

An Extensible, Scalable, and Continuously

Adaptive Machine Learning Layer for the

Internet-of-Things

Prahaladha Mallela

CMU-CS-19-106

April 2019

School of Computer Science

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:

Yuvraj Agarwal, Chair

Vyas Sekar

Submitted in partial fulfillment of the requirements

for the degree of Master of Science.

Copyright © 2019 Prahaladha Mallela

Keywords: Machine Learning, Continuous Learning, Internet of Things

(IoT), Model Selection, Online Prediction Serving, Distributed Systems

Abstract

Internet of Things environments are widespread and often include different sources

of sensor data, which can be used for machine learning applications. However, in

IoT settings, the ambient environment itself is not static but changes over time,

leading to variations in the sensor data and thereby decrease in accuracy for any

ML application using that data. Furthermore, in complex environments,

applications are exposed to various new conditions over time. Each IoT

environment also has unique sensors and devices present. All of these special cases,

which are symptomatic of IoT environments, make ML based applications very

challenging.

This thesis presents an IoT centric, end-to-end Machine Learning Layer which

addresses these challenges. Our ML Layer architecture enables each of the aspects

(training and prediction serving) to provide feedback to each other leading to a

continuous cycle. Our ML Layer includes a flexible model definition that allows us

to incorporate any type of model or ML framework, and we initially implement

several common models for frameworks such as Scikit Learn and Keras. Initially,

the ML Layer optimizes models, and performs ensemble model selection, based on

expressive policies. Over time, as a part of its autonomous feedback loop our ML

Layer is able to automatically identify different patterns in environmental data, and

continuously adapt these models based on this feedback solicited from users. In

addition, our system performs dimensionality reduction using environmental data

over longer periods to improve prediction efficiency. The system is designed to be

general purpose to accommodate any type or combination of IoT data sources.

Our Machine Learning Layer for IoT is also a fully managed service, designed to

be flexible and adaptive to facilitate ease of use and deployability. It can be

deployed in a variety of settings (including smart homes and buildings) which

require specialized learning on the spot to fit the environment and continuously

improve accuracy.

Acknowledgements

I would like to thank my advisor Yuvraj Agarwal for his support. He has provided

valuable guidance and suggestions throughout the entire process. Furthermore, he

spent valuable time both in and outside our weekly meetings, which was very

helpful for my project. I appreciate the opportunity to work with him very much.

I would also like to thank Vyas Sekar for agreeing to be the second faculty member

for my thesis committee, reviewing my thesis document, and taking the time to

come to my presentation.

Finally, I would also like to thank Peter Steenkiste and Tracy Farbacher for the help

related to the program.

Contents

1 Introduction 1

1.1 Overview ... 1

1.2 Background ... 3

1.3 Related Work .. 4

1.4 Outline ... 7

1.5 Contributions ... 7

2 Machine Learning Layer Training Serving System Design 9

2.1 Introduction ... 9

2.2 System Design and Interface .. 11

2.3 Training Layer .. 12

2.4 Serving Layer .. 14

2.5 Machine Learning Layer Model Definition .. 17

3 Continuous Improvement of the ML Layer 20

3.1 Overview ... 20

3.2 Introduction and Requirements for Automatic Feedback 21

3.3 Background for Hyperparameter Optimization .. 22

3.4 Algorithm for Automatic Feedback .. 24

3.5 Approaches for Model Updating .. 25

3.6 Results ... 27

 3.6.1 Introduction to Relevant Datasets/Comparisons 27

3.6.2 Smart Home Audio Data: Long Term Use Case 28

3.6.3 Smart Home Audio Data: Short Term Adaptation Use Case 32

4 Optimized Dimensionality Reduction 36

4.1 Motivation for Dimensionality Reduction .. 36

 4.2 Techniques for Dimensionality Reduction ... 37

 4.3 Algorithm for Optimized Dimensionality Reduction ... 40

4.4 Results with Dimensionality Reduction ... 42

4.4.1 Accuracy for Serving ... 42

4.4.2 Performance for Serving with Dimensionality Reduction 44

4.4.3 Per Model Optimization Results .. 45

5 ML Layer Management Module 48

5.1 Overview ... 48

5.2 Implementation Choices ... 50

5.3 Central Management Service (CMS) .. 51

 5.3.1 Central Management Service Details ... 51

 5.3.2 Central Management Service Interactions and API 53

5.4 Database Storage ... 54

5.5 Starter Service (SS) ... 56

 5.5.1 Starter Service Details ... 56

 5.5.2 Starter Service Interactions and API ... 57

5.6 Security ... 58

5.6.1 Motivation .. 58

 5.6.2 Details of Security Setup and Interactions ... 59

6 Conclusion 62

6.1 Future Work .. 63

Bibliography 64

List of Figures

1.1 An illustrative diagram about the overall idea of smart cities, which encompasses

many different aspects [image from [1]] ... 1

2.1 A representation of the continuous feedback loop, with the training and serving

components providing feedback to each other ... 9

2.2 Each client application can use the training and serving system for its own tasks.

Initially the client sends a set of training data to the Training Module (step 1). Based

on this, models are trained and sent to the Serving Module (step 2). The client can

continuously request predictions based on the environmental data and the Serving

Module responds with the predictions (steps 3, 4). The system can generate

automatic feedback requests (step 5), and the user/client can provide feedback (step

6). The additional data collected in the Serving Module is sent to the Training

Module (step 7), which updates the models (step 2). .. 10

2.3 This figure illustrates the ML Layer Training and Serving Modules, along with the

interface functions, and how the modules interact with each other. Note that the

Serving Module uses a subset of m of the models from the n Training Module

models. ... 11

2.4 This diagram shows the process of model selection in the Training Module. All the

models and hyperparameters are trained and optimized based on the input training

data, in parallel. Based on different policies, an ensemble of models is selected and

sent to the Serving Module. ... 13

2.5 This diagram illustrates the functions within the Serving Module, which include

ensemble model predictions, prediction certainty estimation, automatic feedback

requests, and aggregation serving side data and feedback. 15

2.6 The Machine Learning Layer Model definition allows different models to be

supported using different frameworks. All machine learning layer models are

derivatives of the base class MLModel. .. 18

3.1 This shows an abstract example of how Bayesian optimization choses the next point

to try while optimizing the objective function [image from [21]]. The posterior

distribution is the internal model of the objective function based on the previous

evaluations. The acquisition function is the uncertainty of the internal model, based

on which the next point is chosen by taking the maximum. 23

3.2 A representation of the model updating in the ML Layer 27

3.3 The running accuracy improvement for the Long Term Smart Home Audio Use

Case using the automatic feedback functionality. The graph shows how the system

continuously improves over time. Each vertical line indicates when the system

automatically asks the user for feedback. The system is able to dynamically adapt

to events in the environment. ... 29

3.4 The total amount of automatic feedback for the Long Term Smart Home Audio Use

Case as a function of the number of feedback request iterations. The system results

in each iteration of feedback giving a 6x increase in the number of labeled examples

which can be used by the system to improve the models. 29

3.5 The amount of data that is covered by the automatic feedback for the Long Term

Smart Home Audio Use Case. The coverage is over 60% while using only 20

iterations. This shows the system is able to identify feedback that spans the data

space, and the obtained feedback is not concentrated in a small part of the space.

By collecting feedback across the data space, the system is making good use of

feedback requests, which is also demonstrated by the improvement in accuracy of

the models over time. ... 30

3.6 The accuracy of the automatic feedback for the Long Term Smart Home Audio Use

Case. Since the accuracy is 100% across the feedback requests, this shows that

whenever the system automatically identifies a group of feedback, all the data

points belong to the same class. This makes it easy and valuable for the user since

no corrections to the automatic feedback are required. 30

3.7 Accuracy of a pretrained audio based recognition system, Ubicoustics [14], for the

Long Term Smart Home Audio Use Case. This shows that the pretrained system is

not able to perform with high accuracy since it is not optimized for the local

environment, and it is also not able to automatically adapt to changes in the

environment unlike our ML Layer. The accuracy of Ubicoustics ranges from 25%

to 45%. ... 31

3.8 This graph shows the running accuracy for the Short Term Smart Home Audio Use

Case. The dotted lines show times at which our system solicits user feedback. The

points A, B, C show when the new events door1, door2, door3 are introduced

respectively. ... 32

3.9 The total amount of automatic feedback for the Short Term Smart Home Audio Use

Case as a function of the number of feedback request iterations. The system results

in each iteration of feedback giving a 4x increase in the number of labeled examples

which can be used by the system to improve the models. 33

3.10 The amount of data that is covered by the automatic feedback for the Short Term

Smart Home Audio Use Case. The coverage is around 50% after just 6 interactions,

which shows that the automatic feedback is not concentrated in a small area, but

rather is spread across the data space. This is confirmed by the accuracy graph in

Figure 3.8 which shows that the automatic feedback is identifying the different

events as they occur, allowing accuracy to improve. ... 34

3.11 The accuracy of the automatic feedback for the Short Term Smart Home Audio Use

Case. Since the accuracy is 100% across the feedback requests, this shows that

whenever the system automatically identifies a group of feedback, the datapoints

all belong to the same class. This makes it easy and valuable for the user since no

corrections to the automatic feedback are required. .. 34

4.1 This image shows the first principal component for two different datasets. This

shows that Kernel PCA is effective when apply to non-linear data, while PCA is

very limited since it is only based on linear subspaces. [Image from [30]] 38

4.2 This is an example image of the output of UMAP on the full MNIST digit

recognition dataset. UMAP can reduce dimensionality to 2 dimensions by trading

off the global structure of the data with the local structure of the data. [Image from

[31]] .. 39

4.3 A representation of the algorithm for optimized dimensionality reduction in the

Training Module. There are different models, for example Model 1 can be the Scikit

Learn SVM model, which has its own set of hyperparameters. For each model, there

is an outer level of dimensionality reduction optimization (which consists of several

iterations), and an inner level of hyperparameter optimization (which itself consists

of several iterations). Each iteration of the dimensionality reduction leads to

retuning the model. This is done for all the models to produce the final set of trained

and tuned models with dimensionality reduction. ... 41

4.4 Accuracy comparison using dimensionality reduction for the Smart Home Audio

Dataset with the various classes. Before dimensionality reduction, the number of

dimensions was 6144. As can be seen, the dimensionality reduction allows the

accuracy to be preserved. ... 43

4.5 Accuracy comparison using dimensionality reduction for the Combined Sensor

Dataset, based on the MITES platform with 13 physical sensors. Before

dimensionality reduction, the number of dimensions was 1172. As can be observed,

the accuracy with dimensionality reduction is mostly unchanged, except for the

second model, for which accuracy increases significantly. 43

4.6 Latency comparison using dimensionality reduction for the Smart Home Audio

Dataset, running on the same hardware configuration. This shows that the

dimensionality reduction results in latency improvement for all the models, and

significant latency improvements for most of the models. 44

4.7 Latency comparison using dimensionality reduction for the Combined Sensor

Dataset, running on the same hardware configuration. This shows that the

dimensionality reduction results in latency improvement for all the models, and

significant latency improvement for the SVM models. 45

4.8 Results for per model dimensionality reduction optimization for the Smart Home

Audio Dataset. The number of original dimensions was 6144. The graph shows that

for all the models, the number of dimensions is reduced to less than 5% of the

number of original dimensions. ... 46

4.9 Results for per model dimensionality reduction optimization for the Combined

Sensor Dataset. The number of original dimensions was 1172. The graph shows

that for all the models, the number of dimensions is reduced to less than 25% of the

number of original dimensions, and to less than 10% for many of the models . .. 46

5.1 Overall diagram of the components of the ML Layer Prediction Stream

Management System .. 49

5.2 This diagram represents the information for mappings that the Central Management

Service holds internally to manage Training and Serving across several different

machines. ... 52

5.3 An illustration of how the Central Management Service handles requests and

interacts with components which uses its API ... 54

5.4 An example of the per stream data in the overall database for the system 55

5.5 An illustration of how the Starter Service handles requests and interacts with

components which uses its API ... 58

5.6 Top: Initially the Central Management Service generates public and private keys

when it is started. Bottom: A new Starter Service instance generates its own public

and private key and shares the public key with the Central Management Service

automatically. ... 59

5.7 This diagram shows how the keys are shared when new training and serving

instances are created. Each training and serving instance automatically generates

its own public and private keys .. 60

1

Chapter 1

Introduction

1.1 Overview

In the last several years, the Internet of Things has become very widespread and popular. The idea

of the Internet of Things is essentially to create a seamless network of digitally connected physical

objects. These objects interact and share physically relevant information that can allow systems to

perform intelligent actions for end users or provide them with useful, actionable information.

Figure 1.1: An illustrative diagram about the overall idea of smart cities, which encompasses

many different aspects [image from [1]]

2

There are many different applications of IoT that have emerged for multiple scenarios such as

residential, industrial, and retail use cases. There are estimated to be 20 billion connected IoT

devices by 2020 [2]. There is also growing interest in creating larger scale deployments of IoT that

expand to entire cities as presented in Figure 1. These smart cities aim to make public spaces

everywhere connected and deliver new types of smart interactive experiences for people [3, 4].

Such expansion of IoT is leading to the creation of many different types of IoT environments. This

includes smart homes, smart cars, smart public transportation, and much more, which contain a

variety of sensor information. All of this presents a unique opportunity for the application for

machine learning in this area. Machine Learning based methods can identify important

occurrences, conditions, and events that arise in the environment. These can be used both to notify

users as well as perform actions in the environment which can help users.

In this thesis, we focus on smart homes and smart buildings, though this work can also be

applicable in other settings. Within the context of smart homes and buildings, Machine Learning

is especially useful to help people in the context of their activities, by inferring the state and

activities in the environment. However, there are many unique features of IoT that make the use

cases for IoT different especially with respect to machine learning, as described below.

Unique Features and Challenges of IoT

Some of the unique challenges that arise in the IoT Machine Learning setting, especially for state

and activity inferences in smart homes/spaces, include:

¶ Using data from a unique set of different sensors in each environment

Each environment has a unique set of data including data from appliances, smartphones,

and various individual sensing devices. These different sensors can capture different types

of input, in different physical locations, which the system has to use.

¶ Different types of sensor outputs

In different environments, even similar types of data (for example accelerometer data) can

have different levels of quality and format so models for the data do not transfer.

3

As a result, the above implies that to fully leverage the data in each environment for best

performance, the models that are used to make predictions for the end user task should be

completely learned and optimized from all the available custom environmental data, rather than

depending only on a particular type of data, or on prior/global information which may not be

applicable.

Challenges in the IoT setting further include:

¶ Not much initial data

In each unique environment, initially there will not be any training data, or only a limited

amount of training data.

¶ Data addition over time

Since the data comes from the physical environment, the system is continually exposed

over time to all the possible data variations, and has to keep learning over time.

¶ Dynamic environments

Temporary or permanent changes in the environment can occur at any time, and fast

adaptation is required based on these changes.

As a result, the above implies that any system for the smart space IoT setting has to be able to get

more data that will help it learn in the new environment, and should continuously adapt over time

as it gains more experience in the environment and is exposed to new conditions, in order to

perform well and be useful to end users.

In this thesis, a novel Machine Learning Layer is presented, which is designed for the IoT setting

and which addresses the unique challenges that arise in smart space IoT use cases as previously

described.

1.2 Background

The two fundamental tasks in using machine learning are training and serving. Training refers to

the process of building up models based on a set of example data. Serving is the process of using

those trained models to respond to live requests, and make predictions.

4

Each machine learning model has two types of parameters, which are learnable parameters and

hyperparameters. Learnable parameters are optimized during the training process based on the

data. In contrast, hyperparameters are set before the training process.

Machine Learning tasks are, in general, divided into several different paradigms. Supervised

learning involves developing models that learn from a set of samples which are labeled.

Unsupervised learning learns from unlabeled data. Here we use a combination of both supervised

and unsupervised techniques.

Background for different techniques relevant to the aspects used in the Machine Learning Layer

will be presented in each of the sections.

1.3 Related Work

The Machine Learning Layer for IoT that is presented in this thesis is a complete machine learning

system that can work with any IoT application. Below, several different types of commonly used

Machine Learning systems and IoT systems are outlined, along with a brief description of how the

Machine Learning Layer is different.

1. Offline Large Scale Training Systems

There are many different large scale training systems in use. They are designed to optimize

for very expensive models such as deep neural networks, with many hyperparameters, and

for which each training iteration itself is a very long process. As such they not only use

hyperparameter tuning techniques, but also techniques to monitor progress over time

during training which can take many hours.

Once such example is Google Vizier [5], which is a framework that is designed for the

optimization of deep neural networks for internal Google projects. It is designed as a

scalable framework for datacenters to optimize the tuning of networks which can take many

hours or days to train. For this use case, it employs a variety of specialized techniques and

algorithms. Google Cloud Hyperparameter Tuning [6] is an external service allows for

hyperparameter tuning of such models based on Google Vizier.

Yet other systems such as Google AutoML [7] use completely different techniques to build

high accuracy deep neural network models for complicated problems (for example in

5

computer vision). They view the problem of learning to build a network architecture itself

as machine learning problem. They apply a variety of techniques such as reinforcement

learning to learn how to create networks. This domain involves very large amounts of data.

These systems are designed to put a lot of effort into producing very high-quality and

complicated deep networks for domains such as object recognition, and translation.

2. Online Serving Systems

Another set of systems focuses on serving of models. Many such systems have been created

and studied, as presented in [8]. They use static models which are pre-trained and manually

packaged to be ready for serving. The models do not change during the course of serving.

Within this there are specialized model serving systems, for example LASER [9]. They

focus on optimizing model serving performance for a particular domain like advertising

and are tied to particular, restricted model types.

There are also more general serving systems. One recent example is Clipper [10], which is

a serving system that optimizes performance using different strategies such as batching,

and caching, and scaling to ensure that performance demands can be met even at large data

center scales. While Clipper does some weighting of the models, it treats the models as

black-boxes.

3. IoT and Big Data Solutions

There are many different Cloud platforms that are commonly used today. Most of these

large scale Cloud platforms also support IoT, such as Google Cloud [11], Microsoft Azure

[12], Amazon AWS IoT [13], etc. These IoT platforms are mainly targeted towards

analytics, large scale operations management for business and industrial applications, etc.

Though some of them do support smart home automation, they usually focus on rule-based

systems, and not tasks like custom localized activity recognition model development.

4. Application Specific IoT Systems

There are many application specific systems that are in use for IoT. These systems are

characterized by a tight coupling to a specific type of data. They cannot operate with other

data sources, and often use pretrained models using offline data. One such example is

6

Ubicoustics [14], which is a state-of-the-art deep network for sound classification, which

relies on huge amounts of training data and is completely pretrained. There are also many

different systems targeted towards their own sensor platforms for example the MITES

sensor [15], which uses 13 different hardware sensors, and couples that with a ML system

to do inferences. In this thesis, we present quantitative and qualitative comparisons in both

of these domains.

Limitations of Existing Systems

Most types of current machine learning systems have assumptions and goals that do not align fully

with this setting of smart space IoT.

For example, the large scale training systems assume the availability of large sets of training data

for very expensive one-time training tasks. In contrast, the serving systems assume that very high

accuracy models are already available and do not need to adapt, which is an incorrect assumption.

The wide range of platform and sensor specific systems are tightly coupled to particular tasks and

uses. This makes them inflexible and very limited, since in real IoT deployments those specific

data sources may not be present, or there may be many additional data sources available which are

very valuable are crucial to good performance. Additionally, such systems are static in models

they use, and rely on pretraining and out of context data to choose the best models. Most of these

systems require a large amount of manual work to refresh the models.

Our ML Layer Differentiation

In contrast, our Machine Learning Layer for IoT is a general and flexible system that can work

with any combination of data sources and produce models optimized for both the available data

and the end-user task. The ML Layer aims to build up a high accuracy system from scratch, and

one that adapts over time in any new and unique environment. The ML Layer is a unique end-to-

end system that combines the training and serving aspects in an autonomous loop which can

significantly improve the performance over time. The various components, architecture, and

techniques that were developed and put together to create this system are designed to enable

continuous improvement of the ML models over time.

7

1.4 Outline

The rest of this thesis is organized as follows:

¶ Chapter 2 provides the overall structure of our end-to-end Machine Learning Layer. The

additional details of the various subcomponents and methods used in the Machine Learning

Layer are described in the following chapters.

¶ Chapter 3 focuses on the components that enable the continuous improvement of the

Machine Learning Layer over time with additional data

¶ Chapter 4 describes the integration of dimensionality reduction techniques into the

Machine Learning Layer to further increase the efficiency of the serving module

¶ Chapter 5 provides details for the ML Layer Management System which allows many

different applications to use the Machine Learning Layer for different tasks, and also

allows deployment across different physical machines, in a distributed setting

¶ Chapter 6 concludes this thesis, providing some avenues for future research

1.5 Unique Features and Contributions

This thesis has several different unique features and contributions as listed below.

 Overall Idea and Framework:

Firstly, this thesis introduces the overall concept of a Machine Learning Layer for IoT,

with the goal of adapting to different sorts of data and environments, and specifically

introduces a:

¶ System design that handles model training and prediction serving as independently

functioning components that continuously communicate with each other, and the

concept of a continuously improving system using an autonomous feedback loop,

producing optimized models over time for the specific environment in question;

¶ An extensible design that is flexible enough to support different types of Machine

Learning frameworks, different types of data, and different training and serving

deployment settings

8

Algorithms and Components:

This thesis introduces algorithms and components and applies existing methods, across the

Machine Learning Layer to enable a dynamic and adaptive system. Specifically, it

¶ Presents an algorithm for timely automated feedback which allows our system to

learn from new data, by automatically suggesting the appropriate feedback without

supervision. This enables dynamic improvement of ML models in different

environments over time;

¶ Integrates components for model ensemble selection, and continuous model

updates to improve accuracy over time based on that feedback;

¶ Introduces an algorithm for integrating and optimizing dimensionality reduction

with model selection to make the system scalable, and the models more efficient

over time, by reducing the computational requirements of prediction, while

maintaining accuracy.

Implementation and Evaluation of the End-To-End System:

The thesis work not only presents the framework and algorithms, but also the complete

system implementation incorporating the various aspects into an end-to-end system:

¶ A training and serving system, along with a set of expressive APIs that allows a

user or a developer to use it with a variety of IoT sensor data

¶ A distributed management system that enables easy deployment of the training and

serving components on multiple compute nodes, supporting and managing the

prediction tasks for different applications, and enabling horizontal scalability

¶ Evaluation of the improvement of the accuracy of the system over time, along with

efficiency making use of Smart Home Audio data scenarios, and the MITES data

9

Chapter 2

Machine Learning Layer Training Serving

System Design

2.1 Introduction

Figure 2.1: A representation of the continuous feedback loop, with the training and serving

components providing feedback to each other.

The core of our Machine Learning Layer is the training and serving components. The architecture

features an independent Training Module and Serving Module which work together in a closed

loop, which continues to enhance the performance of the system over a period of time.

The ML layer is not tightly coupled to a particular application or a specific type of data unlike the

wide range of application specific IoT systems as mentioned before including [14, 15]. Instead it

can work with any kind of IoT application and be used with a variety of environmental data. The

10

system aims to create a powerful plug and play interface and continuously improve performance

through an autonomous feedback loop wherever it is deployed. As a result, it can deliver much

better user experience, for applications like context recognition by being more accurate and

supporting improvement over time.

The interfaces to the ML Layer are designed to be easy to use by any client application and general

enough to train on different sensor data, request predictions, and provide feedback.

Figure 2.2: Each client application can use the training and serving system for its own tasks.

Initially the client sends a set of training data to the Training Module (step 1). Based on this,

models are trained and sent to the Serving Module (step 2). The client can continuously

request predictions based on the environmental data and the Serving Module responds with

the predictions (steps 3, 4). The system can generate automatic feedback requests (step 5),

and the user/client can provide feedback (step 6). The additional data collected in the Serving

Module is sent to the Training Module (step 7), which updates the models (step 2).

The system design is flexible so that the Training and Serving can be deployed in different

locations, not necessarily on the same machine. The system is also very flexible as it can support

many types of models. It features a model definition that can be used to implement models in a

11

variety of frameworks, so that they can be used seamlessly inside the Machine Learning Layer.

Furthermore, it can support different prediction tasks including binary classification and multiclass

classification tasks defined by the client. Though the focus is on classification, the framework can

be extended to handle tasks like regression as well.

2.2 System Design and Interface

Figure 2.3: This figure illustrates the ML Layer Training and Serving Modules, along with

the interface functions, and how the modules interact with each other. Note that the Serving

Module uses a subset of □ of the models from the ▪ Training Module models.

The Machine Learning Layer Training and Serving System interface supports the following

functions:

¶ Train() which allows the client to provide the initial training data, so that the ML Layer

can train and tune all the models we support, before serving begins.

12

¶ Predict() which allows the client to provide input data, and get a prediction from the

Serving Module.

¶ Feedback() which allows the client to provide feedback to improve the system. This

feedback for example specifies whether the prediction was correct or not.

¶ UpdateServingModels() which is used to transfer the best models from the Training

Module in a standardized format, for the Serving Module to use subsequently.

¶ UpdateTrainingData() which is used to transfer the aggregated environmental feedback

and data from the Serving Module to the Training Module so that the models can be

retrained with the new data.

¶ GetTrainingInfo() which allows the client to access the relevant state and information in

the Training Module like the set of trained models, parameters, etc.

¶ GetServingInfo() which allows the client to access information about the state in the

Serving Module like the serving ensemble and the model weights.

2.3 Training Module

The Training Module handles all the training and updating of models. Initially it performs model

selection, and then over time it continuously updates the models as more data is added.

Model Selection

To start, the Training Module is initialized with set of MLLayer models that are untrained, which

satisfy the interface described in Section 2.5.

13

Figure 2.4: This diagram shows the process of model selection in the Training Module. All

the models and hyperparameters are trained and optimized based on the input training data,

in parallel. Based on different policies, an ensemble of models is selected and sent to the

Serving Module.

All the models are trained using the training data, and during this the hyperparameters are

optimized based on cross validation. So, for each model, the hyperparameters that work best

(empirically) are found along with their respective validation accuracies. The models are then

trained with these hyperparameters on the entire training dataset. The system does this in parallel

for each model for efficiency.

After all the models are optimized, the best models on the training side are chosen to create a

model ensemble and serialized according to the format specified in the model definition which is

different for each model. These models are then sent to the Serving Module.

The Training Module allows for different model selection policies. These policies allow for

different ensembles to be selected and are customizable based on the accuracy and latencies of the

models. For example, we have implemented a policy that choses the top 3 models based on

accuracy. Another example is a policy that choses the top 3 models based on lowest latency.

14

Dimensionality reduction is also incorporated into model selection using an algorithm described

in Chapter 4, but only after the system has enough data from the environment. Note that

dimensionality reduction is done to reduce model complexity, to improve prediction performance.

Overall, the Training Module maintains the training data, along with the trained models, and the

outputs of the model selection like the validation accuracies, etc. so that it can use this later when

updating the models.

So far, we have described the model selection process. The Training Module also continuously

updates models in order to support learning based on automatic feedback. This is described in

more detail in Chapter 3.

2.4 Serving Module

The Serving Module performs online predictions, using the models that it receives from the

Training Module. It also provides a certainty estimate for each prediction based on the models that

are included in the ensemble. The Serving Module features components for automatic feedback

that enable the continuous learning.

Ensemble Predictions

Initially after the model selection, the Serving Module gets the models in a serialized way from

the Training Module. The Serving Module then continuously responds to prediction requests and

performs weighted ensemble prediction with a set of weights that are determined based on the

validation accuracies, as explained below:

Let the best models that are sent to the serving layer be ά , ά, é, ά

The ensemble prediction for classification tasks is

ὴὶὩὨὭὧὸὭέὲÁÒÇÍÁØύ ὭὪ Ὢ ὼ ὧ

15

Where Ὢ ὼ is the prediction that model ά makes for input ὼ, and ύ is the weight for model

ά .

For regression tasks, this can be modified to be

ὴὶὩὨὭὧὸὭέὲύὪ ὼ

The static weights for the models ά , ά, é, ά are ύ , ύ, é, ύ are given by

ύ Ὡ Ὡ

Where ὼ, ὼ, é, ὼ are the validation accuracies for models ά , ά, é, ά .

Figure 2.5: This diagram illustrates the functions within the Serving Module, which include

ensemble model predictions, prediction certainty estimation, automatic feedback requests,

and aggregation serving side data and feedback.

16

Prediction Certainty Estimation

The Serving Module also provides estimated certainty for each prediction. In IoT applications,

there are several advantages to providing certainty estimation:

¶ In many IoT settings, ML based predictions are used to take actions that affect the physical

environment. When the certainty is low, these can be avoided.

¶ By using certainty estimation, notifications to the user can be prioritized.

¶ It also allows more visibility for the end user into how certain the ML system is for that

prediction

There are multiple ways to get an ensemble based certainty estimate.

1. The first method to get an ensemble certainty is to just take the different predictions

together with the model weights. This method does not rely on the models being able to

estimate any class based certainties so it is the most general method. It works as follows:

Let the possible classes be ὧ, ὧ, é, ὧ , and ὧὩὶὸὥὭὲὸὭὩί be the vector estimation of class

certainties.

ὧὩὶὸὥὭὲὸὭὩίύ ὭὪ Ὢ ὼ ὧ

ȟ ύ ὭὪ Ὢ ὼ ὧ

ȟȣȟ ύ ὭὪ Ὢ ὼ ὧ

2. There are classifiers that can provide some kind of estimation of certainty over a

distribution of the classes. The second method combines this into the certainty estimation

by taking the weighted average of the probability in each class from each model.

ὧὩὶὸὥὭὲὭὸὭὩίύὪ ȟ ὼȟ ύὪ ȟ ὼȟȣȟ ύὪ ȟ ὼ

Where Ὢ ȟ ὼ is the probability that model ά predicts for the class ὧ on the input ὼ.

To be able to support different types of classifiers the first strategy is used, which just uses the

predictions of the models to output class based certainties. This has the advantage that no change

to any of the models is required. Also, many commonly used models, e.g. nearest neighbors, do

not support probability estimation, so the first method is more general purpose.

17

In either method, the output ὧὩὶὸὥὭὲὸὭὩί is still a vector with a value for each class. There are

many ways that a certainty estimate could be generated from the vector. A simple method is to

take the maximum value of the vector:

ὧὩὶὸὥὭὲὸώÍÁØ ὧὩὶὸὥὭὲὭὸὭὩί

This can range from a minimum value of ρȾὲ to a maximum value of ρ.

Another approach is to take the magnitude or the squared magnitude:

ὧὩὶὸὥὭὲὸώᴁὧὩὶὸὥὭὲὸὭὩίᴁ

This can also range from a minimum value of ρȾὲ to a maximum value of ρ.

The second method with the magnitude uses the entire vector rather than a single value, so we

use that.

Feedback and Updating

The Serving Module also enables continuous learning using automatic feedback. We describe this

in more detail in Chapter 3.

2.5 Machine Learning Layer Model Definition

Design goals: Our Machine Learning Layer supports using various common models from different

frameworks, such as the SVM model from Scikit Learn and LR from Weka. There are various

advantages to this approach:

¶ It allows our system to leverage the capabilities of any framework which may include faster

training, computationally efficient data transformations, etc. It also allows for deployment

in a wider range of settings, for example on different hardware which require custom

optimized frameworks;

¶ It allows the system to be independent of any particular framework which enables it to be

used in the same way as frameworks and models change;

18

However, our machine learning layer does not treat the models as black-boxes, so we need to

balance uniformity across models along with customizability for each model. The Machine

Learning Layer was designed to have a flexible ML Layer Model Definition so that it can support

any types of models and frameworks. The interface was designed to have the following properties:

¶ To allow different types of models to be used with an interface that exposes as many details

as are necessary for both training and serving tasks;

¶ To allow the ML Layer to interact with a common abstract interface, while allowing

individual models to maintain their expressiveness and allowing flexibility for model and

framework specific methods to be implemented;

Figure 2.6: The Machine Learning Layer Model definition allows different models to be

supported using different fr ameworks. All machine learning layer models are derivatives of

the base class MLModel.

