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Abstract

Internet of Things environments are widespraad often include different sources
of sensor datayhich can be used for machine learning applications. However, in
loT settings, theambientenvironment itself is not static but changes over time,
leading to variations in the sensor datal thereby decrease in accuracy for any
ML application using thatdata. Furthermore, in complex environments,
applications are exposed to variomew conditions over time. Each IoT
environment also has unique sensors and devices praefthesespecial cases
which are symptomatic of 0T environmentsake ML basedapplicationsvery
challenging.

This thesispresents an loT centric, emolend Machine Learning Layer which
addresses these challengésr ML Layer architecture enables each of the aspects
(training and prediction serving) farovide feedback to eaddther leadingto a
continuouscycle.Our ML Layerincludes a flexible model definition that allows

to incorporate any type of model bt framework and we initially implement
several common modeler frameworks such as Scikit LeaamdKeras Initially,

the ML Layeroptimizes models, and performs ensemble model seletésed on
expressive policiever time, as a part of its autonomous feedback éawpviL
Layeris able to automatically identify different patterns in environmental dadk, a
continuously adapthesemodels based on this feedbasiicited from usersin
addition,our systemperformsdimensionality reductiomsingenvironmental dat
over longer period® improvepredictionefficiency. The system is designed to be
generabpurposeto accommodate any type or combinationodf datasources

Our Machine Learning Layefor 10T is also a fully managed service, designed to
be flexible and adaptivéo facilitate ease of use and deployability can be
deployed in a variety of satigs (including smart homes anglildingg which
require specialized learning on the spot to fit the environment and continuously
improve accuracy.
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Chapter 1

Introduction

1.1 Overview

In thelast several years, the Internet of Things has become very widespread and popular. The idea
of the Internet of Things is essentially to create a seamless network of digitally connected physical
objects. These objects interact and share physically relefanhation that can allow systems to

perform intelligent actions for end users or provide them with usagtibnablenformation.

EREEETEEE S

Figure 1.1: An illustrative diagram about the overall idea of smart cities, which encompasses

many different aspects [image from [1]]



There are many differeratpplications of I0oT that have emedyr multiple scenarios such as
residential,industrial, and retaiuse casesThere are estimated to be 20 billion connedted

devices by 202(7]. There isalso growing interest in creating larger scale deployments of IoT that
expand to entire cities as presented in Figure 1. These smart cities aim to make public spaces

everywhere connected and deliver new types of smart interactive experiences for petjple [3

Such expansion of I0T is leading to the creation of many different type3 ehlvironmentsThis

includes smart homes, smart casmart public transportation, and much more, which contain a
variety of sensor information. All of this presents aque opportunity for the application for
machine learning in this area. Machine Learning based methods can identify important
occurrences, conditions, and events that arise in the environment. These can be used both to notify

users as well as perform actoim the environment which can help users.

In this thesis,we focus onsmart homes andmart buildings though this work can alsbe
applicable inother settingsWithin the context of smart homes and buildingschine Learning
is especially useful to help people in the context of their activities, by inferring the state and
activities in the environmenHowever, there are many unique features of IoT that make the use

cases for 0T different especially with pegt to machine learnings described below.

Unique Features and Challenges of 10T

Some of the unique challenges that arise in the 10T Machine Learning setting, especially for state

and activity inferences in smart homes/spaces, include:

1 Using datafrom a wique set oflifferentsensors in each environment
Each environment has a unique set of data including data from appliances, smartphones,
and various individual sensing devic@&sese different sensors ceapture different types
of input, in diffeeent physicalocationswhich the system has to use
1 Different types of sensoutputs
In different environments, even similar types of d&daexample accelerometer data) can

have different levalof quality and formasomodelsfor thedatado nottransfer



As a result the aboveimplies that to fully leverage the data eachenvironmentfor best
performance the models that are uséd make predictions for the end ugesk should be
completelylearned and optimized fromil the availablecustom avironmental datasather than
depending oly on a particular type of data, or grior/global information whichmay not be
applicable.

Challenges in the 10T setting further include:

1 Notmuchinitial data
In each unique environment, initially thesdl not be any training data, or only a limited
amount of training data

1 Data addition over time
Since the data comes from the physical environment, the system is continually exposed
over time to all the possible data variatioasd has to keep learnioger time

1 Dynamicenvironments
Temporary or permanent changes in the environment can occur at any tinfastand

adaptations required based dhese changes

As a resultthe abovempliesthatanysystemfor the smart space 0T settihgs to be able to get
more data that will help it learin the new environment, and should continuously adapt over time
as it gains more experience in the environment and is exposed to new conditions, in order to

perform wel and be useful to end users

In this thesis, a novel Machine Learning Layer is presented, which is designed for the 10T setting
and which addressde unique challengeabat arise irsmart spacéoT use caseas previously

described.

1.2 Background

The two fundamental tasks in using machine learningrairging andserving. Training refers to
the process of building up models based on a set of example data. Serving is the process of using

thosetrained models to respond to live requeatsl make predictions.



Each machine learning model has two types of parameters, whitaeamableparameters and
hyperparametersLearnable parameters are optimized during the training process based on the

data. In contrast, hyperparameters are set b#fergaining process.

Machine Learning tasks aren generaldivided into several different paradigmsup@rvised
learning involves developing models that learn from a set of samples which are labeled.
Unsupervised learning learns from unlabeled datae tte use aombination of both supervised

and unsupervised techniques

Background for different techniques relevant to the aspects used in the Machine Learning Layer
will be presented in each of the sections.

1.3 Related Work

The Machine Learning Layer for 10T that is presented in this thesis is a complete machine learning
system that can work with any IoT applicati@®low, several different types of commonly used
Machine Learning systems and IoT systemesoutlinedalong wth a briefdescription ohow the

Machine Learning Layer is different.

1. Offline Large Scale Training Systems
There are many different large scale training systems irmasg.are designed to optimize
for very expensive models such as deep neural netweitksmany hyperparameters, and
for which each trainingterationitself is a very long process. As such they not only use
hyperparameter tuning techniques, but also techniques to monitor progress over time
during training which can take many hours.
Once sich example is Google Vizieb], which is a framework that is designed for the
optimization of deep neural networks for internal Google projects. It is designed as a
scalable framework for datacenters to optimize the tuning of networks which can take many
hours or days to train. For this use case, it employs a variety of specialized techniques and
algorithns. Google Cloud Hyperparameter Tunirg] [s an external service allows for
hyperparameter tuning of such models based on Google Vizier.
Yet other systms such as Google AutoML [7] use completely different techniques to build
high accuracy deep neural network models for complicated problems (for example in

4



computer vision). They view the problem of learning to build a network architecture itself
as machie learning problem. They apply a variety of techniques such as reinforcement
learning to learn how to create networks. This domain involves very large amounts of data.
These systems are designed to put a lot of effort into producing vergiadky and

complicated deep networks for domains such as object recognition, and translation.

. Online Serving Systems

Another set of systems foeson serving of modeld#dany such systems have been created
and studiedas presented {8]. They use statimodels which arpretrained and manually
packagd to be ready for serving. The models do not change during the course of serving.
Within this there are specialized model serving systems, for example LAGERhey

focus on optimizing model serving penfieance for a particular domain like advertising
and are tied to particular, restricted model types.

There are also more general serving systemsr&@matexample is Clipper [10], which is

a serving system that optimizes performance using different sestsgch as batching,

and caching, and scaling to ensure that performance demands can be met even at large data
center scalesVhile Clipper doessomeweighting ofthe models,it treats the models as

black-boxes.

loT and Big Data Solutions

There are mangifferent Cloud platforms that are commonly used todégst of these

large scale Clouglatforms also support IoT, such as Google CldLid, Microsoft Azure

[12], Amazon AWS IoT 13|, etc. These loT platforms are mainly targeted towards
analytics, largescale operations management for business and industrial applications, etc.
Though some of them do support smart home automation, they usually focuslmssede

systemsandnottasks likecustomlocalizedactivity recognition modedevelopment.

. Application Specific IoT Systems

There are many application specific systems that are in use for I0T. These systems are
characterized by a tight coupling to a specific type of data. They cannot operate with other
data sources, and often usetpained models using offline data. One such exansple

5



Ubicousticg[14], which is a stateof-the-art deep network for sound classification, which
relies on huge amouwf training data and is completely pretrained. There are also many
different systera targeted towards their own sensor platforms for example the MITES
sensor 19|, which uses 13 different hardware sensors, and couples that with a ML system
to do inferencedn this thesis, we present quantitative and qualitative compaiirstash

of these domains.
Limitations of Existing Systems

Most types of current machine learning systems have assumptions and goals that do not align fully

with this setting of smart space IoT.

For example, th&arge scale training systerassume thavailability of large sets of training data

for very expensive oneme training tasksin contrast, theesving systems assume that very high
accuracy models are already available @mdot need tadapt, which is an incorrect assumption
Thewide rangeof platform and sensor specific systems are tightly coupled to particular tasks and
uses. This makes themflexible and very limited, since in real 10T deployments those specific
data sources may not be present, or there may be many additional dats @eaitable which are

very valuable are crucial to good performangdditionally, such systems are static in models
they use, and rely on pretraining and out of context data twsehtbe best modelslost of these

systems require a large amount of manualk to refresh the models.
Our ML Layer Differentiation

In contrast our Machine Learning Layer for 10T is a general and flexible system that can work
with any combination of data sources and produce models optimized for both the available data
and the endiser task. The ML Layer aims build up a high accuracy system fromratch and

one that adaptsver time in ay new and unique environmerithe ML Layer is a unique entd-

end system thatombines the training and serving aspects in an autonomous loop which can
significantly improve the performance over tiniEhe various omponents, architecture, and
techniques that were developed and put together to create this systdesigreed to enable

continuousmprovemenbf the ML models over time.



1.4 Outline

The rest of this thesis is organized as follows:

T

1.5

Chapter 2orovidesthe overall structure adur endto-endMachine Learning LayeiThe
additional details of thearioussubcomponents and methods usedéMhbchine Learning
Layer are described in the followinhapters

Chapter 3focuses on theomponerg that enablethe ®ntinuousimprovementof the
Machine Learning Layer over tinveith additional data

Chapter4 describesthe integrabn of dimensionality rduction techniques into the
Machine Learning Layer tlurtherincreaseheefficiencyof the servingnodule

Chapter5 provides detaildor the ML Layer Management Systenvhich allows many
different applications to use the Machine Learning Layer for diftetasks, and also
allows deployment across differguttysicalmachinesin a distributed setting

Chapter6 concludes this thesis, providing some avenues for future research

Unique Features and Contributions

This thesis has sevemifferent unique features and contributions as listed below.

Overall Idea and Framework:

Firstly, this thesis introduces the overall concept of a Machine Learning Layer for loT,
with the goal of adapting to different sorts of data and environmantsspecifically

introduces a

1 System desigthat handlesnodel training and prediction serving as independently
functioning components that continuously communieéta each otherand the
concept of a continuously improving system using an autonomous faeltiog
producing optimized modetsver timefor the specificenvironmenin question

1 An extensible desigthat is flexible enough to suppadifferent typesof Machine
Learning frameworks, different types of data, and different training and serving

depbyment settings



Algorithms and Components

This thesis introduces algorithms and components and applies existing methodshacross

Machine Learning Layer to enaldelynamic and adaptive system. Specifically, it

1 Presentsan algorithmfor timely automagd feedback which allowsur system to

learn from new dat, byautomatically suggeisig the appropriate feedblagvithout
supervision. This mabks dynamic improvement of ML models in different
environmers over tine;

Integrates components for model ensemble selectod, continuous model
updatedo improve accuracgver timebased ornhatfeedback

Introduces an algorithm for integrating and optimizing dimensionality reduction
with model selection to make the systegalableand the models more efficient
over time, by redudng the computational requirements of prediction, while

maintaining accuracy

Implementation and Evaluation of the End-To-End System

The thesis work not only presents the framework and algorithmsldnithe complete

systemimplementatiorincorporating the various aspects into an-erdnd system:

T

T

A training and serving system, along walhset of expressivaPIs that allows a

user or a developer to use it with a variety of 10T sensor data

A distributed managemensystenthat enables easieployment of the training and
serving components on multiple compute nodes, supporting and managing the
prediction tasks for different applications, and enabling horizontal scalability
Evaluation ofthe improvement of thaccuracy of theystem over timealong with
efficiencymaking use o6mart Home Audio data scenarios, and the MITES data



Chapter 2

Machine Learning Layer Training Serving
System Design

2.1 Introduction

Continuous, Dynamic,

Online
Prediction
Serving

Optimized
Model
Training

Figure 2.1: A representation of thecontinuous feedback loopwith the training and serving

components providing feedback to each other.

The core oburMachine Learning Layds the training and servingpmponentsThe architecture
features an independent TrainiNpdule and ServingModule which work together in a closed

loop, whichcontinues to enhance the performance of the system over a period.of time

TheML layer is not tightly coupled to a particular application or a specific type of data unlike the
wide range of application specifioT systemsas mentioned befoiacluding [14, 15] Instead it
canwork with any kind of 10T applicatioand be used with varietyof environmental datal he
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system aims tareatea powerful plug and play interfa@andcontinuously improveerformance
throughan autonomous feedback loagherever it is deployed. As a result, it adeliver much
better ser experiencefor applications like context recognition by being more accurate and

supportingmprovementover time.

The interfaces to the ML Layer are designedeedrsy to use by any client application and general
enoughto train on different sensafata, requestrpdictions and provide feedback.

Varied Varied
Environmental Data Sources Users and Environmental Feedback Sources
Smartphones Sensor networks Smart Cameras Smart homes Smart cities

Varied . o
Applications Client/Application 1

r
1. Initial 3. Prediction| |4. Prediction
Training Request Response
Data
2. Trained/ 5. Automatic
. . Updated Feedback
Training/Serving Models Request
For e >
. . 1
Application :
Tasks 6. Feedback from
7. Additional User/Client

Data

Figure 2.2: Each client application can use the training and serving system for its own tasks.
Initially the client sends a set of training data to theTraining Module (step1). Based on this,
models are trained and sent to theServing Module (step 2). The client can continuously
request predictions based on the environmental data and tHgerving M odule responds with
the predictions (steps3, 4). The system can generate automatic feedback requestep5),
and the user/client can provide feedbackstep6). The additional data collected in theServing

Module is sent to theTraining Module (step7), which updates the modelsstep 2).

The system design is flexible so that the Training and Serving can be deployed in different
locations, not necessarily on the same machHihe.system is also very flexible as it can support

many types of models. It features a model definition that carséé to implement models in a

10



variety of frameworksso that they cabe used seamlessly inside the Machine Learning Layer.
Furthermore, itan support different prediction tasks includimgaryclassification andnulticlass
classificationtasksdefined by the client. Though the focus is on classification, the framework can
be extended to handle tasks liegression as well.

2.2 SystemDesignand Interface

GetTraininglnfo() GetServingInfo()

Training Module Serving Module

Automatic Feedback
Algorithm

Predict()

Feedback()

Figure 2.3: This figure illustrates the ML Layer Training and Serving Modules, along with
the interface functions and how the modules interact with each other. Notthat the Serving

Module uses a subsetf O of the models from thes Training Module models.

The Machine Learning Layefraining and Serving Systemnterface supports the following
functions

91 Train() which allows the client to providéhe initial training data, so that the ML Layer
can train and tune all the modele supportbefore serving begins.
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1 Predict() which allows the client to providénput data and get a prediction from the
Serving Module

1 Feedback()which allows the client to providéeedbak& to improve the systemrThis
feedback for example specifies whether the prediction was correct or not.

1 UpdateservingModel§ which is used to transfer the best models from the Training
Modulein a standardized formabr theServingModuleto use subsequently.

1 UpdateTrainingDatd which is used to transfahe aggregated environmental feedback
and datafrom the ServingModule to the TrainingModule so thatthe models can be
retrainedwith the new data.

1 GetTraininginfo()which allows the client to access the relevant state and information in
theTrainingModulelike the set of trained models, parameters, etc.

1 GetServinginfo()which allows the client to access information about the state in the

ServingModulelike the sering ensemble and the model weights.

2.3 Training Module

The TrainingModule handles all the training and updating of modkigially it performsmodel

selection, and then over time it continuously updates the models aslatai® added.
Model Selection

To start the TrainingModuleis initialized with set of MLLayemodels that are untrained, which

satisfy the interface describedSaction 2.5.
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<
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Training Module

Serving Module

Best Models
Are Serialized
and Sent

Model

Based on
Different
Policies

Training Data
—_—

Training Data

Figure 2.4 This diagram shows the process of model selection in the Trainingodule. All
the models and hyperparameters are trained and optimized based on the input training data,
in parallel. Based on different policies,an ensembleof modelsis selected and sent to the

Serving Module.

All the models are trained using the training datad during thisthe hyperparameters are
optimized based ogrossvalidation. So, for each model, the hyperparametbis work best

(empirically) are found along with their respective validation accuraciés. models are then
trainedwith these hyperpamaeterson the entiré¢rainingdatase The system does this in parallel

for each model for efficiency.

After all the models are optimized, the best models on the training side are chosen to create a
model ensemble and serialized according tddhmat specified in the model definitiovhich is

different for each modeThese models are theent to theServing Module

The Training Module allows for different adel selection policiesThese policies allow for
different ensembles to be selected aretustomizable based on the accuracy and latentibge

models. For example, we have implemented a policy that choses the top 3 models based on
accuracy. Another example is a policy that clsdlse top 3 models based on lowest latency.
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Dimensionalityreduction is also incorporated into model selection using an algorithm described
in Chapter4, but only afterthe system has enough data from the environmgate that

dimensionality reduction is done to reduce model complexity, to improve prediction performance.

Overall, he Training Module maintains the training data, along with th@inedmodels,and the
outputs of the model selection likiee validation ecuraciesetc.so that it can use this later when

updating the models.

So far,we havedescribedhe model selectioprocess The Training Modulealso continuously
updaes modelsin order tosupportlearningbased orautomatic feedbackrhis isdescribed in

more detail inChapter3.

24 Serving Module

The Serving Module performsonline predictiors, using the models that it receives from the
TrainingModule It also provides certainty estimatfor each predictioibbased on the modsthat
are included in thensembleThe Serving Moduldeatures componentsr automatic feedback

that enable the continuous learmin
Ensemble Predictions

Initially after the model selection, the ServiNgpdule gets themodelsin a serialized way from
the Training Module The ServingModulethen continuously responds to prediction requests and
performs weightee@nsemblepredictionwith a set of weights thaire determined based on the

validation accuraciess explained below:

Let the best models that are sent to the serving layérbé , &,

The ensemble prediction for classification tasks is

Rl QQQOAQEEAD Q0 & ©
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Where"Q  is the prediction that modél makes for inputy andv is the weight for model

7

a .

For regression tasks, this can be modified to be

Ni QQQOO MR ®

The static weights for the modeis, & , & ,arev ,0 , 8 ,are given by
0 Q Q
Wherew, @, ® ,are the validation accuracies for models & é,.
User Feedback
Serving Module Provided
(Step 2)
Automatic Feedback
Algorithm Automatic
Feedback Request
(Step 1)
Training Module
Weighted

Additional Data
To Training Module

Prediction Based

on Ensemble
—-

and Prediction
Certainty

Prediction
Request

Figure 2.5 This diagram illustrates the functions within the ServingModule, which include
ensemble model predictions, prediction certainty estimation, automatic feedback requests,

and aggregation serving side data and feedback.
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Prediction Certainty Estimation

The ServingModule also provide estimated certainty for each prediction. In 10T applications,

there are several advantagegrovidingcertainty estimation

1 Inmany IoT settings, ML based predictions are used to take actions that affect the physical
environment.When the certainty is lowhese can be avoided.

1 By using certainty estimation, notifications to the user can be prioritized

1 It alsoallows more visibility for the end usento how certain the ML system is for that

prediction
There are multiplevays to get an ensemblpasedcertaintyestimate

1. The first method to get an ensemble certainty is to just take the different predictions
together with the model weights. This method does not rely on the models being able to
estimate any class based centigis so it is the most general methbavorks as follows:

Let the possible classesflecd, & ,and® Q1 O ¢ Be the @EQtbr estimation of class

certainties.

OQI 0MOMMEOTWQINO & O h 0V QO o OMh 1V Q0 ® ®

2. There areclassifiersthat can provide some kind of estimation of certainty over a
distribution of the classe¥he second method combines this into the certainty estimation
by taking theweighted average of the probability in each class from each model.

OQI 0 OQE "QOIORE wh 0°Qp wBh 0QF ©
Where'Q ;@ is the probability that modeél predicts for the clas® on the inputa

To be able to suppodifferent types otlassifies the first strategy is used, which just uses the
predictions of the models to output class based certainties. This has the advantage that no change
to any ofthe models is required. Also, mangmmory usedmodels e.g. nearest neighbodg

not support probability estimation, so the first methatiase general purpose.
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In either method, the outpdi'Qi o & "Bésill "'R'Gector with a value for each class. There are
many ways that a certainty estimate could be generated from the vector. A simple method is to

take the maximum valuaf the vector
OQ1 0 OREA@QI 0 DHIQE QO QQ
This can rangérom a minimum value gb¥e to a maximum value gd.
Another approacts to take the magnitude or the squared magnitude
OOl 0 OWEWRDO OBE 6 QQI
This can also range from a minimum valug®£ to a maximum value gd.

Thesecond methodith the magnitudeises the entire vector rather than a single valuereso
use that.

Feedbackand Updating

The ServingVlodulealso enablesontinuous learningsing automatic feedbacWe descrile this

in more detail irChapter 3.

25 Machine Learning Layer Model Definition

Design goalsOurMachine Learning Layesupports usingarious commomodelsfrom different
frameworks,such as the SVM model fro®cikit Learnand LR from WekaThere are various

advantages to this approach

1 Itallowsoursystem to leveragbecapabilitiesof any framework which may include faster
training computationally efficient data transformatioas; It also allows for deployment
in a wider range of settings, for example on different hardware which require custom
optimizedframeworks

1 It allows the system to hadependent ohny particular framework which enables it to be

used in the same way as frammeks and models change
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However,our machine learning layer does not treat the models as-blaaks, sove need to
balance uniformityacross modelslong with customizabilitffor each model The Machine
Learning Layer was designed to have a flexible ML Layer Model Definition so that it can support
any types of models and framework&e interface was designaahave the following properties:

1 To dlow different types of models to be used wathinterface that exposesraanydetails
asarenecessary for both training and serving tasks

1 To dlow the ML Layer to interact with a commaabstractinterface, while allowing
individual models to maintain their expressiveness and allowing flexibiditynodel and

framework specific methods to be implemented

Random
Forest

Support Vector { Fully Connected
Machine Neural Network

(il’ltél) Nervana

MLModel

Machine Learning Layer

Ridge K Nearest
Regression Neighbors

Convolutional o

Neural Network

O PyTorch

Figure 2.6. The Machine Learning Layer Model definition allows different models to be
supported using different fr ameworks All machine learning layer models are derivatives of

the base class MLModel
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