
Bridging Deep Learning and

Electric Power Systems

Priya L. Donti

CMU-CS-22-142

August 2022

Computer Science Department, School of Computer Science
Department of Engineering & Public Policy, College of Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
J. Zico Kolter, Co-chair Carnegie Mellon University
Inês Azevedo, Co-chair Stanford University

Jeff Schneider Carnegie Mellon University
M. Granger Morgan Carnegie Mellon University

Yoshua Bengio Université de Montréal

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 Priya L. Donti

This research was sponsored by the U.S. Department of Energy Computational Science Graduate Fellowship (DE-FG02-
97ER25308), the National Science Foundation Graduate Research Fellowship Program (DGE1252522), the Siebel Scholars
Program, the Center for Climate and Energy Decision Making through a cooperative agreement between the National Science
Foundation and Carnegie Mellon University (SES-00949710), and the National Science Foundation Expedition on Expanding
the Horizons of Computational Sustainability (CCF-1522054).

The views and conclusions contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of any sponsoring institution, the U.S. government, or any other entity.

Keywords: machine learning, deep learning, implicit layers, forecasting, estimation,
optimization, control, electric power systems, optimal power flow, climate change mitigation,
climate change adaptation

To those working to tackle climate change

iv

Abstract

Climate change is one of the most pressing issues of our time, requiring the
rapid mobilization of many tools and approaches from across society. Machine
learning has been proposed as one such tool, with the potential to supplement
and strengthen existing climate change efforts. In this thesis, we provide several
directions for the principled design and use of machine-learning-based methods
(with a particular focus on deep learning) to address climate-relevant problems
in the electric power sector.

In the first part of this thesis, we present statistical and optimization-based
approaches to estimate critical quantities on power grids. Specifically, we employ
regression-based tools to assess the climate- and health-related emissions factors
that are used to evaluate power system interventions. We also propose a matrix
completion-based method for estimating voltages on power distribution systems,
to enable the integration of distributed solar power.

Motivated by insights from this work, in the second part of this thesis, we
focus on the design of deep learning methods that explicitly capture the physics,
hard constraints, and domain knowledge relevant to the settings in which they
are employed. In particular, we leverage the toolkit of implicit layers in deep
learning to design forecasting methods that are cognizant of the downstream
(stochastic) decision-making processes for which a model’s outputs will be used.
We additionally design fast, feasibility-preserving neural approximators for
optimization problems with hard constraints, as well as deep learning-based
controllers that provably enforce the stability criteria or operational constraints
associated with the systems in which they are deployed. These methods are
directly applicable to problems in electric power systems, as well as being more
broadly relevant for other physical and safety-critical domains.

While part two demonstrates how power systems can yield fruitful directions
for deep learning research, in the last part of this thesis, we demonstrate vice
versa how insights from deep learning can yield fruitful directions for research
in power systems. Specifically, we show how methods inspired by the implicit
layers literature can be used to assess policy-relevant inverse problems on the
power grid. We further show how combining insights from implicit layers and
adversarially robust deep learning can allow us to provide scalable heuristic
solutions to two central problems in power systems – N-k security-constrained
optimal power flow and stochastic optimal power flow – that have seldom been
addressed at realistic scale due to their computational intractability.

Overall, this thesis demonstrates how bridging insights from deep learning
and electric power systems can help significantly advance methods in both fields,
in addition to addressing high-impact problems of relevance to climate action.

v

vi

Acknowledgments

Research is fundamentally a reflection of people – the coming together of
their ideas, influence, stories, and support. During my Ph.D., I have been lucky
to benefit from the mentorship, collaboration, and friendship of many wonderful
people, who have shaped both my work and the person I’ve become in doing it.

At the top of the list are my advisors, Zico Kolter and Inês Azevedo. Zico and
Inês are both among the most brilliant people I know, while simultaneously
being some of the most compassionate and kind-hearted. Zico’s approach to
melding insights from different bodies of work has significantly influenced my
own interdisciplinary research approach, and I have always valued his ability
to consistently energize research discussions (no matter how much progress I
previously had or had not made) in service of fostering new ideas and actionable
next steps. In addition, I have appreciated Zico’s thoughtfulness in convening
important cultural conversations within the research group, as well as his
leadership in fostering inclusion at CMU. Inês’ breadth of expertise in the
climate and energy space is truly immense – spanning a multitude of sectors,
geographies, and approaches – and I have benefited greatly from her cross-
cutting perspectives and mentorship on these topics. I have also appreciated
Inês’ attentiveness to checking in with her advisees not only about research but
also about life, which has helped me feel more comfortable in my own skin as a
researcher and laid the groundwork for open and transparent communication. I
am extremely grateful for all the time, insight, and wisdom that Zico and Inês
have shared with me over the years, as well as their encouragement in enabling
me to take risks and explore non-traditional pathways of work.

This thesis would also not have been possible without the support of my
committee members, Granger Morgan, Yoshua Bengio, and Jeff Schneider.
Granger’s consistent nudges to justify “why machine learning” and succinctly
communicate takeaways for decision-makers, as well as his pedagogy on policy-
relevant topics, have decidedly helped mature my thinking in these areas.
I’ve appreciated Yoshua’s incisive questions regarding why and under what
conditions different methods might work, as well as his efforts in mainstreaming
topics relevant to climate change and social good within the machine learning
community. While my interactions with Jeff began more recently, I have valued
our exchanges on the commonalities and differences that emerge when using
reinforcement learning and control across various safety-critical domains.

I would further like to thank several additional mentors for the guidance and
resources they have provided me before and during my Ph.D. Carla Gomes has
been an amazing role model for what it means to do computer science research
that is both technically interesting and societally impactful, and I am grateful
for her indefatigable mentorship of myself and many others across the compu-
tational sustainability community. Jay Apt and Granger’s initiatives through
the CMU Electricity Industry Center have played a crucial role in helping me

vii

build deeper connections to players in the electric power sector, enabling me to
get timely industry feedback and thereby shaping the trajectory of my work.
I thank Jim Boerkoel for mentoring me on undergraduate research at Harvey
Mudd, and Gopal Ramchurn for writing the “Putting the ‘Smarts’ into the
Smart Grid” paper that first sparked my interest in my current line of research.

During my Ph.D., I was fortunate to find a group of collaborators eager to foster
work at the intersection of climate change and machine learning, beginning with
the writing of a comprehensive overview paper and later through the founding
of Climate Change AI. I cannot even begin to articulate how lucky I feel to have
worked with such incredible teammates. Thanks especially to David Rolnick
and Lynn Kaack, my CCAI co-founders and now some of my dearest friends,
for their tireless dedication, edifying research and policy discussions, careful
thought leadership, and metaphorical “continuous Zoom calls” over the last
three years. Thanks also to CCAI’s other founding and early team members,
Alex Lacoste, Andrew Ross, Anna Waldman-Brown, David Dao, Evan Sherwin,
Karthik Mukkavilli, Kelly Kochanski, Konstantin Klemmer, Kris Sankaran,
Natasha Jaques, Nikola Milojevic-Dupont, Sasha Luccioni, Sharon Zhou, and
Tegan Maharaj. As CCAI has grown, it has additionally been a pleasure to
work with Ankur Mahesh, Dea Bankova, Ebude Antem Yolande Ebong, Felipe
Oviedo, Gen Patterson, Hari Prasanna Das, Issa Tingzon, Ján Drgoňa, Jeremy
Irvin, Jesse Dunietz, Jess Fan, John Kieffer, Kai Jeggle, Kameliya Petrova,
Kasia Tokarska, Katherine Stapleton, Kelton Minor, Kureha Yamaguchi, Lauren
Kuntz, Marcus Voss, Maria João Sousa, Mark Roth, Meareg Hailemariam, Oli
Mendivil Ramos, Peetak Mitra, Raphaela Kotsch, Simone Nsutezo Fobi, Wei-
Wei Lin, and Yumna Yusuf, as well as several newer members. Thanks also
to the members of the CCAI Advisory Board – Andrew Ng, Carla Gomes,
Catherine Nakalembe, Claire Monteleoni, Craig Smith, Demis Hassabis, Felix
Creutzig, Inês Azevedo, Jennifer Chayes, John Platt, Konrad Körding, Tobias
Schmidt, Yoshua Bengio, and Zico Kolter – for invaluable input and guidance.

My Ph.D. research has benefited greatly from collaborations with both a
number of the individuals above and many others from across disciplinary bound-
aries. I thank Brandon Amos, Bryan Wilder, Mahyar Fazlyab, Mel Roderick,
and Po-Wei Wang for their collaboration on topics at the nexus of machine
learning, optimization, and control. I’ve further been fortunate to learn from
the power and energy systems expertise of several academic and industry collab-
orators, including through my internships at NREL and National Grid; many
thanks to Aayushya Agarwal, Andrey Bernstein, Bingqing Chen, Dan Drew,
Fraser McMillan, Jack Kelly, James Kelloway, Kyri Baker, Larry Pileggi, Lyn-
don Ruff, Mario Bergés, Rui Yang, Yajing Liu, and Yingchen Zhang. I have
enjoyed working with Cyrus Hodes, Emma Strubell, George Kamiya, Marta
Kwiatkowska, Nico Miailhe, Pete Clutton-Brock, Raja Chatila, and Virginia
Dignum on topics of climate policy and impact assessment in the context of
machine learning. Thanks also to Suman Ravuri for working with me on cli-

viii

mate and weather topics during my internship at DeepMind, alongside Karel
Lenc, Matthew Willson, Piotr Mirowski, Remi Lam, Shakir Mohamed, and Sims
Witherspoon. Last but certainly not least, I thank Amy Wang, Marissa Liu,
Neeraj Bedmutha, and Tom Wright for taking a chance on me as a “research
supervisor” and for bringing such motivation to their work.

My time at CMU has been greatly enriched by the community across my
two departments, advisor groups, and beyond. Many thanks to the members
of LocusLab for providing feedback on my work, for the interesting research
discussions spanning many different areas of machine learning, and for bringing
so much mirth to our interactions. In particular, I thank Brandon Amos for
catalyzing the research in differentiable optimization, for writing high-quality
open-source code whose style I’ve learned a lot from, and for sharing stories
of his eclectic adventures in GAN-land. I thank Eric Wong for many valuable
conversations about research and navigating research careers, for not being
afraid to “manage up,” and for always finding the best restaurants during
conferences. I thank Mel Roderick for his insightful, multi-faceted perspectives
on what it means to “do good” given the skills and privileges we have. I thank
Vaishnavh Nagarajan for his consistently high-quality feedback on research
and presentations, for his caring mentorship of many within and outside the
group, and for being CMU’s number-one candid photographer. Thanks also
to Gaurav Manek for managing the research cluster, and to many present and
former members of LocusLab, including Alnur Ali, Anna Bair, Asher Trockman,
Ashwini Pokle, Christina Baek, Chun Kai Ling, Dylan Sam, Ezra Winston, Filipe
de Avila Belbute-Peres, George Haff, Huan Zhang, Jeremy Cohen, Jonathan
Dinu, Josh Williams, Leslie Rice, Matt Wytock, Mihir Mongia, Mingjie Sun,
Po-Wei Wang, Pratyush Maini, Rizal Fathony, Runtian Zhai, Sachin Goyal,
Sam Sokota, Saurabh Garg, Shaojie Bai, Suvansh Sanjeev, Swami Gurumurthy,
Victor Akinwande, Xiao Zhang, Yash Savani, Yiding Jiang, and Zhili Feng.

I thank the members of the INES research group and broader CEDM
community for providing perspectives on a diverse range of climate and energy
topics, and for bringing such deep policy and industry expertise to bear on
these issues. I thank Evan Sherwin for his consistently thoughtful questions
and feedback, and for providing significant input on how to properly compute
marginal emissions factors. I thank Greg Schivley for the long pair programming
sessions as we aimed to wrangle gigabytes of EPA data. I thank Jeremy Keen,
Luke Lavin, and Sean Smillie for leading the Energy Club reading group. I
think Vanya Britto for many productive virtual co-working sessions after the
start of the COVID-19 pandemic. Thanks also to many other members of
the INES research group and broader CEDM community, including Amanda
Quay, Angelena Bohman, Brian Sergi, Brock Glasgo, Cristóbal de la Maza,
Daniel Gingerich, Daniel Posen, Daniel Sun, Emily Grayek, Erin Mayfield,
Evan Sherwin, Fan Tong, Gerad Freeman, Jake Ward, Jessica Lovering, Jorge
Izar, Julian Lamy, Liza Reed, Long Lam, Lynn Kaack, Matt Babcock, Matt

ix

Bruchon, Michael Craig, Michael Whiston, Nat Horner, Nichole Hanus, Nyla
Khan, Parth Vaishnav, Peter Tschofen, Priyank Lathwal, Sara Schwetschenau,
Sarah Robb, Sarah Troise, Shayak Sengupta, Sinnott Murphy, Thomas Deetjen,
Tobi Adekanye, Yamit Lavi, and many others I have certainly missed.

My extended CSD and SCS communities have provided me with an incredible
amount of support through the vicissitudes of Ph.D. research and coursework. I
thank the members of these communities for the mentorship, for the board game
nights, for performing together in musicals and revues, and for working together
to improve diversity, equity, inclusion, and culture. A particular thanks to my
officemate Ellen Vitercik for all the insightful conversations over the years; to
Bailey Flanigan for her tireless work on the DEI course; to my fast first-year
friends Ben Berg, Kai Ye, and Ziv Scully; to Sol Boucher for convening our
dissertation working sessions; to my first-year mentor Deby Katz; and to my
project and homework groups for intro ML and intermediate stats, including
Amanda Coston, Charles Wu, Dimitris Konomis, Evren Gokcen, Laurie Jin,
Min Lee, Rudina Morina, and Steven Dang.

I thank my EPP community for the late-night homework sessions, karaoke
shenanigans, soccer games, and the D&D sessions that were almost-but-not-
quite an escape from the policy-relevant questions we were studying. I would
particularly like to thank my “Rockin EPP” cohort – Aman Tyagi, Bingyin Hu,
Christophe Combemale, Gerad Freeman, Guannan He, Jake Ward, Jihoon Shin,
Jorge Izar, Kristen Allen, Liza Reed, Nicole Racine, Patrick Funk, Ria Laurejis,
Sarah Robb, Shayak Sengupta, Tobi Adekanye, and Vanya Britto – for their
friendship and continued support both before and after quals.

I also thank the many CSD/SCS and EPP administrative staff without
whom the whole operation would not run; in particular, many thanks to Adam
Loucks, Angy Malloy, Ann Stetser, Catherine Copetas, Deb Cavlovich, Debbie
Kuntz, Diana Rotondo, Diane Stidle, Elisabeth Udyawar, Lucas Valone, Sara
Golembiewski, and Vicki Finney.

I have been fortunate to participate in several communities and initiatives
focused on technology and/or social change that have decidedly shaped my
thinking on these topics. I thank the team at Tech4Society for employing their
skills to support grassroots initiatives in the Pittsburgh area and for being
formative in my perspectives on what it means to do truly community-centric
work. Thanks especially to my co-founders, Jesse Dunietz, João Martins, Lizzie
Silver, Reuben Aronson, and Yuzi Nakamura; to my collaborators on policing
equity projects, particularly Ashley Oldshue, Bonnie Fan, Emily Black, Fox,
Jack (RIP), Josh Williams, Kristen Buse, Maria De-Arteaga, Michael Madaio,
and Nicasio Ng; and the new crop of T4S leadership, notably Arpit Agarwal,
Jessie Grosen, and KA Garrett. I also thank the team at Engineers for a
Sustainable World for fostering sustainability education and for helping me begin
my non-profit journey; I would particularly like to thank my Executive Director,
brittany bennett, and my Chapter Relations Co-Director, Sophie Hopps-Weber.

x

I enjoyed running CompSustNet conferences and webinars with Aaron Ferber,
Amrita Gupta, Bryan Wilder, Genevieve Flaspohler, Hari Prasanna Das, Kevin
Winner, Lily Xu, Neal Jean, Neil Gaikwad, and Sebastian Ament.

I have further benefited from the support of many additional communities
during and leading up to my Ph.D. I particularly want to thank the DOE CSGF
fellowship and community for giving me the freedom to explore non-traditional
directions, for exposing me to new avenues of work in high performance com-
puting, and for the steadfast cameraderie and peer support. I also thank the
Watson Fellowship and community for funding me to travel for a year to study
smart grids in different countries and for always reminding me to stay curious.

I have enjoyed living with a lively community of peers during my time in
Pittsburgh. I thank my housemates past and present for all the encouragement,
deep conversations, meals, movie nights, and companionship (particularly during
the pandemic). Thanks to my fellow “Party House” residents Alex LaGrassa,
Alfredo Trejo, Annika Froese, EJ Jardas, Fern Paulino, Gabbi Guedes, Isaac
Grosof, Jack Burgess, Jeemin Cha, Mahi Hardalupas, Octavio Mesner, Ray
Schuur, and Ziv Scully, and my previous roommate, Honey Rosenbloom.

I am deeply grateful to my family – Amma, Naanna, Arun, and Meera Avva,
as well as my (vast) extended family – for all their love and support, starting
well before the beginning of my Ph.D. journey. Many thanks for investing so
much time and money in my education; for instilling in me the importance of
hard work, dedication, and empathy; for supporting my decision to “stay in
school” for so long; and for looking out for my personal well-being.

To my partner, Shantanu, I give the utmost thanks. Thank you for encourag-
ing me to achieve my goals (through both your words and your actions), for cen-
tering and grounding me, for growing and changing with me, and for staying by
me throughout the past six years despite us being on opposite sides of the globe.

There are many, many people missing from the list above without whom this
thesis wouldn’t have been possible. To all my teachers, mentors, colleagues,
friends, family, and others who have touched my life and supported me along
this journey – from the bottom of my heart, thank you.

xi

xii

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 Part I: Estimation tasks in power systems 2
1.1.2 Part II: Optimization-in-the-loop deep learning 2
1.1.3 Part III: Implicit differentiation in power systems 3

1.2 Summary of publications . 4

2 Background and Preliminaries 7
2.1 Machine learning . 7

2.1.1 Notable paradigms . 8
2.1.2 Strengths, limitations, and alternatives 9

2.2 Deep learning and implicit layers . 10
2.2.1 Neural network models . 11
2.2.2 Neural network training . 11
2.2.3 Implicit layers . 13

2.3 Electric power systems . 16
2.3.1 Power system basics . 16
2.3.2 Power system operations . 17
2.3.3 Climate change mitigation and adaptation in power systems 19

I Estimation Tasks in Power Systems 21

3 Assessing Emissions and Damage Factors in PJM 23
3.1 Introduction . 24
3.2 Data and methods . 25

3.2.1 Data . 26
3.2.2 Calculating AEFs . 27
3.2.3 Calculating MEFs . 27
3.2.4 Calculating average and marginal damage factors 29
3.2.5 Selecting factors for emissions/damage assessments 29

3.3 Results and discussion . 30
3.3.1 Annual and monthly emissions factors over time 31
3.3.2 Intra-annual variability in emissions and damage factors 34
3.3.3 Effects of a building-level lighting intervention 36

xiii

3.3.4 Effects of historical demand response 38
3.3.5 Effects of historical summer load 39

3.4 Policy implications . 40

4 Matrix Completion for Distribution System Voltage Estimation 43
4.1 Introduction . 44
4.2 Matrix completion methods . 45

4.2.1 Matrix completion . 45
4.2.2 Constrained matrix completion . 46

4.3 Low-observability state estimation . 46
4.3.1 Power system model . 46
4.3.2 Data matrix formulation . 47
4.3.3 Physical power flow constraints . 49
4.3.4 Full problem formulation . 50
4.3.5 Extension to the multi-phase setting 51

4.4 Simulation and results . 51
4.4.1 33-bus system . 52
4.4.2 123-bus feeder . 55

4.5 Conclusion . 58

II Optimization-in-the-Loop Deep Learning 59

5 Decision-Cognizant Learning for Stochastic Optimization 61
5.1 Introduction . 62
5.2 Related work . 63
5.3 End-to-end model learning in stochastic programming 64

5.3.1 Discussion and alternative approaches 65
5.3.2 Optimizing task loss . 67
5.3.3 Differentiating the stochastic optimization solution 67

5.4 Experiments . 68
5.4.1 Inventory stock problem . 69
5.4.2 Load forecasting and generator scheduling 71
5.4.3 Price forecasting and battery storage 74

5.5 Conclusion . 75

6 Approximating Optimization Problems with Hard Constraints 77
6.1 Introduction . 78
6.2 Related work . 78
6.3 DC3: Deep constraint completion and correction 79

6.3.1 Equality completion . 81
6.3.2 Inequality correction . 82

6.4 Experiments . 83
6.4.1 Convex quadratic programs . 85

xiv

6.4.2 Simple non-convex optimization . 88
6.4.3 AC optimal power flow . 89

6.5 Conclusion . 90

7 Enforcing Robust Control Guarantees within Neural Network Policies 93
7.1 Introduction . 94
7.2 Related work . 94
7.3 Background on LQR and robust control specifications 96

7.3.1 Robust control specifications . 96
7.3.2 LQR control objectives . 97

7.4 Enforcing robust control guarantees within neural networks 97
7.4.1 A provably robust nonlinear policy class 98
7.4.2 Example: NLDIs . 99

7.5 Experiments . 101
7.5.1 Description of dynamics settings . 101
7.5.2 Experimental setup . 102
7.5.3 Results . 103

7.6 Conclusion . 105

8 Enforcing Policy Feasibility Constraints through Differentiable Projection
for Energy Optimization 107
8.1 Introduction . 108
8.2 Related work . 110
8.3 Preliminaries: Reinforcement learning . 110
8.4 Enforcing feasibility via differentiable projection 111

8.4.1 Problem formulation . 111
8.4.2 Approximate convex constraints . 112
8.4.3 Policy optimization . 113

8.5 Experiment 1: Energy-efficient building operation 116
8.5.1 Problem description . 116
8.5.2 Implementation details . 118
8.5.3 Results . 118

8.6 Experiment 2: Inverter control . 120
8.6.1 Problem description . 121
8.6.2 Implementation details . 123
8.6.3 Results . 123

8.7 Conclusion . 124

III Implicit Differentiation in Power Systems 127

9 Inverse OPF: Assessing the Vulnerability of Power Grid Data 129
9.1 Introduction . 130
9.2 Related work . 130

xv

9.3 AC optimal power flow formulation . 131
9.4 Inverse optimal power flow . 132
9.5 Experiments . 133
9.6 Conclusion . 134

10 Adversarial Robustness for Security-Constrained and Stochastic OPF 137
10.1 Introduction . 138
10.2 Related work . 139
10.3 Generic problem formulation . 140

10.3.1 Attack: Solving the inner maximization problem 141
10.3.2 Defense: Taking a step in the minimization problem 142

10.4 Addressing N-k SCOPF . 142
10.4.1 Defining N-k SCOPF . 143
10.4.2 Rewriting N-k SCOPF as a minimax problem 144
10.4.3 Attack stage . 145
10.4.4 Defense stage . 147

10.5 Experiments for N-k SCOPF . 148
10.5.1 Illustrative adversarial attack . 148
10.5.2 Validating N-1 security . 149
10.5.3 Improving N-3 SCOPF . 150

10.6 Addressing stochastic OPF . 151
10.6.1 Defining stochastic OPF . 151
10.6.2 Rewriting stochastic OPF as a minimax problem 153

10.7 Experiments for stochastic OPF . 154
10.7.1 Validating the minimax reformulation 154
10.7.2 Scaling to realistic networks . 155

10.8 Conclusion . 157

IV Conclusions and Future Directions 159

11 Conclusions and Future Directions 161

References 165

Appendices 193

A Assessing Emissions and Damage Factors in PJM 193
A.1 Discussion of National Emissions Inventory data 193
A.2 Information on damage models . 194
A.3 Results under EASIUR . 196

A.3.1 Annual and monthly emissions factors over time 196
A.3.2 Intra-annual variability in emissions and damage factors 196
A.3.3 Effects of a building-level lighting intervention 196

xvi

A.3.4 Effects of historical demand response 200
A.3.5 Effects of historical summer load 200

A.4 Sensitivity analysis for historical demand response 201
A.5 Comparison to PJM-published emissions factors 201

B Approximating Optimization Problems with Hard Constraints 207
B.1 Details of DC3 for ACOPF . 207

B.1.1 Problem setting . 207
B.1.2 Overall approach . 208
B.1.3 Solving the completion . 208
B.1.4 Backpropagating through the completion 209

C Enforcing Robust Control Guarantees within Neural Network Policies 211
C.1 Details on robust control specifications . 211

C.1.1 Exponential stability in NLDIs . 211
C.1.2 Exponential stability in PLDIs . 212
C.1.3 H∞ control . 213

C.2 Derivation of sets of stabilizing policies and associated projections 214
C.2.1 Exponential stability in PLDIs . 214
C.2.2 H∞ control . 215

C.3 A fast, differentiable solver for second-order cone projection 216
C.3.1 Computing the projection . 217
C.3.2 Obtaining gradients . 218

C.4 Writing the cart-pole problem as an NLDI 220
C.4.1 Deriving Jf (0, 0) . 221
C.4.2 Obtaining C and D . 221

C.5 Writing quadrotor as an NLDI . 222
C.5.1 Deriving Jf (0, 0) . 223
C.5.2 Obtaining C and D . 223

C.6 Details on the microgrid setting . 223
C.7 Generating an adversarial disturbance . 224
C.8 Additional experimental details . 224
C.9 Experiments for PLDIs and H∞ control settings 225
C.10 Notes on linearization via PLDIs and NLDIs 227

D Adversarial Robustness for Security-Constrained and Stochastic OPF 231
D.1 Full SCOPF formulation . 231
D.2 Further details on the SCOPF attack . 232
D.3 Further details on the SCOPF defense . 233
D.4 GO competition scoring . 235

xvii

xviii

Chapter 1
Introduction

Addressing climate change will require deep cuts in greenhouse gas emissions over the next
several decades, as well as concerted efforts to adapt to those impacts of climate change
that society will face [IPC18; IPC22a]. Electric power systems will play a key role on
both of these fronts. In particular, the electric power sector currently contributes about a
quarter of global greenhouse gas emissions, necessitating a transition to renewable and low-
carbon power; low-carbon power systems are further critical for decarbonization strategies
in other sectors that aim to “electrify” fossil-fueled loads (such as passenger vehicles)
[IPC22b]. As climate change induces greater weather extremes, it will also be necessary
to increase the robustness, resilience, and reliability of power grids in the face of these
extremes [Nat17; RF+21]. In practice, all of these developments require power grids to be
operated at increasing speed and scale – for instance, to manage the time-varying nature
of renewable energy sources such as solar and wind, or to explicitly account for different
power system failure scenarios. As classical techniques have begun struggling to cope with
these requirements, many in the electric power sector have started to look towards areas
such as machine learning (ML) to provide more modern tools for forecasting, estimation,
optimization, and control [Rol+22; PAW14; Ram+12].

While there are many power sector applications for which ML can readily be used today,
there are also several key challenges that preclude its use in many workflows. For instance,
most ML methods struggle to enforce the physics or hard constraints associated with the
systems in which they operate; however, in the context of electric power systems, failure to
do so can lead to increased costs or even large-scale blackouts. As a result, the development
of hybridized techniques that bridge machine learning with relevant physics and domain
knowledge [Wil+20] will be critical to furthering work in this area. Even in cases where ML
methods themselves may not be best-suited for a particular problem, methodological insights
from machine learning also may serve to strengthen traditional power systems analysis. For
instance, a recent body of work in deep learning has focused on the scalable computation of
implicit gradients [KDJ20], with insights that may prove particularly beneficial for power
systems workflows relying on iterative optimization techniques.

In this thesis, we demonstrate how challenges in the electric power sector can provide
interesting methodological directions for ML, with a specific focus on deep learning. We

1

also show, vice versa, how methodological insights from deep learning can strengthen power
systems research. In both cases, we show how such work can further efforts to decarbonize
and strengthen electric power systems, in support of societal climate change goals.

1.1 Contributions

1.1.1 Part I: Estimation tasks in power systems

In Part I of this thesis, we present two estimation-related analyses in power systems. While
these analyses do not directly employ ML techniques, this work motivates our design of
ML methods in later parts of the thesis – notably, by providing insights on relevant physics,
hard constraints, and domain knowledge that are important to incorporate within ML-
based workflows. Our contributions in this part of the thesis are as follows:

• Chapter 3 assesses the salience of different key assumptions that are made when
estimating a power grid’s emissions factors and using them to evaluate potential power
system interventions in the PJM Interconnection. We find that assumptions regarding
marginal vs. average emissions factors and the time-frame of analysis are particularly
significant. Based on this analysis, we recommend that energy modelers and decision-
makers carefully consider the assumptions employed within their estimates, and
that decision-makers work to improve the availability of relevant data behind these
estimates. This analysis also exemplifies the importance of evaluating the quality of
estimates through the lens of the decisions for which they will be employed, rather
than only via standard accuracy-related metrics (as further explored in Chapter 5).

• Chapter 4 presents a novel method to estimate unknown voltages on electric power
distribution systems under low-observability conditions, in order to facilitate the
integration of distributed energy resources (such as rooftop solar) on these systems.
Our method, based on constrained matrix completion, achieves near-perfect voltage
estimation performance across many low-observability regimes where standard least-
squares-based methods cannot operate. This method demonstrates the efficacy of
incorporating physical and structural information within standard statistical methods
(as also explored in Chapters 6–8), and has potential implications for decisions
regarding where and how many sensors should be installed on distribution systems.

1.1.2 Part II: Optimization-in-the-loop deep learning

In Part II of this thesis, we present novel deep learning-based methods that are able to
satisfy the physics, hard constraints, and domain requirements associated with the settings
in which they operate. In particular, we formulate these physics, hard constraints, and
domain requirements as optimization problems, and leverage the toolkit of optimization
layers to embed them within the design of deep learning methods. We call this paradigm
“optimization-in-the-loop deep learning,” and employ it in the contexts of forecasting,
optimization, and control. We note that this paradigm is fundamentally interdisciplinary,

2

requiring collaboration between (e.g.) deep learning researchers and domain experts. Our
contributions in this part of the thesis are as follows:

• Chapter 5 provides an approach for designing probabilistic forecasting models that
are well-tuned for the decision-making processes that employ them. Specifically, we
propose methods to encode knowledge of the decision-making process within the loss
function of a neural network, using differentiable optimization. This can improve end-
to-end performance in the real-world systems in which the resultant forecasts are used.
We present three experimental evaluations of the proposed approach – a classical
inventory stock problem, a real-world electrical grid scheduling task, and a real-world
energy storage arbitrage task – and show that the proposed approach outperforms
both traditional modeling and purely black-box policy optimization approaches.

• Chapter 6 presents an approach to construct fast, feasibility-preserving approximators
for continuous optimization problems, combining insights from deep learning and
optimization. This includes optimal power flow problems in power grids, which
are generally slow to solve, but must be run at increasingly short timescales to
accommodate time-varying renewable energy. We show the efficacy of this approach for
both synthetic optimization tasks and the setting of AC optimal power flow, showing
that our method can achieve near-optimal objective values while preserving feasibility.

• Chapters 7 and 8 provide frameworks for constructing nonlinear control policies,
parameterized by neural networks, that nonetheless enforce enforce hard constraints
associated with the systems in which they operate. In Chapter 7, we show how to
construct deep reinforcement learning-based controllers with provable control-theoretic
stability guarantees, and demonstrate on a range of synthetic tasks that such controllers
improve performance over traditional robust control techniques while retaining similar
guarantees. In Chapter 8, we employ similar frameworks within the context of two
realistic energy optimization tasks, namely grid inverter control and energy-efficient
building heating and cooling, and show that our methods are able to maintain
important operational constraints while improving performance over existing methods.

1.1.3 Part III: Implicit differentiation in power systems

While the previous part demonstrates how power systems can yield fruitful directions for
deep learning, in Part III, we show how insights from deep learning workflows can similarly
yield insights for traditional power systems research. In particular, we show how combining
insights from the literature on implicit layers, adversarially robust deep learning, and
electrical engineering can provide novel and scalable approaches to address important power
system optimization problems. Our contributions in this part of the thesis are as follows:

• Chapter 9 presents an implicit differentiation-based method to conduct data vulnerabil-
ity assessments on the electric power grid. In particular, we formulate an inverse prob-
lem called “inverse optimal power flow” that relates publicly-available data to privately-
held data; we then use fast implicit differentiation techniques to optimize this problem,
and assess the extent to which privately-held data may be exposed. We find via ex-
periments on synthetic systems that private electricity generation costs and (to some

3

extent) grid structural parameters may be exposed, with the aim of providing this in-
put to decision-makers to inform robust market design and cybersecurity assessments.

• Chapter 10 presents a scalable approach to addressing stochastic optimal power flow
and N-k security-constrained optimal power flow, two optimization problems that are
particularly important for the integration of time-varying renewables and for the robust
operation of power grids in the face of correlated failures due to climate extremes. We
demonstrate the efficacy of this approach on realistic-scale (5,000- and 10,000-bus)
systems, which have previously seldom been addressed due to high computational costs.

1.2 Summary of publications

The content of Part I appears in:

Priya L. Donti, J. Zico Kolter, and Inês Lima Azevedo. “How Much Are
We Saving After All? Characterizing the Effects of Commonly Varying
Assumptions on Emissions and Damage Estimates in PJM.” Environmental
Science & Technology 53.16 (2019), 9905–9914.

Priya L. Donti, Yajing Liu, Andreas J. Schmitt, Andrey Bernstein, Rui Yang,
and Yingchen Zhang. “Matrix Completion for Low-Observability Voltage
Estimation.” IEEE Transactions on Smart Grid 11.3 (2019), 2520–2530.

The content of Part II appears in:

Priya L. Donti, Brandon Amos, and J. Zico Kolter. “Task-based End-to-End
Model Learning in Stochastic Optimization.” Advances in Neural Information
Processing Systems. 2017, 5490–5500.

Priya L. Donti∗, David Rolnick∗, and J. Zico Kolter. “DC3: A Learning
Method for Optimization with Hard Constraints.” International Conference
on Learning Representations. 2021.

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter.
“Enforcing Robust Control Guarantees within Neural Network Policies.”
International Conference on Learning Representations. 2021.

Bingqing Chen∗, Priya L. Donti∗, Kyri Baker, J. Zico Kolter, and Mario
Bergés. “Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization.” Proceedings of the Twelfth ACM
International Conference on Future Energy Systems. 2021, 199–210.

The content of Part III appears in:

4

Priya L. Donti, Inês Lima Azevedo, and J. Zico Kolter. “Inverse Optimal
Power Flow: Assessing the Vulnerability of Power Grid Data.” NeurIPS
Workshop on AI for Social Good (2018).

Priya L. Donti∗, Aayushya Agarwal∗, Neeraj Vijay Bedmutha, Larry Pileggi,
and J. Zico Kolter. “Adversarially Robust Learning for Security-Constrained
Optimal Power Flow.” Advances in Neural Information Processing Systems
34 (2021), 28677–28689.

Aayushya Agarwal, Priya L. Donti, J. Zico Kolter, and Larry Pileggi. “Em-
ploying Adversarial Robustness Techniques for Large-Scale Stochastic Opti-
mal Power Flow.” Power Systems Computation Conference (2022).

The following publications from my Ph.D. provide overviews on topics at the intersection
of climate change and ML, and do not explicitly appear in the remainder of this thesis:

David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexan-
dre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont,
Natasha Jaques, Anna Waldman-Brown, Alexandra Sasha Luccioni, Tegan
Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla
P. Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig,
Jennifer Chayes, and Yoshua Bengio. “Tackling Climate Change with Ma-
chine Learning.” ACM Computing Surveys 55.2 (Feb. 2022, preprint 2019).

Priya L. Donti and J. Zico Kolter. “Machine Learning for Sustainable Energy
Systems.” Annual Review of Environment and Resources 46 (2021), 719–747.

Peter Clutton-Brock∗, David Rolnick∗, Priya L. Donti∗, Lynn H. Kaack∗,
Tegan Maharaj, Alexandra Sasha Luccioni, Hari Prasanna Das, Cyrus Hodes,
Virginia Dignum, Marta Kwiatkowska, Raja Chatila, and Nicolas Miailhe.
Climate Change and AI: Recommendations for Government Action. Tech.
rep. Global Partnership on AI, 2021.

Lynn H. Kaack, Priya L. Donti, Emma Strubell, George Kamiya, Felix
Creutzig, and David Rolnick. “Aligning Artificial Intelligence with Climate
Change Mitigation.” Nature Climate Change (2022), 1–10.

I also co-authored the following publication, which introduces an implicit layer for maximum
satisfiability solving:

Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. “SATNet:
Bridging Deep Learning and Logical Reasoning using a Differentiable Satisfi-
ability Solver.” International Conference on Machine Learning. 2019.

5

6

Chapter 2
Background and Preliminaries

This thesis employs ideas from deep learning and implicit layers to address climate-relevant
problems in electric power systems, and is aimed at multiple audiences hailing from the
various fields represented therein. In this chapter, we give high-level background on some of
the relevant topics, with the aim of providing readers with a common foundation on which
to approach the content of this thesis.

2.1 Machine learning

Machine learning can be viewed as a form of data-driven programming that automatically
learns programs based on examples.1 While there are many different types of machine
learning techniques, at their core, most ML algorithms are based upon just three components:

1. A model or hypothesis class that specifies the set of functions the ML algorithm can
represent. Informally, this can be thought of as the “skeleton” of the program that the
algorithm produces. These models often have free parameters that can be adjusted to
specialize to the task at hand.

2. An objective or loss function 2 that specifies desirable behavior of the model.

3. An optimization or training procedure that specifies how to choose or adjust the
parameters of the model in order to improve performance on the objective.

As an illustrative example, consider the example of predicting electricity consumption for a
given region throughout the day tomorrow. One might approach this by collecting data
detailing electricity consumption during past days, along with features that correlate with
this consumption (such as temperature or day of the week); they could then write an ML
algorithm that attempts to find correlations between the past consumption data and their
corresponding features, and then uses these correlations to predict future consumption
given (estimates of) the relevant features at future times. In this example, the model might
be a low-degree polynomial of temperature and day of the week, where the free parameters

1Note: This section is largely adapted from Donti and Kolter [DK21].
2For loss functions, by convention, lower values are considered better.

7

are the coefficients of the polynomial. The objective might be to minimize the absolute
error of the predictions of future electricity consumption.3 The training procedure might
involve making small incremental adjustments to the parameters to iteratively improve the
objective (e.g., via gradient descent, a common procedure in many ML algorithms).

Before diving further into the details, we first clarify machine learning’s relationship to
other relevant fields. Machine learning is a sub-field of artificial intelligence (AI), which
describes a set of techniques concerned with making computers perform complex tasks
traditionally associated with human intelligence (such as perception, speech, movement, and
logical reasoning) [Rus10]. ML also shares a deep relationship to statistics, with a significant
overlap in both history and techniques; the difference between these two fields is largely one
of perspective [Bre+01], as machine learning is generally more concerned with performance
on the task at hand (i.e., optimizing the objective), whereas statistics is generally more
concerned with discovering “truths” in the underlying data (i.e., understanding the quality
of the learned model parameters). Machine learning also has close ties to optimization
(given its reliance on optimization procedures) and control theory (particularly in the case
of reinforcement learning, as discussed below).

2.1.1 Notable paradigms

Within machine learning, there are different paradigms describing different ways in which
ML can be employed. Particularly notable paradigms include:

Supervised learning. In supervised learning, the goal is for the ML algorithm to learn
a function mapping from inputs (features) to their desired outputs (labels) given some
“supervision” on what these input-output pairs should look like. (The previously-described
load forecasting setting, in which we provided input/output pairs to a machine learning
algorithm, is an example of supervised learning approach.) This is referred to as regression
when the outputs are continuous, and classification when the outputs are discrete.

Supervised learning has to date seen many successes in areas such as image classification,
automated speech recognition, and machine translation. Unfortunately, this paradigm is
not applicable in all settings: in many cases, it is prohibitively expensive to get enough
labeled data to use supervised learning, or the system of interest involves a decision-making
process that cannot be sufficiently described by single input/output pairs.

Unsupervised learning. Unlike supervised learning, which requires labeled examples,
unsupervised learning requires only that we provide inputs to the machine learning algorithm,
without any corresponding outputs. As there is no output to produce, the algorithm merely
attempts to find some form of structure over the inputs. For instance, clustering techniques
aim to group data into similar categories (“clusters”). Dimensionality reduction techniques
aim to find a low-dimensional subspace that captures most of the variation in the data

3It is worth noting that performance on the training data used to construct the model is related to, but
different from, performance on data the model has not yet seen. In particular, it is important to avoid
overfitting, which refers to the phenomenon where a data-driven model makes good predictions on training
data, but does not generalize well to unseen data.

8

(similarly to techniques such as principal component analysis). Generative modeling aims
to learn a probabilistic model representing the distribution of the underlying data, with the
idea of sampling from this model to generate new data (e.g., generate a new picture of a
horse given a dataset of horse pictures).

While useful for analyzing, partitioning, and/or generating data, a notable caveat with
unsupervised methods is that key attributes (such as the number of clusters or dimensions,
or parameters of the underlying dataset) are typically picked by the algorithm designer.
As a result, the learned outputs may be an artifact of the algorithm itself rather than
representing “true” attributes of the underlying data.

Reinforcement learning. Reinforcement learning (RL) is a paradigm where an agent
must learn how to act in a sequential environment to maximize some reward [SB18]. The
strategy the agent learns is called its policy. Unlike the previous paradigms of supervised
or unsupervised learning, RL algorithms do not (usually) operate over a fixed dataset, but
instead within a setting where the algorithm can take an action that affects future states
of some system. This is a similar setting as considered in adaptive control, and indeed
these fields have a great degree of shared history, though they often differ in the types of
structural assumptions they make about the underlying system (see [Buş+18]). RL is also
closely related to the area of agent-based modeling (ABM), though ABMs often involve
manually specifying behavioral rules, whereas RL aims to learn such rules automatically.

While RL has seen a number of notable successes, such as beating humans in complex
games such as Go [Sil+16], there have been comparatively few deployments of RL on real-
world physical systems. This stems from the fact RL agents must often act sub-optimally
(potentially for a long time) during the learning process; most successful applications thus
require, at the very least, a (realistic) simulation environment on which to train the agent.

Other paradigms. The paradigms described above, while important, are not exhaustive.
For instance, semi-supervised learning represents a mix between supervised and unsupervised
learning paradigms. While supervised and unsupervised learning typically occur in the
offline or batch setting (where the ML algorithm is provided a complete dataset up front),
many algorithms must also operate in online or streaming settings (where datapoints arrive
one at a time, and the algorithm must make a prediction before receiving the next datapoint).
While our discussion above has implicitly assumed that ML models are trained in settings
similar to those in which they ultimately operate, the paradigms of transfer learning, multi-
task learning, and meta-learning focus on the ability of ML models to generalize to new
settings and new kinds of tasks. For a more in-depth discussion of different ML paradigms,
please see Bishop and Nasrabadi [BN06] and Murphy [Mur22].

2.1.2 Strengths, limitations, and alternatives

As perhaps hinted at by the discussion above, ML is a powerful paradigm for data-driven
programming, and can facilitate the analysis of large and heterogeneous data streams in
cases where they would be impossible to analyze manually. While conceptually simple,
this paradigm can manifest itself in many forms. For instance, ML can be used to “scale

9

human intuition” by identifying patterns in comparatively small amounts of labeled data,
and then applying these learned patterns at a much larger scale. It can also be used
to glean actionable insights from unstructured data streams such as satellite imagery or
text documents, and to optimize complex systems based on observations of the system’s
behavior, among many other applications.

At the same time, ML has a number of major limitations. For instance, ML algorithms
are extremely dependent on the quality of the data they receive (“garbage in, garbage out”).
More broadly, ML is fundamentally an amplifier of the systems in which it is deployed,
meaning that while it is capable of amplifying the benefits of these systems, it is also equally
capable of exacerbating biases [Meh+21], inequities [GD20], market failures [Vic19], and
other systemic effects [Kaa+22] through its data, design, and applications. ML methods
also generally assume that the data on which they are trained and tested are similar in
distribution to each other, and have difficulty dealing with scenarios where this is not the
case (known as distribution shift). ML tends to have difficulty enforcing any physics or
hard constraints associated with the domains in which it operates (as further addressed
in this thesis), and many methods also suffer from a lack of interpretability. In addition,
recent trends show that the largest ML models are becoming increasingly computationally
intensive (and thus financially costly) to run, which has implications for the accessibility of
modern methods as well as implications for greenhouse gas emissions [Kaa+22; SGM19;
Sch+20; Ben+21]. (Notably, many of these topics represent active areas of ML research.)

We note also that while ML is broadly powerful, complex or cutting-edge ML techniques
may not always be best-suited or needed for every problem. For instance, linear regression
may be a better alternative to more complex supervised ML techniques in cases where only
small amounts of data are available, or where the structure of the relationships between the
inputs is well-known. Techniques from classical control theory may be more appropriate
than reinforcement learning when the dynamics of the underlying environment are simple
or well-structured; techniques from agent-based modeling may be more appropriate when
the rules governing agent behavior are well-known, and do not need to be learned.

In general, ML should be viewed not as a black box or a silver bullet, but as a tool
to employ in a principled manner that is guided by an understanding of its strengths,
limitations, and underlying assumptions, as well as of relevant technical and contextual
considerations surrounding the problem at hand.

2.2 Deep learning and implicit layers

Deep learning [Goo+16; RS20] is currently one of the more prominent approaches to ML.4

Using the framework presented in Section 2.1, deep learning approaches are characterized
by the following components:

1. Model: Deep learning approaches employ a class of models called artificial neural
networks (also often referred to as neural networks), which can be thought of as the
composition of a sequence of functions (layers) with adjustable parameters.

4Note: Several sentences in this section are drawn verbatim from Donti and Kolter [DK21]. Parts of the
subsection on implicit layers are adapted from Chen∗, Donti∗, Baker, Kolter, and Bergés [Che+21].

10

3. Training procedure: The model’s parameters are optimized using an iterative proce-
dure called “backpropagation and gradient descent.” Given an initial set of neural
network parameters, this procedure involves first efficiently computing gradients of
the chosen neural network loss function with respect to all parameters (via backpropa-
gation), then updating the parameters using these gradients (via gradient descent or
its variants), and repeating until some stopping condition is reached.

The loss function used to evaluate performance can be adapted to the problem at hand,
though there are “standard” losses for typical problems like classification.

This paradigm of composable layers trained via backpropagation and gradient descent
has proven extremely powerful, capable of expressing very complex functions while also
generalizing well in practice when presented with new data. In particular, deep learning
methods have been widely applied within many different ML paradigms, including supervised,
unsupervised, and reinforcement learning. In this section, we provide more details on neural
network models and training procedures, as well as on a new class of neural network layers
(called implicit layers) that we leverage in this thesis.

2.2.1 Neural network models

Let hθ : Rk → Rn be a neural network defined as the composition of L functions, such that
for inputs x ∈ Rk,

hθ(x) = hL,θL ◦ hL−1,θL−1
◦ · · · ◦ h1,θ1(x). (2.1)

Here, each hi,θi , i = 1, . . . , L is a neural network layer with parameters θi, where hL,θL is
defined to have output dimension Rn and where hi,θi , i = 1, . . . , L− 1 are defined such that
the output dimension of hi,θi is equal to the input dimension of hi+1,θi+1

. We use θ to refer
to the full collection of parameters of the neural network (i.e., θ1, . . . , θL). For L sufficiently
large (e.g., L ≥ 4), hθ is considered a deep neural network (hence the term “deep learning”).

The layers hi,θi are generally chosen to be nonlinear, such that the resultant deep neural
network is an expressive, nonlinear model. There are various standard kinds of layers
that are often used in today’s neural networks, based on functions such as rectified linear
units (ReLUs), convolutions, sigmoid functions, and hyperbolic tangent functions. Several
specialized forms of neural network models, or architectures, have also emerged over the
years, such as generic feedforward networks (for unstructured data), convolutional networks
(for image data), recurrent networks and transformer networks (for time-series or other
sequential data), graph networks (for graph-structured data), and diffusion models (for
generative modeling tasks).

2.2.2 Neural network training

We now describe the general procedure of training neural networks via backpropagation and
gradient descent. For ease, we describe these concepts in the context of supervised learning.

Let (x(j), y(j)), j = 1, . . . ,m be a set of input-output pairs, comprising our training data.
Further, let ℓ : Rn × Rn → R be a loss function. As before, let hθ be our neural network.

11

Our neural network training procedure then aims to solve the following problem:

minimize
θ

m∑
j=1

ℓ(hθ(x
(j)), y(j)). (2.2)

Solving this problem is known as empirical risk minimization. For deep learning, this
problem is generally non-convex (as hθ is generally a complex nonlinear function), and is
therefore optimized with the aim of finding local (rather than global) minima.

In deep learning, empirical risk minimization is typically done using variants of an
iterative algorithm called gradient descent. In particular, in gradient descent, given the
current instantiation of parameters θ at a given iteration, the parameters are updated via

θ ← θ − α

m∑
j=1

∇θℓ(hθ(x
(j)), y(j)), (2.3)

where α > 0 is a (potentially adaptive) design parameter called the learning rate. In
practice, most modern deep learning algorithms use a variant called stochastic gradient
descent (SGD), which only uses a subset of the training data for each update (in contrast to
the full gradient descent update, which uses the full set of training data each time); more
advanced versions of SGD, such as Adam [KB15], are also widely used today.

In all cases, implementing these updates requires computing the gradient ∇θℓ(hθ(x, y))
for each training sample (dropping the indices on x and y for brevity). These gradients are
computed efficiently via backpropagation, which can be thought of as a computationally
efficient application of the chain rule. In particular, let zi and θi denote the outputs and
parameters, respectively, of the layer hi,θi , for i = 1, . . . , L. (We note that zL := hθ(x).)
Assuming for simplicity that the parameters of each layer are disjoint, the gradient with
respect to a given θi is then given by

∇θiℓ(hθ(x), y)) :=
dℓ(hθ(x), y))

dθi
=

∂ℓ(hθ(x), y))

∂θi
+

∂ℓ(hθ(x), y))

∂zL

dzL
dzL−1

· · · dzi+1

dzi

dzi
dθi

. (2.4)

Thus far, Equation (2.4) as written is just a direct application of the chain rule. However,
since layer dimensions and subsequently the number of neural network parameters are often
quite large, many of the terms in Equation (2.4) are generally large in size; thus, naively
applying the chain rule can prove to be extremely time- and space-intensive. As such, efficient
backpropagation entails employing two key tricks to make this computationally tractable:

• Jacobian-vector trick: The backpropagation algorithm entails cleverly ordering the
computations in Equation (2.4) from left to right, as well as avoiding the explicit
computation of expensive Jacobians of the form dzi+1/dzi and dzi/dθi, in order to reduce
the associated costs. To illustrate this, we note that for a neural network whose layer
outputs zi can be viewed as vectors (as is common), since ℓ(hθ(x), y)) is a scalar, the
gradient dℓ(hθ(x),y))/dzL is a vector; the product of this term with the Jacobian matrix
dzL/dzL−1 is then a vector-Jacobian product, whose output is a vector; the product
of this term with the Jacobian matrix dzL−1/dzL−2 is then also a vector-Jacobian
product, whose output is a vector; and so forth. By always computing the terms in

12

Equation (2.4) from left to right, one can avoid computing expensive matrix-matrix
products (e.g., of the form (dzi/dzi−1)(dzi−1/dzi−2)). Furthermore, many backpropagation
approaches avoid ever solving for any of the Jacobians dzi+1/dzi and dzi/dθi explicitly,
but instead simply directly compute the vector-Jacobian product (e.g., by finding an
analytical expression for it); this further saves on computation time. (See also [GW08].)

• Caching intermediate quantities: Due to the modular nature of neural networks, most
of the products in Equation (2.4) that are computed to obtain gradients with respect
to some θi are also needed to obtain gradients with respect to θi−1, θi−2, and so forth.
As such, most backpropagation approaches involve caching the results of relevant
computations so that they can be reused. This trick improves the time complexity of
backpropagation, with the tradeoff being increased space complexity (due to the fact
that computational results must then be stored).

We will come back to the Jacobian-vector trick in the next section on implicit layers.

2.2.3 Implicit layers

Having discussed the basics of neural network models and training, we now discuss recent
work presenting a new class of neural network layers, called implicit layers [KDJ20]. In
particular, many of the layers commonly used within neural networks (e.g., ReLUs and
convolutions) are based on explicit functions with a direct, closed-form mapping between
inputs and outputs; these functions are cheap to compute, and admit analytical gradients
for use within backpropagation. However, there has been increasing interest in enriching the
toolkit of layers to capture implicit functions, whose outputs cannot be solved for in closed
form and must therefore be obtained via an iterative solution procedure (e.g., Newton’s
method). This has included optimization layers [AK17; DK17; TSK18; DAK18; Wan+19;
Agr+19; GHC21], differential equation-based layers [Che+18], and layers representing rigid-
body physics [ABP+18], among other implicit layers [BKK19; LFK18; Jin+20].

Like all neural network layers, implicit layers must support a forward procedure to
map from inputs to outputs, as well as a backward procedure to compute gradients of the
outputs with respect to the inputs and layer parameters. As hinted at above, the forward
procedure is implemented by using an iterative solution technique. While the backward
procedure could in principle simply entail differentiating through the unrolled iterations
of this solution procedure, in practice, this can be time-intensive, space-intensive, and
numerically unstable. As such, the design of implicit layers generally involves writing down
a set of equilibrium or fixed-point conditions for the implicit function under consideration,
and then efficiently differentiating through these conditions using implicit differentiation
techniques [KP12; DR09; GW08].

2.2.3.1 Example: Differentiable projection layer

As an example, consider the L2-norm projection PC : Rp → C that maps from some point
in û ∈ Rp to its closest point in some convex constraint set C ⊆ Rp as follows:

PC(û) := argmin
u∈C

1

2
∥u− û∥22. (2.5a)

13

For simplicity, we consider the case where C characterizes linear constraints, i.e.,

C := {u : Au = b,Gu ≤ h} (2.5b)

for some A ∈ Rneq×p, b ∈ Rneq , G ∈ Rnineq×p, and h ∈ Rnineq . The implicit layer based
on Equation (2.5) would have û, A, b, G, h as its inputs and/or parameters, and u (plus
possibly the dual variables of the optimization problem) as its output. (While we assume
for simplicity of exposition that all parameters are adjustable, it would also be possible to
set certain parameters to fixed values as dictated by the needs of the specific setting.)

We note that the resultant problem is a convex quadratic optimization problem. The
forward procedure can then be implemented by simply solving the optimization problem,
e.g., using standard convex optimization solvers. Perhaps less evidently, it is also possible to
construct a backward procedure for this problem by using the implicit function theorem, as
described in previous work (e.g., [AK17; Agr+19]). In particular, it is possible to efficiently
compute gradients through Equation (2.5) by implicitly differentiating through its KKT
conditions (i.e., conditions that are necessary and sufficient to describe its optimal solutions).

As Equation (2.5) is a special case of the general differentiable quadratic programming
layer described in Amos and Kolter [AK17], we closely follow the gradient derivation therein
in our gradient derivation here. Specifically, the KKT conditions for stationarity, primal
feasibility, and complementary slackness for this problem are given by

u⋆ − û+ ATν⋆ +GTλ⋆ = 0

Au⋆ − b = 0

diag(λ⋆)(Gu⋆ − h) = 0,

(2.6)

where u⋆, λ⋆, and ν⋆ are the optimal primal and dual solutions. By the implicit function
theorem, we can then take derivatives through these conditions at the optimum to obtain
relevant gradients. Specifically, the total differentials of these KKT conditions are given by

du− dû+ dATν⋆ + ATdν + dGTλ⋆ +GTdλ = 0

dAu⋆ + Adu− db = 0

diag(Gu⋆ − h)dλ+ diag(λ⋆)(dGu⋆ +Gdz − dh) = 0,

(2.7)

or in matrix form as I GT AT

diag(λ⋆)G diag(Gz⋆ − h) 0
A 0 0

dudλ
dν

 = −

 −dû+ dGTλ⋆ + dATν⋆

diag(λ⋆)dGz⋆ − diag(λ⋆)dh
dAz⋆ − db

 . (2.8)

The terms in these equations look somewhat complex, but fundamentally, the left side gives
the Jacobian of the optimality conditions of the convex problem, and the right side gives
the derivatives at the achieved solution with respect to the problem parameters û, A, b, G, h.

As described in Amos and Kolter [AK17], these equations can be used to solve for
the Jacobians of any solution variable u⋆, λ⋆, ν⋆ with respect to any problem parameter
φ ∈ {û, A, b, G, h}, by setting the differential dφ associated with the problem parameter

14

to its identity value (and all other differentials to zero). As noted both there and in
Section 2.2.2, however, we seldom actually want to compute these Jacobians explicitly,
due to the potentially large time and space complexity of doing so. Instead, it is often
desirable to directly compute dℓ/dφ by employing the Jacobian-vector trick – that is, by
directly computing the left vector-matrix product of these Jacobians with some backward
pass vector in order to reduce time and space complexity.

In particular, for some loss function ℓ, if we are given the backward pass vectors
dℓ/du⋆, dℓ/dλ⋆, dℓ/dν⋆ and we want to compute the gradient dℓ/dφ for some parameter φ, we
note by the chain rule that

dℓ

dφ
=

∂ℓ

∂φ
+

∂ℓ

∂u⋆

du⋆

dφ
+

∂ℓ

∂λ⋆

dλ⋆

dφ
+

∂ℓ

∂ν⋆

dν⋆

dφ
. (2.9)

Per the Jacobian-vector trick, we would then aim to compute the three products in this
equation directly, rather than explicitly computing and storing the intermediate Jacobians
du⋆/dφ, dλ⋆/dφ, dν⋆/dφ at any point during the process. In more detail, using Equation (2.8),
we note that

∂ℓ

∂u⋆

du⋆

dφ
+

∂ℓ

∂λ⋆

dλ⋆

dφ
+

∂ℓ

∂ν⋆

dν⋆

dφ

=

[
∂ℓ/∂u⋆

∂ℓ/∂λ⋆

∂ℓ/∂ν⋆

]T [du⋆
/dφ

dλ⋆
/dφ

dν⋆
/dφ

]

= −
[
∂ℓ/∂u⋆

∂ℓ/∂λ⋆

∂ℓ/∂ν⋆

]T [
I GT AT

diag(λ⋆)G diag(Gz⋆ − h) 0
A 0 0

]−1 [−dû+ dGTλ⋆ + dAT ν⋆

diag(λ⋆)dGz⋆ − diag(λ⋆)dh
dAz⋆ − db

]
∣∣ dφ=I
dψ=0,∀ψ ̸=φ

.

(2.10)

Noting that the first two terms are consistent across all problem parameters, as shown in
Amos and Kolter [AK17], we can pre-compute their product before computing all relevant
gradients. Lettingdudλ

dν

T

:= −

∂ℓ/∂u⋆

∂ℓ/∂λ⋆

∂ℓ/∂ν⋆

T  I GT AT

diag(λ⋆)G diag(Gz⋆ − h) 0
A 0 0

−1

, (2.11)

the relevant gradients (2.9) with respect to all problem parameters are then given by

dℓ

dû
=

∂ℓ

∂û
− du

dℓ

dA
=

∂ℓ

∂A
+ dνu

⋆T + ν⋆dTu
dℓ

db
=

∂ℓ

∂b
− dν

dℓ

dG
=

∂ℓ

∂G
+ diag(λ⋆)dλu

⋆T + λ⋆dTu
dℓ

dh
=

∂ℓ

∂h
− diag(λ⋆)dλ.

(2.12)

15

We note that most of the operations involved in the gradient computations (2.11)–(2.12)
are relatively cheap. The notable exception involves the inversion of the KKT Jacobian
matrix in Equation (2.11); however, in practice, this matrix inversion was likely already
computed when solving the projection (2.5) in the first place (e.g., if the projection was
solved using a KKT-based iterative method). As such, it is often possible to get this matrix
inversion “for free” in the backward pass, significantly reducing the additional computational
complexity associated with the gradient computation. In general, this example shows one
way in which implicit gradients can be computed in an inexpensive and scalable manner.

While the above example is for a linearly-constrained projection operation, these kinds of
gradients can be computed (or in some cases, approximately computed) for convex projection
problems in general. For instance, Donti, Roderick, Fazlyab, and Kolter [Don+21b] compute
gradients through a projection onto a second order cone by differentiating through the
fixed point equations of a solver, and Agrawal, Amos, Barratt, Boyd, Diamond, and Kolter
[Agr+19] provide a method and library for differentiable disciplined convex programs.

2.3 Electric power systems

Electric power systems are the backbone of modern society, and a major focus of many
strategies to promote environmental, economic, and social sustainability.5 For instance,
moving to renewable and low-carbon electricity sources will be critical to achieving both
climate change and air quality targets [IPC22b] and electricity access is a key pillar of
economic development [Car+11]. In this section, we provide a brief overview of electric
power systems; we refer readers to Von Meier [VM06], Kirschen and Strbac [KS04], and
Wood, Wollenberg, and Sheblé [WWS14] for additional details.

2.3.1 Power system basics

Electric power systems (or, power systems) refer to the networks of electrical infrastructure
that facilitate the production and transportation of electric power. In particular, electric
power systems consist of three main parts:

• Generation: The production of electricity from primary energy sources such as fuels
(e.g., fossil fuels or nuclear fuels) or renewable resources (e.g., sun, wind, or water).

• Transmission: The transportation of electricity over long distances from where it is
produced to it is consumed, using high-voltage transmission lines. (The role of elec-
tricity transmission can be analogized to the role of highways in vehicle transporta-
tion, where the goal is to travel long distances efficiently.)

• Distribution: The transportation of electricity from transmission infrastructure to end-
use consumers, using low-voltage distribution lines. (The role of electricity distribution

5The introductory paragraph of this section is adapted from Donti and Kolter [DK21]. Parts of the
description of AC optimal power flow are adapted from Donti, Rolnick, and Kolter [DRK21]. Parts of the
discussion on climate change mitigation and adaptation are adapted from Rolnick, Donti, Kaack, Kochanski
et al. [Rol+22].

16

can be analogized to the role of local roads in vehicle transportation, where the goal
is to safely travel short distances to a final destination.)

Together, transmission and distribution systems form the electric grid (or power grid).

Given the high fixed costs associated with operating transmission and distribution
systems, these systems are generally considered natural monopolies, and are managed by
either public or highly-regulated entities. In particular, the term utility is used to refer
to the owner of transmission or distribution infrastructure, and the term system operator
is used to refer to the entity that oversees the system to ensure it operates smoothly.
Depending on the power market structure, the relationships between utilities, system
operators, and power generators may vary. For instance, many regions in the United States
have regulated electricity markets, where vertically-integrated utilities own and operate
all of the generation, transmission, and distribution in a given region; other regions have
deregulated electricity markets, where system operators are independent from transmission
and distribution utilities, and where power generators can be privately owned [Fed15].

While power systems were historically operated in a primarily top-down manner – with
power produced by large, centralized generators and then transported one-way to consumers
via transmission and distribution infrastructure – the landscape has more recently started
shifting towards the paradigm of smart grids that accommodate dynamic, two-way energy
flows [Fan+11; TA16]. In particular, with the introduction of distributed energy resources
such as rooftop solar panels (with potentially controllable power inverters), of distributed
energy storage such as distribution-connected batteries and electric vehicles, and of demand
flexibility/demand response strategies that aim to intelligently shift electricity consumption
based on the needs of the power grid, electrical loads on distribution systems have also
started to play a more active role in power system operations. This has thereby increased
the scale at which power systems must be managed.

2.3.2 Power system operations

At a high level, the operation of power systems can be conceptualized through the lens
of a problem called AC optimal power flow (ACOPF). ACOPF is a fundamental problem
for the operation of the electrical grid, and is (in principle) used by transmission system
operators to determine how much power must be produced by each controllable generator
in order to meet demand. (This is also known as determining a dispatch.)

Formally, a power network may be considered as a graph on b nodes, representing
different locations (buses) within the electric grid, and with edges weighted by complex
admittances wij ∈ C that represent how easily current can flow on the corresponding
power lines. Let W ∈ Cb×b denote the graph’s Laplacian matrix, which in power systems
terminology is called the nodal admittance matrix ,6 and let fc : Rb → R be a cost function
parameterized by the costs of power generation c. Then, the problem of ACOPF can
be defined as follows: Given inputs pd ∈ Rb, qd ∈ Rb (representing the real and reactive

6In power systems, the notation Y is more canonically used for the admittance matrix; however, we
adopt W here to avoid clashing with canonical machine learning notation, in which Y often stands for a
collection of “ground truth” labels.

17

components of power demand at the various buses), we aim to output pg ∈ Rb, qg ∈ Rb

(representing the real and reactive power generation at each bus) and v ∈ Cb (representing
complex voltage values at each bus)7 according to the following optimization problem:

minimize
pg∈Rb, qg∈Rb, v∈Cb

fc(pg) (2.13a)

subject to pmin
g ≤ pg ≤ pmax

g , qmin
g ≤ qg ≤ qmax

g , vmin ≤ |v| ≤ vmax, (2.13b)

(pg − pd) + (qg − qd)i = diag(v)Wv, (2.13c)

where i :=
√
−1, where the notation x is used to denote the complex conjugate of some

x, and where |v| denotes the element-wise L1 norm. The constraints (2.13c) are called
the AC power flow equations, and ensure that the amount of power flowing into every bus
equals the amount of power flowing out. The dual variables λ ∈ Rb corresponding to the
AC power flow equations are (in principle) the wholesale power prices at each bus. While
we use simplified notation here, more detailed notation is provided in Appendix B.1.

The ACOPF problem (2.13) is non-convex and NP-hard to solve, due to the nonlinear
and non-smooth nature of the power flow equations. As a result, it is common to use less
computationally expensive approximations of this problem in various contexts [WWS14;
VM06]. In particular, one common approximation is DC optimal power flow (DCOPF),
which makes various simplifying assumptions about power system quantities that cause the
constraints of Equation (2.13) to become linear; while more computationally tractable to
obtain, it is worth noting that solutions of DCOPF are not feasible with respect to the original
system [Bak21]. Another common approximation omits the power flow constraints altogether,
only requiring that the amount of power generation and power consumption be equal on an
aggregate level; this variant, called economic dispatch, basically reduces to ranking power
generation on a merit order curve from cheapest to most expensive, and then dispatching
power in order, starting from the cheapest generators, until all power demand is met.

While ACOPF (and its cheaper approximations) reflect some basic considerations for the
operation of power grids, more complex variants of these problems aim to reflect additional
important considerations. In particular, N-k security-constrained optimal power flow (N-
k SCOPF) aims to schedule power generation in a way that is robust to potentially k
simultaneous outages of lines or generators (with N-1 SCOPF being the most common
variant). The problem of stochastic optimal power flow (stochastic OPF) aims to schedule
power generation in a way that is cognizant of demand being stochastic; in particular, while
hidden in the notation above, “demand” in the context of optimal power flow refers to
actual electricity demand minus non-controllable power generation (e.g., from solar and
wind), making stochastic OPF a particularly important problem for the integration of time-
varying renewable energy. While these problems provide a dispatch for one point in time,
the mixed-integer unit commitment problem decides which generators should be turned
on/off over multiple time steps, as well as how much power they should produce.

While optimal power flow problems provide a rough conceptual model for how power grids
operate, in reality, there are many ways in which actual power systems are more complex

7Modern electric power systems are generally alternating current (AC) systems, in which all electrical
quantities – e.g., powers and voltages – are considered to be complex-valued. In particular, the terms real
power and reactive power refer to the real and imaginary components, respectively, of complex power.

18

[KS04]. For example, controllable power generation is typically only dispatched at fixed
time intervals, despite the fact that power demand and time-varying renewable generation
change continuously; to account for this (as well as any issues with the original dispatch),
power generators and other controllable loads also participate in real-time ancillary service
schemes such as frequency control, voltage control, and reactive power control to stabilize
the grid. As another example, power prices (as in principle captured mathematically within
the ACOPF dual variables) are in reality the result of a combination of complex multi-
timescale market trading and of longer-term purchasing contracts called power purchase
agreements. In addition, while we have presented a fundamentally top-down view of power
system operations, as previously discussed, distribution systems have also started to play
a more active role; this has in some cases led to the rise of distributed energy markets in
which distributed energy resources and distributed loads can actively trade.

2.3.3 Climate change mitigation and adaptation in power systems

In the context of climate action, electric power systems play a key role in both climate
change mitigation (reducing or preventing greenhouse gas emissions) and climate change
adaptation (responding to the effects of a changing climate).

With respect to climate change mitigation, electric power systems are currently respon-
sible for about a quarter of annual greenhouse gas (GHG) emissions [IPC22b]. Demand for
low-carbon electricity is also further projected to grow as sectors such as buildings, trans-
portation, and heavy industry seek to “electrify” greenhouse-gas-emitting loads (such as
passenger vehicles) [IPC22b]. Therefore, reducing greenhouse gas emissions in the electric
power sector is a keystone of societal climate action. In particular, this will entail [IPC22b]:

• Rapidly transitioning to low-carbon8 electricity sources (such as solar, wind, hydro,
nuclear, and geothermal) and away from carbon-emitting sources (i.e., fossil fuels).

• Reducing greenhouse gas emissions associated with existing fossil fuels and electricity
infrastructure (e.g., by reducing waste, by preventing methane leaks, or via carbon
capture and sequestration).

• Implementing these changes across all countries and contexts, including via potentially
tighter integration of regional electricity and energy systems.

With respect to climate change adaptation, power grids both will be affected by climate
change impacts and are a key part of strategies to build adaptive capacity in many regions.
In particular, climate change adaptation in the power sector will entail the following:

• Making operations more robust and resilient in the face of climate extremes [Nat17].
This may include, e.g., developing robustness to correlated failures of grid components
that may occur due to extreme heat or cold [Mur19], or enabling the quick repair of

8As a note, while the terms “renewable” and “low-carbon” are often used interchangeably, they are in
reality distinct terms with different implied (though related) objectives. In particular, “renewable energy”
is often used in service of general sustainability and circular economy goals, whereas “low-carbon energy”
is largely used in service of climate change goals. While many forms of energy (such as solar and wind
power) fall under both categories, others fall under only one; for instance, biomass-based energy may be
renewable but not necessarily low-carbon [Cre16], whereas nuclear energy is low-carbon but not renewable.

19

grid infrastructure after outage-inducing storms.

• Adapting how power systems are planned to accommodate changing patterns in
supply and demand [RF+21], as changes in weather impact both the production of
renewable energy and energy consumption for (e.g.) heating and cooling.

• Expanding access to reliable electricity across additional countries and contexts; in
particular, energy access and reliability are strong drivers of economic development
[Mos+20], which itself is affects broader capacity to adapt to climate change [BCF12].

Achieving these objectives will require efforts to shape both power system operations and
planning. On the operations side, power grids will need to be managed at increasing speed
and scale – for instance, to accommodate the time-varying nature of renewable energy
sources, to integrate additional distributed energy resources, and to explicitly account for
different power system failure scenarios. This will require improvements in techniques
such as forecasting, estimation, centralized optimization, and distributed control to cope
with this speed and scale. On the planning side, power grids will need to be designed,
built, and upgraded in ways that foster the tradition to clean energy sources and improve
power system reliability, robustness, and resilience. This will require holistic, inter-regional
planning of power grids, as well as coordination with the climate science community to
build additional understanding of ways in which climate changes will affect power supply,
demand, and infrastructure.

In the remainder of this thesis, we focus largely on power system operations, and how
machine learning can help improve operations in service of climate change mitigation and
adaptation goals. For more detail on the role of machine learning in sustainable energy
systems more broadly, we refer readers to Rolnick, Donti, Kaack, Kochanski, et al. [Rol+22]
and Donti and Kolter [DK21].

20

Part I

Estimation Tasks in Power Systems

21

Chapter 3
Assessing Emissions and Damage Factors in
PJM

In recent years, several methods have emerged to estimate the emissions and associated
damages (e.g., to health, the environment, and the climate) that are avoided by interventions
such as energy efficiency, demand response, and the integration of renewables. However,
differing assumptions employed in these analyses could yield contradicting recommendations
regarding whether and how an intervention should be implemented. We test the magnitude
of the effect of using different key assumptions – average vs. marginal emissions, year of
calculation, temporal and regional scope, and inclusion of non-emitting generation – to
estimate emissions and damage factors in the PJM Interconnection. We further highlight
the importance of these differing assumptions by evaluating three illustrative 2017 power
system examples in PJM. We find that for a simple building lighting intervention, using
average emissions factors incorporating non-emitting generation underestimates avoided
damages by 45% compared to marginal factors. For PJM demand response, outdated
marginal emissions factors from 2016 overestimate avoided damages by 25% compared to
2017 factors. Our assessment of PJM summer load further suggests that fossil-only average
emissions factors overestimate damages by 63% compared to average factors incorporating
non-emitting generation. We recommend that energy modelers carefully select appropriate
emissions metrics when performing their analyses. Furthermore, since the U.S. electric grid
is rapidly changing, we urge decision-makers to frequently update (and consider forecasting)
grid emissions factors.

The work in this chapter has previously been published in:1

Priya L. Donti, J. Zico Kolter, and Inês Lima Azevedo. “How Much Are
We Saving After All? Characterizing the Effects of Commonly Varying
Assumptions on Emissions and Damage Estimates in PJM.” Environmental
Science & Technology 53.16 (2019), 9905–9914.

1Code for all analyses is available online: https://github.com/priyald17/emissions-assumptions.

23

https://github.com/priyald17/emissions-assumptions

3.1 Introduction

Power system interventions such as installing efficient building lighting, implementing
demand response, and increasing renewables integration can potentially reduce emissions of
CO2, SO2, NOx, and PM2.5, as well as their associated damages to the climate, environment,
and human health. As decision-makers design such interventions, it is important to
understand the actual benefits achieved by their implementation. Extensive prior work
has evaluated interventions such as electric vehicle charging [GZKM14; Tam+15; Wei+15;
RJK16; Yuk+16], battery storage management [CN13; HA15; FA17; HA17], data center
load shifting [Hor16], building energy efficiency [GAJ14], and changes in fuel mix [KML13;
SE+13; KA16; Lue+16; HA17; HL17] using emissions and damage factors. However, such
analyses have differed in terms of the key assumptions they have made when calculating
emissions and damage factors.

One key distinction involves average vs. marginal emissions factors (AEFs vs. MEFs).
AEFs measure the average emissions intensity of all electricity generation at a given time
and are widely used due to their simplicity of calculation. Alternatively, MEFs measure
the emissions intensity of marginal generators, which are the last to be dispatched to meet
demand and thus the first to respond to power system interventions.

Another important assumption involves the potential inclusion of non-emitting (i.e.,
renewable and nuclear) electricity sources. While most studies have examined marginal
emissions factors using only fossil fuel data, recent analyses suggest that renewables may
influence marginal emissions factors in regions such as the U.S. Midcontinent Independent
System Operator (MISO) region [Li+17].

Other assumptions in calculating emissions factors involve regional and temporal scope.
In the U.S., studies have employed emissions factors nationally [Sch+17a] and for grid
interconnections [GZKM14], North American Electric Reliability Corporation (NERC) re-
gions [SEAM12], independent system operator (ISO) and regional transmission organization
(RTO) regions [Li+17; PJM17a; Thi+17], and even custom-defined regions [Uni17c]. Tempo-
rally, emissions factors have been calculated at the annual [Uni17b], monthly [PJM17a], and
time of day [GZKM14] levels, and using data from different years. Additional assumptions
may include using non-temporal partitions such as load bins to calculate emissions factors
[SEAM12] and using generation vs. demand data in emissions factor calculations [GZKM14].

We seek to answer the question of how influential a number of these assumptions are on
emissions and damage assessments in the PJM RTO. PJM operates the largest competitive
wholesale market in the U.S., encompassing utilities from all or part of 13 states and
servicing about 770 TWh of annual demand [PJM18]. In 2017, PJM accounted for roughly
20% of emissions of criteria pollutants and carbon dioxide from U.S. electricity generators
(based on data from the U.S. Environmental Protection Agency’s Continuous Emissions
Monitoring System), making it an important candidate for power system interventions. As
a deregulated entity, PJM can shape market participation of power system interventions
via incentives or reduction of barriers to entry, warranting careful analysis as to these
interventions’ potential costs and emissions effects.

Our study serves as an initial input to such analysis by seeking to understand the
implications of choosing different types of emissions and damage factors when evaluating

24

Table 3.1: Emissions and generation data employed in our analysis.

Data Source Description Processing done by authors

Generator labels

Generator ISO/RTO
membership

eGRID
(EPA)

Generator’s ISO/RTO of
membership (if any) (2011)

Selected the generators
associated with PJM

Emissions

Hourly CO2, SO2,
NOx emissions

CEMS
(EPA)

Hourly emissions for
fossil-fueled generators larger
than 25 MW (2006-17)

Aggregated to PJM

Annual primary
PM2.5 emissions

NEI (EPA) Annual PM2.5 emissions for
subset of CEMS generators
(2008, 2011, 2014)

Converted to generator-specific
and average by-fuel-type
emissions rates, and then
multiplied by hourly generation

Generation

Hourly fossil generation CEMS
(EPA)

Gross hourly generation for
fossil-fueled generators larger
than 25 MW (2006-17)

Aggregated to PJM

Hourly non-emitting
generation

PJM (Data
Miner 2)

System-wide hourly
generation by fuel type for
PJM (mid-2015 onward)

Aggregated generation from
nuclear, wind, hydro, solar,
and “other renewables”

Hourly marginal
generator proportions
by fuel type

PJM (via
Monitoring
Analytics)

Hourly fraction of marginal
generators by fuel type
(2006-17)

Converted to dummy variables
for hourly presence of nuclear,
wind, hydro, solar, or “other
renewables”

interventions. Specifically, we compare emissions and damage factors calculated using
different key assumptions – average vs. marginal, with or without non-emitting generation,
and at different regional and temporal scopes – and evaluate the effects of using these
factors for evaluations of a building lighting efficiency intervention, economic demand
response, and summer load in PJM. While previous work has addressed the effects of some
of these assumptions (for CO2) [RJK16; Rya+18], to our knowledge, our work is the first to
systematically quantify the effects of varying these key assumptions in historical emissions
and damage factor estimates (across multiple pollutants).

3.2 Data and methods

We estimate generation-based average and marginal emissions and damage factors for CO2,
SO2, NOx, and PM2.5 in PJM and the Reliability First Corporation (RFC), the NERC
region most similar in spatial scope to PJM. We estimate these factors from hourly data
for multiple temporal breakdowns: by year (annual), by month (monthly), by hour of day
for a given month (monthly time of day, i.e., monthly TOD), and for each hour of the year
(hourly; for average factors only). We additionally consider various generation fuel mixes:
for 2006-17, we calculate emissions factors using fossil generation only, and for PJM in
2016-17, we additionally calculate factors incorporating non-emitting generation.

25

Jan
2017

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

40
60
80

100

Ho
ur

ly
 F

os
sil

Ge
ne

ra
tio

n
(G

W
h)

CEMS-reported PJM-reported

Figure 3.1: Hourly fossil generation in PJM in 2017, as reported by CEMS and by PJM. CEMS includes
generation for generators larger than 25 MW, whereas PJM reports the entirety of fossil generation within its
footprint. The CEMS- and PJM-reported values are similar, with PJM-reported values on average less than
6% higher than CEMS values (and in the median about 4% higher). In other words, CEMS-excluded fossil
generators do not contribute significantly to fossil generation in PJM, and we hypothesize that the exclusion
of such generators (by virtue of our use of the CEMS data) is not a significant limitation to our analysis; that
said, it may be worth including CEMS-excluded fossil generators in future analyses, pending data availability.

3.2.1 Data

We employ hourly emissions and electricity generation data from the U.S. Environmental
Protection Agency (EPA) and PJM (see Table 3.1).

We obtain hourly-level emissions and fossil generation data for 2006-17 from the Contin-
uous Emissions Monitoring System (CEMS) [Uni09] and the National Emissions Inventory
(NEI) [Uni17d] through the EPA. CEMS reports hourly CO2, SO2, and NOx emissions as
well as total hourly generation for all U.S. fossil-fueled generators larger than 25 MW. (We
estimate that smaller fossil generators contribute less than 6% of PJM’s total fossil genera-
tion, and thus that the exclusion of such generators is not a significant limitation to our
analysis; see Figure 3.1 for more details.)

NEI reports primary annual PM2.5 emissions for a subset of these fossil generators, but
only for the years 2008, 2011, and 2014. To estimate primary hourly PM2.5 emissions for
different years, we first find generator-specific emissions rates by dividing total annual
emissions from NEI by total annual generation from CEMS at the generator level in each
NEI year. We further use these generator-specific rates to calculate average PM2.5 emissions
rates by generator fuel type. To then estimate PM2.5 emissions for each individual generator
in all hours of different years, we multiply CEMS-reported hourly generation either by (a)
the generator-specific emissions rate (for generators in NEI) or (b) the applicable average
by-fuel-type emissions rate (for generators not in NEI), using the rates calculated from the
2008, 2011, and 2014 NEIs for the years 2006-2010, 2011-2013, and 2014-2017, respectively.
(More discussion about our use of NEI data is provided in Appendix A.1.) We aggregate
PJM hourly emissions (CO2, SO2, NOx, or PM2.5) and fossil generation by summing across
all generators eGRID 2011 reports as being associated with PJM.

We further analyze the effects of including recent nuclear and renewable generation
data from PJM in our estimates. PJM reports system-wide hourly generation by fuel type
starting mid-2015, from which we extract nuclear, wind, hydro, solar, and “other renewable”

26

sources as being non-emitting. PJM also reports the fraction of marginal generators in each
hour that belong to each fuel type (where this hourly data is aggregated from the 5-minute
level). As this data does not report the extent of marginal generation from each fuel type–
only the number of marginal generators–we convert it to dummy variables Is(t) indicating
the hourly presence of each non-emitting fuel type s in the marginal generator data at time
t: that is, we let Is(t) = 1 if fuel s is ever marginal during hour t and set it to 0 otherwise.
For 2016-17 in PJM, we find that wind, nuclear, and solar are marginal in 27%, 15%, and
0.9% of hours, respectively, and other non-emitting sources are never marginal.

3.2.2 Calculating AEFs

For a given grouping of hours, we calculate the AEF as the ratio of total emissions to total
generation for that grouping. Explicitly, for a pollutant p, generation mix C, region R, and
set of hours T corresponding to a given temporal breakdown, the AEF is given by

AEFp,C
R,T =

∑
t∈T

Ep
R,t /

∑
t∈T

GC
R,t, (3.1)

where Ep
R,t is the total emissions of pollutant p (kg) and GC

R,t is the total generation for
fuel mix C (MWh), both in region R in hour t.

3.2.3 Calculating MEFs

We estimate MEFs via regression of marginal emissions against marginal generation,
following a similar approach as in previous work [Hor16; HA17; SE+13; SEAM12]. This
approach entails estimating the emissions effects of potential instantaneous changes in power
generation (i.e., counterfactuals we do not observe) using the emissions effects of changes in
generation between adjacent hours (which we do empirically observe). The fundamental
assumption, here, is that the merit order curve associated with economic dispatch stays
roughly the same between adjacent hours; this means that the generators that would have
been dispatched to serve an instantaneous change in load in a given hour are roughly the
same as those that were actually dispatched to serve changes in load between adjacent
hours. We note that this is indeed an assumption, and does not account for power system
congestion or other factors that may cause the merit order to change (see, e.g., the discussion
in Section 2.3.2). However, we posit that this approach still provides a reasonable first-
order approximation for marginal emissions factor values, and we employ this approach in
keeping with prior work.

Specifically, for each pollutant p and hour t, we estimate the hourly marginal emissions
∆Ep

R,t (kg) as the hourly change in total regional emissions:

∆Ep
R,t = Ep

R,t − Ep
R,t−1. (3.2)

Marginal generation ∆GC
R,t (MWh) is estimated as the hourly change in total regional fossil

generation plus (potentially) in marginal non-emitting generation. That is, we estimate

27

marginal generation for fossil-only factors (C = fossil) and factors incorporating non-
emitting generation (C = f+ne), respectively, as

∆Gfossil
R,t = Gfossil

R,t −Gfossil
R,t−1, (3.3)

∆Gf+ne
R,t = ∆Gfossil

R,t +
∑

s∈
{

nuclear, wind, hydro,

solar, “other renewables”

} Is(t)(Gs
R,t −Gs

R,t−1). (3.4)

We note that this calculation implicitly makes two assumptions regarding the role of
fossil fuels in marginal generation: (a) that fossil fuels are marginal in every hour, and (b)
that all changes in fossil generation are marginal changes. We believe these assumptions to
be reasonable for the present PJM system. On the first point, in 2016 and 2017 (the latest
years in which we calculate fossil-plus-non-emitting factors), PJM reports fossil fuels as being
marginal in all but five hours; in those five remaining hours, the marginal fuels are ambiguous
but likely include fossil fuels, as the marginal generation is reported as being partially wind
and partially “min gen/dispatch reset” (i.e., events in which power plants–likely fossil-fuel
power plants–need to account for over-generation in the system). On the second point,
we expect that non-marginal changes in fossil fuel generation are relatively insignificant
compared to marginal changes; in particular, maintenance events are relatively infrequent
and changes attributed to ancillary services are relatively small. In a future system where
fossil fuels are not always marginal (i.e. where non-emitting sources may often be marginal),
these assumptions may not hold; in this future case, we would suggest that those estimating
marginal emissions factors modify Equations (3.2)–(3.4) to exclude those changes in fossil-
fuel generation and emissions that are not explicitly associated with marginal generators.

We further note that Equation (3.4) computes the marginal generation for each non-
emitting source s by differencing its hourly generation before selecting whether to use this
difference in hour t (i.e., computes Is(t)(G

s
R,t−Gs

R,t−1)) instead of differencing after selection
(i.e., computing Is(t)G

s
R,t − Is(t− 1)Gs

R,t−1 as in Li, Smith, Yang, and Wilson [Li+17]). We
employ this method because PJM has many contiguous hours in which wind (the dominant
non-emitting marginal fuel) switches between marginal and not marginal, which means
differencing after selection would lead us to incorrectly include all wind generation from
the marginal hour in our marginal generation estimate. The latter method would thus
overestimate the magnitude of marginal generation from wind. However, we suspect that
Equation (3.4) likely still slightly overestimates the magnitude of non-emitting marginal
generation, as some hour-to-hour changes in non-emitting generation that we count as
marginal are likely due to natural resource variation rather than active response to changing
demand.

Using the estimates (3.2)–(3.4), given a set of hours T , we then calculate MEFs via
regression for hours t ∈ T , i.e.,

∆Ep
R,t∈T = MEFp,C

R,T ∆GC
R,t∈T + αp,C

R,T + ϵp,CR,T , (3.5)

where the slope MEFp,C
R,T of the regression corresponds to the MEF estimate (kg/MWh)

for pollutant p and generation mix C in region R for the set of hours T , and where αp,C
R,T

28

and ϵp,CR,T are the regression intercept and noise, respectively. We note that this calculation
likely overestimates the magnitude of difference between fossil-only and fossil+non-emitting
factors, given the prior discussion that the estimate of ∆Gf+ne

R,t calculated via Equation (3.4)
likely overaccounts for non-emitting generation.

3.2.4 Calculating average and marginal damage factors

We additionally calculate average and marginal damage factors (ADFs and MDFs), i.e., the
monetized health, environmental, and climate change damages associated with average and
marginal emissions (2010 dollars). For CO2, we simply multiply the average and marginal
emissions factors AEFCO2,C

R,T and MEFCO2,C
R,T by a social cost of carbon of $40/ton CO2 to

get their respective damage factors ADFCO2,C
R,T and MDFCO2,C

R,T ($/MWh); at the time our
analysis was conducted, this social cost of carbon was approximately the value recommended
for U.S. regulatory impact analyses under a 3% average discount rate [Uni16a].

For SO2, NOx, and PM2.5, damages vary by region and population density. Thus,
following Siler-Evans, Azevedo, Morgan, and Apt [SE+13], we convert from emissions to
damages at the individual generator level by multiplying hourly emissions by a location-
specific damage intensity. We aggregate damages to the regional level only after this
generator-level conversion. Generator-level damage intensities are obtained from two distinct
models: an integrated assessment model of U.S. air pollution called AP2 [Mul14] and a
reduced-form air quality model called EASIUR [HAG16]. More information about our use
of these models is included in Appendix A.2.

To calculate pollutant-specific ADFs and MDFs from our regional aggregations of
damages and generation, we employ similar methods as for AEFs and MEFs. That is, we
simply substitute damages Dp

R,t for emissions Ep
R,t in all previous equations to yield the

average and marginal damage factors ADFp,C
R,T and MDFp,C

R,T ($/MWh).
To get a total marginal damage factor (in $/MWh) across all pollutants, we sum the per-

pollutant marginal damage factors as MDFC
R,T =

∑
p∈{CO2, SO2, NOx, PM2.5}MDFp,C

R,T . The

aggregated average damage factor ADFC
R,T is calculated similarly.

3.2.5 Selecting factors for emissions/damage assessments

We employ the calculated emissions and damage factors to estimate the effects of inter-
ventions and loads in PJM. To analyze how commonly-varying assumptions affect these
estimates, we first identify a baseline factor that a decision-maker may reasonably use in
their assessments. In all cases, the choice of baseline factor depends on how the interven-
tion or load in question affects the grid. We describe the rules-of-thumb used in this work
when ascribing this effect, while recognizing that application-specific considerations (in-
cluding data availability) may warrant different choices of baseline factor in practice. For
additional discussion on these topics, please see Ryan, Johnson, and Keoleian [RJK16] and
Ryan, Johnson, Keoleian, and Lewis [Rya+18].

Average vs. marginal factors. Marginal factors measure the emissions intensity of

29

marginal generators, so it is appropriate to use them for interventions or loads that cause
changes in marginal generation (e.g., small changes in demand or the introduction of
renewables [RJK16]). Average factors measure the emissions intensity of all generation and
are thus appropriate for attributing interventions or loads whose effects are approximately
distributed throughout the generation mix (e.g., large existing loads). We note that in
the presence of cap-and-trade, marginal factors may be zero if emissions caps are binding
[TCC11]; however, since most of PJM is not part of CO2 cap-and-trade schemes such as
the Regional Greenhouse Gas Initiative (RGGI) and since NOx caps under the Clean Air
Interstate Rule/Cross-State Air Pollution Rule (CAIR/CSAPR) are non-binding, marginal
factors are nonzero for our case study.

Inclusion of non-emitting sources. In most cases, choosing to include all grid electricity
generation sources (emitting and non-emitting) in factor estimates most accurately captures
the grid effects of a particular intervention or load. If there is a strong case for why a
particular intervention or load will not affect non-emitting sources, then it may be reasonable
to use fossil-only factors.

Temporal granularity. In general, factors should be chosen granularly to capture the
actual time frame on which the given intervention or load occurs, while also acknowledging
that factors calculated at more granular level will exhibit more variance (i.e., more uncer-
tainty) than those calculated at aggregate levels.

Regional scope. Regional boundaries should be chosen to match the locations on the grid
that a given intervention or load affects. These boundaries should be sufficiently coarse
to capture regional import/export effects [RJK16; Uni17c] (as, e.g., loads in one region
may cause generators in another region to ramp), but sufficiently granular so as to not
capture grid locations largely unaffected by a particular intervention or load. Such exact
attributional analysis may be difficult, however, leading to analyses within administrative
boundaries (e.g., ISOs/RTOs) in practice.

3.3 Results and discussion

We analyze average and marginal emissions and damage factors for various temporal
scopes and generation fuel mixes in PJM and RFC. We then examine these different
factors’ implications for estimating the emissions and damage effects of PJM power system
interventions and loads – specifically, building lighting efficiency, economic demand response,
and summer load. As all results were similar under the AP2 and EASIUR damage models,
results reported in the text are under AP2, unless otherwise stated; results under EASIUR
are reported in Appendix A.3.

30

3.3.1 Annual and monthly emissions factors over time

We analyze average and marginal emissions and damage factors in PJM and RFC from
2006 to 2017, using annual factors (T contains all hours in a given year) and monthly
factors (T contains all hours in a given month of a given year). Annual and monthly total
damage factors under AP2 (including CO2, SO2, NOx, and PM2.5) are shown in Figure 3.2.
Numerical comparisons of annual and monthly emissions and damage factors under both
AP2 and EASIUR are shown in Table 3.2.

'06 '08 '10 '12 '14 '16
Year

0
50

100
150
200
250
300

Da
m

ag
e

fa
ct

or
 ($

/M
W

h)

PJM (fossil-only) (MEF)
PJM (fossil-only) (AEF)

RFC (fossil-only) (MEF)
RFC (fossil-only) (AEF)

PJM (fossil+non-emitting) (MEF)
PJM (fossil+non-emitting) (AEF)

'06 '08 '10 '12 '14 '16
Month/Year

0
50

100
150
200
250
300

Da
m

ag
e

fa
ct

or
 ($

/M
W

h)

Figure 3.2: Annual (top) and monthly (bottom) average and marginal factors over time for total damages
under the AP2 damage model (i.e., health damages from SO2, NOx, and PM2.5, and climate change
damages from CO2 in 2010 dollars) in PJM and RFC. Error bars for marginal factors (narrow) represent
regression standard errors and do not reflect the uncertainty in the underlying data. PJM (fossil-only) =
emissions factor estimates using only fossil fuel generation in PJM; RFC (fossil-only) = emissions factor
estimates using only fossil fuel generation in RFC; PJM (fossil+non-emitting) = emissions factor estimates
using fossil fuel and non-emitting generation in PJM; (MEF) = marginal emissions factor estimate; (AEF)
= average emissions factor estimate. 2016 was the first full year in which non-emitting generation data was
available, so we only show 2016 and 2017 results for “PJM (fossil+non-emitting)” scenarios.

Our analysis of annual factors shows that fossil-only total damage factors in PJM
decreased significantly over time. For example, by 2017, total damage factors had decreased

31

Table 3.2: Comparison of annual and monthly emissions and damage factors (in %). Total damage factors
include CO2 climate change damages and SO2, NOx, and PM2.5 health and environmental damages. Per-
pollutant ranges capture comparisons for the pollutant’s emissions and damage factors. The labels “(M)”
and “(A)” indicate marginal and average factor comparisons, respectively.

Total damage factors Per-pollutant emissions and damage factors
Comparison Period

AP2 EASIUR CO2 SO2 NOx PM2.5

2006-

2017

76 (M)

79 (A)

73 (M)

76 (A)

12 (M)

17 (A)

86 to 87 (M)

90 to 91 (A)

57 to 73 (M)

65 to 75 (A)

65 to 72 (M)

65 to 71 (A)
% decrease over time

(annual factors, PJM

fossil-only)
2016-

2017

19 (M)

12 (A)

15 (M)

8 (A)

5 (M)

1 (A)

24 to 30 (M)

16 to 23 (A)

22 to 31 (M)

21 to 26 (A)

7 to 17 (M)

2 to 12 (A)

% decrease over time

(annual factors, PJM

fossil+non-emitting)

2016-

2017

18 (M)

16 (A)

15 (M)

12 (A)

5 (M)

6 (A)

24 to 30 (M)

19 to 26 (A)

22 to 31 (M)

24 to 29 (A)

7 to 16 (M)

7 to 16 (A)

2006-

2017
2 6 12 -1 to 4 -5 to 6 -6 to 9Average vs. marginal

mean % difference

(annual factors, PJM

fossil-only)
2017 -8 -3 7 -24 to -21 -21 to 2 -5 to 10

2016 -48 -45 -37 -58 to -56 -51 to -41 -45 to -36Average vs. marginal

mean % difference

(annual factors, PJM

fossil+non-emitting) 2017 -46 -43 -37 -56 to -54 -54 to -40 -45 to -36

2006-

2017

2 (M)

3 (A)

5 (M)

7 (A)

2 (M)

4 (A)

2 to 7 (M)

3 to 11 (A)

1 to 9 (M)

4 to 15 (A)

1 to 8 (M)

-2 to 7 (A)
RFC vs. PJM %

difference (annual

factors, fossil-only) 2017
5 (M)

10 (A)

8 (M)

15 (A)

2 (M)

7 (A)

2 to 7 (M)

9 to 17 (A)

4 to 20 (M)

11 to 30 (A)

19 to 31 (M)

19 to 34 (A)

2006-

2017

4 to 16 (M)

3 to 12 (A)

3 to 15 (M)

2 to 11 (A)

1 to 5 (M)

0 to 2 (A)

7 to 18 (M)

2 to 23 (A)

4 to 43 (M)

3 to 39 (A)

2 to 13 (M)

1 to 8 (A)
Monthly vs. annual mean

absolute % difference

(PJM fossil-only factors;

ranges are across years)
2017

5 (M)

4 (A)

4 (M)

3 (A)

2 (M)

2 (A)

9 to 10 (M)

9 to 11 (A)

4 to 11 (M)

10 to 15 (A)

5 to 8 (M)

2 to 5 (A)

2016
8 (M)

11 (A)

6 (M)

9 (A)

2 (M)

6 (A)

12 to 15 (M)

13 to 19 (A)

8 to 16 (M)

11 to 15 (A)

3 to 6 (M)

6 to 10 (A)
Monthly vs. annual mean

absolute % difference

(PJM fossil+non-emitting

factors; ranges are across

years)
2017

5 (M)

5 (A)

4 (M)

4 (A)

2 (M)

3 (A)

9 to 10 (M)

9 to 11 (A)

4 to 11 (M)

8 to 13 (A)

6 to 8 (M)

3 to 6 (A)

2016
0 (M)

-39 (A)

0 (M)

-39 (A)

0 (M)

-39 (A)

-1 to 0 (M)

-39 to -38 (A)

-1 to 0 (M)

-39 to -38 (A)

-1 to 0 (M)

-39 to -38 (A)
Fossil+non-emitting

vs. fossil-only

mean % difference

(annual factors, PJM) 2017
0 (M)

-42 (A)

0 (M)

-42 (A)

0 (M)

-42 (A)

-1 to 0 (M)

-42 to -41 (A)

-1 to 0 (M)

-42 to -41 (A)

-1 to 0 (M)

-42 to -41 (A)

2006 - -
12 (AP2)

15 (EAS)

75 (AP2)

68 (EAS)

3 (AP2)

5 (EAS)

10 (AP2)

12 (EAS)
Pollutant share in

total damage factor

(annual factors, PJM

fossil-only) 2017 - -
48 (AP2)

53 (EAS)

33 (AP2)

26 (EAS)

4 (AP2)

6 (EAS)

14 (AP2)

15 (EAS)

32

by 76-79% (across marginal and average factors) when compared to 2006 levels. Criteria
pollutants contributed significantly to this decrease, whereas CO2 contributed only modestly.
(As a result, criteria pollutants comprised 52% of PJM fossil-only total damage factors
in 2017, compared to 88% of total damage factors in 2006.) This discrepancy between
CO2 and criteria pollutants is likely due to the replacement of coal with natural gas plants,
which are about half as CO2-intensive as coal plants

2 but much less SO2- and NOx-intensive
[DG+14]. Specifically, coal’s share in PJM dropped from 60 to 50 GW of capacity between
2007 and 2016 (from 50 to 35% of generation between 2006 and 2014), with natural gas’
share increasing from 50 to 65 GW of capacity (from 20 to 30% of generation) during the
same time periods [PJM17e]. Additionally, SO2 and NOx emissions trading programs such
as CAIR and CSAPR prompted installation of emissions controls for criteria pollutants
[Uni12b; DG+14; Cen17].

These steep changes over time highlight the importance of updating emissions factor
estimates on a regular basis. Using outdated emissions factors may imply significantly
inflated conclusions as to the effectiveness of modern power system interventions, especially
for criteria pollutants. Similarly, this finding underscores the need for accurate estimation
of future emissions factors (via data- or optimization-driven approaches) when designing
future interventions.

Comparing marginal and average factors, we find that while total fossil-only annual
average damage factors overall slightly exceeded their marginal counterparts during 2006-
17, average factors decreased at a faster rate than marginal factors. In fact, average total
damage factors dropped below their marginal counterparts during 2015-2017. We suspect
this is because marginal natural gas units were less clean than average natural gas units,
even though natural gas replaced coal at similar rates in both baseload3 and marginal
generation [PJM17a; PJM17e].

Adding non-emitting generation to our factors in 2016 and 2017 (the two full years for
which we have the relevant data) exacerbates differences between marginal and average
factors, with average annual fossil+non-emitting total damage factors close to half their
marginal counterparts. While this result is not surprising (as fossil+non-emitting average
factors require dividing emissions by total generation rather than just fossil generation, and
fossil+non-emitting marginal factors capture the fact that nuclear and renewable sources are
often non-marginal), it has tremendous implications for policy implementation. For instance,
evaluating a marginal intervention using a fossil+non-emitting average emissions factor (the
type of AEF reported by PJM [PJM17c]) could underestimate the effects of that intervention
by 36-58% (across all pollutants and damage models in both years), potentially flipping
a policy decision about whether that intervention should be pursued. This underscores
the importance of rigor and transparency when publishing emissions/damage factors and
applying them to system analyses, whether using average or marginal factors.

Using PJM vs. RFC boundaries also leads to differences in total damage factors. While
RFC factors followed qualitatively similar temporal trends to PJM factors during this time

2Our statement about the reduced GHG emissions of natural gas power vs. coal power does not account
for the potential effect of methane leaks in natural gas infrastructure (which are not reflected in our
emissions data).

3Baseload refers to power generation that consistently stays “on” to meet minimum power demand.

33

period, RFC’s total damage factors were generally higher than PJM’s (by 2-7% across
all years and by 5-15% in 2017, across AP2 and EASIUR marginal and average factors).
Across all years, damage factors for NOx diverged the most of any individual damage factor
despite relatively similar emissions factors. In 2017, PM2.5 factors were also much higher in
RFC than PJM. This is possibly due to the presence of coal plants near population centers
in Michigan that are captured in RFC but not in PJM, as suggested by EIA and census
data [Bur10; Uni17a].

Finally, we find that annual factors mask some of the intra-annual variability in emissions
factors: monthly total damage factors exhibit mean absolute differences of 3-16% from their
corresponding annual total damage factors (for PJM fossil-only factors across marginal and
average factors in 2006-17), with most of the variability due to SO2 and NOx. In other
words, using an annual factor to evaluate or design interventions could potentially miss
important differences between emissions and damage factors in different months and hours,
especially for criteria pollutants.

Overall, we find that the distinction between marginal and average factors drives the
largest changes in emissions and damage factors, specifically when incorporating non-
emitting generation (as is common for average factors). Using outdated factors can also
significantly change estimated intervention results, and thus power system interventions
should be evaluated using emissions factors for the year in which they took or will take
place (which is sometimes not the case in existing literature and policy evaluations). Both
the use of PJM vs. RFC regional boundaries and intra-annual variability are also somewhat
influential in driving emissions and damage factor values, especially for criteria pollutants.

On the other hand, we find that adding non-emitting generation has virtually no (less
than 1%) effect on marginal factor estimates. This is because while non-emitting sources
(particularly wind and nuclear) are marginal in a nontrivial number of hours, the amount
of marginal generation (i.e. the magnitude of hour-to-hour generation changes in marginal
hours) attributed to these sources is small. These results imply that fossil-only marginal
factors are adequate to evaluate marginal interventions in PJM at this time, though we
emphasize that this latter finding is specific to the PJM region during the time period
evaluated (2016-17) and thus may not be appropriate in modeling system emissions in other
regions or time periods.

3.3.2 Intra-annual variability in emissions and damage factors

We now examine the intra-annual temporal variability in emissions factors in 2017, the latest
year for which we have a full year of both fossil and non-emitting generation data. Specifically,
we examine average and marginal emissions and damage factors partitioned by month and
time of day (i.e., monthly TOD). Figure 3.3 illustrates AP2 total damage factors in all months
of 2017 for three pairings of emissions and generation: PJM with fossil generation only, PJM
with non-emitting generation (fossil+non-emitting), and RFC with fossil generation only.

We find ample intraday variability in monthly TOD marginal emissions factors. Monthly
TOD marginal emissions factors for CO2, SO2, NOx, and PM2.5 vary on average by 3-8%, 25-
186%, 21-36%, and 6-27%, respectively, from their monthly means, with maximum variations
of 26%, 761%, 114%, and 67%, respectively (where these ranges are across all months in

34

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)
PJM

(fossil+non-emit)

0 10 20

Jan

PJM
(fossil-only)

0 10 20

RFC
(fossil-only)

0 10 200

50

100

150

PJM
(fossil+non-emit)

0 10 20

Feb

PJM
(fossil-only)

0 10 20

RFC
(fossil-only)

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

Mar

0 10 20 0 10 200

50

100

150

0 10 20

Apr

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

May

0 10 20 0 10 200

50

100

150

0 10 20

Jun

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

Jul

0 10 20 0 10 200

50

100

150

0 10 20

Aug

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

Sep

0 10 20 0 10 200

50

100

150

0 10 20

Oct

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20
Hour of day (UTC-5)

Nov

0 10 20 0 10 200

50

100

150

0 10 20
Hour of day (UTC-5)

Dec

0 10 20

Average Marginal
.

Figure 3.3: Monthly time of day total damage factors under the AP2 damage model (incorporating health and
climate change damages for CO2, SO2, NOx, and PM2.5, in 2010 dollars), in all months of 2017. Error bars
for marginal factors represent regression standard errors and do not reflect the uncertainty in the underlying
data. PJM (fossil+non-emitting), PJM (fossil-only), and RFC (fossil-only) are as defined in Figure 3.2.

35

2017 for PJM fossil-only factors). The corresponding total damage factors from AP2 vary
by 13-100% from their monthly means, with a maximum variation of 458%. The shapes of
the intraday marginal emissions curves also differ between months (see Figure 3.3). Average
monthly TOD factors vary much less by hour of day, likely because average factors are
primarily determined by baseload (which does not change significantly throughout the day).

We find that differences between PJM and RFC marginal factors are exacerbated at
this level of granularity, with RFC fossil-only marginal total damage factors on average
20% higher than their PJM counterparts in 2017 under AP2. (This number is 94%
under EASIUR.) This result indicates that PJM and RFC factors are not necessarily
interchangeable at this level of temporal granularity.

At monthly TOD granularity, we also do find a modest difference between fossil-only
and fossil+non-emitting marginal monthly TOD factors in PJM, with fossil+non-emitting
damage factors on average 6% lower than their fossil-only counterparts under AP2, and
13% lower under EASIUR.

Overall, we see a great deal of intra-annual and intraday variability in PJM marginal
emissions factors that is not captured by annual or monthly level factors. As such, we
recommend using granular factors when appropriate in order to design and evaluate the
effects of marginal interventions. However, as a caveat, monthly TOD factors exhibit much
greater uncertainty (i.e. have higher standard errors) than monthly or annual factors, due
to higher susceptibility to outliers. As such, modelers who use monthly TOD or other
granular factors should explicitly propagate the associated standard errors in their estimates
in order to be transparent about the underlying uncertainty in these estimates.

3.3.3 Effects of a building-level lighting intervention

To illustrate the importance of different emissions and damage factor assumptions, we
assess the effects of a simple building-level lighting intervention in 2017 under the different
factor types discussed above. Specifically, we estimate the effects of reducing residential
consumption by 100W from 8pm to midnight, e.g. by switching two 60W incandescent
bulbs to 10W LEDs for indoor residential nighttime use. This scenario is simply meant
to be illustrative of the magnitude of emissions and damage reductions possible, as more
detailed assumptions about lamp types and usage patterns would be needed for an actual
lighting policy evaluation.

Figure 3.4a shows the health, environmental, and climate change damages of this
intervention under different emissions factors, using the AP2 damage model and a $40/ton
CO2 cost of carbon. As we are measuring the hourly effects of marginal changes in this
example, we use marginal monthly TOD fossil+non-emitting damage factors (for PJM in
2017) as a baseline. All percentage comparisons in this section are relative to this baseline.

Several important points are highlighted with this simple example. First, we see a wide
range of estimates for the damages avoided, ranging from $4-12 depending on the factor
used, with a baseline estimate of $9. This difference is important: assuming this intervention
were implemented in the approximately 25 million households in PJM (estimated given
a population of 65 million in PJM [PJM18] and an average of 2.58 people per household
[Uni12a]), the estimated annual social damages avoided would range from $100 to 300 million.

36

Marginal Average
0.0
2.5
5.0
7.5

10.0
12.5

To
ta

l d
am

ag
es

av
oi

de
d

($
)

PJM (fossil-only)

CO2 SO2 NOx PM2.5

Marginal Average

PJM (fossil+non-emit 2016)

Annual Monthly Monthly TOD
Marginal Average

*
PJM (fossil+non-emit)

Marginal Average

Pollutants:
Temporal scopes:

RFC (fossil-only)

(a) Total annual damages avoided for a 2017 nighttime building level lighting intervention in PJM
that induces a daily 100W reduction from 8pm to midnight.

Marginal Average
0
1
2
3
4

To
ta

l d
am

ag
es

av
oi

de
d

($
 m

ill
io

ns
) PJM (fossil-only)

CO2 SO2 NOx PM2.5

Marginal Average

PJM (fossil+non-emit 2016)

Annual Monthly
Marginal Average

*
PJM (fossil+non-emit)

Marginal Average

Pollutants:
Temporal scopes:

RFC (fossil-only)

(b) Total damages avoided for 2017 PJM historical demand response, assuming complete load
shedding. For context, PJM demand response revenue was $2.4 million (2010 dollars) in 2017
[McA18].

Marginal Average
0

5

10

15

To
ta

l d
am

ag
es

($
 b

ill
io

ns
)

PJM (fossil-only)

CO2 SO2 NOx PM2.5

Marginal Average

PJM (fossil+non-emit 2016)

Annual Monthly Monthly TOD Hourly
Marginal Average

*

PJM (fossil+non-emit)

Marginal Average

Pollutants:
Temporal scopes:

RFC (fossil-only)

(c) Total damages from 2017 PJM summer metered load (June-August). For context, PJM’s annual
billings in 2016 were approximately $40 billion (2010 dollars) [PJM18]. As we do not estimate
hourly-level marginal factors, and since hourly level 2016 factors should not be applied to 2017, we
omit hourly-level estimates in these cases.

Figure 3.4: Effects of interventions and loads evaluated as assessed with damage factors under the AP2
damage model (incorporating health and climate change damages for CO2, SO2, NOx, and PM2.5, in 2010
dollars). Baseline factor effects are indicated with an asterisk. Error bars (narrow) represent propagated
regression standard errors. PJM (fossil-only) = assessment with 2017 emissions factor estimates using only
fossil fuel generation in PJM; PJM (fossil+non-emitting) = assessment with 2017 emissions factor estimates
using fossil fuel and non-emitting generation in PJM; PJM (fossil+non-emitting 2016) = assessment with
2016 emissions factor estimates using fossil fuel and non-emitting generation in PJM; RFC (fossil-only) =
assessment with 2017 emissions factor estimates using only fossil fuel generation in RFC.

37

Jan
2017

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0
2
4
6
8

10

DR
 R

ed
uc

tio
n

(G
W

h)

Figure 3.5: PJM’s reported economic demand response by month in 2017. In 2017, monthly DR reductions
ranged from 2 GWh (in February) to 9 GWh (in July), with a total of 62 GWh throughout the year
[McA18]. (This amount corresponds to less than 0.01% of PJM’s annual load.)

Our results also highlight that the distinction between marginal and average factors
is the most influential in driving results for this intervention. Specifically, using average
emissions factors grossly underestimates the damages avoided by this marginal intervention,
especially with the inclusion of non-emitting generation. Indeed, the average fossil+non-
emitting counterparts to the baseline underestimate damage reductions by 45%, and even
the average fossil-only counterparts to the baseline underestimate damage reductions by 6%.

While average factors underestimate marginal intervention effectiveness in 2017, outdated
factors significantly overestimate effectiveness. For instance, if a decision-maker employing
the baseline monthly TOD fossil+non-emitting factors were to use (relatively recent) data
from 2016 instead of 2017, they would overestimate the total damages avoided in this
example by 35%. We choose 2016 for comparison since, at the time of this analysis (which we
conducted over 2017-18), it was the data year for the EPA’s most recent eGRID factors, which
may have viably been used by policymakers for intervention design and emissions targets.

As suggested by our factor comparisons, the distinctions between PJM and RFC factor
assessments are more modest (within 8%), as are the distinctions between assessments using
PJM fossil-only vs. fossil+non-emitting marginal factors (within 3%). In this case, the
distinction between annual, monthly, and monthly TOD factors is also less influential (less
than 2%) since the intervention is implemented uniformly across the year and for multiple
hours each day, causing intra-annual and intraday variations in factors to average out.

3.3.4 Effects of historical demand response

Demand response (DR) entails the participation of demand resources in energy and capacity
markets, and can benefit the U.S. power system by curbing electricity emissions and costs
[Wal+08] given real-time power grid information. Numerous studies have explored DR
implementation in different settings [AES08; PD11; FIN18; Zha+15]. There has been a
great deal of recent regulatory activity in this area; for instance, a 2016 Supreme Court
order potentially encouraged DR in energy markets by allowing it to be compensated
as electricity generation [Uni16b], but PJM meanwhile curbed DR’s participation in the
capacity market by imposing capacity performance requirements [PJM17b].

We analyze the historical emissions and damage effects of PJM’s existing DR program
as input to decision-making. PJM reports aggregated historical demand response at the

38

monthly level. In 2017, monthly DR reductions ranged from 2 GWh (in February) to 9 GWh
(in July) with a total of 62 GWh throughout the year [McA18], which corresponds to less
than 0.01% of PJM’s annual load (see Figure 3.5). Since demand response in reality occurs
at a granular time scale, monthly-level analyses may miss important effects stemming from
intraday variation in marginal factors. We note further that we evaluate DR reductions as
reported by PJM assuming complete load shedding, and do not account for potential load
shifting or social damages from behind-the-meter generation used for DR (due to the lack
of access to granular data). However, these effects can potentially have large impacts on
demand response assessments (see Appendix A.4), warranting the release of more granular
data to enable accurate assessments.

In the absence of more granular data, the assessed effects of monthly-level demand
response for total damages under AP2 (assuming complete load shedding) are shown
in Figure 3.4b. As we are measuring the monthly effects of marginal changes, we use
marginal monthly fossil+non-emitting damage factors (for PJM in 2017) as our baseline.
All percentage comparisons in this section are relative to this baseline.

We find that the annual health, environmental, and climate change damages avoided
by demand response range from $2.0 to 4.7 million depending on the factor used, with a
baseline estimate of $3.7 million. For context, PJM economic DR revenue – which gives a
lower bound on avoided electricity sales – was $2.4 million (2010 dollars) in 2017 [McA18].

Similarly to the previous intervention, the average vs. marginal factor distinction
and year of calculation are the most important assumptions driving results. The average
fossil+non-emitting counterparts to the baseline underestimate total damages avoided by
46%, and even the average fossil-only counterparts to the baseline underestimate damages
by 7%. On the other hand, the 2016 counterparts to the baseline overestimate total damages
avoided by 25%.

In this case, we again see that the distinctions between PJM and RFC factors and fossil-
only vs. fossil+non-emitting factors do not significantly drive estimates of damages avoided,
leading to differences of less than 5% and less than 1%, respectively. The distinctions
between annual and monthly factors are also not influential (less than 1% difference) in
this case, as monthly-level demand response reductions are relatively evenly distributed
throughout the year.

3.3.5 Effects of historical summer load

As a final example, we assess the emissions effects from historical load in PJM in the
summer (June-August 2017), when demand is highest. Specifically, peak load during these
summer months is 146 GW, but only 132 GW in the rest of the year (see Figure 3.6).

The assessed effects of this load for total damages under AP2 are shown in Figure 3.4c.
Since we are measuring the hourly effects of total load as opposed to a marginal change, we
use average fossil+non-emitting damage factors (for PJM in 2017) computed for each hour
of the year as a baseline for this example. All percentage comparisons in this section are
relative to this baseline.

We find that the health, environmental, and climate change damages of summer load
range from $7.0 to 16 billion depending on the factor used, with a baseline estimate of $7.1

39

Jan
2017

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
60
80

100
120
140

Ho
ur

ly
 m

et
er

ed
lo

ad
 (G

W
h)

Figure 3.6: PJM hourly metered load in 2017. (Data from PJM Data Miner 2 [PJM17d].)

billion. For context, PJM’s total billings in 2017 were approximately $40 billion [PJM18].

The choice to include or exclude non-emitting generation is extremely influential for
assessments of total loads such as summer demand, as the fossil-only counterparts to the
baseline overestimate damages avoided by 63%. The distinction between marginal and
average factors also becomes more important with the inclusion of non-emitting generation,
as the marginal monthly TOD counterparts to the baseline overestimate total damages by
83%. It is thus extremely important that policymakers consider whether including non-
emitting generation makes sense for their particular application (instead of simply using
published fossil+non-emitting average factors by default) and be particularly mindful of the
distinction between average and marginal factors in the presence of nuclear and renewables.

As in the previous cases, using the 2016 monthly TOD counterparts to the baseline
overestimates damages by 25%. The annual counterparts to the baseline only negligibly
underestimate damages (since intra-annual variations in average fossil+non-emitting factors
are averaged out over the summer months), and as per our analysis of monthly TOD factors,
granularity beyond the monthly level does not affect damage assessments.

3.4 Policy implications

Our analysis of emissions and damage factors for PJM highlights the great importance of
using appropriate assumptions about average vs. marginal factors, year of calculation, and
inclusion of non-emitting generation (and the potential importance of assumptions such as
temporal and regional scope) when evaluating interventions and loads. Such assumptions
can significantly drive power system intervention assessments, potentially flipping policy
decisions about intervention implementation, design, and incentives. In particular, we
suggest that decision-makers employ marginal factors for marginal interventions and average
factors for total load assessments, especially since public marginal emissions factor estimates
are now readily available for the United States [Aze+21]. If there is ambiguity as to which
factor is appropriate, we recommend conducting a sensitivity analysis across both types of
factors. We also suggest that regulators and PJM decision-makers update emissions and
damage factors frequently (e.g., at least once per year) and always use emissions factors
from the year in which the intervention under evaluation was implemented. Similarly,
for the design of future interventions, we recommend that decision-makers develop and

40

use accurate forecasting methods for grid emissions factors. These recommendations are
particularly important given that average factors change at different rates than marginal
factors, leading the relative effectiveness of average vs. marginal interventions to differ over
time. The interactions between cap-and-trade and marginal factor calculations should also
be examined over time, as caps should be set to reflect marginal (not average) impacts.

While we find that intra-annual and intraday variability is not influential in our assess-
ments of interventions and loads, we find that both marginal and average factors do vary
throughout the year, and marginal factors vary quite a bit throughout the day. We suggest
that policymakers examine the intraday and intra-annual variability in emissions factors
to design incentives that target interventions at high-intensity (and thereby high-impact)
times of the day and year.

Nuclear and renewable generation currently only minimally affect PJM MEFs, but
this conclusion may change with the increasing prevalence of renewables. Our method of
regression with dummy variables is also only one potential way to include non-emitting
sources in marginal emissions estimates, and relies on data about when different fuel sources
are marginal (which may not be available in all desired regions of analysis). Important
future work would involve exploring different methods of including non-emitting sources in
marginal factor estimates, particularly ones that can detect whether non-emitting generation
is at the margin given hourly generation and emissions from system generators.

While our work assesses sensitivities for generation-based emissions and damage factors,
we do not consider the differences driven by distinctions between generation-based factors
and demand -based factors [GZKM14]. In 2017, PJM total (real-time and day-ahead) gross
imports and exports were 44 TWh and 87 TWh, respectively [Ana17], which corresponds to
about 6% and 11% of PJM’s annual load served. The distinction between generation-side
and demand-side factors could thus potentially impact intervention estimates and would be
worth examining in future work.

We finally note that the kinds of emissions-reducing interventions and loads studied
here are equally important from both the climate change and public health perspectives.
In particular, climate change-related damages and health-related damages each comprise
about half of the total damage factors in 2017. As such, we suggest that policymakers in
both the climate change and health domains consider the insights provided by our work
when selecting baseline factors for the assessment of power system interventions.

41

42

Chapter 4
Matrix Completion for Distribution System
Voltage Estimation

With the rising penetration of distributed energy resources, distribution system control and
enabling techniques such as state estimation have become essential to distribution system
operation. However, traditional state estimation techniques have difficulty coping with the
low-observability conditions often present on the distribution system due to the paucity of
sensors and heterogeneity of measurements in most systems. To address these limitations,
we propose a distribution system state estimation algorithm that employs matrix completion
(a tool for estimating missing values in low-rank matrices) augmented with noise-resilient
power flow constraints. This method operates under low-observability conditions where
standard least-squares-based methods cannot operate, and flexibly incorporates any network
quantities measured in the field. We empirically evaluate our method on the IEEE 33- and
123-bus test systems, and find that it provides near-perfect state estimation performance
(within 1% mean absolute percent error) across many low-observability data availability
regimes. This work is now being used within collaborations between the National Renewable
Energy Laboratory (NREL) and the Hawaiian Electric Company (HECO), as HECO
contends with increased penetrations of distributed solar power on its system.

The work in this chapter has previously been published in:

Priya L. Donti, Yajing Liu, Andreas J. Schmitt, Andrey Bernstein, Rui Yang,
and Yingchen Zhang. “Matrix Completion for Low-Observability Voltage
Estimation.” IEEE Transactions on Smart Grid 11.3 (2019), 2520–2530.

43

4.1 Introduction

State estimation is one of the most critical inference tasks in power systems. Classically,
it entails estimating voltage phasors at all buses in a network given some noisy and/or
bad data from the network [Lia82]. Estimates are obtained via the (generally non-linear)
measurement model:

z = h(x) + ϵ, (4.1)

where z ∈ Cm is a vector of measurements, x ∈ Cn is a vector of quantities to estimate
(typically, voltage phasors), h(·) is a vector of functions representing the system physics (i.e.,
power-flow equations), and ϵ is a vector of measurement noise. The state-estimation task is
then to estimate x given z and some knowledge of h(·) (e.g., its Jacobian matrix). State
estimation has been thoroughly addressed in transmission networks, wherein system (4.1)
is typically overdetermined and fully observable: that is, (i) the number of measurements m
is at least the number of unknowns n, and (ii) the Jacobian J ∈ Cm×n of h(·) is (pseudo)
invertible in the sense that (JTJ)−1 exists. As transmission systems conventionally have
redundant measurements that satisfy the observability requirement, classical least-squares
estimators are applicable and can operate efficiently [AE04].

In contrast, the use of state estimation has historically been limited in distribution net-
works [Deh+18]. Due to limited availability of real-time measurements from Supervisory
Control and Data Acquisition (SCADA) systems, Equation (4.1) is typically underdeter-
mined (m < n), rendering standard least-squares methods inapplicable. Accurate distribu-
tion system state estimation was also previously unnecessary since distribution networks
only delivered power in one direction towards the customer, requiring minimal distribution
system control. This led industry to in practice use only simple heuristics (e.g. based on
simple load-allocation rules [DHZ02; PSM04]) to roughly calculate power flow.

However, due to the increasing adoption of distributed energy resources (DERs) at the
edge of the network [DK08], distribution system state estimation has become increasingly
important [PL17]. There is thus a large focus in the literature on low-observability state
estimation techniques. Many existing methods attempt to improve system observability,
e.g., by optimizing the placement of additional system sensors [SPV09; BKV18; JZ16] or by
deriving pseudo-measurements from existing sensor data [Man+12; WHJ13]. Unfortunately,
installation of additional sensors may be expensive or slow, and pseudo-measurements
can introduce estimation errors [Cle11] or be extremely data-intensive to obtain [Man+12;
JZ16]. Other methods seek to perform state estimation using neural networks, without
constructing an underlying system model [Per+16]. While such machine learning methods
can obtain accurate estimation results, training these methods requires a significant amount
of historical data, which may not be available. As such, there is a need for state estimation
methods that can exploit problem structure to perform state estimation at current levels of
data availability and observability.

In this chapter, we propose a low-observability state estimation algorithm based onmatrix
completion [CR09], a tool for estimating missing values in low-rank matrices. We apply this
tool to state estimation for a given time step by forming a structured data matrix whose
rows correspond to measurement locations, and whose columns correspond to measurement

44

types (e.g., voltage or power). While some methods require collecting data over large time
windows [BKV18], our approach enables “single shot” state estimation that employs only
data from a single time instance. Our approach is closely related to recent works [Gao+16;
Gen+18; Lia+19] that use matrix completion to estimate lost phasor measurement unit
(PMU) data over a time series, but while these works estimate missing quantities exclusively
at measurement points, we consider the problem of estimating quantities even at non-
measurement points where the quantities to be estimated may never have been measured.

The main contributions of this chapter are:
• A novel distribution system state estimation method based on constrained matrix
completion. By augmenting matrix completion with noise-resilient power flow con-
straints, the proposed method can accurately estimate voltage phasors under low-
observability conditions where standard (least-squares) methods cannot.

• A flexible framework for employing various types of distribution system measurements
into state estimation. Whereas many works (e.g. [KZ15; WHJ13; BKV18]) require
specific measurements for estimation, our approach can accommodate any quantities
measured in the field.

• An empirical demonstration of the robustness of our method to data availability and
measurement loss.

4.2 Matrix completion methods

We start by introducing constrained matrix completion, a method that is central to our
proposed approach.

4.2.1 Matrix completion

Given an incomplete matrix that is assumed to be low-rank, the matrix completion problem
aims to determine the unknown elements in this matrix. Formally, let M ∈ Rn1×n2 be a
real-valued data matrix; Ψ ⊆ {1, . . . , n1} × {1, . . . , n2} describe the known elements in M ;
and MΨ ∈ Rn1×n2 denote the observation matrix, where (MΨ)j,k = Mj,k for (j, k) ∈ Ψ and
0 otherwise. Matrix completion can then be formulated as a rank minimization [CR09]:

minimize
X∈Rn1×n2

rank(X)

subject to XΨ = MΨ,
(4.2)

where the decision variable X estimates M . As the optimization problem (4.2) is NP-hard
due to the non-convexity of the rank function, it is common to use a heuristic approach
that instead minimizes the nuclear norm of the matrix [CR09]:

minimize
X∈Rn1×n2

∥X∥∗
subject to XΨ = MΨ,

(4.3)

45

where ∥X∥∗ sums the singular values of X. Given a sufficient number of randomly-sampled
entries in MΨ (depending on the matrix size and rank), problem (4.3) often has a unique
minimizer X that equals M [CR09]. In practice, this problem can be solved efficiently using
truncated nuclear norm regularization or other methods [Hu+13; KMO10; Gro11].

Due to the nature of the equality constraint, formulation (4.3) is highly susceptible to
noise. To alleviate this problem, Candes and Plan [CP10] proposed an algorithm to handle
noisy measurements. The algorithm modifies the equality constraint in (4.3) to

∥XΨ −MΨ∥F ≤ δ, (4.4)

where ∥ · ∥F is the Frobenius norm and δ ≥ 0 is a parameter that can be tuned based on
the extent of measurement noise.

4.2.2 Constrained matrix completion

Now suppose that the values in the matrix M come from some physical system (e.g., a
power system). It is then natural to extend formulation (4.3)/(4.4) to incorporate system
physics via the following constrained optimization problem:

minimize
X∈Rn1×n2

∥X∥∗
subject to ∥XΨ −MΨ∥F ≤ δ,

∥g(X)∥2 ≤ β,

(4.5)

for δ, β ≥ 0, where g(·) is a vector of functions representing system physics (e.g., power-flow
equations). We note that:

• The additional constraint ∥g(x)∥2 ≤ β incentivizes low-rank solutions that respect
the system physics.

• The choice of δ and β is problem-dependent. These parameters can be chosen based
on the extent of measurement noise, or the objective function can be augmented with
terms that try to minimize their values.

• If g(·) is nonlinear, (4.5) is typically non-convex and computationally challenging.

4.3 Low-observability state estimation

We now present our low-observability state estimation algorithm, which employs the
constrained matrix completion model (4.5). We describe our power system model, possible
formulations of M , and possible physical constraints g(·) before showing our full formulation.

4.3.1 Power system model

Let B denote the set of buses, where bus 1 is the slack bus and the remaining |B| − 1 buses
are PQ buses.1 Further, let m ⊆ B × B denote the set of distribution lines. We describe

1The slack (or reference) bus is a power generation bus that, by mathematical convention, provides
a reference voltage angle for the rest of the system; in the context of distribution systems, the slack

46

the nodal admittance matrix W ∈ C|B|×|B| in block form as

W =

[
W11 ∈ C W1L ∈ C1×(|B|−1)

WL1 ∈ C(|B|−1)×1 WLL ∈ C(|B|−1)×(|B|−1)

]
.

Let v ∈ C|B| and s ∈ C|B| be the vectors of (partially unknown) voltage phasors and net
complex power injections, respectively, at each bus. We denote the slack bus voltage phasor
and power injection as v1 and s1, respectively, and similarly denote the vectors of non-slack
bus voltages and power injections as v−1 and s−1. Finally, let ι ∈ C|L| be the vector of
(partially unknown) complex currents in each branch (i.e., line on the power system), where
ιft is the current in line (f, t) ∈ L.

4.3.2 Data matrix formulation

The formulation of the data matrix M (and thus the optimization variable X) can vary
based on the particular attributes of the problem setting, e.g., the kinds of measurements
available and problem scale. We present two possible formulations here, one indexed by
branches and one indexed by buses. However, we emphasize that the proposed method is
not limited to using these matrix structures. The matrix M can be flexibly structured to
accommodate available measurements, as long as these measurements are correlated so that
M is (approximately) low rank.

4.3.2.1 Branch formulation

M can be structured such that each row represents a power system branch and each column
represents a quantity relevant to that branch. This structure allows us to take advantage
of both bus- and branch-related measurements. Specifically, for every line (f, t) ∈ L, the
corresponding row in the matrix M ∈ Rn1×n2 contains:

[Re(vf), Im(vf), |vf |, Re(sf), Im(sf), Re(vt),

Im(vt), |vt|, Re(st), Im(st), Re(ιft), Im(ιft)],

where n1 = |L| and we employ n2 = 12 quantities per row, and where Re and Im refer to
the real and imaginary parts, respectively, of complex phasors.

4.3.2.2 Bus formulation

M can also be structured such that each row represents a bus and each column represents
a quantity relevant to that bus. That is, for every bus b ∈ B, the corresponding row in the
matrix M ∈ Rn1×n2 contains:

[Re(vb), Im(vb), |vb|, Re(sb), Im(sb)],

bus usually refers to the distribution substation, i.e., the bus connecting the distribution system to the
transmission system. The terminology PQ bus refers to a demand bus without any controllable power
generation capacity (but which may have, e.g., variable rooftop solar power).

47

1 2 3 4 5 6 7 8 9 10 11 12
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

ng
ul

ar
 V

al
ue

Singular Values Cumulative Sum of Singular Values

(a) IEEE 33-bus feeder (branch formulation;
dim. 32× 12). The largest singular value (out of
12) comprises >98% of the singular value sum.

1 2 3 4 5
Singular Value Index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Si

ng
ul

ar
 V

al
ue

Singular Values Cumulative Sum of Singular Values

(b) IEEE 123-bus feeder (multi-phase bus formula-
tion; dim. 263×5). The first 3 (of 5) largest singu-
lar values comprise 95% of the singular value sum.

Figure 4.1: Singular values of data matrices for the IEEE 33-bus and 123-bus systems. The bars show the
individual singular values (normalized by the singular value sum), and the circles show the cumulative
sums of the (normalized) singular values.

where n1 = |B| and we employ n2 = 5 quantities per row. While this structure only employs
bus-related measurements, its advantage is that it yields small matrices that can be used
for efficient estimation on large-scale problems.

4.3.2.3 On the low-rank assumption

To employ the matrix completion framework described in Section 4.2, it is necessary that
M be (approximately) low rank. Roughly speaking, this means that M must be structured
such that its rows and/or columns are correlated.

The branch and bus formulations we propose here structure M such that each row
represents a location (branch or bus) and each column represents a type of measurement
(voltage, power, etc.) There are two types of correlations that are possible in this case. The
first is among the rows, representing the spatial correlation between different locations in
a power grid; this property is system dependent (e.g., correlation between loads at neigh-
boring buses). The second type of possible correlation is among columns, representing the
correlation between different types of measurements; this type of correlation is more gen-
eral, as implied by the fact that the power system equations employing these measurements
can be expressed in (approximate) linear form [BW89; BD17] (see Section 4.3.3). Therefore,
these data matrix formulations should be approximately low-rank.

We observe empirically that this low-rank property holds in practice. Figure 4.1 shows
the cumulative percentage distribution of singular values for the IEEE 33-bus feeder
[MAT20] (using a branch formulation) and the IEEE 123-bus feeder [IEE10b] (using a bus
formulation). In both cases, we see that a few singular values comprise much of the singular
value sum, implying these matrices are (approximately) low-rank.

48

4.3.3 Physical power flow constraints

As described in Section 4.2.2, we augment matrix completion with power system constraints
to encourage physically meaningful solutions. These constraints are linear to ensure that
problem (4.5) is convex. We describe the constraints we use below, but note that constraints
can be added, removed, or modified depending on the types of measurements in M .

4.3.3.1 Duplication constraint

Depending on the formulation, some quantities may appear in more than one location in M .
For example, in our branch formulation, quantities related to a given bus appear in multiple
rows if the bus is in multiple branches. We thus constrain equivalent quantities in the
matrix to be equal. Formally, let Λ be a set containing the indices of all pairs of duplicated
quantities in M , such that ((λ1, λ2), (λ

′
1, λ

′
2)) ∈ Λ ⇐⇒ Mλ1,λ2 ≡Mλ′

1,λ
′
2
. We require that

Xλ1,λ2 = Xλ′
1,λ

′
2
, ∀ ((λ1, λ2), (λ

′
1, λ

′
2)) ∈ Λ. (4.6)

4.3.3.2 Ohm’s law constraint

When M contains both bus- and branch-related quantities (as in the branch formulation),
we can apply Ohm’s Law, defined as

(vf − vt)wft = ιft, ∀ (f, t) ∈ L, (4.7)

where wft is the line admittance. However, using an exact equality constraint may cause
the matrix completion problem to become infeasible, e.g., due to measurement noise. We
thus employ a noise-resilient version of Ohm’s Law, i.e.,[−ξr,ft

−ξc,ft

]
≤
[
Re ((vf − vt)wft − ιft)

Im ((vf − vt)wft − ιft)

]
≤
[
ξr,ft
ξc,ft

]
, (4.8)

where ξr,ft, ξc,ft ∈ R+ are respective error tolerances for the real and complex parts of
Ohm’s Law on line (f, t) ∈ L.

4.3.3.3 Linearized power flow constraints

As the exact AC power flow equations are non-linear (see Section 2.3.2), we employ Cartesian
linearizations of these equations. For non-slack voltages and power injections, we employ
approximations of the form

v−1 ≈ A

[
Re(s−1)
Im(s−1)

]
+ u, (4.9a)

|v−1| ≈ C

[
Re(s−1)
Im(s−1)

]
+ |u|. (4.9b)

49

For example, using the method proposed in Bernstein and Dall’Anese [BD17], we can
let u = −v1W−1

LLWL1 ∈ C|B|−1 be the vector of non-slack zero-load voltages and A, C ∈
C(|B|−1)×2(|B|−1) be defined for some non-slack voltage estimates v̂−1 as

A =
[
W−1

LL diag(v̂−1)
−1 −jW−1

LL diag(v̂−1)
−1
]
, (4.10a)

C = diag(|v̂−1|)−1Re
(
diag(|v̂−1|)A

)
. (4.10b)

For our case, we let v̂−1 = u. We note, however, that other methods to obtain the linear
approximations (4.9) (e.g., data-driven regression methods [Liu+18]) can also be leveraged.

To relate voltages with the power injection at the slack bus, we employ the exact power
flow equation

s1 = v1(W 11v1 +W 1Lv−1). (4.11)

This equation is linear in voltages since v1 is known.
As in Section 4.3.3.2, we relax these constraints into noise-resilient versions as

[−τr
−τc

]
≤

Re
(
v−1 −

(
A

[
Re(s−1)
Im(s−1)

]
+ u

))
Im
(
v−1 −

(
A

[
Re(s−1)
Im(s−1)

]
+ u

))
 ≤

[
τr

τc

]
, (4.12a)

−γ ≤ |v−1| −
(
C

[
Re(s−1)
Im(s−1)

]
+ |u|

)
≤ γ, (4.12b)

[−αr

−αc

]
≤
[
Re
(
s1 −

(
v1(W 11v1 +W 1Lv−1)

))
Im
(
s1 −

(
v1(W 11v1 +W 1Lv−1)

))] ≤ [αr

αc

]
, (4.12c)

where τr, τc, γ ∈ R|B|−1
+ , αr, αc ∈ R+ are error tolerances, and inequalities are evaluated

elementwise.

4.3.4 Full problem formulation

Given these power flow constraints, we collect our error tolerances into the set E =
{ξr, ξc, τr, τc, γ, αr, αc} and form our constrained matrix completion problem (4.5) as

minimize
X∈Rn1×n2 , E

∥X∥∗ +
∑
ϵ∈E

wϵ∥ϵ∥2 (4.13a)

subject to ∥XΨ −MΨ∥F ≤ δ, (4.13b)

(4.6), (4.8), (4.12a), (4.12b), (4.12c), (4.13c)

ϵ ≥ 0, ∀ϵ ∈ E , (4.13d)

where in this case we add each constraint tolerance ϵ ∈ E to the objective with an associated
weight wϵ. Each weight is chosen to reflect the relative importance of its constraint. For a
branch-formulated M , the above formulation can be used as-is. For a bus-formulated M ,

50

equations (4.6) and (4.8) are removed from the constraints (and their associated parameters
ξr, ξc are removed from E) since M does not contain duplicated quantities or branch current
measurements.

Formulation (4.13) allows the matrix completion optimization to explicitly trade off
between the low-rank assumption and fidelity to the power flow constraints, without
requiring tuning of each entry of each constraint tolerance vector. We further observe
that, since the objective is convex and all constraints are linear in the entries of X, this
formulation is a convex optimization problem and can be solved efficiently.

We note that our approach is closely related to regularized least-squares methods. Indeed,
for underdetermined systems, regularization is typically used to bring structure into the
problem and identify a unique meaningful solution. For example, ridge regression employs
ℓ2-norm regularization, whereas the popular LASSO regression technique employs ℓ1-norm
regularization to promote sparse solutions. Our approach can be viewed as a variant of a
least-squares problem with nuclear norm regularization in order to promote solutions that
are low rank.

In practice, we formulate (4.13) as a semidefinite program (SDP) to solve it using an
SDP solver. In particular, as described in [CR09], the constrained matrix completion
problem (4.13) can be rewritten as

minimize
X∈Rn1×n2 , E,
D1∈Rn1×n1 ,
D2∈Rn2×n2

trace(D1) + trace(D2) +
∑
ϵ∈E

wϵ∥ϵ∥2 (4.14a)

subject to ∥XΨ −MΨ∥F ≤ δ, (4.14b)

(4.6), (4.8), (4.12a), (4.12b), (4.12c), (4.14c)

ϵ ≥ 0, ∀ϵ ∈ E , (4.14d)[
D1 X
XT D2

]
⪰ 0, (4.14e)

where the optimization variables are now X and E (as before) and additionally the matrices
D1 and D2. As this formulation is an SDP, it can be solved using a standard SDP solver.

4.3.5 Extension to the multi-phase setting

While for brevity we formally present only a single-phase, balanced formulation, our
approach can easily be extended to the general multi-phase setting. Specifically, M can be
structured to include phase-wise quantities, and the constraints presented in Section 4.3.3
can be replaced with multi-phase versions (see, e.g., [BD17; Ber+18]). We empirically
illustrate the application of our method to a multi-phase 123-bus test case in Section 4.4.2.

4.4 Simulation and results

We demonstrate the voltage estimation performance of our matrix completion method on
the IEEE 33-bus [MAT20] and 123-bus [IEE10b] test cases. For the 33-bus feeder, we employ

51

a branch formulation matrix and show that our method performs well in low-observability
settings (where traditional state estimation techniques cannot operate) as well as in full-
observability settings. For the multi-phase 123-bus feeder, we use a bus formulation matrix
and demonstrate that our method scales robustly to larger systems.

Implementation details. In all cases, we implement the SDP formulation (4.14) of our
matrix completion algorithm using the CVXPY Python library [DB16], and solve it using
CVXPY’s SCS solver. For the 33-bus test case, we set the weights wϵ, ϵ ∈ {ξr, ξc} of the
Ohm’s Law parameters to be 100, and the weights wϵ, ϵ ∈ {τr, τc, γ, αr, αc} of the linearized
power flow parameters to be 10, with the rationale that the Ohm’s Law equations are exact
whereas the linearized power flow equations are approximate. For the 123-bus case, we set
the weights of the linearized power flow parameters to be 20 (and do not employ Ohm’s Law
constraints since we use a bus-formulated data matrix). For both the 33- and 123-bus test
cases, we let δ be the value of the noise standard deviation (e.g. for 1% noise, we let δ = 0.01).

4.4.1 33-bus system

We test our branch-formulated algorithm on a modified version of the IEEE 33-bus test case
with solar panels added at buses 16, 23, and 31. On this system, voltage magnitudes range
from approximately 0.99-1.02 p.u., and all angles (relative to the substation voltage angle)
are close to 0. We assume that voltage phasors are known exactly at the slack bus, and
must be estimated everywhere else. Non-voltage phasor quantities (i.e., voltage magnitude,
power injections, and current flows) are assumed to be known exactly at the slack bus, and
are “potentially measured” at other buses.

We compare our matrix completion method on this system against a state-of-the-art
weighted least squares (WLS) state estimation algorithm. This algorithm sets up a (nonlin-
ear) system of equations that captures relationships between voltage magnitudes/angles and
measured quantities using Ohm’s Law and the (original, nonlinear) power flow equations.
Starting from an initial guess of 1 p.u. for unknown voltage magnitudes and 0 degrees for
unknown voltage angles, WLS iteratively solves linearizations of this system of equations
(using the Jacobian about the previous guess for voltage magnitudes and angles) until con-
vergence. We use a base weight of 100 for each observation (since both Ohm’s Law and the
power flow equations are exact in this case), and adjust these weights to reflect the extent
of measurement noise (i.e. down-weight each observation in direct proportion to its variance,
as is standard in WLS). We implement the WLS baseline using the (nonlinear) least squares
function from the Python library SciPy. For each experimental run during which matrix com-
pletion and WLS are compared, these algorithms are run in parallel using the same inputs.

4.4.1.1 Randomly-sampled data

In one set of experiments, we model data unavailability among “potentially measured”
quantities via random sampling. That is, we randomly choose sets of buses (ranging between
0-100% of buses) at which all “potentially measured” quantities are measured, and set these

52

quantities to be unknown at all other buses. Results under 1% Gaussian measurement noise
are shown in Figure 4.2c.

Under 1% measurement noise, we see that the mean absolute percent error (MAPE) of
our matrix completion algorithm’s voltage magnitude estimates drops to below 3% and
the mean absolute error (MAE) of our voltage angle estimates drops to below 0.29 degrees
when 20% or more of measurements are known. (We report MAEs rather than MAPEs
for voltage angles since all angles are close to 0.) When 30% or more of measurements are
known, voltage magnitude MAPEs are much less than 1%, and voltage angle MAEs are
less than 0.23 degrees. This result calibrates well with guarantees for matrix completion
performance under random data removal [CP10]. In contrast, we find that WLS is not able
to operate on this system until approximately 70% of “potentially measured” quantities are
measured, as the WLS Jacobian was never (pseudo) invertible at lower data availabilities
during our experiments (see condition (ii) for observability described in Section 4.1). At the
full observability conditions under which WLS is able to operate, our method’s estimates
are statistically similar to those of WLS, with voltage magnitude MAPEs and angle MAEs
within 0.2% and 0.03 degrees, respectively, for our matrix completion algorithm and within
0.5% and 0.008 degrees, respectively, for WLS.

Given that grid sensors may exhibit varying degrees of measurement noise, we further
examine the performance of our matrix completion algorithm and the WLS baseline
under different noise levels (though assuming, as previously stated, that non-voltage
phasor quantities are known exactly at the slack bus). Figures 4.2a, 4.2b, and 4.2d show
the performance of these algorithms on the 33-bus test case (given randomly sampled
measurements) under 0%, 0.2%, and 10% noise. While estimation performance does degrade
as measurement noise increases, it does not degrade linearly in the amount of measurement
noise; in other words, both our matrix completion algorithm and WLS are able to buffer
against measurement noise to some extent.

4.4.1.2 Data-driven assumptions

In practice, data unavailability is not uniformly random, but instead correlated and system-
specific. For instance, a utility may only have certain types of sensors at certain types
of buses. We thus run a second set of experiments where we classify the buses into four
categories: slack bus (1 bus), solar generators (3 buses), large loads (6 buses), and small
loads (23 buses). As before, all quantities are known exactly at the slack bus. At solar PV
generators, only real power injections, reactive power injections, and voltage magnitudes may
be measured. At loads (large or small), only real power injections may be measured. Since
actual sensor availability may vary between utilities, we model different scenarios in which
these groups of non-slack buses have real, pseudo-, or no measurements. In the best case
(when all three groups of buses have some measurements), 23% of “potentially measured”
quantities are measured. Thus, all our data-driven scenarios are at low observability, and
traditional full-observability state estimation methods cannot be used.

The performance of our method on these scenarios is shown in Figure 4.3, assuming
measurements have 1% Gaussian sensor noise and pseudomeasurements have 10% Gaussian
error. Our algorithm achieves less than 1% MAPE in its magnitude estimates and less than

53

0 20 40 60 80 100
10 8
10 6
10 4
10 2
100
102

M
AP

E
of

 V
ol

ta
ge

M
ag

ni
tu

de

0 20 40 60 80 100
Percentage of "Potentially Measured" Quantities Measured

10 9

10 6

10 3

100

M
AE

 o
f V

ol
ta

ge
An

gl
e

(d
eg

re
es

)

MC WLS

(a) 0% noise

0 20 40 60 80 100

10 2

10 1

100

101

102

M
AP

E
of

 V
ol

ta
ge

M
ag

ni
tu

de

0 20 40 60 80 100
Percentage of "Potentially Measured" Quantities Measured

10 3

10 2

10 1

100

101

M
AE

 o
f V

ol
ta

ge
An

gl
e

(d
eg

re
es

)

MC WLS

(b) 0.2% noise

0 20 40 60 80 100
10 2

10 1

100

101

102

M
AP

E
of

 V
ol

ta
ge

M
ag

ni
tu

de

0 20 40 60 80 100
Percentage of "Potentially Measured" Quantities Measured

10 3

10 2

10 1

100

101

M
AE

 o
f V

ol
ta

ge
An

gl
e

(d
eg

re
es

)

MC WLS

(c) 1% noise

0 20 40 60 80 100

10 1

100

101

102

M
AP

E
of

 V
ol

ta
ge

M
ag

ni
tu

de

0 20 40 60 80 100
Percentage of "Potentially Measured" Quantities Measured

10 2

10 1

100

101

M
AE

 o
f V

ol
ta

ge
An

gl
e

(d
eg

re
es

)

MC WLS

(d) 10% noise

Figure 4.2: Performance on 33-bus test case with different levels of noise and random sampling of data.
(Each point represents 50 runs.)

0.5 degrees MAE in its angle estimates when accurate measurements are available for solar
generators and either measurements or pseudomeasurements are available for loads. Results
for a representative run in this scenario are shown in Figure 4.4. More generally, our estimates
(averaged across all runs) have at most 10.2±0.2% voltage magnitude MAPE and 0.50±0.26
degrees voltage angle MAE in any scenario where solar generators are measured, and at
most 16.0± 3.4% magnitude MAPE and 3.3± 1.9 degrees angle MAE in any scenario where
solar generators have pseudomeasurements (where angle errors are high in this latter case
due to solar generator measurement noise). If solar generator measurements are unknown,
magnitude MAPEs range from 57-73%, and angle MAEs range from 2.7-30 degrees.

A potential alternative to using low-observability state estimation techniques is to en-
able full-observability techniques by deploying additional sensors. To model this alternative,
we randomly add AMI sensors (which collect coarse-granularity load data, modeled as pseu-

54

10 1

100

101

102
M

AP
E

of
 V

ol
ta

ge
M

ag
ni

tu
de

Lg. Loads: 0 Lg. Loads: P Lg. Loads: M
Solar: 0

Lg. Loads: 0 Lg. Loads: P Lg. Loads: M
Solar: P

Lg. Loads: 0 Lg. Loads: P Lg. Loads: M
Solar: M

10 1

100

101

M
AE

 o
f V

ol
ta

ge
An

gl
e

(d
eg

re
es

)

Sm. Loads
0 P M

Figure 4.3: Performance on the 33-bus test case with 1% noise over different data availabilities for solar, large
load, and small load buses (0 = not measured, P = some pseudomeasurements, M = some measurements;
each point represents 50 runs). Our method achieves good estimation error in many scenarios, even though
all scenarios shown exhibit low observability.

domeasurements) and “magnitude sensors” (which collect voltage and current magnitudes)
to our system until full observability is achieved. We then compare our method to WLS
on this augmented system. Voltage phasor estimates for a representative run are shown
in Figure 4.5. In this case, both our matrix completion algorithm and WLS quite accu-
rately estimate voltages, with voltage magnitude MAPEs and angle MAEs within 0.6%
and 0.53 degrees, respectively, for our matrix completion algorithm and within 0.8% and
0.67 degrees, respectively, for WLS. However, achieving full observability requires adding
28-63 sensors to the system (depending on the baseline data availability scenario), which
represents a potentially high cost to the distribution utility.

Overall, our results demonstrate that our matrix completion algorithm can provide
accurate state estimation performance in the low-observability case (where traditional state
estimation techniques cannot operate), as well as in the full-observability case.

4.4.2 123-bus feeder

We next demonstrate that our matrix completion method effectively scales to larger systems
via experiments on the IEEE 123-bus feeder. The 123-bus feeder is a multi-phase unbalanced
radial distribution system, in which buses are single-, double-, or three-phase (with 263
phases in total). For our simulations, we add PV systems at each load node of the feeder.
We employ a bus-formulation matrix for this test case, where each matrix row represents a
phase at one bus. To validate our approach, we use two hours of system voltage and power
injection data. This data was simulated at one-minute resolution using power flow analysis
with diversified load and solar profiles created for each bus using realistic solar irradiance
and load consumption data. The corresponding voltage magnitudes range from 0.95-1 p.u.,
and voltage angles are around 0 or ±120 degrees.

As in the previous section, we assume that voltage phasors are known exactly at the

55

5 10 15 20 25 30

0.98

1.00

1.02
Vo

lta
ge

 M
ag

ni
tu

de
(p

.u
.)

5 10 15 20 25 30
Bus Number

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Vo
lta

ge
 A

ng
le

(d
eg

re
es

)

True Estimated (MC)

Figure 4.4: Representative voltage phasor estimates
for the 33-bus test case with 1% noise in the low-
observability scenario with solar, large loads, and
small loads partially measured.

5 10 15 20 25 30

0.98

1.00

1.02

Vo
lta

ge
 M

ag
ni

tu
de

(p
.u

.)

5 10 15 20 25 30
Bus Number

1.5
1.0
0.5
0.0
0.5
1.0
1.5

Vo
lta

ge
 A

ng
le

(d
eg

re
es

)

True Estimated (MC) Estimated (WLS)

Figure 4.5: Representative estimates for the 33-bus
test case with 1% noise and data-driven sampling
at full observability.

Table 4.1: Average running time over 50 runs for our matrix completion method (wϵ = 20, ∀ϵ ∈ E) on the
IEEE 123-bus Feeder, using the CXVPY SCS Solver on a laptop with 1.9 GHz CPU and 32 GB RAM.

% “potentially measured” quants. avail. 10 30 50 70 90

Running time for 0.2% noise (s) 20 22 23 41 50
Running time for 1% noise (s) 78 85 88 89 93

slack bus (which here has three phases) and must be estimated everywhere else. All other
measurements (i.e., voltage magnitudes and power injections) are known exactly at the
slack bus and are “potentially measured” for non-slack system phases. The running time of
our implementation for different percentages of known measurements and noise levels on the
IEEE 123-bus feeder is shown in Table 4.1; as a note, we found that tuning the parameters
wϵ did not affect the performance of our method, but did affect the running time.

We first employ our algorithm at one point in the time series during which solar injections
are nonzero. In our experiments, we vary the percentage of “potentially measured” quantities
that are measured, and note that there are fewer measurements than unknown voltage
phasor quantities if less than two-thirds of these quantities are measured (see condition
(i) for observability in Section 4.1). Results for the cases of 0.2% and 1% measurement
noise are shown in Figure 4.6. We also show representative results for one run under 1%
measurement noise and 50% measurement availability (which is in the low-observability
realm) in Figure 4.7.

These results show that our algorithm estimates voltage phasors with relatively high
accuracy across all levels of data availability. The MAPE of our voltage magnitude estimates
is less than 2.6% even when no “potentially measured” quantities are measured, and falls to
less than 1% once 10% or more of these quantities are available. Unsurprisingly, our voltage

56

0 20 40 60 80 1000.0

0.5

1.0

1.5

2.0
M

AP
E

of
 V

ol
ta

ge
M

ag
ni

tu
de

#
 M

ea
s

=
 #

 U
nk

no
w

ns

0 20 40 60 80 100
Percentage of "Potentially Measured" Quantities Measured

0.0

0.5

1.0

1.5

2.0

M
AE

 o
f V

ol
ta

ge
An

gl
e

(d
eg

re
es

)

1% noise 0.2% noise

Figure 4.6: Performance on the 123-bus test case
for one time step. (Each point represents 50 runs.)

20 40 60 80 100 120
0.000

0.005

0.010

0.015

0.020

AE
 o

f V
ol

ta
ge

M
ag

ni
tu

de
 (p

.u
.)

20 40 60 80 100 120
Bus Number

0.0

0.5

1.0

1.5

2.0

AE
 o

f V
ol

ta
ge

An
gl

e
(D

eg
re

es
)

Phase A Phase B Phase C

Figure 4.7: Performance on the 123-bus test case
for a representative run with 50% data availability
and 1% noise.

magnitude estimates are better when measurement noise is lower. We do note, however,
that the MAPE is not equal to zero even when 100% of measurements are available, since
we use approximate linear power flow equations as constraints in our formulation (4.13).

For voltage angle estimates, we again report MAEs rather than MAPEs since the angles
at some phases are close to zero. For 1% measurement noise, we see that the MAE is at
most 1.5 degrees across all data availability levels, which is small given that most voltage
angles are around ±120 degrees. However, the accuracy of our angle estimates does not
decrease monotonically as more measurements are added. This is because our algorithm
directly estimates the real and imaginary parts of voltage phasors; while we estimate these
quantities accurately, their errors are not correlated (especially under large measurement
noise), leading to inaccuracies in their implied angle estimates. At 0.2% measurement noise,
the MAE for voltage angle decreases as more measurements are available, dropping below 1
degree even when no measurements are available.

To demonstrate the scalability of our method, we next implement our matrix completion
algorithm on the entire two-hour time series. We model data availability by placing sensors at
fixed sets of buses comprising 30%, 50%, or 70% of all buses (with larger sets of buses inclusive
of smaller sets). The MAPEs of our voltage magnitude estimates under 1% measurement
noise are shown in Figure 4.8. We find that under 30% data availability, the MAPEs of these
estimates are within 1% for 80% of time steps, and within 1.5% for 99% of time steps, with a
maximum MAPE of 2.7%. Under 50% and 70% data availability, the MAPEs of our voltage
magnitude estimates are within 1% across all points in the time series. The MAEs of our
voltage angle estimates at each time step (not pictured) are similar to those in Figure 4.6.

Finally, we demonstrate the robustness of our algorithm to dynamic measurement loss,
which commonly occurs on the distribution system due to failures such as packet drops
and equipment malfunctions. We model the baseline data availability as being 50% (low-
observability), and randomly remove 20% of the available measurements at each point

57

0 20 40 60 80 100 120
Minute in Time Series

0.0
0.5
1.0
1.5
2.0
2.5
3.0

M
AP

E
of

 V
ol

ta
ge

 M
ag

ni
tu

de

Percentage of "Potentially Measured" Quantities Measured
30% 50% 70%

Figure 4.8: Time-series performance for the 123-bus
test case with 1% noise. Voltage magnitude MAPEs
are at most 2.7% with 30% of data, and at most 1%
with 50% or 70% of data.

0 20 40 60 80 100 120
Minute in Time Series

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

M
AP

E
of

 V
ol

ta
ge

 M
ag

ni
tu

de

Baseline (50% Data Available) 20% Measurement Loss

Figure 4.9: Time-series performance for the 123-
bus test case with 1% noise when measurements
are randomly lost. Our magnitude estimates are
relatively robust to data loss.

in the two-hour time series. The MAPEs of our voltage magnitude estimates under 1%
measurement noise are shown in Figure 4.9. We find that in most cases, our estimates
under data loss are similar to the estimates without data loss, with larger deviations in
some cases when critical measurements are lost. In all cases, the MAPEs of our voltage
magnitude estimates are less than 1.2%, demonstrating the robustness of our algorithm to
real-world operating conditions.

4.5 Conclusion

We present an algorithm for low-observability distribution system voltage estimation based
on constrained low-rank matrix completion. This method can accurately estimate voltage
phasors under low-observability conditions where standard state estimation methods cannot
operate, and can flexibly accommodate any distribution network measurements available in
the field. Our empirical evaluations of this method demonstrate that it produces accurate
and robust voltage phasor estimates on the IEEE 33- and 123-bus test systems under a
variety of data availability conditions. As such, we believe that our algorithm is a useful
mechanism for voltage estimation on modern distribution systems.

58

Part II

Optimization-in-the-Loop Deep
Learning

59

Chapter 5
Decision-Cognizant Learning for Stochastic
Optimization

With the increasing popularity of machine learning techniques, it has become common to see
prediction algorithms operating within some larger decision-making process. However, the
criteria by which we train these algorithms (e.g., mean squared error of a prediction) often
differ from the ultimate criteria on which we evaluate them (e.g., the quality of the decision
made on the basis of the prediction). In this chapter, we propose an end-to-end approach
for training probabilistic machine learning models in a manner that directly captures the
objective of the ultimate decision-making process in which they will be used. Specifically,
we propose to train a probabilistic model not (solely) for predictive accuracy, but so that –
when it is later used within the loop of a stochastic programming procedure – it produces
solutions that minimize the ultimate decision-relevant (task-based) loss. We present three
experimental evaluations of the proposed approach: a classical inventory stock problem, a
real-world electrical grid scheduling task, and a real-world energy storage arbitrage task.
We show that the proposed approach can outperform both traditional modeling and purely
black-box policy optimization approaches in these applications.

The work in this chapter has previously been published in:1

Priya L. Donti, Brandon Amos, and J. Zico Kolter. “Task-based End-to-End
Model Learning in Stochastic Optimization.” Advances in Neural Information
Processing Systems. 2017, 5490–5500.

1Code for all experiments is available at: https://github.com/locuslab/e2e-model-learning.

61

https://github.com/locuslab/e2e-model-learning

5.1 Introduction

Predictive algorithms commonly operate within some larger decision-making process. How-
ever, the criteria by which we generally train these algorithms (often related to predictive ac-
curacy) tend to differ from the ultimate decision-related criteria on which we actually evalu-
ate them (the performance of the full “closed-loop” system on the ultimate task at hand). For
instance, instead of merely classifying images in a standalone setting, one may want to use
these classifications within planning and control tasks such as autonomous driving. While a
typical image classification algorithm might optimize accuracy or log likelihood, in a driving
task, we may ultimately care more about the difference between classifying a pedestrian as a
tree vs. classifying a garbage can as a tree. Similarly, when we use a probabilistic prediction
algorithm to generate forecasts of upcoming electricity demand, we then want to use these
forecasts to minimize the costs of a scheduling procedure that allocates power generation on
the grid. As these examples suggest, instead of using a “generic” loss, we instead may want
to learn a model that approximates the ultimate decision-relevant (or “task-based”) loss.

This chapter considers an end-to-end approach for training probabilistic machine learning
models that directly capture the objective of their ultimate task. Formally, we consider
probabilistic models in the context of stochastic programming, where the goal is to minimize
some expected cost over a model’s probabilistic predictions, subject to some (potentially
also probabilistic) constraints. In general, it is common to approach these problems in
a two-step fashion: first to fit a predictive model to observed data by minimizing some
criterion such as negative log-likelihood, and then to solve (or approximate) the stochastic
programming problem using this model’s predictions. While this procedure can work well
in many instances, it neglects the fact that the true cost of the end-to-end system (the
stochastic optimization objective evaluated on actual instantiations of uncertainty in the
real world) may benefit from a model that actually attains worse overall likelihood, but
makes more accurate predictions over certain manifolds of the underlying space.

In this work, we therefore propose to train a probabilistic model not (solely) for
predictive accuracy, but so that – when it is later used within the loop of a stochastic
programming procedure – it produces solutions that minimize the ultimate task-based loss.
This formulation may seem somewhat counterintuitive, given that a “perfect” predictive
model would of course also be an optimal model to use within a stochastic programming
framework. However, the reality that all models do make errors illustrates that we should
indeed look to a final task-based objective to determine the proper error tradeoffs within a
machine learning setting. This chapter proposes one way to evaluate task-based tradeoffs in
a fully automated fashion, by computing derivatives through the solution to the stochastic
programming problem in a manner that can improve the underlying model.

In the rest of this chapter, we describe our task-based end-to-end learning approach
within the context of stochastic programming, and give a generic method for propagating
task loss through these stochastic programming problems in a manner that can update the
underlying predictive models. We provide three experimental evaluations of the proposed
approach: a classical inventory stock problem, a real-world electrical grid scheduling task,
and a real-world energy storage arbitrage task. We show that the proposed approach
outperforms traditional modeling and purely black-box policy optimization approaches.

62

5.2 Related work

Stochastic programming. Stochastic programming is a method for making decisions
under uncertainty by modeling or optimizing objectives governed by a random process. It
has applications in many domains such as energy [WF03], finance [ZV06], and manufacturing
[BS93], where the underlying probability distributions are either known or can be estimated.
Common considerations include how to best model or approximate the underlying random
variables, how to solve the resulting optimization problem, and how to then assess the
quality of the resulting (approximate) solution [SP07].

In cases where the underlying probability distribution is known but the objective cannot
be solved analytically, it is common to use Monte Carlo sample average approximation
methods, which draw multiple iid samples from the underlying probability distribution and
then use deterministic optimization methods to solve the resultant problems [LSW06]. In
cases where the underlying distribution is not known, it is common to learn or estimate
some model from observed samples [RW91].

End-to-end training Recent years have seen a dramatic increase in the number of systems
building on so-called “end-to-end” learning. Generally speaking, this term refers to systems
where the end goal of the machine learning process is directly predicted from raw inputs [e.g.
LeC+05; Tho+06]. In the context of deep learning systems, the term now traditionally refers
to architectures where, for example, there is no explicit encoding of hand-tuned features on
the data, but the system directly predicts what the image, text, etc. is from the raw inputs
[WBB11; He+16; Wan+12; GJ14; Amo+15]. The context in which we use the term end-to-
end is similar, but slightly more in line with its older usage: instead of (just) attempting to
learn a predictive output to optimize some standalone notion of accuracy (using known and
typically straightforward loss functions), we are specifically attempting to learn a predictive
model based upon an end-to-end task that the user is ultimately trying to accomplish. We
feel that this concept – of describing the entire “closed-loop” performance of the system as
evaluated on the real task at hand – is beneficial to add to the notion of end-to-end learning.

Also highly related to our work are recent efforts in end-to-end policy learning [Lev+16],
in embedding value iteration procedures within neural networks [Tam+16], and in multi-
objective optimization [HSK06; VMN14; Mos+16; WWD14]. These lines of work fit
more with the “pure” model-free end-to-end approach we discuss in Section 5.3.1 (where
predictive models are eschewed for pure function approximation methods), but conceptually
the approaches have similar motivations in modifying typically-optimized policies to address
some task(s) directly.

Optimizing alternative loss functions There has been a great deal of work in recent
years on using machine learning procedures to optimize different loss criteria than those
“naturally” optimized by the algorithm. For example, Stoyanov, Ropson, and Eisner [SRE11]
and Hazan, Keshet, and McAllester [HKM10] propose methods for optimizing loss criteria
in structured prediction that are different from the inference procedure of the prediction
algorithm; this work has also recently been extended to deep networks [Son+16]. Recent work
has also explored using auxiliary prediction losses to satisfy multiple objectives [Jad+17],

63

learning dynamics models that maximize control performance in Bayesian optimization
[Ban+17], and learning adaptive predictive models via differentiation through a meta-
learning optimization objective [FAL17].

The prior work we have found that most closely resembles our approach is Bengio [Ben97],
which uses a neural network model for predicting financial prices, and then optimizes the
model based on returns obtained via a hedging strategy that employs it. We view this
approach – of both using a model and then tuning that model to adapt to a (differentiable)
procedure – as a philosophical predecessor to our own work. In particular, our approach
likewise tunes a model to adapt to a (differentiable) decision-making procedure, though we
consider the more general case where the decision-making process can be captured by a
general stochastic optimization problem, as opposed to needing to hand-craft a differentiable
decision-making procedure. (Despite the work of Bengio [Ben97] being over 20 years old,
virtually all direct follow-on work has focused on the financial application, and not on what
we feel is the core idea of learning a predictive model within a task-driven optimization
procedure.) In concurrent work, Elmachtoub and Grigas [EG22] also propose an approach for
tuning model parameters within linear regression given the results of downstream decisions,
by aiming to minimize a regret-related loss function; however, their work only applies to the
context of linear programming (as opposed to more general optimization problems). Since
the work in this chapter was first published, it has also inspired a number of extensions,
including work in the area of combinatorial optimization [WDT18], as well as deployed
applications in inventory optimization and power scheduling by a number of industry players.

5.3 End-to-end model learning in stochastic programming

We first formally define the stochastic modeling and optimization problems with which we
are concerned. Let (x ∈ X , y ∈ Y) ∼ D denote standard input-output pairs drawn from
some (real, unknown) distribution D. We also consider actions z ∈ Z that incur some
expected loss LD(z) = Ex,y∼D[f(x, y, z)]. For instance, a power systems operator may try to
allocate power generation z given past electricity demand x and future electricity demand y;
this allocation’s loss corresponds to the over- or under-generation penalties incurred given
future demand instantiations.

If we knew D, then we could select optimal actions z⋆D = argminz LD(z). However, in
practice, the true distribution D is unknown. In this work, we are thus interested in modeling
the conditional distribution y|x using some parameterized model p(y|x; θ), with the goal of
minimizing the real-world cost of the policy implied by our parameterization. Specifically,
we find some parameters θ to parameterize p(y|x; θ) (as in the standard statistical setting)
and then determine the optimal actions z⋆(x; θ) under our observed input x and the specific
choice of parameters θ in our probabilistic model (via stochastic optimization). Upon
observing the costs of these actions z⋆(x; θ) relative to true instantiations of x and y under
D, we update our parameterized model p(y|x; θ) accordingly, calculate the resultant new
z⋆(x; θ), and repeat. The goal is to find parameters θ such that the corresponding policy
z⋆(x; θ) optimizes the loss under the true joint distribution of x and y.

Explicitly, we wish to choose θ to minimize the task loss L(θ) in the context of x, y ∼ D,

64

i.e.,
minimize

θ
L(θ) := Ex,y∼D[f(x, y, z

⋆(x; θ))]. (5.1)

Since in reality we do not know the distribution D and the true associated optimal decision
z⋆D, this loss employs the optimal decision z⋆(x; θ) under p(y|x; θ) (for a fixed instantiation
of parameters θ estimated by our model), computed via the proxy stochastic optimization
problem

z⋆(x; θ) := argmin
z

Ey∼p(y|x;θ)[f(x, y, z)]. (5.2)

The above setting specifies z⋆(x; θ) using a simple (unconstrained) stochastic program, but
in reality our decision may be subject to both probabilistic and deterministic constraints. We
therefore consider more general decisions produced through a generic stochastic programming
problem2

z⋆(x; θ) := argmin
z

Ey∼p(y|x;θ)[f(x, y, z)]

subject to Ey∼p(y|x;θ)[gi(x, y, z)] ≤ 0, i = 1, . . . , nineq

hi(z) = 0, i = 1, . . . , neq.

(5.3)

In this setting, the full task loss is more complex, since it captures both the expected cost
and any deviations from the constraints. We can write this, for instance, as

L(θ) = Ex,y∼D[f(x, y, z
⋆(x; θ))]+

nineq∑
i=1

I{Ex,y∼D[gi(x, y, z
⋆(x; θ))] ≤ 0}+

neq∑
i=1

Ex[I{hi(z⋆(x; θ)) = 0}]

(5.4)

(where I(·) is the indicator function that is zero when its constraints are satisfied and
infinite otherwise). However, the basic intuition behind our approach remains the same
for both the constrained and unconstrained cases: in both settings, we attempt to learn
parameters of a probabilistic model not to produce strictly “accurate” predictions, but such
that when we use the resultant model within a stochastic programming setting, the resulting
decisions perform well under the true distribution.

Actually solving this problem requires that we differentiate through the “argmin” oper-
ator z⋆(x; θ) of the stochastic programming problem. This differentiation is not possible
for all classes of optimization problems (the argmin operator may be discontinuous), but
as we will show shortly, in many practical cases – including cases where the function and
constraints are strongly convex – we can indeed efficiently compute these gradients even in
the context of constrained optimization.

5.3.1 Discussion and alternative approaches

We highlight our approach in contrast to two alternative existing methods: traditional model
learning and model-free black-box policy optimization. In traditional machine learning

2It is standard to presume in stochastic programming that equality constraints depend only on decision
variables (not random variables), as non-trivial random equality constraints are typically not possible to
satisfy.

65

Algorithm 1 Task Loss Optimization

1: input: D // samples from true distribution
2: initialize θ // some initial parameterization

3: for t = 1, . . . , T do
4: sample (x, y) ∼ D
5: compute z⋆(x; θ) via Equation (5.3)

6: // step in violated constraint or objective
7: if ∃i s.t. gi(x, y, z⋆(x; θ)) > 0 then
8: update θ with ∇θgi(x, y, z

⋆(x; θ))
9: else
10: update θ with ∇θf(x, y, z

⋆(x; θ))
11: end if
12: end for

approaches, it is common to use θ to minimize the (conditional) log-likelihood of observed
data under the model p(y|x; θ). This method corresponds to approximately solving the
optimization problem

minimize
θ

Ex,y∼D [− log p(y|x; θ)] . (5.5)

If we then need to use the conditional distribution y|x to determine actions z within
some later optimization setting, we commonly use the predictive model obtained from
(5.5) directly. This approach has obvious advantages, in that the model-learning phase is
well-justified independent of any future use in a task. However, it is also prone to poor
performance in the common setting where the true distribution y|x cannot be represented
within the class of distributions parameterized by θ, i.e., where the procedure suffers from
model bias. Conceptually, the log-likelihood objective implicitly trades off between model
error in different regions of the input/output space, but does so in a manner largely opaque
to the modeler, and may ultimately not employ the correct tradeoffs for a given task.

In contrast, there is an alternative approach to solving (5.1) that we describe as the
model-free “black-box” policy optimization approach. Here, we would forgo learning any
model at all of the random variable y. Instead, we would attempt to learn a policy mapping
directly from inputs x to actions z⋆(x; θ̃) that minimize the loss L(θ̃) presented in (5.4)
(where here θ̃ defines the form of the policy itself, not a parameterized predictive model).
While such model-free methods can perform well in many settings, they are often very
data-inefficient, as the policy class must have enough representational power to describe
sufficiently complex policies without recourse to any underlying model.3

Our approach offers an intermediate setting, where we do still use an intermediate
model to determine an optimal decision z⋆(x; θ), yet we adapt this model based on the task
loss instead of model prediction accuracy. (In practice, we often want to minimize some

3This distinction is roughly analogous to the policy search vs. model-based settings in reinforcement
learning. However, for the purposes of this work, we consider much simpler stochastic programs without the
multiple rounds that occur in RL; extension of these techniques to a full RL setting remains as future work.

66

weighted combination of log-likelihood and task loss, which can easily be accomplished.)

5.3.2 Optimizing task loss

To solve the generic optimization problem (5.1)/(5.4), we can in principle adopt a straight-
forward (constrained) stochastic gradient approach, as detailed in Algorithm 1. At each
iteration, we solve the proxy stochastic programming problem (5.3) to obtain z⋆(x, θ), us-
ing the distribution defined by our current values of θ. Then, we compute the true loss L(θ)
using the observed value of y. If any of the inequality constraints gi in L(θ) are violated,
we take a gradient step in the violated constraint; otherwise, we take a gradient step in
the optimization objective f . We note that if any inequality constraints are probabilistic,
Algorithm 1 must be adapted to employ mini-batches in order to determine whether these
probabilistic constraints are satisfied. Alternatively, it is common in practice to simply
move a weighted version of these constraints to the objective, i.e., we modify the objective
by adding some appropriate penalty times the positive part of the function, λgi(x, y, z)+,
for some λ > 0. In practice, this has the effect of taking gradient steps jointly in all the
violated constraints and the objective in the case that one or more inequality constraints
are violated, often resulting in faster convergence. Note that we need only move stochastic
constraints into the objective; deterministic constraints on the policy itself will always be
satisfied by the optimizer, as they are independent of the model.

5.3.3 Differentiating the stochastic optimization solution

While the above presentation highlights the simplicity of the proposed approach, it avoids
the issue of chief technical challenge, which is computing the gradient of an objective that
depends upon the argmin operation z⋆(x; θ). Specifically, we need to compute the term

dL

dθ
=

∂L

∂θ
+

∂L

∂z⋆
dz⋆

dθ
(5.6)

which involves the Jacobian dz⋆/dθ. This is the Jacobian of the optimal solution with respect
to the distribution parameters θ. Previous approaches have looked into similar argmin
differentiations [Gou+16; AXK17] (see also Section 2.2.3), though the methodology we
present here is more general and handles the stochasticity of the objective.

To obtain this Jacobian, we begin by writing the KKT optimality conditions of the
general stochastic programming problem (5.3), where all expectations are taken with respect
to the modeled distribution y ∼ p(y|x; θ) (for compactness, denoted here as Eyθ). Further,
assuming the problem is convex, we can replace the general equality constraints h(z) = 0 with
the linear constraint Az = b. A point (z, λ, ν) is a primal-dual optimal point if it satisfies

Eyθg(z) ≤ 0

Az = b

λ ≥ 0

λ ◦ Eyθg(z) = 0

∇zEyθf(z) + λT∇zEyθg(z) + ATν = 0,

(5.7)

67

Pred. demand
(uncertain; discrete)
≡ "($|&; ()

≡ & ∈ ℝ,

Features
(randomly
generated)

Newspaper
stocking
decision

≡ - ∈ ℝ
1 2 5 10 20

(

(a) Inventory stock problem

Past demand,
past temperature,
temporal features Pred. demand

(w/ uncertainty)

Generation
schedule (e.g.)

≡ "($|&; ()

≡ -

≡ &

Pr
es

en
t

(

(b) Load forecasting problem

(≡ &

Pred. prices
(w/ uncertainty)
≡ "($|&; ()

Battery
schedule (e.g.)

≡ -

Pr
es

en
t

Past prices,
past temperature,
temporal features,
load forecasts

(c) Price forecasting problem

Figure 5.1: Features x, model predictions y, and policy z for the three experiments.

where g denotes the vector of all inequality constraints, and where we wrap the dependence
on x and y into the functions f and gi themselves.

Differentiating these equations and applying the implicit function theorem gives a set of
linear equations that we can solve to obtain the necessary Jacobians: ∇2

zEyθf(z) +

nineq∑
i=1

λi∇2
zEyθgi(z) (∇zEyθg(z))

T AT

diag(λ) (∇zEyθg(z)) diag(Eyθg(z)) 0

A 0 0




dz
dθ

dλ
dθ

dν
dθ

 = −


d∇zEyθ

f(z)

dθ
+

d
∑nineq

i=1 λi∇zEyθ
gi(z)

dθ

diag(λ)
dEyθ

g(z)

dθ

0

 .

(5.8)

As described in Section 2.2.3, we rarely solve for the Jacobians explicitly, but instead use the
Jacobian-vector trick to directly solve for the gradient dL/dθ. The above equations will take
slightly different forms depending on how the stochastic programming problem is solved,
but are usually fairly straightforward to compute if the solution is solved in some “exact”
manner (i.e., where second order information is used). In practice for the experiments in this
chapter, we calculate the right-hand terms by employing sequential quadratic programming
[BT95] to find the optimal policy z⋆(x; θ) for the given parameters θ, using an existing
approach for fast solution of argmin differentiation in QPs [AK17] to solve the necessary
linear equations; we then take the derivatives at the optimum produced by this strategy.

5.4 Experiments

We consider three applications of our approach: a synthetic inventory stock problem, a
real-world energy scheduling task, and a real-world battery arbitrage task. We demonstrate
that our task-based end-to-end approach can substantially improve upon alternatives.

Implementation notes For all linear models, we use a one-layer linear neural network
with the appropriate input and output layer dimensions. For all nonlinear models, we use a
two-hidden-layer neural network, where each “layer” is actually a combination of linear,
batch norm [IS15], ReLU, and dropout (p = 0.2) layers with dimension 200. In both cases, we
add an additional softmax layer in cases where probability distributions are being predicted.

All models are implemented using PyTorch [Pas+19] and employ the Adam optimizer
[KB15]. All QPs are solved using a recently-developed differentiable batch QP solver [AK17],
and Jacobians are also computed automatically using backpropagation via the same.

68

5.4.1 Inventory stock problem

Problem definition To highlight the performance of the algorithm in a setting where the
true underlying model is known to us, we consider a “conditional” variation of the classical
inventory stock problem [SP07]. In this problem, a company must order some quantity z of
a product to minimize costs over some stochastic demand y, whose distribution in turn is
affected by some observed features x (Figure 5.1a). There are linear and quadratic costs on
the amount of product ordered, plus different linear/quadratic costs on over-orders [z − y]+
and under-orders [y − z]+. The objective is given by

fstock(y, z) = c0z+
1

2
q0z

2 + cb[y− z]+ +
1

2
qb([y− z]+)

2 + ch[z− y]+ +
1

2
qh([z− y]+)

2, (5.9)

where [v]+ ≡ max{v, 0}, and (c0, q0), (cb, qb), and (ch, qh) are linear and quadratic costs on
the amount of product ordered, over-orders, and under-orders, respectively. For a specific
choice of probability model p(y|x; θ), our proxy stochastic programming problem can then
be written as

minimize
z

L(θ) := Ey∼p(y|x;θ)[fstock(y, z)]. (5.10)

To simplify the setting, we further assume that the demands are discrete, taking on values
d1, . . . , dk with probabilities (conditional on x) (pθ)i ≡ p(y = di|x; θ). Thus our stochastic
programming problem (5.10) can be written succinctly as a joint quadratic program4

minimize
z∈R,zb,zh∈Rk

c0z +
1

2
q0z

2 +
k∑

i=1

(pθ)i

(
cb(zb)i +

1

2
qb(zb)

2
i + ch(zh)i +

1

2
qh(zh)

2
i

)
subject to d− z1 ≤ zb, z1− d ≤ zh, z, zh, zb ≥ 0.

(5.11)

To demonstrate the explicit formula for argmin operation Jacobians for this particular
case (e.g., to compute the terms in (5.8)), note that we can write the above QP in inequality
form as minimize{z:Gz≤h}

1
2
zTQz + cTz with

z =

 z
zb
zh

 , Q =

 q0 0 0
0 qbpθ 0
0 0 qhpθ

 , c =

 c0
cbpθ
chpθ

 , G =


−1 −I 0
1 0 −I
−1 0 0
0 −I 0
0 0 −I

 , h =


−d
d
0
0
0

 .

(5.12)

Thus, for an optimal primal-dual solution (z⋆, λ⋆), we can compute the Jacobian dz⋆/dpθ
(the Jacobian of the optimal solution with respect to the probability vector pθ mentioned
above), via the formula dz⋆

dpθ

dλ⋆

dpθ

 =

[
Q GT

diag(λ⋆)G diag(Gz⋆ − h)

]−1


0

qbz
⋆
b + cb1

qhz
⋆
h + ch1
0

 , (5.13)

4This is referred to as a two-stage stochastic programming problem (though a very trivial example of one),
where first stage variables consist of the amount of product to buy before observing demand, and second-stage
variables consist of how much to sell back or additionally purchase once the true demand has been revealed.

69

2000 4000 6000 8000 10000
(a) Linear hypothesis, true model p(y|x;) exp(TX)

350

400

450

500

550

In
ve

nt
or

y
S

to
ck

 C
os

t

2000 4000 6000 8000 10000
(b) Nonlinear hypothesis, true model p(y|x;) exp(TX)

350

400

450

500

550

2000 4000 6000 8000 10000
(c) Linear hypothesis, true model p(y|x;) exp((TX)2)

300

400

500

600

700

In
ve

nt
or

y
S

to
ck

 C
os

t

True Params

Task-based (our method)

MLE

Policy Optimizer

2000 4000 6000 8000 10000
(d) Nonlinear hypothesis, true model p(y|x;) exp((TX)2)

300

400

500

600

700

Number of Training Samples
Figure 5.2: Inventory problem results for 10 runs over a representative instantiation of true parameters
(c0 = 10, q0 = 2, cb = 30, qb = 14, ch = 10, qh = 2). Cost is evaluated over 1000 testing samples (lower is
better). The linear MLE performs best for a true linear model. In all other cases, the task-based models
outperform their MLE and policy counterparts.

where diag(·) denotes a diagonal matrix for an input vector. After solving the problem and
computing these Jacobians, we can compute the overall gradient with respect to the task
loss L(θ) via the chain rule

dL

dθ
=

∂L

∂θ
+

∂L

∂z⋆

dz⋆

dpθ

dpθ
dθ

(5.14)

where dpθ/dθ denotes the Jacobian of the model probabilities with respect to its parameters,
which are computed in the typical manner.

Experimental setup We examine our algorithm under two main conditions: where the
true model is linear, and where it is nonlinear. In all cases, we generate problem instances
by randomly sampling some x ∈ Rn and then generating p(y|x; θ) according to either
p(y|x; θ) ∝ exp(ΘTx) (linear true model) or p(y|x; θ) ∝ exp((ΘTx)2) (nonlinear true model)
for some Θ ∈ Rn×k. We compare the following approaches on these tasks: 1) the QP
allocation based upon the true model (which performs optimally); 2) MLE approaches (with
linear or nonlinear probability models) that fit a model to the data, and then compute the
allocation by solving the QP; 3) pure end-to-end policy-optimizing models (using linear or
nonlinear hypotheses for the policy); and 4) our task-based learning models (with linear or
nonlinear probability models).5 In all cases, we evaluate test performance by running on 1000
random examples, and evaluate performance over 10 folds of different true θ⋆ parameters.

Figures 5.2(a) and (b) show the performance of these methods given a linear true model,
with linear and nonlinear model hypotheses, respectively. As expected, the linear MLE
approach performs best, as the true underlying model is in the class of distributions that it
can represent and thus solving the stochastic programming problem is a very strong proxy

5Here, our method’s the loss function for the inventory stock problem involves a weighted combination
of the task loss and a negative log-likelihood regularization term.

70

for solving the true optimization problem under the real distribution. While the true model
is also contained within the nonlinear MLE’s generic nonlinear distribution class, we see that
this method requires more data to converge, and when given less data makes error tradeoffs
that are ultimately not the correct tradeoffs for the task at hand; our task-based approach
thus outperforms this approach. The task-based approach also substantially outperforms
the policy-optimizing neural network, highlighting the fact that it is more data-efficient to
run the learning process “through” a reasonable model. Note that here it does not make a
difference whether we use the linear or nonlinear model in the task-based approach.

Figures 5.2(c) and (d) show performance in the case of a nonlinear true model, with
linear and nonlinear model hypotheses, respectively. Case (c) represents the “non-realizable”
case, where the true underlying distribution cannot be represented by the model hypothesis
class. Here, the linear MLE, as expected, performs very poorly: it cannot capture the true
underlying distribution, and thus the resultant stochastic programming solution would not
be expected to perform well. The linear policy model similarly performs poorly. Importantly,
the task-based approach with the linear model performs much better than these approaches:
despite the fact that it still has a misspecified model, the task-based nature of the learning
process lets us learn a different linear model than the MLE version, which is particularly
tuned to the distribution and loss of the task. Finally, also as to be expected, the nonlinear
models perform better than the linear models in this scenario, but again with the task-
based nonlinear model outperforming the nonlinear MLE and end-to-end policy approaches.

5.4.2 Load forecasting and generator scheduling

We next consider a more realistic grid-scheduling task, based upon over 8 years of real
electrical grid data. In this setting, a power system operator must decide how much
electricity generation z ∈ R24 to schedule for each hour in the next 24 hours based on
some (unknown) distribution over electricity demand (Figure 5.1b). Given a particular
realization y of demand, we impose penalties for both generation excess (γe) and generation
shortage (γs), with γs ≫ γe. We also add a quadratic regularization term, indicating a
preference for generation schedules that closely match demand realizations. Finally, we
impose a ramping constraint cr restricting the change in generation between consecutive
timepoints, reflecting physical limitations associated with quick changes in electricity output
levels. These are reasonable proxies for the actual economic costs incurred by electrical
grid operators when scheduling generation (under a multi-time-step economic dispatch
framework; see Section 2.3.2), and can be written as the stochastic programming problem

minimize
z∈R24

24∑
i=1

Ey∼p(y|x;θ)

[
γs[yi − zi]+ + γe[zi − yi]+ +

1

2
(zi − yi)

2

]
subject to |zi − zi−1| ≤ cr ∀i,

(5.15)

where [v]+ ≡ max{v, 0}. Assuming (as we will in our model), that yi is a Gaussian random
variable with mean µi and variance σ2

i , then this expectation has a closed form that can be

71

computed via analytically integrating the Gaussian PDF.6 Specifically, this closed form is

Ey∼p(y|x;θ)

[
γs[yi − zi]+ + γe[zi − yi]+ +

1

2
(zi − yi)

2

]
= (γs + γe)(σ

2p(zi;µ, σ
2) + (zi − µ)F (zi;µ, σ

2))− γs(zi − µ)︸ ︷︷ ︸
α(zi)

+
1

2
((zi − µi)

2 + σ2
i),

(5.16)

where p(z;µ, σ2) and F (z;µ, σ2) denote the Gaussian PDF and CDF, respectively with the
given mean and variance. This is a convex function of z (not apparent in this form, but
readily established because it is an expectation of a convex function), and we can thus
optimize it efficiently and compute the necessary Jacobians.

We use sequential quadratic programming (SQP) to iteratively approximate the resultant
convex objective as a quadratic objective, and iterate until convergence. Specifically, we
repeatedly solve

z(k+1) = argmin
z

1

2
zTdiag

(
d2α(z

(k)
i)

dz2
+ 1

)
z +

(
dα(z(k))

dz
− µ

)T

z

subject to |zi − zi−1| ≤ cr ∀i
(5.17)

until ||z(k+1) − z(k)||2 < δ for a small δ, where

dα

dz
= (γs + γe)F (z;µ, σ)− γs,

d2α

dz2
= (γs + γe)p(z;µ, σ).

(5.18)

We then compute the necessary Jacobians using the quadratic approximation (5.17) at
the solution, which gives the correct Hessian and gradient terms. We can furthermore
differentiate the gradient and Hessian with respect to the underlying model parameters µ
and σ2, again using a recently-developed batch QP solver [AK17].

To develop a predictive model, we make use of a highly-tuned load forecasting method-
ology. Specifically, we input the past day’s electrical load and temperature, the next day’s
temperature forecast, and additional features such as nonlinear functions of the tempera-
tures, binary indicators of weekends or holidays, and yearly sinusoidal features. We then
predict the electrical load over all 24 hours of the next day. We employ a 2-hidden-layer
neural network for this purpose, with an additional residual connection from the inputs to
the outputs initialized to the linear regression solution. An illustration of the architecture
is shown in Figure 5.3.

6Part of the philosophy behind using this approach is that we know the Gaussian assumption is incorrect:
the true underlying load is neither Gaussian distributed nor homoskedastic. However, these assumptions
are exceedingly common in practice, as they enable easy model learning and exact analytical solutions.
Thus, training the (still Gaussian) system with a task-based loss retains computational tractability while
still allowing us to modify the distribution parameters to improve actual performance on the task at hand.

72

0 4 8 12 16 20 24

0.05

0.10

0.15

0.20
R

M
S

E

Task­based (our method) RMSE Cost­weighted RMSE

0 4 8 12 16 20 24

0.2

0.4

0.6

0.8

T
as

k
Lo

ss

Hour of Day

Figure 5.4: Results for 10 runs of the generation-scheduling problem for representative decision parameters
γe = 0.5, γs = 50, and cr = 0.4. (Lower loss is better.) As expected, the RMSE net achieves the lowest
RMSE for its predictions. However, the task net outperforms the RMSE net on task loss by 38.6%, and
the cost-weighted RMSE on task loss by 8.6%.

! ∈ ℝ$

200

% ∈ ℝ&'

Past Load
Past Temp

(Past Temp)2

Future Temp
(Future Temp)2

(Future Temp)3

((Weekday)
((Holiday)
((DST)

sin(2-.× DOY)
cos(2-× DOY)

Future Load

200

Figure 5.3: 2-hidden-layer neural network to
predict hourly electric load for the next day.

In our approach, we first pre-train the model
to minimize the root mean squared error (RMSE)
between its predictions and the actual load (giv-
ing the mean prediction µi), and compute σ2

i as
the (constant) empirical variance between the
predicted and actual values. We then fine-tune
this model using the task loss; that is, using
the (mean and variance) predictions of this base
model, we obtain z⋆(x; θ) by solving the gener-
ator scheduling problem (5.15), and then adjust-
ing network parameters to minimize the resul-
tant task loss. We use 7 years of data to train
the model, and 1.75 subsequent years for testing.

We compare against a traditional stochastic
programming model that minimizes just the RMSE, as well as a cost-weighted RMSE that
periodically reweights training samples given their task loss.7 A pure policy-optimizing
network is not shown, as it could not sufficiently learn the ramp constraints and thus
generated infeasible schedules; we could not obtain good performance for the policy optimizer
even ignoring this infeasibility.

Figure 5.4 shows the performance of the three models on the testing dataset. As
expected, the RMSE model performs best with respect to the RMSE of its predictions (its
objective). However, the task-based model substantially outperforms the RMSE model
when evaluated on task loss, the actual objective that the system operator cares about:

7It is worth noting that a cost-weighted RMSE approach is only possible when direct costs can be
assigned independently to each decision point, i.e. when costs do not depend on multiple decision points (as
in this experiment). Our task-based method, however, accommodates the (typical) more general setting.

73

specifically, we improve upon the performance of the traditional stochastic programming
method by 38.6%. The cost-weighted RMSE’s performance is extremely variable, and
overall, the task net improves upon this method by 8.6%.

5.4.3 Price forecasting and battery storage

Finally, we consider a battery arbitrage task, based upon 6 years of real electrical grid data.
Here, a grid-scale battery must operate over a 24 hour period based on some (unknown)
distribution over future electricity prices (Figure 5.1c). For each hour, the operator must
decide how much to charge (zin ∈ R24) or discharge (zout ∈ R24) the battery, thus inducing
a particular state of charge in the battery (zstate ∈ R24). Given a particular realization y of
prices, the operator optimizes over: 1) profits, 2) flexibility to participate in other markets,
by keeping the battery near half its capacity B (with weight λ), and 3) battery health, by
discouraging rapid charging/discharging (with weight ϵ, ϵ < λ). The battery also has a
charging efficiency (γeff), limits on speed of charge (cin) and discharge (cout), and begins at
half charge. This can be written as the stochastic programming problem

minimize
zin,zout,zstate∈R24

Ey∼p(y|x;θ)

[
24∑
i=1

yi(zin − zout)i + λ

∥∥∥∥zstate − B

2

∥∥∥∥2 + ϵ∥zin∥2 + ϵ∥zout∥2
]

subject to zstate,i+1 = zstate,i − zout,i + γeffzin,i ∀i, zstate,1 = B/2,

0 ≤ zin ≤ cin, 0 ≤ zout ≤ cout, 0 ≤ zstate ≤ B.

(5.19)

Assuming (as we will in our model) that yi is a random variable with mean µi, then this
expectation has a closed form that depends only on the mean, as follows:

Ey∼p(y|x;θ)

[
24∑
i=1

yi(zin − zout)i + λ

∥∥∥∥zstate − B

2

∥∥∥∥2 + ϵ∥zin∥2 + ϵ∥zout∥2
]

=
24∑
i=1

µi(zin − zout)i + λ

∥∥∥∥zstate − B

2

∥∥∥∥2 + ϵ∥zin∥2 + ϵ∥zout∥2.
(5.20)

We can then write this expression in QP form as minimize{z:Gz≤h, Az=b}
1
2
zTQz+ cTz with

z =

 zin
zout
zstate

 , Q =

 ϵI 0 0
0 ϵI 0
0 0 λI

 , c =

 µ
−µ
−λB1

 ,

G =



I 0 0
−I 0 0
0 I 0
0 −I 0
0 0 I
0 0 −I

 , h =



cin
0

cout
0
B
0

 , A =

[
0 0 0, . . . , 0, 1

γeffD
T
1 −DT

1 DT
1 −DT

2

]
b =

[
B/2
0

]
,

(5.21)

74

Table 5.1: Task loss results for 10 runs each of the battery storage problem, given a lithium-ion battery
with attributes B = 1, γeff = 0.9, cin = 0.5, and cout = 0.2. (Lower loss is better.) Our task-based net on
average somewhat improves upon the RMSE net, and demonstrates more reliable performance.

Hyperparameters
RMSE net Task-based net (our method) % Improvement

λ ϵ

0.1 0.05 -1.45 ± 4.67 -2.92 ± 0.3 102

1 0.5 4.96 ± 4.85 2.28 ± 2.99 54

10 5 131± 145 95.9± 29.8 27

35 15 173± 7.38 170± 2.16 2

where D1 =
[
I 0

]T ∈ R24×23 and D2 =
[
0 I

]T ∈ R24×23.
For this experiment, we assume that yi is a lognormal random variable (with mean µi);

thus, to obtain our predictions, we predict the mean of log(y) (i.e., we predict log(µ)). To
develop a predictive model for the mean, we use an architecture similar to that described in
Section 5.4.2. In this case, we input the past day’s prices and temperature, the next day’s
load forecasts and temperature forecasts, and additional features such as nonlinear functions
of the temperatures and temporal features similar to those in Section 5.4.2. We again pre-
train the model to minimize the mean squared error between the model’s predictions and the
actual prices (giving the mean prediction µi), using about 5 years of data to train the model
and 1 subsequent year for testing. We then again fine-tune the neural network parameters
by minimizing the task loss; that is, using the mean predictions of this base model, we
solve the storage scheduling problem by solving the optimization problem (5.19), compute
the necessary Jacobians at the solution, and update the underlying model parameter µ via
backpropagation, again using Amos and Kolter [AK17]. We compare against a traditional
stochastic programming model that minimizes just the RMSE.

Table 5.1 shows the performance of the two models on the testing dataset. As energy
prices are difficult to predict due to numerous outliers and price spikes, the models in this
case are not as well-tuned as in our load forecasting experiment; thus, their performance
is relatively variable. Even then, in all cases, our task-based model demonstrates better
average performance than the RMSE model when evaluated on task loss, the objective
most important to the battery operator (although the improvements are not statistically
significant). More interestingly, our task-based method shows less (and in some cases, far
less) variability in performance than the RMSE-minimizing method. Qualitatively, our task-
based method hedges against perverse events such as price spikes that could substantially
affect the performance of a battery charging schedule. The task-based method thus yields
more reliable performance than a pure RMSE-minimizing method in the case the models
are inaccurate due to a high level of stochasticity in the prediction task.

5.5 Conclusion

This chapter proposes an end-to-end approach for training machine learning models that
will be used in the loop of a larger process. Specifically, we consider training probabilistic

75

models in the context of stochastic programming to directly capture a task-based objective.
Preliminary experiments indicate that our task-based learning model substantially outper-
forms MLE and policy-optimizing approaches in all but the (rare) case that the MLE model
“perfectly” characterizes the underlying distribution. Our method also achieves a 38.6%
performance improvement over a highly-optimized real-world stochastic programming algo-
rithm for scheduling electricity generation based on predicted load. In the case of energy
price prediction, where there is a high degree of inherent stochasticity in the problem, our
method demonstrates more reliable task performance than a traditional predictive method.
The task-based approach thus demonstrates promise in optimizing in-the-loop predictions.

While not explicitly evaluated above, a key limitation of our method is its computational
cost; in particular, our method requires solving and differentiating through an optimization
problem during each training iteration where the task loss is used, which can be potentially
expensive. Future directions include exploring mechanisms to reduce this computational
cost, e.g., via faster solution methods or by employing cheaper proxies to the decision-
making process. Our method as currently presented also only accounts for certain kinds of
decision-making settings, notably focusing on single-round decision-making processes that
can be written in analytical form. Future work includes an extension of our approach to
stochastic learning models with multiple rounds, further to model predictive control and
full reinforcement learning settings, and to multi-objective optimization settings.

76

Chapter 6
Approximating Optimization Problems with
Hard Constraints

Large optimization problems with hard constraints arise in many settings, yet classical solvers
are often prohibitively slow, motivating the use of deep networks as cheap “approximate
solvers.” Unfortunately, naive deep learning approaches typically cannot enforce the
hard constraints of such problems, leading to infeasible solutions. In this chapter, we
present Deep Constraint Completion and Correction (DC3), an algorithm to address this
challenge. Specifically, this method enforces feasibility via a differentiable procedure, which
implicitly completes partial solutions to satisfy equality constraints and unrolls gradient-
based corrections to satisfy inequality constraints. We demonstrate the effectiveness of
DC3 in both synthetic optimization tasks and the real-world setting of AC optimal power
flow, where hard constraints encode the physics of the electrical grid. In both cases, DC3
achieves near-optimal objective values while preserving feasibility.

The work in this chapter has previously been published in:1

Priya L. Donti∗, David Rolnick∗, and J. Zico Kolter. “DC3: A Learning
Method for Optimization with Hard Constraints.” International Conference
on Learning Representations. 2021.

1Code for all experiments is available at: https://github.com/locuslab/DC3.

77

https://github.com/locuslab/DC3

6.1 Introduction

Traditional approaches to constrained optimization are often expensive to run for large
problems, necessitating the use of function approximators. Neural networks are highly
expressive and fast to run, making them ideal as function approximators. However, while
deep learning has proven its power for unconstrained problem settings, it has struggled
to perform well in domains where it is necessary to satisfy hard constraints at test time.
For example, in power systems, weather and climate models, materials science, and many
other areas, data follows well-known physical laws, and violation of these laws can lead to
answers that are unhelpful or even nonsensical. There is thus a need for fast neural network
approximators that can operate in settings where traditional optimizers are slow (such as
non-convex optimization), yet where strict feasibility criteria must be satisfied.

In this work, we introduce Deep Constraint Completion and Correction (DC3), a
framework for applying deep learning to optimization problems with hard constraints. Our
approach embeds differentiable operations into the training of the neural network to ensure
feasibility. Specifically, the network outputs a partial set of variables with codimension equal
to the number of equality constraints, and “completes” this partial set into a full solution.
This completion process guarantees feasibility with respect to the equality constraints and
is differentiable (either explicitly, or via the implicit function theorem). We then fix any
violations of the inequality constraints via a differentiable correction procedure based on
gradient descent. Together, this process of completion and correction enables feasibility
with respect to all constraints. Further, this process is fully differentiable and can be
incorporated into standard deep learning methods.

Our key contributions are:
• Framework for incorporating hard constraints. We describe a general framework,
DC3, for incorporating (potentially non-convex) equality and inequality constraints
into deep-learning-based optimization algorithms.

• Practical demonstration of feasibility. We implement the DC3 algorithm in both
convex and non-convex optimization settings. We demonstrate the success of the
algorithm in producing approximate solutions with significantly better feasibility than
other deep learning approaches, while maintaining near-optimality of the solution.

• AC optimal power flow. We show how the general DC3 framework can be used to
optimize power flows on the electrical grid. This difficult non-convex optimization
task must be solved at scale and is especially critical for renewable energy adoption.
Our results greatly improve upon the performance of general-purpose deep learning
methods on this task.

6.2 Related work

Fast optimization methods. Many classical optimization methods have been proposed
to improve the practical efficiency of solving optimization problems. These include general
techniques such as constraint and variable elimination (i.e., the removal of non-active
constraints or redundant variables, respectively), as well as problem-specific techniques

78

(e.g., KKT factorization techniques in the case of convex quadratic programs) [NW06].
Our present work builds upon aspects of this literature, applying concepts from variable
elimination to reduce the number of degrees of freedom associated with the optimization
problems we wish to solve.

In addition to the classical optimization literature, there has been a large body of
literature in deep learning that has sought to approximate or speed up optimization models.
As described in reviews on topics such as combinatorial optimization [BLP21] and optimal
power flow [HKM20], ML methods to speed up optimization models have thus far taken
two main approaches. The first class of approaches has focused on employing machine
learning alongside or in the loop of optimization solvers – for instance, to learn warm-start
points (see, e.g., [Bak19] and [Don+20]) or to enable constraint elimination techniques by
predicting active constraints (see, e.g., [MRN22]). The second class of approaches, akin
to work on surrogate modeling [KL13], involves training machine learning models to map
directly from optimization inputs to full solutions; however, such approaches often struggle
to produce solutions that are feasible with respect to the optimization constraints. Several
recent works within this second class of approaches have therefore aimed to make post-hoc
feasibility adjustments to the solutions output by the ML models [ZB20; Pan+20], but as
these adjustments are not visible to the ML model during training, this can impact the
quality of the solutions that are obtained. Our work is situated within this latter line of
approaches, aiming to directly learn a machine learning-based surrogate to optimization
problems, but in a way that internalizes knowledge of any feasibility adjustments into the
training process in order to improve learning outcomes.

Constraints in neural networks. While deep learning is often thought of as wholly
unconstrained, in reality, it is quite common to incorporate (simple) constraints within
deep learning procedures. For instance, softmax layers encode simplex constraints, sigmoids
instantiate upper and lower bounds, ReLUs encode projections onto the positive orthant,
and convolutional layers enforce translational equivariance (an idea taken further in general
group-equivariant networks [CW16]). Recent work has also focused on embedding specialized
kinds of constraints into neural networks, such as conservation of energy (see, e.g., [GDY19]
and [Beu+19]), and homogeneous linear inequality constraints [FNC20]. However, while
these represent common “special cases,” there has to date been little work on building more
general hard constraints into deep learning models.

6.3 DC3: Deep constraint completion and correction

In this work, we consider solving families of optimization problems for which the objectives
and/or constraints vary across instances. Formally, let x ∈ Rd denote the problem data, and
y ∈ Rn denote the solution of the corresponding optimization problem (where y depends
on x). For any given x, our aim is then to find y solving:

minimize
y∈Rn

fx(y), s. t. gx(y) ≤ 0, hx(y) = 0, (6.1)

79

(where f , g, and h are potentially nonlinear and non-convex). Solving such a family of
optimization problems can be framed as a learning problem, where an algorithm must
predict an optimal y from the problem data x. We consider deep learning approaches to this
task – that is, training a neural network Nθ, parameterized by θ, to approximate y given x.

A naive deep learning approach to approximating such a problem involves viewing the
constraints as a form of regularization. That is, for training examples x(i), the algorithm
learns to minimize a composite loss containing both the objective and two “soft loss” terms
representing violations of the equality and inequality constraints (for some λg, λh > 0):

ℓsoft(ŷ) = fx(ŷ) + λg∥ReLU(gx(ŷ))∥22 + λh∥hx(ŷ)∥22. (6.2)

An alternative framework (see, e.g., Zamzam and Baker [ZB20] and Pan, Chen, Zhao,
and Low [Pan+20]) is to use supervised learning on examples (x(i), y(i)) for which an
optimum y(i) is known. In this case, the loss is simply ||ŷ − y(i)||22. However, both these
procedures for training a neural network can lead in practice to highly infeasible outputs
(as we demonstrate in our experiments), because they do not strictly enforce constraints.
Supervised methods also require constructing a training set (e.g., via an exact solver), a
sometimes difficult or expensive step.

To address these challenges, we introduce the method of Deep Constraint Completion
and Correction (DC3), which allows hard constraints to be integrated into the training
of neural networks. This method is able to train directly from the problem specification
(instead of a supervised dataset), via the following two innovations:

Figure 6.1: A schematic of the DC3 framework.

Equality completion. We provide
a mechanism to enforce equality con-
straints during training and testing, in-
spired by the literature on variable elim-
ination. Specifically, rather than out-
putting the full-dimensional optimiza-
tion solution directly, we first output a
subset of the variables, and then infer
the remaining variables via the equal-
ity constraints – either explicitly, or
by solving an implicit set of equations
(through which we can then backpropa-
gate via the implicit function theorem).

Inequality correction. We cor-
rect for violation of the inequality con-
straints by mapping infeasible points to feasible points using an internal gradient descent
procedure during training. This allows us to fix inequality violations while taking steps
along the manifold of points satisfying the equalities, which yields an output that is feasible
with respect to all constraints.

Overall, our algorithm involves training a neural network Nθ(x) to output a partial set
of variables z. These variables are then completed to a full set of variables ỹ satisfying
the equality constraints. In turn, ỹ is corrected to ŷ to satisfy the inequality constraints

80

Algorithm 2 Deep Constraint Completion and Correction (DC3)

1: assume equality completion procedure φx : Rm → Rn−m // to solve eq. constraints
2:
3: procedure train(X)
4: init neural network Nθ : Rd → Rm

5: while not converged do for x ∈ X
6: compute partial set of variables z = Nθ(x)

7: complete to full set of variables ỹ =
[
zT φx(z)

T
]T ∈ Rn

8: correct to feasible (or approx. feasible) solution ŷ = ρ
(ttrain)
x (ỹ)

9: compute constraint-regularized loss ℓsoft(ŷ)
10: update θ using ∇θℓsoft(ŷ)
11: end while
12: end procedure
13:
14: procedure test(x, Nθ)
15: compute partial set of variables z = Nθ(x)

16: complete to full set of variables ỹ =
[
zT φx(z)

T
]T

17: correct to feasible solution ŷ = ρ(ttest)(ỹ)
18: return ŷ
19: end procedure

while continuing to satisfy the equality constraints. The overall network is trained using
backpropagation on the soft loss described in Equation (6.2) (which is necessary for
correction, as noted below).

Importantly, both the completion and correction procedures are differentiable either
implicitly or explicitly (allowing network training to take them into account), and the overall
framework is agnostic to the choice of neural network architecture. A schematic of the DC3
framework is given in Figure 6.1, and corresponding pseudocode is given in Algorithm 2.

We note that as this procedure is somewhat general, in cases where constraints have a
specialized structure, specialized techniques may be more appropriate to use. For instance,
while we examine linearly-constrained settings in our experiments for the purposes of
illustration, in practice, techniques such as Minkowski-Weyl decomposition or Cholesky
factorization (see [FNC20], [AK17]) may be more efficient in these settings. However, for
more general settings without this kind of structure – e.g., non-convex problems such as
AC optimal power flow, which we examine in our experiments – the DC3 framework can
provide a (differentiable) mechanism for satisfying hard constraints. We now detail the
completion and correction procedures used in DC3.

6.3.1 Equality completion

Assuming that the problem (6.1) is not overdetermined, the number of equality constraints
hx(y) = 0 must not exceed the dimension of the decision variable y ∈ Rn: that is, the
number of equality constraints equals n − m for some m ≥ 0. Then, given m of the

81

entries of a feasible point y, the other (n−m) entries are, in general, determined by the
(n−m) equality constraints. We exploit this observation in our algorithm, noting that it
is considerably more efficient to output a point in Rm and complete it to a point y ∈ Rn

such that hx(y) = 0, as compared with outputting full-dimensional points y ∈ Rn and
attempting to adjust all coordinates to satisfy the equality constraints.

In particular, we assume that given m entries of y, we either can solve for the remaining
entries explicitly (e.g. in a linear system) or that we have access to a process (e.g. Newton’s
Method) allowing us to solve any implicit equations. Formally, we assume access to a

function φx : Rm → Rn−m such that hx(
[
zT φx(z)

T
]T
) = 0, where

[
zT φx(z)

T
]T

is the
concatenation of z and φx(z).

In our algorithm, we then train our neural network Nθ to output points z ∈ Rm, which

are completed to
[
zT φx(z)

T
]T ∈ Rn. A challenge then arises as to how to backpropagate

the loss during the training of Nθ if φx(z) is not a readily differentiable explicit function –
for example, if the completion procedure uses Newton’s Method. We solve this challenge by
leveraging the implicit function theorem, as e.g. in OptNet [AK17] and SATNet [Wan+19].
This approach allows us to express, for any training loss ℓ, the derivatives dℓ/dz using dℓ/dφx(z).

Namely, let Jh ∈ R(n−m)×n denote the Jacobian of hx(y) with respect to y. By the chain
rule:

0 =
d

dz
hx

([
z

φx(z)

])
=

∂hx

∂z
+

∂hx

∂φx(z)

dφx(z)

dz
= Jh

:,0:m + Jh
:,m:n

dφx(z)

dz
,

⇒ dφx(z)/dz = −
(
Jh
:,m:n

)−1
Jh
:,0:m. (6.3)

We can then backpropagate losses through the network by noting that

dℓ

dz
=

∂ℓ

∂z
+

∂ℓ

∂φx(z)

dφx(z)

dz
=

∂ℓ

∂z
− ∂ℓ

∂φx(z)

(
Jh
:,m:n

)−1
Jh
:,0:m. (6.4)

We note that in practice, the Jacobian dφx(z)/dz should generally not be computed
explicitly due to space complexity considerations, and that it is often desirable to form the
result of the left matrix-vector product (∂ℓ/∂φx(z))(dφx(z)/dz) directly. This general process is
discussed in Section 2.2.3, and also shown in detail for the problem of AC optimal power
flow in Appendix B.

6.3.2 Inequality correction

While the completion procedure described above guarantees feasibility with respect to the
equality constraints, it does not ensure that the inequality constraints will be satisfied.
To additionally ensure feasibility with respect to the inequality constraints, our algorithm
incorporates a correction procedure that maps the outputs from the previous step into the
feasible region. In particular, we employ a gradient-based correction procedure that takes
gradient steps in z towards the feasible region along the manifold of points satisfying the
equality constraints.

82

Let ρx(y) be the operation that takes as input a point y =
[
zT φx(z)

T
]T
, and moves it

closer to satisfying the inequality constraints by taking a step along the gradient of the
inequality violation with respect to the partial variables z. Formally, for a learning rate
γ > 0, we define:

ρx

([
z

φx(z)

])
=

[
z − γ∆z

φx(z)− γ∆φx(z)

]
,

for ∆z = ∇z

∥∥∥∥ReLU(gx([z
φx(z)

]))∥∥∥∥2
2

, ∆φx(z) =
dφx(z)

dz
∆z.

While gradient descent methods do not always converge to global (or local) optima
for general optimization problems, if initialized close to an optimum, gradient descent is
highly effective in practice for non-pathological settings (see e.g. Busseti, Moursi, and Boyd
[BMB19] and Panageas, Piliouras, and Wang [PPW19]). At test time, the input to the
DC3 correction procedure should already be close to feasible with respect to the inequality
constraints, as it is the output of a differentiable completion process that is trained using
the soft loss ℓsoft. Therefore, we may expect that in practice, the limit limt→∞ ρ

(t)
x (y) will

converge to a point satisfying both inequality and equality constraints (while for problems
with linear constraints as in Sections 6.4.1–6.4.2, the correction process is mathematically
guaranteed to converge).

As the exact limit limt→∞ ρ
(t)
x (y) is difficult to calculate in practice, we make approxima-

tions at both training and test time. Namely, we apply ρ
(t)
x (y) to the output of the comple-

tion procedure, with t = ttrain relatively small at train time to allow backpropagation through
the correction. Depending on time constraints, this same value of t may be used at test time,
or a larger value t = ttest > ttrain may be used to ensure convergence to a feasible point.

6.4 Experiments

We evaluate DC3 for convex quadratic programs (QPs), a simple family of non-convex
optimization problems, and the real-world task of AC optimal power flow (ACOPF). In
particular, we assess our method on the following criteria:

• Optimality: How good is the objective value fx(y) achieved by the final solution?

• Feasibility: How much, if at all, does the solution violate the constraints? Specifically,
what are the maximum and mean feasibility violations of the inequality and equality
constraints: max(ReLU(gx(y))), mean(ReLU(gx(y))), max(hx(y)), and mean(hx(y))?

• Speed: How fast is the method?

We compare DC3 against the following methods (referred to by abbreviations in our
tables below):

• Optimizer: A traditional optimization solver. For convex QP settings, we use OSQP
[Ste+20], as well as the batched, differentiable solver qpth developed as part of OptNet
[AK17]. For the generic non-convex setting, we use IPOPT [WB06]. For ACOPF, we
use the solver provided by PYPOWER, a Python port of MATPOWER [ZMSG97].

83

• NN: A simple deep learning approach trained to minimize a soft loss (Equation (6.2)).

• NN, ≤ test: The NN approach, with a gradient-based correction procedure2 applied
to the output at test time in an effort to mitigate violations of equality and inequality
constraints. Unlike in DC3, correction is not used during training, and completion is
not used at all.

• Eq. NN: A more sophisticated approach inspired by3 that in Zamzam and Baker
[ZB20], where (i) the neural network outputs a partial set of variables ẑ, which is
completed to the full set using the equality constraints, (ii) training is performed
by supervised learning on optimal pairs (x(i), z(i)) with loss function ||ẑ − z(i)||22, not
using the objective value at all.

• Eq. NN, ≤ test: The approach in Eq. NN, augmented with gradient-based correction
at test time to mitigate violations of equality and inequality constraints.

We also attempted to use the output of the NN method as a “warm start” for traditional
optimizers, but found that the NN output was sufficiently far from feasibility that it did
not help.

In addition, we consider weaker versions of DC3 in which components of the algorithm
are ablated:

• DC3, ̸=. The DC3 algorithm with completion ablated. All variables are output by
the network directly and correction is performed by taking gradient steps for both
equality and inequality constraints.

• DC3, ̸≤ train. The DC3 algorithm with correction ablated at train time. Correction
is still performed at test time.

• DC3, ̸≤ train/test. The DC3 algorithm with correction ablated at both train and
test time.

• DC3, no soft loss. The DC3 algorithm with training performed to minimize
the objective value only, without auxiliary terms capturing equality and inequality
violation.

As our overall framework is agnostic to the choice of neural network architecture, to
facilitate comparison, we use a fixed neural network architecture across all experiments: fully
connected with two hidden layers of size 200, including ReLU activation, batch normalization
[IS15], and dropout (with rate 0.2) [Sri+14] at each hidden layer. The following parameters
were kept fixed for all neural network-based methods across all experiments (with values given

2Note that this correction procedure is not exactly the same as that described in Section 6.3.2, as the
outputs of the NN baseline do not necessarily meet the prerequisite of satisfying the equality constraints.
Instead, we adjust the full set of output variables directly with respect to gradients of the inequality and
equality violations.

3In Zamzam and Baker [ZB20], the authors employ one step of an ACOPF-specific heuristic called
PV/PQ switching to correct inequality constraint violations at test time. We do not apply this heuristic here
in the spirit of presenting a more general framework. As PV/PQ switching is not necessarily guaranteed to
correct all inequality violations (although it can work well in practice), in principle, one could consider
employing a combination of PV/PQ switching and gradient-based corrections in the context of ACOPF.
We note that Pan, Chen, Zhao, and Low [Pan+20] propose a more general post-hoc inequality correction
scheme, but we do not explore this empirically here.

84

in parentheses), based on a small amount of informal experimentation to ensure training was
stable and properly converged: number of epochs (1000), batch size (200), hidden layer size
(200, for both hidden layers), correction procedure stopping tolerance (10−4), and correction
procedure momentum (0.5). For all remaining parameters, we performed hyperparameter
tuning via a coordinate search over relevant parameters. Central values for this coordinate
search were determined via a small amount of informal experimentation to ensure training
was stable on that central set of parameters. Final parameters were chosen so as to prioritize
feasibility (as determined via the mean and max violations of equality and inequality
constraints), followed by objective value and speed; these parameter values are reported
alongside each experiment below. All neural networks are trained using PyTorch [Pas+19].

To generate timing results, all neural nets and the qpth optimizer were run with full
parallelization on a GeForce GTX 2080 Ti GPU. The OSQP, IPOPT, and PYPOWER optimizers
were run sequentially on an Intel Xeon 2.10GHz CPU, and we report the total time divided
by the number of test instances to simulate full parallelization. As our implementations are
not tightly optimized, we emphasize that all timing comparisons are approximate.

6.4.1 Convex quadratic programs

As a first test of the DC3 method, we consider solving convex quadratic programs with a
quadratic objective function and linear constraints. Note that we examine this simple task
first for illustration, but the general DC3 method is assuredly overkill for solving convex
quadratic programs. It may not even be the most efficient deep learning-based method for
constraint enforcement on this task, since more specialized techniques are available in such
linearly constrained settings [FNC20].

We consider the following problem:

minimize
y∈Rn

1

2
yTQy + pTy, s. t. Ay = x, Gy ≤ h, (6.5)

for constants Q ∈ Rn×n ⪰ 0, p ∈ Rn, A ∈ Rneq×n, G ∈ Rnineq×n, h ∈ Rnineq , and variable
x ∈ Rneq which varies between problem instances. We must learn to approximate the
optimal y given x.

In our experiments, we take Q to be a diagonal matrix with all diagonal entries drawn
i.i.d. from the uniform distribution on [0, 1], ensuring that Q is positive semi-definite. We
take matrices A,G with entries drawn i.i.d. from the unit normal distribution. We assume
that in each problem instance, all entries of x are in the interval [−1, 1]. In order to ensure
that the problem is feasible, we take h =

∑
j |(GA+)ij|, where A+ is the Moore-Penrose

pseudoinverse of A; namely, for this choice of h, the point y = A+x is feasible (but not, in
general, optimal), because:

AA+x = x, GA+x ≤
∑
j

∣∣(GA+)ij
∣∣ since |xj| ≤ 1. (6.6)

During training, we use examples x with entries drawn i.i.d. from the uniform distribution
on [−1, 1].

85

Table 6.1: Results on QP task for 100 variables, 50 equality constraints, and 50 inequality constraints. We
compare the performance of DC3 and other algorithms according to the objective value and max/mean
values of equality/inequality constraint violations, each averaged across test instances. We also compare the
total time required to run on all 833 test instances, assuming full parallelization. (Std. deviations across 5
runs are shown in parentheses for all figures reported.) Lower values are better for all metrics. We find that
methods other than DC3 and Optimizer violate feasibility (as shown in red). DC3 gives a feasible output
with reasonable objective value 78× faster than qpth and only 9× slower than OSQP, which is optimized for
convex QPs.

Obj. value Max eq. Mean eq. Max ineq. Mean ineq. Time (s)

Optimizer (OSQP) -15.05 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.002 (0.000)
Optimizer (qpth) -15.05 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 1.335 (0.012)
DC3 -13.46 (0.01) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.017 (0.001)
DC3, ̸= -12.58 (0.04) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.008 (0.000)
DC3, ̸≤ train -1.39 (0.97) 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.017 (0.000)
DC3, ̸≤ train/test -1.23 (1.21) 0.00 (0.00) 0.00 (0.00) 0.09 (0.13) 0.01 (0.01) 0.001 (0.000)
DC3, no soft loss -21.84 (0.00) 0.00 (0.00) 0.00 (0.00) 23.83 (0.11) 4.04 (0.01) 0.017 (0.000)
NN -12.57 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.000)
NN, ≤ test -12.57 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.008 (0.000)
Eq. NN -9.16 (0.75) 0.00 (0.00) 0.00 (0.00) 8.83 (0.72) 0.91 (0.09) 0.001 (0.000)
Eq. NN, ≤ test -14.68 (0.05) 0.00 (0.00) 0.00 (0.00) 0.89 (0.05) 0.07 (0.01) 0.018 (0.001)

Table 6.1 compares the performance of DC3 (and various ablations of DC3) with
traditional optimizers and other deep learning-based methods, for the case of n = 100
variables and neq = nineq = 50. Tables 6.2 and 6.3 additionally show the performance
of these methods as the number of equality and/or inequality constraints vary. Each
experiment is run 5 times for 10,000 examples x (with train/test/validation ratio 10:1:1).
Hyperparameter values are shown in Table 6.4.

We find that DC3 preserves feasibility with respect to both equality and inequality con-
straints, while achieving reasonable objective values. (The average per-instance optimality
gap for DC3 over the classical optimizer is 10.59%.) For every baseline deep learning algo-
rithm, on the other hand, feasibility is violated significantly for either equality or inequality
constraints. As expected, “DC3 ̸=” (completion ablated) results in violated equality con-
straints, while “DC3 ̸≤” (correction ablated) violates inequality constraints. Ablating the
soft loss also results in violated inequality constraints, leading to an objective value signifi-
cantly lower than would be possible were constraints satisfied.

Even though we have not optimized the code of DC3 to be maximally fast, our imple-
mentation of DC3 still runs about 78× faster than the state-of-the-art differentiable QP
solver qpth, and only about 9× slower than the classical optimizer OSQP, which is specif-
ically optimized for convex QPs. Furthermore, this assumes OSQP is fully parallelized –
in this case, across 833 CPUs – whereas standard, non-parallel implementations of OSQP
would be orders of magnitude slower. By contrast, DC3 is easily parallelized within a single
GPU using standard deep learning frameworks.

86

Table 6.2: Results on QP task for 100 variables and 50 inequality constraints, as the number of equality
constraints varies as 10, 30, 50, 70, 90. We compare the performance of DC3 and other algorithms according
to objective value and maximum equality/inequality constraint violations averaged across test instances.
(Standard deviations across 5 runs are shown in parentheses.) We find that neural network baselines give
significantly inferior performance (shown in red) across all problems.

10 30 50 70 90

Optimizers

(OSQP, qpth)

Obj. val. -27.26 (0.00) -23.13 (0.00) -15.05 (0.00) -14.80 (0.00) -4.79 (0.00)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DC3
Obj. val. -25.79 (0.02) -20.29 (0.20) -13.46 (0.01) -13.73 (0.02) -4.76 (0.00)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DC3, ̸=
Obj. val. -22.59 (0.18) -20.40 (0.03) -12.58 (0.04) -13.36 (0.02) -5.27 (0.00)
Max eq. 0.12 (0.01) 0.24 (0.00) 0.35 (0.00) 0.47 (0.00) 0.59 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DC3, ̸≤ train
Obj. val. -25.75 (0.04) -20.14 (0.15) -1.39 (0.97) -13.71 (0.04) -4.75 (0.00)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)

DC3, ̸≤ train/test
Obj. val. -25.75 (0.04) -20.14 (0.15) -1.23 (1.21) -13.71 (0.04) -4.75 (0.00)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.09 (0.13) 0.00 (0.00) 0.00 (0.00)

DC3, no soft loss
Obj. val. -66.79 (0.01) -40.63 (0.02) -21.84 (0.00) -15.56 (0.02) -4.76 (0.01)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 122.52 (0.22) 50.25 (0.14) 23.83 (0.11) 5.85 (0.18) 0.00 (0.00)

NN
Obj. val. -22.65 (0.12) -20.43 (0.03) -12.57 (0.01) -13.35 (0.03) -5.29 (0.02)
Max eq. 0.11 (0.01) 0.24 (0.00) 0.35 (0.00) 0.47 (0.00) 0.59 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

NN, ≤ test
Obj. val. -22.65 (0.12) -20.43 (0.03) -12.57 (0.01) -13.35 (0.03) -5.29 (0.02)
Max eq. 0.11 (0.01) 0.24 (0.00) 0.35 (0.00) 0.47 (0.00) 0.59 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Eq. NN
Obj. val. -27.20 (0.02) -22.74 (0.14) -9.16 (0.75) -14.64 (0.01) -4.74 (0.01)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.43 (0.02) 1.37 (0.09) 8.83 (0.72) 0.86 (0.05) 0.00 (0.00)

Eq. NN, ≤ test
Obj. val. -27.20 (0.02) -22.76 (0.13) -14.68 (0.05) -14.65 (0.01) -4.74 (0.01)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.42 (0.02) 1.27 (0.09) 0.89 (0.05) 0.85 (0.05) 0.00 (0.00)

Table 6.3: Results on QP task for 100 variables and 50 equality constraints. The number of inequality
constraints varies as 10, 30, 50, 70, 90. Content and interpretation as in Table 6.2.

10 30 50 70 90

Optimizers

(OSQP, qpth)

Obj. val. -17.33 (0.00) -16.33 (0.00) -15.05 (0.00) -14.61 (0.00) -14.26 (0.00)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DC3
Obj. val. -15.18 (0.31) -13.90 (0.20) -13.46 (0.01) -10.52 (0.93) -11.77 (0.07)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DC3, ̸=
Obj. val. -15.66 (0.05) -14.10 (0.04) -12.58 (0.04) -12.10 (0.03) -11.72 (0.03)
Max eq. 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.35 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DC3, ̸≤ train
Obj. val. -15.60 (0.30) -13.83 (0.15) -1.39 (0.97) -11.14 (0.05) -11.76 (0.06)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)

DC3, ̸≤ train/test
Obj. val. -15.60 (0.30) -13.83 (0.15) -1.23 (1.21) -11.14 (0.05) -11.76 (0.06)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.09 (0.13) 0.00 (0.00) 0.00 (0.00)

DC3, no soft loss
Obj. val. -21.78 (0.01) -21.72 (0.03) -21.84 (0.00) -21.82 (0.01) -21.83 (0.00)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 23.85 (0.52) 23.54 (0.23) 23.83 (0.11) 23.73 (0.09) 23.69 (0.06)

NN
Obj. val. -15.66 (0.03) -14.10 (0.05) -12.57 (0.01) -12.12 (0.03) -11.70 (0.02)
Max eq. 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.35 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

NN, ≤ test
Obj. val. -15.66 (0.03) -14.10 (0.05) -12.57 (0.01) -12.12 (0.03) -11.70 (0.02)
Max eq. 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.35 (0.00) 0.35 (0.00)
Max ineq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Eq. NN
Obj. val. -17.07 (0.20) -15.45 (0.09) -9.16 (0.75) -14.20 (0.06) -14.10 (0.10)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 1.65 (0.22) 1.79 (0.10) 8.83 (0.72) 2.26 (0.04) 1.28 (0.05)

Eq. NN, ≤ test
Obj. val. -17.06 (0.20) -15.65 (0.09) -14.68 (0.05) -14.31 (0.06) -14.10 (0.10)
Max eq. 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Max ineq. 1.53 (0.19) 1.58 (0.08) 0.89 (0.05) 1.92 (0.04) 1.25 (0.04)

87

Table 6.4: Ranges over which different hyperparameters were tuned for each method for the QP and simple
nonconvex tasks, with central values for the coordinate search in italics, and the final parameter values in
bold. In order to minimize the amount of tuning, we employ the hyperparameters obtained for DC3 to
“DC3, ̸≤ train” and “DC3, no soft loss” as well (rather than tuning the latter two methods separately). For
this set of experiments, we set the learning rate of the gradient-based correction procedure ρx to 10−7 for
all methods, as most methods went unstable for higher correction learning rates.

DC3
DC3, ̸≤ train

DC3, no soft loss
DC3, ̸= NN Eq. NN

Lr 10−2, 10−3 , 10−4 10−2, 10−3 , 10−4 10−2, 10−3 , 10−4 10−2, 10−3 , 10−4

λg + λh 1,10 ,100 1,10,100 1,10,100 –
λh

λg+λh
0.5 , 0.1, 0.01 0.5 , 0.9, 0.99 0.5 , 0.9, 0.99 –

ttest 5, 10, 50, 100, 1000 5, 10, 50, 100, 1000 5, 10, 50, 100, 1000 5, 10, 50, 100, 1000
ttrain 1, 2, 5, 10, 100 1, 2, 5, 10, 100 – –

Table 6.5: Results on our simple nonconvex task for 100 variables, 50 equality constraints, and 50 inequality
constraints, with details as in Table 6.1. Since this problem is nonconvex, we use IPOPT as the classical
optimizer. DC3 is differentiable and about 9× faster than IPOPT, giving a near-optimal objective value
and constraint satisfaction, in contrast to baseline deep learning-based methods which result in significant
constraint violations.

Obj. value Max eq. Mean eq. Max ineq. Mean ineq. Time (s)

Optimizer -11.59 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.121 (0.000)
DC3 -10.66 (0.03) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.013 (0.000)
DC3, ̸= -10.04 (0.02) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.009 (0.000)
DC3, ̸≤ train -0.29 (0.67) 0.00 (0.00) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00) 0.010 (0.004)
DC3, ̸≤ train/test -0.27 (0.67) 0.00 (0.00) 0.00 (0.00) 0.03 (0.03) 0.00 (0.00) 0.001 (0.000)
DC3, no soft loss -13.81 (0.00) 0.00 (0.00) 0.00 (0.00) 15.21 (0.04) 2.33 (0.01) 0.013 (0.000)
NN -10.02 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.000)
NN, ≤ test -10.02 (0.01) 0.35 (0.00) 0.13 (0.00) 0.00 (0.00) 0.00 (0.00) 0.009 (0.000)
Eq. NN -3.88 (0.56) 0.00 (0.00) 0.00 (0.00) 6.87 (0.43) 0.72 (0.05) 0.001 (0.000)
Eq. NN, ≤ test -10.99 (0.03) 0.00 (0.00) 0.00 (0.00) 0.87 (0.04) 0.06 (0.00) 0.013 (0.000)

6.4.2 Simple non-convex optimization

We now consider a simple non-convex adaptation of the quadratic program above:

minimize
y∈Rn

1

2
yTQy + pT sin(y), s. t. Ay = x, Gy ≤ h,

where sin(y) denotes the componentwise application of the sine function to the vector y,
and where all constants and variables are defined as in (6.5). We consider instances of this
problem where all parameters are drawn randomly as in our preceding experiments in the
convex setting.

In Table 6.5, we compare the performance of DC3 and other deep learning-based
methods against the classical non-convex optimizer IPOPT.4 All hyperparameters in these
experiments were maintained at the settings chosen for the convex QP task in Section 6.4.1,

4We initialize the optimizer using the feasible point y = A+x noted in Equation (6.6).

88

since these tasks are similar by design. We find that DC3 achieves good objective values
(8.02% per-instance optimality gap), while maintaining feasibility. By contrast, all other
deep learning-based methods that we consider violate constraints significantly. DC3 also
runs about 10× faster than IPOPT, even assuming IPOPT is fully parallelized. (Even on the
CPU, DC3 takes 0.030± 0.000 seconds, about 4× faster than IPOPT.) Note that the DC3
algorithm is essentially the same between the convex QP and this non-convex task, since
only the objective function is altered.

6.4.3 AC optimal power flow

We now show how DC3 can be applied to the problem of AC optimal power flow (ACOPF),
as defined in Section 2.3.2. In particular, as the amount of renewable energy on the power
grid grows, ACOPF must be solved more and more frequently to account for the variability
of these renewable sources, and at larger scale to account for an increasing number of
distributed devices [Rol+22]. However, given that ACOPF is a non-convex optimization
problem, classical optimizers scale poorly on it. While specialized approaches to this
problem have started to emerge, including using machine learning (see, e.g., [ZB20; Pan+20]
for a discussion), we here assess the ability of our more general framework to approximate
this problem.

Mathematically, we consider the ACOPF formulation previously defined in Equa-
tion (6.7), with a quadratic generator cost function fc(pg) = pTg diag(cq)pg + cTa pg, where
cq, ca ∈ Rb

≥0 are the quadratic and linear cost parameters, respectively, for power generation
at each node. The resultant ACOPF optimization problem is as follows:

minimize
pg∈Rb, qg∈Rb, v∈Cb

pTg diag(cq)pg + cTa pg

subject to pmin
g ≤ pg ≤ pmax

g , qmin
g ≤ qg ≤ qmax

g , vmin ≤ |v| ≤ vmax,

(pg − pd) + (qg − qd)i = diag(v)Wv.

(6.7)

More details about how we apply DC3 to the problem of ACOPF are given in Appendix B.
We assess our method on a 57-bus power system test case available via the MATPOWER

package. We conduct 5 runs over 1,200 input datapoints (with a train/test/validation
ratio of 10:1:1). Optimality, feasibility, and timing results are reported in Table 6.6.
Hyperparameter values are shown in Table 6.7.

We find that DC3 achieves comparable objective values to the optimizer, and preserves
feasibility with respect to both equality and inequality constraints. Once again, for every
baseline deep learning algorithm, feasibility is violated significantly for either equality or
inequality constraints. Ablations of DC3 also suffer from constraint violations, though the
effect is less pronounced than for the convex QP and simple non-convex settings, especially
for ablation of the correction (perhaps because the inequality constraints here are easier to
satisfy than the equality constraints). We also see that DC3 runs about 10× faster than
the PYPOWER optimizer, even when PYPOWER is fully parallelized. (Even when running on
the CPU, DC3 takes 0.906± 0.003 seconds, slightly faster than PYPOWER.)

Out of 100 test instances, there were 3 on which DC3 output lower-than-optimal
objective values of up to a few percent (-0.30%, -1.85%, -5.51%), reflecting slight constraint

89

Table 6.6: Results on ACOPF over 100 test instances. We compare the performance of DC3 and other
algorithms according to the metrics described in Table 6.1. We find again that baseline methods violate
feasibility (as shown in red), while DC3 gives a feasible and near-optimal output about 10× faster than the
PYPOWER optimizer, even assuming that PYPOWER is fully parallelized.

Obj. value Max eq. Mean eq. Max ineq. Mean ineq. Time (s)

Optimizer 3.81 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.949 (0.002)
DC3 3.82 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.089 (0.000)
DC3, ̸= 3.67 (0.01) 0.14 (0.01) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.040 (0.000)
DC3, ̸≤ train 3.82 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.089 (0.000)
DC3, ̸≤ train/test 3.82 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01 (0.00) 0.00 (0.00) 0.039 (0.000)
DC3, no soft loss 3.11 (0.05) 2.60 (0.35) 0.07 (0.00) 2.33 (0.33) 0.03 (0.01) 0.088 (0.000)
NN 3.69 (0.02) 0.19 (0.01) 0.03 (0.00) 0.00 (0.00) 0.00 (0.00) 0.001 (0.000)
NN, ≤ test 3.69 (0.02) 0.16 (0.00) 0.02 (0.00) 0.00 (0.00) 0.00 (0.00) 0.040 (0.000)
Eq. NN 3.81 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15 (0.01) 0.00 (0.00) 0.039 (0.000)
Eq. NN, ≤ test 3.81 (0.00) 0.00 (0.00) 0.00 (0.00) 0.15 (0.01) 0.00 (0.00) 0.078 (0.000)

Table 6.7: Ranges over which different hyperparameters were tuned for each method for the ACOPF task,
with central values for the coordinate search in italics, and the final parameter values in bold. In order to
minimize the amount of tuning, we employ the hyperparameters obtained for DC3 to “DC3, ̸≤ train” and
“DC3, no soft loss” as well (rather than tuning the latter two methods separately).

DC3
DC3, ̸≤ train

DC3, no soft loss
DC3, ̸= NN Eq. NN

Lr 10−2, 10−3 , 10−4 10−2, 10−3 , 10−4 10−2, 10−3 , 10−4 10−2, 10−3 , 10−4

λg + λh 1,10 ,100 1,10,100 1,10,100 –
λh

λg+λh
0.5 , 0.1, 0.01 0.5 , 0.9, 0.99 0.5 , 0.9, 0.99 –

ttest 5, 10, 50, 100 5, 10, 50, 100 5, 10, 50, 100 5, 10, 50, 100, 200

ttrain 1, 2, 5 , 10, 100 1, 2, 5 , 10, 100 – –

Lr, ρx 10−3, 10−4 , 10−5 10−4, 10−5 , 10−6 10−5, 10−6 , 10−7 10−5, 10−6 , 10−7

violations. Over the other 97 instances, the per-instance optimality gap compared to the
classical optimizer was 0.22%.

6.5 Conclusion

We have described a method, DC3, for fast approximate solutions to optimization problems
with hard constraints. Our approach includes a neural network that outputs a partial set of
variables, a differentiable completion procedure that fills in remaining variables according to
equality constraints, and a differentiable correction procedure that fixes inequality violations.
We find that DC3 yields solutions of significantly better feasibility and objective value than
other approximate deep learning-based solvers on convex and non-convex optimization tasks.

We note that, while DC3 provides a general framework for tackling constrained optimiza-
tion, depending on the setting, the expensiveness of both the completion and correction pro-
cedures may vary (e.g., implicit solutions may be more time-consuming, or gradient descent

90

may converge more or less easily). We believe that, while our method as stated is broadly ap-
plicable, it will be possible in future work to design further improvements tailored to specific
problem instances, for example by designing problem-dependent correction procedures.

91

92

Chapter 7
Enforcing Robust Control Guarantees within
Neural Network Policies

When designing controllers for safety-critical systems, practitioners often face a challenging
tradeoff between robustness and performance. While robust control methods provide rigor-
ous guarantees on system stability under certain worst-case disturbances, they often yield
simple controllers that perform poorly in the average (non-worst) case. In contrast, nonlinear
control methods trained using deep learning have achieved state-of-the-art performance on
many control tasks, but often lack robustness guarantees. In this chapter, we propose a tech-
nique that combines the strengths of these two approaches: constructing a generic nonlinear
control policy class, parameterized by neural networks, that nonetheless enforces the same
provable robustness criteria as robust control. Specifically, our approach entails integrat-
ing custom convex-optimization-based projection layers into a neural network-based policy.
We demonstrate the power of this approach on several synthetic domains (including a syn-
thetic microgrid task), improving in average-case performance over existing robust control
methods and in worst-case stability over (non-robust) deep reinforcement learning methods.

The work in this chapter has previously been published in:1

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter.
“Enforcing Robust Control Guarantees within Neural Network Policies.”
International Conference on Learning Representations. 2021.

1Code for all experiments is available at: https://github.com/locuslab/robust-nn-control.

93

https://github.com/locuslab/robust-nn-control

7.1 Introduction

The field of robust control, dating back many decades, has been able to provide rigorous
guarantees on when controllers will succeed or fail in controlling a system of interest. In
particular, if the uncertainties in the underlying dynamics can be bounded in specific ways,
these techniques can produce controllers that are provably robust even under worst-case
conditions. However, as the resulting policies tend to be simple (i.e., often linear), this can
limit their performance in typical (rather than worst-case) scenarios. In contrast, recent high-
profile advances in deep reinforcement learning have yielded state-of-the-art performance
on many control tasks, due to their ability to capture complex, nonlinear policies. However,
due to a lack of robustness guarantees, these techniques have still found limited application
in safety-critical domains where an incorrect action (either during training or at runtime)
can substantially impact the controlled system.

In this chapter, we propose a method that combines the guarantees of robust control with
the flexibility of deep reinforcement learning (RL). Specifically, we consider the setting of
nonlinear, time-varying systems with unknown dynamics, but where (as common in robust
control) the uncertainty on these dynamics can be bounded in ways amenable to obtaining
provable performance guarantees. Building upon specifications provided by traditional
robust control methods in these settings, we construct a new class of nonlinear policies that
are parameterized by neural networks, but that are nonetheless provably robust. In particular,
we project the outputs of a nominal (deep neural network-based) controller onto a space of
stabilizing actions characterized by the robust control specifications. The resulting nonlinear
control policies are trainable using standard approaches in deep RL, yet are guaranteed to
be stable under the same worst-case conditions as the original robust controller.

We describe our proposed deep nonlinear control policy class and derive efficient,
differentiable projections for this class under various models of system uncertainty common
in robust control. We demonstrate our approach on several different domains, including
synthetic linear differential inclusion (LDI) settings, the cart-pole task, a quadrotor domain,
and a microgrid domain. Although these domains are simple by modern RL standards,
we show that purely RL-based methods often produce unstable policies in the presence of
system disturbances, both during and after training. In contrast, we show that our method
remains stable even when worst-case disturbances are present, while improving upon the
performance of traditional robust control methods.

7.2 Related work

Robust control. Robust control is concerned with the design of feedback controllers
for dynamical systems with modeling uncertainties and/or external disturbances [ZD98;
BB08], specifically controllers with guaranteed performance under worst-case conditions.
Many classes of robust control problems in both the time and frequency domains can be
formulated using linear matrix inequalities (LMIs) [Boy+94; KBM96]; for reasonably-sized
problems, these LMIs can be solved using off-the-shelf numerical solvers based on interior-
point or first-order (gradient-based) methods. However, providing stability guarantees often

94

requires the use of simple (linear) controllers, which greatly limits average-case performance.
Our work seeks to improve performance via nonlinear controllers that nonetheless retain
the same stability guarantees.

Reinforcement learning (RL). In contrast, RL (and specifically, deep RL) is not restricted
to simple controllers or problems with uncertainty bounds on the dynamics. Instead, deep
RL seeks to learn an optimal control policy, represented by a neural network, by directly
interacting with an unknown environment. These methods have shown impressive results
in a variety of complex control tasks (e.g., [Mni+15; Akk+19]); see [Buş+18] for a survey.
However, due to its lack of safety guarantees, deep RL has been predominantly applied to
simulated environments or highly-controlled real-world problems, where system failures are
either not costly or not possible.

Efforts to address the lack of safety and stability in RL fall into several main categories.
The first tries to combine control-theoretic ideas, predominantly robust control, with the
nonlinear control policy benefits of RL (e.g., [MD05; AKLH06; FAR09; LLW13; WL13;
LWH14; FB17; Pin+17; JL20; CRG19; Han+19; ZHB20; CHW22; Rut+22; JMP21]). For
example, RL has been used to address stochastic stability in H∞ control synthesis settings
by jointly learning Lyapunov functions and policies in these settings [Han+19]. As another
example, RL has been used to address H∞ control for continuous-time systems via min-
max differential games, in which the controller and disturbance are the “minimizer” and
“maximizer” [MD05]. We view our approach as thematically aligned with this previous work,
though our method is able to capture not only H∞ settings, but also a much broader class
of robust control settings. A more recent direction has also involved mixing between the
outputs of a trusted robust control algorithm and an “untrusted” algorithm (e.g., a standard
RL algorithm) [CHW22; Rut+22], an approach we similarly view as being thematically
aligned with our work.

Another category of methods addressing this challenge is safe RL, which aims to learn
control policies while maintaining some notion of safety during or after learning. Typically,
these methods attempt to restrict the RL algorithm to a safe region of the state space by
making strong assumptions about the smoothness of the underlying dynamics, e.g., that the
dynamics can be modeled as a Gaussian process (GP) [TBK16; Aka+14] or are Lipschitz
continuous [Ber+17; Wac+18]. This framework is in theory more general than our approach,
which requires using stringent uncertainty bounds (e.g., state-control norm bounds) from
robust control. However, there are two key benefits to our approach. First, norm bounds
or polytopic uncertainty can accommodate sharp discontinuities in the continuous-time
dynamics. Second, convex projections (as used in our method) scale polynomially with the
state-action size, whereas GPs in particular scale exponentially (and are therefore difficult
to extend to high-dimensional problems).

A third category of methods uses Constrained Markov Decision Processes (C-MDPs).
These methods seek to maximize a discounted reward while bounding some discounted cost
function [Alt99; Ach+17; TD18; Yan+20]. While these methods do not require knowledge
of the cost functions a-priori, they only guarantee the cost constraints hold during test time.
Additionally, using C-MDPs can yield other complications, such as optimal policies being
stochastic and the constraints only holding for a subset of states.

95

7.3 Background on LQR and robust control specifications

In this work, our aim is to control nonlinear (continuous-time) dynamical systems of the form

ẋ(t) ∈ A(t)x(t) +B(t)u(t) +G(t)w(t), (7.1)

where x(t) ∈ Rs denotes the state at time t; u(t) ∈ Ra is the control input; w(t) ∈ Rd

captures both external (possibly stochastic) disturbances and any modeling discrepancies;
ẋ(t) denotes the time derivative of the state x at time t; and A(t) ∈ Rs×s, B(t) ∈ Rs×a,
G(t) ∈ Rs×d. This class of models is referred to as linear differential inclusions (LDIs);
however, we note that despite the name, this class does indeed characterize nonlinear
systems, as, e.g., w(t) can depend arbitrarily on x(t) and u(t) (though we omit this
dependence in the notation for brevity). Within this class of models, it is often possible to
construct robust control specifications certifying system stability. Given such specifications,
our proposal is to learn nonlinear (deep neural network-based) policies that provably
satisfy these specifications while optimizing some objective of interest. We start by giving
background on the robust control specifications and objectives considered in this work.

7.3.1 Robust control specifications

In the continuous-time, infinite-horizon settings we consider here, the goal of robust control is
often to construct a time-invariant control policy u(t) = π(x(t)), alongside some certification
that guarantees that the controlled system will be stable (i.e., that trajectories of the system
will converge to an equilibrium state, usually x = 0 by convention; see [HC11] for a more
formal definition). For many classes of systems,2 this certification is typically in the form
of a positive definite Lyapunov function V : Rs → R, with V (0) = 0 and V (x) > 0 for all
x ̸= 0, such that the function is decreasing along trajectories – for instance,

V̇ (x(t)) ≤ −αV (x(t)) (7.2)

for some design parameter α > 0. (This particular condition implies exponential stability
with a rate of convergence α.3) For certain classes of bounded dynamical systems, time-
invariant linear control policies u(t) = Kx(t), and quadratic Lyapunov functions V (x) =
xTPx, it is possible to construct such guarantees using semidefinite programming. For
instance, consider the class of norm-bounded LDIs (NLDIs)

ẋ = Ax(t) +Bu(t) +Gw(t), ∥w(t)∥2 ≤ ∥Cx(t) +Du(t)∥2, (7.3)

where A ∈ Rs×s, B ∈ Rs×a, G ∈ Rs×d, C ∈ Rk×s, and D ∈ Rk×a are time-invariant and
known, and the disturbance w(t) is arbitrary (and unknown) but obeys the norm bounds

2In this work, we consider sub-classes of system (7.1) that may indeed be stochastic (e.g., due to a
stochastic external disturbance w(t)), but that can be bounded so as to be amenable to deterministic
stability analysis. However, other settings may require stochastic stability analysis; please see [Ast71].

3See, e.g., [HC11] for a more rigorous definition of (local and global) exponential stability. Condition (7.2)
comes from Lyapunov’s Theorem, which characterizes various notions of stability using Lyapunov functions.

96

above.4 For these systems, it is possible to specify a set of stabilizing policies via a set of
linear matrix inequalities (LMIs, [Boy+94]):[

AS + SAT + µGGT +BY + Y TBT + αS SCT + Y TDT

CS +DY −µI

]
⪯ 0, S ≻ 0, µ > 0, (7.4)

where S ∈ Rs×s and Y ∈ Ra×s. For matrices S and Y satisfying (7.4), K = Y S−1 and
P = S−1 are then a stabilizing linear controller gain and Lyapunov matrix, respectively.
While the LMI above is specific to NLDI systems, this general paradigm of constructing
stability specifications using LMIs applies to many settings commonly considered in robust
control (e.g., settings with norm-bounded disturbances or polytopic uncertainty, or H∞
control settings). More details about these types of formulations are given in, e.g., Boyd,
El Ghaoui, Feron, and Balakrishnan [Boy+94]; in addition, we provide the relevant LMI
constraints for the settings we consider in this work in Appendix C.1.

7.3.2 LQR control objectives

In addition to designing for stability, it is often desirable to optimize some objective
characterizing controller performance. While our method can optimize performance with
respect to any arbitrary cost or reward function, to make comparisons with existing methods
easier, for this work, we consider the well-known infinite-horizon “linear-quadratic regulator”
(LQR) cost, defined as ∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (7.5)

for some Q ∈ Ss×s ⪰ 0 and R ∈ Sa×a ≻ 0. If the control policy is assumed to be time-
invariant and linear as described above (i.e., u(t) = Kx(t)), minimizing the LQR cost
subject to stability constraints can be cast as an SDP (see, e.g., [YZZ01]) and solved using
off-the-shelf numerical solvers – a fact that we exploit in our work. For example, to obtain an
optimal linear time-invariant controller for the NLDI systems described above, we can solve

minimize
S,Y

tr(QS) + tr(R1/2Y S−1Y TR1/2) s. t. Equation (7.4) holds. (7.6)

7.4 Enforcing robust control guarantees within neural

networks

We now present the main contribution of this work: A class of nonlinear control policies,
potentially parameterized by deep neural networks, that is guaranteed to obey the same
stability conditions enforced by the robustness specifications described above. The key

4A slightly more complex formulation involves an additional term in the norm bound, i.e., Cx(t)+Du(t)+
Hw(t), which creates a quadratic inequality in w. The mechanics of obtaining robustness specifications in
this setting are largely the same as presented here, though with some additional terms in the equations. As
such, as is often done, we assume that H = 0 for simplicity.

97

insight of our approach is as follows: While it is difficult to derive specifications that globally
characterize the stability of a generic nonlinear controller, if we are given known robustness
specifications, we can create a sufficient condition for stability by simply enforcing that our
policy satisfies these specifications at all t. For instance, given a known Lyapunov function,
we can enforce exponential stability by ensuring that our policy sufficiently decreases this
function (e.g., satisfies Equation (7.2)) at any given x(t).

In the following sections, we present our nonlinear policy class, as well as our general
framework for learning provably robust policies using this policy class. We then derive the
instantiation of this framework for various settings of interest. In particular, this involves
constructing (custom) differentiable projections that can be used to adjust the output of a
nominal neural network to satisfy desired robustness criteria. For simplicity of notation, we
will often suppress the t-dependence of x, u, and w, but we note that these are continuous-
time quantities as before.

7.4.1 A provably robust nonlinear policy class

Given a dynamical system of the form (7.1) and a quadratic Lyapunov function V (x) =
xTPx, let

C(x) := {u ∈ Ra | V̇ (x) ≤ −αV (x) ∀ẋ ∈ A(t)x+B(t)u+G(t)w} (7.7)

denote a set of actions that, for a fixed state x ∈ Rs, are guaranteed to satisfy the exponential
stability condition (7.2) (even under worst-case realizations of the disturbance w). We
note that this “safe” set is non-empty if P satisfies the relevant LMI constraints (e.g.,
system (7.4) for NLDIs) characterizing robust linear time-invariant controllers, as there is
then some K corresponding to P such that Kx ∈ C(x) for all states x.

Using this set of actions, we then construct a robust nonlinear policy class that projects
the output of some neural network onto this set. More formally, consider an arbitrary
nonlinear (neural network-based) policy class π̂θ : Rs → Ra parameterized by θ, and let P(·)
denote the projection operator for some set (·). We then define our robust policy class as
πθ : Rs → Ra, where

πθ(x) = PC(x)(π̂θ(x)). (7.8)

We note that this policy class is differentiable if the projections can be implemented in a
differentiable manner (e.g., using convex optimization layers [Agr+19], though we construct
efficient custom solvers for our purposes). Importantly, as all policies in this class satisfy
the stability condition (7.2) for all states x and at all times t, these policies are certifiably
robust under the same conditions as the original (linear) controller for which the Lyapunov
function V (x) was constructed.

Given this policy class and some performance objective ℓ (e.g., LQR cost), our goal is
to then find parameters θ such that the corresponding policy optimizes this objective – i.e.,
to solve

minimize
θ

∫ ∞

0

ℓ (x, πθ(x)) dt s. t. ẋ ∈ A(t)x+B(t)πθ(x) +G(t)w. (7.9)

98

Algorithm 3 Learning provably robust controllers with deep RL

1: input performance objective ℓ // e.g., LQR cost
2: input stability requirement // e.g., V̇ (x) ≤ −αV (x)
3: input policy optimizer A // e.g., a planning or RL algorithm
4: compute P , K satisfying LMI constraints // e.g., by optimizing (7.6)
5: construct specifications C(x) using P // as defined in Equation (7.7)
6: construct robust policy class πθ using C // as defined in Equation (7.8)
7: train πθ via A to optimize Equation (7.9)
8: return πθ

Since πθ is differentiable, we can solve this problem via a variety of approaches, e.g., a
model-based planning algorithm if the true dynamics are known, or virtually any (deep)
RL algorithm if the dynamics are unknown.5

This general procedure for constructing stabilizing controllers is summarized in Algo-
rithm 3. While seemingly simple, this formulation presents a powerful paradigm: by simply
transforming the output of a neural network, we can employ an expressive policy class
to optimize an objective of interest while ensuring the resultant policy will stabilize the
system during both training and testing.

We instantiate our framework by constructing “safe” sets C(x) and their associated
(differentiable) projections PC(x) for three settings of interest: NLDIs, polytopic linear
differential inclusions (PLDIs), and H∞ control settings. As an example, we describe
this procedure below for NLDIs, and refer readers to Appendix C.2 for corresponding
formulations for the additional settings we consider.

7.4.2 Example: NLDIs

In order to apply our framework to the NLDI setting (7.3), we first compute a quadratic
Lyapunov function V (x) = xTPx by solving the optimization problem (7.6) for the given
system via semidefinite programming. We then use the resultant Lyapunov function to
compute the system-specific “safe” set C(x), and then create a fast, custom differentiable
solver to project onto this set.

7.4.2.1 Computing sets of stabilizing actions

Given P , we compute CNLDI(x) as the set of actions u ∈ Ra that, for each state x ∈ Rs,
satisfy the stability condition (7.2) at that state under even a worst-case realization of
the dynamics (i.e., in this case, even under a worst-case disturbance w). The form of the
resultant set is given below.

Theorem 1. Consider the NLDI system (7.3), some stability parameter α > 0, and a
Lyapunov function V (x) = xTPx with P satisfying Equation (7.4). Assuming P exists,

5While this problem is infinite-horizon and continuous in time, in practice, one would optimize it in
discrete time over a large finite time horizon.

99

define

CNLDI(x) :=

{
u ∈ Ra | ∥Cx+Du∥2 ≤

−xTPB

∥GTPx∥2
u− xT (2PA+ αP)x

2∥GTPx∥2

}
for all states x ∈ Rs. For all x, CNLDI(x) is a non-empty set of actions that satisfy the
exponential stability condition (7.2). Further, CNLDI(x) is a convex set in u.

Proof. We seek to find a set of actions such that the condition (7.2) is satisfied along all
possible trajectories of (7.3). A set of actions satisfying this condition at a given x is given by

CNLDI(x) :=

{
u ∈ Ra | sup

w:∥w∥2≤∥Cx+Du∥2
V̇ (x) ≤ −αV (x)

}
.

Let S := {w : ∥w∥2 ≤ ∥Cx+Du∥2}. We can then rewrite the left side of the above
inequality as

sup
w∈S

V̇ (x) = sup
w∈S

ẋTPx+ xTPẋ = 2xTP (Ax+Bu) + sup
w∈S

2xTPGw

= 2xTP (Ax+Bu) + 2∥GTPx∥2∥Cx+Du∥2,

by the definition of the NLDI dynamics and the closed-form minimization of a linear term
over an L2 ball. Rearranging yields an inequality of the desired form. We note that by
definition of the specifications (7.4), there is some K corresponding to P such that the policy
u = Kx satisfies the exponential stability condition (7.2); thus, Kx ∈ CNLDI, and CNLDI is
non-empty. Further, as the above inequality represents a second-order cone constraint in u,
this set is convex in u.

We further consider the special case where D = 0, i.e., the norm bound on w does not
depend on the control action. This form of NLDI arises in many common settings (e.g.,
where w characterizes linearization error in a nonlinear system but the dynamics depend
only linearly on the action), and is one for which we can compute the relevant projection in
closed form (as described shortly).

Corollary 1.1. Consider the NLDI system (7.3) with D = 0, some stability parameter
α > 0, and Lyapunov function V (x) = xTPx with P satisfying Equation (7.4). Assuming
P exists, define

CNLDI-0(x) :=
{
u ∈ Ra | 2xTPBu ≤ −xT (2PA+ αP)x− 2∥GTPx∥2∥Cx∥2

}
for all states x ∈ Rs. For all x, CNLDI-0(x) is a non-empty set of actions that satisfy the
exponential stability condition (7.2). Further, CNLDI-0(x) is a convex set in u.

Proof. The result follows by setting D = 0 in Theorem 1 and rearranging terms. As the
above inequality represents a linear constraint in u, this set is convex in u.

100

7.4.2.2 Deriving efficient, differentiable projections

For the general NLDI setting (7.3), we note that the relevant projection PCNLDI(x) (see
Theorem 1) represents a projection onto a second-order cone constraint. As this projection
does not necessarily have a closed form, we must implement it using a differentiable
optimization solver (e.g., [Agr+19]). For computational efficiency purposes, we implement a
custom solver that employs an accelerated projected dual gradient method for the forward
pass, and employs implicit differentiation through the fixed point equations of this solution
method to compute relevant gradients for the backward pass. Derivations and additional
details are provided in Appendix C.3.

In the case where D = 0 (see Corollary 1.1), we note that the projection operation
PCNLDI-0(x) does have a closed form, and can in fact be implemented via a single ReLU oper-
ation. Specifically, defining ηT := 2xTPB and ζ := −xT (2PA+ αP)x− 2∥GTPx∥2∥Cx∥2,
we see that

PCNLDI-0(x) (π̂(x)) =

{
π̂(x) if ηT π̂(x) ≤ ζ

π̂(x)− ηT π̂(x)−ζ
ηT η

η otherwise
= π̂(x)− ReLU

(
ηT π̂(x)− ζ

ηT η

)
η.

(7.10)

7.5 Experiments

Having instantiated our general framework, we demonstrate the power of our approach
on a variety of simulated control domains. In particular, we evaluate performance on the
following metrics:

• Average-case performance: How well does the method optimize the performance
objective (i.e., LQR cost) under average (non-worst case) dynamics?

• Worst-case stability: Does the method remain stable even when subjected to
adversarial (worst-case) dynamics?

In all cases, we show that our method is able to ouperform traditional robust controllers
under average conditions, while still guaranteeing stability under worst-case conditions.

7.5.1 Description of dynamics settings

We evaluate our approach on five NLDI settings: two synthetic NLDI domains, the cart-
pole task, a quadrotor domain, and a microgrid domain. (Additional experiments for PLDI
and H∞ control settings are described in Appendix C.9.) For each setting, we choose a
time discretization based on the speed at which the system evolves, and run each episode
for 200 steps over this discretization. In all cases except the microgrid setting, we use a
randomly generated LQR objective where the matrices Q1/2 and R1/2 are drawn i.i.d. from
a standard normal distribution.

Synthetic NLDI settings. We generate NLDIs of the form (7.3) with s = 5, a = 3, and
d = k = 2 by generating matrices A,B,G,C and D i.i.d. from normal distributions, and

101

producing the disturbance w(t) using a randomly-initialized neural network (with its output
scaled to satisfy the norm-bound on the disturbance). We investigate settings both where
D ̸= 0 and where D = 0. In both cases, episodes are run for 2 seconds at a discretization
of 0.01 seconds.

Cart-pole. We aim to balance an inverted pendulum resting on top of a cart by exerting
horizontal forces on the cart. For our experiments, we linearize this system as an NLDI with
D ̸= 0 (see Appendix C.4), and add a small additional randomized disturbance satisfying
the NLDI bounds. Episodes are run for 10 seconds at a discretization of 0.05 seconds.

Planar quadrotor. We aim to stabilize a quadcopter in the two-dimensional plane by
controlling the amount of force provided by the quadcopter’s right and left thrusters. We
linearize this system as an NLDI withD = 0 (see Appendix C.5), and add a small disturbance
as in the cart-pole setting. Episodes are run for 4 seconds at a discretization of 0.02 seconds.

Microgrid. We aim to stabilize a grid-connected microgrid by controlling a storage device
and a solar inverter. We augment the system given in [LBR16] with LQR matrices and NLDI
bounds (see Appendix C.6). Episodes are run for 2 seconds at a discretization of 0.01 seconds.

7.5.2 Experimental setup

We demonstrate our approach by constructing a robust policy class (7.8) for each of these
settings, and optimizing this policy class via different approaches. Specifically, we construct a
nominal nonlinear control policy class as π̂θ(x) = Kx+π̃θ(x), where K is obtained via robust
LQR optimization (7.6), and where π̃θ(x) is a feedforward neural network. To construct the
projections PC, we employ the value of P obtained when solving for K. For demonstration
purposes, we optimize our robust policy class πθ(x) = PC(π̂θ(x)) using two different methods:

• Robust MBP (ours): A model-based planner with access to the true dynamics.

• Robust PPO (ours): An RL approach based on PPO [Sch+17b] that does not assume
known dynamics (beyond the bounds used to construct the robust policy class).

Robust MBP is optimized using gradient descent for 1,000 updates, where each update
samples 20 roll-outs. Robust PPO is trained for 50,000 updates, where each update samples
8 roll-outs; we choose the model that performs best on a holdout set of initial conditions
during training. While we use PPO for our demonstration, our approach is agnostic to the
particular method of training, and can be deployed with many different (deep) RL paradigms.

We compare our robust neural network-based method against the following baselines:
• Robust LQR: Robust (linear) LQR controller obtained via Equation (7.6).

• Robust MPC: A robust model-predictive control algorithm [KBM96] based on state-
dependent LMIs. (As the relevant LMIs are not always guaranteed to solve, our
implementation temporarily reverts to the Robust LQR policy when that occurs.)

• RARL: The robust adversarial reinforcement learning algorithm [Pin+17], which
trains an RL agent in the presence of an adversary. (We note that unlike the other
robust methods considered here, this method is not provably robust.)

102

Table 7.1: Performance of various approaches, both robust (right) and non-robust (left). We report average
quadratic loss over 50 episodes under the original dynamics (O) and under an adversarial disturbance (A). For
the original dynamics (O), the best performance for both non-robust methods and robust methods is in bold
(lower loss is better). Under the adversarial dynamics (A), we seek to observe whether or not methods remain
stable; we use “unstable” to indicate cases where the relevant method becomes unstable (and † to denote any
instabilities due to numerical, rather than theoretical, issues). Our robust methods (denoted by ∗) improve
performance over Robust LQR and Robust MPC in the average case while remaining stable under adversarial
dynamics, whereas the non-robust methods and RARL either go unstable or receive much larger losses.

Environment LQR MBP PPO
Robust
LQR

Robust
MPC

RARL
Robust
MBP∗

Robust
PPO∗

Generic NLDI
(D = 0)

O 373 16 21 253 253 27 69 33
A ——— unstable ——— 1009 873 unstable 1111 2321

Generic NLDI
(D ̸= 0)

O 278 15 82 199 199 147 69 80
A ——— unstable ——— 1900 1667 unstable 1855 1669

Cart-pole
O 36.3 3.6 7.2 10.2 10.2 8.3 9.7 8.4
A — unstable — 172.1 42.2 47.8 41.2 50.0 16.3

Quadrotor
O 5.4 2.5 7.7 13.8 13.8 12.2 11.0 8.3
A unstable 545.7 137.6 64.8 unstable† 63.1 25.7 26.5

Microgrid
O 4.59 0.60 0.61 0.73 0.73 0.67 0.61 0.61
A ——— unstable ——— 0.99 0.92 2.17 7.68 8.91

• LQR: A standard non-robust (linear) LQR controller.

• MBP and PPO: The non-robust neural network policy class π̂θ(x) optimized via a
model-based planner and the PPO algorithm, respectively.

In order to evaluate performance, we train all methods on the dynamical settings described
in Section 7.5.1, and evaluate them on two different variations of the dynamics:

• Original dynamics: The dynamical settings described above (“average case”).

• Adversarial dynamics: Modified dynamics with an adversarial test-time distur-
bance w(t) generated to maximize loss (“worst case”). We generate this disturbance
separately for each method described above (see Appendix C.7 for more details).

Initialization states are randomly generated for all experiments. For the synthetic NLDI
and microgrid settings, these are generated from a standard normal distribution. For both
cart-pole and quadrotor, because our NLDI bounds model linearization error, we must
generate initial points within a region where this linearization holds. In particular, the
linearization bounds only hold for a specified L∞ ball, BNLDI, around the equilibrium. We
use a simple heuristic to construct this ball and jointly find a smaller L∞ ball, Binit, such
that there exists a level set L of the Robust LQR Lyapunov function with Binit ⊆ L ⊆ BNLDI

(details in Appendix C.8). Since Robust LQR (and by extension our methods) are guaranteed
to decrease the relevant Lyapunov function, this guarantees that these methods will never
leave BNLDI when initialized starting from any point inside Binit – i.e., that our NLDI
bounds will always hold throughout the trajectories produced by these methods.

7.5.3 Results

Table 7.1 shows the performance of the above methods. We report the integral of the
quadratic loss over the prescribed time horizon on a test set of states, or indicate cases

103

101

105

Lo
ss

N
LD

I
(D

 =
 0

)

Non-robust Methods Robust Methods

101

105

Lo
ss

N
LD

I
(D

 0

)

100

103

Lo
ss

Ca
rt

po
le

100

103

Lo
ss

Q
ua

dr
ot

or

0 250 500 750 1000
Training epochs

10 1

102

Lo
ss

M
ic

ro
gr

id

0 250 500 750 1000
Training epochs

Setting:
MBP PPO RARL Robust MBP * Robust PPO *

Original Adversarial
Figure 7.1: Test performance over training epochs for all learning methods employed in our experiments.
For each training epoch (10 updates for the MBP model and 18 for PPO), we report average quadratic loss
over 50 episodes, and use “X” to indicate cases where the relevant method became unstable. (Lower loss is
better.) Our robust methods (denoted by ∗), unlike the non-robust methods and RARL, remain stable
under adversarial dynamics throughout training.

where the relevant method became unstable (i.e., the loss became orders of magnitude
larger than for other approaches). (Sample trajectories are also provided in Appendix C.8.)

These results illustrate the basic advantage of our approach. In particular, both our
Robust MBP and Robust PPO methods show improved “average-case” performance over
the other provably robust methods (namely, Robust LQR and Robust MPC). As expected,
however, the non-robust LQR, MBP, and PPO methods often perform better within the
original nominal dynamics, as they are optimizing for expected performance but do not
need to consider robustness under worst-case scenarios. However, when we apply allowable
adversarial perturbations (that still respect our disturbance bounds), the non-robust LQR,
MBP, and PPO approaches diverge or perform very poorly. Similarly, the RARL agent
performs well under the original dynamics, but diverges under adversarial perturbations in
the generic NLDI settings. In contrast, both of our provably robust approaches (as well
as Robust LQR) remain stable under even “worst-case” adversarial dynamics. (We note

104

that the baseline Robust MPC method goes unstable in one instance, though this is due to
numerical instability issues, rather than issues with theoretical guarantees.)

Figure 7.1 additionally shows the performance of all neural network-based methods
on the test set over training epochs. While the robust and non-robust MBP and PPO
approaches both converge quickly to their final performance levels, both non-robust versions
become unstable under the adversarial dynamics very early in the process. The RARL
method also frequently destabilizes during training. Our Robust MBP and PPO policies,
on the other hand, remain stable throughout the entire optimization process, i.e., do not
destabilize during either training or testing. Overall, these results show that our method
is able to learn policies that are more expressive than traditional robust methods, while
guaranteeing these policies will be stable under the same conditions as Robust LQR.

While not depicted in the numerical results above, we note that the chief tradeoff,
here, is computational cost. In particular, our approaches require computing a last-layer
projection during every step of training and inference, which can be expensive to compute
depending on the size and type of the projection. This is in contrast to both of the LQR-
based methods we evaluate (which only require one optimization problem to be solved up
front) as well as all RL baselines we evaluate (which do not require explicit optimization
solves). (Robust MPC, on the other hand, is much more expensive to run, as it requires
solving an ho at every time step.) Thus, reducing the computational cost of our approach –
e.g., by speeding up the projection layer or using cheaper proxy projection procedures – is
an important direction for future work.

7.6 Conclusion

In this chapter, we have presented a class of nonlinear control policies that combines the
expressiveness of neural networks with the provable stability guarantees of traditional robust
control. This policy class entails projecting the output of a neural network onto a set of
stabilizing actions, parameterized via robustness specifications from the robust control
literature, and can be optimized using a model-based planning algorithm if the dynamics
are known or virtually any RL algorithm if the dynamics are unknown. We instantiate our
general framework for dynamical systems characterized by several classes of linear differential
inclusions that capture many common robust control settings. In particular, this entails
deriving efficient, differentiable projections for each setting, via implicit differentiation
techniques. We show over a variety of simulated domains that our method improves
upon robust LQR techniques while, unlike non-robust LQR and neural network methods,
remaining stable even under worst-case allowable perturbations of the underlying dynamics.

We believe that our approach highlights the possible connections between traditional
control methods and (deep) RL methods. Specifically, by enforcing more structure in the
classes of deep networks we consider, it is possible to produce networks that provably satisfy
many of the constraints that have typically been thought of as outside the realm of RL. We
hope that this work paves the way for future approaches that can combine more structured
uncertainty or robustness guarantees with RL, in order to improve performance in settings
traditionally dominated by classical robust control.

105

106

Chapter 8
Enforcing Policy Feasibility Constraints
through Differentiable Projection for Energy
Optimization

While reinforcement learning (RL) is gaining popularity in energy systems control, its
real-world applications are limited due to the fact that the actions from learned policies
may not satisfy functional requirements or be feasible for the underlying physical system.
In this chapter, we propose PROjected Feasibility (PROF), a method to enforce convex
operational constraints within neural policies. Specifically, using a similar general paradigm
as in Chapter 7, we incorporate a differentiable projection layer within a neural network-
based policy to enforce that all learned actions are feasible. We then update the policy
end-to-end by propagating gradients through this differentiable projection layer, making
the policy cognizant of the operational constraints. We demonstrate our method on two
applications: energy-efficient building operation and inverter control. In the building
operation setting, we show that PROF maintains thermal comfort requirements while
improving energy efficiency by 4% over state-of-the-art methods. In the inverter control
setting, PROF perfectly satisfies voltage constraints on the IEEE 37-bus feeder system, as
it learns to curtail as little renewable energy as possible within its safety set.

The work in this chapter has previously been published in:.1

Bingqing Chen∗, Priya L. Donti∗, Kyri Baker, J. Zico Kolter, and Mario
Bergés. “Enforcing Policy Feasibility Constraints through Differentiable
Projection for Energy Optimization.” Proceedings of the Twelfth ACM
International Conference on Future Energy Systems. 2021, 199–210.

1Code for all experiments is available at: https://github.com/INFERLab/PROF.

107

https://github.com/INFERLab/PROF

1

Differentiable Projection,
𝝅𝜽 = 𝓟"𝓒𝒌 ∘ %𝝅𝜽

Neural Network, %𝝅𝜽

Policy, 𝝅𝜽 Environment

𝐮 ∼ 𝝅𝜽

Policy Gradient,
−𝛁𝜽𝑱(𝜽)

Forward Pass Backpropagation

Forward Pass

.𝓒𝒌

* !𝝅𝜽 * 𝝅𝜽 ★ 𝒖⋆

Backpropagation

*
*
*

.𝓒𝒌 ★

"𝒇𝒌(𝒙𝒌, 𝒖𝒌, 𝒘𝒌)

𝒇(𝒙𝒌, 𝒖𝒌,𝒘𝒌)

Figure 8.1: The PROF framework. Our policy consists of a neural network followed by a differentiable
projection onto a convexified set of operational constraints, Ĉk (which is constructed via an approximate

model, f̂k, of the environment). The differentiable projection layer enforces the constraints in the forward
pass, and induces policy gradients that make the neural network cognizant of the constraints in its learning.

8.1 Introduction

There has been increasing interest in using learning-based methods such as reinforcement
learning (RL) for applications in energy systems control. However, a fundamental challenge
with many of these methods is that they do not respect the physical constraints or functional
requirements associated with the systems in which they operate. Therefore, there have been
many calls for embedding safety guarantees into learning-based methods in the context of
energy systems applications [ZZQ19; Gla19; Dob+20].

One common proposal to address this challenge is to provide machine learning methods
with “soft penalties” to encourage them to learn feasible solutions. For instance, Zhang
and Lam [ZL18] and Chen, Cai, and Bergés [CCB19] incentivize their RL-based building
HVAC controller to satisfy thermal comfort constraints by adding a constraint violation
penalty to the reward function. While such approaches often involve tuning some weight
on the penalty term, recent work has proposed more theoretically-grounded approaches
to choosing these weights; for instance, in the setting of approximating AC optimal power
flow, Fioretto, Mak, and Van Hentenryck [FMVH20] and Chatzos, Fioretto, Mak, and Van
Hentenryck [Cha+20] interpret the weight on their constraint violation penalty as a dual
variable, and learn it via primal-dual updates. Gupta, Kekatos, and Jin [GKJ20] adopt a
similar approach in an inverter control problem. However, a challenge with these types of
“soft penalty” methods in general is that while they incentivize feasibility, they do not strictly
enforce it, which is potentially untenable in safety-critical energy systems applications.

Given this limitation, a second class of approaches has aimed to strictly enforce opera-
tional constraints. For instance, in some cases, the outputs of a machine learning algorithm
can be clipped post-hoc in order to make them feasible. However, a challenge is that such
post-hoc corrections are not taken into account during the learning process, potentially
negatively impacting overall performance. More recent approaches based in deep learning
have therefore aimed to enforce simple classes of constraints in a way that can be taken
into account during learning; for instance, Zamzam and Baker [ZB20] train a neural net-
work to approximate AC optimal power flow (OPF), and enforce box constraints on certain

108

variables via sigmoid activations in the last layer of the neural network. In general, how-
ever, existing approaches have only been able to accommodate simple sets of constraints,
prompting a need for methods that can incorporate broader classes of constraints.

In this chapter, drawing inspiration from Chapter 7, we propose a method to enforce
general convex constraints into RL-based controllers in a way that can be taken into account
during the learning process. In particular, we construct a neural network-based policy that
culminates in a projection onto a set of constraints characterized by the underlying system.
While the “true” constraints associated with the system may be somewhat complex, we
observe that simple, approximate physical models are often available for many systems
of interest, allowing us to specify convex approximations to the relevant constraints. The
projections onto these (approximate) sets can thus be characterized as convex optimization
problems, allowing us to leverage recent developments in differentiable convex optimization
[AK17; Agr+19] to train our neural network and projection end-to-end using standard RL
methods. The result is a powerful neural network-based policy that can flexibly optimize
performance on the true underlying dynamics, while still satisfying the specified constraints.

We demonstrate our PROjected Feasibility approach, PROF, on two settings of interest.
Specifically, we explore a building operation setting in which the goal is to reduce energy
consumption during the heating season, while ensuring the satisfaction of thermal comfort
constraints. We additionally explore an inverter control setting where the goal is to mitigate
curtailment, while satisfying inverter operational constraints and nodal voltage bounds.
In both settings, we find that our controller achieves good performance with respect to
the control objective, while ensuring that relevant operational constraints are satisfied. To
summarize, our key contributions are as follows:

• A framework for incorporating convex constraints. We propose a projection-
based method to flexibly enforce convex constraints within neural network policies
(as summarized in Figure 8.1). By examining the gradient fields of the differentiable
projection layer, we recommend the incorporation of an auxiliary loss for more robust
results. We also show in an ablation study (Section 8.5.3) that propagating gradients
through the differentiable projection layer is indeed conducive to policy learning.

• Demonstration on building control. In the building control setting, we show
that PROF further improves energy efficiency by 10% and 4%, respectively, compared
to the best-performing RL agents in [ZL18] and [CCB19]. By using a locally-linear
assumption to approximate the building thermodynamics and thereby formulating the
constraints as a polytope [Zha+17; Che+20a], we largely maintain the temperature
within the deadband, except when the control is saturated.

• Demonstration on inverter control. In the inverter control setting, PROF satisfies
the voltage constraints 100% of the time over more than half a million time steps
(1 week at one second per time step), with a randomly initialized neural network,
compared to 22% over-voltage violations incurred by a Volt/Var control strategy. In
terms of minimizing renewable generation curtailment, PROF performs as well as
possible within its conservative safety set after learning safely for a day.

109

8.2 Related work

Our approach relies on recent developments in implicit neural network layers to enforce
constraints via differentiable projections; relevant background and related work is provided
in Section 2.2.3. Our work is also thematically related to the area of safe reinforcement
learning; relevant background and related work is provided in Section 7.2. At the intersection
of these topics, several prior works employ some form of differentiable projection within
the loop of deep RL to enforce some notion of “safety” (though the particular notion of
safety considered varies considerably between settings). For instance, within the context of
constrained Markov decision processes (C-MDPs), Yang, Rosca, Narasimhan, and Ramadge
[Yan+20] project neural network-based policies onto a linearly-constrained set of policies
with bounded cumulative discounted cost. In the setting of robotic motion planning,
Pham, De Magistris, and Tachibana [PDMT18] project actions onto a linear set of robotic
operational constraints, and apply separate updates to the neural network based on both
pre-projection and post-projection actions. In our own prior work (discussed in Chapter 7),
we enforce asymptotic stability guarantees by projecting the actions output by our controller
onto a convex set of actions satisfying stability specifications obtained via robust control.
Similarly to these prior works, our approach employs differentiable projections within a
neural network policy to enforce operational constraints over some planning horizon.

We employ our approach in the context of energy systems optimization, namely for the
efficient operation of building heating and cooling systems and for grid inverter control. We
refer interested readers to [ZZQ19; Gla19; Dob+20; Drg+20; Rol+22] for comprehensive
reviews of relevant work in power and energy systems application domains.

8.3 Preliminaries: Reinforcement learning

The goal of RL is to learn an optimal control policy through direct interaction with the
environment. The problem is usually formulated as a Markov decision process (MDP). At
each time step k, the agent selects an action uk given the current state xk, using its policy
πθ (Equation (8.1)). In many modern RL techniques, the policy is commonly represented
by a neural network parameterized by θ. When the agent takes the action u, the state
transitions to x′ based on the system dynamics f (Equation (8.2)), and the agent receives
a reward rk (or equivalently, incurs a cost ck = −rk).

u ∼ πθ(uk|xk), (8.1)

x′ ∼ f(xk, uk). (8.2)

RL algorithms optimize for a policy that maximizes the expected cumulative reward, or
equivalently, minimizes the expected cumulative cost, where γ is a temporal discount factor:

θ⋆ = argmax
θ

Eπθ

[
∞∑
l=0

γlrk+l

]
= argmin

θ
Eπθ

[
∞∑
l=0

γlck+l

]
. (8.3)

110

To simplify notation, we will denote the expected cumulative cost as J(θ), i.e.,

J(θ) = Eπθ

[
∞∑
l=0

γlck+l

]
. (8.4)

There are three general approaches to RL, namely value-based methods, policy gradient
methods, and actor-critic methods. Value-based methods, e.g., Q-learning and its variants,
update the value function of state-action pairs using the Bellman equation and take the
action that maximizes the value of an action selection policy (the Q function) through
exploration. Policy gradient methods, e.g., Proximal Policy Optimization (PPO) [Sch+17b],
directly search for an optimal policy π⋆

θ using estimates of policy gradients. Denoting the
policy gradient as g := ∇θJ(θ), the core idea of policy gradient algorithms is that they
update θ based on an estimate, ĝ, of the gradient, i.e.,

θ ←− θ − αĝ (8.5)

for some learning rate α. Different algorithms vary in how they obtain ĝ. For instance, the
learning objective for PPO, which we use in our building control experiment (Section 8.5),
is given by the following equation, where Ât is the generalized advantage estimate that can
be estimated via any of the estimators in [Sch+15]:

JPPO(θ) = Êk

[
min(wk(θ)Âk, clip(wk(θ), 1− ϵ, 1 + ϵ)Âk)

]
,

wk(θ) =
πθ(uk|xk)

πθold(uk|xk)
,

(8.6)

and the estimate ĝ is constructed based on this learning objective. Actor-critic methods,
e.g., Advantage Actor-Critic (A2C), are hybrids of the value-based and policy gradient
approaches, using a policy network to select actions (the actor) and a value network to
evaluate the action (the critic).

8.4 Enforcing feasibility via differentiable projection

We now describe PROF, which incorporates differentiable projections onto convex(ified)
sets of operational constraints within a neural policy.

8.4.1 Problem formulation

Consider a discrete-time dynamical system

xk+1 = f(xk, uk, wk), (8.7)

where xk ∈ Rs is the state at time k, uk ∈ Ra is the control input, wk ∈ Rd is an
uncontrollable disturbance (which we assume to be observable), and f : Rs×Ra×Rd → Rs

denotes the system dynamics. Letting Xk and Uk denote the allowable state and action

111

space, respectively, we can define the set of all feasible actions over the planning horizon T
as Ck, where

Ck =
{
uk:k+T−1

∣∣∣∣∣ xi+1 = f(xi, ui, wi),
xi ∈ Xi, ui ∈ Ui ∀i ∈ {k, ..., k + T − 1}

}
. (8.8)

Our goal is then to learn a policy that optimizes the control objective, J , while enforcing
the operational constraints. To simplify notation, we denote u = uk:k+T−1. In the case of a
deterministic policy, i.e., u = πθ, the learning problem is simply

min
θ

J(θ) s.t. πθ ∈ Ck. (8.9)

In the case of a stochastic policy, e.g. u ∼ N (µ, diag(σ2)), [µ,σ] = πθ(xk), we can write
the problem as

min
θ

J(θ) s.t. u,µ ∈ Ck. (8.10)

In this case, it is necessary to sample actions around µ in order to estimate policy gradients.
At the same time the actions sampled from πθ might fall outside of Ck. Thus, we enforce
that both µ and the sample action u satisfy the constraints.

8.4.2 Approximate convex constraints

In practice, there are two key challenges inherent in solving Equations 8.9–8.10 as written.
The first is that the disturbances wi are not known ahead of time, meaning that the
optimization problem must be solved under uncertainty. One approach to addressing this,
from the field of robust control [ZD98], involves constructing an uncertainty set over the
disturbance, and then optimizing for worst-case or expected cost under this uncertainty
set. Here, we simply assume a predictive model of the disturbances is available. (By re-
planning frequently, we observe that the prediction errors have limited empirical impact on
performance in the two applications we study.) We will use the notation ŵk to denote our
forecast of the disturbance if k is a future time step, and the true value of the disturbance
if k is the present or a prior time step.

The second challenge pertains to the form of the set Ck, which may be poorly structured
or otherwise difficult to optimize over. In particular, our framework relies on obtaining
convex approximations to the constraints in order to enable differentiable projections (see
Section 2.2.3.1). Fortunately, for many energy systems applications, some approximate
model f̂k is often available based on domain knowledge that allows Ck to be approximated
as a convex set, despite the complex nature of the true dynamical system.

Thus, letting f̂i denote our approximations of the dynamics and ŵi denote the (forecast
or known) disturbance at each i = k, . . . , k + T − 1, we define our approximate convex
constraint set as

Ĉk =
{
uk:k+T−1

∣∣∣∣∣ xi+1 = f̂i(xi, ui, ŵi),
xi ∈ Xi, ui ∈ Ui

∀i ∈ {k, ..., k + T − 1}
}
. (8.11)

112

We note that f and w are approximated solely for the purposes of constructing approximate
constraint sets, and are not used otherwise during training and inference (i.e., our neural
policy interacts with the true dynamics and disturbances during training and inference).

8.4.3 Policy optimization

Let π̂θ be any (e.g., fully-connected or recurrent) neural network parameterized by θ. Our
policy entails passing the output from the neural network to the differentiable projection
layer PĈk characterized by the approximate constraints, which enforces that the resultant
action is feasible with respect to these constraints. The overall (differentiable) neural policy
is then given by

πθ(xk) = PĈk ◦ π̂θ(xk).
2 (8.12)

The key benefit of embedding a differentiable projection into our policy is that it enforces
constraints in a way that is visible to the neural network during learning. In this work, we
implement the differentiable projection using the cvxpylayers library [Agr+19].

We construct the following loss function, which is a weighted sum of the control
objective J and an auxiliary loss term to be explained shortly in this section. λ > 0 is a
hyperparameter.

L(θ, xk) = J(θ) + λ∥πθ(xk)− π̂θ(xk)∥22. (8.13)

We then train our policy (Equation (8.12)) to minimize this cost using standard approaches
in deep reinforcement learning. The full algorithm is presented in Algorithm 4.

8.4.3.1 Visualization of gradient fields.

To provide more intuition on the differentiable projection layer and our cost function, we
visualize the gradient fields in a hypothetical example with a deterministic policy and a
planning horizon of T = 1. Specifically, for the purposes of illustration, let u• and u⋆ denote
unique optimal actions minimizing some convex control cost J in the unconstrained and
constrained settings, respectively:

u• ∼ πθ• ; θ• = argmin
θ

J(θ)

u⋆ ∼ πθ⋆ ; θ⋆ = argmin
θ

J(θ) s.t. u ∈ Ck.

In Figure 8.2, we then plot the gradient fields in two cases: (a) u• ̸∈ Ck, and (b) u• ∈ Ck.
Note that u• and u⋆ are assumed to be known here for illustrative purposes only, and are
not known during training.

In particular, we plot the gradients (black arrows) of ∥u•−PCk ◦ π̂∥22 with respect to the
output of the neural network π̂. These indicate the direction in which the neural network
would be incentivized to update in order to minimize the system cost. If no differentiable
projection were embedded within the policy, all the gradients would point towards u• without
regard for the constraints. Instead, in the case of u• ̸∈ Ck (Figure 8.2a), the gradients

2We use the notation f ◦ g(x) := f(g(x)) to denote function composition.

113

Algorithm 4 PROF

1: procedure main(env, J) // input: environment, control objective
2: init neural network π̂θ, replay memoryM
3: specify RL algorithm A, batch size M , update interval K
4: specify planning horizon T
5: // online execution
6: for k = 1, . . . do
7: observe state xk

8: predict future disturbances ŵk:k+T−1

9: construct constraint set Ĉk, policy πθ = PĈk ◦ π̂θ

10: compute uk = inference(πθ, xk, T)
11: execute action env.step(uk)
12: save memory.append(xk, uk, ŵk:k+T−1)
13: // update policy every K time steps
14: if mod(k,K) = 0 then
15: π̂θ = train(π̂θ, J ,M, A)
16: end if
17: end for
18: end procedure
19:

20: procedure inference(πθ, xk, T)
21: // input: neural policy, current state, planning horizon
22: select action uk:k+T−1 ∼ πθ

// only return the current action; replan at each time step
23: return uk

24: end procedure
25:

26: procedure train(π̂θ, J ,M, A)
27: // input: neural policy, objective, replay memory, RL algorithm
28: init L(θ) = 0
29: for i = 1, . . . ,M do
30: sample x, u, w ∼M
31: construct constraint set Ĉk, policy πθ = PĈk ◦ π̂θ

32: compute training loss

L(θ) += J(θ) + λ∥πθ(x)− π̂θ(x)∥22

33: end for
34: train π̂θ via A to minimize L
35: return π̂θ

36: end procedure

114

(a) (b)

π̂

π = PC ◦ π̂
u•

u?
−∇π̂||π − u•||22
−∇π̂||π̂ − π||22

C

Figure 8.2: Illustrative example of gradients from the differentiable projection layer. u• and u⋆ denote
unique optimal actions minimizing some convex control objective J in the unconstrained and constrained
settings, respectively; ∇π̂∥π − u•∥22 is thus a proxy for ∇π̂J . (a) u• ̸∈ C. The gradients ∇π̂J point towards
u⋆ as desired, such that π = PĈ ◦ π̂ will reach this optimal point. (b) u• = u⋆ on the interior of C. The
gradients ∇π̂J do not cause π̂ (or its projection) to update towards the interior. Adding a weighted
auxiliary loss term, e.g., ∥π − π̂∥, can help direct updates towards the interior.

through the differentiable projection layer point towards u⋆ instead of u•. More specifically, if
π̂θ(xk) ∈ Ck, then the projection layer is simply the identity, and the gradients point directly
towards u⋆; otherwise, the gradients point along the boundary of Ck in the direction of u⋆.

This case is of particular interest, as in many practical applications some operational
constraint will be binding. As a concrete example, the ultimate energy-saving strategy for
building operations is to keep all mechanical systems off (i.e., u• = 0), which obviously
violates occupants’ comfort requirements and is outside the set of allowable actions (i.e.,
u• ̸∈ Ck). Thus, the problem is to find a policy that uses the mechanical system as little as
possible without violating comfort requirements. Given the common case where the control
objective is convex, this then lies on the boundary of the constraint set (i.e., u⋆ = PCk ◦ u•).

We also depict the case where the solution of the unconstrained problem already satisfies
the constraints, i.e., u• = u⋆ ∈ Ck (Figure 8.2b). If this is generally the case for a particular
application, we note that a constraint enforcement approach (ours or otherwise) is likely not
needed, and indeed utilizing gradients through the projection layer may actually degrade
performance. Specifically, if π̂θ(xk) ̸∈ Ck, the gradients do not point towards the interior
of the constraint set, meaning that πθ(xk) = PCk ◦ π̂θ(xk) will lie on the boundary of the
constraints despite the optimal solution being in the interior. This can be amended by
augmenting the loss function with a (weighted) auxiliary term such as ∥πθ(xk)− π̂θ(xk)∥22
whose gradients (blue arrows) point towards the interior.

It may not be known a priori whether or not u• is in the constraint set in general or
at any given time, except when domain experts are fully clear on the structure of the
solutions for specific applications. In particular, Ck is time-varying, making it difficult to
know for sure whether or not the constraints will indeed be binding at any given time. For
robustness, we therefore recommend incorporating the auxiliary loss ∥πθ(xk) − π̂θ(xk)∥22

115

(a) Geometric view (b) System schematic

Figure 8.3: Building simulation testbed (reproduced from [CCB19]).

within the RL training cost, unless it is known from domain knowledge that the constraints
will certainly be active. As such, we formulate the training cost function as previously given
in Equation (8.13).

8.5 Experiment 1: Energy-efficient building operation

There is significant potential to save energy through more efficient building operation.
Buildings account for about 40% of the total energy consumption in the United States,
and it is estimated that up to 30% of that energy usage may be reduced through advanced
sensing and control strategies [Fer+17]. However, this potential is largely untapped, as
the heterogeneous nature of building environments limits the ability of control strategies
developed for one building to scale to others [CCB19]. RL can address this challenge by
adapting to individual buildings by directly interacting with the environment.

The most important constraint in building operation is to maintain a satisfactory level
of comfort for occupants, while minimizing energy consumption. It is common in the RL-
based building control literature to penalize thermal comfort violations [ZL18; CCB19],
which incentivizes but does not guarantee the satisfaction of these comfort requirements.
In comparison, our proposed neural policy can largely maintain temperature within the
specified comfortable range, except when the control is saturated.

We evaluate our policy in the same simulation testbed as [ZL18; CCB19], following the
same experimental setup as [CCB19]. Specifically, we first pre-train the neural policy by
imitating a proportional-controller (P-controller). We then evaluate and further train our
agent in the simulation environment, using a different sequence of weather data.

8.5.1 Problem description

Simulation testbed. We utilize an EnergyPlus (E+) model of a 600m2 multi-functional
space (Figure 8.3a), based on the Intelligent Workplace (IW) on Carnegie Mellon University
(CMU) campus, located in Pittsburgh, PA, USA. The system of interest is the water-based
radiant heating system, of which a schematic is provided in Figure 8.3b. In this experiment,

116

we control the supply water temperature so as to maintain the state variable, i.e., the
zone temperature, within a comfortable range during the heating season. In the existing
control, the supply water (SW) is maintained at a constant flow rate, and its temperature is
managed by a P-controller. For more information on the simulation testbed, refer to [ZL18].

Approximate system model. We approximate the environment as a linear system:

xk+1 ≈ f̂(xk, uk, wk) = Axk +Buuk +Bdwk, (8.14)

where xk represents the zone temperature and uk represents the supply water temperature.
wk includes distributions from weather and occupancy. While building thermodynamics are
fundamentally nonlinear, the locally-linear assumption works well for many control inputs
[Pri+13]. We identify the approximate model parameters A, Bu, and Bd with prediction error
minimization [Pri+13] on the same data used to pre-train the RL agent (see Section 8.5.2).
The root mean squared error (RMSE) of this model on a unseen test set is 0.14oC.

Objective. Since our goal is to minimize energy consumption, we define the control cost at
each time step as the agent’s control action, i.e. supply water temperature, which is linearly
proportional to the heating demand, i.e., ck = uk.

In contrast to the objectives in [ZL18; CCB19], which are defined as weighted sum
of energy cost and some penalty on thermal comfort violations, we consider the thermal
comfort requirement as hard constraints, in the form of Equation (8.10).

Constraints. To maintain a satisfactory comfort level, we require the zone temperature
to be within a deadband X = {x | 21.9oC ≤ x ≤ 25.5oC} when the building is occupied,
based on the building code requirement of 10% Predicted Percentage of Dissatisfied (PPD)
[Fan86]. We allow for a wider temperature range during unoccupied hours. For the action,
the allowable range of supply water temperature is U = {u | 20oC ≤ u ≤ 65oC}.

While it may appear from this description that we have only simple box constraints
on both the state and action, we highlight the fact that actions are coupled over time
through the building thermodynamics [Zha+17]. More concretely, a future state depends
on all past actions. Thus, a box constraint on xk+l+1 is in fact a constraint on uk:k+l. In
this case, assuming f̂ to be a linear system, Ĉk is then a set of linear inequalities, which
can be geometrically interpreted as a polytope.3 We refer interested readers to Chen,
Francis, Pritoni, Kar, and Berg’es [Che+20a] and Zhao, Zhang, Hao, and Kalsi [Zha+17]
for more details on this formulation. In fact, it was experimentally demonstrated in Chen,
Francis, Pritoni, Kar, and Berg’es [Che+20a] that projecting actions onto the polytope
constructed with an approximate linear model was sufficient to maintain temperature within
the deadband in a real-world residential household (though Chen, Francis, Pritoni, Kar,
and Berg’es [Che+20a] did not then differentiate through this projection).

Control time step. The EnergyPlus model has a 5-minute simulation time step. Following

3A polytope can be characterized as a set S = {x ∈ Rn|Ax ≤ b}.

117

Zhang and Lam [ZL18] and Chen, Cai, and Bergés [CCB19], we use a 15-min control time
step (i.e., each action is repeated 3 times) and a planning horizon of T = 12 (i.e., 3 hours).

8.5.2 Implementation details

Offline pre-training. We pre-train a long short-term memory (LSTM) recurrent policy
(without a subsequent projection) by imitating a P-controller operating under the Typical
Meteorological Year 3 (TMY3) [WM08] weather sequence, from Jan. 1 to Mar. 31. We
min-max normalize all of the state, action, and disturbance, and use a learning rate of 10−3.
Specifically, we use the pre-trained weights after training on the expert demonstrations for
20 epochs following the same procedures as Chen, Jin, Wang, Hong, and Bergés [Che+20b].
We refer readers to Chen, Jin, Wang, Hong, and Bergés [Che+20b] for more details on the
neural network architecture, training procedures, loss, and performance evaluation.

Online policy learning. We optimize the policy with PPO [Sch+17b] over the weather
sequence in 2017 from Jan. 1 to Mar. 31. We use λ = 10 (see Equation (8.13)), a
learning rate of 5× 10−4, and RMSprop [TH12] as the optimizer. We update the policy
every four days, by iterating over those samples for 8 epochs with a batch size of 32. For
hyperparameters, we use a temporal discount rate of γ = 0.9, ϵ = 0.2 (see Equation (8.6)),
and a Gaussian policy (see Equation (8.10)) with σ linearly decreased from 0.1 to 0.01.

8.5.3 Results

After pre-training on expert demonstrations from the baseline P-controller, our agent
directly operated the simulation testbed based on actual weather sequences in Pittsburgh
from Jan. 1 to Mar. 31 in 2017. Figure 8.4a shows the behavior of our agent at the onset of
deployment over a 3-day period. The baseline P-controller reactively turns on heating when
the environment switches from unoccupied to occupied, which results in thermal comfort
violations in the mornings. In comparison, PROF preheats the environment such that the
environment is already at a comfortable temperature when occupants arrive in the morning.
Notably, the differentiable projection layer manages to enforce this preheating behavior
despite this behavior not being present in the expert demonstrations.

Figure 8.4b shows the behavior of our agent in comparison with Gnu-RL [CCB19], having
interacted with and trained on the environment for a month. Gnu-RL is updated via PPO,
similarly to the current work, and incorporates domain knowledge on system dynamics.
In comparison to Gnu-RL [CCB19], which ends up trying to maintain temperature at the
setpoint, PROF learns an energy-saving behavior by maintaining the temperature at the
lower end of the deadband. This explains the further energy savings compared with Gnu-
RL [CCB19]. However, we also notice that the temperature requirement may be violated
on cold mornings. This happens when the control action is saturated, i.e., full heating over
the 3-hour planning horizon is not sufficient to bring temperature back to the comfortable
range. (In principle, even these constraint violations could be mitigated by increasing the
length of the planning horizon.)

118

18

22

26

S
ta

te
s

Z
on

e
T

em
p.

(◦
C

)

01-02 01-03 01-04 01-05
20

35

50

65

A
ct

io
n

s
S

W
T

em
p.

(◦
C

)

0

1

Baseline P-Controller

Deadband

PROF

Unoccupied

(a) The differentiable projection layer enforces preheating behavior to ensure
deadband constraints are never violated, even though this behavior is not
present in the expert demonstrations.

18

22

26

S
ta

te
s

Z
on

e
T

em
p.

(◦
C

)

02-01 02-02 02-03 02-04
20

35

50

65

A
ct

io
n

s
S

W
T

em
p.

(◦
C

)

0

1

Baseline P-Controller

Deadband

PROF

Unoccupied

Gnu-RL

(b) The agent has found a more energy-efficient control strategy by main-
taining temperature at the lower end of the deadband.

Figure 8.4: Behavior of our proposed agent (a) at the onset of deployment, with pre-trained weights based
on expert demonstrations and (b) after a month of interacting with and training on the environment.

119

Table 8.1: Performance comparison. Our method saves energy while incurring minimal comfort violations.

Heating PPD
Demand Mean SD
(kW) (%) (%)

Existing P-Controller [ZL18] 43709 9.45 5.59
Agent #6 [ZL18] 37131 11.71 3.76
Baseline P-Controller [CCB19] 35792 9.71 6.87
Gnu-RL [CCB19] 34687 9.56 6.39
LSTM & Clip + No Update 37938 8.55 3.39
LSTM & Clip 36068 ± 2187 9.18 ± 0.67 3.49
PROF (ours) 33271 ± 1862 9.68 ± 0.48 3.66

Table 8.1 summarizes the performance of our agent with comparison to the RL agents
in [ZL18; CCB19]. Our proposed agent (averaged over 5 random seeds) saves 10% and 4%
energy compared to the best-performing agents in [ZL18] and [CCB19], respectively.

We also compare our method to two ablations: (1) LSTM & Clip + No Update, which
uses the same pre-trained weights and the projection layer to enforce feasible actions, but
does not update the policy, and (2) LSTM & Clip, which uses the same pre-trained weights
and the projection layer to enforce feasible actions during inference, but does not propagate
gradients through the differentiable projection layer in the policy updates. We find that
LSTM & Clip slightly improves upon LSTM & Clip + No Update, but is less performant
compared to PROF. This affirms our hypothesis that the gradients through the differentiable
projection layer are cognizant of the constraints and are thus conducive to policy learning.

8.6 Experiment 2: Inverter control

Distributed energy resources (DERs), e.g., solar photovoltaic (PV) panels and energy storage,
are becoming increasingly prevalent in an effort to curb carbon dioxide emissions and combat
climate change. However, DERs interfacing with the power grid via power electronics,
such as inverters, also introduce unintended challenges for grid operators. For instance,
over-voltages have become a common occurrence in areas with high renewable penetration
[Str+20], and power electronics-interfaced generation has low-inertia and requires active
control at much faster timescales compared to traditional synchronous machines [Mil+18].

To alleviate these issues, IEEE standard 1547.8-2018 [Bas14] recommends a Volt/Var
control strategy in which the reactive power contribution of an inverter is based on local
voltage measurements. As will be clear in our empirical evaluation, this network-agnostic
heuristic based on local information alleviates, but does not avoid, over-voltage issues. Given
that the optimal solution needs to be obtained at the system-level and that the problem
needs to be solved at very short timescales, a common paradigm is to address the problem
in a quasi-static fashion (e.g., as in [Bak+17; Jal+19; GKJ20]), where one chooses a policy
over the next time period, e.g., 15 minutes-1 hour, and uses the policy without update for
fast inference. In this work, we adopt the same paradigm and consider real-time control on

120

1

23

4
5

6

7

8
910

11 12 13

14

1516

17

18

19

20

21

2223

24

25

26

272829

30

31

32

33

34 3536

37

Figure 8.5: IEEE 37-bus feeder system, where the solar PV systems are indicated by green rectangles.

a 1-second timescale of both active (P) and reactive (Q) power setpoints at each inverter.
We envision that a neural policy can learn from its prior experiences, in contrast to

the traditional fit-and-forget approach [Dob+20], and is capable of making decisions faster
compared to solving optimization problems. Our primary contribution compared to existing
work is the ability to enforce physical constraints within the neural network. In fact, we
successfully enforce voltage constraints 100% of the time with a randomly initialized neural
network, over more than half a million time-steps (i.e., 1 week with a one-second time step).
The assumed control and communication scheme is consistent with the new definitions for
smart inverter capabilities under IEEE standard 1547.1-2020 [IEE20].

8.6.1 Problem description

The problem we are considering here is to control active and reactive power setpoints at
each inverter in order to maximize utilization (i.e., minimize curtailment) of renewable
generation, while satisfying the maximum and minimum grid voltage requirements. Here,
we first define the considered test case and input data, and describe the model of the
network. We refer readers to Baker, Bernstein, Dall’Anese, and Zhao [Bak+17] for more
details on the problem set-up.

IEEE 37-bus test case. We evaluate our method on the IEEE 37-bus distribution test
system [IEE10a], with 21 solar PV systems indicated by green rectangles in Figure 8.5. We
utilize a balanced, single-phase equivalent of the system, and simulate the nonlinear AC
power flows using PYPOWER [ZMSG97]. For the simulation, the solar generation and
loads are based on 1-second solar irradiance and load data collected from a neighborhood
in Rancho Cordova, CA [BH13] over a period of one week (604800 samples).

Approximate system model. Denote the number of buses, excluding the slack bus (e.g.,

121

the distribution substation), as N ; the net active and the reactive power as p ∈ RN and
q ∈ RN ; and the voltage at all buses as v ∈ RN . We linearize the AC power flow equations
around the flat voltage solution, i.e. v̄ = 1, using the method in [BD15]. The reference
active and reactive power corresponding to v̄ = 1 is denoted as p̄ and q̄. The linearized grid
model, f̂ , is given by Equation (8.15), where R, B ∈ RN×N represent system-dependent
network parameters that can be either estimated from linearization (e.g., [BD15]) or data-
driven methods:

v ≈ f̂(p,q) = v̄ +R(p− p̄) +B(q− q̄)

= v̄ + [R,B]︸ ︷︷ ︸
H

[
p− p̄,
q− q̄

]
︸ ︷︷ ︸

u

. (8.15)

A notable advantage of the method in [BD15] is that the resulting model has bounded error
with respect to the true dynamics. By incorporating the error bound when constructing
the safety set, the safety set is guaranteed to be a conservative under-approximation of the
true safety set, and thus allow us to satisfy voltage constraints 100% of the time.

Policy. Our policy takes as input the voltage from the previous time-step, load, and
generation at all the buses, and outputs active and reactive power setpoints at each
inverter. (This is a deterministic policy; see Equation (8.9).) Note that while the grid
model (Equation (8.15)) contains all N buses, only those with inverters are controllable.

Our neural architecture is similar to the one used in [GKJ20], which consists of a utility-
level network, and inverter-level networks for individual inverters. The utility-level network
collects information from all nodes, and broadcasts an intermediate representation to all
inverter-level networks. Using this information alongside its local observations, each inverter
makes its local control decisions, which are then projected onto the constraints.

Objective. The objective is to minimize the curtailment of solar generation, or equivalently
to maximize the utilization of the available solar power, pav. Specifically, letting I denote
the set of buses with inverters, the objective is

J(θ) = min
pI ,qI

∑
i∈I

[pav,i − pi]+, where
[
pI qI

]
= πθ (8.16)

Constraints. For an individual inverter, i, with rated power si and an available power
(from available solar generation) pav,i, the feasible action space is

Ui(k) = {(pi, qi) : 0 ≤ pi ≤ pav,i(k), p
2
i + q2i ≤ s2i }

U(k) := U1(k)× · · · × U|I|(k).
At the same time, the voltage at each bus should remain between 0.95-1.05 p.u. The primary
challenge of satisfying voltage constraints is that the voltage at each bus depends on actions
of neighboring nodes, i.e.

X = {v | 0.95× 1 ≤ v ≈ v̄ +Hu ≤ 1.05× 1},

122

0

2000

4000

A
va

ila
bl

e
S

ol
ar

(k
W

)

1.00

1.05

M
ax

V
ol

ta
ge

(p
.u

.)

0 1 2 3 4 5 6 7
Time (Day)

0

200

400

C
ur

ta
ilm

en
t

(k
W

)

Volt-Var PROF Optimal w.r.t. f̂ Optimal

Figure 8.6: PROF satisfies voltage constraints throughout the experiment, and learns to minimize curtailment
as well as possible within its conservative safety set, Ĉk, after learning safely for a day.

where the sparsity pattern of H is characterized by the admittance matrix. We jointly
project actions from all inverters at each time step k onto the constraints U(k) ∩ X .

8.6.2 Implementation details

We evaluate PROF by executing it once over the 1-week dataset (at 1-second intervals).
Similarly to other quasi-static approaches, we update the policy every 15-minutes. Similarly
to [GKJ20], we optimize the neural policy with stochastic samples by directly differentiating
through the objective (Equation (8.16)) and the linearized grid model (Equation (8.15)).
However our method differs in that Gupta, Kekatos, and Jin [GKJ20] characterized the
constraints as a regularization term, and learned the policy via primal-dual updates. We
incorporate the constraints directly via the differentiable projection layer and thus guarantee
constraint satisfaction.

We use λ=10 (see Equation (8.13)), a learning rate of 10−3, and RMSprop [TH12] as
the optimizer. At every 15 minutes, we sample 16 batches of data with size of 64 from the
replay memory. We keep a replay memory size of 86400, i.e., samples from the previous day.
For the both the utility-level network and the inverter-level network, we use fully-connected
layers with ReLU activations. The utility-level network has hidden layer sizes (256, 128,
64), and each inverter-level network has hidden layer sizes (16, 4) and outputs active and
reactive power. On top of the neural network, we implement the differentiable projection
layer, following the constraints described in Section 8.6.1.

We compare our methods to three baselines, (1) a Volt/Var strategy following IEEE
1547.8 [Bas14], (2) the optimal solution with respect to the linearized grid model, and (3)
the optimal solution with respect to the true AC power flow equations.

8.6.3 Results

The performance of PROF in comparison to the three baselines is summarized in Figure 8.6.
For clarity, we only show the maximum voltage over all buses; under-voltage is not a concern
for this particular test case.

123

We see that the Volt/Var strategy violates voltage constraints 22.3% of time, mostly
around noon when the solar generation is high and there is a surplus of energy. Since the
Volt/Var baseline does not adjust active power, there is no curtailment.

In comparison, PROF satisfies the voltage constraints throughout the experiment, even
with a randomly initialized neural policy. While PROF performs poorly on the first morning,
it quickly improves its policy. In fact, the behavior of PROF is barely distinguishable from
the optimal solution with respect to the linearized grid model, after learning safely for a day.
This implies that PROF learned to control inverters as well as possible given its approximate
model, which constructs a conservative under-approximation of the true safety set.

The optimal baseline with respect to the true AC power flow equations unsurprisingly
achieves the best performance with respect to minimizing curtailment, as it can push
the maximum voltage to the allowable limit in order to maximally reduce the amount of
curtailed energy. However, inverter control is a task that requires near real-time inputs,
and we find that running this baseline can be prohibitively slow. Specifically, we evaluate
the computation time of different operations by averaging over 1000 randomly sampled
problems from our dataset on a personal laptop. For PROF, on average, a forward pass
in the neural network (excluding the projection layer) took 4.5 ms and the differentiable
projection operation took 8.6 ms. The computation cost of the differentiable projection
could be further reduced by using customized projection solvers such as the ones in [AK17;
Don+21b] that avoid the “canonicalization” costs introduced by general-purpose solvers
such as the one we use [Agr+19]. In comparison, solving the optimization baseline with
respect to the true AC power flow equations took 1.02s on the same machine, which is even
longer than the 1s control time-step.

8.7 Conclusion

In this chapter, we have presented a method, PROF, for integrating convex operational
constraints into neural network policies for energy systems applications. In particular, we
propose a policy that entails passing the output of a neural network to a differentiable
projection layer, which enforces a convex approximation of the operational constraints.
These convex constraint sets are obtained using approximate models of the system dynamics,
which can be fit using system data and/or constructed using domain knowledge. We can
then train the resultant neural policy via standard RL algorithms, using an augmented cost
function designed to effect desirable policy gradients. The result is that our neural policy is
cognizant of relevant operational constraints during learning, enhancing overall performance.

We find in both the building energy optimization and inverter control settings that
PROF successfully enforces relevant constraints while improving performance on the control
objective. In particular, in the building thermal control setting, we find that our approach
achieves a 4% energy savings over the state of the art while largely maintaining the
temperature within the deadband. In the inverter control setting, our method perfectly
satisfies the voltage constraints over more than half a million time steps, while learning to
minimize curtailment as much as possible within the safety set.

While these results demonstrate the promise of our method, a key limitation is in

124

its computational cost. In particular, computing a projection during every forward pass
of training and inference is decidedly more expensive than running a “standard” neural
network. A fruitful area for future work – both in the context of our method, and in the
context of research in differentiable optimization layers as a whole – may be to improve the
speed of such differentiable projection layers. For instance, this might entail developing
special-purpose differentiable solvers [AK17; Don+21b] for optimization problems commonly
encountered in energy systems applications, developing approximate solvers that do not
rely on obtaining optimal solutions in order to compute reasonable gradients, or employing
cheaper projection schemes such as α-projection [Sha+20] where possible.

Additionally, the success of our method (and many other constraint enforcement methods)
depends fundamentally on the quality of the approximate model used to characterize the
constraint sets. In particular, this determines the extent to which the resultant approximate
constraint sets are a good representation of the true operational constraints. While we
were able to employ reasonably high-quality approximation schemes in the context of this
work, future work on safely updating the models or the constraint sets directly [Fis+19]
may greatly improve the quality of the solutions.

More generally, while our work highlights one approach to enforcing physical constraints
within learning-based methods, we believe this is only the start of a broader conversation on
closely integrating domain knowledge and control constraints into learning-based methods.
In particular, strictly enforcing physical constraints will be paramount to the real-world
success of these methods in energy systems contexts, and we hope that this chapter will
serve to spark further inquiry into this important line of work.

125

126

Part III

Implicit Differentiation in Power
Systems

127

Chapter 9
Inverse OPF: Assessing the Vulnerability of
Power Grid Data

Exposure of critical power grid information could threaten power market efficiency and
cybersecurity. It is thus in the best interests of power grid operators to assess what
information may be exposed. We formulate an algorithm called inverse optimal power flow
to assess the extent to which private power grid data is exposed by publicly-available data.
Our algorithm exploits the fact that private and public information are related via the
AC optimal power flow optimization problem, and employs implicit differentiation through
this problem to explore the private parameter space. We find that we are able to learn
private information such as electricity generation costs and (to some extent) grid structural
parameters on a 14-bus test case. We seek to share this information with grid operators to
aid in their vulnerability assessments.

The work in this chapter has previously been published as a workshop paper:

Priya L. Donti, Inês Lima Azevedo, and J. Zico Kolter. “Inverse Optimal
Power Flow: Assessing the Vulnerability of Power Grid Data.” NeurIPS
Workshop on AI for Social Good (2018).

129

9.1 Introduction

In the electricity sector, there is a great need to protect critical market and structural
information that could compromise efficient electricity market operation or power grid
cybersecurity. For instance, an electricity generator that gains information about other
generators’ costs could bid strategically to increase profits, potentially increasing electricity
prices for consumers [Wol03; MW09]. As another example, an adversary who gains
information about grid structure could intentionally cause a power outage [Wat03]. It is
thus in grid operators’ best interests to assess whether critical information is exposed, and
then act to prevent this exposure from affecting efficient and safe power system operation.

At the same time, grid operators such as PJM and governmental entities such as the
Environmental Protection Agency regularly publish quantities such as five-minute electricity
prices [PJM18] and hourly power outputs of electricity generators [Uni18] for the purposes
of market transparency and emissions monitoring. While this published information is not
sensitive in and of itself, it is possible that individuals could use it to “reverse-engineer”
critical market information. We investigate the question of whether and to what extent
critical power grid information is exposed by published information, given our knowledge
that these private and public quantities are related via AC optimal power flow (ACOPF;
see Section 2.3.2). To do this, we formulate an algorithm called inverse optimal power flow
(inverse OPF) that uses a neural network to learn private quantities from public quantities.

We first describe related work, including the formulation of ACOPF. We then describe
our inverse OPF approach, which involves computing gradients through the ACOPF
optimization problem. We show that our method can learn cost parameters on a 14-bus
test case and shows promise in learning some grid structural parameters. We seek to share
our results with grid operators so they may better protect against system vulnerabilities
effected by the exposure of critical information.

9.2 Related work

Power system vulnerability analysis. Prior work has assessed the power system’s
vulnerability to electricity market gaming and cybersecurity attacks. For instance, [Wol03;
Mon17] retroactively analyze the efficiency of power market operation in specific United
States power markets, and work in the area of mechanism design [SWZ01] attempts to
proactively design markets that will operate efficiently. Other work has attempted to assess
cybersecurity threats to grid stability and reliability [Wat03; SHG+12; Yan+12], especially
with the increasing use of smart devices on the grid. Our work is complementary to this
body of research, as our analysis of critical data exposure can serve as an input to such
vulnerability analyses.

Inverse problems. Inverse problems seek to predict model inputs or decision parameters
from model outputs, with examples in machine learning including inverse reinforcement
learning [NR+00], inverse imaging problems [MJU17], and deep network applications
[Li+18]. Within power systems, prior work has used techniques from game theory, graph

130

theory, and bi-level optimization to identify power grid structure [Yua+16] and energy
demands [AZL18]. We seek to bridge techniques from these two communities by proposing
a method to solve inverse power flow problems within a neural network.

9.3 AC optimal power flow formulation

We now present the relevant formulation of AC optimal power flow (ACOPF) used in
this work, which plays a crucial role in our formulation of inverse optimal power flow. As
described in Section 2.3.2, ACOPF is solved by power system operators to pick power
system quantities that minimize the overall cost of delivering power. Here, we use the same
formulation of ACOPF previously given in Equation (2.13), but modify the notation for

simplicity. In particular, we define the decision variable z ≡
[
pTg qTg |v|T angle(v)T

]T
over

the power injections and voltages at each node. As in Section 6.4.3, we define our generator
cost function as fc(pg) = pTg diag(cq)pg + cTa pg, where cq, ca ∈ Rb

≥0 are quadratic and linear

cost parameters, respectively, for power generation at each node; we use c =
[
cTq cTa

]T
to refer collectively to these cost parameters. We collect all device limits (2.13b) into the
linear inequality constraints Gz ≤ h, and all assignments of known quantities into the
linear equality constraints Az = b (see also Section B.1). The ACOPF problem can then
be written as:

minimize
z≡[pTg qTg |v|T angle(v)T]

T
pTg diag(cq)pg + cTa pg (9.1a)

subject to Az = b (9.1b)

Gz ≤ h (9.1c)

(pg − pd) + (qg − qd)i = diag(v)W̄ v̄. (9.1d)

We recall also that the dual variable λ ∈ Rn on the power flow constraint (9.1d) corresponds
to the electricity prices at each bus.

For the purposes of taking gradients through the ACOPF problem (as we will later need
to do), we linearize the power flow constraint using its Jacobian J at some guess z0 [WWS14],
and then solve the resulting problem iteratively via sequential quadratic programming
[BT95]. Specifically, we write the linearized quadratic program corresponding to (9.1) as

minimize
z≡[pTg qTg |v|T angle(v)T]

T
pTg diag(cq)pg + cTa pg

subject to Ãz = b̃

Gz ≤ h,

(9.2)

where Ã =
[
AT J(z0)

T
]T

and b̃ =
[
bT k(z0)

T
]T

collect both the original linear constraints
and the linearized power flow constraint J(z0)z = k(z0).

131

Algorithm 5 Inverse OPF Optimization

1: input: {(p(i)g , λ(i)) | i = 1, . . . ,m} // public data
2: initialize ĉ, Ŵ // some initial guess

3: for t = 1, . . . , T do

4: compute ℓpub :=
∑m

i=1 ℓ
(
(p

(i)
g , λ(i)), (p̂g

(i), λ̂(i))
)

5: // update guesses if loss has not converged
6: if ℓpub ̸= 0 then
7: update ĉ with ∇ĉ ℓpub
8: update Ŵ with ∇Ŵ ℓpub
9: else
10: return ĉ, Ŵ
11: end if
12: end for

9.4 Inverse optimal power flow

We now describe our inverse optimal power flow algorithm, which attempts to learn private
electricity grid information from public information via ACOPF. Specifically, given public
information on real powers pg, pd and electricity prices λ, we seek to estimate private
generator cost parameters c and the nodal admittance matrix W , where all variables are
as described in Section 9.3. We do so by constructing estimates ĉ⋆ and Ŵ ⋆ of c and W ,
respectively, whose corresponding ACOPF outputs are close to the true values of the
publicly-available quantities pg and λ. Mathematically, this problem can be formulated
under some loss function ℓ on publicly-available quantities as

ĉ⋆, Ŵ ⋆ = argmin
ĉ,Ŵ

ℓ
(
(pg, λ), (p̂g, λ̂)

)
subject to p̂g, λ̂ = ACOPF(ĉ, Ŵ , pd),

(9.3)

where the constraint denotes that p̂g and λ̂ are the values of generator power injections
and power prices produced by solving the ACOPF problem (9.1) with cost parameters ĉ,
admittance matrix Ŵ , and nodal power demands pd. We solve this problem iteratively
via Algorithm 5, using backpropagation within a neural network to compute the needed
gradients. We note that while Equation (9.3) maximizes the agreement between true and
estimated public quantities, the objective of actual interest is the agreement between the
true and estimated private quantities. However, there are potentially multiple distinct
sets of inputs to ACOPF that would produce identical public outputs. Thus, we must use
enough data when executing Algorithm 5 to ensure that there is a unique set of private
parameters that can produce the correct public outputs across all input datapoints.

Optimizing the inverse OPF problem. The main technical challenge of this approach
is in computing the gradients ∇θℓ for each θ ∈ {ĉ, Ŵ}, as this involves taking the gradient

132

Figure 9.1: The modified version of the IEEE 14-bus test case with three generators located at nodes 1, 2,
and 8, respectively, on which we run our experiments. The power generation costs for each generator are
f1(pg1) = 2p2g1 + 5pg1 , f2(pg2) = 4p2g2 + 2pg2 , and f8(pg8) = 5p2g8 + 1pg8 . Admittance matrix parameters
can be found via Kolter [Kol13].

through the solutions to ACOPF. Specifically, we must compute

dℓ

dθ
=

∂ℓ

∂p̂g(θ)

dp̂g(θ)

dθ
+

∂ℓ

∂λ̂(θ)

dλ̂(θ)

dθ
, (9.4)

where dp̂g(θ)

dθ
and dλ̂(θ)

dθ
are the Jacobians of optimal primal and dual variables, respectively,

in problem (9.1), with respect to our parameter estimate θ (and where we denote the
dependence of p̂g and λ̂ on each θ here explicitly). To compute these Jacobians, we use
the method presented in Amos and Kolter [AK17] to take gradients through the optimal
quadratic program (9.2) solved during the last iteration of sequential quadratic programming.
As also described in Section 2.2.3, at a high level, this involves differentiating through the
KKT optimality conditions of (9.2) and using the implicit function theorem to get a set of
linear equations we can solve to get the necessary gradients.

9.5 Experiments

We test our algorithm on a modified version of the IEEE 14-bus test case [Kol13] with
three generators located at nodes 1, 2, and 8. More details about this system are shown in
Figure 9.1. We construct our neural network using PyTorch [Pas+19], and make custom
modifications to the qpth quadratic programming library [AK17] to account for the fact

that the backward pass vector dλ̂(θ)
dθ

associated with the dual variable λ̂(θ) is nonzero. We
train this network on up to 201 public outputs generated from the Grid Optimization
(GO) Competition simulations [ARP18], using the Adam optimizer [KB15]. Our loss is
ℓ((pg, λ), (p̂g, λ̂)) = 100∥pg − p̂g∥22 + ∥λ− λ̂∥22 for (9.3), where the weighting term adjusts
for differences in orders of magnitude between pg and λ.

133

Sq
ua

re
d

er
ro

r
(o

ve
r p

riv
at

e
qu

an
tit

ie
s)

Number of public data points Number of public data points Number of public data points

Figure 9.2: Squared error of guesses for quadratic (cq) and linear (ca) generator costs when all generators’
costs are unknown (lower is better). Each plotted point represents five runs over a given amount of public
data. We find that all cost parameters are identifiable with as little as 5 datapoints.

Loss (over public quantities)

S
qu

ar
ed

 e
rr

or
 (o

ve
r p

riv
at

e
qu

an
tit

ie
s)

wi,

w ,i

w w

Figure 9.3: Error of sample admittances (real
and imaginary parts plotted separately) as train-
ing loss on public data goes to zero. Our esti-
mate for W12,13 converges, but for W1,4 diverges.

Cost parameters. We test the scenario in
which all electricity generation costs are un-
known (but the admittance matrix is known).
Results for runs over different amounts of train-
ing data are in Figure 9.2, with initial guesses for
each cost parameter sampled from a Gaussian
distribution to encode market participants’ prior
knowledge of cost distributions. We find that we
are able to completely learn the cost parameters
for this system with as little as 5 public data-
points. Even though our test system is small,
given that real power grid data is published
with hourly granularity (i.e. 8760 datapoints
per year), there is cause to believe that publicly-
available data may expose generator cost param-
eters on the actual power system as well.

Admittance matrix parameters. Admit-
tance matrix parameters (admittances) are po-
tentially harder to learn than costs, as the choice
of admittances can potentially render problem (9.1) infeasible before or during training. In
our experiments, we test whether we can learn one admittance parameter at a time, where
our initial guess involves perturbing this parameter with Gaussian noise reflecting the vari-
ability across all admittances. (We assume all other parameters are known.) As shown via
illustrative results in Figure 9.3, our preliminary tests suggest that some admittances are
readily identifiable while others may be harder to identify.

9.6 Conclusion

We find that public power grid data may expose private data. Future work includes a
more thorough investigation of admittances on the 14-bus system, as well as assessments

134

on larger systems. These assessments can aid policymakers as they explore options for
data publication, market design, and cybersecurity. While we address the case of power
systems here, our method could be applied to any setting in which private and public
information are related via a known optimization problem; extension of our method to
other such settings also remains as important future work.

135

136

Chapter 10
Adversarial Robustness for
Security-Constrained and Stochastic OPF

In this chapter, we combine innovations from the areas of adversarially robust learning and
implicit layers to tackle the problems of N-k security-constrained optimal power flow (N-k
SCOPF) and stochastic optimal power flow (stochastic OPF), two core problems for the
operation of power grids. N-k SCOPF aims to schedule power generation in a manner that
is robust to potentially k simultaneous equipment outages, and is an important part of
strategies to address correlated failures in the face of climate extremes. Stochastic OPF
aims to schedule power generation with consideration of the stochastic nature of loads
and variable renewable energy resources, and is critical for the integration of variable
renewable energy into power grids. However, these problems have often been viewed as
prohibitively expensive to solve at realistic scale, limiting their practical use. To address this,
inspired by methods in adversarially robust training, we frame N-k SCOPF and stochastic
OPF as minimax optimization problems – viewing power generation settings as adjustable
parameters, and equipment outages or instantiations of stochastic variables as (adversarial)
attacks – and solve these problems via gradient-based techniques. The loss functions of
these minimax problems involve resolving implicit equations representing grid physics and
operational decisions, which we differentiate through via the implicit function theorem. We
demonstrate the efficacy of our framework on realistic-scale (5,000- and 10,000-bus) systems
under the true (nonlinear) AC network constraints.

The work in this chapter has previously been published in:

Priya L. Donti∗, Aayushya Agarwal∗, Neeraj Vijay Bedmutha, Larry Pileggi,
and J. Zico Kolter. “Adversarially Robust Learning for Security-Constrained
Optimal Power Flow.” Advances in Neural Information Processing Systems
34 (2021), 28677–28689.

Aayushya Agarwal, Priya L. Donti, J. Zico Kolter, and Larry Pileggi. “Em-
ploying Adversarial Robustness Techniques for Large-Scale Stochastic Opti-
mal Power Flow.” Power Systems Computation Conference (2022).

137

10.1 Introduction

Robust optimization problems are pervasive across many applications and domains – such
as electric power systems, supply chain management, and civil engineering – where the goal
is to construct some solution that is robust under any allowable instantiation of uncertainty
[BTEGN09; BBC11; GYH15]. While the aim is generally that these solutions be provably
robust, there unfortunately remain many settings where it is either not easy or not possible
to construct such solutions. This has often motivated the use of heuristic approaches. For
instance, many approaches in adversarially robust deep learning formulate neural network
training as a minimax game over neural network parameters and input perturbations,
optimizing this problem via gradient-based techniques that do not yield provable robustness
guarantees, but are nonetheless effective in practice [KM18].

In this chapter, we draw inspiration from adversarially robust training to address
the problem of N-k security-constrained optimal power flow (N-k SCOPF). N-k SCOPF
is a fundamental problem to schedule power generation in a way that is robust to k
potential equipment failures (e.g., generator or line outages). Unfortunately, N-k SCOPF is
prohibitively expensive to solve at scale under the true AC network equations, leading grid
operators to use rough approximations in practice. To address this challenge, we frame N-k
SCOPF as a minimax attacker-defender problem, where the “defender” aims to schedule
power generation, and the “attacker” aims to pick adversarial equipment failures. The
loss function of this problem requires solving implicit equations representing the physics of
the electric grid as well as additional operational decisions that are made after an attack
has occurred. As such, we optimize this problem using gradient-based techniques, and
employ insights from the literature on implicit differentiation and implicit layers to cheaply
compute gradients through the loss function.

Building on this work, we further employ these ideas within the arena of stochastic
optimization [SP07], specifically for the problem of stochastic optimal power flow (stochastic
OPF) under AC network constraints. Stochastic OPF aims to schedule power generation
to minimize expected costs under stochastic loads (e.g., power consumption and variable
renewable energy production), and is critical for the integration of renewable energy into
power grids. However, this problem (like N-k SCOPF) is often expensive to solve at scale,
which means that in practice, the grid analysis methods used today are largely deterministic.
To address this, we re-frame stochastic OPF as a minimax attacker-defender problem, and
solve it using the same techniques that we developed for N-k SCOPF.

Our key contributions are:

• Formulation for minimax optimization with implicit variables. To streamline
the presentation of concepts, we provide a generic formulation for gradient-based
optimization of minimax problems with implicitly-defined variables. While our main
focus in this chapter is on N-k SCOPF and stochastic OPF, we believe this generic
formulation may also be of broader interest for minimax settings with physics in the
loop, as well as for tri-level optimization settings.

138

• Formulation for gradient-based optimization of N-k SCOPF. We rewrite N-
k SCOPF as a continuous minimax optimization problem, and demonstrate how to
efficiently compute gradients through relevant implicit components. We also utilize
the underlying structure of our optimization solvers to further streamline the outer
minimization procedure. Importantly, the per-iteration cost of this approach is
agnostic to the number of simultaneous outages k, despite the combinatorial blowup
in the number of associated “contingency scenarios.”

• Realistic-scale demonstration on N-1, N-2, and N-3 SCOPF. We demonstrate
the efficacy of our method in addressing SCOPF settings that allow for one, two, or
three simultaneous outages on a realistic 4622-bus AC power system with over 38
billion potential N-3 outage scenarios. We find that our method incurs 3-4× fewer N-
3 feasibility violations than a baseline AC optimal power flow approach, and requires
only 21 minutes to run on a standard laptop.

• Formulation for gradient-based optimization of stochastic OPF. Building
on our work for N-k SCOPF, we write stochastic OPF as a minimax optimization
problem and solve it using efficient gradient-based techniques.

• Realistic-scale demonstration on stochastic OPF. We demonstrate that our
method maintains AC feasibility over a wide range of probabilistic scenarios, and
demonstrate scalability by determining a dispatch for a synthetic 11,000 bus system.

10.2 Related work

Adversarial robustness in deep learning. There has been a growing body of work that
aims to parameterize neural networks in a manner that is robust to particular perturbations
of their inputs, usually by casting neural network training as an attacker-defender game
[KM18; Xu+20]. While there have been several promising approaches for certifiably robust
neural network training [Won+18; RSL18; WK18], in general, these approaches do not yet
scale to large-sized networks and only address a limited set of threat models. As a result,
there has been a lot of research in this area that aims to train robust neural networks
using approximate, gradient-based training methods [GSS15; Mad+18], an approach we
adopt here. In addition, a key part of this literature has been on constructing strong but
cheap-to-compute attacks that can strengthen the outcomes of adversarially robust training,
e.g., the fast gradient sign method (FGSM) [GSS15] and projected gradient descent (PGD)
attacks [Mad+18]. In our experiments, we similarly show how a gradient-based adversarial
robustness approach can be used to identify potential grid vulnerabilities or worst-case
instantiations of stochasticity, as an input to secure power system optimization.

Security-constrained optimal power flow. In the electric power systems community,
there has been a great deal of emphasis on optimizing power grid operations to be secure to
sets of outages (contingencies) that may be particularly high risk. For instance, many grid
operators in the United States require grids to be operated in a way that is N-1 secure (i.e.,
secure against any single outage), which has led to a focus in the literature on addressing N-

139

1 SCOPF [BBM20; CSM18; Yan+21; ARP19]. However, ensuring security against multiple
simultaneous failures (i.e., solving N-k SCOPF for k > 1) is becoming increasingly critical,
both as evidenced by recent major blackout events [Mor21; Sto19] and as climate change
drives weather extremes [IPC21] that may lead to correlated outages [Mur19]. That said,
due to the computational complexity of addressing N-k SCOPF in the general case, there
have been few attempts at developing methods geared towards this setting. In particular,
the computational complexity of N-k SCOPF grows combinatorially with k and the size
of the system. Some previous attempts to solve N-k SCOPF have employed exhaustive
methods [MSA14], Bender’s cuts to reduce the number of contingencies analyzed [WWG13],
and bi-level optimization frameworks [WWG13; HCZ17]. In particular, [HCZ17] used
bi-level optimization to develop a systematic attacker-defender approach to address N-3
contingency scenarios, but used a simplified, linear power grid model to attain convergence.
We similarly adopt a bi-level framework, but solve a realistic nonlinear AC model of the grid
by introducing fast gradient calculation methods inspired by the implicit layers literature,
which allows us to scale our approach to a 4622-bus system.

Stochastic optimal power flow. Driven by an accelerated roadmap to integrate renewable
energy, power systems must increasingly contend with large sources of stochasticity [Bak+19].
As such, several methods have recently been proposed to improve the computational
tractability of stochastic grid optimization problems, such as stochastic OPF. These methods
have primarily aimed to address or circumvent two main challenges: a) the challenge of
obtaining cheap and representative samples of stochastic variables, and b) the challenge of
accommodating nonlinear power grid constraints associated with ACOPF.

On the challenge of sampling, previous work has taken two separate approaches. The
first has involved developing sampling methods that can efficiently generate representative
samples from the stochastic distribution [MMD20; Vra+13] or identifying “worst-case”
stochastic disruptions to reduce the sample set within a minimax formulation [JW16; Jab20;
Arr+19; ZC15; Dvo+14]. While these approaches significantly reduce the required number
of samples, optimizing over even a reduced sample set is computationally challenging to
scale to larger systems. The second approach attempts to avoid sampling altogether by
forming analytical approximations to stochastic OPF and using these to, e.g., encode
the probability of violating network constraints within the optimization objective [RA17;
Müh+19] or minimize risk metrics such as the conditional value at risk (CVar) [MGL17].

On the challenge of nonlinear AC constraints, many methods have relaxed the AC
constraints to linear DC constraints [RA17; Guo+18; Vra+13], linearized AC constraints
[YN20], or SDP relaxations [MR18]. These relaxations avoid the challenge of resolving the
AC constraints and are thus fast to solve (and can be extended for use in, e.g., SCOPF).
However, the obtained dispatches may not be feasible under the true AC constraints [Bak21].

10.3 Generic problem formulation

Before diving into the details of our power system optimization formulations, we first provide
a more generic formulation for gradient-based minimax optimization over an implicit loss

140

function, which we will later build upon. In particular, we consider the setting of continuous
minimax optimization problems over “defender” (minimizer) variables x ∈ X and “attacker”
(maximizer) variables y ∈ Y ; these are also referred to as first-stage and second-stage decision
variables, respectively, in the bi-level optimization literature. In addition, we allow for “third-
stage” decisions z ∈ Z that are fully defined via a set of implicit constraints on x, y, and z.

Specifically, we consider problems of the form

minimize
x∈X

max
y∈Y

ℓ(x, y, z)

s. t. g(x, y, z) = 0, z ∈ Z,
(10.1)

where X , Y, and Z are compact sets; ℓ : X × Y × Z → R is a standard, continuously
differentiable loss function (e.g., softmax or mean squared error loss); and g : X ×Y ×Z →
Rm is defined such that g(x, y, z) = 0 is an implicit function in z with some solution
z ∈ Z for all (x, y) ∈ X × Y. We further restrict ourselves to those functions g that are
continuously differentiable with non-singular Jacobians at their roots, i.e., those functions
that are compatible with the implicit function theorem [KP12; KM18]. We note that this
formulation covers a wide range of settings, e.g., many minimax problems with nphysical
constraints, or many tri-level optimization problems where z is a solution to a continuous
optimization problem parameterized by x and y (both of which notions we will use in
Section 10.4 for the setting of N-k SCOPF).

Inspired by the literature on adversarial robustness in deep learning, we propose to
solve problem (10.1) via gradient-based search on both the inner maximization and outer
minimization problems. In particular, this entails (a) obtaining some (approximately)
optimal y for the inner maximization problem via gradient-based techniques, given some
initial value of x, (b) updating x using the gradient at the optimum of the inner maximization
problem, and (c) repeating these steps until convergence. We now describe steps (a) and
(b) in additional detail.

10.3.1 Attack: Solving the inner maximization problem

Let x̄ denote some fixed value for x. The inner maximization problem is then given by

max
y∈Y

ℓ(x̄, y, z) s. t. g(x̄, y, z) = 0, z ∈ Z. (10.2)

We optimize this problem via projected gradient descent. Specifically, let y = y0 denote
our initial guess for the optimal attack, and let P denote the projection operator. Until
convergence (or for some fixed number of iterations), we then

(i) Obtain z⋆ such that g(x̄, y, z⋆) = 0, z⋆ ∈ Z.
(ii) Update y ← PY (y + γ∇yℓ(x̄, y, z

⋆)) for step size γ.

Notably, step (ii) entails obtaining the gradient ∇yℓ(x̄, y, z
⋆). By the chain rule, this

involves the gradient through z⋆, which is the solution to a set of implicit equations.
Specifically, using the notation d to denote total derivatives (e.g., gradients) and ∂ to denote
partial derivatives, we have

dℓ(x̄, y, z⋆)

dy
=

∂ℓ(x̄, y, z⋆)

∂y
+

∂ℓ(x̄, y, z⋆)

∂z⋆
dz⋆

dy
. (10.3)

141

By the implicit function theorem, we can then obtain an expression for dz⋆/dy by noting that

dg(x̄, y, z⋆)

dy
=

∂g(x̄, y, z⋆)

∂y
+
∂g(x̄, y, z⋆)

∂z⋆
dz⋆

dy
= 0 =⇒ dz⋆

dy
= −

(∂g(x̄, y, z⋆)
∂z⋆

)−1∂g(x̄, y, z⋆)

∂y
,

(10.4)
which we can plug into Equation (10.3) to yield our full update.

As discussed in Section 2.2.3, in practice, we seldom want to compute the Jacobian
dz⋆/dy ∈ Rdim(Z)×dim(Y) explicitly due to the potentially large time and space complex-
ity of doing so; instead, it is often desirable to compute the left vector-matrix product
(∂ℓ/∂z⋆)(dz⋆/dy) ∈ Rdim(Y) directly, using the “Jacobian-vector trick.”

10.3.2 Defense: Taking a step in the minimization problem

Given some (approximately) optimal y⋆ and associated z⋆ from the inner optimization
under the current value of x = x̄, the outer optimization problem then becomes

min
x∈X

ℓ(x, y⋆, z⋆) s. t. g(x, y⋆, z⋆) = 0. (10.5)

One option is to then update x via a projected gradient step x← PX (x− β∇xℓ(x, y
⋆, z⋆))

for step size β. To calculate the gradient ∇xℓ(x, y
⋆, z⋆), we note that by Danskin’s theorem,

we can disregard the dependence of y⋆ on x [KM18] (though we cannot ignore the depen-
dence of z⋆). As such, we can employ a similar process as in Equations (10.3) and (10.4),
where we treat y⋆ as constant when computing gradients with respect to x.1 We note that
while this is one potential process for updating x, we actually employ a more efficient,
domain-specific process for our SCOPF procedure (see Section 10.4.4).

10.4 Addressing N-k SCOPF

Having presented this generic formulation, we now introduce our approach, CAN∂Y, for
addressing N-k SCOPF.2 In particular, we consider the problem of N-k SCOPF, where
power generation must be scheduled so as to be feasible and low-cost both in the absence
of equipment outages (“base case”) as well as to be robust to any k simultaneous outages
of power generators or lines that may occur (“contingency cases”). We note that the
set of contingencies – i.e., allowable combinations of outages – is combinatorial in the
number of potential outages, making the N-k SCOPF problem extremely computationally
expensive. For instance, a realistic 4622-bus system with 6133 potential single outages has
approximately 38.5 billion contingency scenarios to consider under the N-3 setting.

1Technically, Danskin’s theorem only holds when y⋆ is a unique optimum of the inner maximization
problem. However, in the adversarially robust training literature, the conditions of Danskin’s theorem do
not necessarily hold – in particular, the inner maximization problem often does not have a unique optimum,
and many implementations tend to generate approximate (rather than exact) optima [GSS15; Mad+18] –
but this method of computing gradients is used in practice regardless [KM18].

2CAN∂Y stands for “CMU Adversarial Networks with Differentiable contingencY.” This name is inspired
by that of SUGAR [Pan+18], whose power flow solver we differentiate through in this work.

142

Algorithm 6 CAN∂Y

1: procedure main(sys) // input: power system description
2: init dispatch x // e.g., via base case optimal power flow
3: while not converged do
4: y⋆ = attack(sys, x) // worst-case attack for current dispatch
5: update x via partial solve of Equation (10.13) using Gauss-Siedel
6: end while
7: end procedure
8:

9: procedure attack(sys, x)
10: init attack y
11: while not converged or for fixed number of steps do
12: compute z⋆, s⋆ via Equation (10.8c) // third-stage variables
13: compute ∇yℓ(x, y, z

⋆, s⋆) via Equation (10.12) // gradient of attack objective
14: update y ← PY (y + γ∇yℓ(x, y, z

⋆, s⋆)) // for attack set Y, step size γ
15: end while
16: return y
17: end procedure

In the rest of this section, we first more formally define the N-k SCOPF problem.
We then show how we rewrite N-k SCOPF as a minimax problem of the form (10.1), in
particular by forming a compact outer approximation to the contingency space. Finally, we
describe how we solve this problem using a combination of gradient-based techniques and
domain-specific enhancements, as summarized in Algorithm 6.

10.4.1 Defining N-k SCOPF

Let x denote the dispatch – i.e., setpoints of real power and voltage magnitude – at all power
generators on the electricity system, and let X represent generator-wise box constraints
on the dispatch. Let C denote the set of potential contingencies, i.e., all sets of exactly k
potential outages. Finally, let z(i) ∈ Zi(x, c

(i)) represent slightly adjusted settings of real
power and voltage magnitude that the power system operator can create after scheduling
x and then observing some contingency c(i) ∈ C, where the Zi represent box constraints.
Then, the N-k SCOPF problem can be expressed as

minimize
x∈X

fbase(x) +
∑

(z(i), c(i))

fcont(z
(i), c(i))

subject to gflow,base(x,wbase) = 0, wbase ∈ Wbase

z(i) ∈
argminz(i)∈Zi(x,c(i))

fcont(z
(i), c(i))

s. t. gflow,cont(z
(i), w(i), x) = 0, w(i) ∈ Wi(x, c

(i))
∀c(i) ∈ C,

(10.6)

143

where fbase : X → R represents base case power production costs; gflow,base : X ×Wbase →
Rnbus represents the nonlinear AC power flow equations in the base case, with nbus being the
number of power system buses; wbase represents electrical quantities that result from solving
the base case power flow equations (e.g., reactive powers and voltage angles), with box
constraints (device limits) represented byWbase; and fcont : Zi×C → R, gflow,cont : Zi×Wi×
X → Rn, and w(i) ∈ Wi(x, c

(i)) represent their respective contingency-case counterparts.

10.4.2 Rewriting N-k SCOPF as a minimax problem

We reformulate the SCOPF problem (10.6) as an attacker-defender game, where the defender
must choose a dispatch that is robust to potential “worst-case” contingencies chosen by
an attacker. In particular, since the contingency set C is discrete, we create a continuous
outer approximation to this set in order to enable the use of gradient-based techniques.
Specifically, let no be the number of generators or power lines that can potentially experience
an outage. Then, for any y ∈ [0, 1]no , we define the jth entry as follows:

yj =


1 iff outage j is fully active,

0 iff outage j is not active,

αj ∈ (0, 1) iff outage j is partially active with fraction αj.

(10.7)

The first two notions presented in Equation (10.7) are standard in power systems: the
generator or line pertinent to outage j is either fully operational or out of service. We newly
define the notion of a partial outage with fraction αj as one in which the power flowing
through the outage device during normal operation has been reduced by a factor of αj . For
instance, we model a partial contingency on a transmission line or transformer device as
reducing its admittance (i.e., ability to conduct current) by a factor of αj. Similarly, we
restrict the power produced by a generator undergoing a partial contingency by multiplying
its power output by αj.

Given these notions, we define our “threat model” for the N-k SCOPF setting to contain
all vectors y with an L1-norm of at most k, i.e., Y := {y : y ∈ [0, 1]no , ∥y∥1 ≤ k}. Notably,
the original contingency set C is fully represented within Y , and in fact, all scenarios with
up to k simultaneous potential outages are also represented. As such, Y represents a much
broader set of potential contingencies than specified in the original problem. (Relevantly
for projected gradient descent, this is also a convex set.) Using this set, we can then write
our reformulation of the SCOPF problem as

minimize
x∈X

max
y∈Y

fbase(x) + fcont(z, y) +
1

2
∥s∥22 (10.8a)

subject to gflow,base(x,wbase) = 0, wbase ∈ Wbase (10.8b)

z, s ∈
argminz∈Z(x,y), s∈Rnbus fcont(z, y) +

1
2
∥s∥22

s. t. gflow,cont(z, wcont, x) + s = 0, wcont ∈ Wcont(x, y),
(10.8c)

where s ∈ S := R2nbus are slack variables representing potential infeasibilities in the third-
stage optimization problem, as necessitated by the expanded contingency set. In particular,

144

the goal of the attacker is to now to find a set of partial outages that not only increase the
cost of power generation, but also create instabilities in the grid, as captured by s. As we
hinted at in Section 10.3, this is a minimax optimization problem with implicit constraints
over the third-stage variables z, wbase, wcont, and s, incorporating both nonlinear equality
constraints (10.8b) as well as an optimization-based constraint (10.8c).

10.4.3 Attack stage

The inner maximization stage is responsible for finding a contingency vector y ∈ Y that
maximizes the inner objective function in (10.8) for a given dispatch. We note that there
are three main steps involved in executing each iteration of this process, as also shown in
Algorithm 6:

1. Solving for the third-stage variables (or network response) z⋆, s⋆ due to the current
instantiation of y, which requires resolving nonlinear network constraints,

2. Computing the gradient dℓ/dy := d(fbase(x)+fcont(z,y)+
1
2
∥s∥22)/dy,

3. Taking the projected gradient step, which involves a projection onto Y .
In our case, the projected gradient step is cheap to compute, due to the convexity of Y . The
first two steps, however, pose potential computational bottlenecks. We therefore employ
efficient methods to execute these steps, as we now describe.

10.4.3.1 Solving the network response

The AC network response due to the current instantiation of the contingency y can be
determined using a steady-state power flow solver, SUGAR [PAP20], which is based on
Newton-Raphson. Unfortunately, solving a power flow at each attack iteration is costly,
and can easily become a bottleneck for scalability. To overcome the complexity of solving
AC power flow at each iteration within the attack stage, we utilize the solution from the
previous attack iteration and employ a homotopy method, known as Network-Stepping
[APP21], to efficiently solve for the network response. This method uses a previously-
solved network with similar topology and iteratively modifies the network using a homotopy
process. At each iteration of the homotopy process, we slightly deform the network and
solve the resulting problem using the previous homotopy solution as an initial condition.
The result is a solution trajectory that exploits the Newton-Raphson quadratic basin of
attraction to achieve fast convergence.

Specifically, we assume a known solution to a previous networkNprev with attack variables
yprev. For our purposes, this previous network emerges from the previous iteration of the
attack procedure. To solve for the current network N with stochastic variables y, we develop
an iterative homotopy method that incrementally changes Nprev to N . This incremental
process is controlled using a scalar homotopy factor, t : 1→ 0, which incrementally changes
the contingency value via the following equation:

yhom = typrev + (1− t)y. (10.9)

At each value of t, we solve for the state variables corresponding to the new network with
contingency yhom. By transforming t from 1 to 0, we are effectively transforming the network

145

from Nprev to N by iteratively changing the stochastic value from yprev to y. By using the
previous homotopy iteration solution as an initial condition, we remain within the Newton-
Raphson quadratic basin of attraction, thereby enabling fast convergence.

10.4.3.2 Obtaining attack gradients

As described in Section 10.3.1, we aim to find the worst-case attack via projected gradient
descent. In particular, we must compute the gradient of the minimax loss with respect to
y, which is given by

dℓ

dy
=

∂fcont(z
⋆, y)

∂y
+

∂fcont(z
⋆, y)

∂z⋆
dz⋆

dy
+

ds⋆

dy
. (10.10)

(As the base case power production cost and the base case power flow constraint (10.8b) have
no dependence on y, we do not need to consider these terms during the inner maximization.)

To calculate the terms dz⋆/dy and ds⋆/dy, we implicitly differentiate through the third-
stage optimization problem (10.8c). In order to do so inexpensively, we reuse the results of
computations that were executed when originally obtaining z⋆ and s⋆. More specifically,
in order to obtain z⋆ and s⋆, we solve the nonlinear KKT conditions of optimization
problem (10.8c) using a Newton solver that entails linearizing these equations at each
iteration. More details of this Newton solver are presented in Appendix D.2 (using the
more precise N-k SCOPF notation introduced in Appendix D.1). At convergence, we then
implicitly differentiate through the linear fixed-point equation obtained at the last iteration:

J

(
z⋆

s⋆

)
= b =⇒ dJ

dy

(
z⋆

s⋆

)
+ J

(
dz⋆

dy
ds⋆

dy

)
=

db

dy
=⇒

(
dz⋆

dy
ds⋆

dy

)
= J−1

(
−dJ

dy

(
z⋆

s⋆

)
+

db

dy

)
,

(10.11)
where J ∈ Rd×d is the Jacobian of the nonlinear KKT system and b ∈ Rd is the corresponding
right hand side vector, for d = dim(Z)+dim(S). We note that since the system Jacobian J
is in practice extremely sparse, the inverse term J−1 can be computed extremely efficiently
using sparse LU factorization; similarly, the higher-order derivative dJ/dy is extremely sparse
and can be computed efficiently. We refer the reader to [Pil98] for more details.

Substituting this result into Equation (10.10), the overall gradient of the loss is then

dℓ

dy
=

∂fcont(z
⋆, y)

∂y
+

(
∂fcont(z⋆,y)

∂z⋆

1

)T

J−1

(
−dJ

dy

(
z⋆

s⋆

)
+

db

dy

)
. (10.12)

As hinted earlier, we employ the “Jacobian-vector trick” in order to efficiently compute
these gradients. In particular, rather than computing the terms dz⋆/dy and ds⋆/dy explicitly
via Equation (10.11), we directly compute their left vector-matrix product with the relevant
partial derivatives of the loss – i.e., the blue term in Equation (10.12), with multiplications
evaluated from left to right to ensure we are always taking matrix-vector (rather than matrix-
matrix) products. Inspired by [AK17], we also reuse the LU factor from the last Newton
solve we computed when obtaining z⋆ and s⋆ in order to avoid explicitly (re-)computing
the matrix inverse J−1. Finally, we note that for this specific problem, while the last term

146

−dJ
dy

(
z⋆

s⋆

)
+ db

dy
nominally involves tensor products, the relevant terms are vastly sparse

due to the structure of the underlying physics – with no more than 20 nonzero entries per
potential outage – making these products relatively cheap to compute in practice.

10.4.4 Defense stage

After obtaining a worst-case attack y⋆, our next step is to adjust our dispatch x ∈ X in
response. As described in Section 10.3.2 for the generic setting, one option to do this
involves taking a projected gradient step in x. However, we adopt a different approach for N-
k SCOPF, due to the practical requirements of this setting. In particular, a general system
requirement is that the base case power flow equations gflow,base(·) = 0 must remain feasible
under the dispatch x ∈ X , as the most likely scenario is that no contingency will occur.
However, projecting onto this (nonlinear, non-convex) set of constraints can be expensive.

As a result, we instead note that we can rewrite the N-k SCOPF minimax problem (10.8)
as a single minimization problem:

minimize
x∈X , z∈Z(x,y⋆), s∈Rnbus

fbase(x) + fcont(z, y
⋆) +

1

2
∥s∥22

subject to gflow,base(x,wbase) = 0, wbase ∈ Wbase

gflow,cont(z, wcont, x) + s = 0, wcont ∈ Wcont(x, y
⋆).

(10.13)

To determine our next iterate of x, our strategy is then to partially solve this optimization
problem by running one step of a nonlinear Gauss-Seidel method, and then keep the value
of x obtained from that step. This allows us to incrementally update x in a direction that
is more robust to the worst-case attack y⋆, while still maintaining the feasibility of the base
case power flow equations.

Importantly, we are able to run this procedure efficiently, as we can reuse the results
of existing computations that were executed when obtaining the optimal attack y⋆. In
particular, as we describe in more detail in Appendix D.3, we can split the KKT conditions
of the problem (10.13) into two groups:(

∂L/∂x
∂L/∂λbase

)
≡ Fbase(x,wbase, λbase) +

(
(∂gflow,cont(z,wcont,x)/∂x)T λcont

0

)
= 0 (10.14a) ∂L/∂z

∂L/∂s
∂L/∂λcont

 ≡ Fcont(z, wcont, λcont) +

 0

0

gflow,cont(z, wcont, x)

 = 0, (10.14b)

where L denotes the Lagrangian of problem (10.13), and λbase and λcont are the dual
variables on the base case and contingency power flow constraints, respectively. We note
that the two terms Fbase and Fcont are independent in terms of their inputs, but are weakly
coupled via the additional terms (which represent a sparse set of ramping constraints
and voltage setpoints that tie together the base and contingency cases). This is an ideal
setup for decoupling through nonlinear Gauss-Seidel solution methods. In addition, the

147

contingency-related KKT conditions (10.14b) are actually identical to the KKT conditions
of the problem (10.8c) that we solved during the last iteration of the inner maximization
problem; as a result, we can reuse the result of this previous computation when executing
our Gauss-Seidel step. Together, this allows us to inexpensively identify an update direction
for x that nonetheless remains feasible with respect to the base case power flow constraints.

10.5 Experiments for N-k SCOPF

We demonstrate the efficacy of our approach on the settings of N-1, N-2 and N-3 SCOPF.
In particular, noting that quality of adversarial attacks is likely to have a large effect
on the success of our overall procedure, we first visualize the attacks found by our inner
maximization process (Sections 10.3.1, 10.4.4) on a small power system test case. We
then demonstrate the performance of our overall approach on a realistic 4622-bus power
system with approximately 6 thousand potential N-1 contingencies, almost 19 million N-
2 contingencies, and over 38 billion N-3 contingencies. We show that CAN∂Y is able to
efficiently find solutions that are competitive with other leading approaches in the N-1 case,
while reducing violations in the N-2 and N-3 scenarios compared to a base case optimal
power flow.

All experiments are run on a single core of a Macbook Pro with a 2.6 GHz Core i7
CPU. We implement our approach in Python, using a custom optimal power flow solver
called SUGAR [PAP20] to compute optimization (10.8c), and CVXPY [DB16] to compute
convex projections for projected gradient descent. We evaluate all dispatch solutions using
PowerWorld, a commercial power flow tool.

10.5.1 Illustrative adversarial attack

Finding worst-case contingencies is often beneficial to power systems engineers, who try
to identify fragile areas of their grid for future development. Traditionally, engineers use
linear approximations of the grid physics [KT16; CLL19; Has+17] to identify single outages
that pose a significant risk to system stability. However, given that the underlying physics
are fundamentally nonlinear, such linear approximations quickly become inaccurate when
trying to identify the risks associated with multiple simultaneous outages. Our implicit
differentiation approach, on the other hand, employs accurate gradient information from
the physics of the network to quickly identify contingencies that maximally increase our loss
function (or an alternative loss function of choice that also captures system infeasibilities).

For ease of visualization, we demonstrate this attack-identification approach on the
IEEE 14-bus test system. In particular, we identify an adversarial N-2 contingency on this
system in just 5 iterations (approximately one minute), increasing the value of the loss
function by 3% over the base case scenario, as shown in Figure 10.1b. This worst-case
contingency represents a combination of multiple partial outages on different lines, and
(perhaps surprisingly) does not include any generator outages, as shown in Figure 10.1a.
This is likely to present a stronger attack than those obtained via the “standard” linear
approximation approach, serving as a potential benefit to power system planners who are

148

Partial outage value

(a) Visualization of the worst-case contingency found,
with the degree of the associated partial outage on
each line indicated in blue. (Plot generated via Pow-
erWorld.)

=

(b) Training curve for finding a worst-case con-
tingency. The process converges within 5 itera-
tions, and increases the loss by 3%.

Figure 10.1: Illustrative example of finding a worst-case N-2 contingency on a 14-bus test system.

Table 10.1: Comparison of the performance of our method against top-performing submissions to the
ARPA-E GO Competition, which addresses N-1 SCOPF (lower scores are better). Results are shown for
the 4622-bus Challenge 1 test case (“5K network”). While the score comparisons shown are inexact due
to subtleties of the evaluation metric (see Appendix D.4), at a high level, we see that CAN∂Y performs
competitively with all top-scoring methods.

gollnl GO-SNIP GMI-GO BAT gravityx CAN∂Y*

GO Challenge 1 Rank 1 2 3 4 5 -

Score for 5K network 546,302 553,152 553,328 545,783 550,020 552,032

trying to reinforce their grid, as well as to “adversarially robust training” procedures like ours.

10.5.2 Validating N-1 security

Today, most grid operators in the United States require that their dispatch be N-1 secure,
i.e., secure against any single outage, prompting the development of associated methods.
In particular, the recent Grid Optimization (GO) Competition [ARP19], hosted by ARPA-
E, focused on finding algorithms to solve N-1 SCOPF. Each participating team used a
variety of methods to produce a dispatch that was evaluated on the basis of power cost and
feasibility in both the base and contingency cases. In order to validate that our method
works well in the N-1 setting, we solve a particular case from the competition – namely, the
4622-bus test case with a sub-selection of 3071 N-1 potential contingencies, provided as
part of the Challenge 1 stage – by constructing our relaxed contingency set Y with k = 1.

We find that our score is comparable against the top approaches submitted to the
GO Competition, as shown in Table 10.1. We note that these score comparisons are not

149

=

Figure 10.2: Loss vs. iterations in adversarial
training. Each attack stage is at most 10 iter-
ations and each defense stage is one iteration.
The loss value after the defense step is in green.

Contingency type N-1 N-2 N-3

Scenarios tested 6,133 359,712 428,730

OPF viol. 59 10,572 4,086

PowerModels viol. 37 4,005 5,391

CAN∂Y viol. (ours) 36 3,580 1,122

Table 10.2: Number of feasibility violations incurred by
the N-3 SCOPF version of our method, a baseline opti-
mal power flow (OPF), and the PowerModels N-1 SCOPF
solver [Cof+18] on randomly selected N-1, N-2, N-3 con-
tingency scenarios for a 4622-bus test case. We see that
CAN∂Y reduces the number of N-2 and N-3 violations by
a factor of 3-4× over the OPF baseline, and the number
of N-3 violations by a factor of 5× over the PowerModels
solution.

exact, as our power flow solver uses a more realistic model for coupling between the base
and contingency cases than was posed in Challenge 1, which affects the way that the
evaluation metric is computed (see Appendix D.4). Nonetheless, at a high level, these results
demonstrate that our method performs competitively with respect to the top-performing
methods for solving N-1 SCOPF.

10.5.3 Improving N-3 SCOPF

We now describe the performance of our method on our main setting of interest: N-3 SCOPF.
While other competitive methods exist for solving N-1 SCOPF, previous work has struggled
to approach settings allowing for larger numbers of simultaneous outages (e.g., N-k SCOPF
for k = 2 or 3) due to the associated combinatorial explosion in problem size. Our method,
however, scales gracefully with respect to the number of allowable simultaneous outages, as
we need only tweak the value of k used within our attack set Y := {y : y ∈ [0, 1]no , ∥y∥1 ≤ k}.
More specifically, each iteration of the attack maximization and each defense step calculation
take approximately the same amount of time regardless of the value of k, given that the costs
of the gradient computations, projections, and (optimal) power flow solves are independent
of k. (The total number of iterations it takes for our method to converge may vary between
settings, though we do not notice a substantive difference in this respect between the N-1,
N-2, and N-3 versions of our approach during our experiments.)

We use our method to attempt to solve N-3 SCOPF (i.e., set k = 3) on a 4622-bus
test case over all 6133 potential outages (i.e., over 38 billion N-3 contingency scenarios);
the associated training curve is shown in Figure 10.2. In total, our approach takes only 21
minutes to converge.

We evaluate the strength of our obtained dispatch in maintaining feasibility against a
combination of N-1, N-2, and N-3 contingency scenarios, which are all technically contained
within the threat model represented by our choice of Y. We note that while full security

150

against all these contingencies is likely impossible with a single dispatch – e.g., we can
very often construct an N-3 contingency that isolates, or islands, some non-self-sustaining
part of the electrical grid – we aim to demonstrate that our method can improve upon
existing methods in terms of providing robustness against a wide variety of scenarios. As
there remain a lack of available N-2 or N-3 SCOPF methods against which we can readily
compare, we compare our performance against that of a base case optimal power flow (OPF)
solver, as well as the open-source PowerModels N-1 SCOPF algorithm [Cof+18]. Due to
the intractability of evaluating these dispatches on all possible contingency scenarios, we
randomly sub-select the set of N-1, N-2, and N-3 scenarios on which we evaluate, and run
these evaluations in PowerWorld over the course of several days.

The results of our evaluation are shown in Table 10.2. Overall, we see that CAN∂Y
significantly reduces the number of total contingency violations as compared to the OPF
solution by a factor of 3-4×. While the PowerModels baseline and our approach perform
comparably with respect to N-1 and N-2 contingency violations, our approach incurs nearly
5× fewer N-3 violations as compared to PowerModels. Analyzing the N-3 contingencies
in more detail, we find that of the 4086 specific violations incurred by OPF, 931 of those
were also incurred by CAN∂Y (while the remaining 191 violations incurred by our method
were disjoint). Overall, these results indicate that our method is much more effective than
OPF and a benchmark N-1 SCOPF solver at guarding against N-2 and N-3 contingencies,
though the actual distribution of specific contingencies that are guarded against may differ
between these methods.

10.6 Addressing stochastic OPF

We now employ similar ideas as in Section 10.4 to address the problem of stochastic optimal
power flow. Here, we define our setting of stochastic OPF setup and show how we rewrite
stochastic OPF as a minimax problem. As the methods for solving the attack and defense
stages are very similar to those presented in Sections 10.4.3–10.4.4, we do not detail these
here, but instead refer the reader to [Aga+22].

10.6.1 Defining stochastic OPF

We consider a two-stage formulation of stochastic optimal power flow, in which 1) a dispatch
is determined and enacted based on a point forecast of each stochastic variable, and then 2)
generators engage in a real-time recourse strategy (e.g., via automatic generation control or
primary frequency response) upon realization of the stochastic variables, in order to correct
for deviations from the initial forecast. This kind of formulation is common in the stochastic
OPF literature [JW16], and is also similar to pre-contingency and post-contingency logic in
security-constrained OPF [Hol+21]. Given this formulation, our goal during the first stage is
to find a dispatch that minimizes the cost of dispatched power generation, plus the expected
cost of any second-stage actions and infeasibilities under some model of grid stochasticity.

Mathematically, let xd :=
[
pTg pTg vTset vTr vTi

]T
denote the state variables associated

with the initial dispatched network. This includes the active power pg, reactive power pg,

151

and voltage magnitude set points vset at all synchronous generators, as well as the real and
imaginary voltages vr and vi at all buses. Let α ∼ D denote stochastic variables on the grid
drawn from a distribution D, with supp(D) denoting the support of the distribution; in
general, α is a vector of multiplicative factors representing deviations from the point forecasts
of the active and reactive powers of stochastic loads, as well as of renewable generation; α

is embedded into each stochastic device model. Finally, xα :=
[
pTgα qTgα vTsetα vTrα vTiα

]T
denotes the second-stage state variables under any realization of uncertainty α ∼ D. The
stochastic OPF problem is then:

min
pg ,vset

fd(xd) + Eα∼D(fa(xα)) (10.15a)

s. t. gd(xd) = 0 (10.15b)

hd(xd) ≤ 0 (10.15c)

xα ∈
argminxα

fa(xα)

s. t. ga(xd, xα, α) = 0

ha(xd, xα, α) ≤ 0

∀α ∈ supp(D), (10.15d)

where fd and fa denote first-stage and second-stage cost functions, respectively; the equality
constraints gd(xd) = 0 and ga(xd, xα, α) = 0 capture network flow conservation equations
during the first and second stages, respectively; hd(xd) ≤ 0 and ha(xd, xα, α) ≤ 0 represent
operating device constraints during the first and second stages, respectively; and (10.15d)
thereby represents the second-stage response.

While (10.15) presents generalized notation for simplicity of exposition, in this work,
we specifically employ a current-voltage formulation (expressed in detail in [PAP20]) for
network flows (i.e., gd and ga capture Kirchhoff’s Current Law) and employ the same grid
model and second-stage response definition as in the ARPA-E GO Competition [Hol+21].
Notably, the second-stage constraints capture automatic responses including automatic
generation control, and include higher voltage and current bounds than in the base network.
As a result, the constraints, ga(xd, xα, α) = 0 and ha(xd, xα, α) ≤ 0 in (10.15d) couple the
first-stage and second-stage networks. While we refer readers to [Hol+21] for the full second-
stage response formulation, we highlight that generators are allowed to ramp their active
power generation within certain bounds dictated by the dispatch, such that

pramp, min ≤ pgα − pg ≤ pramp, max, (10.16)

where pgα is the active power at all synchronous generators as generated in the second-stage
response for a given α ∼ D, and pramp, max and pramp, min are the upper and lower ramping
constraints, respectively; this is reflected within the second-stage inequality constraints
in (10.15d). Generators are also allowed to adjust local voltage parameters in a way that
maintains the voltage magnitude set during dispatch (i.e., vset = vsetα), such that

vset =
√

v2g,rα + v2g,iα , (10.17)

where vg,rα and vg,iα are the second-stage real and imaginary bus voltages at the synchronous
generators for a given α ∼ D; this is reflected within the second-stage equality constraints
in (10.15d).

152

The first-stage cost function reflects the quadratic cost for active power generation,
as shown in (10.18). Similarly, the second-stage cost function is the quadratic cost of
the second-stage active power generation pgα , as shown in (10.19). Letting c1, c2, and c3
represent vectors of quadratic, linear, and constant cost coefficients at all synchronous
generators, our cost functions are then:

fd(xd) = pTg diag(c1)pg + cT2 pg + c3, (10.18)

fa(xα) = pTgα diag(c1)pgα + cT2 pgα + c3. (10.19)

The distribution D from which the stochastic variables α are drawn can be approximated
from historical data using various techniques (see, e.g., [MMD20]). As D is a continuous
space, this represents a large set of stochastic scenarios, which presents a potential bottleneck
for scalably solving the stochastic ACOPF formulation in its original form. We therefore
propose a proxy formulation that can be solved efficiently.

10.6.2 Rewriting stochastic OPF as a minimax problem

To make the stochastic OPF problem amendable to robust optimization techniques, we
reframe the problem as an attacker-defender problem, where a “defender” must first
formulate a dispatch, after which an “attacker” can pick a worst-case instantiation of the
stochastic variables for that dispatch. In particular, our formulation minimizes the effect of
a “worst-case” stochastic scenario while considering the probability P (α) of such an event
occurring, as:

min
pg ,vset

fd(xd) + η max
α∈supp(D)

P (α)fa(xα) (10.20a)

s. t. gd(xd) = 0, hd(xd) ≤ 0 (10.20b)

xα ∈
argminxα

fa(xα)

s. t. ga(xd, xα, α) = 0, ha(xd, xα, α) ≤ 0,
(10.20c)

where η =
∫
α∈supp(D)

dα. The value of η is chosen such that the objective of the inner

maximization in (10.20a) represents an upper bound on the expectation in (10.15b); that is:

Eα∼D(fa(xα)) =

∫
α∈supp(D)

P (α)fa(xα)dα

≤
∫
α∈supp(D)

(
max

α′∈supp(D)
P (α′)fa(xα′)

)
dα

= η max
α∈supp(D)

P (α)fa(xα).

(10.21)

In practice, again drawing on the robust optimization literature, we further modify
this formulation to incorporate “infeasibility currents” ιslackα that are added to locate any
infeasibilities in the second-stage network, as shown in (10.22). (These infeasibility currents
are included within the second-stage state vector xα.) In particular, we add a term to our

153

second-stage cost to penalize infeasibilities with a weighting factor wslack > 0, and modify
the equality constraint in (10.20c) to (10.23). The weighting factor, wslack, adjusts the
relative scaling between the economic cost of power generation in (10.19) and the cost of an
infeasibility as shown in the multi-objective function (10.22). Generally, a large weighting
of wslack > 1000, as used by previous works, ensures that the solution using the modified
objective in (10.22) will have ιslackα = 0 (or within a small tolerance of zero) when the system
is in fact feasible.

fa(xα) = pTgα diag(c1)pgα + cT2 pgα + c3 + wslack∥ιslackα ∥22. (10.22)

ga(xd, xα, α) + ιslackα = 0. (10.23)

While minimizing the upper bound rather than the integral (i.e., expectation) is prone to
different dispatch solutions, the goal of formulating this objective function is to prioritize
robustness to any realizations of uncertainty with large expected costs (which often represent
infeasible networks with large ιslackα). This ultimately is most important to operations and
planning engineers. We demonstrate the impact of employing our proxy formulation (10.20)–
(10.23), as opposed to the original stochastic formulation (10.15), in Section 10.7.1.

10.7 Experiments for stochastic OPF

We now study the performance of our method on various realistic networks ranging in
size from 73 buses to 11,615 buses. We begin by validating the proxy minimax reformula-
tion (10.20) of the traditional stochastic OPF (10.15) by comparing our method against an
open-source, scenario-based chance constrained stochastic OPF solver [MMD20] on two
smaller test-cases. Importantly, our method not only achieves a similar dispatch to the
open-source stochastic OPF solver but also exhibits superior convergence time. We then
highlight the scalability of our method by optimizing the dispatch of five realistic test cases
from the ARPA-E GO competition [Hol+21] to be robust against stochastic noise within
appropriate runtime. We further study one of the realistic systems in depth to highlight our
method’s efficacy in achieving a dispatch that is robust against stochastic noise compared
to a deterministic OPF solver. Our experiments are run on a single core on a Macbook
Pro with a 2.6Ghz Core i7 CPU. The approach is developed on top of the SUGAR optimal
power flow solver [PAP20]; we thus refer to our method as “Stochastic SUGAR.” We use
CVXPY [DB16] to solve the projection within the projected gradient descent step.

10.7.1 Validating the minimax reformulation

We validate our minimax reformulation (10.20), solved using the techniques presented above,
by comparing our results to those of an open-source scenario-driven, chance-constrained
OPF method [MMD20] that solves the original problem in (10.15). Specifically, we test
these methods on two publicly available test cases that are 73 buses and 1,354 buses [Fli+13]
in size (both available at [IEE22]) which have stochastic generation and loads drawn from
a uniform distribution allowing for a 10% deviation from the nominal values, as defined in

154

Table 10.3: Comparison of Stochastic SUGAR (ours) with an open-source stochastic OPF tool [MMD20].

Network Method runtime (s) max |pg − p̂g| (p.u.)
Stochastic
SUGAR

Open-Source
Stochastic OPF

73 ieee 48 289 0.0013

1354 pegasse 202 385 0.0082

Table 10.4: Network information for five networks provided by [Hol+21].

Network 1 Network 2 Network 3 Network 4 Network 5

buses 500 3,022 4,918 8,733 11,615

generators 224 637 1340 743 806

loads 281 1,793 3,070 3,399 19,356

[MMD20]. We highlight the comparison between our tool (Stochastic SUGAR) and the
open-source stochastic OPF tool in Table 10.3.

To validate that the reformulation achieves a similar dispatch as solving the original
problem for these testcases, we measure the difference in the dispatch between the tools as
the maximum difference in the active power generation (pg − p̂g), where pg is the vector of
active power generated from the Stochastic SUGAR tool and p̂g is the vector of active power
generation from the open-source stochastic OPF tool. We notice a minimal difference in the
active power dispatch, indicating that the minimax reformulation is capable to achieving
a similar solution as tools solving the original stochastic OPF formulation. Importantly,
Table 10.3 also highlights the runtime improvements of our methodology, which achieves a
nearly 1.5× speedup over the open-source stochastic OPF tool.

10.7.2 Scaling to realistic networks

After experimentally validating the minimax reformulation, we scale the methodology to
solve realistic testcases provided by the ARPA-E GO competition [ARP21] ranging from
500 buses to 11,000 buses. The number of generators, buses and loads for each case are
shown in Table 10.4. We treat the loads in these testcases as stochastic sources; specifically,
the active and reactive powers (ql and pl) of each load are each modeled via independent
normal distributions centered at the nominal values provided in the original test case, and
with standard deviations that are 10% of the nominal values.

10.7.2.1 Improvement over deterministic solver

We begin by validating our approach on the 500-bus network from the ARPA-E GO
Competition [ARP21] with 281 stochastic loads as detailed in Table 10.4.

155

Figure 10.3: Monte-Carlo analysis for infeasibilities over load distribution for base ACOPF dispatch (red)
and the Stochastic SUGAR dispatch (black).

Our optimization of the stochastic network converges in 10 defense iterations, taking a
total of 73 seconds. In particular, drawing inspiration from the literature on adversarial
robustness in deep learning [Mad+18; GSS15], we only take one gradient step in the inner
maximization during each attack iteration (rather than converging to a true optimum) to
improve runtime.

To validate that our approach indeed improves robustness against stochastic sources,
we run a Monte-Carlo analysis for our optimized dispatch obtained via Stochastic SUGAR,
as well as for a dispatch obtained via deterministic ACOPF. In this analysis, we obtain
different realizations of α, and then solve the second-stage problem (10.20c) to obtain the
second-stage state variables; both Monte-Carlo analyses use identical second-stage models
and parameters (including slack currents) for solving each scenario. Figure 10.3 illustrates
the norm of the infeasibility values over 5000 samples of the load distribution for both
Stochastic SUGAR and the base ACOPF dispatch. An infeasible case is defined as a
scenario with a norm infeasibility of over a value of 1 (i.e., any norm infeasibility of less
than 1 is within the tolerance of the Newton-Raphson solver).

We notice that (as expected) the dispatch obtained by the deterministic ACOPF solver
leads to a number of infeasible cases. In contrast, Stochastic SUGAR avoids any larger
infeasibilities. This is to be expected, as our formulation explicitly minimizes the upper
bound on the expected cost of any stochastic scenario. A side effect of this approach is
that there are also fewer samples with small infeasibilities; however, it is important to note
that the vast majority of the samples seen by Stochastic SUGAR have sufficiently small
infeasibilities such that the network is considered to be convergent.

10.7.2.2 Scalability study

After validating our approach, we now demonstrate its scalability over the various realistic-
scale networks. Figure 10.4 highlights the simulation runtime for the five networks. We note

156

Figure 10.4: Simulation time (s) to solve stochastic ACOPF for various networks using Stochastic SUGAR.

that even on the largest network with over 11,000 buses, our approach takes a total of only
18 minutes to run, which includes time to parse the case data and write the results. We also
see that the runtime of our method scales linearly to sub-linearly with the size of the network.
This occurs because the larger networks we use tend to have more inertial capacity to account
for fluctuations in the grid, which means that less of a change from the original ACOPF
dispatch (with which we initialize our approach) is required; that is, our approach often needs
fewer iterations to converge for larger networks, even though each iteration is more costly.

10.8 Conclusion

In this chapter, we reformulate both N-k SCOPF and stochastic OPF as attacker-defender
minimax optimization problems, and employ algorithms inspired by adversarial robustness
in deep learning, implicit layers, and circuit simulation to scalably solve these problems.
In particular, for N-k SCOPF, we show for a realistic 4622-bus test case with over 38
billion potential N-3 contingencies, our approach takes only 21 minutes to converge on
a standard laptop. Withiin this time, our approach reduces N-3 feasibility violations by
a factor of 3-4× compared to a baseline optimal power flow method and by almost 5×
compared to a baseline N-1 SCOPF solver. For stochastic OPF, we demonstrate the efficacy
of our method by improving the robustness of a dispatch on a 500-bus system under load
uncertainty within 73 seconds, and showing that our method can scale to larger systems of
upwards of 11,000 buses while staying within reasonable time limits. Overall, we believe
this demonstrates the promise of our approach in enabling scalable robust and stochastic
optimization on realistic-scale power grids.

We note that the success of our minimax optimization approach is likely highly reliant
on the strength of the adversarial attacks that we generate, just as in the adversarially
robust training literature [KM18; Xu+20]. As such, a fruitful direction for future work may
involve developing improved procedures for obtaining adversarial attacks in the context of
N-k SCOPF and stochastic OPF. In addition, given the large scale of the power networks

157

we consider, it is generally impossible to evaluate proposed dispatches against the full suite
of potential contingencies in order to check whether they are indeed N-k secure or robust
against all potential stochastic deviations. Given that, another fruitful direction may entail
developing better evaluation metrics or verification procedures to inexpensively evaluate
whether a proposed dispatch is (likely) robust, perhaps again drawing inspiration from the
literature on verification methods for adversarially robust deep learning [Car+19].

158

Part IV

Conclusions and Future Directions

159

Chapter 11
Conclusions and Future Directions

In this thesis, we have explored several directions for the use of machine learning and re-
lated methods to address climate-relevant problems in the electric power sector. These
directions illustrate the value of bridging insights from the machine learning and power
systems literatures, and present takeaways for machine learning researchers, power systems
researchers, power system operators, and other relevant decision-makers.

In Part I, we assessed key assumptions in the calculation of the emissions and damages
avoided by power systems interventions (Chapter 3) and presented a new technique for
voltage estimation in low-observability distribution systems (Chapter 4). These analyses
present important takeaways for power system operators and planners. In particular,
Chapter 3 demonstrates that as the power grid rapidly changes, using outdated emissions
factor estimates can significantly misrepresent the benefits or damages associated with
proposed power system interventions. In addition, as marginal emissions factors are
increasingly being used to guide real-time demand flexibility measures, misestimating the
values and temporal trends associated with the relevant emissions factors could lead to
incorrect or even counterproductive load shifting actions. This underscores the importance
of regularly releasing and updating the data underlying emissions factor estimates, of
potentially encouraging system operators themselves to release granular emissions factor
estimates, and of establishing standards that detail how to properly employ these factors;
regular data releases can further inform initiatives to forecast emissions factors – rather
than simply derive historical estimates – in order to provide important foresight to power
system operations and planning strategies. Our analysis in Chapter 4 illustrates the extent
to which even present levels of sensing may be sufficient to inform accurate voltage estimates
on distribution systems. This implies that it is likely possible to support more active shifts
from centralized power system operations paradigms towards more dynamic, distributed
paradigms (e.g., to foster the integration of distributed renewable energy resources), even
under today’s grid monitoring infrastructure. In addition, our work has implications for
decisions surrounding how much new sensing needs to be installed on distribution systems
(as well as potentially the placement of such sensors), informing potential trade-offs between
estimation accuracy and sensor installation costs.

161

In addition to takeaways for system operators and planners, these analyses further in-
voke several lines of inquiry for methodological research in machine learning. For instance,
Chapter 3 contains multiple examples where a differing assumption drove a difference in
emissions factor estimates, but those differences did not ultimately matter when evaluat-
ing a particular intervention; conversely, certain small differences in emissions factors can
drive disproportionately large differences in estimated intervention effects. This yields an
important question: In what scenarios do we care about the raw accuracy of a forecast or
estimate vs. the quality of the decision that it enables us to make, and how can we con-
struct forecasting and estimation methods that are appropriately cognizant of both? As an
additional direction, Chapter 4 demonstrates an approach where combining data, physical
constraints, and domain-informed inductive biases can provide gains in both data efficiency
and performance. This potentially prompts further exploration into how machine learning
methods might fruitfully leverage these different kinds of domain knowledge.

In Part II, we presented a paradigm called “optimization-in-the-loop deep learning” to enable
the design of deep learning methods that are cognizant of the physics, hard constraints,
and domain knowledge associated with the systems in which they operate. We showed how
this paradigm can be used to design decision-cognizant forecasts (Chapter 5), feasibility-
preserving neural approximators for optimization problems (Chapter 6), and reinforcement
learning-based controllers with provable performance guarantees (Chapters 7–8), with the
goal of addressing existing challenges in the operation of high-renewables power grids.

A key takeaway for power system operators is that it is becoming possible to leverage
dynamic and data-driven methods for scalable power systems operation while retaining the
same safety and stability guarantees associated with today’s engineering- and physics-based
methods. In fact, in certain cases, machine learning-based methods may even improve fidelity
to system constraints – e.g., by enabling the use of formulations that maintain AC feasibility
(as in Chapter 6), instead of the current practice of using physically inaccurate DC power
flow models. Unfortunately, there exist several key bottlenecks to the impactful development
and deployment of such techniques, notably the relative lack of infrastructure to validate and
improve them (e.g., realistic metrics, benchmarks, test beds, or demonstration projects) or of
mechanisms to properly integrate them with other techniques (e.g., via open source software
workflows). System operators and relevant policymakers can help spur the development,
maturation, deployment, and evaluation of such work by creating the needed infrastructure
and implementation mechanisms, in close coordination with the research community.

There are also many fruitful methodological directions associated with this line of work.
For instance, while we employ differentiable optimization techniques in this thesis for contin-
uous optimization problems, many important optimization problems in power systems and
beyond involve discrete variables. One important direction is therefore to design differen-
tiable optimization workflows that accommodate discrete information, building for example
on the literature on discrete neural representations [Duv18] and more broadly on machine
learning for combinatorial optimization [BLP21]. Such techniques could be applicable to,
e.g., designing fast, feasible neural approximators for unit commitment (building on the work
in Chapter 6). Another important direction, relevant to the work on control in Chapters 7
and 8, entails moving from the “single-agent” setting to the “multi-agent” setting – that is,

162

from considering the impacts of only one controller to considering the physical and strategic
interactions between many controllers. This is relevant to, e.g., power system demand re-
sponse strategies in which multiple loads may dynamically shift how they use power [Ant+20;
DK21], and must contend with equipment constraints, service-based constraints, partial or
imperfect information exchange, and strategic behavior from different loads on the grid. In
addition, while this thesis has largely assumed that the physical and decision-making charac-
teristics of the settings we study are fully known and characterized, this is often not the case –
for instance, many decision-making processes involve humans rather than well-specified opti-
mization problems (see Chapter 5), dynamics models or robust control specifications may be
incorrect or oversimplified (see Chapters 7–8), or we may only have select information about
the underlying physics (as often the case in, e.g., accelerated materials science for clean tech-
nologies [But+18; Bai+18]). The challenge of building robust data-driven methods under
imperfect physical knowledge is thus, in practice, an extremely important direction of work.

In Part III, we showed how scalable implicit differentiation techniques, inspired by the deep
learning literature, can be used to address problems relevant to power systems policy and
operations. Specifically, we briefly explored the problem of “inverse optimal power flow” to
assess the vulnerability of private power grid data (Chapter 9). We also presented novel,
efficient methods for addressing the problems of stochastic optimal power flow and N-k
security-constrained optimal power flow, and demonstrated the efficacy of these methods
on realistic-scale systems (Chapter 10). The methods in Chapter 10, in particular, can be
directly employed today to enable the reliable operation of power systems under high re-
newables penetration and under correlated failures due to climate extremes. Our framework
of combining techniques from adversarial robustness with implicit differentiation techniques
may also be more broadly applicable to other power systems problems, as well as in ad-
ditional domains. Relevant future directions include developing better and more scalable
mechanisms for evaluating the solutions output by such methods (as, e.g., evaluating the ro-
bustness of a dispatch against billions of N-k scenarios can be prohibitively expensive, even
if the dispatch itself is inexpensive to obtain). In addition, developing distributed versions
of these methods may further facilitate scalable, decentralized power systems operations.

The work above fundamentally spans disciplines and sectors, underscoring the importance
of collaborations between (e.g.) machine learning researchers, power systems researchers,
system operators, and decision-makers – as well as the importance of mechanisms to foster
such collaborations. Overall, we hope this thesis demonstrates how bridging insights from
deep learning and electric power systems can help significantly advance methods in both
fields, while addressing high-impact problems of relevance to climate action.

163

164

References

[AKLH06] Murad Abu-Khalaf, Frank L Lewis, and Jie Huang. “Policy Iterations on
the Hamilton–Jacobi–Isaacs Equation for H∞ State Feedback Control with
Input Saturation.” IEEE Transactions on Automatic Control 51.12 (2006),
1989–1995.

[AE04] Ali Abur and Antonio Gomez Exposito. Power System State Estimation: The-
ory and Implementation. CRC press, 2004.

[Ach+17] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. “Constrained
Policy Optimization.” Proceedings of the 34th International Conference on
Machine Learning. 2017.

[Aga+22] Aayushya Agarwal, Priya L. Donti, J. Zico Kolter, and Larry Pileggi. “Em-
ploying Adversarial Robustness Techniques for Large-Scale Stochastic Opti-
mal Power Flow.” Power Systems Computation Conference (2022).

[APP21] Aayushya Agarwal, Amritanshu Pandey, and Larry Pileggi. “Fast AC Steady-
State Power Grid Simulation and Optimization Using Prior Knowledge.”
2021 IEEE Power & Energy Society General Meeting. IEEE. 2021, 1–5.

[Agr+19] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven
Diamond, and J Zico Kolter. “Differentiable convex optimization layers.”
Advances in Neural Information Processing Systems (NeurIPS). 2019.

[Aka+14] Anayo K. Akametalu, Shahab Kaynama, Jaime F. Fisac, Melanie Nicole
Zeilinger, Jeremy H. Gillula, and Claire J. Tomlin. “Reachability-based safe
learning with Gaussian processes.” 53rd IEEE Conference on Decision and
Control, CDC 2014. 2014.

[Akk+19] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob
McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, et al. “Solving Rubik’s Cube with a Robot Hand.” arXiv
preprint arXiv:1910.07113 (2019).

[AES08] Mohamed H Albadi and Ehab F El-Saadany. “A summary of demand response
in electricity markets.” Electric Power Systems Research 78.11 (2008), 1989–
1996.

[Alt99] Eitan Altman. Constrained Markov Decision Processes. Vol. 7. CRC Press,
1999.

165

[Amo+15] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared Casper,
Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg
Diamos, et al. “Deep speech 2: End-to-end speech recognition in English and
Mandarin.” arXiv preprint arXiv:1512.02595 (2015).

[AK17] Brandon Amos and J Zico Kolter. “OptNet: Differentiable optimization as a
layer in neural networks.” International Conference on Machine Learning.
2017, 136–145.

[AXK17] Brandon Amos, Lei Xu, and J Zico Kolter. “Input Convex Neural Networks.”
International Conference on Machine Learning. PMLR. 2017, 146–155.

[Ana17] Monitoring Analytics. 2017 State of the Market Report for PJM: Section 9:
Interchange Transactions. Tech. rep. Accessed: 2018-04-30. 2017.

[AZL18] James Anderson, Fengyu Zhou, and Steven H Low. “Disaggregation for
Networked Power Systems.” 2018 Power Systems Computation Conference
(PSCC). IEEE. 2018, 1–7.

[Ant+20] Ioannis Antonopoulos, Valentin Robu, Benoit Couraud, Desen Kirli, Sonam
Norbu, Aristides Kiprakis, David Flynn, Sergio Elizondo-Gonzalez, and Steve
Wattam. “Artificial intelligence and machine learning approaches to energy
demand-side response: A systematic review.” Renewable and Sustainable
Energy Reviews 130 (2020), 109899.

[ARP18] ARPA-E.Grid Optimization Competition: Datasets. https://gocompetition.
energy.gov/content/datasets. 2018.

[ARP19] ARPA-E. Grid Optimization (GO) Competition. https://gocompetition.
energy.gov/. 2019.

[ARP21] ARPA-E.Grid Optimization Competition: Datasets. https://gocompetition.
energy.gov/challenges/23/datasets. 2021.

[Arr+19] Adriano Arrigo, Christos Ordoudis, Jalal Kazempour, Zacharie de Grève,
Jean-François Toubeau, and François Vallée. “Optimal Power Flow Under
Uncertainty: An Extensive Out-of-Sample Analysis.” 2019 IEEE PES Inno-
vative Smart Grid Technologies Europe (ISGT-Europe). 2019, 1–5.

[Ast71] Karl J Astrom. Introduction to Stochastic Control Theory. Elsevier, 1971.

[ABP+18] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum,
and J Zico Kolter. “End-to-end differentiable physics for learning and control.”
Advances in Neural Information Processing Systems (NeurIPS). 2018.

[Aze+21] Inês Lima Azevedo, Priya L. Donti, Nathaniel C. Horner, Greg Schivley, Siler-
Evans Kyle, and Parth T. Vaishnav. Electricity Marginal Factor Estimates.
https://cedm.shinyapps.io/MarginalFactors/. Pittsburgh, PA USA,
2021.

[Bai+18] Junwen Bai, Yexiang Xue, Johan Bjorck, Ronan Le Bras, Brendan Rappazzo,
Richard Bernstein, Santosh K Suram, Robert Bruce Van Dover, John M Gre-
goire, and Carla P Gomes. “Phase Mapper: Accelerating Materials Discovery
with AI.” AI Magazine 39.1 (2018), 15–26.

[BKK19] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models.”
Advances in Neural Information Processing Systems (NeurIPS). 2019.

166

https://gocompetition.energy.gov/content/datasets
https://gocompetition.energy.gov/content/datasets
https://gocompetition.energy.gov/
https://gocompetition.energy.gov/
https://gocompetition.energy.gov/challenges/23/datasets
https://gocompetition.energy.gov/challenges/23/datasets
https://cedm.shinyapps.io/MarginalFactors/

[Bak19] Kyri Baker. “Learning warm-start points for AC optimal power flow.” 2019
IEEE 29th International Workshop on Machine Learning for Signal Processing
(MLSP). 2019, 1–6.

[Bak21] Kyri Baker. “Solutions of DC OPF are Never AC Feasible.” Proceedings of
the Twelfth ACM International Conference on Future Energy Systems. 2021,
264–268.

[Bak+17] Kyri Baker, Andrey Bernstein, Emiliano Dall’Anese, and Changhong Zhao.
“Network-cognizant voltage droop control for distribution grids.” IEEE Trans-
actions on Power Systems 33.2 (2017), 2098–2108.

[Bak+19] Jordan Bakke, Maire Boese, A Figueroa-Acevedo, B Heath, Y Li, J Okullo,
AJ Prabhakar, and CH Tsai. “Renewable Integration Impact Assessment:
The MISO Experience.” IAEE Energy Forum. 2019.

[BH13] J. Bank and J. Hambrick. “Development of a high resolution, real time,
distribution-level metering system and associated visualization modeling,
and data analysis functions” (2013). National Renewable Energy Laboratory,
Tech. Rep. NREL/TP-5500-56610.

[Ban+17] Somil Bansal, Roberto Calandra, Ted Xiao, Sergey Levine, and Claire J
Tomlin. “Goal-driven dynamics learning via Bayesian optimization.” 2017
IEEE 56th Annual Conference on Decision and Control (CDC). IEEE. 2017,
5168–5173.

[BW89] M. Baran and F. F. Wu. “Optimal sizing of capacitors placed on a radial
distribution system.” IEEE Transactions on Power Delivery 4.1 (1989), 735–
743.

[BB08] Tamer Başar and Pierre Bernhard. H∞-Optimal Control and Related Minimax
Design Problems: A Dynamic Game Approach. Springer Science & Business
Media, 2008.

[Bas14] T.S. Basso. IEEE 1547 and 2030 Standards for Distributed Energy Resources
Interconnection and Interoperability with the Electricity Grid. National Re-
newable Energy Laboratory, 2014.

[Bau96] Heinz H Bauschke. “Projection algorithms and monotone operators.” PhD
thesis. Dept. of Mathematics and Statistics, Simon Fraser University, 1996.

[BBM20] Mohammadhafez Bazrafshan, Kyri Baker, and Javad Mohammadi. “Compu-
tationally Efficient Solutions for Large-Scale Security-Constrained Optimal
Power Flow.” arXiv preprint arXiv:2006.00585 (2020).

[BTEGN09] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust Opti-
mization. Princeton University Press, 2009.

[Ben+21] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. “On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big?” FAccT. 2021.

[Ben97] Yoshua Bengio. “Using a financial training criterion rather than a prediction
criterion.” International Journal of Neural Systems 8.04 (1997), 433–443.

167

[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learning for
combinatorial optimization: A methodological tour d’horizon.” European
Journal of Operational Research 290.2 (2021), 405–421.

[Ber+17] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas
Krause. “Safe Model-based Reinforcement Learning with Stability Guaran-
tees.” Advances in Neural Information Processing Systems. 2017.

[BD17] Andrey Bernstein and Emiliano Dall’Anese. “Linear power-flow models in
multiphase distribution networks.” 2017 IEEE PES Innovative Smart Grid
Technologies Conference Europe (ISGT-Europe). IEEE. 2017, 1–6.

[Ber+18] Andrey Bernstein, Cong Wang, Emiliano Dall’Anese, Jean-Yves Le Boudec,
and Changhong Zhao. “Load flow in multiphase distribution networks: Exis-
tence, uniqueness, non-singularity and linear models.” IEEE Transactions on
Power Systems 33.6 (2018), 5832–5843.

[BBC11] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. “Theory
and applications of robust optimization.” SIAM review 53.3 (2011), 464–501.

[Beu+19] Tom Beucler, Stephan Rasp, Michael Pritchard, and Pierre Gentine. “Achiev-
ing conservation of energy in neural network emulators for climate model-
ing.” ICML 2019 Workshop: ”Climate Change: How Can AI Help?” (2019).

[BKV18] S. Bhela, V. Kekatos, and S. Veeramachaneni. “Enhancing Observability in
Distribution Grids using Smart Meter Data.” IEEE Transactions on Smart
Grid 9.6 (2018), 5953–5961. issn: 1949-3053.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern Recognition and
Machine Learning. Vol. 4. 4. Springer, 2006.

[BT95] Paul T Boggs and Jon W Tolle. “Sequential Quadratic Programming.” Acta
Numerica 4 (1995), 1–51.

[BD15] Saverio Bolognani and Florian Dörfler. “Fast power system analysis via
implicit linearization of the power flow manifold.” 2015 53rd Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE.
2015, 402–409.

[BCF12] Alex Bowen, Sarah Cochrane, and Samuel Fankhauser. “Climate change,
adaptation and economic growth.” Climatic change 113.2 (2012), 95–106.

[Boy+94] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakr-
ishnan. Linear Matrix Inequalities in System and Control Theory. Vol. 15.
Siam, 1994.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, 2004.

[Bre+01] Leo Breiman et al. “Statistical modeling: The two cultures (with comments
and a rejoinder by the author).” Statistical science 16.3 (2001), 199–231.

[Bur10] United States Census Bureau. Population Distribution Over Time. https://
www.census.gov/history/www/reference/maps/population_distribution_

over_time.html. Accessed: 2018-01-01. 2010.

168

https://www.census.gov/history/www/reference/maps/population_distribution_over_time.html
https://www.census.gov/history/www/reference/maps/population_distribution_over_time.html
https://www.census.gov/history/www/reference/maps/population_distribution_over_time.html

[Buş+18] Lucian Buşoniu, Tim de Bruin, Domagoj Tolić, Jens Kober, and Ivana
Palunko. “Reinforcement learning for control: Performance, stability, and
deep approximators.” Annual Reviews in Control 46 (2018), 8–28.

[BMB19] Enzo Busseti, Walaa M Moursi, and Stephen Boyd. “Solution refinement at
regular points of conic problems.” Computational Optimization and Applica-
tions 74.3 (2019), 627–643.

[But+18] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and
Aron Walsh. “Machine learning for molecular and materials science.” Nature
559.7715 (2018), 547–555.

[BS93] John A Buzacott and J George Shanthikumar. Stochastic models of manu-
facturing systems. Vol. 4. Prentice Hall Englewood Cliffs, NJ, 1993.

[CP10] Emmanuel J Candes and Yaniv Plan. “Matrix completion with noise.” Pro-
ceedings of the IEEE 98.6 (2010), 925–936.

[CR09] Emmanuel J Candès and Benjamin Recht. “Exact matrix completion via
convex optimization.” Foundations of Computational mathematics 9.6 (2009),
717–772.

[Car+11] Sanya Carley, Sara Lawrence, Adrienne Brown, Andrew Nourafshan, and
Elinor Benami. “Energy-based economic development.” Renewable and Sus-
tainable Energy Reviews 15.1 (2011), 282–295.

[Car+19] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Ku-
rakin. “On evaluating adversarial robustness.” arXiv preprint arXiv:1902.06705
(2019).

[CN13] Richard T Carson and Kevin Novan. “The private and social economics of bulk
electricity storage.” Journal of Environmental Economics and Management
66.3 (2013), 404–423.

[CSM18] Leonel de Magalhães Carvalho, Armando Martins Leite da Silva, and Vladimiro
Miranda. “Security-Constrained Optimal Power Flow via Cross-Entropy
Method.” IEEE Transactions on Power Systems 33.6 (2018), 6621–6629.

[Cen17] Center for Climate and Energy Solutions. Regulating Power Sector Carbon
Emissions. https://www.c2es.org/content/regulating-power-sector-
carbon-emissions/. Accessed: 2018-01-01. 2017.

[CRG19] Ya-Chien Chang, Nima Roohi, and Sicun Gao. “Neural Lyapunov Control.”
Advances in Neural Information Processing Systems. 2019, 3245–3254.

[Cha+20] Minas Chatzos, Ferdinando Fioretto, Terrence WK Mak, and Pascal Van
Hentenryck. “High-Fidelity Machine Learning Approximations of Large-Scale
Optimal Power Flow.” arXiv preprint arXiv:2006.16356 (2020).

[CLL19] Liang Che, Xuan Liu, and Zuyi Li. “Screening Hidden N-k Line Contingencies
in Smart Grids Using a Multi-Stage Model.” IEEE Transactions on Smart
Grid 10.2 (2019), 1280–1289.

[CCB19] Bingqing Chen, Zicheng Cai, and Mario Bergés. “Gnu-RL: A precocial rein-
forcement learning solution for building HVAC control using a Differentiable
MPC policy.” Proceedings of the 6th ACM International Conference on Sys-

169

https://www.c2es.org/content/regulating-power-sector-carbon-emissions/
https://www.c2es.org/content/regulating-power-sector-carbon-emissions/

tems for Energy-Efficient Buildings, Cities, and Transportation. 2019, 316–
325.

[Che+21] Bingqing Chen∗, Priya L. Donti∗, Kyri Baker, J. Zico Kolter, and Mario Bergés.
“Enforcing Policy Feasibility Constraints through Differentiable Projection
for Energy Optimization.” Proceedings of the Twelfth ACM International
Conference on Future Energy Systems. 2021, 199–210.

[Che+20a] Bingqing Chen, Jonathan Francis, Marco Pritoni, Soummya Kar, and Mario
Berg’es. “COHORT: Coordination of Heterogeneous Thermostatically Con-
trolled Loads for Demand Flexibility.” Proceedings of the 7th ACM Inter-
national Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation. 2020, 31–40.

[Che+20b] Bingqing Chen, Ming Jin, Zhe Wang, Tianzhen Hong, and Mario Bergés.
“Towards Off-policy Evaluation as a Prerequisite for Real-world Reinforcement
Learning in Building Control.” Proceedings of the 1st International Workshop
on Reinforcement Learning for Energy Management in Buildings & Cities.
2020, 52–56.

[Che+18] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud.
“Neural ordinary differential equations.” Advances in Neural Information
Processing Systems (NeurIPS). 2018.

[CHW22] Nicolas Christianson, Tinashe Handina, and AdamWierman. “Chasing convex
bodies and functions with black-box advice.” Conference on Learning Theory.
PMLR. 2022, 867–908.

[Cle11] Kevin A Clements. “The impact of pseudo-measurements on state estimator
accuracy.” 2011 IEEE Power and Energy Society General Meeting. IEEE.
2011, 1–4.

[CB+21] Peter Clutton-Brock∗, David Rolnick∗, Priya L. Donti∗, Lynn H. Kaack∗,
Tegan Maharaj, Alexandra Sasha Luccioni, Hari Prasanna Das, Cyrus Hodes,
Virginia Dignum, Marta Kwiatkowska, Raja Chatila, and Nicolas Miailhe.
Climate Change and AI: Recommendations for Government Action. Tech.
rep. Global Partnership on AI, 2021.

[Cof+18] Carleton Coffrin, Russell Bent, Kaarthik Sundar, Yeesian Ng, and Miles
Lubin. “PowerModels. JL: An Open-Source Framework for Exploring Power
Flow Formulations.” June 2018, 1–8.

[CW16] Taco Cohen and Max Welling. “Group equivariant convolutional networks.”
International Conference on Machine Learning (ICML). 2016.

[Cre16] Felix Creutzig. “Economic and ecological views on climate change mitigation
with bioenergy and negative emissions.” GCB Bioenergy 8.1 (2016), 4–10.

[DG+14] JA De Gouw, DD Parrish, GJ Frost, and M Trainer. “Reduced emissions of
CO2, NOx, and SO2 from US power plants owing to switch from coal to natural
gas with combined cycle technology.” Earth’s Future 2.2 (2014), 75–82.

[Deh+18] Kaveh Dehghanpour, Zhaoyu Wang, Jianhui Wang, Yuxuan Yuan, and
Fankun Bu. “A survey on state estimation techniques and challenges in smart
distribution systems.” IEEE Transactions on Smart Grid (2018).

170

[DHZ02] Youman Deng, Ying He, and Boming Zhang. “A branch-estimation-based
state estimation method for radial distribution systems.” IEEE Transactions
on power delivery 17.4 (2002), 1057–1062.

[DB16] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded modeling
language for convex optimization.” The Journal of Machine Learning Research
17.1 (2016), 2909–2913.

[DK17] Josip Djolonga and Andreas Krause. “Differentiable Learning of Submodular
Models.” Advances in Neural Information Processing Systems (NeurIPS).
2017.

[Dob+20] Roel Dobbe, Patricia Hidalgo-Gonzalez, Stavros Karagiannopoulos, Rodrigo
Henriquez-Auba, Gabriela Hug, Duncan S Callaway, and Claire J Tomlin.
“Learning to control in power systems: Design and analysis guidelines for
concrete safety problems.” Electric Power Systems Research 189 (2020),
106615.

[Don+20] Wenqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. “Smart-PGSim: Using
Neural Network to Accelerate AC-OPF Power Grid Simulation” (2020), 1–15.

[DR09] Asen L Dontchev and R Tyrrell Rockafellar. Implicit functions and solution
mappings. Vol. 543. Springer, 2009.

[Don+21a] Priya L. Donti∗, Aayushya Agarwal∗, Neeraj Vijay Bedmutha, Larry Pileggi,
and J. Zico Kolter. “Adversarially Robust Learning for Security-Constrained
Optimal Power Flow.” Advances in Neural Information Processing Systems
34 (2021), 28677–28689.

[DAK17] Priya L. Donti, Brandon Amos, and J. Zico Kolter. “Task-based End-to-End
Model Learning in Stochastic Optimization.” Advances in Neural Information
Processing Systems. 2017, 5490–5500.

[DAK18] Priya L. Donti, Inês Lima Azevedo, and J. Zico Kolter. “Inverse Optimal
Power Flow: Assessing the Vulnerability of Power Grid Data.” NeurIPS
Workshop on AI for Social Good (2018).

[DK21] Priya L. Donti and J. Zico Kolter. “Machine Learning for Sustainable Energy
Systems.” Annual Review of Environment and Resources 46 (2021), 719–747.

[DKA19] Priya L. Donti, J. Zico Kolter, and Inês Lima Azevedo. “How Much Are
We Saving After All? Characterizing the Effects of Commonly Varying
Assumptions on Emissions and Damage Estimates in PJM.” Environmental
Science & Technology 53.16 (2019), 9905–9914.

[Don+19] Priya L. Donti, Yajing Liu, Andreas J. Schmitt, Andrey Bernstein, Rui Yang,
and Yingchen Zhang. “Matrix Completion for Low-Observability Voltage
Estimation.” IEEE Transactions on Smart Grid 11.3 (2019), 2520–2530.

[Don+21b] Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter.
“Enforcing Robust Control Guarantees within Neural Network Policies.”
International Conference on Learning Representations. 2021.

[DRK21] Priya L. Donti∗, David Rolnick∗, and J. Zico Kolter. “DC3: A Learning
Method for Optimization with Hard Constraints.” International Conference
on Learning Representations. 2021.

171

[Drg+20] Ján Drgoňa, Javier Arroyo, Iago Cupeiro Figueroa, David Blum, Krzysztof
Arendt, Donghun Kim, Enric Perarnau Ollé, Juraj Oravec, Michael Wetter,
Draguna L Vrabie, et al. “All you need to know about model predictive
control for buildings.” Annual Reviews in Control (2020).

[DK08] Johan Driesen and Farid Katiraei. “Design for distributed energy resources.”
IEEE Power and Energy Magazine 6.3 (2008).

[Duv18] David Duvenaud. Course: Learning Discrete Latent Structure. https://
duvenaud.github.io/learn-discrete/. 2018.

[Dvo+14] Yury Dvorkin, Hrvoje Pandžić, Miguel A Ortega-Vazquez, and Daniel S
Kirschen. “A hybrid stochastic/interval approach to transmission-constrained
unit commitment.” IEEE Transactions on Power Systems 30.2 (2014), 621–
631.

[EG22] Adam N Elmachtoub and Paul Grigas. “Smart “predict, then optimize”.”
Management Science 68.1 (2022), 9–26.

[Fan+11] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. “Smart grid—The
new and improved power grid: A survey.” IEEE communications surveys &
tutorials 14.4 (2011), 944–980.

[Fan86] PO Fanger. “Thermal environment—Human requirements.” Environmentalist
6.4 (1986), 275–278.

[Fed15] Federal Energy Regulatory Commission. “Energy Primer: A Handbook of
Energy Market Basics.” Federal Energy Regulatory Commission: Washington,
DC, USA (2015).

[FAR09] Yantao Feng, Brian DO Anderson, and Michael Rotkowitz. “A game theoretic
algorithm to compute local stabilizing solutions to HJBI equations in nonlinear
H∞ control.” Automatica 45.4 (2009), 881–888.

[Fer+17] Nicholas EP Fernandez, Srinivas Katipamula, Weimin Wang, YuLong Xie,
Mingjie Zhao, and Charles D Corbin. Impacts of commercial building controls
on energy savings and peak load reduction. Tech. rep. Pacific Northwest
National Lab.(PNNL), Richland, WA (United States), 2017.

[FIN18] FINESCE. About FINESCE. http://www.finesce.eu/. Accessed: 2018-01-
01. Jan. 2018.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks” (2017), 1126–1135.

[FMVH20] Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. “Pre-
dicting AC optimal power flows: Combining deep learning and lagrangian
dual methods.” Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 01. 2020, 630–637.

[Fis+19] Jaime F Fisac, Neil F Lugovoy, Vicenç Rubies-Royo, Shromona Ghosh, and
Claire J Tomlin. “Bridging Hamilton-Jacobi safety analysis and reinforce-
ment learning.” 2019 International Conference on Robotics and Automation
(ICRA). IEEE. 2019, 8550–8556.

172

https://duvenaud.github.io/learn-discrete/
https://duvenaud.github.io/learn-discrete/
http://www.finesce.eu/

[FA17] Michael J Fisher and Jay Apt. “Emissions and Economics of Behind-the-
Meter Electricity Storage.” Environmental Science & Technology 51.3 (2017),
1094–1101.

[Fli+13] Stéphane Fliscounakis, Patrick Panciatici, Florin Capitanescu, and Louis
Wehenkel. “Contingency ranking with respect to overloads in very large power
systems taking into account uncertainty, preventive, and corrective actions.”
IEEE Transactions on Power Systems 28.4 (2013), 4909–4917.

[FNC20] Thomas Frerix, Matthias Nießner, and Daniel Cremers. “Homogeneous lin-
ear inequality constraints for neural network activations.” Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops. 2020, 748–749.

[FB17] Stefan R Friedrich and Martin Buss. “A robust stability approach to robot
reinforcement learning based on a parameterization of stabilizing controllers.”
2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2017, 3365–3372.

[Gao+16] Pengzhi Gao, Meng Wang, Scott G Ghiocel, Joe H Chow, Bruce Fardanesh,
and George Stefopoulos. “Missing data recovery by exploiting low-dimensionality
in power system synchrophasor measurements.” IEEE Transactions on Power
Systems 31.2 (2016), 1006–1013.

[GD20] Timnit Gebru and Emily Denton. Tutorial on Fairness Accountability Trans-
parency and Ethics in Computer Vision at CVPR 2020. https://sites.
google.com/view/fatecv-tutorial. 2020.

[Gen+18] C. Genes, I. Esnaola, S. M. Perlaza, L. F. Ochoa, and D. Coca. “Robust
Recovery of Missing Data in Electricity Distribution Systems.” IEEE Trans-
actions on Smart Grid (2018), 1–1. issn: 1949-3053.

[GAJ14] Nathaniel Gilbraith, Inês L Azevedo, and Paulina Jaramillo. “Evaluating
the Benefits of Commercial Building Energy Codes and Improving Federal
Incentives for Code Adoption.” Environmental Science & Technology 48.24
(2014), 14121–14130.

[Gla19] Mevludin Glavic. “(Deep) Reinforcement learning for electric power system
control and related problems: A short review and perspectives.” Annual
Reviews in Control 48 (2019), 22–35.

[Goo+16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning. Vol. 1. MIT Press Cambridge, 2016.

[GSS15] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining
and harnessing adversarial examples.” International Conference on Learning
Representations (2015).

[GYH15] Bram L Gorissen, İhsan Yanıkoğlu, and Dick den Hertog. “A practical guide
to robust optimization.” Omega 53 (2015), 124–137.

[Gou+16] Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo
Santa Cruz, and Edison Guo. “On differentiating parameterized argmin and
argmax problems with application to bi-level optimization.” arXiv preprint
arXiv:1607.05447 (2016).

173

https://sites.google.com/view/fatecv-tutorial
https://sites.google.com/view/fatecv-tutorial

[GHC21] Stephen Gould, Richard Hartley, and Dylan Campbell. “Deep declarative
networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence
44.8 (2021), 3988–4004.

[GZKM14] Joshua S Graff Zivin, Matthew J Kotchen, and Erin T Mansur. “Spatial
and temporal heterogeneity of marginal emissions: Implications for electric
cars and other electricity-shifting policies.” Journal of Economic Behavior &
Organization 107 (2014), 248–268.

[GJ14] Alex Graves and Navdeep Jaitly. “Towards End-To-End Speech Recognition
with Recurrent Neural Networks.” International Conference on Machine
Learning. Vol. 14. 2014, 1764–1772.

[GDY19] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. “Hamiltonian neural
networks.” Advances in Neural Information Processing Systems (NeurIPS).
2019.

[GW08] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM, 2008.

[Gro11] David Gross. “Recovering low-rank matrices from few coefficients in any
basis.” IEEE Transactions on Information Theory 57.3 (2011), 1548–1566.

[Guo+18] Yi Guo, Kyri Baker, Emiliano Dall’Anese, Zechun Hu, and Tyler Holt Sum-
mers. “Data-based Distributionally Robust Stochastic Optimal Power Flow -
Part I: Methodologies.” IEEE Transactions on Power Systems 34.2 (2018),
1483–1492.

[GKJ20] Sarthak Gupta, Vassilis Kekatos, and Ming Jin. “Deep Learning for Reactive
Power Control of Smart Inverters under Communication Constraints.” 2020
IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE. 2020, 1–6.

[HC11] Wassim M Haddad and VijaySekhar Chellaboina. Nonlinear Dynamical
Systems and Control: A Lyapunov-Based Approach. Princeton University
Press, 2011.

[Han+19] Minghao Han, Yuan Tian, Lixian Zhang, JunWang, andWei Pan. “H∞ Model-
free Reinforcement Learning with Robust Stability Guarantee.” CoRR (2019).

[HSK06] Ken Harada, Jun Sakuma, and Shigenobu Kobayashi. “Local search for
multiobjective function optimization: pareto descent method.” Proceedings of
the 8th Annual Conference on Genetic and Evolutionary Computation. ACM.
2006, 659–666.

[HKM20] Fouad Hasan, Amin Kargarian, and Ali Mohammadi. “A Survey on Appli-
cations of Machine Learning for Optimal Power Flow.” 2020 IEEE Texas
Power and Energy Conference (TPEC). IEEE. 2020, 1–6.

[Has+17] Saqib Hasan, Amin Ghafouri, Abhishek Dubey, Gabor Karsai, and Xenofon
Koutsoukos. “Heuristics-based approach for identifying critical N-k contin-
gencies in power systems.” 2017 Resilience Week (RWS). 2017, 191–197.

[HKM10] Tamir Hazan, Joseph Keshet, and David A McAllester. “Direct loss minimiza-
tion for structured prediction.” Advances in Neural Information Processing
Systems. 2010, 1594–1602.

174

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2016, 770–778.

[HAG16] Jinhyok Heo, Peter J Adams, and H Oliver Gao. “Reduced-form modeling of
public health impacts of inorganic PM2.5 and precursor emissions.” Atmo-
spheric Environment 137 (2016), 80–89.

[HA17] Eric Hittinger and Inês ML Azevedo. “Estimating the Quantity of Wind
and Solar Required To Displace Storage-Induced Emissions.” Environmental
Science & Technology 51.21 (2017), 12988–12997.

[HA15] Eric S Hittinger and Inês ML Azevedo. “Bulk Energy Storage Increases United
States Electricity System Emissions.” Environmental Science & Technology
49.5 (2015), 3203–3210.

[HL17] J Scott Holladay and Jacob LaRiviere. “The impact of cheap natural gas on
marginal emissions from electricity generation and implications for energy
policy.” Journal of Environmental Economics and Management 85 (2017),
205–227.

[Hol+21] Jesse Holzer, Carleton Coffrin, Christopher DeMarco, Ray Duthu, Stephen El-
bert, Scott Greene, Olga Kuchar, Bernard Lesieutre, Hanyue Li, Wai Keung
Mak, Hans Mittelmann, Richard O’Neill, Thomas Overbye, Ahmad Tbaileh,
Pascal Van Hentenryck, Arun Veeramany, and Jessica Wert. Grid Optimiza-
tion Competition Challenge 2 Problem Formulation. Tech. rep. ARPA-E, 2021.

[HCZ17] Shaoyun Hong, Haozhong Cheng, and Pingliang Zeng. “N-K Constrained
Composite Generation and Transmission Expansion Planning With Interval
Load.” IEEE Access 5 (2017), 2779–2789.

[Hor16] Nathaniel Charles Horner. “Powering the Information Age: Metrics, Social
Cost Optimization Strategies, and Indirect Effects Related to Data Center
Energy Use.” PhD thesis. Pittsburgh, PA: Carnegie Mellon University, 2016.

[Hu+13] Yao Hu, Debing Zhang, Jieping Ye, Xuelong Li, and Xiaofei He. “Fast and
accurate matrix completion via truncated nuclear norm regularization.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 35.9 (2013), 2117–
2130.

[IEE10a] IEEE. 37 node distribution test feeder. https://ewh.ieee.org/soc/pes/
dsacom/testfeeders/. 2010.

[IEE10b] IEEE. Resources: 123-bus Feeder. http://sites.ieee.org/pes-testfeeders/
files/2017/08/feeder123.zip. 2010.

[IEE20] IEEE. “IEEE Standard Conformance Test Procedures for Equipment Inter-
connecting Distributed Energy Resources with Electric Power Systems and
Associated Interfaces.” IEEE Std 1547.1-2020 (2020), 1–282.

[IEE22] IEEE PES Task Force on Benchmarks for Validation of Emerging Power
System Algorithms. Power Grid Lib - Optimal Power Flow. https://github.
com/power-grid-lib/pglib-opf. 2022.

175

https://ewh.ieee.org/soc/pes/dsacom/testfeeders/
https://ewh.ieee.org/soc/pes/dsacom/testfeeders/
http://sites.ieee.org/pes-testfeeders/files/2017/08/feeder123.zip
http://sites.ieee.org/pes-testfeeders/files/2017/08/feeder123.zip
https://github.com/power-grid-lib/pglib-opf
https://github.com/power-grid-lib/pglib-opf

[IS15] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating
deep network training by reducing internal covariate shift.” International
Conference on Machine Learning. PMLR. 2015, 448–456.

[IPC18] IPCC. Global warming of 1.5 ◦C. An IPCC special report on the impacts
of global warming of 1.5 ◦C above pre-industrial levels and related global
greenhouse gas emission pathways, in the context of strengthening the global
response to the threat of climate change, sustainable development, and efforts
to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts,
J. Skea, P.R. Shukla, A. Pirani, Y. Chen, S. Connors, M. Gomis, E. Lonnoy,
J. B. R. Matthews, W. Moufouma-Okia, C. Péan, R. Pidcock, N. Reay, M.
Tignor, T. Waterfield, X. Zhou (eds.)] 2018.

[IPC21] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L.
Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis,
M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T.
Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University
Press. 2021.

[IPC22a] IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Con-
tribution of Working Group II to the Sixth Assessment Report of the Inter-
governmental Panel on Climate Change [H.-O. P ortner, D.C. Roberts, E.S.
Poloczanska, K. Mintenbeck, M. Tignor, A. Alegŕıa, M. Craig, S. Langsdorf,
S. L oschke, V. M oller, A. Okem (eds.)]. Cambridge University Press. 2022.

[IPC22b] IPCC. Climate Change 2022: Mitigation of Climate Change. Contribution of
Working Group III to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie,
R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera,
M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge
University Press. 2022.

[Jab20] Rabih A. Jabr. “Distributionally Robust CVaR Constraints for Power Flow
Optimization.” IEEE Transactions on Power Systems 35.5 (2020), 3764–3773.

[Jad+17] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul,
Joel Z Leibo, David Silver, and Koray Kavukcuoglu. “Reinforcement learning
with unsupervised auxiliary tasks.” International Conference on Learning
Representations (2017).

[Jal+19] Mana Jalali, Vassilis Kekatos, Nikolaos Gatsis, and Deepjyoti Deka. “De-
signing reactive power control rules for smart inverters using support vector
machines.” IEEE Transactions on Smart Grid 11.2 (2019), 1759–1770.

[JZ16] Huaiguang Jiang and Yingchen Zhang. “Short-term distribution system
state forecast based on optimal synchrophasor sensor placement and extreme
learning machine.” 2016 IEEE Power and Energy Society General Meeting
(PESGM). IEEE. 2016, 1–5.

176

[JL20] Ming Jin and Javad Lavaei. “Stability-certified reinforcement learning: A
control-theoretic perspective.” IEEE Access 8 (2020), 229086–229100.

[JMP21] Wanxin Jin, Shaoshuai Mou, and George J Pappas. “Safe pontryagin differ-
entiable programming.” Advances in Neural Information Processing Systems
34 (2021), 16034–16050.

[Jin+20] Wanxin Jin, Zhaoran Wang, Zhuoran Yang, and Shaoshuai Mou. “Pontryagin
Differentiable Programming: An End-to-End Learning and Control Frame-
work.” Advances in Neural Information Processing Systems 33 (2020).

[JW16] Chengquan Ju and Peng Wang. “Optimal power flow with worst-case scenar-
ios considering uncertainties of loads and renewables.” 2016 International
Conference on Probabilistic Methods Applied to Power Systems (PMAPS).
IEEE. 2016, 1–7.

[Kaa+22] Lynn H. Kaack, Priya L. Donti, Emma Strubell, George Kamiya, Felix
Creutzig, and David Rolnick. “Aligning Artificial Intelligence with Climate
Change Mitigation.” Nature Climate Change (2022), 1–10.

[KML13] Daniel T Kaffine, Brannin J McBee, and Jozef Lieskovsky. “Emissions Savings
from Wind Power Generation in Texas.” The Energy Journal 34 (2013), 155–
175.

[KT16] P. Kaplunovich and K. Turitsyn. “Fast and Reliable Screening of N-2 Con-
tingencies.” IEEE Transactions on Power Systems 31.6 (2016), 4243–4252.

[KA16] Jeremy F Keen and Jay Apt. “Are high penetrations of commercial cogenera-
tion good for society?” Environmental Research Letters 11.12 (2016), 124014.

[KMO10] Raghunandan H Keshavan, Andrea Montanari, and Sewoong Oh. “Matrix
Completion from a Few Entries.” IEEE Transactions on Information Theory
56.6 (2010), 2980–2998.

[KG02] Hassan K Khalil and Jessy W Grizzle. Nonlinear Systems. Vol. 3. Prentice
Hall Upper Saddle River, NJ, 2002.

[KB15] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion.” International Conference on Learning Representations (2015).

[KS04] Daniel S Kirschen and Goran Strbac. “Fundamentals of Power System Eco-
nomics.” John Wiley & Sons, 2004. Chap. 6.

[KZ15] Cecilia Klauber and Hao Zhu. “Distribution system state estimation using
semidefinite programming.” 2015 North American Power Symposium (NAPS).
IEEE. 2015, 1–6.

[Kol13] J. Zico Kolter. Problem Set 3, Computational Methods for the Smart Grid.
https://www.cs.cmu.edu/~zkolter/course/15-884/assignments.html.
Oct. 2013.

[KDJ20] J. Zico Kolter, David Duvenaud, and Matthew Johnson. Tutorial: Deep
Implicit Layers - Neural ODEs, Deep Equilibirum Models, and Beyond. http:
//implicit-layers-tutorial.org/. Dec. 2020.

[KM18] J. Zico Kolter and Aleksander Madry. Adversarial Robustness - Theory and
Practice. https://adversarial-ml-tutorial.org/. Dec. 2018.

177

https://www.cs.cmu.edu/~zkolter/course/15-884/assignments.html
http://implicit-layers-tutorial.org/
http://implicit-layers-tutorial.org/
https://adversarial-ml-tutorial.org/

[KBM96] Mayuresh V Kothare, Venkataramanan Balakrishnan, and Manfred Morari.
“Robust constrained model predictive control using linear matrix inequalities.”
Automatica 32.10 (1996), 1361–1379.

[KL13] Slawomir Koziel and Leifur Leifsson. Surrogate-based modeling and optimiza-
tion. Springer, 2013.

[KP12] Steven G Krantz and Harold R Parks. The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2012.

[KRP13] Roman Kuiava, Rodrigo A Ramos, and Hemanshu R Pota. “A New Method
to Design Robust Power Oscillation Dampers for Distributed Synchronous
Generation Systems.” Journal of Dynamic Systems, Measurement, and Con-
trol 135.3 (2013).

[LBR16] Quang Linh Lam, Antoneta Iuliana Bratcu, and Delphine Riu. “Frequency
Robust Control in Stand-alone Microgrids with PV Sources: Design and
Sensitivity Analysis.” 2016.

[LeC+05] Yann LeCun, Urs Muller, Jan Ben, Eric Cosatto, and Beat Flepp. “Off-
road obstacle avoidance through end-to-end learning.” Conference on Neural
Information Processing Systems. 2005, 739–746.

[Lev+16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-end
training of deep visuomotor policies.” Journal of Machine Learning Research
17.39 (2016), 1–40.

[Li+18] Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier.
“NETT: Solving Inverse Problems with Deep Neural Networks.” arXiv preprint
arXiv:1803.00092 (2018).

[Li+17] Mo Li, Timothy M Smith, Yi Yang, and Elizabeth J Wilson. “Marginal Emis-
sion Factors Considering Renewables: A Case Study of the US Midcontinent
Independent System Operator (MISO) System.” Environmental Science &
Technology 51.19 (2017), 11215–11223.

[Lia82] TE Dy Liacco. “The role of state estimation in power system operation.”
IFAC Proceedings Volumes 15.4 (1982), 1531–1533.

[Lia+19] Mang Liao, Di Shi, Zhe Yu, Zhehan Yi, Zhiwei Wang, and Yingmeng Xiang.
“An alternating direction method of multipliers based approach for PMU
data recovery.” IEEE Transactions on Smart Grid 10.4 (2019), 4554–4565.

[LSW06] Jeff Linderoth, Alexander Shapiro, and Stephen Wright. “The empirical be-
havior of sampling methods for stochastic programming.” Annals of Opera-
tions Research 142.1 (2006), 215–241.

[LFK18] Chun Kai Ling, Fei Fang, and J Zico Kolter. “What Game Are We Playing?
End-to-end Learning in Normal and Extensive Form Games.” International
Joint Conference on Artificial Intelligence. 2018.

[LLW13] Derong Liu, Hongliang Li, and Ding Wang. “Neural-network-based zero-
sum game for discrete-time nonlinear systems via iterative adaptive dynamic
programming algorithm.” Neurocomputing 110 (2013), 92–100.

178

[Liu+18] Yuxiao Liu, Ning Zhang, Yi Wang, Jingwei Yang, and Chongqing Kang. “Data-
driven power flow linearization: A regression approach.” IEEE Transactions
on Smart Grid 10.3 (2018), 2569–2580.

[Lue+16] Roger Lueken, Kelly Klima, W Michael Griffin, and Jay Apt. “The climate
and health effects of a USA switch from coal to gas electricity generation.”
Energy 109 (2016), 1160–1166.

[LWH14] Biao Luo, Huai-Ning Wu, and Tingwen Huang. “Off-Policy Reinforcement
Learning for H∞ Control Design.” IEEE Transactions on Cybernetics 45.1
(2014), 65–76.

[Mad+18] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras,
and Adrian Vladu. “Towards Deep Learning Models Resistant to Adversarial
Attacks.” International Conference on Learning Representations. 2018.

[Man+12] Efthymios Manitsas, Ravindra Singh, Bikash C Pal, and Goran Strbac. “Dis-
tribution system state estimation using an artificial neural network approach
for pseudo measurement modeling.” IEEE Transactions on power systems
27.4 (2012), 1888–1896.

[MAT20] MATPOWER. case33bw. https://matpower.org/docs/ref/matpower6.
0/case33bw.html. 2020.

[McA18] James McAnany. 2017 Demand Response Operations Markets Activity Report:
April 2018. Tech. rep. 2018.

[MJU17] Michael T McCann, Kyong Hwan Jin, and Michael Unser. “A review of
convolutional neural networks for inverse problems in imaging.” IEEE Signal
Processing Magazine 34.6 (Nov. 2017), 85–95.

[MW09] Shaun D McRae and Frank A Wolak. “How do firms exercise unilateral
market power? Evidence from a bid-based wholesale electricity market.” EUI
RSCAS (2009).

[Meh+21] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and
Aram Galstyan. “A survey on bias and fairness in machine learning.” ACM
Computing Surveys (CSUR) 54.6 (2021), 1–35.

[MMD20] Ilyes Mezghani, Sidhant Misra, and Deepjyoti Deka. “Stochastic AC optimal
power flow: A data-driven approach.” Electric Power Systems Research 189
(2020), 106567.

[Mil+18] Federico Milano, Florian Dörfler, Gabriela Hug, David J Hill, and Gregor
Verbič. “Foundations and challenges of low-inertia systems.” 2018 Power
Systems Computation Conference (PSCC). IEEE. 2018, 1–25.

[MRN22] Sidhant Misra, Line Roald, and Yeesian Ng. “Learning for constrained opti-
mization: Identifying optimal active constraint sets.” INFORMS Journal on
Computing 34.1 (2022), 463–480.

[Mni+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, et al. “Human-level control through deep reinforce-
ment learning.” Nature 518.7540 (2015), 529–533.

179

https://matpower.org/docs/ref/matpower6.0/case33bw.html
https://matpower.org/docs/ref/matpower6.0/case33bw.html

[MGL17] Erfan Mohagheghi, Aouss Gabash, and Pu Li. “A framework for real-time
aunder wind energy penetration.” Energies 10.4 (2017), 535.

[MR18] Daniel K Molzahn and Line A Roald. “Towards an AC optimal power
flow algorithm with robust feasibility guarantees.” 2018 Power Systems
Computation Conference (PSCC). IEEE. 2018, 1–7.

[Mon17] Monitoring Analytics, LLC. State of the Market Report for PJM: Volume 2:
Detailed Analysis. Tech. rep. 2017.

[Mor21] Catherine Morehouse. “ERCOT releases plan to boost reliability after black-
outs, as report outlines gas, electric failures.” Utility Dive (July 14, 2021).
url: https://www.utilitydive.com/news/ercot-releases-plan-to-
boost- reliability- after- blackouts- as- report- outline/603263/

(visited on 10/25/2021).

[MSA14] Alexandre Moreira, Alexandre Street, and José M Arroyo. “An adjustable ro-
bust optimization approach for contingency-constrained transmission expan-
sion planning.” IEEE Transactions on Power Systems 30.4 (2014), 2013–2022.

[MD05] Jun Morimoto and Kenji Doya. “Robust Reinforcement Learning.” Neural
Computation 17.2 (2005), 335–359.

[Mos+20] T Moss, M Bazilian, M Blimpo, L Culver, J Kincer, M Mahadavan, V Modi,
B Muhwezi, R Mutiso, V Sivaram, et al. “The Modern Energy Minimum:
The Case for a New Global Electricity Consumption Threshold.” Energy for
Growth Hub (2020).

[Mos+16] Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon
Whiteson. “Multi-Objective Deep Reinforcement Learning.” arXiv preprint
arXiv:1610.02707 (2016).

[Müh+19] Tillmann Mühlpfordt, Line Roald, Veit Hagenmeyer, Timm Faulwasser, and
Sidhant Misra. “Chance-constrained AC optimal power flow: A polynomial
chaos approach.” IEEE Transactions on Power Systems 34.6 (2019), 4806–
4816.

[Mul14] Nicholas Z Muller. Toward the Measurement of Net Economic Welfare: Air
Pollution Damage in the US National Accounts–2002, 2005, 2008. Ed. by
Dale W. Jorgenson, J. Steven Landefeld, and Paul Schreyer. Chicago, IL:
University of Chicago Press, 2014, 429–459.

[Mur22] Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press,
2022.

[Mur19] Sinnott J Murphy. “Correlated Generator Failures and Power System Relia-
bility.” PhD thesis. Carnegie Mellon University, 2019.

[Nat17] National Academies of Sciences, Engineering, and Medicine. Enhancing the
resilience of the nation’s electricity system. National Academies Press, 2017.

[Nes13] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic
Course. Vol. 87. Springer Science & Business Media, 2013.

[NR+00] Andrew Y Ng, Stuart J Russell, et al. “Algorithms for inverse reinforcement
learning.” International Conference on Machine Learning. 2000, 663–670.

180

https://www.utilitydive.com/news/ercot-releases-plan-to-boost-reliability-after-blackouts-as-report-outline/603263/
https://www.utilitydive.com/news/ercot-releases-plan-to-boost-reliability-after-blackouts-as-report-outline/603263/

[NW06] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[PD11] Peter Palensky and Dietmar Dietrich. “Demand Side Management: Demand
Response, Intelligent Energy Systems, and Smart Loads.” IEEE Transactions
on Industrial Informatics 7.3 (2011), 381–388.

[Pan+20] Xiang Pan, Minghua Chen, Tianyu Zhao, and Steven H Low. “DeepOPF:
A feasibility-optimized deep neural network approach for AC optimal power
flow problems.” arXiv preprint arXiv:2007.01002 (2020).

[PPW19] Ioannis Panageas, Georgios Piliouras, and Xiao Wang. “First-order methods
almost always avoid saddle points: The case of vanishing step-sizes.” Confer-
ence on Neural Information Processing Systems 32 (2019).

[PAP20] Amritanshu Pandey, Aayushya Agarwal, and Larry Pileggi. “Incremental
Model Building Homotopy Approach for Solving Exact AC-Constrained
Optimal Power Flow.” arXiv preprint arXiv:2011.00587 (2020).

[Pan+18] Amritanshu Pandey, Marko Jereminov, Martin RWagner, David M Bromberg,
Gabriela Hug, and Larry Pileggi. “Robust power flow and three-phase power
flow analyses.” IEEE Transactions on Power Systems 34.1 (2018), 616–626.

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. “PyTorch: An imperative style, high-performance deep learning
library.” Advances in Neural Information Processing Systems (NeurIPS).
2019.

[PSM04] Jorge Pereira, JT Saraiva, and V Miranda. “An integrated load alloca-
tion/state estimation approach for distribution networks.” Probabilistic Meth-
ods Applied to Power Systems, 2004 International Conference on. IEEE. 2004,
180–185.

[PAW14] Kasun S Perera, Zeyar Aung, and Wei Lee Woon. “Machine learning tech-
niques for supporting renewable energy generation and integration: a survey.”
International Workshop on Data Analytics for Renewable Energy Integration.
Springer. 2014, 81–96.

[Per+16] Michael Pertl, Kai Heussen, Oliver Gehrke, and Michel Rezkalla. “Voltage
estimation in active distribution grids using neural networks.” 2016 IEEE
Power and Energy Society General Meeting (PESGM). IEEE. 2016, 1–5.

[PDMT18] Tu-Hoa Pham, Giovanni De Magistris, and Ryuki Tachibana. “Optlayer-
practical constrained optimization for deep reinforcement learning in the real
world.” 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2018, 6236–6243.

[Pil98] Lawrence Pillage. Electronic Circuit & System Simulation Methods (SRE).
McGraw-Hill, Inc., 1998.

[Pin+17] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. “Ro-
bust Adversarial Reinforcement Learning.” Proceedings of the 34th Interna-
tional Conference on Machine Learning. JMLR. org. 2017, 2817–2826.

181

[PJM17a] PJM. 2012-2016 CO2, SO2, and NOx Emission Rates. https://www.pjm.
com/~/media/library/reports-notices/special-reports/20170317-

2016-emissions-report.ashx. Accessed: 2018-01-01. 2017.

[PJM17b] PJM. Demand Response Strategy. https : / / www . pjm . com / ~ / media /

library/reports-notices/demand-response/20170628-pjm-demand-

response-strategy.ashx. Accessed: 2018-01-01. 2017.

[PJM17c] PJM. Generation Attribute Tracking System. https://gats.pjm-eis.com/
GATS2/PublicReports/PJMSystemMix. Accessed: 2018-01-01. 2017.

[PJM17d] PJM.Metered Load Data. http://www.pjm.com/markets-and-operations/
ops-analysis/historical-load-data.aspx. Accessed: 2018-01-01. 2017.

[PJM17e] PJM. PJM’s Evolving Resource Mix and System Reliability. https : / /

www.pjm.com/~/media/library/reports-notices/special-reports/

20170330- pjms- evolving- resource- mix- and- system- reliability.

ashx. Accessed: 2018-01-01. 2017.

[PJM18] PJM. 2017 PJM Annual Report. https://www.pjm.com/-/media/about-
pjm/newsroom/annual-reports/2017-annual-report.ashx. Accessed:
2019-03-31. 2018.

[PJM18] PJM. Data Miner 2: Real-Time Hourly LMPs. http://dataminer2.pjm.
com/feed/rt_hrl_lmps/definition. 2018.

[PL17] Anggoro Primadianto and Chan-Nan Lu. “A review on distribution system
state estimation.” IEEE Transactions on Power Systems 32.5 (2017), 3875–
3883.

[Pri+13] Samuel Privara, Jǐŕı Cigler, Zdeněk Váňa, Frauke Oldewurtel, Carina Sager-
schnig, and Eva Žáčeková. “Building modeling as a crucial part for building
predictive control.” Energy and Buildings 56 (2013), 8–22.

[RS20] Maithra Raghu and Eric Schmidt. “A survey of deep learning for scientific
discovery.” arXiv preprint arXiv:2003.11755 (2020).

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified defenses
against adversarial examples.” International Conference on Learning Repre-
sentations (2018).

[RF+21] Francisco Ralston Fonseca, Michael Craig, Paulina Jaramillo, Mario Bergés,
Edson Severnini, Aviva Loew, Haibo Zhai, Yifan Cheng, Bart Nijssen,
Nathalie Voisin, et al. “Climate-Induced Tradeoffs in Planning and Operat-
ing Costs of a Regional Electricity System.” Environmental Science & Tech-
nology 55.16 (2021), 11204–11215.

[Ram+12] Sarvapali D Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and Nicholas
R Jennings. “Putting the’smarts’ into the smart grid: a grand challenge for
artificial intelligence.” Communications of the ACM 55.4 (2012), 86–97.

[RA17] Line Roald and Göran Andersson. “Chance-constrained AC optimal power
flow: Reformulations and efficient algorithms.” IEEE Transactions on Power
Systems 33.3 (2017), 2906–2918.

182

https://www.pjm.com/~/media/library/reports-notices/special-reports/20170317-2016-emissions-report.ashx
https://www.pjm.com/~/media/library/reports-notices/special-reports/20170317-2016-emissions-report.ashx
https://www.pjm.com/~/media/library/reports-notices/special-reports/20170317-2016-emissions-report.ashx
https://www.pjm.com/~/media/library/reports-notices/demand-response/20170628-pjm-demand-response-strategy.ashx
https://www.pjm.com/~/media/library/reports-notices/demand-response/20170628-pjm-demand-response-strategy.ashx
https://www.pjm.com/~/media/library/reports-notices/demand-response/20170628-pjm-demand-response-strategy.ashx
https://gats.pjm-eis.com/GA TS2/PublicReports/PJMSystemMix
https://gats.pjm-eis.com/GA TS2/PublicReports/PJMSystemMix
http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx
http://www.pjm.com/markets-and-operations/ops-analysis/historical-load-data.aspx
https://www.pjm.com/~/media/library/reports-notices/special-reports/20170330-pjms-evolving-resource-mix-and-system-reliability.ashx
https://www.pjm.com/~/media/library/reports-notices/special-reports/20170330-pjms-evolving-resource-mix-and-system-reliability.ashx
https://www.pjm.com/~/media/library/reports-notices/special-reports/20170330-pjms-evolving-resource-mix-and-system-reliability.ashx
https://www.pjm.com/~/media/library/reports-notices/special-reports/20170330-pjms-evolving-resource-mix-and-system-reliability.ashx
https://www.pjm.com/-/media/about-pjm/newsroom/annual-reports/2017-annual-report.ashx
https://www.pjm.com/-/media/about-pjm/newsroom/annual-reports/2017-annual-report.ashx
http://dataminer2.pjm.com/feed/rt_hrl_lmps/definition
http://dataminer2.pjm.com/feed/rt_hrl_lmps/definition

[RW91] R Tyrrell Rockafellar and Roger J-B Wets. “Scenarios and policy aggregation
in optimization under uncertainty.” Mathematics of operations research 16.1
(1991), 119–147.

[Rol+22] David Rolnick, Priya L. Donti, Lynn H. Kaack, Kelly Kochanski, Alexan-
dre Lacoste, Kris Sankaran, Andrew Slavin Ross, Nikola Milojevic-Dupont,
Natasha Jaques, Anna Waldman-Brown, Alexandra Sasha Luccioni, Tegan
Maharaj, Evan D. Sherwin, S. Karthik Mukkavilli, Konrad P. Kording, Carla
P. Gomes, Andrew Y. Ng, Demis Hassabis, John C. Platt, Felix Creutzig,
Jennifer Chayes, and Yoshua Bengio. “Tackling Climate Change with Ma-
chine Learning.” ACM Computing Surveys 55.2 (Feb. 2022, preprint 2019).

[Rus10] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education,
Inc., 2010.

[Rut+22] Daan Rutten, Nico Christianson, Debankur Mukherjee, and Adam Wier-
man. “Online Optimization with Untrusted Predictions.” arXiv preprint
arXiv:2202.03519 (2022).

[RJK16] Nicole A Ryan, Jeremiah X Johnson, and Gregory A Keoleian. “Comparative
Assessment of Models and Methods To Calculate Grid Electricity Emissions.”
Environmental Science & Technology 50.17 (2016), 8937–8953.

[Rya+18] Nicole A Ryan, Jeremiah X Johnson, Gregory A Keoleian, and Geoffrey M
Lewis. “Decision Support Algorithm for Evaluating Carbon Dioxide Emissions
from Electricity Generation in the United States.” Journal of Industrial
Ecology 22.6 (2018), 1318–1330.

[Sch+17a] Greg Schivley, Adam Goldstein, Constantine Samaras, Ines L Azevedo, Haibo
Zhai, and H Scott Matthews. Power Sector Carbon Index: Data, Sources,
and Methods: Carnegie Mellon University. 2017.

[Sch+15] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. “High-dimensional continuous control using generalized advantage
estimation.” arXiv preprint arXiv:1506.02438 (2015).

[Sch+17b] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. “Proximal Policy Optimization Algorithms.” arXiv preprint arXiv:1707.06347
(2017).

[Sch+20] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. “Green AI.”
Communications of the ACM 63.12 (2020), 54–63.

[Sha+20] Sanket Shah, Sinha Arunesh, Varakantham Pradeep, Perrault Andrew, and
Tambe Milind. “Solving online threat screening games using constrained
action space reinforcement learning.” Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 34. 02. 2020, 2226–2235.

[SP07] Alexander Shapiro and Andy Philpott. “A Tutorial on Stochastic Program-
ming.” Manuscript. Available at www2. isye. gatech. edu/ ashapiro/

publications. html 17 (2007).

[SEAM12] Kyle Siler-Evans, Ines Lima Azevedo, and M Granger Morgan. “Marginal
Emissions Factors for the U.S. Electricity System.” Environmental Science &
Technology 46.9 (2012), 4742–4748.

183

www2. isye. gatech. edu/ashapiro/publications. html
www2. isye. gatech. edu/ashapiro/publications. html

[SE+13] Kyle Siler-Evans, Inês Lima Azevedo, M Granger Morgan, and Jay Apt.
“Regional variations in the health, environmental, and climate benefits of
wind and solar generation.” Proceedings of the National Academy of Sciences
110.29 (2013), 11768–11773.

[SWZ01] Carlos Silva, Bruce F Wollenberg, and Charles Z Zheng. “Application of
mechanism design to electric power markets (republished).” IEEE Transac-
tions on Power Systems 16.4 (2001), 862–869.

[Sil+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. “liGame of Go with Deep Neural
Networks and Tree Search.” Nature 529.7587 (2016), 484–489.

[SPV09] R. Singh, B. C. Pal, and R. B. Vinter. “Measurement Placement in Distribu-
tion System State Estimation.” IEEE Transactions on Power Systems 24.2
(2009), 668–675.

[Sin+20] Sumeet Singh, Spencer M Richards, Vikas Sindhwani, Jean-Jacques E Slo-
tine, and Marco Pavone. “Learning Stabilizable Nonlinear Dynamics with
Contraction-Based Regularization.” The International Journal of Robotics
Research (2020), 0278364920949931.

[Son+16] Yang Song, Alexander G Schwing, Richard S Zemel, and Raquel Urtasun.
“Training deep neural networks via direct loss minimization.” Proceedings of
The 33rd International Conference on Machine Learning. 2016, 2169–2177.

[SHG+12] Siddharth Sridhar, Adam Hahn, Manimaran Govindarasu, et al. “Cyber-
Physical System Security for the Electric Power Grid.” Proceedings of the
IEEE 100.1 (2012), 210–224.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural networks
from overfitting.” Journal of Machine Learning Research 15.1 (2014), 1929–
1958.

[Ste+20] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. “OSQP: an
operator splitting solver for quadratic programs.” Mathematical Programming
Computation 12.4 (2020), 637–672.

[Sto19] Liam Stoker. “National Grid ESO probing power cuts following sudden genera-
tion collapse.” Current± (Aug. 10, 2019). url: https://www.current-news.
co.uk/news/national- grid- eso- probing- power- cuts- following-

sudden-generation-collapse (visited on 10/25/2021).

[SRE11] Veselin Stoyanov, Alexander Ropson, and Jason Eisner. “Empirical risk min-
imization of graphical model parameters given approximate inference, decod-
ing, and model structure.” International Conference on Artificial Intelligence
and Statistics 15 (2011), 725–733. issn: 15324435.

[Str+20] N. Stringer, A. Bruce, I. MacGill, N. Haghdadi, P. Kilby, J. Mills, T. Vei-
jalainen, M. Armitage, and N. Wilmot. “Consumer-Led Transition: Aus-
tralia’s World-Leading Distributed Energy Resource Integration Efforts.”

184

https://www.current-news.co.uk/news/national-grid-eso-probing-power-cuts-following-sudden-generation-collapse
https://www.current-news.co.uk/news/national-grid-eso-probing-power-cuts-following-sudden-generation-collapse
https://www.current-news.co.uk/news/national-grid-eso-probing-power-cuts-following-sudden-generation-collapse

IEEE Power and Energy Magazine 18.6 (2020), 20–36. doi: 10.1109/MPE.
2020.3014720.

[SGM19] Emma Strubell, Ananya Ganesh, and Andrew McCallum. “Energy and policy
considerations for deep learning in NLP.” Annual Meeting of the Association
for Computational Linguistics (2019).

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 2018.

[TD18] Majid Alkaee Taleghan and Thomas G. Dietterich. “Efficient Exploration for
Constrained MDPs.” 2018 AAAI Spring Symposia. 2018.

[Tam+16] Aviv Tamar, Sergey Levine, Pieter Abbeel, YI WU, and Garrett Thomas.
“Value iteration networks.” Advances in Neural Information Processing Sys-
tems. 2016, 2146–2154.

[Tam+15] Mili-Ann M Tamayao, Jeremy J Michalek, Chris Hendrickson, and Inês
M.L. Azevedo. “Regional Variability and Uncertainty of Electric Vehicle Life
Cycle CO2 Emissions across the United States.” Environmental Science &
Technology 49.14 (2015), 8844–8855.

[Ted09] Russ Tedrake. “Underactuated robotics: Learning, planning, and control
for efficient and agile machines course notes for MIT 6.832.” Working draft
edition 3 (2009).

[Thi+17] Maninder PS Thind, Elizabeth J Wilson, Inês L Azevedo, and Julian D
Marshall. “Marginal Emissions Factors for Electricity Generation in the
Midcontinent ISO.” Environmental Science & Technology 51.24 (2017), 14445–
14452.

[Tho+06] Ryan W Thomas, Daniel H Friend, Luiz A Dasilva, and Allen B Mackenzie.
“Cognitive networks: Adaptation and learning to achieve end-to-end perfor-
mance objectives.” IEEE Communications Magazine 44.12 (2006), 51–57.

[TH12] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude.” COURSERA: Neural
networks for machine learning 4.2 (2012), 26–31.

[TCC11] C-C Tsao, JE Campbell, and Yihsu Chen. “When renewable portfolio stan-
dards meet cap-and-trade regulations in the electricity sector: Market inter-
actions, profits implications, and policy redundancy.” Energy Policy 39.7
(2011), 3966–3974.

[TSK18] Sebastian Tschiatschek, Aytunc Sahin, and Andreas Krause. “Differentiable
submodular maximization.” International Joint Conference on Artificial
Intelligence. 2018, 2731–2738.

[TA16] Maria Lorena Tuballa and Michael Lochinvar Abundo. “A review of the
development of Smart Grid technologies.” Renewable and Sustainable Energy
Reviews 59 (2016), 710–725.

[TBK16] Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. “Safe Exploration
in Finite Markov Decision Processes with Gaussian Processes.” Advances in
Neural Information Processing Systems. 2016.

185

https://doi.org/10.1109/MPE.2020.3014720
https://doi.org/10.1109/MPE.2020.3014720

[Uni12a] United States Census Bureau. Households and Families. https://www.
census.gov/prod/cen2010/briefs/c2010br-14.pdf. Accessed: 2018-01-
01. 2012.

[Uni12b] United States Energy Information Administration. Emissions allowance
prices for SO2 and NOx remained low in 2011. https://www.eia.gov/
todayinenergy/detail.php?id=4830. Accessed: 2018-01-01. 2012.

[Uni17a] United States Energy Information Administration. U.S. Energy Mapping
System. https://www.eia.gov/state/maps.php. Accessed: 2018-01-01.
2017.

[Uni17b] United States Energy Information Administration. What are the greenhouse
gas and air pollutant emissions factors for fuels and electricity? https://www.

eia.gov/tools/faqs/faq.php?id=76&t=11. Accessed: 2018-01-01. 2017.

[Uni09] United States Environmental Protection Agency. Plain English Guide to the
Part 75 Rule. Tech. rep. June 2009.

[Uni17c] United States Environmental Protection Agency. AVoided Emissions and gen-
eRation Tool (AVERT) User Manual, Version 1.6. https://www.epa.gov/
sites/production/files/2017-07/documents/avert_user_manual_07-

31-17_508.pdf. Accessed: 2018-01-01. 2017.

[Uni17d] United States Environmental Protection Agency. National Emissions In-
ventory (NEI). https://www.epa.gov/air- emissions- inventories/
national-emissions-inventory-nei. Nov. 2017.

[Uni18] United States Environmental Protection Agency. n Air Markets Program
Data. https://campd.epa.gov/. 2018.

[Uni16a] United States Interagency Working Group on Social Cost of Greenhouse
Gases. Technical Update of the Social Cost of Carbon for Regulatory Impact
Analysis Under Executive Order 12866. Tech. rep. 2016.

[Uni16b] United States Supreme Court. Federal Energy Regulatory Commission v.
Electric Power Supply Association et al. Volume 577, no. 14-840. Jan. 2016.

[VMN14] Kristof Van Moffaert and Ann Nowé. “Multi-objective reinforcement learning
using sets of pareto dominating policies.” Journal of Machine Learning
Research 15.1 (2014), 3483–3512.

[Vic19] David G. Victor. How artificial intelligence will affect the future of energy
and climate. https://www.brookings.edu/research/how-artificial-
intelligence- will- affect- the- future- of- energy- and- climate/.
2019.

[VM06] Alexandra Von Meier. Electric Power Systems: A Conceptual Introduction.
Wiley Online Library, 2006.

[Vra+13] Maria Vrakopoulou, Kostas Margellos, John Lygeros, and Göran Andersson.
“A Probabilistic Framework for Reserve Scheduling and N − 1 Security As-
sessment of Systems With High Wind Power Penetration.” IEEE Transac-
tions on Power Systems 28.4 (2013), 3885–3896.

186

https://www.census.gov/prod/cen2010/briefs/c2010br-14.pdf
https://www.census.gov/prod/cen2010/briefs/c2010br-14.pdf
https://www.eia.gov/todayinenergy/detail.php?id=4830
https://www.eia.gov/todayinenergy/detail.php?id=4830
https://www.eia.gov/state/maps.php
https://www.eia.gov/tools/faqs/faq.php?id=76&t=11
https://www.eia.gov/tools/faqs/faq.php?id=76&t=11
https://www.epa.gov/sites/production/files/2017-07/documents/avert_user_manual_07-31-17_508.pdf
https://www.epa.gov/sites/production/files/2017-07/documents/avert_user_manual_07-31-17_508.pdf
https://www.epa.gov/sites/production/files/2017-07/documents/avert_user_manual_07-31-17_508.pdf
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://www.epa.gov/air-emissions-inventories/national-emissions-inventory-nei
https://campd.epa.gov/
https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/
https://www.brookings.edu/research/how-artificial-intelligence-will-affect-the-future-of-energy-and-climate/

[Wac+18] Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. “Safe Exploration
and Optimization of Constrained MDPs Using Gaussian Processes.” Proceed-
ings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1. 2018.

[WB06] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming.”
Mathematical programming 106.1 (2006), 25–57.

[Wal+08] Rahul Walawalkar, Seth Blumsack, Jay Apt, and Stephen Fernands. “An
economic welfare analysis of demand response in the PJM electricity market.”
Energy Policy 36.10 (2008), 3692–3702.

[WF03] Stein W Wallace and Stein-Erik Fleten. “Stochastic programming models
in energy.” Handbooks in operations research and management science 10
(2003), 637–677.

[WBB11] Kai Wang, Boris Babenko, and Serge Belongie. “End-to-end scene text
recognition.” Computer Vision (ICCV), 2011 IEEE International Conference
on. IEEE. 2011, 1457–1464.

[Wan+19] Po-Wei Wang, Priya L. Donti, Bryan Wilder, and J. Zico Kolter. “SATNet:
Bridging Deep Learning and Logical Reasoning using a Differentiable Satisfi-
ability Solver.” International Conference on Machine Learning. 2019.

[WWG13] Qianfan Wang, Jean-Paul Watson, and Yongpei Guan. “Two-stage robust op-
timization for N-k contingency-constrained unit commitment.” IEEE Trans-
actions on Power Systems 28.3 (2013), 2366–2375.

[Wan+12] Tao Wang, David J Wu, Adam Coates, and Andrew Y Ng. “End-to-end
text recognition with convolutional neural networks.” Pattern Recognition
(ICPR), 2012 21st International Conference on. IEEE. 2012, 3304–3308.

[Wat03] David Watts. “Security and vulnerability in electric power systems.” 35th
North American power symposium. Vol. 2. 2003, 559–566.

[Wei+15] Allison Weis, Jeremy J Michalek, Paulina Jaramillo, and Roger Lueken.
“Emissions and Cost Implications of Controlled Electric Vehicle Charging in
the U.S. PJM Interconnection.” Environmental Science & Technology 49.9
(2015), 5813–5819.

[WWD14] Marco A Wiering, Maikel Withagen, and Mădălina M Drugan. “Model-based
multi-objective reinforcement learning.” Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), 2014 IEEE Symposium on. IEEE. 2014,
1–6.

[WM08] Stephen Wilcox and William Marion. Users manual for TMY3 data sets.
National Renewable Energy Laboratory Golden, CO, 2008.

[WDT18] BryanWilder, Bistra Dilkina, and Milind Tambe. “Melding the Data-Decisions
Pipeline: Decision-Focused Learning for Combinatorial Optimization.” AAAI
Conference on Artificial Intelligence. 2018.

[Wil+20] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Ku-
mar. “Integrating physics-based modeling with machine learning: A survey.”
arXiv preprint arXiv:2003.04919 (2020).

187

[Wol03] Frank A Wolak. “Measuring Unilateral Market Power in Wholesale Electricity
Markets: The California Market, 1998-2000.” American Economic Review
93.2 (2003), 425–430.

[WK18] Eric Wong and Zico Kolter. “Provable defenses against adversarial examples
via the convex outer adversarial polytope.” International Conference on
Machine Learning. PMLR. 2018, 5286–5295.

[Won+18] Eric Wong, Frank R Schmidt, Jan Hendrik Metzen, and J Zico Kolter.
“Scaling provable adversarial defenses.” Proceedings of the 32nd International
Conference on Neural Information Processing Systems. 2018, 8410–8419.

[WWS14] Allen J. Wood, Bruce F. Wollenberg, and Gerald B. Sheblé. “Optimal Power
Flow.” Power generation, operation, and control. John Wiley & Sons, 2014.
Chap. 8, 350–402.

[WL13] Huai-Ning Wu and Biao Luo. “Simultaneous policy update algorithms for
learning the solution of linear continuous-time H∞ state feedback control.”
Information Sciences 222 (2013), 472–485.

[WHJ13] Jianzhong Wu, Yan He, and Nick Jenkins. “A robust state estimator for
medium voltage distribution networks.” IEEE Transactions on Power Systems
28.2 (2013), 1008–1016.

[Xu+20] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and
Anil K Jain. “Adversarial attacks and defenses in images, graphs and text: A
review.” International Journal of Automation and Computing 17.2 (2020),
151–178.

[Yan+21] Mingyu Yan, Mohammad Shahidehpour, Aleksi Paaso, Liuxi Zhang, Ahmed
Alabdulwahab, and Abdullah Abusorrah. “A Convex Three-Stage SCOPF
Approach to Power System Flexibility With Unified Power Flow Controllers.”
IEEE Transactions on Power Systems 36.3 (2021), 1947–1960. doi: 10.1109/
TPWRS.2020.3036653.

[Yan+12] Ye Yan, Yi Qian, Hamid Sharif, and David Tipper. “A survey on cyber
security for smart grid communications.” IEEE Communications Surveys
and tutorials 14.4 (2012), 998–1010.

[YN20] Haoxiang Yang and Harsha Nagarajan. “Optimal power flow in distribution
networks under stochastic N-1 disruptions.” Electric Power Systems Research
189 (2020), 106689.

[Yan+20] Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ra-
madge. “Projection-Based Constrained Policy Optimization.” International
Conference on Learning Representations. 2020.

[YZZ01] David D Yao, Shuzhong Zhang, and Xun Yu Zhou. “A primal-dual semi-
definite programming approach to linear quadratic control.” IEEE Transac-
tions on Automatic Control 46.9 (2001), 1442–1447.

[Yua+16] Ye Yuan, Omid Ardakanian, Steven Low, and Claire Tomlin. “On the Inverse
Power Flow Problem.” arXiv preprint arXiv:1610.06631 (2016).

[Yuk+16] Tugce Yuksel, Mili-Ann M Tamayao, Chris Hendrickson, Inês ML Azevedo,
and Jeremy J Michalek. “Effect of regional grid mix, driving patterns and

188

https://doi.org/10.1109/TPWRS.2020.3036653
https://doi.org/10.1109/TPWRS.2020.3036653

climate on the comparative carbon footprint of gasoline and plug-in electric
vehicles in the United States.” Environmental Research Letters 11.4 (2016),
044007.

[ZB20] Ahmed S Zamzam and Kyri Baker. “Learning optimal solutions for extremely
fast AC optimal power flow.” 2020 IEEE International Conference on Com-
munications, Control, and Computing Technologies for Smart Grids (Smart-
GridComm). IEEE. 2020, 1–6.

[ZHB20] Kaiqing Zhang, Bin Hu, and Tamer Basar. “Policy Optimization forH2 Linear
Control with H∞ Robustness Guarantee: Implicit Regularization and Global
Convergence.” Learning for Dynamics and Control. PMLR. 2020, 179–190.

[Zha+15] Xiao Zhang, Gabriela Hug, Zico Kolter, and Iiro Harjunkoski. “Industrial
demand response by steel plants with spinning reserve provision.” North
American Power Symposium (NAPS) (2015), 1–6.

[ZL18] Zhiang Zhang and Khee Poh Lam. “Practical Implementation and Evalu-
ation of Deep Reinforcement Learning Control for a Radiant Heating Sys-
tem.” Proceedings of the 5th Conference on Systems for Built Environments.
BuildSys ’18. ACM, 2018, 148–157. isbn: 978-1-4503-5951-1.

[ZZQ19] Zidong Zhang, Dongxia Zhang, and Robert C Qiu. “Deep reinforcement
learning for power system applications: An overview.” CSEE Journal of
Power and Energy Systems 6.1 (2019), 213–225.

[Zha+17] Lin Zhao, Wei Zhang, He Hao, and Karanjit Kalsi. “A geometric approach
to aggregate flexibility modeling of thermostatically controlled loads.” IEEE
Transactions on Power Systems 32.6 (2017), 4721–4731.

[ZD98] Kemin Zhou and John Comstock Doyle. Essentials of Robust Control. Vol. 104.
Prentice hall Upper Saddle River, NJ, 1998.

[ZV06] William T Ziemba and Raymond G Vickson. Stochastic optimization models
in finance. Vol. 1. World Scientific, 2006.

[ZMSG97] Ray D Zimmerman, Carlos E Murillo-Sánchez, and Deqiang Gan. “MAT-
POWER: A MATLAB power system simulation package.” Manual, Power
Systems Engineering Research Center, Ithaca NY 1 (1997).

[ZC15] Marco Zugno and Antonio J Conejo. “A robust optimization approach to
energy and reserve dispatch in electricity markets.” European Journal of
Operational Research 247.2 (2015), 659–671.

189

190

Appendices

191

Appendix A
Assessing Emissions and Damage Factors in
PJM

Here, we provide additional detail on the data, assumptions, and results presented in
Chapter 3: “Assessing Emissions and Damage Factors in PJM.”

A.1 Discussion of National Emissions Inventory data

As described in Section 3.2.1, the EPA’s National Emissions Inventory (NEI) reports primary
annual PM2.5 emissions for a subset of PJM fossil generators, but only for the years 2008,
2011, and 2014. We use this NEI data to calculate generator-specific emissions rates for
generators in NEI; there were 142, 145, and 43 PJM generators represented in NEI 2008,
2011, and 2014, respectively (out of 1017 generators associated with PJM in eGRID 2011).
For the PJM generators not represented in NEI, we apply average by-fuel-type emissions
rates calculated using all United States generators included in NEI (i.e. using the 789, 786,
and 432 US generators included in NEI 2008, 2011, and 2014, respectively).

We use the rates calculated from the 2008, 2011, and 2014 NEIs for the years 2006-
2010, 2011-2013, and 2014-2017, respectively. However, it is possible that plant PM2.5 rates
may change somewhat from year to year, depending on plant operation levels. To assess
this effect, we compared PM2.5 rates for plants in PJM and the United States as a whole
between the three NEI years available. Our analysis shows that average plant PM2.5 rates
do not change statistically significantly over time, where this average is over all NEI plants
in PJM or the United States (Tables A.1–A.2). Since we used average rates for most plants
in our analysis, this result indicates that our analysis is likely not affected by changes in
average rates over time. However, PM2.5 rates for specific plants may change over time
(Figure A.1). Therefore, the availability of more individual plant-level data would allow us
to slightly increase the accuracy of our results.

193

Table A.1: Average PM2.5 rates for plants in PJM that are represented in all of NEI 2008, 2011, and 2014
(39 plants). We see that changes over time in mean PM2.5 rates are not statistically significant for this
small sample of PJM plants.

Year Average plant PM2.5 rate (kg/MWh)

2008 0.21 ± 0.29
2011 0.1 ± 0.12
2014 0.09 ± 0.1

Table A.2: Average PM2.5 rates for plants in the United States in each NEI year (over 789, 786, and
432 plants for NEI 2008, 2011, and 2014, respectively). Standard deviations are too large to plot on the
graph, so are shown in the table. We see that changes over time in mean PM2.5 rates are not statistically
significant, though rates for individual plants may potentially change over time.

Year Overall Biomass Coal Gas Oil

2008 0.15 ± 0.55 0.25 ± 0.36 0.19 ± 0.54 0.11 ± 0.57 0.15 ± 0.14
2011 0.13 ± 0.61 0.21 ± 0.36 0.15 ± 0.31 0.09 ± 0.53 0.81 ± 2.86
2014 0.13 ± 0.61 0.1 ± 0.28 0.07 ± 0.19 0.02 ± 0.03

A.2 Information on damage models

We employ data from two models to estimate the damages from electricity generation in
PJM, namely AP2 [Mul14] and EASIUR [HAG16].

AP2 is an integrated assessment model that estimates social costs to human health,
agriculture, forests, man-made structures, and recreation from SO2, NOx, PM2.5, PM10,
NH3, and VOCs (in 2000$/short ton). AP2 is based on a Gaussian dispersion model called
the Climatological Regional Dispersion Model (CRDM).

EASIUR is a regression-based model that estimates human health damages from PM2.5,
SO2, NOx, and NH3 emissions (in 2010$/metric ton). EASIUR is based on simulations
from the chemical transport model CAMx and employs an “average plume” population
exposure assumption.

Given marginal emissions produced at a specific location and height, both models predict
the induced primary or secondary PM2.5 concentrations. These concentrations are translated
to monetary damages using a dose-response model and a value of statistical life (VSL). AP2
is available for emissions and population data years of 1999, 2002, 2005, 2008, and 2011, and
employs a VSL of $6 million. EASIUR employs data from 2005 and a VSL of $8.8 million.

For model comparability, we use unmodified outputs from EASIUR and modified outputs
from AP2. Specifically, AP2 outputs were scaled by 8.8/6 to employ the same VSL as
EASIUR, converted to 2010$ using a multiplier of 1.27, and converted from short tons to
metric tons.

Further, since AP2 outputs are available for multiple years, we employ linear interpolation
between the reported damages for 2005, 2008, and 2011 to calculate damage intensities
for the years 2006-2011. For years 2012 and later, we employ 2011 damage intensities

194

2014/2011 2011/2008 2014/2008
NEI comparison year/NEI base year

10 2

10 1

100

101

Ra
tio

 b
et

we
en

 p
la

nt
 P

M
2.

5
ra

te
s (

lo
g

sc
al

e)

2014/2011 2011/2008 2014/2008

Number of plants 42 142 39
Mean ratio 1.59 1.19 1.13
Std dev. of ratio 2.52 1.37 1.00
Min ratio 0.11 0.01 0.02
25th percentile ratio 0.64 0.44 0.30
50th percentile (median) ratio 0.97 0.89 0.95
75th percentile ratio 1.24 1.33 1.43
Max ratio 14.30 11.69 3.79

Figure A.1: Summary statistics for ratios of individual plant PM2.5 rates between NEI years. Ratios
necessarily include only plants represented in both NEI years considered.

(as more recent damage intensity estimates are not publicly available). We suspect that
our damage estimates for 2011 and later are therefore underestimates of true damages,
theoretically because the marginal damage of any unit of pollution increases as the air
gets cleaner (due to the shape of the concentration-response curves used for human health
damage assessments) and practically because damage intensities increased between 2008
and 2011 (so we would expect them to continue increasing). For EASIUR, we apply the
reported 2005 outputs in all years.

We match each fossil generator in CEMS to its damage intensity in each model using
generator locations from eGRID and generator stack height data from EIA Form 860. Stack
heights were not available for many fossil generators, and were estimated where needed
via a linear regression on generator capacity, age, and fuel type. AP2, which we use for
our main analysis in Chapter 3, predicts one damage intensity per year. Since EASIUR
predicts different damage intensities by season, for comparability, these were averaged at
the generator level to get a generator-specific annual damage intensity for each of SO2,
NOx, and PM2.5. For context regarding the potential effects of this averaging, we report
the seasonal variability of EASIUR aggregated damage intensities in Table A.3.

For each hour, we then multiply each generator’s CEMS-reported SO2, NOx, and

195

Table A.3: Ratio of EASIUR seasonal damage intensity to annual average damage intensity. The PJM
states used are those completely contained within PJM territory: Delaware, Maryland, New Jersey, Ohio,
Pennsylvania, Virginia, and West Virginia.

SO2 NOx PM2.5

Fall 0.72 1.29 0.90
Winter 0.76 1.13 1.01
Spring 1.25 1.14 1.01
Summer 1.26 0.44 1.07

(a) National

SO2 NOx PM2.5

Fall 0.65 1.28 0.89
Winter 0.62 1.13 1.04
Spring 1.35 1.16 1.01
Summer 1.38 0.43 1.06

(b) PJM states

PM2.5 emissions by the relevant generator-specific damage factors. These hourly damages are
then aggregated to the PJM level for use in the calculations described in Sections 3.2.2–3.2.3.

A.3 Results under EASIUR

A.3.1 Annual and monthly emissions factors over time

Annual and monthly total damage factors under EASIUR (including CO2, SO2, NOx, and
PM2.5) are shown in Figure A.2.

A.3.2 Intra-annual variability in emissions and damage factors

Monthly TOD total damage factors under EASIUR (including CO2, SO2, NOx, and PM2.5)
are shown in Figure A.3.

A.3.3 Effects of a building-level lighting intervention

Figure A.4a shows annual damages avoided for the simple building-level lighting intervention
described in Section 3.3.3 (a 100W reduction between 8pm-midnight every day in 2017)
under the EASIUR damage model. We note the following results for damage factors under
EASIUR (which were not previously reported). As a reminder, our baseline is marginal
monthly TOD fossil+non-emitting damage factors (for PJM in 2017).

• Estimates for the health, environmental, and climate change damages avoided range
from $4-10 depending on the factor used (with a baseline estimate of $7).

• The average fossil+non-emitting counterpart to the baseline underestimates damage
reductions by 41%, and the average fossil-only counterpart to the baseline overesti-
mates damage reductions by 1%.

• Outdated 2016 monthly TOD fossil+non-emitting MEFs overestimate total damages
avoided by 30% compared to their 2017 counterpart (i.e. the baseline).

196

'06 '08 '10 '12 '14 '16
Year

0

50

100

150

200

Da
m

ag
e

fa
ct

or
 ($

/M
W

h)

PJM (fossil-only) (MEF)
PJM (fossil-only) (AEF)

RFC (fossil-only) (MEF)
RFC (fossil-only) (AEF)

PJM (fossil+non-emitting) (MEF)
PJM (fossil+non-emitting) (AEF)

'06 '08 '10 '12 '14 '16
Month/Year

0

50

100

150

200

Da
m

ag
e

fa
ct

or
 ($

/M
W

h)

Figure A.2: Annual (top) and monthly (bottom) average and marginal factors over time for total damages
under the EASIUR damage model (i.e., health damages from SO2, NOx, and PM2.5, and climate change
damages from CO2 in 2010 dollars) in PJM and RFC. Error bars for marginal factors (narrow) represent
regression standard errors and do not reflect the uncertainty in the underlying data. Caption entries are
defined as in Figure 3.2.

197

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)
PJM

(fossil+non-emit)

0 10 20

Jan

PJM
(fossil-only)

0 10 20

RFC
(fossil-only)

0 10 200

50

100

150

PJM
(fossil+non-emit)

0 10 20

Feb

PJM
(fossil-only)

0 10 20

RFC
(fossil-only)

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

Mar

0 10 20 0 10 200

50

100

150

0 10 20

Apr

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

May

0 10 20 0 10 200

50

100

150

0 10 20

Jun

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

Jul

0 10 20 0 10 200

50

100

150

0 10 20

Aug

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20

Sep

0 10 20 0 10 200

50

100

150

0 10 20

Oct

0 10 20

0 10 200

50

100

150

Da
m

ag
e

fa
ct

or
($

/M
W

h)

0 10 20
Hour of day (UTC-5)

Nov

0 10 20 0 10 200

50

100

150

0 10 20
Hour of day (UTC-5)

Dec

0 10 20

Average Marginal
.

Figure A.3: Monthly time of day total damage factors under the EASIUR damage model (incorporating
health and climate change damages for CO2, SO2, NOx, and PM2.5, in 2010 dollars), in all months of 2017.
Error bars for marginal factors represent regression standard errors and do not reflect the uncertainty in
the underlying data. PJM (fossil+non-emitting), PJM (fossil-only), and RFC (fossil-only) are as defined in
Figure 3.2.

198

Marginal Average
0
2
4
6
8

10
To

ta
l d

am
ag

es
av

oi
de

d
($

)
PJM (fossil-only)

CO2 SO2 NOx PM2.5

Marginal Average

PJM (fossil+non-emit 2016)

Annual Monthly Monthly TOD
Marginal Average

*
PJM (fossil+non-emit)

Marginal Average

Pollutants:
Temporal scopes:

RFC (fossil-only)

(a) Total annual damages avoided for a 2017 nighttime building level lighting intervention in PJM
that induces a daily 100W reduction from 8pm to midnight.

Marginal Average
0

1

2

3

4

To
ta

l d
am

ag
es

av
oi

de
d

($
 m

ill
io

ns
) PJM (fossil-only)

CO2 SO2 NOx PM2.5

Marginal Average

PJM (fossil+non-emit 2016)

Annual Monthly
Marginal Average

*
PJM (fossil+non-emit)

Marginal Average

Pollutants:
Temporal scopes:

RFC (fossil-only)

(b) Total damages avoided for 2017 PJM historical demand response, assuming complete load
shedding.

Marginal Average
0.0
2.5
5.0
7.5

10.0
12.5

To
ta

l d
am

ag
es

($
 b

ill
io

ns
)

PJM (fossil-only)

CO2 SO2 NOx PM2.5

Marginal Average

PJM (fossil+non-emit 2016)

Annual Monthly Monthly TOD Hourly
Marginal Average

*

PJM (fossil+non-emit)

Marginal Average

Pollutants:
Temporal scopes:

RFC (fossil-only)

(c) Total damages from 2017 PJM summer metered load (June-August). As we do not estimate
hourly-level marginal factors, and since hourly level 2016 factors should not be applied to 2017, we
omit hourly-level estimates in these cases.

Figure A.4: Effects of interventions and loads evaluated as assessed with damage factors under the EASIUR
damage model (incorporating health and climate change damages for CO2, SO2, NOx, and PM2.5, in 2010
dollars). Baseline factor effects are indicated with an asterisk. Error bars (narrow) represent propagated
regression standard errors. PJM (fossil-only), PJM (fossil+non-emitting), PJM (fossil+non-emitting 2016),
and RFC (fossil-only) are as defined in Figure 3.4.

199

• The distinctions between PJM and RFC factor assessments are within 8% (comparing
both the fossil+non-emitting baseline and its fossil-only counterpart to the RFC,
fossil-only counterpart to the baseline).

• Using the PJM fossil-only counterpart to the baseline yields an estimate 3% higher
than with the baseline fossil+non-emitting marginal factor.

• The distinction between annual, monthly, and monthly TOD factors yields differences
in assessments of less than 4%.

A.3.4 Effects of historical demand response

Assuming complete load shedding under the historical demand response profile shown in
Figure 3.5, Figure A.4b shows the damages avoided by 2017 demand response in PJM (as
described in Section 3.3.4) under the EASIUR damage model. We note the following results
for damage factors under EASIUR (which were not previously reported). As a reminder,
our baseline is marginal monthly fossil+non-emitting damage factors (for PJM in 2017).

• Estimates for the health, environmental, and climate change damages avoided range
from $1.8 to $3.9 million depending on the factor used (with a baseline estimate of
$3.2 million).

• The average fossil+non-emitting counterparts to the baseline underestimate total
damages avoided by 43%, and the average fossil-only counterparts to the baseline
underestimate damage reductions by 2%.

• Outdated 2016 monthly fossil+non-emitting MEFs overestimate total damages avoided
by 19% compared to their 2017 counterpart (i.e. the baseline).

• The RFC counterpart to the EASIUR baseline overestimates total damages avoided
by 9% compared to the baseline.

• The distinctions between annual vs. monthly factors and fossil-only vs. fossil+non-
emitting factors lead to differences in estimates of under 1%.

A.3.5 Effects of historical summer load

Figure A.4c shows the damages produced by summer load in PJM (June-August 2017, as
described in Section 3.3.5) under the EASIUR damage model. We note the following results
for damages under EASIUR (which were not previously reported). As a reminder, our
baseline is average monthly TOD fossil+non-emitting damage factors (for PJM in 2017).

• Estimates for the health, environmental, and climate change damages of summer load
range from $6.4 to $13 billion depending on the factor used (with a baseline estimate
of $6.5 billion).

• The fossil-only counterparts to the baseline overestimate damages avoided by 64%.

• The marginal monthly TOD counterparts to the baseline overestimate total damages
by 70%.

200

Table A.4: Damages avoided ($ millions) for 2017 PJM historical demand response, assuming the extreme
case where all reported reductions are actually load shifts from the hour with the highest damage factors
to the hour with the lowest damage factors. This assessment was performed separately for each of total,
CO2-only, SO2-only, NOx-only, and PM2.5-only factors under the AP2 and EASIUR damage models, using
PJM fossil+non-emitting monthly TOD marginal factors for 2017.

Total damage factor CO2-only SO2-only NOx-only PM2.5-only

AP2 7.09 ±1.14 0.59 ±0.06 6.67 ±1.14 0.53 ±0.08 0.32 ±0.04
EASIUR 4.4 ±0.58 0.59 ±0.06 3.9 ±0.61 0.34 ±0.04 0.32 ±0.03

A.4 Sensitivity analysis for historical demand response

The demand response results reported in Sections 3.3.4 and A.3.4 do not account for load
shifting but instead assume complete load shedding. To understand the impact of this
assumption, we assess the potential damage effects of an extreme load shifting scenario.
That is, we analyze the extreme case in which all DR reductions PJM reports are actually
load shifts from the hour with the highest damage factors to the hour with the lowest
damage factors within each month (as estimated by using monthly TOD factors). We
perform this assessment separately for each of total, CO2-only, SO2-only, NOx-only, and
PM2.5-only factors under the AP2 and EASIUR damage models, using PJM fossil+non-
emitting monthly TOD marginal factors for 2017. The results of this analysis are shown in
Table A.4. We find that under total AP2 damage factors, this extreme-case load-shifting
would lead to $7.09 million in damages avoided. (For context, our previously-reported
baseline estimate for damages avoided under complete load shedding was $3.7 million under
monthly factors.) By the same argument, however, shifting load to the hour with the highest
damage factors from the hour with the lowest damage factors within each month would lead
to $7.09 million in damages incurred. As such, load shifting can have a large impact on DR
assessments, warranting the release of more granular data to enable accurate assessments.

A.5 Comparison to PJM-published emissions factors

PJM has published estimates for its annual and monthly marginal on-peak, marginal off-
peak, and system average emissions rates for CO2, SO2, and NOx from 2012-16 [PJM17a]. To
calculate marginal emissions rates, PJM first estimates generator-specific annual emissions
rates for all PJM generators using PJM generation data as well as emissions data from
sources including CEMS and eGRID. For each five-minute interval, PJM then identifies
which generators are marginal (which is market-sensitive information), and then calculates
the marginal emissions rate for that five-minute interval as the mean emissions rate for all
marginal generators. These five-minute marginal emissions rates are then averaged to the
monthly or annual levels.

We compare PJM’s marginal and average factor estimates to those we obtained via the
methods described in Chapter 3. Specifically, we compare PJM’s marginal on- and off-peak
estimates to our fossil-only MEFs, as we do not distinguish between on- and off-peak hours

201

Table A.5: Percent difference of PJM’s published (on-peak and off-peak) annual marginal emissions factors
from our annual marginal emissions factor estimates for CO2, SO2, and NOx in each year from 2012-16.

CO2 SO2 NOx
Year

On-peak Off-peak On-peak Off-peak On-peak Off-peak

2012 -1 -9 -8 -14 -2 -24

2013 11 14 27 9 29 10

2014 11 15 71 103 30 29

2015 9 2 22 26 41 14

2016 9 0 -4 -20 38 7

when calculating our annual and monthly factors. We also compare PJM’s system average
emissions rates to our fossil+non-emitting AEFs, as PJM’s average rates include nuclear
and renewable sources [PJM17c]. A plot of these factors at the annual and monthly levels
is shown in Figures A.5–A.7, with PJM’s factors (originally reported in lb/MWh) converted
to units of kg/MWh.

At the annual level, both PJM’s marginal on- and off-peak estimates overall exceed our
MEF estimates from 2012-16. Specifically, PJM’s marginal off-peak estimates for CO2, SO2,
and NOx exceed our MEF estimates by a mean of 4%, 21%, and 7%, respectively, in these
years. PJM’s on-peak estimates for CO2, SO2, and NOx exceed our MEF estimates by a
mean of 8%, 21%, and 27%, respectively. However, the relationship between our factors
and PJM’s published factors is not consistent across all years (see Table A.5). Qualitatively,
PJM’s published monthly-level marginal factors demonstrate significantly more intra-annual
variability than ours, especially for SO2 and NOx.

We compare average factor estimates for 2016, as this is the only full year from 2012-16
for which PJM data was publicly available for us to calculate fossil+non-emitting AEFs. In
2016, PJM’s average factors for CO2, SO2, and NOx exceeded our AEF estimates by 6%,
70%, and 20%, respectively. Qualitatively, PJM’s CO2 monthly average factors demonstrate
similar intra-annual variability to ours, whereas PJM’s SO2 and NOx monthly factors vary
significantly more than ours.

202

'12 '14 '16
Year

0

200

400

600

800

Em
iss

io
ns

 fa
ct

or
(k

g/
M

W
h)

Ours (fossil-only) (MEF)
Ours (fossil+non-emitting) (AEF)

PJM on-peak (MEF)
PJM (AEF)

PJM off-peak (MEF)

'12 '14 '16
Month/Year

0

200

400

600

800

Em
iss

io
ns

 fa
ct

or
(k

g/
M

W
h)

Figure A.5: Annual and monthly average and marginal factors over time for CO2 as estimated using our
method and as published by PJM. Error bars for our marginal factors (narrow) represent regression standard
errors; no uncertainty was reported for PJM’s published factors. Ours (fossil-only) (MEF) = our marginal
emissions factor estimates using only fossil fuel generation in PJM; Ours (fossil+non-emitting) (AEF) =
our average emissions factor estimates using fossil fuel and non-emitting generation in PJM; PJM on-peak
(MEF) = PJM’s published on-peak marginal emissions factors; PJM off-peak (MEF) = PJM’s published
off-peak marginal emissions factors; PJM (AEF) = PJM’s published system average emissions factors.

203

'12 '14 '16
Year

0

1

2

3

4

5

6

Em
iss

io
ns

 fa
ct

or
(k

g/
M

W
h)

Ours (fossil-only) (MEF)
Ours (fossil+non-emitting) (AEF)

PJM on-peak (MEF)
PJM (AEF)

PJM off-peak (MEF)

'12 '14 '16
Month/Year

0

1

2

3

4

5

6

Em
iss

io
ns

 fa
ct

or
(k

g/
M

W
h)

Figure A.6: Annual and monthly average and marginal factors over time for SO2 as estimated using our
method and as published by PJM. Error bars for our marginal factors (narrow) represent regression standard
errors; no uncertainty was reported for PJM’s published factors. Caption entries are as defined in Figure A.5.

204

'12 '14 '16
Year

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Em
iss

io
ns

 fa
ct

or
(k

g/
M

W
h)

Ours (fossil-only) (MEF)
Ours (fossil+non-emitting) (AEF)

PJM on-peak (MEF)
PJM (AEF)

PJM off-peak (MEF)

'12 '14 '16
Month/Year

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Em
iss

io
ns

 fa
ct

or
(k

g/
M

W
h)

Figure A.7: Annual and monthly average and marginal factors over time for NOx as estimated using our
method and as published by PJM. Error bars for our marginal factors (narrow) represent regression standard
errors; no uncertainty was reported for PJM’s published factors. Caption entries are as defined in Figure A.5.

205

206

Appendix B
Approximating Optimization Problems with
Hard Constraints

B.1 Details of DC3 for ACOPF

This section provides additional details on we apply DC3 (Chapter 6) to the problem of
ACOPF.

B.1.1 Problem setting

We consider the problem of ACOPF defined in Section 6.4.3.
Let B denote the overall set of buses (i.e., nodes in the power network). In any instance

of ACOPF there exists a set D ⊆ B of load (demand) buses at which pg and qg are identically
zero, as well as a set R ⊆ B of reference (slack) buses at which pg and qg are potentially
nonzero, and where the voltage angle ∠v is known. Let G = B \ (D ∪R) be the remaining
generator buses at which pg and qg are potentially nonzero, but where the voltage angle ∠v
is not known.

Then, we may rewrite Equation (6.7) as follows, where v ≡ |v|ei∠v and W ≡ Wr +Wii:

minimize
pg ,qg ,|v|,∠v∈R|B|

pTg diag(cq)pg + cTa pg (B.1a)

subject to pmin
g ≤ pg ≤ pmax

g (B.1b)

qmin
g ≤ qg ≤ qmax

g (B.1c)

vmin ≤ |v| ≤ vmax (B.1d)

(∠v)R = ϕslack (B.1e)

(pg)D = (qg)D = 0 (B.1f)

pg − pd − diag(vr)(Wrvr −Wivi)− diag(vi)(Wivr +Wrvi) = 0 (B.1g)

qg − qd + diag(vr)(Wivr +Wrvi)− diag(vi)(Wrvr −Wivi) = 0 (B.1h)

where vr = |v| cos(∠v) and vi = |v| sin(∠v)

207

(While we write the problem in this form to minimize notation, in practice, some of the
constraints in the above problem – e.g., (B.1b), (B.1c), and (B.1f) – can be condensed.)

B.1.2 Overall approach

As pointed out in [ZB20], given pd, qd, (pg)G and |v|B\D, the remaining variables (pg)R,
(qg)B\D, |v|D, and (∠v)B\R can be recovered via the power flow equations (B.1g)–(B.1h).

As such, our implementation of DC3 may be outlined as follows.

• Input: x =
[
pTd qTd

]T
. (The constant ∠vR is fixed across problem instances.)

• Neural network: Output α ∈ [0, 1]|G| and β ∈ [0, 1]|B|−|D| (applying a sigmoid to
the final layer of the network), and compute:

(pg)G = α(pmin
g)G + (1− α)(pmax

g)G,

|v|B\D = βvmin
B\D + (1− β)vmax

B\D.

(In other words, output a partial set of variables, and enforce box constraints on this
set of variables via sigmoids in the neural network.)

• Completion procedure: Given z =
[
(pg)

T
G |v|TB\D

]T
, solve Equations (B.1g)–(B.1h)

for the remaining quantities (pg)R, (qg)B\D, |v|D, and (∠v)B\R as described below.

Output all decision variables y =
[
(pg)

T
G (qg)

T
G |v|T (∠v)T

]T
.

• Correction procedure: Correct y using the gradient-based feasibility correction
procedure described in Section 6.3.2.

• Backpropagate: Compute the loss and backpropagate as described below to update
neural network parameters. Repeat until convergence.

We now describe the forward and backward passes through the completion procedure,
where we have introduced several “tricks” that significantly reduce the computational cost,
including some that are specific to the ACOPF setting.

For ease of notation throughout, we will let J ∈ R1+2|B| denote the Jacobian of the
equality constraints (B.1e)–(B.1h) with respect to the complete vector y of decision variables.
This matrix, which we pre-compute, will be useful throughout our computations.

B.1.3 Solving the completion

The neural network outputs (pg)G and |v|B\D are the inputs to the completion procedure.
Theoretically, we could use Newton’s method to solve for all additional variables from
the equality constraints. However, in practice we find that solving for all variables using
Newton’s method is sometimes unstable. Fortunately, we can divide the completion
procedure into two substeps, where Step 1 invokes Newton’s method to identify some of
the variables, while Step 2 solves in closed form for the others. This greatly improves the
stability of the completion procedure.

208

Step 1. Compute |v|D, (∠v)B\R via Newton’s method using real power flow constraints (B.1g)
at buses B \ R, and reactive power constraints (B.1h) at buses D (note that the number of
equations matches the number of variables being identified). We initialize Newton’s method
by fixing variables determined by the neural network and those already determined in Step
1 of the completion process, and initializing |v|D, (∠v)B\R at generic initial values (these are
provided in the ACOPF task setup and are typically used to initialize state-of-the-art solvers).
Note that the remaining variables, those determined in Step 2 of the completion process, do
not actually appear in the relevant equality constraints and therefore do not need to be set.

Let J Step 1 denote the submatrix of J corresponding to the equality constraints (B.1g)B\R
and (B.1h)D and the voltage variables |v|D and (∠v)B\R that we are solving in this step.
At the tth step of Newton’s method, let h Step 1(t) ∈ R|B|−|R|+|D| denote the vector of values
on the left-hand side of the relevant equality constraints (which we wish to equal identically
zero), evaluated at the current setting of all problem variables. Our Newton’s method
updates are then [

|v|D
(∠v)B\R

]
t+1

=

[
|v|D

(∠v)B\R

]
t

− J−1
Step 1 hStep 1(t). (B.2)

Step 2. Compute the remaining variables (pg)R and (qg)B\D via the remaining equality
constraints – that is, the real power flow equations (B.1g) at buses R and the reactive
power flow questions (B.1h) at buses in B \ D.

Steps 1 and 2 together allow us to complete all the decision variables.

B.1.4 Backpropagating through the completion

Let z denote the input to the completion procedure and let z1 and z2 denote the variables
respectively derived during Steps 1 and 2 of completion. That is:

z ≡
[
(pg)G
|v|B\D

]
, z1 ≡

[
|v|D

(∠v)B\R

]
, z2 ≡

[
(pg)R
(qg)B\D

]
.

Then, we wish to backpropagate gradients of an arbitrary loss function ℓ(x, z, z1, z2),
both in order to train our neural network and to perform our gradient-based correction
procedure. That is, we must compute the total derivative dℓ/dz given the partial derivatives
∂ℓ/∂z, ∂ℓ/∂z1, and ∂ℓ/∂z2.

Applying the chain rule through the two steps of the completion procedure, we have:

dℓ

dz
=

∂ℓ

∂z
+

∂ℓ

∂z1

∂z1
∂z

+
∂ℓ

∂z2

∂z2
∂z

+
∂ℓ

∂z2

∂z2
∂z1

∂z1
∂z

. (B.3)

We now consider each of these terms in this equality, except for ∂ℓ/∂z, ∂ℓ/∂z1, ∂ℓ/∂z2,
which we may assume have already been computed.

209

Step 2. Let J Step 2 denote the submatrix of J corresponding to the partial derivatives
of the equality constraints used in Step 2 with respect to the voltage variables |v|T , (∠v)T .
Then, we have:

∂
[
(pg)

T
R (qg)

T
B\D
]T

∂
[
|v|T (∠v)T

]T = −J Step 2. (B.4)

As
∂(qg)B\D
∂(pg)G

= 0, this gives us both the terms ∂z2/∂z1, ∂z2/∂z in (B.3).

Step 1. Consider the total differential through the equality constraints (B.1g)B\R and (B.1h)D,
where all terms besides Wr and Wi are viewed as parameters through which to differentiate.
We rearrange this total differential to put differentials of input quantities to Step 1 on one
side and differentials of outputs from Step 1 on the other side:

J Step 1

[
d(|v|)D

d(∠v)B\R

]
=

[
−d(pg)B\R + d(pd)B\R

d(qd)D

]
− J Step 1b

[
d|v|B\D
d(∠v)R

]
, (B.5)

where J Step 1 is as in the forward pass of Step 1, and JStep 1b denotes the submatrix of J
corresponding to the equality constraints (B.1g)B\R and (B.1h)D and the voltage variables
(|v|)B\D, (∠v)R.

While we could compute

[
d|v|D

d(∠v)B\R

]
explicitly, we can improve efficiency by not

computing and storing a large intermediate Jacobian explicitly. Instead, we can directly
compute what we need, which is the product of this Jacobian with matrices of smaller
dimensions. Define

K ≡
(

∂ℓ

∂z1
+

∂ℓ

∂z2

∂z2
∂z1

)
J−1
Step 1,

using our computation (B.4) above to evaluate ∂z2/∂z1. Note furthermore that J−1
Step 1

was already computed in the forward pass, meaning that we do not need to perform an
additional matrix inversion.

Now, we can use (B.5) to derive:

(
∂ℓ

∂z1
+

∂ℓ

∂z2

∂z2
∂z1

)
dz1 = K

([
−d(pg)B\R + d(pd)B\R

d(qd)D

]
− JStep 1b

[
d(|v|)B\D
d(∠v)R

])
,

which gives us
∂ℓ

∂z1

∂z1
∂z

+
∂ℓ

∂z2

∂z2
∂z1

∂z1
∂z

.

Putting it all together. Combining our logic described above for Steps 2 and 1, we can
recover all terms in (B.3) and therefore identify dℓ/dz.

210

Appendix C
Enforcing Robust Control Guarantees within
Neural Network Policies

C.1 Details on robust control specifications

As described in Section 7.3.1, for many dynamical systems of the form (7.1), it is possible
to specify a set of linear, time-invariant policies guaranteeing infinite-horizon exponential
stability via a set of LMIs. Here, we derive the LMI (7.4) provided in the main text
for the NLDI system (7.3), and additionally describe relevant LMI systems for systems
characterized by polytopic linear differential inclusions (PLDIs) and for H∞ control settings.

C.1.1 Exponential stability in NLDIs

Consider the general NLDI system (7.3). We seek to design a time-invariant control policy
u(t) = Kx(t) and a quadratic Lyapunov function V (x) = xTPx with P ≻ 0 for this system
that satisfy the exponential stability criterion V̇ (x) ≤ −αV (x), ∀t. We derive an LMI
characterizing such a controller and Lyapunov function, closely following and expanding
upon the derivation provided in [Boy+94].

Specifically, consider the NLDI system (7.3), reproduced below:

ẋ = Ax+Bu+Gw, ∥w∥2 ≤ ∥Cx+Du∥2. (C.1)

The time derivative of this Lyapunov function along the trajectories of the closed-loop
system is

V̇ (x) = ẋTPx+ xTPẋ

= (Ax+Bu+Gw)TPx+ xTP (Ax+Bu+Gw)

= ((A+BK)x+Gw)TPx+ xTP ((A+BK)x+Gw)

=

[
x
w

]T [
(A+BK)TP + P (A+BK) PG

GTP 0

] [
x
w

]
.

(C.2)

211

The exponential stability condition V̇ (x) ≤ −αV (x) is thus implied by inequality[
x
w

]T
M1

[
x
w

]
:=

[
x
w

]T [
(A+BK)TP + P (A+BK) + αP PG

GTP 0

] [
x
w

]
≤ 0. (C.3)

Additionally, the norm bound on w can be equivalently expressed as[
x
w

]T
M2

[
x
w

]
:=

[
x
w

]T [
(C +DK)T (C +DK) 0

0 −I

] [
x
w

]
≥ 0. (C.4)

Using the S-procedure, it follows that for some λ ≥ 0, the following matrix inequality is a
sufficient condition for exponential stability:

M1 + λM2 ⪯ 0. (C.5)

Using Schur Complements, this matrix inequality is equivalent to

(A+BK)TP + P (A+BK) + αP + λ(C +DK)T (C +DK) +
1

λ
PGGTP ⪯ 0. (C.6)

Left- and right-multiplying both sides by P−1, and making the change of variables S = P−1,
Y = KS, and µ = 1/λ, we obtain

SAT + AS + Y TBT +BY + αS +
1

µ

(
SCT + Y TDT

)
(CS +DY) + µGGT ⪯ 0. (C.7)

Using Schur Complements again on this inequality, we obtain our final system of linear
matrix inequalities as[

AS + SAT + µGGT +BY + Y TBT + αS SCT + Y TDT

CS +DY −µI

]
⪯ 0, S ≻ 0, µ > 0, (C.8)

where then K = Y S−1 and P = S−1. Note that the first matrix inequality is homogeneous;
we can therefore assume µ = 1 (and therefore, λ = 1), without loss of generality.

C.1.2 Exponential stability in PLDIs

Consider the setting of polytopic linear differential inclusions (PLDIs), where the dynamics
are of the form

ẋ(t) = A(t)x(t) +B(t)u(t), (A(t), B(t)) ∈ Conv{(A1, B1), . . . , (AL, BL)}. (C.9)

Here, A(t) ∈ Rs×s and B(t) ∈ Rs×a can vary arbitrarily over time, as long as they lie in
the convex hull (denoted Conv) of the set of points above, where Ai ∈ Rs×s, Bi ∈ Rs×a for
i = 1, . . . , L.

We seek to design a time-invariant control policy u(t) = Kx(t) and quadratic Lyapunov
function V (x) = xTPx with P ≻ 0 for this system that satisfy the exponential stability
criterion V̇ (x) ≤ −αV (x), ∀t. Such a controller and Lyapunov function exist if there exist
S ∈ Rs×s ≻ 0 and Y ∈ Ra×s such that

AiS +BiY + SAT
i + Y TBT

i + αS ⪯ 0, ∀i = 1, . . . , L, (C.10)

where then K = Y S−1 and P = S−1. The derivation of this LMI follows similarly to that
for exponential stability in NLDIs, and is well-described in [Boy+94].

212

C.1.3 H∞ control

Consider the following H∞ control setting with linear time-invariant dynamics

ẋ(t) = Ax(t) +Bu(t) +Gw(t), w ∈ L2, (C.11)

where A, B, and G are time-invariant as for the NLDI case, and where we define L2 as the
set of time-dependent signals with finite L2 norm.1

In cases such as these with larger or more unstructured disturbances, it may not be
possible to guarantee asymptotic convergence to an equilibrium. In these cases, our goal is
to construct a robust controller with bounds on the extent to which disturbances affect some
performance output (e.g., LQR cost), as characterized by the L2 gain of the disturbance-
to-output map. Specifically, we consider the stability requirement that this L2 gain be
bounded by some parameter γ > 0 when disturbances are present, and that the system be
exponentially stable in the disturbance-free case. This requirement can be characterized
via the condition that for all t and some σ ≥ 0,

E(x, ẋ, u) := V̇ (x) + αV (x) + σ
(
xTQx+ uTRu− γ2∥w∥22

)
≤ 0. (C.12)

We note that when E(x(t), ẋ(t), u(t)) ≤ 0 for all t, both of our stability criteria are met.
To see this, note that integrating both sides of (C.12) from 0 to ∞ and ignoring the non-
negative terms on the left hand side after integration yields∫ ∞

0

(x(t)TQx(t)+u(t)TRu(t))dt ≤ γ2

∫ ∞

0

∥w(t)∥22dt+ (1/σ)V (x(0)). (C.13)

This is precisely the desired bound on the L2 gain of the disturbance-to-output map (see
[KG02]). We also note that in the disturbance-free case, substituting w = 0 into (C.12)
yields

V̇ (x) ≤ −αV (x)− σ
(
xTQx+ uTRu

)
≤ −αV (x), (C.14)

where the last inequality follows from the non-negativity of the LQR cost; this is precisely
our condition for exponential stability.

We now seek to design a time-invariant control policy u(t) = Kx(t) and quadratic
Lyapunov function V (x) = xTPx with P ≻ 0 that satisfies the above condition. In
particular, we can write

E (x(t), (A+BK)x(t) +Gw(t), Kx(t))=

[
x(t)
w(t)

]T
M1

[
x(t)
w(t)

]
, (C.15)

where

M1 :=

[
(A+BK)TP + P (A+BK) + αP + σ(Q+KTRK) PG

GTP −γ2σI

]
. (C.16)

1The L2 norm of a time-dependent signal w(t) : [0,∞)→ Rd is defined as
√∫∞

0
∥w(t)∥22dt.

213

Therefore, we seek to find a P ∈ Rs×s ≻ 0 and K ∈ Rs×a that satisfy M1 ⪯ 0, for some
design parameters α > 0 and σ > 0. Using Schur complements, the matrix inequality
M1 ⪯ 0 is equivalent to

(A+BK)TP + P (A+BK) + αP + σ(Q+KTRK) + PGGTP/(γ2σ) ⪯ 0. (C.17)

As in Appendix C.1.1, we left- and right-multiply both sides by P−1, and make the change
of variables S = P−1, Y = KS, and µ = 1/σ to obtain

SAT +AS+Y TBT +BY +αS+
1

µ

(
(SQ1/2)(Q1/2S) + (Y TR1/2)(R1/2Y)

)
+µGGT/γ2 ⪯ 0.

Using Schur Complements again, we obtain the LMISAT + AS + Y TBT +BY + αS + µGGT/γ2
[
SQ1/2 Y TR1/2

][
Q1/2S
R1/2Y

]
−µI

 ⪯ 0, S ≻ 0, µ > 0,

(C.18)
where then K = Y S−1, P = S−1, and σ = 1/µ.

C.2 Derivation of sets of stabilizing policies and asso-

ciated projections

We describe the construction of the set of actions C(x), defined in Equation (7.7), for PLDI
systems (C.9) and H∞ control settings (C.11). (The relevant formulations for the NLDI
system (7.3) are described in the main text.)

C.2.1 Exponential stability in PLDIs

For the general PLDI system (C.9), relevant sets of exponentially stabilizing actions CPLDI

are given by the following theorem.

Theorem 2. Consider the PLDI system (C.9), some stability parameter α > 0, and a
Lyapunov function V (x) = xTPx with P satisfying (C.10). Assuming P exists, define

CPLDI(x) :=

u ∈ Ra |


2xTPB1

2xTPB2
...

2xTPBL

u ≤ −


xT (αP + 2PA1)x
xT (αP + 2PA2)x

...
xT (αP + 2PAL)x




for all states x ∈ Rs. For all x, CPLDI(x) is a non-empty set of actions that satisfy the
exponential stability condition (7.2). Further, CPLDI(x) is a convex set in u.

Proof. We seek to find a set of actions such that the condition (7.2) is satisfied along all
possible trajectories of (C.9), i.e., for any allowable instantiation of (A(t), B(t)). A set of
actions satisfying this condition at a given x is given by

CPLDI(x) := {u ∈ Ra | V̇ (x) ≤ −αV (x) ∀(A(t), B(t)) ∈ Conv{(A1, B1), . . . , (AL, BL)}.

214

Expanding the left side of the inequality above, we see that for some coefficients
γi ∈ R ≥ 0, i = 1, . . . , L satisfying

∑L
i=1 γi(t) = 1,

V̇ (x) = ẋTPx+ xTPẋ = 2xTP (A(t)x+B(t)u)

= 2xTP

(
L∑
i=1

γi(t)Aix+ γi(t)Biu

)
=

L∑
i=1

γi
(
2xTP (Aix+Biu)

)
by definition of the PLDI dynamics and of the convex hull. Thus, if we can ensure

2xTP (Aix+Biu) ≤ −αV (x) = −αxTPx, ∀i = 1, . . . , L,

then we can ensure that exponential stability holds. Rearranging this condition and writing
it in matrix form yields an inequality of the desired form. We note that by definition of
the specifications (C.10), there is some K corresponding to P such that the policy u = Kx
satisfies all of the above inequalities; thus, Kx ∈ CPLDI(x), and CPLDI(x) is non-empty.
Further, as the above inequality represents a linear constraint in u, this set is convex in u.

We note that the relevant projection PCPLDI(x) represents a projection onto an intersection
of halfspaces, and can thus be implemented via differentiable quadratic programming [AK17].

C.2.2 H∞ control

For the H∞ control system (C.11), relevant sets of actions satisfying the condition (C.12)
are given by the following theorem.

Theorem 3. Consider the system (C.11), some stability parameter α > 0, and a Lyapunov
function V (x) = xTPx with P satisfying Equation (C.18). Assuming P exists, define

CH∞(x) :=
{
u ∈ Ra | uTRu+ (2BTPx)Tu+ xT

(
PA+ATP+αP+Q+γ−2PGGTP

)
x ≤ 0

}
for all states x ∈ Rs. For all x, CH∞(x) is a non-empty set of actions that guarantee
condition (C.12), i.e., that the L2 gain of the disturbance-to-output map is bounded by γ
and that the system is exponentially stable in the disturbance-free case. Further, CH∞(x) is
convex in u.

Proof. We seek to find a set of actions such that the condition E(x, ẋ, u) ≤ 0 is satisfied
along all possible trajectories of (C.11), where E is defined as in (C.12). A set of actions
satisfying this condition at a given x is given by

CH∞(x) := {u ∈ Ra | sup
w∈L2

E(x, ẋ, u) ≤ 0, ẋ = Ax+Bu+Gw}.

To begin, we note that

E(x,Ax+Bu+Gw, u) = xTP (Ax+Bu+Gw) + (Ax+Bu+Gw)TPx+ αxTPx

+ σ
(
xTQx+ uTRu− γ2∥w∥22

)
215

We then maximize E over w:

w⋆ = argmax
w
E(x,Ax+Bu+Gw, u) = GTPx/(σγ2). (C.19)

Therefore,

CH∞(x) = {u | E(x,Ax+Bu+Gw⋆, u, w⋆) ≤ 0}. (C.20)

Expanding and rearranging terms, this becomes

CH∞(x)={u | uT (σR)u+ (2BTPx)Tu+ xT
(
PA+ATP+αP+σQ+PGGTP/(σγ2)

)
x ≤ 0}.
(C.21)

We note that by definition of the specifications (C.18), there is some K corresponding to
P such that the policy u = Kx satisifies the conditions above (see (C.17)); thus, Kx ∈ CH∞ ,
and CH∞ is non-empty. We note further that CH∞ is an ellipsoid in the control action space,
and is thus convex in u.

We rewrite the set CH∞(x) such that the projection PCH∞ (x) can be viewed as a second-
order cone projection, in order to leverage our fast custom solver (Appendix C.3). In partic-
ular, defining P̃ = σR, q̃ = BTPx, and r̃ = xT

(
PA+ATP+αP+σQ+PGGTP/(σγ2)

)
x,

we can rewrite the ellipsoid above as

CH∞(x) = {u | u⊤P̃ u+ 2q̃⊤u+ r̃ ≤ 0}. (C.22)

We note that as P̃ ≻ 0 and r̃ − q̃⊤P̃−1q̃ < 0, this ellipsoid is non-empty (see, e.g., section
B.1 in [BV04]). We can then rewrite the ellipsoid as

CH∞(x) = {u | ∥Ãu+ b̃∥2 ≤ 1} (C.23)

where Ã =
√

P̃
q̃⊤P̃−1q̃−r̃

and b̃ =
√

P
q⊤P−1q−r

P−1q. The constraint ∥Ãu+ b̃∥2 ≤ 1 is then a

second-order cone constraint in u.

C.3 A fast, differentiable solver for second-order cone

projection

In order to construct the robust policy class described in Section 7.4 for the general NLDI
system (7.3) and the H∞ setting (C.11), we must project a nominal (neural network-based)
policy onto the second-order cone constraints described in Theorem 1 and Appendix C.2.2,
respectively. As this projection operation does not necessarily have a closed form, we
implement it via a custom differentiable optimization solver.

More generally, consider a set of the form

C = {x ∈ Rn | ∥Ax+ b∥2 ≤ cTx+ d} (C.24)

216

for some A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. Given some input y ∈ Rn, we seek to
compute the second-order cone projection PC(y) by solving the problem

minimize
x∈Rn

1

2
∥x− y∥22

subject to ∥Ax+ b∥2 ≤ cTx+ d.
(C.25)

Let F denote the ℓ2 norm cone, i.e., F := {(w, t) | ∥w∥2 ≤ t}. Introducing the auxiliary
variable z ∈ Rm+1, we can then rewrite the above optimization problem equivalently as

minimize
x∈Rn, z∈Rm+1

1

2
∥x− y∥22 + 1F(z)

subject to z =

[
Ax+ b
cTx+ d

]
=: Gx+ h,

(C.26)

where for brevity we define G =

[
A
cT

]
and h =

[
b
d

]
, and where 1F denotes the indicator

function for membership in the set F .
We describe our fast solution technique for computing this projection, as well as our

method for obtaining gradients through the solution.

C.3.1 Computing the projection

We construct a fast solver for problem (C.26) using an accelerated projected dual gradient
method. Specifically, define µ = Rm+1 as the dual variable on the equality constraint in
Equation (C.26). The Lagrangian for this problem can then be written as

L (x, z, µ) =
1

2
∥x− y∥22 + 1F(z) + µT (z −Gx− h), (C.27)

and the dual problem is given by maxµminx,z L (x, z, µ). To form the dual problem, we
minimize the Lagrangian with respect to x and z as

inf
x,z

L (x, z, µ) = inf
x

1

2

{
∥x− y∥22 − µTGx

}
+ inf

z
{µT z + 1F(z)} − µTh. (C.28)

We note that the first term on the right side is minimized at x⋆(µ) = y +GTµ. Thus,
we see that

inf
x

1

2
{∥x− y∥22 − µTGx} = −1

2
µTGGTµ− µTGy. (C.29)

For the second term, denote µ = (µ̃, s) and z = (z̃, t). We can then rewrite this term as

inf
z
{µT z + 1F(z)}} = inf

t≥0
inf
z̃
{t · s+ µ̃T z̃ | ∥z̃∥2 ≤ t}. (C.30)

For a fixed t ≥ 0, the above objective is minimized at z̃ = −tµ̃/∥µ̃∥2. (The problem is
infeasible for t < 0.) Substituting this minimizer into (C.30) and minimizing the result over
t ≥ 0 yields

inf
z
{µT z + 1F(z)} = inf

t≥0
t(s− ∥µ̃∥2) = −1F(µ) (C.31)

217

where the last identity follows from definition of the second-order cone F . Hence the
negative dual problem becomes

minimize
µ

1

2
µTGGTµ+ µT (Gy + h) + 1F(µ). (C.32)

We now solve this problem via Nesterov’s accelerated projected dual gradient method
[Nes13]. For notational brevity, define f(µ) := 1

2
µTGGTµ + µT (Gy + h). Then, starting

from arbitrary µ(−1), µ(0) ∈ Rm+1 we perform the iterative updates

ν(k) = µ(k) + β(k)(µ(k) − µ(k−1))

µ(k+1) = PF

(
ν(k) − 1

Lf

∇f(ν(k))

)
,

(C.33)

where Lf = λmax(GGT) is the Lipschitz constant of f , and PF is the projection operator
onto F (which has a closed form solution; see [Bau96]). Letting mf = λmin(GGT) denote
the strong convexity constant of f , the momentum parameter is then scheduled as [Nes13]

βk =


k − 1

k + 2
if mf = 0√

Lf −√mf√
Lf +

√
mf

if mf > 0.

(C.34)

After computing the optimal dual variable µ⋆, i.e., the fixed point of (C.33), the optimal
primal variable can be recovered via the equation x⋆ = y +GTµ⋆ (as can be observed from
the first-order conditions of the Lagrangian (C.27)).

C.3.2 Obtaining gradients

In order to incorporate the above projection into our neural network, we need to compute the
gradients of all problem variables (i.e., G, h, and y) through the solution x⋆. In particular,
we note that x⋆ has a direct dependence on both G and y, and an indirect dependence on
all of G, h, and y through µ⋆.

To compute the relevant gradients through µ⋆, we apply the implicit function theorem
to the fixed point of the update equations (C.33). Specifically, as these updates imply that
µ⋆ = ν⋆, their fixed point can be written as

µ⋆ = PF

(
µ⋆ − 1

Lf

∇f(µ⋆)

)
. (C.35)

Define M := ∂PF (·)
∂(·)

∣∣
(·)=µ⋆− 1

Lf
∇f(µ⋆)

, and note that ∇f(µ⋆) = GGTµ⋆ + Gy + h. The

differential of the above fixed-point equation is then given by

dµ⋆ = M ×
(
dµ⋆ − 1

Lf

(
dGGTµ⋆ +GdGTµ⋆ +GGTdµ⋆ + dGy +Gdy + dh

))
. (C.36)

218

Rearranging terms to separate the differentials of problem outputs from problem variables,
we see that

(
I −M +

1

Lf

MGGT

)
dµ⋆ = − 1

Lf

M
(
dGGTµ⋆ +GdGTµ⋆ + dGy +Gdy + dh

)
, (C.37)

where I is the identity matrix of appropriate size.

As described in e.g. [AK17], we can then use these equations to form the Jacobian of
µ⋆ with respect to any of the problem variables by setting the differential of the relevant
problem variable to I and of all other problem variables to 0; solving the resulting equation
for dµ⋆ then yields the value of the desired Jacobian. However, as these Jacobians can be
large depending on problem size, we rarely want to form them explicitly. Instead, given
some backward pass vector ∂ℓ

∂µ⋆ ∈ R1×(m+1) with respect to the optimal dual variable, we
want to directly compute the gradient of the loss with respect to the problem variables: e.g.,
for y, we want to directly form the result of the product ∂ℓ

∂µ⋆
∂µ⋆

∂y
∈ R1×n. We do this via

a similar method as presented in [AK17], and refer the reader there for a more in-depth
explanation of the method described below.

Define J := I −M + 1
Lf
MGGT to represent the coefficient of dµ⋆ on the left side of

Equation (C.37). Given ∂ℓ
∂µ⋆ , we then compute the intermediate term

dµ := −J−T

(
∂ℓ

∂µ⋆

)T

. (C.38)

We can then form the relevant gradient terms directly as

(
∂ℓ

∂µ⋆

∂µ⋆

∂G

)T

=
1

Lf

M
(
dµ(G

Tµ⋆)T + µ⋆(GTdµ)
T + dµy

T
)

(
∂ℓ

∂µ⋆

∂µ⋆

∂h

)T

=
1

Lf

Mdµ(
∂ℓ

∂µ⋆

∂µ⋆

∂y

)T

=
1

Lf

GTMdµ.

(C.39)

In these computations, we note that as our solver returns x⋆, the backward pass vector
we are given is actually ∂ℓ

∂x⋆ ∈ R1×n; thus, we compute ∂ℓ
∂µ⋆ = ∂ℓ

∂x⋆
∂x⋆

∂µ⋆ = ∂ℓ
∂x⋆G

T for use in

Equation (C.38).

Accounting additionally for the direct dependence of some of the problem variables on

219

x⋆ (recalling that x⋆ = y +GTu⋆), the desired gradients are then given by(
∂ℓ

∂G

)T

=

(
∂ℓ

∂x⋆

∂x⋆

∂G
+

∂ℓ

∂x⋆

∂x⋆

∂u⋆

∂u⋆

∂G

)T

= µ⋆ ∂ℓ

∂x⋆
+

1

Lf

M
(
dµ(G

Tµ⋆)T + µ⋆(GTdµ)
T + dµy

T
)

(
∂ℓ

∂h

)T

=


��

���*
0

∂ℓ

∂x⋆

∂x⋆

∂h
+

∂ℓ

∂x⋆

∂x⋆

∂u⋆

∂u⋆

∂h

T

=
1

Lf

Mdµ

(
∂ℓ

∂y

)T

=

(
∂ℓ

∂x⋆

∂x⋆

∂y
+

∂ℓ

∂x⋆

∂x⋆

∂u⋆

∂u⋆

∂y

)T

=

(
∂ℓ

∂x⋆

)T

+
1

Lf

GTMdµ.

(C.40)

C.4 Writing the cart-pole problem as an NLDI

In the cart-pole task, our goal is to balance an inverted pendulum resting on top of a cart
by exerting horizontal forces on the cart. Specifically, the state of this system is defined as

x =
[
px, ṗx, φ, φ̇

]T
, where px is the cart position and φ is the angular displacement of the

pendulum from its vertical position; we seek to stabilize the system at x = 0⃗ by exerting
horizontal forces u ∈ R on the cart. For a pendulum of length ℓ and mass mp, and for a
cart of mass mc, the dynamics of the system are (as described in [Ted09]):

ẋ =



ṗx
u+mp sinφ(ℓφ̇2−g cosφ)

mc+mp sin2 φ

φ̇

(mc+mp)g sinφ−u cosφ−mpℓφ̇2 cosφ sinφ

l(mc+mp sin2 φ)


, (C.41)

where g = 9.81 m/s2 is the acceleration due to gravity. We rewrite this system as an NLDI
by defining ẋ = f(x, u) and then linearizing the system about its equilibrium point as

ẋ = Jf (0, 0)

[
x
u

]
+ Inw, ∥w∥ ≤ ∥Cx+Du∥, (C.42)

where Jf is the Jacobian of the dynamics, w = f(x, u)− Jf (0, 0)
[
x u

]T
is the linearization

error, and In is the n× n identity matrix. We bound this linearization error by numerically
obtaining the matrices C and D, assuming that x and u are within a neighborhood of the
origin. We describe this process in more detail below. As a note, while we employ an NLDI
here to characterize the linearization error, it is also possible to characterize this error via
polytopic uncertainty (see Appendix C.10); we choose to use an NLDI here as it yields a
much smaller problem description than a PLDI in this case.

220

C.4.1 Deriving Jf(0, 0)

For ẋ = f(x, u), we see that

Jf (x, u) =


0 1 0 0 0
0 0 ∂p̈x/∂φ ∂p̈x/∂φ̇ ∂p̈x/∂u
0 0 0 1 0
0 0 ∂φ̈/∂φ ∂φ̈/∂φ̇ ∂φ̈/∂u,

 , (C.43)

where

∂p̈x
∂φ

=
mp cosφ

(
φ̇2l − g cosφ

)
+ gmp sin

2 φ

mc +mp sin
2 φ

− 2mp sinφ cosφ
(
mp sinφ

(
φ̇2l − g cosφ

)
+ u
)(

mc +mp sin
2 φ
)2 ,

∂p̈x
∂φ̇

=
2φ̇lmp sinφ

mc +mp sin
2 φ

,

∂p̈x
∂u

=
1

mc +mp sin
2 φ

,

∂φ̈

∂φ
=

g(mc +mp) cosφ+ φ̇2lmp sin
2 φ

−φ̇2lmp cos
2 φ+ u sinφ

l
(
mc +mp sin

2 φ
) −

2mp sinφ cosφ(g(mc +mp) sinφ
−φ̇2lmp sinφ cosφ− u cosφ

l
(
mc +mp sin

2 φ
)2 ,

∂φ̈

∂φ̇
=
−2φ̇mp sinφ cosφ

mc +mp sin
2 φ

,

∂φ̈

∂u
=

− cosφ

l(mc +mp sin
2 φ)

.

We thus see that

Jf (0, 0) =


0 1 0 0 0
0 0 −mpg/mc 0 1/mc

0 0 0 1 0
0 0 g(mc+mp)/lmc 0 −1/mc

 . (C.44)

C.4.2 Obtaining C and D

We then seek to construct matrices C and D that bound the linearization error w between

the true dynamics ẋ and our first-order linear approximation Jf(0, 0)

[
x
u

]
. To do so, we

bound the error of this approximation entry-wise: that is, for each entry i = 1, . . . , s, we want
to find Fi such that for all x in some region x ≤ x ≤ x̄, and all u in some region u ≤ u ≤ ū,

w2
i =

(
∇fi(0)

[
x
u

]
− ẋi

)2

≤
[
x
u

]T
Fi

[
x
u

]
. (C.45)

221

Then, given the matrix

M =
[
F

T/2
1 F

T/2
2 F

T/2
3 F

T/2
4 F

T/2
5 F

T/2
6

]T
(C.46)

we can then obtain C = M1:s and D = Ms:s+m (where the subscripts indicate column-wise
indexing).

We solve separately for each Fi to minimize the difference between the right and left
sides of Equation (C.45) (while enforcing that the right side is larger than the left side)
over a discrete grid of points within x ≤ x ≤ x̄ and u ≤ u ≤ ū. By assuming that Fi is
symmetric, we are able to cast this as a linear program in the upper triangular entries of Fi.

To obtain the matrices C and D used for the cart-pole experiments in the main paper,

we let x̄ =
[
1.5 2 0.2 1.5

]T
, ū = 10, x = −x̄, and u = −ū. As each entry-wise difference

in Equation (C.45) contained exactly three variables (i.e., a total of three entries from x
and u), we solved each entry-wise linear program over a mesh grid of 50 points per variable.

C.5 Writing quadrotor as an NLDI

In the planar quadrotor setting, our goal is to stabilize a quadcopter in the two-dimensional
plane by controlling the amount of force provided by the quadcopter’s right and left

thrusters. Specifically, the state of this system is defined as x =
[
px pz φ ṗx ṗz φ̇

]T
,

where (px, pz) is the position of the quadcopter in the vertical plane and φ is its roll (i.e.,
angle from the horizontal position); we seek to stabilize the system at x = 0⃗ by controlling

the amount of force u =
[
ur, ul

]T
from right and left thrusters. We assume that our action

u is additional to a baseline force of
[
mg/2 mg/2

]T
provided by the thrusters by default

to prevent the quadcopter from falling. For a quadrotor with mass m, moment-arm ℓ for
the thrusters, and moment of inertia J about the roll axis, the dynamics of this system are
then given by (as modified from [Sin+20]):

ẋ =


ṗx cosφ− ṗz sinφ
ṗx sinφ+ ṗz cosφ

φ̇
ṗzφ̇− g sinφ

−ṗxφ̇− g cosφ+ g
0

+


0 0
0 0
0 0
0 0

1/m 1/m
ℓ/J −ℓ/J

u, (C.47)

where g = 9.81 m/s2. We linearize this system via a similar method as for the cart-pole
setting, i.e., as in Equation (C.42). We describe this process in more detail below. We
note that since the dependence of the dynamics on u is linear, we have that D = 0 for
our resultant NLDI. As for cart-pole, while we employ an NLDI here to characterize the
linearization error, it is also possible to characterize this error via polytopic uncertainty
(see Appendix C.10); we choose to use an NLDI here as it yields a much smaller problem
description than a PLDI in this case.

222

C.5.1 Deriving Jf(0, 0)

For ẋ = f(x, u), we see that

Jf (x, u) =


0 0 −ṗx sinφ− ṗz cosφ cosφ − sinφ 0 0
0 0 ṗx cosφ− ṗz sinφ sinφ cosφ 0 0
0 0 0 0 0 1 0
0 0 −g cosφ 0 φ̇ ṗz 0
0 0 g sinφ −φ̇ 0 −ṗx 0
0 0 0 0 0 0 0

 , (C.48)

and thus

Jf (0, 0) =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 −g 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 . (C.49)

C.5.2 Obtaining C and D

We obtain the matrices C and D via a similar method as described in Appendix C.4, though
in practice we only consider the linearization error with respect to x (i.e., since the dynamics
are linear with respect to u, we have D = 0). We let x̄ =

[
1 1 0.15 0.6 0.6 1.3

]
and

x = −x̄. As for cart-pole, each entry wise difference in the equivalent of Equation (C.45)
contained exactly three variables (i.e., a total of three entries from x and u), and each
entry-wise linear program was solved over a mesh grid of 50 points per variable.

C.6 Details on the microgrid setting

For our experiments, we build upon the microgrid setting given in [LBR16]. In this system,
the state x ∈ R3 captures voltage deviations, frequency deviations, and the amount of
power generated by a diesel generator connected to the grid; the action u ∈ R2 describes the
current associated with a storage device and a solar PV inverter; and the disturbance w ∈ R
describes the difference between the amount of power demanded and the amount of power
produced by solar panels on the grid. The authors also define a performance index y ∈ R2

which captures voltage and frequency deviations (i.e., two of the entries of the state x).
To construct an NLDI of the form (7.3) for this system, we directly use the A, B, and G

matrices given in [LBR16]. We generate C i.i.d. from a normal distribution and let D = 0,
to represent the fact that the disturbance w and the entries of the state x are correlated,
but that w is likely not correlated with the actions u. Finally, we let Q and R be diagonal
matrices with 1 in the entries corresponding to quantities represented in the performance
index y, and with 0.1 in the rest of the diagonal entries, to emphasize that the variables in
y are the most important in describing the performance of the system.

223

C.7 Generating an adversarial disturbance

In the NLDI settings explored in our experiments, we seek to construct an “adversarial”
disturbance w(t) that obeys the relevant norm bounds ∥w(t)∥2 ≤ ∥Cx(t) +Du(t)∥2 while
maximizing the loss. To do this, we use a model predictive control method where the
actions taken are w(t). Specifically, for each policy π, we model w(t) as a neural network
specific to that policy. Every 10 steps of a roll-out, we optimize w(t) through gradient
descent to maximize the loss over a horizon of 40 steps, subject to the constraint ∥w(t)∥2 ≤
∥Cx(t) +Du(t)∥2.

C.8 Additional experimental details

Initial states. To pick initial states in our experiments, for the synthetic settings, we
sample each attribute of the state i.i.d. from a standard Gaussian distribution. For cart-
pole and planar quadrotor, we sample uniformly from bounds chosen such that the non-
robust LQR algorithm (under the original dynamics) did not go unstable. For cart-pole,
these bounds were chosen to be px ∈ [−1, 1], φ ∈ [−0.1, 0.1], ṗx = φ̇ = 0. For planar
quadrotor, these bounds were px, pz ∈ [−1, 1], φ ∈ [−0.05, 0.05], ṗx = ṗz = φ̇ = 0.

Constructing NLDI bounds. Given these initial states, for the cart-pole and quadrotor
settings, we needed to construct our NLDI disturbance bounds such that they would hold
over the entire trajectory of the robust policy; if not, the robustness specification (C.8)
would not hold, and our agent might in fact increase the Lyapunov function. To ensure
this approximately, we used a simple heuristic: we ran the (non-robust) LQR agent for a
full episode with 50 different starting conditions, and constructed an L∞ ball around all
states reached in any of these trajectories. We then used these L∞ balls on the states to
construct the matrices C and D for our disturbance bounds, using the procedure described
in Appendices C.4 and C.5.

Computing infrastructure and runtime. All experiments were run on an XPS 13 laptop
with an Intel i7 processor. The planar quadrotor and synthetic NLDI experiment with
D = 0 took about 1 day to run (since the projections were simple half-space projections),
while all the other synthetic domains and cart-pole took about 3 days to run. The majority
of the run-time was in computing the adversarial disturbances for test-time evaluations.

Hyperparameter selection. For our experiments, we did not perform large parameter
searches. The learning rate we chose for our model-based planner, (both robust and non-
robust) remained constant for the different domains; we tried learning rates of 1× 10−3, 1×
10−4, 1 × 10−5 and found 1 × 10−3 worked best for the non-robust version and 1 × 10−4

worked best for the robust version. For our PPO hyperparameters, we simply used those
used in the original PPO paper.

One parameter we had to tune for each environment was the time step. In particular,
we had to pick a time step high enough that we could run episodes for a reasonable total

224

Table C.1: Time (in seconds) taken to run each method on the test set of every environment for 50 episodes
run in parallel.

Environment LQR MBP PPO
Robust
LQR

Robust
MPC

RARL
Robust
MBP∗

Robust
PPO∗

Generic NLDI (D = 0) 0.63 0.61 0.84 0.57 718.06 0.71 0.73 0.94

Generic NLDI (D ̸= 0) 0.64 0.62 0.83 0.58 824.86 0.81 15.13 25.38

Cart-pole 0.55 0.67 0.84 0.53 646.90 0.84 10.12 13.37

Quadrotor 0.95 0.98 1.19 0.88 3348.68 1.14 1.15 1.30

Microgrid 0.58 0.61 0.79 0.57 601.90 0.74 8.14 10.25

Generic PLDI 0.57 0.54 0.76 0.51 819.24 0.73 69.35 64.03

Generic H∞ 0.84 0.80 1.03 0.76 N/A 1.00 47.81 63.67

Table C.2: Time (in minutes) taken to train each method in every environment.

Environment MBP PPO RARL
Robust
MBP∗

Robust
PPO∗

Generic NLDI (D = 0) 26.36 101.77 102.37 30.78 114.60

Generic NLDI (D ̸= 0) 26.46 100.79 82.53 221.35 1158.28

Cart-pole 25.49 87.04 98.90 146.34 689.93

Quadrotor 41.24 131.48 112.95 46.13 159.06

Microgrid 23.03 112.52 87.71 113.61 436.64

length of time (within which the non-robust agents would go unstable), but low enough to
reasonably approximate a continuous-time setting (since, for our robustness guarantees, we
assume the agent’s actions evolve in continuous time). Our search space was small, however,
consisting of 0.05, 0.02, 0.01, and 0.005 seconds.

Trajectory plots. Figure C.1 shows sample trajectories of different methods in the cart-
pole domain under adversarial dynamics. The non-robust LQR and model-based planning
approaches both diverge and the non-robust PPO doesn’t diverge, but doesn’t clearly
converge after 10 seconds. The robust methods, on the other hand, all clearly converge
after 10 seconds.

Runtime comparison. Tables C.1 and C.2 show the evaluation and training time of
our methods and the baselines over 50 episodes run in parallel. In the NLDI cases where
D = 0, i.e., Generic NLDI (D = 0) and Quadrotor, our projection adds only a very small
computational cost. In the other cases, the additional computational cost is more significant,
but our method is still far less expensive than the Robust MPC method.

C.9 Experiments for PLDIs and H∞ control settings

In addition to the NLDI settings explored in the main text, we test the performance of our
method on PLDI andH∞ control settings. As for the experiments in the main text, we choose
a time discretization based on the speed at which the system evolves, and run each episode for

225

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x

x

(a) LQR

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x

x

(b) Robust LQR

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x

x

(c) MBP

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x

x

(d) Robust MBP

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x

x

(e) PPO

0 2 4 6 8 10
t

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x

x

(f) Robust PPO

Figure C.1: Trajectories of 6 different methods on the cart-pole domain under adversarial dynamics.

226

100
Lo

ss

PL
D

I

Non-robust Methods Robust Methods

0 250 500 750 1000
Training epochs

101

Lo
ss

H

0 250 500 750 1000
Training epochs

Setting:
MBP PPO RARL Robust MBP * Robust PPO *

Original Adversarial
Figure C.2: Representative results for our experimental settings. For each training epoch (10 updates
for the MBP model and 18 for PPO), we report average quadratic loss over 50 episodes, and use “X” to
indicate cases where the relevant method became unstable. (Lower loss is better.) Our robust methods
(denoted by ∗) improve performance over Robust LQR in the average case, while (unlike the non-robust
methods) remaining stable under adversarial dynamics throughout the training process.

200 steps over this discretization. In both cases, we use a randomly generated LQR objective
where the matrices Q1/2 and R1/2 are drawn i.i.d. from a standard normal distribution.

Synthetic PLDI setting. We generate PLDI instances (C.9) with s = 5, a = 3, and
L = 3. Specifically, we generate convex hull matrices (A1, B1), . . . , (A3, B3) i.i.d. from
normal distributions, and generate (A(t), B(t)) by using a randomly-initialized neural
network with softmax output to weight the convex hull matrices. Episodes were run for 2
seconds at a discretization of 0.01 seconds.

Synthetic H∞ setting. We generate H∞ control instances (C.11) with s = 5, a = 3, and
d = 2 by generating matrices A,B and G i.i.d. from normal distributions. The disturbance
w(t) was produced using a randomly-initialized neural network, with its output scaled to
satisfy the L2 bound on the disturbance. Specifically, we scaled the output of the neural
network to satisfy an attenuating norm-bound on the disturbance; at time t, the norm-bound
was given by 20× f(2× t/T), where T is the time horizon and f is the standard normal
PDF function. Episodes were run for T = 2 seconds at a discretization of 0.01 seconds.

Results are given in Figure C.2 and Table C.3.

C.10 Notes on linearization via PLDIs and NLDIs

While we linearize the cart-pole and quadrotor dynamics via NLDIs in our experiments,
we note that these dynamics can also be characterized via PLDIs. More generally, in this

227

Table C.3: Performance of various approaches, both robust (right) and non-robust (left), on domains of
interest. We report average quadratic loss over 50 episodes under the original dynamics (O) and under
an adversarial disturbance (A). For the original dynamics (O), the best performance for both non-robust
methods and robust methods is in bold (lower loss is better). We use “unstable” to indicate cases where
the relevant method became unstable. Our robust methods (denoted by ∗) improve performance over
Robust LQR in the average case, while remaining stable under adversarial dynamics, whereas the non-
robust methods either went unstable or received much larger losses.

Environment LQR MBP PPO
Robust
LQR

Robust
MPC

RARL
Robust
MBP∗

Robust
PPO∗

Generic PLDI
O 96.3 3.3 8.0 19.2 19.2 15.8 18.6 10.2
A ——— unstable ——— 43.3 44.1 unstable 21.9 16.1

Generic H∞
O 181 88 114 165 N/A 115 116 125
A 219 112 143 206 N/A 145 147 158

section, we show how we can use the framework of PLDIs to model linearization errors
arising in the analysis of nonlinear systems.

Consider the nonlinear dynamical system

ẋ = f (x, u) with f(0, 0) = 0. (C.50)

for x ∈ Rs and u ∈ Ra. Define ξ = (x, u). We would like to represent the above system as
a PLDI in the region R := {ξ | ξ ≤ ξ ≤ ξ̄} including the origin. The mean value theorem
states that for each component of f , we can write

fi(ξ) = fi(0) +∇fi(z)T ξ, (C.51)

for some z = tξ, where t ∈ [0, 1]. Now, let p = s+ a. Defining the Jacobian of f as

Jf (z) =

∇f1(z)
T

...
∇fp(z)T

 , (C.52)

and recalling that f(0) = 0, we can rewrite (C.51) as

f(ξ) = Jf (z)ξ. (C.53)

Now, suppose we can find component-wise bounds on the matrix Jf (z) over R, i.e,

M ≤ Jf (z) ≤ M̄ for all z ∈ R. (C.54)

We can then write

Jf (z) =
∑

1≤i,j≤p

mij(t)Eij with mij(t) ∈ [mij, m̄ij], (C.55)

where Eij = eie
T
j and ei is the i-th unit vector in Rp.

228

We now seek to bound the Jacobian using polytopic bounds. To do this, note that we
can write

Jf (z) =
2p

2∑
κ=1

γκAκ γκ ≥ 0,
∑
κ

γκ = 1, (C.56)

where Aκ’s are the vertices of the polytope in (C.55), i.e.,

Aκ ∈ V =

{ ∑
1≤i,j≤p

mijEij | mij ∈ {mij, m̄ij}
}
. (C.57)

Together, Equations (C.51), (C.53), (C.56), and (C.57) characterize the original nonlinear
dynamics as a PLDI.

We note that this PLDI description is potentially very large; in particular, the size
of V is exponential in the square of the number of non-constant entries in the Jacobian
Jf(z), which could be as large as 2p

2
= 2(s+a)2 . This problem size may therefore become

intractable for larger control settings.
We note, however, that we can in fact express this PLDI more concisely as an NLDI.

More precisely, we would like to find matrices A,B,C parameterizing the form of NLDI
below, which is equivalent to that presented in Equation (7.3) (see Chapter 4 of [Boy+94]):

Df(z) ∈ {A+B∆C | ∥∆∥2 ≤ 1} for all z ∈ R. (C.58)

It can shown that the solution to the SDP

minimize tr(V +W)

subject to W ≻ 0[
V (Aκ − A)T

Aκ − A W

]
⪰ 0, ∀Aκ ∈ V

(C.59)

yields the matrices A, B, and C with V = CTC and W = BBT , which can be used to
construct NLDI (C.58). While the NLDI here is more concise than the PLDI, the trade-off
is that the NLDI norm bounds obtained via this method may be rather loose. As such,
for our settings, we obtain NLDI bounds numerically (see Appendices C.4 and C.5), as
these are tighter than NLDI specifications obtained via the above method (though they are
potentially slightly inexact). An alternative approach would be to examine how to tighten the
conversion from PLDIs to NLDIs, which has been explored in other work (e.g. [KRP13]).

229

230

Appendix D
Adversarial Robustness for
Security-Constrained and Stochastic OPF

D.1 Full SCOPF formulation

In the N-k SCOPF formulation presented in Equation (10.6), for brevity, we abstracted
away various device constraints and operational limits into the sets X ,Wbase, Zi, and Wi.
Here, we write out those constraints more explicitly to facilitate in-depth descriptions of
components of our attack and defense in Appendices D.2 and D.3.

Specifically, let nbus be the number of nodes (buses) on the power system, and let ng

be the number of generators. By convention, we designate one of these generators to be a
slack bus whose voltage angle is fixed at a particular value. Our dispatch x ∈ R2ng−1 then
consists of the voltage magnitude at the slack bus, and the real power generation and voltage
magnitude at all other generators, subject to device limits and operational constraints. As
in Section 10.4.1, we let C represent the set of contingencies, and z(i) ∈ R2ng−1 represent
slightly adjusted settings of the dispatch quantities that the power system operator can
create after scheduling x and then observing some contingency c(i) ∈ C. We then write the
N-k SCOPF problem as

minimize
x∈R2ng−1

fbase(x) +
∑

(z(i), c(i))

fcont(z
(i), c(i))

subject to gflow,base(x,wbase) = 0, hbase(x,wbase) ≤ 0, wbase ∈ Rd

z(i) ∈

argminz(i)∈R2ng−1 fcont(z
(i), c(i))

s. t. gflow,cont(z
(i), w(i), x) = 0

hcont(z
(i), w(i), x, c(i)) ≤ 0

w(i) ∈ Rd

∀c(i) ∈ C,

(D.1)

where hbase : R2ng−1×Rd → R2×(2ng−1+d) represents device and operational constraints (box
constraints) on x and wbase, hcont : R2ng−1 × Rd × R2ng−1 × C → R2×(2ng−1+d) represents

231

device and operational constraints (box constraints) on z(i) and w(i), and all other quantities
are as defined in Section 10.4.1.

We can then re-write our N-k SCOPF minimax formulation presented in Section 10.4.2 as

minimize
x∈R2ng−1

max
y∈Y

fbase(x) + fcont(z, y) +
1

2
∥s∥22 (D.2a)

subject to gflow,base(x,wbase) = 0, hbase(x,wbase) ≤ 0, wbase ∈ Rd (D.2b)

z, s ∈

argminz∈R2ng−1, s∈R2nbus fcont(z, y) +
1
2
∥s∥22

s. t. gflow,cont(z, wcont, x) + s = 0

hcont(z, wcont, x, y) ≤ 0

wcont ∈ Rd,

(D.2c)

where Y := {y : y ∈ [0, 1]no , ∥y∥1 ≤ k} is our outer relaxation to the contingency set,
and s ∈ R2nbus are slack variables representing potential infeasibilities in the third-stage
optimization problem.

D.2 Further details on the SCOPF attack

The innermost optimization problem in Equation (D.2c), represents the decision a power
grid operator would make when faced with a particular partial contingency y⋆ after having
made a base dispatch x̄. In particular, the grid operator is looking to minimize the cost
of power generation fcont(z, y

⋆), as well as ensure the system remains feasible (s = 0). To
solve for the grid response due to a particular partial contingency, we solve (D.2c) using a
Newton-based approach [PAP20].

Specifically, let λ ∈ R2nbus be the dual variables on the power flow constraint, and
µ ∈ R2×(2ng−1+d) be the dual variables on the inequality constraints. The Lagrangian of the
optimization problem is given by

L = fcont(z, y
⋆) +

1

2
∥s∥22 + λT (gflow,cont(z, wcont, x̄) + s) + µThcont(z, wcont, x̄, y

⋆). (D.3)

The KKT conditions for stationarity, primal feasibility, complementary slackness, and
dual feasibility are then given by

∂L
∂z

=
∂fcont(z, y

⋆)

∂z
+

(
∂gflow,cont(z, wcont, x̄)

∂z

)T

λ+

(
∂hcont(z, wcont, x̄, y

⋆)

∂z

)T

µ = 0

∂L
∂s

= s+ λ = 0

gflow,cont(z, wcont, x̄) + s = 0

diag(µ)hcont(z, wcont, x̄, y
⋆) = 0

µ ≥ 0.

(D.4)

232

The KKT conditions can be written as a set of equations Fattack(z, s, λ, µ) = 0. Tradi-
tionally in the power systems literature, the equations in (D.4) are solved using a New-
ton’s method [PAP20]. The iterative Newton’s method starts with some initial estimates
z0, s0, λ0, µ0 for z, s, λ, µ. Then, at each iteration i, we construct a Jacobian J i for Fattack

and a corresponding right hand side vector bi at our current estimate zi−1, si−1, λi−1, µi−1.
We then solve the resultant set of linear equations

J i


zi

si

λi

µi

 = bi (D.5)

to determine the next estimate for the solution, and iterate until convergence.

D.3 Further details on the SCOPF defense

The defense step of our approach entails adjusting our dispatch in a direction of increased
robustness to the “worst-case” contingency y⋆ found in the attack stage, while also main-
taining feasibility in the base case. To do so, we partially solve the minimization problem
shown in Equation (10.13), as described in the main text. Specifically, let λbase and λcont

denote the dual variables on the power flow constraints in the base and contingency cases,
respectively, and let µbase and µcont denote the dual variables on the inequality constraints
in the base and contingency cases, respectively. Then, the Lagrangian of optimization prob-
lem (10.13) is given by

L = fbase(x) + fcont(z, y
⋆) +

1

2
∥s∥22 + λT

basegflow,base(x,wbase)

+ λT
cont(gflow,cont(z, wcont, x) + s) + µT

basehbase(x,wbase) + µT
conthcont(z, wcont, x, y

⋆).

(D.6)

The KKT conditions associated with this problem are given by

∂L
∂x

=
∂fbase(x)

∂x
+

(
∂gflow,base(x,wbase)

∂x

)T

λbase +

(
∂hbase(x,wbase)

∂x

)T

µbase

+

(
∂gflow,cont(z, wcont, x)

∂x

)T

λcont +

(
∂hcont(z, wcont, x, y

⋆)

∂x

)T

µcont = 0

(D.7)

∂L
∂λbase

= gflow,base(x,wbase) = 0 (D.8)

diag(µbase)hbase(x,wbase) = 0 (D.9)

∂L
∂z

=
∂fcont(z, y

⋆)

∂z
+

�����������������:0(
∂gflow,cont(z, wcont, x)

∂z

)T

λcont +

�����������������:0(
∂hcont(z, wcont, x, y

⋆)

∂z

)T

µcont = 0

(D.10)

233

∂L
∂s

= s+ λcont = 0 (D.11)

∂L
∂λcont

= gflow,cont(z, wcont, x) + s = 0 (D.12)

diag(µcont)hcont(z, wcont, x, y
⋆) = 0, (D.13)

where a number of the terms in condition (D.10) cancel to zero due to the underlying
structure of N-k SCOPF problem. We can group the KKT conditions together based on
their relation to the base variables or the contingency variables. We define two vectors of
equations that group the KKT conditions together: Fbase(x,wbase, λbase, µbase), representing
the decoupled defense equations in blue above, and Fcont(z, wcont, λcont, µcont), representing
the decoupled contingency optimization equations in red. We can then group the KKT
conditions as follows:


∂L
∂x
∂L

∂λbase

diag(µbase)hbase(x,wbase)



≡ Fbase(x,wbase, λbase, µbase) +


(

∂gflow,cont(z,wcont,x)

∂x

)T
λcont +

(
∂hcont(z,wcont,x,y⋆)

∂x

)T
µcont

0

0

 = 0,

(D.14)


∂L
∂z
∂L
∂s
∂L

∂λcont

diag(µcont)hcont(z, wcont, x, y
⋆)



≡ Fcont(z, wcont, λcont, µcont) +


0

0

gflow,cont(z, wcont, x)

diag(µcont)hcont(z, wcont, x, y
⋆)

 = 0.

(D.15)

We notice the two KKT terms Fbase and Fcont are independent but are coupled through
two additional terms. For the N-k SCOPF application, these coupling terms represent the
generator’s contingency ramping constraints and the voltage set points from the base case.
Due to the sparse nature of the grid, these couplings are weak, which makes these equations
well-suited to solve using a decoupled Gauss-Seidel approach.

The non-linear Gauss-Seidel is an iterative method to solve the two sets of weakly
coupled equations independently using the values of the coupled variables from the previous

234

iteration. Based on the KKT conditions above, we can write the Gauss-Siedel equations at
iteration i as follows:

Fcont(z
i, wi

cont, λ
i
cont) +


0

0

gflow,cont(z
i, wi

cont, x
i−1)

diag(µi
cont)hcont(z

i, wi
cont, x

i−1, y⋆)

 = 0, (D.16)

Fbase(x
i, wi

base, λ
i
base, µ

i
base) +


∂gflow,cont(z

i,wi
cont,y

⋆)

∂x

T
λi
cont +

(
∂hcont(zi,wi

cont,x
i,y⋆)

∂x

)T
µi
cont

0

0

 = 0.

(D.17)

By specifically ordering the Gauss-Seidel algorithm to first solve (D.16) and then (D.17),
we can pass the updated contingency-specific coupling variables zi and λi

cont obtained by
solving (D.16) at the current iterate i to the solve of (D.17). The Gauss-Seidel algorithm for
this specific application relaxes the coupling by, at iteration i, using the value of x from the
previous iteration, as highlighted in green in (D.16). By ordering the updates in this way,
we initiate the Gauss-Seidel iterations using the final solution we already obtained when
solving for the worst-case attack y⋆ and its associated z⋆, which is the solution to (10.14b).

Rather than running the Gauss-Seidel iterations to convergence, we run only a single
iteration in order to take a step in the dispatch x (before then restarting the attack phase).
We can efficiently solve this single Gauss-Seidel since we reuse the solution from the attack
stage for Equation (D.16), and therefore all that remains to solve is Equation (D.17).

D.4 GO competition scoring

Challenge 1 of the GO competition [ARP19] created a specific formulation for the grid con-
straints in Equation (D.2c). In particular, they relaxed part of the formulation to not allow
certain grid models such as switched shunts. They also used automatic generation control
modulate the power generation at each generator to ensure the power grid frequency re-
mained at its nominal set point. However, in contrast, our “third stage” power flow solver
is built to solve discrete shunts and discrete transformer tap controls. We also do not use
automatic generation control, but instead enable generators to ramp (i.e., change their pro-
duction) within some limits determined by the base dispatch. These grid models are most
consistent with Challenge 2 of the GO competition [ARP19], which updated its grid models
from the first competition (and which was ongoing at the time the present work was being
done). The full list of relevant differences in grid models is shown in the table below.

235

GO Challenge 1 models CAN∂Y models

Power generation adjustments Automatic generation control Generator ramping

Discrete shunts Not allowed Allowed

Transformer tap ratios Fixed Adjustable (discrete)

As scores and solutions for GO Challenge 2 are not yet available, we compare our solver
against solvers from GO Challenge 1, despite the fact that our solver uses grid models
from GO Challenge 2. In particular, we score our formulation by using the score weighting
criteria given in GO Challenge 1 [ARP19] and compare the against the scores of the top
Challenge 1 competitors, which are available at [ARP19]. However, since the grid models
used by our solver vs. the Challenge 1 solvers are different, the score comparisons we show
in Section 10.5.2 are ultimately approximate. Nonetheless, we believe that the comparisons
still indicate that our methodology is competitive for N-1 SCOPF.

236

	1 Introduction
	1.1 Contributions
	1.1.1 Part I: Estimation tasks in power systems
	1.1.2 Part II: Optimization-in-the-loop deep learning
	1.1.3 Part III: Implicit differentiation in power systems

	1.2 Summary of publications

	2 Background and Preliminaries
	2.1 Machine learning
	2.1.1 Notable paradigms
	2.1.2 Strengths, limitations, and alternatives

	2.2 Deep learning and implicit layers
	2.2.1 Neural network models
	2.2.2 Neural network training
	2.2.3 Implicit layers

	2.3 Electric power systems
	2.3.1 Power system basics
	2.3.2 Power system operations
	2.3.3 Climate change mitigation and adaptation in power systems

	I Estimation Tasks in Power Systems
	3 Assessing Emissions and Damage Factors in PJM
	3.1 Introduction
	3.2 Data and methods
	3.2.1 Data
	3.2.2 Calculating AEFs
	3.2.3 Calculating MEFs
	3.2.4 Calculating average and marginal damage factors
	3.2.5 Selecting factors for emissions/damage assessments

	3.3 Results and discussion
	3.3.1 Annual and monthly emissions factors over time
	3.3.2 Intra-annual variability in emissions and damage factors
	3.3.3 Effects of a building-level lighting intervention
	3.3.4 Effects of historical demand response
	3.3.5 Effects of historical summer load

	3.4 Policy implications

	4 Matrix Completion for Distribution System Voltage Estimation
	4.1 Introduction
	4.2 Matrix completion methods
	4.2.1 Matrix completion
	4.2.2 Constrained matrix completion

	4.3 Low-observability state estimation
	4.3.1 Power system model
	4.3.2 Data matrix formulation
	4.3.3 Physical power flow constraints
	4.3.4 Full problem formulation
	4.3.5 Extension to the multi-phase setting

	4.4 Simulation and results
	4.4.1 33-bus system
	4.4.2 123-bus feeder

	4.5 Conclusion

	II Optimization-in-the-Loop Deep Learning
	5 Decision-Cognizant Learning for Stochastic Optimization
	5.1 Introduction
	5.2 Related work
	5.3 End-to-end model learning in stochastic programming
	5.3.1 Discussion and alternative approaches
	5.3.2 Optimizing task loss
	5.3.3 Differentiating the stochastic optimization solution

	5.4 Experiments
	5.4.1 Inventory stock problem
	5.4.2 Load forecasting and generator scheduling
	5.4.3 Price forecasting and battery storage

	5.5 Conclusion

	6 Approximating Optimization Problems with Hard Constraints
	6.1 Introduction
	6.2 Related work
	6.3 DC3: Deep constraint completion and correction
	6.3.1 Equality completion
	6.3.2 Inequality correction

	6.4 Experiments
	6.4.1 Convex quadratic programs
	6.4.2 Simple non-convex optimization
	6.4.3 AC optimal power flow

	6.5 Conclusion

	7 Enforcing Robust Control Guarantees within Neural Network Policies
	7.1 Introduction
	7.2 Related work
	7.3 Background on LQR and robust control specifications
	7.3.1 Robust control specifications
	7.3.2 LQR control objectives

	7.4 Enforcing robust control guarantees within neural networks
	7.4.1 A provably robust nonlinear policy class
	7.4.2 Example: NLDIs

	7.5 Experiments
	7.5.1 Description of dynamics settings
	7.5.2 Experimental setup
	7.5.3 Results

	7.6 Conclusion

	8 Enforcing Policy Feasibility Constraints through Differentiable Projection for Energy Optimization
	8.1 Introduction
	8.2 Related work
	8.3 Preliminaries: Reinforcement learning
	8.4 Enforcing feasibility via differentiable projection
	8.4.1 Problem formulation
	8.4.2 Approximate convex constraints
	8.4.3 Policy optimization

	8.5 Experiment 1: Energy-efficient building operation
	8.5.1 Problem description
	8.5.2 Implementation details
	8.5.3 Results

	8.6 Experiment 2: Inverter control
	8.6.1 Problem description
	8.6.2 Implementation details
	8.6.3 Results

	8.7 Conclusion

	III Implicit Differentiation in Power Systems
	9 Inverse OPF: Assessing the Vulnerability of Power Grid Data
	9.1 Introduction
	9.2 Related work
	9.3 AC optimal power flow formulation
	9.4 Inverse optimal power flow
	9.5 Experiments
	9.6 Conclusion

	10 Adversarial Robustness for Security-Constrained and Stochastic OPF
	10.1 Introduction
	10.2 Related work
	10.3 Generic problem formulation
	10.3.1 Attack: Solving the inner maximization problem
	10.3.2 Defense: Taking a step in the minimization problem

	10.4 Addressing N-k SCOPF
	10.4.1 Defining N-k SCOPF
	10.4.2 Rewriting N-k SCOPF as a minimax problem
	10.4.3 Attack stage
	10.4.4 Defense stage

	10.5 Experiments for N-k SCOPF
	10.5.1 Illustrative adversarial attack
	10.5.2 Validating N-1 security
	10.5.3 Improving N-3 SCOPF

	10.6 Addressing stochastic OPF
	10.6.1 Defining stochastic OPF
	10.6.2 Rewriting stochastic OPF as a minimax problem

	10.7 Experiments for stochastic OPF
	10.7.1 Validating the minimax reformulation
	10.7.2 Scaling to realistic networks

	10.8 Conclusion

	IV Conclusions and Future Directions
	11 Conclusions and Future Directions
	References

	Appendices
	A Assessing Emissions and Damage Factors in PJM
	A.1 Discussion of National Emissions Inventory data
	A.2 Information on damage models
	A.3 Results under EASIUR
	A.3.1 Annual and monthly emissions factors over time
	A.3.2 Intra-annual variability in emissions and damage factors
	A.3.3 Effects of a building-level lighting intervention
	A.3.4 Effects of historical demand response
	A.3.5 Effects of historical summer load

	A.4 Sensitivity analysis for historical demand response
	A.5 Comparison to PJM-published emissions factors

	B Approximating Optimization Problems with Hard Constraints
	B.1 Details of DC3 for ACOPF
	B.1.1 Problem setting
	B.1.2 Overall approach
	B.1.3 Solving the completion
	B.1.4 Backpropagating through the completion

	C Enforcing Robust Control Guarantees within Neural Network Policies
	C.1 Details on robust control specifications
	C.1.1 Exponential stability in NLDIs
	C.1.2 Exponential stability in PLDIs
	C.1.3 H∞ control

	C.2 Derivation of sets of stabilizing policies and associated projections
	C.2.1 Exponential stability in PLDIs
	C.2.2 H∞ control

	C.3 A fast, differentiable solver for second-order cone projection
	C.3.1 Computing the projection
	C.3.2 Obtaining gradients

	C.4 Writing the cart-pole problem as an NLDI
	C.4.1 Deriving J_f(0,0)
	C.4.2 Obtaining C and D

	C.5 Writing quadrotor as an NLDI
	C.5.1 Deriving J_f(0,0)
	C.5.2 Obtaining C and D

	C.6 Details on the microgrid setting
	C.7 Generating an adversarial disturbance
	C.8 Additional experimental details
	C.9 Experiments for PLDIs and H∞ control settings
	C.10 Notes on linearization via PLDIs and NLDIs

	D Adversarial Robustness for Security-Constrained and Stochastic OPF
	D.1 Full SCOPF formulation
	D.2 Further details on the SCOPF attack
	D.3 Further details on the SCOPF defense
	D.4 GO competition scoring

