
Topics in Approximation and Online
Algorithms

Guru Guruganesh

CMU-CS-18-121

August 26, 2018

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Anupam Gupta, Chair

R. Ravi
Bernhard Haeupler

Nikhil Bansal

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Guru Guruganesh

This research was sponsored by the National Science Foundation under grant numbers CCF-1319811 and CCF-
1536002.

The views and conclusions contained in this document are those of the author and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

To Mrs. Plachta.

iv

Abstract
Modern computer science is very interested in finding efficient solutions to opti-

mization problems. Many of these problems are NP-Hard and as a result, are unlikely
to be solved optimally in a reasonable amount of time. In this context, we need new
methods to devise meaningful solutions. Finding algorithms which guarantee an ap-
proximate solution to all instances has been a useful way to deal with this intractability.
In this thesis, we consider two settings that have received wide interest in the theoreti-
cal computer science community: Online and Offline.

Approximation Algorithms (Offline Setting) Since the early 90’s, there has been
a great deal of success in providing approximate solutions to optimization problem
when the entire input is present. In a wide variety of areas such as clustering, network
design, vehicle routing and classical graph optimization, the quest for approximation
algorithms developed new techniques. Approximation algorithms usually compute a
good upper or lower bound (sometimes implicitly) and compare their output locally
to these bounds. While this approach yields tight results for many problems, we pick
problems in three areas where it falls short: Independent Sets in Sparse Graphs, Aver-
sion K-clustering and Fractionally Sub-additive Network Design. For each of these
problems, we achieve the best approximation ratios by using a new analysis which
relies on understanding the global structure of the problem.

Online Algorithms Online algorithms have flourished as way to deal with deci-
sion making with incomplete information. While the worst-case analysis has been
very useful, it often leads to very pessimistic bounds. To deal with this issue, we go
beyond the worst-case setting and make conservative assumptions to relax the worst
case setting. In this context, we study three classical problems: Online Matroid In-
tersection, Online Dynamic Bin Packing with recourse, and Smooth Online Convex
Optimization. For each of the problem, we keep much of the worst-case competitive
ratio model but make natural relaxations to achieve results that are not possible (or
conjectured to be impossible) in the worst-case model.

vi

Acknowledgments
My first and foremost acknowledgment is to my advisor Anupam Gupta. For all his

patient advice, the endless hours he spent with me on matters technical and otherwise,
and for all the things I learned from him during my stay at CMU and continue to do
so, I will be forever grateful to Anupam. I am also grateful to my committee members
R. Ravi, Bernhard Haeupler and Nikhil Bansal. I have learnt a great deal about doing
research from watching and working with them.

Much of the work done in this thesis has been in collaboration with others. I
thank Nikhil Bansal, Anupam Gupta, Melanie Schmidt, R. Ravi, Jennifer Igleasias,
Laura Sanitá, Sahil Singla, David Wajc, and Amit Kumar for their insights and help
with these projects. My time here was made all the more wonderful thanks to the
stimulating theory group here. I will forever be grateful to the courses, theory lunches
and the reading group sessions that taught me so much. Much of this is made possible
by the wonderful staff at CMU and I owe a special thanks to Deb Cavlovich, Nancy
Conway and Jenn Landlefield for making my interactions with the bureaucracy so
frictionless.

I want to thank my friends who have been with me through the good times and bad:
Neil, Manzil, Anirudh, Saransh, Joy, Goran, Jakub, John, Frank, Matthew(s), Ray,
Serge and Nicholas. This thesis would not have been possible without the support and
dedication of my parents and the unending love of awwa(s), thatha and atha. Finally,
I want to thank Mrs. Plachta, for showing me that learning is joyful. This thesis is
dedicated to her memory.

viii

Contents

1 Introduction 1
1.1 Approximation Algorithms (Offline Setting) . 2

1.1.1 Independent Sets in Sparse Graphs . 3
1.1.2 Aversion K-clustering . 3
1.1.3 Fractionally Sub-additive Network Design 3

1.2 Online Algorithms (Going beyond worst case analysis) 4
1.2.1 Online Matroid Intersection . 4
1.2.2 Online Bin Packing . 5
1.2.3 Smooth Online Convex Optimization . 5

2 Finding Independent Sets in Degree-d Graphs 7
2.1 Introduction . 7
2.2 Related Works . 7
2.3 Our Results . 9
2.4 Preliminaries . 11
2.5 Integrality Gap of the Standard SDP . 13

2.5.1 An upper bound . 16
2.6 Lift-and-Project Algorithms . 17

2.6.1 Sherali-Adams+ based guarantees . 17
2.6.2 Sherali-Adams based guarantees . 19

2.7 Open Problems . 20

3 Local k-median 21
3.1 Introduction . 21
3.2 Related Works . 22
3.3 Our Results and Techniques . 22
3.4 Solving aversion k-clustering problem via the local k-median problem 23

3.4.1 Preliminaries . 23
3.4.2 Reductions . 24
3.4.3 Good fractional solutions for the local k-median problem 26
3.4.4 Rounding . 27
3.4.5 Improving the Approximation Factor . 31

3.5 Open Problems . 33

ix

4 Fractionally Sub-additive Network Design 35
4.1 Introduction . 35
4.2 Related works . 36
4.3 Our results . 37
4.4 3/2-approximation for the two color case . 37

4.4.1 Simplifying Assumptions. 38
4.4.2 Understanding the structure of OPT . 38
4.4.3 The Algorithm . 41

4.5 Hardness for two colors . 42
4.5.1 Completeness . 43
4.5.2 Soundness . 44

4.6 Latency SAND . 45
4.7 Open Problems . 47

5 Online Bin Packing with Recourse 49
5.1 Introduction . 49
5.2 Related Works . 50
5.3 Our Results . 50
5.4 Unit Movement Costs . 52

5.4.1 Impossibility results . 52
5.4.2 Matching Algorithmic Results . 53

5.5 General Movement Costs . 57
5.5.1 Matching the Lower Bounds for Online Algorithms 57
5.5.2 (Nearly) Matching the Upper Bounds for Online Algorithms 58

5.6 Size Movement Costs (Migration Factor) . 60
5.7 Open Problems . 61

6 Online Matroid Intersection 63
6.1 Introduction . 63
6.2 Related Work . 64
6.3 Our Results and Techniques . 65
6.4 Warmup: Online Bipartite Matching . 66

6.4.1 Definitions and Notation . 66
6.4.2 Beating Half . 67

6.5 Online Matroid Intersection . 71
6.5.1 Definitions and Notation . 71
6.5.2 Hastiness Property . 72
6.5.3 Beating Half for Online Matroid Intersection 73

6.6 Sampling Lemma . 76
6.6.1 Alternate View of the Sampling Lemma 76
6.6.2 Proof of the Sampling Lemma . 76
6.6.3 Proof of the Alternate View of Sampling Lemma 79
6.6.4 Proof that the Updates are valid . 80

x

6.7 Beating Half for General Graphs . 81
6.8 Open Problems . 82

7 Smoothed Online Convex Optimization 85
7.1 Introduction . 85
7.2 Related Work . 86
7.3 Our Results . 86
7.4 One Dimensional Case . 86
7.5 Higher Dimensions . 91

7.5.1 Alternate view of Work Function Algorithms 91
7.5.2 Fenchel Duals . 92
7.5.3 Slack . 93
7.5.4 Potential Functions . 94

A Independent Sets Appendix 97
A.1 Johansson’s Algorithm for Coloring Sparse Graphs 97
A.2 Miscellaneous Proofs . 97

A.2.1 Proof of Theorem 2.4.1 . 97
A.2.2 Proof of Theorem 2.6.4 . 98

A.3 The Average-degree Case . 99

B Online Matroid Intersection Appendix 101
B.1 Notation . 101
B.2 Miscellaneous Results . 101

B.2.1 GREEDY Beats Half on Almost Regular Graphs 101
B.2.2 GREEDY Cannot Always Beat Half for Bipartite Graphs 101
B.2.3 Limitations on any OBME Algorithm . 103
B.2.4 When Size of the Ground Set is Unknown 104

B.3 Facts . 105
B.4 Hastiness Lemma . 106

C Online Bin Packing Appendix 109
C.1 Omitted Proofs of Section 5.4 (Unit Movement Costs) 109

C.1.1 Proof of the Lower Bound . 112
C.1.2 Matching Algorithmic Results . 113

C.2 Omitted Proofs of Section 5.5 (General Movement Costs) 121
C.2.1 Matching the Lower Bounds for Online Algorithms 121
C.2.2 (Nearly) Matching the Upper Bounds for Online Algorithms 122

C.3 Omitted Proofs of Section 5.6 (Size Movement Costs) 132
C.3.1 Amortized Migration Factor Upper Bound 132
C.3.2 The Matching Lower Bound . 133

xi

xii

Chapter 1

Introduction

One of the central roles of computer science today is to solve optimization problems efficiently.
In a seminal paper, Edmonds [50] advocated that an algorithm is efficient if it runs in time that
is polynomial in the input length. This definition serves as a useful proxy for algorithms that
can be run in practice. One corollary of this definition is that brute-force solutions, which tend
to be exponential in the input length, are inefficient. Cook [42] formalized this by introducing
the complexity classes P and NP. Subsequently, Karp [103] showed that a large class of natural
problems are NP-Hard, and unlikely to have efficient algorithms.

Since Karp’s original discovery, it is now known that many interesting optimization problems
are NP-Hard. Assuming the widely held belief that P 6= NP, it is impossible for an algorithm to
run in polynomial time and provide optimal solutions to any instance. One way to circumvent this
barrier and provide meaningful solutions is to relax the requirement that the algorithm output an
optimal solution; instead, it can give an approximate solution. More formally, this thesis will deal
with the following optimization problem:
Definition 1.0.1 An optimization problem P is denoted by a feasible set S ⊆ Rd and a func-
tion f : S → R≥0. We say that P is a minimization problem if the algorithm is tasked to find
argminx∈Sf(x) and P is a maximization problem if the algorithm is tasked to find argminx∈Sf(x).

We use the following definition of an approximation algorithm, first given in [139].
Definition 1.0.2 An α-approximation algorithm for an optimization problem P = (S, f)is a
polynomial- time algorithm that for all instances of the problem produces a solution x ∈ S whose
value is within a factor of α of the value of an optimal solution i.e. f(x) ≥ α ·maxy∈S f(y).
This framework captures a wide variety of problems including many problems in discrete mathe-
matics including matching, clustering, network design, as well as some problems in a continuous
setting such as minimizing a convex function.

Offline Algorithms: In the context of approximation algorithms, we assume that the input
data is given in full and the function f is usually easy to compute given the input. For example,
consider the problem of finding the maximum cut in a graph G. The input is the graph G = (V,E)
given as a set of vertices V and edges E. The feasible set S ∈ {0, 1}n corresponds to the set
of indicator vectors for the cuts in G. Clearly, given a point x ∈ RV , it is easy to check if it
corresponds to a cut and the function f would simply be the count the number of edges in the cut.

1

For a maximization (resp. minimization) problem, in order to find good approximation algorithms,
one needs to come up with good upper-bounds (resp. lower-bounds) for the optimum. A common
paradigm to compute such parameters is to use convex programming to solve a relaxed version of
the problem. Subsequently, we generate a feasible solution x ∈ S and compare it with the convex
programming solution. This yields provable guarantees on the approximation algorithm.

Online Algorithms: The assumption that the algorithm always has all of the input before it, is
not pragmatic. For example, consider the problem of keeping pages in memory. In this problem,
when a page is requested, the algorithm must decide immediately and irrevocably which pages to
keep in cache. If the requested page is in the cache, then the algorithm pays nothing but if it is not,
then it must pay a cost to put this page into the cache. The algorithm does not know the request
sequence in advance and must make a decision online as the requests. Furthermore, it is not even
clear what the optimal solution in this context means. A beautiful idea introduced by Sleator and
Tarjan [134], is competitive analysis: at each time step, the algorithms cost is compared with the
worst case cost of the optimal solution assuming all the requests arrived at once. It is surprising that
one can compete against an adversary who has more information and no computational constraints,
yet for many algorithms competitive analysis has proved to be very effective.

In this thesis, we tackle problems in both online and offline approximation algorithms.

1.1 Approximation Algorithms (Offline Setting)

Since the 90’s many optimization problems have been addressed through approximation algo-
rithms. Much of the analysis has been local in nature. Usually, the intended solution is dervied by
making small adjustments to the upper-bound (which is often extracted from a convex program)
and the analysis compares the intended solution with the upper-bound locally. For the Max-Cut
problem, the celebrated result of Goemans and Williamson [69] uses a semidefinite program to
generate vectors for each vertex. Then, via a simple hyperplane rounding technique, valid cuts for
the graph are generated. To analyze the cost of the cut, the analysis compares the probability of
any edge getting cut with the SDP objective generated by the vectors. This analysis is done edge
by edge, and is an example of a local analysis. Many techniques which have been developed such
as randomized rounding, iterative rounding, primal dual methods, region growing algorithms are
all examples of local analysis.

The use of local analysis has been very successful because it is simple and provides tight
approximations (assuming P 6= NP). However, there are several important problems for which
this analysis falls short. In this thesis, we will look at three such problems and show that we can
make progress with a more global analysis. Although these problems span different subdomains
they are unified in the property that despite the belief that standard convex relaxations are good
upper-bounds (lower-bounds), the best approximation algorithm were substantially worse. The
standard techniques to round fail to produce good results as they are local in nature. We will show
that a more global approach yields better approximation algorithms.

2

1.1.1 Independent Sets in Sparse Graphs
In chapter 2, we study the problem of finding independent sets in d-regular graphs using semi-
definite programming. This is a fundamental problem in graph theory and finding good algorithms
for independent sets has long been a benchmark for new techniques.

The main problem that we address in this chapter is the following:
Problem 1.1.1 Given a graph G that has maximum degree d, what is the best approximation to
the maximum independent set α(G) that can be achieved in polynomial time?

There is hardness of d/ log(d)2 assuming the Unique Games Conjecture. On the other hand,
there is a d/ log(d)-approximation algorithm using semi-definite programming. Closing this gap
remained an intriguing open question. Our main result answers this question and shows that we
can close this gap. We do this by showing that the average size of an independent set is large
when the solutions generated by the certain semidefinite programs are large. We give a detailed
introduction to the problem in section 2.1.

1.1.2 Aversion K-clustering
Clustering is a natural problem that arises in many contexts. We consider the following problem
that arises in the context of computing approximate Nash equilibrium in extensive-formulation
games. In this chapter, we consider the following clustering problem: given a metric space (X,D)
with a set of clients, and a parameter k, the goal is to group the clients into k clusters. For each
client j, the cost incurred by j is its distance to the furthest client in its cluster. The cost of the
clustering is the sum over all clients, of the cost incurred by the client. Formally,
Problem 1.1.2 Given a metric space on a set of clients C, and an integer k, find a partition of
C = ∪ki=1Ci so as to minimize

∑k
i=1

∑
j∈Ci maxj̃∈Ci d(j, j̃).

Although it is related in spirit to several other clustering problems, it has some interesting and
unique features. Indeed, something that makes this problem difficult is its high “sensitivity” to
local perturbations. To overcome this, barrier we use a global partitioning scheme, coupled with
the primal-dual algorithm. We give a detailed introduction in section 3.1.

1.1.3 Fractionally Sub-additive Network Design
We study fractionally sub-additive network design, a generalization of existing problems in net-
work design in chapter 4, that we call the Single-sink fractionally-subadditive network design
problem. In an instance, we are given an undirected graph G = (V,E) with edge costs we ≥ 0
for all e ∈ E, a root node r ∈ V , and k colors represented as vertex subsets Ci ⊆ V \ {r} for all
i ∈ [k], that wish to send flow to r. A feasible solution is an integer capacity installation on the
edges of G, such that for every i ∈ [k], each node in Ci can simultaneously send one unit of flow to
r. Thus, the total flow sent by color i nodes is is |Ci| while the flows sent from nodes of different
colors are instead non-simultaneous and can share capacity. An optimal solution is a feasible one
that minimizes the total cost of the installation. Formally,
Problem 1.1.3 Given an undirected graphG = (V,E) with edge costswe ≥ 0, a root node r ∈ V ,
and k colors represented as vertex subsets Ci ⊆ V \ {r} for all i ∈ [k], that wish to send flow

3

to r. Find the minimum weight set of edges that we must install to ensure that each color Ci can
simultaneously send one unit of flow to r.

This problem has a standard linear programming relaxation where the demand functions are
fractionally sub-additive. However, the best known integrality gap is 2. Due to the complex nature
of the demand function traditional techniques such as region growing or even global ones such
as iterative rounding fail. We show that we can beat the trivial bound that one achieves by the
greedy algorithm for the special case when there are two sets of terminals. This requires a non-
local algorithm where the solution is computed by building a global matching. We give a detailed
introduction in section 4.1.

1.2 Online Algorithms (Going beyond worst case analysis)

The second part of this thesis deals with online algorithms. Unlike approximation algorithms where
we have a complete information, we will have to deal with the inherent loss in not knowing the full
information. The standard notion of competitive analysis where one compares to the worst case
instance designed by an adversary who is aware of the algorithm. While this has been successful
for a certain class of problems, it can be quite pessimistic and produce algorithms that are very
complicated. In this regard, it is natural to consider alternative notions where we consider analysis
that does not look at the worst case but rather some notion of average case. However, we want to
preserve the advantages that come from a worst-case guarantee. In this thesis, we are conservative
in the changes to the worst case model that we consider. For each of the problems in consideration,
we make the minimal changes to the model to enable us to provide results that are better than a
worst case analysis.

1.2.1 Online Matroid Intersection

Online bipartite matching is a fundamental problem that was introduced in the “vertex arrival”
model by Karp, Vazirani, and Vazirani [104]. Despite tremendous progress made in the online
vertex arrival model, nothing non-trivial was known in the “edge arrival” model where the edges
arrive one-by-one. In fact, we consider the more general online matroid intersection problem.
The ground elements E of two matroids are presented one-by-one in random order to an online
algorithm whose goal is to construct a large common independent set. As the elements arrive, the
algorithm must immediately and irrevocably decide whether to pick them, while ensuring that the
picked set of elements always form a common independent set. We assume that the algorithm
knows the size of E and has access to independence oracles for the already arrived elements. The
natural greedy algorithm achieves a competitive ratio of half and it is believed to be tight.

To achieve better results, we relax the model. Instead of considering the model where the
matroids and the arrival order is chosen adversarially, we consider the model where the matroids
are chosen adversarially but the arrival order is uniformly random. We present the first algorithms
that do better than half-competitiveness in this random arrival model. We give a more detailed
introduction, along with connections to other problems and works in section 6.1

4

1.2.2 Online Bin Packing
In chapter 5, we explore a new twist on the classical problem of online bin packing where the
algorithm can repack some of the items at some expense.

An instance I of the bin-packing problem consists of a list of n items of sizes s1, s2, . . . , sn ∈
[0, 1]. The objective of a bin packing algorithm is to pack the items of I into a small number
of unit-sized bins. Let OPT (I) be the minimum number of unit-sized bins needed to pack all
these items. In the online version of the problem, items arrive over time and are immediately and
irrevocably packed into bins. In the online setting there is at least a 1.5403-multiplicative gap
between the algorithm and OPT in the worst case, even as OPT →∞.

Once again, these bounds are quite pessimistic and given the wide applicability of the online
problem, researchers have considered the problem where a “small” number of repackings is al-
lowed. I.e., how well can we perform if we allow items to be moved between bins when new items
arrive and old ones depart? Clearly, some repacking is necessary; to make this question non-trivial,
we demand bounded “recourse”, i.e., items should be moved sparingly. Formally, a fully-dynamic
BIN PACKING algorithm maintains at every time t, a feasible solution to the BIN PACKING instance
It given by items inserted and not yet deleted until time t. Every item i has a size si ∈ [0, 1], and
a movement cost ci which the algorithm pays every time item i is moved between bins.

In chapter 5, we consider several recourse models and find the optimal trade-off between the
a.c.r. and the worst case recourse. A more detailed introduction can be found in section 5.1.

1.2.3 Smooth Online Convex Optimization
The metrical tasks systems framework introduced by Borodin et al. [28] which captures many
online problems such as k-server problem and k-paging problem. In the metrical task system, one
is given a finite metric space and a sequence of cost functions. A server can move to any location
and pay the cost of the function at that location along with the distance moved. Borodin et al.
[28] showed a tight competitive ratio of n where n is the number of points in the metric space. Of
course, this is quite pessimistic and this bound could be quite large when the metric space is large
but has a lot of structure.

In chapter 7, we study smooth online convex optimization which is a special case of the metrical
tasks systems problem. In smooth online convex optimization, the metric space is Rd where d is
small and the cost functions fi are convex functions. This problem was introduced by Friedman
and Linial [64] who considered the special case where fi are indicators of half-planes and showed
that it was sufficient to consider this case. Their explicit goal was to understand the competitive
ratio as a function of intrinsic geometric properties of the metric.

In this chapter, we explicitly consider the work-function algorithm for this problem. This al-
gorithm is (or conjectured to be) optimal for various problems including the general metrical task
systems problem. Its’ behaviour is inherently global as at each step it makes a decision based the
global optimum. We analyze various properties of the work function algorithm for the smooth on-
line convex optimization and show that it is competitive when d = 1. A more detailed introduction
can be found in section 7.1.

5

6

Chapter 2

Finding Independent Sets in Degree-d
Graphs

2.1 Introduction
Given a graph G = (V,E), an independent set is a subset of vertices S such that no two vertices in
S are adjacent. The maximum independent set problem is one of the most well-studied problems
in algorithms and graph theory, and its study has led to various remarkable developments such as
the seminal result of Lovász [118] in which he introduced the ϑ-function based on semidefinite
programming, as well as several surprising results in Ramsey theory and extremal combinatorics.

The main problem that we address in this chapter is the following:
Problem 2.1.1 Given a graph G that has maximum degree d, what is the best approximation to
the maximum independent set α(G) that can be achieved in polynomial time?

2.2 Related Works
In general graphs, the problem is notoriously hard to approximate. Given a graph on n vertices, the
best known algorithm is due to Feige [58], and achieves an approximation ratio of Õ(n/ log3 n);
here Õ(·) suppresses some log log n factors. On the hardness side, a result of Håstad [82] shows
that no n1−ε approximation exists for any constant ε > 0, assuming NP 6⊆ ZPP. The hardness
has been improved more recently to n/ exp((log n)3/4+ε) by Khot and Ponnuswami [105]. In this
chapter, we focus on the case of bounded-degree graphs, with maximum degree d.

Recall that the naı̈ve algorithm (that repeatedly picks an arbitrary vertex v and deletes its
neighborhood) produces an independent set of size at least n/(d + 1), and hence is a (d + 1)-
approximation. The first o(d)-approximation was obtained by Halldórsson and Radhakrishnan
[80], who gave a O(d/ log log d) guarantee, based on a Ramsey theoretic result of Ajtai et al. [3].
Subsequently, an O(d log log d

log d
)-approximation was obtained independently by several researchers

(see Alon and Kahale [5], Halldórsson [79], Halperin [81]) using the ideas of Karger, Motwani,
and Sudan [100] to round the natural SDP for the problem, which was itself based on the Lovász
ϑ-function.

7

On the negative side, Austrin et al. [13] showed an Ω(d/ log2 d) hardness of approximation,
assuming the Unique Games Conjecture. Assuming P 6= NP, a hardness of d/ log4 d was recently
shown by Chan [32]. We remark that these hardness results only seem to hold when d is a constant
or a very mildly increasing function of n. In fact, for d = Ω(n), the Ω(d/ log2 d) hardness of Aus-
trin et al. [13] is inconsistent with the known O(n/ log3 n) approximation of Feige [58]. Hence
throughout this paper, it will be

convenient to view d as being a sufficiently large but fixed constant.
Vishwanathan observed (see [78] for more details) that an O(d log log d/ log d) approximation

follows from the results of Alon and Kahale [5]. This is the currently best known guarantee.
Later, a simpler and direct O(d log log d/ log d) was obtained independently by Halperin [81]
and Halldórsson [79].

Lower Bounds on the Independence Number. As SDPs can handle cliques, looking at ϑ(G)
naturally leads to Ramsey theoretic considerations. In particular, if ϑ(G) is small then the trivial
n/(d + 1) solution already gives a good approximation. Otherwise, if ϑ(G) is large, then this
essentially means that there are no large cliques and one must argue that a large independent set
exists (and can be found efficiently).

For bounded degree graphs, a well-known result of this type is that α(G) = Ω(n log d
d

) for
triangle-free graphs [2, 132] (i.e. if there are no cliques of size 3). A particularly elegant proof
(based on an idea due to Shearer [133]) is in [6]. Moreover this bound is tight, and simple proba-
bilistic constructions show that this bound cannot be improved even for graphs with large girth.

For the case of Kr-free graphs with r ≥ 4, the situation is less clear. Ajtai et al. [3] showed that
Kr-free graphs have α(G) = Ω(n(log(log d/r))/d), which implies that α(G) = Ω(n log log d/d)
for r � log d. This result was the basis of theO(d/ log log d) approximation due to [80]. Shearer [133]
improved this result substantially and showed that

α(G) = Ω

(
1

r

n

d

log d

log log d

)
forKr-free graphs. This result is based on an elegant entropy based approach that has subsequently
found many applications. However, it is not known how to make this method algorithmic. This
bound still seems far from optimum. In particular, it is possible that the dependence on r could be
log r. Note that the above bound is trivial when r ≥ log d

log log d
. For constant r, in particular r = 4, it

is also an important open question whether the log log d factor above can be removed.
Interestingly, Shearer’s bound also implies another (non-algorithmic) proof that the SDP has

integrality gap O
(

(d log log d)/ log d
)

. To see this, suppose the SDP objective is n/r. This essen-
tially implies that the graph isKr-free as roughly each vertex contributes about xi = 1/r (formally,
one can delete the vertices with xi ≤ 1/(2r) and consider the residual graph). Then the integrality
gap is (n/r)/α(G) which by Shearer’s bounds is at least (d log log d)/ log d. It is interesting to
note that both Halperin’s approach and Shearer’s bound seem to get stuck at the same point.

Alon [4] generalized the triangle-free result in a different direction, also using the entropy
method. He considered locally k-colorable graphs, where the neighborhood of every vertex is
k-colorable and showed that α(G) = Ω

(
n
d

log d
log k+1

)
. Note that triangle-free graphs are locally 1-

8

colorable. This result also holds under weaker conditions, and plays a key role in bounding the
integrality gap of SA+ relaxations.

Bounds on the chromatic number. Many of the above results also generalize to the much more
demanding setting of list coloring. All of them are based on the “nibble” method, but require
increasingly sophisticated ideas. In particular these results give a bound of Ω̃r(d/ log d) on the
list chromatic number of Kr-free or locally r-colorable graphs. The intuition for why O(d/ log d)
arises can be seen via a coupon-collector argument: if each vertex in the neighborhood N(v)
chooses a color from s colors independently and u.a.r., they will use up all s colors unless d ≤
O(s log s), or s ≥ Ω(d/ log d). (Of course, the colors at the neighbors are not chosen uniformly
or independently, which substantially complicates the arguments.) Kim showed that χ`(G) =
O(d/ log d) for graphs with girth at least 5 [106]. His idea was that for any v, and u,w ∈ N(v),
N(u)∩N(w) = {v} because of the girth, and hence the available colors at u,w evolve essentially
independently, and hence conform to the intuition.

These ideas fail for triangle-free graphs (of girth 4): we could have a vertex v, with u,w ∈
N(v), and N(u) = N(w) (i.e., all their neighbors are common). In this case the lists of available
colors at u and w are far from independent: they would be completely identical. Johansson [97]
had the crucial insight that this positive correlation is not a problem, since there is no edge between
u and w (because of triangle-freeness!). His clever proof introduced the crucial notions of entropy
and energy to capture and control the positive correlation along edges in such K3-free graphs.

If there are triangles, say if the graphs are only locally k-colorable, then using these ideas
naı̈vely fails. Another key idea, also introduced by Johansson [96], is to actually modify the
standard nibble process by introducing a probability reshuffling step at each vertex depending on
its local graph structure, which makes it more complicated. In [19], we give his result for locally-
colorable and for Kr-free graphs in its entirety.

2.3 Our Results
The gap between the Ω(d/ log2 d)-hardness and the Õ(d/ log d)-approximation arises for the fol-
lowing fundamental reason. Approaches based on the SDP work extremely well if the ϑ-function
has value more than Õ(n/ log d), but not below this threshold. In order to to show an Ω(d/ log d)-
hardness result, at the very least, one needs an instance with SDP value around n/ log d, but op-
timum integral value about n/d. While graphs with the latter property clearly exist (e.g., a graph
consisting of n/(d+ 1) disjoint cliques Kd+1), the SDP value for such graphs seems to be low. In
particular, having a large SDP value imposes various constraints on the graph (for example, they
cannot contain many large cliques) which might allow the optimum to be non-trivially larger than
n/d, for example due to Ramsey-theoretic reasons.

Our results resolve some of these questions. Our first result considers the integrality gap of
the standard SDP relaxation for independent set (without applying any lift-and-project steps). We
show that it is more powerful than the guarantee given by Alon and Kahale [5] and Halperin [81].

Theorem 2.3.1 On graphs with maximum degree d, the standard ϑ-function-based SDP formula-
tion for the independent set problem has an integrality gap of Õ(d/ log3/2 d).

9

The proof of Theorem 2.3.1 is non-constructive; while it shows that the SDP value is within
the claimed factor of the optimal independent set size, it does not give an efficient algorithm to find
such an approximate solution. Finding such an algorithm remains an open question.

The main technical ingredient behind Theorem 2.3.1 is the following new Ramsey-type result
about the existence of large independent sets in Kr-free graphs. This builds on a long line of
previous results in Ramsey theory (some of which we discuss in Section 2.4), and is of independent
interest. (Recall that α(G) is the maximum independent set size in G.)

Theorem 2.3.2 For any r > 0, if G is a Kr-free graph with maximum degree d then

α(G) = Ω

(
n

d
·max

(
log d

r log log d
,

(
log d

log r

)1/2
))

. (2.1)

Previously, the best known bound forKr-free graphs was Ω(n
d

log d
r log log d

) given by Shearer [133].
Observe the dependence on r: when r ≥ log d

log log d
, i.e., when we are only guaranteed to exclude

very large cliques, Shearer’s result does not give anything better than the trivial n/d bound. It
is in this range of r ≥ log d that the second term in the maximization in (2.1) starts to perform
better and give a non-trivial improvement. In particular, if G does not contain cliques of size
r = O(log3/2 d) (which will be the interesting case for Theorem 2.3.1), Theorem 2.3.2 gives a
bound of Ω̃(n

d
(log d)1/2). Even for substantially larger values such as r = exp(log1−2ε d), this

gives a non-trivial bound of Õ(n
d

logε d).
Improving on Shearer’s bound has been a long-standing open problem in the area, and it is

conceivable that the right answer for Kr-free graphs of maximum degree d is α(G) ≥ n
d

log d
log r

. This
would be best possible, as we give a simple construction showing an upper bound of α(G) =
O(n

d
log d
log r

) for r ≥ log d, which to the best of our knowledge is the smallest upper bound currently
known. The gap between our lower bound and this upper bound remains an intriguing one to
close; in fact it follows from our proof of Theorem 2.3.1 that such a lower bound would imply
an Õ(d/ log2 d) integrality gap for the standard SDP. Alon [4] shows that this bound is achievable
under the stronger condition that the neighborhood of each vertex is (r − 1)-colorable.

Our proof of theorem 2.3.2 is non-algorithmic and does not give a Õ(d/ log3/2 d) approxima-
tion algorithm. The next set of results consider using lift-and-project techniques to address the
approximability of the problem. We consider the standard LP formulation for the independent set
problem strengthened by ` levels of the Sherali-Adams hierarchy, together with semidefinite con-
straints at the first level. We will refer to this as ` levels of the mixed hierarchy (this is also referred
to as the SA+ hierarchy) and denote this relaxation by SA+

(`). Our first result is the following.

Theorem 2.3.3 The value of the O(log4 d)-level SA+ semidefinite relaxation has an integrality
gap of O(d(log log d)2/ log2 d).

The main observation behind this result is that as the SA+ relaxation specifies a local distri-
bution on independent sets, and if the relaxation has high objective value then it must be that any
polylog(d) size subset of vertices X must contain a large independent subset. We can then use a
result of Alon [4], in turn based on the above-mentioned result of Shearer [133], to show that such
graphs have non-trivially large independents sets.

10

Unfortunately, Alon’s argument is non-algorithmic; it shows that the lifted SDP has a small
integrality gap, but does not give a corresponding approximation algorithm with running time sub-
exponential in n. Our next result makes this integrality gap result algorithmic, although at the
expense of more levels and a higher running time.
Theorem 2.3.4 There is an Õ(d/ log2 d)-approximation algorithm with running time1 poly(n) ·
2O(d), based on rounding a d-level SA+ semidefinite relaxation.

The improvement is simple, and is based on bringing the right tool to bear on the problem:
instead of using the non-constructive argument of Alon [4], we use an ingenious and remarkable
(and stronger) result of Johansson [96], who shows that the list-chromatic number of such locally-
colorable graphs is χ`(G) = O(d log k

log d
). His result is based on a very clever application of the Rödl

“nibble” method, together with Lovász Local Lemma to tightly control the various parameters of
the process at every vertex in the graph. Applying Johansson’s result to our problem gives us the
desired algorithm.

Finally, the proof of Theorem 2.3.4 also implies the following new results about the LP-based
Sherali-Adams (SA) hierarchies, without any SDP constraints.
Corollary 2.3.5 The LP relaxation with clique constraints on sets of size up to log d (and hence
the relaxation SA(log d)) has an integrality gap of Õ(d/ log d). Moreover, the relaxation SA(d) can
be used to find an independent set achieving an Õ(d/ log d) approximation in time poly(n) · 2O(d).

Since LP-based relaxations have traditionally been found to be very weak for the independent
set problem, it may be somewhat surprising that a few rounds of the SA-hierarchy improves the
integrality gap by a non-trivial amount.

Theorem 2.3.2, our Ramsey-theoretic result, extends to the case when d is the average degree
of the graph by first deleting the (at most n/2) vertices with degree more than 2d and then applying
the results. We also show that weaker versions of our SDP-based approximation results hold when
d is replaced by the average degree instead of the maximum degree. Moreover, we show that the
loss in approximation ratio when going from max-degree to average degree is inherent.

2.4 Preliminaries
Given the input graph G = (V,E), we will denote the vertex set V by [n] = {1, . . . , n}. Let α(G)
denote the size of a maximum independent set in G, and d denote the maximum degree in G. The
naı̈ve greedy algorithm implies α(G) ≥ n/(d + 1) for every G. As the greedy guarantee is tight
in general (e.g., if the graph is a disjoint union of n/(d + 1) copies of the clique Kd+1), the trivial
upper bound of α(G) ≤ n cannot give an approximation better than d+1 and hence stronger upper
bounds are needed. A natural bound is the clique-cover number χ(G), defined as the minimum
number of vertex-disjoint cliques needed to cover V . As any independent set can contain at most
one vertex from any clique, α(G) ≤ χ(G).

Standard LP/ SDP Relaxations. In the standard LP relaxation for the independent set problem,
there is variable xi for each vertex i that is intended to be 1 if i lies in the independent set and 0

1While a d-level SA+ relaxation has size nO(d) in general, our relaxation only uses variables corresponding to
subsets of vertices that lie in the neighborhood of some vertex v, and thus has n · 2O(d) variables.

11

otherwise. The LP is the following:

max
∑
i

xi, s.t. xi + xj ≤ 1 ∀(i, j) ∈ E, and xi ∈ [0, 1] ∀i ∈ [n]. (2.2)

Observe that this linear program is very weak, and cannot give an approximation better than
(d + 1)/2: even if the graph consists of n/(d + 1) copies of Kd+1, the solution xi = 1/2 for each
i is a feasible one.

In the standard SDP relaxation, there is a special unit vector v0 (intended to indicate 1) and a
vector vi for each vertex i. The vector vi is intended to be v0 if i lies in the independent set and be
0 otherwise. This gives the following relaxation:

max
∑
i

vi · v0, s.t. v0 · v0 = 1, v0 · vi = vi · vi ∀i ∈ [n], and vi · vj = 0 ∀(i, j) ∈ E.

(2.3)
Let X denote the (n+1)× (n+1) Gram matrix with entries xij = vi ·vj , for i, j ∈ {0, . . . , n}.

Then we have the equivalent relaxation

max
∑
i

x0i, s.t. x00 = 1, x0i = xii ∀i ∈ [n], xij = 0 ∀(i, j) ∈ E and X � 0.

(2.4)
The above SDP, which is equivalent to the well-known ϑ-function of Lovász (see, e.g., [113,

Lemma 3.4.4]), satisfies α(G) ≤ ϑ(G) ≤ χ(G). TheO(d log log d
log d

) approximations due to [5, 79, 81]
are all based on this SDP. Indeed, we use the following important result due to Halperin [81] about
the performance of the SDP.
Theorem 2.4.1 (Halperin [81], Lemma 5.2) Let η ∈ [0, 1

2
] be a parameter and let Z be the col-

lection of vectors vi satisfying ‖vi‖2 ≥ η in the SDP solution. Then there is an algorithm that
returns an independent set of size Ω

(
d2η

d
√

ln d
|Z|
)

.

(The statement above differs slightly from the one in [81] since Halperin works with a {−1, 1}
formulation; a proof of its equivalence appears in Appendix A.2). Note that if η = c log log d/ log d,
then for c ≤ 1/4 Theorem 2.4.1 does not return any non-trivial independent set. On the other hand,
for c ≥ 1/4 the size of the independent set returned rises exponentially fast with c.

For more details on SDPs, and the Lovász ϑ-function, we refer the reader to [67, 75].
Lift-and-project Hierarchies. An excellent introduction to hierarchies and their algorithmic uses
can be found in [38, 112]. Here, we only describe the most basic facts needed for this paper.

The Sherali-Adams (SA) hierarchy defines a hierarchy of linear programs with increasingly
tighter relaxations. At level t, there is a variable YS for each subset S ⊆ [n] with |S| ≤ t + 1.
Intuitively, one views XS as the probability that all the variables in S are set to 1. Such a solution
can be viewed as specifying a local distribution over valid {0, 1}-solutions for each set S of size at
most t + 1. A formal description of the t-round Sherali-Adams LP SA(t) for the independent set
problem can be found in [38, Lemma 1].

More formally, for the independent set problem we have the following theorem from [38].
Theorem 2.4.2 ([38], Lemma 1) Consider a family of distributions {D(S)}S⊆[n]:|S|≤t+2, where
each D(S) is defined over {0, 1}S . If the distributions satisfy

12

1. For all (i, j) ∈ E and S ⊇ {i, j}, it holds that PrD(S)[(xi = 1) ∩ (xj = 1)] = 0, and
2. For all S ′ ⊆ S ⊂ [n] with |S| ≤ t+ 1, the distribution D(S ′),D(S) agree on S ′.

Then XS = PD(S)[∧i∈S(xi = 1)] is a feasible solution for the level-t Sherali Adams relaxation.
Conversely, for any feasible solution {X ′S} for the level-(t+1) Sherali-Adams relaxation, there

exists a family of distributions satisfying the above properties, as well as XS′ = PD(S)[∧i∈S′(xi =
1)] = X ′S′ for all S ′ ⊆ S ⊂ [n] such that |S| ≤ t+ 1.

Here, Condition 1 implies that for a subset of vertices S with |S| ≤ t+ 1, the local-distribution
D(S) has support on the valid independent sets in the graph induced on S, and Condition 2 guar-
antees that different local distributions induce a consistent distribution on the common elements.

For our purposes, we will also impose the PSD constraint on the variables xij at the first level
(i.e., we add the constraints in (2.4) on xij variables). We will call this the t-level SA+ formulation
and denote it by SA+

(t). Such a solution specifies values xS for multi-sets S with |S| ≤ ` + 1.
To keep the notation consistent with the LP (2.2), we will use xi to denote the marginals xii on
singleton vertices.

2.5 Integrality Gap of the Standard SDP
In this section, we show Theorem 2.3.1, that the integrality gap of the standard Lovász ϑ-function
based SDP relaxation is

O
(
d
(

log log d
log d

)3/2)
= Õ

(
d/ log3/2 d

)
.

To show this we prove the following result (which is Theorem 2.3.2, restated):
Theorem 2.5.1 Let G be a Kr-free graph with maximum degree d. Then

α(G) = Ω

(
n

d
max

(
log d

r log log d
,

(
log d

log r

)1/2
))

.

In particular, for r = logc d with c ≥ 1, we get α(G) = Ω
(
n
d

(
log d

c log log d

)1/2)
.

We need the following basic facts. The first follows from a simple counting argument (see [4,
Lemma 2.2] for a proof).
Lemma 2.5.2 Let F be a family of 2εx distinct subsets of an x-element set X . Then the average
size of a member of F is at least εx/(10 log(1 + 1/ε)).
Fact 2.5.3 Let G be a Kr-free graph on x vertices, then

α(G) ≥ max

(
x1/r

2
,

log x

log(2r)

)
.

Note that the latter bound is stronger when r is large, i.e., roughly when r ≥ log x/ log log x.
Proof: Let R(s, t) denote the off-diagonal (s, t)-Ramsey number, defined as the smallest number
n such that any graph on n vertices contains either an independent set of size s or a clique of size t.

It is well known that R(s, t) ≤
(
s+t−2
s−1

)
[54]. Approximating the binomial gives us the bounds

R(s, t) ≤ (2s)t and R(s, t) ≤ (2t)s; the former is useful for t ≤ s and the latter for s ≤ t. If

13

we set R(s, t) = x and t = r, the first bound gives s ≥ (1/2)x1/r and the second bound gives
s ≥ log x/ log(2r). �

We will be interested in lower bounding the number of independent sets I in a Kr-free graph.
Clearly, I ≥ 2α(G) (consider every subset of a maximum independent set). However the following
improved estimate will play a key role in Theorem 2.5.1. Roughly speaking it says that if α(G) is
small, in particular of size logarithmic in x, then the independent sets are spread all over G, and
hence their number is close to xΩ(α(G)).

Theorem 2.5.4 Let G be a Kr-free graph on x vertices, and let I denote the number of indepen-
dent sets in G. Then we have

log I ≥ max

(
x1/r

2
,

log2 x

6 log 2r

)
.

Proof: The first bound follows trivially from Fact 2.5.3, and hence we focus on the second bound.
Also, assume r ≥ 3 and x ≥ 64 else the second bound is trivial.

Define s := log x/ log(2r). Let G′ be the graph obtained by sampling each vertex of G inde-
pendently with probability p := 2/x1/2. The expected number of vertices in G′ is px = 2x1/2.
Let G denote the good event that G′ has at least x1/2 vertices. Clearly, Pr[G] ≥ 1/2 (in fact it is
exponentially close to 1). Since the graph G′ is also Kr-free, conditioned on the event G, by Fact
2.5.3 it has an independent set of size at least log(x1/2)/ log(2r) = s/2. Thus the expected number
of independent sets of size s/2 in G′ is at least 1/2.

Now consider some independent set Y of size s/2 in G. The probability that Y survives in G′

is exactly ps/2. As the expected number of independent sets of size s/2 in G′ is at least 1/2, it
follows that G must contain at least (1/2)(1/ps/2) independent sets of s/2. This gives us that

log I ≥ s

2
log

(
1

p

)
− 1 ≥ s

2
log x1/2 − s

2
− 1 ≥ s

6
log x,

where the last inequality assumes that x is large enough. �
We are now ready to prove Theorem 2.5.1.

Proof: We can assume that d ≥ 16, else the claim is trivial. Our arguments follow the probabilistic
approach of [4, 133]. Let W be a random independent set of vertices in G, chosen uniformly
among all independent sets in G. For each vertex v, let Xv be a random variable defined as
Xv = d|{v} ∩W |+ |N(v) ∩W |.

Observe that |W | can be written as
∑

v |v∩W |; moreover, it satisfies |W | ≥ (1/d)
∑

v |N(v)∩
W |, since a vertex in W can be in at most d sets N(v). Hence we have that

|W | ≥ 1

2d

∑
v

Xv.

Let γ = max
(

log d
r log log d

,
(

log d
log r

)1/2) denote the improvement factor in Theorem 2.5.1 over the trivial
bound of n/d. Thus to show that α(G) is large, it suffices to show that

E[Xv] ≥ cγ (2.5)

14

for each vertex v and some fixed constant c.
In fact, we show that (2.5) holds for every conditioning of the choice of the independent set in

V − (N(v) ∪ {v}). In particular, let H denote the subgraph of G induced on V − (N(v) ∪ {v}).
For each possible independent set S in H , we will show that

E[Xv | W ∩ V (H) = S] ≥ cγ.

Fix a choice of S. Let X denote the non-neighbors of S in N(v), and let x = |X|. Let ε be such
that 2εx denotes the number of independent sets in the induced subgraph G[X]. Now, conditioning
on the intersection W ∩ V (H) = S, there are precisely 2εx + 1 possibilities for W: one in which
W = S ∪ {v}, and 2εx possibilities in which v /∈ W and W is the union of S with an independent
set in G[X].

By Lemma 2.5.2, the average size of an independent set in X is at least εx
10 log(1/ε+1)

and thus
we have that

E[Xv | W ∩ V (H) = S] ≥ d
1

2εx + 1
+

εx

10 log(1/ε+ 1)

2εx

2εx + 1
(2.6)

Now, if 2εx + 1 ≤
√
d, then the first term is at least

√
d, and we’ve shown (2.5) with room to spare.

So we can assume that εx ≥ (1/2) log d. Moreover, by Theorem 2.5.4,

εx ≥ max

(
x1/r

2
,

log2 x

6 log(2r)

)
and hence the right hand side in (2.6) is at least

1

20 log(1/ε+ 1)
max

(
log d

2
,
x1/r

2
,

log2 x

6 log 2r

)
≥ 1

20 log(x+ 1)
max

(
log d

2
,
x1/r

2
,

log2 x

6 log 2r

)
, (2.7)

where the inequality uses ε ≥ 1/x (since εx ≥ (1/2) log d ≥ 1).
First, let’s consider the first two expressions in (2.7). If x ≥ logr d, then as x1/r/ log(x + 1) is

increasing in x, it follows that the right hand side of (2.7) is at least

x1/r

40 log(x+ 1)
= Ω

(
log d

r log log d

)
.

On the other hand if x ≤ logr d, then we have that the right hand side is again at least

1

20 log(x+ 1)

log d

2
= Ω

(
log d

r log log d

)
.

Now, consider the first and third expressions in (2.7). Using the fact that max(a, b) ≥
√
ab with

a = (log d)/2 and b = (log2 x)/(6 log 2r), we get that (2.7) is at least Ω
(

log d
log r

)1/2

. Hence, for
every value of x we get that (2.7) is at least Ω(γ) as desired in (2.5); this completes the proof of
Theorem 2.5.1. �

We can now show the main result of this section.

15

Theorem 2.5.5 The standard SDP for independent set has an integrality gap of

O

(
d

(
log log d

log d

)3/2
)
.

Proof: Given a graph G on n vertices, let β ∈ [0, 1] be such that the SDP on G has objective value
βn. If β ≤ 2/ log3/2 d, the naı̈ve greedy algorithm already implies a d/ log3/2 d approximation.
Thus, we will assume that β ≥ 2/ log3/2 d. Recall we use xi to denote the marginals xii on
singleton vertices in the SDP.

Let us delete all the vertices that contribute xi ≤ β/2 to the objective. The residual graph has
objective value at least βn− (β/2)n = βn/2.

Let η = 2 log log d/ log d. If there are more than n/ log2 d vertices with xi ≥ η, applying
Theorem 2.4.1 to the collection of these vertices already gives independent set of size at least

Ω

(
d2η

d
√

ln d
· n

log2 d

)
= Ω

(
n log3/2 d

d

)
,

and hence a O(d/ log3/2 d) approximation.
Thus we can assume that fewer than n/ log2 d vertices have xi ≥ η. As each vertex can

contribute at most 1 to the objective, the SDP objective on the residual graph obtained by deleting
the vertices with xi ≥ η is at least βn/2−n/(log2 d) which is at least βn/3, since β ≥ 2/ log3/2 d.

So we have a feasible SDP solution on a subgraph G′ of G, where the objective is at least βn/3
(here n is the number of vertices in G and not G′) and each surviving vertex i has value xi in the
range [β/2, η].

As xi ≤ η for each i, and the SDP objective is at least βn/3, the number of vertices n′ in G′

satisfies n′ ≥ (βn/3)/η = Ω(nβ/η). Moreover, as xi ≥ β/2 for each vertex i ∈ G′, and the SDP
does not put more than one unit of probability mass on any clique, it follows that G′ is Kr-free for
r = 2/β = log3/2 d. Applying Theorem 2.5.1 to G′ with parameter r = log3/2 d, we obtain that G′

has an independent set of size

Ω

(
n′

d

√
log d

log r

)
= Ω

(
n′

d

√
log d

log log d

)
= Ω

(
nβ

d η

√
1/η

)
= Ω

(
βn

d
· η−3/2

)
.

The SDP objective for G was βn, so the integrality gap is O(dη3/2) = O(d(log log d
log d

)3/2). �

2.5.1 An upper bound

Lemma 2.5.6 There existsKr-free graphsGwith maximum degree d such that α(G) ≤ O
(
n
d

log d
log r

)
whenever r ≥ log d.

Proof: We use the standard lower bound R(s, t) = Ω(
(

t
log t

)s/2
) for off-diagonal Ramsey numbers

for t ≥ s. While stronger lower bounds exist (see Theorem 1.2 in [27]), this one suffices for the

16

lemma. Setting t = r and s = O
(

log d/(log r − log log r)
)

, it follows that there exist Kr-free

graphs H on d vertices such that α(H) = O
(

log d/(log r − log log r)
)

whenever t ≥ s. We now
apply two simplifications. First, as log d ≥ s, we can simplify the condition t ≥ s to be r ≥ log d.
Second, as log r ≥ 2 log log r for all r > 1, we can say α(H) = O

(
log d
log r

)
. Setting G to be n/d

disjoint copies of H completes the lemma. �

2.6 Lift-and-Project Algorithms

2.6.1 Sherali-Adams+ based guarantees
In this section, we give our results bounding the integrality gap of the SA+ mixed hierarchy. We
first show that the O(log4 d)-level SA+ relaxation has an integrality gap of Õ(d/ log2 d). This
result, however, does not give an effective procedure to find such a large independent set. Then we
show how to round a vector solution to the d-level SA+ relaxation to get an independent set of size
at least a Õ(d/ log2 d) factor of the optimal independent set.

Consider the SA+
(t) relaxation on G; for the subsequent results we choose the value of t to be

O(log4 d) and d respectively. Let sdpt(G) denote its value. We can assume that

sdpt(G) ≥ n/ log2 d, (2.8)

otherwise the naı̈ve greedy algorithm already gives a O(d/ log2 d) approximation.
Let η = 3 log log d/ log d, and Z denote the set of vertices i with xi ≥ η. We can as-

sume that |Z| ≤ n/(4 log2 d), otherwise applying Theorem 2.4.1 gives an independent set of size
Ω(|Z| ·d2η/(d

√
log d)) = Ω(n log2 d/d). Note that we can apply Theorem 2.4.1, since our solution

belongs to SA+ and hence is a valid SDP solution. Hence,

sdpt(G) ≤ |Z| · 1 + (n− |Z|) · η ≤ (n/(4 log2 d)) · 1 + n · η ≤ 2ηn.

Let V ′ denote the set of vertices i with xi ∈ [1/(4 log2 d), η], and let G′ = G[V ′] be the graph
induced on these vertices.
Claim 2.6.1 |V ′| ≥ sdpt(G)/(2η).

Proof: The total contribution to sdpt(G) of vertices i with xi ≤ 1/(4 log2 d) can be at most
n/(4 log2 d), which by (2.8) is at most sdpt(G)/4. Similarly, the contribution of vertices in Z is at
most |Z|, which is again at most sdpt(G)/4. Together this gives sdpt(G′) ≥ sdpt(G)/2. As each
vertex in V ′ has xi ≤ η, the claim follows. �

Lemma 2.6.2 Let t ≥ log4 d. For the graph G′ = G[V ′], let v ∈ V ′ and let T ⊆ NG′(v) be a
subset of neighbors of v in G′ having size at most t.

(a) T contains an independent set of size at least |T |/ log2 d.
(b) the induced subgraph G′[T] is O(log3 d)-colorable.

Proof: Consider the solution SA+
(t) restricted to G′. Since |T | ≤ t and xi ≥ 1/(4 log2 d) for all

i ∈ NG′(v), we use Theorem 2.4.2 to deduce that the SA+
(t) solution defines a “local distribution”

{XS}S⊆T over subsets of T with the following properties:

17

(i) XS ≥ 0 and
∑

S⊆T XS = 1,

(ii) XS > 0 only if S is independent in the induced subgraph G′[T] (and hence in G), and

(iii) for each vertex i ∈ T , it holds that

xi =
∑

S⊆T :i∈S

xS ≥ 1/(4 log2 d).

Now scaling up the solution {XS} by 4 log2 d gives a valid fractional coloring of T using 4 log2 d
colors. This means at least one of the color classes must have size at least |T |/(4 log2 d). This
proves (a).

To prove (b), we can use a set-covering argument. The fractional coloring can be viewed as a
fractional set cover of T , where the sets are all independent sets in G. The (fractional) number of
sets used is 4 log2 d. Now the integrality gap of the LP relaxation of set cover implies that we can
cover T using at most 4 log2 d ·O(log |T |) = O(log3 d). �

The Integrality Gap Result

We now bound the integrality gap of the O(log4 d)-round SA+ relaxation. The following Ramsay-
theoretic result will be crucial.
Theorem 2.6.3 (Alon [4], Theorem 1.1) Let H = (V,E) be a graph on n vertices with maximum
degree d ≥ 1 such that for every vertex v ∈ V the induced subgraph on the set of all neighbors of
v is k-colorable. Then,

α(H) ≥ Ω

(
n

d

log d

log(k + 1)

)
.

To reduce the number of rounds of SA+, we use a version of the result above that holds under
a considerably weaker condition.
Theorem 2.6.4 (Alon [4]) Let H = (V,E) be a graph on n vertices with maximum degree d, and
let k ≥ 1 be an integer. If for every vertex v and every subset T ⊂ N(v) with |T | ≤ k log2 d, it
holds that the subgraph induced on T has an independent set of size at least |T |/k, then

α(H) ≥ Ω

(
n

d

log d

log(k + 1)

)
.

For completeness, a proof of Theorem 2.6.4 can be found in Appendix A.2.2.
Now consider the graph G′ = G[V ′]. By Lemma 2.6.2(a) with the parameter t = log2 d, the

graph G′ satisfies the requirements in Theorem 2.6.4 with k = log2 d; that theorem gives us that

α(G′) ≥ Ω

(
|V ′|
d

log d

log(log2 d)

)
.

Finally, using Claim 2.6.1, the integrality gap is

sdp(log4 d)(G)

α(G)
≤

sdp(log4 d)(G)

α(G′)
≤ O

(
dη log(log2 d)

log d

)
= Õ

(
d

log2 d

)
,

This completes the proof of Theorem 2.3.3.

18

The Algorithmic Result

To get an algorithm, note that Lemma 2.6.2(b) with t = d implies that the neighborhood of each
vertex in G′ is O(log3 d) colorable. In other words, G′ is locally k-colorable for k = O(log3 d).
We now use Johansson’s coloring algorithm for locally k-colorable graphs (Theorem A.1.1) to find
an independent set of G′ with size

alg(G′) = Ω

(
|V ′|
d
· log d

log(k + 1)

)
.

Using k = O(log3 d) and Claim 2.6.1 this implies an algorithm to find independent sets in degree d
graphs, with an integrality gap of

sdpd(G)

alg(G)
≤ sdpd(G)

alg(G′)
≤ O

(
dη log(k + 1)

log d

)
= Õ

(
d

log2 d

)
.

Our algorithm only required a fractional coloring on the neighborhood of vertices. Since they are
at most 2d independent sets in each neighborhood, there are at most n · 2d relevant variables in
our SDP. Hence, we can compute the relevant fractional coloring in time poly(n) · 2O(d). This
completes the proof of Theorem 2.3.4.

2.6.2 Sherali-Adams based guarantees
We prove Corollary 2.3.5, showing the integrality gap of the Sherali-Adams hierarchy (without the
SDP constraints).
Proof: Consider the standard LP (2.2) strengthened by the clique inequalities

∑
i∈C xi ≤ 1 for each

clique C with |C| ≤ log d. As each clique lies in the neighborhood of some vertex, the number
of such cliques is at most n ·

(
d

log d

)
. Let βn denote the objective value of this LP relaxation. We

assume that β ≥ 2/ log d, otherwise the naı̈ve algorithm already gives a d/ log d approximation.
Let B0 denote the set of vertices with xi ≤ 1/ log d = β/2. For j = 1, . . . , k, where

k = log log d, let Bj denote the set of vertices with xi ∈ (2j−1/ log d, 2j/ log d]. Note that∑
j≥1

∑
i∈Bj xi = βn−

∑
i∈B0

xi ≥ βn/2, and thus there exists some index j such that
∑

i∈Bj xi ≥
βn/(2k).

Let γ = 2j−1/ log d; for each i ∈ Bj , xi ∈ (γ, 2γ]. Since xi > γ for each i ∈ Bj , the clique
constraints ensure that the graph induced on Bj is Kr-free for r = 1/γ. Moreover, since xi ≤ 2γ
for each i ∈ Bj , |Bj| ≥ 1

2γ
· βn

2k
. By Shearer’s result for Kr-free graphs we obtain

α(Bj) = Ω

(
|Bj| ·

γ log d

d log log d

)
= Ω

(
βn log d

d(log log d)2

)
.

This implies the claim about the integrality gap.
A similar argument implies the constructive result. Let βn denote the value of the SA(d) relax-

ation. As before, we assume that β ≥ 2/ log d and divide the vertices into 1 + log log d classes.
Consider the class Bj with j ≥ 1 that contributes most to the objective, and use the fact that the
graph induced on Bj is locally k-colorable for k = (log d/2j−1 · log d) = O(log2 d). As in Sec-
tion 2.6, we can now use Johansson’s coloring algorithm Theorem A.1.1 to find a large independent
set. �

19

2.7 Open Problems
The main open question from the above work is the resolution of the following open problem:
Problem 2.7.1 For any Kr-free graph G, does there exist an independent set satisfying α(G) ≥
O(n log d

d log r
)

which would imply that the Lovász ϑ-function achieves a O(d
log2 d

) approximation. One of the key
bottlenecks in extending this result is to calculate the average size of an independent set. Recently,
Feige and Kenyon [60] have obtained better bounds for such estimates in random graphs.

A second important question is making Johansson’s methods algorithmic. In particular,
Problem 2.7.2 Does there exist a polynomial time algorithm to find independent sets in Kr-free
graphs when r ∈ Ω(1)?
There has been some recent progress on this topic. In particular, Molloy [123] has shown simpler
proofs for several of Johansson’s results which may be of use in finding better bounds.

Another problem with a similar gap in our understanding is the hypergraph matching problem
where there is a Ω(k

log k
) hardness result due Hazan et al. [83], and an upper-bound of k+1

3
due to

Cygan [44]. A natural open question is :
Problem 2.7.3 What is the integrality gap of the Lovász ϑ-function for the hypergraph matching
problem?

A more general research direction is understanding the power of hiearchies in finding inde-
pendent sets in graphs. We know that there are graphs where ϑ-function cannot achieve an ap-
prximation factor better than n/2

√
logn due to the work of Feige [57]. However, it is possible that

higher rounds of the SOS-hierarchy will yield improved approximation algorithms. In particular,
it remains an open question whether these bad examples survive many rounds of SOS hierarchy.

A lot of early work on finding independent sets was motivated by the following interesting
problem: Given a 3-colorable graph, what is the minimum number of colors that can be used to
give a valid coloring in polynomial time? All known algorithms for this problem color the graphs
by finding large independent sets. While the best upper-bounds are polynomial in n, the strongest
hardness results are that it is NP-Hard to color them with 4 colors. Assuming a stronger variant of
the UGC, it is known to be NP-Hard to color them with ω(1) colors.

What is the benefit of hiearchies in resolving the difference between coloring vs independent
sets? While the two problems, are quite different, it is unclear if their hardness can be seperated.
To the best of our knowledge, all algorithms to find a good coloring always do so by repeatedly
extracting large independent sets. It remains an open question if they can be made open. Secondly,
recetly SDP’s have been used to find planted colorings as in the work of Feige. Can we do better
using rounds of hierarchies?

20

Chapter 3

Local k-median

3.1 Introduction

In this chapter, we consider the following clustering problem: given a metric space (X,D) with a
set of clients, and a parameter k, the goal is to group the clients into k clusters. For each client j,
the cost incurred by j is its distance to the furthest client in its cluster. The cost of the clustering
is the sum over all clients, of the cost incurred by the client. We call this problem the aversion
k-clustering problem. Formally,
Problem 3.1.1 Given a metric space on a set of clients C, and an integer k, find a partition of
C = ∪ki=1Ci so as to minimize

∑k
i=1

∑
j∈Ci maxj̃∈Ci d(j, j̃).

This question is motivated by a problem in developing abstractions of extensive-form games.
Since finding equilibria in large extensive form games is computationally expensive, one appealing
approach if speeding things up is to develop an abstraction of this game. Since the abstraction is
typically much smaller, existing algorithms can be used to solve them to find the optimal strategies,
which can be mapped back to the original game. However, there is often some loss in going to the
abstraction. Recent work of Kroer and Sandholm [111] on automated abstraction algorithms pro-
posed the following way to model this: since several states of the original game may be collapsed
into a single state in the abstraction, the loss for each original state is its distance (in a suitably
defined metric) to the furthest state that is collapsed with it. The overall loss is the sum of per-state
losses. This is precisely the aversion k-clustering problem we study in this chapter.

To the best of our knowledge, no prior approximation algorithms were known for the aversion
k-clustering problem. Although it is related in spirit to several other clustering problems, it has
some interesting and unique features. Indeed, something that makes this problem difficult is its
high “sensitivity”. To explain this, observe that in problems like k-median, if we re-assign a
single client j to a new cluster C, loosely this changes the cost by the distance of the client to the
new cluster. However, in aversion k-clustering reassigning client j to a new cluster C may also
significantly change the cost of all other clients in C, since j may become their new furthest client.
This creates problems for most standard techniques used for facilty-location problems. Since our
objective is not linear (due to each client paying the distance to its furthest cluster-mate), we cannot
even use tree embeddings.

21

3.2 Related Works
Approximation algorithms for facility location problems have been studied for a long time. In-
deed, many approximation techniques have been developed while investigating these problems
(see [139]). The problem closest to the local k-median problem is naturally the metric k-median
problem. The first constant-factor for this problem was due to Charikar et al. [35] via rounding the
LP; subsequently, primal-dual algorithms were given by Jain and Vazirani [93] and Charikar and
Guha [33], a local-search algorithm was given by Arya et al. [12]. The recent approach of Li and
Svensson [116] gave a 2.73 + ε-approximation, which was improved to 2.675 + ε by Byrka et al.
[30]. The current NP-hardness is a 1 + 2/e-factor due to Jain et al. [94].

The k-median problem sums over each cluster, the sum of distances of clients to their cluster
center. Instead of taking the sum of distances within each cluster, we could take the maximum
distance within each cluster; this gives the sum of cluster diameters problem, for which a O(1)-
factor is due to Charikar and Panigrahy [34]. And instead of summing diameters over the clusters,
if we take the maximum diameter over all clusters, we get the k-center problem, for which a 2-
approximation is due to Gonzalez [71], and Hochbaum and Shmoys [87], and a matching hardness
is due to Hsu and Nemhauser [89].

Another related problem is the min-sum clustering problem, where we sum over the clusters
of the distances between all pairs within the cluster. Bartal et al. [22] give a O(ε−1 log1+ε n)-
approximation, which was recently improved to O(log n) by Behsaz et al. [23]. There are easy
examples where these problems differ from aversion k-clustering by arbitrarily large factors. More-
over, the non-linearity of our objective function means that we cannot use tree embedding results
to get a logarithmic approximation.

Our algorithm takes a primal-dual approach pioneered by Jain and Vazirani [93]; while solving
the Lagrangian relaxation and getting a Lagrangian-multiplier preserving algorithm follows rela-
tively easily, the main contribution is in the non-local rounding algorithm. This adds to the body
of work exploring such primal-dual techniques, which include the work of Charikar and Panigrahy
[34] to give a O(1)-factor approximation for the sum of cluster diameters, and Chuzhoy and Ra-
bani [40] in their O(1)-factor bicriteria approximation for the capacitated k-median problem. To
the best of our understanding, our rounding technique is different from these previous works. Non-
local roundings of a different flavor were also recently used for the capacitated k-center problem
by Cygan et al. [45] and An et al. [7].

3.3 Our Results and Techniques
Our main result is the following:
Theorem 3.3.1 There is a constant-factor algorithm for the aversion k-clustering problem.
A few words about our techniques. To solve this, we first move to a related problem that is more
convenient to deal with: in the local k-median problem, each potential facility location in the met-
ric space has a “range” Ri associated with it. Like in k-median, we need to open k facilities, to
minimize the sum of distances from clients to their assigned facilities. However, we now addition-
ally require that each client j is assigned to some facility i at distance at most Ri. This problem

22

is NP-hard to approximate, but for our purpose it is sufficient to solve the relaxed version where
clients can still connect at distance O(Ri).

Again, the (relaxed) locality restriction causes many of the standard techniques for k-median,
like local-search and LP-rounding, not to extend to this problem. However, we are successful in
extending a primal-dual technique to this problem. The following theorem is our main technical
result, from which Theorem 3.3.1 follows immediately.

Theorem 3.3.2 There is a constant-factor approximation algorithm for the local k-median prob-
lem which violates the locality constraints by a constant factor for instances that arise from aver-
sion k-clustering problem.

We use the primal-dual framework of Jain and Vazirani: we find two solutions that open k1 and
k2 facilities (such that k1 < k < k2) such that the “average” of these two solutions has low cost
and opens k facilities. We can view this average solution as a “well-behaved” LP solution, which
we now have to round to integrally open k facilities.

The main problem with this rounding is the locality constraint — typical algorithms tend to
round some fractional facility up to 1, round down close-by fractional facilities to zero to maintain
the total facility mass at k, and reroute clients to the newly opened facility without increasing the
cost by much. However, the locality constraint in our problem means that such simple rounding
approaches fail. For example, the facility that we open may have a very small Ri value, and can
only serve clients that are very close to it. However, the clients who want to be rerouted may be too
far from this facility to satisfy the locality constraint, even if it is relaxed to γRi for some constant
γ.

Our main technical contribution, and the novel ingredient of our rounding algorithm is a non-
local rounding approach. We first transform the fractional solution so that its support is a tree.
(Technically, we also require that this tree has some additional properties.) Then we partition this
tree into carefully chosen subtrees, so that all the clients in each particular subtree can be reassigned
simultaneously without violating the locality. Now choosing the least expensive of these forests to
reassign gives us a solution with k facilities and a constant-factor approximation. We feel that this
non-local rounding will be useful in other contexts, and hence be of independent interest.

3.4 Solving aversion k-clustering problem via the local k-median
problem

3.4.1 Preliminaries

Let (X,D) be a metric space and let C ⊆ X be the set of clients and F ⊆ X be the set of facilities.
The aversion k-clustering problem is the task to partition C into a collection C of k disjoint subsets
C1, . . . , Ck with C = ∪ki=1Ci such that

ca(C) :=
k∑
`=1

∑
j1∈C`

max
j2∈C`

D(j1, j2) (P1)

23

is minimized.
For the local k-median problem, we additionally get a radius (or range) Ri for every i ∈ F .

We seek a set F ⊆ F of k facilities that minimizes

cl(F) :=
∑
j∈C

min
i∈F ,

D(i,j)≤Ri

D(i, j).

This differs from the classical k-median problem in that a client can only be assigned to a facility if
it lies within the facility’s radius. It is possible that there is no set of k facilities which can service
all clients. If this is the case, we define the minimum clustering cost as infinity. In the following
claim, we show that it is NP-hard to decide whether we are in this case or not.
Claim 3.4.1 Deciding feasibility of a local k-median instance is NP-hard.
Proof: We use a well-known reduction from set cover. Let S be a set of sets over a universe U .
We construct a metric space that contains a facility iS for every set S ∈ S and a client ju for every
element u ∈ U . The distance between ju and iS is one if u ∈ S and two otherwise. Observe
that this is a metric. We set the radius RiS of all facilities to one. Observe that there is a feasible
solution for this local k-median instance if and only if the set cover instance has a solution with at
most k sets. Since deciding whether a set cover instance has a solution with at most k sets is NP-
hard [102], it is also NP-hard to decide whether there is a feasible solution for the local k-median
problem. �

Any approximation algorithm has to decide whether there is a feasible solution or not. Hence,
we allow the locality constraint to be violated; i.e. a client may connect to a facility i if it is within
a radius of γRi for a constant γ. We say a solution is a (γ, ψ) bicriteria solution if the solution
violates the locality constraints by a factor of γ and has cost at most ψ times the optimal (with
respect to the original problem).

3.4.2 Reductions
We show that the aversion k-clustering problem can be reduced to the local k-median problem by
sacrificing a constant factor. The idea is to identify a cluster C` with a pair of points with largest
distance and to use this information to represent clusters by an artificial facility with appropriate
radius. More precisely, we define the following metric space. Set F := {pj1j2 | j1, j2 ∈ C} and
refer to pj1j2 as the midpoint of clients j1 and j2. To extend D from C to C ∪ F , we set

D(j1, pj1j2) := D(j2, pj1j2) =
D(j1, j2)

2
and D(pj1j2 , pj1j2) := 0

for all j1, j2 ∈ C. So far, no metric property is violated. Now imagine the incompletely defined
metric as a weighted undirected graph G on the vertices C ∪ F where some edges are missing.
Let D be defined as the shortest path metric in G. This is a metric by definition. It coincides with
the previously defined distances since in a metric, the direct edge must be a shortest path. For the
missing edges, we get that

D(j, pj1j2) = D(pj1j2 , j) = min{D(j, j1), D(j, j2)}+
D(j1, j2)

2
(3.1)

24

for all j ∈ C: The point pj1j2 is only connected to j1 and j2, thus any path between j and pj1j2 has to
travel over one of them. Since the edge lengths form a metric, the direct connection between j and
j1 or j2 is shortest, so either (j, j1), (j1, pj1j2) or (j, j2), (j2, pj1j2) is a shortest path. Analogously,
we get that

D(pj1j2 , pj3j4) = D(j1, j2)/2 +D(j3, j4)/2 + min{D(j1, j3), D(j1, j4), D(j2, j3), D(j2, j4)}

for all j1, j2, j3, j4 ∈ C. Finally, we define

Rpj1j2 := D(j1, j2)/2 (3.2)

for all pj1j2 ∈ F . Notice that our definition of F allows that j1 = j2. This ensures that singleton
clusters can be expressed. Furthermore, notice that Rpj1j1 = 0, so the facility pj1j1 can only serve
j1 (or clients at the same location).

For any facility pj1,j2 , we will drop the reference to j1 and j2 when it is clear from the context.
Hence, p ∈ F refers to the midpoint of some two clients j1 and j2 and the radius of the facility Rp
simply refers to half the distance between these points. Intuitively, each new “facility” corresponds
to a midpoint of two clients in the original problem. These midpoints allow us to cast the current
problem as a k-median problem with the addition of locality constraints placed on each facility.

We now show how solutions for the aversion k-clustering problem and (γ, α) bicriteria solu-
tions for the local k-median problem are related. For a client j, let F γ

j := {i ∈ F | D(i, j) ≤ γRi}
be the set of facilities that j is allowed to connect to. The following integer linear program (ILP)
which is a (natural) modification of the ILP proposed in [15] minimizes over all feasible (γ, α)
bicriteria solutions.

min
∑
j∈C

∑
i∈F γj

D(i, j) · xi,j (ILPγ)

∑
i∈F

yi ≤ k∑
i∈F γj

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γ
j

xi,j, yi ∈ {0, 1} ∀j ∈ C, i ∈ F γ
j

ILPγ has a variable yi for each i ∈ F that indicates whether the ‘facility’ i is opened, and a variable
xi,j for any combination of an original point j and a facility i ∈ F γ

j that says whether j is connected
to i.

Let (x, y) be any solution of ILPγ and let c(x, y) be the cost of the solution. We relate the
solutions of ILPγ to the problem (P1) by the following lemmas.
Lemma 3.4.2 Given a solution (x, y) of ILPγ , there exists a solution C = {Cl}kl=1 to (P1) which
has cost no more than ca(C) ≤ (γ + 1)c(x, y).
Proof: Since (x, y) is an integral solution, let {p1, . . . , pk} ⊆ F denote the facilities which are
opened. We define the cluster Ci to be the set of clients j such that xpi,j = 1. For any client

25

j ∈ Ci, let j′ ∈ Ci be the client which maximizes D(j, j′). Since D is a metric, we know that
D(j, j′) ≤ D(pi, j) + D(pi, j

′). By the locality constraint, it holds that D(pi, j
′) ≤ γRpi . By

definition of D and Rpi , we know D(pi, j) ≥ Rpi , which implies D(pi, j
′) ≤ γD(pi, j). Hence,

D(j, j′) ≤ (γ+1)D(pi, j). Summing this over all clients, we conclude that ca(C) ≤ (γ+1)c(x, y).
�

Lemma 3.4.3 Given a solution C to (P1), we can construct a solution (x, y) to ILPγ(where γ ≥ 3)
which has cost 1

2
ca(C) ≤ c(x, y) ≤ 2ca(C).

Proof: Fix a cluster Ci, let j1, j2 ∈ Ci be two clients which maximizeD(j1, j2). Open facility pj1j2
and connect all clients inCi to it. Notice that it holdsD(j, pj1j2) = Rpj1j2+min{D(j, j1), D(j, j2)} ≤
3Rpj1j2 becauseD(j1, j2) is the maximum distance between two clients inCi and becauseD(j1, j2) =
2Rpj1j2 . Thus, the solution is feasible for γ = 3.

For any client j ∈ Ci, let j′ ∈ Ci be the element which maximizes D(j, j′). For the first
inequality notice that each client j will pay at least D(j, pj1j2) ≥ 1

2
D(j1, j2) ≥ 1

2
D(j, j′). Observe

thatD(j, j′) ≥ max{D(j, j1), D(j, j2)} ≥ (D(j, j1)+D(j, j2))/2 ≥ D(j1, j2)/2. Combining this
with the observation that D(j, j′) ≥ min{D(j, j1), D(j, j2)}, we get that

D(pj1j2 , j) = min{D(j, j1), D(j, j2)}+D(j1, j2)/2 ≤ 2 ·D(j, j′).

Summing over all clients gives the second inequality. �
Let optγilp be the optimal value for ILPγ and let opta be the value of an optimal solution for (P1).

Lemma 3.4.3 implies that opt3ilp ≤ 2 · opta. Assuming we compute an ψ-approximate solution to
the optimal ILP3 solution that violates the locality constraint by an additional factor of %. Then
this solution costs at most ψ · opt3ilp ≤ 2ψ · opta and violates the locality constraints by 3%. By
Lemma 3.4.2, we can then construct a feasible solution for (P1) that costs at most (3%+1)·2ψ ·opta.

3.4.3 Good fractional solutions for the local k-median problem
Since problem ILPγ is NP-hard, we relax the integrality constraints to obtain a linear program.
The only difference between the standard k-median relaxation and LPγP is the locality constraint,
i.e., each client j can only connect to facilities in F γ

j .

min
∑
i,j

D(i, j)xi,j (LPγP)

s.t.
∑
i∈F γj

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γ
j∑

i∈F

−yi ≥ −k

x, y ≥ 0.

max
∑
j

αj − kZ (LPγD)

s.t.
αj ≤ D(i, j) + βi,j ∀j ∈ C, i ∈ F γ

j∑
j:i∈Fj

βi,j ≤ Z ∀i ∈ F

α, β, Z ≥ 0.

26

The above LP is very similar to the LP for facility location and this fact was exploited by Jain
and Vazirani to show that primal-dual solutions to the facility location problem can be transformed
into the solutions for the k-median problem. Let LP-FγP be the facility location variant of LPγP , and
let LP-FγD be its dual:

min
∑

i∈F,j∈C

D(i, j)xi,j +
∑
i∈F

fiyi (LP-FγP)

s.t.
∑
i∈F γj

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γ
j

x, y ≥ 0.

max
∑
j

αj (LP-FγD)

s.t.
αj ≤ D(i, j) + βi,j ∀j ∈ C, i ∈ F γ

j∑
j:i∈F γj

βi,j ≤ fi ∀i ∈ F

α, β ≥ 0.

Augmenting ideas introduced by Jain and Vazirani [93], we obtain integer solutions to LP-FγP .
This produces two solutions (x1, y1) and (x2, y2) that are nearly feasible for LP3γ

P , but
∑

i y
1
i =

k1 < k and
∑

i y
2
i = k2 > k. A suitable convex combination of the two is a feasible solution for

LP3γ
P and is a constant factor away from the optimal value of LPγP . Given any ε > 0 and γ > 0,

there exists a polynomial time algorithm which finds two feasible integer solutions (x1, y1), (x2, y2)
for LP-F3γ

P with the following properties:
1.
∑

i y
1
i = k1 and

∑
i y

2
i = k2 for two integers k1 < k < k2.

2. Set ρ = k2−k
k2−k1 . The solution (x̂, ŷ) = ρ(x1, y1) + (1 − ρ)(x2, y2) is feasible for LP3γ

P with
cost at most (3 + ε) times the optimal solution to LPγP .

Since the essential ideas behind this lemma use standard techniques, we omit the full proof because
of space limitations. The main differences to the standard Jain-Vazirani primal-dual process are as
follows: When finding the initial set of open facilities, we restrict clients to paying and connecting
only to facilities whose radius they lie in. In the clean-up step, the Jain-Vazirani algorithm selects
the finally open facilities by finding an arbitrary independent set of facilities in some graph. We
use the freedom to choose any independent set and choose a set that ensures that clients that have
to be reassigned (because their original facility was closed) can always be routed to an open facility
with higher radius than their original facility.

3.4.4 Rounding

Given any two integer solutions (x1, y1) and (x2, y2) for LP-FγP , which open A,B ⊆ F facilities,
respectively, we define a weighted bipartite graphG(x1, y1, x2, y2) as follows. The graph is defined
on the vertex set with bipartitions A and B. We connect i ∈ A to i′ ∈ B if there exists a client
j such that x1

i,j = 1 and x2
i′,j = 1. The weight of an edge (i, i′) is the number of clients j which

27

↓R increases
i

i∗

i′

j∗

j
D(j, i∗) ≤ γ(Ri + Ri + Ri∗) ≤ 3γ · Ri∗

(violation of Ri∗ by factor 3γ)
also notice that 3 · Ri∗ ≤ 3 · Ri′

thus the cost can go up by a factor of 3γ

Figure 3.1: Removing all but one down edge for client i.

satisfy the above requirement.

Lemma 3.4.4 The following holds for local k-median instances that arise from the aversion k-
clustering problem. Given two integer solutions (x1, y1), (x2, y2) for LP-FγP which open facilities
A,B ⊆ F , respectively, we can construct solutions (x̃1, ỹ1), (x̃2, ỹ2) that satisfy:

1. (x̃1, ỹ1) opens facilities A and (x̃2, ỹ2) opens facilities B.
2. If (x1, y1), (x2, y2) are feasible for LP-FγP , then (x̃1, ỹ1), (x̃2, ỹ2) are feasible solutions to

LP-F3γ
P , and they satisfy c(x̃1, ỹ1) ≤ 3γc(x1, y1) and c(x̃2, ỹ2) ≤ 3γc(x2, y2).

3. The graph G(x̃1, ỹ1, x̃2, ỹ2) is a forest.

Proof: We will assume that all radii are distinct (we can ensure this, e.g., by adding a tiny
amount of noise to all the radii, or by breaking ties consistently). We say that an edge {i, i′} in
G(x1, y1, x2, y2) is a down edge for i if Ri′ > Ri. For i ∈ A∪B, let D(i) := {i′ | {i, i′} is a down edge}
be the set of facilities that are connected to i by down edges. Furthermore, for every i ∈ A ∪ B,
let i∗ be a facility that minimizes {Ri | i ∈ D(i)}, i.e., i∗ is the endpoint of a ‘highest’down edge.
For each i ∈ A ∪ B, we modify assignments as follows. For all clients j ∈ C connected to i,
and to some facility i′ ∈ D(i) in (x1, y1), (x2, y2), we reassign them to now connect to i and i∗ in
(x̃1, ỹ1), (x̃2, ỹ2). Thus, for all clients j ∈ C originally connected to i and i∗, the assignment does
not change.

Let us calculate the costs of the resulting assignment. Let i′ ∈ D(i) be a facility with i′ 6= i∗

and let j be a client that is reconnected from i′ to i∗. Notice that D(i, i∗) ≤ γRi + γRi∗ since at
least one client lies within the (γ-expanded) radius of i and i∗ simultaneously. We observe that
D(j, i∗) ≤ D(j, i) + D(i, i∗) ≤ γ(Ri + Ri + Ri∗) ≤ 3γ · Ri∗ by the triangle inequality and by
Ri∗ ≥ Ri. Thus, the new solution violates the locality constraint for j by a factor of at most 3.
Since Ri∗ is the smallest radius for all facilities in D(i), it holds that Ri∗ ≤ Ri′ . Thus, we also have
D(j, i∗) ≤ 3γRi′ . Moreover, since the instances arise from local k-median, equations (3.1) and
(3.2) imply that D(j, i′) ≥ Ri′ . (This is the only part of the proof that relies on the local k-median
instances arising from aversion k-clustering). Hence we haveD(j, i∗) ≤ 3γRi′ ≤ 3γD(j, i′). Thus
the cost of each client j is increased by a factor of at most 3γ, which immediately proves Property
2. (Figure 1 visualizes this calculation).

We do not open or close any facilities, thus Property 1 is true. To see Property 3 holds, note that
by the distinct radii assumption, any cycle would contain a facility with two down edges, which is
no longer possible after the reassignment. �

Lemma 3.4.4 transforms our solution such that it corresponds to a forest T on the vertices
A ∪ B. We first assume that T is a tree and later deal with each connected component separately.

28

r r

Figure 3.2: Examples on finding subtrees ofG(x1, y1, x2, y2) with df(Ti) = 1. The two left pictures
show a simple special case that also is a worst case for the number of subtrees: The deficiency of
the shown forest F is df(F) = 2k = 10 and we get df(F)/2 = 5 subtrees by pairing the nodes
from B. The two right pictures show a connected tree T with df(T) = 7 and 4 subtrees with
df(Ti) = 1.

We use the tree structure to define a depending rounding procedure to combine A and B into an
integral solution C with low cost. It will be crucial to look at the difference between the number
of vertices from B and A in subtrees of T .
Definition 3.4.5 For any subtree of T ′ ⊆ T , we define the deficiency of T ′ to be df(T ′) =
|B(T ′)| − |A(T ′)| where B(T ′) (and A(T ′)) are the vertices from B (and A) in this subtree.

We start with C = B. Then we find a subtree T ′ with df(T ′) = 1, i.e., one node more from B
than from A. We want to close all facilities in B(T ′), open all facilities in A(T ′) and reconnect the
affected clients. We want that the reassignment follows the assignments in (x̃1, x̃2), so all facilities
in A that are adjacent to B(T ′) must be contained in A(T ′). We then iterate this process with more
subtrees until C has exactly k vertices. Since we gain one for every subtree, we need t := k2 − k
subtrees until |C| was reduced from k2 to k. The subtrees must be disjoint on the B side, while the
vertices from A can overlap. The following lemma shows that we can find a large set of suitable
subtrees from which we can choose the cheapest t later. Figure 3.2 visualizes two examples.
Lemma 3.4.6 Given any tree T with ddf(T)/2e = l and root r ∈ A, we can find l subtrees
T1, . . . , Tl of T with

1. df(Ti) = 1

2. B(Ti) ∩B(Tj) = ∅
3. A(δ(B(Ti))) ⊆ A(Ti)

29

where we use δ(X) to denote the set of edges from X to X̄ .

Proof: Let r be the root of T and c1, . . . , cν be the children of r. Our proof will proceed with
induction on the height of T . By removing a subtree T ′ we mean that we remove all edges that are
in T ′ from T and all vertices except the root of T ′.

Induction Hypothesis: There exist subtrees T1, . . . , Tz, z ∈ N0, of T that satisfy:
1. Each subtree Ti is rooted at a vertex in A and satisfies that df(Ti) = 1.

2. After removing T1, . . . , Tz from T , the following holds. If r ∈ B then df(T) ≤ 1. If r ∈ A
then df(T) ≤ 0.

Base Case: T has height 0 or 1, i.e., it is a star. If r ∈ B, then df(T) ≤ 1 because there is only
one node from B. If r ∈ A, then we can remove the children in pairs until there are no pairs left.
This is because the subtree consisting of r and any two of its children has deficiency 1. Therefore,
each pair and the root will correspond to a subtree (one of Ti mentioned in the IH) that we remove.
After removing them, T consists of only r or r and one node from B. In both cases, df(T) ≤ 0.

Induction Step: Case r ∈ B: By the induction hypothesis (IH), we can remove some subtrees
to ensure that each subtree rooted at c1 . . . cν will have deficiency at most 0. Since df(T) =∑ν

i=1 df(Trooted at ci) + 1 ≤ 1, we can conclude that this satisfies the first property in the IH. Since
we didn’t remove any additional subtrees, the second property is vacuously satisfied.
Case r ∈ A: By the IH, we know that the subtree rooted at each child ci has deficiency df(ci) ≤ 1.
Without loss of generality, let c1, . . . , cp be the children which have deficiency 1 and cp+1 . . . cν
have deficiency ≤ 0. If p ≤ 1, then df(T) ≤ 0. If p ≥ 2, then we remove pairs of children with
positive deficiency. Observe that the subtree rooted at r containing only the children c1 and c2 has
deficiency exactly 1. Hence, these satisfy the second property in the IH. We continue this process
until there is at most 1 child which has positive deficiency, at which point the the first property is
satisfied. This ensures that the induction step is satisfied.

Notice that each removed subtree has deficiency one. Since we keep the root, the deficiency
decreases by two for each removed subtree. When r ∈ A as assumed in the lemma, then df(T) is
decreased to at most zero. Thus, at least ddf(T)/2e subtrees are removed. �

For a forestF consisting of treesF1, . . . , Fx, set df(F) :=
∑x

j=1 df(Fj). We can find ddf(Fj)/2e
subtrees satisfying the properties of Lemma 3.4.6 for every every Fj . Thus, we get

x∑
j=1

⌈
df(Fi)

2

⌉
≥

⌈
1

2

x∑
j=1

df(Fi)

⌉
= ddf(F)/2e

subtrees, giving the following corollary.

Corollary 3.4.7 Given any forest F with ddf(F)/2e = l, we can find l subtrees T1, . . . , Tl of F
satisfying the properties from Lemma 3.4.6.

We now show Theorem 3.3.2. We are given an instance of the local k-median problem that
arises from the aversion k-clustering problem. We know that the solutions for the local k-median
problem that are induced by the aversion k-clustering instance are feasible for LP-F3

P . Thus, we
set γ := 3. Then we use Lemma 3.4.3 and Lemma 3.4.4 to get two solutions (x1, y1) and (x2, y2)

30

so that the graph G(x1, y1, x2, y2) is a forest, (x1, y1) opens k1 facilities and (x2, y2) opens k2 ≥ k1

facilities. Both Lemma 3.4.3 and Lemma 3.4.4 induce a factor of 3 in the radius violation, so
(x1, y1) and (x2, y2) are feasible for LP-F9γ

P . Furthermore, the intermediate solutions (x̂1, ŷ1) and
(x̂2, ŷ2) coming from Lemma 3.4.3 have the property that for ρ = (k2− k)/(k2− k1), it holds that
ρ · c(x̂1, ŷ1) + (1− ρ) · (x̂2, ŷ2) ≤ (3 + ε) · optγl . Applying Lemma 3.4.4 increases the cost bound
by a factor of 3γ. Thus, we know that

ρ · c(x1, y1) + (1− ρ) · c(x2, y2) ≤ (3 + ε) · 3γ · optγl := cmix

for ρ = (k2−k)/(k2−k1). If (x1, y1) or (x2, y2) opens exactly k facilities, we are done. Otherwise,
k1 < k < k2. If ρ ≥ 1/2, simply output (x1, y1) which then costs c(x1, y1) ≤ 2ρ · c(x1, y1) ≤
2cmix. We assume that this is not the case, i.e., ρ < 1/2.

We build a solution C and start with C = B. Using Corollary 3.4.7, we find 1
2
(k2−k1) subtrees

T1, . . . , T` ofG(x1, y1, x2, y2). For each subtree Ti, we can reassign the clients from the facilities in
B(Ti) to the facilities in A(Ti). We denote the connection cost for assigning the clients toA(Ti) by
c(Ti). Notice that c(x1, y1) ≥

∑`
s=1 c(Ti) because every edge of T can only appear in one subtree

(since the B(Ti) are pairwise disjoint). Thus, if we choose the t = k2−k subtrees Ti1 , . . . , Tit with
the cheapest c(Ti), then

t∑
z=1

c(Tiz) ≤
t

`

∑̀
s=1

c(Ti) ≤
t

`
c(x1, y1) =

k2 − k
1
2
(k2 − k1)

c(x1, y1) = 2ρ · c(x1, y1).

The cost of C starts at c(x2, y2) and is increased by at most 2ρ · c(x1, y1). Thus, the solution costs
at most 2ρ ·c(x2, y2)+c(x2, y2) ≤ 2ρ ·c(x2, y2)+2(1−ρ) ·c(x2, y2) ≤ 2 ·cmix where we recall that
ρ < 1/2. Thus, we get an integer solution of cost 2 · (3+ε) ·3γ ·optγl that is feasible for LP9γ

P . That
induces a solution for the aversion k-clustering instance that is a constant factor approximation as
we described below Lemma 3.4.3.

3.4.5 Improving the Approximation Factor
To improve the final approximation ratio for the aversion k-clustering problem, we observe that
the dual variables computed by the primal-dual algorithm can be directly related to the objective
of the aversion k-clustering problem. We split each such dual: Let αO(j) denote the amount that
client j pays to open a facility (the subscript O stands for “open”). Using the terminology of Jain
and Vazirani, we say a client j is directly connected to facility i if βi,j > 0 and facility i is open.
In this case, αO(j) := βi,j . Otherwise, αO(j) = 0. Define αC(j) := α(j) − αO(j) (intuitively,
this is the connection cost—the subscript C is for connection—that the client has paid for, but
for indirectly connected clients we only know that D(i, j) ≥ αC(j) ≥ (1/3)D(i, j) is true. For
directly connected clients, αC(j) = D(i, j).).

Lemma 3.4.8 At the end of the primal-dual algorithm, if client j connects to facility i, then
αC(j) ≥ Ri.

Proof: If j is directly connected to i, then it is immediate that αC(j) = D(i, j) ≥ Ri.

31

Suppose that j is indirectly connected to facility i′. In this case, let i be the facility that j
was first connected to. Since j is indirectly connected, there has to be a client j′ that has special
edges to both i and i′. We use t(i) and t(i′) to denote the times at which facilities i and i′ were
respectively opened. Notice that αC(j) = α(j) by definition of αC for indirectly connected clients
and that α(j) = t(i) because j was connected to i before.
Case t(i) ≥ t(i′): In this case we know that αC(j) = t(i) ≥ t(i′) ≥ D(i′, j′) ≥ Ri′ .
Case t(i) < t(i′): Since j′ has special edges to i and i′, it had tight edges to both before either was
opened, i.e., D(i′, j′) ≤ t(i). Thus we can say αC(j) = t(i) ≥ D(i′, j′) ≥ Ri′ . �

Once again, we may assume that the Jain-Vazirani algorithm returns two solutions (x1, y1),
(x2, y2) and their duals (α1, Z+) and (α2, Z−). It follows from Jain and Vazirani’s analysis that
the solutions have the following properties.

1.
∑

i y
1
i = k1 and

∑
i y

2
i = k2.

2.
∑

j α
1
C(j) =

∑
j α

1
j − k1 · Z+ and

∑
j α

2
C(j) =

∑
j α

2
j − k2 · Z−

3. x1
i,j = 1 or x2

i,j = 1 =⇒ D(i, j) ≤ 3γRi

4. |Z+ − Z−| ≤ ε

5. For ρ = k2−k
k2−k1 , ρ(α1, Z+) + (1− ρ)(α2, Z−) is feasible for LPγD.

For property 2, notice that α1
C(j) = α1

j for indirectly connected clients, that α1C(j) = α1
j − βφ(j)j

for directly connected clients (where φ(j) is the center j is connected to) and that the sum of βφ(j)j

over all directly connected clients is just k1Z
+. The same holds for the second solution. Using

property 5, we get that ρ(
∑

j α
1
j − k · Z+) + (1 − ρ)(

∑
j α

2
j − k2 · Z−) is a lower bound for

the optimal value of LPγD and thus also for the optimal value of LPγP . Using property 2 and 4, this
implies that ρ(

∑
j α

1
C(j))+(1−ρ)(

∑
j α

2
C(j)) ≤ opt(LPγP)+ε. We apply Lemma 3.4.4 to replace

x1 and x2 to ensure that the resulting graph G(x1, y1, x2, y2) is a forest. Note that the procedure
only reassigns the clients to facilities with smaller radius than their currently connected facility.
Hence, we can still assume that x1

i,j = 1 =⇒ α1
C(j) ≥ Ri (similarly x2

i,j = 1 =⇒ α2
C(j) ≥ Ri).

However, we may now have solutions that violate the locality constraints by a factor of 9γ.
Now we use the procedure described in Lemma 3.4.6 to partition the graph G(x1, y1, x2, y2)

into subtrees T1, . . . T` with df(Tp) = 1 for p ∈ {1, . . . , `} and ` = k2−k1
2

. Each tree has the
property that A(δ(B(Tp))) ⊆ A(Tp) for all p ∈ {1, . . . , `}. Since each edge in this tree represents
some set of clients, we use the notation j ∈ Tp to denote that j is associated with an edge in Tp.
Define the cost of the subtree Tp as

∑
j∈Tp α

1
C(j). We choose the k2− k cheapest such trees. Since

choosing all ` subtrees will result in a cost of
∑

j α
1
C(j), we can say that the cost of these chosen

subtrees is at most 2(k2−k)
k2−k1

∑
j α

1
C(j) = 2ρ

∑
j α

1
C(j).

Our rounded solution (x̂, ŷ) opens all facilities from A that are part of the chosen subtrees and
all facilities from B that are not part of any chosen subtree. Notice that since we open k2 − k
subtrees and these satisfy df(Tp) = 1, ŷ opens exactly k facilities. The assignments of clients to
facilities follow x1 and x2, respectively.

Analogously to Lemma 3.4.2, we construct a solution to the aversion k-clustering problem
based on x̂, ŷ. In this solution, each client assigned to a facility pi ∈ A pays at most

D(j, j′) ≤ D(pi, j) +D(pj, j
′) ≤ 9γRi + 9γRi ≤ (2 · 9γ)α1

C(j)

32

where j′ is the furthest away client among all that are assigned to pi. Thus, by our choice of
subtrees, all clients assigned to A pay at most (2 · 9γ)2ρ

∑
j α

1
C(j) in total. The remaining clients

pay at most (2 · 9γ)(
∑

j α
2
C(j)). As before, we can assume that ρ ≤ 1/2. We conclude that the

cost of (x̂, ŷ) is bounded by

(2 · 9γ)
(
2ρ
∑
j

α1
C(j) +

∑
j

α2
C(j)

)
≤ 2(2 · 9γ)(1 + ε)

(
ρ
∑
j

α1
C(j) + (1− ρ)

∑
j

α2
C(j)

)
≤ 2(2 · 9γ)(1 + ε)opt(LPγP)

≤ 2(2 · 9γ)2(1 + ε)opta

where opta is the optimal value for the aversion k-clustering instance and the last inequality follows
by Lemma 3.4.3. Since γ = 3, the approximation factor is bounded by 216 + ε.

3.5 Open Problems
Our proof of Theorem 3.3.2 only uses the fact that instance arises from aversion k-clustering in
one instance. This raises the natural question:
Problem 3.5.1 Does there exist a (O(1), O(1))-bicriteria algorithm for the Local k-median prob-
lem?

A second question is whether these techniques can be extended to the Balanced k-median
problem. There is a natural linear programming based relaxation for this problem, which was first
mentioned by Bartal et al. [22]. However, it is not known how to round this linear program even in
extremely special cases. We state this is as another direction of possible work.
Problem 3.5.2 Does the standard linear programming relaxation for the Balanced k-median prob-
lem have a O(1) integrality gap?

This problem is interesting even for special metrics; when all the facilities are located at a
single point, the integrality gap of the standard linear program is not known. Note that there is
a simple dynamic program that achieves this ratio. We rule out several standard approaches to
round this problem. Firstly, we can construct examples where the naive local search achieves an
approximation ratio of Ω(n). Primal-dual techniques similar to the work of Jain and Vazirani [93]
and Chuzhoy and Rabani [40] fail because the linear program is not defined over a metric space.
In particular, the distance of a facility to a client depends on the capacity of facility and this is a
major bottleneck in obtaining a Lagrange multiplier preserving algorithm.

33

34

Chapter 4

Fractionally Sub-additive Network Design

4.1 Introduction
We study a robust version of a single-sink network design problem that we call the Single-sink
fractionally-subadditive network design (f-SAND) problem. In an instance of f-SAND, we are
given an undirected graph G = (V,E) with edge costs we ≥ 0 for all e ∈ E, a root node r ∈ V ,
and k colors represented as vertex subsets Ci ⊆ V \ {r} for all i ∈ [k], that wish to send flow to r.
A feasible solution is an integer capacity installation on the edges of G, such that for every i ∈ [k],
each node in Ci can simultaneously send one unit of flow to r. Thus, the total flow sent by color
i nodes is is |Ci| while the flows sent from nodes of different colors are instead non-simultaneous
and can share capacity. An optimal solution is a feasible one that minimizes the total cost of the
installation.

Problem 4.1.1 Given an undirected graphG = (V,E) with edge costswe ≥ 0, a root node r ∈ V ,
and k colors represented as vertex subsets Ci ⊆ V \ {r} for all i ∈ [k], that wish to send flow
to r. Find the minimum weight set of edges that we must install to ensure that each color Ci can
simultaneously send one unit of flow to r.

The single-sink nature of the problem suggests a natural cut-covering formulation, namely:

min
∑
e∈E

wexe s.t.∑
e∈δ(S)

xe ≥ f(S) ∀S ⊂ V \ {r}
(IP)

where δ(S) denotes the set of edges with exactly one endpoint in S, and

f(S) := max
i∈[k]
{|Ci ∩ S|} (4.1)

for all S ⊆ V \ {r}. Despite having exponentially many constraints, the LP-relaxation of (IP) can
be solved in polynomial-time because the separation problem reduces to performing k max-flow
computations. The main challenge is to round the resulting solution into an integer solution.

35

Rounding algorithms for the LP relaxation of (IP) have been investigated by many authors,
under certain assumptions of the function f(S). Prominent examples are some classes of 0/1-
functions (such as uncrossable functions), or integer-valued functions such as proper functions, or
weakly supermodular functions [70, 92]; however, these papers consider arbitrary cut requirements
rather than the single-sink connectivity requirements we study.

Our single-sink problem is a special case of a broader class of subadditive network design prob-
lems where the function f is allowed to be a general subadditive function. Despite their generality,
the single-sink network design problem for general subadditive functions can be approximated
within an O(log |V |) factor by using a tree drawn from the probabilistic tree decomposition of the
metric induced by G using the results of Fakcharoenphol, Rao, and Talwar [56], and installing the
required capacity on the tree edges. Hence, a natural direction is to consider special cases of such
subadditive cut requirement functions.

Our function f(S) defined in (4.1) is an interesting and important special case of subadditive
functions. It was introduced as XOS-functions (max-of-sum functions) in the context of com-
binatorial auctions by Lehman et al. [115]. Feige [59] proved that this function is equivalent to
fractionally-subadditive functions which are a strict generalization of submodular functions (hence
the title). These functions have been extensively studied in the context of learning theory and al-
gorithmic game theory [14, 26, 115]. Our work is an attempt to understand their behavior as
single-sink network design requirement functions.

f-SAND was first studied by Oriolo et al. [125] in the context of robust network design, where
the goal is to install minimum cost capacity on a network in order to satisfy a given set of (non-
simultaneous) traffic demands among terminal nodes. Each subset Ci can in fact be seen as a way
to specify a distinct traffic demand that the network would like to support. They observed that
f-SAND generalizes the Steiner tree problem: an instance of the Steiner tree problem with k + 1
terminals t1, . . . , tk+1 is equivalent to the f-SAND instance with r := tk+1 and Ci := {ti} for all
i ∈ [k]. This immediately shows that f-SAND is NP-Hard (in fact, APX-hard [39]) when k is part
of the input. The authors in [125] strengthened the hardness result by proving that f-SAND is NP-
Hard even if k is not part of the input, and in particular for k = 3 (if k = 1 the problem is trivially
solvable in polynomial-time by computing a shortest path tree rooted at r). From the positive
side, they observed that there is a trivial k-approximation algorithm, that relies on routing via
shortest paths, and an O(log | ∪i Ci|)-approximation algorithm using metric embeddings [56, 77].
The authors conclude their paper mentioning two open questions, namely whether the problem is
polynomial-time solvable for k = 2, and whether there exists an O(1)-approximation algorithm.

4.2 Related works
Network design problems where the goal is to build a minimum cost network in order to support
a given set of flow demands, have been extensively studied in the literature (we refer to the survey
[36]). There has been a huge amount of research focusing on the case the set of demands is de-
scribed via a polyhedron (see e.g. [24]). In this context a very popular model is the Virtual private
network [48, 63], for which many approximation results have been developed (see e.g. [73, 74, 76]
and the references therein). For the case where the set of demands is instead given as a (finite)

36

discrete list, the authors in [125] developed a constant factor approximation algorithm on ring net-
works, and proved that f-SAND is polynomial-time solvable on ring networks.

Regarding the formulation (IP), Goemans and Williamson [70] gave aO(log(fmax))-approximation
algorithm for solving (IP) whenever f(S) is an integer-valued proper function that can take val-
ues up to fmax, based on a primal-dual approach. Subsequently, Jain [92] improved this result
by giving a 2-approximation algorithm using iterative rounding of the LP-relaxation. Recently, a
strongly-polynomial time FPTAS to solve the LP-relaxation of (IP) with proper functions has been
given in [62].

4.3 Our results

In this chapter, we answer the first open question in [125] by showing that f-SAND is NP-Hard
for k = 2 via a reduction from SAT. We give a 3

2
-approximation algorithm for this case (k = 2).

This is the first improvement over the (trivial) k-approximation obtained using shortest paths for
any k. Our approximation algorithm is based on pairing terminals of different groups together,
and therefore reducing to a suitable minimum cost matching problem. While the idea behind the
algorithm is natural, its analysis requires a deeper understanding of the structure of the optimal
solution.

We also introduce an interesting variant of f-SAND, which we call the Latency-f-SAND prob-
lem, where the network built is restricted to being a path with the root r being one of the endpoints
(f-SAND-path). We show a O(log2 k log n)-approximation using a new reformulation of the prob-
lem that allows us to exploit techniques recently developed for latency problems [31].

While being a generalization of well-studied problems, f-SAND does not seem to admit an
easy O(1)-approximation via standard LP-rounding techniques for arbitrary values of k. We prove
some structural results that highlight the difficulty of the general problem. In particular, we show
a family of a instances providing a super-constant gap between an optimal f-SAND solution and
an optimal tree-solution, i.e., a solution whose support is a tree – this rules out many methods that
output a solution with a tree structure. The bulk of the construction was shown in [72] and we
amend it to our problem using a simple observation. Furthermore, we give some evidence that an
iterative rounding approach (as in Jain’s fundamental work [92]) is unlikely to work. This follows
by considering a special class of Kneser Graphs, where the LP seems to put low fractional weight
on each edge in an extreme point.

4.4 3/2-approximation for the two color case

The goal of this section is to give a 3
2
-approximation algorithm for SAND with two colors. We

remark that our algorithm bypasses the difficulties mentioned in the previous section. In particular,
the final output is not a tree.

37

4.4.1 Simplifying Assumptions.
We will refer to the two colors as green and blue, and let CG ⊂ V denote the set of green terminals,
and CB ⊂ V denote the set of blue terminals. Without loss of generality, we will assume that
|CG| = |CB|, i.e., the cardinality of green terminals is equal to the cardinality of blue terminals
(if not, we could easily add dummy nodes at distance 0 from the root). Furthermore, by replacing
each edge in the original graph with |CG| parallel edges of the same cost, we can assume that
in a feasible solution the capacity installed on each edge must be either 0 or 1. This means that
each edge is used by at most one terminal of CG (resp. CB) to carry flow to the root. Lastly, we
assume that every terminal in CG shares at least one edge with some terminal in CB in the optimal
solution.1

Let OPT denote an optimal solution to a given instance of SAND with two colors. We start by
developing some results on the structure of OPT, that will be crucial to analyze our approximation
algorithm later.

4.4.2 Understanding the structure of OPT
A feasible solution of a SAND instance consists of a (integer valued) capacity installation on the
edges that allows for a flow from the terminals to the root. Given a feasible solution, each terminal
will send its unit of flow to t on a single path. Let us call the collection of such paths a routing
associated with the feasible solution. The first important concept we need is the concept of splits.

Shared Edges and Splits.

Given a routing, for each terminal g ∈ CG (and b ∈ CB respectively) let Pg (Pb) denote the path
along which g (b) sends flow to the root; i.e. Pg := {g = x0, x1, . . . , x|Pg | = r}. We say that
an edge e is shared if the paths of two terminals of different color contain the edge. We say that
g ∈ CG and b ∈ CB are partners with respect to a shared edge e = uv, if their respective paths
use the edge e; i.e. e ∈ Pg ∩ Pb.
Definition 4.4.1 A split in the path Pg is a maximal set of consecutive edges of the path such that
g is partnered with some b on all the edges of this set.

If {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)} is a split in the path Pg = {g = x0, x1, . . . , x|Pg | =
r} for g ∈ CG, then there exists a unique terminal b ∈ CB such that Pb contains the edges
{(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)}, Pb does not contain the edge (xi−1, xi), and if xi+j 6=
r then Pb does not contain the edge (xi+j, xi+j+1). By our assumptions, the terminal b is unique as
each edge is used by at most one terminal of each color.

Since the flow is going from a terminal g to r, the path Pg naturally induces an orientation on
its edges given by the direction of the flow, even though the edges are undirected. Of course, the
paths of different terminals could potentially induce opposite orientations on (some of) the shared
edges (see Figure 4.1).

1We can easily ensure this e.g. by modifying our instance as follows: we add a dummy node r′ which is only
connected to r with |CG| parallel edges of 0 cost, and we make r′ be the new root. In this way, all terminals will use
one copy of the edge (r, r′).

38

r

b2

b1

g2

g1

g1 − b2 g2 − b1

g1 − b1

b2

b1

g2

g1

Figure 4.1: The above left graph (where each undirected edge is supposed to have unit capacity)
shows an optimal routing. Both b1 and g2 (resp. b2 and g1) send flow to r going counterclockwise
(resp. clockwise) on the edges of the cycle. The path Pb1 contains two splits: the first is wide (b1 is
partnered with g1), the second is thin (b1 is partnered with g2). The graph on the right is the Split
Graph for the optimal solution on the left. The pair of vertices g1, b1 and the pair of vertices g2, b2

constitute the fresh pairs.

Definition 4.4.2 A split is wide, if the paths of the two terminals that are partners on the edges of
the split induce opposite orientations on the edges. A split is thin, if the paths of the two terminals
that are partners on the edges of the split induce the same orientation on the edges.

The above notions are well defined for any routing with respect to a feasible solution. Now,
we focus on the structure of an optimal routing, i.e., a routing with respect to an optimal solution.
For the rest of this section, we let {Pg}g∈CG and {Pb}b∈CB be an optimal routing. The following
lemma is immediate.
Lemma 4.4.3 Let {(xi, xi+1), (xi+1, xi+2), . . . , (xi+j−1, xi+j)} be a split in the path Pg (for some
g ∈ CG). The edges of the split form a shortest path from xi to xi+j .
Proof: If not, we could replace this set of edges with the set of edges of a shortest path from xi
to xi+j , in both Pg and Pb, where b is the partner of g on the split. Therefore, we can install one
unit of capacity on these edges, and remove the unit of capacity from the edges of the split. We get
another feasible solution with smaller cost, a contradiction to the optimality of our initial solution.
�

Split Graph.

A consequence of Lemma 4.4.3 is each split is entirely characterized by the endpoints of the split
and the terminals that share them. We denote each split by a tuple (u, v, g, b) which states that
there is a shortest path between u and v whose edges are shared by g and b.

Let § denote the set of all splits in the optimal routing. We construct a directed graph G§

whose vertex set corresponds to V = § ∪ CG ∪ CB (i.e. the vertex set contains one vertex for

39

each split and one vertex for each terminal). For each g ∈ CG, we place a directed green edge
going between two consecutive splits in Pg. Specifically, if {(xi, xi+1), . . . , (xi+j−1, xi+j)} and
{(xi′ , xi′+1), . . . , (xi′+j′−1, xi′+j′)} are two splits in Pg with i < i′, we say that they are consecutive
if the subpath from xi+j to xi′ does not contain any split. In this case, we place a directed edge inG§

whose tail is the vertex corresponding to the first split, and whose head is the vertex corresponding
to the second one. Similarly, for each b ∈ CB we place a directed blue edge between vertices of
consecutive splits that appear in Pb. Furthermore, for each g ∈ CG (resp. b ∈ CB) we place a
directed green (resp. blue) edge from g (resp. b) to the vertex corresponding to the first split on the
path Pg (resp. Pb), if any. This graph is denoted as the Split Graph (see Figure 4.1).

Each split indicates that two terminals of different colors are sharing the capacity on a set of
edges in an optimal routing. Hence, each split-vertex in G§ has indegree 2 (in particular, one
edge of each color). Furthermore, each split-vertex in G§ has outdegree either 0 or 2; if it has
two outgoing edges, one is green and one is blue. Similarly, each terminal has indegree 0, and
outdegree 1 (as we assume that each terminal shares at least one edge).

Fresh Pairs.

We need one additional definition before proceeding to the algorithm.

Definition 4.4.4 An §-alternating sequence is a sequence of vertices of the Split Graph {v, s1, s2, . . . , sh, w}
with h ≥ 1, that satisfies the following:

(i) (v, s1) and (w, sh) are directed edges in G§ and v, w are terminals of different color.
(ii) For all even i ≥ 2, (si, si−1) and (si, si+1) are both directed edges in G§ with opposite

colors.
We call the path obtained by taking the edges in (i) and (ii) an §-alternating path. We call (v, w)
a fresh pair if they are the endpoints of an §-alternating path.
By definition, in an §-alternating sequence the vertices s1, . . . , sh are all split-vertices, and h is
odd. We remark here that an §-alternating path is not a directed path. (See again Figure 4.1).

Lemma 4.4.5 We can find a set of edge-disjoint §-alternating paths in the Split Graph such that
each terminal is the endpoint of exactly one path in this set.

Proof: We construct the desired set as follows. For each vertex g ∈ CG, there is a unique outgoing
edge to a split vertex s ∈ § (as we assume every terminal participates in a split). Since each split-
vertex has indegree 2, s has another ingoing edge coming from a different vertex w. If w ∈ CB,
then (v, w) is a fresh pair and we have found an §-alternating sequence {v, s, w}. If w is a split-
vertex, then it has another outgoing edge to a different split-vertex s′, which in its turn has another
incoming edge from a different vertex w′. We continue to build an alternating sequence (and a
corresponding alternating path) in this way until it terminates in a terminal. Since the path is
of even length and the colors alternate, we can conclude that this will terminate in a terminal of
opposite color. We remove the edges of this path from the Split Graph, and iterate the process.
Each terminal will belong to exactly one §-alternating path, as it has outdegree exactly 1, and all
the paths are edge-disjoint, proving the lemma. �

40

4.4.3 The Algorithm
We are now ready to present our matching algorithm. The algorithm has two steps. First, construct
a complete bipartite graph H with the bipartitions CG and CB, where the weight on the edge
(g, b) ∈ CG×CB is equal to the cost of the Steiner tree in G connecting g, b and the root. Note that
the graph H can be computed in polynomial time, since a Steiner tree on 3 vertices can be easily
computed in polynomial time.

Second, find a minimum-weight perfect matching M in H, and for each edge (g, b) ∈ M
install (cumulatively) one unit of capacity on each edge of G that is in the Steiner tree associated
to the edge (g, b) ∈ M. The capacity installation output by this procedure is a feasible solution to
f-SAND, and has total cost equal to the weight ofM.
Lemma 4.4.6 The matching algorithm is a 3

2
-approximation algorithm.

Proof: First, we partitionOPT into four parts; let wb (and wg respectively) be the cost of the edges
which are used only by blue (green respectively) terminals in OPT , and let wt (wd) be the cost
of edges in thin (wide) splits in OPT . Thus, w(OPT) = wb + wg + wt + wd. By Lemma 4.4.5,
we can extract from the Split Graph associated to OPT a set of §-alternating paths such that each
terminal is contained in exactly one fresh pair. Consider the matchingM1 determined by the set
of fresh pairs found by the aforementioned procedure. We will now bound the weight ofM1.
Claim 4.4.7 The weight of the matching formed by connecting the fresh pairs is at most

3

2
· wb +

3

2
· wg + 1 · wt + 3 · wd.

Proof: Let (g, b) be a fresh pair and (g, s1, . . . , sh, b) be the corresponding §-alternating sequence.
The edges of the associated §-alternating path naturally correspond to paths in G composed by
non-shared edges (that connect either the endpoints of two different splits, or one terminal and
one endpoint of a split). These paths together with the edges of the wide splits in the sequence,
naturally yield a path P (b, g) in G connecting g and b.

If we do this for all fresh pairs, we obtain that the total cost of the paths P (b, g) is upper bounded
by 1 · wb + 1 · wg + 2 · wd. The reason for having a coefficient of 2 in front of wd is because the
§-alternating paths of Lemma 4.4.5 are edge-disjoint, but not necessarily vertex-disjoint: however,
since each split-vertex has at most 4 edges incident into it, it can be part of at most 2 §-alternating
paths.

Using the aforementioned connection, we can move all terminals in CG to their partners in CB.
Subsequently, we connect them to the root using the Pb for all b ∈ CB. This connection to the
root will incur a cost of 1 · wb + 1 · wd + 1 · wt. Combining this together, we get a total cost of
2 ·wb + 1 ·wg + 1 ·wt + 3 ·wd. Analogously, if we connect the partners in CG to the root using the
the path Pg for all g ∈ CG, we will incur a total cost of 1 · wb + 2 · wg + 1 · wt + 3 · wd. Since the
sum of the cost of the Steiner trees connecting the fresh pairs to the root is no more than either of
these two values, we can bound the weight ofM1 by their average:

3

2
· wb +

3

2
· wg + 1 · wt + 3 · wd.

�

41

Claim 4.4.8 There exists a matching inH of weight at most 1 · wb + 1 · wg + 2 · wt.
Proof: Consider the flow routed on the optimal paths by the set of all terminals CG ∪ CB. We
modify the flow (and the corresponding routing) as follows. Whenever two terminals traverse a
wide-split, re-route the flows so as to not use the wide-split. This is always possible as the two
terminals traverse these edges in opposite directions (by definition of wide splits). This re-routing
ensures that all the edges of wide-splits are not used anymore in the resulting paths. However,
thin-splits which contained terminals of different colors passing in the same direction, might now
contain two terminals of the same color passing through the edges. This means that these edges
will be used twice (or must have twice the capacity installed). All other edges do not need to have
their capacity changed. Thus, the resulting flow can be associated with a feasible solution of cost
at most 1 · wb + 1 · wg + 2 · wt + 0 · wd. This flow corresponds to all vertices directly connecting
to the root as any shared edge is counted twice. Hence, this is a bound on any matching inH. �
The average weight of the above matchings is an upper-bound on the minimum weight of a match-
ing inH. Hence, the weight ofM is at most

1

2
·
(3

2
· wb +

3

2
· wg + 1 · wt + 3 · wd

)
+

1

2
·
(
1 · wb + 1 · wg + 2 · wt + 0 · wd

)
≤ 3

2
·
(
wb + wg + wt + wd)

Therefore, the matching algorithm is 3
2
-approximation algorithm. �

4.5 Hardness for two colors
We prove that the SAND problem is NP-hard even with just two colors.
Theorem 4.5.1 The SAND problem with 2 colors is NP-hard.
Proof: We use a reduction from a variant of the Satisfiability (SAT) problem, where each variable
can appear in at most 3 clauses, that is known to be NP-hard [141]. Formally, in a SAT instance
we are given m clauses K1, . . . , Km, and p variables x1, . . . , xp. Each clause Kj is a disjunction
of some literals, where a literal is either a variable xi or its negation x̄i, for some i in 1, . . . , p.
The goal is to find a truth assignment for the variables that satisfies all clauses, where a clause is
satisfied if at least one of its literals takes value true. In the instances under consideration, each
variable xi appears in at most 3 clauses, either as a literal xi, or as a literal x̄i. It is not difficult to
see that, without loss of generality, we can assume that every variable appears in exactly 3 clauses.
Furthermore, by possibly replacing all occurrences of xj with x̄j and vice versa, we can assume
that each variable xi appears in exactly one clause in its negated form (x̄i).

Given such a SAT instance, we define an instance of SAND as follows (see Fig. 4.2). We
construct a graph G = (V,E) by introducing one sink node r, one node kj for each clause Kj , and
7 distinct nodes y`i , (` = 1, . . . , 7), for each variable xi. That is,

V := {r} ∪ {k1, . . . , km} ∪

{
p⋃
i=1

{y1
i , y

2
i , y

3
i , y

4
i , y

5
i , y

6
i , y

7
i }

}

42

Figure 4.2: The picture shows the subgraph introduced for every variable xi. Bold edges have cost
2, solid edges have cost 1, and dashed edges have cost M . Black circles indicate nodes in C1, and
grey circles indicate nodes in C2. Nodes in C1 ∩ C2 are colored half-black and half-grey.

The set of edges E is the disjoint union of three different sets, E := E1 ∪ E2 ∪ E3, where:

E1 :=

p⋃
i=1

{
4⋃
`=1

{r, y2`−1
i }

}
; E2 :=

p⋃
i=1

{
6⋃
`=1

{y`i , y`+1
i }

}
.

To define the set E3, we need to introduce some more notation. For a variable xi, we let i1 and
i2 be the two indices of the clauses containing the literal xi, and we let i3 be the index of the clause
containing the literal x̄i. We then have

E3 :=

p⋃
i=1

{
{y2

i , ki1}, {y4
i , ki3}, {y6

i , ki2}
}
.

We assign cost 2 to the edges in E1, unit cost to the edges in E2, and a big cost M >> 0 to the
edges of E3 (in particular, M > 2m+ 8p). Finally, we let the color classes2 be defined as:

C1 := {k1, . . . , km} ∪

{
p⋃
i=1

{y1
i , y

5
i }

}
; C2 := {k1, . . . , km} ∪

{
p⋃
i=1

{y3
i , y

7
i }

}
.

We claim that there exists an optimal solution to the SAND instance of cost at most (M +
2)m+ 8p if and only if there is a truth assignment satisfying all clauses for the SAT instance.

4.5.1 Completeness
First, let us assume that the SAT instance is satisfiable. For each clause Kj , we select one literal
that is set to true in the truth assignment. We define the paths for our terminal nodes in C1 as
follows. For each node y ∈

⋃p
i=1{y1

i , y
5
i }, we let the flow travel from y to r along the edge {y, r}.

For each kj , we let the flow travel to r on a path P j
1 , that we define based on the literal selected

for Kj . Specifically, let xi be the variable corresponding to the literal selected for the clause Kj .
Then:

2We here have C1 ∩ C2 6= ∅. However, the reduction can be easily modified to prove hardness of instances where
C1 ∩ C2 = ∅, by simply adding for all j two nodes k1j , k

2
j adjacent to kj with an edge of zero cost, and by letting k1j

(resp. k2j) be in C1 (resp. C2) instead of kj .

43

• if Kj = Ki1 , we let P j
1 be the path with nodes {kj, y2

i , y
3
i , r},

• if Kj = Ki2 , we let P j
1 be the path with nodes {kj, y6

i , y
7
i , r},

• if Kj = Ki3 , we let P j
1 be the path with nodes {kj, y4

i , y
3
i , r}.

We define the paths for our terminal nodes in C2 similarly. For each node y ∈
⋃p
i=1{y3

i , y
7
i }, we let

the flow travel from y to r along the edge {y, r}. For each kj , we let the flow travel to r on a path
P j

2 defined as follows. Let xi be the variable corresponding to the literal selected for the clause Kj .
Then:
• if Kj = Ki1 , we let P j

2 be the path with nodes {kj, y2
i , y

1
i , r},

• if Kj = Ki2 , we let P j
2 be the path with nodes {kj, y6

i , y
5
i , r},

• if Kj = Ki3 , we let P j
2 be the path with nodes {kj, y4

i , y
5
i , r}.

Note that the paths of terminals belonging to the same color set do not share edges. In fact,
by construction, the paths of two terminals in C1 could possibly share an edge only if for two
distinct clauses Kj 6= Kj′ we selected a literal corresponding to the same variable xi, and we have
Kj = Ki1 and Kj′ = Ki3 , since in this case the paths P j

1 and P j′

1 would share the edge {y3
i , r}.

However, selecting xi for Ki1 means xi takes value true in the truth assignment, while selecting
xi for Ki3 means xi takes value false in the truth assignment, which is clearly a contradiction. A
similar observation applies to paths of terminals inC2. It follows that installing one unit of capacity
on every edge that appears in (at least) one selected path is enough to support the flow of both color
sets. The total installation cost is exactly 8p+ (M + 2)m.

4.5.2 Soundness
Suppose there is an optimal solution to the SAND instance of cost at most (M + 2)m+ 8p. Let S
denote such solution. Since the support of any feasible solution has to include at least one distinct
edge of cost M for each node kj , and M > 2m+ 8p, it follows that S has exactly m edges of cost
M in its support, each with one unit of capacity installed. Hence, if we denote by P j

1 (resp. P j
2)

the path used by kj to send flow to r with terminals in C1 (resp. C2), we have the following fact.
Fact 1. For each j = 1, . . . ,m, the paths P j

1 and P j
2 from kj to r share the first edge.

We use this insight to construct a truth assignment for the SAT variables. Specifically, let y`i
be the endpoint of the first edge of P j

1 and P j
2 . We set xi to true if y`i = y2

i or if y`i = y6
i , and we

set xi to false if y`i = y4
i . We repeat this for all clauses j = 1, . . . ,m, and we assign an arbitrary

truth value to all remaining variables, if any. In order to finish the proof, we have to show that
this assignment is consistent for all i = 1, . . . , p. To this aim, let us say that a variable xi is in
conflict if there is a node kj sending flow to r on a path whose first edge has endpoint y4

i , and there
is node kj′ 6= kj sending flow to r on a path whose first edge has endpoint y2

i or y6
i . Note that our

assignment procedure is consistent and yields indeed a valid truth assignment if and only if there
is no variable in conflict.

We now make a few claims on the structure of S, that will be useful to show that no variable
can be in conflict. Next fact follows from basic flow theory.
Fact 2. Without loss of generality, we can assume that the flow sent from terminals in C1 (resp.
C2) to r, does not induce directed cycles.

44

Claim 4.5.2 Without loss of generality, we can assume that every terminal sends flow to r on a
path that contains exactly one node y ∈

⋃p
i=1{y1

i , y
3
i , y

5
i , y

7
i }.

We defer the proof of this claim which is central to the remaining proof to the end. Let Gi be the
subgraph of G induced by the nodes {r, y1

i , . . . , y
7
i }, and let χi be the total cost of the capacity that

S installs on the subgraph Gi. Note that, by Fact 1, the cost of S is m ·M +
∑m

i=1 χi. We will use
Claim 1 to give a bound on the value χi. To this aim, let ni be the number of nodes kj whose path
P j

1 contains edges of Gi. Note that 0 ≤ ni ≤ 3, and each kj contributes to exactly one ni, for some
i = 1, . . . , p.
Claim 4.5.3 We have χi ≥ 8 + 2ni, with the inequality being strict if the variable xi is in conflict.

Claim 4.5.3 finishes our proof, since it implies that the cost of S is at least

m ·M +

p∑
i=1

χi ≥ m ·M +

p∑
i=1

(8 + 2ni) = m ·M + 8p+ 2m,

with the inequality being tight if and only if there is no variable in conflict. �

4.6 Latency SAND
As described in Section ??, there is a Ω(log n) gap between the tree and graph version of f-SAND.
This naturally raises the question of approximating f-SAND when the solution must be restricted
to different topologies. In this section, we consider the f-SAND when the output topology must be
a path. Since this variant of f-SANDis not easy to solve on a tree, it is not clear how to solve it
using tree metrics.
Definition 4.6.1 In the latency-f-SAND problem, we are given an instance of f-SAND, but require
the output to be a path with the root r as one of its endpoints. Our goal is output a minimum cost
path, where the cost of an edge is we· (load on e). The load on an edge is the maximum number of
nodes of one color it separates from the root.

We assume that the lengths are integers and polynomially bounded in the input and give a time-
indexed length formulation for this problem. This linear programming formulation was introduced
by Chakrabarty and Swamy [31] for orienteering problems.

The Linear Programming Formulation for Latency-f-SAND

min
∑
j,t

t · xj,t (LPbP)

s.t.
∑
t

xj,t ≥ 1 ∀j ∈ [m] (4.2)∑
P∈Pb·t

zP,t ≤ 1 ∀t ∈ [T] (4.3)∑
P∈Pb·t:j∈P

zP,t ≥
∑
t′≤t

xj,t′ ∀j ∈ [m], t ∈ [T] (4.4)

x, z ≥ 0

45

We assume without loss of generality, that |Ci| = m for all i ∈ [k]. Pt denotes the set of paths
of weight at most t starting from the root. Since the lengths are polynomially bounded, we can
contain a variable for each possible length (we denote T to be the maximum possible length). We
use j ∈ Pt to indicate that the path Pt contains j terminals of each color. The variable xj,t indicates
that we have seen j terminals of each color by time t and zP,t indicates that we use path P to visit
the terminals at time t.

Lemma 4.6.2 The linear program LPbP is a relaxation of Latency-f-SANDfor b ≥ 1.

Proof: We show that the contraints and objective are valid for any feasible solution to Latency-f-
SAND.

• Constraint 4.2 ensures that j terminals of each color are covered at some given time period,
for every j ∈ [m].

• Constraint 4.3 ensures that only one path is (fractionally) picked for each time period t.
• Constraint 4.4 indicates that we must have picked a path P that covers j terminals by time t

if
∑

t′≤t xj,t′ = 1.
• The objective function correctly captures the cost of the path. For an integer solution, xj,t =

1 indicates that time t is the first time j terminals of each color are present in the path. Thus
the objective counts the prefix length t1 corresponding to where x1,t1 = 1 in all m of the
terms, the next prefix of length t2− t1 in m− 1 of them and so on. This accurately accounts
for the loads in these segments of the path according to the objective function in f-SAND.
Finally, b ≥ 1 only allows the paths to be of lengths longer by a factor of b so keeps the
optimal solution feasible.

�

First, we can relax the above LP by replacing Pt with Tt which is the set of all trees of size at
most t. This is a relaxation as Pt ⊆ Tt. Lemma 4.6.3, shows that we can round LPbT to get a O(b)
approximation to latency-f-SAND.

Lemma 4.6.3 Given a fractional solution (x, z) to LPbT , we can round it to a solution to latency-
f-SAND with cost at most O(b) times the cost of LPbT .

We defer the proof to the appendix due to space constraints but briefly sketch the argument.
Roughly, we sample the trees at geometric intervals and “eulerify” them to produce a solution
whose cost is not too much larger than the LP-objective.

Despite, being able to round the LP, we cannot hope to solve it effeciently due to the exponential
number of variables in the primal. We will use the dual to obtain a solution to a relaxed version of

46

the primal.

max
∑
j

αj −
∑
t

βt (DualbP)

s.t. αj ≤ t+
∑
t′≥t

θj,t′ ∀j, t (4.5)∑
j∈P

θj,t ≤ βt ∀t, P ∈ Pbt (4.6)

α, β, θ ≥ 0. (4.7)

Following [31] it is suffient that an “approximate separation oracle” in the sense of Lemma 4.6.4
is sufficient to compute an optimal solution to LPbT .

Lemma 4.6.4 Given a solution (α, β, θ), we can show that either (α, β, θ) is a solution to Dual1T
or find a violated inequality for (α, β, θ) for DualbT for b = O(log2 k log n).

Once again, we defer the proof to the appendix, but sketch the argument. To efficiently separate,
we observe that constraint 4.6 can be recast as a covering Steiner tree problem. Using approxima-
tion algorithms for this problem, we find a violated inequality for a (stronger) constraint. This
results in the “approximate separation oracle”.

Theorem 4.6.5 There exists a O(log2 k log n) approximation to the Latency-SAND problem.

Proof: Combining Lemma 3.2 of [31] with Lemma 4.6.4, we can now compute an ε-additive
optimal solution to LPbT for b = O(log2 k log n). Using Lemma 4.6.3, we then achieve an O(b)
approximation for our problem. �

4.7 Open Problems
The following is the main open question in this section:
Problem 4.7.1 Does there exist an O(1)-approximation algorithm for the f-SAND problem.
Although standard LP-based approaches seem to fail in providing a constant factor approximation,
the worst known integrality gap example we are aware of yields a (trivial) lower bound of 2 on the
integrality gap of (IP) for f-SAND. A related open question is if there is an instance of f-SAND
for which the integrality gap of (IP) is greater than 2. Subsequent to the work mentioned above,
”Mucha and Marcin” [124] in ongoing work showed an approximation ratio of 4/3 for f-SAND
when k = 2 and a 2-approx for k = 3.

47

48

Chapter 5

Online Bin Packing with Recourse

5.1 Introduction

An instance I of the BIN PACKING problem consists of a list of n items of sizes s1, s2, . . . , sn ∈
[0, 1]. The objective of a bin packing algorithm is to pack the items of I into a small number
of unit-sized bins. Let OPT (I) be the minimum number of unit-sized bins needed to pack all
these items. This classic NP-hard optimization problem has been studied since the 1950s, with
thousands of papers addressing this problem, variations and generalizations; see [86, Chapter 2]
for an early survey, and [41] for a more up-to-date one. Much of this work (e.g. [17, 84, 98,
114, 127, 128, 131, 137, 140, 142]), starting with the seminal work of Ullman [136], studies the
online setting, where items arrive sequentially and must be packed into bins immediately and
irrevocably. However, the online problem is strictly harder than the offline version, due to the
lack of information about the future: while the offline setting can be approximated to within a
small additive term of O(logOPT) (see, e.g. [85]), in the online setting there is at least a 1.5403-
multiplicative gap between the algorithm and OPT in the worst case, even as OPT →∞ [17].

Given the wide applicability of the online problem, researchers have considered the problem
where a “small” number of repackings is allowed. I.e., how well can we perform if we allow items
to be moved between bins when new items arrive and old ones depart? Clearly, some repacking is
necessary; to make this question non-trivial, we demand bounded “recourse”, i.e., items should be
moved sparingly. Formally, a fully-dynamic BIN PACKING algorithm maintains at every time t, a
feasible solution to the BIN PACKING instance It given by items inserted and not yet deleted until
time t. Every item i has a size si ∈ [0, 1], and a movement cost ci which the algorithm pays every
time item i is moved between bins.

Definition 5.1.1 A fully-dynamic algorithm A has (i) an asymptotic competitive ratio (a.c.r) α,
(ii) additive term a and (iii) recourse β, if at each time t it packs the instance It using at most
α ·OPT (It) + a bins, with a independent of OPT (It), while the total movement cost until time t
is at most β ·

∑t
i=1 ci. If at each time t algorithm A incurs at most β · ct movement cost, where ct

is the cost of the element added or deleted at time t, we say algorithm A has worst case recourse
β, otherwise we say it has amortized recourse β.

The main goal of this chapter is to understand this question.

49

Problem 5.1.2 What is the optimal trade-offs between having low asymptotic competitive ratios
(a.c.r), additive terms, and recourse?

5.2 Related Works

Gambosi et al. [65, 66] were the first to study dynamic BIN PACKING algorithms. They gave a
4/3-a.c.r algorithm for the insertion-only setting which only moves every item a constant number
of times throughout the algorithm’s run, which in our terminology translates to constant amor-
tized recourse for general movement costs. For unit movement costs, Ivković and Lloyd [91] and
Balogh et al. [16, 18] gave lower bounds of 4/3 and 1.3871 on the a.c.r of algorithms with constant
recourse, respectively; Balogh et al. [18] also presented an algorithm with a.c.r tending to 3/2 as
the worst-case number of movements increases to infinity. In 2009, following Sanders et al. [129]
who studied makespan minimization with bounded recourse, motivated by questions in sensitivity
analysis, Epstein et al. [52] re-introduced the dynamic BIN PACKING problem for the case where
the movement cost ci of each item equals its size si (the weight cost setting).1 They showed that
bounded (though exponential in ε−1) recourse suffices to maintain a solution with a.c.r (1 + ε).
This was improved by Jansen and Klein [95] who showed that for insertion-only algorithms, a
polynomial dependence on ε−1 suffices; Berndt et al. [25] showed the same for fully-dynamic al-
gorithms. They further showed that any (1 + ε) a.c.r algorithm must have worst-case recourse of
Ω(ε−1). While these give strong, nearly-tight results in the case of weight costs cj = sj , the unit
costs ci = 1 and general costs cases are not so well understood.

5.3 Our Results

We fully characterize the recourse to asymptotic competitive ratio trade-off for fully-dynamic BIN

PACKING under general movement costs, unit movement costs and weight costs. Our results are
summarized in the following five theorems. In all these results, we use the term online BIN PACK-
ING to refer to the classical insertion-only model without any repacking, and fully-dynamic BIN

PACKING (with recourse) to refer to the model with both insertions and deletions where we can
repack items.

General Costs

The results of [25, 52, 95] show that in the weight cost model a little recourse can circumvent the
negative effects of online arrivals, and allow for arbitrarily good a.c.r. Does such a claim hold even
for general costs? Our first result shows that even allowing for repacking, the fully-dynamic BIN

PACKING problem is no easier than the arrival-only online problem (with no repacking).

1Some work in this area uses the term migration factor instead of recourse in the setting of weight movement cost;
we use the term recourse for brevity, and to emphasize the broader set of movement costs considered here.

50

Theorem 5.3.1 (Fully Dynamic as Hard as Online) Any fully-dynamic BIN PACKING algorithm
with bounded recourse under general movement costs has asymptotic competitive ratio at least as
high as that of any online BIN PACKING algorithm. Given current bounds, this is at least 1.54037.

Now the concern is: since elements can both arrive and depart, is it conceivable that the fully-
dynamic model is harder than the online one, even allowing for recourse? We show this is likely
not the case, as we can almost match the a.c.r of the current-best algorithm for online BIN PACKING.

Theorem 5.3.2 (Fully Dynamic as Easy as Online) Any algorithm in the Super Harmonic fam-
ily of algorithms can be implemented in the fully-dynamic setting with constant recourse under
general movement costs, yielding the same a.c.r. This implies an algorithm with a.c.r of 1.58889
using [131].

The current best online BIN PACKING algorithm, [84], is not from the Super Harmonic family,
but is closely related to them. It has an a.c.r of 1.5815, so our results for fully-dynamic BIN

PACKING are within a hair’s width of the best bounds known for online BIN PACKING.

Unit Costs

We now consider the most natural of all movement costs, that of unit costs; i.e., ci = 1 for all items
i. For this model we give tight upper and lower bounds. Let α = 1− 1

W−1(−2/e3)+1
≈ 1.3871 (here

W−1 is the lower real branch of the Lambert W -function [43]). Balogh et al. [16] showed α is
a lower bound on the a.c.r of all fully-dynamic BIN PACKING algorithms with constant recourse.
We present a simpler proof of this lower bound, and show that surpassing this a.c.r requires either
polynomial additive term or recourse (or both). Moreover, we present an algorithm proving α is
tight for this problem.

Theorem 5.3.3 (Unit Costs Tight Bounds) For any ε > 0, there exists a fully-dynamic BIN PACK-
ING algorithm with a.c.r (α+ ε), additive term O(ε−2) and amortized recourse O(ε−2) under unit
movement costs. Conversely, for any fully-dynamic BIN PACKING algorithm with a.c.r (α− ε), the
product of the additive term and the amortized recourse cost must be Ω(ε4 ·n) under unit movement
costs.

These complementary results give us a sharp threshold on the a.c.r of any algorithm for the
unit costs model. This is the technical heart of the paper: we show both upper and lower bounds
using linear programming techniques. We give a linear program that completely captures the
performance of the algorithm. Indeed, we first use this LP as a gap-revealing LP, to prove that a
certain family of instances give an a.c.r of at least ≈ α. Then we use it as a factor-revealing LP to
show that our algorithm achieves an a.c.r at most ≈ α.

Weight Costs

Finally, we give an extension of the already strong results known for the weight cost model. We
show that the lower bound known in the worst-case recourse model extends to the amortized model
as well, for which it is tight.

Theorem 5.3.4 (Weight Costs Tight Bounds) For any ε > 0, there exists a (1 + ε)-a.c.r algo-
rithm with constant additive term and O(ε−1) amortized recourse under weight movement costs.

51

Conversely, there exist infinitely many ε > 0 such that any (1 + ε)-a.c.r algorithm requires
Ω(ε−1) amortized recourse under weight movement costs.

Note that the hardness result of the last theorem was only known for worst-case recourse ([25]);
this previous lower bound consists of a hard instance which effectively disallowed any recourse,
while lower bounds against amortized recourse can of course not do so. In the context of sensi-
tivity analysis, our lower bound shows that in order to maintain a near-optimal, i.e. a (1 + ε)-
asymptotically competitive solution at least Ω(ε−1) volume times the volume of items added and
removed must be moved, even in an amortized sense.

5.4 Unit Movement Costs

We consider the natural unit movement costs model. First, we show that an a.c.r better than α =
1− 1

W−1(−2/e3)+1
≈ 1.3871 implies either polynomial additive term or recourse. Next, we give tight

(α + ε)-a.c.r algorithms, with both additive term and recourse polynomial in ε−1. Our key idea is
to use an LP that acts both as a gap-revealing LP for a lower bound, and also as a factor-revealing
LP (as well as an inspiration) for our algorithm.

5.4.1 Impossibility results

Alternating between two instances, where both have 2n − 4 items of size 1/n and one instance
also has 4 items of size 1/2 + 1/2n, we get that any

(
3
2
− ε
)
-competitive online bin packing

algorithm must have Ω(n) recourse. However, this only rules out algorithms with a zero additive
term. Balogh et al. [16] showed that any O(1)-recourse algorithm (under unit movement costs)
with o(n) additive term must have a.c.r at least α ≈ 1.3871. We strengthen both this impossibility
result by showing the need for a large additive term or recourse to achieve any a.c.r below α.
Specifically, arbitrarily small polynomial additive terms imply near-linear recourse. Our proof is
shorter and simpler than in [16]. As an added benefit, the LP we use to bound the competitive ratio
will inspire our algorithm in the next section.

Theorem 5.4.1 (Unit Costs: Lower Bound) For any ε > 0 and 1
2
> δ > 0, for any algorithm A

with a.c.r (α− ε) with additive term o(ε · nδ), there exists an dynamic bin packing input with n
items on which A uses recourse at least Ω(ε2 · n1−δ) under unit movement cost.

The Instances: The set of instances is the a natural one, and was also considered by [16]. Let
1/2 > δ > 0, c = 1/δ−1, and letB ≥ 1/ε be a large integer. Our hard instances consist of small items
of size 1/Bc, and large items of size ` for all sizes ` ∈ Sε , {` = 1/2 + i · ε | i ∈ N>0, ` ≤ 1/α}.
Specifically, input Is consists of bBc+1c small items, and for each ` ∈ Sε, the input I` consists of
bBc+1c small items followed by b B

1−`c size-` items. The optimal bin packings for Is and I` require
precisely OPT (Is) = B and OPT (I`) = d B

1−`e bins respectively. Consider any fully-dynamic
bin packing algorithm A with limited recourse and bounded additive term. When faced with input
Is, algorithm A needs to distribute the small items in the available bins almost uniformly. And
if this input is extended to I` for some ` ∈ Sε, algorithm A needs to move many small items to

52

accommodate these large items (or else use many new bins). Since A does not know the value of
t beforehand, it cannot “prepare” simultaneously for all large sizes ` ∈ Sε.

t

bB/(1− t)c

Figure 5.1: A packing of instance I`. The
`-sized items (in yellow) are packed “on top”
of the small items (in grey).

As a warm-up we show that the linear pro-
gram (LPε) below gives a lower bound on the abso-
lute competitive ratio αε of any algorithm A with no
recourse. Indeed, instantiate the variables as follows.
On input Is, let Nx be the number of bins in which
A keeps free space in the range [x, x + ε) for each
x ∈ {0} ∪ Sε. Hence the total volume packed is
at most N0 +

∑
x∈Sε(1 − x) · Nx. This must be at

least V ol(Is) ≥ B−1/Bc, implying constraint (Volε).
Moreover, as OPT (Is) = B, the αε-competitiveness
of A implies constraint (smallε). Now if instance Is is
extended to I`, since A moves no items, these `-sized
items are placed either in bins counted by Nx for x ≥ ` or in new bins. Since A is αε-competitive
and OPT (I`) ≤ d B

1−`e we get constraint (CRε). Hence the optimal value of (LPε) is a valid lower
bound on the competitive ratio αε.

minimize αε (LPε)
s.t. N0 +

∑
x∈Sε(1− x) ·Nx ≥ B − 1/Bc (Volε)

N0 +
∑

x∈Sε Nx ≤ αε ·B (smallε)

N0 +
∑

x∈Sε,x≤`−εNx +
⌊

B
1−`

⌋
≤ αε ·

⌈
B

1−`

⌉
∀` ∈ Sε (CRε)

Nx ≥ 0

The claimed lower bound on the a.c.r of recourse-less algorithms follows from Lemma 5.4.2.

Lemma 5.4.2 The optimal value α?ε of (LPε) satisfies α?ε ∈ [α−O(ε), α +O(ε)].

To extend the above argument to the fully-dynamic case, we observe that any solution to (LPε)
defined by packing of Is as above must satisfy some constraint (CRε) for some ` ∈ Sε with
equality, implying a competitive ratio of at least αε. Now, to beat this bound, a fully-dynamic
algorithm must move at least ε volume of small items from bins which originally had less than
x− ε free space. As small items have size 1/Bc = 1/nδ, this implies that Ω(εnδ) small items must
be moved for every bin affected by such movement. This argument yields Lemma 5.4.3, which
together with Lemma 5.4.2 implies Theorem 5.4.1.

Lemma 5.4.3 For all ε > 0 and 1
2
> δ > 0, if α?ε is the optimal value of (LPε), then any fully-

dynamic bin packing algorithm A with a.c.r α?ε − ε and additive term o(ε2 · nδ) has recourse
Ω(ε2 · n1−δ) under unit movement costs.

5.4.2 Matching Algorithmic Results
As mentioned earlier, LPε also guides our algorithm. For the rest of this section, items smaller than
ε are called small, and the rest are large. Items of size si > 1/2 are huge.

53

To begin, imagine a total of B volume of small items come first, followed by large items.
Inspired by the LP analysis above, we pack the small items such that an N`/B fraction of bins
have ` free space for all ` ∈ {0} ∪ Sε, where the N` values are near-optimal for (LPε). We call
the space profile used by the small items the “curve”; see Figure 5.1. In the LP analysis above, we
showed that this packing can be extended to a packing with a.c.r α+O(ε) ifB/(1−`) items of size
` are added. But what if large items of different sizes are inserted and deleted? In §5.4.2we show
that this approach retains its (α + O(ε))-a.c.r in this case too, and outline a linear-time algorithm
to obtain such a packing.

The next challenge is that the small items may also be inserted and deleted. In §5.4.2 we show
how to dynamically pack the small items with bounded recourse, so that the number of bins with
any amount of free space f ∈ Sε induce a near-optimal solution to LPε.

Finally, in §5.4.2 we combine the two ideas together to obtain our fully-dynamic algorithm.

LPε as a Factor-Revealing LP

In this section we show how we use the linear program LPε to analyze and guide the following
algorithm: pack the small items according to a near-optimal solution to LPε, and pack the large
items near-optimally “on top” of the small items.

To analyze this approach, we first show it yields a good packing if all large items are huge and
have some common size ` > 1/2. Consider an instance Is consisting solely of small items with
total volume B, packed using Nx bins with gaps in the range [x, x+ ε) for all x ∈ {0}∪Sε, where
{αε, N0, Nx : x ∈ Sε} form a feasible solution for (LPε). We say such a packing is αε-feasible. By
the LP’s definition, any αε-feasible packing of small items can be extended to an αε-competitive
packing for any extension I` of Is with ` ∈ Sε, by packing the size ` items in the bins counted
by Nx for x ≥ ` before using new bins. In fact, this solution satisfies a similar property for any
extension Ik` obtained from Is by adding any number k of items all of size `. (Note that I` is the
special case of Ik` with k = bB/(1− `)c.)
Lemma 5.4.4 (Huge Items of Same Size) Any αε-feasible packing of small items of Is induces
an αε-competitive packing for all extensions Ik` of Is with ` > 1/2 and k ∈ N.

Now, to pack the large items of the instance I, we first create a similar new instance I ′ whose
large items are all huge items. To do so, we first need the following observation.

Observation 5.4.5 For any input I made up of solely large items and function f(·), a packing of
I using at most (1 + ε) · OPT (I) + f(ε−1) bins has all but at most 2ε · OPT (I) + 2f(ε−1) + 3
of its bins containing either no large items or being more than half filled by large items.

Figure 5.2: A packing of instance I ′. Large
items are packed “on top” of the small items
(in grey). Parts of large items not in the in-
stance Ik` are indicated in red.

Consider a packing P of the large items of I using
at most (1 + ε) ·OPT (I) + f(ε−1) bins. By Observa-
tion 5.4.5, at most 2ε · OPT (I) + O(f(ε−1)) bins in
P are at most half full. We use these bins when pack-
ing I. For each of the remaining bins of P , we “glue”
all large items occupying the same bin into a single
item, yielding a new instance I ′ with only huge items,
with any packing of I ′ “on top” of the small items of I

54

trivially inducing a similar packing of I with the same
number of bins. We pack the huge items of I ′ on top
of the curve greedily, repeatedly packing the smallest
such item in the fullest bin which can accommodate it.
Now, if we imagine we remove and decrease the size
of some of these huge items, this results in a new (easier) instance of the form Ik` for some k and
` > 1/2, packed in no more bins than I ′ (see Figure 5.2). By Lemma 5.4.4, the number of bins
used by our packing of I ′ (and of I) is at most

αε ·OPT (Ik`) ≤ αε ·OPT (I ′) ≤ (αε +O(ε)) ·OPT (I) +O(f(ε−1)).

To obtain worst-case bounds, we extend this idea as follows: we near-optimally pack large
items of size exceeding 1/4. Given this packing of small and large items, we pack items of size in
the range (ε, 1/4] (which we refer to as medium items) using first-fit so that we only open a new
bin if all bins are at least 3/4 full. If we open a new bin, by a volume bound this packing has a.c.r
4/3 < α+O(ε). If we don’t open a new bin, this packing is α+O(ε) competitive against an easier
instance (obtained by removing the medium items), and so we are α + O(ε) competitive. These
ideas underlie the following two theorems, a more complete proof of which appears in §C.1.2.

Theorem 5.4.6 An αε-feasible packing of the small items of an instance I can be extended into a
packing of all of I using at most (αε +O(ε)) ·OPT (I) +O(ε−2) bins in linear time for any fixed
ε.

Theorem 5.4.7 For a dynamic instance It, given a fully-dynamic (1 + ε)-a.c.r algorithm with
additive term f(ε−1) for items of size greater than 1/4 in It, and a fully-dynamic αε-feasible
packing of its small items, one can maintain a packing with a.c.r (αε + O(ε)) with additive term
O(f(ε−1)). This can be done using worst-case recourse

1. O(ε−1) per item move in the near-optimal fully-dynamic packing of the items of size > 1/4,
2. O(ε−1) per insertion or deletion of medium items, and
3. O(1) per item move in the αε-feasible packing of the small items.

It remains to address the issue of maintaining an αε-feasible packing of small items dynami-
cally using limited recourse.

Dealing With Small Items: “Fitting a Curve”

We now consider the problem of packing ε-small items according to an approximately-optimal
solution of (LPε). We abstract the problem thus.

[Bin curve-fitting] Given a list of bin sizes 0 ≤ b0 ≤ b1 ≤ . . . , bK ≤ 1 and relative frequencies
f0, f1, f2, . . . , fK , such that fx ≥ 0 and

∑K
x=0 fx = 1, an algorithm for the bin curve-fitting

problem must pack a set of m of items with sizes s1, . . . , sm ≤ 1 into a minimal number of bins
N such that for every x ∈ [0, K] the number of bins of size bx that are used by this packing lie in
{bN · fxc, dN · fxe}.

If we have K = 0 with b0 = 1 and f0 = 1, we get standard BIN PACKING. We want to
solve the problem only for (most of the) small items, in the fully-dynamic setting. We consider

55

the special case with relative frequencies fx being multiples of 1/T , for T ∈ Z; e.g., T = O(ε−1).
Our approach is inspired by the algorithm of [95], and maintains bins in increasing sorted order of
item sizes. The number of bins is always an integer product of T . Consecutive bins are aggregated
into clumps of exactly T bins each, and clumps aggregated into Θ(ε−1) buckets each. Formally,
each clump has T bins, with fx · T ∈ N bins of size bx for x = 0, . . . , K. The bins in a clump
are ordered according to their capacity bx, so each clump looks like its target curve. Each bucket
except the last consists of some s ∈ [1/ε, 3/ε] consecutive clumps (the last bucket may have fewer
than 1/ε clumps). See Figure 5.3. For each bucket, all bins except those in the last clump are full
to within an additive ε.

Clump #1 Clump #O(1
ε
) Clump #1

Bucket #1 Bucket #2

Figure 5.3: Buckets have O(ε−1) clumps, clumps have T bins.

Inserting an item adds it to the correct bin according to its size. If the bin size becomes larger
than the target size for the bin, the largest item overflows into the next bin, and so on. Clearly
this maintains the invariant that we are within an additive ε of the target size. We perform O(T/ε)
moves in the same bucket; if we overflow from the last bin in the last clump of the bucket, we add
a new clump of T new bins to this bucket, etc. If a bucket contains too many clumps, it splits into
two buckets, at no movement cost. An analogous (reverse) process happens for deletes. Loosely,
the process maintains that on average the bins are full to within O(ε) of the target fullness – one
loss of ε because each bin may have ε space, and another because an O(ε) fraction of bins have no
guarantees whatsoever.

We now relate this process to the value of LPε. We first show that setting T = O(ε−1) and
restricting to frequencies which are multiples of ε does not hurt us. Indeed, for us, b0 = 1, and
bx = (1 − x) for x ∈ Sε. Since (LPε) depends on the total volume B of small items, and fx
may change if B changes, it is convenient to work with the normalized LP (LPnewε). Now nx
can be interpreted as just being proportional to number of bins of size bx, and we can define
fx = nx/

∑
x nx. However, we also need each fx to be an integer multiple of 1/T for some integer

T = O(ε−1). We achieve this by slightly modifying the LP solution, obtaining the following.
Lemma 5.4.8 (Multiples of ε) For any optimal solution {nx} to (LPnewε) with objective value
αε, we can construct in linear time a solution {ñx} ⊆ ε · N with objective value αε +O(ε).

Using a near-optimal solution to (LPε) as in the above lemma, we obtain a bin curve-fitting in-
stance with T = O(ε−1). Noting that if we ignore the last bucket’sO(T/ε−1) = O(ε−2) bins in our
solution, we obtain an (α?ε +O(ε))-feasible packing (with additive term O(ε−2)) of the remaining
items by our algorithm above, using O(ε−2) worst-case recourse. We obtain the following.
Lemma 5.4.9 (Small Items Follow the LP) Let ε ≤ 1/6. Using O(ε−2) worst-case recourse we
can maintain packing of small items such that the content of all but O(ε−2) designated bins in this
packing form an (α?ε +O(ε))-feasible packing.

56

Our Algorithm

From Lemma 5.4.8 and Lemma 5.4.9, we can maintain an (α?ε + O(ε))-feasible packing of the
small items (that is, a packing of inducing a solution to (LPε) with objective value (α?ε + O(ε))),
all while using O(ε−2) worst-case recourse. From Theorem 5.4.6 and Theorem 5.4.7, using a
(1 + ε)-a.c.r packing of the large items one can extend such a packing of the small items into an
(α?ε + O(ε))-approximate packing for It, where α?ε ≤ α + O(ε), by Lemma 5.4.2. It remains to
address the recourse incurred by extending this packing to also pack the large items.

Amortized Recourse

Here we periodically recompute in linear time the extension guaranteed by Theorem 5.4.6. Divid-
ing the time into epochs and lazily addressing updates to large items (doing nothing on deletion
and opening new bins on insertion) for ε · N steps, where N is the number of bins we use at the
epoch’s start, guarantees a (α+O(ε))-a.c.r throughout the epoch. As for this approach’s recourse,
we note that the number of large items at the end of an epoch of length ε · N is at most O(N/ε),
and so repacking them incurs O(N/ε)/(ε ·N) = O(ε−2) amortized recourse.

Worst-Case Recourse

To obtain worst-case recourse we rely on the fully-dynamic (1+ε)-a.c.r algorithm of Berndt al. [25,
Theorem 9] to maintain a (1 + ε)-approximate packing of the sub-instance made of items of size
exceeding 1/4 using Õ(ε−3) size cost recourse, and so at most Õ(ε−3) item moves (as these items
all have size Θ(1)). By Theorem 5.4.7, our (α + O(ε))-feasible solution for the small items of It
can be extended dynamically to an (α+(O(ε)))-a.c.r packing of all of It, using Õ(ε−4) worst-case
recourse.

From the above discussions we obtain our main result – tight algorithms for unit costs.
Theorem 5.4.10 (Unit Costs: Upper Bound) There is a polytime fully-dynamic BIN PACKING al-
gorithm which achieves α + O(ε) a.c.r, additive term O(ε−2) and O(ε−2) amortized recourse, or
additive term poly(ε−1) and Õ(ε−4) worst case recourse, under unit movement costs.

5.5 General Movement Costs
We now consider the case of general movement costs, and show a close connection with the
(arrival-only) online problem. We first show that the fully-dynamic problem under general move-
ment costs cannot achieve a better a.c.r than the online problem. Next, we match the a.c.r of any
SUPER-HARMONIC algorithm for the online problem in the fully-dynamic setting.

5.5.1 Matching the Lower Bounds for Online Algorithms
Formally, an adversary process B for the online BIN PACKING problem is an adaptive process that,
depending on the state of the system (i.e., the current set of configurations used to pack the current
set of items) either adds a new item to the system, or stops the request sequence. We say that

57

an adversary process shows a lower bound of c for online algorithms for BIN PACKING if for any
online algorithm A, this process starting from the empty system always eventually reaches a state
where the a.c.r is at least c.

Let β ≥ 2. Any adversary process B showing a lower bound of c for the a.c.r of any online
BIN PACKING algorithm can be converted into a fully-dynamic BIN PACKING instance with general
movement costs such that any fully-dynamic BIN PACKING algorithm with amortized recourse at
most β must have a.c.r at least c.

Such a claim is simple for worst-case recourse. Indeed, given a recourse bound β, set the
movement cost of the i-th item to be (β + ε)n−i for ε > 0. When the i-th item arrives we cannot
repack any previous item because their movement costs are larger by a factor of > β. So this is a
regular online algorithm. The argument fails, however, if we allow amortization.

To construct our lower bound instance, we start with an adversary process and create a dynamic
instance as follows. Each subsequent arriving item has exponentially decreasing (by a factor β)
movement cost. When the next item arrives, our algorithm could move certain existing items.
These items would have much higher movement cost than the arriving item, and so, this process
cannot happen too often. Whenever this happens, we reset the state of the process to an earlier time
and remove all jobs arriving in the intervening period. This will ensure that the algorithm always
behaves like an online algorithm which has not moved any of the existing items. Since it cannot
move jobs too often, the set of existing items which have not been moved by the algorithm grow
over time. This idea allows us to show:
Corollary 5.5.1 No fully-dynamic BIN PACKING algorithm with bounded recourse under general
movement costs and o(n) additive term is better than 1.54037-asymptotically competitive.

5.5.2 (Nearly) Matching the Upper Bounds for Online Algorithms
We outline some of the key ingredients in obtaining an algorithm with competitive ratio nearly
matching our upper bound of the previous section. The first is an algorithm to pack similarly-sized
items.

[Near-Uniform Sizes] There exists a fully-dynamic BIN PACKING algorithm with constant
worst case recourse which given items of sizes si ∈ [1/k, 1/(k − 1)) for some integer k ≥ 1,
packs them into bins of which all but one contain k − 1 items and are hence at least 1 − 1/k full.
(If all items have size 1/k, the algorithm packs k items in all bins but one.)

Lemma 5.5.2 readily yields a 2-a.c.r algorithm with constant recourse (see §C.2.2). We now
discuss how to obtain 1.69-a.c.r based on this lemma and the HARMONIC algorithm [114].

The Harmonic Algorithm

The idea of packing items of nearly equal size together is commonly used in online BIN PACKING

algorithms. For example, the HARMONIC algorithm [114] packs large items (of size ≥ ε) as in
Lemma 5.5.2, while packing small items (of size ≤ ε) into dedicated bins which are at least 1− ε
full on average, using e.g., FIRSTFIT. This algorithm uses (1.69+O(ε))·OPT+O(ε−1) bins [114].
Unfortunately, due to item removals, FIRSTFIT won’t suffice to pack small items into nearly-full
bins.

58

To pack small items in a dynamic setting we extend our ideas for the unit cost case, partitioning
the bins into buckets of Θ(1/ε) many bins, such that all but one bin in a bucket are 1 − O(ε) full,
and hence the bins are 1−O(ε) full on average. Since the size and cost are not commensurate, we
maintain the small items in sorted order according to their Smith ratio (ci/si). However, insertion
of a small item can create a large cascade of movements throughout the bucket. We only move
items to/from a bin once it has Ω(ε)’s worth of volume removed/inserted (keeping track of erased,
or “ghost” items). A potential function argument allows us to show amortizedO(ε−2) recourse cost
for this approach, implying the following lemma, and by [114], a (1.69 + O(ε))-a.c.r algorithm
with O(ε−2) recourse.

For all ε ≤ 1
6

there exists an asymptotically (1 +O(ε))-competitive bin packing algorithm with
O(ε−2) amortized recourse if all items have size at most ε.

Seiden’s Super-Harmonic Algorithms

We now discuss our remaining ideas to match the bounds of any Super-Harmonic algorithm [131]
in the fully-dynamic setting. A Super-harmonic (SH) algorithm partitions the unit interval [0, 1]
into K + 1 intervals [0, ε], (t0 = ε, t1](t1, t2], . . . , (tK−1, tK = 1]. Small items (of size ≤ ε) are
packed into dedicated bins which are 1 − ε full. A large item has type i if its size is in the range
(ti−1, ti]. The algorithm also colors items blue or red. Each bin contains items of at most two
distinct item types i and j. If a bin contains only one item type, all its items are colored the same.
If a bin contains two item types i 6= j, all type i items are colored blue and type j ones are colored
red (or vice versa). The SH algorithm is defined by four sequences (αi)

K
i=1, (βi)

K
i=1, (γi)

K
i=1, and

a bipartite compatibility graph G = (V,E). A bin with blue (resp., red) type i items contains at
most βi (resp., γi) items of type i, and is open if it contains less than this many type i items. The
compatibility graph G = (V,E) has vertex set V = {bi | i ∈ [K]} ∪ {rj | j ∈ [K]}, with an edge
(bi, rj) ∈ E indicating blue items of type i and red items of type j are compatible and may share a
bin. In addition, an SH algorithm must satisfy the following invariants.

(P1) The number of open bins is O(1).
(P2) If ni is the number of type-i items, the number of red type-i items is bαi · nic.
(P3) If (bi, rj) ∈ E (blue type i items and red type j items are compatible), there is no pair of bins

with one containing only blue type i items and one containing only red type j items.

Appropriate choice of (ti)
K+1
i=1 , (αi)

K
i=1, (βi)

K
i=1, (γi)

K
i=1 and G allows one to bound the a.c.r of

any SH algorithm. (E.g., Seiden gives an SH algorithm with a.c.r 1.58889 [131].)

Simulating SH algorithms.

In a sense, SH algorithms ignore the exact size of large items, so we can take all items of some type
and color. This extends Lemma 5.5.2 to pack at most βi or γi of them per bin to satisfy Properties
1 and 2. The challenge is in maintaining Property 3: consider a bin with βi blue type i items and
γj type-j items, and suppose the type i items are all removed. Suppose there exists an open bin
with items of type i′ 6= i compatible with j. If the movement costs of both type j and type i′ items
are significantly higher than the cost of the type i items, we cannot afford to place these groups

59

together, violating Property 3. To avoid such a problem, we use ideas from stable matchings. We
think of groups of βi blue type-i items and γj red type-j items as nodes in a bipartite graph, with
an edge between these nodes if G contains the edge (bi, rj). We maintain a stable matching under
updates, with priorities being the value of the costliest item in a group of same-type items packed
in the same bin. The stability of this matching implies Property 3; we maintain this stable matching
using (a variant of) the Gale-Shapley algorithm. Finally, relying on our solution for packing small
items as in §5.5.2, we can pack the small items in bins which are 1− ε full on average. Combined
with Lemma C.2.2, we obtain following:

There exists a fully-dynamic BIN PACKING algorithm with a.c.r 1.58889 and constant additive
term using constant recourse under general movement costs.

5.6 Size Movement Costs (Migration Factor)
In this section, we settle the optimal recourse to a.c.r tradeoff for size movement cost (referred
to as migration factor in the literature); that is, ci = si for each item i. For worst case recourse
in this model (studied in [25, 52, 95]), poly(ε−1) upper and lower bounds are known for (1 + ε)-
a.c.r. algorithms [25], though the optimal tradeoff remains elusive. We show that for amortized
recourse the optimal tradeoff is Θ(ε−1) recourse for (1 + ε)-a.c.r.

Fact 5.6.1 For all ε ≤ 1/2, there exists an algorithm requiring (1 + O(ε)) · OPT (It) + O(ε−2)
bins at all times t while using only O(ε−1) amortized migration factor.

This upper bound is trivial – it suffices to repack according to an AFPTAS whenever the volume
changes by a multiplicative (1 + ε) factor (for completeness we prove this fact in §C.3). The chal-
lenge here is in showing this algorithm’s a.c.r to recourse tradeoff is tight. We do so by constructing
an instance where addition or removal of small items of size≈ ε causes every near-optimal solution
to be far from every near-optimal solution after addition/removal.

For infinitely many ε > 0, any fully-dynamic bin packing algorithm with a.c.r (1 + ε) and
additive term o(n) must have amortized migration factor of Ω(ε−1).

Our matching lower bound relies on the well-known Sylvester sequence [135], given by the re-
currence relation k1 = 2 and ki+1 =

(∏
j≤i kj

)
+1, the first few terms of which are 2, 3, 7, 43, 1807, . . .

While this sequence has been used previously in the context of BIN PACKING, our proof relies on
more fine-grained divisibility properties. In particular, letting c be a positive integer specified later
and ε := 1/

∏c
`=1 k`, we use the following properties:

(P1) 1
k1

+ 1
k2

+ . . .+ 1
kc

= 1− 1∏c
`=1 k`

= 1− ε.
(P2) If i 6= j, then ki and kj are relatively prime.

(P3) For all i ∈ [c], the value 1/ki =
∏

`∈[c]\{i} k`/
∏c

`=1 k` is an integer product of ε.

(P4) If i 6= j ∈ [c], then 1/ki =
∏

`∈[c]\{i} k`/
∏c

`=1 k` is an integer product of kj · ε.
We define a vector of item sizes ~s ∈ [0, 1]c+1 in our instances as follows: for i ∈ [c] we let

si = 1
ki
· (1 − ε

2
), and sc+1 = ε · (3

2
− ε

2
). The adversarial input sequence will alternate between

two instances, I and I ′. For some large N a product of
∏c

`=1 k`, Instance I consists of N items of
sizes si for all i ∈ [c+ 1]. Instance I ′ consists of N items of all sizes but sc+1.

60

Properties 1-4 imply on the one hand that I can be packed into completely full bins containing
one item of each size, while any bin which does not contain exactly one item of each size has at
least Ω(ε) free space. Similarly, an optimal packing of I ′ packs items of the same size in one set
of bins, using up exactly 1− ε

2
space, while any bin which contains items of at least two sizes has

at least ε free space. These observations imply the following.
Any algorithmA with (1+ε/7)-a.c.r and o(n) additive term packs instance I such that at least

2N/3 bins contain exactly one item of each size si, and packs instance I ′ such that at least N/2
bins contain items of exactly one size.

Theorem 5.6 follows from Lemma 5.6 in a rather straightforward fashion. The full details of
this proof and the lemmas leading up to it can be found in §C.3.

5.7 Open Problems
Subsequent to our work on this topic, one of the open questions was resolved by Feldkord et al.
[61]. They showed that it is possible to achieve a a.c.r of ≈ 1.3871 using O(1

ε2
) worst-case re-

course. There are two questions that remain in the general cost model.
Problem 5.7.1 Does there exist a black-box reduction that converts any algorithm for the online
bin-packing model into an algorithm achieving the same a.c.r in the fully dynamic binpacking
model with recourse?
The above work showed that this is true for the super-harmonic family. It remains to show this for
the future algorithms that have many similar characteristics.

Problem 5.7.2 Is there an algorithm which can a.c.r of 1.58889 with worst-case recourse O(1
ε2

)
for the general cost model?

Our algorithm showed this for jobs that are sufficiently large. It remains to show that this possible
for small jobs.

61

62

Chapter 6

Online Matroid Intersection

6.1 Introduction

The online matroid intersection problem in the random arrival model (OMI) consists of two ma-
troids M1 = (E, I1) and M2 = (E, I2), where the elements in E are presented one-by-one to
an online algorithm whose goal is to construct a large common independent set. As an element
arrives, the algorithm must immediately and irrevocably decide whether to pick it, while ensuring
that the picked elements always form a common independent set. We assume that the algorithm
knows the size of E and has access to independence oracles for the already arrived elements. The
greedy algorithm, which picks an element whenever possible, is half-competitive.

A special case of OMI where both the matroids are partition matroids already captures the
online bipartite matching problem in the random edge arrival (OBME) model. Here, edges of
a fixed (but adversarially chosen) bipartite graph G arrive in a uniformly random order and the
algorithm must irrevocably decide whether to pick them into a matching. Despite tremendous
progress made in the online vertex arrival model [1, 47, 68, 104, 110, 122, 138], nothing non-
trivial was known in the edge arrival model where the edges arrive one-by-one. We present the first
algorithm that performs better than greedy in the random arrival model. Besides being a natural
theoretical question, it captures various online content systems such as online libraries where the
participants are known to the matching agencies but the requests arrive in an online fashion.

More formally, OBME consists of a fixed bipartite graph G whose edges arrive one-by-one to
an online algorithm in a uniformly random order. As an edge arrives, the algorithm must immedi-
ately and irrevocably decide whether to pick it into a matching. The algorithm knows the number
of edges to arrive but must always maintain a matching. The objective is to maximize the size of
the final matching.

Corollary 6.1.1 The online bipartite matching problem in the random edge arrival model has a
(1

2
+ δ)-competitive randomized algorithm, where δ > 0 is a constant.

We also consider much more general problems of online matching in general graphs and online
k-matroid intersection; the latter problem being NP-Hard.

63

6.2 Related Work

Our main OMI result is interesting in two different aspects: It gives the first linear time algorithm
that beats greedy for the classical offline matroid intersection problem; also, it is the first non-trivial
algorithm for the general problem of online matroid intersection, where previously nothing better
than half was known even for online bipartite matching. Since offline matroid intersection problem
is a fundamental problem in the field of combinatorial optimization [130, Chapter 41] and online
matching occupies a central position in the field of online algorithms [120], there is a long list of
work in both these areas. We state the most relevant works here and refer readers to further related
work in the full paper.

Offline matroid intersection was brought to prominence in the groundbreaking work of Ed-
monds [51]. To illustrate the difficulty in moving from bipartite matching to matroid intersection,
we note that while the first linear time algorithms that beat half for bipartite matching were de-
signed more than 20 years old [11, 88], the fastest known matroid intersection algorithms that
beat half make Ω(rm) calls to the independence oracles, where r is the rank of the optimal so-
lution [37, 90]. The quadratic term appears because matroid intersection algorithms rely on con-
structing auxiliary graphs, which needs Ω(rm) calls [108, Chapter 13]. Until our work, it remained
an open question to achieve a competitive ratio better than half with linear number of independence
oracle calls. The key ingredient that allows us to circumvent these difficulties is the Sampling
Lemma for matroid intersection. We do not construct an auxiliary graph and instead show that any
maximal common independent is either already a (1

2
+ δ) approximation, or we can improve it to

a (1
2

+ δ) approximation in a single pass over all the elements.

Online bipartite matching has been studied extensively in the vertex arrival model (see a nice
survey by Mehta [120]). Since adversarial arrival order often becomes too pessimistic, the random
arrival model (similar to the secretary problem) for online matching was first studied by Goel and
Mehta [68]. Since then, this modeling assumption has become standard [99, 109, 110, 119]. The
only progress when edges arrive one-by-one has been in showing lower bounds: no algorithm can
achieve a competitive ratio better than 0.57 (see [53]), even when the algorithm may drop edges.

While nothing was previously known for online matching in the random edge arrival model,
similar problems have been studied in the streaming model, most notably by Konrad et al. [107].
They gave the first algorithm that beats half for bipartite matching in the random arrival streaming
model. In this work we generalize their Hastiness Lemma to matroids. However, prior works on
online matching are not that useful to us as they are tailored to graphs—for instance their reliance
on notion of “vertices” cannot be easily extended to the framework of matroids.

The simplicity of our OMI algorithm and flexibility of our analysis allows us to tackle problems
of much greater generality, such as general graphs and k-matroid intersection, when previously
even special cases like bipartite matching had been considered difficult in the online regime [121].
While our results are a qualitative advance, the quantitative improvement is small (δ > 10−4). It
remains an interesting challenge to improve the approximation factor δ. Perhaps a more interesting
challenge is to relax the random order requirement.

64

6.3 Our Results and Techniques
The following is the main result of this chapter.
Theorem 6.3.1 The online matroid intersection problem in the random arrival model has a (1

2
+δ)-

competitive randomized algorithm, where δ > 0 is a constant.
Our OMI algorithm makes only a linear number of calls to the independence oracles of both

the matroids. Given recent interest in finding fast approximation algorithms for fundamental
polynomial-time problems, this result is of independent interest even in the offline setting. Pre-
viously known algorithms that perform better than the greedy algorithm construct an “auxiliary
graph”, which already takes quadratic time [37, 90].
Corollary 6.3.2 The matroid intersection problem has a linear time (1

2
+ δ) approximation algo-

rithm, where δ > 0 is a constant. .
Finally, the simplicity of our OMI algorithm allows us to extend our results to the much more

general problems of online matching in general graphs and to online k-matroid intersection; the
latter problem being NP-Hard.
Theorem 6.3.3 In the random edge arrival model, online matching problem for general graphs
has a (1

2
+ δ′)-competitive randomized algorithm, where δ′ > 0 is a constant.

Theorem 6.3.4 The online k-matroid intersection problem in the random arrival model has a(
1
k

+ δ′′

k4

)
-competitive randomized algorithm, where δ′′ > 0 is a constant.

In this section, we present an overview of our techniques to prove the main Theorem 6.3.1.
Our analysis relies on two observations about the greedy algorithm that are encompassed in the
Sampling Lemma and the Hastiness Lemma; former being the major contribution of this paper
and the latter being useful to extend our linear time offline matroid intersection result to the online
setting. Informally, the Sampling Lemma states that the greedy algorithm cannot perform poorly
on a randomly generated OMI instance, and the hastiness lemma states that if the greedy algorithm
performs poorly, then it picks most of its elements very quickly.

Let OPT denote a fixed maximum independent set in the intersection of matroidsM1 andM2.
WLOG, we assume that the greedy algorithm is bad—returns a common independent set T of size
≈ 1

2
|OPT|. For offline matroid intersection, by running the greedy algorithm once, one can assume

that T is known. For online matroid intersection, we use the Hastiness Lemma to construct T . It
states that even if we run the greedy algorithm for a small fraction f (say < 1%) of elements, it
already picks a set T of elements of size ≈ 1

2
|OPT|. This lemma was first observed by Konrad et

al. [107] for bipartite matching and is generalized to matroid intersection in this work. By running
the greedy algorithm for this small fraction f , the lemma lets us assume that we start with an
approximately maximal common independent set T with most of the elements (1− f > 99%) still
to arrive.

The above discussion reduces the problem to improving a common independent set T of size
≈ 1

2
|OPT| to a common independent set of size ≥ (1

2
+ δ)|OPT| in a single pass over all the

elements. (This is true for both linear-time offline and OMI.) Since T is approximately maximal,
we know that picking most elements in T eliminates the possibility of picking two OPT elements
(one for each matroid). Hence, to beat half-competitiveness, we drop a uniformly random p fraction
of these “bad” elements in T to obtain a set S, and try to pick (1 + γ)OPT elements (for constant

65

γ > 0) per dropped element. Our main challenge is to construct an online algorithm that can get
on average γ gain per dropped element of T in a single pass. The Sampling Lemma for matroid
intersection, which is our main technical contribution and forms the core of our analysis, comes to
our rescue.
Sampling Lemma (informal): Suppose T is a common independent set in matroidsM1 andM2

and define Ẽ = span1(T). Let S denote a random set containing each element of T independently
with probability (1− p). Then,

ES[|Greedy(M1/S,M2/T, Ẽ)|] ≥
(

1

1 + p

)
· ES[|OPT(M1/S,M2/T) ∩ Ẽ|].

Intuitively, it says that for the random OMI instance on the contracted matroidsM1/S andM2/T ,
the expected size of greedy is more than 1/(1 + p) ≥ 1/2 fraction of the optimal intersection. For
p < 1, the advantage over half yields the γ gain per dropped element. The proof of the lemma
involves giving an alternate view of the greedy algorithm for the random OMI instance. Using a
carefully constructed invariant and the method of deferred decisions we show that the expected
greedy solution is not too small.

Applying the Sampling Lemma requires a little care as we need to apply it twice, once for
(M1/S,M2/T) and once for (M1/T,M2/S), while ensuring that the resulting solutions have
few “conflicts” with each other. To overcome this, we only consider elements that are in the span
of T for exactly one of the matroids.

6.4 Warmup: Online Bipartite Matching
In this section, we consider a special case of online matroid intersection, namely online bipartite
matching in the random edge arrival model. Although, this is a special case of the general Theo-
rem 6.3.1, we present it because nothing non-trivial was known before (see Section ??) and several
of our ideas greatly simplify in this case (in particular the Sampling Lemma), allowing us to lay
the framework of our ideas.

6.4.1 Definitions and Notation

An instance of the online bipartite matching problem (G,E, π,m) consists of a bipartite graph
G = (U ∪ V,E) with m = |E|, and where the edges in E arrive according to the order defined
by π. We assume that the algorithm knows m but does not know E or π. For 1 ≤ i ≤ j ≤ m, let
Eπ[i, j] denote the set of edges that arrive in between positions i through j according to π 1. When
permutation π is implicit, we abbreviate this to E[i, j].

GREEDY denotes the algorithm that picks an edge into the matching whenever possible. Let
OPT denote a fixed maximum offline matching of graph G. For f ∈ [0, 1], let T πf denote the
matching produced by GREEDY after seeing the first f -fraction of the edges according to order π.

1We emphasize that our definition also works when i and j are non-integral

66

Y2 X2 G2

G1X1 Y1

Figure 6.1: U = X1 ∪ Y2 and V = X2 ∪ Y1, where X1 and X2 denote the set of vertices matched
by GREEDY in Phase (a). Here thick-edges are picked and diagonal-dashed-edges are marked.
Horizontal-dashed-edges show augmentations for the marked edges.

For a uniformly random chosen order π,

G(f) :=
Eπ[|T πf |]
|OPT|

.

Hence, G(1) |OPT| is the expected output size of GREEDY and G(1
2
) |OPT| is the expected output

size of GREEDY after seeing half of the edges. We observe that GREEDY has a competitive ratio
of at-least half and in Section B.2, we show that this ratio is tight for worst case input graphs.2

6.4.2 Beating Half
Lemma 6.4.1 shows that we can restrict our attention to the case when the expected GREEDY size
is small. Theorem 6.4.2 gives an algorithm that beats half for this restricted case.

Lemma 6.4.1 Suppose there exists an AlgorithmA that achieves a competitive ratio of 1
2
+γ when

G(1) ≤ (1
2

+ ε) for some ε, γ > 0. Then there exists an algorithm with competitive ratio at least
1
2

+ δ, where δ = εγ
1
2

+ε+γ
.

Proof: Consider the algorithm that tosses a coin at the beginning and runs GREEDY with probabil-
ity 1− r and Algorithm A with probability r, where r > 0 is some constant. This lemma follows
from simple case analysis.
• Case 1: G(1) < 1

2
+ ε

Since GREEDY is always 1
2

competitive, we can say that in expectation, the competitive ratio
will be at least

(1− r) 1

2
+ r

(
1

2
+ γ

)
=

1

2
+ rγ

• Case 2: G(1) ≥ 1
2

+ ε
Since we have no guarantees on the performance of Algorithm A when GREEDY performs

2We also show that for regular graphs the competitive ratio of GREEDY is at least
(
1− 1

e

)
, and that no online

algorithm for OBME can give a ratio better than 69
84 ≈ 0.821.

67

well, we assume that it achieves a competitive ratio of 0. Our expected performance will be
at least

(1− r)
(

1

2
+ ε

)
+ 0 =

1

2
+ ε− r

2
− rε

Choosing r = ε
1
2

+ε+γ
, we get δ ≥ εγ

1
2

+ε+γ
. �

Theorem 6.4.2 If G(1) ≤ (1
2

+ε) for some constant ε > 0 then the MARKING-GREEDY algorithm
outputs a matching of size at least (1

2
+ γ) |OPT| in expectation, where γ > 0 is a constant.

Before describing MARKING-GREEDY, we need the following property about the performance
of GREEDY in the random arrival model — if GREEDY is bad then it makes most of its decisions
quickly and incorrectly. We will be interested in the regime where 0 < ε� f � 1.
Lemma 6.4.3 (Hastiness property: Lemma 2 in [107]) For any graph G if G(1) ≤ (1

2
+ ε) for

some 0 < ε < 1
2
, then for any 0 < f < 1/2

G(f) ≥ 1

2
−
(

1

f
− 2

)
ε.

MARKING-GREEDY for bipartite matching:

MARKING-GREEDY consists of two phases (see the pseudocode). In Phase (a), it runs GREEDY

for the first f -fraction of the edges, but picks each edge selected by GREEDY into the final matching
only with probability (1−p), where p > 0 is a constant. With the remaining probability p, it marks
the edge e and its vertices, and behaves as if it had been picked. In Phase (b), which is for the
remaining 1 − f fraction of edges, the algorithm runs GREEDY to pick edges on two restricted
disjoint subgraphs G1 and G2, where it only considers edges incident to exactly one marked vertex
in Phase (a). (see Figure 6.1.)

Phase (a) is equivalent to running GREEDY to select elements, but then randomly dropping p
fraction of the selected edges. The idea of marking some vertices (by marking an incident edge)
is to “protect” them for augmentation in Phase (b). To distinguish if an edge is marked or picked,
the algorithm uses auxiliary random bits Ψ that are unknown to the adversary. We assume that
Ψ(e) ∼ Bern(1− p) i.i.d. for all e ∈ E.
Comparison to Konrad et al. [107] For the special case of bipartite matching, we can con-
sider MARKING-GREEDY to be a variant of the streaming algorithm of [107]. For graphs where
GREEDY is bad, both algorithms use the first phase to pick an approximately maximal matching
T using the Hastiness Lemma. [107] divides the remaining stream into two portions and uses
each portion to find greedy matchings, say F1 and F2. Since decisions in the streaming setting are
revocable, at the end of the stream they use edges in F1 ∪ F2 to find sufficient number of three-
augmenting paths w.r.t. T . Their algorithm is not online because it keeps all the matchings till the
end. One can view the current algorithm as turning their algorithm into an online one by flipping
a coin for each edge in T . In the second phase, it runs GREEDY on two random disjoint subgraphs
and use the Sampling Lemma to argue that in expectation the algorithm picks sufficient number of
augmenting paths.

While our online matching algorithm is simple and succinct, the main difficulty lies in extend-
ing it to OMI as the notions of marking and protecting vertices do not exist. This is also the reason

68

Algorithm MARKING-GREEDY(G,E, π,m,Ψ)

Phase (a)
1: Initialize S, T,N1, N2 to ∅
2: for each element e ∈ Eπ[1, fm] do . GREEDY while picking and marking
3: if T ∪ e is a matching in G then
4: T ← T ∪ e . Elements selected by GREEDY

5: if Ψ(e) = 1 then . Auxiliary random bits Ψ
6: S ← S ∪ e . Elements picked into final solution

Phase (b)
7: Initialize set Tf to T . Let sets X1, X2 be vertices of U, V matched in Tf respectively.
8: Let G1 be the subgraph of G induced on X1 and V \X2.
9: Let G2 be the subgraph of G induced on U \X1 and X2.

10: for each edge e ∈ (Eπ[fm,m]) do . GREEDY on two disjoint subgraphs
11: for i ∈ {1, 2} do
12: if e ∈ Gi and S ∪Ni ∪ e is a matching then . Greedy step
13: Ni ← Ni ∪ e . New edges picked
14: return S ∪N1 ∪N2

why obtaining a linear time algorithm for offline matroid intersection problem, where Hastiness
Lemma is not needed, had been open. Defining and proving the correct form of Sampling Lemma
forms the core of our OMI analysis in Section 6.5.

Proof that MARKING-GREEDY works for bipartite matching:

Let Gi denote graphs G1 or G2 for i ∈ {1, 2}. For a fixed order π of the edges, graphs Gi in
MARKING-GREEDY are independent of the randomness Ψ. Since the algorithm uses Ψ to pick a
random subset of the GREEDY solution, this can be viewed as independently sampling each vertex
matched by GREEDY in Gi. Lemma 6.4.4 shows that this suffices to pick in expectation more
than the number of marked edges. In essence, we use the randomness Ψ to limit the power of an
adversary deciding the order of the edges in Phase (b). While the proof follows from the more
general Lemma 6.5.7, we include a simple self-contained proof.

Lemma 6.4.4 (Sampling Lemma) Consider a bipartite graph H = (X ∪ Y, Ẽ) containing a
matching Ĩ . Let Ψ(x) ∼ Bern(1−p) i.i.d. for all x ∈ X , and defineX ′ = {x | x ∈ X and Ψ(x) =
0}. I.e., the vertices of X ′ are obtained by independently sampling each vertex in X with probabil-
ity p. Let H ′ denote the subgraph induced on X ′ and Y . Then for any arrival order of the edges in
H ′,

EΨ[GREEDY(H ′, Ẽ)] ≥ p

1 + p
|Ĩ|.

Proof: We prove this statement by induction on |Ĩ|. Consider the base case |Ĩ| = 1. Whenever
GREEDY does not select any edge, the vertex adjacent to Ĩ in X is not sampled. This happens with

69

probability 1− p. Hence, the expected size of the matching is at least p ≥ p
1+p

, which implies the
statement is true when |Ĩ| = 1.

From the induction hypothesis (I.H.) we can assume the statement is true when the matching
size is at most |Ĩ|−1. We prove the induction step by contradiction and consider the smallest graph
in terms of |X| that does not satisfy the statement. Note that |X| ≥ |Ĩ|. Consider the first edge
e = (x, y) that arrives. The first case is when x 6∈ X ′ and it happens with probability 1− p . Here
any edge incident to x does not matter for the remaining algorithm. We use I.H. on the subgraph
induced on (X\x, Y) as |X\x| = (|X| − 1). Since this subgraph has a matching of size at least
|Ĩ| − 1, I.H. gives a matching of expected size at least p

1+p
(|Ĩ| − 1).

The second case is when x ∈ X ′ and it happens with probability p. Now edge (x, y) is included
in the GREEDY matching for the induced graph on (X ′, Y). Vertices x and y, along with the edges
incident to them, do not participate in the remaining algorithm. We apply I.H. on the subgraph
induced on the vertices (X\x, Y \y). Noting that this graph has a matching of size at least |Ĩ| − 2,
I.H. gives a matching of expected size at least p

1+p
(|Ĩ| − 2). Combining both cases, the expected

matching size is at least

(1− p)
(

p

1 + p
(|Ĩ| − 1)

)
+ p

(
1 +

p

1 + p
(|Ĩ| − 2)

)
=

p

1 + p
|Ĩ|.

This is a contradiction as we assumed that the graph did not satisfy the induction statement, which
completes the proof of Lemma 6.4.4. �

We next prove the main lemma needed to prove Theorem 6.4.2. Setting f = 0.07, p = 0.36,
and ε = 0.001 in Lemma 6.4.5, the theorem immediately follows with γ > 0.05.
Lemma 6.4.5 For any 0 < f < 1/2 and bipartite graphG, MARKING-GREEDY outputs a match-
ing of expected size at least[

(1− p)
(

1

2
−
(

1

f
− 2

)
ε

)
+

p

1 + p

(
1− 2ε

f
− f

)]
|OPT|.

Proof: We remind the reader that for any f ∈ [0, 1] and any permutation π of the edges, T πf denotes
the matching that GREEDY produces on Eπ[1, fm]. For i ∈ {1, 2}, let Hi denote the subgraph of
Gi containing all its edges that appear in Phase (b). Let Ii denote the set of edges of OPT that
appear in graph Gi. We use the following claim.
Claim 6.4.6

Eπ [|I1|+ |I2|] ≥
(

1− 2ε

f

)
|OPT|.

Proof: We use the following two simple properties of T π1 (proved in Section B.3).
Fact 6.4.7

|T π1 | ≥
1

2

(
|OPT|+

∑
e∈OPT

1[Both ends of e matched in T πf]

)
and (6.1)

|T π1 | ≥ |T πf |+
1

2

∑
e∈OPT

1[Both ends of e unmatched in T πf]. (6.2)

70

Note that, Eπ [|I1|+ |I2|] is equal to

Eπ

[
|OPT| −

∑
e∈OPT

1[Both ends of e matched in T πf]−
∑
e∈OPT

1[Both ends of e unmatched in T πf]

]
≥ |OPT| − Eπ [2 |T π1 | − |OPT|]− Eπ

[
2(|T π1 | − |T πf |)

]
(using Eq. (6.1) and Eq. (6.2))

≥ |OPT| − 2ε |OPT| − 2

(
ε+

(
1

f
− 2

)
ε

)
|OPT| (using G(1) ≤ 1

2
+ ε and Lemma 6.4.3)

=

(
1− 2ε

f

)
|OPT|, which finishes the proof of the claim.

�
For i ∈ {1, 2}, let Ĩ i ⊆ Ii denote the set of edges of OPT that appear in Phase (b) of

MARKING-GREEDY, i.e., they appear in graph Hi. In expectation over uniform permutation π,
at most f |OPT| elements of OPT can appear in Phase (a). Hence,

Eπ
[
|Ĩ1|+ |Ĩ2|

]
≥ Eπ [|I1|+ |I2|]− f |OPT| ≥

(
1− 2ε

f
− f

)
|OPT|.

Marking a random subset of T πf independently is equivalent to marking a random subset of vertices
independently. Thus, we can apply Lemma 6.4.4 to both H1 and H2. The expected number of
edges in N1 ∪ N2 is at least p

1+p
(|Ĩ1| + |Ĩ2|), where the expectation is over the auxilary bits Ψ

that distinguishes the random set of edges marked. Taking expectations over π and noting that
Phase (a) picks (1− p)G(f) |OPT| edges, we have

EΨ,π[|S ∪N1 ∪N2|] = EΨ,π[|S|] + EΨ,π[|N1|+ |N2|]

≥ G(f)(1− p) |OPT|+ p

1 + p
Eπ
[
|Ĩ1|+ |Ĩ2|

]
≥
[
(1− p)

(
1

2
−
(

1

f
− 2

)
ε

)
+

p

1 + p

(
1− 2ε

f
− f

)]
|OPT| (using Lemma 6.4.3) .

�

6.5 Online Matroid Intersection

6.5.1 Definitions and Notation
An instance of the online matroid intersection problem (M1,M2, E, π,m) consists of matroids
M1 andM2 defined on ground set E of size m, and where the elements in E arrive according to
the order defined by π. For any 1 ≤ i ≤ j ≤ m, let Eπ[i, j] denote the ordered set of elements of
E that arrive in positions i through j according to π. For any matroidM on ground set E, we use
T ∈M to denote T ⊆ E is an independent set in matroidM. We use the terminology of matroid
restriction and matroid contraction as defined in Oxley [126]. To avoid clutter, for any e ∈ E we
will abbreviate A ∪ {e} to A ∪ e and A \ {e} to A \ e.

71

Algorithm GREEDY (M1,M2, E, π)

1: Initialize set T to ∅
2: for each element e ∈ Eπ[1, |E|] do
3: if T ∪ e ∈M1 ∩M2 then
4: T ← T ∪ e
5: return T

We note that GREEDY is well defined even when matroidsM1 andM2 are defined on larger
ground sets as long as they contain E. This notation will be useful when we run GREEDY on
matroids after contracting different sets in the two matroids. Since GREEDY always produces a
maximal independent set, it has a competitive ratio of at least half (see Theorem 13.8 in [108]).
This is true because addition of an “incorrect” element to OPT can create at most two circuits, one
for each matroid.

Let OPT denote a fixed maximum offline independent set in the intersection of both the ma-
troids. For f ∈ [0, 1], let T πf denote the independent set that GREEDY produces after seeing the first
f fraction of the edges according to order π. When clear from context, we will often abbreviate
T πf with Tf . Let G(f) :=

Eπ [|Tf |]
|OPT| , where π is a uniformly random chosen order.

For i ∈ {1, 2}, let spani(T) := {e | (e ∈ E)∧(rankMi
(T ∪ e) = rankMi

(T))} denote the span
of set T ⊆ E in matroidMi. Suppose we have T ∈ Mi and e ∈ spani(T), then we denote the
unique circuit of T ∪ e in matroidMi by Ci(T ∪ e). If i = 1, we use ı̄ to denote 2, and vice versa.

We provide a table of all notation used in Section B.1.

6.5.2 Hastiness Property

Before describing our algorithm MARKING-GREEDY, we need an important hastiness property of
GREEDY in the random arrival model. Intuitively, it states that if GREEDY’s performance is bad
then it makes most of its decisions quickly and incorrectly. This observation was first made by
Konrad et al. [107] in the special case of bipartite matching. We extend this property to matroids
in Lemma 6.5.1 (proof in Section B.4). We are interested in the regime where 0 < ε� f � 1.

Lemma 6.5.1 (Hastiness Lemma) For any two matroids M1 and M2 on the same ground set
E, let T πf denote the set selected by GREEDY after running for the first f fraction of elements
E appearing in order π. Also, for i ∈ {1, 2}, let Φi(T

π
f) := spani(T

π
f) ∩ OPT. Now for any

0 < f, ε ≤ 1
2
, if Eπ[|T π1 |] ≤ (1

2
+ ε) |OPT| then

Eπ
[
|Φ1(T πf) ∩ Φ2(T πf)|

]
≤ 2ε |OPT| and

Eπ
[
|Φ1(T πf) ∪ Φ2(T πf)|

]
≥
(

1− 2ε

f
+ 2ε

)
|OPT|.

This implies G(f) :=
Eπ [|Tπf |]
|OPT| ≥

(
1
2
−
(

1
f
− 2
)
ε
)

.

72

6.5.3 Beating Half for Online Matroid Intersection

Once again, we use Lemma 6.4.1 to restrict our attention to the case when the expected size of
GREEDY is small. In Theorem 6.5.2, we give an algorithm that beats half for this restricted case,
which when combined with Lemma 6.4.1 finishes the proof of Theorem 6.3.1.

Theorem 6.5.2 For any two matroidsM1 andM2 on the same ground setE, there exist constants
ε, γ > 0 and a randomized online algorithm MARKING-GREEDY such that if G(1) ≤

(
1
2

+ ε
)

then
MARKING-GREEDY outputs an independent set in the intersection of both the matroids of expected
size at least

(
1
2

+ γ
)
|OPT|.

MARKING-GREEDY for OMI:

Algorithm MARKING-GREEDY (M1,M2, E, π,m,Ψ)

Phase (a)
1: Initialize S, T to ∅
2: for each element e ∈ Eπ[1, fm] do . GREEDY while picking and marking
3: if T ∪ e ∈M1 ∩M2 then
4: T ← T ∪ e . Elements selected by GREEDY

5: if ψ(e) = 1 then . Auxiliary random bits Ψ
6: S ← S ∪ e . Elements picked into the final solution

Phase (b)
7: Fix Tf to T and initialize sets N1, N2 to ∅
8: for each element e ∈ Eπ[fm,m] do . GREEDY on two disjoint problems
9: for i ∈ {1, 2} do

10: if e ∈ spani(Tf) and e /∈ spanı̄(Tf) then . To ensure disjointness
11: if (S ∪Ni ∪ e ∈Mi) and (Tf ∪Ni ∪ e ∈Mı̄) then . Greedy step
12: Ni ← Ni ∪ e . Newly picked elements
13: return (S ∪N1 ∪N2)

MARKING-GREEDY consists of two phases (see notation in Section B.1). In Phase (a), it runs
GREEDY for the first f fraction of the elements, but picks each element selected by GREEDY into
the final solution only with probability (1 − p), where p > 0 is a constant. With the remaining
probability p, it marks the element e, and behaves as if it had been selected. The idea of marking
some elements in Phase (a) is that we hope to “augment” them in Phase (b). To distinguish if an
element is marked or picked, the algorithm uses auxiliary random bits Ψ that are unknown to the
adversary. We assume that Ψ(e) ∼ Bern(1− p) i.i.d. for all e ∈ E.

In Phase (b), one needs to ensure that the augmentations of the marked elements do not conflict
with each other. The crucial idea is to use the span of the elements selected by GREEDY in Phase (a)
as a proxy to find two random disjoint OMI subproblems. The following Fact 6.5.3 (proof in
Section B.3) underlies this intuition. It states that given any independent set S, we can substitute

73

it by any other independent set contained in the span of S. In Lemma 6.5.4 we use it to prove the
correctness of MARKING-GREEDY.

Fact 6.5.3 Consider any matroidM and independent setsA,B,C ∈M such thatA ⊆ spanM(B)
and B ∪ C ∈M. Then, A ∪ C ∈M.

Lemma 6.5.4 MARKING-GREEDY outputs sets S,N1, and N2 such that

(S ∪N1 ∪N2) ∈M1 ∩M2.

Proof: Observe that the outputs sets S,N1, and N2 of MARKING-GREEDY satisfy the following
for i ∈ {1, 2}:

Ni ∈Mi/S ∩Mı̄/Tf (due to Line 11) (6.3)
Ni ⊆ spanMi/S

(Tf \ S) (due to Line 10) (6.4)

From Property (6.3) above we know Nı̄ ∈Mi/Tf , which implies Nı̄ ∪ (Tf \ S) ∈Mi/S because
S ⊆ Tf ∈ Mi. Also, Property (6.4) implies Ni ⊆ spanMi/S

(Tf \ S). Using Fact 6.5.3, we have(
N1 ∪N2

)
∈Mi/S. �

Proof that MARKING-GREEDY works for OMI:

We know from Lemma 6.5.1 that G(f) is close to half for ε � f � 1. In the following
Lemma 6.5.5, we show that MARKING-GREEDY (which returns S ∪ N1 ∪ N2 by Lemma 6.5.4)
gets an improvement over GREEDY. This completes the proof of Theorem 6.5.2 to give γ ≥ 0.03
for ε = 0.001, f = 0.05, and p = 0.33. The rest of the section is devoted to proving the following
lemma.

Lemma 6.5.5 MARKING-GREEDY outputs sets S,N1, and N2 such that

Eπ,Ψ[|S ∪N1 ∪N2|] ≥ (1− p)G(f) |OPT|+ 2p

1 + p

(
1− 2ε

f
− 2ε− f − G(f)

)
|OPT|.

Proof:[Lemma 6.5.5] We treat the sets S ⊆ Tf , N1, and N2 as random sets depending on π and Ψ.
Since MARKING-GREEDY ensures the sets are disjoint,

Eπ,Ψ[|S ∪N1 ∪N2|] = Eπ,Ψ[|S|] + Eπ,Ψ[|N1|+ |N2|]
≥ (1− p)G(f) |OPT|+ Eπ,Ψ[|N1|+ |N2|]. (6.5)

Next, we lower bound Eπ,Ψ[|N1| + |N2|] by observing that for i ∈ {1, 2}, Ni is the result of
running GREEDY on the following restricted set of elements.

Definition 6.5.6 (Sets Ẽi) For i ∈ {1, 2}, we define Ẽi to be the set of elements e that arrive in
Phase (b) and satisfy e ∈ spani(Tf) and e 6∈ spanı̄(Tf).

74

It’s easy to see that Ni is obtained by running GREEDY on the matroidsMi/S andMı̄/Tf with
respect to elements in Ẽi, i.e. Ni = GREEDY(Mi/S,Mı̄/Tf , Ẽi). To lower bound Eπ,Ψ[|N1| +
|N2|], we use the following Sampling Lemma (proved in Section 6.6) that forms the core of our
technical analysis. Intuitively, it says that if S is a random subset of Tf then for the obtained
random OMI instance, with optimal solution of expected size p |Ĩ|, GREEDY performs better than
half-competitiveness even for adversarial arrival order of ground elements.

Lemma 6.5.7 (Sampling Lemma) Given matroidsM1,M2 on ground set E, a set T ∈ M1 ∩
M2, and Ψ(e) ∼ Bern(1 − p) i.i.d. for all e ∈ T , we define set S := {e | e ∈ T and Ψ(e) = 1}.
I.e., S is a set achieved by dropping each element in T independently with probability p. For
i ∈ {1, 2}, consider a set Ẽ ⊆ spani(T) and a set Ĩ ⊆ Ẽ satisfying Ĩ ∈ Mi ∩ (Mı̄/T). Then for
any arrival order of the elements of Ẽ, we have

EΨ[GREEDY(Mi/S,Mı̄/T, Ẽ)] ≥ 1

1 + p

(
p |Ĩ|

)
.

To use the Sampling Lemma, in Claim 6.5.8 we argue that in expectation there exist disjoint
sets Ĩ i ⊆ Ẽi of “large” size that satisfy the preconditions of the Sampling Lemma (proof uses
Hastiness Lemma and is deferred to Section ??).

Claim 6.5.8 If G(1) ≤
(

1
2

+ ε
)

then for i ∈ {1, 2} there exist disjoint sets Ĩ i ⊆ Ẽi s.t.

(i) Eπ
[
|Ĩ1|+ |Ĩ2|

]
≥ 2

(
1− 2ε

f
− f − G(f)

)
|OPT|.

(ii) Ĩ i ∈Mi ∩ (Mı̄/Tf).

Finally, to finish the proof of Lemma 6.5.5, we use the sets Ĩ i from the above Claim 6.5.8 as Ĩ
and sets Ẽi as Ẽ in the Sampling Lemma 6.5.7. From Eq. (6.5) and Claim 6.5.8, we get

Eπ,Ψ[|S ∪N1 ∪N2|] ≥ (1− p)G(f) |OPT|+ p

1 + p
Eπ
[
|Ĩ1|+ |Ĩ2|

]
≥ (1− p)G(f) |OPT|+ 2p

1 + p

(
1− 2ε

f
− f − G(f)

)
|OPT|.

�
Proof:[Claim 6.5.8] Recall Φi(T

π
f) := spani(T

π
f) ∩ OPT. Let Ii denote Φi(T

π
f) \ Φı̄(T

π
f). We

construct sets Ĩ i by removing some elements from Ii, which implies Ĩ i ∈ Mi because Ii ∈ Mi .
We first show that |I1|+ |I2| is large. From the Hastiness Lemma 6.5.1, we have

Eπ [|I1|+ |I2|] = Eπ
[
|Φ1(T πf) ∪ Φ2(T πf)|

]
− Eπ

[
|Φ1(T πf) ∩ Φ2(T πf)|

]
≥
(

1− 2ε

f

)
|OPT|. (6.6)

Next, we ensure that Ĩ i ∈Mı̄/Tf . Note that Iı̄ ⊆ spanı̄(Tf). Let Xı̄ denote a minimum subset
of elements of Tf such that spanı̄(Xı̄∪Iı̄) = spanı̄(Tf). Since Iı̄ and Tf are independent inMı̄, we
have |Xı̄| = |Tf | − |Iı̄|. Now starting with (Ii ∪ Iı̄) ∈ Mı̄, we add elements of Xı̄ into it. We will
remove at most |Xı̄| elements from Ii to get a set I ′i such that (I ′i∪Xı̄∪Iı̄) ∈Mı̄ as (Xı̄ ∪ Iı̄) ∈Mı̄.

75

Using Fact 6.5.3 and spanı̄(Xı̄∪Iı̄) = spanı̄(Tf), we also have I ′i∪Tf ∈Mı̄. One can use a similar
argument to obtain set I ′ı̄ and Xi such that I ′ı̄ ∪ Tf ∈Mi. Since Eπ

[
|Xi|

]
= Eπ

[
|Tf | − |Ii|

]
,

Eπ[|I ′1|+ |I ′2|] ≥ Eπ[|I1|+ |I2| − |X1| − |X2|] = 2 Eπ[|I1|+ |I2| − |Tf |] (6.7)

Finally, to ensure that Ĩ i ⊆ Ẽi, observe that any element e ∈ I ′i already satisfies e ∈ spani(Tf) and
e 6∈ spanı̄(Tf). To ensure that these elements also appear in Phase (b), note that all elements of
I ′i belong to OPT. Hence, in expectation over π, at most f |OPT| of these elements can appear in
Phase (a). The remaining elements appear in Phase (b). Thus, combining the following equation
with Eq. (6.6) and Eq. (6.7) completes the proof of Lemma 6.5.5

Eπ
[
|Ĩ1|+ |Ĩ2|

]
≥ Eπ

[
|I ′1|+ |I ′2|

]
− f |OPT|.

�

6.6 Sampling Lemma
We prove the lemma for i = 1 as the other case is analogous.

6.6.1 Alternate View of the Sampling Lemma
We prove the Sampling Lemma by first showing that GREEDY(M1/S,M2/T, Ẽ) produces the
same output as algorithm SAMP-ALG (proof deferred to Section 6.6.3).
Lemma 6.6.1 Given a fixed Ψ and assuming the elements of Ẽ are presented in the same order,
the output of SAMP-ALG is the same as the output of GREEDY(M1/S,M2/T, Ẽ).

The idea behind SAMP-ALG is to run GREEDY, but postpone distinguishing between the ele-
ments that are selected by GREEDY (set T) and picked by our algorithm (set S). This limits what
an adversary can do while ordering the elements of Ẽ. Intuitively, the sets in SAMP-ALG denote
the following:
• N ′ denotes the new elements to be added to the independent set.
• T ′ are the elements of T for which we still haven’t read the random bit Ψ.
• S ′ are the elements e ∈ T for which we have read Ψ and they turn out to be picked, i.e.,

Ψ(e) = 1.

6.6.2 Proof of the Sampling Lemma
By Lemma 6.6.1, it suffices to prove that given the preconditions of the Sampling Lemma, SAMP-ALG

produces an output of expected size at least p
1+p
|Ĩ|. More precisely, we need to show that if Ψ in

SAMP-ALG is chosen as Ψ(e) ∼ Bern(1− p) i.i.d. for all e ∈ T , we have EΨ[|N ′|] ≥ p
1+p
|Ĩ|.

The main idea of the proof is to argue that before every iteration of the for-loop in Line 2, there
are “sufficient” number of elements that are still to arrive and can be added to our solution. To
achieve this, we define a set I ′, which intuitively denotes the set of OPT elements that are still

76

Algorithm SAMP-ALG

Input:M1,M2, T , and random bits Ψ ∈ {0, 1}|T |.
1: Initialize: N ′, S ′ to ∅, and T ′ = T
2: for each element e ∈ Ẽ do
3: if T ∪N ′ ∪ e ∈M2 then
4: Let C ← C1(S ′ ∪N ′ ∪ T ′, e) ∩ T ′ . Unread elements of the formed circuit
5: for each element f ∈ C do
6: T ′ ← T ′ \ f
7: if Ψ(f) = 1 then . Auxiliary random bits Ψ
8: S ′ ← S ′ ∪ f . Already picked elements
9: else

10: N ′ ← N ′ ∪ e . Newly picked elements
11: Break
12: return N ′

to arrive and can be added to the current solution. The properties of I ′ are rigorously captured in
Invariant 6.6.2, where Ẽr denotes the remaining elements of Ẽ that are still to be considered in
the for-loop. Due to Lemma 6.6.1, this also denotes the elements of Ẽ that are still to arrive for
GREEDY. Starting with I ′ = Ĩ at the beginning of SAMP-ALG, we wish to maintain the following.

Invariant 6.6.2 For given sets S ′, N ′, T , and Ẽr ⊆ Ẽ, we have set I ′ satisfying this invariant if

S ′ ∪N ′ ∪ I ′ ∈M1 (6.8)
T ∪N ′ ∪ I ′ ∈M2 (6.9)

I ′ ⊆ Ẽr (6.10)

As the algorithm SAMP-ALG progresses, set I ′ has to drop some of its elements so that it
continues to satisfy Invariant 6.6.2. These drops from I ′ are rigorously captured in Updates 6.6.3.
Note that set I ′ and Updates 6.6.3 are just for analysis purposes, and never appear in the actual
algorithm. Starting with I ′ = Ĩ at the beginning of SAMP-ALG and satisfying Invariant 6.6.2, in
Claim 6.6.4 we prove that Updates 6.6.3 to I ′ ensure that the invariant is always satisfied. This lets
us use induction to prove in Claim 6.6.5 that Updates 6.6.3 never drop too many elements from I ′

and SAMP-ALG returns an independent set of large size.

Updates 6.6.3 We perform the following updates to I ′ whenever SAMP-ALG reaches Line 8 or
Line 10. Claim 6.6.4 shows that these updates are well-defined.

• Line 8: If circuit C1(S ′∪N ′∪I ′∪f) is non-empty then remove an element from I ′ belonging
to C1(S ′ ∪N ′ ∪ I ′ ∪ f) to break the circuit.

• Line 10: If circuitC1(S ′∪N ′∪I ′∪e) is non-empty then remove an element from I ′ belonging
to C1(S ′ ∪N ′ ∪ I ′ ∪ e) to break the circuit. If C2(T ∪N ′ ∪ I ′ ∪ e) is non-empty then remove
another element from I ′ belonging to C2(T ∪N ′ ∪ I ′ ∪ e) to break the circuit. In the special
case where e ∈ I ′, we remove e from I ′.

77

The following claim (proof deferred to Section 6.6.4) shows that Updates 6.6.3 maintain In-
variant 6.6.2.
Claim 6.6.4 Given matroidsM1,M2, a set T ∈ M1 ∩M2, a set Ẽr ⊆ span1(T) (denoting the
set of remaining elements), and Ψ(e) ∼ Bern(1 − p) i.i.d. for all e ∈ T , suppose there exists
a set I ′ satisfying Invariant 6.6.2 at the beginning of some iteration of the for-loop in Line 2 of
SAMP-ALG. Then

(i) Updates 6.6.3 are well-defined.
(ii) Updates 6.6.3 ensure that Invariant 6.6.2 hold at the end of the iteration.

Finally, we use Invariant 6.6.2 to prove the main claim.
Claim 6.6.5 Given matroidsM1,M2, a set T ∈M1 ∩M2, a set Ẽr ⊆ Ẽ ⊆ span1(T) (denoting
the set of remaining elements), and Ψ(e) ∼ Bern(1 − p) i.i.d. for all e ∈ T , suppose there exists
a set I ′ satisfying Invariant 6.6.2 at the beginning of some iteration of the for-loop of Line 2 in
SAMP-ALG. Then the value of N ′ at the end of SAMP-ALG satisfies

EΨ[|N ′|] ≥ p

1 + p
|I ′|

Proof: To prove the claim we use induction on |I ′| where I ′ ⊆ Ẽ. WLOG we can assume that
e is the first element such that C in Line 4 is non-empty. Let C = {t1, . . . , tl} where l ≥ 1. For
j ∈ {0, . . . , l − 1}, define event Bj as Ψ(t1) = Ψ(t2) = · · · = Ψ(tj) = 1 and Ψ(tj+1) = 0. Also,
define B̄ as Ψ(t1) = . . .Ψ(tl) = 1.
Base Case: Since C is a non-empty circuit, we can assume that any element f ∈ C satisfies the
condition Ψ(f) = 0 with probability p. Hence, |N ′| ≥ 1 with probability at least p, proving the
required claim.
Induction Step: The events B0, . . . , Bl−1, and B̄ partition the entire probability space.

Case 1 (Event Bj) : Since applying the Updates 6.6.3 preserves Invariant 6.6.2 by Claim 6.6.4,
we can apply the induction hypothesis to the updated set I ′. Moreover. Updates 6.6.3 remove at
most j + 2 elements from I ′ in the event Bj . Applying the Induction hypothesis, we can conclude
that EΨ[|N ′|

∣∣Bj] ≥ 1 + p
1+p

(|I ′| − j − 2).
Case 2 (Event B̄): Since applying the Updates 6.6.3 preserves Invariant 6.6.2 by Claim 6.6.4,

we can apply the induction hypothesis to the updated set I ′. Moreover, Updates 6.6.3 remove l
elements from I ′ in the event B̄. Conditioned on the event B̄ and applying the induction hypothesis
to the updated set I ′, we can conclude EΨ[|N ′|] ≥ p

1+p
(|I ′| − l).

Combining both the cases, we have EΨ[|N |] is at least

l−1∑
j=0

Pr[Bj] · EΨ[|N ′|
∣∣Bj] + Pr[B̄] · EB̄[|N |

∣∣ B̄]

≥
l−1∑
j=0

(1− p)j p
(

1 +
p

1 + p
(|I ′| − 2− j)

)
+ (1− p)l

(
p

1 + p
(|I ′| − l)

)

=
p

1 + p
|I ′| using

l−1∑
j=0

j (1− p)j = − l (1− p)
l

p
− (1− p)

p2
((1− p)l − 1).

78

�
To finish the proof of Lemma 6.5.7, we start with I ′ := Ĩ , T ′ := T , N ′ := ∅, and S ′ := ∅ in

Claim 6.6.5. The preconditions hold true because T ∪ I ∈M2, T ∈M1, and I ∈M1.

6.6.3 Proof of the Alternate View of Sampling Lemma
We restate the lemma for convenience.
Lemma 6.6.1. Given a fixed Ψ and assuming the elements of Ẽ are presented in the same order,
the output of SAMP-ALG is the same as the output of GREEDY(M1/S,M2/T, Ẽ).

Starting with S ′ = ∅, N ′ = ∅, and T ′ = T , we make some simple observations and prove a
small claim before proving Lemma 6.6.1.
Observation 6.6.6 The for-loop defined in Line 2 of SAMP-ALG maintains the following invariant

S ⊆ S ′ ∪ T ′ ⊆ T

Proof: To show the first containment, observe that for each element if an Ψ(e) = 1 then it simply
moves from T ′ to S ′. Hence, all the elements of S ⊆ S ′ ∪ T ′. To observe, the second containment,
note that an element of T ′ either moves into S ′ or gets removed. Since T ′ was initialized to T , the
second containment follows. �

Observation 6.6.7 The for-loop defined in Line 2 of SAMP-ALG maintains the following invariant

S ′ ∪N ′ ∪ T ′ ∈M1.

Proof: Since T ∈ M1 and S ′ = T ′ = ∅ at the beginning, we can conclude that this is correct at
the beginning of SAMP-ALG. Now consider an iteration of the for-loop defined in Line 2. When
an element f is added to S ′ in Line 8, it must have belonged to T ′, implying that S ′ ∪ N ′ ∪ T ′ is
unchanged. If an element e is added to N ′ (in Line 10) then we must remove an element f from T ′

(due to Line 6), which belonged to the unique circuitC1(S ′∪T ′∪N ′, e). Hence, S ′∪N ′∪e∪(T ′\f)
is still an independent set inM1. �

Claim 6.6.8 For an element e ∈ Ẽ, if Line 4 of SAMP-ALG is reached then C1(S ′ ∪N ′ ∪ T ′, e) is
non-empty.

Proof: We know Ẽ ⊆ span1(T). Moreover, S ′ ∪ T ′ ⊆ T ⊆ span1(T) (using Observation 6.6.6).
Hence, S ′ ∪ T ′ ∪ Ẽ ⊆ span1(T) implies

rankM1(S
′ ∪ T ′ ∪ Ẽ) ≤ |T |. (6.11)

We prove the lemma by contradiction and assume circuit C1(S ′ ∪ N ′ ∪ T ′, e) is empty. Using
Observation 6.6.7, this implies (S ′ ∪N ′ ∪ T ′ ∪ e) ∈ M1. Now, rankM1(S

′ ∪ N ′ ∪ T ′ ∪ e) =
|S ′ ∪ N ′ ∪ T ′| + 1 ≤ rankM1(S

′ ∪ T ′ ∪ Ẽ) ≤ |T | using Eq. (6.11). In the next paragraph, we
show that the algorithm always maintains |S ′ ∪ N ′ ∪ T ′| = |T |, which gives the contradiction
|T |+ 1 ≤ |T |.

To prove |S ′ ∪ N ′ ∪ T ′| = |T |, we note that the only time T ′ decreases is in Line 6. In this
case, we either add the dropped element to S ′ in Line 8 or a new element to N ′ in Line 10. Hence,

79

the |S ′ ∪ N ′ ∪ T ′| is unchanged in the for-loop of Line 2. Since we initialize S ′ = N ′ = ∅ and
T ′ = T , we can conclude that this |S ′ ∪N ′ ∪ T ′| = |T | is maintained. �

We now have the tools to prove Lemma 6.6.1.
Proof:[Lemma 6.6.1] Let us assume the elements of Ẽ are presented in order e1, . . . , et where
t = |Ẽ|. We will use induction on the following hypothesis.
Induction Hypothesis (I.H.): After both algorithms have seen the first k elements e1, . . . , ek, the
set N ′ in SAMP-ALG is the same as the set of elements selected by GREEDY(M1/S,M2/T, Ẽ).
Base Case: Initially, both algorithms have not selected any element. Hence, N ′ = ∅ is the set of
all elements selected by GREEDY.
Induction Step: Suppose the I.H. is true for elements e1, . . . , ek−1 and we are considering element
ek. If ek does not satisfy T ∪ N ′ ∪ ek ∈ M2, then it will also not satisfy the same condition for
GREEDY because N ′ is the set selected by GREEDY (by I.H.) and N ′ ∪ e /∈ M2/T . In this case
we are done with the induction step. From now assume T ∪N ′ ∪ ek ∈M2.

Suppose ek is added to N ′ in SAMP-ALG, then we claim GREEDY(M1/S,M2/T, Ẽ) will
also select this element. The only location where ek could be added is Line 10. This occurs
when we remove some appropriate element f ∈ T ′ to ensure S ′ ∪ (T ′ \ f) ∪ N ′ ∪ e ∈ M1.
Furthermore Ψ(f) = 0 implies f /∈ S. By Observation 6.6.6, set S ⊆ S ′ ∪ T ′ \ f . Hence,
S ′ ∪ (T ′ \ f)∪N ′ ∪ e ∈M1 implies S ∪N ′ ∪ e ∈M1 and GREEDY will also select this element.

Next, suppose ek is not picked by the algorithm. By Claim 6.6.8, we know that C1(S ′ ∪
N ′ ∪ T ′, e) is non-empty. In this case, every element f ∈ C encountered in the for-loop of
Line 5 must have had Ψ(f) = 1. This implies that at the end of the for-loop of Line 5, circuit
C1(S ′ ∪N ′ ∪ T ′, e) ⊆ S ′ ∪N ′. Since S ′ ⊆ S (by Observation 6.6.6), this gives N ′ ∪ e /∈ M1/S.
Hence, GREEDY cannot select element ek. �

6.6.4 Proof that the Updates are valid
In this section we prove Claim 6.6.4 by showing that Updates 6.6.3 are well-defined and maintain
Invariant 6.6.2.
Proof:[Claim 6.6.4] Since Invariant 6.6.2 holds before entering into the for-loop in Line 2, we
prove this claim by showing that after one iteration of the for-loop, i.e., after arrival of an element
e, Properties (i) and (ii) hold.

We first show that the properties hold if the set C in Line 4 is empty. Since in this case
we do not perform any updates to sets S ′, N ′, I ′, and T ′, Invariant 6.8, Invariant 6.9, and well-
definedness trivially hold. To prove Invariant (6.10), we need to show e 6∈ I ′. This is true because
by Claim 6.6.8 element e forms a circuit in C1(S ′ ∪ N ′ ∪ T ′, e), and by Invariant (6.8) we know
S ′ ∪ N ′ ∪ I ′ ∈ M1. Hence, the circuit C1(S ′ ∪ N ′ ∪ T ′, e) contains some element of T ′, which
gives the contradiction that C is non-empty.

Now WLOG, we can assume that element e forms a non-empty set C in Line 4. We prove
Property (i), Invariant (6.8), and Invariant (6.9) by showing that they hold after any iteration of the
for-loop of Line 5. Note that sets S ′, N ′, and I ′ can only change in Lines 8 or 10 of the for-loop.
We prove the claim for both these cases.

Case 1 (Line 8): Since f belonged to T ′, from Observation 6.6.7 we know (S ′ ∪N ′ ∪ f) ∈ M1.
Now using Invariant (6.8) (which holds before the iteration), we can deduce that C1(S ′ ∪ N ′ ∪

80

U V

u2

u1

v2

v1

Figure 6.2: U denotes the set of vertices matched by GREEDY in Phase (a) and V denotes the
remaining vertices of G. Solid edges within U denote the picked edges and dashed edges within
U denote the marked ones. Dashed edges from U to V denote the OPT edges.

I ′, f) ∩ I ′ is non-empty and the update is well-defined. Invariant (6.8) holds because the update
breaks any circuit in S ′ ∪N ′ ∪ I ′ inM1. Since T and N ′ are unchanged and I ′ only gets smaller,
Invariant (6.9) holds trivially.

Case 2 (Line 10): Since we are adding e to N ′, it must be the case that S ′ ∪ N ′ ∪ e ∈ M1

(by Lemma 6.6.1). If C1(S ′ ∪ N ′ ∪ I ′ ∪ e) is non-empty then C1(S ′ ∪ N ′ ∪ I ′ ∪ e) ∩ I ′ must be
non-empty. Moreover, by Line 3, we know that T ∪N ′∪ e ∈M2. Hence, if C2(T ∪N ′∪ I ′∪ e) is
non-empty then C2(T ∪N ′ ∪ I ′ ∪ e) ∩ I ′ must be non-empty. Both of them together prove the the
update is well-defined in this case. Invariant (6.8) and Invariant (6.9) hold because Updates 6.6.3
break any circuit C1(S ′ ∪N ′ ∪ I ′ ∪ e) and C2(T ∪N ′ ∪ I ′ ∪ e).

Finally, to finish the proof of this claim, we show that Invariant (6.10) also holds at the end of
every iteration of the for-loop of Line 2. If e 6∈ I ′ then Invariant (6.10) trivially holds as Ẽr looses
element e, and I ′ ⊆ Ẽr \ e. Now suppose e ∈ I ′. Here we consider two cases.
Case 1 (e is added to N ′): Here SAMP-ALG reaches Line 10 and the special case of Update 6.6.3

ensures that e is removed from I ′. Hence I ′ ⊆ Ẽr.
Case 2 (e is not added to N ′): From the above proof, we know that Invariants (6.8) and (6.9) are

preserved at the end of this iteration. We prove by contradiction and assume that e ∈ I ′ at the end
of this iteration. Since e /∈ N ′, all the elements of C in Line 4 are added to S ′ by the end of this
iteration. Hence, the entire circuit in Line 4 (which is non-empty by Claim 6.6.8) is contained in
S ′∪N ′∪e at the end of the iteration. Since e ∈ I ′, this implies that S ′∪N ′∪I ′ is not independent.
This is a contradiction as Invariant (6.8) is violated. �

6.7 Beating Half for General Graphs
Theorem 6.3.3. In the random edge arrival model, the online matching problem for general graphs
has a (1

2
+ δ′)-competitive randomized algorithm, where δ′ > 0 is a constant.

81

Proof: [Proof overview] Let G be the arrival graph with edge set E. Using the same idea as
Lemma 6.4.1, we can again focus on graphs where GREEDY has a competitive ratio of at most(

1
2

+ ε
)

for any constant ε > 0. We construct a two-phase algorithm that uses the algorithm from
Theorem 6.1.1 as a subroutine. In Phase (a), we run GREEDY; however, each edge selected by
GREEDY is picked only with probability (1 − p). With probability p, we mark it along with its
vertices and behave as if it has been matched for the rest of Phase (a). Since the hastiness property
(Lemma 6.4.3) is also true for general graphs, in expectation we pick (1− p)

(
1
2
−O(ε

f
)
)
|OPT|

edges and mark p
(

1
2
−O(ε

f
)
)
|OPT| edges in Phase (a). Now we need to ensure that in expecta-

tion (1 + γ) edges, for some constant γ > 0, are picked per marked edge in Phase (b).
Let Tf denote the set of edges selected by GREEDY in Phase (a), i.e., both picked and marked

edges. Let U denote the set of vertices matched in Tf and V denote the remaining set of vertices of

G. Using the following simple Fact 6.7.1 and Lemma 6.4.3, we can argue that
(

1−O(ε
f
)
)

OPT
edges go from a vertex in U to a vertex in V in graph G.

Fact 6.7.1 (Lemma 1 in [107]) Consider a maximal matching T of graph G such that |T | ≤(
1
2

+ ε
)
|OPT| for some ε ≥ 0. Then G contains at least

(
1
2
− 3ε

)
|OPT| vertex disjoint 3-

augmenting paths with respect to T .

Moreover, in expectation at most f fraction of these (U, V) OPT edges can appear in Phase (a).
Thus, setting ε� f � 1 gives that most of the OPT edges, i.e.,

(
1−O(ε

f
)− f

)
fraction, appear

in Phase (b). This implies that most of the marked edges contain two 3-augmentation edges as
shown in Figure 6.2.

Now consider a marked edge (u1, u2) with (u1, v1) and (u2, v2) denoting its 3-augmentations.
In comparison to bipartite graphs, the new concern in general graphs is that there might be an
edge between u1 and v2 as triangles are possible in non-bipartite graphs. Hence, the Sampling
Lemma 6.4.4 cannot be directly applied here. However, we are only interested in the bipartite
graph between vertices U and V . Therefore, in Phase (b), we run the algorithm from Theorem 6.1.1
for bipartite graphs restricted to (U, V) edges. For sufficiently small values of constants ε and f ,
the constant δ gain in Theorem 6.1.1 is sufficient to obtain a constant δ′ gain for this theorem. �

6.8 Open Problems

There are several important problems in the space of online matroid problems.
Problem 6.8.1 What is the best competitive ratio that is achievable for online matroid intersection
in the random arrival model? In particular, can one achieve a ratio of 1− 1/e for this problem?

It is natural to consider the problem when we relax the assumption that the elements are arriving
in random order. This problem is interesting even when we are dealing with the special case of
online bipartite matching.
Problem 6.8.2 Is there an algorithm with competitive ratio strictly better than half for the online
biparite matching problem in the edge arrival model, when the arrivals are adversarial?

82

While this work has focused on the edge arrival model, there are still some open questions in
the vertex arrival model. In particular, the main open question is whether there exists a 1 − 1/e
approximation algorithm for the weighted bipartite matching problem when the vertices arrive in
adversarial order. We note that it is important that we allow the algorithm to throw away edges al-
ready chosen (known as the “free-disposal” assumption). Recently, Zadimoghaddam [143] showed
that it is possible to break the barrier of 1/2 barrier by a small constant. However, this is done using
a complicated adaptive algorithm and a careful charging scheme. Unlike previous algorithms in
this space, the charging schme increases and decreases the amount an edge is charged. It remains
an open question if this can be improved further.

83

84

Chapter 7

Smoothed Online Convex Optimization

7.1 Introduction
Consider the following online optimization problem: at each time step t, the algorithm is presented
with a convex function ft : Rd → R. The algorithm must choose a point xt and its cost is the
function cost f(xt) and the distance it must travel from the previous point ‖xt−xt−1‖. The goal is
to minimize the total cost incurred by the algorithm at all points. This problem, which is known as
Smoothed Online Convex Optimization (SOCO), can be viewed as a special case of the metrical
task system problem. The special case when each fi is the indicator function for a convex set is
known as the Online Convex Body Chasing Problem (OCO).

The work function algorithm (WFA) is a generic online algorithm for any metrical task system.
It is optimal or is conjectured to be optimal for many classical problems including the famous k-
server problem. Before, we define the work function algorithm, it is useful to consider two natural
algorithms for SOCO.

Greedy Algorithm: Satisfy the request fi using the minimal movement given current posi-
tion. (This is oblivious to the past history).

Follow the Leader: Satisfy the request fi by moving to the position where the optimal
algorithm will be. (This is fully determined by the past history).

Unfortunately, it is easy to construct examples where both algorithms can perform arbitrarily
badly. The work function algorithm tries to balance between these two extremes. In particular,
WFA will try to move to the point zt that minimizes the optimal cost of ending at position zt and
the distance of zt from the current point.

In more detail, the retrospective function rt(x) denotes the cost of satisfying the first t requests
(i.e. functions) and ending at position x. Formally, given a set of convex functions fi : R → R≥0

for all i ∈ [t], define the work functions as follows:

r0(x) = ‖x‖ (7.1)
rt(x) = min

s
rt−1(s) + ft−1(s) + ‖x− s‖ (7.2)

rt is a convex function; this follows from the convexity of the norm ‖x‖ and ft. Define the work
function algorithm WFA as follows. Let zt indicate the position of the algorithm at time i (with

85

z0 = 0). Then,

zt = argminswt−1(s) + ft(s) + ‖zt−1 − s‖. (7.3)

In this work, we will try and investigate the competitive ratio achieved by WFA.

7.2 Related Work

The metrical tasks system problem was introduced by Borodin et al. [28] and has received intense
scrutiny. Smoothed Convex Optimization was first studied by Andrew et al. [8] and Lin et al. [117].
A randomized 2-competitive algorithm was given for this problem by Bansal et al. [20].

The problem of convex body chasing was introduced by Friedman and Linial [64] who showed
that there exists a O(1) algorithm for this problem when d = 2. The case when d ≥ 3 remains
open to this day. They also showed a lower bound of Ω(d1−1/p) when the underlying metric is
measured with respect to the `p-norm. For the case p = 1, there exists a Ω(log d) lower bound due
to the work of Buchbinder et al. [29].

However, special cases of this problem have been studied recently. Antoniadis et al. [9] gave an
intuitive algorithm for chasing lower dimensional objects and showed reductions between online
function chasing and online convex body chasing algorithms. Recently, Bansal et al. [21] and [10]
showed that convex bodies are chasable.

7.3 Our Results

The main result of this section is that
Theorem 7.3.1 WFA is a 3-competitive for SOCO when the dimension is 1. Furthermore, this is
tight.

For higher dimensions, we show that the WFA can be viewed as minimizing the bregman diver-
gence with respect to the retrospective function. We generalize the potential to higher dimensions
and argue some natural properties of rt. We show that showing a Od(1)-competitiveness boils
down to a smoothness condition on the dual of the retrospective function r∗(x).

7.4 One Dimensional Case

The retrospective function ri(x) denotes the cost of satisfying the first i requests (i.e. functions)
and ending at position x. ri is a convex function; this follows from the convexity of the norm ‖x‖
and fi. Hence, its derivative is monotone and well defined at all but a countable number of points.
For the sake of the exposition, we will assume that the derivative is well defined at all points.

Define the set Fi = cl
(
{x | |w′i−1(x) + f ′i(x)| < 1}

)
, where cl denotes the closure operator.

(The fact that Fi is a connected set follows as a w′i−1(x) + f ′i(x) is a monotone function).

86

Claim 7.4.1 Define w̃i as follows:

w̃i(x) =

{
wi−1(x) + fi(x) if x ∈ Fi
wi−1(s) + fi(s) + |x− s| else where s = argmins∈Fi |x− s|

Then w̃i(x) = wi(x) for all x ∈ R.
It is worth understanding the above claim. In short it says that the work function only depends

only on the work function value in the set Fi. Intuitively, Fi is the region where optimal solution can
“move” without paying the full movement cost. In particular, for any point y ∈ Fi and the optimal
solution x∗i , the work function grows strictly slower than the norm; I.e. ‖y − x∗‖ > r(y)− r(x∗).

The work function algorithm exploits this fact and will ensure that each point zt lies in the set
Fi.
Claim 7.4.2 After any set of requests i, WFA will end at a point zi ∈ Fi.

To understand the interplay between the sets Fi and the WFA, we will define a potential func-
tion.
Definition 7.4.3 Define the potential

Φi = 2

∫ bi

ai

(1− |r′i(x)|)dx+ |
∫ oi

zi

w′i(x)dx| (7.4)

where the region Fi = [ai, bi] and oi denotes the minimum of ri (i.e. the optimal solution after i
requests).

To understand this better, we will split the potential Φi = Vi + Di where the constituent parts
are
• ‘Volume’: Vi = 2

∫ bi
ai

(1 − |r′i(x)|)dx. This defines the maximum amount the optimal algo-
rithm can move without paying its true movement cost.

• ‘Distance’: Di = |
∫ oi
zi
r′i(x)dx|. This relates how far the algorithm is from the optimal point

as measured by the work function.
In figure 7.4, we give a pictorial representation of this function.

Figure 7.1: The curve represents r′i and the dotted line is the x-axis. The red bars indicate 1
2
Vi and

Di is shown in blue.

The following lemma shows that WFA is 3-competitive.

87

Lemma 7.4.4 The algorithm maintains the invariant at each step i

Φi ≥ 0 ∀i ≥ 0

3ri(oi) ≥ Φi + WFAi ∀i ≥ 0

where WFAi refers to total cost incurred to serve the first i requests.
Proof:[Proof of lemma 7.4.4] We proceed by induction.
The base case: Since o0 = z0 = 0, this relationship is true when i = 0.
The inductive step: Suppose the invariant holds at time i. We will assume that we are given a
piecewise linear function fi+1. In particular, we assume1

fi+1(x) =

{
(c− x) ·∆ x ≤ c

0 x > c

Observe that fi+1 has nonpositive derivative everywhere. Since the derivative only takes on
two values −∆ and 0, we can calculate precisely this can only move the region Fi to the right. In
particular, ai+1 ≥ ai and bi+1 ≥ bi.

To verify the invariant, we need to know the position c and zi. We first consider the case when
c = bi+1. In other words, c is to the right of Fi.

First, we will analyze the change in ri(oi). It is easy to see that

ri+1(oi+1)− ri(oi) =

∫ oi+1

oi

r′i + (bi+1 − oi+1)∆.

This is simply the cost of satisfying the first i requests and ending at position ri(oi+1) and then
fi+1(oi+1) = (bi+1 − oi+1)∆. Now we will analyze the change in Vi.

Vi+1 − Vi = 2
(
−
∫ ai+1

ai

(1− |r′i|)−∆(oi − ai+1) +

∫ oi+1

oi

(2r′i −∆) + ∆(bi+1 − oi+1)
)

= 2
(
−
∫ ai+1

ai

(1− |r′i|) + ∆(bi+1 + ai+1 − 2 · oi+1) +

∫ oi+1

oi

2r′i

)
We show that this is true in three important cases:
Case 1 zi = ai and c = bi+1.

Vi+1 − Vi = 2
(
−
∫ ai+1

ai

(1− |r′i|) + ∆(bi+1 + ai+1 − 2 · oi+1) +

∫ oi+1

oi

2r′i

)
Di+1 −Di = −

∫ ai+1

ai

|r′i|+ ∆(oi − ai+1) +

∫ oi+1

oi

(∆− r′i)

costi+1 − costi = (ai+1 − ai) + ∆(bi+1 − ai+1)

1I think this is without loss of generality but need to double check. Either way, this is far more informative than
the general case.

88

Figure 7.2: Case 1

Adding the first three equations, we get

−2

∫ ai+1

ai

(1− |r′i|)−
∫ ai+1

ai

|r′i|+(ai+1 − ai)

−2∆(oi+1 − ai+1)+∆(oi+1 − ai+1)+∆(oi+1 − ai+1)

+

∫ oi+1

oi

4r′i−
∫ oi+1

oi

r′i

+2∆(bi+1 − oi+1)+∆(bi+1 − oi+1)

Simplifying these equations, we get

3

∫ oi+1

oi

r′i + 3(bi+1 − oi+1)∆)−
∫ ai+1

ai

(1− |r′i|)

which is less than 3(ri+1(oi+1)− ri(oi)).
Case 2 zi = bi and c = bi+1.

Figure 7.3: Case 1

89

In this case, the Vi+1 and ri+1(oi+1) changes in the same way as earlier. Therefore, we can say

Di+1 −Di= −
∫ oi+1

oi

|r′i| −∆(bi − oi+1)

costi+1 − costi= ∆(bi+1 − bi)

Adding the first three equations, we get

−2

∫ ai+1

ai

(1− |r′i|)

−2∆(oi+1 − ai+1)

+

∫ oi+1

oi

4r′i−
∫ oi+1

oi

r′i

+2∆(bi − oi+1)−∆(bi − oi+1)

+2∆(bi+1 − bi)+∆(bi+1 − bi)

This value is at most 3(ri+1(oi+1)− ri(oi)).
Case 3 oi ≤ zi ≤ oi+1 and c = bi+1.

Figure 7.4: Case 3

In this case, the Vi+1 and ri+1(oi+1) changes in the same way as earlier. Therefore, we can say

Di+1 −Di= −
∫ zi

oi

|r′i|+
∫ oi+1

zi

(∆− |r′i|)

costi+1 − costi= ∆(bi+1 − zi)

90

Adding the first three equations, we get

−2

∫ ai+1

ai

(1− |r′i|)

−2∆(zi − ai+1)

−2∆(oi+1 − zi)+∆(oi+1 − zi)+∆(oi+1 − zi)

+

∫ oi+1

oi

4r′i−
∫ oi+1

oi

r′i

+2∆(bi+1 − oi+1)+∆(bi+1 − oi+1)

�

7.5 Higher Dimensions
To solve the problem of SOCO in higher diemsnions it suffices to solve the case of half-space
chasing. This is a special case where each fi is an indicator function of a halfspace. We will
analyze the WFA in this case and extract some properties of the restrospecitive which will be
useful in extending the potential function to higher dimensions.

7.5.1 Alternate view of Work Function Algorithms
In this section, we will show that the work function algorithm can be viewed as minimizing the
bregman divergence with respect to the retrospective function. Recall that the bregman divergence
with respect to a convex function f is Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

The work function algorithm simply calculates the the minimum feasible point with respect to
the retrospective.
Lemma 7.5.1 If zt is an optimal solution to the problem, then

zt = argmin x
〈ai,x〉≥bi

Drt(x, zt−1)

Proof: Observe that ‖zt − zt−1‖ = rt(zt−1) − rt(zt). Furthermore, we know that the optimal
solution to rt(zt−1) uses a path that goes through zt → zt−1. Therefore the derivative

∇rt(zt−1) =
zt−1 − zt
‖zt−1 − zt‖

Puting these together, it is easy to see that Drt(zt, zt−1) = 0. �

Claim 7.5.2 If x∗t be the optimal solution rt(x) and let y be the point at which it took the previous
request. I.e. the optimal path is of the form y → x∗t . Then

Drt−1(x
∗
t , y) = 0

91

Proof: The first observation is that rt(x∗t) = rt−1(x∗t). Therefore, we know that rt−1(x∗t) −
rt−1(y) = ‖x∗t − y‖. Furthermore, we know that

∇rt−1(x∗t) =
x∗t − y
‖x∗t − y‖

.

Plugging this into the definition of the bregman divergence, we get the required claim. �

7.5.2 Fenchel Duals
The retrospective function (i.e. work function) for this problem is the solution to a convex program:

rt(x) := min
t∑
i=1

‖xi − xi−1‖+ ‖x− xt‖

〈aj, xj〉 ≥ bj ∀j ∈ [t]

Recall the fenchel dual is defined as r∗t (s) := supx〈s, x〉 − rt(x)

Claim 7.5.3 r∗t (s) is equal to the solution to the following convex program

min −
t∑
i=1

λibi

‖s+
t∑
i=j

λiai‖ ≤ 1 ∀j ∈ [t]

‖s‖ ≤ 1, λ ≥ 0

Proof: We proceed as follows:

r∗t (s) = sup
x
〈s, x〉 − rt(x)

= sup
x
〈s, x〉 − min

x1,...,xt
〈aj ,xj〉≥bj

t∑
i=1

‖xi − xi−1‖+ ‖x− xt‖

= sup
x
〈s, x〉 − min

x1,...,xt
〈aj ,xj〉≥bj

max
s1,...,st+1

‖sj‖≤1

t∑
i=1

〈si, xi − xi−1〉+ 〈st+1, x− xt〉

By Sion’s theorem

= sup
x
〈s, x〉 − max

s1,...,st+1

‖sj‖≤1

min
x1,...,xt
〈aj ,xj〉≥bj

t∑
i=1

〈si − si+1, xi〉+ 〈st+1, x〉

= sup
x
〈s, x〉 − max

s1,...,st+1

‖sj‖≤1

t∑
i=1

min
xi

〈ai,xi〉≥bi

〈si − si+1, xi〉+ 〈st+1, x〉

92

Unless si − si+1 = λiai for some λi ≥ 0, the minimum inside the sum will be −∞.

= sup
x
〈s, x〉 − max

s1,...,st+1
sj−sj+1=λjaj
‖sj‖≤1, λj≥0

t∑
i=1

λibi + 〈st+1, x〉

= min
s1,...,st+1

sj−sj+1=λjaj
‖sj‖≤1, λj≥0

sup
x
〈s− st+1, x〉 −

t∑
i=1

λibi

Unless s = st+1, the first quantity is∞. Rewriting the above, we get the claim as desired. �

Corollary 7.5.4 The fenchel dual r∗t satisfies the relationship

r∗t (s) = min
λ≥0

‖s+λat‖≤1

r∗t−1(s+ λat)− λbt

7.5.3 Slack
An important quantity to consider is the Slack which tells us how much the optimal solution can
“cheat” by rewriting history to move to a point x from x∗t .
Definition 7.5.5 The Slack at a position x is Slack(x) := ‖x− x∗t‖ − (wt(x)− wt(x∗t)).
Since we want to understand how this Slack over the entire metric space, we also define the
directional slack, which is the supremum of the slack over points in some direction.
Definition 7.5.6 Given a unit-vector s, the directional slack is Ds

t := supα≥0 Slack(x∗t + αs)

Although, thid defintion seems a little odd, it has the advantage that it can be succintly by the
bregman divergence in the dual.
Lemma 7.5.7 The directional slack is exactly

sup
α≥0

Slack(x∗t + αs) = Dr∗t (s, 0)

Proof: Rewriting this quantity, we get

sup
α≥0

Slack(x∗t + αs) = sup
α≥0

α−
(
rt(x

∗
t + αs)− rt(x∗t)

)
= sup

α≥0
α−

(
rt(x

∗
t + αs) + r∗t (0)

)
= sup

α≥0
α−

(
max
s̃
〈s̃, x∗t + αs〉 − r∗t (s̃) + r∗t (0)

)
= sup

α≥0
min
s̃
r∗t (s̃)− r∗t (0)− 〈x∗t , s̃〉+ α− 〈s̃, αs〉

Since∇r∗t (0) = x∗t , we can simplify to

= sup
α≥0

min
s̃
Dr∗t (s̃, 0) + α(1− 〈s̃, s〉)

= Dr∗t (s̃, 0)

�

93

7.5.4 Potential Functions

Standard potential function proofs construct a non-negative function Φt ≥ 0, which satisfies
ALGt + Φt ≤ α · OPTt for every time step t. We will address each of these in steps:

The Potential Φt

Intuitively, any such function must be able to capture Φt ≥ maxx Slack(x). This is because if the
slack is large for some point, the next request could move the optimum to that location at “low”
cost even though it is quite far away.

Given the characterization of Slack in terms of the dual, a reasonable potential function would
be Φt = α

∫
s∈Ω
Dr∗t (s, 0)ds where the integral is defined over the uniform measure on the unit-

sphere. (Although, we only need a small set of properties from the unit-sphere, it is useful as a
running example.)

α

∫
s∈Ω

Dr∗t (s, 0)ds = α
(∫

s∈Ω

(
r∗t (s)− r∗t (0)− 〈x∗t , s〉

)
ds
)

= α
(∫

s∈Ω

r∗t (s)ds− r∗t (0)
)

The Algorithm ALGt

Instead of simply tracking ALGt, it is more useful to track the quantity

ALGt + rt(zt).

By the definition of the WFA, we can say that ALGt − ALGt−1 = rt(zt−1)− rt(zt), which implies

∆(ALGt + rt(zt)) = rt(zt−1)− rt−1(zt−1) ≤ sup
x
rt(x)− rt−1(x).

The latter quantity is called Extended Cost. In the case of half-space chasing, we can bound the
extended cost by the increase in dual.

Claim 7.5.8 We can bound supx rt(x)− rt−1(x) ≤ sups r
∗
t (s)− r∗t−1(x).

Proof: Rewriting rt(x) = sups〈s, x〉 − r∗t (s), we can say that

sup
x
rt(x)− rt−1(x) = sup

x
sup
s

(
〈s, x〉 − r∗(s)

)
− sup

ŝ

(
〈ŝ, x〉 − r∗t−1(ŝ)

)
≤ sup

x
sup
s

(
〈s, x〉 − r∗(s)− 〈s, x〉+ r∗t−1(s)

)
≤ sup

s
r∗t−1(s)− rt(s)

�

94

Combining these together

To show an α approximation it suffices to prove

∆(Φ + ALG) ≤ α∆OPT.

Expanding the above terms and simplifying we get

α

∫
s∈Ω

r∗t (s)− r∗t−1(s) + max
s
r∗t−1(s)− r∗t (s) ≤ 0.

95

96

Appendix A

Independent Sets Appendix

A.1 Johansson’s Algorithm for Coloring Sparse Graphs

For completeness, we state two results of Johansson [96] on coloring degree-d graphs: one about
graphs where vertex neighborhoods can be colored using few colors (“locally-colorable” graphs),
and another aboutKr-free graphs. Since the original manuscript is not available online, a complete
proof is presented in the arXiv version of this paper [19].

Theorem A.1.1 For any r,∆, there exists a randomized algorithm that, given a graph G with
maximum degree ∆ such that the neighborhood of each vertex is r-colorable, outputs a proper
coloring of V (G) using O(∆

ln ∆
ln r) colors in expected poly(n2∆) time.

Theorem A.1.2 For any r,∆, there exists a randomized algorithm that, given a graph G with
maximum degree ∆ which excludes Kr as a subgraph, outputs a proper coloring of V (G) using
O
(

∆
ln ∆

(r2 + r ln ln ∆)
)

colors in expected poly(n) time.

A.2 Miscellaneous Proofs

A.2.1 Proof of Theorem 2.4.1

Recall the statement of Halperin’s theorem: for η ∈ [0, 1
2
], suppose Z is the collection of vectors

vi satisfying ‖vi‖2 ≥ η in the SDP solution. Then we want to find an independent set of size
Ω
(

d2η

d
√

ln d
|Z|
)

.

Let ai = vi · v0 = ‖vi‖2, and let wi = vi − 〈vi, v0〉v0 denote the projection of vi to v⊥0 , the
hyperplane orthogonal to v0. As ‖wi‖2 + 〈vi, v0〉2 = ‖vi‖2, we obtain ‖wi‖2 = ai − a2

i . Let
ui = wi/|wi|.

Now for any pair of vertices i, j, we have that wi ·wj = vi · vj − 〈vi, v0〉〈vj, v0〉. As vi · vj = 0
if (i, j) ∈ E, we have that

wi · wj = vi · vj − 〈vi, v0〉〈vj, v0〉 = −aiaj

97

and hence

ui · uj = −
√
aiaj√

(1− ai)(1− aj)
≤ − η

(1− η)
.

The last step follows as ai, aj ≥ η and as x/1− x is increasing for x ∈ [0, 1].
Thus the unit vectors ui can be viewed as a feasible solution to a vector k-coloring (in the sense

of [100]) where k is such that 1/(k− 1) = η/(1− η). This gives k = 1/η, and now we can use the
result of [100, Lemma 7.1] that such graphs have independent sets of size Ω(|Z|/d1−2/k

√
ln d) =

Ω(|Z|d2η/(d
√

ln d)).

A.2.2 Proof of Theorem 2.6.4

The proof of Theorem 2.6.4 is similar to that of Theorem 2.5.1, and we give only the differences.
We set γ = log d

log k
. As in that proof, we wish to show that E[Xv] ≥ cγ for each vertex v and some

constant c > 0. The next few steps of the proof are identical, culminating in (2.6), which shows
that

E[Xv | W ∩ V (H ′) = S] ≥ d
1

2εx + 1
+

εx

10 log(1/ε+ 1)

2εx

2εx + 1
.

Again, if 2εx + 1 ≤
√
d, then the first term is at least

√
d and we are done. Otherwise, it must be

that εx ≥ (1/2) log d and hence the right hand side in (2.6) is at least

log d

20 log(1/ε+ 1)
. (A.1)

We now consider two cases depending on the value of x. Recall the assumptions on the graph
H: namely, for any vertex v and any subset T lying in the neighborhood of v of size at most
k log2 d, there is an independent set of size at least |T |/k.

• If x ≤ k log2 d, then by our assumption,X contains an independent set of size at least |X|/k.
Every subset of this is also an independent set, and hence the number of independent sets in
X is 2εx ≥ 2x/k. Hence ε ≥ 1/k, and so gives that (A.1) is at least log d

40 log(k+1)
.

• If x ≥ k log2 d, then again by our assumption, X contains at least 2log2 d independent sets,
and hence εx ≥ log2 d. As x ≤ d, it follows that ε ≥ log2 d/d ≥ 1/d and hence log(1/ε +
1) ≤ 2 log d. Thus the right hand side of (2.6) is at least

εx

20 log(1/ε+ 1)
≥ log2 d

40 log d
.

In all cases we have an independent set of size Ω
(
n
d

log d
log(k+1)

)
, which completes the proof of Theo-

rem 2.6.4.

98

A.3 The Average-degree Case
In this section, we show that any algorithm for graphs with maximum degree d based on (lifts
of) the standard SDP can be translated into an algorithm for graphs with average degree δ, albeit
with a slight loss in performance. E.g., an integrality gap of O(d/ log2 d) translates to one of
O(δ/ log1.5 δ). Moreover, we show that it is unlikely that we can do better.

Lemma A.3.1 Let ε ≤ 1 and ` ≥ 1. Suppose the integrality gap of the `-level SA+ semidefinite
relaxation on graphs with maximum degree d is

Õ

(
d

(log d)1+ε

)
,

then its integrality gap on graphs with average degree δ is at most

Õ

(
δ

(log δ)1+ε/2

)
.

Proof: Let sdp denote the value of the `-level SA+ semidefinite relaxation on the graph G, and
define β := 1/(log1+ε/2 δ). We can assume that sdp ≥ 3βn: indeed, greedy algorithm finds an
independent set of size at least n/(δ + 1) ≥ sdp/(3β(δ + 1)), and thus bounds the integrality gap
by Õ(δ/ log1+ε/2 δ).

Define η = c log log δ
log δ

and partition the vertices into three sets as follows:

A = {v | xv ≥ η}
B = {v | β ≤ xv < η}
C = {v | xv < β}

Let x(S) =
∑

v∈S xv. Since sdp ≥ 3βn, the SDP value of vertices in C is x(C) < |C|β ≤ βn ≤
sdp/3. Hence, at least one of x(A) or x(B) is greater than sdp/3. In each case, we will exhibit an
independent set of size Ω((log1+ε/2 δ)/δ) · sdp, which in turn will bound the integrality gap.

Case I: suppose x(A) ≥ sdp/3. This implies that |A| ≥ x(A) ≥ sdp/3 ≥ βn. We define a
vertex v to be “A-high” if deg(v) ≥ a := 2

β
δ. By Markov’s inequality, there are at most βn/2

A-high vertices in G. If we drop A-high vertices from A, there are at least |A| − βn/2 ≥ |A|/2
vertices in the remaining set A′. Furthermore, the graph G[A′] has maximum degree a. Applying
Theorem 2.4.1 to the set of vectors in the solution induced on vertices fromA′ gives an independent
set of size

Ω

(
|A′| · a2η

a
√

log a

)
≥ Ω

(
|A| · (log δ)2c

δ(log δ)2

)
≥ Ω

(
(log δ)2c

δ(log δ)2

)
sdp

Setting c ≥ 3/2 + ε/4 completes this case.
Case II: suppose x(B) ≥ sdp/3. This implies that |B| · η ≥ x(B) ≥ sdp/3 ≥ βn. Hence, we

can say that |B| ≥ β
η
n. We define a vertex v to be “B-high” if deg(v) ≥ b := 2 η

β
δ. By Markov’s

inequality, there are at most β
η
n/2 B-high vertices in G. If we drop B-high vertices from B, there

99

are at least |B|/2 vertices in the remaining set B′. The graph G[B′] now has maximum degree b.
Moreover, x(B′) ≥ x(B)− (β

η
n/2) · η ≥ x(B)/2, so the optimal value of the SA+ relaxation on

the graph G[B′] is at least as high. Now we can apply the assumption on the integrality gap of the
convex program to G[B′] to infer the existence of an independent set in G[B′] (and hence in G) of
size

Ω̃

(
b

log1+ε b
x(B′)

)
= Ω̃

(
δ

log1+ε/2 δ
x(B)

)
≥ Ω̃

(
δ

log1+ε/2 δ
sdp

)
�

To show this transformation cannot be improved substantially, consider a graph G showing the
integrality gap of the SDP in terms of the maximum degree d is Ω(d/(log d)1+ε). Specifically, let
G be a graph on n vertices and maximum degree d such that α(G) = O(nβ/d), but the value of
the semidefinite program is sdp(G) = Ω(nβ/(log d)1+ε) for some β ∈ [1, (log d)ε] 1. From this we
construct an instance H with an integrality gap of Ω̃(δ/(log δ)1+ε/2) where δ is the average degree.

Define n′ = n (log d)ε/2 and δ′ = d/(log d)ε/2, so that nd = n′δ′. We construct H by taking
the union of G with n′/δ′ disjoint copies of Kδ′ , the complete graph on δ′ vertices. The number
of edges in H is at most nd + n′δ′ = 2nd and the number of vertices is n′ + n ∈ [n′, 2n′], the
average degree of H is δ := O(δ′). Furthermore, sdp(H) ≥ sdp(G) = Ω(nβ/(log d)1+ε) =
Ω(n′β/(log δ)1+ε/2) and α(H) = nβ/d + n′/δ′ ≤ 2n′/δ′ = O(n′/δ). Therefore, the integrality
gap of the SDP on the instance H is at least Ω̃(δ/(log δ)1+ε/2), where δ is its average degree.

1We may assume β ≥ 1 as α(G) ≥ n/d for any d-regular graph. If sdp(G) ≥ Ω(n/ log d), then Theorem 2.4.1
gives us a better integrality gap. Therefore, we can assume β ∈ [1, (log d)ε].

100

Appendix B

Online Matroid Intersection Appendix

B.1 Notation

B.2 Miscellaneous Results

B.2.1 GREEDY Beats Half on Almost Regular Graphs

Theorem B.2.1 For online matching in random edge arrival model, GREEDY has a competitive
ratio of at least (1− 1

e
) on any d-regular graph.

Proof: Consider a vertex v, and let u1, u2, . . . , ud be its neighbours. The probability that (u1, v) is
the first to occur amongst all the edges of u1 is exactly 1

d
. If this occurs, then we know that vertex

v will be surely matched. Thus, the probability that v is not matched by the end of the algorithm
is at most (1 − 1

d
)d ≤ 1

e
. This means that each vertex is matched with probability at least 1 − 1

e
,

leading to the stated theorem. �
The same analysis also extends to graphs that are almost regular, i.e., graphs with vertex degrees

between d (1± ε), for any small constant ε.

B.2.2 GREEDY Cannot Always Beat Half for Bipartite Graphs

Dyer and Frieze [49] showed a general graph1 for which GREEDY is half competitive. Inspired
from their construction, we give the following bipartite graph for which GREEDY is half competi-
tive.

Definition B.2.2 (Thick-Z graph) Let graph Thick-Z := ((U1∪U2)∪(V1∪V2)}, E) be a bipartite
graph with |U1| = |V1| and |U2| = |V2|. The edge set E consists of the union of a perfect matching
between Ui and Vi for i ∈ {1, 2} and a complete bipartite graph between U2 and V1. If additionally
|U1| = |V2|, we call the graph a balanced Thick-Z .

1This graph is popularly known as a bomb graph. It is obtained by adding a new vertex and edge adjacent to each
vertex of a complete graph.

101

General Notation

Mi Matroid indexed by i
A ∈M Subset A is an independent set in the matroidM
T ∪ e Short form for notation T ∪ {e}
rankM The rank function defined by matroidM

ı̄ Denotes the index 3− i
M1 ∩M2 The set of subsets that are independent in both matroidsM1 andM2

M/T The matroid resulting from contracting subset T in matroidM
spani(T) {e | (e ∈ E) ∧ (rankMi

(T ∪ {e}) = rankMi
(T)}

Ci(T ∪ e) The unique circuit formed by T ∪ {e} in matroidMi. This is undefined when T is
not an independent set and e /∈ spani(T).

E The set of ground elements common to the matroidsM1 andM2

π A permutation on the set E
OPT A fixed maximum independent set in the intersection ofM1 ∩M2

G(f) Eπ[|Tf |]/|OPT|

Notation used by MARKING-GREEDY in Section 6.5.3

Ψ The set of random bits used in the algorithm. For each e ∈ E, we have Ψ(e) ∼
Bern(1− p)

selecting The element is chosen by GREEDY in Phase (a)
picking The element is chosen by MARKING-GREEDY in the final solution

marking The element is chosen by GREEDY in Phase (a) but the algorithm does not pick it
Tf The set of elements selected by GREEDY in Phase (a)
S The set of elements picked by MARKING-GREEDY in Phase (a)
Ni The set of elements belonging toMi/S ∩Mı̄/T picked by MARKING-GREEDY in

Phase (b)

Table B.1: Table of Notation

102

Lemma B.2.3 When the edges of a balanced Thick-Z are revealed one-by-one in a random order
to GREEDY then in expectation it produces a matching of size

(
1
2

+ o(1)
)
|OPT|.

Proof: We note that after an edge is picked by GREEDY, both the end points of the edge do not
participate later in the algorithm. Hence, at any instance during the execution of GREEDY, the
participating graph is still a Thick-Z graph ((U ′1 ∪ U ′2) ∪ (V ′1 ∪ V ′2)}, E ′), where U ′i ⊆ Ui and
V ′i ⊆ Vi for i ∈ {1, 2}.

We can view the choices made by GREEDY as being done in time steps, where GREEDY

chooses one edge at each time step. At each time step, at least one of U1 or U2 decrease by 1,
and GREEDY halts when |U ′1| = |U ′2| = 0. Let t be the random variable indicating the first time
step during the execution of GREEDY when min{|U ′1|, |U ′2|} = n2/3. Let a, b be the random vari-
ables denoting a := |U ′1| = |V ′1 | and b := |U ′2| = |V ′2 | at time t. Let O1 denote the number of edges
of OPT chosen by GREEDY before time t and let O2 denote the number of edges of OPT chosen
after time t.

We observe that the matching produced by GREEDY is of size n
2

+ |O1| + |O2|. Observe
|
(
|U ′1| − |U ′2|

)
| changes only when GREEDY chooses an edge from OPT, implying that we can

bound |a− b| ≤ |O1|. Since O2 is bounded by |U ′1|+ |U ′2| at time t, we can say

|O2| ≤ a+ b = 2 min{a, b}+ |a− b| ≤ 2n2/3 + |O1|.

Next, to bound |O1|, we note that before time t the probability of an edge picked by GREEDY

being from OPT is at most 2n
n2/3·n2/3 = 2

n1/3 . Since GREEDY picks at most n edges before time
t, we have E[|O1|] ≤ 2n

n1/3 = 2n2/3. This proves that expected size of the matching chosen by
GREEDY is n

2
+ E[|O1|+ |O2|] ≤ n

2
+ 2n2/3 + 2E[|O1|] ≤ n

2
+ 6n2/3.

�

B.2.3 Limitations on any OBME Algorithm
Lemma B.2.4 No randomized algorithm can achieve a competitive ratio greater than 5

6
∼ 0.833

for online bipartite matching in random edge arrival model when the graph is a balanced Thick-Z
with n = 1. This is true, even the adversary knows the graph and can identify one vertex which
has degree 2.

Proof: The optimum offline matching size is two. However, no randomized online algorithm,
(even one which knows the input graph), can obtain more than 5

3
edges in expectation over the

random edge order. To see this, let p denote the probability that the algorithm picks the first edge
it sees.

Case 1: The first edge is from the optimal matching (i.e. the first edge is of the form (ui, vi)
for i ∈ {1, 2}). In this case, the algorithm will achieve the optimal value 2 with probability p. If it
skips one of these edges, it will retain at most 1 edge in the remaining graph.

Case 2: The first edge is not from the optimal matching (i.e. the first edge is (u1, v2)). In this
case the algorithm will achieve a value of at most 1 · p+ 2 · (1− p).

Since Case 1 occurs with probability 2
3

and Case 2 occurs with probability 1
3
, the expected value

of the algorithm is 5
3
p+ 4

3
(1− p) ≤ 5

3
. �

103

Z1

Z2

Figure B.1: The above example is a conjunction of two Thick-Z graphs (Z1 and Z2) by a single
edge (the thick red edge). Note that for a Thick-Z graph even knowing the degree 2 vertex does
not allow any algorithm to achieve more than 5

3
edges in expectation.

Lemma B.2.5 No randomized algorithm can achieve a competitive ratio greater than 69
84
∼ 0.821

for online bipartite matching in random edge arrival model.

Proof: Our instance corresponds to the case where we take two copies of balanced Thick-Z graph
joined by a single edge (see Figure B.1). The input is some permutation of the graphs (where the
vertices or edges may be permuted and U and V may be swapped). We show by case analysis
that no algorithm can achieve a competitive ratio better than 69

84
< 5

6
. Intuitively, the addition of

the single edge only hurts any algorithm without compromising the independence between the two
instances.

Let p be the probability that the algorithm picks the first edge. Consider the following cases
based on Figure B.1:

Case 1: Suppose the first edge is the thick red edge. This occurs with probability 1
7
. If the algo-

rithm picks this edge (which happens with probability p), then the optimal value in the remaining
graph is 3. Otherwise, it can get at most 2 · 5

3
as the two Thick-Z graphs are disjoint and we can

use the previous lemma. Hence the expected outcome is 1
7

(
p · 3 + (1− p) · 10

3

)
.

Case 2: Suppose the first edge is a blue edge, this occurs with probability 2
7
. If the algorithm

chooses this edge, then we can get value of 1. Since this affords no information about the second
Z, the best an algorithm can do is 5

3
. Hence the expected solution is 2

7

(
p(1 + 5

3
) + (1− p)(2 + 5

3
)
)
.

Case 3: Suppose the first edge is a black edge. This occurs with probability 4
7
. If the algorithm

chooses the first edge, then we can get value of 2 in this copy of the Thick-Z . However, still
the algorithms gets at most 5

3
in the remaining copy of Thick-Z . Hence the expected cost of the

solution is 4
7

(
p(2 + 5

3
) + (1− p)(1 + 5

3
)
)

Adding these cases together, we get that expected solution has value at most 64+5p
21

. Since the
optimal solution is 4, this gives an upper bound of 69

84
.

�

B.2.4 When Size of the Ground Set is Unknown

Theorem B.2.6 For any constant ε > 0, any randomized algorithm A that does not know the
number of edges to arrive has a competitive ratio α ≤ 2

3
+ ε for online bipartite matching in

random edge arrival model.

Proof: To prove this theorem, we show that for any ε > 0 there exists an instance where A is less
than 2

3
+ ε-competitive.

104

Since A does not know the number of edges to arrive, it must maintain an α approximation in
expectation after the arrival of every edge. This is because A does not know if the current edge
will be the last edge.

Consider the instance given by the graph balanced Thick-Z (see Definition B.2.2) where the
size of the |U1| = |V1| = N will be set later. Consider a random permutation π on the set of
all edges and note that each edge eappears in the first T edges with probability T

N2+2N
, where

T = 4(N + 2) logN . The previous probability is at least 4 logN
N

. Let GT denote the set of edges
from the perfect matching between Ui and Vi that appear in the first T edges. Let BT denote the
set of edges from U2 to V1 that appear in the first T edges. By linearity of expectation, we can say
E[|GT |] ≤ 8 logN and E[|BT |] ≤ 4N logN .

Let OPTT denote the expected size of the maximum matching on the graph induced by the first
T edges.
Claim B.2.7 N(1− ε) ≤ Eπ[|OPTT |]
Proof: Consider the graph induced between U2 and V1 in the first T edges. Since any particular
edge occurs with probability 4 logN

N
and the edges are negatively correlated, we can conclude that

Pr[∃a perfect matching between U2 and V1 in the first T edges] ≥
Pr[∃ a perfect matching in GN,N, 4 logN

N
].

By a result of Erdos and Renyi (see [55]), we know that

lim
N→∞

Pr[∃a perfect matching in GN,N, 4 logN
N

] = 1

Hence, we can choose an N such that the above probability is at least 1− ε. Thus we can conlude
that E[OPTT] ≥ N(1− ε). �

LetMOPT denote the expected number of edges picked byA that belong to the perfect matching
between Ui and Vi (for i = 1, 2) at time T . Similarly, let MRest denote the expected number of
edges between U2 and V1 chosen by A.

Since A must maintain an α approximation, we can say MOPT + MRest ≥ α(1 − ε)N . Since
MOPT ≤ E[|GT |] = 8 logN ≤ αεN , we can say

MRest ≥ (α− 2ε)N (B.1)

However, every edge chosen from MRest decreases the value of the optimal algorithm by one. Let
F be the expected size of the matching chosen by the algorithm. We know that α · 2N ≤ F ≤
2N −MRest. Substituting into Eq. (B.1) and dividing by 2N , we get α ≤ 2

3
+ ε. �

B.3 Facts
Fact 6.4.7.

|T π1 | ≥
1

2

(
|OPT|+

∑
e∈OPT

1[Both ends of e matched in T πf]

)
and

|T π1 | ≥ |T πf |+
1

2

∑
e∈OPT

1[Both ends of e unmatched in T πf].

105

Proof: We start by counting the vertices matched in T π1 ,

2 |T π1 | ≥ 2
∑
e∈OPT

1[Both ends of e matched in T π1] +
∑
e∈OPT

1[Exactly one end of e matched in T π1]

Since T π1 is a maximal set,

|OPT | =
∑
e∈OPT

1[Exactly one end of e matched in T π1] +
∑
e∈OPT

1[Both ends of e matched in T π1]

Combining the previous two statements and the fact that T πf ⊆ T π1 ,

|T π1 | ≥
1

2

(
|OPT|+

∑
e∈OPT

1[Both ends of e matched in T πf]

)
.

To prove the second part, observe that T πf ⊆ T π1 and T π1 is a maximal matching. For each edge
of OPT that has both its end points unmatched in T πf , at least one end point is adjacent to an edge
T π1 . Since these edges must be part of T π1 \ T πf ,

|T π1 | ≥ |T πf |+
1

2

∑
e∈OPT

1[Both ends of e unmatched in T πf].

�
Fact 6.5.3. Consider any matroidM and independent setsA,B,C ∈M such thatA ⊆ spanM(B)
and B ∪ C ∈M. Then we also have A ∪ C ∈M.
Proof: Suppose we start with B ∈ M and add elements of A = {a1, a2, . . . , ak} one by the one.
We show that one can ensure that the set remains independent inM by removing some elements
from B. First, note that |B| = rank(B) = rank(B ∪ A). Our algorithm removes an element from
B only if addition of aj creates a circuit. Hence the rank of the set is always |B| and addition of
every aj creates a unique circuit. Moreover, this circuit contains an element bj ∈ B that can be
removed as we know A ∈M.

Next we repeat the above procedure but by starting withB∪C ∈M and adding elements ofA.
We know from before that addition of each element aj creates a unique circuit that does not contain
an element of C. Hence we can remove element bj while ensuring the set remains independent in
M. This will finally give A ∪ C ∈M. �

B.4 Hastiness Lemma

The proof of the following lemma is similar to Lemma 2 in [107].
Lemma 6.5.1 (Hastiness Lemma). For any two matroids M1 and M2 on the same ground set
E, let T πf denote the set selected by GREEDY after running for the first f fraction of elements

106

E appearing in order π. Also, for i ∈ {1, 2}, let Φi(T
π
f) := spani(T

π
f) ∩ OPT. Now for any

0 < f, ε ≤ 1
2
, if Eπ[|T π1 |] ≤ (1

2
+ ε) |OPT| then

Eπ
[
|Φ1(T πf) ∩ Φ2(T πf)|

]
≤ 2ε |OPT| and (B.2)

Eπ
[
|Φ1(T πf) ∪ Φ2(T πf)|

]
≥
(

1− 2ε

f
+ 2ε

)
|OPT|. (B.3)

This implies G(f) :=
Eπ [|Tπf |]
|OPT| ≥

(
1
2
−
(

1
f
− 2
)
ε
)

.
Proof: For ease of notation, we write T πf by Tf . To prove Eq. (B.2),

Eπ [|Φ1(Tf) ∩ Φ2(Tf)|] ≤ Eπ [|Φ1(T1) ∩ Φ2(T1)|] (because Tf ⊆ T1)
= Eπ [(|Φ1(T1)|+ |Φ2(T1)|)− |Φ1(T1) ∪ Φ2(T1)|]
= Eπ [|Φ1(T1)|+ |Φ2(T1)| − |OPT|] (because T1 is a maximal solution)
≤ 2 Eπ [|T1|]− |OPT| (because |T1| ≥ |Φi(T1)|)
≤ 2ε |OPT|.

Now to prove Eq (B.3), we first bound |Φ1(Tf)|+ |Φ2(Tf)|. It is at least

|OPT|+
∑
e∈OPT

1[e ∈ span1(Tf) ∩ span2(Tf)]−
∑
e∈OPT

1[e /∈ (span1(Tf) ∪ span2(Tf))]

≥ |OPT|+
∑
e∈OPT

1[e ∈ Tf]−
∑
e∈OPT

1[e /∈ span1(Tf) ∪ span2(Tf)]. (because Tf ⊆ spani(Tf))

Taking expectations and using Claim B.4.1,

Eπ[|Φ1(Tf)|+ |Φ2(Tf)|] ≥ |OPT| −
(1

f
− 2
)
Eπ[|Tf ∩ OPT|] (B.4)

Since f ≤ 1
2
, we can use an upper bound on Eπ[|Tf ∩ OPT|]. Observe T1 ⊇ Tf is a maximal

solution implying |T1| ≥ |T1∩OPT|+ 1
2
(|OPT|− |T1∩OPT|) ≥ 1

2
(|OPT|+ |Tf ∩OPT|). Taking

expectations,

Eπ[|Tf ∩ OPT|] ≤ 2Eπ
[
|T1| −

1

2
|OPT|

]
≤ 2 ε |OPT|. (because Eπ[|T1|] ≤

(
1
2

+ ε
)
|OPT|)

Combining this with Eq. (B.4) and Eq. (B.2) proves Eq. (B.3),

Eπ
[
|Φ1(T πf) ∪ Φ2(T πf)|

]
= Eπ[|Φ1(Tf)|+ |Φ2(Tf)|]− Eπ

[
|Φ1(T πf) ∩ Φ2(T πf)|

]
≥
(

1− 2ε

f
+ 2ε

)
|OPT|.

Finally, using Eq. (B.4) and |Tf | ≥ |Φi(Tf)|, we also have Eπ[|T πf |] ≥ 1
2
Eπ[|Φ1(Tf)| +

|Φ2(Tf)|] ≥
(

1
2
−
(

1
f
− 2
)
ε
)
|OPT|. �

For intuition, imagine the following claim for f = 1
2
, where it says that for a uniformly random

order probability that e is in not in the span of Tf for either of the matroids is at most the probability
e is selected by GREEDY into Tf .

107

Claim B.4.1 Suppose G(1) ≤
(

1
2

+ ε
)
|OPT| for some ε < 1

2
and Tf is the output of GREEDY on

E([1,mf)], then

∀e ∈ OPT Pr
π

[e /∈ Φ1(Tf) ∧ e /∈ Φ2(Tf)] ≤
(1

f
− 1
)

Pr
π

[e ∈ Tf].

Proof: Let us define the event X =
(
e /∈ Φ1(Tf) ∧ e /∈ Φ2(Tf)

)
∨ (e ∈ Tf). Consider the

mapping g from permutations to permutations. If e occurs in the first f fraction of elements then
g(π) = π. If not, then remove e and insert it uniformly at randomly at a position in [1,mf].
This induces a mapping from the set of all permutations on the ground elements to the set of
permutations that have e in the first f fraction of elements. The important observation is that
the set of permutations satisfying the event X still satisfy the event under the mapping g. We
can conclude that Pr[X] ≤ Pr[X | e ∈ [1,mf]]. Conditioned on the event that e ∈ [1, fm],
event X means e ∈ Tf . This is because if e /∈ Φ1(Tf) ∧ e /∈ Φ2(Tf) and e ∈ E[1, fm] then
Tf ∪ e ∈ M1 ∩M2. Thus, we can conclude that Pr[X] ≤ Pr[e ∈ Tf | e ∈ [1,mf]] = 1

f
Pr[e ∈

Tf]. Moreover, since
(
e /∈ Φ1(Tf) ∧ e /∈ Φ2(Tf)

)
and (e ∈ Tf) are disjoint events, Pr[X] =

Pr
[(
e /∈ Φ1(Tf) ∧ e /∈ Φ2(Tf)

)]
+ Pr[e ∈ Tf], which proves this claim. �

108

Appendix C

Online Bin Packing Appendix

C.1 Omitted Proofs of Section 5.4 (Unit Movement Costs)
Here we provide proofs for our unit recourse upper and lower bounds.

First, we show that the optimal value of (LPε), restated below for ease of reference, is roughly
α ≈ 1.3871, where we recall that α is such that 1− 1/α is a solution to the following equation

3 + ln(1/2) = ln(x) + 1/x. (C.1)

Lemma 5.4.2 The optimal value α?ε of (LPε) satisfies α?ε ∈ [α−O(ε), α +O(ε)].

minimize αε (LPε)
s.t. N0 +

∑
x∈Sε(1− x) ·Nx ≥ B − 1/Bc (Volε)

N0 +
∑

x∈Sε Nx ≤ αε ·B (smallε)

N0 +
∑

x∈Sε,x≤t−εNx +
⌊
B

1−t

⌋
≤ αε ·

⌈
B

1−t

⌉
∀t ∈ Sε (CRε)

Nx ≥ 0

Proof: We first modify (LPε) slightly to make it easier to work with—this will affect its optimal
value only by O(ε).

(i) Change the B − 1/Bc term in the RHS of inequality (Volε) to B, and remove the floor and
ceiling in the inequalities (CRε). As B ≥ 1/ε, this affects the optimal value by O(ε).

(ii) Divide the inequalities through by B, and introduce new variables nx for Nx/B, and

(iii) Replace αε − 1 by a new variable α′ε, and change the objective value to α′ε + 1.
This gives the LP (LPnewε), whose optimal value is α?ε ± O(ε). We will provide a feasible solu-
tion to this linear program and a feasible dual solution for its dual linear program (Dualε) whose
objective values are α +O(ε) and α−O(ε), respectively. This proves the desired result.

Upper Bounding OPT(LPnewε). We first give a solution that is nearly feasible, and then
modify it to give a feasible solution with value at most α +O(ε).

109

min. α′ε + 1 (LPnewε)

n0 +
∑
x∈Sε

(1− x) · nx ≥ 1

n0 +
∑
x∈Sε

nx − α′ε ≤ 1

n0 +
∑

x∈Sε,x≤t−ε

nx ≤ α′ε
1− t

∀t ∈ Sε

nx ≥ 0

max. Z − q0 + 1 (Dualε)

q0 +
∑
t∈Sε

qt
1− t

≤ 1 (d1)

q0 +
∑
t∈Sε

qt ≥ Z (d2)

q0 +
∑

t≥x+ε,t∈Sε

qt ≥ (1− x) · Z ∀x ∈ Sε

(d3)

Figure C.1: The modified LP and its dual program

Let C denote α− 1. Define nx :=
∫ x
x−ε

C
(1−y)2

dy for all x ∈ Sε and

n0 := 1−
∫ 1

α

1
2

C · dy
(1− y)

= 1− C ln
(1

2

)
+ C ln

(
1− 1

α

)
.

The first constraint of (LPnewε) is satisfied up to an additive O(ε):

n0 +
∑
x

(1− x)nx = 1−
∫ 1

α

1
2

C

(1− y)
dy +

∑
x∈Sε

(1− x)

∫ x

x−ε

C

(1− y)2
dy

≥ 1−
∫ 1

α

1
2

C

(1− y)
dy +

∫ 1
α

1
2

C(1− y)

(1− y)2
dy −O(ε)

= 1−O(ε).

Next, the second constraint of (LPnewε).

n0 +
∑
x∈Sε

nx = 1−
∫ 1

α

1/2

C · dy
1− y

+
∑
x∈Sε

∫ x

x−ε

C · dy
(1− y)2

= 1−
∫ 1

α

1/2

C · dy
1− y

+

∫ 1
α

1
2

C · dy
(1− y)2

= 1 + C
(
− ln(1/2) + ln

(
1− 1

α

)
− 2 +

1

1− 1
α

)
= 1 + C

= α,

where the penultimate step follows by (C.1), and the last step uses C = α−1. Performing a similar

110

calculation for the last set of constraints in (LPnewε), we get

n0 +
∑

x∈Sε,x<t−ε

nx = n0 +
∑
x∈Sε

nx −
∑

x∈Sε,x≥t−ε

nx

= α−
∑

x≥t−ε,x∈Sε

∫ x

x−ε

C

(1− y)2
dy

≤ α−
∫ 1

α

t

C

(1− y)2
dy +O(ε)

= α− C
(α

α− 1
− 1

1− t

)
+O(ε)

=
α− 1

1− t
+O(ε),

where the second equality follows from the previous sequence of calculations. To satisfy the
constraints of (LPnewε), we increase n0 to n0 +O(ε) and set α′ε to α− 1 +O(ε). Since t is always
≥ 1/2, this will also satisfy the last set of constraints. Since the optimal value of (LPnewε) is
≤ α − 1 + O(ε), which implies that α?ε ≤ α − 1, since we had subtracted 1 from the objective
function when we constructed (LPnewε) from (LPε)).

Lower Bounding OPT(LPnewε). As with our upper bound on OPT (LPnewε), we start
with a nearly-feasible dual solution to (Dualε) and later modify it to obtain a feasible solution. Set
Z = α(α−1), q0 = (α−1)2, q 1

2
+ε = α(α−1)/2, and qt = α(α−1)ε for all t ∈ Sε with t ≥ 1

2
+2ε.

The objective value of (Dualε) with respect to this solution is exactly α(α − 1)− (α − 1)2 + 1 =
α. We will now show that it (almost) satisfies the constraints. For sake of brevity, we do not
explicitly write that variable t takes values in Sε in the limits for the sums below. First, consider
constraint (d1):

q0 +

1
α∑

t= 1
2

+ε

qt
1− t

= q0 +
q 1

2
+ε

1
2
− ε

+

1
α∑

t> 1
2

+ε

qt
1− t

≤ q0 + 2q 1
2

+ε +

1
α∑

t> 1
2

+ε

qt
1− t

≤ (α− 1)2 + α(α− 1) +

∫ 1
α

1
2

α(α− 1) dx

1− x

= (α− 1)2 + α(α− 1) + α(α− 1)
(

ln

(
1

2

)
− ln

(
1− 1

α

))
= (α− 1)2 + α(α− 1) + α(α− 1)

(3− 2α

α− 1

)
= 1

where we used Equation (C.1), which follows from the definition of α, in the penultimate equation.

111

Next, consider constraint (d2).

q0 +

1
α∑

t= 1
2

+ε

qt = q0 + q 1
2

+ε +

1
α∑

t> 1
2

+ε

qt

≥ (α− 1)2 +
1

2
α(α− 1) +

∫ 1
α

1
2

α(α− 1) dx−O(ε)

= (α− 1)2 +
1

2
α(α− 1) + α(α− 1)

(1

α
− 1

2

)
−O(ε) = Z −O(ε)

Finally, consider constraint (d3) for any x ∈ Sε:

q0 +
∑

t≥x+ε,t∈Sε

qt ≥ (α− 1)2 +

∫ 1
α

x+ε

α(α− 1) dx−O(ε)

= (α− 1)2 +
(1

α
− x− ε

)
α(α− 1)−O(ε)

= (α− 1)
(
α− 1 +

(1

α
− x− ε

)
· α
)
−O(ε)

= Z · (1− x− ε)−O(ε).

Finally, increase q0 to q0 +O(ε) to ensure that constraints (d2) and (d3) are satisfied. This is now a
feasible solution to (Dualε) with objective value Z−qo+1−O(ε) = α−O(ε). Hence the optimal
value α?ε for the LP (LPnewε) is at least α−O(ε). �

C.1.1 Proof of the Lower Bound
We now prove that α?ε , the optimal value of (LPε), is such that any algorithm with a.c.r below this
α?ε must have either polynomial additive term or recourse (or both).
Lemma 5.4.3 For all ε > 0 and 1

2
> δ > 0, if α?ε is the optimal value of (LPε), then any fully-

dynamic bin packing algorithm A with a.c.r α?ε − ε and additive term o(ε2 · nδ) has recourse
Ω(ε2 · n1−δ) under unit movement costs.

Proof: For any x ∈ Sε ∪ {0}, again define Nx as the number of bins with free space in the range
[x, x+ε) whenA faces input Is. Inequality (Volε) is satisfied for the same reason as above. Recall
that B = Θ(nδ). AsA is (α?ε −Ω(ε))-asymptotically competitive with additive term o(ε ·nδ), i.e.,
o(ε · B), and OPT (Is) = B, we have N0 +

∑
x∈Sε Nx ≤ (α?ε − Ω(ε) + o(ε)) · B ≤ α?ε · B. That

is, the Nx’s satisfy constraint (smallε) with αε = α?ε .
We now claim that there exists a ` ∈ Sε such that

N0 +
∑

x∈Sε,x≤`−ε

Nx +
⌊ B

1− `

⌋
≥ α?ε ·

⌈ B

1− `

⌉
(C.2)

holds (notice the opposite inequality sign compared to constraint (CRε)). Suppose not. Then the
quantities N0, Nx for x ∈ Sε, and α?ε strictly satisfy the constraints (CRε). If they also strictly

112

satisfy the constraint (smallε), then we can maintain feasibility and slightly reduce α?ε , which con-
tradicts the definition of α?ε . Therefore assume that constraint (smallε) is satisfied with equality.
Now two cases arise: (i) All but one variable among {N0}∪{Nx | x ∈ Sε} are zero. If this variable
is N0, then tightness of (smallε) implies that N0 = α?εB. But then we satisfy (Volε) with slack,
and so, we can reduce N0 slightly while maintaining feasibility. Now we satisfy all the constraints
strictly, and so, we can reduce α?ε , a contradiction. Suppose this variable happens to be Nx, where
x ∈ Sε. So, Nx = α?εB. We will show later in Theorem 5.4.2 that α?ε ≤ 1.4. Since (1− x) ≤ 1/2,
it follows that (1−x)Nx ≤ 0.7B, and so we satisfy (Volε) with slack. We again get a contradiction
as argued for the case when N0 was non-zero, (ii) There are at least two non-zero variables among
{N0} ∪ {Nx | x ∈ Sε} – let these be Nx1 and Nx2 with x1 < x2 (we are allowing x1 to be 0).
Now consider a new solution which keeps all variables Nx unchanged except for changing Nx1 to
Nx1 + η

1−x , and Nx2 to Nx2− η
1−x , where η is a small enough positive constant (so that we continue

to satisfy the constraints (CRε) strictly). The LHS of (Volε) does not change, and so we continue
to satisfy this. However LHS of (smallε) decreases strictly. Again, this allows us to reduce α?ε
slightly, which is a contradiction. Thus, there must exist a ` which satisfies (C.2). We fix such a `
for the rest of the proof.

Let B denote the bins which have less than ` free space. So, |B| = N0 +
∑

x∈Nε:x≤`−εNx. Now,
we insert b B

1−`−εc items of size `+ ε. (It is possible that ` = 1/α, and so `+ ε /∈ Sε, but this is still
a valid instance). We claim that the algorithm must move at least ε volume of small items from at
least εB bins in B. Suppose not. Then the large items of size `+ε can be placed in at most εB bins
in B. Therefore, the total number of bins needed for I` is at least N0 +

∑
x∈Nε:x≤`−εNx − εB +⌊

B
1−`

⌋
, which by inequality (C.2), is at least (α?ε − O(ε)) · OPT (I`+ε), because OPT (I`+ε) =⌈

B
1−`−ε

⌉
=
⌈

B
1−`

⌉
+ O(εB). But we know that A is (α?ε − Ω(ε))-asymptotically competitive with

additive term o(ε · nδ) (which is o(ε · OPT (I`+ε)). So it should use at most (α?ε − Ω(ε) + o(ε)) ·
OPT (I`+ε) bins, which is a contradiction. Since each small item has size 1/Bc, the total number
of items moved by the algorithm is at least ε2B/Bc. This is Ω(ε · n1−δ), because ε ≥ 1/B, and
Bc = Θ(n1−δ). �

C.1.2 Matching Algorithmic Results

We now address the omitted proofs of our matching upper bound.

LPε as a Factor-Revealing LP

We now present the omitted proofs allowing us to use (LPε) to upper bound our algorithm’s a.c.r.
We start by showing that an optimal solution to (LPε) induces a packing of the small items which
can be trivially extended (i.e., without moving any items) to an (α?ε + O(ε))-competitive packing
of any number of `-sized items, for any ` > 1/2.

Lemma 5.4.4 (Huge Items of Same Size) Any αε-feasible packing of small items of Is induces
an αε-competitive packing for all extensions Ik` of Is with ` > 1/2 and k ∈ N.

113

Proof: Fix ` and k. Let Nx be the bins with exactly free space in the packing of Is and let
N =

∑
x|x≥`,x∈Sε Nx be the bins with at least ` free space; if ` ≥ 1/α, then N = 0. Let N ′ =∑

x|x≤`−ε,x∈Sε Nx. Our algorithm first packs the size-` items in the N bins of the packing before
using new bins, and hence uses N ′ + max(N, k) bins. If k ≤ N , we are done because of the
constraint (smallε), so assume k ≥ N . A volume argument bounds the number of bins in the
optimal solution for Ik` :

OPT(Ik`) ≥

{
k if k(1− `) ≥ B

k +
(
B − k(1− `)

)
else.

We now consider two cases:
• k(1− `) ≥ B: Using constraint (CRε), the number of bins used by our algorithm is

N ′ + k ≤ αεB
1−` +O(εB) +

(
k − B

1−`

)
≤ (αε +O(ε))k.

• k(1 − `) < B: Since k lies between N and B
1−` , we can write it as a convex combination

λ1B
1−` + λ2N , where λ1 + λ2 = 1, λ1, λ2 ≥ 0. We can rewrite constraints (smallε) and (CRε)
as

N ′ + B
1−` ≤

αεB
1−` +O(εB) and N ′ +N ≤ αεB.

Combining them with the same multipliers λ1, λ2, we see that N ′ + k is at most

αε
(
λ1B
1−` + λ2B

)
+O(εB) = αε

(
B + λ1`B

1−`

)
+O(εB) ≤ αε (B + `k) +O(εB).

The desired result follows because B + `k = k+ (B − k(1− `)) and B is a lower bound on
OPT(Ik`).

�
We now proceed to provide a linear-time algorithm which for any fixed ε, given an input I

produces a packing into (1 +O(ε)) ·OPT (I) bins such that in almost all bins large items occupy
either no space or more than half the bin.
Observation 5.4.5 For any input I made up of solely large items and function f(·), a packing of
I using at most (1 + ε) · OPT (I) + f(ε−1) bins has all but at most 2ε · OPT (I) + 2f(ε−1) + 3
of its bins containing either no large items or being more than half filled by large items.
Proof: Suppose this packing usesN ≤ (1+ε)·OPT (I)+f(ε−1) bins of whichB ≥ 2ε·OPT (I)+
2f(ε−1) + 4 are “bad” bins – bins with some v ∈ (0, 1/2] volume taken up by large items. We
show that this packing can be improved to require fewer than OPT (I), which would lead to a
contradiction. Indeed, repeatedly combining the contents of any two bad bins until no two such
bins remain would decrease the number of bins by one and the number of bad bins by at most two
for each combination (so this process can be repeated at least bB/2c ≥ ε ·OPT (I) + f(ε−1) + 1),
and so would result in a new packing of the I using at most N − bB/2c < OPT (I) bins. �

Theorem 5.4.6 An αε-feasible packing of the small items of an instance I can be extended into a
packing of all of I using at most (αε +O(ε)) ·OPT (I) +O(ε−2) bins in linear time for any fixed
ε.

114

Proof: We run the linear-time algorithm of De La Vega and Lueker [46] to compute a packing of
the large items of I into at most (1+ε)·OPT (I)+O(ε−2) many bins. By Observation 5.4.5, all but
at most 2ε·OPT (I)+O(ε−2) of these bins have at most 1

2
volume occupied by small items. We use

these bins in our packing of I ′. For the remaining bins we “glue” all large items occupying the same
bin into a single huge item. Note that any packing of I ′ trivially induces a similar packing of the
as-of-yet unpacked large items of I with the same number of bins (simply pack large items glued
together in the place of their induced glued item). Moreover, by construction all large items of I ′
are huge (i.e., have size greater than 1/2), and clearly OPT (I ′) ≤ (1+O(ε)) ·OPT (I)+O(ε−2),
as I ′ can be packed using this many bins. As the free space in all bins is an integer multiple of ε,
we can round the huge items’ sizes to integer multiples of ε and obtain a packing with the same
number of bins for I ′. Such a rounding allows us to bucket sort the huge items of I ′ (and bins) in
time O(n/ε). All the above steps take Oε(n) time. It remains to address the obtained packing’s
approximation ratio.

Figure C.2: A greedy packing of instance I ′. Large items are packed “on top” of the small items (in grey).

Figure C.3: Packing of instance Ik` obtained from I ′ by removing parts of huge items Ik` (in red).

Figure C.4: A packing of instance I ′ and the instance Ik` obtained from I ′.

In order to upper bound the number of bins used to pack I ′ (and therefore I), we create a new
instance of the form Ik` for some k and ` > 1/2. Specifically, if we sort the bins containing small
items in decreasing order of free space, we remove all large items packed in a bin with f free
space such that some bin with at least f free space contains no large item of I. Let the smallest
remaining large item size be `. We decrease the size of all k remaining larger items to `, yielding
the instance Ik` packed on top of the curve using the same number of bins as our packing of I (see
Figure C.3). By Lemma 5.4.4, ignoring the additive O(ε−2) term due to the packing of the large
items, the packing of I ′ on top of the small items – and hence the packing we obtain for I – uses
at most αε ·OPT (Ik`) ≤ αε ·OPT (I ′) ≤ αε · (1 +O(ε)) ·OPT (I) bins. �

Theorem 5.4.6 immediately gives us amortized recourse bounds. Extending it slightly allows
us to obtain worst-case recourse bounds, as follows: replace the static (1 + ε)-a.c.r algorithm by a

115

dynamic algorithm and round the huge items to sizes which are multiples of ε. Doing this naively
yields an (α + O(ε)) a.c.r, with worst-case recourse bounds that are at most O(ε−3) times the
recourse bounds of a fully-dynamic (1 + ε)-a.c.r bin packing algorithm for items of size at least
ε. Using the worst-case recourse bounds from Berndt et al. [25, Theorem 9], we get an Õ(ε−6)
worst-case recourse bound.

The following theorem improves this worst-case recourse bound to being only anO(ε−1)-times
worse, instead of the naive O(ε−3) times worse. This, combined with Berndt et al. [25, Theorem
9], gives an improved Õ(ε−4) worst-case recourse bound.

Theorem 5.4.7 For a dynamic instance It, given a fully-dynamic (1 + ε)-a.c.r algorithm with
additive term f(ε−1) for items of size greater than 1/4 in It, and a fully-dynamic αε-feasible
packing of its small items, one can maintain a packing with a.c.r (αε + O(ε)) with additive term
O(f(ε−1)). This can be done using worst-case recourse

1. O(ε−1) per item move in the near-optimal fully-dynamic packing of the items of size > 1/4,
2. O(ε−1) per insertion or deletion of medium items, and
3. O(1) per item move in the αε-feasible packing of the small items.

Proof: The idea here is similar to the proof of Theorem 5.4.6, and we mainly discuss the recourse
bound.

By the theorem’s hypothesis, we have a (1 + ε)-a.c.r packing of the subinstance made up of
the large items of size greater than 1/4. We “glue” items in bins which are at least half full into
single huge items, yielding an instance I ′ with OPT (I ′) ≤ (1 + O(ε)) · OPT (I) + O(f(ε−1)),
and which by Observation 5.4.5 has at most 2ε · OPT (I) + O(f(ε−1)) non-huge items. We pack
these items in individual bins. We pack I ′ greedily on top of the curve, by packing the huge items
in order of increasing huge item size, according to FIRSTFIT, with the bins sorted in increasing
order of free space (see Figure C.2). As in the linear-time algorithm of Theorem 5.4.6, rounding
the huge items’ sizes to integer products of ε does not increase the number of bins used to pack I ′.
For Theorem 5.4.6 this allowed us to pack the huge items in linear time. This rounding also proves
useful in obtaining low worst-case recourse, as follows.

First, consider only the small items and the large items of size greater than 1/4. We dynamically
pack the former into some αε-feasible packing, and the large items using the fully-dynamic (1+ε)-
a.c.r algorithm of the theorem’s statement. Whenever a bin is changed in the packing of the large
items of size greater than 1/4 (an item added/removed by the dynamic packing algorithm), we
either changed a bin which was less than half full (in which case we move its O(1) items in our
packing of It), or we create a new item in the dynamic instance I ′t. Now, we can dynamically
keep the huge items of I ′t packed as though inserted in sorted FIRSTFIT order as above as follows:
whenever a huge item is added, we add it in the bin “after” all items of the same size, possibly
removing an item of larger size from this bin, which we then re-insert (deletion is symmetric). As
the number of different huge item sizes is O(ε−1), we move at most O(ε−1) huge items, and so
at most O(ε−1) large items of It (as these large items have size greater than 1/4, and so the huge
items correspond to at most three such items). Finally, we now discuss how to pack medium items
(items of size in the range (ε, 1/4]).

We strive to keep the medium-sized items on top of our packing for the large and small items
so as to guarantee that the bins in the prefix of all but the last bin (sorted by time of opening) which

116

contain a medium-sized item are all at least 3/4 full if we ignore the fact that small item groups
and huge items have their sizes rounded to products of ε. By a volume argument (accounting for
above-mentioned rounding), if we open a new bin, our packing has a.c.r 4/3 + O(ε) < α + (ε).
If no new bin is opened, we can safely ignore the medium-sized items and compare the number of
bins we open against an easier instance which does not contain these medium-sized items, which
as we shall see later yields an a.c.r of α + O(ε). We now discuss details of dynamically packing
medium-sized items in this way.

Insertion of a medium-sized item is trivial using no recourse, by adding it to the first bin which
is less than 3/4 full and accommodates this new item (or opening a new bin if necessary). Removal
of a medium-sized item is not much harder. Upon the removal of some or all medium-sized items
from some bin B, we take the last medium items (according to the bins’ order) and reinsert them
into B until B is at least 3/4 full or until it is the last bin with medium items. As medium items
have size in the range (ε, 1/4], this requires O(ε−1) worst-case recourse. Similarly, a change in the
packing of small items can only increase or decrease the volume used in a bin by O(ε). Such an
insertion can be addressed by removing at most O(1) items from the bin until it does not overflow,
and then reinserting them (in the case of an insertion of small items into a bin), or by inserting
some last O(1) medium items into this bin in the case of deletion. It remains to address changes
due to updates in the packing of large items (which are grouped into huge items).

Recall that all the huge items have their sizes rounded up to products of ε. This rounding allows
us to obtain a packing as in Figure C.2 by only repacking O(ε−1) such huge items following an
update to the packing of the large items, if we ignore medium items. Now, consider the medium
items that are displaced due to such a move. Following a removal of a huge item, a huge item of
larger size may replace the removed item, and this huge item may be replaced in turn by a larger
huge item, and so on for the ε−1 different huge item sizes. We address potential overflowing of
these bins by removing the minimum number of medium items to guarantee these bins do not
overflow and repacking them. As each medium item has size greater than ε, we remove at most
one such item per huge item size class; that is, O(ε−1) such items. Similarly, the removal of a huge
item potentially causes a larger huge item to take its place, and so on for O(ε−1) size classes, until
no next-sized huge item exists or the next huge item does not fit. To avoid overfilling of these bins,
we move at most one medium item per size class (as the medium items have size greater than ε).
These O(ε−1) are repacked as above. The last bin affected may find that it has too few medium
items and is less than 3/4 full; we address this using O(ε−1) worst-case recourse as in our solution
for deletion of medium items in a bin.

To summarize, our worst-case recourse is O(ε−1) per item move in the (1 + ε)-a.c.r dynamic
packing of the large items, O(ε−1) per addition or deletion of a medium item and O(1) per item
move in the packing of small items. It remains to bound the obtained a.c.r of our packing obtained
by extending the αε-feasible packing of the small items.

Similarly to the proof of Theorem 5.4.6, the a.c.r of this algorithm is at most α + O(ε) if no
bins are opened due to the medium items. On the other hand, as argued before, this algorithm’s
a.c.r is at most 4/3 < α+O(ε) if such bins are opened. Finally, we observe that the additive term
is at most O(f(ε−1)), incurred by the packing of the large items and the number of non-huge items
stored in designated bins. �

117

Dealing With Small Items: “Fitting a Curve”

We now consider the problem of packing ε-small items according to an approximately-optimal
solution of (LPε), which we abstract thus:

[Bin curve-fitting] Given a list of bin sizes 0 ≤ b0 ≤ b1 ≤ . . . , bK ≤ 1 and relative frequencies
f0, f1, f2, . . . , fK , such that fx ≥ 0 and

∑K
x=0 fx = 1, an algorithm for the bin curve-fitting

problem must pack a set of m of items with sizes s1, . . . , sm ≤ 1 into a minimal number of bins
N such that for every x ∈ [0, K] the number of bins of size bx that are used by this packing lie in
{bN · fxc, dN · fxe}.

If we haveK = 0 with b0 = 1 and f0 = 1, we get standard BIN PACKING. We want to solve the
problem only for (most of the) small items, in the fully- dynamic setting. We consider the special
case with relative frequencies fx being multiples of 1/T , for T ∈ Z; e.g., T = O(ε−1). Our
algorithm maintains bins in increasing sorted order of item sizes. The number of bins is always
an integer product of T . Consecutive bins are aggregated into clumps of exactly T bins each, and
clumps aggregated into Θ(1/ε) buckets each. Formally, each clump has T bins, with fx · T ∈ N
bins of size ≈ bx for x = 0, . . . , K. The bins in a clump are ordered according to their target
bx, so each clump looks like a curve. Each bucket except the last consists of some s ∈ [1/ε, 3/ε]
consecutive clumps (the last bucket may have fewer than 1/ε clumps). See Figure C.5. For each
bucket, all bins except those in the last clump are full to within additive ε of their target size.

Clump #1 Clump #O(1
ε
) Clump #1

Bucket #1 Bucket #2

Figure C.5: Buckets have O(1/ε) clumps, clumps have T bins.

Inserting an item adds it to the correct bin according to its size. If the bin size becomes larger
than the target size for the bin, the largest item overflows into the next bin, and so on. Clearly
this maintains the invariant that we are within an additive ε of the target size. We perform O(T/ε)
moves in the same bucket; if we overflow from the last bin in the last clump of the bucket, we add
a new clump of T new bins to this bucket, etc. If a bucket contains too many clumps, it splits into
two buckets, at no movement cost. An analogous (reverse) process happens for deletes. Loosely,
the process maintains that on average the bins are full to within O(ε) of the target fullness – one
loss of ε because each bin may have ε space, and another because an O(ε) fraction of bins have no
guarantees whatsoever.

As observed in §5.4, the above approach approach solves bin curve-fitting using O(T/ε) =
O(ε−2) worst-case recourse, provided all items have size at most ε (as in our case). provided all
freq We now relate this process to the value of LPε. We first show that setting T = O(1/ε) and
restricting to frequencies to multiples of ε does not hurt us. Indeed, for us, b0 = 1, and bx = (1−x)
for x ∈ Sε. Since (LPε) depends on the total volume B of small items, and fx may change if B
changes, it is convenient to work with the normalized LP (LPnewε). Now nx can be interpreted as
just being proportional to number of bins of size bx, and we can define fx = nx/

∑
x nx. However,

118

we also need each fx to be integer multiples of 1/T for some integer T = O(1/ε). We achieve this
by slightly modifying the LP solution (which requires a somewhat careful proof).
Lemma 5.4.8 (Multiples of ε) For any optimal solution {nx} to (LPnewε) with objective value
αε, we can construct in linear time a solution {ñx} ⊆ ε · N with objective value αε +O(ε).
Proof: For sake of brevity, let S ′ε := Sε ∪ {0}. Consider the indices x ∈ S ′ε in increasing order,
and modify nx in this order. Let ∆x :=

∑
x′∈S′ε:x′<x

nx′ , and let ∆̃x be the analogous expression
for ñx. We maintain the invariant that |∆x − ∆̃x| ≤ ε, which is trivially true for the base case
x = 0. Inductively, suppose it is true for x. If ∆x > ∆̃x, define ñx be nx rounded up to the nearest
multiple of ε, otherwise it is rounded down; this maintains the invariant. If we add O(ε) to the old
α′ε value, this easily satisfies the second and third set of constraints, since our rounding procedure
ensures that the prefix sums are maintained up to additive ε, and t ∈ [0, 1

2
]. Checking this for the

first constraint turns out to be more subtle. We claim that

ñ0 +
∑
x∈Sε

(1− x)ñx ≥ 1−O(ε).

For an element x ∈ S ′ε, let ∆nx denote nx − ñx. It is enough to show that |
∑

x∈S′ε
x ·∆nx| ≤

O(ε). Indeed,

ñ0 +
∑
x∈Sε

(1− x)ñx = n0 +
∑
x∈Sε

(1− x)nx −∆n0 −
∑
x∈Sε

(1− x)∆nx

≥ 1−
∑
x∈S′ε

∆nx +
∑
x∈S′ε

x ·∆nx ≥ 1−O(ε) +
∑
x∈S′ε

x ·∆nx.

We proceed to bound
∑

x∈S′ε
x ·∆nx. Define ∆n≤x as

∑
x′∈S′ε:x′≤x

∆nx′ . Define ∆n<x analo-
gously. Note that ∆n≤x stays bounded between [−ε,+ε]. Let I denote the set of x ∈ S ′ε such that
∆n≤x changes sign, i.e., ∆n<x and ∆n≤x have different signs. We assume w.l.o.g. that ∆n≤x = 0
for any x ∈ I—we can do so by splitting ∆nx into two parts (and so, having two copies of x in
S ′ε). Observe that for any two consecutive x1, x2 ∈ I , the function ∆n≤x is unimodal as x varies
from x1 to x2, i.e., it has only one local maxima or minima. This is because ∆nx is negative if
∆n<x is positive, and vice versa.

Let the elements in I (sorted in ascending order) be x1, x2, . . . , xq. Let Si denote the elements
in S ′ε which lie between xi and xi+1, where we include xi+1 but exclude xi. Note that

∑
x∈Si ∆nx =

∆n≤xi+1
−∆n≤xi = 0. Let x′i = xi + ε be the smallest element in Si. Now observe that∑

x∈Si

x ·∆nx = x′i ·
∑
x∈Si

∆nx +
∑
x∈Si

(x− x′i) ·∆nx =
∑
x∈Si

(x− x′i) ·∆nx.

Because of the unimodal property mentioned above, we get
∑

x∈Si |∆nx| ≤ 2ε. Therefore, the
absolute value of the above sum is at most 2ε · (xi+1 − x′i) ≤ 2ε2|Si|, using that xi+1 − x′i =
(|Si| − 1)ε. Now summing over all Si we see that

∑
x x · ∆nx ≤ O(ε) because |Sε| is O(1/ε).

This proves the desired claim.
So to satisfy the first constraint we can increase n0 by O(ε). And then, increasing α′ε by a

further O(ε) satisfies the remaining constraints, and proves the lemma. �

119

Let ñx be ix · ε where ix is an integer. Note that
∑

x ñx ≤ α + O(ε) ≤ 2, so dividing through
by ε,

∑
x ix ≤ 2/ε. Now for any index x ∈ {0} ∪ Sε, we define fx := ñx∑

x′ ñx′
= ix∑

x′ ix′
. If we set

T :=
∑

x ix ≤ 2/ε, then T is an integer at most 2/ε, and fx are integral multiplies of 1/T , which
satisfies the requirements of our algorithm. Next, we show that the dynamic solution maintained
by our algorithm corresponds to a near-optimal solution to LPε.

Lemma 5.4.9 (Small Items Follow the LP) Let ε ≤ 1/6. Using O(ε−2) worst-case recourse we
can maintain packing of small items such that the content of all but O(ε−2) designated bins in this
packing form an (α?ε +O(ε))-feasible packing.

Proof: The recourse bound is immediate, as each insertion or deletion causes a single item to move
from at most T · 3/ε bins and T = O(ε−1). For the rest of the argument, ignore the last bucket,
contributing O(ε−2) bins to our additive term. Let the total volume of items in the other bins be B.
Since η =

∑
fxbx is the average bin-size, we expect to use ≈ B/η bins for these items. We now

show that we use at most (1 +O(ε)) · fxB
η

and at least (1−O(ε)) · fxB
η

bins of size bx for each x.
Indeed, each (non-last) bucket satisfies the property that all bins in it, except perhaps for those

in the last clump, are at least ε-close to the target value. Since each bucket has at least 1/ε clumps,
it follows that if there are N clumps and the target average bin-size is η, then (1 − ε)N clumps
are at least (η − ε) full on average. The total volume of a clump is η · T , so N ≤ B

(1−ε)(η−ε)·T =
B
ηT

(1 + O(ε)), where we use that η ≥ 1/4. Therefore, the total number of bins of size bx used is
fxT · N ≤ (1 + O(ε)) · Bfx

η
. The lower bound for the number of bins of size bx follows from a

similar argument and the observation that if we scale the volume of small items up by a factor of
(1 + O(ε)), this volume would cause each bin to be filled to its target value. This implies that we
use at least (1−O(ε)) · Bfx

η
bins with size bx.

We now show that the N̄x satisfy LPnewε with α?ε + O(ε). Recall that we started with an
optimal solution to LPnewε of value α?ε + O(ε), used Lemma 5.4.8 to get fx = ñx/

∑
x′ ñx′ and

ran the algorithm above. By the computations above, N̄x, the number of bins of size bx used by
our algorithm, is

(1 +O(ε)) · fxB∑
x′ fx′bx′

= (1 +O(ε)) · ñxB∑
x′ ñx′bx′

≤ (1 +O(ε)) · ñxB,

where the last inequality follows from the fact that
∑

x′ ñx′bx′ ≥ 1 (by the first constraint of LPnewε).
Likewise, by the same argument, we find that these N̄x satisfy CRε with αε = α?ε + O(ε). Finally,
since ñx satisfies the constraints of LPnewε (up to additive O(ε) changes in αε), we can verify that
the quantities N̄x satisfy the last two constraints of LPε (again up to additive O(ε) changes in αε).
To see that they also satisfy Volε, we use the following calculation:

∑
x

N̄x ≥ (1− 3ε) ·
∑
x

fxB∑
x bxfx

= (1−O(ε)) · B∑
x bxfx

≥ (1−O(ε)) ·B,

because
∑

x fx = 1 and bx ≤ 1 for all x. Therefore, scaling all variables with (1 − O(ε)) will
satisfy constraint Volε as well. It follows that N̄x satisfy LPε with αε = α?ε +O(ε). �

120

Our Algorithm

Here we provide missing proofs of some of the claims made in our algorithm’s analysis in §??.

Amortized Algorithm

In §?? we claimed that if we start an epoch with a packing using N ≤ (α + O(ε)) · OPT (It) +
O(ε−2) bins, as we do (here It is the instance at the beginning of the epoch), then if for ε · N
updates we address updates naı̈vely, our solution at any given time t′ during the epoch uses at most
Nt′ ≤ (α+O(ε)) ·OPT (It′) +O(ε−2) bins. To see this, note that as each update can only change
OPT (It′) and the number of bins we use, Nt′ , by one. Therefore, N · (1− ε) ≤ Nt′ ≤ N · (1 + ε)
and OPT (I ′t) ≥ OPT (I) + ε ·N . By our upper bound on N , we obtain

Nt′ ≤ (1 + ε) ·N
≤ (α +O(ε)) ·OPT (It) + ε ·N +O(ε−2)

≤ (α +O(ε)) · (OPT (It′) + ε ·N) + ε ·N +O(ε−2)

= (α +O(ε)) ·OPT (It′) +O(ε ·N) +O(ε−2)

≤ (α +O(ε)) ·OPT (It′) +O(ε ·Nt′) +O(ε−2),

where we used in the last step the fact that N ≤ Nt′/(1− ε). Subtracting the O(ε ·Nt′) term from
both sides of the above and dividing through by (1−O(ε)), we obtain the claimed bound.

C.2 Omitted Proofs of Section 5.5 (General Movement Costs)
Here we provide proofs for our general amortized recourse upper and lower bounds, and discuss
cases for which the algorithmic bounds can be made worst case (in §C.2.2).

C.2.1 Matching the Lower Bounds for Online Algorithms
Let β ≥ 2. Any adversary process B showing a lower bound of c for the a.c.r of any online BIN

PACKING algorithm can be converted into a fully-dynamic BIN PACKING instance with general
movement costs such that any fully-dynamic BIN PACKING algorithm with amortized recourse at
most β must have a.c.r at least c.
Proof:[Proof of Section 5.5.1] Take the adversary process B, and use it to generate an instance
for the fully-dynamic algorithm A as follows. (When there are k items in the system, let them be
labeled e1, e2, . . . , ek.)

I: Given system in a state with k elements, use B to generate the next element ek+1, having
movement cost (2β)−(k+1).

II: If A places ek+1 into some bin and does not move any other item, go back to Step I to
generate the next element.

III: However, ifAmoves some items, and ej is the item with the smallest index that is repacked,
delete items ej+1, . . . , ek+1. This may in turn cause elements to be repacked, so delete all

121

items with indices strictly higher than than the smallest index item that is repacked. Even-
tually we stop at a state with k′ ≥ 1 elements such that only element ek′ has been repacked.
Now go back to Step I. (Also, ek′+1, . . . , ek+1 are deemed undefined.)

Since the location of each item ei is based only on the knowledge of prior elements in the
sequence e1, e2, . . . , ei−1 and their bins, the resulting algorithm is another online algorithm. So
if the length of the sequence eventually goes to infinity, we are guaranteed to reach an instance
for which the a.c.r of this algorithm will be at least c. Hence we want to show that for any n,
the length of the sequence eventually reaches n (or the adversary process stops, having showed a
lower bound of c). Consider a potential function Φ which is zero when the system has no elements.
When a new element is added by B, we increase Φ by β times the movement cost for this element.
Moreover, when A moves elements, we subtract the movement costs of these elements from Φ.
Since A ensures an amortized recourse bound of β, the potential must remain non-negative.

For a contradiction, suppose the length of the sequence remains bounded by n. Hence, there is
some length k < n such that Step III causes the sequence to become of length k arbitrarily often.
Note that the total increase in Φ between two such events is at most β

∑n
i=k+1(2β)−i ≤ (2β)−(k+1)

2β−1
.

Since β ≥ 2, this increase is strictly less than (2β)−k, the total decrease in Φ due to the movement
of element k alone. Since the potential decreases between two such events, there can only be
finitely many such events, so the length of the sequence, i.e., the number of items in the system
increases over time, eventually giving us the claimed lower bound. �

C.2.2 (Nearly) Matching the Upper Bounds for Online Algorithms

We start by proving our lemma for packing similarly-sized items.
[Near-Uniform Sizes] There exists a fully-dynamic BIN PACKING algorithm with constant

worst case recourse which given items of sizes si ∈ [1/k, 1/(k−1)) for some integer k ≥ 1, packs
them into bins of which all but one contain k − 1 items and are hence at least 1− 1/k full. (If all
items have size 1/k, the algorithm packs k items in all bins but one.)
Proof: We round down movement costs of each item to the next-lower power of two. We maintain
all items sorted by movement cost, with the costliest items in the first bin. All bins (except perhaps
the last bin) contain k − 1 items; if all items have size 1/k then bins contain k items. Insertion
and deletion of an item of cost ci = 2` can be assumed to be performed at the last bin containing
an item of this cost (possibly incurring an extra movement cost of ci, by replacing item i with
another item of cost ci). If addition or deletion leaves a bin with one item too many or too few,
we move a single item to/from the last bin containing an item of the next lower cost, and so
on. Since items are sorted and the costs are powers of 2, the total movement cost is at most
ci + ci · (1 + 1/2 + 1/4 + . . .) = 3 · ci; the loss due to rounding means the (worst case) recourse
is ≤ 6. The lemma follows. �

A Simple 2-approximate Solution

Suppose we round all item sizes to powers of 2 and use Lemma 5.5.2 on items of size at least
1/n, where n is the maximum number of items in the instance It over all times t, while packing

122

all items of size less than 1/n into a single bin.1 Then, we ensure that all but 1 + log2 n bins are
full. This approach can be applied to general instances by rounding up item sizes to powers of two,
yields the following fact.

Fact C.2.1 There exists a fully-dynamic BIN PACKING algorithm with a.c.r 2 and additive term
1 + log2 n, using constant worst case recourse.

However, this simple result is highly unsatisfactory for two reasons. Firstly, as we shall show,
its a.c.r is suboptimal. The second reason concerns its additive term, which can be blown up to be
arbitrarily large without effecting the optimal solution in any significant way, by adding N items
of size 1/N for arbitrarily large N . In what follows, we will aim to design algorithms with better
a.c.r and both additive term and recourse independent of n.

The Super Harmonic family of online algorithms

A Super-harmonic (abbreviated as SH) algorithm consists of a partition of the unit interval [0, 1]
into K + 1 intervals, [0, ε], (t0 = ε, t1](t1, t2], . . . , (tK−1, tK = 1]. Small items (i.e., items of size
at most ε) are packed using FIRSTFIT into dedicated bins; because the items are small, all but one
of these are at least 1 − ε full. For larger items, each arriving item is of type i if its size is in the
range (ti−1, ti]. Items are colored either blue or red by the algorithm, with each bin containing
items of at most two distinct item types i and j. If a bin contains only one item type, its items
are all colored the same, and if a bin contains two item types i and j, then all items of type i are
colored blue and items of type j are colored red (or vice versa). The SH algorithm has associated
with it three number sequences (αi)

K
i=1, (βi)

K
i=1, (γi)

K
i=1, and an underlying bipartite compatibility

graph G = (V,E) whose role will be made clear shortly. A bin with blue (resp., red) type i
items contains at most βi (resp., γi) items of type i, and is open if it contains less than βi type
i (resp., less than γj type j items). The compatibility graph determines which pair of (colored)
item types can share a bin. The compatibility graph G = (V,E) is defined on the vertex set
V = {bi | i ∈ [K]} ∪ {ri | j ∈ [K]}, with an edge (bi, rj) ∈ E indicating blue items of type i and
red items of type j are compatible; they are allowed to be placed in a common bin. Apart from the
above properties, an SH algorithm must satisfy the following invariants. We restate the invariants:

(P1) 1 The number of open bins is O(1).

(P2) 2 If ni is the number of type-i items, the number of red type-i items is bαi · nic.
(P3) 3 If (bi, rj) ∈ E (blue type i items and red type j items are compatible), there is no pair of

bins with one containing nothing but blue type i items and one containing nothing but red
type j items.

The above invariants allow one to bound the asymptotic competitive ratio of an SH algorithm,
depending on the choices of (αi)

K
i=1, (βi)

K
i=1, (γi)

K
i=1 and the compatibility graph G. In particular,

Seiden [131] showed the following.
Lemma C.2.2 (Seiden [131]) There exists an SH algorithm with a.c.r 1.58889.

1We assume we know n. If n is unknown, we can obtain the same amortized recourse by a simple “guess and
double/halve” approach.

123

A particular property the SH algorithm implied by Lemma C.2.2 which we will make use of later is
that its parameters or inverses are all at most a constant; in particular, ε−1 = O(1) and K = O(1),
and similarly βi, γi = O(1) for all i ∈ [K].

In the following sections we proceed to describe how to maintain the above invariants that
suffice to bound the competitive ratio of an SH algorithm. We start by addressing the problem of
maintaining the SH invariants for the large items, in Section C.2.2. We then show how to pack
small items (i.e., items of size at most ε) into bins such that all but a constant of these bins are at
least 1− ε full, in Section C.2.2.2 Finally we conclude with our upper bound in Section C.2.2.

SH Algorithms: Dealing with Large Items

First, we round all movement costs to powers of 2, increasing our recourse cost by at most a factor
of 2. Now, our algorithm will have recourse cost which will be some function ofK, (βi)Ki=1, (γi)

K
i=1;

as for our usage, we have K = O(1), and βi, γi = O(1) for all i ∈ [K], we will simplify notation
and assume that these values are indeed all bounded from above by a constant. Consequently,
when moving around groups of up to βi blue (resp. γi red) type i items whose highest movement
cost is c, the overall movement cost will be O(c). The stipulation that K = O(1) will prove useful
shortly. We now explain how we maintain the invariants of SH algorithms.

Satisfying Property 1. We keep all blue items (resp. red items) of type i in bins containing up
to βi items (resp. γi items). We sort all bins containing type-i items by the cost of the costliest
type-i item in the bin, where only the last bin containing type-i items contains less than βi blue
(alternatively, γi red) type-i items. Therefore, if we succeed in maintaining the above, the number
of open bins is O(1); i.e., Property 1 is satisfied. We explain below how to maintain this property
together with Properties 2 and 3.

Satisfying Property 2. We will only satisfy Property 2 approximately, such that the number of
red type-i items is in the range [bαi · nic, bαi · nic+ δi], where δi = max{αi(βi − γi) + 1 + γi, 0}.
Removing these at most δi red type-i items results in a smaller bin packing instance, and a solution
requiring the same number of bins, satisfying the invariants of SH algorithms. Notice that this
change to the solution can change the number of open bins by at most

∑
i δi ≤

∑
i αiβi + K =

O(1). Therefore, satisfying Property 2 approximately suffices to obtain our sought-after a.c.r. In
fact, we satisfy a stronger property: each prefix of bins containing type-i items has a number of
red type-i items in the range [bαi · n′ic, bαi · n′ic+ δi], where n′i is the number of type-i items in the
prefix.

Maintaining the above prefix invariant on deletion is simple enough: when removing some
type-i item of cost 2k, we move the last type-i item of the next movement cost to this item’s place
in the packing, continuing until we reach a type-i item with no cheaper type-i items. The movement
cost here is at most 2k + 2k−1 + 2k−2 + · · · = O(2k), so the (worst case) recourse is constant. As

2Strictly speaking, we will only pack small items into bins which are 1− ε full on average. However, redistributing
these small items or portions of these items within these bins will make these bins 1 − ε full without changing the
number of bins used by the solution. The bounds on SH algorithms therefore carries through.

124

the prefix invariant was satisfied before deletion, it is also satisfied after deletion, as we effectively
only remove an item from the last bin. When inserting a type-i item, we insert the item into the last
appropriate bin according to the item’s movement cost. This might cause this bin to overflow, in
which case we take the cheapest item in this bin and move it into the last appropriate bin according
to this item’s cost, continuing in this fashion until we reach an open bin, or are forced to open a new
bin. (The recourse here is a constant, too). The choice of color for type-i items in a newly-opened
bin depends on the number of type-i items before this insertion, ni, and the number of red type-i
items before this insertion, mi. If mi +γi ≤ bαi(ni +γi)c+ δi, the new bin’s red items are colored
red. By this condition, the number of red items for the following γi insertions into this bin will
satisfy our prefix property. If the condition is not satisfied, the bin is colored blue. Now, as

mi + γi > bαi(ni + γi)c+ δi

≥ bαi(ni + βi)c+ αi(γi − βi)− 1 + δi

≥ bαi(ni + βi)c − 1 + γi

we find that after this new bin contains βi type i items, the number of red items in the prefix is mi

while the number of type-i items is n′i = ni+βi, and so this prefix too satisfies the prefix condition.
We conclude that the above methods approximately maintain Property 2 (as well as Property

1) while only incurring constant worst case recourse.

Satisfying Property 3. Finally, in order to satisfy Property 3, we consider the groups of up to βi
and γj blue and red items of type i and j packed in the same bin as nodes in a bipartite graph. A
blue type i (resp. red type j) group is a copy of node bi (resp. rj) in the compatibility graph G,
and copies of nodes bi and rj are connected if they are connected in G. If a particular node bi and
rj are placed in the same bin, then we treat that edge as matched. Each node has a cost which is
simply the maximum movement cost of an item in the group which the node represents. All nodes
have a preference order over their neighbors, preferring a costlier neighbor, while breaking ties
consistently. We will maintain a stable matching in this subgraph, where two nodes are matched
if the items they represent. This stability clearly implies Property 3. We now proceed to describe
how to maintain this bipartite graph along with a stable matching in it.

The underlying operations we will have is addition and removal of a node of red or blue type
i items of cost 2k; i.e., with costliest item having movement cost 2k. As argued before, as each
group contains O(1) items, the movement cost of moving items of such a group is O(2k). Using
this operation we can implement insertion and deletion of single items, by changing the movement
cost of groups with items moved, implemented by removal of a group and re-insertion with a
higher/lower cost if the cost changes (or simple insertion/removal for a new bin opened/bin closed).
As argued above, the cost of items moved is during updates in order to satisfy Property 2 is O(2k),
where 2k is the cost of the item added/removed; consequently, the costs of removals and insertions
of groups is O(2k). We therefore need to show that the cost of insertion/removal of a group of cost
2k is O(2k).

Insertions and deletions of blue and red nodes is symmetric, so we consider insertions and
deletions of a blue node b only. Upon insertion of some node b of cost 2k, we insert b into its place
in the ordering, and scan its neighbors for the first neighbor r which strictly prefers b to its current

125

match, b′. If no such r exists, we are done. If such an r exists, b′ is unmatched from r (its items are
removed from its bin) and b is matched to r (the items of b are placed in the same bin as r’s bin).
As b′ has strictly less than b, its cost is at most 2k−1. We now proceed similarly for b′ as though we
inserted b′ into the graph. The overall movement cost is at most 2k + 2k−1 + 2k−2 + · · · = O(2k).

Upon deletion of a blue node b of cost 2k, if it had no previous match, we are done. If b did
have a match r, this match scans its neighbors, starting at b, for its first neighbor b′ of cost at most
2k which prefers r to its current match. If the cost of b′ is 2k, we match r to the last blue node of the
same type as b′, denoted by b′′. If b′′ was previously matched, we proceed to match its match as if
b′′ were removed (i.e., as above). As every movement decreases the number of types of blue nodes
of a given cost to consider, the overall movement cost is at most K · (2k + 2k−1 + 2k−2 + . . .) =
O(K · 2k) = O(2k), where here we rely the number of types being K = O(1).

We conclude that Property 3 can be maintained using constant worst case recourse.

Lemma C.2.3 Properties 1, 2 and 3 can be maintained using constant worst-case recourse.

SH Algorithms: Dealing with Small Items

Here we address the problem of packing small items into bins so that all but a constant number of
bins are kept at least 1− ε full. Lemma 5.5.2 allows us to do just this for items of size in the range
[ε′, ε], for ε′ = Ω(ε). Specifically, considering all integer values c in the range [d1

ε
e, d 1

ε′
e], then, as

ε−1 = O(1) and consequently d 1
ε′
e − d1

ε
e = O(1), we obtain the following.

Corollary C.2.4 All items in the range [ε′, ε] for any ε′ = Ω(ε) can be packed into bins which are
all (barring perhaps O(ε−1) = O(1) bins) at least 1− ε full.

It now remains to address the problem of efficiently maintaining a packing of items of size at
most ε′ into bins which are at least 1 − ε full (again, up to some O(1) possible additive term).
As ε′ = Ω(ε), we will attempt to pack these items into bins which are at least 1 − O(ε′) full
on average. For notational simplicity from here on, we will abuse notation and denote ε′ by ε,
contending ourselves with a packing which is 1 + O(ε)-competitive, and is therefore keeps bins
1 − O(ε) full on average (as OPT is close to the volume bound for instance made of only small
items).

Let us first give the high-level idea of the algorithm before presenting the formal details. Define
the density of an item as cj/sj , the ratio of its movement cost to its size. We arrange the bins in
some fixed order, and the items in each bin will also be arranged in the order of decreasing density.
This means the total order on the items (consider items in the order dictated by the ordering of
bins, and then by the ordering within each bin) is in decreasing order of density as well. Besides
this, we want all bins, except perhaps the last bin, to be approximately full (say, at least 1 − O(ε)
full). The latter property will trivially guarantee (1 + O(ε))-competitive ratio. When we insert
an item j, we place it in the correct bin according to its density. If this bin overflows (i.e., items
in it have total size more than 1), then we remove some items from this bin (the ones with least
density) and transfer them to the next bin – these items will have only smaller density than j, and
so, their movement cost will be comparable to that of j. If the next bin can accommodate these
items, then we can stop the process, otherwise this could lead to a long cascade. To prevent such
long cascades, we arrange the bins in buckets – each bucket consists of about O(ε−1) consecutive

126

bins, and all these buckets are approximately full except for the last bin in the bucket. Again, it
is easy to see that this property will ensure (1 + O(ε))-competitive ratio. Note that this extends
the idea of Berndt et al. Once we have these buckets, the above-mentioned cascade stops when we
reach the last bin of a bucket. Consequently we have cascades of length at most O(ε−1). If the last
bin also overflows, we will add another bin at the end of this bucket, and if the bucket now gets too
many bins, we will split it into two smaller buckets. One proceeds similarly for the case of deletes
– if an item is deleted, we borrow some items from the next bin in the bucket, and again this could
cascade only until the last bin in the bucket. (If the bucket ever has too few bins, we merge it with
the next bucket).

However, this cascade is not the only issue. Because items are atomic and have varying sizes, it
is possible that insertion of a tiny item (say of sizeO(ε2)) could lead us to move items of sizeO(ε).
In this case, even though the density of the latter item is smaller than the inserted item, its total
movement cost could be much higher. To prevent this, we ensure that whenever a bin overflows,
we move out enough items from it so that it has Ω(ε) empty space. Now, the above situation will
not happen unless we see tiny items amounting to a total size of Ω(ε). In such a case, we can
charge the movement cost of the larger item to the movement cost of all such tiny items.

The situation with item deletes is similar. When a tiny item is deleted, it is possible that the
corresponding bin underflows, and the item borrowed from the next bin is large (i.e., has size about
ε). Again, we cannot bound the movement cost of this large item in terms of that of the item being
deleted. To take care of such issues, we do not immediately remove such tiny items from the bin.
We call such items ghost items – they have been deleted, but we have not removed them from the
bins containing them. When a bin accumulates ghost items of total size about Ω(ε), we can afford
to remove all these from the bin, and the total movement cost of such items can pay for borrowing
items (whose total size would be O(ε)) from the next bin.

The analysis of the movement cost is done via by a potential function argument, to show the
following result (whose proof appears in Section C.2.2): For all ε ≤ 1

6
there exists an asymptot-

ically (1 +O(ε))-competitive bin packing algorithm with O(ε−2) amortized recourse if all items
have size at most ε.

We first describe the algorithm formally. LetBi denote the items stored in a bin i. As mentioned
above, our algorithm maintains a solution in which items are stored in decreasing order of density.
I.e., for all i < i′, for every pair of jobs j ∈ Bi and j′ ∈ Bi′ we will have cj/vj ≥ cj′/vj′ . Recall
that Bi could contain ghost jobs. Let Ai denote the jobs in Bi which have not been deleted yet
(i.e., are not ghost jobs), and Gi denote the ghost jobs. We shall use s(Bi) to denote the total size
of items in Bi (define s(Ai) similarly). We maintain the following invariants, satisfied by all bins
Bi that are not the last bin in their bucket:

P0 : 1− 3ε ≤ s(Bi) ≤ 1. (C.3)
P1 : s(Ai) ≥ 1− 4ε.

Finally, a bin Bi which is the last bin in its bucket has no ghost jobs. That is, s(Gi) = 0. Each
bucket has at most 3/ε bins. Furthermore, each bucket, except perhaps for the last bucket, has at
least ε−1 bins.

Our algorithm is given below. We use two functions GROWBUCKET(U) and SPLITBUCKET(U)

127

in these procedures, where U is a bucket. The first function is called when the bucket U under-
flows, i.e., when U has less than ε−1 bins. If U is the last bucket, then we need not do anything.
Otherwise, let U ′ be the bucket following U . We merge U and U ′ into one bucket (note that the
last bin of U need not satisfy the invariant conditions above, and so, we will need to do additional
processing to ensure that the conditions are satisfied for this bin). The function SPLITBUCKET(U)
is called when U contains more than 3/ε bins. In this case, we split it into two buckets, each of
size more than ε−1.

Algorithm INSERT(j)

1: Add job j into appropriate bin i
2: if s(Bi) > 1 then
3: ERASEGHOST(i, sj)
4: if s(Bi) > 1 then
5: OVERFLOW(i, s(Bi)− 1 + 2ε)

Algorithm DELETE(j)

1: Let i be the bin containing j
2: if i is the last bin in its bucket then
3: Erase j from i
4: else
5: Mark j as a ghost job.
6: if s(Ai) < 1− 4ε then
7: Erase all ghost jobs from bin i
8: BORROW(i, 1− 3ε− s(Ai))

Algorithm OVERFLOW(i, v)

1: Let X be the minimum density jobs in
2: Bi s.t. s(X) ≥ v
3: if i is the last bin its bucket or
4: v ≥ 1− 3ε then
5: Add a new bin i′ after i in this bucket
6: Move X from i to i′.
7: Let U be the bucket containing i.
8: if U has more than 3/ε bins then
9: SPLITBUCKET(U)

10: else
11: Move X from bin i to bin i+ 1
12: if s(Bi+1) > 1− ε then
13: ERASEGHOST(i + 1, s(Bi+1) − 1 +

2ε)
14: if s(Bi+1) > 1− ε then
15: OVERFLOW(i+ 1, s(Bi+1)− 1 + 2ε)

Algorithm BORROW(i, v)

1: Let X be the minimum density jobs in Bi+1

s.t. s(X ∩ Ai+1) ≥ min(v, s(Ai+1)
2: Remove X from Bi+1 (erase ghosts in X)
3: Move A , X ∩ Ai+1 to Bi

4: if bin i+ 1 is empty then
5: Remove this bin from its bucket U
6: if U has less than ε−1 bins and
7: it is not the last bucket then
8: GROWBUCKET(U)
9: if U has more than 3/ε bins then

10: SPLITBUCKET(U)
11: if s(Ai) < 1− 3ε then
12: BORROW(i, 1− s(Ai)− 3ε)
13: else
14: if s(Ai+1) < 1− 3ε then
15: Erase all ghost jobs from bin i+ 1
16: BORROW(i+ 1, 1− 3ε− s(Ai+1))

We first describe the function INSERT(j) for an item j. We insert job j into the appropriate
bin i (recall that the items are ordered by their densities). If this bin overflows, then we call the
procedure ERASEGHOST(i, sj). The procedure ERASEGHOST(i, s), where i is a bin and s is a

128

positive quantity, starts erasing ghost jobs from Bi till one of the following events happen: (i) Bi

has no ghost jobs, or (ii) total size of ghost jobs removed exceeds s. Since all jobs are of size at
most ε, this implies that the total size of ghost jobs removed is at most min(s(Gi), s + ε). Now
its possible that even after removing these jobs, the bin overflows (this will happen only if s(Gi)
was at most sj). In this case, we offload some of the items (of lowest density) to the next bin in
the bucket. Recall that when we do this, we would like to create O(ε) empty space in bin i. So
we transfer jobs of least density in Bi of total size at least s(Bi)− 1 + 2ε to the next bin (since all
jobs are small, the empty space in bin i will be in the range [2ε, 3ε]) . This is done by calling the
procedure OVERFLOW(i, s(Bi)− 1 + 2ε). The procedure OVERFLOW(i, v), where i is a bin and v
is a positive quantity, first builds a set X of items as follows – consider items in Bi in increasing
order of density, and keep adding them to X till the total size of X , denoted by s(X), exceeds v
(so, the total size of X is at most v+ ε). We now transfer X to the next bin in the bucket (note that
by construction, X does not have any ghost jobs). The same process repeats at this bin (although
we will say that overflow occurs at this bin if s(Bi) exceeds 1−ε). This cascade can end in several
ways – it is not difficult to show that between two consecutive calls to OVERFLOW, the parameter
v grows by at most ε. If v becomes larger than 1− 3ε, we just create a new bin and assign all of X
to this new bin. If we reach the last bin, we again create a new bin and add X to it. In both these
cases, the size of the bucket increases by 1, and so we may need to split this bucket. Finally, it is
possible that even after transfer of X , s(Ai) does not exceed 1− ε – we can stop the cascade at this
point.

Next we consider the case of deletion of an item j. Let i be the bin containing j. If i is the
last bin in its bucket, then we simply remove j (recall that the last bin in a bucket cannot contain
ghost jobs). Otherwise, we mark j as a ghost job. This does not change s(Bi), but could decrease
s(Ai). If it violates property P1, we borrow enough items from the next bin such that i has free
space of about 2ε only. The function BORROW(i, v), where i is a bin and v is a positive quantity,
borrows densest (non-ghost) items from the next bin i + 1 of total size at least v. So it orders the
(non-ghost) items in i + 1 in decreasing density, and picks them till the total size accumulated is
at least v. This process may cascade (and will stop before we reach the last bin). However there is
one subtlety – between two consecutive calls to BORROW, the value of the parameter v may grow
(by up to ε), and so, it is possible that bin i + 1 becomes empty, and we are not able to transfer
enough items from i + 1 to i. In this case, we first remove i + 1, and continue the process (if
the size of the bucket becomes too small, we handle this case by merging it with the next bin and
splitting the resulting bucket if needed). Since we did not move enough items to i, we may need to
call BORROW(i, v′) again with suitable value of v′. There is a worry that the function BORROW(i,
v) may call BORROW(i, v′) with the same bin i, and so, whether this will terminate. But note that,
whenever this case happens, we delete one bin, and so, this process will eventually terminate.

Analysis

We begin by showing properties of the OVERFLOW and the BORROW functions.
Lemma C.2.5 Whenever OVERFLOW(i, v) is called, bin i has no ghost jobs. Furthermore, s(Bi) =
v + 1− 2ε. Finally, when OVERFLOW(i, v) ends, 1− 3ε ≤ s(Bi) ≤ 1− 2ε, and s(Gi) = 0.

Similarly, whenever BORROW(i, v) is called, bin i has no ghost jobs. Furthermore, s(Bi) =

129

v + 1 − 3ε. Finally, when BORROW(i, v) ends, either i is the last bin in its bucket or 1 − 3ε ≤
s(Bi) ≤ 1− 2ε, and s(Gi) = 0.
Proof: When we insert an item j in a bin i, we erase ghost items from i till either (i) we erase all
ghost items, or (ii) we erase ghost items of total size at least sj . If the second case happens, then
the fact that s(Bi) ≤ 1 before insertion of item j implies that we will not call OVERFLOW in Line 3
of INSERT(j). Therefore, if we do call OVERFLOW, it must be the case that we ended up deleting
all ghost jobs in i. Further we call OVERFLOW with v = s(Bi)− 1 + 2ε. Similarly, before we call
OVERFLOW(i+ 1, v) in Line 15, we try to ensure ghost jobs of the same volume v from bin (i+ 1).
If we indeed manage to remove ghost jobs of total size at least v, we will not make a recursive call
to OVERFLOW. This proves the first part of the lemma.

When OVERFLOW(i, v), terminates, we make sure that we have transferred the densest v vol-
ume out of i to the next bin. Since job sizes are at most ε, we will transfer at most items of total
size in the range [v, v+ ε] out of i. Since s(Bi) = v+ 1−2ε before calling this function, it follows
that s(Bi) after end of this function lies in the range [1 − 3ε, 1 − 2ε]. The claim for the BORROW

borrow function follows similarly. �
The following corollary follows immediately from the above lemma.
Corollary C.2.6 Properties P0 and P1 from (C.3) are satisfied throughout by all bins which are
not the last bins in their bucket. All bins Bi which are last in their bucket satisfy s(Gi) = 0.
We are now ready to prove the claimed bounds obtained by our algorithm for small items.
Proof:[Proof of Lemma 5.5.2] First we bound the competitive ratio. Barring the last bucket, which
has O(ε−1) bins, all other buckets have at least ε−1 bins. All bins (except perhaps for the last bin)
in each of these buckets have at most 4ε space that is empty or is filled by ghost jobs. Therefore,
the competitive ratio is (1 +O(ε)) with an additive O(ε−1) bins.

It remains to bound the recourse cost of the algorithm. For a solution S , define the potential:

Φ(S) =
4

ε2

∑
bins i

Φ(i), where

Φ(i) = c(Gi) + c(fractional sparsest items above 1− ε in Bi).

The second term in the definition of Φ(i) is evaluated as follows: arrange the items in Bi in
decreasing order of density, and consider the items occupying the last ε space in bin i (the total
size of these items could be less than ε if the bin is not completely full). Observe that at most one
item may be counted fractionally here. The second term is simply the sum of the movement costs
of all such item, where a fractional item contributes the appropriate fraction of its movement cost.

Now we bound the amortized movement cost with respect to potential Φ. First consider the
case when we insert item j in bin i. This could raise Φi by cj . If bin i does not overflow, we
do not pay any movement cost. Further, deletion of ghost jobs from bin i can only decrease the
potential. Therefore, the amortized movement cost is bounded by cj . On the other hand, suppose
bin i overflows and this results in calling the function OVERFLOW(i, v) with a suitable v. Before
this function call, let I denote the set of items which are among the sparsest items above (1 − ε)
volume in bin i (i.e., these contribute towards Φi). Let d be the density of the least density item in
I . Since s(Bi) ≥ 1, it follows that Φi ≥ dε. When this procedure ends, Lemma C.2.5 shows that
s(Bi) ≤ 1 − ε, and so, Φi would be 0. Thus, Φi decreases by at least dε − cj . Lemma C.2.5 also

130

shows that if we had recursively called OVERFLOW(i′, v′) for any other bin i′, then s(Bi′) would be
at most 1 − ε, and so, Φi′ would be 0 when this process ends. It follows that the overall potential
function Φ decreases by at least 4(dε − cj)/ε2. Let us now estimate the total movement cost. We
transfer items of total size at most 1 from one bin to another. This process will clearly end when
we reach the end of the bucket, and so the total size of items moved during this process is at most
3/ε, i.e., the number of bins in this bucket. The density of these items is at most d, and so the total
movement cost is at most 3d/ε. Thus, the amortized movement cost is at most cj/ε2.

Now we consider deletion of an item j which is stored in bin i. Again the interesting case is
when this leads to calling the function BORROW. Before j was deleted, s(Bi) was at least 1 − 3ε
(property P0). After we mark j as a ghost job, s(Ai) drops below 1− 4ε. So the total size of ghost
jobs is at least ε. Since we are removing all these jobs from bin i, Φi decreases by at least dε, where
d is the density of the least density ghost job in i. As in the case of insert, Lemma C.2.5 shows
that whenever we make a function call BORROW(i′, v′), Φi′ becomes 0 when this process ends. So,
the potential Φ decreases by at least 4d/ε. Now, we count the total movement cost. We transfer
items of size at most 1 between two bins, and so, we just need to count how many bins are affected
during this process (note that if we make several calls to BORROW with the same bin i′, the the
total size of items transferred to i′ is at most 1). Let U be the bucket containing i. If we do not call
SPLITBUCKET(U), then we affect at most 3/ε bins. If we call SPLITBUCKET(U), then it must be
the case that U had only ε−1 bins. When we merge U with the next bucket, and perhaps split this
merged bucket, the new bucket U has at least 2/ε bins, and so, we will not call SPLITBUCKET(U)
again. Thus, we will touch at most 3/ε buckets in any case. It follows that the total movement cost
is at most 3d/ε (all bins following i store items of density at most d). Therefore, the amortized
movement cost is negative. This proves the desired result. �

Dealing with Small Items: Summary. Combining Corollary C.2.4 and Lemma 5.5.2, we find
that we can pack small items into bins which, ignoring some O(1) many bins are 1 − ε full on
average. Formally, we have the following.
Lemma C.2.7 For all ε ≤ 1

6
there exists a fully-dynamic bin packing algorithm with O(1

ε2
) amor-

tized recourse for instances where all items have size at most ε which packs items into bins which,
ignoring some O(1) bins, are at least 1− ε full on average.

Worst case bounds. Note that the above algorithm yields worst case bounds for several natural
scenarios, given in the following corollaries.
Corollary C.2.8 For all ε ≤ 1

6
there exists a fully-dynamic bin packing algorithm with O(1

δ·ε2)
worst case recourse for instances where all items have size in the range [δ, ε] which packs items
into bins which, ignoring some O(1) bins, are at least 1− ε full on average.
Proof:[Proof (Sketch)] The algorithm is precisely the algorithm of Lemma C.2.7, only now in our
analysis, as each item has size δ, any single removal can incur movement of at most ε2 size, by our
algorithm’s definition. The worst case migration factor follows. �

Finally, if we group the items of size less than (1/n, ε] into ranges of size (2i, 2i+ 1] (guessing
and doubling n as necessary) requires only O(log n) additive bins (one per size range), while
allowing worst case recourse bounds by the previous corollary.

131

Corollary C.2.9 For all ε ≤ 1
6

there exists a fully-dynamic bin packing algorithm with O(1
ε2

)
worst case recourse for instances where all items have size at most ε which packs items into bins
which, ignoring some O(log n) bins, are at least 1− ε full on average.

SH Algorithms: Conclusion

§C.2.2 and §C.2.2 show how to maintain all invariants of SH algorithms, using O(1) amortized
recourse, provided ε−1 = O(1) and K = O(1), and βi, γi = O(1) for all i ∈ [K]. As the
SH algorithm implied by Lemma C.2.2 satisfies these conditions, we obtain this section’s main
positive result.

There exists a fully-dynamic BIN PACKING algorithm with a.c.r 1.58889 and constant additive
term using constant recourse under general movement costs.

C.3 Omitted Proofs of Section 5.6 (Size Movement Costs)
Here we provide proofs for our matching amortized size cost upper and lower bounds.

C.3.1 Amortized Migration Factor Upper Bound
We start with a description and analysis of the trivial optimal algorithm for size costs.

Fact 5.6.1 For all ε ≤ 1/2, there exists an algorithm requiring (1 + O(ε)) · OPT (It) + O(ε−2)
bins at all times t while using only O(ε−1) amortized migration factor.

Proof: We divide the input into epochs. The first epoch starts at time 0. For an epoch starting at
time t, let Vt be the total volume of items present at time t. The epoch starting at time t ends when
the total volume of items inserted or deleted during this epoch exceeds εVt. We now explain the
bin packing algorithm. Whenever an epoch ends (say at time t), we use an offline A(F)PTAS (e.g.,
[46] or [101]) to efficiently compute a solution using at most (1 + ε) · OPT (It) + O(ε−2) bins.
(Recall that It denotes the input at time t.) We pack items arriving during an epoch in new bins,
using the first-fit algorithm to pack them. If an item gets deleted during an epoch, we pretend that
it is still in the system and continue to pack it. When an epoch ends, we remove all the items which
were deleted during this epoch, and recompute a solution using an off-line A(F)PTAS algorithm as
indicated above.

To bound the recourse cost, observe that if the starting volume of items in an epoch starting
at time t is Vt, the volume at the end of this epoch is at most Vt + At, where At is the volume of
items that arrived and departed during this epoch. As At > εVt, the cost of reassigning these items
of volume at most Vt + At can be charged to At. Specifically, the amortized migration cost of the
epoch starting at time t is at most (Vt +At)/At < Vt/εVt + 1 = O(ε−1). Consequently, the overall
amortized migration cost is O(ε−1).

To bound the competitive ratio, we use the following easy fact: the optimal number of bins to
pack a bin packing instance of total volume V lies between V and 2V . (E.g., the first-fit algorithm
achieves this upper bound.) Consider an epoch starting at time t. Let Vt denote the volume of
the input It at time t. The algorithm uses at most (1 + ε) · OPT (It) + O(ε−2) bins at time t.

132

Consider an arbitrary time t′ during this epoch. As a packing of the instance It′ can be extended to
a packing of It by packing It \ It′ with the first fit algorithm, using a further 2εVt bins, we have
OPT (It) ≤ OPT (It′) + 2εVt. On the other hand, our algorithm uses at most an additional 2εVt
bins at time t′ compared to the beginning of the epoch. Therefore, the number of bins used at time
t′ is at most

(1 + ε) ·OPT (It) + 2εVt +O(ε−2) ≤ (1 + ε) · (OPT (It′) + 2εVt) + 2εVt +O(ε−2)

≤ (1 + ε) ·OPT (It′) + 5εVt +O(ε−2).

Now observe that OPT (It′) ≥ Vt − εVt = (1− ε) · Vt because the total volume of jobs at time t′

is at least Vt− εVt, and so OPT (It′) ≥ Vt/2. Therefore, 5εVt ≤ 10εOPT (It′). It follows that the
number of bins used by the algorithm at time t′ is at most (1 +O(ε)) ·OPT (It′) +O(ε−2). �

C.3.2 The Matching Lower Bound
Here we prove our matching lower bound for amortized recourse in the size costs setting.

We recall that our proof relies on Sylvester’s sequence. For ease of reference we restate the
salient properties of this sequence which we rely on in our proofs. The Sylvester sequence is given
by the recurrence relation k1 = 2 and ki+1 =

(∏
j≤i kj

)
+1, or equivalently ki+1 = ki ·(ki−1)+1

for i ≥ 0. The first few terms of this sequence are 2, 3, 7, 43, 1807, . . . In what follows we let c be
a large positive integer to be specified later, and ε := 1/

∏c
`=1 k`. For notational simplicity, since

our products and sums will always be taken over the range [c] or [c] \ {i} for some i ∈ [c], we will
write

∑
` k` and

∏
` 1/k`,

∑
6̀=i 1/k`,

∏
`6=i 1/k`, etc., taking the range of ` to be self-evident from

context. In our proof of Theorem 5.6 and the lemmas building up to it, we shall make use of the
following properties of the Sylvester sequence, its reciprocals and this ε = 1/

∏
` k`.

(P1) 1
k1

+ 1
k2

+ . . .+ 1
kc

= 1− 1∏
` k`

= 1− ε.
(P2) If i 6= j, then ki and kj are relatively prime.

(P3) For all i ∈ [c], the value 1/ki =
∏

`6=i k`/
∏

` k` is an integer product of ε = 1/
∏

` k`.

(P4) If i 6= j ∈ [c], then 1/ki =
∏
6̀=i k`/

∏
` k` is an integer product of kj · ε = kj/

∏
` k`.

Properties 4 and 3 are immediate, while property 2 follows directly from the recursive definition
of the sequence’s terms, ki+1 =

(∏
j≤i kj

)
+ 1. Finally, the same definition readily implies 1

ki
=

1
ki−1
− 1

ki+1−1
, from which property 1 follows by induction.

The instances we consider for our lower bound will be comprised of items with sizes given by
entries of the following vector ~s ∈ [0, 1]c+1, defined as follows:

si :=

{
1
ki
· (1− ε

2
) i ∈ [c]

ε · (3
2
− ε

2
) i = c+ 1.

Let~1 be the all-ones vector, and ~ei the i-th standard basis vector. In what follows we will denote
by ~χ ∈ Nc+1 a characteristic vector of a feasibly-packed bin; i.e., χi is the number of items of size
si in the bin, and as the bin is not over-flowing, we have ~χ · ~s =

∑
i χi · si ≤ 1. The following fact

is easy to check from the definition of ~s.

133

Fact C.3.1 ~1 · ~s = 1.
Proof: By property 1, we have

∑c
i=1 si = (1− ε

2
) · (1− ε) = 1− sc+1. �

We now show that the item sizes given by the entries of ~s are such that in many situations
(in particular, situations where no sc+1-sized items are present), any feasible packing in a bin will
leave some gap.
Lemma C.3.2 Let χ denote a feasible packing of items into a bin; i.e., ~χ ∈ Nc+1, ~χ ·~s ≤ 1. Then,
(a) If χc+1 = 1 and ~χ 6= ~1, then ~χ · ~s ≤ 1− ε/2.
(b) If χc+1 = 0, then ~χ · ~s ≤ 1− ε/2.
(c) If χc+1 = 0 and ~χ 6= ki~ei, then ~χ · ~s ≤ 1− ε.
Proof: For ease of notation, we define a vector ~t, where ti = 1/ki for i = 1, . . . , c and tc+1 = 0.
So, si = (1− ε/2) · ti for i = 1, . . . , c.
Observation C.3.3 The dot product ~χ · ~t is at most 1.
Proof: By property 3, each ti is an integral multiple of ε. It follows that ~χ · ~t is also an integral
multiple of ε. Clearly, 1 is an integral multiple of ε. Therefore, if ~χ · ~t > 1, then ~χ · ~t is at least
1 + ε. But then, ~χ · ~s ≥ (1− ε/2) · ~χ · ~t ≥ (1− ε/2) · (1 + ε) > 1, a contradiction. �

Part a: First, observe that ~χ ·~t 6= 1. Indeed, it is at most 1, by Observation C.3.3). Moreover, if
~χ ·~t = 1, the fact that χc+1 = 1 would imply ~χ ·~s = ~χ · (1−ε/2) ·~t+sc+1 = (1−ε/2)+sc+1 > 1,
a contradiction. Also, there must be some index i ∈ [c] such that χi = 0. Indeed, otherwise
the fact that ~χ 6= ~1 and Fact C.3.1 imply that ~χ · ~s > ~1 · ~s = 1. So let i be an index such that
χi = 0. By property 4, for all j 6= i, the value tj = 1/kj is an integral multiple of kiε. Therefore,
~χ · ~t is a multiple of kiε. Since ~χ · ~t < 1 and 1 is an integral multiple of kiε, it follows that
~χ ·~t ≤ 1− kiε ≤ 1− 2ε. Therefore, ~χ ·~s ≤ (1− ε/2) · (1− 2ε) + sc+1 = 1− ε+ ε2/2 ≤ 1− ε/2.

Part b follows directly from Observation C.3.3 above. Indeed, since χc+1 = 0, we have that
~χ · ~s = (1− ε/2)~χ · ~t ≤ (1− ε/2).

Part c: First, observe that χi < ki for i = 1, . . . , c. Indeed, if χ = ki~ei + χ′ for some
index i and some non-zero non-negative vector χ′, then ~χ · ~t = 1 + ~χ′ · ~t > 1, which contradicts
Observation C.3.3. Now let i be an index such that χi ≥ 1. Since χi < ki, property 2 implies
that χi · ti = χi · ε ·

∏
6̀=i k` is not an integral multiple of kiε. But, by property 4 for all j 6= i we

have that tj = 1/kj is an integral multiple of kiε. Thus, ~χ · ~t(≤ 1) is not an integral multiple of
kiε = ki/

∏
` k` = 1/

∏
6̀=i k`. Consequently, ~χ ·~t < 1. But, by property 3, we have that ~χ ·~t is an

integral multiple of ε, from which it follows that ~χ · ~t ≤ 1 − ε. Therefore, as χc+1 = 0, we have
~χ · ~s = ~χ · (1− ε/2) · ~t ≤ (1− ε/2) · (1− ε) ≤ 1− ε. �

Equipped with the above lemma, we can show two instances with similar overall weight, I to I ′
for which near-optimal solutions different significantly. Specifically, we define the input instances
I and I ′, as follows. For some large N a product of

∏
` k`, Instance I consists of N items of sizes

si for all i ∈ [c + 1]. Instance I ′ consists of N items of all sizes but sc+1. It is easy to check that
c = Θ(log log 1/ε), and so the total number of items is n = Θ(N · log log(1/ε)). Therefore the
additive o(n) term, denoted by f(n), satisfies

f(n) < ε · n/(42 ·Θ(log log(1/ε))) = εN/42.

We now proceed to proving that approximately-optimal packings of the above two instances differ
significantly.

134

Any algorithmA with (1+ε/7)-a.c.r and o(n) additive term packs instance I such that at least
2N/3 bins contain exactly one item of each size si, and packs instance I ′ such that at least N/2
bins contain items of exactly one size.
Proof: We begin by proving our claimed bound on A’s packing of I. Fact C.3.1 shows that the
optimal number of bins is N . Therefore, A is allowed to use at most (1 + ε/7)N + εN/42 =
(1 + ε/6)N bins. Now suppose there more than N/3 bins for which the characteristic vector is not
~1. Lemma C.3.2a shows that each such bin must leave out at least ε/2 space. Therefore, the total
unused space in these bins is greater than εN/6, which implies that the algorithm must use at least
N + εN/6 bins, a contradiction.

We now proceed to prove our claimed bound onA’s packing of I ′. Let us first find the optimal
value OPT (I ′). By property 1, the total volume of all the items is equal to N(1 − ε)(1 − ε/2).
By Lemma C.3.2b, any bin can be packed to an extent of at most (1− ε/2). Therefore the optimal
number of bins is at least N(1 − ε). Furthermore, we can achieve this bound by packing N
items of size si in N/ki bins for each index i. Therefore, the algorithm is allowed to use at most
(1 + ε/7)(1− ε)N + εN/42 ≤ (1− 35ε

42
)N bins when packing I ′.

Suppose there are at least N/2 bins each of which is assigned items of at least two different
sizes by the algorithm. By Lemma C.3.2c, the algorithm will leave at least ε unused space in such
bins; moreover, by Lemma C.3.2b, the algorithm will leave at least ε/2 unused space in every
bin. Thus, the total unused space in the bins is at least εN/2 + εN/4 = 3εN/4. Since the total
volume of the items is equal to N(1− ε)(1− ε/2), we see that the total number of bins used by the
algorithm is at least N(1− ε)(1− ε/2) + 3εN/4 ≥ N(1− 3ε/4) > (1− 35ε

42
)N , a contradiction.

�

We are now ready to prove this section’s main result. For infinitely many ε > 0, any fully-
dynamic bin packing algorithm with a.c.r (1 + ε) and additive term o(n) must have amortized
migration factor of Ω(ε−1).
Proof: We will show that any algorithm A using at most (1 + ε/7) ·OPT (It) + o(n) bins at time
t uses at least 1/160ε amortized recourse, for arbitrarily large optima and instance sizes, implying
our theorem. We consider the two instance I and I ′ defined above.

Suppose we first provide instance I to A, and then remove all items of size sc+1 to get the
instance I ′. LetB1 andB2 be the sets of bins guaranteed by Section 5.6 when we had the instances
I and I ′, respectively. Notice that as algorithmA uses at most (1− 35ε

42
)N ≤ N bins while packing

I ′, and |B1| ≥ 2N/3, |B2| ≥ N/2, we have that either (i) |B1 ∩B2| ≥ N/12, or (ii) at least N/12
of the bins of B1 are closed in A’s packing of I ′.

Consider any bin which lies in both B1 and B2. In instance I, algorithm A had assigned one
item of each size to this bin, whereas in instance I ′ the algorithm assigns this bin items of only
one size. Therefore, the total size of items which need to go out of (or into) this bin when we
transition from I to I ′ is at least 1/2. Therefore, the total volume of items moved during this
transition is at least N/48. Similarly, if N/12 of the bins of B1 are closed in A’s packing of I ′, at
least 1−sc+1 ≥ 1/2 volume must leave each of these bins, and so the total volume of items moved
during this transition is at least N/24 > N/48.

Repeatedly switching between I and I ′ by adding and removing the N items of size sc+1 a

135

total of T times (for sufficiently large T), we find that the amortized recourse is at least

T ·N/48

N + T · 3ε ·N
≥ 1

160ε
.

�

136

Bibliography

[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-
weighted bipartite matching and single-bid budgeted allocations. In Proceedings of the
twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–1264.
SIAM, 2011. 6.1

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. A note on Ramsey numbers. J. Comb.
Theory, Ser. A, 29(3):354–360, 1980. 2.2

[3] Miklós Ajtai, Paul Erdős, János Komlós, and Endre Szemerédi. On Turáns theorem for
sparse graphs. Combinatorica, 1(4):313–317, 1981. 2.2

[4] Noga Alon. Independence numbers of locally sparse graphs and a Ramsey type problem.
Random Struct. Algorithms, 9(3):271–278, 1996. 2.2, 2.3, 2.3, 2.3, 2.5, 2.5, 2.6.3, 2.6.4

[5] Noga Alon and Nabil Kahale. Approximating the independence number via the ϑ-
function. Math. Programming, 80(3, Ser. A):253–264, 1998. ISSN 0025-5610. doi:
10.1007/BF01581168. URL http://dx.doi.org/10.1007/BF01581168. 2.2,
2.3, 2.4

[6] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley Interscience, New York,
1992. 2.2

[7] Hyung-Chan An, Aditya Bhaskara, Chandra Chekuri, Shalmoli Gupta, Vivek Madan, and
Ola Svensson. Centrality of trees for capacitated k-center. Mathematical Programming, 154
(1-2):29–53, 2015. 3.2

[8] Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan
Roytman, and Adam Wierman. A tale of two metrics: Simultaneous bounds on competi-
tiveness and regret. In Conference on Learning Theory, pages 741–763, 2013. 7.2

[9] Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior, and
Michele Scquizzato. Chasing convex bodies and functions. In Latin American Symposium
on Theoretical Informatics, pages 68–81. Springer, 2016. 7.2

[10] C. J. Argue, Sébastien Bubeck, Michael B. Cohen, Anupam Gupta, and Yin Tat Lee. A
nearly-linear bound for chasing nested convex bodies. CoRR, abs/1806.08865, 2018. URL
http://arxiv.org/abs/1806.08865. 7.2

[11] Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized greedy
matching. II. Random Structures & Algorithms, 6(1):55–73, 1995. 6.2

137

http://dx.doi.org/10.1007/BF01581168
http://arxiv.org/abs/1806.08865

[12] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing, 33(3):544–562, 2004. 3.2

[13] Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of vertex cover and indepen-
dent set in bounded degree graphs. Theory of Computing, 7(1):27–43, 2011. 2.2

[14] Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation
functions. In COLT, volume 23, pages 4–1, 2012. 4.1

[15] Michel Louis Balinski. On finding integer solutions to linear programs. Technical report,
DTIC Document, 1964. 3.4.2

[16] János Balogh, József Békési, Gábor Galambos, and Gerhard Reinelt. Lower bound for the
online bin packing problem with restricted repacking. SIAM Journal on Computing, 38(1):
398–410, 2008. 5.2, 5.3, 5.4.1, 5.4.1

[17] János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes
of bin packing algorithms. Theoretical Computer Science, 440:1–13, 2012. 5.1

[18] János Balogh, József Békési, Gábor Galambos, and Gerhard Reinelt. On-line bin packing
with restricted repacking. Journal of Combinatorial Optimization, 27(1):115–131, 2014.
5.2

[19] Nikhil Bansal, Anupam Gupta, and Guru Guruganesh. On the Lovász theta function for
independent sets in sparse graphs. CoRR, abs/1504.04767, 2015. URL http://arxiv.
org/abs/1504.04767. 2.2, A.1

[20] Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior,
and Cliff Stein. A 2-competitive algorithm for online convex optimization with switch-
ing costs. In LIPIcs-Leibniz International Proceedings in Informatics, volume 40. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015. 7.2

[21] Nikhil Bansal, Martin Böhm, Marek Eliáš, Grigorios Koumoutsos, and Seeun William Um-
boh. Nested convex bodies are chaseable. arXiv preprint arXiv:1707.05527, 2017. 7.2

[22] Yair Bartal, Moses Charikar, and Danny Raz. Approximating min-sum k-clustering in metric
spaces. In Proceedings of the 33rd STOC, pages 11–20, 2001. 3.2, 3.5

[23] Babak Behsaz, Zachary Friggstad, Mohammad R. Salavatipour, and Rohit Sivakumar. Ap-
proximation algorithms for min-sum k-clustering and balanced k-median. In Proceedings
of the 42nd ICALP, pages 116–128, 2015. 3.2

[24] W. Ben-Ameur and H. Kerivin. Routing of uncertain demands. Optimization and Engineer-
ing, 3:283–313, 2005. 4.2

[25] Sebastian Berndt, Klaus Jansen, and Kim-Manuel Klein. Fully dynamic bin pack-
ing revisited. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton,
NJ, USA, pages 135–151, 2015. URL http://dx.doi.org/10.4230/LIPIcs.
APPROX-RANDOM.2015.135. 5.2, 5.3, 5.3, 5.4.2, 5.6, C.1.2

[26] Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auctions

138

http://arxiv.org/abs/1504.04767
http://arxiv.org/abs/1504.04767
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.135
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.135

with item bidding. In Proceedings of the twenty-second annual ACM-SIAM symposium on
Discrete Algorithms, pages 700–709. Society for Industrial and Applied Mathematics, 2011.
4.1

[27] Tom Bohman and Peter Keevash. The early evolution of the H-free process. Inventiones
Mathematicae, 181(2):291–336, 2010. 2.5.1

[28] Allan Borodin, Nathan Linial, and Michael E Saks. An optimal on-line algorithm for met-
rical task system. Journal of the ACM (JACM), 39(4):745–763, 1992. 1.2.3, 7.2

[29] Niv Buchbinder, Joseph Seffi Naor, et al. The design of competitive online algorithms via a
primal–dual approach. Foundations and Trends R© in Theoretical Computer Science, 3(2–3):
93–263, 2009. 7.2

[30] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization. In
Proceedings of the 26th SODA, pages 737–756, 2015. 3.2

[31] D. Chakrabarty and C. Swamy. Facility location with client latencies: Lp-based techniques
for minimum-latency problems. Math. Oper. Res., 41(3):865–883, 2016. 4.3, 4.6, 4.6, 4.6

[32] Siu On Chan. Approximation resistance from pairwise independent subgroups. In STOC,
pages 447–456, 2013. doi: 10.1145/2488608.2488665. URL http://doi.acm.org/
10.1145/2488608.2488665. 2.2

[33] Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location
problems. SIAM Journal on Computing, 34(4):803–824, 2005. 3.2

[34] Moses Charikar and Rina Panigrahy. Clustering to minimize the sum of cluster diameters.
Journal of Computer and System Sciences, 68(2):417–441, 2004. 3.2

[35] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor ap-
proximation algorithm for the k-median problem. Journal of Computer and System Sciences,
65(1):129–149, 2002. 3.2

[36] C. Chekuri. Routing and network design with robustness to changing or uncertain traffic
demands. SIGACT News, 38(3):106–128, 2007. 4.2

[37] Chandra Chekuri and Kent Quanrud. Fast approximations for matroid intersection. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
2016. 6.2, 6.3

[38] Eden Chlamtac and Madhur Tulsiani. Convex relaxations and integrality gaps. In Miguel F.
Anjos and Jean B. Lasserre, editors, Handbook on Semidefinite, Conic and Polynomial Op-
timization. Springer, 2012. 2.4, 2.4.2

[39] M. Chlebik and J. Chlebikova. Approximation hardness of the steiner tree problem on
graphs. Proceedings of the Scandinavian Workshop on Algorithm Theory, pages 170–170,
2002. 4.1

[40] Julia Chuzhoy and Yuval Rabani. Approximating k-median with non-uniform capacities. In
Proceedings of the 16th SODA, pages 952–958, 2005. 3.2, 3.5

139

http://doi.acm.org/10.1145/2488608.2488665
http://doi.acm.org/10.1145/2488608.2488665

[41] Edward G Coffman Jr, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo.
Bin packing approximation algorithms: survey and classification. In Handbook of Combi-
natorial Optimization, pages 455–531. Springer, 2013. 5.1

[42] Stephen A Cook. The complexity of theorem-proving procedures. In Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158. ACM, 1971. 1

[43] Robert M Corless, Gaston H Gonnet, D EG Hare, David J Jeffrey, and Donald E Knuth. On
the Lambert-W function. Advances in Computational mathematics, 5(1):329–359, 1996.
5.3

[44] Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth
local search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Sympo-
sium on, pages 509–518. IEEE, 2013. 2.7

[45] Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In Proceedings of the 53rd FOCS, pages 273–282, 2012.
3.2

[46] W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1+ ε in
linear time. Combinatorica, 1(4):349–355, 1981. C.1.2, C.3.1

[47] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual analysis
of ranking for online bipartite matching. In Proceedings of the Twenty-Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 101–107, 2013. 6.1

[48] N.G. Duffield, P. Goyal, A.G. Greenberg, P.P. Mishra, K.K. Ramakrishnan, and J.E. van der
Merwe. A flexible model for resource management in virtual private networks. Proceedings
of SIGCOMM, 29:95–108, 1999. 4.2

[49] Martin Dyer and Alan Frieze. Randomized greedy matching. Random Structures & Algo-
rithms, 2(1):29–45, 1991. B.2.2

[50] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Re-
search of the National Bureau of Standards B, 69(125-130):55–56, 1965. 1

[51] Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial
structures and their applications, pages 69–87, 1970. 6.2

[52] Leah Epstein and Asaf Levin. A robust APTAS for the classical bin packing problem.
Math. Program., 119(1):33–49, 2009. doi: 10.1007/s10107-007-0200-y. URL http:
//dx.doi.org/10.1007/s10107-007-0200-y. 5.2, 5.3, 5.6

[53] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guar-
antees for weighted matching in the semi-streaming model. SIAM Journal on Discrete
Mathematics, 25(3):1251–1265, 2011. 6.2

[54] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio Math-
ematica, 2:463–470, 1935. 2.5

[55] Paul Erdos and Alfred Renyi. On random matrices. Magyar Tud. Akad. Mat. Kutató Int.
Közl, 8(455-461):1964, 1964. B.2.4

140

http://dx.doi.org/10.1007/s10107-007-0200-y
http://dx.doi.org/10.1007/s10107-007-0200-y

[56] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics
by tree metrics. Journal of Computer and System Sciences, 69:485–497, 2004. 4.1

[57] Uriel Feige. Randomized graph products, chromatic numbers, and the lovász ϑ-function.
Combinatorica, 17(1):79–90, 1997. 2.7

[58] Uriel Feige. Approximating maximum clique by removing subgraphs. SIAM J. Discrete
Math., 18(2):219–225, 2004. 2.2

[59] Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM Journal
on Computing, 39(1):122–142, 2009. 4.1

[60] Uriel Feige and Anne Kenyon. On the profile of multiplicities of complete subgraphs. arXiv
preprint arXiv:1703.09682, 2017. 2.7

[61] B. Feldkord, M. Feldotto, and S. Riechers. A Tight Approximation for Fully Dynamic Bin
Packing without Bundling. ArXiv e-prints, November 2017. 5.7

[62] A.E. Feldmann, J. Könemann, K. Pashkovich, and L. Sanità. Fast approximation algorithms
for the generalized survivable network design problem. Proceedings of ISAAC (Interna-
tional symposium on algorithms and computation), pages 33:1– 33:12, 2016. 4.2

[63] J. Fingerhut, S. Suri, and J. Turner. Designing least-cost nonblocking broadband networks.
J. Algorithms, 24(2):287–309, 1997. 4.2

[64] Joel Friedman and Nathan Linial. On convex body chasing. Discrete & Computational
Geometry, 9(1):293–321, 1993. 1.2.3, 7.2

[65] Giorgio Gambosi, Alberto Postiglione, and Maurizio Talamo. New algorithms for on-line
bin packing. In Algorithms and Complexity, Proceedings of the First Italian Conference,
pages 44–59, 1990. 5.2

[66] Giorgio Gambosi, Alberto Postiglione, and Maurizio Talamo. Algorithms for the relaxed
online bin-packing model. SIAM journal on computing, 30(5):1532–1551, 2000. 5.2

[67] Bernd Gärtner and Jiřı́ Matoušek. Approximation algorithms and semidefinite pro-
gramming. Springer, Heidelberg, 2012. ISBN 978-3-642-22014-2; 978-3-642-22015-
9. doi: 10.1007/978-3-642-22015-9. URL http://dx.doi.org/10.1007/
978-3-642-22015-9. 2.4

[68] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 982–991. Society for Industrial and Applied Mathematics,
2008. 6.1, 6.2

[69] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42
(6):1115–1145, November 1995. ISSN 0004-5411. doi: 10.1145/227683.227684. URL
http://doi.acm.org/10.1145/227683.227684. 1.1

[70] M.X. Goemans and D.P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24(2):296–317, 1995. 4.1, 4.2

141

http://dx.doi.org/10.1007/978-3-642-22015-9
http://dx.doi.org/10.1007/978-3-642-22015-9
http://doi.acm.org/10.1145/227683.227684

[71] Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985. 3.2

[72] N. Goyal, N. Olver, and F. B. Shepherd. Dynamic vs. oblivious routing in network design.
Algorithmica, 61(1):161–173, 2011. 4.3

[73] N. Goyal, N. Olver, and F. B. Shepherd. The vpn conjecture is true. J. ACM, 60(3):17:1–
17:17, June 2013. ISSN 0004-5411. doi: 10.1145/2487241.2487243. URL http://doi.
acm.org/10.1145/2487241.2487243. 4.2

[74] F. Grandoni, T. Rothvoß, and L. Sanità. From uncertainty to non-linearity: Solving virtual
private network via single-sink buy-at-bulk. Math. Oper. Res., 36(2):185–204, 2011. 4.2

[75] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization. Springer-Verlag, Berlin, 1988. 2.4

[76] A. Gupta, J. Kleingerg, R. Kumar, B. Rastogi, and B. Yener. Provisioning a virtual private
network: A network design problem for multicommodity flow. Proceedings of Sympos.
Theory Comput. (STOC), pages 389–398, 2001. 4.2

[77] A. Gupta, V. Nagarajan, and R. Ravi. An improved approximation algorithm for requirement
cut. Operations Research Letters, 38(4):322–325, 2010. 4.1

[78] Magnús M. Halldórsson. Approximations of independent sets in graphs. In APPROX, pages
1–13, 1998. 2.2

[79] Magnús M. Halldórsson. Approximations of weighted independent set and hereditary subset
problems. J. Graph Algorithms Appl., 4:no. 1, 16 pp., 2000. ISSN 1526-1719. doi: 10.7155/
jgaa.00020. URL http://dx.doi.org/10.7155/jgaa.00020. 2.2, 2.4

[80] Magnús M. Halldórsson and Jaikumar Radhakrishnan. Improved approximations of in-
dependent sets in bounded-degree graphs via subgraph removal. Nord. J. Comput., 1(4):
475–492, 1994. 2.2

[81] Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs
and hypergraphs. SIAM J. Comput., 31(5):1608–1623, 2002. 2.2, 2.3, 2.4, 2.4.1, 2.4

[82] Johan Håstad. Clique is hard to approximate within n1−ε. In FOCS, pages 627–636, 1996.
2.2

[83] Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-
dimensional matching. In Approximation, Randomization, and Combinatorial Optimiza-
tion.. Algorithms and Techniques, pages 83–97. Springer, 2003. 2.7

[84] Sandy Heydrich and Rob van Stee. Beating the harmonic lower bound for online bin pack-
ing. In 43rd International Colloquium on Automata, Languages, and Programming. Schloss
Dagstuhl, 2016. 5.1, 5.3

[85] Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin pack-
ing. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 2616–2625. SIAM, 2017. 5.1

[86] Dorit S Hochbaum. Approximation algorithms for NP-hard problems. PWS Publishing Co.,

142

http://doi.acm.org/10.1145/2487241.2487243
http://doi.acm.org/10.1145/2487241.2487243
http://dx.doi.org/10.7155/jgaa.00020

1996. 5.1

[87] Dorit S. Hochbaum and David B. Shmoys. A best possible heuristic for the k-center prob-
lem. Mathematics of Operations Research, 10:180–184, 1985. 3.2

[88] John E Hopcroft and Richard M Karp. An n5/2algorithmformaximummatchingsinbipartitegraphs.SIAM Journal on computing, 2
(4) : 225−−231, 1973.6.2

[89] Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems. Discrete
Applied Mathematics, 1:209–215, 1979. 3.2

[90] Chien-Chung Huang, Naonori Kakimura, and Naoyuki Kamiyama. Exact and Approximation Al-
gorithms for Weighted Matroid Intersection. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms. SIAM, 2016. 6.2, 6.3

[91] Zoran Ivković and Errol L Lloyd. A fundamental restriction on fully dynamic maintenance of bin
packing. Information Processing Letters, 59(4):229–232, 1996. 5.2

[92] K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem. Combi-
natorica, 21(1):39–60, 2001. 4.1, 4.2, 4.3

[93] Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location and k-
median problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM, 48
(2):274–296, 2001. 3.2, 3.4.3, 3.5

[94] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location
problems. In Proceedings of the 34th STOC, pages 731–740, 2002. 3.2

[95] Klaus Jansen and Kim-Manuel Klein. A robust AFPTAS for online bin packing with polynomial
migration,. In Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 589–600, 2013. URL http:
//dx.doi.org/10.1007/978-3-642-39206-1_50. 5.2, 5.3, 5.4.2, 5.6

[96] Anders Johansson. The choice number of sparse graphs. preprint, August 1996. 2.2, 2.3, A.1

[97] Anders Johansson. Asymptotic choice number for triangle-free graphs. preprint, 1996. 2.2

[98] David S. Johnson, Alan Demers, Jeffrey D. Ullman, Michael R Garey, and Ronald L. Graham.
Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM Journal
on Computing, 3(4):299–325, 1974. 5.1

[99] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with unknown
distributions. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing,
pages 587–596. ACM, 2011. 6.2

[100] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite
programming. J. ACM, 45(2):246–265, 1998. 2.2, A.2.1

[101] Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In Proceedings of the 23rd Annual Symposium on Foundations
of Computer Science, pages 312–320. IEEE Computer Society, 1982. C.3.1

[102] Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer Compu-
tations, pages 85–103, 1972. 3.4.1

143

http://dx.doi.org/10.1007/978-3-642-39206-1_50
http://dx.doi.org/10.1007/978-3-642-39206-1_50

[103] Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer compu-
tations, pages 85–103. Springer, 1972. 1

[104] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line
bipartite matching. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of
Computing, pages 352–358, 1990. 1.2.1, 6.1

[105] Subhash Khot and Ashok Kumar Ponnuswami. Better inapproximability results for MaxClique,
chromatic number and Min-3Lin-Deletion. In ICALP (1), pages 226–237, 2006. 2.2

[106] Jeong Han Kim. On Brooks’ theorem for sparse graphs. Combinatorics, Probability & Computing,
4:97–132, 1995. 2.2

[107] Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming
with few passes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 231–242. Springer, 2012. 6.2, 6.3, 6.4.3, 6.4.2, 6.5.2, 6.7.1, B.4

[108] Bernhard Korte and Jens Vygen. Combinatorial Optimization, Volume 21 of Algorithms and Com-
binatorics. Springer-Verlag, Berlin,, 2008. 6.2, 6.5.1

[109] Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs. In
International Colloquium on Automata, Languages and Programming, pages 508–520. Springer,
2009. 6.2

[110] Nitish Korula, Vahab Mirrokni, and Morteza Zadimoghaddam. Online submodular welfare maxi-
mization: Greedy beats 1/2 in random order. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, pages 889–898. ACM, 2015. 6.1, 6.2

[111] Christian Kroer and Tuomas Sandholm. Extensive-Form Game Imperfect-Recall Abstractions
With Bounds. CoRR, abs/1409.3302, 2014. also published at the Algorithmic Game Theory
workshop at IJCAI, 2015. 3.1

[112] Monique Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations
for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003. 2.4

[113] Monique Laurent. Networks and semidefinite programming (lecture notes 2014), 2014.
http://homepages.cwi.nl/ monique/lnmb14/lnmb14.pdf. 2.4

[114] Chan C Lee and Der-Tsai Lee. A simple on-line bin-packing algorithm. Journal of the ACM
(JACM), 32(3):562–572, 1985. 5.1, 5.5.2, 5.5.2

[115] Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. In Proceedings of the 3rd ACM conference on Electronic Commerce, pages
18–28. ACM, 2001. 4.1

[116] Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proceedings of
the 45th STOC, pages 901–910, 2013. 3.2

[117] Minghong Lin, Adam Wierman, Alan Roytman, Adam Meyerson, and Lachlan LH Andrew. On-
line optimization with switching cost. ACM SIGMETRICS Performance Evaluation Review, 40(3):
98–100, 2012. 7.2

[118] László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.

144

ISSN 0018-9448. doi: 10.1109/TIT.1979.1055985. URL http://dx.doi.org/10.1109/
TIT.1979.1055985. 2.1

[119] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an approach
based on strongly factor-revealing lps. In Proceedings of the Forty-Third Annual ACM Symposium
on Theory of Computing, pages 597–606, 2011. 6.2

[120] Aranyak Mehta. Online matching and ad allocation. Theoretical Computer Science, 8(4):265–368,
2012. 6.2

[121] Aranyak Mehta and Vijay Vazirani. Personal communication, 2015. 6.2

[122] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. Journal of the ACM (JACM), 54(5):22, 2007. 6.1

[123] Michael Molloy. The list chromatic number of graphs with small clique number. arXiv preprint
arXiv:1701.09133, 2017. 2.7

[124] Marcin” ”Mucha and ”Smulewicz Marcin”. ”personal communication”, 2018. 4.7

[125] G. Oriolo, L. Sanità, and R. Zenklusen. Network design with a discrete set of traffic matrices.
Operations Research Letters, 41(4):390–396, 2013. 4.1, 4.2, 4.3

[126] James G Oxley. Matroid Theory, volume 3. Oxford university press, 2006. 6.5.1

[127] Prakash Ramanan, Donna J Brown, Chung-Chieh Lee, and Der-Tsai Lee. On-line bin packing in
linear time. Journal of Algorithms, 10(3):305–326, 1989. 5.1

[128] Michael B Richey. Improved bounds for harmonic-based bin packing algorithms. Discrete Applied
Mathematics, 34(1-3):203–227, 1991. 5.1

[129] Peter Sanders, Naveen Sivadasan, and Martin Skutella. Online scheduling with bounded migration.
Mathematics of Operations Research, 34(2):481–498, 2009. 5.2

[130] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer
Science & Business Media, 2002. 6.2

[131] Steven S Seiden. On the online bin packing problem. Journal of the ACM (JACM), 49(5):640–671,
2002. 5.1, 5.3.2, 5.5.2, 5.5.2, C.2.2, C.2.2

[132] James B. Shearer. A note on the independence number of triangle-free graphs. Discrete Math., 46
(1):83–87, 1983. ISSN 0012-365X. doi: 10.1016/0012-365X(83)90273-X. URL http://dx.
doi.org/10.1016/0012-365X(83)90273-X. 2.2

[133] James B. Shearer. On the independence number of sparse graphs. Random Structures Algorithms,
7(3):269–271, 1995. ISSN 1042-9832. doi: 10.1002/rsa.3240070305. URL http://dx.doi.
org/10.1002/rsa.3240070305. 2.2, 2.3, 2.3, 2.5

[134] Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules. Com-
munications of the ACM, 28(2):202–208, 1985. 1

[135] James J Sylvester. On a point in the theory of vulgar fractions. American Journal of Mathematics,
3(4):332–335, 1880. 5.6

[136] JD Ullman. The performance of a memory allocation algorithm. Princeton University, 1971. 5.1

145

http://dx.doi.org/10.1109/TIT.1979.1055985
http://dx.doi.org/10.1109/TIT.1979.1055985
http://dx.doi.org/10.1016/0012-365X(83)90273-X
http://dx.doi.org/10.1016/0012-365X(83)90273-X
http://dx.doi.org/10.1002/rsa.3240070305
http://dx.doi.org/10.1002/rsa.3240070305

[137] André van Vliet. Lower and Upper Bounds for On-line Bin Packing and Scheduling Heuristics:
Onder-en Bovengrenzen Voor On-line Bin Packing en Scheduling Heuristieken. Thesis Publ., 1995.
5.1

[138] Yajun Wang and Sam Chiu-wai Wong. Two-sided online bipartite matching and vertex cover:
Beating the greedy algorithm. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 1070–1081. Springer, 2015. 6.1

[139] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011. Available at http://www.designofapproxalgs.com. 1, 3.2

[140] Gerhard Woeginger. Improved space for bounded-space, on-line bin-packing. SIAM Journal on
Discrete Mathematics, 6(4):575–581, 1993. 5.1

[141] M. Yannakakis. Node-and edge-deletion np-complete problems. In Proceedings of the tenth annual
ACM symposium on Theory of computing, pages 253–264. ACM, 1978. 4.5

[142] Andrew Chi-Chih Yao. New algorithms for bin packing. Journal of the ACM (JACM), 27(2):
207–227, 1980. 5.1

[143] M. Zadimoghaddam. Online Weighted Matching: Beating the 1
2

Barrier. ArXiv e-prints, April
2017. 6.8

146

http://www.designofapproxalgs.com

	1 Introduction
	1.1 Approximation Algorithms (Offline Setting)
	1.1.1 Independent Sets in Sparse Graphs
	1.1.2 Aversion K-clustering
	1.1.3 Fractionally Sub-additive Network Design

	1.2 Online Algorithms (Going beyond worst case analysis)
	1.2.1 Online Matroid Intersection
	1.2.2 Online Bin Packing
	1.2.3 Smooth Online Convex Optimization

	2 Finding Independent Sets in Degree-d Graphs
	2.1 Introduction
	2.2 Related Works
	2.3 Our Results
	2.4 Preliminaries
	2.5 Integrality Gap of the Standard SDP
	2.5.1 An upper bound

	2.6 Lift-and-Project Algorithms
	2.6.1 Sherali-Adams+ based guarantees
	2.6.2 Sherali-Adams based guarantees

	2.7 Open Problems

	3 Local k-median
	3.1 Introduction
	3.2 Related Works
	3.3 Our Results and Techniques
	3.4 Solving aversion k-clustering problem via the local k-median problem
	3.4.1 Preliminaries
	3.4.2 Reductions
	3.4.3 Good fractional solutions for the local k-median problem
	3.4.4 Rounding
	3.4.5 Improving the Approximation Factor

	3.5 Open Problems

	4 Fractionally Sub-additive Network Design
	4.1 Introduction
	4.2 Related works
	4.3 Our results
	4.4 3/2-approximation for the two color case
	4.4.1 Simplifying Assumptions.
	4.4.2 Understanding the structure of OPT
	4.4.3 The Algorithm

	4.5 Hardness for two colors
	4.5.1 Completeness
	4.5.2 Soundness

	4.6 Latency SAND
	4.7 Open Problems

	5 Online Bin Packing with Recourse
	5.1 Introduction
	5.2 Related Works
	5.3 Our Results
	5.4 Unit Movement Costs
	5.4.1 Impossibility results
	5.4.2 Matching Algorithmic Results

	5.5 General Movement Costs
	5.5.1 Matching the Lower Bounds for Online Algorithms
	5.5.2 (Nearly) Matching the Upper Bounds for Online Algorithms

	5.6 Size Movement Costs (Migration Factor)
	5.7 Open Problems

	6 Online Matroid Intersection
	6.1 Introduction
	6.2 Related Work
	6.3 Our Results and Techniques
	6.4 Warmup: Online Bipartite Matching
	6.4.1 Definitions and Notation
	6.4.2 Beating Half

	6.5 Online Matroid Intersection
	6.5.1 Definitions and Notation
	6.5.2 Hastiness Property
	6.5.3 Beating Half for Online Matroid Intersection

	6.6 Sampling Lemma
	6.6.1 Alternate View of the Sampling Lemma
	6.6.2 Proof of the Sampling Lemma
	6.6.3 Proof of the Alternate View of Sampling Lemma
	6.6.4 Proof that the Updates are valid

	6.7 Beating Half for General Graphs
	6.8 Open Problems

	7 Smoothed Online Convex Optimization
	7.1 Introduction
	7.2 Related Work
	7.3 Our Results
	7.4 One Dimensional Case
	7.5 Higher Dimensions
	7.5.1 Alternate view of Work Function Algorithms
	7.5.2 Fenchel Duals
	7.5.3 Slack
	7.5.4 Potential Functions

	A Independent Sets Appendix
	A.1 Johansson's Algorithm for Coloring Sparse Graphs
	A.2 Miscellaneous Proofs
	A.2.1 Proof of Theorem 2.4.1
	A.2.2 Proof of Theorem 2.6.4

	A.3 The Average-degree Case

	B Online Matroid Intersection Appendix
	B.1 Notation
	B.2 Miscellaneous Results
	B.2.1 Greedy Beats Half on Almost Regular Graphs
	B.2.2 Greedy Cannot Always Beat Half for Bipartite Graphs
	B.2.3 Limitations on any OBME Algorithm
	B.2.4 When Size of the Ground Set is Unknown

	B.3 Facts
	B.4 Hastiness Lemma

	C Online Bin Packing Appendix
	C.1 Omitted Proofs of Section 5.4 (Unit Movement Costs)
	C.1.1 Proof of the Lower Bound
	C.1.2 Matching Algorithmic Results

	C.2 Omitted Proofs of Section 5.5 (General Movement Costs)
	C.2.1 Matching the Lower Bounds for Online Algorithms
	C.2.2 (Nearly) Matching the Upper Bounds for Online Algorithms

	C.3 Omitted Proofs of Section 5.6 (Size Movement Costs)
	C.3.1 Amortized Migration Factor Upper Bound
	C.3.2 The Matching Lower Bound

