
Striving for Safe and Efficient
Deep Reinforcement Learning

Harshit Sushil Sikchi

CMU-CS-20-136

December 10, 2020

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Held, Chair

Jeff Schneider

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science.

Copyright © 2020 Harshit Sushil Sikchi. All rights reserved.



Keywords: Machine Learning, Robotics, Reinforcement Learning, Safe Reinforcement Learn-
ing, Optimization, Model based Reinforcement Learning, Model free Reinforcement Learning,
Planning, Trajectory Optimization, Inverse Reinforcement Learning, Imitation Learning



To my family, friends and teachers.



iv



Abstract
Reinforcement Learning has seen tremendous progress in the past few years solv-

ing games like Dota and Starcraft, but little attention has been given to the safety of
deployed agents. In this thesis, keeping safety in mind, we make progress in different
dimensions of Reinforcement learning—Planning, Inverse RL, and Safe Model-Free
RL.

Towards the goal of safe and efficient Reinforcement Learning, we propose:
1) A hybrid model-based model-free RL method, ”Learning Off-Policy with On-

line Planning (LOOP),” which effectively combines Online Planning using learned
dynamics models with a terminal value function for long-horizon reasoning. This
method is favorable for ensuring safe exploration within the planning horizon, and
we demonstrate that it achieves state-of-the-art performance competitive with model-
based methods.

2) An Inverse Reinforcement Learning method f -IRL that allows specifying pref-
erences using state-marginals or observations only. We derive an analytical gradi-
ent to match general f -divergence between agents and experts state marginal. f -IRL
achieves more stable convergence than the Adversarial Imitation approaches that rely
on min-max optimization. We show that f -IRL outperforms state-of-the-art IRL base-
lines in sample efficiency. Moreover, we show that the recovered reward function can
be used in downstream tasks, and empirically demonstrate its utility on hard-to-explore
tasks and for behavior transfer across changes in dynamics.

3) A model-free Safe Reinforcement Learning method, Lyapunov Barrier Policy
Optimization (LBPO), that uses a Lyapunov-based barrier function to restrict the pol-
icy update to a safe set for each training iteration. Our method also allows the user to
control the agent’s conservativeness with respect to the constraints in the environment.
LBPO significantly outperforms state-of-the-art baselines in terms of the number of
constraint violations during training while being competitive in terms of performance.



vi



Acknowledgments
I would like to express my sincere gratitude to my advisor, Prof. David Held, for

his extraordinary guidance, patience, and for being a constant source of inspiration
with his passion for robotics. I cannot thank him enough for helping me become
a better researcher and for his proactive dedication and care in this chaotic time of
pandemic and changing international student laws.

I would like to thank my mentor Wenxuan Zhou for helping me learn how to do
systematic research and providing insightful advice whenever I hit a roadblock. She
is an excellent collaborator to work with and an even better person. I thank Prof. Jeff
Schneider for taking the time and being my committee member.

I also want to extend my appreciation to all the amazing people I met at the
Robotics Institute - Siddharth Ancha, Yufei Wang, Tianwei Ni, Tejus Gupta, Brian
Okorn, Xingyu Lin, Thomas Weng, Sujay Bajracharya, Qiao Gu, Gautham Narsimhan,
Himangi Mittal, Benjamin Eysenbach and Lisa Lee. Robotics Institute provided me
with a number of opportunities making my research journey quite exciting. I am lucky
to be a part of the RPAD group and be amidst such a supportive atmosphere.

At last but most importantly, I would not be here if it were not for the unconditional
support of my family, who supported all my decisions every step of the way.



viii



Funding

This material is based upon work supported by the United States Air Force and
DARPA under Contract No. FA8750-18-C-0092, NSF S&AS grant number: IIS-
1849154 and LG Electronics.



x



Contents

1 Introduction 1
1.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Learning Off-Policy with Online Planning 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Learning Off-Policy with Online Planning . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Learning the Value Function with Model-free Actor . . . . . . . . . . . . . 8
2.3.2 Learning the Dynamics Model . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Trajectory Optimization with a Terminal Value Function . . . . . . . . . . 9
2.3.4 Actor-guided Trajectory Optimization (CEM-AG) . . . . . . . . . . . . . 9

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Improvement over the underlying model-based and model-free algorithm . 12
2.4.3 Comparison to previous model-based methods . . . . . . . . . . . . . . . 13
2.4.4 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Effect of horizon on LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3 Actor-usage in CEM-AG . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.4 Replay Buffer Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5.5 Is CEM-AG a better optimizer than CEM? . . . . . . . . . . . . . . . . . 18

3 f -IRL: Inverse Reinforcement Learning via State Marginal Matching 19
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 What Objective is Optimized by Previous IL Algorithms? . . . . . . . . . . . . . . 21

3.3.1 MaxEntIRL [97], Deep MaxEntIRL [92], GCL [27] . . . . . . . . . . . . 22
3.3.2 GAN-GCL [26], AIRL [28], EAIRL [65] . . . . . . . . . . . . . . . . . . 22
3.3.3 GAIL [38], FAIRL, f -MAX-RKL [32] . . . . . . . . . . . . . . . . . . . 26
3.3.4 SMM [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xi



3.3.5 Summary of IL/IRL Methods: Two Classes of Bilevel Optimization . . . . 27
3.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Learning Stationary Rewards via State-Marginal Matching . . . . . . . . . . . . . 28

3.5.1 Analytic Gradient for State Marginal Matching in f -divergence . . . . . . 29
3.5.2 Learning a Stationary Reward by Gradient Descent . . . . . . . . . . . . . 30
3.5.3 Robust Reward Recovery under State-only Ground-truth Reward . . . . . . 31
3.5.4 Practical Modification in the Exact Gradient . . . . . . . . . . . . . . . . . 31

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.1 Matching the Specified Expert State Density . . . . . . . . . . . . . . . . 32
3.6.2 Inverse Reinforcement Learning Benchmarks . . . . . . . . . . . . . . . . 33
3.6.3 Using the Learned Stationary Reward for Downstream Tasks . . . . . . . . 34

3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.1 Derivation and Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 3.6.3.1) . . . . 47
3.7.4 Reward Transfer across Changing Dynamics (Sec 3.6.3.2) . . . . . . . . . 47
3.7.5 Additional Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Lyapunov Barrier Policy Optimization 53
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Safe Reinforcement Learning using Lyapunov Functions . . . . . . . . . . 56
4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Barrier function for Lyapunov Constraint . . . . . . . . . . . . . . . . . . 57
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Safe Reinforcement Learning Benchmarks . . . . . . . . . . . . . . . . . 62
4.4.2 Backtracking Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Robustness to finite sample sizes . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.4 Tuning conservativeness with the barrier . . . . . . . . . . . . . . . . . . . 65

4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5.1 Safe policy update under the Lyapunov constraint . . . . . . . . . . . . . . 66
4.5.2 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Conclusion 75
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography 77

xii



List of Figures

2.1 Overview: We use online planning with learned dynamic models and a terminal
Q-function as the behavior policy. The transitions are saved into the replay buffer
to train the Q-function and the dynamics model. The parameterized actor is also
used to guide online planning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Training Performance of LOOP and its baselines on MuJoCo tasks. Green: LOOP.
Blue: TD3. Red: CEM without a terminal value function. Violet: The terminal
Q function is set to be evaluation of a random policy. Yellow: LOOP without
CEM-AG. Dashed line: the performance of TD3 at 1e6 timesteps. . . . . . . . . . 12

2.3 Comparison of learning performance with MBPO, a mdoel-based RL algorithm
built on top of SAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Actor-guided CEM reduces actor-divergence between the MPC policy and the
model-free actor. Green: LOOP. Yellow: LOOP without actor-guided CEM (CEM-
AG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Left to Right: Hopperv2, Walker2d-V2, HalfCheetah-v2,InvertedPendulum-v2 . . 15
2.6 LOOP Plan horizon comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Actor-usage in LOOP while using CEM-AG: Fraction of actor suggested trajecto-

ries that make it to the elites in CEM. . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Replay buffer augmentation allows improves parameterized actor’s performance. . 18
2.9 Blue Curve shows the difference between optimized return of CEM-AG and CEM.

Green curve shows the difference between optimized return of CEM-AG and the
mean return of the raw trajectories suggested by the parameterized actor. . . . . . . 18

3.1 Environments: (left to right) Ant-v2, Hopper-v2, HalfCheetah-v2, Reacher-v2,
and Walker2d-v2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Forward (left) and Reverse (right) KL curves in the Reacher environment for dif-
ferent expert densities of all methods. Curves are smoothed in a window of 120
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Training curves for f -IRL and 4 other baselines - BC, MaxEnt IRL, f -MAX-RKL
and AIRL with one expert demonstration. Solid curves depict the mean of 3 trials
and the shaded area shows the standard deviation. The dashed blue line represents
the expert performance and the dashed red line shows the performance of a BC
agent at convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiii



3.4 Left: Extracted final reward of all compared methods for the uniform expert den-
sity in the point environment. Right: The task return (in terms of rtask) with differ-
ent α and prior reward weight λ. The performance of vanilla SAC is shown in the
leftmost column with λ = 0 in each subplot. . . . . . . . . . . . . . . . . . . . . . 35

3.5 Top row: A healthy Ant executing a forward walk. Bottom row: A successful
transfer of walking behavior to disabled Ant with 2 legs active. The disabled Ant
learns to use the two disabled legs as support and crawl forward, executing a very
different gait than previously seen in healthy Ant. . . . . . . . . . . . . . . . . . . 48

3.6 Forward and Reverse KL curves in pointmass environment for Gaussian target den-
sity for all the methods during training. Smoothed in a window of 120 evaluations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.7 Forward and Reverse KL curves in pointmass environment for Gaussian target den-

sity for all the methods during training. Smoothed in a window of 120 evaluations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 As the difference between Q values for action a and the baseline action reaches ε
(in this case ε = 2), the loss increases to∞. . . . . . . . . . . . . . . . . . . . . . 59

4.2 OpenAI Safety Environments: PointGoal1, PointPush2, CarGoal2, DoggoPush2 . . 60
4.3 Each point corresponds to a particular safety method applied to a certain safety

environment. The x-axis shows the fraction of constraint violations encountered
by the behavior policy during training and y-axis shows the policy performance
normalized by the corresponding environment’s PPO return. . . . . . . . . . . . . 61

4.4 An analysis of the robustness of safe RL algorithms CPO, SDDPG, and LBPO to
finite sample Q function errors for a simple didactic environment. Constraint vio-
lations in CPO and SDDPG increase quickly as the number of on-policy samples
used to estimate the Q function decreases. Results are averaged over 5 seeds. . . . 65

4.5 Increasing β parameter for the barrier increases the risk aversion of the agent as
can be seen in the plots above. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Training curved for LBPO in comparison to baselines: PPO, PPO-lagrangian,
CPO, SDDPG. We also compare against our simple baseline BACKTRACK here.
For each environment, the top row shows the Average undiscounted cumulative
cost during training, and bottom row shows the Average undiscounted return. PPO
often has large constraint violations and is clipped from some plots, when its con-
straint violations are high. Red dashed line in Average Cost plots shows the con-
straint limit which is 25 in all environments. . . . . . . . . . . . . . . . . . . . . . 73

4.7 We compare the cumulative number of backtracking steps taken by CPO and SD-
DPG to BACKTRACK method for the first 400 epochs/policy updates. . . . . . . . 74

xiv



List of Tables

2.1 LOOP Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 CEM Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 IL methods vary in the domain of the expert distribution that they model (“space”),
the choice of f-divergence, and whether they recover a stationary reward func-
tion. *GAN-GCL and AIRL use biased IS weights to approximate FKL (see Ap-
pendix 3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Selected list of f -divergences Df (P || Q) with generator functions f and hf de-
fined in Theorem 3.5.1, where f is convex, lower-semicontinuous and f(1) = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 We report the ratio between the average return of the trained (stochastic) policy

vs. that of the expert policy for different IRL algorithms using 1, 4 and 16 expert
trajectories. All results are averaged across 3 seeds. Negative ratios are clipped to
zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 The ratios of final return of the obtained policy against expert return across IRL
methods. We average f -IRL over FKL, RKL, and JS. ‘-’ indicates that we do not
test learned rewards since AIRL does poorly at these tasks in Table 3.3. . . . . . . 36

3.5 Returns obtained after transferring the policy/reward on modified Ant environment
using different IL methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 AIRL IRL benchmarks task-specific hyper-parameters. . . . . . . . . . . . . . . . 46
3.7 Benchmark of Mujoco Environment, from top to bottom, Hopper-v2, Walker2d-v2. 51
3.8 Benchmark of Mujoco Environment, from top to bottom HalfCheetah-v2, Ant-v2. . 52
3.9 Returns obtained after transferring the policy/reward on modified Ant environment

using different IL methods. In this case, we report the performance of best seed
with a maximum of 50 expert trajectories. . . . . . . . . . . . . . . . . . . . . . . 52

4.1 We report the fraction of unsafe behavior policies encountered during training
across different OpenAI safety environments for the policy updates across 2e7

training timesteps. LBPO obtains fewer constraint violations consistently across
all environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Cumulative return of the converged policy for each safety algorithm normalized
by PPO’s return. Negative returns are clipped to zero. LBPO tradeoffs return for
better constraint satisfaction. Bold numbers show the best performance obtained
by a safety algorithm (thus excluding PPO). . . . . . . . . . . . . . . . . . . . . . 63

xv



4.3 Cumulative unnormalized return of the converged policy for each safety algorithm.
LBPO tradeoffs return for better constraint satisfaction. Bold numbers show the
best performance obtained by a safety algorithm (thus excluding PPO). . . . . . . . 70

4.4 LBPO Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xvi



Chapter 1

Introduction

1.1 Motivation and Challenges

Reinforcement Learning (RL) has seen tremendous progress in the past few years. Games that were

thought to be extremely difficult like Dota [13] and Starcraft [87], have been solved using RL. RL

has been a leading contender for improving Robot Learning. RL for Robot Learning allows for

better generalization and thus lets the roboticist avoid writing a hand-designed controller for each

task, incorporate prior knowledge, and also allows for scaling up robotic systems to complex high

dimensional state spaces like images. In this large-scale attempt to improve RL, little attention has

been given to the safety of the deployed agents. RL agents effectively learn by trial and error, and

when such agents are deployed on robots in the real world, they can cause damage to their own

hardware and also to the other actors in the world. Safety is especially a concern when these robots

are deployed in high stake situations like performing surgeries, house chores, or transport. Humans

learn via experience, similar to an RL agent, but they respect notions of safety. For example, when

a person is trying to learn to drive a car, he/she will often start driving slowly and gradually learn

to improve performance, exploring carefully while avoiding accidents.

The inevitable ubiquity of robot presence in high stake real-life situations requires that re-

searchers have a proper understanding of what safety means. A diverse set of notions for safety

exist in previous literature with use-case specific formulation. Some popular notions are 1. Learn-

ing a policy that optimizes for reward obtained in the worst α% of the cases, allowing the robot to

be robust to the aleatoric uncertainty of the MDP [81, 43, 80, 14, 19]. 2. Learning a policy that

maximizes the expected reward in a way that the expected costs are constrained to be within some

threshold [5, 20, 31, 2], also known as the CMDP framework. 3. Other notions include safe explo-

ration [12], avoiding reward hacking [7], safe interruptibility [60], distributional robustness [94]
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and minimum side-effects [45].

Despite a wide array of definitions for safety, it is unclear if these are sufficient to ensure safe

robot learning. Robot learning, currently, relies on heavy instrumentation [95, 24]. This involves

hard-coding safety rules, developing recovery behaviors, or in general an emergency stop button.

Despite the progress made, robotics is not at a stage where we can have complex robots in our home

or workplace. A key question is what kind of safety definitions will allow for robot learning in the

wild without extra instrumentation and how to incorporate them in a single learning framework.

Previous literature tackles a particular notion of safety, and most of them rely on strict assump-

tions like linear dynamics or quadratic cost functions and restrictive function classes to give prov-

able guarantees on safety and do not scale well when state/action spaces become high-dimensional.

An important shortcoming of these methods is that they are limited to simpler environments, often

like gridworld. In general, we expect our agents to encounter high dimensional observations and

a flexible representation of policy requires us to use function approximators like neural networks.

We lack any theoretical guarantees of safety with neural networks and current work only addresses

the problem of safety empirically in such settings. Moreover, algorithms like [2, 93], working with

neural networks, lack sample efficiency. In this work, we work towards designing safe and efficient

algorithms for the Deep RL setting.

Besides learning from scratch, a rich source of information to learn safety rules is via human

demonstration which provides a wealth of knowledge, that a robot can exploit to improve its skills

quickly by imitation. Understanding human demonstrations require understanding the intention

of humans and replicating the behavior precisely. This idea is the motivation behind the subfield

of Inverse RL, where we explore a new way to learn skills from demonstrations suitable in risk-

averse settings. Ideally in the process of imitation, the robot should query the Human in times of

uncertainty such that the process of learning to imitate the human expert does not have unintended

consequences. The robot should know what it knows and ask questions rather than violate safety

rules.

In conclusion, this thesis aims to provide foundational steps to ensure a safe transition of robot

learning from simulators into our life. A future where we have robots doing our chores, transport-

ing us to our workplaces, performing surgeries is quite near. An unsafe action can be fatal in these

critical settings of close human interaction, and we would like to ensure that these robots rely on

methods that have safety guarantees.
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1.2 Contributions

In brief the following are contributions of this thesis:

1. Online Planning with long horizon: Online Planning lends itself easily to safety by

ensuring cautious exploration under a probabilistic world model and also adapts faster to

changes in dynamics. In our work, we tackle a fundamental limitation of Online Plan-

ning with learned models, which is reasoning over a finite horizon. We provide a new hy-

brid model-based model-free RL algorithm LOOP: Learning Off-Policy with Online Plan-

ning [74], where we extend limited horizon Online Planning to infinite horizon with an

efficiently learned terminal value function. .

2. Inverse RL with state marginals/observations: Rewards are a popular way to encode

preferences in RL but often end up encoding a different preference than the user intended,

popularly known as reward hacking [7]. We explore another way to encode preferences

- via specifying state marginals. Specifying the state marginal that you want the agent to

visit is convenient and also allows encoding preferences for safety trivially, by marking the

states that are unsafe with a density of zero. We propose an Inverse Reinforcement Learning

method - fIRL [58], which, given the desired state marginal, extracts a reward function and

a policy that has a visitation close to the given state marginal. The utility of this method

extends far beyond safety, for e.g. in situations where it is hard to get demonstrations for

a robot - a typical case when the robot is too high dimensional to control, or when only

observations are given instead of the regular observation-actions, this method provides a

way to extract portable reward functions that encode the intention of the demonstrator.

3. Model-free safe RL: Safety while training the agent is important if we expect our deployed

agents to be online learners. To achieve this goal, we work under the Constrained Markov

Decision Process (CMDP) framework, which guarantees that the expected cumulative cost

incurred will be within a predefined threshold. Lyapunov functions allow us to convert the

trajectory-based constraints of the CMDP to state-based constraints. Based on Lyapunov

function, we formulate an objective which ensures that the policy update with the Lyapunov

constraints remains in the safe set. The constraint is formulated as a log-barrier function

and our method Lyapunov Barrier Policy Optimization [75] achieves near-zero constraint

violations during training on the OpenAI safety gym benchmark. This work offers a prac-

tical algorithm that can be deployed on robots in the real-world with minimal constraint

violations.
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1.3 Thesis Organization

1. In Chapter 2, we present a new method ”Learning Off-Policy with Online Planning”. The

Chapter is divided into sections: 1) Introduction and Related Work where we discuss the

state of the art method in Model-based Reinforcement Learning motivate the need for our

method. 2) Learning Off-Policy with Online Planning presents our core method 3) Experi-

ments section shows the results of our method comparing it to previous state of the art. 4)

Appendix section contains additional experiments and contains hyperparameters and other

information regarding implementation.

2. In Chapter 3, we present a new algorithm for Inverse Reinforcement Learning given Obser-

vations only. This chapter is divided into sections: 1) Introduction and Related Work section

discusses a number of previous IRL methods and motivates the need of our method. 2) In the

next section ”What Objective is optimized by previous IL algorithms”, we present a novel

analysis of previous methods and remark on which objective they truly optimize for in the

Imitation Learning Setting. 3) In Preliminaries section, we discuss notations to be used in

this chapter. 4) The section ”Learning Stationary Rewards via State-Marginal Matching”

discussed our proposed method. 5) In Experiments, we present a comparison of our method

to state-of-the-art baselines and also its utility in downstream robotics tasks. 6) The appendix

section provides proofs for our method and details for experiments performed in this work.

3. In Chapter 4, we present our new method for safety in model-free Reinforcement Learning

setting. This chapted is divided into the following sections: 1) Related Work and Back-

ground provides a brief introduction to previous methods in Safe Reinforcement Learning

and the background required for our method. 2) In the method section, we present our

method Lyapunov Barrier Policy Optimization. 3) Experiments section compare our method

to the state-of-the-art method in safe reinforcement learning. 4) In Appendix, we present

derivations and additional implementation details for the experiments presented in the paper.

4. In Chapter 5, we present a summary of our work and conclusion.
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Chapter 2

Learning Off-Policy with Online Planning

2.1 Introduction

Off-policy reinforcement learning is a widely used category of model-free reinforcement learning.

It usually aims to learn a value function that encapsulates long-horizon reasoning of the future

reward. The policy is obtained by directly taking the action that has the largest action-value [41]

in discrete action spaces or by using a parameterized actor [50] in continuous settings. The ef-

fectiveness of the value function makes model-free reinforcement learning achieve state-of-the-art

performance. However, it usually requires a huge amount of interactions with the environment.

Model-based reinforcement learning provides a mechanism for an agent to learn to perform a

task by building a model of the environment through experience. It can scale to highly complex

tasks while being orders of magnitude more sample efficient than model-free algorithms [40] [22].

One way to use the learned model is to perform online planning with the model [55] during both

training and testing. At each timestep, the agent selects the best action by imagining possible

rollouts with its learned model using Model Predictive Control (MPC). However, the number of

timesteps it looks into the future is usually fixed to a small number. This is because the required

computation for planning grows exponentially with the horizon. At the same time, the accuracy of

the learned model usually deteriorates with longer horizons [25]. Thus, this method often suffers

from myopic decisions for complex tasks.

To combine the advantages of sample efficiency of model-based reinforcement learning and

long-horizon reasoning of model-free reinforcement learning, we propose Learning Off-Policy

with Online Planning (LOOP). During online planning, it augments the model-based rollout tra-

jectories with a terminal value function learned using off-policy model-free reinforcement learning.

We refer to this policy as the MPC policy. In this way, the agent can select actions by evaluating
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Figure 2.1: Overview: We use online planning with learned dynamic models and a terminal Q-

function as the behavior policy. The transitions are saved into the replay buffer to train the Q-

function and the dynamics model. The parameterized actor is also used to guide online planning.

short-horizon model rollouts as well as the future consequences after the rollout terminates using

the value function. From another perspective, this model-based planning agent can be treated as

the behavior policy for the off-policy algorithm that it uses to obtain the value function. Thus,

compared to the underlying off-policy algorithm, LOOP can interact with the environment more

effectively by planning over the learned model.

This combination introduces an issue in learning the value function. Directly estimate the value

function for the MPC policy is computationally inefficient. Instead, if we use the MPC policy as

a behavior policy and learn the value-function using an off-policy algorithm, the parameterized

actor that is used to update the value function might diverge from the behavior policy and cause

the “extrapolation issue” [29] in Q-learning. We identify this divergence to be critical in this

combination of model-based and model-free reinforcement learning. We propose actor-guided

trajectory optimization which improves learning performance by guiding trajectory optimization

using the model-free actor. We evaluate our method on OpenAI Gym MuJoCo environments and

demonstrate that the final algorithm is able to learn more efficiently than the underlying model-

based and off-policy method.

2.2 Related Work

Model-free reinforcement learning algorithms achieve high performance for a lot of tasks, but these

methods are notoriously sample-inefficient. Particularly, on-policy methods like TRPO (Schulman

et al. [72]) and PPO (Schulman et al. [73]) require new samples to be collected for every update to
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the policy. For instance, learning in-hand dexterous manipulation Andrychowicz et al. [8] required

3 years of simulated experience to learn without domain-randomization. Off-policy methods like

SAC [34] and TD3 [30], on the other hand, are more sample-efficient than on-policy methods, as

they utilize all the experiences obtained in the past. We use TD3 in our setup due to its simplicity

and ease of analysis.

Model based-RL has seen a surge of interest recently, as the benefits involve reducing the

sample complexity while maintaining asymptotic performance. Previous work approach model-

based reinforcement learning using a learned model and trajectory optimization [22, 55]. These

methods can reach asymptotic performance when a large enough planning horizon is used. This

method can also scale to tasks like rotating Baoding balls in hand as demonstrated in [55], but has

the limitation of not being able to reason for rewards beyond the planning horizon. Increasing the

planning horizon increases the number of trajectories that should be sampled, and incurs a heavy

computing cost.

Another line of work attempts to get the best of both model-free and model-based reinforce-

ment learning, Feinberg et al. [25] and Buckman et al. [17] uses the model to improve target value

estimates and thus accelerates model-free reinforcement learning. Schrittwieser et al. [71] uses

Monte-Carlo Tree search with value estimates to constrain the length and uses a policy to constrain

the width of the search tree. Their method utilizes on on-policy samples to train the Q-function,

making it sample inefficient. It works on discrete action spaces with a latent dynamics structure.

Hamrick et al. [36] combines MCTS with Q-learning but work under the setting of known model

and discrete space.

The most related work to ours is Lowrey et al. [53] where they use trajectory optimization in

the form of Model Predictive Control (MPC) as the behavior policy, and updates the Q function by

obtaining a target lookahead value estimate using another instance of trajectory optimization. This

method is extremely slow as each batch of sampled data for training the Q-function will require

instances of trajectory optimization that scales with batch size. Moreover, they consider access

to ground truth dynamics. Our method uses trajectory optimization using a learned model and a

terminal value function as an exploratory policy, but the Q function updates are performed entirely

off policy.

2.3 Learning Off-Policy with Online Planning

In LOOP, we use trajectory optimization with a terminal value function as the behavior policy that

interacts with the environment. This trajectory optimization in its naive form is myopic and in
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many cases may not produce optimal policies for the task, since it does fixed horizon planning

using a learned model. We address this deficiency by having a value function that reasons for

the expected long term rewards under the policy. Different from Lowrey et al. [53], we propose

to utilize advances in off-policy learning to make the algorithm computationally efficient. In this

section, we start by discussing the methods for learning the value function and the dynamics model.

After that, we will further discuss how these two are combined and how we deal with the actor-

divergence issue. Going forward, we will use the notation πopt to denote the MPC policy that uses

trajectory optimization by forward simulation over learned models in the model-based part and πφ
to denote the parameterized actor in the model-free part.

2.3.1 Learning the Value Function with Model-free Actor

To learn a value function, we build our method upon TD3 [30] which is an off-policy algorithm

with an actor πφ and a value function Qθ. Note that other off-policy algorithms can also be used

here. We refer to the actor πφ used to update the value function as the “parameterized actor”, in

the sense that this actor is a parameterized function, in our case a neural network. It will only be

used to update the value function and not be used to collect data as standard TD3. The target value

is calculated based on the bellman equation:

Qtarget(st, at) = r(st, at) + γQ′θ(st+1, πφ(st+1)) (2.1)

To reduce overestimation error, TD3 calculates the target value by taking the minimum over two

value functions Qθ1 and Qθ2 , also called Clipped Double Q learning. Finally the value function is

updated by minimizing the mean squared error:

MSE = E(s,a)∼D[Qtarget(s, a)−Qθ1,θ2(s, a))]2 (2.2)

where s, a are the state action pairs sampled from D, the replay buffer of past experiences. The

policy is updated by maximizing Qθ1(s, πφ(s)).

2.3.2 Learning the Dynamics Model

Using the transitions collected, we train a dynamics model using supervised learning. Given a

state-action pair (s, a), the network is trained to regress the difference δ between the next state

and the current state, parameterized as a Gaussian distribution with a diagonal covariance matrix.

Following Nagabandi et al. [55], we use probabilistic ensembles of dynamics models that capture

the epistemic uncertainty as well as the aleatoric uncertainty in forward predictions [22]. Each
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model in the ensemble is initialized with different weights and samples shuffled batches of data

during training.

2.3.3 Trajectory Optimization with a Terminal Value Function

Given the dynamics model, the trajectory optimization policy πopt is the MPC-based policy that

uses Cross-Entropy Method (CEM) to select actions. Cross-Entropy Method is a strong optimizer

and is shown [55] to perform much better than the random-shooting methods. This MPC policy

will be used as the behavior policy to collect data in the environment. For each timestep, this

policy will sample n action sequences (a1, a2, ...aH), up to a fixed horizon from a sampling distri-

bution, and use the probabilistic dynamics model to unroll the trajectory resulting from the action

sequence. The cumulative return for each rollout is calculated by

G =
H−1∑
i=0

(γir(si, ai)) + γHQθ(sH+1, aH+1) (2.3)

Note that in previous model-based reinforcement learning methods such as [55][22], the last

term Q(sH , aH) is often eliminated, resulting in an optimization of the action sequences over a

fixed horizon, which might be shortsighted and result in a suboptimal trajectory sequence. The top

e highest scoring actions sequences, also called elites, are selected and used to refine the sampling

distribution from which the action sequences are sampled from.

Ai = {ai0, ai1, .., aiH}, Ai ∼ N (µm, Σm)∀i ∈ n

Aelites = sort(Ai)[−e :]

µm+1 = α ∗mean(Aelites) + (1− α)µm

Σm+1 = α ∗ var(Aelites) + (1− α)Σm

(2.4)

After N iterations of refinement, we take the mean of the resulting action distribution as the final

output. Following MPC, only the first action of the sequence is executed. For each subsequent

timestep, replanning is performed. The transitions will be collected into the replay buffer, which

will be used to train the models and the Q-function.

2.3.4 Actor-guided Trajectory Optimization (CEM-AG)

Combining trajectory optimization and off-policy learning in the way described above might suffer

from the issue of “actor divergence”: There is a mismatch between the state-action distribution

induced by the model-free actor and the state-action distribution of the MPC-based behavior policy
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Algorithm 1: LOOP

1 Initialize parameterized actor πφ, Q-function Qθ, predictive model pψ, Dataset D,

Planning Horizon H

2 Collect some transitions sampled from a random policy into dataset D.

3 for i← 1 to Iter do
4 for CEM iterations do
5 Set the CEM objective to be: JCEM =

∑H−1
t=0 (γtr(st, at)) + γHQθ(sH+1, aH+1)

6 Sample state-action trajectories using a mixture distribution of the sampling

distribution(gaussian) and the actions suggested by the parameterized actor

unrolled with the model.

7 Update the mean and the variance of the sampling distribution using Equation 2.4.

8 end
9 Select the updated mean to perform an action in the environment. Add the transition

(s, a, r, s′) to D.

10 for M epochs every K timesteps do
11 Update model ensemble parameters(ψ) on dataset D using maximum likelihood.

12 end
13 for G gradient updates do
14 Update policy parameters(φ, θ) on dataset D, using any off-policy RL algorithm

15 end
16 end
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that collects data. As discussed in Fujimoto et al. [29], the mismatch will lead to extrapolation

errors in Q-learning and cause persistent overestimation bias that deteriorates performance. In our

experiments, we observe that naively using the method in section C sometimes results in worse

performance than the original off-policy method due to this issue.

To mitigate the issue of actor divergence, we propose Actor-guided Trajectory Optimization.

At each timestep, we use the model-free actor to propose a sequence of trajectories by rolling out

the dynamics model. These trajectories will be included in the batch of samples in each CEM

iteration. When these trajectories are selected as elites in CEM, they will guide the optimization

and bring the solution closer to the actor distribution. In our experiments, we observe that CEM-AG

effectively decreases actor divergence and improves the performance of LOOP. The full algorithm

is summarized in Algorithm 3.

One alternative to solve the issue of actor divergence is to incorporate the divergence as an

additional cost in CEM using Kullback-Leibler (KL) divergence or L2 distance. In practice, we

found this to be overly conservative and limits the performance benefits that result from trajectory

optimization.

2.4 Experimental Results

We benchmark the proposed method LOOP on four OpenAI Gym MuJoCo environments: HalfChee-

tah, Hopper, Walker, and InvertedPendulum. First, we evaluate the sample efficiency and perfor-

mance of LOOP comparing to the underlying algorithms that it is built upon. We further analyze

the effect of Actor-guided CEM in reducing actor divergence.

2.4.1 Implementation Details

We use a horizon length of 5 for all the environments except Walker (uses horizon=3). We use the

author’s implementation of TD3 with the original hyperparameters. The dynamics model ensemble

has 5 neural networks each consisting of 4 hidden layers, 200 hidden units each. We list all

the hyperparameters in Appendix 2.5.1. The CEM optimizer uses 200 particles, sampled from

a multivariate Gaussian distribution. Each action sequence is passed through each of the dynamics

models and the average return is used as the maximization objective in CEM. The MPC policy

will be used for the evaluation of LOOP by default. For CEM-AG we use 1 trajectory from πφ for

every 20 trajectories from sampling distribution. We use 5 random seeds to account for variability

in training.
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2.4.2 Improvement over the underlying model-based and model-free algo-
rithm

TD3 LOOP ONLY_CEM randomQ LOOP without CEM-AG
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Figure 2.2: Training Performance of LOOP and its baselines on MuJoCo tasks. Green: LOOP.

Blue: TD3. Red: CEM without a terminal value function. Violet: The terminal Q function is set to

be evaluation of a random policy. Yellow: LOOP without CEM-AG. Dashed line: the performance

of TD3 at 1e6 timesteps.

As shown in Figure 2.2, LOOP has significant performance gains over TD3 in all of the four

environments due to better exploration. The red curves show the performance of CEM with the

same planning horizon as LOOP but without the terminal Q-function, similar to Nagabandi et al.

[55]. We observe that fixed-horizon CEM performs poorly in MuJoCo tasks due to the short

planning horizon.
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2.4.3 Comparison to previous model-based methods

We observe that LOOP when built on top of SAC as the off-policy model-free sub-module is able to

achieve comparable results to state of the art model based algorithm MBPO [40]. We use author’s

implementation without additional hyper-parameter tuning for MBPO.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

timesteps 1e5

0

5000

10000

A
ve

ra
g
e
 R

e
w

a
rd

HalfCheetah

0 1 2 3 4 5

timesteps 1e5

0

1000

2000

3000

4000
Hopper

0.0 0.5 1.0 1.5 2.0 2.5 3.0

timesteps 1e5

0

2000

4000

Walker

0.0 0.5 1.0 1.5 2.0 2.5 3.0

timesteps 1e4

0

250

500

750

1000

1250
InvertedPendulum

Figure 2.3: Comparison of learning performance with MBPO, a mdoel-based RL algorithm built

on top of SAC.

2.4.4 Ablation Studies

To better understand the importance of different components in our method, we do ablation studies

on the actor-guided CEM and the parameterized actor.

First, we evaluate the importance of actor-guided CEM comparing to normal CEM. Without

using Actor-guided CEM (CEM-AG), Walker completely fails. The performance of other envi-

ronments also drops and sometimes becomes more unstable. There are two hypotheses of how

actor-guided CEM helps. First, the trajectories proposed by the parameterized actor might some-

times provide a better solution to this optimization problem than CEM alone. However, we observe

that actor-guided CEM usually achieves similar reward as original CEM (Appendix E). Second,

actor-guided CEM biases the solutions of CEM towards the parameterized actor, and thus reduces

extrapolation issue for off-policy learning. In Figure 2.4, we compute the L2 distance between

the action proposed by the MPC policy (final output from CEM) and the TD3 policy. We observe

that actor-guided CEM in LOOP is indeed able to reduce the actor-divergence compared to nor-

mal CEM. In Appendix C, we also include the plot for ”actor usage” in CEM by measuring the

fraction of time when the trajectories suggested by the parameterized actor are selected to be the

elites in CEM. It further demonstrates that the actor-proposed trajectories are biasing the sampling

distribution of CEM.
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Figure 2.4: Actor-guided CEM reduces actor-divergence between the MPC policy and the model-

free actor. Green: LOOP. Yellow: LOOP without actor-guided CEM (CEM-AG)

Next, instead of training the Q-function over the parameterized actor in off-policy learning, we

train the Q-function over a randomly initialized policy. The motivation behind this experiment is

that the parameterized actor in LOOP usually results in a bad evaluation performance comparing

to the MPC policy. Thus, we want to verify whether training the parameterized actor is critical

to obtain an informative Q-function for the MPC policy. In this experiment, we observe that the

performance drastically drops if we replace the actor by a random policy. This indicates that the

parameterized actor does provide meaningful information for the MPC policy to reason for the

cumulative return beyond the planning horizon.
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2.5 Appendix

2.5.1 Implementation Details

We benchmark the proposed method LOOP on four OpenAI Gym MuJoCo tasks: HalfCheetah-v2,

Hopper-v2, Walker2d-v2, and InvertedPendulum-v2. Figure 2.5 show what the environments look

like.

Figure 2.5: Left to Right: Hopperv2, Walker2d-V2, HalfCheetah-v2,InvertedPendulum-v2

Our probabilisitc ensemble of dynamics model resembles the one used in Chua et al. [22]. We

use the TS-∞ sampling, and aggregate the total return by taking an return average across trajectory

samples similar to [22] (Section 5.1). The hyperparameters used for the dynamics model, TD3

learning and the CEM controller are shown below:

2.5.2 Effect of horizon on LOOP

Horizon is a hyperparameter in LOOP and can be tuned to get the best performance. We test of

horizon of 3, 5 and 7. Figure 2.6 shows the performance of LOOP with different planning horizon.

We observe that horizon of 5 works best in HalfCheetah, Walker, Hopper and horizon of 3 for

Walker.

2.5.3 Actor-usage in CEM-AG

To further verify if the actor-suggested actions are any good and influence the sampling distribution

for CEM, we plot the fraction of actor-suggested samples that make it to the elites of CEM each

timestep. The fraction is averaged over the number of iterations of CEM.
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Table 2.1: LOOP Hyperparameters

Environments HalfCheetah Hopper Walker2d InvertedPendulum

Total Timesteps 1× 106 1× 106 1× 106 3× 104

Environment Steps per episode 1000

Model Update frequency (K) 250

Model Update epochs (M) 5

Ensemble Size 5

Network Architecture MLP with 4 hidden layers of size 200

Model Horizon (H) 5 5 3 5

Model Learning rate 0.001

Policy update per environment step (G) 1

Replay Buffer Size 1e6

Table 2.2: CEM Hyperparameters

Hyperparamater Value

Planning Horizon 5

Population Size (n) 100

Elites (e) 20

Number of Particles 4

Alpha α 0.25

Iterations (N ) 5

Actor Mix 5 %

2.5.4 Replay Buffer Augmentation

It is observed that the performance of the parameterized actor(πφ) during evaluation is quite poor

comparing to the model-based policy. Wang and Ba [91] uses Behavior Cloning to distill the search

policy into πφ but still observe poor performance. πφ suffers from covariate shift issue since it is

never explicitly trained on the state-distribution that it encounters when it is deployed (since it is
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Figure 2.6: LOOP Plan horizon comparison
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Figure 2.7: Actor-usage in LOOP while using CEM-AG: Fraction of actor suggested trajectories

that make it to the elites in CEM.

not the behavior policy). For instance, if the policy πφ were to make a small mistake and land

in a state that is out of the distribution of states on which Q-function is trained on, the Q value

might be arbitrarily bad. We can further modify LOOP to improve πφ performance by training it

on a mixture of simulated transitions that are observed during CEM and the real transitions, thus

increasing the support of state-action marginal on which Q-function is trained to make πφ more

robust. We randomly sample a set of transitions encountered during CEM search procedure, and

put them in a separate replay buffer(M). This replay buffer has a smaller size than the regular

one to ensures that it only contains the samples generated by the latest dynamics model. In our

experiments, we sample real transitions with 0.7 probability and transitions from M with 0.3

for off-policy learning. The size of M is set to be 12,000. We observe an improvement in the

performance of πφ as shown in Figure 2.9.
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Figure 2.8: Replay buffer augmentation allows improves parameterized actor’s performance.

2.5.5 Is CEM-AG a better optimizer than CEM?

We do an experiment to check if CEM-AG is able to find a better solution in trajectory space

(with higher return) than CEM. To do this, we run LOOP, but additionally at each timestep in the

environment we run CEM-AG and CEM separately and plot the difference in the cumulative dis-

counted return (
∑H−1

i=1 (γi−1r(si, ai)) +γH−1Qθ(sH , aH)) of their optimized solution. In Figure ??
we see that this is not the case, both optimized solution from both CEM and CEM-AG have similar

reward. CEM-AG does offer improvement over the trajectories suggested by the parameterized

actor, that are used to guide the CEM.
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Figure 2.9: Blue Curve shows the difference between optimized return of CEM-AG and CEM.

Green curve shows the difference between optimized return of CEM-AG and the mean return of

the raw trajectories suggested by the parameterized actor.
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Chapter 3

f -IRL: Inverse Reinforcement Learning via
State Marginal Matching

3.1 Introduction

Imitation learning (IL) is a powerful tool to design autonomous behaviors in robotic systems.

Although reinforcement learning methods promise to learn such behaviors automatically, they have

been most successful in tasks with a clear definition of the reward function. Reward design remains

difficult in many robotic tasks such as driving a car [64], tying a knot [61], and human-robot

cooperation [35]. Imitation learning is a popular approach to such tasks, since it is easier for an

expert teacher to demonstrate the desired behavior rather than specify the reward [10, 37, 39].

Methods in IL frameworks are generally split into behavior cloning (BC) [11] and inverse rein-

forcement learning (IRL) [70, 57, 1]. BC is typically based on supervised learning to regress expert

actions from expert observations without the need for further interaction with the environment, but

suffers from the covariate shift problem [69]. On the other hand, IRL methods aim to learn the

reward function from expert demonstrations, and use it to train the agent policy. Within IRL, ad-

versarial imitation learning (AIL) methods (GAIL [38], AIRL [28], f -MAX [32], SMM [47]) train

a discriminator to guide the policy to match the expert’s state-action distribution.

AIL methods learn a non-stationary reward by iteratively training a discriminator and taking a

single policy update step using the reward derived from the discriminator. After convergence, the

learned AIL reward cannot be used for training a new policy from scratch, and is thus discarded.

In contrast, IRL methods such as ours learn a stationary reward such that, if the policy is trained

from scratch using the reward function until convergence, then the policy will match the expert

behavior. We argue that learning a stationary reward function can be useful for solving downstream
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IL Method Space f -Divergence Recover Reward?

MaxEntIRL [97], GCL [27] τ Forward Kullback-Leibler X

GAN-GCL [26] τ Forward Kullback-Leibler* X

AIRL [28], EAIRL [65] τ Forward Kullback-Leibler* X

EBIL [52] τ Reverse Kullback-Leibler X

GAIL [38] s, a Jensen-Shannon ×
f -MAX [32] s, a f -divergence ×
SMM [47] s Reverse Kullback-Leibler ×

f -IRL (Our method) s f -divergence X

Table 3.1: IL methods vary in the domain of the expert distribution that they model (“space”), the

choice of f-divergence, and whether they recover a stationary reward function. *GAN-GCL and

AIRL use biased IS weights to approximate FKL (see Appendix 3.3).

tasks and transferring behavior across different dynamics.

Traditionally, IL methods assume access to expert demonstrations and minimize some diver-

gence between policy and expert’s trajectory distribution. However, in many cases, it may be easier

to directly specify the state distribution of the desired behavior rather than to provide fully-specified

demonstrations of the desired behavior [47]. For example, in a safety-critical application, it may

be easier to specify that the expert never visits some unsafe states, instead of tweaking reward to

penalize safety violations [23]. Similarly, we can specify a uniform density over the whole state

space for exploration tasks, or a Gaussian centered at the goal for goal-reaching tasks. Reverse

KL instantiation for f -divergence in f -IRL allows for unnormalized density specification, which

further allows for easier preference encoding.

In this work, we propose a new method, f -IRL, that learns a stationary reward function from

the expert density via gradient descent. To do so, we derive an analytic gradient of any arbitrary

f -divergence between the agent and the expert state distribution w.r.t. reward parameters. We

demonstrate that f -IRL is especially useful in the limited data regime, exhibiting better sample ef-

ficiency than prior work in terms of the number of environment interactions and expert trajectories

required to learn the MuJoCo benchmark tasks. We also demonstrate that the reward functions

recovered by f -IRL can accelerate the learning of hard-to-explore tasks with sparse rewards, and

these same reward functions can be used to transfer behaviors across changes in dynamics.
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3.2 Related Work

IRL methods [70, 57, 1] obtain a policy by learning a reward function from sampled trajectories

of an expert policy. MaxEntIRL [97] learns a stationary reward by maximizing the likelihood of

expert trajectories, i.e., it minimizes forward KL divergence in trajectory space under the maximum

entropy RL framework. Similar to MaxEntIRL, Deep MaxEntIRL [92] and GCL [27] optimize

the forward KL divergence in trajectory space. A recent work, EBIL [52], optimizes the reverse

KL divergence in the trajectory space by treating the expert state-action marginal as an energy-

based model. Another recent method, RED [90], uses support estimation on the expert data to

extract a fixed reward, instead of trying to minimize a f -divergence between the agent and expert

distribution.

One branch of IRL methods train a GAN [33] with a special structure in the discriminator to

learn the reward. This is first justified by Finn et al. [26] to connect GCL [27] with GAN, and

several methods [26, 28, 65] follow this direction. Our analysis in Appendix 3.3 suggests that the

importance-sampling weights used in these prior methods may be biased. We show that AIRL does

not minimize the reverse RL in state-marginal space (as argued by [32]). Moreover, AIRL [28] uses

expert state-action-next state transitions, while our method can work in a setting where only expert

states are provided.

A set of IL methods [38, 32] use a discriminator to address the issue of running RL in the inner

loop as classical IRL methods. Instead, these methods directly optimize the policy in the outer

loop using adversarial training. These methods can be shown to optimize the Jensen-Shannon, and

a general f -divergence respectively, but do not learn a reward function. SMM [47] optimizes the

reverse KL divergence between the expert and policy state marginals but also does not recover a

reward function due to its fictitious play approach. SQIL [67] and DRIL [15] utilize regularized

behavior cloning for imitation without recovering a reward function. Unlike these prior methods,

f -IRL can optimize any f -divergence between the state-marginal of the expert and the agent,

while also recovering a stationary reward function. Table 3.1 summarizes the comparison among

imitation learning methods.

3.3 What Objective is Optimized by Previous IL Algorithms?

In this section, we discuss previous IL methods and analyze which objectives they may truly op-

timize. Our analysis shows that AIRL and GAN-GCL methods possibly optimize for a different

objective than they claim, due to their usage of biased importance sampling weights.
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3.3.1 MaxEntIRL [97], Deep MaxEntIRL [92], GCL [27]

Classical IRL methods [70, 57] obtain a policy by learning a reward function from sampled trajec-

tories of an expert policy. MaxEntIRL [97] learns a stationary reward by maximizing likelihood

on expert trajectories, i.e., it minimizes forward KL divergence in trajectory space under the max-

imum entropy RL framework. A trajectory is a temporal collection of state-action pairs, and this

makes the trajectory distribution different from state-action marginal or state marginal distribution.

Each objective - minimizing divergence in trajectory space τ , in state-action marginal space (s, a)

and state marginal s are different IL methods in their own sense.

MaxEntIRL derives a surrogate objective w.r.t. reward parameter as the difference in cumula-

tive rewards of the trajectories between the expert and the soft-optimal policy under current reward

function. To train the soft-optimal policy, it requires running MaxEnt RL in an inner loop after

every reward update. This algorithm has been successfully applied for predicting behaviors of taxi

drivers with a linear parameterization of reward. Wulfmeier et al. [92] shows that MaxEntIRL

reward function can be parameterized as deep neural networks as well.

Guided cost learning (GCL) [27] is one of the first methods to train rewards using neural net-

work directly through experiences from real robots. They achieve this result by leveraging guided

policy search for policy optimization, employing importance sampling to correct for distribution

shift when the policy has not converged, and using novel regularizations in reward network. GCL

optimizes for the same objective as MaxEntIRL and Deep MaxEntIRL. To summarize these three

works, we have the following observation:

Observation 3.3.0.1. MaxEntIRL, Deep MaxEntIRL, GCL all optimize for the forward KL diver-

gence in trajectory space, i.e. DKL(ρE(τ) || ρθ(τ)).

3.3.2 GAN-GCL [26], AIRL [28], EAIRL [65]

Finn et al. [26] shows that GCL is equivalent to training GANs with a special structure in the

discriminator (GAN-GCL). Note that this result uses an approximation in importance sampling,

and hence the gradient estimator is biased. Fu et al. [28] shows that GAN-GCL does not perform

well in practice since its discriminator models density ratio over trajectories which leads to high

variance. They propose an algorithm AIRL in which the discriminator estimates the density ratio

of state-action marginal, and shows that AIRL empirically performs better than GAN-GCL. AIRL

also uses approximate importance sampling in its derivation, and therefore its gradient is also

biased. GAN-GCL and AIRL claim to be able to recover a reward function due to the special

structure in the discriminator. EAIRL [65] uses empowerment regularization on policy objective
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based on AIRL.

All the above algorithm intend to optimize for same objective as MaxEntIRL. However, there

is an approximation involved in the procedure and let us analyze what that is, by going through the

derivation for equivalence of AIRL to MaxEntIRL as shown in Fu et al. [28] (Appendix A of that

paper).

The authors start from writing down the objective for MaxEntIRL: maxθ LMaxEntIRL(θ) =

Eτ∼D[log pθ(τ)], where D is the collection of expert demonstrations, and reward function is pa-

rameterized by θ.

When the trajectory distribution is induced by the soft-optimal policy under reward rθ, it can be

parameterized as pθ(τ) ∝ p(s0)
∏T−1

t=0 p(st+1|st, at)erθ(st,at), then its gradient is derived as follows:

d

dθ
LMaxEntIRL(θ) = ED

[
d

dθ
rθ(st, at)

]
− d

dθ
log(Zθ)

= ED

[
T∑
t=1

d

dθ
rθ(st, at)

]
− Epθ

[
T∑
t=1

d

dθ
rθ(st, at)

]

=
T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Epθ,t

[
d

dθ
rθ(st, at)

] (3.1)

where Zθ is the normalizing factor of pθ(τ), and pθ,t(st, at) =
∫
st′!=t,at′!=t

pθ(τ) denote the state

action marginal at time t.

As it is difficult to draw samples from pθ, the authors instead train a separate importance sam-

pling distribution µ(τ). For the choice of distribution they follow [27] and use a mixture policy

µ(a|s) = 0.5π(a|s) + 0.5q̂(a|s) where q̂(a|s) is the rough density estimate trained on the demon-

strations. This is justified as reducing the variance of the importance sampling distribution. Thus

the new gradient becomes:

d

dθ
LMaxEntIRL(θ) =

T∑
t=1

ED
[
d

dθ
rθ(st, at)

]
− Eµt

[
pθ,t(st, at)

µt(st, at)

d

dθ
rθ(st, at)

]
(3.2)

We emphasize here q̂(a|s) is the density estimate trained on the demonstrations.

They additionally aim to adapt the importance sampling distribution to reduce variance by

minimizing DKL(π(τ) || pθ(τ)), and this KL objective can be simplified to the following MaxEnt

RL objective:

maxπEπ

[
T∑
t=1

rθ(st, at)− log π(at|st)

]
(3.3)
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This ends the derivation of gradient of MaxEntIRL. Now, AIRL tries to show that the gradient

of AIRL matches the gradient for MaxEntIRL objective shown above, i.e. d
dθ
LMaxEntIRL(θ) =

d
dθ
LAIRL(θ), then AIRL is equivalent to MaxEntIRL to a constant, i.e. LMaxEntIRL(θ) = LAIRL(θ)+

C.

In AIRL, the cost learning objective is replaced by training a discriminator of the following

form:

Dθ(s, a) =
efθ(s,a)

efθ(s,a) + π(a|s)
(3.4)

The objective of the discriminator is to maximize the cross-entropy between the expert demon-

strations and the generated samples:

max
θ
LAIRL(θ) =

T∑
t=1

ED[logDθ(st, at)] + Eπt [log(1−Dθ(st, at))]

=
T∑
t=1

ED
[
log

efθ(st,at)

efθ(st,at) + π(at|st)

]
+ Eπt

[
log

π(at|st)
π(at|st) + efθ(st,at)

]

=
T∑
t=1

ED[fθ(st, at)] + Eπt [log π(at|st)]− 2Eµt
[
log(π(at|st)) + efθ(st,at)

]
(3.5)

where µt is the mixture of state-action marginal from expert demonstrations and from state-action

marginal induced by current policy π at time t.

In AIRL, the policy π is optimized with the following reward:

r̂(s, a) = log(Dθ(s, a))− log(1−Dθ(s, a))

= fθ(s, a)− log π(a|s)
(3.6)

Taking the derivative with respect to θ,

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
efθ(st,at)

(efθ(st,at) + π(at|st))/2
d

dθ
fθ(st, at)

]
(3.7)

The authors multiply state marginal π(st) =
∫
a
πt(st, at) to the fraction term in the second expec-

tation, and denote that p̂θ,t(st, at) , efθ(st,at)π(st) and µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2.

Thus the gradient of the discriminator becomes:

d

dθ
LAIRL(θ) =

T∑
t=1

ED
[
d

dθ
fθ(st, at)

]
− Eµt

[
p̂θ,t(st, at)

µ̂t(st, at)

d

dθ
fθ(st, at)

]
(3.8)

24



AIRL is Not Equivalent to MaxEntIRL

The issues occurs when AIRL tried to match Eq. 3.8 with Eq. 3.42, i.e. d
dθ
LMaxEntIRL(θ)

?
=

d
dθ
LAIRL(θ) with same reward parameterization fθ = rθ.

If they are equivalent, then we have the importance weights equality:

p̂θ,t(st, at) = pθ,t(st, at), µ̂t(st, at) = µt(st, at) (3.9)

Then given the definitions, we have:

p̂θ,t(st, at) , efθ(st,at)π(st) = π∗θ(st)π
∗
θ(at|st) , pθ,t(s, a)

µ̂t(st, at) , (efθ(st,at) + π(at|st))π(st)/2 = (π(at|st) + q̂(at|st))π(st)/2 , µt(st, at)
(3.10)

where π∗θ is soft-optimal policy under reward rθ = fθ (assumption), thus log π∗θ(at|st) = fθ(st, at).

Then equivalently,

efθ(st,at) = q̂(at|st) = π∗θ(at|st) = π(at|st) (3.11)

Unfortunately these equivalences hold only at the global optimum of the algorithm, when the

policy π reaches the expert policy πE ≈ q̂ and the discriminator is also optimal. This issue also

applies to GAN-GCL and EAIRL. Therefore, we have the following conclusion:

Observation 3.3.0.2. GAN-GCL, AIRL, EAIRL are not equivalent to MaxEntIRL, i.e. not mini-

mizing forward KL in trajectory space and possibly optimizing a biased objective.

AIRL is Not Optimizing Reverse KL in State-Action Marginal

f -MAX [32] (refer to their Appendix C) states that AIRL is equivalent to f -MAX with f =

− log u. This would imply that AIRL minimizes reverse KL in state-action marginal space.

However, there are some differences in AIRL algorithm and the f -MAX algorithm with reverse

KL divergence. f -MAX[32] considers a vanilla discriminator. This is different than the original

AIRL [28], which uses a specially parameterized discriminator. To highlight this difference we

refer to f -MAX with f = −logu (called AIRL in their paper) as f -MAX-RKL in this work,

since it aims to minimize reverse-KL between state-action marginal. We see below that using f-

MAX method with special discriminator(instead of vanilla) might not correspond to reverse KL

minimization in state-action marginal which shows that AIRL does not truly minimize reverse KL

divergence.
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To show the equivalence of AIRL to reverse KL matching objective, Ghasemipour et al. [32]

considers that the AIRL discriminator can be trained till convergence. With the special discrimi-

nator of AIRL, at convergence the following equality holds:

efθ(s,a)

efθ(s,a) + π(a|s)
≡ ρE(s, a)

ρE(s, a) + ρθ(s, a)
(at convergence) (3.12)

but if this is true then fθ(s, a) can no longer be interpreted as the stationary reward function as it is

a function of current policy:

fθ(s, a) =
ρE(s, a)

ρθ(s, a)
π(a|s) (3.13)

Observation 3.3.0.3. AIRL is not optimizing reverse KL in state-action marginal space.

3.3.3 GAIL [38], FAIRL, f -MAX-RKL [32]

Generative Adversarial Imitation Learning (GAIL) [38] addresses the issue of running RL in an

inner step by adversarial training [33]. A discriminator learns to differentiate over state-action

marginal and a policy learns to maximize the rewards acquired from the discriminator in an alter-

nating fashion. It can be further shown that the GAIL is minimizing the Jensen-Shannon divergence

over state-action marginal given optimal discriminator.

Recently the idea of minimizing the divergence between expert and policy’s marginal distri-

bution is further comprehensively studied and summarized in Ke et al. [42] and Ghasemipour

et al. [32], where the authors show that any f -divergence can be minimized for imitation through

f -GAN framework [59]. f -MAX proposes several instantiations of f -divergence: forward KL

for f -MAX-FKL (FAIRL), reverse KL for f -MAX-RKL, and Jensen-Shannon for original GAIL.

Their objectives are summarized as below, where θ is policy parameter, f ∗ is the convex conjugate

of f and Tω is the discriminator.

min
θ
Df (ρE(s, a) || ρθ(s, a)) = min

θ
max
ω

E(s,a)∼ρE(s,a)[Tω(s, a)]− E(s,a)∼ρθ(s,a)[f
∗(Tω(s, a))]

(3.14)

These adversarial IRL methods cannot recover a reward function because they do minimax

optimization with discriminator in the inner-loop (when optimal, the discriminator predicts 1
2

ev-

erywhere), and have poorer convergence guarantees opposed to using an analytical gradient.

Observation 3.3.0.4. GAIL, FAIRL, f -MAX-RKL are optimizing JS, forward KL, and reverse KL

in state-action marginal space, respectively without recovering a reward function.
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3.3.4 SMM [47]

Lee et al. [47] presents state marginal matching (SMM) for efficient exploration by minimizing

reverse KL between expert and policy’s state marginals (Eq 3.15). However, their method cannot

recover the stationary reward function because it uses fictitious play between policy πθ and vari-

ational density q, and requires storing a historical average of policies and densities over previous

iterations.

max
θ
−DKL(ρθ(s) || ρE(s)) = max

θ
Eρθ(s)

[
log

ρE(s)

ρθ(s)

]
= max

θ
min
q

Eρθ(s)

[
log

ρE(s)

q(s)

]
(3.15)

3.3.5 Summary of IL/IRL Methods: Two Classes of Bilevel Optimization

Now we generalize the related works including our method into reward-dependent and policy-

dependent classes from the viewpoint of optimization objective.

For the reward-dependent (IRL) methods such as MaxEntIRL, AIRL, and our method, the

objective of reward/discriminator rθ and policy πφ can be viewed as a bilevel optimization:

min
θ,φ

L(rθ, πφ)

s.t. φ ∈ arg max
φ

g(rθ, πφ)
(3.16)

where L(·, ·) is the joint loss function of reward and policy, and g(r, ·) is the objective of policy

given reward r. Thus the optimal policy is dependent on current reward, and training on the final

reward does produce optimal policy, i.e. recovering the reward.

For the policy-dependent (IL) method such as f -MAX, GAIL, and SMM, the objective of

reward/discriminator rθ and policy πφ can be viewed as:

max
φ

min
θ
L(rθ, πφ) (3.17)

This is a special case of bilevel optimization, minimax game. The optimal reward is dependent on

current policy as the inner objective is on reward, thus it is non-stationary and cannot guarantee to

recover the reward.

3.4 Preliminaries

In this section, we review notation on maximum entropy (MaxEnt) RL [48] and state marginal

matching (SMM) [47] that we build upon in this work.
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MaxEnt RL. Consider a Markov Decision Process (MDP) represented as a tuple (S,A,P , r, ρ0, T )

with state-space S, action-space A, dynamics P : S × A × S → [0, 1], reward function r(s, a),

initial state distribution ρ0, and horizon T . The optimal policy π under the maximum entropy

framework [96] maximizes the objective
∑T

t=1 Eρπ,t(st,at)[r(st, at) + αH(·|st)]. Here ρπ,t is the

state-action marginal distribution of policy π at timestamp t, and α > 0 is the entropy temperature.

Let rθ(s) be a parameterized differentiable reward function only dependent on state. Let tra-

jectory τ be a time series of visited states τ = (s0, s1, . . . , sT ). The optimal MaxEnt trajectory

distribution ρθ(τ) under reward rθ can be computed as ρθ(τ) = 1
Z
p(τ)erθ(τ)/α, where

p(τ) = ρ0(s0)
T−1∏
t=0

p(st+1|st, at) , rθ(τ) =
T∑
t=1

rθ(st), Z =

∫
p(τ)erθ(τ)/αdτ.

Slightly overloading the notation, the optimal MaxEnt state marginal distribution ρθ(s) under

reward rθ is obtained by marginalization:

ρθ(s) ∝
∫
p(τ)erθ(τ)/αητ (s)dτ (3.18)

where ητ (s) ,
∑T

t=1 1(st = s) is the visitation count of a state s in a particular trajectory τ .

State Marginal Matching. Given the expert state density pE(s), one can train a policy to

match the expert behavior by minimizing the following f -divergence objective:

Lf (θ) = Df (ρE(s) || ρθ(s)) (3.19)

where common choices for the f -divergence Df [4, 32] include forward KL divergence, reverse

KL divergence, and Jensen-Shannon divergence. Our proposed f -IRL algorithm will compute the

analytical gradient of Eq. 3.19 w.r.t. θ and use it to optimize the reward function via gradient

descent.

3.5 Learning Stationary Rewards via State-Marginal Match-
ing

In this section, we describe our algorithm f -IRL, which takes the expert state density as input, and

optimizes the f -divergence objective (Eq. 3.19) via gradient descent. Our algorithm trains a policy

whose state marginal is close to that of the expert, and a corresponding stationary reward function

that would produce the same policy if the policy were trained with MaxEnt RL from scratch.
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Name f -divergence Df (P || Q) Generator f(u) hf (u)

FKL
∫
p(x) log p(x)

q(x)
dx u log u −u

RKL
∫
q(x) log q(x)

p(x)
dx − log u 1− log u

JS 1
2

∫
p(x) log 2p(x)

p(x)+q(x)
+ q(x) log 2q(x)

p(x)+q(x)
dx u log u− (1 + u) log 1+u

2
− log(1 + u)

Table 3.2: Selected list of f -divergences Df (P || Q) with generator functions f and hf defined in

Theorem 3.5.1, where f is convex, lower-semicontinuous and f(1) = 0.

3.5.1 Analytic Gradient for State Marginal Matching in f -divergence

One of our main contributions is the exact gradient of the f -divergence objective (Eq. 3.19) w.r.t.

the reward parameters θ. This gradient will be used by f -IRL to optimize Eq. 3.19 via gradient

descent. The proof is provided in Appendix 3.7.1.

Theorem 3.5.1 (f -divergence analytic gradient). The analytic gradient of the f -divergenceLf (θ)

between state marginals of the expert (ρE) and the soft-optimal agent w.r.t. the reward parameters

θ is given by:

∇θLf (θ) =
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,
T∑
t=1

∇θrθ(st)

)
(3.20)

where hf (u) , f(u)−f ′(u)u, ρE(s) is the expert state marginal and ρθ(s) is the state marginal of

the soft-optimal agent under the reward function rθ, and the covariance is taken under the agent’s

trajectory distribution ρθ(τ).1

Choosing the f -divergence to be Forward Kullback-Leibler (FKL), Reverse Kullback-Leibler

(RKL), or Jensen-Shannon (JS) instantiates hf (see Table 3.2). Note that the gradient of the RKL

objective has a special property in that we can specify the expert as an unnormalized log-density

(i.e. energy), since in hRKL(ρE(s)
ρθ(s)

) = 1−log ρE(s)+log ρθ(s), the normalizing factor of ρE(s) does

not change the gradient (by linearity of covariance). This makes density specification much easier

in a number of scenarios. Intuitively, since hf is a monotonically decreasing function (h′f (u) =

−f ′′(u)u < 0) over R+, the gradient descent tells the reward function to increase the rewards of

those state trajectories that have higher sum of density ratios
∑T

t=1
ρE(st)
ρθ(st)

so as to minimize the

objective.

1Here we assume f is differentiable, which is often the case for common f -divergence (e.g. KL divergence).
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3.5.2 Learning a Stationary Reward by Gradient Descent

We now build upon Theorem 3.5.1 to design a practical algorithm for learning the reward function

rθ (Algorithm. 2). Given expert information (state density or observation samples) and an arbitrary

f -divergence, the algorithm alternates between using MaxEnt RL with the current reward, and

updating the reward parameter using gradient descent based on the analytic gradient.

If the provided expert data is in the form of expert state density ρE(s), we can fit a density

model ρ̂θ(s) to estimate agent state density ρθ(s) and thus estimate the density ratio required in

gradient. If we are given samples from expert observations sE , we can fit a discriminator Dω(s) in

each iteration to estimate the density ratio by optimizing the binary cross-entropy loss:

max
ω

Es∼sE [logDω(s)] + Es∼ρθ(s)[log(1−Dω(s)] (3.21)

where the optimal discriminator satisfies D∗ω(s) = ρE(s)
ρE(s)+ρθ(s)

[33], thus the density ratio can be

estimated by ρE(s)
ρθ(s)

≈ Dω(s)
1−Dω(s)

, which is the input to hf .

Algorithm 2: Inverse RL via State Marginal Matching (f -IRL)
Input : Expert state density ρE(s) or expert observations sE , f -divergence

Output: Learned reward rθ, Policy πθ
1 Initialize rθ, and density estimation model (provided ρE(s)) or disciminator Dω (provided

sE)

2 for i← 1 to Iter do
3 πθ ←MaxEntRL(rθ) and collect agent trajectories τθ
4 if provided ρE(s) then
5 Fit the density model ρ̂θ(s) to the state samples from τθ

6 end
7 else

// provided sE

8 Fit the discriminator Dω by Eq. 3.21 using expert and agent state samples from sE

and τθ
9 end

10 Compute sample gradient ∇̂θLf (θ) for Eq. 3.20 over τθ
11 θ ← θ − λ∇̂θLf (θ)

12 end
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3.5.3 Robust Reward Recovery under State-only Ground-truth Reward

IRL methods are different from IL methods in that they recover a reward function in addition to the

policy. A hurdle in this process is often the reward ambiguity problem, explored in [56, 28]. This

ambiguity arises due to the fact that the optimal policy remains unchanged under the following

reward transformation [56]:

r̂(s, a, s′) = rgt(s, a, s
′) + γΦ(s′)− Φ(s) (3.22)

for any function Φ. In the case where the ground-truth reward is a function over states only (i.e.,

rgt(s)), f -IRL is able to recover the disentangled reward function (rIRL) that matches the ground

truth reward rgt up to a constant. The obtained reward function is robust to different dynamics –

for any underlying dynamics, rIRL will produce the same optimal policy as rgt. We formalize this

claim in Appendix 3.7.1 (based on Theorem 5.1 of AIRL [28]).

AIRL uses a special parameterization of the discriminator to learn state-only rewards. A dis-

advantage of their approach is that AIRL needs to approximate a separate reward-shaping network

apart from the reward network. In contrast, our method naturally recovers a state-only reward

function.

3.5.4 Practical Modification in the Exact Gradient

In practice with high-dimensional observations, when the agent’s current trajectory distribution

is far off from the expert trajectory distribution, we find that there is little supervision available

through our derived gradient, leading to slow learning. Therefore, when expert trajectories are

provided, we bias the gradient (Eq. 3.20) using a mixture of agent and expert trajectories inspired

by GCL [27], which allows for richer supervision and faster convergence. Note that at convergence,

the gradient becomes unbiased as the agent’s and expert’s trajectory distribution matches.

∇̃θLf (θ) :=
1

αT
covτ∼ 1

2
(ρθ(τ)+ρE(τ))

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,
T∑
t=1

∇θrθ(st)

)
(3.23)

where the expert trajectory distribution ρE(τ) is uniform over samples τE .

3.6 Experiments

In our experiments, we seek answers to the following questions:
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1. Can f -IRL learn a policy that matches the given expert state density?

2. Can f -IRL learn good policies on high-dimensional continuous control tasks in a sample-

efficient manner?

3. Can f -IRL learn a reward function that induces the expert policy?

4. How can learning a stationary reward function help solve downstream tasks?

Comparisons. To answer these questions, we compare f -IRL against two classes of existing

imitation learning algorithms: (1) those that learn only the policy, including Behavior Cloning

(BC), GAIL [38], and f -MAX-RKL2 [32]; and (2) IRL methods that learn both a reward and a

policy simultaneously, including MaxEnt IRL [97] and AIRL [28]. The rewards/discriminators

of the baselines are parameterized to be state-only. We use SAC [34] as the base MaxEnt RL

algorithm. Since the original AIRL uses TRPO [72], we re-implement a version of AIRL that uses

SAC as the underlying RL algorithm for fair comparison. For our method (f -IRL), MaxEnt IRL,

and AIRL, we use a MLP for reward parameterization.

Tasks. We evaluate the algorithms on several tasks:

• Matching Expert State Density: In Section 3.6.1, the task is to learn a policy that matches

the given expert state density.

• Inverse Reinforcement Learning Benchmarks: In Section 3.6.2, the task is to learn a

reward function and a policy from expert trajectory samples. We collected expert trajectories

by training SAC [34] to convergence on each environment. We trained all the methods using

varying numbers of expert trajectories {1, 4, 16} to test the robustness of each method to the

amount of available expert data.

• Using the Learned Reward for Downstream Tasks: In Section 3.6.3, we first train each

algorithm to convergence, then use the learned reward function to train a new policy on a

related downstream task. We measure the performance on downstream tasks for evaluation.

We use five MuJoCo continuous control locomotion environments [83, 16] with joint torque ac-

tions, illustrated in Figure 3.1. Further details about the environment, expert information (samples

or density specification), and hyperparameter choices can be found in Appendix 3.7.2.

3.6.1 Matching the Specified Expert State Density

First, we check whether f -IRL can learn a policy that matches the given expert state density of the

fingertip of the robotic arm in the 2-DOF Reacher environment. We evaluate the algorithms using

2A variant of AIRL [28] proposed in [32] only learns a policy and does not learn a reward.

32



Figure 3.1: Environments: (left to right) Ant-v2, Hopper-v2, HalfCheetah-v2, Reacher-v2, and

Walker2d-v2.
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(a) Expert Density: Gaussian (b) Expert Density: Mixture of two Gaussians

Figure 3.2: Forward (left) and Reverse (right) KL curves in the Reacher environment for different

expert densities of all methods. Curves are smoothed in a window of 120 evaluations.

two different expert state marginals: (1) a Gaussian distribution centered at the goal for single

goal-reaching, and (2) a mixture of two Gaussians, each centered at one goal. Since this problem

setting assumes access to the expert density only, we use importance sampling to generate expert

samples required by the baselines.

In Figure 3.2, we report the estimated forward and reverse KL divergences in state marginals

between the expert and the learned policy. For f -IRL and MaxEnt IRL, we use Kernel Density Es-

timation (KDE) to estimate the agent’s state marginal. We observe that the baselines demonstrate

unstable convergence, which might be because those methods optimize the f -divergence approxi-

mately. Our method {FKL, JS} f -IRL outperforms the baselines in the forward KL and the reverse

KL metric, respectively.

3.6.2 Inverse Reinforcement Learning Benchmarks

Next, we compare f -IRL and the baselines on IRL benchmarks, where the task is to learn a re-

ward function and a policy from expert trajectory samples. We use the modification proposed in
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Section 3.5.4 to alleviate the difficulty in optimizing the f -IRL objective with high-dimensional

states.

Policy Performance. We check whether f -IRL can learn good policies on high-dimensional

continuous control tasks in a sample-efficient manner from expert trajectories. Figure 3.3 shows

the learning curves of each method in the four environments with one expert trajectory provided.

f -IRL and MaxEnt IRL demonstrate much faster convergence in most of the tasks than f -MAX-

RKL. Table 3.3 shows the final performance of each method in the four tasks, measured by the

ratio of agent returns (evaluated using the ground-truth reward) to expert returns.3 While MaxEnt

IRL provides a strong baseline, f -IRL outperforms all baselines on most tasks especially in Ant,

where the FKL (f -IRL) has much higher final performance and is less sensitive to the number of

expert trajectories compared to the baselines. In contrast, we found the original implementation

of f -MAX-RKL to be extremely sensitive to hyperparameter settings. We also found that AIRL

performs poorly even after tremendous tuning, similar to the findings in [51, 52].

Recovering the Stationary Reward Function. We also evaluate whether f -IRL can recover

a stationary reward function that induces the expert policy. To do so, we train a SAC agent from

scratch to convergence using the reward model obtained from each IRL method. We then evaluate

the trained agents using the ground-truth reward to test whether the learned reward functions are

good at inducing the expert policies.

Table 3.4 shows the ratio of the final returns of policy trained from scratch using the rewards

learned from different IRL methods with one expert trajectory provided, to expert returns. Our

results show that MaxEnt IRL and f -IRL are able to learn stationary rewards that can induce a

policy close to the optimal expert policy.

3.6.3 Using the Learned Stationary Reward for Downstream Tasks

Finally, we investigate how the learned stationary reward can be used to learn related, downstream

tasks.

Reward prior for downstream hard-exploration tasks. We first demonstrate the utility of

the learned stationary reward by using it as a prior reward for the downstream task. Specifically,

we construct a didactic point mass environment that operates under linear dynamics in a 2D 6× 6

room, and actions are restricted to [−1, 1]. The prior reward is obtained from a uniform expert

density over the whole state space, and is used to ease the learning in the hard-exploration task,

where we design a difficult goal to reach with distraction rewards (full details in appendix 3.7.2).

3The unnormalized agent and expert returns are reported in Appendix 3.7.5.
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Figure 3.3: Training curves for f -IRL and 4 other baselines - BC, MaxEnt IRL, f -MAX-RKL

and AIRL with one expert demonstration. Solid curves depict the mean of 3 trials and the shaded

area shows the standard deviation. The dashed blue line represents the expert performance and the

dashed red line shows the performance of a BC agent at convergence.

Figure 3.4: Left: Extracted final reward of all compared methods for the uniform expert density in

the point environment. Right: The task return (in terms of rtask) with different α and prior reward

weight λ. The performance of vanilla SAC is shown in the leftmost column with λ = 0 in each

subplot.

We use the learned prior reward rprior to augment the task reward rtask as follows: r(s) =

rtask(s)+λ(γrprior(s
′)−rprior(s)). The main theoretical result of [56] dictates that adding a potential-

based reward in this form will not change the optimal policy. GAIL and f -MAX-RKL do not

extract a reward function but rather a discriminator, so we derive a prior reward from the discrimi-

nator in the same way as [32, 38].

Figure 3.4 illustrates that the reward recovered by {FKL, RKL, JS} f -IRL and the baseline

MaxEnt IRL are similar: the reward increases as the distance to the agent’s start position, the

bottom left corner, increases. This is intuitive for achieving the target uniform density: states
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Method Hopper Walker2d HalfCheetah Ant

Expert return 3592.63 ± 19.21 5344.21 ± 84.45 12427.49 ± 486.38 5926.18 ± 124.56

# Expert traj 1 4 16 1 4 16 1 4 16 1 4 16

BC 0.00 0.13 0.16 0.00 0.05 0.08 0.00 0.01 0.02 0.00 0.22 0.47

MaxEnt IRL 0.93 0.92 0.94 0.88 0.88 0.91 0.95 0.98 0.91 0.54 0.71 0.81

f -MAX-RKL 0.94 0.93 0.91 0.49 0.49 0.47 0.71 0.41 0.65 0.60 0.65 0.62

AIRL 0.01 0.01 0.01 0.00 0.00 0.00 0.19 0.19 0.19 0.00 0.00 0.00

FKL (f -IRL) 0.93 0.90 0.93 0.90 0.90 0.90 0.94 0.97 0.94 0.82 0.83 0.84
RKL (f -IRL) 0.93 0.92 0.93 0.89 0.90 0.85 0.95 0.97 0.96 0.63 0.82 0.81

JS (f -IRL) 0.92 0.93 0.94 0.89 0.92 0.88 0.93 0.98 0.94 0.77 0.81 0.73

Table 3.3: We report the ratio between the average return of the trained (stochastic) policy vs. that

of the expert policy for different IRL algorithms using 1, 4 and 16 expert trajectories. All results

are averaged across 3 seeds. Negative ratios are clipped to zero.

Method Hopper Walker2d HalfCheetah Ant

AIRL - - -0.03 -

MaxEntIRL 0.93 0.92 0.96 0.79

f -IRL 0.93 0.88 1.02 0.82

Table 3.4: The ratios of final return of the obtained policy against expert return across IRL methods.

We average f -IRL over FKL, RKL, and JS. ‘-’ indicates that we do not test learned rewards since

AIRL does poorly at these tasks in Table 3.3.

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth

using GAIL Reward

-29.9 130.3 145.5 141.1 315.5

Table 3.5: Returns obtained after transferring the policy/reward on modified Ant environment using

different IL methods.
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farther away should have higher rewards. f -MAX-RKL and GAIL’s discriminator demonstrate

a different pattern which does not induce a uniform state distribution. The leftmost column in

the Figure 3.4 (Right) shows the poor performance of SAC training without reward augmentation

(λ = 0). This verifies the difficulty in exploration for solving the task. We vary λ in the x-axis, and

α in SAC in the y-axis, and plot the final task return (in terms of rtask) as a heatmap in the figure.

The presence of larger red region in the heatmap shows that our method can extract a prior reward

that is more robust and effective in helping the downstream task attain better final performance

with its original reward.

Reward transfer across changing dynamics. Lastly, we evaluate the algorithms on transfer

learning across different environment dynamics, following the setup from [28]. In this setup, IL

algorithms are provided expert trajectories from a quadrupedal ant agent which runs forward. The

algorithms are tested on an ant with two of its legs being disabled and shrunk. This requires the

ant to significantly change its gait to adapt to the disabled legs for running forward.

We found that a forward-running policy obtained by GAIL fails to transfer to the disabled

ant. In contrast, IRL algorithms such as f -IRL are successfully able to learn the expert’s reward

function using expert demonstrations from the quadrupedal ant, and use the reward to train a policy

on the disabled ant. The results in Table 3.5 show that the reward learned by f -IRL is robust and

enables the agent to learn to move forward with just the remaining two legs.

3.7 Appendix

3.7.1 Derivation and Proof

This section provides the derivations and proofs for the main ideas in this work. Section 3.7.1 and

3.7.1 provide the derivation of Theorem 3.5.1, and section 3.7.1 provides the details about section

3.5.3.

Analytical Gradient of State Marginal Distribution

In this subsection, we start by deriving a general result - gradient of state marginal distribution

w.r.t. parameters of the reward function. We will use this gradient in the next subsection 3.7.1

where we derive the gradient of f -divergence objective.

Based on the notation introduced in section 3.4, we start by writing the probability of trajec-

tory τ = (s0, s1, . . . , sT ) of fixed horizon T under the optimal MaxEnt trajectory distribution for
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rθ(s) [96].

ρθ(τ) ∝ ρ0(s0)
T−1∏
t=0

p(st+1|st, at)e
∑T
t=1 rθ(st)/α (3.24)

Let p(τ) = ρ0(s0)
∏T−1

t=0 p(st+1|st, at), which is the probability of the trajectory under the

dynamics of the environment.

Explicitly computing the normalizing factor, we can write the distribution over trajectories as

follows:

ρθ(τ) =
p(τ)e

∑T
t=1 rθ(st)/α∫

p(τ)e
∑T
t=1 rθ(st)/αdτ

(3.25)

Let ητ (s) denote the number of times a state occurs in a trajectory τ . We now compute the

marginal distribution of all states in the trajectory:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (3.26)

where

ητ (s) =
T∑
t=1

1(st = s) (3.27)

is the empirical frequency of state s in trajectory τ (omitting the starting state s0 as the policy

cannot control the initial state distribution).

The marginal distribution over states can now be written as:

ρθ(s) ∝
∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ (3.28)

In the following derivation, we will use st to denote states in trajectory τ and s′t to denote states

from trajectory τ ′. Explicitly computing the normalizing factor, the marginal distribution can be

written as follows:

ρθ(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫ ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/αητ ′(s′)dτ ′ds′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ∫

p(τ ′)e
∑T
t=1 rθ(s′t)/α

∫
ητ ′(s′)ds′dτ ′

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

T
∫
p(τ ′)e

∑T
t=1 rθ(s′t)/αdτ ′

(3.29)

In the second step we swap the order of integration in the denominator. The last line follows

because only the T states in τ satisfy s ∈ τ . Finally, we define f(s) and Z to denote the nu-

merator (dependent on s) and denominator (normalizing constant), to simplify notation in further
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calculations.

f(s) =

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)dτ

Z = T

∫
p(τ)e

∑T
t=1 rθ(st)/αdτ

ρθ(s) =
f(s)

Z

(3.30)

As an initial step, we compute the derivatives of f(s) and Z w.r.t reward function at some state

rθ(s
∗).

df(s)

drθ(s∗)
=

1

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ (3.31)

dZ

drθ(s∗)
=
T

α

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s

∗)dτ =
T

α
f(s∗) (3.32)

We can then apply the quotient rule to compute the derivative of policy marginal distribution

w.r.t. the reward function.

dρθ(s)

drθ(s∗)
=
Z df(s)
drθ(s∗)

− f(s) dZ
drθ(s∗)

Z2

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

αZ
− f(s)

Z

Tf(s∗)

αZ

=

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

αZ
− T

α
ρθ(s)ρθ(s

∗)

(3.33)

Now we have all the tools needed to get the derivative of ρθ w.r.t. θ by the chain rule.

dρθ(s)

dθ
=

∫
dρθ(s)

drθ(s∗)

drθ(s
∗)

dθ
ds∗

=
1

α

∫ (∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)dτ

Z
− Tρθ(s)ρθ(s∗)

)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫ ∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)ητ (s

∗)
drθ(s

∗)

dθ
ds∗dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

(3.34)

Analytical Gradient of f -divergence objective

f -divergence [4] is a family of divergence, which generalizes forward/reverse KL divergence. For-

mally, let P and Q be two probability distributions over a space Ω, then for a convex and lower-
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semicontinuous function f such that f(1) = 0, the f -divergence of P from Q is defined as:

Df (P || Q) :=

∫
Ω

f

(
dP

dQ

)
dQ (3.35)

Applied to state marginal matching between expert density ρE(s) and agent density ρθ(s) over

state space S, the f -divergence objective is:

min
θ
Lf (θ) := Df (ρE || ρθ) =

∫
S
f

(
ρE(s)

ρθ(s)

)
ρθ(s)ds (3.36)

Now we show the proof of Theorem 3.5.1 on the gradient of f -divergence objective:

Proof. The gradient of the f -divergence objective can be derived by chain rule:

∇θLf (θ) =

∫
∇θ

(
f

(
ρE(s)

ρθ(s)

)
ρθ(s)

)
ds

=

∫ (
f

(
ρE(s)

ρθ(s)

)
− f ′

(
ρE(s)

ρθ(s)

)
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

,
∫
hf

(
ρE(s)

ρθ(s)

)
dρθ(s)

dθ
ds

(3.37)

where we denote hf (u) , f(u)− f ′(u)u. for convenience.4

4Note that if f(u) is non-differentiable at some points, such as f(u) = |u − 1|/2 at u = 1 for Total Variation
distance, we take one of its subderivatives.
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Substituting the gradient of state marginal distribution w.r.t θ in Eq. 3.34, we have:

∇θLf (θ)

=

∫
hf

(
ρE(s)

ρθ(s)

)(
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/αητ (s)

T∑
t=1

drθ(st)

dθ
dτ − T

α
ρθ(s)

∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗

)
ds

=
1

αZ

∫
p(τ)e

∑T
t=1 rθ(st)/α

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)

(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)
ds

=
1

αT

∫
ρθ(τ)

T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ
dτ

− T

α

(∫
hf

(
ρE(s)

ρθ(s)

)
ρθ(s)ds

)(∫
ρθ(s

∗)
drθ(s

∗)

dθ
ds∗
)

=
1

αT
Eτ∼ρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

drθ(st)

dθ

]
− T

α
Es∼ρθ(s)

[
hf

(
ρE(s)

ρθ(s)

)]
Es∼ρθ(s)

[
drθ(s)

dθ

]
(3.38)

To gain more intuition about this equation, we can convert all the expectations to be over the

trajectories:

∇θLf (θ)

=
1

αT

(
Eρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

) T∑
t=1

∇θrθ(st)

]
− Eρθ(τ)

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)]
Eρθ(τ)

[
T∑
t=1

∇θrθ(st)

])

=
1

αT
covτ∼ρθ(τ)

(
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)
,
T∑
t=1

∇θrθ(st)

)
(3.39)

Thus we have derived the analytic gradient of f -divergence for state-marginal matching as shown

in Theorem 3.5.1.

Extension to Integral Probability Metrics in f -IRL

Integral Probability Metrics (IPM) [54] is another class of divergence based on dual norm, exam-

ples of which include Wasserstein distance [9] and MMD [49]. We can use Kantorovich-Rubinstein

duality [86] to rewrite the IPM-based state marginal matching as:

LB(θ) = ‖ρE(s)− ρθ(s)‖B:= max
Dω∈B

EρE(s)[Dω(s)]− Eρθ(s)[Dω(s)] (3.40)
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where B is a symmetric convex set of functions and Dω is the critic function in [9].

Then the analytical gradient of the objective LB(θ) can be derived to be:

∇θLB(θ) = − 1

αT
covτ∼ρθ(τ)

(
T∑
t=1

Dω (st) ,
T∑
t=1

∇θrθ(st)

)
(3.41)

where the derivation directly follows the proof of Theorem 3.5.1.

f -IRL Learns Disentangled Rewards w.r.t. Dynamics

We follow the derivation and definitions as given in Fu et al. [28] to show that f -IRL learns disen-

tangled rewards. We show the definitions and theorem here for completeness. For more informa-

tion, please refer to Fu et al. [28].

We first redefine the notion of “disentangled rewards”.

Definition 1 (Disentangled rewards). A reward function r′(s, a, s′) is (perfectly) disentangled with

respect to ground truth reward rgt(s, a, s
′) and a set of dynamics T such that under all dynamics

in T ∈ T , the optimal policy is the same: π∗r′,T (a|s) = π∗rgt,T
(a|s)

Disentangled rewards can be loosely understood as learning a reward function which will pro-

duce the same optimal policy as the ground truth reward for the environment, on any underlying

dynamics.

To show how f -IRL recovers a disentangled reward function, we need go through the definition

of ”Decomposability condition”

Definition 2 (Decomposability condition). Two states s1,s2 are defined as ”1-step linked” under a

dyanamics or transition distribution T (s′|a, s), if there exists a state that can reach s1 and s2 with

positive probability in one timestep. Also, this relationship can transfer through transitivity: if s1

and s2 are linked, and s2 and s3 are linked then we can consider s1 and s3 to be linked.

A transition distribution T satisfies the decomposibility condition if all states in the MDP are linked

with all other states.

This condition is mild and can be satisfied by any of the environments used in our experiments.

Theorem 3.7.1 and 3.7.2 formalize the claim that f -IRL recovers disentangled reward functions

with respect to the dynamics. The notation Q∗r,T denotes the optimal Q function under reward

function r and dynamics T , and similarly π∗r,T is the optimal policy under reward function r and

dynamics T .

Theorem 3.7.1. Let rgt(s) be the expert reward, and T be a dynamics satisfying the decompos-

ability condition as defined in [28]. Suppose f -IRL learns a reward rIRL such that it produces an
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optimal policy in T : Q∗rIRL,T
(s, a) = Q∗rgt,T (s, a)− f(s) ,where f(s) is an arbitrary function of the

state. Then we have:

rIRL(s) = rgt(s) + C for some constant C, and thus rIRL(s) is robust to all dynamics.

Proof. Refer to Theorem 5.1 of AIRL [28].

Theorem 3.7.2. If a reward function r′(s, a, s′) is disentangled with respect to all dynamics func-

tions, then it must be state-only.

Proof. Refer to Theorem 5.2 of AIRL [28].

3.7.2 Implementation Details

Matching the Specified Expert State Density on Reacher (Sec 3.6.1)

Environment: The OpenAI gym Reacher-v2 environment [16] has a robotic arm with 2 DOF

on a 2D arena. The state space is 8-dimensional: sine and cosine of both joint angles, and the

position and velocity of the arm fingertip in x and y direction. The action controls the torques for

both joints. The lengths of two bodies are r1 = 0.1, r2 = 0.11, thus the trace space of the fingertip

is an annulus with R = r1 + r2 = 0.21 and r = r2 − r1 = 0.01. Since r is very small, it can be

approximated as a disc with radius R = 0.21. The time horizon is T = 30. We remove the object

in original reacher environment as we only focus on the fingertip trajectories.

Expert State Density: The domain is x-y coordinate of fingertip position. We experiment with

the following expert densities:

• Single Gaussian: µ = (−R, 0) = (−0.21, 0), σ = 0.05.

• Mixture of two equally-weighted Gaussians: µ1 = (−R/
√

2,−R/
√

2), µ2 = (−R/
√

2, R/
√

2), σ1 =

σ2 = 0.05

Training Details: We use SAC as the underlying RL algorithm for all compared methods. The

policy network is a tanh squashed Gaussian, where the mean and std is parameterized by a (64,

64) ReLU MLP with two output heads. The Q-network is a (64, 64) ReLU MLP. We use Adam

to optmize both the policy and the Q-network with a learning rate of 0.003. The temperature

parameter α is fixed to be 1. The replay buffer has a size of 12000, and we use a batch size of 256.

For f -IRL and MaxEntIRL, the reward function is a (64, 64) ReLU MLP. We clamp the output

of the network to be within the range [-10, 10]. We also use Adam to optimize the reward network

with a learning rate of 0.001.
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For other baselines including AIRL, f -MAX-RKL, GAIL, we refer to the f -MAX [32] authors’

official implementation5. We use the default discriminator architecture as in [32]. In detail, first the

input is linearly embedded into a 128-dim vector. This hidden state then passes through 6 Resnet

blocks of 128-dimensions; the residual path uses batch normalization and tanh activation. The last

hidden state is then linearly embedded into a single-dimensional output, which is the logits of the

discriminator. The logit is clipped to be within the range [−10, 10]. The discriminator is optimized

using Adam with a learning rate of 0.0003 and a batch size of 128.

At each epoch, for all methods, we train SAC for 10 episodes using the current reward/discriminator.

We warm-start SAC policy and critic networks from networks trained at previous iteration. We do

not empty the replay buffer, and leverage data collected in earlier iterations for training SAC. We

found this to be effective empirically, while saving lots of computation time for the bilevel opti-

mization.

For f -IRL and MaxEntIRL, we update the reward for 2 gradient steps in each iteration. For

AIRL, f -MAX-RKL and GAIL, the discriminator takes 60 gradient steps per epoch. We train all

methods for 800 epochs.

f -IRL and MaxEntIRL require an estimation of the agent state density. We use kernel density

estimation to fit the agent’s density, using epanechnikov kernel with a bandwidth of 0.2 for point-

mass, and a bandwidth of 0.02 for Reacher. At each epoch, we sample 1000 trajectories (30000

states) from the trained SAC to fit the kernel density model.

Baselines: Since we assume only access to expert density instead of expert trajectories in

traditional IL framework, we use importance sampling for the expert term in the objectives of

baselines.
• For MaxEntIRL: Given the reward is only dependent on state, its reward gradient can be

transformed into covariance in state marginal space using importance sampling from agent

states:

∇θLMaxEntIRL(θ) =
1

α

T∑
t=1

(
Est∼ρE,t [∇rθ(st)]− Est∼ρθ,t [∇rθ(st)]

)
=
T

α
(Es∼ρE [∇rθ(s)]− Es∼ρθ [∇rθ(s)])

=
T

α

(
Es∼ρθ

[
ρE(s)

ρ̂θ(s)
∇rθ(s)

]
− Es∼ρθ [∇rθ(s)]

) (3.42)

where ρt(s) is state marginal at timestamp t, and ρ(s) =
∑T

t=1 ρt(s)/T is state marginal

averaged over all timestamps, and we fit a density model to the agent distribution as ρ̂θ.
5https://github.com/KamyarGh/rl_swiss
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• For GAIL, AIRL, f -MAX-RKL: Original discriminator needs to be trained using expert sam-

ples, thus we use the same density model as described above, and then use importance sam-

pling to compute the discriminator objective:

max
D

L(D) = Es∼ρθ

[
ρE(s)

ρ̂θ(s)
logD(s)

]
+ Es∼ρθ [log(1−D(s))] (3.43)

Evaluation: For the approximation of both forward and reverse KL divergence, we use non-

parametric Kozachenko-Leonenko estimator [44, 46] with lower error [78] compared to plug-in

estimators using density models. Suggested by [85]6, we choose k = 3 in k-nearest neighbor for

Kozachenko-Leonenko estimator. Thus for each evaluation, we need to collect agent state samples

and expert samples for computing the estimators.

In our experiments, before training we sample M = 10000 expert samples and keep the valid

ones within observation space. For agent, we collect 1000 trajectories of N = 1000 ∗ T = 30000

state samples. Then we use these two batches of samples to estimate KL divergence for every

epoch during training.

Inverse Reinforcement Learning Benchmarks (Sec 3.6.2)

Environment: We use the Hopper-v2, Ant-v2, HalfCheetah-v2, Walker2d-v2 envi-

ronments from OpenAI Gym.

Expert Samples: We use SAC to train expert policies for each environment. SAC uses the

same policy and critic networks, and the learning rate as section 3.7.2. We train using a batch size

of 100, a replay buffer of size 1 million, and set the temperature parameter α to be 0.2. The policy

is trained for 1 million timesteps on Hopper, and for 3 million timesteps on the other environments.

All algorithms are tested on 1, 4, and 16 trajectories collected from the expert stochastic policy.

Training Details: We train f -IRL, Behavior Cloning (BC), MaxEntIRL, AIRL, and f -MAX-

RKL to imitate the expert using the provided expert trajectories.

We train f -IRL using Algorithm 2. Since we have access to expert samples, we use the practical

modification described in section 3.5.4 for training f -IRL, where we feed a mixture of 10 agent

and 10 expert trajectories (resampled with replacement from provided expert trajectories) into the

reward objective.

SAC uses the same hyperparameters used for training expert policies. Similar to the previous

section, we warm-start the SAC policy and critic using trained networks from previous iterations,

and train them for 10 episodes. At each iteration, we update the reward parameters once using

6https://github.com/gregversteeg/NPEET
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Adam optimizer. For the reward network of f -IRL and MaxEntIRL, we use the same reward

structure as section 3.7.2 with the learning rate of 0.0001, and `2 weight decay of 0.001. We take

one gradient step for the reward update.

MaxEntIRL is trained in the standard manner, where the expert samples are used for estimating

reward gradient.

For Behavior cloning, we use the expert state-action pairs to learn a stochastic policy that

maximizes the likelihood on expert data. The policy network is same as the one used in SAC for

training expert policies.

For f -MAX-RKL and AIRL, we tuned the hyperparameters based on the code provided by f -

MAX that is used for state-action marginal matching in Mujoco benchmarks. For f -MAX-RKL,

we fix SAC temperature α = 0.2, and tuned reward scale c and gradient penalty coefficient λ sug-

gested by the authors, and found that c = 0.2, λ = 4.0 worked for {Ant, Hopper, Walker2d} with

the normalization in each dimension of states and with a replay buffer of size 200000. However, for

HalfCheetah, we found it only worked with c = 2.0, λ = 2.0 without normalization in states and

with a replay buffer of size 20000. For the other hyperparameters and training schedule, we keep

them same as f -MAX original code: e.g. the discriminator is parameterized as a two-layer MLP

of hidden size 128 with tanh activation and the output clipped within [-10,10]; the discriminator

and policy are alternatively trained once for 100 iterations per 1000 environment timesteps.

For AIRL, we re-implement a version that uses SAC as the underlying RL algorithm for a

fair comparison, whereas the original paper uses TRPO. Both the reward and the value model are

parameterized as a two-layer MLP of hidden size 256 and use ReLU as the activation function.

For SAC training, we tune the learning rates and replay buffer sizes for different environments,

but find it cannot work on all environments other than HalfCheetah even after tremendous tuning.

For reward and value model training, we tune the learning rate for different environments. These

hyper-parameters are summarized in table 3.6. We set α = 1 in SAC for all environments. For

every 1000 environment steps, we alternatively train the policy and the reward/value model once,

using a batch size of 100 and 256.

Hyper-parameter Ant Hopper Walker HalfCheetah

SAC learning rate 3e− 4 1e− 5 1e− 5 3e− 4

SAC replay buffer size 1000000 1000000 1000000 10000

Reward/Value model learning rate 1e− 4 1e− 5 1e− 5 1e− 4

Table 3.6: AIRL IRL benchmarks task-specific hyper-parameters.
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Evaluation: We compare the trained policies by f -IRL, BC, MaxEntIRL, AIRL, and f -MAX-

RKL by computing their returns according to the ground truth return on each environment. We

report the mean of their performance across 3 seeds.

For the IRL methods, f -IRL, MaxEntIRL, and AIRL, we also evaluate the learned reward

functions. We train SAC on the learned rewards, and evaluate the performance of learned policies

according to ground-truth rewards.

3.7.3 Reward Prior for Downstream Hard-exploration Tasks (Sec 3.6.3.1)

Environment: The pointmass environment has 2D square state space with range [0, 6]2, and 2D

actions that control the delta movement of the agent in each dimension. The agent starts from the

bottom left corner at coordinate (0, 0).

Task Details: We designed a hard-to-explore task for the pointmass. The grid size is 6 × 6,

the agent is always born at [0, 0], and the goal is to reach the region [5.95, 6]× [5.95, 6]. The time

horizon is T = 30. The agent only receives a reward of 1 if it reaches the goal region. To make

the task more difficult, we add two distraction goals: one is at [5.95, 6]× [0, 0.05], and the other at

[0, 0.05]× [5.95, 6]. The agent receives a reward of 0.1 if it reaches one of these distraction goals.

Vanilla SAC always converges to reaching one of the distraction goals instead of the real goal.

Training Details: We use SAC as the RL algorithm. We train SAC for 270 episodes, with

a batch size of 256, a learning rate of 0.003, and a replay buffer size of 12000. To encourage the

exploration of SAC, we use a random policy for the first 100 episodes.

3.7.4 Reward Transfer across Changing Dynamics (Sec 3.6.3.2)

Environment: In this experiment, we use Mujoco to simulate a healthy Ant, and a disabled Ant

with two broken legs (Figure 3.5). We use the code provided by Fu et al. [28]. Note that this Ant

environment is a slightly modified version of the Ant-v2 available in OpenAI gym.

Expert Samples: We use SAC to obtain a forward-running policy for the Ant. We use the

same network structure and training parameters as section 3.7.2 for training this policy. We use 16

trajectories from this policy as expert demonstrations for the task.

Training Details: We train f -IRL and MaxEntIRL using the same network structure and train-

ing parameters as section 3.7.2. We also run AIRL, but couldn’t match the performance reported

in Fu et al. [28].

Evaluation: We evaluate f -IRL and MaxEntIRL by training a policy on their learned rewards

using SAC. We report the return of this policy on the disabled Ant environment according to
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Figure 3.5: Top row: A healthy Ant executing a forward walk. Bottom row: A successful transfer

of walking behavior to disabled Ant with 2 legs active. The disabled Ant learns to use the two

disabled legs as support and crawl forward, executing a very different gait than previously seen in

healthy Ant.

the ground-truth reward for forward-running task. Note that we directly report results for policy

transfer using GAIL, and AIRL from Fu et al. [28].

3.7.5 Additional Experiment Results

Inverse RL Benchmark Unnormalized Performance

In this section, we report the unnormalized return of the agent stochastic policy for ease of com-

parison to expert in Table 3.7. We analyze situations when we are provided with 1,4 and 16 expert

trajectories respectively. For IL/IRL methods, all the results are averaged across three random

seeds to show the mean and standard deviation in the last 10% training iterations.

Note that for the row of “Expert return”, we compute the mean and std among the expert

trajectories (by stochastic policy) we collected, so for one expert trajectory, it does not have std.

Moreover, since we pick the best expert trajectories for training IL/IRL algorithms, the std of

“Expert return” is often lower than that of IL/IRL.
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Figure 3.6: Forward and Reverse KL curves in pointmass environment for Gaussian target density

for all the methods during training. Smoothed in a window of 120 evaluations.

Additional Result of Reward Transfer across Changing Dynamics

In section 3.6.3 (“Reward transfer across changing dynamics”) we show the result of the setting

with 32 expert trajectories provided. We follow AIRL paper [28] setting for this experiment, but

the number of experiment trajectories used in their experiment is unknown. We use a maximum

of 50 expert trajectories and show the best seed performance in Table 3.9. Note that this table has

same values as Table 3.5 except for our method. We see that with more expert trajectories f -IRL is

able to outperform baselines with a large margin. The disabled Ant agent is able to learn a behavior

to walk while taking support from both of its disabled legs.

Matching the Specified Expert State Density on PointMass

We also conducted the experiment described in section 3.7.2 on the pointmass environment similar

to that in section 3.7.3. This environment has size [4, 4], and the target density is a unimodal

Gaussian with µ = (2, 2), σ = 0.5 for goal-reaching task.

This experiment is didactic in purpose. In Figure 3.7, we observe that all methods converge

(MaxEntIRL is slightly unstable) and are able to reduce the FKL and RKL to near zero.

In Figure 3.6, we observe that rewards learned by f -IRL using Forward KL and Reverse KL
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FKL RKL

Figure 3.7: Forward and Reverse KL curves in pointmass environment for Gaussian target density

for all the methods during training. Smoothed in a window of 120 evaluations.

divergence objective demonstrate the expected mode-covering and mode-seeking behavior, respec-

tively.
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Method Hopper

# Expert traj 1 4 16

Expert return 3570.87 3585.59 ± 12.39 3496.62 ± 10.13

BC 17.39 ± 5.99 468.49 ± 83.94 553.56 ± 46.70

MaxEntIRL 3309.72 ± 171.28 3300.81 ± 229.84 3298.50 ± 255.35

f -MAX-RKL 3349.62 ± 68.89 3326.83 ± 85.42 3165.51 ± 102.83

AIRL 49.12 ± 2.58 49.33 ± 3.93 48.63 ± 5.88

FKL (f -IRL) 3329.94 ± 152.33 3243.83 ± 312.44 3260.35 ± 175.58

RKL (f -IRL) 3276.55 ± 221.27 3303.44 ± 286.26 3250.74 ± 161.89

JS (f -IRL) 3282.37 ± 202.30 3351.99 ± 172.70 3269.49 ± 160.99

Method Walker2d

# Expert traj 1 4 16

Expert return 5468.36 5337.85 ± 92.46 5368.01 ± 78.99

BC -2.03 ± 1.05 303.24 ± 6.95 431.60 ± 63.68

MaxEntIRL 4823.82 ± 512.58 4697.11 ± 852.19 4884.30 ± 467.16

f -MAX-RKL 2683.11 ± 128.14 2628.10 ± 548.93 2498.78 ± 824.26

AIRL 9.8 ± 1.82 9.24 ± 2.28 8.45 ± 1.56

FKL (f -IRL) 4927.02 ± 615.34 4809.80 ± 750.05 4851.81 ± 547.12

RKL (f -IRL) 4847.12 ± 806.61 4806.72 ± 433.02 4578.39 ± 564.17

JS (f -IRL) 4888.09 ± 664.86 4935.42 ± 384.15 4725.78 ± 613.45

Table 3.7: Benchmark of Mujoco Environment, from top to bottom, Hopper-v2, Walker2d-v2.
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Method HalfCheetah

# Expert traj 1 4 16

Expert return 12258.71 11944.45 ± 985.08 12406.29 ± 614.02

BC -367.56 ± 23.57 209.59 ± 178.71 287.05 ± 109.32

MaxEntIRL 11637.41 ± 438.16 11685.92 ± 478.95 11228.32 ± 1752.32

f -MAX-RKL 8688.37 ± 633.58 4920.66 ± 2996.15 8108.81 ± 1186.77

AIRL 2366.84 ± 175.51 2343.17 ± 103.51 2267.68 ± 83.59

FKL (f -IRL) 11556.23 ± 539.83 11556.51 ± 673.13 11642.72 ± 629.29

RKL (f -IRL) 11612.46 ± 703.25 11644.19 ± 488.79 11899.50 ± 605.43

JS (f -IRL) 11413.47 ± 1227.89 11686.09 ± 748.30 11711.77 ± 1091.74

Method Ant

# Expert traj 1 4 16

Expert return 5926.18 5859.09 ± 88.72 5928.87 ± 136.44

BC -113.60 ± 12.86 1321.69 ± 172.93 2799.34 ± 298.93

MaxEntIRL 3179.23 ± 2720.63 4171.28 ± 1911.67 4784.78 ± 482.01

f -MAX-RKL 3585.03 ± 255.91 3810.56 ± 252.57 3653.53 ± 403.73

AIRL -54.7 ± 28.5 -14.15 ± 31.65 -49.68 ± 41.32

FKL (f -IRL) 4859.86 ± 302.94 4861.91 ± 452.38 4971.11 ± 286.81

RKL (f -IRL) 3707.32 ± 2277.74 4814.58 ± 376.13 4813.80 ± 361.93

JS (f -IRL) 4590.11 ± 1091.22 4745.11 ± 348.97 4342.39 ± 1296.93

Table 3.8: Benchmark of Mujoco Environment, from top to bottom HalfCheetah-v2, Ant-v2.

Policy Transfer AIRL MaxEntIRL f -IRL Ground-truth

using GAIL Reward

-29.9 130.3 145.5 232.5 315.5

Table 3.9: Returns obtained after transferring the policy/reward on modified Ant environment using

different IL methods. In this case, we report the performance of best seed with a maximum of 50

expert trajectories.
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Chapter 4

Lyapunov Barrier Policy Optimization

Current reinforcement learning methods are trained without any notion of safe behavior. As a

result, these methods might cause damage to themselves, their environment, or even harm other

agents in the scene. Ideally, an agent in a real-world setting should start with a conservative policy

and iteratively refine it while maintaining safety constraints. For example, an agent that is learning

to drive around other agents should start driving slowly and gradually learn to improve its per-

formance by exploring carefully while avoiding accidents. In contrast, most deep reinforcement

learning methods learn by trial and error without taking into consideration the safety-related con-

sequences of their actions [77, 88, 3]. In this work, we address the problem of learning control

policies that optimize a reward function while satisfying some predefined constraints throughout

the learning process.

As in previous work for safe reinforcement learning, we use human-defined constraints to spec-

ify safe behavior. A classical model for RL with constraints is the constrained Markov Decision

Process (CMDP) [6], where an agent tries to maximize the standard RL objective of expected

returns while satisfying constraints on expected costs. A number of previous works on CMDPs

mainly focus on environments that have low dimensional action spaces, and they are difficult to

scale up to more complex environments [84, 89]. One popular approach to solve Constrained

MDPs in large state and action spaces is to use the Lagrangian method [5, 66]. This method aug-

ments the original RL objective with a penalty on constraint violations and computes the saddle

point of the constrained policy optimization via primal-dual methods [5]. While safety is ensured

asymptotically, no guarantees are made about safety during training. As we show, other methods

which claim to maintain safety during training also lead to many safety violations during training

in practice. In other recent work, [20, 21] use Lyapunov functions to explicitly model constraints in

the CMDP framework to guarantee safe policy updates. We build on this idea, where the Lyapunov
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function allow us to convert trajectory-based constraints in the CMDP framework to state-based

constraints which are much easier to deal with.

In this work, we present a new method called LBPO (Lyapunov Barrier Policy Optimization)

for safe reinforcement learning in the CMDP framework. We formulate the policy update as an

unconstrained update augmented by a barrier function which ensures that the policy lies in the set

of policies induced by the Lyapunov function, thereby guaranteeing safety. We show that LBPO

allows us to control the amount of risk-aversion of the agent by adjusting the barrier. We also

analyze previous baselines that use a backtracking recovery rule and empirically show that their

near-constraint satisfaction can be explained by their recovery rule; this approach leads to many

constraint violations in practice. Finally, we demonstrate that LBPO outperforms state-of-the-

art CMDP baselines in terms of the number of constraint violations while being competitive in

performance.

4.1 Related Work

Constrained Markov Decision Process CMDP’s [5] have been a popular framework for incorpo-

rating safety in the form of constraints. In CMDP’s the agent tries to maximize expected returns

by satisfying constraints on expectation of costs. [6] demontrated that for finite MDP with known

models, CMDP’s can be solved by solving the dual LP program. For large state dimensions (or

continuous), solving the LP becomes intractable. A common way to solve CMDP in large spaces is

to use the Lagrangian Method [6, 31, 19]. These methods augment the original RL objective with

a penalty on constraint violation and computes the saddle point of the constrained policy optimiza-

tion via primal-dual methods. These methods give no guarantees of safety during training and are

only guaranteed asymptotically at convergence. CPO [2] is another method for solving CMDP’s

that derives an update rule in the trust region which guarantees monotonic policy improvement

under constraint satisfaction, similar to TRPO [72]. [20, 21] presents another class of method that

formulates safe policy update under a Lyapunov constraint. [62] explored the relevance of Lya-

punov functions in control and [12] used Lyapunov functions in RL to guarantee exploration such

that the agent can return to a ”region of attraction” in the model-based regime. In our work, we

show that previous baselines rely on a backtracking recovery rule to ensure near constraint sat-

isfaction and are sensitive to Q-function errors; we present a new method that uses a Lyapunov

constraint with a barrier function to ensure a conservative policy update.

Other notions of safety. Recent works [63, 23] use a safety layer along with the policy, which

ensures that all the unsafe actions suggested by the policy are projected in the safe set. [23] sat-
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isfies state-based costs rather than trajectory-based costs. [82] utilizes demonstrations to ensure

safety in the model based framework, and [94] learns the epistemic uncertainty of the environment

by training the model in simulation for a distribution of environments, which is then used to cau-

tiously adapt the policy while deploying on a new test environment. Another line of work focuses

on optimizing policies that minimize an agent’s conditional value at risk (cVAR). cVAR [68] is

commonly used in quantitative finance, which aims to maximize returns in the worst α% of cases.

This allows the agent to ensure that it learns safe policies for deployment that achieve high reward

under the aleatoric uncertainty of the MDP [81, 43, 80, 41, 14, 18].

4.2 Background

We consider the Reinforcement Learning setting where an agent’s interaction with the environment

is modeled as a Markov Decision Process (MDP). An MDP is a tuple (S,A, P, r, s0) with state-

space S, action-space A, dynamics P : S × A → S, reward function r(s, a) : S × A → R and

initial state s0. P (.|s, a) is the transition probability distribution and r(s, a) ∈ [0, Rmax]. We focus

on the special case of constrained Markov decision processes (CMDP) [6], which is an augmented

version of MDP with additional costs and trajectory-based constraints. A CMDP is represented as

a tuple (S,A, P, r, c, s0, d0). The terms S,A, P, r, s0 are the same as in the unconstrained MDP;

the additional terms c(s) is the immediate cost and d0 ∈ R≥0 is the maximum allowed value for

the expected cumulative cost of the policy. We define a generic version of the Bellman operator

w.r.t policy π and a function h(s, a) : S ×A → R as follows:

Bπ,h[V ][s] =
∑
a

π(a|s)[h(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′)] (4.1)

The function h(s, a) can be instantiated to be the reward function or the cost function. When it

is the reward function, this becomes the normal Bellman operator in RL. When h(s, a) is replaced

by the cost function c(s), it becomes the Bellman operator over the cost objective, which will be

used later in designing the Lyapunov function. We further define Jπ(s0) = E[
∑∞

t=0 γ
tr(st, at)|s0, π]

to be the performance of the policy π, Dπ(s0) = E[
∑∞

t=0 γ
tc(st, at)|s0, π] to be the expected cu-

mulative cost of the policy π, where π belongs to the set of stationary policies P . Given a CMDP,

we are interested in finding a solution to the following constrained optimization problem:

maxπ∈P [Jπ(s0)] s.t Dπ(s0) ≤ d0 (4.2)
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4.2.1 Safe Reinforcement Learning using Lyapunov Functions

We will build upon the Lyapunov framework introduced by [20], also known as SDDPG. It pro-

poses to use Lyapunov functions to derive a policy improvement procedure with safety guarantees.

The basic idea is that, given a safe baseline policy πB, it finds a set of safe policies based on πB
using Lyapunov functions. For each policy improvement step, it will then choose the policy with

the best performance within this set.

The method works by first designing a Lyapunov function for a safe update around the current

safe baseline policy πB. A set of Lyapunov functions is defined as follows:

LπB(s0, d0) = {L : S → R≥0 : BπB ,c[L](s) ≤ L(s),∀s ∈ S;L(s0) ≤ d0} (4.3)

The Lyapunov functions in this set are designed in a way to construct provably safe policy updates.

Given any Lyapunov function within this set LπB ∈ LπB(s0, d0), we define the set of policies that

are consistent with it to be the LπB -induced policies:

ILπB = {π ∈ P : Bπ,c[LπB ](s) ≤ LπB(s),∀s ∈ S} (4.4)

It can be shown that any policy π in the LπB -induced policy set is “safe”, i.e Dπ(s0) ≤ d0 [20].

The choice of LπB affects the LπB -induced policy set. We need to construct LπB such that the

LπB -induced policy set contains the optimal policy π∗. [20] show that one such Lyapunov function

is LπB ,ε(s) = E[
∑∞

t=0 γ
t(c(st) + ε(st))|πB, s], where ε(st) ≥ 0. The function LπB ,ε(s) can be

thought of as a cost-value function for policy πB augmented by an additional per-step cost ε(st).

Accordingly, we can define the following state-action value function:

QLπB,ε
(s, a) = c(s) + ε(s) + γ

∑
s′

P (s′|s, a)LπB ,ε(s
′) (4.5)

It was shown in [20] that finding a state dependent function ε such that the the optimal policy

is inside the corresponding LπB ,ε-induced set is generally not possible and requires knowing the

optimal policy. As an approximation, they suggest to create the Lyapunov function with the largest

auxiliary cost ε̂, such that LπB ,ε̂(s) ≥ BπB ,c[LπB ,ε̂](s) and LπB ,ε̂(s0) ≤ d0. A larger auxiliary cost ε

per state ensures that we have a larger set of L-induced policies, making it more likely to include

the optimal policy in the set. The authors show that the following ε̂(s) in the form of a constant

function satisfies the conditions described:

ε̂(s) = (1− γ)(d0 −DπB(s0)) (4.6)
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Plugging this function ε̂(s) and the definition of QLπB,ε
(s, a) into the CMDP objective, the

policy update under the set of policies that lie in the LπB ,ε̂-induced policy set, or equivalently the

policies that are safe, is given by:

π+(.|s) = max
π∈P

Jπ(s0), s.t

∫
a∈A

(π(a|s)− πB(a|s))QLπB,ε̂
(s, a)da ≤ ε̂(s) ∀s ∈ S (4.7)

In the case of a deterministic policy, the policy update becomes:

π+(.|s) = max
π∈P

Jπ(s0), s.t QLπB,ε̂
(s, π(s))−QLπB,ε̂

(s, πB(s)) ≤ ε̂(s) ∀s ∈ S (4.8)

We build upon this objective in our work. We include the proof of the Lyapunov approach for

completeness in Appendix 4.5.1, and we advise the reader to see previous work [20] for a more

detailed derivation. Using the Lyapunov function, the trajectory-based constraint of the CMDP is

converted to a per-state constraint (Eq. 4.7), which is often much easier to deal with.

4.3 Method

4.3.1 Barrier function for Lyapunov Constraint

We present Lyapunov Barrier Policy Optimization (LBPO) that aims to update policies inside the

LπB ,ε̂-induced policy set. We work under the standard policy iteration framework which con-

tains two steps: Q-value Evaluation and Safe Policy Improvement. We initialize LBPO with a

safe baseline policy πB. In practice, we can obtain safe initial policies using a simple (usually

poorly performing) hand-designed control policy; in our experiments, we simplify this process

and achieve safe initial policies by training on the safety objective. We assume that we have m

different constraints, as LBPO naturally generalizes to more than one constraint.

Q Evaluation

We use on-policy samples to evaluate the current policy. We compute a reward Q function QR,

and cost Q functions QCi corresponding to each cost constraint i ∈ [1, 2...m]. Each Q function is

updated using TD(λ) [79] which helps us more accurately estimate the Q functions. Furthermore,

we use the on-policy samples to get the cumulative discounted cost Di
π(s0) of the current policy,

which allows us to set up the constraint budget for each constraint given by εi = (1 − γ)(di0 −
Di
π(s0)) as shown in Eq. 4.6.
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Regularized Safe Policy Update

In this work, we focus on deterministic policies, where we have the following policy update under

the L-induced set for each constraint as given in Eq. 4.8 :

π+(.|s) = max
π∈P

Jπ(s0) s.t Qi
LπB,ε̂

(s, π(s))−Qi
LπB,ε̂

(s, πB(s)) ≤ ε̂i(s) ∀i ∈ [1, 2, ...m],∀s ∈ S
(4.9)

We can simplify this equation further by replacing Qi
LπB,ε̂

with QCi
πB

which is the ith cost Q-

function under the policy πB, when ε is a constant function (see Appendix 4.5.1). To ensure that

the Lyapunov constraints are satisfied, we construct an unconstrained objective using an indicator

penalty I(QCi
πB

(s, πθ(s))) for each constraint.

I(QCi
πB

(s, πθ(s))) =

0 QCi
πB

(s, πθ(s))−QCi
πB

(s, πB(s)) ≤ ε̂i(s)

∞ QCi
πB

(s, πθ(s))−QCi
πB

(s, πB(s)) > ε̂i(s)
(4.10)

We will use a differentiable version of the indicator penalty called the logarithmic barrier function:

ψ(QCi
πB

(s,πθ(s))) = −β log

(
ε̂(s)− (QCi

πB
(s,πθ(s))−QCi

πB
(s, πB(s))

)
(4.11)

The function ψ is parameterized by θ and QCi
πB

(s, πB(s)) is a constant. Our policy update will

use the gradient at πθ = πB, ensuring that the logarithmic barrier function is well defined, since

ε̂(s) > 0 ∀s.
Figure 4.1 captures the behavior of the function ψ for different β. The parameter β captures the

amount of risk-aversion we desire from the agent. A high β will help avoid constraint violations

occurring due to approximation errors in our learned Q-functions. We verify this empirically in

Section 4.4.

We use the Deterministic Policy Gradient Theorem [76] for the policy update. For updat-

ing a θ-parameterized policy with respect to the expected return, the objective can be written as:

argminθ Es∼ρπB
[
(−QR

πB
(s, πθ(s)))

]
, where ρπB is the on-policy state distribution.

Since we rely on on-policy samples for Q-function evaluation, the Q-function estimation out-

side the on-policy state distribution can be arbitrarily bad. Similar to [72], we constrain our policy

update using a hard KL constraint (i.e. a trust region) between the current policy and the updated

policy under the presence of stochastic exploration noise. The trust region also allows us to make

sure that our policy change is bounded, which allows us to ensure that with a small enough trust

region, our first order approximation of the objective is valid.
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Figure 4.1: As the difference between Q values for action a and the baseline action reaches ε (in

this case ε = 2), the loss increases to∞.

Augmenting the on-policy update with the Lyapunov barrier and a KL regularization, we have

the following LBPO policy update:

θk+1 = argminθ Es∼ρπB

[
−QR

πB
(s, πθ(s)) +

m∑
i=1

ψ(QCi
πB

(s, πθ(s)))

]
(4.12)

subject to Es∼ρπB [DKL(πθ[.|s] +N (0, δ) ‖ πB[.|s] +N (0, δ))] < µ (4.13)

where δ is the exploration noise, ρπB is the state distribution induced by the current policy, µ is

the expected KL constraint threshold and we set πB to the safe policy at iteration k, as the update

guarantees safe policies at each iteration. In practice, we expand our objective using a Taylor

series expansion and solve to a leading order approximation around θk. Letting the gradient of the

objective in Eq 4.12 be denoted by g and the Hessian of the KL divergence by H , our objective

becomes:

θk+1 = argminθ g
T (θ − θk), subject to

1

2
(θ − θk)TH(θ − θk) ≤ µ (4.14)

We solve this constrained optimization using the Fisher vector product with Conjugate gradient

method similar to [72].
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Figure 4.2: OpenAI Safety Environments: PointGoal1, PointPush2, CarGoal2, DoggoPush2

4.4 Experiments

In this section, we evaluate LBPO and compare it to prior work. First, we benchmark our method

against previous baselines to show that LBPO can achieve better constraint satisfaction while be-

ing competitive in performance. Second, we give empirical evidence that previous methods near

constraint satisfaction can be explained by backtracking. Third, we show by a didactic example

that LBPO is more robust than CPO and SDDPG to Q-function errors, hence making it a preferable

alternative, especially when function approximation is used. Finally, we show that LBPO allows

flexible tuning of the amount of risk-aversion for the agent.

Comparisons. For our experiments, we compare LBPO against a variety of baselines: PPO,

PPO-lagrangian, SDDPG, CPO and BACKTRACK. PPO [73] is an on-policy RL algorithm that

updates in an approximate trust-region without considering any constraints. PPO-lagrangian be-

longs to a class of Lagrangian methods [5] for safe Reinforcement Learning, which transforms the

constrained optimization problem to a penalty form

maxπ∈Pminλ≥0E[
∞∑
t=0

γtr(st, at) + λ(
∞∑
t=0

γtc(st)− d0)|π, s0]

π and λ are jointly optimized to find a saddle point of the penalized objective. SDDPG [20, 21]

introduces the Lyapunov framework for safe-RL and proposes an action-projection method which

in theory guarantees the update of the policy within a safe set. We evaluate the α-projection

version of SDDPG [21]. Since the original implementation for the method is unavailable, we re-

implemented the method to the best of our abilities. CPO [2] derives a trust-region update rule

which guarantees the monotonic improvement of the policy while satisfying constraints. CPO also

uses a backtracking recovery rule. We elaborate on the BACKTRACK baseline in Section 4.4.2.

Tasks. We evaluate these methods using the OpenAI Safety Gym [66], which consists of

12 continuous control MuJoCo tasks [83]. These tasks use 3 robots: Point, Car, and Doggo.

Point is the simplest of three which can be commanded to move forward/backward or to turn.
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Figure 4.3: Each point corresponds to a particular safety method applied to a certain safety en-

vironment. The x-axis shows the fraction of constraint violations encountered by the behavior

policy during training and y-axis shows the policy performance normalized by the corresponding

environment’s PPO return.
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Car has two driven wheels which needs to be controlled together to obtain forward/backward and

turning behavior. Doggo is a quadrupedal robot whose joint angles at hip, knee and torso can

be commanded to obtain similar behavior. Each robot has 2 types of tasks (Goal, Push) with 2

difficulty levels (1, 2). In Goal tasks, the robot has to move to a series of goal locations, and in

Push tasks, the robot has to push a box to a series of goal locations. There are mobile and immobile

obstacles made up of a hazard region, vases and pillars which generate a cumulative penalty for the

agent. Point has an observation space of 60 dimensions, Car has 72 dimensions, and Doggo has

104 dimensions, which constitute sensor readings, joint angles, and velocities. The environments

are shown in Figure 4.2.

4.4.1 Safe Reinforcement Learning Benchmarks

We summarize the comparison of LBPO to all of the baselines (PPO, PPO-lagrangian, BACK-

TRACK, SDDPG and CPO) on the OpenAI safety benchmarks in Figure 4.3 and Tables 4.1

and 4.2. Additional training plots for policy return and policy cost can be found in Appendix 4.5.2.

Method PPO PPO-lagrangian CPO SDDPG BACKTRACK LBPO

PointGoal1 1.00 0.48 0.79 0.78 0.85 0.04
PointGoal2 0.98 0.60 0.75 0.98 0.94 0.34
PointPush1 1.00 0.51 0.14 0.12 0.19 0.00
PointPush2 1.00 0.51 0.66 0.36 0.77 0.00
CarGoal1 1.00 0.56 0.89 0.54 0.79 0.03
CarGoal2 1.00 0.61 0.57 0.68 0.84 0.00
CarPush1 0.99 0.39 0.10 0.26 0.23 0.01
CarPush2 1.00 0.58 0.49 0.23 0.79 0.03

DoggoGoal1 1.00 0.90 0.00 0.00 0.07 0.00
DoggoGoal2 1.00 0.45 0.00 0.00 0.00 0.00
DoggoPush1 0.98 0.56 0.00 0.00 0.00 0.00
DoggoPush2 1.00 0.34 0.00 0.00 0.09 0.00

Table 4.1: We report the fraction of unsafe behavior policies encountered during training across

different OpenAI safety environments for the policy updates across 2e7 training timesteps. LBPO

obtains fewer constraint violations consistently across all environments.

Constraint Satisfaction. Table 4.1 shows that in all the environments, LBPO actively avoids

constraint violations, staying below the threshold in most cases. In the PointGoal2 environment, no
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Method PPO PPO-lagrangian CPO SDDPG BACKTRACK LBPO

PointGoal1 1.00 0.826 0.450 0.451 0.670 0.480

PointGoal2 1.00 0.200 0.000 0.000 0.045 0.026

PointPush1 1.00 0.659 0.375 0.587 0.527 0.683
PointPush2 1.00 0.483 0.213 0.221 0.413 0.358

CarGoal1 1.00 0.449 0.079 0.097 0.497 0.376

CarGoal2 1.00 0.066 0.172 0.215 0.162 0.210

CarPush1 1.00 0.697 0.000 0.434 0.868 0.485

CarPush2 1.00 0.353 0.403 0.369 0.399 0.430
DoggoGoal1 1.00 0.000 0.003 0.002 0.003 0.007
DoggoGoal2 1.00 0.016 0.002 0.003 0.003 0.003

DoggoPush1 1.00 0.080 0.014 0.001 0.079 0.012

DoggoPush2 1.00 0.071 0.000 0.000 0.063 0.000

Table 4.2: Cumulative return of the converged policy for each safety algorithm normalized by

PPO’s return. Negative returns are clipped to zero. LBPO tradeoffs return for better constraint sat-

isfaction. Bold numbers show the best performance obtained by a safety algorithm (thus excluding

PPO).

method can achieve good constraint satisfaction which we attribute to the nature of the environment

as it was found that safe policies were not obtained even when training only on the cost objective.

In all the other cases we note that LBPO achieves near-zero constraint violations.

Like our method, SDDPG also builds upon the optimization problem from Equation 4.8 but

solves this optimization using a projection onto a safe set instead of using a barrier function. We

noticed the following practical issues with this approach: First, in SDDPG, each safe policy is

composed of a projection layer, which itself relies on previous safe policies. This requires us to

maintain all of the previous policies and thus the memory requirement grows linearly with the

number of iterations. SDDG circumvents this issue by using a policy distillation scheme [20],

which behavior clones the safe policy into a parameterized policy not requiring a projection layer.

However, behavior cloning introduces errors in the policy leading to frequent constraint violations.

Second, we will show in section 4.4.3 that SDDPG is more sensitive to Q-function errors. PPO-

lagrangian produces policies that are only safe asymptotically and makes no guarantee of the safety

of the behavior policy during each training iteration. In practice, we observe that it often violates

constraints during training.

Behavior Policy Performance. OpenAI safety gym environment provide a natural tradeoff

between reward and constraint. A better constraint satisfaction often necessitates a lower perfor-
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mance. We observe in Table 4.2 that LBPO achieves performance competitive to the baselines.

4.4.2 Backtracking Baseline

CPO [2] and SDDPG [21] both use a recovery rule once the policy becomes unsafe, which is to

train on the safety objective to minimize the cumulative cost until the policy becomes safe again.

In this section, we test the hypothesis that CPO and SDDPG are unable to actively avoid constraint

violation but their near constraint satisfaction behavior can be explained by the recovery rule. To

this end, we introduce a simple baseline, BACKTRACK, which uses the following objective for

policy optimization under a trust region (we use the same trust region as in LBPO):

π =

maxπ∈P Es∼ρπB
[
QR
πB

(s, π(s))
]

if πB is safe

minπ∈P Es∼ρπB
[
QC
πB

(s, π(s))
]

if πB is unsafe
(4.15)

Thus, if the most recent policy πB is evaluated to be safe, BACKTRACK exclusively optimizes the

reward; however, if the most recent policy πB is evaluated to be unsafe, BACKTRACK exclusively

optimizes the safety constraint. Effectively, BACKTRACK relies only on the recovery behavior

that is used in CPO and SDDPG, without incorporating their mechanisms for constrained policy

updates. In Tables 4.1 and 4.2, we see that BACKTRACK is competitive to both CPO and SDDPG

in terms of both constraint satisfaction and performance (maximizing reward), suggesting that the

recovery behavior is itself sufficient to explain their performance. In Appendix 4.5.2, we compare

the number of backtracks performed by CPO, SDDPG and BACKTRACK.

4.4.3 Robustness to finite sample sizes

We generally work in the function approximation setting to accommodate high dimensional ob-

servations and actions, and this makes it necessary to rely on safety methods that are robust

to Q-function errors. To analyze how robust different methods are to such errors, we define

a simple reinforcement learning problem: Consider an MDP with two dimensional state space

given by (x, y) ∈ R. The initial state is (0,0). Actions are two dimensional, given by (a1, a2)

: a1, a2 ∈ [−0.2, 0.2]. The horizon is 10 and the transition probability distribution is (x′, y′) =

(x, y) + (a1, a2) + N (0, 0.1). The reward function is r(x, y) =
√
x2 + y2. The cost function is

equal to the reward function for all states, and the constraint threshold is set to 2. We plot in Figure

4.4 the total constraint violations during 100 epochs of training with varying number of samples

used to estimate the cost Q-function. We find that LBPO is more robust to Q-function errors due
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Figure 4.4: An analysis of the robustness of safe RL algorithms CPO, SDDPG, and LBPO to

finite sample Q function errors for a simple didactic environment. Constraint violations in CPO

and SDDPG increase quickly as the number of on-policy samples used to estimate the Q function

decreases. Results are averaged over 5 seeds.

to limited data compared to CPO and SDDPG. In this experiment we use β = 0.005, similar to the

value used for the benchmark experiments.

4.4.4 Tuning conservativeness with the barrier
A strength of LBPO is the ability to tune the barrier to adjust the amount of risk-aversion of the

agent. Specifically, β in Equation 4.11 can be tuned; a larger β leads to more conservative policies.

In Figure 4.5, we empirically demonstrate the sensitivity of β to the conservativeness of the policy

update. For our benchmark results, we do a hyperparameter search for β in the set (0.005, 0.008,

0.01, 0.02) and found that 0.005 works well across most environments.
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Figure 4.5: Increasing β parameter for the barrier increases the risk aversion of the agent as can be

seen in the plots above.

4.5 Appendix

4.5.1 Safe policy update under the Lyapunov constraint

Let the safe initial (baseline) policy be given by πB and the Lyapunov function be defined as

follows:

LπB(s0, d0) = {L : S → R≥0 : BπB ,c[L](s) ≤ L(s),∀s ∈ S;L(s0) ≤ d0} (4.16)

where c is the immediate cost function. Lyapunov functions depends on the safe baseline policy,

an initial state and the cost constraint, and have the property that a one-step Bellman operator

produces a value that is less that the value of the function at each state. We also know that the cost

value function belongs to the set and hence the set is non-empty. Consider any Lyapunov function

LπB ∈ LπB(s0, d0) and define:

ILπB = {π(.|s) ∈ P : Bπ,c[LπB ](s) ≤ LπB(s)∀s} (4.17)

to be set of policies consistent with the Lyapunov functionLπB , calledLπB -induced policies. These

are the set of policies (π ∈ ILπB ) for which a Bellman Operator Bπ,c on a state s produces a value

that is less than the value of function at that state LπB(s)

Note that Bπ,c is a contraction mapping, so we have

V c
π (s) = lim

k→∞
Bkπ,c[LπB ](s) ≤ LπB(s) ∀s ∈ S (4.18)

From the definition of Lyapunov function, we also have that LπB(s0) ≤ d0. This implies that

any policy induced by the Lyapunov function, i.e. policies in the LπB -induced policy set, are

“safe” i.e V c
π (s0) = Dπ(s0) < d0. The method for safe reinforcement learning then searches for
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the highest performing policy within the safe policies defined by the set of LπB -induced policies.

The objective here then is to design a Lyapunov function which contains the optimal policy, i.e

optimal policy belongs to the set of LπB -induced policies so that the optimization restricted in this

set indeed results in the solution of Eq. 4.2.

In general, the optimal policy π∗ does not belong the policies induced by the Lyapunov func-

tions. [20] show that without loss of optimality, the Lyapunov function that contains the optimal

policy in itsLπB -induced policy set can be expressed asLπB ,ε(s) = E[
∑∞

t=0 γ
t(c(st) + ε(st))|πB, s],

where ε(st) ≥ 0. The function LπB ,ε(s) can be thought of as a cost-value function for policy πB
augmented by an additional per-step cost ε(st). First, it can be verified that πB is indeed, in the set

of Lε-induced policies:

LπB ,ε(x) = BπB ,c+ε[LπB ,ε](s) ≥ BπB ,c[LπB ,ε](s) (ε(st) > 0 ∀st). (4.19)

It was shown in [20] that finding a state dependent function ε such that the the optimal policy

is inside the corresponding LπB ,ε-induced set is generally not possible and requires knowing the

optimal policy. As an approximation, they suggest to create the Lyapunov function with the largest

auxiliary cost ε̂, such that LπB ,ε̂(s) ≥ BπB ,c[LπB ,ε̂](s) and LπB ,ε̂(s0) ≤ d0. The first condition is

satisfied as shown in Eq. 4.19 when ε̂(s) ≥ 0 ∀s and the second condition can be satisfied by the

following derivation. Bold letters are used to denote vectors and PπBs,s′ is the transition probability

matrix from state s to s′ under policy πB. The vectors contain the function value at each state.

LπB,ε̂ = d+ ε̂+ γPπBs,s′ LπB,ε̂ (4.20)

LπB,ε̂ = (I − γPπBs,s′ )−1d+ (I − γPπBs,s′ )−1ε̂ (4.21)

1(s)TLπB ,ε̂ = 1(s)TDπB + 1(s)T (I − γPπBs,s′ )−1ε̂ (4.22)

where 1(s)T is a one-hot vector in which the non-zero unit element is present at s. To ensure that

the cumulative cost at the starting state is less than the constraint threshold, using Eq 4.22 we have:

LπB ,ε̂(s0) ≤ d0

DπB(s0) + 1(s0)T (I − γPπBs,s′ )−1ε̂ ≤ d0

Notice that 1(s0)T (I−γPπBs,s′ )−11(s) represents the total discounted visiting probability E[
∑∞

t=0 γ
t1(st = s)|s0, πB]

of any state s from the initial state s0. Restricting ε̂ to be a constant function w.r.t state for simplic-

ity, the value of ε̂ can be upper-bounded as:

ε̂(s) ≤ (d0 −DπB(s0))/E

[
∞∑
t=0

γt

]
= (1− γ)(d0 −DπB(s0)) (4.23)
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In summary, a Lyapunov function is obtained such that optimizing policies in the LπB ,ε̂-induced

set of policies, safety in ensured. For any policy π to lie in the LπB ,ε̂-induced set the following

condition needs to hold ∀ s ∈ S:

LπB ,ε(s) ≥ Tπ,d[LπB ,ε(s)]

d(s) + ε̂(s) + γ
∑
a

πB(a|s)(
∑
s′

P (s′|s, a)LπB ,ε(s
′)) ≥ d(s) + γ

∑
a

π(a|s)(
∑
s′

P (s′|s, a)LπB ,ε(s
′))

We can simplify further to get:

ε̂(s) ≥ (
∑
a

(π(a|s)− πB(a|s))

[
γ
∑
s′

P (s′|s, a)LπB ,ε(s
′)

]

ε̂(s) ≥ (
∑
a

(π(a|s)− πB(a|s))

[
γ
∑
s′

P (s′|s, a)LπB ,ε(s
′) + d(s) + ε̂(s)

]

ε̂(s) ≥

[∑
a

(π(a|s)− πB(a|s))QLπB,ε
(s, a)

]

where

QLπB,ε
(s, a) = d(s) + ε̂(s) + γ

∑
s′

P (s′|s, a)LπB ,εε̂ (s′) (4.24)

This can be extended to continuous action spaces to get the following objective:

π+(.|s) = max
π∈P

Jπ(s0), s.t

∫
a∈A

(π(a|s)− πB(a|s))QLπB,ε̂
(s, a)da ≤ ε̂(s) ∀s ∈ S (4.25)

Using the Lyapunov function, the trajectory-based constraints of CMDP are converted to a per-state

constraint (Eq.4.25), which are often much easier to deal with.

In the case of deterministic policy, the policy update becomes:

π+(.|s) = max
π∈P

Jπ(s0), s.t QLπB,ε̂
(s, π(s))−QLπB ,ε̂

(s, πB(s)) ≤ ε̂(s) ∀s ∈ S (4.26)

An intuitive way to understand the constraint in deterministic policies is to see that at every

timestep we are willing to tolerate an additional constant cost of ε compared to the baseline safe

policy. At the start state, the maximum increase in expected cost will be
∑∞

t=0 γ
tε = ε

1−γ . We want

that the new expected cost by less than the threshold, i.e Dπ(s0) + ε
1−γ ≤ d0 which gives us the

Lyapunov constraint equation.
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From Lyapunov Functions to cost Q Functions

Using the definition of QLπB,ε̂
(s, a) from Eq. 4.5 and when ε̂(s) is a constant function (denote by

ε̂), we can replace QLπB,ε̂
by QC

πB
,

QLπB,ε̂
(s, a) = c(s) + ε̂+ γ

∑
s′

P (s′|s, a)LπB ,ε̂(s
′)

= c(s) + ε̂+

[
γ
∑
s′

P (s′|s, a)[c(s′) + ε̂+
∑
s′′

P πB
(s′′|s′)(LπB ,ε̂(s

′′))]

]

=
∞∑
t=0

γtε̂+ E

[
∞∑
t=0

γtc(st)|πB, a0 = a, s0 = s

]

=
∞∑
t=0

γtε̂+QC
πB

(s, a)

which is the cost Q function, since the Lyapunov function QLπB ,ε̂(s, a) and the cost-Q function

QC
πB

(s, a) only differ by a constant (
∑∞

t=0 γ
tε̂).

4.5.2 Additional Results

Benchmarks on OpenAI safety gym

In this section, we present the training curves for all the OpenAI safety gym environments with

Point and Car robot. Figure 4.5.2 shows the Average Cost and Average return for these environ-

ments. The dotted red line indicates the constraint threshold which is kept to be 25 across all

environments. We observe that LBPO rarely violates constraint during training. Table 4.3 shows

the raw cumulative returns of the converged policy for different methods on the safety environ-

ments. We average all results over 3 random seeds.

We observe that in tasks with Doggo robot, none of the methods are able to obtain good per-

forming policy. We attribute this to be the difficulty of Doggo environments, involving an inherent

tradeoff of reward with cost. In the environment PointGoal2, we are unable to obtain safe policies

even when training an RL agent solely on the cost objective. LBPO still outperforms baselines for

constraint satisfaction on this environment.
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Method PPO PPO-lagrangian CPO SDDPG BACKTRACK LBPO

PointGoal1 22.99 19.00 10.26 10.45 15.54 11.06

PointGoal2 23.04 4.60 -0.37 -0.08 1.04 0.61

PointPush1 4.61 3.04 1.73 2.71 2.43 3.15
PointPush2 2.15 1.04 0.46 0.48 0.89 0.77

CarGoal1 34.62 15.55 2.76 3.38 17.22 13.03

CarGoal2 26.70 1.78 4.60 5.74 4.35 5.62

CarPush1 3.89 2.72 -3.13 1.69 3.38 1.89

CarPush2 2.03 0.72 0.82 0.75 0.81 0.94
DoggoGoal1 38.76 -0.65 0.14 0.10 0.15 0.28
DoggoGoal2 18.38 0.31 0.04 0.06 0.06 0.06

DoggoPush1 0.82 0.07 0.01 0.00 0.06 0.01

DoggoPush2 1.10 0.08 -0.00 -0.00 0.07 -0.01

Table 4.3: Cumulative unnormalized return of the converged policy for each safety algorithm.

LBPO tradeoffs return for better constraint satisfaction. Bold numbers show the best performance

obtained by a safety algorithm (thus excluding PPO).

Backtracks in CPO and SDDPG

Figure 4.7 shows the cumulative number of backtracks performed by each method CPO, SDDPG,

BACKTRACK during the first 400 policy update steps. We see the CPO and SDDPG performs a

high number of backtracks, often comparable to the method BACKTRACK which relies explicitly

on backtracking for safety.

4.5.3 Implementation Details

In LBPO, Q-functions (both reward and cost) have network architecture comprising of two hidden

layers of 64-hidden size each. The policy is also a multilayer neural network comprising of three

hidden layers of 256 units each. LBPO policies are deterministic and have a fixed exploration noise

in the action space given by N (0, 0.05). Our trust region update for the policy takes into account

the exploration noise which makes our behavior deployment policy stochastic. We use N = 30

trajectories each of 1000 horizon length for generating our on-policy samples. These samples are

used for estimation of ε̂ and evaluating the Q functions. We update the policy under a trust region

followed by a line search with exponential decay which ensures that the resulting update is indeed
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satisfying the KL constraint as well the safety Lyapunov constraint. We do a hyperparameter

search for β in the set [0.005, 0.008, 0.01, 0.02] to find the best tradeoff between cost and reward

and observe that a value of 0.005 works well across most environments. PointGoal1, PointPush1,

PointPush2, CarGoal1, CarPush1, CarPush2, DoggoGoal1, DoggoPush1, DoggoPush2 use beta

value of 0.005. CarGoal2 and DoggoGoal2 uses value of 0.008 and Pointgoal2 uses beta value of

0.01. We ignore the barrier loss if β is sufficiently low. We call this parameter β-thres and it is set

to 0.05 across all environments.

Algorithm 3: LBPO

1 Initialize parameterized actor πφ with a safe initial policy, reward Q-function QR
θ and a

cost Q function QC
θ

2 for i← 1 to Iter do
3 Step 1: Collect N trajectories {τ}Nj=1 using the safe policy πφ,i−1 from previous

iteration i− 1.

4 Step 2: Using the on-policy trajectories, evaluate the reward Q-function and the

cost-function, by minimizing the respective bellman residual of the TD-(λ) estimate.

5 Step 3: Update the policy parameters by minimizing the objective in Eq 4.12.

minφ Es∼R
[
−QR

πφ,i−1
(s, πφ(s)) + ψ(QC

πφ,i−1
(s, πφ(s)))

]
s.t D˙KL(πφ +N (0, δ)‖πφ,i−1 +N (0, δ)) < µ

Step 4: Set πφ,i to be the safe policy resulting from the update in Step 3 πφ.
6 end

We obtain safe initial policies for benchmarking by pretraining the policy using standard RL

methods to minimize the cumulative cost. Although this strategy is usually not suitable for de-

ployment in real-world as the pretraining might itself violate safety constraints, we can use simple

hand-designed safe policy for initializing the method in real-world experiments.

To ensure fair comparison across methods, we use the same safe initial policy for each of the

safety methods. Note that, our results for CPO [2] significantly differ from the benchmarks shown

in [66] due to the fact that we initialize CPO from safe policy contrary to their approach. We also

keep the same policy architecture across methods although CPO, PPO and PPO-lagrangian uses

policies with learned variance so as to replicate the original behavior of these methods.

1β is set to 0.005 for most environments. Appendix 4.5.3 describes specific value of β for each environment.
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Table 4.4: LBPO Hyperparameters

Hyperparamater Value

N 30

β 0.0051

β-thres 0.05

Policy learning rate 3× 10−4

Q-function learning rate 1× 10−3

Trust region (µ) 0.012

λ 0.97

δ 0.05

Horizon 1000

We implement our version of SDDPG which uses the α-projection technique as shown in [21].

A brief discussion of practical issue faced in the implementation is present in Section 4.4. We

use behavior cloning to distill the policy with the projection layer into a parameterized multilayer

perceptron policy. We run 100 iterations of behavior cloning with learning rate of 0.001. We

implement a line search with exponential decay in parameter space to ensure that the resulting

update do not violate the Lyapunov constraints to incorporate additional safety. We use similar

policy architecture as LBPO for α-SDDPG.
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Figure 4.6: Training curved for LBPO in comparison to baselines: PPO, PPO-lagrangian, CPO,

SDDPG. We also compare against our simple baseline BACKTRACK here. For each environment,

the top row shows the Average undiscounted cumulative cost during training, and bottom row

shows the Average undiscounted return. PPO often has large constraint violations and is clipped

from some plots, when its constraint violations are high. Red dashed line in Average Cost plots

shows the constraint limit which is 25 in all environments.
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CPO BACKTRACK SDDPG

Figure 4.7: We compare the cumulative number of backtracking steps taken by CPO and SDDPG

to BACKTRACK method for the first 400 epochs/policy updates.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we present methods that are amenable to safety in different dimensions of Reinforce-

ment Learning.

1. In Chapter 2 [74], we present a novel method, LOOP, that combines model-free and model-

based reinforcement learning. It allows model-based online planning to reason about long-

horizon cumulative returns. From another perspective, it improves upon the model-free algo-

rithm by using a more efficient behavior policy. We highlight the issues present in applying

a terminal Q-function to the online planning methods and present the actor-guided solution.

From the experiments, we demonstrate that LOOP improves the performance and sample-

efficiency over the underlying model-based and model-free method.

2. In Chapter 3 [58], we propose f -IRL, a practical IRL algorithm that distills an expert’s state

distribution into a stationary reward function. Our f -IRL algorithm can learn from either

expert samples (as in traditional IRL), or a specified expert density (as in SMM [47]), which

opens the door to supervising IRL with different types of data. These types of supervision

can assist agents in solving tasks faster, encode preferences for how tasks are performed,

and indicate which states are unsafe and should be avoided. Our experiments demonstrate

that f -IRL is more sample efficient in the number of expert trajectories and environment

timesteps as demonstrated on MuJoCo benchmarks.

3. In Chapter 4 [75], we present a new method, LBPO, that formulates a safe policy update as an

unconstrained policy optimization augmented by a barrier function derived from Lyapunov-

based constraints. LBPO allows the agent to control the risk aversion of the RL agent and
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is empirically observed to be more robust to Q-function errors. We also present a simple

baseline BACKTRACK to provide insight into previous methods’ reliance on backtracking

recovery behavior to achieve near constraint satisfaction. LBPO achieves fewer constraint

violations, in most cases close to zero, on a number of challenging continuous control tasks

and outperforms state-of-the-art safe RL baselines.

5.2 Future Directions

Safety is a necessary component precluding the deployment of robots in the real world. First, we

require a definition of safety that actually allows the deployment of the robots without any fear

of damage to the robot or to the outside environment. Second, we require methods that follow

these definitions and have provable guarantees. A promising direction is to explore if we can learn

notions of safety by observing human agents. In this thesis, we have approached safety using the

definition of expected cumulative safety but we look forward to exploring other notions that are

more aligned to human intent.

Current safety methods have provable guarantees under a narrow function class definition such

as linear and do not extend to expressive classes like neural networks. Neural network policies

have been very successful in solving complex tasks in a complex observation space and we look

forward to developing guarantees for such settings. Calibrated uncertainty estimation and con-

strained optimization are core to this problem in order to get meaningful guarantees. We explored

one way of optimization for safety that works well empirically in this thesis and we aim to develop

further analysis to understand its performance theoretically.

Human demonstrations are a rich source of information to bootstrap from as prior knowledge.

We explored a new way to encode preferences in this thesis - via state marginals. This method

opens up new ways to encode preferences and serves as a theoretical building block for safe Imi-

tation Learning methods, which we intend to explore in the future.

Finally, we require RL algorithms to be safe and sample efficient. Current safety methods have

poor sample efficiency but safety should not necessarily involve a huge trade-off with efficiency.

Model-based approaches are a promising solution as they are sample efficient and amenable to

safety. Solving these challenges is a major step that would enable RL to be deployed in real-world

applications like healthcare, transport, education, household robots among others.
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