possible amplitude; with the threshold fraction set at 10%, these limited amplitude oscillations are unlikely

to result in work movement.

5.3.1 Quantifying load imbalance

To compute the reduction fraction, elapsed times for execution of thework units are estimated for the current
distribution and for the optimal distribution. For either distribution, the last processor to finish determines
the elapsed time. Thus, the elapsed time is the maximum of the execution times for the individual slaves.
However, for the optimal distribution, the load is balanced so all processors should be fully utilized and

should take the same amount of time (within the computation time for one work unit):

wPt |74
topt = MaX 44— = — =+ 55
opt ieP Ty R ¢ ()

When W islarge and the computation time of asingle unit issmall, e — 0, and computation of the optimal
distribution can be omitted when determining the load imbalance. With the current distribution, the elapsed
timeis
wj
teurr = rzrée}"?(7"_1 (56)
The reduction fraction is computed as follows:

t —t
rfract = <47 0Pt (5.7)

curr
rfract is computed based on the raw performance measurements received from the slaves, rather than
on the measurements after filtering. If, instead, the filtered measurements were used to compute rfract, the

low-pass filtering used to reduce undesirable fluctuations would also tend to reduce rfract, and tfract would

5.3. IMBALANCE DETECTION 105

have to be reduced to compensate. We selected the former ordering because, when tuning our system, we
found that performance was slightly better with rfract based on the raw measurements. In our system, both
tfract and the filtering parameters were selected intuitively and empirically. Further analysis is needed to
select ideal parameters for imbalance detection and filtering and to determine the ordering of filtering and

imbal ance detection that is most effective.

5.3.2 Effect of imbalance threshold on performance

Figure 5.2 shows the motivation for using an imbalance threshold to decide when to redistribute work. In
thefigure, the raw rate is normalized against the maximum rate measured on the processor, and the all ocated
work is normalized against the work that would be allocated to the processor if work were distributed
equally to the processors. The competing load on the processor is constant, consuming about half of the
computing resources of the processor, but small variations in performance (the raw rate) are still observed.
Redistributing work in response to these small fluctuations would not be beneficial due to high fixed costs
of moving work. Figure 5.2 demonstrates that the threshold (along with other optimizations!) prevents
work movement from occurring in this case: after an initial period of instability, the work allocated to the
processor remains constant.

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10+
0.00

normalized value

—— Raw rate
Work

0 20 40 60 80 100 120
time (seconds)

Figure 5.2: Measured performance and resulting work allocation on loaded slave for 1000 x 1000 SOR
(40 iterations) running on a 4 slave system with a constant computation-intensive load on one slave.* The
imbalance threshold hel ps reduce work movement in response to small fluctuations.

We executed the SOR example with an imbalance threshold of 10% (an anticipated 10% improvement

isrequired for redistributing work) and without an imbalance threshold (work is redistributed whenever the

! The load balancing parameters for the data presented are as follows: load balancing interactions are pipelined; target load
balancing period is 10 quanta (1 second); 10% predicted improvement is required for work movement; filtering is enabled;
cost-benefit analysisis enabled.

106 CHAPTER 5. LOAD BALANCING PROCESS

observed computation rates change). The load balancing parameters were selected to isolate the effects of
theimbalancethreshold.? Figure5.3 showsthat using athreshold fraction to detect load imbalanceimproves
efficiency in some cases, but not in others. Figure 5.4 showsthat the goal of eliminating movement of small
amounts of work isachieved: in Figure 5.4athe work allocation curveis smooth, but in Figure 5.4b work is
moved in larger chunks. However using the threshold sometimes allows the system to remain unbalanced,

asin Figure 5.4c.

T.é? 500 g 10
) ® Sequential 'S 09
S 450 —©- No Threshold §
N - 10% Threshold o]
o 400 0.8
£ 0.7
= 350 A
5 .
S 300 0.6
O
$
Q250 0.5
200 0.4
150 03 —>- No Threshold
0.2 + No Threshold (lower bound)
100 . —%-10% Threshold
x 0,
50 01 10% Threshold (lower bound)
0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) Computation time b) Efficiency

Figure 5.3: 1000 x 1000 SOR (40 iterations) running on 4 slave system with oscillating load (period = 60
seconds) on one slave. Effect of using threshold to detect load imbalance.?

In some cases, using an imbalance threshold is not advantageous because imbalance at almost the
threshold level may remain. In Figure 5.4b, the performance changes are such that work movement tracks
performancewell; the efficiency in this casewas 77.7%. However, in Figure 5.4c, generated from adifferent
run in the same environmental conditions, work movement does not track the computation rate aswell. The
measured performance jumped to a point just within the threshold fraction of the maximum performance
before reaching the maximum performance, so load was not redistributed when the performance later
reached the maximum performance level, and imbalance led to a reduction in efficiency, to 75.6%. Note
that although in Figure 5.4c it appears that a 20-25% improvement in throughput might be attained by

shifting more work to the processor at about the 35 second point, the improvement would only be observed

2 The load balancing parameters for the data presented are as follows: load balancing interactions are not pipelined; target
load balancing period is 10 quanta (1 second); raw (unfiltered) rate information is used; cost-benefit analysisis disabled. 1.e., no
optimizations are included over the basic load balancing system described in Section 2.5 other than the addition of the threshold
check.

5.3. IMBALANCE DETECTION 107

on one of the four processorsin the system, so the total improvement would not exceed the 10% threshold.
Figures 5.4b and 5.4c are based on data from two runs with the same parameters under the same conditions;

the difference in how the load balancing system responded in the two runs is just due to random timing

variations.
2 100
S 090
T 080
X o070
[
£ 060
S 050
S o
0.40
0.30 }
0.20 —— Raw rate
0.10 Work
0.00 n n . . .)
0 20 40 60 80 100 120
time (seconds)
a) No improvement required.
8 100 3 110;
S 09 S 100
T o080 § 0.90
% 0.70 g 0.80
£ 060 g 070
S 050 s 060
S < 050
0.40 0.40
0.30 0.30
0.20 —— Raw rate 0.20 —— Raw rate
0.10+ — \Work 0.10 — \Work
0.00 n n . . .) 0.00 n n . . .)
0 20 40 60 80 100 120 0 20 40 60 80 100 120
time (seconds) time (seconds)
b) 10% improvement required. ¢) 10% improvement required.

Figure 5.4: Measured performance and resulting work allocation on loaded slave for 1000 x 1000 SOR (40
iterations) running on a 4 slave system with an oscillating load (period = 60 seconds) on one slave.! The
imbalance threshold reduces work movement but may result in suboptimal work distribution.

InFigure5.3, thedifferencein performanceissmall between caseswith and without imbalance detection,
but there is still reason to believe that imbalance detection is beneficial. Figures 5.2 and 5.4b demonstrate
that imbalance detection provides the desired hysteresis, preventing small fluctuations from resulting in
work movement; but Figure 5.4c identifies a deficiency in the approach used. Also, in measurements (data
no longer available) using a higher load balancing frequency, we observed more substantial improvements
with imbalance detection. Further research and analysis of the tradeoffs between responsiveness and work
movement costsis needed to maximizethe performanceimprovementsattained when animbalance detection
phase is included. A dynamic threshold that periodically alows the system to make minor adjustments

to the work distribution, preventing the unresponsiveness demonstrated in Figure 5.4c, might improve

108 CHAPTER 5. LOAD BALANCING PROCESS

performance.

5.4 Filtering rateinformation

The raw measure of available processing resources on each slave is the number of work units computed
per unit time during the most recent load balancing period. Depending on the frequency of measurement,
this measure may include several effects: the load on the system; the context switching between processes,
and normal periodic system activity. Of these effects, work movement should track only the load on the
system. Also, it isundesirableto try to track short-term fluctuationsin the load because the cost of moving
work could exceed the benefits. Decreasing the load balancing frequency reduces many of the undesirable
effects, but the frequency still must be high enough to track the load on the system. Much of the remaining
instability in the measurement of available resources can be eliminated by filtering out the high frequency
component of the raw measure. Thus, in computing a new work distribution, the raw measure is replaced
with aweighted average of the raw computation rate and previous computation rate measurements. There
is still no guarantee that the system will not make errors in redistributing work, but the averaging reduces
the degree and impact of bad predictions.

We replace the raw computation rate with a simple filtering function that combines recent and old
information:

ri=Q1-h)xri+hxri (5.8)

Like Equation4.12, Equation 5.8 isarecursive discrete-time low passfilter called the exponential smoothing
forecast [22]. r} isthe filter output, the adjusted rate for the most recent computation phase, r; is the raw
rate for the most recent computation phase, and r;_, isthe adjusted rate for the previous computation phase
and incorporates all previous measurements. h (0 < h < 1), the history fraction, is the contribution of the
old information to the new adjusted rate. A recursive filter was chosen over a nonrecursive filter because
arecursive filter can include more history with fewer terms, thus requiring less computation time and less
memory.

The selection of an appropriatevaluefor h isadifficult task. Wewish thefilter to averageout oscillations
and short term fluctuationsin the load, but we do not want thefilter to delay the responseto fluctuations for

which tracking by the load balancer is profitable. Also, it ismore important to respond quickly to decreases

54. FILTERING RATE INFORMATION 109

in performance than increases because a decrease in the performance of one processor causes all other
processors to wait when the processors synchronize, while an increase in the performance of one processor
has no effect on the productivity of the other processors. Thus, aconstant valuefor 4 isinadequate to model
the fluctuations that must be attenuated. Instead, a function that incorporates recent performance trends is
used to compute the weights for the filter.

h canbearbitrarily complicated, ranging from aconstant valueto afunctiontaking all previous measured
values as inputs. With h equal to a fixed value, changes in performance are attenuated without regard to
performance trends (Figures 5.5¢ and 5.6¢); for some values of h, response is too slow, and for others,
fluctuations in performance are not attenuated enough. A first step in addressing these problems is to
use two values for h (Figures 5.5d and 5.6d): one for increasing performance, and one for decreasing
performance. More weight is given to recent information if performance decreases than if performance
increases because penalties are greater if the system moveswork toward a processor erroneously, increasing
idletime on all processors, compared with moving work away from a processor erroneously, only increasing
theidle time on that processor. However, asingle increase or decrease in performance does not constitute a
trend; thus, we can not have much confidencein the two-valued h function. Therefore, we compute h using
a state machine (Table 5.1) which encodes past trends in its state bits and takes the most recent information

about changesin performance asinput (Figures 5.5e and 5.6€):
(hnext, Statepest) = f(input, state) (5.9)

The state keeps track of the direction and duration of the performance trends. The state machine described
in Table 5.1 uses 3 bits of state to store trend information from approximately 3 measurement periods. The
amount of history incorporated in the trend information could be increased by increasing the number of
state bits. Aswith the two-valued h function, in our state machine, we trust downward trends sooner than
upward trends. New information gets greater weight when it is consistent with past trends and when thereis
confidencein thetrends. The output values, h, in Table 5.1 are consistent with these specifications and were
selected empirically. Figure 5.6 indicates that the filter based on the state machine responds more quickly
to real load changes than the ssimpler filters, while still eliminating or attenuating most of the undesirable
fluctuations. In the case of a processor with constant load, the attenuation of undesirable fluctuations is
slightly lesswith the filter based on the state machine than with the other filters, but the state machine filter

eliminates some fluctuations completely becauseit considers longer term trends (Figure 5.5).

110 CHAPTER 5. LOAD BALANCING PROCESS

2.00

load

1.50 +

1.00 +

0.50 +

0.00 n s n n n L L n n 4
0 20 40 60 80 100 120 140 160 180 200
time (seconds)

(a) total load on processor (including application)

normalized rate

0 éO /iO éO éO lbO léO 1;10 150 12?0 ZbO
time (seconds)

(b) raw rate

normalized rate

0.60 +
0.50 +
0.40 +
0.30

0 éO AiO éO éO 1270 léO 1;10 150 1éo 2(‘)0

time (seconds)
(c) adjusted rate: h = 0.8

normalized rate

0.50 +
0.40 +
0.30

0 éO /iO éO éO lbO léO 1;10 150 1éo ZbO
time (seconds)

normalized rate

0 éO /iO éO éO lbO léO 1;10 150 1éo ZbO
time (seconds)

(e) adjusted rate: h determined by state machine

Figure 5.5: Performance assessment for a constant competing load. Target load balancing period is 1.0
seconds. Raw rate (b) is used asinput to filtersin (c), (d), and (e).

54. FILTERING RATE INFORMATION 111

2.00

load

1.50 +

1.00 +

0.50 +

0.00 L s L L L L L L s
0 20 40 60 80 100 120 140 160 180
time (seconds)

(a) total load on processor (including application)

Q
g L
SO
[0} .
N
50
E .
S o
< g
0.00 L . .]
0 20 40 60 80 100 120 140 160 180
time (seconds)
(b) raw rate
Q
8
SO
[0} .
N
50
E .
S o
< g
0.00 L . .]
0 20 40 60 80 100 120 140 160 180
time (seconds)
(c) adjusted rate: h = 0.8
Q
g L
5 @
[0} .
N
50
E .
S o
< g
0.00 : .
0 20 40 60 80 100 120 140 160 180
time (seconds)
Q
8
]
15
N
T
g
S
<

0 20 40 60 80 100 120 140 160 180
time (seconds)

(e) adjusted rate: h determined by state machine

Figure 5.6: Performance assessment for an oscillating competing load with 60 second period. Target load
balancing period is 1.0 seconds. Raw rate (b) is used asinput to filtersin (c), (d), and (e).

112 CHAPTER 5. LOAD BALANCING PROCESS

Input State Next State History fraction (k)
increase DOWN3 DOWN1 1.0 (al history)
increase DOWN2 CONSTANT 1.0 (al history)
increase DOWN1 UP1 1.0 (all history)
increase CONSTANT UP1 0.8
increase UP1 uP2 0.6
increase up2 UP3 04
increase UP3 UP3 0.2
decrease DOWNS3 DOWNS3 0.1
decrease DOWN2 DOWNS3 0.1
decreasse = DOWN1 DOWN2 0.2
decrease CONSTANT DOWNL1 0.3
decrease UP1 DOWN1 04
decrease UP2 DOWN1 0.5
decrease UP3 CONSTANT 0.6

Table5.1: Statetablefor computing ~. Theinput isincreaseif raw performanceincreases or staysthe same
relative to the previous adjusted performance. Theinput is decrease if raw performance decreases relative
to the previous adjusted performance.

Because filtering of rate information is done independently for each slave, the filtering computations
can be performed either on the slaves or on the master. If performed on the slaves, the computations are
distributed, but remain in the critical path for the application. If performed on the master, the computations
for the different slaves are performed sequentially, but can be removed from the critical path by pipelining
the load balancing interactions. Since pipelining is used and the load balancer is not a bottleneck for the
small number of processorsin our target system, the filtering computations are performed on the master for

our implementation on Nectar.

5.4.1 Effect of filtering on performance

Figure 5.7 shows how the filtering, based on Equation 5.8 and the state machine described in Table 5.1,
improves the efficiency of aload balanced program. The load balancing parameters were selected to isolate
the effects of filtering.2 The run in Figure 5.8a uses the filtered rate information; the work allocation curve
has the same shape as the filtered rate curve (except for minor differences due to small rate fluctuations on

other processors), but it is shifted to the right. In Figure 5.8b, a run without filtering, the system responds

% The load balancing parameters for the data presented are as follows: load balancing interactions are not pipelined; target
load balancing period is 10 quanta (1 second); 0% predicted improvement is required for work movement; cost-benefit analysisis
disabled. 1.e., no optimizations are included over the basic |oad balancing system described in Section 2.5 other than the addition
of filtering.

54. FILTERING RATE INFORMATION 113

to all fluctuations on the loaded processor, and the work allocation curve has the same shape as the raw
computation rate curve; the efficiency is lower due because there is more unnecessary work movement.
The effect of filtering on efficiency is very similar to that of increasing the load balancing period (see
Figure 4.12) because both filtering and increasing the period cause performance to be averaged over alonger
period of time (although, in this case, thefiltering is aweighted average) so that fluctuationsin performance
can cancel each other out. Thus, with filtering, a shorter load balancing period can be used to allow the load

balancing system to respond to changesin performance more quickly.

> > 1.0
% 500 S:j
g 450 [] Se_quenti_al) 3 09
8 -©- Without filtering =
) == With filterini w
o 400 9 0.8
E 0
= 350 .7
s .
S 300 0.6
O
Q
Q250 0.5
200 0.4
150 0.3 o Without filtering
+ Without filtering (lower bound)
100 02 — With filtering
50 01 x With filtering (lower bound)
0 0.0 s s s w w w ;
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) Computation time b) Efficiency

Figure 5.7: 1000 x 1000 SOR (40 iterations) running with oscillating load (period = 60 seconds) on one
dlave. Effect of filtering of rate information on efficiency.®

110
1.00
0.90
0.80
0.70
0.60
0.50 1]\
040/

030}
020
010}
0.00

normalized value
normalized value

—— Raw rate
Adjusted rate
Work 0.10

—— Raw rate

Work

0 20 40 60 80 100 120 o 20 40 60 80 100 120 140
time (seconds) time (seconds)

a) With filtering (efficiency = 0.769) b) Without filtering (efficiency = 0.715)

Figure 5.8: Measured performance and resulting work allocation on loaded slave for 1000 x 1000 SOR (40
iterations) running on a 4 slave system with an oscillating load (period = 60 seconds) on one slave.® Low
pass filtering reduces work movement in response to short term performance fluctuations.

114 CHAPTER 5. LOAD BALANCING PROCESS

5.5 Instruction generation

If load imbalance has been detected, the optimal distribution is computed using the filtered rates and is
compared to the current distribution to determine which processors have too much work and which havetoo
little. The difference between the optimal and current distribution isthe amount of work that must be moved
to and from the various processors. Instruction generation matches processorsthat need to offload work with
processorsthat can handle morework. Instructions are generated for both sending and receiving processors.
Separate instruction generation algorithms are needed for work movement restricted by dependencesin the
application and unrestricted work movement. Because the cost of the computation by the load balancer
affects load balancing frequency selection and thus limits the responsiveness of the system (Sections 4.3.1
and 4.3.6), weinclude analysisof time complexity with respect to the number of processorsin our discussion

of the algorithms.

55.1 Unrestricted work movement

To minimize the cost of work movement, work should be transferred in as few messages as possible. A
search could be used to determine how to move the data in the smallest number of instructions, but as
the number of slaves is increased, searching would take too much time. (The problem of mapping work
movement requirements to instructions is very similar to the bin packing problem, which is known to be
NP-hard [14].) Also, theinput information from which the optimal distribution is computed is not precise,
so attempting to track it exactly is unlikely to be worth the added costs. Instead we use a greedy algorithm,
Algorithm 5.1, that matches the processorsthat need to send the most work with the processorsthat need to
receive the most work. To reduce communication costs, instructions for moving smaller amounts of work

may be omitted. An example of application of the algorithm is shown in Figure 5.9.

Time complexity. In Algorithm 5.1, if the sender and receiver lists are implemented as a binary heap, the
sorting of the lists can be performed in O(P log P) time; the Next routine, which extracts the maximum
value, can be performed in O(log P) time; and the I nsert routine can be performed in O(log P) time [14].
With each iteration of the while loop, Next is called twice and I nsert is called at most once; either a sender
or areceiver (or both) is removed from consideration. Therefore, since the total number of senders and

receiversis P, the total number of iterations of the loop isat most P, and the time complexity of the whole

5.5. INSTRUCTION GENERATION 115

Algorithm 5.1: Unrestricted work movement.

Input: Set of P processors, numbered from 0 to P — 1, with each processor’s current allocation of work
and the quantity of work to move to or from each processor.

Output: Ordered set of instructionsfor each processor. Each instruction specifiessender, receiver, quantity
to send, and destination port.

Assumptions: Each originator has separate input port on receiver. Limited number of input ports on
receivers.

Method:

1. Separate processors into senders and receivers. O(P)

2. Compute fraction of work each sender must move. O(P)

3. Sort senders by fraction of work to move (largest to smallest). O(P log P)
4. Sort receivers by quantity of work to move (largest to smallest). O(P log P)
5. Loop through receivers and match with senders. O(P log P)

Next(structure) returns and removes the maximum element from the specified structure
(sendersor receivers).

I nsert(structure, processor, quantity) inserts a processor and quantity of work to move into
the appropriate location in the sorted structure.

Wor kToM ove(processor) returns the quantity (unsigned) of work the specified processor must
move.

Createl nstructionPair (sender, receiver, quantity) adds an instruction to the instruction lists
for the specified sender and receiver, allocating an input port on the receiver.

FreePorts(receiver) returns the number of unallocated input ports for the given receiver.

((r = Next(receivers)) !'= NULL) {
FreePorts(r) == 0) conti nue;

Next (senders);

= Wor kToMove(r);

= Wor kToMove(s) ;

rqty > sqty) {
eatelnstructionPair(s, r, sqty);
sert(receivers, r, rqty - sqty);

else if (sqty > rqty) {
CreatelnstructionPair(s, r, rqty);
I nsert(senders, s, sqty - rqty);

el se {
CreatelnstructionPair(s, r, rqty);

agorithmis O(Plog P).

S - - =4 = - - == = 0= === - =0 mm o T

umber of buffersarelikely to bethosethat transfer the
10st work are generated first. However, if a processor
y have difficulty offloading more units. Theresulting

Jistribution.

communication betweenwork unitsif the dependences
of communication required for applications that have
lock partitioning is maintained by restricting work
Icted so that work is only moved between logically
nt portions of the distributed data. Having a limited
roblem because each processor receives work from a
distribution, at most 2 processors). However, if work
lanceload, intermediate processors, al the processors

st be involved in the work movement.

5.5. INSTRUCTION GENERATION 117

Becausework only movesbetween adjacent processors, no searchesor heuristicsarerequired to generate
the most efficient instructions. Instructions are generated using Algorithm 5.2, a simple, straightforward,
O(P) complexity algorithm. Figure 5.10b showstheresult of application of Algorithm 5.2 for an application
with loop-carried dependences. Figure 5.10a demonstrates that use of Algorithm 5.1 for applications with

dependencesis not practical due to the added communication it may cause for the application.

Algorithm 5.2: Restricted work movement.

Input: Set of P processors, numbered from 0to P — 1, with quantity of work to move to or from processor.

Output: Ordered set of instructionsfor each processor. Each instruction specifiessender, receiver, quantity
to send, and destination port.

Assumptions: Each processor can only exchange work with processorsto its left and right.

Method: O(P)
Wor kToM ove(processor) returns the quantity of work the specified processor must move (positive
if receiving, negativeif sending).

Createl nstructionPair (sender, receiver, quantity) adds an instruction to the instruction lists for the
specified sender and receiver. For each sender/receiver pair the same receiver input port is always
used.

surplus = 0;
for (i =0; i <P; i++) {
delta = WorkToMove(i);

delta -= surplus;

if (delta > 0) { /* receive fromright. */

} CreatelnstructionPair(i+1, i, delta);

else if (delta < 0) { /* send to right. */
CreatelnstructionPair(i, i+1, delta);

surplus = -delta;

While instruction generation is simplified by adjacency constraints, instruction ordering is made more
complicated by thefact that an intermediate processor can be both asender and receiver of work. Tominimize
work movement time, parallel work movement must be maximized, but, at the same time, deadlock can

not be allowed to occur. To maximize parallelism, each processor’s instructions are ordered as follows:

118 CHAPTER 5. LOAD BALANCING PROCESS

| Instructions | Instruction1 | Instruction2 | netchange ||

0 - - none
1 Send left - loss
1 Receiveright - gain
1 Send right - loss
1 Receive left - gain
2 Send left Receiveright | gain/none/loss
2 Send left Send right loss
2 Receiveright | Receive left gan
2 Send right Receiveleft | gain/nonelloss

Table 5.2: All possible ordered sets of instructions sent to each slave for restricted work movement.

1. Send to left.

2. Receivefrom right.

3. Sendtoright.

4. Receivefrom left.
Each dave receives at most 2 instructions, and only the limited sets of instructions listed in Table 5.2
are possible. Parallelism is obtained in the case where work passes through intermediate processors (e.g.,
Figure 5.10b): the processors that must send work (e.g., to the right) can all send at the same time; then the
processors that must receive the work (from the left) can all receive at the same time. Assuming that there
is adequate buffering and flow control between processors, this ordering prevents deadlock because there
is always at least one processor in the system that can proceed. If there is inadequate buffering, senders
must block when the receive buffers are full, requiring flow control between the processors. If the system
does not provide adequate flow control, explicit handshaking, possibly mandating serial execution, may be
required to prevent loss of data. (Unfortunately, this was the case for Nectar, our target system.)

Another difficulty with the above ordering is that intermediate processors may be required to move
more work than they initially own. In this case, the processors must receive work before they can send it.
When aslave receives an instruction to send more than it owns, the slave delays execution of theinstruction
until the corresponding receive instruction (which must exist) has been executed. This may result in 10ss of

parallelism, but deadlock is avoided.

'work exceed the benefits. The instruction generation
1e system but do not consider work movement costs.
he filtering of raw performance information (Section
ir goals, neither explicitly considers the actual costs
ovement results in improved performance, we add a
) that explicitly considers the cost of executing the

sts and benefits of work movement and cancels the

rk movement and to predict the amount by which the
| as aresult of the movement, we could create precise
ovement is profitable (although the computation time
use we can not predict the future, the best we can do

od on past information. Erroneously cancelling work

120 CHAPTER 5. LOAD BALANCING PROCESS

movement instructions can delay the load balancer’s reaction to real performance changes in the system
and reduce the effectiveness of load balancing. Therefore, since the estimates of work movement costs
and benefits are based on inaccurate information, profitability determination is used only as a sanity check
for the work movement instructions. Instructions are only cancelled if their estimated costs, c¢movement &€

several times their projected benefits, tpeneit, i-€., if

Cmovement > K X thenefit

where k isasmall number greater than or equal to 1. For our experiments where profitability determination

was enabled, k was set to 5. With more accurate projections for costs and benefits, k& could be reduced.

5.6.1 Estimating costs of work movement

The time to transfer work between processors can be measured before starting the actual computation.
Work movement messages are sent back and forth between processors several times to compute average
transfer times. The cost of transferring empty work movement messagesis measured to determine the fixed
cost of work movement, cy;z.q, and the cost of transferring known amounts of work is used to determine
incremental work movement costs, ¢, (Section 3.3.4). The cost of an individual instruction can then be
estimated based on the amount of work being transferred. An estimate is needed for cmovement, the cost of
all work movement in a load balancing phase. If multiple processors move work, some work movement
may occur sequentially and some may occur in parallel. For the restricted and unrestricted work movement
cases, the total work movement cost must be estimated in different ways. Complete analysis could be used
to determine the critical paths for each of these cases, but simple estimates for the costs are sufficient due to
the even greater difficulty and inaccuracy in predicting the benefits of work movement. Below we describe
the estimates used in our implementation on Nectar. For other systems, other estimates may be more
appropriate, depending on the topology of the communication network and the sharing of communication
resources.

For unrestricted work movement, instructions involving different sets of processors can be executed
independently, and much of the movement can occur in parallel. The cost of work movement is estimated

based on the cost of movement to and from the processor which moves the most work:

Cunrestricted = 1NSLIUCLIONS X Cfixed + WOrKUNItS X Cingr (5.10)

10 5

P-1 P P [j-1 Pi1

P P-1 ; —1 j —
WN MQ) m WN 3

Table 5.3: Derivation of average number of hopsin alinear array of P processors. Each added processor,
Pn, adds a path of length n — 4 hops to each of the n other processors, Pi. (n = P — 1 because we label
processors starting with 0.) The average number of hops between processors is computed by dividing the
total number of hopsfor all paths between processors by the total number of paths.

For the restricted work movement case, we assume that no work movement occurs in parallel for the
worst case estimate. (This is the case for our implementation on Nectar due to unreliable hardware flow
control.) Thus, for restricted movement, the estimate for unrestricted movement is multiplied by an estimate
of the number of intermediate processorsthat will be involved in the transfer. The average number of hops
between two processors in a P-processor linear array is %. (The derivation of this result is outlined in

Table 5.3.) Therefore,

P+1) .
Crestricted = M x (instructions X cixeg + WOrkunits x ciner) (5.11)

Cmovement 1S BIthEr cunrestricted OF Crestricted depeNnding on the instruction generation algorithm used for the

application.

5.6.2 Estimating benefits of work movement

122 CHAPTER 5. LOAD BALANCING PROCESS

continue to change in the same direction as the changes that prompted the redistribution, the benefits accrue
over time. For example, if one processor slows down, the total computation rate is increased by moving
work away from that processor; if the processor slows down further, the new distribution, while no longer
optimal, is still an improvement over the original distribution. If the trends in computation rates continue
long enough, the cost of work movement can be amortized, and there can be a reduction in the overall
elapsed time. The potential benefits of work movement are limited by the end of program execution, but,
in general, the time until the end of the program can not be predicted; fortunately, this limit can be ignored
since the time to redistribute work one extratime is expected to be negligible relative to the total execution
time of the program.

We estimate the time saved due to redistributing work as
thenefit = bfract X tgaple (5.12)

where bfract is the expected benefit per unit time, and tgane iS the expected length of time over which
benefitswill accrue, i.e., the time period over which we expect system performance to remain stable. bfract
is computed the same way as the reduction fraction, rfract in Section 5.3.1, but, in this case, the new

distribution may not be optimal due to the constraints on instruction generation:

(_)rig
torig = Max — 5.13
orlg i€eP Ty ()
w
tnew = MaX — 5.14
new ieP Ty ()
torig —
bfract = 9 "W (5.15)
orig

Estimating tg¢anie is more difficult becauseit is not possible to accurately predict future trendsin system
performance. However, by examining many traces of past performance it may be possible to recognize
patterns in the loads on the system well enough to make a reasonable assessment of the system stability.
For example, if we can recognize that load changes are periodic and identify the frequency of change, we
can model the system to decide whether it is profitable to shift work in response to the changes. (We have
modeled a system with an oscillating load on one processor in Section 7.5.) If the frequency of changeis
high, tgapie Will be small. In this case, if the system attempts to move work to track each change, work
movement costswill be high and will have little benefit. In this unstable system, better overall performance

islikely if work movement does not track the performancefluctuations. However, if the frequency of change

5.7. SUMMARY 123

is low, tgaple Will be larger, and moving work to track the changes will be less costly and more beneficial,
resulting in a net improvement in performance.

Lacking extensive traces and with the unlikeliness of encountering truly periodic loadsin real systems,
we estimate system stability based on recent performance information collected during the current run of
the application, assuming that there is temporal locality in the stability of the system. A record is kept of
the number of times imbalance was detected over the last windowsize load balancing phases. The total
computation time for the windowsize corresponding computation phasesis divided by the number of times
imbalance was detected (i.e., exceeded the imbalance threshold described in Section 5.3) to determine the
period between significant changesin system performance. The period over which work movement accrues
benefits, 414016, IS estimated at twice the period between changes, assuming that only half of the changes
will bein unfavorabledirections. Thisisavery rough estimate of stability, and the selection of windowsize

(to equal about 10 secondsin our implementation) is somewhat arbitrary.

5.6.3 Effect of Profitability Deter mination on Performance

The profitability determination phaseis designed to be most beneficial when work movement costs are high
or when the loads on the processors are very unstable. For the 1000 x 1000 SOR example (Figure 5.11%),
dynamic load balancing without the profitability determination phase results in improved performance
relative to equal distribution of work so we know that tracking the loads on the processors is beneficial.
Thus, we do not expect the profitability determination phaseto improve performance. Infact, the cancelling
of work movement instructions delays reaction to changesin load, resulting in a slight performance oss.
In Section 7.5.2, we will show a case where the profitability determination phase does substantially

improve performance with dynamic load balancing.

5.7 Summary

In this chapter we described the operations that are performed each time the slaves interact with the
load balancer. The load balancer generates instructions that redistribute work in proportion to measured

computation rates on the slaves. For applications with loop-carried dependences, a block distribution must

4 The load balancing parameters for the data presented are as follows: load balancing interactions are pipelined; target load
balancing period is 10 quanta (1 second); 10% predicted improvement isrequired for work movement; filtering is enabled.

124 CHAPTER 5. LOAD BALANCING PROCESS

~ >
1.0
g 600 2
5 g
3 § 0.9
& 500 w
_ 0.8
g e Sequential
S - W!tnout ?_roflt 0.7
g 400 -k With profit
s 0.6
§ .
q 300 0.5
04
200 03 - No balancing
: —>— Without profit
0.2 + Without profit (lower bound)
100 : =% With profit
01 x With profit (lower bound)
0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) Computation time b) Efficiency

Figure 5.11: 1000 x 1000 SOR (40 iterations) running with oscillating load (period = 60 seconds) on one
slave. Effect of addition of profitability determination phase on efficiency.*

be maintained to minimize the communication required for the application. Thus, for these applications, we
use an instruction generation algorithm that restricts work movement so that work is only moved between
logically adjacent slaves; to move work between non-adjacent slaves, intermediate slaves areinvolved. For
applicationswithout loop-carried dependences, communication required for the application is not aconcern,
so we attempt to minimize the cost of work movement using an agorithm that generates instructions to
move work directly between the slaves that are overloaded and the slaves that can handle extra work.
Several optimizations areincluded in theload balancing processto prevent undesirable work movement.
An imbalance detection phase, which compares a measure of the imbalance between the processors to a
threshold, adds hysteresis to the system, eliminating the high per-message communication costs of moving
small amounts of work back and forth between saves. Before the new distribution is computed, the rate
information from the slavesisfiltered to reduce high frequency components, reducing the system'’s response
to short term changesin load. Finally, after instructions are generated, a cost-benefit analysisis performed to
check whether it is profitable to execute the generated instructions. All of these optimizations are effective
in reducing work movement costs, but they also can delay the system’s reaction to changesin performance,
leaving the system unbalanced for longer than necessary; the inefficiency due to this imbalance sometimes
outweighs the benefits of the optimizations. Selection of good parameters and implementations for the
optimizations is difficult due to this tradeoff and due to the inability to accurately predict the loads on

the processors; many of the parameters for the optimizations were selected empirically. More analysisis

5.7. SUMMARY 125

needed, and a good characterization of typical loads on the processors would be useful. Although good
motivation for each of the optimizations has been presented, from the experimental results, it is difficult to
make definitive claimsregarding their performance benefits. However, for each optimization, we were able

to demonstrate small performance benefitsin some situations.

126 CHAPTER 5. LOAD BALANCING PROCESS

Chapter 6

Compiler support for load balancing

Our load balancing system consists of application-specific code generated by a parallelizing compiler and a
run-time library that supports functions common to all applications, such as task creation, communication,
and load balancing. In this chapter, we describe the changes that must be made to a typical parallelizing
compiler to support dynamic load balancing. Other than the restructuring transformations needed to support
control of grain size (Chapter 3) and load balancing frequency (Chapter 4) summarized in Table 6.1, the
maodifications needed to the compiler to support dynamic load balancing are in its code generation portion
and require little analysis or restructuring of the program. These modifications will be the focus of this
chapter. Although these changes have not yet been implemented in a compiler, hand-parallelized versions
of the MM, SOR, and LU examples were used to motivate and to investigate the implementation details of
the changes.

To support our dynamic load balancing system, the parallelizing compiler must generate code for both

the master and the slave processes. The master process controls the central load balancer, and the slave

| transformation | used for |
strip mining control of grain size
control of frequency of load balancing hooks
loop splitting removing communication code from distributed loops
message aggregation | reducing communication overhead
loop interchange increasing grain size
control of frequency of load balancing hooks

Table 6.1: Restructuring transformations.

127

128 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

processes perform the computation for the application and interact with the master process periodically
for load balancing. For effective load balancing, the compiler must notify the runtime system which type
of loop—DOALL or DOACROSS—has been distributed so that work movement can be restricted in the
DOACROSS case (Section 5.5.2). The compiler is also responsible for generation of application-specific
code to load input data, unload output data, and package and transfer portions of distributed data structures
to shift work between the processors. In addition, to support work movement, modifications must be made
to the distributed data structures, the distributed loop bounds, and the calls to the communication code.

The structure of the master and slave code is outlined in Section 6.1. Sections 6.2 and 6.3 describe
changesto the distributed data structures and loop bounds needed to facilitate work movement. Section 6.4
discusses the routines that must be generated to transfer work between processors. Then we discuss how
moved work must be handled so that it is consistent with the work on the destination processor. Finally,
we discuss how the irregular data distributions resulting from work movement complicate location and
communication of distributed data elements.

Parallelizing compilers usually translate a sequential source program into a parallel single-program
multiple-data (SPM D) source program and use native compilers of the target machine to generate the actual
object code [11, 62, 68]. In describing our system, we assume that the sequential source is written in a
Fortran-like language with annotations to aid in parallélization (e.g., Fortran D [25] or AL [67]) and that
the generated code has C syntax and semantics so that data structures can be moved around easily by

manipulating pointers.

6.1 Codestructure

The compiler must generate code for the master and slave processes. The structure of the slave code is
the same as that of the sequential source code and of typical code generated by a parallelizing compiler:
the parallelized slave code has the same loop structure as the source code, but loop bounds are modified to
work on the subset of loop iterations allocated to the current processor. Additional codeis added to support
load balancing, but the loop structure is not changed significantly. Although the master process performs
no useful computation, its loop structure must mimic that of the slave code to at least the depth of the load
balancing hooks placed in the slave code so that the load balancing code is called the correct number of

times and the application can terminate properly. The master code must have load balancing hooksplaced in

a) Master code b) Slave code

Figure 6.1: Code structure for master and slave processesfor SOR.

6.2 Changesto distributed loop boundsand distributed data structures

Loops and data are distributed according to the owner-computes rule [24, 36]. That is, loop iterations are
computed on the processor that owns (stores) the distributed datalocationswritten to by theiterations. (Some
data may be shared between loop iterations, and therefore must be replicated if read-only or communicated

when updated if read-write.) Therefore, when we distribute loops, we also distribute the associated data,

a) Access particular data slice b) Access each data slice

Figure 6.3: Sequential version of code used in comparing representations of irregular distributions.

6.2. CHANGES TO DISTRIBUTED LOOP BOUNDSAND DISTRIBUTED DATA STRUCTURES131
6.2.1 Basicdatastructure

There are many waysto implement irregular data distributions, such as arrays, linked lists, or tuples. In our
application domain, since applications are parallelized by distributing portions of arrays, it is convenient
to maintain the data in a structure based on arrays. To make shifting of distributed data dlices easy and
efficient, data is stored as arrays of pointers to slices of the distributed data structure (Figure 6.4a), rather
than as contiguous areas in memory. The distributed data structure is stored in distribution-major order
(e.g., row-magjor order or column-major order for a 2-dimensional matrix, depending on how the matrix is
distributed). For example, since SOR is distributed by columns, the B matrix is stored in column-major
order: in the sequential version of the program, an element of the matrix is referenced as b:][j], where i
is the row number and j is the column number; in the paralel version, the same element is referenced as
b[7][¢] because of the column major storage. Figure 6.4a shows the basic structure used to store a matrix.
The array of pointers, which we call the data array, is large enough to point to all slices of the distributed
data structure. Each processor hasalocal version of the data array, but since each processor only stores part
of the distributed data structure, each element of the local version either points to alocal data slice or isa
null pointer.

The basic data structure described above facilitates work movement because each data slice is stored in
a contiguous area of memory and can be copied efficiently for work movement. We call this data structure
a scattered implementation because, on each processor, the local data slices are scattered throughout the
data array. A dlice of the datais local if its location in the data array contains a valid (non-null) pointer.
Figures 6.4b and 6.4c show the operations required on a processor to send or receive adistributed data slice.
Sending a dice stored in the scattered structure is inefficient because it requires searching through the data
array for avalid pointer. Similarly, aloop that accessesall local data slices (Figure 6.4e) must step through
the entire data array to locate the valid pointers. In the next section, we describe ways to augment and

modify the basic data structure so that access to the structure is more efficient.

6.2.2 Efficient accessto data

Because the distributions are irregular and may change at run time, it is not possible to determine which
processors are responsible for particular loop iterations and distributed data at compile time. Therefore, we

compare different data structures by how processors identify and access their local data slices. The data

d) Accessparticular slice €) Access each dlice

Figure 6.4: Basic (scattered) data structure for storing distributed data. Local data slices are stored in the
corresponding locations of the data array. Other locations contain null pointers.

structures are modified by operations which transfer work between processors, i.e. sending and receiving
work units. The application code may reference particular slices of the distributed data in the sequential
portion of the code (e.g., Figure 6.3a) or may access many or all slicesin the distributed loop (e.g., Figure
6.3b). Thecodein Figure 6.3 isused in comparing the efficiency of different data representations; when the

sequential codeis parallelized, a is distributed by rows.

6.2. CHANGES TO DISTRIBUTED LOOP BOUNDSAND DISTRIBUTED DATA STRUCTURES133

local dlices, especially when there is a large number of processors and the non-null elements of the data
array are very sparse. These tests can be eliminated by augmenting the scattered implementation with an
index array which stores only the set of local iterations (Figure 6.5a). Looping through the local indices
can then be done by looping through the index array, using the values as indicesinto the data array (Figure
6.5€). Also, sending a data slice no longer requires a search. The index array is managed as a stack, with
the stack pointer being the number of data slices stored on the processor; when work is moved (Figures 6.5b
and 6.5c¢), indices for data slices are added to or deleted from the end of the index array. A disadvantage of
the implementation using the index array is that an extralevel of indirection is required to access the local
data (Figure 6.5d).

The extra indirection can be avoided by using a packed implementation for the data: the local slices
of the distributed data are packed into the beginning of the data array (Figure 6.6a). In this representation,
when looping through the local indices, the slices of the data array can be referenced directly (Figure
6.6e). However, to access a particular slice of the data, it is necessary to search through the index array to
determine whether the datais local and where the datais stored in the dataarray (Figure 6.6d). In the matrix
multiplication example, thisis not necessary since the index valueis not important to the calculation. Other
applications, such asthe LU decomposition example, do reference particular data slices, and each processor
must search to determine whether referenced slices are local. If memory is not a limitation, adding an
additional reverseindex array eliminates the need for searching (Figure 6.7).

In both scattered and packed representations, it is necessary to allocate enough memory to store the
pointer and index arraysand thelocal dataslices. Whenwork ismoved to aprocessor, the processor allocates
more memory for the associated data slices, and when work is moved from a processor, the memory for
the associated data slices is freed. This memory allocation and deallocation is an expensive part of work
movement. The packed representations have an advantagein thisregard becausethey canimplicitly manage
afreelist for data slices so that system calls requesting more memory occur less frequently. When work is
moved from a processor, the memory associated with the data slicesis freed just by decrementing the count
of slices on the processor and modifying the index and reverse index arrays, the data array still pointsto the
memory. When more work is moved to the processor, the slice count is incremented. If the values of the
dataarray for the new slices are non-null, then they point to memory that can be reused; otherwise, arequest

is made to the system for more memory. When memory is needed from the system, it can be allocated in

d) Accessparticular slice €) Access each dlice

Figure 6.5: Scattered data structure with index array. Local data slices are stored in the corresponding
locations of the data array. Other locations contain null pointers.

large chunks, with excess put on the free list so that future system calls can be avoided. In the scattered
representation with an index array, freed data can also be left in place, but the memory can only be reused
if the same work unit is moved back to the processor.

For static load balancing, any initial distribution can be specified in the index array. At run time, the

d) Accessparticular slice €) Accesseach slice
Figure 6.6: Packed data structure. Local data slices are packed into the beginning of the data array. Other
locations contain null pointers. Index array lists local slices.

end. For the LU decomposition example, the triangular iteration space for executions of the distributed

TlAamis 1 o~detr~sllyy LAl Asmmamed F iy 7 vvmest ~dy Y it omrvd o~ vl iA Al las ik v o~ Flam i Al Al lar ki A ot o~ res] A

d) Accessparticular slice €) Accesseach slice

Figure 6.7: Packed data structure with reverseindex array. Local data slices are packed into the beginning
of the data array. Other locations contain null pointers. Index array lists local slices. Reverse index array
makes determining whether asliceislocal easier.

6.3. DEALING WITH VARYING LOOP BOUNDS 137

However, for applications with DOACROSS loops, where work movement is restricted (Section 5.5.2),
adjacency of iterations is maintained using an irregular block distribution. Because al local slices with a
block distribution are contiguous, index arrays are not needed to aid in identifying local data. Local slices
of the distributed array are put in their actual locations in the data array, and the range of local slices is
specified by the indices of the lowest and highest (+1) local slices (Figure 6.8a). These indices become
the loop bounds when looping through all local dlices of a distributed loop (Figure 6.8€). Testing whether
aparticular datasliceislocal (Figure 6.8d) just requires testing whether the slice number (z) isin the local
range (locallo < ¢ < localhi). Thedataarray ismanaged as abidirectional stack, with locallo and localhi as
the stack pointers. Aswith the packed implementations for unrestricted work movement, the stack pointers

also manage free lists at no extra cost.

6.2.3 Selecting the data structure

Table 6.2 summarizes the properties of the different data structures with respect to work movement and
data access costs. (The highest cost in sending and receiving work—actually transferring the data—is
not included in our assessment of costs because it is required for any implementation.) When generating
code, the compiler must select the data structure most appropriate for the given application. The restricted
data structure (Figure 6.8) is the most efficient for al the types of accesses. However, restricted work
movement is not used for all applications because it requires more work movement involving intermediate
processors and thus has a higher total cost. Thus, the restricted data structure is only used with applications
with DOACROSS loops that require restricted work movement. For applications without restricted work
movement, packed data structures should be used because of their memory management benefits. The
reverse index array should only be included for applications that access particular slices of the distributed
data because the extra array takes up space, and managing the extra array increases the processing required

to send and receive data dlices.

6.3 Dealing with varying loop bounds

In some applications, the number of loop iterations in the distributed loop changes each time it is executed.

For example, in LU decomposition, the number of iterations decreases by one with each execution. When

d) Accessparticular slice €) Access each dlice

Figure 6.8: Data structure for applications with restricted work movement.

moving work to balance load in applications with varying loop bounds, it is only beneficial to move the
iterations and data that will be executed in future executions of the distributed loop; and when computing
new distributions, theload balancer should only consider the number of iterationsin future executions of the
loop, not the total number of distributed datadlices. At run time, we must distinguish dataslicesthat will be
used in future executions of the distributed loop from those for which all work has been completed. Thisis

done by labeling sliceswith future work as active and those without futurework asinactive. Only active data

6.3. DEALING WITH VARYING LOOP BOUNDS

139

| Data Structure | sendwork | receivework | accesseach | accessparticular ||
Basic (Scattered) expensive | expensive expensive cheap
(free.mem) | (alloc_mem) (search)

Scattered with expensive | expensive cheaper cheap

index array (free.mem) | (alloc_mem) | (indirection)

Packed cheap usually cheap expensive
cheap (search)

Packed with cheap usually cheap cheaper

reverse index array cheap (indirection)

Restricted cheap usually cheap cheap
cheap

Table 6.2: Summary of data access costs for different data structures.

and are deactivated with each execution of the distributed loop; with increasing loop bounds, data slices
are initially inactive and are activated with each execution of the loop. For applications with unrestricted
work movement, active slices are stored in the data structures as described earlier (i.e., a_data, a_idx, a_ridx,
localunits), and inactive slices are stored in separate, similar structures (a_inact, a_idxinact, a ridxinact,
inactunits). The compiler must generate slave code to move slices between the active and inactive data
structures as the bounds of the distributed loop vary (Figure 6.9b); it must also generate master code that
keeps the load balancer’s notion of the total number of work units up-to-date (Figure 6.9c). Placement of
this code can be done with the aid of directives from the programmer (Figure 6.9a) or can be determined
by the compiler from analysis of loop bounds; in either case, the code to activate or inactivate data slices
should be inserted in the same location in the generated code.

For simplicity, the load balancer does not keep track of the specific work units allocated to each slave. It
only knows how many work units are allocated to each slave. When awork unit is activated or deactivated,
the codeinserted into the master informsthe load balancer that the total number of work unitshasincreased or
decreased, but the load balancer does not know which slave the change occurred on. The statusinformation
sent by a slaves at each load balancing interaction includes the number of active work units currently
alocated to the slave, but with pipelined or asynchronousload balancing, this information is delayed. The
load balancer can only approximate the current distribution at a given time. Each time work is activated
or deactivated, the load balancer modifies its view of the current distribution assuming that changes are
distributed equally. Using its incomplete information, the load balancer provides the slaves with inexact

instructions specifying the target number of active data slices each slave should have, from which the dlaves

c¢) Deactivation code on master

Figure 6.9: Code for deactivating data slices when distributed loop bound decreases assuming packed data
structures with reverse index arrays.

can determine amounts of work to move.

6.4 Work movement routines

The load balancer makes work movement decisions based on very abstract information: numbers of work

6.4. WORK MOVEMENT ROUTINES 141

to another. However, from the point of view of the slaves, work units are iterations of a distributed loop,
and the slaves must determine which iterations and which portions of the distributed data must be moved
between the processors. Theiterations moved are determined by the distributed data structures used and, for
applicationswith restricted work movement, the direction of work movement; the datamoved is determined
by relations established at compiletime between the distributed |oop iterations and the distributed dataslices.
Once data associated with the work is identified, the senders of work must pack the data into messages,
update the local data structures, and send the packaged data to the receiver specified by the load balancing

instruction. The receiver must receive and unpack the data and store the datain itslocal data structures.

6.4.1 ldentifying datato be moved

Distributed data slices are linked to distributed loop iterations by the owner computes rule. At compile
time, possibly aided by hints from the programmer, arelation is established between the loop indicesfor the
distributed loop and the array indices for the distributed data accessed by the loop. Given an assignment of
iterations to processors, the relation defines the processors that own and store the master copy of the data
slices. The data slices modified by an iteration are owned and stored by the same processor as the iteration;
copies of data slicesread, but not written to, by an iteration may also be stored on the same processor as the
iteration, but they may be owned by other processors. Existing parallelizing compilers (e.g., AL [67] and
Fortran D [24, 36]) aready establish this type of ownership relation when they assign iterations and data to
processorsfor static distributions.

When work is moved between two processors, ownership of loop iterations and data slices is shifted
from the source processor to the destination processor. The data moved is identified using the relation
established between the iterations and the data. In some cases, neighboring data slices may also be sent
along with the slices changing ownership becausethe iterations rel ated to the slices changing ownership also
reference the neighboring dlices; the neighboring slices are still owned and stored by the sending processor,
but they are replicated to eliminate the need for communication when executing the moved iterations. The
AL compiler [67] identifies distributed data slices referenced (i.e., read) in the same loop iteration with the
aid of directives provided by the programmer: XREL (crossrelation) declarationslink slicesfrom different
distributed arrays, and WREL (window relation) declarations link slices from the same distributed array.

The cross relations identify data which should be kept together; the window relations identify data slices

142 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

for which replication might be beneficial. However, replicating slices is only beneficial if the slicesarein
the appropriate state for use by the moved iterations. In the SOR example, each iteration of the distributed
loop depends on the result of the previousiteration and on the old value of the next iteration. When work is
moved to a processor from the processor on its |eft, the new values of the datato the left of the moved work
are not yet valid; however, when work is moved from the right, the dlice to the right of the moved work
contains the old values needed for the computation. Therefore, for SOR, neighboring data slices should
only be copied when work is shifted to the left. Identifying the state of the data slices may be difficult for a

compiler so, in some cases, data may be copied unnecessarily.

6.4.2 Movingdistributed data between processors.

Thecompiler must generate application-specificroutinesfor sending and receiving distributed datastructures
and for updating the local data structures on the sender and receiver. The compiler knows the layout of the
datain memory and can generate code to gather the necessary data when sending work and to scatter the
data across the data structures when receiving work. Work movement messages must contain the following

information:
e Number of data slices sent.
e Indices of data slices sent.
¢ Data dices owned by the moved work.

Since data slices from multiple distributed arrays may be owned by the moved loop iterations, the different
types of slices must also be indicated in the messages; this can be done implicitly by the ordering of the
data in the messages. Neighboring data slices also may be included in the messages. Because the number
of neighboring slices sent with work is known at compile time, receivers need no additional information to
distinguish neighboring slices from those that are actually owned by the transferred work units.

If load balancing is asynchronous, there may be differences in the amount of progress on different
dlaves, so data transferred to move work may be in a different state from the data on the receiving ave.
Thus, work movement messages must also contain state information for the data slices indicating how far
the computation on the slices has progressed. This state can be specified by the values of the loop indices
of al loops surrounding the distributed loop. With synchronous or pipelined load balancing, the additional

6.5. WORK UPDATE ROUTINES 143

state information is usually unnecessary because the load balancing keeps the slaves synchronized so that
moved slices are in a state known to the receiver, except when the load balancing hooks have been inserted
between iterations of the distributed loop.

Each work movement instruction specifies a sender, a receiver, and the amount of work to be moved.
The sender and receiver each receive a copy of the instruction. Only active work units should be moved.
For the unrestricted work movement case, the last data slices listed in the active index array on the sender
are moved, and the number of active slices on the sender is decreased by the number of slices moved. On
the receiver, the indices of the received data dlices are added to the end of the active index array, the data
is copied into the local data structures, and the number of active slices isincreased by the number of slices
moved.

With restricted work movement, the work movement instruction specifies work movement either to the
left or to the right. Depending on the direction of work movement, data slices are moved to or from either

the right side or left side of the active range of slices, and the corresponding |oop bound is modified.

6.5 Work updateroutines

In some cases, when load balancing occurs, slaves have made different amounts of progress on their local
computation. For applicationswith DOACROSS |oops parallelized by pipelining, such as SOR, slavesearly
in the pipeline are ahead of slaves later in the pipeline. To maintain the pipelined execution of the loops,
work movement is restricted so that work only moves between logically adjacent slaves. Synchronous or
pipelined load balancing is used for pipelined applications because of the frequent synchronizationsinherent
in the applications. This constrains the progress on the slaves so that logically adjacent slaves differ by one
execution of the distributed loop (Figure 6.10a). When work is moved between processors in these cases,
the moved data slices are not consistent with data already resident on the destination, so the moved work and
data can not be inserted immediately into the computation loop and data structures with the resident work
and data. Work moved to a processor from its left is one pipeline phase ahead of its local work, and work
moved from its right is one phase behind the local work (Figure 6.10b). The received data must be handled
separately until it is made consistent with the rest of the data. Work shifted from the right is immediately
updated upon receipt using a copy of the main loop nest with bounds adjusted to work only on the received

work (Figure 6.10c). Work shifted from the left is set aside until the local work catches up (Figure 6.10d.

144 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

Since for DOACROSS loops, work movement is restricted to be between adjacent slaves, only these two
cases need to be handled.

For DOALL loops, synchronous and pipelined load balancing keep the slaves synchronized so that all
dataisin a consistent state whenever work is moved; received work needs no specia handling and can be
merged into the local data structuresimmediately. However, with asynchronousload balancing, there can be
great disparity between the progress on different slaves. In this case, work is moved away from processors
whose computation rates have decreased relative to the rates of the other slaves so work transferred to a
slave is always behind the work aready local to the slave. Received work is updated so that it is consistent
with local work using acopy of the main loop nest with adjusted bounds. With unrestricted work movement,
aslave may receive work from several other slaves during asingle load balancing phase. Fortunately, each
work movement instruction can be handled independently as soon asiit is received so there is no need to
buffer work received from multiple slaves.

The compiler is responsible for generating code to set work aside or catch work up. The routine for
catching work up has the same core computations as the routine for computing work. The loop body is
copied, but loop bounds must be changed. Work can be set aside by inserting the data dices into the data
structures, but not changing the loop bounds to work on the new data until the original data has reached the

same state of progress.

6.6 Modificationsto communication code

Adding dynamic load balancing to parallelized code has an impact on how data updates are exchanged at
run time since the location of distributed data and work is no longer known at compile time. If statements
outside of distributed loops reference distributed data, communication may be required to access the data.
With afixed data distribution, acompiler can generate code that can compute the location of any distributed
data element using information local to each processor [60]. However, with a data distribution that changes
at run time due to load balancing, processors cannot compute data locations using local information only;
additional communication may be necessary. This section describes the handling of several cases where
run-time information is necessary. The compiler must generate the described communication code.

If areplicated variable is to be copied into a location in a distributed data structure, each processor

determines whether it owns the target location as described in Section 6.2, and the owner of the target

c¢) After work update d) Before next load balancing

Figure 6.10: Steps in load balancing of the SOR example. Shading indicates progress on computation.
(Communication and replicated data not shown.)

location does alocal copy.

If an element of a distributed data structure is to be copied into a replicated variable, each processor
determines whether it owns the element as described in Section 6.2, and the owner broadcasts the data to
all other processors.

If an element of adistributed data structure is to be moved into another distributed data location, then

146 CHAPTER 6. COMPILER SUPPORT FOR LOAD BALANCING

The processorsfor which the data was not intended receive but discard the data. 1n a system with hardware
support for multicast, all processors can receive the broadcast information in parallel so the size of the data
to be transferred is usually not important. An alternative would be to have each slave determine whether it
ownsthe target location and send its processor identification number (pid) to the sender; however, broadcast
of the pid would be necessary because the processor owning the target location does not know which
processor ownsthe datato be sent. In asystem that does not support multicast, this alternative may perform
better when the amount of datato be moved islarge. Otherwise, thefirst approach is more efficient because
it only requires a broadcast, while the second approach requires a broadcast and another send.

Because reduction operations are associ ative, the implementation of reduction operationsis not affected
by dynamic load balancing. Each processor’s contribution to the total value is computed as usual, although
each processor may operate on a different number of elements. The combination of the local portionsis

computed in the same way as usual (e.g., using a combining tree).

6.7 Summary

This chapter described changesthat must be made to the code generation phase of aparallelizing compiler to
support dynamic load balancing. The loop structure of the parallelized program does not have to be changed
for the dlave processes, but must be duplicated on the master. Loop bounds and distributed data structures
must be changed to handle and facilitate work movement. We described several implementations for data
structuresfor irregular distributions; the compiler must sel ect the most efficient implementation based on the
features of the given application. In addition, because of the dynamic, irregular data distributions resulting
from load balancing, the communication code generated by the compiler must be modified to locate the
distributed data slicesinvolved in the communication. The compiler must also generate application-specific
code to send and receive work and to deal with received work that isinconsistent with work already resident
on thereceiving slave. The compiler can make most decisionsregarding code generation using simplerules

based on features identified in the application code.

Chapter 7

Evaluation

To evaluate the mechanismsfor supporting dynamic load balancing described in thisthesis, weimplemented
a runtime system on the Nectar system [3], a set of workstations connected by a high-speed fiber optic
network. We hand-parallelized the matrix multiplication (MM) and successive overrelaxation (SOR)
examples described earlier (Section 1.2.5) and took measurements with varying parameters in several
controlled environments.

Thischapter beginswith adescription of our experimental setup on the Nectar system. Then we present
measurements that show how dynamic load balancing affects performance in environments with different
load characteristics. Performance is evaluated using the measures described in Section 1.5. The remainder
of the chapter discusses models of the performance of applications with load balancing to give a frame of

reference for the performance measurements.

7.1 Experimental setup

This section describes our experimental setup on the Nectar system and includes descriptions of the target
system and its programming environment, the versions of the example applications used in the experiments,

and the criteria used to compare the performance of the different versions of the applications.

147

Figure 7.1: The Nectar system.

The programming interface provided for the Nectar system is called Nectarine [57]. The Nectarine
library provides low-level routines for task management and for communication using severa different
protocols. Our implementation used Nectarine's reliable message protocol for communication. We spent
a great deal of time optimizing the communication code in our load balancing runtime system and in the
application-specific code. To reduce the number of times data is copied for communication, we selected
Nectarine communication routines that allow data to be moved directly between user memory on the host

workstation and system buffers on the CAB, eliminating the need to build the messagesin user space. Also

7.1. EXPERIMENTAL SETUP 149

copying data was necessary, when possible, data was copied in blocks to minimize loop overheads (using
the Unix bcopy routine [12]).

Measurements were taken in several controlled environments. Aside from processes created by the
application being measured, no other processes were active on the processors. Artificial competing loads
were generated by the application so that the computation resources used by the competing loads could
be easily measured. If a competing load is to be generated on a processor, the application process on
the processor forks off a new process that executes routines with desired load characteristics. The load
generation routines used for the experiments generate either a constant computation intensive load or a
discrete oscillating load of specified frequency. When the computation portion of the application programis
completed, the application kills the generated processes and measures their CPU usage using the getrusage
function [12] provided with Unix.

7.1.2 Application versions

The matrix multiplication (MM) and successive overrel axation (SOR) examples used in our measurements
are described in Section 1.2.5. For MM, the input matrices contain single-precision floating point values
generated using simple functions. For SOR, elements of theinput matrix are randomly generated, non-zero,
single-precision floating point values. (The same seed is always used so that runs are reproducible.) For
SOR, zeta is set to zero so that convergence conditions are never met and the WHIL E 1oop always terminates
after maxiter iterations (see Figure 1.8). Table 7.1 lists problem sizes used in our experiments (in this and
previous chapters) and presents measurements of their sequential execution times on a single Sun 4/330
workstation running SunOS. Each sequential time presented is the minimum time measured over at least
six runs. The problem sizes selected all fit into the real memory of the workstations. (Each workstation has
at least 24 megabytes of memory.)

Each application has a sequential version, a parallel version with fixed, equal distribution of work, and
aparalel version with dynamic load balancing. For the parallel versions, with or without load balancing,
there is one master process—responsible for initialization, load balancing, and cleanup—and severa slave
processeswhich dotheuseful computation. Each of theseprocessesrunson aseparate processor. Theparallel
versions without load balancing use the same code as the parallel versionswith load balancing, but the code

is compiled with as much of the load balancing-related code disabled as possible. In all parallel versions,

150 CHAPTER 7. EVALUATION

| Application | Problem size | Iterations | Time (seconds) ||

MM 100 x 100 1 1.79
MM 250 x 250 1 31.27
MM 500 x 500 1 252.71
MM 1000 x 1000 1 2068.84
SOR 500 x 500 10 20.77
SOR 1000 x 1000 10 84.19
SOR 200 x 2000 100 334.84
SOR 500 x 2000 40 334.40
SOR 1000 x 1000 40 335.07
SOR 2000 x 2000 10 353.24

Table 7.1: Elapsed time measurements for sequential versions of applications on Sun 4/330 workstation
running SunOS.

asmall amount of overhead may be attributed to code added for instrumentation. Our implementations of
the applications and runtime system allow many application and load balancing parameters to be selected

when invoking the program. These parameters are summarized in Table 7.2.

| Parameter | Description |

problemsize | Problem size for application

slaves Number of slave processors

grainsize Grain size in time quanta (when controllable)

type Synchronous, pipelined, or asynchronous

depth Pipeline depth for pipelined load balancing

threshold Fractional improvement required for load balancing

filter Filter used for rate measurements

gquantumscale | Lower bound on load balancing period due to time quantum (in
quanta)

overhead Fraction of time alowed for interaction overhead; puts lower
bound on load balancing period

movement Restricted or unrestricted work movement

interrupts Use interrupts instead of polling for communication

delay Artificial delay added to communication

Table 7.2: Application and load balancing parameters selectable at startup time.

7.1.3 Performance with load balancing

We measured the execution times of thetuned MM and SOR applicationsin several environmentsfor varying

numbers of slave processors. These measurements were used to generate execution time (elapsed time),

7.2. LOAD BALANCING OVERHEAD IN A DEDICATED HOMOGENEOUS ENVIRONMENT 151

speedup, and efficiency graphs. The efficiency graphsinclude both the efficiency computed using Equation
1.4 and the lower bound on efficiency computed using Equation 1.2. Although the actual efficiency in using
available resources may lie anywhere between the computed efficiency and the computed lower bound,
the measured execution times and measurements of the time spent on the artificially generated competing
processes indicate that the competing processes are not using more resources than expected and that the
actual efficiency is closeto that computed using Equation 1.4.

For the parallel versions of the programs, each data point presented is the average of at least 3 runs.
For execution time and speedup graphs, vertical bars show the range of the raw measurements. In aimost
all cases, the variation in the measurements between different runs is small and significantly less than the
difference between runs with and without dynamic load balancing. (Most of the vertical bars are so short
that they do not extend outside the symbols for the average measured values.) Thereis a slight horizontal
offset between the points for the sequential, parallel, and load balanced parallel versions so that the vertical
bars can bedistinguished. To maketrendsclearer, linesare drawn connecting the data pointsfor the different
numbers of processors, although, in reality, only integral numbers of processors are possible. Because of
the dight horizontal offset between the different types of runs, the lines may appear to be shifted sightly
upward or downward; closer examination of the data points is necessary in cases where the lines are close
together.

The values of key load balancing parameters used for the measurements presented in this chapter are
summarized in Table 7.3. (See Table 7.2 for a description of the parameters.) movement should be selected
automatically by the compiler based on properties of the application. grainsize is selected automatically
based on run-time measurements. The target load balancing period is selected at run time based on the

values of quantumscale and overhead and on run-time measurements.

7.2 Load balancing overhead in a dedicated homogeneous environment

In an environment consisting of a homogeneous set of dedicated machines, load is balanced if work is
distributed equally to the processors. Dynamic load balancing is not needed and can only add to the total
execution time. Since we can not predict when there will be competing processes, we would like for
the overhead added by dynamic load balancing in a dedicated homogeneous environment to be as small

as possible. For applications with non-varying loop bounds, e.g., MM and SOR, the default distribution

152 CHAPTER 7. EVALUATION

| Parameter | Value |
grainsize automatically selected at run time
type pipelined
depth 1
threshold 10% improvement
filter state machine described in Figure 5.1
quantumscale | 10 quanta (1 second)
overhead 0.05
movement unrestricted for MM, restricted for SOR

Table 7.3: Parameters used for load balanced versions of applications.

distributes work equally. Figures 7.2a, 7.3a, and 7.4a show the execution times for MM and SOR running
in a dedicated homogeneous environment with and without dynamic load balancing. For both applications,
dynamic load balancing adds little to the execution times of the applications. The speedup graphs (Figures
7.2b, 7.3b, and 7.4b) show that the speedup curves are close to the perfect linear speedup curve (the dashed
line) for the number of processors used in our experiments, so our distributions of the problems get good
paralelism. However, for SOR, which is paralelized by pipelining, the speedup curve drops off as the
number of processors is increased because time spent filling the pipeline increases with the number of
processors; communication costs for the application (independent of load balancing) also increase with the
number of processors. MM requires no communication so its speedup remains linear. In the dedicated
homogeneous case, because there are no competing loads, the efficiency graphs (Figures 7.2c, 7.3c and
7.4c) show the same information as the speedup graphs; the efficiency is just the speedup divided by the
number of processors. Also, the efficiencies computed using Equations 1.4 and 1.2 are the same. All of the
graphsin Figures 7.2, 7.3 and 7.4 indi cate that the overhead added by dynamic load balancing in adedicated
homogeneous environment is small.

The highest efficiencies should be attained in dedicated homogeneous environments because the only
load balancing overhead should be due to the interactions between the slaves and the load balancer, and
most of this overhead is eliminated by pipelining the interactions. At best, we hope that the efficiencies
measured in heterogeneous and dynamic environments will equal those measured in a dedicated homo-
geneous environment, and we therefore treat the dedicated homogeneous efficiencies as upper bounds for
other environments. (It is possible to describe a case where efficiency in a dynamic environment could

exceed that in a dedicated homogeneous case, e.g., if the competing loads used all of the pipeline fill and

7.2. LOAD BALANCING OVERHEAD IN A DEDICATED HOMOGENEOUS ENVIRONMENT 153

—~
‘_él 300
< .
S ® Sequential
& —>- Load balanced
< 250 b -5 No balancing
£
5 200
S
o
$
o5 150

100

50

0

Processors

a) Computation time

2 70 , S 10 .
o s <
O - s K]
@ ® Sequential e S 09
& 6.0 6~ Load balanced 7 & e e —
—&- No balancing 0 0.8
0.7
0.6
0.5
0.4
0.3 ® Sequential
: —>- Load balanced
0.2 + Load balanced (lower bound)
. -=- No balancing
01 x No balancing (lower bound)
. 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
b) Speedup c) Efficiency

Figure 7.2: 500 x 500 matrix multiplication running in dedicated homogeneous environment.

drain times productively for a pipelined application, but such a case is unlikely to occur with the simple
loads used in our experiments.) For reference, we will show the dedicated homogeneous efficiencies (with

smaller symbols and dashed lines) on the efficiency graphsfor other environments.

154

Execution time (seconds)

2 70

iS]

O -

o ® Sequential

(f')‘ 6.0 —>- Load balanced
—&- No balancing

350

300

250

200

150

100

50

CHAPTER 7. EVALUATION

® Sequential
—- Load balanced
-5- No balancing

1 2

a) Computation time

b) Speedup

4

5

6 7
Processors

Efficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Processors

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
-=- No balancing

x No balancing (lower bound)

1 2 3 4 5 6 7
Processors

c) Efficiency

Figure 7.3: 1000 x 1000 successive overrelaxation (40 iterations) running in dedicated homogeneous

environment.

7.2. LOAD BALANCING OVERHEAD IN A DEDICATED HOMOGENEOUS ENVIRONMENT 155

N
[S)
QS

350 ® Sequential

—>- Load balanced
300 —&- No balancing

250

Execution time (seconds)

200

150

100

50

Processors

a) Computation time

g 70) S 10
is) s <
O - s K]
O ® Sequential e S 09 W
(f‘)‘ 6.0 ~©- Load balanced /,’ E
—&- No balancing 0 0.8
0.7
0.6
0.5
0.4
0.3 ® Sequential
: —>- Load balanced
0.2 + Load balanced (lower bound)
. -=- No balancing
01 x No balancing (lower bound)
. 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
b) Speedup c) Efficiency

Figure 7.4: 2000 x 2000 successive overrelaxation (10 iterations) running in dedicated homogeneous
environment.

156 CHAPTER 7. EVALUATION

7.3 Load balancing with a constant competing load

When a constant competing load is added to one of the processors (processor 0), we expect the load balancer
to redistribute work immediately and then for the distribution to remain stable. We create a constant load
by running a computation-intensive loop as a competing process on one of the slaves. The load balanced
application should find astatic work distribution where that slaveis allocated half as much work asthe other
daves. Figure7.5 shows how the work movement tracks the measured performance of the loaded processor,
and confirms that such a distribution is reached; thereis an initial period of instability while the competing
application is starting up.* (In Figure 7.5, the raw measured rates are normalized against the maximum rate
measured on the processor, and work allocated to the processor is normalized against the work that would
be alocated if work was distributed equally to al processors.) Since work is only redistributed once, the
efficiency of the load balanced version should be almost as high as in the dedicated homogeneous case.
Figures 7.6b and 7.7b show this to be the case. However, for the 2000 x 2000 SOR example, in Figure
7.8b, the efficiency for the load balanced caseis substantially lower than that in the dedicated environment
because of the large amount of data (4 times as much as for the 1000 x 1000 SOR example, and 8 times as
much as for the 500 x 500 example; see Table 7.5), especialy for the smaller numbers of processors, that
must be shifted to do theinitial balancing. Also, because the size of the datafor the problemis so large, the
profitability determination phase is cancelling many more instructions than for the other examples, leaving

the load unbalanced for alarger portion of the time.

11t takes about 15 load balancing periods for the |oad to stabilize during theinitial period of instability. However, for atransition
in load after theinitial period of instability, it typically takes about 5 load balancing periods for the load to reach a stable value.

7.3. LOAD BALANCING WITH A CONSTANT COMPETING LOAD 157

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20

normalized value

0.10 +

0.00

—— Raw rate

Work

normalized value

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30

0.20 +

0.10+

0.00
0

L AN AN

—— Raw rate
— Work

10 20 30

a) 500 x 500 MM

20 40

60

80

100 120
time (seconds)

b) 1000 x 1000 SOR (40 iterations)

40

normalized value

50

1.00
0.90
0.80
0.70
0.60
0.50 H
0.40
0.30 p
0.20 +
0.10 +
0.00

60 70 80 90
time (seconds)

—— Raw rate
Work

0

20 40 60 80 100 120
time (seconds)

¢) 2000 x 2000 SOR (10 iterations)

Figure 7.5: Measured performance and resulting work allocation on loaded slave on a 4 slave system with
a constant computation-intensive load on one save.

Execution time (seconds)

600
® Sequential
500 —- Load balanced
—&- No balancing
400
300
[]

200
100
0

0 1 3 4 5 6 7

Processors

(a) Computation time

1.0

0.9

Efficiency

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
-=- No balancing

x No balancing (lower bound)

1 2 3 4 5 6 7
Processors

(b) Efficiency

Figure 7.6: 500 x 500 matrix multiplication running in homogeneous environment with constant load on
first processor.

158

800
700
600

500

Execution time (seconds)

400

300

200

100

® Sequential
—>- Load balanced
-5- No balancing

Processors

(a) Computation time

Efficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

CHAPTER 7. EVALUATION

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
-=- No balancing

x No balancing (lower bound)

1 2 3 4 5 6 7
Processors

(b) Efficiency

Figure 7.7: 1000 x 1000 successive overrelaxation (40 iterations) running in homogeneous environment
with constant load on first processor.

800

700

600

500

Execution time (seconds)

400

300

200

100

® Sequential
—>- Load balanced
—-2- No balancing

Processors

(a) Computation time

Efficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
-=- No balancing

x No balancing (lower bound)

1 2 3 4 5 6 7
Processors

(b) Efficiency

Figure 7.8: 2000 x 2000 successive overrelaxation (10 iterations) running in homogeneous environment
with constant load on first processor.

7.4. LOAD BALANCING IN A DYNAMIC SYSTEM 159

7.4 Load balancingin adynamic system

To evaluate performance in a dynamic system, we added an oscillating load to one of the processors. With
the oscillating load, the rate of computation on the processor alternates between the maximum rate attainable
by the processor (i.e., the same rate attained in a dedicated system) and approximately half of the maximum
attainable rate. Figures 7.9, 7.10, 7.11, and 7.12 show data for 4 oscillation frequencies ranging from once
per minute to once every 2 seconds. Because of time constraints, datawas not collected for the 2000 x 2000
SOR examplefor oscillation periods |ess than 20 seconds; it is presumed that performance for those periods
would be as bad as or worse than the performance with the 20 second oscillation period.

Without load balancing the expected efficiency (lower bound from Equation 1.2) is 0.75, independent
of the number of processors, because all processors are limited by the performance of the loaded, slowest
processor which oscillates between its maximum rate and half of its maximum rate. The measurements
produce lower results, but much of the difference can be attributed to the same causes as the inefficiency
in the dedicated environment. The measured efficiencies drop as the frequency of the oscillating load
increases, possibly due to operating system costs for creating and killing processes not included in the
getrusage measurements. Therelatively high efficiencieswithout load balancing do not leave much margin
for improvement with load balancing.

Figures 7.9a and 7.9b demonstrate that dynamic load balancing results in significant performance
improvements when changes in load are infrequent and work movement costs are low. However, due to
the work movement costs and the periods of imbalance, the performance is substantially lower than that in
dedicated environments. Asthe oscillation frequency increases (Figures7.10, 7.11, and 7.12), the efficiency
with dynamic load balancing drops due to increased work movement costs (work is moved more times)
and the increased significance of the lag between changes in rate and the redistribution of work. Figures
7.13aand 7.13b demonstrate that the period when load is balanced gets shorter as the oscillation frequency
increases. Because of the large size of its distributed data, the 2000 x 2000 SOR example with dynamic
load balancing performs poorly, even in an environment with loads that change very infrequently (Figure
7.9¢); performance gets much worse when the oscillation frequency is increased (Figure 7.10c). On the
other hand, because of its relatively small data size, the MM example is more immune to changes in the
oscillation frequency. The effects of the work movement costs and the load imbalance will be modeled in

the next section.

160 CHAPTER 7. EVALUATION

Dynamic load balancing is a difficult problem. The work movement costs and the response time of
the load balancing system limit the system’s ability to improve application performance, especialy for
applications with large data sizes. One way to improve performance is to reduce the amount of data that
must be moved to shift work. To do this, the distributed data units must be decoupled from the problem
size, e.g., by partitioning the data in more than one dimension. However, the benefits of partitioning the
datain adifferent manner will be at least partially offset by the added complexity of managing the new data

structures.

7.4. LOAD BALANCING IN A DYNAMIC SYSTEM

® Sequential
—>- Load balanced

+ Load balanced (lower bound)

—-=- No balancing

* No balancing (lower bound)

35 4 5

6 7
Processors

® Sequential
—>- Load balanced

+ Load balanced (lower bound)

—-=- No balancing

* No balancing (lower bound)

35 4 5

6 7
Processors

® Sequential
—- Load balanced

+ Load balanced (lower bound)

—-=- No balancing

* No balancing (lower bound)

@ 400 § 1.0 .
< k]
g ® Sequential S 09
8 350 ~- Load balanced =
i:: -8 No balancing w 0.8
£ 300
= 0.7
5
= 250 °
= 0.6
i8]
g 0.5
& 200 .
0.4
150
0.3
100
0.2
50 0.1
0 0.0 L
0 1 2 3 4 5 6 7 0 1
Processors
a) 500 x 500 MM
~ > 1.0
2 600 2
S S 09
© 500 i 0.8
g ® Sequential
£ —- Load balanced
- —-=- No balancing 0.7
S 400
S 0.6
§ °
& 300 05
0.4
2
00 0.3
0.2
100
0.1
0 0.0 L
0 1 2 3 4 5 6 7 0 1
Processors
b) 1000 x 1000 SOR (40 iterations)
>
2 s00 g 10
I ® Sequential 2
§ -o- Load balanced § 09
3 —-5- No balancing w 0.8
o 400 ‘
&
= ° 0.7
IS
]
S 300 0.6
]
m 0.5
200 0.4
0.3
100 0.2
0.1
0 0.0 L
0 1 2 3 4 5 6 7 0 1

Processors

) 2000 x 2000 SOR (10 iterations)

35 4 5

6 7

Processors

161

Figure 7.9: Execution time and efficiency in homogeneous environment with oscillating load (period = 60

sec, duration = 30 sec) on first processor.

162

Execution time (seconds) Execution time (seconds)

Execution time (seconds)

CHAPTER 7. EVALUATION

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
—-=- No balancing

* No balancing (lower bound)

3 4 5 6 7
Processors

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
—-=- No balancing

* No balancing (lower bound)

3 4 5 6 7
Processors

® Sequential
—- Load balanced

+ Load balanced (lower bound)
—-=- No balancing

* No balancing (lower bound)

>
1.0
450 g
Q2
0.9
400 2
® Sequential E
—>- Load balanced 0.8
350 -&- No balancing
0.7
300
0.6
250 .
0.5
200
0.4
1
50 0.3
100 0.2
50 0.1
0 0.0
0 1 2 3 4 5 6 7 0
Processors
a) 500 x 500 MM
>
1.0
600 (c.)
Q2
S 09
500 E
® Sequential 0.8
—- Load balanced
-&- No balancing 0.7
400
0.6
°
300 0.5
0.4
2
0o 0.3
0.2
100
0.1
0 0.0
0 1 2 3 4 5 6 7 0
Processors
b) 1000 x 1000 SOR (40 iterations)
>
1.0
600 (c.)
Q2
S 09
Y
500 ® Sequential 0.8
—- Load balanced
-8- No balancing 0.7
400
° 0.6
300 0.5
0.4
2
0o 0.3
0.2
100
0.1
0 0.0
0 1 2 3 4 5 6 7 0
Processors

) 2000 x 2000 SOR (10 iterations)

3 4 5 6 7
Processors

Figure 7.10: Execution time and efficiency in homogeneous environment with oscillating load (period = 20
sec, duration = 10 sec) on first processor.

7.4. LOAD BALANCING IN A DYNAMIC SYSTEM 163

@ 250 . S 10 .
= =
< <
S ® Sequential L 09 [
I - Load balanced & i ST E T
% 200 —-&- No balancing 0.8
.g 0.7 G\e/e/e/?
< +
£ B\q\g—B—B
s 150 0.6
g : -
0.5 * x *
m
100 0.4
0.3 ® Sequential
: —>- Load balanced
0.2 + Load balanced (lower bound)
50 . -=- No balancing
01 x No balancing (lower bound)
0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) 500 x 500 MM
v 600 §‘ Lo
< .0
S ® Sequential S 09
O -o- Load balanced =
£ 500 -8~ No balancing Y oos
[
£
= 0.7
§ 400
5 0.6
§ °
G 300 0.5
04
200 03 ® Sequential
: —>- Load balanced
0.2 + Load balanced (lower bound)
100 . -2 No balancing
01 x No balancing (lower bound)
0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors

b) 1000 x 1000 SOR (40 iterations)

Figure 7.11: Execution time and efficiency in homogeneous environment with oscillating load (period = 6
sec, duration = 3 sec) on first processor.

164

350
300
250

200

Execution time (seconds)

150

100

50

® Sequential
—>- Load balanced
—-&- No balancing

800

700

600

500

400

Execution time (seconds)

300

200

100

2 3 4 5 6 7

Processors

a) 500 x 500 MM

® Sequential
- Load balanced
—-&- No balancing

Figure 7.12:

Processors

Efficiency

Efficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

CHAPTER 7. EVALUATION

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
—-=- No balancing

* No balancing (lower bound)

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

1 2 3 4 5 6

7

Processors

® Sequential
—>- Load balanced

+ Load balanced (lower bound)
—-=- No balancing

* No balancing (lower bound)

0.0
0

1 2 3 4 5 6

7

Processors

b) 1000 x 1000 SOR (40 iterations)

sec, duration = 1 sec) on first processor.

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30

normalized value

0.20
0.10 +

Work

—— Raw rate

0.00

0 20

40

100 120
time (seconds)

60 80

a) Oscillation period = 60 seconds

normalized value

—— Raw rate

Work

Execution time and efficiency in homogeneous environment with oscillating load (period = 2

20 40 60 80 100

120 140

time (seconds)

b) Oscillation period = 20 seconds

Figure 7.13: Measured performance and work movement on loaded slave for 1000 x 1000 SOR (40
iterations) running on a4 slave system with an oscillating load on one save.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 165

7.5 Modeling performancewith oscillating loads

In this section we model the performance of several load balancing schemes with an oscillating load on
one processor. We compare the performance predicted by the model for dynamic load balancing to the data
presented in Section 7.4. We also compare the model to amodel of the performance with equal distribution
of work so that the conditions under which dynamic load balancing is beneficial can be determined. We
also present performance models for other static |oad balancing schemes to demonstrate how performance
can be improved with prior knowledge of the loads on the system.

To correspond with the data presented in this chapter, our models assume an oscillating competing load
with equal on and off durations on the first processor. In Figure 7.14a, for example, the period of oscillation
is period,g, the competing load is off during ¢, and on during ¢,, and ¢, = t;. The observed computation
rate on the loaded processor is proportional to the inverse of the total load on the processor. For example,
when a single competing load is executing on a processor, the total load on the processor is 2 (including
the load balanced application), and the computation rate is 0.5 times the rate that would be observed on
the processor if it had no competing load. For convenience, we normalize rates against the rate that would
be observed on a dedicated processor. Thus, the rate on the first processor oscillates between a minimum
value, rmin, and the maximum value, 1.0. On the rest of the processors, which have no competing loads,
therateisaways 1.0. For the measurements presented in this chapter, where there is at most one competing
load, rmin = 0.5.

For al cases, the maximum amount of work that can be computed during one oscillation period is the

same:

ta X P41ty X (rmin + P — 1)
period,g.
0.5 x period,g, x P + 0.5 x period.g X (rmin + P — 1)
period,g.
= 05xrmin+ P —05 (7.2)

Cavailable =

where the unit of measurement is the maximum performance provided by a single, dedicated processor
during one oscillation period. For each type of load balancing, we estimate cproductive, @d determine the

efficiency using Equation 1.3:
efficiency _ Cproductive

Cavailable

166 CHAPTER 7. EVALUATION

Cproductive
Distribution t, portion | tp portion Efficiency
N 05x P in + 1
Equal distribution of work P P x rmin X P x {rmin + 1)

0.5 x rmin+ P — 0.5

rmin+ P —1

Avoid tracking changing load | rmin + 1| rmin + 1 05 x rmin+ P —05

pP-1

Avoid loaded processor P-1 P-1
Vol Processo 05 x rmin+ P — 0.5

Table 7.4: Modeling performance with static allocation of work.

The models presented in this section assume that the performance observed at any time is directly
related to the current load on the system (i.e., no averaging of performance occurs). This assumption fits
well with the SOR example because of its frequent synchronizations. For the MM example, which has no
synchronization, the models should still be reasonably accurateif the oscillation period is several timesthe

load balancing period so that the effects of performance averaging are minimized.

7.5.1 Staticload balancing

There are many ways to allocate work to processors statically. Figure 7.14 shows boundary cases for the
allocation of work on the processor with oscillating load. For each case, the remaining work is allocated
equally to the other processors. The performance of these casesis summarized in Table 7.4 and graphed in
Figure 7.15. In Table 7.4, the productive computation is estimated separately for the ¢, and ¢, time periods
and combined to computethe efficiency during thewhol e oscillation period. Themodel for equal distribution
of work gives slightly better results than the measurements, but matches the trends in the measurements
quite well (Figures 7.19 and 7.20). Although static approaches such as those shown in Figures 7.14b and
7.14c are often more efficient than equal distribution of work, they are not generally applicabl e becausethey

require prior knowledge of the loads that will be on the processors.

b) Avoid tracking changing loads c¢) Avoid loaded processor

Figure 7.14: Static allocation of work. Heavy dotted line is computation rate on processor with competing
load, normalized against rate on dedicated processor. Heavy solid line is work allocated to processor with
competing load, normalized against work allocated with equal work distribution.

1.0

0.9+t

Efficiency

0.8+t

0.7}

0.6

0.5¢

0.4+t

0.3}

& Equal distribution
> Avoid tracking
+ Avoid processor

0.2+t

0.1}

0.0

0 2 4 6 8 10 12 14 16 18 20
Processors

Figure 7.15: Performance of static load balancing approaches.

7.5.2 Dynamic load balancing

For dynamic load balancing, we divide the oscillation period up into several time segments, identified in

Figure 7.16: Dynamic load balancing model for predicting performance.

The performance model presented in this section breaks down when ¢, or ¢, is less than zero. Also,
the model does not include the effects of filtering, use of a threshold for imbalance detection, or cancelling
instructionsbased on acost-benefitanalysis. Becausethe model assumesanideal input with cleantransitions,
imbalance detection is not an issue unless the amplitude of the oscillations is less than the imbalance
threshold. At about the same oscillation frequencies where the model breaks down due to large delays
or high work movement costs, the filtering and cost-benefit analysis start having significant effects on
performance, so these optimizations make extending the frequency range covered by the model even more
difficult. Our current model is most accurate when the oscillation period is at least an order of magnitude

greater than the load balancing period.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 169
L oad imbalance (t. and)

On average, the load balancer is not notified of a change in performance until one half of aload balancing
period after the change occurs; during this period, the load remains unbalanced, and one or more of the
processorsis not fully utilized. If the load balancing interactions are pipelined, thereis an additional delay
of depth load balancing periods, where depth is the pipeline depth (= 1 for the measurements presented
in this chapter). Because the length of the load balancing period is determined by the amount of work
computed during the period, nexthook (Section 4.1), rather than clock time, the length changes when the
rate changes. The instruction to correct the period is received on the slaves at the same time as the work

movement instructions. Thus,

te = (depth + 0.5) X rmin X periody ge (7.5)

t; = (depth + 0.5) x X Period;yge (7.6)

rmin
For our analysis, we assume period;, g = 1.0 seconds (from Section 4.3.4).
During ., the processor with the oscillating load is underutilized and must wait for the other processors
to finish computing:

ue =rmin+ P —1 (7.7)

During ¢, the processor with the oscillating load has slowed down. All other processors must wait for the

loaded processor to finish computing and are thus limited to its slower rate:

uy = rmin X P (7.8)

Work movement (¢, and)

During work movement, no resources are used productively so uq = u, = 0. However, values for ¢; and
t4 are still needed so that ¢, and #;, can be computed. The total size of the distributed data and the number
of processors involved in the work movement are the main factors in the cost of work movement. An
additional factor is restrictions on work movement which determine whether intermediate processors are
involved when work is moved: for applications with restricted work movement, the estimated costs must

be multiplied by the number of intermediate processors that must transfer the work.

170 CHAPTER 7. EVALUATION

Data size. Dynamic load balancing performance varies greatly between applications. The differencesin
the efficiencies between the applications are largely due to the amount of data that must be moved when
shifting work. For the MM example, portions of two matrices (B and C) must be shifted, with the total size
of each matrix 500 x 500 x 4 = 1 megabyte. For SOR, thereis only one matrix, but the 1000 x 1000 matrix
is 4 megabytes, and the 2000 x 2000 matrix is 16 megabytes. Table 7.5 summarizes the work movement
costs for the MM and SOR examples. m.holearray 1S @N estimate of the time to move the whole distributed
array between two processors, extrapolated from measurements of the time to move a single work unit.
When shifting work, each dliceis sent as a single message so the per unit cost, the total cost for sending one

dice of the data, includes both theinitial (per message) and incremental (per byte) costs (Section 5.6.1).

| Application | total units | total size (MB) | per unit cost (Msec) | muhotearray (MSEC) |
500 x 500 MM 500 2 5.46 2730
1000 x 1000 SOR 1000 4 6.91 6910
2000 x 2000 SOR 2000 16 11.99 23980

Table 7.5: Work movement costs used in modeling performance. Average of measurementstaken at startup
time for greater than 50 runs.

Number of processors. Work movement costs also vary with the number of slave processors. For asmall

number of slaves, work movement costs are higher than with more processors because a larger fraction of

the distributed datais shifted each time the rate of computation changes. For example, in atwo slave system

with a single oscillating load, the work allocated to the loaded processor alternates between one half and

onethird of the total work; thus, 3 — 2 = £ of thetotal work is shifted each time the rate changes. However,

for athree slave system, work allocated to the loaded processor alternates between one third and one fifth
1

of thetotal; only £ — £ = £ of thetotal is shifted each time. The amount of work shifted each time the rate

changes continues to decrease as the number of processorsisincreased (Figure 7.17):

. 1 1
fractionmoved = P oxP_1 (7.9)

Unrestricted work movement. Because unrestricted work movement can occur in parallel, we estimate
the time for unrestricted work movement based only on the processor that moves the most work (Section

5.6.1). Thus, each time the rate changes, the total cost of work movement for unrestricted work movement

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 171

0.20 ¢
0.18
0.16
0.14 ¢
0.12¢
0.10 +
0.08 ¢
0.06 +
0.04
0.02¢

ooob o
0123456 78 91011121314151617181920

Processors

Fraction moved per transition

Figure 7.17: Fraction of total distributed matrix moved to or from the loaded processor (the first processor
in the logical array) with each transition of the oscillating load.

is

tznr&stncted — t;nr&stncted — (F . 5P 1) X Tholearray (7.10)

Restricted work movement. For applications with restricted work movement, the work movement costs
must be adjusted to account for time spent shifting work through intermediate processors. Ideally, the work
would be shifted through the processors in parallel, using the ordering of messages described in Section
5.5.2, and the work movement cost would be determined by the processor shifting the most work, as in
the unrestricted case. Unfortunately, due to poor flow control in Nectar, each work movement message for
the SOR example required an acknowledgement, forcing work to be transferred sequentially. In Section
5.6.1, amultiplier for the work movement cost was computed by average number of hops between arbitrary
processorsin alinear array (%). However, in this case, the actual work movement patterns are known
due to our knowledge of the load patterns and the implementation. The patterns are shown in Figure 7.18.
Accurately modeling the time spent on copying data is complicated because of the possibility for overlap
between work movement and productive computation; thus, our estimates for the total work movement
costs will be conservative, i.e., high. However, the cost estimates for unrestricted work movement can be
considered as lower bounds on the costs for restricted work movement.

When the first processor (PO in Figure 7.18) slows down, work is passed sequentially from the first

processor through al the other processors, leaving ﬁ of the total moved work on each intermediate

yns for restricted work movement.

(7.11)

age, the work movement actually finishes first on the
spassed to theright, very little computation can occur

ssors must wait for PO, the processor at the beginning

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 173

of the pipeline, to send intermediate data through the pipeline. (It may be possible for the beginning of ¢, to
overlap with ¢, but only during the last pipeline phase of ¢. The size of the overlap depends on the grain

size for the application and is very complicated to model.) Therefore,

tr&stricted — (P - 1) x P % tgnrestricted
g 2 P-1
% 7%nr&stricted

1 1

Ll
2
P+
2P 2xP-1

x () X Mwholearray (7.12)

The work movement during t[l‘ﬂ”c"ed takes the same number of steps and the same amount of time as
during t;&“r‘ded. However, when work is passed to the left, there is overlap between the work movement
and the following computation, ¢., because PO is the first processor to finish with work movement. To

compensate for the overlap, we scale the estimate of the work movement costs:

grestricted _ t;arided x overlapscale (7.13)

overlapscale is computed by subtracting the total time spent on productive work (on all processors) from

the total CPU time (on all processors) computed for work movement assuming no overlap:

Cpu — Cpu ;
overlapscale = Plhooverlap — Pllproductive (7.14)
Cpunooverlap
CPUnooverlap = P % t;estricted (7.15)
P-2 i
CPUproductive = S X Z (Z 7) (7.16)
i=1 j=1

where s is the time for each work movement step (Equation 7.11).
gyprestricted gngj ¢unrestricted gre ysed in modeling the efficiency of MM with dynamic load balancing, and
grstricted gnd ¢festricted gre used in modeling the efficiency of SOR. ¢yMesticted gnd guestricted gre gjso used in

computing an upper bound on the efficiency of the SOR example.

Balanced load (¢, and t3,)

Given the oscillation period and the values of t., t4, t ¢, and t, determined in the preceding paragraphs, the

lengths of segmentst, and ¢;, are computed using Equation 7.4:

te = 0.5 x periodyg, — te — tg (7.17)

174 CHAPTER 7. EVALUATION
tn = 0.5 x periodyg. — 5 —t,4 (7.18)

Since the load is balanced during ¢. and t,, all available resources are used productively:
ue =P (7.19)

up, =rmin+ P -1 (7.20)

Efficiency

Once al components of Equation 7.2 have been determined, the efficiency can be computed. The only
run-time information required for the model (so far) is estimates of the time to move data slices between
processors (Table 7.5). Figures 7.19a,c,e and 7.20a,c,e show the computed efficiencies for two oscillation
periods for the MM and SOR examples. The predicted efficiencies with equal distribution of work are
also shown. (For the 2 and 6 second oscillation periods, t. and/or t;, is less than zero, so the model is not
applicable.)

Figures7.2, 7.3, and 7.4 indicate that there is inefficiency even when load is balanced. Thisinefficiency
is due to modifications to data structures, changes in access patterns, and communication required by the
paralelized application and, for the load balanced versions, the load balancing interaction costs. The
inefficiency only affects the times when the processors are actively working on the computation, i.e., not
the work movement costs. Thus, to account for this inefficiency, we multiply the estimates of wu., .,
us, and uy, by the efficiencies measured for the parallel code with load balancing on the corresponding
dedicated homogeneous systems (from Figures 7.2c, 7.3c, and 7.4c). Themodel for performance with equal
distribution of work is multiplied by the dedicated homogeneous efficiencies measured for the parallel code
without load balancing. The recomputed efficiency results based on the modified models are shown in
Figures 7.19b,d,f and 7.20b,d,f. For comparison, these graphs also include the measured efficiency values
collected in the same environments. For reference, the measurements from the dedicated homogeneous
environment are also shown (with smaller symbols connected by dashed lines).

For all of the examples, the plots of the model for equal distribution of work parallel the plots of the
corresponding measurements, although the model predicts slightly higher efficiencies.

For the MM example, the slopes of the efficiency curves for the dynamic load balancing model and

the measurements are similar, but the model produces higher efficiencies. The efficiencies predicted by the

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 175

& 1.0 S 10
IS IS
9 K9]
S 09 S 09
= =
u 0.8 u 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3 —e— Dynamic balancing model
0.2 —e— Dynamic balancing model 0.2 —&- Dynamic balancing measurements
. —<— Equal distribution model . —<— Equal distribution model
01 01 —-&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) 500 x 500 MM b) 500 x 500 MM offset by dedicated inefficiency
& 1.0 S 10
IS IS
.(D .(D
S 09 S 09
= =
u 0.8 u 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3 —e— Dynamic balancing model
0.2 —e— Dynamic balancing model 0.2 —&- Dynamic balancing measurements
. —<— Equal distribution model . —<— Equal distribution model
01 01 —-&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
¢) 1000 x 1000 SOR d) 1000 x 1000 SOR offset by dedicated inefficiency
& 10 S 10
IS IS
9 K9]
S 09 S 09
= =
u 0.8 u 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3 —e— Dynamic balancing model
0.2 —e— Dynamic balancing model 0.2 —&- Dynamic balancing measurements
. —<— Equal distribution model . —<— Equal distribution model
01 01 —-&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
€) 2000 x 2000 SOR f) 2000 x 2000 SOR offset by dedicated inefficiency

Figure 7.19: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 60 sec, duration = 30 sec) on first processor.

176 CHAPTER 7. EVALUATION
& 1.0 S 10
IS IS
20 20
S 09 S 09
= =
u 0.8 u 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3 —e— Dynamic balancing model
0.2 —e— Dynamic balancing model 0.2 —&- Dynamic balancing measurements
. —<— Equal distribution model . —<— Equal distribution model
01 01 —-&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) 500 x 500 MM b) 500 x 500 MM offset by dedicated inefficiency
& 1.0 S 10
IS IS
20 20
S 09 S 09
= =
u 0.8 u 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3 —e— Dynamic balancing model
0.2 —e— Dynamic balancing model 0.2 —&- Dynamic balancing measurements
. —<— Equal distribution model . —<— Equal distribution model
01 01 —-&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
¢) 1000 x 1000 SOR d) 1000 x 1000 SOR offset by dedicated inefficiency
D 10 D 10
IS IS
20 20
S 09 S 09
= =
u 0.8 u 0.8
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3 —e— Dynamic balancing model
0.2 —e— Dynamic balancing model 0.2 —&- Dynamic balancing measurements
. —<— Equal distribution model . —<— Equal distribution model
01 01 —-&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors

€) 2000 x 2000 SOR

f) 2000 x 2000 SOR offset by dedicated inefficiency

Figure 7.20: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 20 sec, duration = 10 sec) on first processor.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 177

N

=
(S

09+

Efficiency

0.8+t

0.7}

0.6

0.5t

04+t

0.3+t

02+t

0.1t

0.0
0

—e— Dynamic balancing model
—< Equal distribution model

1

2

3 4 5 6 7
Processors

a) 500 x 500 MM

Efficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—e— Dynamic balancing model

—— Dynamic balancing measurements
—<— Equal distribution model

—&- Equal distribution measurements

0.0
0

1 2 3 4 5 6 7
Processors

b) 500 x 500 MM offset by dedicated inefficiency

Figure 7.21: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 60 sec, duration = 30 sec) onfirst processor. t. = t; = 2.5 load balancing periods.

Efficiency

0.8+

0.7}

0.6

0.5t

04+t

0.3+t

02+t

0.1t

1.0

09+

—e— Dynamic balancing model
—< Equal distribution model

0.0
0

1

2

3 4 5 6 7
Processors

a) 500 x 500 MM

Efficiency

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
0

—e— Dynamic balancing model

—— Dynamic balancing measurements
—<— Equal distribution model

—-&- Equal distribution measurements

1 2 3 4 5 6 7
Processors

b) 500 x 500 MM offset by dedicated inefficiency

Figure 7.22: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 20 sec, duration = 10 sec) onfirst processor. t. = t; = 2.5 |load balancing periods.

model are higher partly because the model does not consider the filtering of the measured rate information.

Asaresult of thefiltering, work is not shifted all at once to reach the balanced distribution. It takes at least

2 or 3 load balancing periods (on average, about 5 periods) after arate change for the balanced distribution

to be reached. If the responsetimes (¢, and ¢) in the model are increased by 1 load balancing period, the

model and the measurements move closer (Figures 7.21 and 7.22). There may also be some error in the

estimates of work movement costs.

For SOR, the accuracy of the efficiency model changes with the frequency of oscillation. For the 60

178 CHAPTER 7. EVALUATION

S 10 S 10
IS IS
kY kS
:.L:’ 0.9 ..L:’ 0.9
N N
w 0.8 w 0.8

0.7 0.7

0.6 0.6

0.5 0.5

04 04

03 03 —e— Dynamic balancing model

0.2 —e— Dynamic balancing model 0.2 —— Dynamic balancing measurements

. —<— Equal distribution model . —<— Equal distribution model
01 01 —&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) 1000 x 1000 SOR b) 1000 x 1000 SOR offset by dedicated inefficiency

> 1.0 S 10
IS IS
Q2 Q2
:.L:’ 0.9 ..L:’ 0.9
N N
w 0.8 w 0.8

0.7 0.7

0.6 0.6

0.5 0.5

04 04

03 03 —e— Dynamic balancing model

0.2 —e— Dynamic balancing model 0.2 —— Dynamic balancing measurements

. —<— Equal distribution model . —<— Equal distribution model
01 01 —&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
€) 2000 x 2000 SOR d) 2000 x 2000 SOR offset by dedicated inefficiency

Figure 7.23: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 60 sec, duration = 30 sec) onfirst processor. t. = t; = 2.5 |load balancing periods.
Work movement cost estimates 25% higher than valueslisted in Table 7.5.

second period, the model produces efficiency curves that parallel the measured efficiency curves (Figure
7.19d,f). The curves are aimost coincident if the response time is increased by 1 load balancing period
and the estimates of the per slice work movement costs are increased by 25% (Figure 7.23). For the SOR
examples, because work movement costs are high due to the large size of the distributed data, a25% change
in the cost estimates has alarge effect on the efficiency predicted by the model. For theMM example, which
has a smaller data set, scaling the work movement cost estimates has a much smaller effect.

For the 20 second period, the slopes of the efficiency curves for the dynamic load balancing model

and the measurements are noticeably different (Figure 7.20d,f), especially for the 2000 x 2000 problem

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 179

> 10 S 10

< <

Q ko)

:.L:’ 0.9 ..L:’ 0.9

N N

Y Y
0.7 0.7
0.6 0.6
0.5 0.5
0.4 0.4
0.3 0.3

—e— Dynamic balancing model
—— Dynamic balancing measurements

—e— Dynamic balancing model

0.2 —<— Equal distribution model 0.2 —<— Equal distribution model

01 01 —-8- Equal distribution measurements

0.0 0.0

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
a) 1000 x 1000 SOR b) 1000 x 1000 SOR offset by dedicated inefficiency

> 10 > 10
IS IS
2 R
:.L:’ 0.9 ..L:’ 0.9
N N
w 0.8 w 0.8

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

03 03 —e— Dynamic balancing model

0.2 —e— Dynamic balancing model 0.2 —— Dynamic balancing measurements

. —<— Equal distribution model . —<— Equal distribution model
01 01 —&- Equal distribution measurements
0.0 0.0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Processors Processors
€) 2000 x 2000 SOR d) 2000 x 2000 SOR offset by dedicated inefficiency

Figure 7.24: Efficiency predicted by dynamic load balancing model for homogeneous environment with
oscillating load (period = 20 sec, duration = 10 sec) on first processor, assuming unrestricted work movement.

size. For the measurements, the efficiency curves stay level or slope upward as the number of processors
is increased, while for the model, the curves always slope downward. Changing the response time or the
estimate of the time to transfer one data slice do not correct the problem. In fact, the model for applications
using unrestricted work movement produces better approximations of the measured efficiencies (Figure
7.24). Thisindicates that work movement costs are not as high as expected.

A probablereason for the lower work movement costsisthat lesswork is being moved than predicted by
the model. Asthe number of processorsincreases, because of the decreasing benefits of moving work onto
theloaded processor, theimbalance detection and profitability determination phases of theload balancer start

to have significant effects on the amount of work moved: the threshold for detecting load imbalance reduces

180 CHAPTER 7. EVALUATION

work movement by allowing the load to remain in an unbalanced state, and the profitability determination
phase cancels work movement instructions. The result of these optimizations is that only part of the work
for balancing the load gets moved before the competing load changes again.

The reduction in work movement due to the threshold depends on the timing of eventsin the system,
and is somewhat random. For cases where work movement costs are low, imbal ance detection sometimes
resultsin decreased performance because the systemis left unbalanced (e.g., Figure 5.4c), but in this case,
the results are beneficial because high work movement costs can be avoided.

To compute projected benefits, the profitability determination phase is determining the stability of the
system by estimating the frequency of substantial performance changes in the system. (This method of
estimating stability corresponds well with the oscillating loads on the system, but may not work as well
with systems with other load characteristics.) When the oscillation period is decreased from 60 seconds to
20 seconds, the estimate of system stability decreases, and the same high cost of shifting data slices may
exceed the smaller projected benefits. Asthe number of processorsisincreased, the benefit of moving work
back to the loaded processor decreases, and work movement instructions are more likely to be cancelled.
With enough processors, the system stops tracking the changing portion of the performance, asin the“avoid
tracking” static scheme. Figure 7.15 shows that with the “avoid tracking” static scheme, efficiency exceeds
90% for systems with greater than two processors, so if work movement costs are high, they are likely to
outweigh the small benefit of balancing the load. Figure 7.25 demonstrates how the amount of work shifted
decreases relative to the amounts predicted by Equation 7.9 as the number of processorsisincreased. The
dashed lines indicate the expected allocation of work on the loaded processor during the periods when the
competing load is active (lower line) and inactive (upper ling). The difference between the actual alocation
and the expected allocation during periods when the competing load is not active increases as the number
of processors increases due to the threshold for detecting load imbalance. For the system with 6 daves
(Figure 7.25¢), some transitions in load are ignored completely because work movement instructions are
cancelled by the profitability determination phase. The reduction in work movement when benefits of
movement are small helpsincrease the efficiency in situations where performance is dominated by the load
balancing overhead, although not necessarily enough to result in a net improvement over the case with equal

distribution.

7.5. MODELING PERFORMANCE WITH OSCILLATING LOADS 181

g 1.10 g
S 1.00 N
s 090} o
(9] (9]
N oso} S
| 070} <
§ feol §
o UUr [S)
S 050} <
0.40
030} .
020 Raw rate 0.20 Y —— Raw rate
0.10 + Work 0.10 Work
0.00 I I) 0.00 I . . .)
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250
time (seconds) time (seconds)
a) 2 dlave system b) 3 slave system
S 3 100
g S 090
E T 080
S X o070
© ©
g £ 060
S S 050
S S o
0.40
0.30t
0.20 —— Raw rate 0201 —— Raw rate
0.10 m— \Nork 0.10 }+ — \Nork
0.00 n n) 0.00 n n)
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
time (seconds) time (seconds)
) 4 dlave system d) 5 dave system
3 200
S 090
E 0.80
= 0.70
[
g 060
S
g 050
0.40}
0.30}
0201 —— Raw rate
010t — \Work
0.00 . n n)
0O 10 20 30 40 50 60 70 80 90 100

time (seconds)

€) 6 slave system

Figure7.25: Measured performanceand work movement onloaded slavefor 2000 2000 SOR (10 iterations)
running on systemswith an oscillatingload (period = 20 sec, duration = 10 sec) ononeslave. Work movement
decreasesrelative to expectations as the number of processorsincreases because of imbalance detection and
profitability determination. Dashed lines show expected ranges for work allocation.

7.5.3 Improving the model/lmproving the system

For more accurate modeling, the effects of imbalance detection, filtering, and the profitability determination
phase should be taken into account. However, these optimizations are difficult to model becausethey affect
both work movement costs and the degree of imbalance in the “unbalanced” and “ balanced” portions of the

oscillation period. Simulation is probably an easier approach for including the effects of these optimizations

182 CHAPTER 7. EVALUATION

because the optimizations have some dependence on past eventsin the execution of the program. The model
should also be extended to handle higher frequency oscillations, where work allocations and changes in
performance are more than one half of the oscillation period out of phase, i.e., t. or ¢ islessthan zero.

Work movement costs are very complicated and are implementation dependent, making them difficult
to estimate accurately. Measurements of the costs at the start of program execution may not be accurate
over the entire run of the program due to contention in the network or occasional unreliability (e.g., dropped
packets) of the network. An additional factor that was not included in the model is the effect of the loads
on the processors on the costs of work movement; to account for this, both the loads on the senders and the
receivers must be considered in the costs.

The modeling helped identify some deficienciesin the system. We discovered that imbalance detection
and profitability determination are having the desired effect of reducing work movement costs, but, in
some cases, they do not reduce the costs enough for dynamic load balancing to result in an overal gainin
performance. For applicationswith large data slices running on systemswith rapidly changing performance,
work movement instructions should be cancelled (or altered) more aggressively. Further investigation
of the imbalance detection, filtering, and profitability determination optimizations and, possibly, other

optimizations for reducing unnecessary work movement is necessary.

7.6 Limitsof dynamic load balancing approach

The same factors that limit the range of frequenciesfor which performance can be easily modeled also limit
the load balancing systems ability to deal well with high frequency changesin load. When ¢, or ¢, isless
than zero, work movement is completely out of phase with the changesin load and is unlikely to result in
good performance. Fortunately, selection of an appropriate |oad balancing frequency, adding hysteresiswith
imbalance detection, filtering raw measurements, and doing a cost-benefit analysisto limit work movement
al help prevent the system from responding to high frequency changes. When the frequency of changes
is high, the system sees the average performance over a computation period and need not respond to each
changein load. These averaging effects are difficult to model and are limited by synchronizations required
by the application. These techniques do not completely eliminate the problems with rapidly changing
loads, as demonstrated in Figure 7.26, but Figures 7.11 and 7.12 indicate that in some cases, dynamic load

balancing using the techniques still results in performanceimprovementsin rapidly changing environments.

7.7. SUMMARY 183

1.00
0.90
0.80
0.70 J
0.60
0.50
0.40
0.30 |
0.20} —— Raw rate

0.10 + — \Work
0.00

normalized value

0 20 40 60 80 100 120 140 160 180
time (seconds)

Figure 7.26: Measured performance and resulting work allocation on loaded slave for 1000 x 1000 SOR
(40 iterations) running on a4 slave system with an oscillating load (period = 2 seconds, duration = 1 second)
on one slave.

7.7 Summary

In this chapter, we presented data collected for the SOR and MM applications run on the Nectar system
under different load conditions. The efficiency in using available resources is the primary measure of
performance used to evaluate and compare different runs. We compared performance with dynamic load
balancing to performance with a static, equal distribution of work. Runs in a dedicated homogeneous
environment showed that overhead added by load balancing is small and within the bounds expected with
our method of frequency selection (i.e, approximately 5% overhead, from Chapter 4). Runswith a constant
load on one of the processors showed that load is redistributed correctly and improves performance; the
efficiency is approximately the same as in the dedicated homogeneous environment. In more dynamic
environments, with an oscillating load on one of the processors, the performance improvements with
dynamic load balancing were smaller, and in some cases the performance dropped. For the MM example,
the parallelization efficiency was improved by load balancing in almost every case, but there still seemsto
be room for significant improvement. For the SOR examples, load balancing was much less effective and
actually decreased performance in many of the environments.

To identify causes of inefficiency, we modeled the efficiency of our dynamic load balancing system
for systems with an oscillating load on one processor. For the MM example, both the work movement
costs and the delay in responding to changes in loads contributed to the inefficiency. However, for SOR,
work movement costs were the dominant factor. In our load balancing system, the work movement costs
increase with the size of the distributed data, so the larger data sizes used for the SOR example account for

part of its higher work movement costs. In addition, for applications with restricted work movement, like

184 CHAPTER 7. EVALUATION

SOR, intermediate processors are involved in moving work. In Section 5.5.2, we presented an algorithm
which maximized parallelism in work movement, but in our implementation, we were unable to obtain the
parallelism due to poor flow control in the network. Because the work is not shifted through the processors
in parallel, the work movement costs in the model must be scaled by a factor approximately proportional
to the number of processors (i.e., O(P)), and performance drops as the number of processorsis increased.
With parallel work movement, however, performance increases as processors are added because the time
for the work movement is approximately proportional to %. This highlights the importance of parallelism
in moving work and the need for good flow control in the network to make implementing the parallel
movement possible (without significant effort).

We compared the model of dynamic load balancing performance with the measurements on the Nectar
system. The model matches the measurements when the competing load has a low oscillation period,
but for higher frequency load changes, especialy for applications with high work movement costs, the
model produces lower efficiencies than the measurements due to the effects of the imbalance detection and
profitability determination optimizations not included in the model. These optimizations were successful in
reducing work movement costs, but did not always reduce the costs enough to result in net improvements
in performance for dynamic load balancing compared with a static, equal distribution of work. Further

investigation of optimizations to reduce work movement costs is needed.

Chapter 8

Conclusions

Parallelizing compilers for networks of processors that are shared with other users must generate efficient
code that supports dynamic load balancing. In this thesis we presented an architecture for a system that
supports the automatic generation of parallel programs with dynamic load balancing. In our system the
parallelizing compiler generates code that includes calls to a run-time load balancer. The load balancer
generates work movement instructions taking into account application-specific features so that datalocality
and data reuse are maximized to minimize communication costs. The target application domain for the
compiler is applications consisting of parallelized DOALL and DOACROSS loops. We described how the
compiler and runtime system cooperate to automatically select parameters for dynamic load balancing and
control of grain size. Weimplemented aruntime system and described the additional code the compiler must
generateto support load balancing. Performance measurementsbased on two hand-parallelized applications
showed that dynamic load balancing can be effective in improving parallelization efficiency and reducing
execution time of applications in an environment with an oscillating load on one processor. However,
performance of dynamic load balancing is limited by the cost of work movement and the delay in reaction

to changing loads, especially for applications with large distributed data sizes.

8.1 Contributions

This thesis demonstrated the feasibility of having a paralelizing compiler generate efficient code that

supports dynamic load balancing on a network workstations. Application-specific knowledge provided to

185

186 CHAPTER 8. CONCLUSIONS

the runtime system by the compiler is used to aid in load balancing decisions so that load balancing can be

effective and have low overhead.

Dynamic loop scheduling. This thesis described a new approach to load balancing for automatically
paralelized applications on networks of workstations. Most prior approaches for scheduling of loop
iterations do not fully exploit locality in application programs, but our approach, by retaining the structure
of the application code and considering dependencesin the code, improves data reuse and reduces the need
for communication. Also, our load balancing system automatically adjusts to the characteristics of the
application and target environment to maximize performance. In the thesis we identified and addressed
several performance issues, including grain size, load balancing frequency, the load balancing interaction
cost, and the cost of work movement. We demonstrated our approach with an implementation of a load
balancing runtime system, and we evaluated the performance of two hand-coded applications with load
balancing running in severa environments. To evaluate the performance of programs with dynamic load
balancing, we designed an efficiency measure appropriate for a dynamic, heterogeneous environment. We
also presented a model for predicting the performance of a load balanced application in an environment

with an oscillating load on one processor; the model is consistent with our measurements.

Grain size on a loosely-coupled, shared system. For good performance on a distributed system, an
application must have an appropriate grain size. We described and demonstrated a method for selecting
the optimal grain size for DOACROSS loops based on both communication costs and parallelism. The
compiler and runtime system cooperate in selecting and controlling the grain size. At run time, grain size
is controlled by setting the block size of a strip-mined loop. A similar method for selecting grain size is
used in the Fortran D compiler [26], but with a less flexible method of estimating the computation and
communication costs for the application [23]. However, most previous methods for controlling grain size
[61, 65] only consider communication costs. Because our target system may have competing loads, grain
size may interact with the scheduling of processes by the operating system. We simulated this interaction
and found that it has little effect on the performance of pipelined, DOACROSS loops, but, for paralel,

DOALL loops, grain size should be as large as possible to maximize and stabilize performance.

82 AREASFOR FUTURE WORK 187

L oad balancing algorithms. Severa of the ideas and techniques developed in this work can be used in
other load balancing systems. Our idea of using computation rate as a measure for comparing performance
on a dynamic, heterogeneous set of processors has been proposed before [40, 41], but we have introduced
ideas from control theory and signal processing, such as sampling frequency and filtering, to eliminate
undesirable fluctuations in the performance measurements, resulting in better total performance for the load
bal anced application. We also described amethod for quantifying load imbal ance based on our performance
measure (or any other measure that quantifies the relative capabilities of the different processors) and the

current work distribution; this measure can be used to decide when load balancing should be performed.

Parallelizing compilers. We described the modifications to a parallelizing compiler needed to support
dynamic load balancing. Many of the necessary changes are due to having to deal with dynamic, irregular
data distributions. We described data structures that can be used to manage such distributions with various
application requirements and in different environments. We also described how communication code must

be modified to deal with the dynamic distributions.

8.2 Areasfor futurework

This work described the features that are needed in a parallelizing compiler to support dynamic load
balancing. The next step is to incorporate the features into a parallelizing compiler so that many more
applications can be run and evaluated with our load balancing system. Since the prototype Nectar system
[3] has been decommissioned (R.I.P,, JUNE 29, 1994), the runtime system should be reimplemented on
a newer architecture, using a more portable message-passing interface, such as PVM [63] or MPI [19].
Because these interfaces are more portable, however, we expect communication latenciesto be much higher
than with Nectarine [57], which was designed specifically for Nectar. The automatic calibration features
of our load balancing system, e.g., for grain size and frequency control, should be very helpful in moving
between different machines once the runtime system has been made more portable.

A shortcoming of our current load balancing model is that the cost of work movement is proportional
to the size of the distributed data structures; the unit of work movement is an entire slice of the distributed
data. Because of this problem, with load balancing, the performance of 2000 x 2000 (10 iterations) SOR

was much worse than that of 1000 x 1000 (40 iterations) SOR, even though both problems require the

188 CHAPTER 8. CONCLUSIONS

same amount of computation. This problem must be addressed for our load balancing approach to be more
generally applicable. Tiling of the iteration space may help reduce the problem, although the data structures
may become much more complicated and difficult to manage.

Our system relies heavily on its ability to predict future performance (i.e., computation rates) on each
of the slaves. Thisis an areawhere there is much room for improvement. Further investigation of control
theory and signal processing techniques may provide more effective ways of selecting sampling frequencies
(load balancing frequencies) and of filtering raw performance data so that load balancing is more effectivein
reducing the execution time of parallelized applications. A more general model for predicting performance
with dynamic load balancing should be derived, possibly based on techniques from control theory.

Automatic selection of grain sizeis a very useful technique for distributed systems. For DOACROSS
loops, the technique we described for selecting the optimal grain size (also discussed in [26] and [27])
should be expanded to handle tiled loops. If the compiler provides the runtime system with simple models
of the computation and communication in a DOACROSS loop nest and sets up code for calibrating costs,
the runtime system should be able to select an appropriate grain size for the loop. Also, techniques for
controlling grain size for DOALL loops, e.g., using loop interchange, should be investigated.

Our work in this thesis addressed load balancing of a single loop nest distributed in a single dimension.
Although many applications consist of one or more phases, each containing a single loop nest that can be
load balanced independently (e.g., Gaussian elimination can be performed using LU decomposition, forward
substitution, and back substitution), some applications may also have sections where multiple loop nests
interact and share distributed data. The execution of loop nests could alternate so that load balancing of one
nest could undo the load balancing of the other. If applicationswith this type of structure are common, this
problem should be investigated and addressed.

For some loop nests, more parallelism may be available with multidimensional distributions so incor-
porating load balancing approaches for multidimensional distributions into a parallelizing compiler should
also beinvestigated. A dimensional exchange approach [70, 72], in which balancing is done successively
in each dimension, is an obvious choice for balancing of multidimensional distributions.

We presented several techniques for preventing the central load balancer from becoming a bottleneck
for the application: we use efficient algorithms in the load balancer, select the load balancing frequency to

keep the load balancing overhead low, and pipeline theinteractions between the slaves and the load bal ancer.

82 AREASFOR FUTURE WORK 189

As the number of processors becomes very large, the load balancer will not become a bottleneck because
the system will reduce the frequency of load balancing to compensate for the higher load balancing costs.
However, reducing the load balancing frequency makes the load balancer less responsive. To address this
problem, the load balancer should be distributed, and the cost of performance collection should be reduced.
Since we have made the “central load balancer” an abstract entity from the point of view of the slaves, it

should be possible to distribute the load balancer without changing the slaves’ view of the system.

190 CHAPTER 8. CONCLUSIONS

Bibliography

[1] D. Adams. Cray T3D system architecture overview. Revision 1.C. Cray Research Inc., September,
1993.

[2] JohnR. Allen and Ken Kennedy. Automatic Loop Interchange. In Proceedings of the ACM SSGPLAN
"84 Symposium on Compiler Construction, pages 233-246, Montreal, Canada, June 17-22, 1984.
ACM Specia Interest Group on Programming Languages.

[3] Emmanuel Arnould, Francois Bitz, Eric Cooper, H. T. Kung, Robert Sansom, and Peter Steenkiste.
The Design of Nectar: A Network Backplane for Heterogeneous Multicomputers. In ASPLOS 1
Proceedings, pages 205-216. ACM/IEEE, April, 1989.

[4] Maurice J. Bach. The Design of the Unix Operating System. Prentice Hall Software Series. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey 07632, 1986.

[5] Vasanth Balasundaram, Geoffrey Fox, Ken Kennedy, and Ulrich Kremer. A Static Performance
Estimator to Guide Data Partitioning Decisions. In Third ACM SSGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 213-223, Williamsburg, VA, April, 1991. ACM Press.

[6] Richard Ernest Bellman. Adaptive Control Processes. a Guided Tour. Princeton University Press,
Princeton, NJ, 1961.

[7] Shekhar Borkar, Robert Cohn, George Cox, Sha Gleason, Thomas Gross, H. T. Kung, Monica Lam,
Brian Moore, Craig Peterson, John Pieper, Linda Rankin, P. S. Tseng, Jim Sutton, John Urbanski,
and Jon Webb. iWarp: An integrated solution to high-speed parallel computing. In Proceedings of
Supercomputing ' 88, pages 330-339, Orlando, FL, November 14-18, 1988. |IEEE Computer Society
and ACM SIGARCH.

[8] D. Calahan. Recognizing and Parallelizing Bounded Recurrences. In U. Banerjeg, D. Gelernter,
A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel Computing. Fourth Inter-
national Workshop., pages 169185, Santa Clara, CA, August 7-9, 1991. Springer-Verlag.

[9] David Callahan and Ken Kennedy. Compiling Programs for Distributed-Memory Multiprocessors.
Journal of Supercomputing, 2(2):151-169, October, 1988.

[10] Thomas L. Casavant and Jon G. Kuhl. A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems. |EEE Trans. on Software Engineering, 14(2):141-154, February, 1988.

191

192

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

B. Chapman, H. Zima, and P. Mehrotra. Handling Distributed Datain Vienna Fortran Procedures. In
Languages and Compilers for Parallel Computing. 5th International Workshop Proceedings., pages
248-263, New Haven, CT, August, 1992. Springer-Verlag.

Computer SystemsResearch Group, Computer Science Division, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, CA 94720. UNIX Programmer’s Reference
Manual (PRM), 4.3 berkeley software distribution edition, April, 1986.

Eric Cooper, Onat Menzilcioglu, Robert Sansom, and Francois Bitz. Host Interface Design for
ATM LANSs. In Proceedings of the 16th Conference on Local Computer Networks, pages 247—258,
Minneapolis, MN, October 14-17, 1991. |[EEE Computer Society Press.

ThomasH. Cormen, CharlesE. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. The MIT
Electrical Engineering and Computer Science Series. The MIT Press (McGraw-Hill Book Company),
Cambridge, MA, 1990.

Ron Cytron. Doacross: Beyond V ectorization for Multiprocessors (Extended Abstract). In Kai Hwang,
Steven M. Jacobs, and Earl E. Swartzlander, editors, Proceedingsof the 1986 Inter national Conference
on Parallel Processing, pages 836-844, University Park, PA, August 19-22, 1986. IEEE Computer
Society Press.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK Users' Guide. Saociety for
Industrial and Applied Mathematics, Philadelphia, 1979.

Allan L. Fisher and Anwar M. Ghuloum. Parallelizing Complex Scansand Reductions. In Proceedings
of the ACM SIGPLAN ' 94 Conference on Programming Language Design and Implementation, pages
135-146, Orlando, FL, June 20-24, 1994. ACM Press.

Jon Flower and Adam Kolawa. Express is not just a message passing system: Current and future
directionsin Express. Parallel Computing, 20(4):597-614, April, 1994.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical report,
University of Tennessee, Knoxville, TN, May, 1994.

Gene F. Franklin, J. David Powell, and Michael L. Workman. Digital Control of Dynamic Systems.
Addison-Wesley Series in Electrical and Computer Engineering: Control Engineering. Addison-
Wesley Publishing Company, Reading, MA, 1990.

Christopher Giertsen and Johnny Petersen. Parallel VVolume Rendering on a Network of Workstations.
|EEE Computer Graphics and Applications, 13(6):16—23, November, 1993.

R. W. Hamming. Digital Filters (Second Edition). Prentice-Hall Signal Processing Series. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey 07632, 1983.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C.-W. Tseng. An Overview of the Fortran
D Programming System. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Languages
and Compilers for Parallel Computing. Fourth International Workshop., pages 18-34, Santa Clara,
CA, August 7-9, 1991. Springer-Verlag.

BIBLIOGRAPHY 193

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

SeemaHiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler Support for Machine-Independent
Parallel Programming in Fortran D. In J. Saltz and P. Mehrotra, editors, Languages, Compilers, and
Run-Time Environments for Distributed Memory Machines, Amsterdam, The Netherlands, 1992.
Elsevier Science Publishers B. V. (North-Holland).

SeemaHiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD Distributed-
Memory Machines. Communications of the ACM, 35(8):66-80, August, 1992.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluation of Compiler Optimizations
for Fortran D on MIMD Distributed-Memory Machines. In Proceedings of the 1992 International
Conference on Supercomputing, pages 1-14, Washington, DC, July 19-23, 1992.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Evaluating Compiler Optimizations for
Fortran D. Journal of Parallel and Distributed Computing, 21(1):27—45, April, 1994.

Susan Flynn Hummel, Edith Schonberg, and Lawrence E. Flynn. Factoring: A Practica and Ro-
bust Method for Scheduling Parallel Loops. In Supercomputing '91 Proceedings, pages 610-619,
Albuguerque, NM, November 18-22, 1991. IEEE Computer Society Press.

Ken Kennedy and Kathryn S. McKinley. Optimizing for Parallelism and Data L ocality. In Proceedings
of 1992 International Conference on Supercomputing, pages 323-334, Washington, DC, July 19-23,
1992. ACM Press.

C.-C.J. Kuo and T. F. Chan. Two-color Fourier analysis of iterative algorithms for elliptic problems
with red/black ordering. SAM Journal on Scientific and Statistical Computing, 11(4):767—793, July,
1990.

Richard E. Ladner and Michael J. Fischer. Parallel Prefix Computation. Journal of the Association for
Computing Machinery, 27(4):831-838, October, 1980.

Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design
and Implementation of the 4.3BSD UNIX Operating System. Addison-Wesley Series in Computer
Science. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1989.

Hui Li, Sudarsan Tandri, Michael Stumm, and Kenneth C. Sevcik. Locality and Loop Scheduling on
NUMA Multiprocessors. In Proceedings of the 1993 Inter national Conference on Parallel Processing,
pages [1-140-1-147. CRC Press, Inc., August, 1993.

Frank C. H. Lin and Robert M. Keller. The Gradient Model Load Balancing Method. |EEE Trans. on
Software Engineering, SE-13(1):32—38, January, 1987.

David B. Loveman. Program Improvement by Source-to-Source Transformation. Journal of the
Association for Computing Machinery, 24(1):121-145, January, 1977.

Steven Lucco. A Dynamic Scheduling Method for Irregular Parallel Programs. In Proceedings of
the ACM SIGPLAN ’92 Conference on Programming Language Design and Implementation, pages
200211, San Francisco, CA, June, 1992. ACM Press.

194

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

BIBLIOGRAPHY

Evangelos P. Markatos and Thomas J. LeBlanc. Using Processor Affinity in Loop Scheduling on
Shared-Memory Multiprocessors. In Proceedings of Supercomputing ' 92, pages 104-113, Minneapo-
lis, MN, November 1620, 1992. |EEE Computer Society Press.

Evangelos P. Markatos and Thomas J. LeBlanc. Using Processor Affinity in Loop Scheduling on
Shared-Memory Multiprocessors. |EEE Transactions on Parallel and Distributed Systems, 5(4):379—
400, April, 1994.

S. Mohan and Pinaki Mazumder. Wolverines: Standard Cell Placement on aNetwork of Workstations.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(9):1312-26,
September, 1993.

Nenad Nedeljkovit and Michael J. Quinn. Data-Parallel Programming on aNetwork of Heterogeneous
Workstations. In Proc. of the First Int'l Symposium on High-Performance Distribution Computing,
pages 28-36. |EEE Computer Society Press, September, 1992.

Hiroshi Nishikawaand Peter Steenkiste. A General Architecture for Load Balancing in a Distributed-
Memory Environment. In Proceedingsof the 13th International Conference on Distributed Computing
Systems, pages 47-54, Pittsburgh, PA, May, 1993. |IEEE, |IEEE Computer Society Press.

David A. Padua, David J. Kuck, and Duncan H. Lawrie. High-Speed Multiprocessors and Compilation
Techniques. |EEE Trans. on Computers, C-29(9):763—776, September, 1980.

David A. Padua and Michael J. Wolfe. Advanced Compiler Optimizations for Supercomputers.
Communications of the ACM, 29(12):1184-1201, December, 1986.

Douglas M. Pase, Tom MacDonad, and Andrew Meltzer. MPP Fortran Programming Model.
Technical report, Cray Research, Inc., 655F Lone Oak Drive, Eagan, Minnesota 55121, May
19, 1994. Interna document. Available on World Wide Web as “ftp://ftp.cray.com/product-
info/program_env/program_model.html”.

Constantine D. Polychronopoul os. Toward Auto-scheduling Compilers. The Journal of Supercomput-
ing, 2(3):297-330, 1988.

Constantine D. Polychronopoulosand David J. Kuck. Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers. |IEEE Trans. on Computers, C-36(12):1425-1439, December,
1987.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical Recipes
in C — The Art of Scientific Computing. Cambridge University Press, Cambridge, 1988.

Michael J. Quinnand Philip J. Hatcher. Data-Parallel Programming on Multicomputers. | EEE Software,
7(5):69-76, September, 1990.

K. K. Ramakrishnan. Performance Considerationsin Designing Network Interfaces. IEEE Journal on
Selected Areas in Communications, 11(2):203-219, February, 1993.

BIBLIOGRAPHY 195

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Xavier Redon and Paul Feautrier. Detection of Recurrences in Sequential Programs with Loops. In
Arndt Bode, Mike Reeve, and Gottfried Wolf, editors, PARLE '93 Parallel Architectures and Lan-
guages Europe. 5th International PARLE Conference Proceedings, pages 132-145, Munich, Germany,
June 14-17, 1993. Springer-Verlag.

John R. Rose and Guy L. Steele J. Cx: An Extended C Language for Data Parallel Programming.
In Proceedings for the Second International Conference on Supercomputing, Volume 2, pages 2-16,
May, 1987.

M. Rosing, R. B. Schnabel, and R. P. Weaver. The Dino parallel programming language. Journal of
Parallel and Distributed Computing, 13(1):30-42, September, 1991.

Robert Schreiber and Jack J. Dongarra. Automatic Blocking of Nested Loops. Technical Report
CS-90-108, Computer Science Department, University of Tennessee, 107 Ayres Hall, Knoxville, TN
37996-1301, May, 1990.

Bruce S. Siegell and Peter Steenkiste. Automatic Generation of Parallel Programs with Dynamic
Load Balancing. In Proceedings of the Third IEEE Symposium on High Performance Distributed
Computing, pages 166-175, San Francisco, CA, August 2-5, 1994. |EEE Computer Society Press.

Steve Sistare and Mark Friedell. A Distributed System for Near-Real-time Display of Shaded Three-
Dimensional Graphics. In Proceedings. Graphics Interface '89, pages 283-90, London, Ontario,
Canada, June 19-23, 1989. Canadian Man-Computer Communication Society, Morgan Kaufmann
Publishing, Palo Alto, CA.

Otto Joseph Mitchell Smith. Feedback Control Systems. McGraw-Hill Series in Control Systems
Engineering. McGraw-Hill, New York, NY, 1958.

Peter Steenkiste. Nectarine - A Nectar Interface. School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213, May 14, 1991. Internal Document.

Peter A. Steenkiste. A Systematic Approach to Host Interface Design for High-Speed Networks.
Compuiter, 27(3):47-57, March, 1994.

Peter A. Steenkiste, Brian D. Zill, H. T. Kung, Steven J. Schlick, Jim Hughes, Bob Kowalski,
and John Mullaney. A Host Interface Architecture for High-Speed Networks. IFIP Transactions C
(Communication Systems), C-14:31-46, 1993. 4th | FIP Conference on High Performance Networking,
Liege, Belgium, December, 1992.

James M. Stichnoth. Efficient Compilation of Array Statements for Private Memory Multicomput-
ers. Technical Report CMU-CS-93-109, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, February, 1993.

Pieter Struik. Techniques for Designing Efficient Parallel Programs. In Wouter Joosen and Elie
Milgrom, editors, Parallel Computing: From Theory to Sound Practice, pages 208-211. 10S Press,
1992.

196

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

BIBLIOGRAPHY

Jaspal Subhlok, James M. Stichnoth, David R. O'Hallaron, and Thomas Gross. Exploiting Task
and Data Parallelism on a Multicomputer. In Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 13-22, San Diego, CA, May, 1993.

V. S. Sunderam. PVM: A Framework for Parallel Distributed Computing. Concurrency - Practiceand
Experience, 2(4):315-339, December, 1990.

Peiyi Tang and Pen-Chung Yew. Processor Self-Scheduling for Multiple-Nested Parallel Loops. In Kai
Hwang, Steven M. Jacobs, and Earl E. Swartzlander, editors, Proceedings of the 1986 Inter national
Conference on Parallel Processing, pages 528-535, University Park, Pennsylvania, August, 1986.
|EEE Computer Society Press.

Pelyi Tang and John N. Zigman. Reducing Data Communication Overhead for DOACROSS L oop Nests.
In 1994 International Conference on Supercomputing Conference Proceedings, pages 44-53. ACM
SIGARCH, ACM Press, July, 1994.

Thinking Machines Corporation, Cambridge, MA. Connection Machine CM-5 Technical Summary;,
November, 1992.

Ping-Sheng Tseng. A Parallelizing Compiler for Distributed Memory Parallel Computers. Ph.D.
Thesis CMU-CS-89-148, ECE Department, Carnegie Mellon University, May, 1989.

Ping-Sheng Tseng. Compiling Programs for a Linear Systolic Array. In Proceedings of the ACM
SIGPLAN '90 Conference on Programming Language Design and Implementation, pages 311-321,
White Plains, NY, June, 1990. ACM Press.

TenH. Tzenand Lionel M. Ni. Trapezoid Self-Scheduling: A Practical Scheduling Schemefor Parallel
Compilers. IEEE Trans. on Parallel and Distributed Systems, 4(1):87—-98, January, 1993.

Reinhard v. Hanxleden and L. Ridgway Scott. Load Balancing on Message Passing Architectures.
Journal of Parallel and Distributed Computing, 13(3):312—-324, November, 1991.

Yung-Terng Wang and Robert J. T. Morris. Load Sharing in Distributed Systems. |EEE Trans. on
Computers, C-34(3):204-217, March, 1985.

Marc Willebeek-LeMair and Anthony P. Reeves. Dynamic Load Balancing Strategies for Highly Par-
allel Multicomputer Systems. Technical Report EE-CEG-89-14, Cornell Univ. Computer Engineering
Group, December, 1989.

Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In Proceedings of
the ACM SIGPLAN '91 Conference on Programming Language Design and Implementation, pages
3044, Toronto, Ontario, Canada, June 2628, 1991. ACM Press.

Michael E. Wolf and Monica S. Lam. A Loop Transformation Theory and an Algorithm to Maximize
Parallelism. |EEE Transactions on Parallel and Distributed Systems, 2(4):452—471, October, 1991.

Michael Wolfe. Loop Skewing: The Wavefront Method Revisited. International Journal of Parallel
Programming, 15(4):279-293, August, 1986.

BIBLIOGRAPHY 197

[76] Michael Wolfe. Vector Optimization vs. V ectorization. Journal of Parallel and Distributed Computing,
5:551-567, 1988.

[77] Michael Wolfe. More Iteration Space Tiling. Technical Report CS/E 89-003, Oregon Graduate Center
Department of Computer Science and Engineering, 19600 N. W. von Neumann Drive, Beaverton, OR
97006-1999 USA, 1989.

[78] Michael Wolfe. Massive Parallelism through Program Restructuring. In Joseph JaJa, editor, The
3rd Symposium on the Frontiers of Massively Parallel Computation, pages 407415, University of
Maryland, College Park, MD, October 8-10, 1990. |IEEE Computer Society Press.

[79] H. Zima, P. Brezany, B. Chapman, P. Mehrota, and A. Schwald. Vienna Fortran — A Language
SpecificationVersion 1.1. Technical Report ACPC/TR 92-4, Austrian Center for Parallel Computation,
March, 1992.

