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Abstract

The relational schema of a table in a database management system (DBMS)
describes its logical attribute information and constraints. Despite the aim of
separation between logical schema and physical data storage, in practice, the
schema often dictates how a DBMS organizes data on disk or in memory.
This tight coupling is because the database's physical schema must match its
logical schema. The problem with this is that applications that incur frequent
schema changes (e.g., add a column, change column type) may become slower
or even unavailable during a change due to data migration. A better approach
is to support non-blocking schema changes by storing multiple versions of
tables and allow data migration happens lazily.

In this thesis, we introduce multi-version schemas that are based on multi-
version concurrency control policies (MVCC) to support fast online schema
changes. This approach maintains multiple tables of different schemas and al-
lows transactions to see the correct versions of tuples. It migrates tuples from
old schema to new schema lazily on demand. We show that multi-version
schemas achieve non-blocking schema changes. We also show that the over-
head of maintaining multiple schemas is small and the system can recover
from performance degeneration caused by schema change fast when there is
hotspot in the database.
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Chapter 1

Introduction

A database is an organized collection of data, generally stored and accessed electroni-
cally from a computer system. The database schema of a database system is its structure
described in a formal language supported by the database management system (DBMS).
The term “schema” refers to the organization of data as a blueprint of how the database
is constructed. A database can be divided into database tables in the case of relational
databases. A table has rows and columns, where rows represents records and columns
represent the attributes. A tuple is a single row of a table, which contains a single record
for that relation. A relation schema, also known as table schema, is the logical de�nition
of a table. It de�nes what the name of the table is, a set of column names, the data types,
and constraints associated with each column.

A schema change is an alteration made to a collection of logical structures in a database.
Schema changes are generally made using structured query language (SQL) and DBMSs
typically implement schema changes during maintenance windows. Application devel-
opers design the schemas in DBMSs to suit applications' use cases. The schema design
may be optimized for the intended usage during the development phase. However, soft-
ware evolves, and applications are updated frequently. Application developers are under
pressure to change their database schemas and code to �x bugs and add new features.

1.1 Motivation

Many DBMSs (PostgreSQL [33], SQLite [40], and RocksDB[38]) block the table when
they change the table schema. At the same time, they block transactions accessing the
table until it �nishes installing the schema change. Atransaction is a logical unit that is
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Figure 1.1: Unavailability of the table caused by a non-blocking schema change

independently executed by a DBMS for data retrieval or updates. In relational databases,
transactions must be atomic, consistent, isolated and durable – summarized as the ACID
acronym [15]. Therefore, transaction throughput is reduced when schema change occurs.
During the installation of a schema change, those systems create a new table with the
new schema and copy tuples in the old table into the new table. To show how this affects
availability, Figure 1.1 shows that a blocking schema change blocks transactions updating
the table in one of the systems, Terrier [10]. The table schema consists of two columns
of 8-byte integers, and there are 10 million tuples in the table. The red line shows the
number of writing transactions the table can process. The black line shows the change in
throughput when a blocking schema change occurs at 10 seconds. It takes 17 seconds for
the system to copy 10 million tuples to a new location and bring the throughput back to
a normal level. As another example, MediaWiki (the wiki platform used by Wikipedia)
has seen more than 170 database schema versions [9] in its 55 possible upgrades, and only
5 of out of 55 can be performed online. One notable example was the MediaWiki 1.5
upgrade that caused 22 hours of Wikipedia downtime because the core table schema has
changed signi�cantly [12, 24]. In a workload that consists of many read and write trans-
actions, blocking schema changes reduce transaction throughput signi�cantly. Because
of this, many applications apply schema changes in software updates during maintenance
windows at off-peak times so that they do not affect running transactions.

However, schema changes happen at a high cadence, with a recent study showing that
some cloud applications change schemas more than once a week [25]. Unfortunately, the
requirement that schema is changed often and applied quickly is at odds with providing a
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seamless, uninterrupted service. In particular, Software-as-a-Service (SaaS) and Platform-
as-a-Service (PaaS) providers are bound by Service Level Agreements (SLA) to provide
high-availability services, and stopping service to update a database schema might lead
to long periods of unavailability which violates the SLA. For example, the G Suite SLA
stipulates that G Suite Covered Services web interface must be available 99.9% of the
time; otherwise, Google is liable to compensate users for unavailability [11].

We have shown that schemas continue to change after the application development pe-
riod has ended. Hence, there is a tension between the need to frequently update schemas
and high-availability. For high-availability applications, such as web applications and on-
line services, such as SaaS and PaaS providers, stopping and restarting service to update
a database schema is unacceptable. It indicates the need for non-blocking schema trans-
formations. For a DBMS to achieve high availability without sacri�cing consistency, we
believe the system should have the following properties:

� A transaction sees one schema of a table when it starts and can only view and modify
data in this schema.

� When the transaction changes a schema, the system veri�es that other transactions
are not updating that schema.

� Other transactions can still retrieve and update data in the old schema during the
installation of a new schema.

� The new schema becomes visible to other transactions only when and if the schema
change transaction commits successfully.

Tuples in a DBMS that implements multi-version concurrency control (MVCC) [3] have
similar properties as described above. In MVCC, a transaction sees one version of a tuple.
It can read the tuple in the old version when another transaction is modifying the tu-
ple. The updated tuple becomes visible to other transactions when the writing transaction
commits. MVCC achieves these properties for tuples by maintaining multiple versions of
a single logical tuple. In this thesis, we extend the idea of multi-versioning to schemas.
We introduce non-blocking schema changes by maintaining multiple versions of logical
schemas based on MVCC. The existence of multiple schemas of a table allows transac-
tions to access the table while the table is performing schema update. We introduce three
multi-version schema approaches built upon MVCC. Then, we also provide a speci�c
implementation of how to support multi-version schemas in a multi-version DBMS, by
maintaining multiple versions of data tables and determines which version a transaction
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is allowed to see without latches. In the end, we evaluate our approach under differ-
ent schema changes and database usage scenarios. We evaluate the overhead of keeping
multiple data tables, the cost of version translation, and the change in transaction through-
put overtime caused by schema changes. We also compare our results against blocking
schema changes. We show that we make schema changes non-blocking, and achieve high
throughput and availability with when schema changes are frequent.

1.2 Contribution

We present multi-version relation schemas and non-blocking lazy schema changes for the
system. The main contributions of this research are as follows:

1. We discuss three design choices for non-blocking relation schema changes with
multi-version schemas.

2. We provide an implementation of non-blocking relation schema changes for a multi-
version in-memory DBMS.

3. We compare against blocking schema update to show that our approach improves
throughput and availability of the system.

4. We discuss fast recovery from performance degeneration caused by schema updates
in a database with hotspot.

4



Chapter 2

Background

This chapter describes multi-version concurrency control protocol (MVCC) and different
components related to multi-version schemas in a relational database system. Section 2.1
explains MVCC and isolation levels. Section 2.2 describes an in-memory MVCC DBMS,
Terrier, including the storage engine, the concurrency control system, the catalog, and
indexes.

The relational schema of a table in a database management system (DBMS) describes
its logical attribute information and constraints. Despite the aim of separation between
logical schema and physical data storage from Codd's original relational model [6], in
practice, the schema often dictates how a DBMS organizes data on disk or in memory. For
example, a disk-oriented DBMS may store tuples in disk pages. The schema determines
the size of a tuple, which in turn determines the number of tuples that can be stored in a
page. The system may also decide the layout of a page based on the existence of variable-
length columns in the schema. Therefore, changing the schema implies changing the
physical layout of data.

Schema changes are generally made usingALTER TABLEcommands. One can write
ALTER TABLEcommands to add or delete columns, create or drop indexes, change the
type of existing columns, add or drop constraints on columns, or rename columns or the
table itself. Due to time constraints, our research mainly focuses on schema changes that
add columns and constraints. We defer the study of other types of schema changes as
future work. Many existing systems (PostgreSQL [33], SQLite [40], and RocksDB[38])
implement schema changes by locking tables affected by this change, creating new tables
with the new schema, and migrating data over to the new tables. The drawback of this
approach is that transactions are blocked during the entire modi�cation. Even though
some systems (MariaDB) allow reads to the table during the migration, transactions that
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involve writes are blocked. Blocking user transactions is not an viable option in systems
with high availability requirements.

Research in this area has proposed several alternative solutions such as query rewrit-
ing [8], schema versioning, and temporal querying [20, 29], schema leases [35], schema
mapping[41, 45], or schema matching[36]. However, the �exibility offered by these solu-
tions must be weighed against their potential cost and operating constraints. For example,
rewritten queries run with a permanent overhead and are on average 4.5 times slower than
original queries [8] in some system. Such solutions might have limited applicability for
online applications that are performance critical.

Our approach provides non-blocking schema changes by maintaining multiple ver-
sions of logical schemas. The idea of multi-versioning has been explored in multi-version
concurrency control protocols (MVCC) to maintain multiple versions of tuples in a table.
Although many DBMSs (SQL Server, Oracle, PostgreSQL, MySQL with InnoDB) im-
plement MVCC, they either do not have full support for non-blocking schema change or
do not utilize the existing multi-version infrastructure already built for tuples to support
multi-version schemas. The purpose of this research is to provide a high-performance im-
plementation of non-blocking schema changes by storing multiple versions of data tables
for multi-version database systems.

2.1 Multi-Version Concurrency Control

Most of the modern DBMSs implement multi-version concurrency control (MVCC) to
achieve higher levels of concurrency. The �rst mention of MVCC appeared in Reeds
1979 dissertation [37]. We discuss three aspects in the DBMS related to MVCC, namely,
concurrency control protocol, isolation levels, and index management.

2.1.1 Concurrency Control

Concurrency control is the procedure in DBMS for managing simultaneous operations
without con�icting with each another. Without concurrency control, if a transaction is
reading from a database at the same time as another transaction is writing to it, it is possible
that the reader sees a half-written or inconsistent piece of data. For instance, when making
a wire transfer between two bank accounts, if a reader reads the balance at the bank when
the money has been withdrawn from the original account, and before it has deposited in
the destination account, it would seem that money has disappeared from the bank.
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Among these four properties (Atomicity, Consistency, Isolation and Durability) of
transactions, Isolation determines how transaction integrity is visible to other users and
systems, and it is implemented using a concurrency control protocol. The simplest way is
to make all readers wait until the writer is done, which is known as a logical read-write
lock. Locks are known to create contention especially between long read transactions and
update transactions.

2.1.2 Isolation Levels

Isolation levels de�ne the anomalies that could occur during concurrent transaction ex-
ecution. A lower isolation level increases the number of different types of anomalies,
such as dirty reads, non-repeatable reads, and phantom reads, that users might encounter.
Conversely, a higher isolation level reduces the types of concurrency anomalies that users
might encounter, but requires more system resources and increases the chances that one
transaction blocks another. Choosing the appropriate isolation level depends on balancing
the data integrity requirements of the application against the overhead of each isolation
level.

The highest isolation level, serializable, only allows execution of the operations of
concurrently executing transactions that produce the same effect as some serial execution
of those same transactions. A serial execution is one in which each transaction executes
to completion before the next transaction begins. The lowest isolation level, read uncom-
mitted, can retrieve data that has been modi�ed but not committed by other transactions.
All concurrency side effects can happen in read uncommitted, but there is no read locking
or versioning, so overhead is minimized. Snapshot isolation (SI) [2] is an isolation level
that guarantees all reads made in a transaction sees a consistent snapshot of the database
and the transaction itself successfully commits only if no updates it has made con�ict with
any concurrent updates made since that snapshot. In a DBMS using SI for concurrency
control, reads are never blocked because of concurrent transactions' writes, nor do reads
cause delays in a writing transaction. Several major DBMSs, such as Oracle, MySQL,
PostgreSQL, MongoDB, and Microsoft SQL Server, have adopted SI. Despite the nice
properties of SI Snapshot isolation, it has been known that SI allows non-serializable exe-
cutions. This occurs when concurrent transactions modify different items that are related
by a constraint, and it is called the Write Skew anomaly [2].

It a DBMS enforces that all executions are serializable, the the developers do not need
to worry that inconsistencies in the data might appear as artifacts of concurrency. It is well-
known how to use strict two-phase locking to control concurrency to produce serializable
execution [14]. Serializable Snapshot Isolation (SSI) [4] is a serializable concurrency
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control algorithm that makes SI serializable. Under a range of conditions, the overall
transaction throughput is close to that allowed by SI, and much better than that of strict
two-phase locking [4]. PostgreSQL's new serializable isolation level is based on the SSI
technique [30, 32].

2.1.3 MVCC with Snapshot Isolation

Multi-version concurrency control (MVCC), is a concurrency control method commonly
used by DBMS to provide concurrent access to the database [3]. MVCC aims at providing
concurrent access by keeping multiple copies of each data item. In this way, each user
connected to the database sees a snapshot of the database at a particular instant in time.
Any changes made by a writer is not visible to other users until the transaction has been
committed.

When a MVCC database needs to update a piece of data, it does not overwrite the
original data item with new data but instead creates a newer version of the data item.
Thus, there are multiple versions stored. The version that each transaction sees depends
on the isolation level implemented. The most common isolation level implemented with
MVCC is snapshot isolation [2]. A transaction in MVCC with Snapshot Isolation keeps a
snapshot view of the database. Read transactions under MVCC typically use a timestamp
or transaction ID to determine what state of the database to read, and read these versions
of the data. Read and write transactions are thus isolated from each other without any need
for locking. Writes create a newer version, while concurrent reads access an older version.

2.1.4 Indexing in MVCC

All MVCC DBMSs keep the databases versioning information separate from its indexes
[44]. That is, the existence of a key in an index means that some version exists with that
key, but the index entry does not contain information about which versions of the tuple
match. We de�ne anindex entryas a key/value pair, where thekey is a tuples indexed
attribute(s) and thevalue is a pointer to that tuple. The DBMS follows this pointer to
a tuples version chain and then scans the chain to locate the version that is visible for a
transaction.

Primary key indexes always point to the current version of a tuple. However, how
often the DBMS updates a primary key index depends on whether or not its version stor-
age scheme creates new versions when a tuple is updated. For secondary indexes, it is
more complicated because an index entrys keys and pointers can both change. The two
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management schemes for secondary indexes in an MVCC DBMS differ on the contents of
these pointers. The �rst approach useslogical pointersthat use indirection to map to the
location of the physical version. Contrast this with thephysical pointersapproach where
the value is the location of an exact version of the tuple.

The main idea of using logical pointers is that the DBMS uses a �xed identi�er that
does not change for each tuple in its index entry. This avoids the problem of having
to update all of a tables indexes to point to a new physical location whenever a tuple is
modi�ed, but since the index does not point to the exact version, the DBMS traverses the
version chain from the HEAD to �nd the visible version.

With this second scheme, the DBMS stores the physical address of versions in the
index entries. When updating any tuple in a table, the DBMS inserts the newly created
version into all the secondary indexes. In this manner, the DBMS can search for a tuple
from a secondary index without comparing the secondary key with all of the indexed
versions.

2.2 System Overview

This section describes the physical storage of tuples in a database, MVCC, schema infor-
mation contained in the catalog, and addresses stored in indexes in a multi-version DBMS.
We use Terrier [10] as our example. Terrier is an in-memory DBMS developed at Carnegie
Mellon University. Terrier implements lock-free MVCC to support real-time analytics. It
uses high-performance, latch-free Bw-Tree for indexing [19, 42].

2.2.1 Storage Engine

The storage engine is separated from execution engine in Terrier so that it is pluggable.
The default storage engine is designed to be an in-memory column store, organized in
blocks. The system integrates the storage layer with a concurrency control system and a
garbage collection mechanism. It implements in-memory MVCC [27], withdelta storage,
newest-to-oldestandin-placeupdates [44].

Under MVCC, the DBMS always constructs a new physical version of a tuple when a
transaction updates it. The DBMSs version storage scheme speci�es how the system stores
these versions and what information each version contains [44]. Indelta storageschema,
the DBMS maintains the master versions of tuples in the main table and a sequence of
delta versions in separate delta storage. This storage is referred to as the rollback segment
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Figure 2.1: The default storage engine in Terrier

in MySQL and Oracle and is also used in HyPer.Newest-to-oldestmeans that the DBMS
stores the current version of a tuple in the main table. To update an existing tuple, the
DBMS acquires a continuous space from the delta storage for creating a new delta version.
This delta version contains the original values of modi�ed attributes rather than the entire
tuple. The DBMS then directly performsin-placeupdate to the master version in the main
table.

We introduce two storage concepts in Terrier, DataTables and SqlTables. Figure 2.1
shows a DataTable and a SqlTable in the storage engine. The DataTable implements
MVCC, and it consists of blocks of memory. The SqlTable is a wrapper around DataTable
that supports SQL operations.

DataTables

Tuples are stored in 1 MB blocks in Terrier by default. Terrier internally organizes blocks
with a data organization model called PAX[1]. More speci�cally, each block has a �xed
layout that corresponds to the relational schema of a table and starts with a block header
which contains metadata of its layout. A DataTable in Terrier is a chain of blocks of the
same layout, and represents aphysical tablein the system. It returns the tuple values given
a tuple address. When a transaction creates a table by giving a relation schema, the system
creates a DataTable, and all the blocks in this DataTable are used only for store tuples
with that schema. DataTables implement MVCC and support transactions, so transactions
can potentially see different values of the same tuple. Given a tuple in a DataTable and a
transaction, the DataTable can check if the tuple is visible to the transaction.

The storage layer accesses a tuple using a physical pointer as a key for stored objects
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Figure 2.2: An illustration of the structure of a block. The higher 44 bits of a tuple address
is the block header address.

in blocks, which always corresponds directly with a physical memory location. Since all
blocks are 1 MB in size, it is guaranteed that the heads of two blocks are always 1 MB
apart at least, and the system can tell which block any given physical pointer might be in,
provided we know the possible starts of blocks. Then, the signi�cant44bits inside a64-bit
pointer are suf�cient to locate the head of the block as shown in Figure 2.2. The remaining
20bits are guaranteed to be large enough to hold the possible offset values within a block,
assuming any tuple has to be at least 1 byte in size, so there can at most be220 tuples and
unique offsets within a block. Figure 2.2 also shows the information stored in the block
header. Terrier stores a version number that is preserved for multi-version schemas in the
block header. It also stores a pointer to the DataTable to which the block belongs. The
system uses the rest metadata to interpret the layout of the block.

SqlTables

A SqlTable in Terrier is a wrapper around a DataTable that provides SQL-operation in-
terface. It is the entry point for a transaction to access data stored in a table, and it is
responsible for communication between the transaction and the DataTable. It serves as a
logical tableexisting in the database. SqlTables support the following SQL operations:

� Select: Given an address to a tuple and a set of columns, the SqlTable returns the
tuple values for these columns.

� Insert: Given a vector of values, the SqlTable inserts a tuple with given values to
the logical table.
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� Update: Given an address to a tuple and a vector of new values, the SqlTable up-
dates the existing tuple with new values.

� Delete: Given an address to a tuple, the SqlTable removes a tuple from the logical
table.

� Scan:Given an iterator to the logical table and a sizek, the SqlTable return a vector
of tuples of sizek after the iterator. If there are not enough tuples available, slots in
the vector remain empty.

A SqlTable contains only one DataTable in the current implementation. An update on
the schema would require locking the whole table and swapping the underlying DataTable
with the new schema. We discuss how to change the current design to maintain multi-
ple DataTables in a SqlTable in Chapter 3, so that the system can support multi-version
schemas and non-blocking schema changes.

2.2.2 Concurrency Control

DataTables implement in-memory multi-version concurrency control protocols in a way
that is similar to HyPer [27]. The concurrency control system is delta based, and updates
records in place. The concurrency control system is generally latch-free, except transac-
tion begins and ends, where the system has to update global data structures atomically.
For every tuple, the system maintains a singly linked list of undo records, which is the
version chain, in a latch-free manner. Every version chain node or an undo record, stores
a physical “before image” of the tuple modi�ed, as well as the timestamp of the transac-
tion that modi�ed it. The timestamp is either the transaction's id or the commit timestamp
for committed transactions. When the system starts a transaction, the transaction sees a
speci�c version of the tuple based on its timestamp.

On a tuple update, the updating transaction �rst copies the current version of the tuple
into an undo record and then attempts to prepend the record to the version chain atomically.
The version chain prepending serves as an implicit “write latch” The transaction aborts if
the head of the version chain is not visible to it, so DataTables do not allow write-write
con�ict.

2.2.3 Catalog

The database catalog of a database instance consists of metadata in which de�nitions of
database objects such as base tables, views (virtual tables), synonyms, value ranges, in-
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dexes, users, and user groups are stored. More speci�cally, it includes schemas of tables,
information about columns, constraints on attributes.

The catalog in Terrier is similar to the system catalog in PostgreSQL [31]. The catalog
tables in Terrier are SqlTables themselves and hence transnational. Transactions can drop
and recreate the tables, add columns, insert and update values into the catalog. While it
stores all this information in tables like any other application would, the system fully man-
age the data in the tables so the data cannot be modi�ed unless an absolute emergency.
Some catalog tables are “system-wide” tables, where the data represents the whole sys-
tems, no singular database. They store system information such as databases in the system,
transaction information, memory and disk usage, timestamps, and statistics. Other catalog
tables contain database speci�c metadata, such as table schemas and index metadata.

Since catalog tables support transactions, transactions see different versions of tuples
in the catalog. We discuss how to exploit the transnational property of the catalog to store
schema version information in the catalog in Chapter 3.1.2.

2.2.4 Transaction Manager

A transaction is a logical unit that is independently executed by a DBMS for data retrieval
or updates. After a transaction begins, it either commits or aborts at the end. Commit phase
a coordinating process that takes the necessary steps for either committing or aborting the
transaction. A transaction manager is part of the system that is responsible for coordinating
transactions across one or more resources. The responsibilities of the transaction manager
are as follows:

� Starting and ending transactions using begin, commit, and rollback methods.

� Managing the transaction context. A transaction context contains the information
that a transaction manager needs to keep track of a transaction. The transaction
manager is responsible for creating transaction contexts and attaching them to the
current thread.

� Coordinating the transaction across multiple resources.

� Recovery from failure. Transaction managers are responsible for ensuring that re-
sources are not left in an inconsistent state if there is a system failure.
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2.2.5 Indexes

Terrier uses latch-free Bw-Tree [19, 42] for indexing and values are physical addresses
to tuples in SqlTables. If columns are indexed, a transaction can ask indexes for the tu-
ple addresses and then pass them to SqlTable to access tuples ef�ciently. Terrier keeps
the databases versioning information separate from its indexes like many other MVCC
DBMSs [44]. The existence of a key in an index means that some version exists with that
key, but the index entry does not contain information about which versions of the tuple
match. We discuss how indexes interact with tables that have multiple schemas in Chapter
3.1.3.

2.2.6 Garbage Collection

While multi-version concurrency control (MVCC) supports fast and robust performance
in in-memory, relational databases, it has the potential problem of a growing number of
versions over time due to old versions. Although a few TB of main memory is available
for enterprise machines, the memory resource should be used carefully for economic and
practical reasons. Thus, to maintain the necessary number of versions in MVCC, the sys-
tem needs to delete versions which will no longer be used. This process is called garbage
collection. MVCC uses the concept of visibility to de�ne garbage. A set of versions for
each record is identi�ed as candidates if their version timestamps are lower than the mini-
mum value of snapshot timestamps of active snapshots in the system. Garbage collection
can safely reclaim all such candidates.

In Terrier, all of the data to clean up resides within the transaction context themselves.
The transaction manager essentially keeps a back queue of all the transactions that are
�nished. In the absence of long-running transactions [18], the garbage collector is then a
background thread that periodically polls from the transaction manager's queue and pro-
cesses the �nished transactions.
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Chapter 3

Non-Blocking Schema Change

This chapter discusses the behavior of non-blocking schema changes. It focuses on one
speci�c design of non-blocking schema changes in detail and includes a complete imple-
mentation of SqlTable operations such as Select, Insert, Delete, Update, and Scan. At the
end of this chapter, we also discuss different storage designs and analyze their advantages
and disadvantages.

3.1 Design

In this section, we discuss how to achieve non-blocking schema changes in terms of DataT-
ables and SqlTables in multi-version DBMSs. We call our design thelazy schema change
method.

The lazy schema change method does not copy all tuples from the old schema to a
new schema. When a schema change occurs, it only creates an empty chunk of blocks
for storing tuples with the new schema and returns without populating them. Hence, the
whole schema change operation is cheap. Tuple migration is carried out by subsequent
operations as lazily as possible.

We describe how the system executes Select operations after a lazy schema change.
Suppose the system has a physical tablestudent with two columnsid andname. There
are two tuples initially in the table,(1, abc) and(2, xyz) . At time T1 in Figure 3.1,
a schema-change transaction adds a third columnage with default value0. The system
then creates an empty physical table with all three columns. At timeT2, a transaction tries
to readid andname of the tuple withid=1 . The system detects thatid andname are

15



Figure 3.1: Select operation after a lazy schema change

attributes in the previous schema, so it retrieves the values from the old table and returns.
At time T3, a transaction tries to read all columns instudent table. The system knows
the third column has a default value0, so it �rst retrieves the values of the �rst two column
from the old table, appends0 on the �y, and returns. The second physical table remains
empty and untouched.

Now we describe how the system executes Update operations after a lazy schema
change. Again, suppose the system has a physical tablestudent with two columns
id andname. There are two tuples initially in the table,(1, abc) and(2, xyz) . At
time T1 in Figure 3.2, a schema change transaction adds a third columnage with default
value0. The system creates an empty physical table with all three columns. At timeT2

in Figure 3.2, a transaction updates theage of the tuple withid=2 to be21. The system
detects thatage is a column that only exists in the new schema, so it adds the tuple(2,
xyz, 21) to the new physical table. At the same time, it removes the old tuple from the
old physical table. At timeT3 in Figure 3.2, a transaction tries to change thename of the
tuple withid=1 to bebcd . The system checks and realizes that it can perform the update
in the old physical table because the column exist in both schemas. Therefore, the system
updates the data in the old physical table.

16



Figure 3.2: Update operation after a lazy schema change

In general, lazy schema change requires the ability to store tuples in the same logical
table in different physical locations. Note that the application drives the data migration
because the system only migrates tuples touched by transactions.

3.1.1 Multiple DataTables in SqlTable

Most systems (PostgreSQL [33], SQLite [40], and RocksDB[38]) implement blocking
schema changes by creating a new table with the new schema, and moving tuples from the
old table to the new table. During the migration, these two physical tables with different
schemas coexist, but neither can be accessed or is ready to be modi�ed by transactions.
The lazy schema change is a relaxation of this migration process. It allows transactions to
access multiple physical tables of different schemas at the same time.

Figure 3.3 shows the design in the storage engine. We make DataTables correspond
to different versions of physical tables. The SqlTable acts as the unique logical table in
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Figure 3.3: Multiple DataTables in a SqlTable. DataTables are the physical student tables,
and the SqlTable is the logical student table.

the database. Suppose we have astudent table with two columns, as shown in Figure
3.3, and change the schema by adding a third columnage . Then, the system has two
versions of physical tables (DataTables) with two complete schemas, but only one logical
student table (SqlTable).

3.1.2 Version Table in Catalog

In MVCC, different transactions see different versions of a tuple based on their times-
tamps. Correspondingly, in multi-version schemas, the next step is to develop a mecha-
nism for SqlTables to expose the appropriate version(s) of DataTables to transactions.

The system maintains a new version table in the catalog that stores tables and their
version numbers. One of the reasons that the version table is in the catalog is that the
catalog is meant to store metadata of the database, and the number of schema versions of
a table is metadata that is not exposed to the client. Another reason is that catalog tables
are transactional SqlTables that implement MVCC so the system can exploit the existing
implementation to make transactions see different version numbers for each table. Our de-
sign requires a transaction to obtain its version number for each table it accesses from the
version table, and pass it along with every SQL operation to the corresponding SqlTable.
However, the version number of a SqlTable does not change for non-schema-change trans-
actions under snapshot isolation. Therefore, transactions can cache their version numbers
for future queries.

Figure 3.4 shows the process of obtaining a version number for a table before accessing
the table. In Figure 3.4, a transaction tries to execute a Select query on thestudent
SqlTable. First, it talks to the version table in the catalog to get its version number for
thestudent table, which isv2 in this example. Then it asks the SqlTable to execute a
Select operation and provides its version number. The SqlTable then retrieves the tuple in
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Figure 3.4: An example of a transaction interacting with the catalog and a SqlTable

the schemav1 , transforms it into the schemav2 that is expected by the transaction, and
returns(1, abc, 0) . We call the process of transforming a tuple from one schema
version into another schema versionversion translation.

3.1.3 Physical Addresses in Indexes

We next explain how indexes work with multi-version schemas. For online transaction
processing (OLTP) [28] systems, most of the time transactions access tuples ef�ciently
via indexing. Some systems, such as Terrier, store physical memory addresses in indexes.
To invoke SQL operations like Select, Update in SqlTables, transactions need to provide
addresses of the tuples. They obtain these addresses from indexes.

Let R be a table andT be a transaction. We introduce two de�nitions of versions:

txn version: We de�ne txn version to be the versionT receives from the
version table in the catalog forR.

addr version: For all addresses in a DataTable, we de�neaddr version of
these addresses to be the schema version of the DataTable.

By de�nition, addresses from the same DataTable have the sameaddr version . The
two types of versions do not need to be the same. Aversion mismatchis the case where a
transaction provides an address whoseaddr version does not match thetxn version .
We discuss when version mismatch could occur and how SqlTables detect it in the follow-
ing.
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