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Abstract 

Internet of Things environments are widespread and often include different sources 

of sensor data, which can be used for machine learning applications. However, in 

IoT settings, the ambient environment itself is not static but changes over time, 

leading to variations in the sensor data and thereby decrease in accuracy for any 

ML application using that data. Furthermore, in complex environments, 

applications are exposed to various new conditions over time. Each IoT 

environment also has unique sensors and devices present. All of these special cases, 

which are symptomatic of IoT environments, make ML based applications very 

challenging. 

 

This thesis presents an IoT centric, end-to-end Machine Learning Layer which 

addresses these challenges. Our ML Layer architecture enables each of the aspects 

(training and prediction serving) to provide feedback to each other leading to a 

continuous cycle. Our ML Layer includes a flexible model definition that allows us 

to incorporate any type of model or ML framework, and we initially implement 

several common models for frameworks such as Scikit Learn and Keras. Initially, 

the ML Layer optimizes models, and performs ensemble model selection, based on 

expressive policies. Over time, as a part of its autonomous feedback loop our ML 

Layer is able to automatically identify different patterns in environmental data, and 

continuously adapt these models based on this feedback solicited from users. In 

addition, our system performs dimensionality reduction using environmental data 

over longer periods to improve prediction efficiency. The system is designed to be 

general purpose to accommodate any type or combination of IoT data sources. 

 

Our Machine Learning Layer for IoT is also a fully managed service, designed to 

be flexible and adaptive to facilitate ease of use and deployability. It can be 

deployed in a variety of settings (including smart homes and buildings) which 

require specialized learning on the spot to fit the environment and continuously 

improve accuracy. 
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Chapter 1 
 

 

Introduction  

 

1.1 Overview 
 

In the last several years, the Internet of Things has become very widespread and popular. The idea 

of the Internet of Things is essentially to create a seamless network of digitally connected physical 

objects. These objects interact and share physically relevant information that can allow systems to 

perform intelligent actions for end users or provide them with useful, actionable information. 

 

 

 

 

 

 

 

 

 

Figure 1.1: An illustrative diagram about the overall idea of smart cities, which encompasses 

many different aspects [image from [1]] 
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There are many different applications of IoT that have emerged for multiple scenarios such as 

residential, industrial, and retail use cases. There are estimated to be 20 billion connected IoT 

devices by 2020 [2]. There is also growing interest in creating larger scale deployments of IoT that 

expand to entire cities as presented in Figure 1. These smart cities aim to make public spaces 

everywhere connected and deliver new types of smart interactive experiences for people [3, 4]. 

Such expansion of IoT is leading to the creation of many different types of IoT environments. This 

includes smart homes, smart cars, smart public transportation, and much more, which contain a 

variety of sensor information. All of this presents a unique opportunity for the application for 

machine learning in this area. Machine Learning based methods can identify important 

occurrences, conditions, and events that arise in the environment. These can be used both to notify 

users as well as perform actions in the environment which can help users. 

In this thesis, we focus on smart homes and smart buildings, though this work can also be 

applicable in other settings. Within the context of smart homes and buildings, Machine Learning 

is especially useful to help people in the context of their activities, by inferring the state and 

activities in the environment. However, there are many unique features of IoT that make the use 

cases for IoT different especially with respect to machine learning, as described below. 

 

Unique Features and Challenges of IoT 

Some of the unique challenges that arise in the IoT Machine Learning setting, especially for state 

and activity inferences in smart homes/spaces, include: 

¶ Using data from a unique set of different sensors in each environment 

Each environment has a unique set of data including data from appliances, smartphones, 

and various individual sensing devices. These different sensors can capture different types 

of input, in different physical locations, which the system has to use. 

¶ Different types of sensor outputs 

In different environments, even similar types of data (for example accelerometer data) can 

have different levels of quality and format so models for the data do not transfer. 
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As a result, the above implies that to fully leverage the data in each environment for best 

performance, the models that are used to make predictions for the end user task should be 

completely learned and optimized from all the available custom environmental data, rather than 

depending only on a particular type of data, or on prior/global information which may not be 

applicable. 

Challenges in the IoT setting further include: 

¶ Not much initial data 

In each unique environment, initially there will not be any training data, or only a limited 

amount of training data. 

¶ Data addition over time 

Since the data comes from the physical environment, the system is continually exposed 

over time to all the possible data variations, and has to keep learning over time. 

¶ Dynamic environments 

Temporary or permanent changes in the environment can occur at any time, and fast 

adaptation is required based on these changes. 

As a result, the above implies that any system for the smart space IoT setting has to be able to get 

more data that will help it learn in the new environment, and should continuously adapt over time 

as it gains more experience in the environment and is exposed to new conditions, in order to 

perform well and be useful to end users. 

In this thesis, a novel Machine Learning Layer is presented, which is designed for the IoT setting 

and which addresses the unique challenges that arise in smart space IoT use cases as previously 

described. 

 

1.2    Background 

The two fundamental tasks in using machine learning are training  and serving. Training refers to 

the process of building up models based on a set of example data. Serving is the process of using 

those trained models to respond to live requests, and make predictions. 
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Each machine learning model has two types of parameters, which are learnable parameters and 

hyperparameters. Learnable parameters are optimized during the training process based on the 

data. In contrast, hyperparameters are set before the training process. 

Machine Learning tasks are, in general, divided into several different paradigms. Supervised 

learning involves developing models that learn from a set of samples which are labeled. 

Unsupervised learning learns from unlabeled data. Here we use a combination of both supervised 

and unsupervised techniques. 

Background for different techniques relevant to the aspects used in the Machine Learning Layer 

will be presented in each of the sections. 

 

1.3    Related Work 

The Machine Learning Layer for IoT that is presented in this thesis is a complete machine learning 

system that can work with any IoT application. Below, several different types of commonly used 

Machine Learning systems and IoT systems are outlined, along with a brief description of how the 

Machine Learning Layer is different. 

1. Offline Large Scale Training Systems 

There are many different large scale training systems in use. They are designed to optimize 

for very expensive models such as deep neural networks, with many hyperparameters, and 

for which each training iteration itself is a very long process. As such they not only use 

hyperparameter tuning techniques, but also techniques to monitor progress over time 

during training which can take many hours. 

Once such example is Google Vizier [5], which is a framework that is designed for the 

optimization of deep neural networks for internal Google projects. It is designed as a 

scalable framework for datacenters to optimize the tuning of networks which can take many 

hours or days to train. For this use case, it employs a variety of specialized techniques and 

algorithms. Google Cloud Hyperparameter Tuning [6] is an external service allows for 

hyperparameter tuning of such models based on Google Vizier. 

Yet other systems such as Google AutoML [7] use completely different techniques to build 

high accuracy deep neural network models for complicated problems (for example in 
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computer vision). They view the problem of learning to build a network architecture itself 

as machine learning problem. They apply a variety of techniques such as reinforcement 

learning to learn how to create networks. This domain involves very large amounts of data. 

These systems are designed to put a lot of effort into producing very high-quality and 

complicated deep networks for domains such as object recognition, and translation. 

 

2. Online Serving Systems 

Another set of systems focuses on serving of models. Many such systems have been created 

and studied, as presented in [8]. They use static models which are pre-trained and manually 

packaged to be ready for serving. The models do not change during the course of serving. 

Within this there are specialized model serving systems, for example LASER [9]. They 

focus on optimizing model serving performance for a particular domain like advertising 

and are tied to particular, restricted model types. 

There are also more general serving systems. One recent example is Clipper [10], which is 

a serving system that optimizes performance using different strategies such as batching, 

and caching, and scaling to ensure that performance demands can be met even at large data 

center scales. While Clipper does some weighting of the models, it treats the models as 

black-boxes. 

 

3. IoT and Big Data Solutions 

There are many different Cloud platforms that are commonly used today. Most of these 

large scale Cloud platforms also support IoT, such as Google Cloud [11], Microsoft Azure 

[12], Amazon AWS IoT [13], etc. These IoT platforms are mainly targeted towards 

analytics, large scale operations management for business and industrial applications, etc. 

Though some of them do support smart home automation, they usually focus on rule-based 

systems, and not tasks like custom localized activity recognition model development. 

 

4. Application Specific IoT Systems 

There are many application specific systems that are in use for IoT. These systems are 

characterized by a tight coupling to a specific type of data. They cannot operate with other 

data sources, and often use pretrained models using offline data. One such example is 
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Ubicoustics [14], which is a state-of-the-art deep network for sound classification, which 

relies on huge amounts of training data and is completely pretrained. There are also many 

different systems targeted towards their own sensor platforms for example the MITES 

sensor [15], which uses 13 different hardware sensors, and couples that with a ML system 

to do inferences. In this thesis, we present quantitative and qualitative comparisons in both 

of these domains. 

Limitations  of Existing Systems 

Most types of current machine learning systems have assumptions and goals that do not align fully 

with this setting of smart space IoT. 

For example, the large scale training systems assume the availability of large sets of training data 

for very expensive one-time training tasks. In contrast, the serving systems assume that very high 

accuracy models are already available and do not need to adapt, which is an incorrect assumption. 

The wide range of platform and sensor specific systems are tightly coupled to particular tasks and 

uses. This makes them inflexible and very limited, since in real IoT deployments those specific 

data sources may not be present, or there may be many additional data sources available which are 

very valuable are crucial to good performance. Additionally, such systems are static in models 

they use, and rely on pretraining and out of context data to choose the best models. Most of these 

systems require a large amount of manual work to refresh the models. 

Our ML Layer Differentiation  

In contrast, our Machine Learning Layer for IoT is a general and flexible system that can work 

with any combination of data sources and produce models optimized for both the available data 

and the end-user task. The ML Layer aims to build up a high accuracy system from scratch, and 

one that adapts over time in any new and unique environment. The ML Layer is a unique end-to-

end system that combines the training and serving aspects in an autonomous loop which can 

significantly improve the performance over time. The various components, architecture, and 

techniques that were developed and put together to create this system are designed to enable 

continuous improvement of the ML models over time. 
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1.4    Outline 

The rest of this thesis is organized as follows: 

¶ Chapter 2 provides the overall structure of our end-to-end Machine Learning Layer. The 

additional details of the various subcomponents and methods used in the Machine Learning 

Layer are described in the following chapters. 

¶ Chapter 3 focuses on the components that enable the continuous improvement of the 

Machine Learning Layer over time with additional data 

¶ Chapter 4 describes the integration of dimensionality reduction techniques into the 

Machine Learning Layer to further increase the efficiency of the serving module 

¶ Chapter 5 provides details for the ML Layer Management System which allows many 

different applications to use the Machine Learning Layer for different tasks, and also 

allows deployment across different physical machines, in a distributed setting 

¶ Chapter 6 concludes this thesis, providing some avenues for future research 

 

1.5    Unique Features and Contributions 

This thesis has several different unique features and contributions as listed below. 

 Overall Idea and Framework: 

Firstly, this thesis introduces the overall concept of a Machine Learning Layer for IoT, 

with the goal of adapting to different sorts of data and environments, and specifically 

introduces a: 

¶ System design that handles model training and prediction serving as independently 

functioning components that continuously communicate with each other, and the 

concept of a continuously improving system using an autonomous feedback loop, 

producing optimized models over time for the specific environment in question; 

¶ An extensible design that is flexible enough to support different types of Machine 

Learning frameworks, different types of data, and different training and serving 

deployment settings 
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Algorithms and Components: 

This thesis introduces algorithms and components and applies existing methods, across the 

Machine Learning Layer to enable a dynamic and adaptive system. Specifically, it 

¶ Presents an algorithm for timely automated feedback which allows our system to 

learn from new data, by automatically suggesting the appropriate feedback without 

supervision. This enables dynamic improvement of ML models in different 

environments over time; 

¶ Integrates components for model ensemble selection, and continuous model 

updates to improve accuracy over time based on that feedback; 

¶ Introduces an algorithm for integrating and optimizing dimensionality reduction 

with model selection to make the system scalable, and the models more efficient 

over time, by reducing the computational requirements of prediction, while 

maintaining accuracy. 

Implementation and Evaluation of the End-To-End System: 

The thesis work not only presents the framework and algorithms, but also the complete 

system implementation incorporating the various aspects into an end-to-end system: 

¶ A training and serving system, along with a set of expressive APIs that allows a 

user or a developer to use it with a variety of IoT sensor data 

¶ A distributed management system that enables easy deployment of the training and 

serving components on multiple compute nodes, supporting and managing the 

prediction tasks for different applications, and enabling horizontal scalability 

¶ Evaluation of the improvement of the accuracy of the system over time, along with 

efficiency making use of Smart Home Audio data scenarios, and the MITES data 
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Chapter 2 

 

Machine Learning Layer Training Serving 

System Design 

 

2.1    Introduction 
 

 

 

 

 

 

 

Figure 2.1: A representation of the continuous feedback loop, with the training and serving 

components providing feedback to each other. 

The core of our Machine Learning Layer is the training and serving components. The architecture 

features an independent Training Module and Serving Module which work together in a closed 

loop, which continues to enhance the performance of the system over a period of time. 

The ML layer is not tightly coupled to a particular application or a specific type of data unlike the 

wide range of application specific IoT systems as mentioned before including [14, 15]. Instead it 

can work with any kind of IoT application and be used with a variety of environmental data. The 
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system aims to create a powerful plug and play interface and continuously improve performance 

through an autonomous feedback loop wherever it is deployed. As a result, it can deliver much 

better user experience, for applications like context recognition by being more accurate and 

supporting improvement over time. 

The interfaces to the ML Layer are designed to be easy to use by any client application and general 

enough to train on different sensor data, request predictions, and provide feedback. 

 

 

 

 

 

 

 

 

 

Figure 2.2: Each client application can use the training and serving system for its own tasks. 

Initially the client sends a set of training data to the Training Module (step 1). Based on this, 

models are trained and sent to the Serving Module (step 2). The client can continuously 

request predictions based on the environmental data and the Serving Module responds with 

the predictions (steps 3, 4). The system can generate automatic feedback requests (step 5), 

and the user/client can provide feedback (step 6). The additional data collected in the Serving 

Module is sent to the Training Module (step 7), which updates the models (step 2). 

The system design is flexible so that the Training and Serving can be deployed in different 

locations, not necessarily on the same machine. The system is also very flexible as it can support 

many types of models. It features a model definition that can be used to implement models in a 
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variety of frameworks, so that they can be used seamlessly inside the Machine Learning Layer. 

Furthermore, it can support different prediction tasks including binary classification and multiclass 

classification tasks defined by the client. Though the focus is on classification, the framework can 

be extended to handle tasks like regression as well. 

 

2.2    System Design and Interface 

 

 

 

 

 

 

 

 

 

Figure 2.3: This figure illustrates the ML Layer Training and Serving Modules, along with 

the interface functions, and how the modules interact with each other. Note that the Serving 

Module uses a subset of □ of the models from the ▪ Training Module models. 

 

The Machine Learning Layer Training and Serving System interface supports the following 

functions: 

¶ Train() which allows the client to provide the initial training data, so that the ML Layer 

can train and tune all the models we support, before serving begins. 
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¶ Predict() which allows the client to provide input data, and get a prediction from the 

Serving Module. 

¶ Feedback() which allows the client to provide feedback to improve the system. This 

feedback for example specifies whether the prediction was correct or not. 

¶ UpdateServingModels() which is used to transfer the best models from the Training 

Module in a standardized format, for the Serving Module to use subsequently. 

¶ UpdateTrainingData() which is used to transfer the aggregated environmental feedback 

and data from the Serving Module to the Training Module so that the models can be 

retrained with the new data. 

¶ GetTrainingInfo() which allows the client to access the relevant state and information in 

the Training Module like the set of trained models, parameters, etc. 

¶ GetServingInfo() which allows the client to access information about the state in the 

Serving Module like the serving ensemble and the model weights. 

 

2.3    Training Module 

The Training Module handles all the training and updating of models. Initially it performs model 

selection, and then over time it continuously updates the models as more data is added.  

Model Selection 

To start, the Training Module is initialized with set of MLLayer models that are untrained, which 

satisfy the interface described in Section 2.5. 
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Figure 2.4: This diagram shows the process of model selection in the Training Module. All 

the models and hyperparameters are trained and optimized based on the input training data, 

in parallel. Based on different policies, an ensemble of models is selected and sent to the 

Serving Module. 

 

All the models are trained using the training data, and during this the hyperparameters are 

optimized based on cross validation. So, for each model, the hyperparameters that work best 

(empirically) are found along with their respective validation accuracies. The models are then 

trained with these hyperparameters on the entire training dataset. The system does this in parallel 

for each model for efficiency. 

After all the models are optimized, the best models on the training side are chosen to create a 

model ensemble and serialized according to the format specified in the model definition which is 

different for each model. These models are then sent to the Serving Module. 

The Training Module allows for different model selection policies. These policies allow for 

different ensembles to be selected and are customizable based on the accuracy and latencies of the 

models. For example, we have implemented a policy that choses the top 3 models based on 

accuracy. Another example is a policy that choses the top 3 models based on lowest latency. 



14 
 

Dimensionality reduction is also incorporated into model selection using an algorithm described 

in Chapter 4, but only after the system has enough data from the environment. Note that 

dimensionality reduction is done to reduce model complexity, to improve prediction performance. 

Overall, the Training Module maintains the training data, along with the trained models, and the 

outputs of the model selection like the validation accuracies, etc. so that it can use this later when 

updating the models. 

 

So far, we have described the model selection process. The Training Module also continuously 

updates models in order to support learning based on automatic feedback. This is described in 

more detail in Chapter 3. 

 

2.4    Serving Module 

The Serving Module performs online predictions, using the models that it receives from the 

Training Module. It also provides a certainty estimate for each prediction based on the models that 

are included in the ensemble. The Serving Module features components for automatic feedback 

that enable the continuous learning. 

Ensemble Predictions 

Initially after the model selection, the Serving Module gets the models in a serialized way from 

the Training Module. The Serving Module then continuously responds to prediction requests and 

performs weighted ensemble prediction with a set of weights that are determined based on the 

validation accuracies, as explained below: 

 

Let the best models that are sent to the serving layer be ά , ά, é, ά  

The ensemble prediction for classification tasks is 

ὴὶὩὨὭὧὸὭέὲÁÒÇÍÁØύ ὭὪ Ὢ ὼ ὧ
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Where Ὢ ὼ is the prediction that model ά  makes for input ὼ, and ύ is the weight for model 

ά . 

For regression tasks, this can be modified to be 

ὴὶὩὨὭὧὸὭέὲύὪ ὼ 

The static weights for the models ά , ά, é, ά  are ύ , ύ, é, ύ  are given by 

ύ Ὡ Ὡ  

Where ὼ, ὼ, é, ὼ are the validation accuracies for models ά , ά, é, ά . 

 

 

 

 

Figure 2.5: This diagram illustrates the functions within the Serving Module, which include 

ensemble model predictions, prediction certainty estimation, automatic feedback requests, 

and aggregation serving side data and feedback. 
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Prediction Certainty Estimation 

The Serving Module also provides estimated certainty for each prediction. In IoT applications, 

there are several advantages to providing certainty estimation: 

¶ In many IoT settings, ML based predictions are used to take actions that affect the physical 

environment. When the certainty is low, these can be avoided. 

¶ By using certainty estimation, notifications to the user can be prioritized. 

¶ It also allows more visibility for the end user into how certain the ML system is for that 

prediction 

There are multiple ways to get an ensemble based certainty estimate. 

1. The first method to get an ensemble certainty is to just take the different predictions 

together with the model weights. This method does not rely on the models being able to 

estimate any class based certainties so it is the most general method. It works as follows: 

Let the possible classes be ὧ, ὧ, é, ὧ , and ὧὩὶὸὥὭὲὸὭὩί be the vector estimation of class 

certainties. 

ὧὩὶὸὥὭὲὸὭὩίύ ὭὪ Ὢ ὼ ὧ

 

ȟ ύ ὭὪ Ὢ ὼ ὧ

 

ȟȣȟ ύ ὭὪ Ὢ ὼ ὧ

 

  

 

2. There are classifiers that can provide some kind of estimation of certainty over a 

distribution of the classes. The second method combines this into the certainty estimation 

by taking the weighted average of the probability in each class from each model. 

ὧὩὶὸὥὭὲὭὸὭὩίύὪ ȟ ὼȟ ύὪ ȟ ὼȟȣȟ ύὪ ȟ ὼ  

Where Ὢ ȟ ὼ is the probability that model ά  predicts for the class ὧ on the input ὼ. 

To be able to support different types of classifiers the first strategy is used, which just uses the 

predictions of the models to output class based certainties. This has the advantage that no change 

to any of the models is required. Also, many commonly used models, e.g. nearest neighbors, do 

not support probability estimation, so the first method is more general purpose. 
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In either method, the output ὧὩὶὸὥὭὲὸὭὩί is still a vector with a value for each class. There are 

many ways that a certainty estimate could be generated from the vector. A simple method is to 

take the maximum value of the vector: 

ὧὩὶὸὥὭὲὸώÍÁØ ὧὩὶὸὥὭὲὭὸὭὩί 

This can range from a minimum value of ρȾὲ to a maximum value of ρ. 

Another approach is to take the magnitude or the squared magnitude: 

ὧὩὶὸὥὭὲὸώᴁὧὩὶὸὥὭὲὸὭὩίᴁ 

This can also range from a minimum value of ρȾὲ to a maximum value of ρ. 

The second method with the magnitude uses the entire vector rather than a single value, so we 

use that. 

 

Feedback and Updating 

The Serving Module also enables continuous learning using automatic feedback. We describe this 

in more detail in Chapter 3. 

 

2.5    Machine Learning Layer Model Definition 

 

Design goals: Our Machine Learning Layer supports using various common models from different 

frameworks, such as the SVM model from Scikit Learn and LR from Weka. There are various 

advantages to this approach: 

¶ It allows our system to leverage the capabilities of any framework which may include faster 

training, computationally efficient data transformations, etc. It also allows for deployment 

in a wider range of settings, for example on different hardware which require custom 

optimized frameworks; 

¶ It allows the system to be independent of any particular framework which enables it to be 

used in the same way as frameworks and models change; 
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However, our machine learning layer does not treat the models as black-boxes, so we need to 

balance uniformity across models along with customizability for each model. The Machine 

Learning Layer was designed to have a flexible ML Layer Model Definition so that it can support 

any types of models and frameworks. The interface was designed to have the following properties: 

¶ To allow different types of models to be used with an interface that exposes as many details 

as are necessary for both training and serving tasks; 

¶ To allow the ML Layer to interact with a common abstract interface, while allowing 

individual models to maintain their expressiveness and allowing flexibility for model and 

framework specific methods to be implemented; 

 

 

 

 

 

 

Figure 2.6: The Machine Learning Layer Model definition allows different models to be 

supported using different fr ameworks. All machine learning layer models are derivatives of 

the base class MLModel. 

 

 




