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Abstract

Given a k-ary predicate P , a random instance of a constraint satisfaction problem
with predicate P (CSP(P )) is a set of m constraints on n variables. Each constraint
is P applied to k random literals. Such an instance is unsatisfiable with high prob-
ability when m � n. Although this fact can be proven via a simple probabilistic
argument, certifying that a given randomly chosen instance is unsatisfiable, a task
called refutation, remains a challenge. Refutation, besides being a natural problem in
its own right, has applications in cryptography, hardness of approximation, and learn-
ing theory. This thesis studies refutation using sum-of-squares (SOS) proof systems
[GV01]. SOS is a sequence of increasingly powerful methods for proving polynomial
inequalities parameterized by a value called the degree: the higher the degree, the more
powerful the proof system. On the other hand, the amount of computation needed to
find an SOS proof increases with degree: a degree-d proof can be found in time nO(d)

[Sho87, Par00, Las00, Las01].
First, we consider refutation via constant-degree SOS proofs, which can be found

in polynomial time. We show that the number of constraints required for constant-
degree SOS refutation of a random instance of CSP(P ) is determined by a complexity
parameter C(P ), the minimum t for which there is no t-wise uniform distribution over
{0, 1}k supported on satisfying assignments to P . With Allen and O’Donnell [AOW15],
we proved that constant-degree SOS can refute a random instance of CSP(P ) when
m = Õ(nC(P )/2). With Kothari, Mori, and O’Donnell [KMOW17], we showed a nearly
matching lower bound: SOS requires superconstant degree to refute random instances
of CSP(P ) when m = Ω̃(nC(P )/2).

More generally, we consider the stronger notion of δ-refutation, certifying that at
most a 1−δ fraction of constraints can be simultaneously satisfied. We also consider SOS
proofs with arbitrary, possibly superconstant, degree. In [AOW15], we proved that if
every t-wise uniform distribution on {0, 1}k is δ-far from every distribution supported on
satisfying assignments to P , then constant-degree SOS can (δ − o(1))-refute a random
instance of CSP(P ) with m = Õ(nt/2). For such P , this can be extended using a
result of Raghavendra, Rao, and Schramm [RRS17] to obtain (δ − o(1))-refutation of
random instances of CSP(P ) with m = ∆n constraints via degree-Õ(n/∆2/(t−2)) SOS.
In [KMOW17], we proved that (δ + o(1))-refutation of a random instance of CSP(P )
with m = ∆n constraints requires SOS degree Ω̃(n/∆2/(t−1)) when there exists a t-wise
uniform distribution that is δ-close to being supported on satisfying assignments to P .
These results establish a three-way trade-off among number of constraints, SOS degree,
and refutation strength δ that is tight up to logarithmic factors.
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Computer Engineering Department, supported by Marie Curie International Incoming
Fellowship project number 626373. We would like to thank Amin Coja–Oghlan for help

viii

srallen@cs.cmu.edu
odonnell@cs.cmu.edu
odonnell@cs.cmu.edu


with the literature, and Boaz Barak and Ankur Moitra for permission to reprint the
proof of the strong k-XOR refutation result.

The work described in Chapter 4 was done in collaboration with Pravesh K. Kothari
(Princeton University and the Institute for Advanced Study; kothari@cs.princeton.
edu), Ryuhei Mori (Department of Mathematical and Computing Sciences, Tokyo In-
stitute of Technology; mori@is.titech.ac.jp), and Ryan O’Donnell. It was originally
published as [KMOW17] (copyright c© 2017 ACM), and most of Chapter 4 is reprinted,
with permission, from [KMOW17]. Ryan O’Donnell was also supported by National Sci-
ence Foundation grant CCF-1618679. Pravesh K. Kothari and Ryan O’Donnell thank
the Institute for Mathematical Sciences, National University of Singapore for supporting
a 2016 visit to the Institute; this work began during their visit.

Scripture quotations are from the ESVR© Bible (The Holy Bible, English Standard
VersionR©), copyright c©2001 by Crossway, a publishing ministry of Good News Pub-
lishers. Used by permission. All rights reserved.

ix

kothari@cs.princeton.edu
kothari@cs.princeton.edu
mori@is.titech.ac.jp


x



Contents

1 Introduction 1

1.1 Random CSPs and refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Applications of refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Hardness of approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Cryptography: Goldreich’s pseudorandom generator . . . . . . . . . . . . . . 3

1.2.3 Learning theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 A brief history of refutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 13

2.1 Constraint satisfaction problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Algorithms and refutations on random CSPs . . . . . . . . . . . . . . . . . . 14

2.1.2 t-wise uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The sum of squares proof system and hierarchy . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 The sum of squares proof system . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 The dual view: Pseudoexpectations . . . . . . . . . . . . . . . . . . . . . . . 17

3 A framework for refuting random CSPs using sum of squares 19

3.1 Our results and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 An application from learning theory . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 A dual characterization of limited uniformity . . . . . . . . . . . . . . . . . . 22

3.1.3 Certifying independence number and chromatic number of random hypergraphs 24

3.2 Quasirandomness and its implications for refutation . . . . . . . . . . . . . . . . . . 24

3.2.1 Strong refutation of k-XOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Quasirandomness and strong refutation of any k-CSP . . . . . . . . . . . . . 25

3.2.3 (ε, t)-quasirandomness and Ω(1)-refutation of non-t-wise-supporting CSPs . . 26

3.2.4 Proof of Lemma 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Hardness of learning implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Hardness assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Huang’s predicate and hardness of learning DNF formulas . . . . . . . . . . . 30

3.3.3 Hamming weight predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Majority and hardness of approximately agnostically learning halfspaces . . . 34

3.3.5 Predicates satisfied by strings with Hamming weight at least −Θ(
√
k). . . . . 35

3.4 SOS refutation proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 SOS certification of quasirandomness . . . . . . . . . . . . . . . . . . . . . . . 37

xi



3.4.2 Strong refutation of any k-CSP . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.3 Ω(1)-refutation of non-t-wise supporting CSPs . . . . . . . . . . . . . . . . . 38

3.5 Proof of Theorem 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 The even arity case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 The odd arity case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 An SOS version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.4 Proof of Lemma 3.5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Certifying that random hypergraphs have small independence number and large
chromatic number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Extension to larger alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.7.2 Conversion to Boolean functions . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7.3 Quasirandomness and strong refutation . . . . . . . . . . . . . . . . . . . . . 50

3.7.4 Refutation of non-t-wise supporting CSPs . . . . . . . . . . . . . . . . . . . . 51

3.7.5 SOS proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Simulating FP (n, p) with a fixed number of constraints . . . . . . . . . . . . . . . . 55

4 Sum of squares lower bounds for refuting any CSP 57

4.1 Overview of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Technical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Constraint satisfaction notation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 Plausible factor graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Sketch of our techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Constructing the pseudoexpectation . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Proving positivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4 Forbidden subgraphs for the factor graph . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Defining the pseudoexpectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.1 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.2 The planted distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.3 Pseudoexpectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 The proof of positive semidefiniteness . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.2 Gram–Schmidt overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.3 Advanced accounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.4 The key lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.5 Gram–Schmidt details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.7 Wrapping things up by setting parameters . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Proof that random graphs satisfy the Plausibility Assumption . . . . . . . . . . . . . 80

5 Directions for future work 83

5.1 Upper bounds for more general random CSP models . . . . . . . . . . . . . . . . . . 83

5.2 Upper bounds for refutation of semirandom CSPs . . . . . . . . . . . . . . . . . . . . 83

5.2.1 Previous work: Feige’s semirandom model for 3-SAT . . . . . . . . . . . . . . 83

5.2.2 Future work: Generalizing to arbitrary CSPs . . . . . . . . . . . . . . . . . . 83

5.3 Understanding nondeterministic refutation . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Size lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

xii



Bibliography 93

xiii



xiv



Chapter 1

Introduction

1.1 Random CSPs and refutation

Constraint satisfaction problems (CSPs) are fundamental objects capturing a myriad of important
computational problems, from scheduling to resource allocation to planning. In addition to their
practical importance, the study of CSPs has played a significant role in the development of theo-
retical computer science. This is in large part due to their tantalizing simplicity: A CSP instance
is a set of m local constraints on a set of n variables and the objective is to find an assignment
to the variables satisfying all constraints. Locally, any single constraint is easy to satisfy, but,
globally, deciding if a CSP has a solution is the canonical NP-hard problem. Understanding the
computational hardness of CSPs requires understanding how this global difficulty arises from local
constraints.

Despite making great strides over the last several decades in our knowledge of the worst-case
relative hardness of solving (e.g., [Sch78, BJK05]) and approximating (e.g., [H̊as01, Rag08]) CSPs,
developing a more concrete understanding of what makes a CSP hard remains a challenge. For
example, being able to generate hard instances is often useful in proving hardness results and in
cryptographic applications.

Randomly chosen CSPs are natural candidate hard instances studied in cryptography [ABW10],
proof complexity [BB02], hardness of approximation [Fei02], learning theory [DLSS14], and SAT-
solving [SAT]. Let P : {0, 1}k → {0, 1} be a k-ary predicate. An instance I of CSP(P ) on n variables
x1, x2, . . . , xn consists of a set of m constraints of the form P (xS1 ⊕ c1, xS2 ⊕ c2, . . . xSk ⊕ ck) = 1
with S ⊆ [n]k and c ∈ {0, 1}k. We let Opt(I) denote the maximum fraction of constraints that can
be simultaneously. To construct a random instance of CSP(P ), m constraints are chosen uniformly
at random.

The satisfiability of a random CSP is governed by its density ∆ = m/n. When ∆ � 1,
straightforward application of the Chernoff and Union Bounds shows that instances are unsatisfiable
with very high probability. For small enough ∆ = O(1), it is also easy to show that an instance is
satisfiable with high probability. In the case of k-SAT with k ≥ 3, it is widely conjectured that there
exists a critical density ∆c below which instances of k-SAT are satisfiable with high probability
and above which they are unsatisfiable with high probability. Friedgut showed that there exists
a sequence ∆c(n) of such thresholds [Fri99]. For sufficiently large k, Ding, Sly, and Sun [DSS15]
recently proved that the sequence ∆c(n) converges to some ∆c, but proving this for all k remains
an open problem. Creignou and Daudé showed that CSP(P ) has a sharp satisfiability threshold
sequence if and only if P ’s satisfying assignments are not a subset of those of a dictator function
or its negation and are not a subset of those of a 2-XOR function or its negation [CD09]. Again, it
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has not yet been proven that these threshold sequences converge to a constant as n increases.
In each of these two phases, there is a natural algorithmic task. In the satisfiable regime, this

task is to find a satisfying assignment. For SAT instances, there have been some practical successes
in solving instances at densities approaching ∆c [Gab16, MPRT16]. In the unsatisfiable regime,
the natural algorithmic task is to refute the instance, meaning to certify that it is unsatisfiable.
For refutation we know that 3-SAT instances are unsatisfiable for ∆ > 4.49 with high probability
[DKMPG08], but we do not know of any efficient algorithms that can refute for ∆ < n0.49 in theory
or in practice. In both regimes, random instances are used by practitioners as benchmarks for
SAT solvers [BBHJ13, BDHJ14]. Despite the fact that constraints are chosen independently, the
uniform distribution over optimal assignments to a random CSP is a complex object with nontrivial
global correlations that has been heavily studied, especially in the statistical physics literature (e.g.,
[CLP02, KMRT+07]).

In this thesis, we focus on the problem of refuting random CSPs. Besides being a natural
problem in its own right, refutation has arisen in such seemingly unrelated areas as hardness of
approximation [Fei02], cryptography [ABW10], and learning theory [DLSS14]. We also consider
stronger variants of the basic refutation problem. In the δ-refutation problem, the goal is to certify
that Opt(I) ≤ 1−δ. Simple probabilistic arguments show that when m� n, Opt(I) = E[P ]+o(1)
with high probability, where E[P ] is the expected value of P over the uniform distribution on
{0, 1}k. We will refer to the standard refutation problem, in which δ = 1

m , as weak refutation.
Nondeterministic refutation is showing that there exists a short certificate of unsatisfiability, though
it may not be possible to actual find such a proof efficiently.

In the next section, we will describe applications of refutation to hardness of approximation,
cryptography, and learning theory. Using these applications, we will motivate our study of δ-
refuting CSPs with arbitrary predicates at superconstant constraint densities. Then we will survey
previous work on refutation, and describe our results on refutation in the SOS proof system. We
will conclude the chapter with an overview of the rest of this thesis. For clearer exposition, we
restrict our discussion in this chapter to Boolean CSPs with alphabet size 2, but all of our results
also apply to CSPs with any constant alphabet size.

1.2 Applications of refutation

Assumptions about the computational hardness of refuting random CSPs have proven useful in
hardness of approximation, cryptography, and learning theory.

1.2.1 Hardness of approximation

Hardness of refutation of random CSP(P ) implies worst-case hardness of approximation results
for other natural computational problems. An early concrete hypothesis comes from an influential
paper of Feige [Fei02]:

Feige’s R3SAT Hypothesis. For every small δ > 0 and for large enough constant ∆, there is
no polynomial-time algorithm that succeeds in δ-refuting random instances of 3-SAT.

Feige’s main motivation was hardness of approximation; e.g., he showed that the R3SAT Hy-
pothesis implies stronger hardness of approximation results than were previously known for several
problems (Balanced Bipartite Clique, Min-Bisection, Dense k-Subgraph, 2-Catalog). By reducing
from these problems, several more new hardness of approximation results based on Feige’s Hypoth-
esis have been shown in a variety of domains [BKP04, DFHS06, Bri08, AGT12]. Feige [Fei02] also
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related hardness of refuting 3-SAT to hardness of refuting 3-XOR. The assumption that refuting 3-
XOR is hard has been used to prove hardness of a robust variant of graph isomorphism [OWWZ14].
In addition, Alon et al. showed that if random k-AND instances are hard to refute, then densest
k-subgraph cannot be approximated to within any constant factor [AAM+11]. Barak, Kindler,
and Steurer pointed out that the stronger assumption that the basic SDP relaxation is an optimal
polynomial time refutation algorithm implies a stronger hardness of approximation for this problem
[BKS13]. They also observe that a generalization of this assumption to larger alphabets implies
hardness of random instances of label cover. Goerdt and Lanka weakened Feige’s assumption to
show that hardness of refuting random 4-SAT implies that bipartite clique is hard to approximate
to within a factor of nε for fixed ε > 0 [GL04].

1.2.2 Cryptography: Goldreich’s pseudorandom generator

Given a predicate P : {0, 1}k → {0, 1}, Goldreich [Gol00] suggested the following function fP :
{0, 1}n → {0, 1}m as a candidate one-way function. Choose a collection S1, S2, . . . , Sm of k-tuples
of elements of [n] so that the corresponding k-uniform hypergraph has high expansion. Generate the
ith output bit by applying P to the input variables indexed by Si. A random k-uniform hypergraph
has high expansion and here we will consider functions fP based on a random hypergraph. The
advantage of this kind of construction is the extreme simplicity of computing the PRG: indeed, its
output bits can be computed in NC0, constant parallel time. Further work investigated variations
and extensions of Goldreich’s suggestion [ABW10, ABR12, AL16]; see Applebaum’s survey [App13]
for many more details. Of course, the security of these candidate cryptographic constructions
depends heavily on the hardness of refuting random CSPs. In one line of subsequent work, this
function has also been studied as a candidate pseudorandom generator (PRG) [CM01, MST03,
ABW10, App12, ABR12, OW14, AL16].

To show that fP is a PRG, we need to show that it is hard to distinguish a uniform random
y ∈ {0, 1}m from y such that fP (x) = y for some x. We can think of the pair (fP , y) as forming
a CSP: Each constraint has the form P (xSi) = yi. Note that the scope of each constraint is
chosen randomly. When y is chosen uniformly at random, it is easy to show that the corresponding
CSP is unsatisfiable. To show that fP is a PRG, it suffices to show that it is hard distinguish
between satisfiable instances of this random CSP in which there exists x such that fP (x) = y and
unsatisfiable instances in which the constraint scopes and y are chosen uniformly at random. In
particular, if we could refute instances with random y, fP would not be a secure as a PRG. We
point out that the hardness of refutation of this CSP is not equivalent to pseudorandomness of fP ,
but is necessary for pseudorandomness to hold.

The pseudorandomness of such local functions implies existence of other cryptographic con-
structions. Applebaum, Barak, and Wigderson also showed that a public-key cryptosystem can be
constructed based on the assumption that fP is pseudorandom for a particular choice of P and an-
other assumption related to hardness of the densest k-subgraph problem [ABW10]. The existence
of a secure PRG with constant locality and m = n1+ε for some constant ε > 0 implies that secure
two-party computation with constant overhead is possible [IKOS08].

Applebaum, Ishai, and Kushilevitz [AIK06] took a slightly different approach to showing that
PRGs exist in NC0, instead basing their result on one of Alekhnovich’s average case XOR hard-
ness assumptions [Ale03]. Alekhnovich [Ale03] further showed that certain average-case hardness
assumptions for XOR imply additional hardness results, as well as the existence of secure public
key cryptosystems.
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1.2.3 Learning theory

In a sequence of recent works, Daniely and coauthors have made connections between hardness of
refutation and hardness of natural learning problems [DLSS13, DLSS14, DS14, Dan15]. By making
concrete conjectures about the hardness of refuting random CSP(P ) for various P and for super-
polynomial ∆, they obtained negative results for several longstanding problems in learning theory,
such as learning DNFs and learning halfspaces with noise. In unrelated work, Barak and Moitra
showed a connection between a learning problem called tensor prediction and strong refutation of
k-XOR [BM16].

1.3 The problem

Most previous work on both upper and lower bounds for refutation has been on weak refutation of
k-SAT. Most lower bounds have been proven for instances with only O(n) constraints. However,
the three applications above highlight the importance of studying arbitrary predicates, superlinear
number of constraints, the stronger notion of δ refutation, and refutation in superpolynomial time.

1. Predicates other than SAT. The hardness of random 3-SAT and 3-XOR has been most
extensively studied, but for applications it is quite important to consider other predicates.
For hardness of approximation, already Feige [Fei02] noted that he could prove stronger
inapproximability for the 2-Catalog problem assuming hardness of refuting random k-AND
for large k. Subsequent work has used assumptions about the hardness of refuting CSPs with
other predicates to prove additional worst-case hardness results [GL04, AAM+11, CMVZ12,
BCMV12, RSW16]. Relatedly, Barak, Kindler, and Steurer [BKS13] have recently considered
a generalization of Feige’s Hypothesis to all Boolean predicates, in which the assumption
is that the “basic SDP” provides the best δ-refutation algorithm when ∆ = O(1). They
also describe the relevance of predicates over larger alphabet sizes and with superconstant
arity for problems such as the Sliding Scale Conjecture and Densest k-Subgraph. Bhaskara
et al. [BCG+12] prove an SOS lower bound for Densest k-Subgraph via a reduction from
Tulsiani’s SOS lower bound for random instances of CSP(P ) with P a q-ary linear code
[Tul09]. A computational hardness assumption for refutation of this CSP would therefore
give a hardness result for Densest k-Subgraph.

Regarding cryptographic applications, the potential security of Goldreich’s candidate PRGs
depends heavily on what predicates they are instantiated with. Goldreich originally suggested
a random predicate, with a slightly superconstant arity k. However algorithmic attacks on
random CSP(P ) by Bogdanov and Qiao [BQ09] showed that predicates that are not at least
“3-wise uniform” do not lead to secure PRGs with significant stretch. Quite a few subsequent
works have tried to analyze what properties of a predicate family P may — or may not —
lead to secure PRGs [BQ09, ABR12, OW14, AL16].

Regarding the approach of Daniely et al. to hardness of learning, there are close connections
between the predicates for which random CSP(P ) is assumed hard and the concept class for
which one achieves hardness of learning. For example, the earlier work [DLSS14] assumed
hardness of refuting random CSP(P ) for P being (i) the “Huang predicate” [Hua13, Hua14],
(ii) Majority, (iii) a certain AND of 8 thresholds; it thereby deduced hardness of learning
(i) DNFs, (ii) halfspaces with noise, (iii) intersections of halfspaces. Unfortunately, in this
thesis we give efficient algorithms refuting all three hardness assumptions; fortunately, the
results were mostly recovered in later works [DS14, Dan15] assuming hardness of refuting
random k-SAT and k-XOR. Although these are more “standard” predicates, a careful inspec-
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tion of [DS14]’s hardness of learning DNF result shows that it essentially works by reduction
from CSP(P ) where P is a “tribes” predicate. (It first shows hardness for this predicate by
reduction from k-SAT.) From these discussions, one can see the utility of understanding the
hardness of random CSP(P ) for as wide a variety of predicates P as possible.

2. Superlinear number of constraints. Much of the prior work on hardness of refuting
random CSPs (assumptions and evidence for it) has focused on the regime of ∆ = O(1); i.e.,
random CSPs with O(n) constraints. However, it is quite important in a number of settings
to have evidence of hardness even when the number of constraints is superlinear. An obvious
case of this arises in the application to security of Goldreich-style PRGs; here the number
of constraints directly corresponds to the stretch of the PRG. It’s natural, then, to look for
arbitrarily large polynomial stretch. In particular, having NC0 PRGs withm = n1+Ω(1) stretch
yields secure two-party communication with constant overhead [IKOS08]. This motivates
getting hardness of refuting random CSPs with ∆ = nΩ(1). As another example, the hardness
of learning results in the work of Daniely et al. [DLSS14, DS14, Dan15] all require hardness
of refuting random CSPs with m = nC , for arbitrarily large C. In general, given a predicate
family P, it is interesting to try to determine the least ∆ for which refuting random CSP(P )
instances at density ∆ becomes easy.

3. Stronger refutation. Most previous work on the hardness of refuting random CSPs has
focused just on weak refutation (especially in the proof complexity community), or on δ-
refutation for arbitrarily small δ > 0. The latter framework is arguably more natural: as
discussed in [Fei02], seeking just weak refutation makes the problem less robust to the precise
model of random instances, and requiring δ-refutation for some δ > 0 allows some more
natural CSPs like k-XOR (where unsatisfiable instances are easy to refute) to be discussed.
In fact, it is natural and important to study δ-refutation for all values of δ. As an example,
given P it is easy to show that there is a large enough constant ∆0 such that for any ∆ ≥ ∆0

a random instance I of CSP(P ) has Opt(I) ≤ E[P ] + o(1), where E[P ] is the probability
a random assignment satisfies P . Thus it is quite natural to ask for δ-refutation for δ =
1 − E[P ] − o(1); i.e., for an algorithm that certifies the true value of Opt(I) up to o(1)
(whp). This is sometimes termed strong refutation. As an example, Barak and Moitra [BM16]
show hardness of tensor completion based on hardness of strongly refuting random 3-SAT
with ∆� n1/2. In general, there is a very close connection between refutation algorithms for
CSP(P ) and approximation algorithms for CSP(P ); e.g., hardness of δ-refutation results for
LP- and SDP-based proof systems can be viewed as saying that random instances are 1 − δ
vs. E[P ] + o(1) integrality gap instances for CSP(P ).

4. Refutation in superpolynomial time. Naturally, we would prefer to have evidence against
superpolynomial-time refutation, or even subexponential-time refutation, of random CSP(P );
for example, this would be desirable for cryptography applications. This desire also fits in
with the recent surge of work on hardness assuming the Exponential Time Hypothesis (ETH).
We already know of two works that use a strengthening of the ETH for random CSPs. The
first, due to Khot and Moshkovitz [KM16], is a candidate hard Unique Game, based on the
assumption that random instances of CSP(P ) require time 2Ω(n) to strongly refute, where P
is the k-ary “Hadamard predicate”. The second, due to Razenshteyn et al. [RSW16] proves
hardness for the Weighted Low Rank Approximation problem assuming that refuting random
4-SAT requires time 2Ω(n). An even further interesting direction, in light of the work of Feige,
Kim, and Ofek [FKO06], is to find evidence against efficient nondeterministic refutations of
random CSPs.
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These discussions lead us to the following goal:

Goal: For every predicate P , determine the best possible tradeoff between number
of constraints, refutation strength, and running time for random instances of CSP(P ).

This thesis, together with a result of Raghavendra, Rao, and Schramm [RRS17], completely
accomplishes this goal for the sum of squares (SOS) proof system. Before stating our results, we
review prior results in the direction of the above goal.

1.4 A brief history of refutation

Lower bounds. Nondeterministic refutation was first studied in the context of proof complexity.
Cook and Reckhow showed that NP = coNP if and only if the set of logical formulas encoding
tautologies admits proofs of polynomials size, or equivalently, if and only if the set of contradictions
admits refutations of polynomial size [CR79]. One avenue toward showing that NP 6= coNP is then
to prove lower bounds on the size of refutations in increasingly strong proof systems. Chvátal and
Szemerédi [CS88] were the first to prove lower bounds for refutation of random instances, showing
that any Resolution refutation of a random k-SAT instance with cn clauses must have size 2Ω(n)

with high probability. 1

Lower bounds for nondeterministic refutation have been proven in several other proof systems,
usually for the special case of k-SAT or k-XOR. All of these results rely on high expansion of the
underlying hypergraph. Ben-Sasson and Wigderson strengthened and simplified Resolution lower
bounds for 3-SAT [BSW99, BS01], showing that Resolution refutations require width Ω( n

∆1/(k−2)+ε )
for any ε > 0. This implies that Resolution refutations must have superpolynomial size when
m ≤ n3/2−ε. Ben-Sasson and Impagliazzo [BSI99] and Alekhnovich and Razborov [AR01] further
extended these results to the Polynomial Calculus proof system [BSI99, AR01]; for example, the
latter work showed that Polynomial Calculus refutations of random k-SAT instances with density ∆
require degree Ω( n

∆2/(k−2) log ∆
). This implies superpolynomial size lower bounds when m = O(n)

via the work of Impagliazzo, Pudlák, and Sgall [IPS99]. All of these results also extend to random
k-SAT with m ≤ nk/2−ε. Alekhnovich showed superpolynomial lower bounds for k-DNF Resolution
refutations of 3-SAT when m = O(n) [Ale05]. For k-SAT and k-XOR, Buresh-Oppenheim et al.
proved linear rank lower bounds for Cutting Planes refutations when m = O(n) [BOGH+03].

Lower bounds have been proven for polynomial-time SDP-based refutation. The strongest re-
sults are known for k-SAT and k-XOR. For the sum of squares (SOS) SDP relaxation, Grigoriev
[Gri01] proved superconstant degree lower bounds on sum of squares refutations of CSP(P ) for
predicates P whose satisfying assignments include those of k-XOR (e.g., k-SAT) when m ≤ nk/2.
Schoenebeck [Sch08] essentially rediscovered this proof and showed that it applied to random in-
stances of k-SAT and k-XOR, specifically showing that SOS degree n

∆2/(k−2)−ε is required to refute
instances with density ∆. When m = O(n), these results also imply superpolynomial size lower
bounds [KI06]. Tulsiani [Tul09] extended this result to the alphabet-q generalization of random
3-XOR. Buresh-Oppenheim et al. [BOGH+03] showed that the Lovász–Schrijver+ (LS+) proof sys-
tem cannot refute random instances of k-SAT with k ≥ 5 and constant ∆. Alekhnovich, Arora,
and Tourlakis [AAT05] extended this result to random instances of 3-SAT.

1Although Chvátal and Szemerédi were the first to explicitly consider lower bounds for refutation of random
instances, Galil [Gal77b, Gal77a] had earlier proven lower bounds for weaker versions of Resolution using SAT
instances constructed from expander graphs. Galil’s instances were not constructed in quite the same way as the
random instances we study here. Instead, he used Tseitin’s approach of constructing a 2-XOR instance such that
all variables occur twice and the parity of the right-hand side is 1 and then translated this this to a SAT instance
[Tse66]. Nevertheless, the underlying hypergraph of a random instance is a good expander and expansion has been
the key property used to prove lower bounds for refutation of random CSPs (e.g., [CS88, BSW99, Gri01] etc.).
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For other predicates, weaker lower bounds are known. Austrin and Mossel [AM08] established
a connection between hardness of CSP(P ) and pairwise-uniform distributions, showing inapprox-
imability beyond the random-threshold subject to the Unique Games Conjecture. A key work of
Benabbas et al. [BGMT12] showed an unconditional analog of this result: random instances of
CSP(P±) with sufficiently large constant constraint density require Ω(n) degree to refute in the
SA+ SDP hierarchy when P is a predicate (over any alphabet) supporting a pairwise-uniform dis-
tribution on satisfying assignments. This result implies superconstant rank lower bounds for the
proof system corresponding to SA+ SDP relaxation and superpolynomial size lower bounds when
m = O(n) (again, via [KI06]). Tulsiani and Worah extended this result to the Lovász-Schrijver+

SDP relaxation and its corresponding proof system [TW13]. In work not included in this the-
sis [OW14], we extended these results by observing a density/degree tradeoff: they showed that
if the predicate supports a (t − 1)-wise uniform distribution, then the SA LP hierarchy at degree
nΩ(ε) cannot refute random instances of CSP(P±) with m = nt/2−ε constraints. We also showed
the same result for the SA+ SDP hierarchy, provided one can remove a carefully chosen o(m) con-
straints from the random instance. Extending a result of Tulsiani and Worah [TW13], we showed
in work not included in this thesis [MW16] that the degree-nΩ(ε) SA+ and LS+ SDP hierarchies
cannot refute purely random instances of CSP(P±) with m = nt/2−ε constraints. Barak, Chan, and
Kothari [BCK15] recently extended the [BGMT12] result to the SOS system, though not for purely
random instances: they showed that for any Boolean predicate P supporting a pairwise-uniform
distribution, if one chooses a random instance of CSP(P ) with large constant ∆ and then carefully
removes a certain o(n) constraints, then SOS needs degree Ω(n) to refute the instance.

Beyond semialgebraic proof systems and hierarchies, even less is known. Feldman, Perkins, and
Vempala [FPV15] proved lower bounds for refutation of CSP(P±) using statistical algorithms when
P supports a (t− 1)-wise uniform distribution, showing that any statistical algorithm based on an
oracle taking L values requires m ≥ Õ(nt/L) to refute random instances of CSP(P ). They further
show that the dimension of any convex program refuting such a CSP must be at least Ω̃(nt/2).
Their results are incomparable to the above lower bounds for LP and SDP hierarchies: the class of
statistical algorithms is quite general and includes any convex relaxation, but the [FPV15] lower
bounds are not strong enough to rule out refutation by polynomial-size SDP and LP relaxations.

Upper bounds. Beame and Pitassi [BP96] give the first nontrivial bounds for refutation runtime,
observing that random 3-SAT can be refuted in quasipolynomial time when m = O(n2) by combin-
ing Fu’s linear-size tree-like Resolution refutation [Fu96] with Clegg et al.’s algorithm for finding
tree-like Resolution proofs in quasipolynomial time [CEI96]. Beame et al. showed that Resolution
refutations of random k-SAT can be found efficiently when m ≥ O(nk−1/ logk−2 n) [BKPS98], the
first nontrivial polynomial time refutation algorithm.

Since then, much of the positive work on refuting random k-SAT has used spectral techniques
and semialgebraic proof systems. These latter proof systems are often automatizable using linear
programming and semidefinite programming, and thereby have the advantage that they can natu-
rally give stronger δ-refutation algorithms. One of the first lower bounds for random CSPs using
SDP hierarchies was given by Buresh-Oppenheim et al. [BOGH+03]; it showed that the LS+ proof
system cannot refute random instances of k-SAT with k ≥ 5 and constant ∆. Alekhnovich, Arora,
and Tourlakis [AAT05] extended this result to random instances of 3-SAT.

The next major advance came with the work of Goerdt and Krivelevich, who used spectral
techniques to show that random k-SAT instances can be refuted when m ≥ Õ(ndk/2e) [GK01].
Friedman and Goerdt later used the same techniques to show that random 3-SAT instances can
be refuted once m ≥ O(n3/2+ε) [FG01]. Spectral methods underlie most subsequent work. Coja-
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Oghlan, Goerdt, and Lanka gave strong refutation algorithms for 3-SAT with m ≥ Õ(n3/2) and
4-SAT with m ≥ n2 [COGL04]. Coja-Oghlan, Cooper, and Frieze proved that and k-CSP can be
strongly refuted when m ≥ Õ(ndk/2e) [COCF09]. Independently of the work in this thesis, Barak
and Moirta showed that k-XOR instances could be refuted strongly when m ≥ Õ(nk/2) [BM16].

Fewer upper bounds for nondeterministic refutation are known. Fu was the first to prove such a
result, showing that polynomial-size Resolution refutations of random k-SAT instances exist with
high probability when m ≥ O(nk−1) [Fu96]. Using both combinatorial and spectral methods,
Feige, Kim, and Ofek showed that nondeterministic refutation of random 3-SAT is possible when
m ≥ O(n1.4) [FKO06]. Up to this point, this is the only case in which nondeterministic refutation
is possible at lower densities than polynomial-time refutation.

Beyond the uniform random model, Feige [Fei07] considered a semi-random model in which
an instance is generated by starting with an arbitrary instance and then flipping the polarity
of every literal independently with constant probability ε. Such instances are unsatisfiable with
high probability. Feige showed that semi-random 3-SAT instances in this model can be refuted
in polynomial time when m = Õ(n3/2) [Fei07]. Since random instances can be generated in this
model, all of the above lower bounds also apply to semi-random instances.

1.5 Results

In this thesis, we focus on the Sum of Squares (also known as Positivstellensatz or Lasserre) proof
system. This system, parameterized by a tuneable “degree” parameter d, is known to be very
powerful; e.g., it generalizes the degree-d SA+ and LS+ proof systems. In the context of CSP(P )
over domain {0, 1}, it is often also (approximately) automatizable in nO(d) time using semidefinite
programming [RW17]. As such, it has proven to be a very powerful positive tool in algorithm design,
both for CSPs and for other tasks; in particular, it has been used to show that several conjectured
hard instances for CSPs are actually easy [BBaH+12, OZ13, KOTZ14]. Finally, thanks to work of
Lee, Raghavendra, and Steurer [LRS15], it is known that constant-degree SOS approximates the
optimum value of CSPs in the worst case at least as well as any polynomial-size family of SDP
relaxations. See, e.g., [OZ13, BS14, Lau09] for surveys concerning SOS.

For every predicate P , we provide a full three-way tradeoff between constraint density, SOS
degree, and strength of refutation. To state our result, we need a definition. For a predicate
P : {0, 1}k → {0, 1} and an integer 1 < t ≤ k, we define δP (t) to be P ’s distance from supporting
a t-wise uniform distribution. Formally,

δP (t) := min
µ is a t-wise uniform distribution on Ωk,

σ is a distribution supported on satisfying assignments for P

dTV(µ, σ),

where dTV(·, ·) denotes total variation distance.
First, we provide a framework reducing δ-refutation of any CSP to strong refutation of XOR.

Plugging in existing strong XOR refutation results, we obtain algorithms for refuting any CSP.
Work of Barak and Moitra [BM16] and this thesis independently showed that random k-XOR can
be strongly refuted for m = Õ(nk/2) via constant-degree SOS in polynomial time. Using this
result, we proved upper bounds on the number of constraints needed to refute any CSP using
constant-degree SOS.

Theorem 1.5.1 ([AOW15], Chapter 3). Let P be a k-ary Boolean predicate and let 1 < t ≤ k.
Let I be a random instance of CSP(P ) with m = Õ(nt/2) constraints. Then with high probability,
constant-degree SOS (δP (t)−o(1))-refutes I. Furthermore, a refutation can be found in polynomial
time.
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When t and k are constant, Corollary 3.1.10 in Chapter 3 states that if δP (t) 6= 0, then δP (t) =
Ω(1). This gives the following corollary.

Corollary 1.5.2 ([AOW15], Chapter 3). Let P be a k-ary Boolean predicate for which there exists
no t-wise uniform distribution supported on satisfying assignments. Let I be a random instance of
CSP(P ) with m = Õ(nt/2) constraints. Then with high probability, constant-degree SOS (weakly)
refutes I. Furthermore, a refutation can be found in polynomial time.

This result subsumes almost all previous results on polynomial-time refutation of CSPs. Let
C(P ) be the minimum t for which P fails to support a t-wise uniform distribution on satisfying
assignments. That is, C(P ) = min{t : δP (t) > 0}. When m = Õ(nC(P )/2), random CSP(P ) can be
weakly refuted in polynomial time. When m = Õ(nk/2), random CSP(P ) can be strongly refuted
in polynomial time.

Both of these results also extend to CSPs in which variables take values from a alphabet of
constant size greater than 2.

Extending the Barak–Moitra XOR refutation result [BM16] to higher-degree SOS, Raghavendra,
Rao, and Schramm [RRS17] proved that random k-XOR with ∆n constraints can be strongly

refuted by degree-Õ
(

n
∆2/(t−2)

)
SOS.

Corollary 1.5.3 ([RRS17]). Let P be a k-ary Boolean predicate and let 2 < t ≤ k. Let I be
a random instance of CSP(P ) with m = ∆n constraints. Then with high probability, degree-

Õ
(

n
∆2/(t−2)

)
SOS (δP (t) − o(1))-refutes I. Furthermore, with high probability degree-O(1) SOS

succeeds in (δP (2)− o(1))-refuting I, provided ∆ is at least some polylog(n).

Second, we show that the full three-way tradeoff in Corollary 1.5.3 between constraint density,
SOS degree, and strength of refutation is tight up to a polylogarithmic factor in the degree and an
additive o(1) term in the strength of the refutation.

Theorem 1.5.4 ([KMOW17], Chapter 4). Let P be a k-ary Boolean predicate and let 1 < t ≤ k.
Let I be a random instance of CSP(P ) with m = ∆n constraints. Then with high probability,

degree-Ω̃
(

n
∆2/(t−1)

)
SOS fails to (δP (t) + o(1))-refute I.

Additionally, in the case that δP (t) = 0, our result does not need the additive o(1) in refutation
strength. That is:

Theorem 1.5.5 ([KMOW17], Chapter 4). Let P be a k-ary predicate and let C(P ) be the minimum
integer 3 ≤ τ ≤ k for which P fails to support a τ -wise uniform distribution. Then if I is a random

instance of CSP(P ) with m = ∆n constraints, with high probability degree-Ω̃
(

n
∆2/(C(P )−2)

)
SOS fails

to (weakly) refute I.

Our lower bound subsumes all of the hardness results for semialgebraic proof systems mentioned
in the previous section. It is particularly natural to examine our tradeoff in the case of constant-
degree SOS, as this corresponds to polynomial time. In this case, our Theorems 1.5.4 and 1.5.5
imply the following corollaries.

Corollary 1.5.6 ([KMOW17]). Let P be a k-ary Boolean predicate and let 1 < t ≤ k. Let I
be a random instance of CSP(P ) with m = Ω̃(n(t+1)/2) constraints. Then with high probability,
constant-degree SOS fails to (δP (t) + o(1))-refute I.
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Corollary 1.5.7 ([KMOW17]). Let P be a k-ary predicate and let C(P ) be the minimum integer
3 ≤ τ ≤ k for which P fails to support a τ -wise uniform distribution. Then if I is a random
instance of CSP(P ) with m = Ω̃(nC(P )/2) constraints, with high probability constant-degree SOS
fails to (weakly) refute I.

All of our lower bound results have no dependence on alphabet size and therefore hold with no
change for CSPs over any alphabet.

An example. As the parameters can be a little difficult to grasp, we illustrate our main theorem
and its tightness with a simple example. Let P be the 3-bit predicate that is true if exactly one if
its three inputs is true. The resulting 3-SAT variant CSP(P ) is traditionally called 1-in-3-SAT. Let
us compute the δ(t) values. The uniform distribution on the odd-weight inputs is pairwise-uniform,
and it only has probability mass 1

4 off of P ’s satisfying assignments. This is minimum possible, and
therefore δ1-in-3-SAT(2) = 1

4 . The only 3-wise uniform distribution on {0, 1}3 is the fully uniform
one, and it has probability mass 5

8 off of P ’s satisfying assignments; thus δ1-in-3-SAT(3) = 5
8 .

Let us also note that as soon as ∆ is a large enough constant, Opt(I) ≤ 3
8 + o(1) (with high

probability, a qualifier we will henceforth omit). Furthermore, it’s long been known [BSB02] that
for ∆ = O(log n) there is an efficient algorithm that weakly refutes I; i.e., certifies Opt(I) < 1. But
what can be said about stronger refutation? Let us see what our Theorem 1.5.4 and its counterpart
Corollary 1.5.3 tell us.

Suppose first that there are m = n polylog(n) constraints. Corollary 1.5.3 tells us that constant-
degree SOS certifies Opt(I) ≤ 3

4 + o(1). However our result, Theorem 1.5.4, says this 3
4 cannot be

improved: SOS cannot certify Opt(I) ≤ 3
4 − o(1) until the degree is as large as Ω̃(n). (Of course

at degree n, SOS can certify the exact value of Opt(I).)

What if there are m = n1.1 constraints, meaning ∆ = n.1? Our result says SOS still cannot
certify Opt(I) ≤ 3

4 − o(1) until the degree is as large as n.8/O(log n). On the other hand, as soon

as the degree gets bigger than some Õ(n.8), SOS does certify Opt(I) ≤ 3
4 − o(1); in fact, it certifies

Opt(I) ≤ 3
8 + o(1).

Similarly (dropping lower-order terms for brevity), if there are m = n1.2 constraints, SOS is
stuck at certifying just Opt(I) ≤ 3

4 up until degree n.6, at which point it jumps to being able to
certify the truth, Opt(I) ≤ 3

8 + o(1). If there are n1.49 constraints, SOS remains stuck at certifying
just Opt(I) ≤ 3

4 up until degree n.02. Finally, Theorem 1.5.1 shows that, once m = n1.5 polylog(n),
constant-degree SOS can certify Opt(I) ≤ 3

8 + o(1). (End of example.)

More generally, for a given predicate P and a fixed number of random constraints m = n1+c,
we provably get a “time vs. quality” tradeoff with an intriguing discrete set of breakpoints: With
constant degree, SOS can δP (2)-refute, and then as the degree increases to n1−2c, n1−c, n1−2c/3,
etc., SOS can δP (3)-refute, δP (4)-refute, δP (5)-refute, etc.

An alternative way to look at the tradeoff is by fixing the SOS degree to some nε and considering
how refutation strength varies with the number of constraints. So for m between n and n3/2−ε/2

SOS can δP (2)-refute; for m between n3/2−ε/2 and n2−ε SOS can δP (3)-refute; for m between n2−ε

and n5/2−3ε/2 SOS can δP (4)-refute; etc.

1.6 Organization

In Chapter 2, we more formally introduce the uniform random CSP model we study and the SOS
proof system. In Chapter 3, we describe our framework for reducing refutation of arbitrary CSPs to
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strong refutation of XOR and prove Theorem 1.5.1. In Chapter 4, we prove our SOS lower bounds
for refutation (Theorem 1.5.4). Finally, we conclude in Chapter 5 with a discussion of directions
for future work on refutation.
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Chapter 2

Preliminaries

2.1 Constraint satisfaction problems

We review some basic definitions and facts related to constraint satisfaction problems (CSPs). In
this section we discuss only the Boolean domain, which we write as {−1, 1} rather than {0, 1}. For
x ∈ Rn and S ⊆ [n] we write xS ∈ R|S| for the restriction of x to coordinates S; i.e., (xi)i∈S . We
also use ◦ to denote the entrywise product for vectors.

Definition 2.1.1. Given a predicate P : {−1, 1}k → {0, 1}, an instance I of the CSP(P ) problem
over variables x1, . . . , xn is a multiset of P -constraints. Each P -constraint consists of a pair (c, S),
where S ∈ [n]k is the scope and c ∈ {−1, 1}k is the negation pattern; this represents the constraint
P (c ◦ xS) = 1. We typically write m = |I|. Let ValI(x) be the fraction of constraints satisfied
by assignment x ∈ {−1, 1}n, i.e., ValI(x) = 1

m

∑
(c,S)∈I P (c ◦ xS). The objective is to find an

assignment x maximizing ValI(x). The optimum of I, denoted by Opt(I), is maxx∈{−1,1}k ValI(x).
If Opt(I) = 1, we say that I is satisfiable. We also write E[P ] for the quantity Ez∼{−1,1}k [P (z)];
i.e., the fraction of assignments that satisfy P .

Two random models for CSPs. We next define two standard random model for CSPs.

1. For P : {−1, 1}k → {0, 1}, let FP (n,m) be the distribution in which we choose m constraints
uniformly at random from among the set all 2k

(
n
k

)
possible constraints on k distinct variables.

Note that we may include constraints on different permutations of the same set of variables
and constraints on the same tuple of variables with different negations c. It is reasonable to
include such constraints in the case that the predicate P is not a symmetric function. We
prove our lower bounds in Chapter 4 in this model.

2. Let FP (n, p) be the distribution over CSP instances given by including each of the 2knk

possible constraints on k not necessarily distinct variables independently with probability p.

Our upper bounds in Chapter 3 are most easily proven in this model, but it is not hard to
see that they also hold in the FP (n,m) model. We use m to denote the expected number of
constraints, namely 2knkp. As noted in Fact 2.1.6 below, the number of constraints m in a
draw from FP (n, p) is very tightly concentrated around m, and we often blur the distinction
between these parameters. Section 3.8 explicitly describes a method for simulating an instance
drawn from FP (n, p) when the number of constraints is fixed. In addition, note that we may
include constraints with the same variable occurring as more than one argument. There are
only o(m) such constraints with high probability, so they do not significantly affect our upper
bounds.
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On the other hand, it is not immediately clear to us how to extend our lower bounds in
Chapter 4 to the FP (n, p) model.

Quasirandomness. We now introduce an important notion for this paper: that of a CSP instance
being quasirandom. Versions of this notion originate in the works of Goerdt and Lanka [GL03]
(under the name “discrepancy”), Khot [Kho06] (“quasi-randomness”), Austrin and H̊astad [AH13]
(“adaptive uselessness”), and Chan [Cha13] (“low correlation”), among other places. To define it,
we first need to define the induced distribution of an instance and an assignment.

Definition 2.1.2. Given a CSP instance I and and an assignment x ∈ {−1, 1}n, the induced
distribution, denoted DI,x, is the probability distribution on {−1, 1}k where the probability mass
on α ∈ {−1, 1}k is given by DI,x(α) = 1

|I| · #{(c, S) ∈ I | c ◦ xS = α}. In other words, it is the

empirical distribution on inputs to P generated by the constraint scopes/negations on assignment x.
Note that the predicate P itself is irrelevant to this notion. We will drop the subscript I when it is
clear from the context. We define DI,x = 2k · DI,x to be the density function associated with DI,x.

We can now define quasirandomness.

Definition 2.1.3. A CSP instance I is ε-quasirandom if DI,x is ε-close to the uniform distribution
for all x ∈ {−1, 1}n; i.e., if dTV(DI,x, Uk) ≤ ε for all x ∈ {−1, 1}n.

Here we use the notation Uk for the uniform distribution on {−1, 1}k as well as the following:

Definition 2.1.4. If D and D′ are probability distributions on the same finite set A then dTV(D,D′)
denotes their total variation distance, 1

2

∑
α∈A |D(α)−D′(α)|. If dTV(D,D′) ≤ ε we say that D

and D′ are ε-close. If dTV(D,D′) ≥ ε we say they are ε-far. (As neither inequality is strict, these
notions are not quite opposites.)

An immediate consequence of an instance being quasirandom is that its optimum is close
to E[P ]:

Fact 2.1.5. If I is ε-quasirandom, then Opt(I) ≤ E[P ] + ε (and in fact, |Opt(I)−E[P ]| ≤ ε).

We conclude the discussion of CSPs by recording some facts that are proven easily with the
Chernoff bound:

Fact 2.1.6. Let I ∼ FP (n, p). Then the following statements hold with high probability.

1. m = |I| ∈ m ·
(

1±O
(√

logn
m

))
.

2. Opt(I) ≤ E[P ] ·
(

1 +O
(√

1
E[P ] ·

n
m

))
.

3. I is O
(√

2k · nm
)

-quasirandom.

2.1.1 Algorithms and refutations on random CSPs

Definition 2.1.7. Let P be a Boolean predicate. We say that A is δ-refutation algorithm for
random CSP(P ) with m constraints if A has the following properties. First, on all instances I the
output of A is either the statement “Opt(I) ≤ 1−δ” or is “fail”. Second, A is never allowed to err,
where erring means outputting “Opt(I) ≤ 1−δ” on an instance which actually has Opt(I) > 1−δ.
Finally, A must satisfy

Pr
I∼FP (n,p)

[A(I) = “fail”] < o(1) (as n→∞),
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where p is defined by m = 2knkp. Although A is often a deterministic algorithm, we do allow it to
be randomized, in which case the above probability is also over the “internal random coins” of A.

We refer to this notion as weak refutation, or simply refutation, when the certification statement
is of the form “Opt(I) < 1” (equivalently, when δ = 1/|I|). We refer to the notion as strong
refutation when the statement is of the form “Opt(I) ≤ E[P ] + o(1)” (equivalently, when δ =
1−E[P ] + o(1)).

Remark 2.1.8. In Section 3.3 we will encounter a “two-sided error” variant of this definition. This
is the slightly easier algorithmic task in which we relax the condition on erring: it is only required
that for each instance I with Opt(I) > 1 − δ, it holds that Pr[A(I) = “Opt(I) ≤ 1 − δ”] ≤ 1/4,
where the probability is just over the random coins of A.

Remark 2.1.9. We will also use the analogous definition for certification of related properties; e.g.,
we will discuss ε-quasirandomness certification algorithms in which the statement “Opt(I) ≤ 1−δ”
is replaced by the statement “I is ε-quasirandom”.

2.1.2 t-wise uniformity

An important notion for this thesis is that of t-wise uniformity. Recall:

Definition 2.1.10. Probability distribution D on {−1, 1}k is said to be t-wise uniform, 1 ≤ t ≤ k,
if for all S ⊆ [k] with |S| = t the random variable xS is uniform on {−1, 1}t when x ∼ D. (We
remark that this condition is sometimes inaccurately called “t-wise independence” in the literature.)

This definition generalizes naturally to distributions with larger alphabets Ω: A probability
distribution on Ωk is said to be t-wise uniform if its marginal on every subset of t coordinates is
uniform.

We will also consider the more general notion of (ε, t)-wise uniformity. This is typically defined
using Fourier coefficients:

Definition 2.1.11. Probability distribution D on {−1, 1}k is said to be (ε, t)-wise uniform if
|D̂(S)| ≤ ε for all S ⊆ [k] with 0 < |S| ≤ t, where D = 2k · D is the probability density associated
with distribution D.

Here we are using standard notation from Fourier analysis of Boolean functions [O’D14]. In
particular, for any f : {−1, 1}k → R we write f(x) =

∑
S⊆[k] f̂(S)xS for its expansion as a

multilinear polynomial over R, with xS denoting
∏
i∈S xi (not to be confused with the projection

xS ∈ R|S|).

Remark 2.1.12. It is a simple fact (and it follows from Lemma 2.1.13 below) that (0, t)-wise
uniformity is equivalent to t-wise uniformity.

Also important for us is a related but distinct notion, that of being ε-close to a t-wise uniform
distribution. It’s easy to show that if D is ε-close to a t-wise uniform distribution then D is (2ε, t)-
wise uniform. In the other direction, we have the following (see also [AAK+07] for some quantitative
improvement):

Lemma 2.1.13. (Alon–Goldreich-Mansour [AGM03, Theorem 2.1]). If D is an (ε, t)-wise uniform
distribution on {−1, 1}k, then there exists a t-wise uniform distribution D′ on {−1, 1}k with

dTV(D,D′) ≤
( t∑
i=1

(
k
t

))
· ε ≤ kt · ε.

In particular if t = k we have the bound 2k · ε (and this can also be improved [Gol11] to 2k/2−1 · ε).
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Finally, we make a crucial definition:

Definition 2.1.14. A predicate P : {−1, 1}k → {0, 1} is said to be t-wise supporting if there
is a t-wise uniform distribution D whose support is contained in P−1(1). In other words, P is
t-wise supporting if δP (t) = 0. We say P is δ-far from t-wise supporting if every t-wise uniform
distribution D is δ-far from being supported on P ; i.e., has probability mass at least δ on P−1(0).
That is, P is δ-far from t-wise supporting if δP (t) ≥ δ.

2.2 The sum of squares proof system and hierarchy

We give a brief overview of the sum of squares proof system and SDP hierarchy here. First,
we define SOS as a proof system. Then we describe the dual view of SOS as a hierarchy of
SDP relaxations optimizing over objects called pseudoexpectations. For more background see,
e.g., [OZ13, Lau09, BS].

2.2.1 The sum of squares proof system

The SOS proof system, introduced in [GV01], certifies bounds on the values of polynomial opti-
mization problems; i.e., maximizing an n-variate polynomial subject to polynomial inequality and
equality constraints. Call a polynomial q ∈ R[X1, . . . , Xn] sum-of-squares (SOS) if there exist
q1, . . . , q` ∈ R[X1, . . . , Xn] such that q = q2

1 + · · ·+ q2
` .

Definition 2.2.1. Let X = (X1, . . . , Xn) be indeterminates. Let q1, . . . , qm, r1, . . . , rm′ ∈ R[X]
and let A = {q1 ≥ 0, . . . , qm ≥ 0}∪{r1 = 0, . . . , rm′}. SOS is parameterized by degree d: the larger
d is, the more powerful the proof system. There is a degree-d SOS proof that A implies s ≥ 0,
written as

A `d s ≥ 0,

if there exist SOS u0, u1, . . . , um ∈ R[X] and v1, . . . , vm′ ∈ R[X] such that

s = u0 +
m∑
i=1

uiqi +
m′∑
i=1

viri

with deg(u0) ≤ d, deg(uiqi) ≤ d for all i ∈ [m], and deg(viri) ≤ d for all i ∈ [m′]. If it also holds
that u0, u1, . . . , um = 0, we will write A `d s = 0.

It is well-known that a degree-d SOS proof can be found by solving an SDP of size nO(d) if it
exists [Sho87, Par00, Las00, Las01]. It is not always clear that these SOS SDPs can be solved in
polynomial time [O’D17, RW17]. However, our SOS upper bound in Chapter 3 does lead to an
efficient algorithm, as the corresponding SOS proof can be found simply by computing the spectral
norm of a matrix.

We can think of a CSP I = {(c, S)} over n Boolean variables x1, . . . , xn as a polynomial
feasibility problem, with (the arithmetization of) the constraints P (xS ⊕ c) = 1 as polynomial
identities. An SOS refutation of degree-d is then a degree-d SOS proof that {P (xS ⊕ c) = 1}
together with the Boolean constraints {x2

i = xi} implies −1 ≥ 0, or, in symbols, that {P (xS ⊕ c) =
1} ∪ {x2

i = xi} `d −1 ≥ 0. For δ-refutation, we consider the polynomial 1
m

∑
(c,S)∈I P (xS ⊕ c)

capturing the fraction of satisfied constraints. An SOS δ-refutation of degree-d is a degree-d SOS
proof that { 1

m

∑
(c,S)∈I P (xS ⊕ c) ≥ 1− δ} ∪ {x2

i = xi} `d −1 ≥ 0.
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2.2.2 The dual view: Pseudoexpectations

In the dual view, SOS is a hierarchy of SDP-based relaxations of polynomial optimization problems,
again parameterized by degree. Central to the algorithm is the concept of pseudoexpectations that
describe the feasible points of the SOS algorithm of degree d.

Definition 2.2.2 (Pseudoexpectations). Given n indeterminates, a degree-d pseudoexpectation is
a linear operator Ẽ on the space of real polynomials of degree at most d in those indeterminates,
such that

1. Ẽ[1] = 1. (Normalization)

2. Ẽ[p2] ≥ 0 for every polynomial p of degree at most d/2. (Positive semidefiniteness)

Definition 2.2.3 (Pseudoexpectations satisfying an identity). A degree-d pseudoexpectation Ẽ is
said to satisfy a polynomial identity “p = 0” if, for every polynomial q with deg(p) + deg(q) ≤ d,
we have Ẽ[pq] = 0.

Given a polynomial optimization problem — say, maximizing a polynomial p1 subject to con-
straints {qi = 0 | i ∈ [m]} — the degree-d SOS relaxation maximizes Ẽ[p1] over all degree-d
pseudoexpectations Ẽ that satisfy the identities {qi = 0 | i ∈ [m]}. A feasibility problem, in par-
ticular, would ask if there is a degree-d pseudoexpectation satisfying certain polynomial equality
constraints. As in the dual proof system, these SOS relaxations can be expressed using a SDP of
size nO(d).

As suggested by the name, pseudoexpectations generalize the notion of expectations with respect
to a probability distribution on real indeterminate values satisfying the given polynomial identity
constraints. In particular, if there is at least one real solution for the polynomial identity con-
straints, then any probability distribution on solutions yields a valid degree-d pseudoexpectation,
for any d. However, even when the polynomial constraints have no real solution, there may well be
pseudoexpectations of limited degree that satisfy all the constraints. As one would expect, as the
degree d grows, the pseudoexpectations resemble actual expectations more and more. Indeed, if
the constraints include that the n indeterminates are Boolean (“x2

i = xi” or “x2
i = 1”) then every

degree-2n pseudoexpectation in fact corresponds to an actual distribution on real solutions.
To show that the degree-d SOS refutation algorithm cannot refute a CSP amounts to showing

that there exists a degree-d pseudoexpectation that satisfies all the constraints. In more casual
terminology, we say that degree-d SOS “thinks” that the CSP is satisfiable. Similarly, to show that
degree-d SOS cannot δ-refute a CSP, we need to show that there exists a degree-d pseudoexpectation
that satisfies at least a 1− δ fraction of the constraints.
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Chapter 3

A framework for refuting random
CSPs using sum of squares

3.1 Our results and techniques

Here we describe our main results and techniques at a high level. Precise theorem statements
appear later in the work and the definitions of the terminology we use is given in Chapter 2. We
also mention that all of our results can be generalized to the case of larger alphabets, but we
discuss Boolean predicates P : {0, 1}k → {0, 1} for simplicity. Our main result gives a bound on
the number of constraints needed to refute random CSP(P ) instances. Before getting to it, we first
describe some more concrete results that go into the main proof. All of our results rely on a strong
refutation algorithm for k-XOR (actually, a slight generalization thereof). For m ≥ Õ(ndk/2e), such
a result follows from [COCF10]; however, the exponent dk/2e can be improved to k/2. We give
a demonstration of this fact herein; as mentioned earlier, it was published very recently by Barak
and Moitra [BM16, Theorem 14].

Theorem 3.1.1. There is an efficient algorithm that (whp) strongly refutes random k-XOR in-
stances with at least Õ(nk/2) constraints; i.e., it certifies Opt(I) ≤ 1

2 + o(1).

The proof of Theorem 3.1.1 follows ideas from [COGL07] and earlier works on “discrepancy”
of random k-SAT instances. The case of even k is notably easier, and we present two “folklore”
arguments for it. The case of odd k is trickier. Roughly speaking we view the instance as a
homogeneous degree-k multilinear polynomial, which we want to certify takes on only small values
on inputs in {−1, 1}n. Considering separately the contributions based on the “last” of the k
variables in each constraint, and then using Cauchy–Schwarz, it suffices to bound the norm of a
carefully designed quadratic form of dimension nk−1, indexed by tuples of k − 1 variables. This
is done using the trace method [Wig55, FK81]. Similar techniques, including the use of the trace
method, date back to the 2001 Friedman–Goerdt work [FG01] refuting random 3-SAT given m =
n3/2+ε constraints.

With Theorem 3.1.1 in hand, the next step is certifying quasirandomness of random k-ary
CSP instances having m ≥ Õ(nk/2) constraints. Roughly speaking we say that a CSP instance is
quasirandom if, for every assignment x ∈ {0, 1}n, the m induced k-tuples of literal values are close
to being uniformly distributed over {0, 1}k. (Note that this is only a property of the instances’
constraint scopes/negations, and has nothing to do with P .) Since the “Vazirani XOR Lemma”
implies that a distribution on {−1, 1}k is uniform if and only if all its 2k XORs have bias 0, we are
able to leverage Theorem 3.1.1 to prove:
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Theorem 3.1.2. There is an efficient algorithm that (whp) certifies that a random instance of
CSP(P ) is quasirandom, provided the number of constraints is at least Õ(nk/2).

If an instance is quasirandom, then no solution can be much better than a randomly chosen
one. Thus by certifying quasirandomness we are able to strongly refute random instances of any
CSP(P ):

Theorem 3.1.3. For any k-ary predicate P , there is an efficient algorithm that (whp) strongly
refutes random CSP(P ) instances when the number of constraints is at least Õ(nk/2).

In particular, this theorem improves upon [COCF10] by a factor of
√
n whenever k is odd; this

savings is new even in the well-studied case of k-SAT.
The above result does not make use of any properties of the predicate P other than its arity, k.

We now come to our main result, which shows that for many interesting P , random CSP(P )
instances can be refuted with many fewer constraints than nk/2.

Theorem 1.5.1 ([AOW15]). Let P be a k-ary Boolean predicate and let 1 < t ≤ k. Let I be a
random instance of CSP(P ) with m = Õ(nt/2) constraints. Then with high probability, constant-
degree SOS (δP (t)− o(1))-refutes I. Furthermore, a refutation can be found in polynomial time.

In Corollary 3.1.10 below, we show that if δP (t) 6= 0, then δP (t) = Ω(1). This gives the following
corollary.

Corollary 1.5.2 ([AOW15]). Let P be a k-ary Boolean predicate for which there exists no t-wise
uniform distribution supported on satisfying assignments. Let I be a random instance of CSP(P )
with m = Õ(nt/2) constraints. Then with high probability, constant-degree SOS (weakly) refutes I.
Furthermore, a refutation can be found in polynomial time.

In Section 3.2, we prove that we can (δP (t)−o(1))-refute in polynomial time, and, in Section 3.4,
we show the following:

Theorem 3.1.4. All of our refutation algorithms for k-ary predicates can be extended to produce
degree-2k SOS proofs.

The idea behind the proof of Theorem 1.5.1 is that with Õ(nt/2) constraints we can use the
algorithm of Theorem 3.1.2 to certify quasirandomness (closeness to uniformity) for all subsets of t
out of k coordinates. Thus for every assignment x ∈ {0, 1}n, the induced distribution on constraint
k-tuples is (o(1)-close to) t-wise uniform. Since P is δP (t)-far from supporting a t-wise uniform
distribution, this essentially shows that no x can induce a distribution on constraint inputs with
more that 1− δP (t) weight on satisfying assignments.

Example 3.1.5. To briefly illustrate the result, consider the Exactly-k-out-of-2k-SAT CSP, studied
previously in [BB02, GJ03]. The associated predicate supports a 1-wise uniform distribution,
namely the uniform distribution over strings in {0, 1}2k of Hamming weight k. However, it is not
hard to show that it does not support any pairwise uniform distribution. As a consequence, random
instances of this CSP can be refuted with only Õ(n) constraints, independent of k.

3.1.1 An application from learning theory

Recently, an exciting approach to proving hardness-of-learning results has been developed by
Daniely, Linial, and Shalev-Shwartz [DLSS13, DLSS14, DS14, Dan15]. The most general results
appear in [DLSS14]. In this work, Daniely et al. prove computational hardness of several central
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learning theory problems, based on two assumptions concerning the hardness of random CSP refuta-
tion. While the assumptions made in [DS14, Dan15] appear to be plausible, our work unfortunately
shows that the more general assumptions made in [DLSS14] are false.

Below we state the (admittedly strong) assumptions from [DLSS14] (up to some very minor
technical details which are discussed and treated in Section 3.3). We will need one piece of terminol-
ogy: the 0-variability VAR0(P ) of a predicate P : {−1, 1}k → {0, 1} is the least c such that there
exists a restriction to some c input coordinates forcing P to be 0. Essentially, the assumptions
state that one can obtain hardness-of-refutation with an arbitrarily large polynomial number of
constraints by using a family of predicates (Pk) that: a) have unbounded 0-variability; b) support
pairwise uniformity. However, our work shows that supporting t-wise uniformity for unbounded t
is also necessary.

SRCSP Assumption 1. ([DLSS14].) For all d ∈ N there is a large enough C such that the
following holds: If P : {−1, 1}k → {0, 1} has VAR0(P ) ≥ C and is hereditarily approximation
resistant on satisfiable instances, then there is no polynomial-time algorithm refuting (whp) random
instances of CSP(P ) with m = nd constraints.

SRCSP Assumption 2. ([DLSS14], generalizing the “RCSP Assumption” of [BKS13] to super-
linearly many constraints.) For all d ∈ N there is a large enough C such that the following holds:
If P : {−1, 1}k → {0, 1} has VAR0(P ) ≥ C and is δ-close to supporting a pairwise uniform distri-
bution, then for all ε > 0 there is no polynomial-time algorithm that (δ + ε)-refutes (whp) random
instances of CSP(P ) with m = nd constraints.

In [DLSS14] it is shown how to obtain three very notable hardness-of-learning results from
these assumptions. However as stated, our work falsifies the SRCSP Assumptions. Indeed, the
assumptions are false even in the three specific cases used by [DLSS14] to obtain hardness-of-
learning results. We now describe these cases.

Case 1. The Huang predicates (Hκ) are arity-Θ(κ3) predicates introduced in [Hua13]; they are
hereditarily approximation resistant on satisfiable instances and have 0-variability Ω(κ). In [DLSS14]
they are used in SRCSP Assumption 1 to deduce hardness of PAC-learning DNFs with ω(1) terms.
However:

Theorem 3.1.6. For all κ ≥ 9, the predicate Hκ does not support a 4-wise uniform distribution.

Thus by Corollary 1.5.2 we can efficiently refute random instances of CSP(Hκ) with just Õ(n2)
constraints, independent of κ. This contradicts SRCSP Assumption 1.

Case 2. The majority predicate Majk has 0-variability dk/2e and is shown in [DLSS14] to be
1

k+1 -far from supporting a pairwise uniform distribution. In [DLSS14] these predicates are used in
SRCSP Assumption 2 to deduce hardness of agnsotically learning Boolean halfspaces to within any
constant factor. However:

Theorem 3.1.7. For odd k ≥ 25, the predicate Majk does not support a 4-wise uniform distribution;
in fact, it is .1-far from supporting a 4-wise uniform distribution.

Theorem 1.5.1 then implies we can efficiently δ-refute random instances of CSP(Majk) with Õ(n2)
constraints, where δ = .1� 1

k+1 . This contradicts SRCSP Assumption 2.
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Case 3. Finally, we also prove that SRCSP Assumption 1 is false for another family of predi-
cates (Tk) used by [DLSS14] to show hardness of PAC-learning intersections of 4 Boolean halfspaces.

Our results described in these three cases all use linear programming duality. Specifically, in
Lemma 3.1.9 we show that P is δ-far from supporting a t-wise uniform distribution if and only
if there exists a k-variable multilinear polynomial Q that satisfies certain properties involving P
and δ. We then explicitly construct these dual polynomials for the Huang, Majority, and Tk pred-
icates.

We conclude this section by emphasizing the importance of the Daniely–Linial–Shalev-Shwartz
hardness-of-learning program, despite the above results. Indeed, subsequently to [DLSS14], Daniely
and Shalev-Shwartz [DS14] showed hardness of improperly learning DNF formulas with ω(log n)
terms under a much weaker assumption than SRCSP Assumption 1. Specifically, their work only
assumes that for all d there is a large enough k such that refuting random k-SAT instances is hard
when there are m = nd constraints. This assumption looks quite plausible to us, and may even
be true with k not much larger than 2d. Most recently, Daniely showed hardness of approximately
agnostically learning halfspaces using the XOR predicate rather than majority [Dan15]. This
result shows that there is no efficient algorithm that agnostically learns halfspaces to within a
constant approximation ratio under the assumption that refuting random k-XOR instances is hard

when m = nc
√
k log k for some c > 0. He also shows hardness of learning halfspaces to within an

approximation factor of 2log1−ν n for any ν > 0 assuming that there exists some constant c > 0 such
that for all s, refuting random k-XOR instances with k = logs n is hard when m = nck.

3.1.2 A dual characterization of limited uniformity

It is known that the condition of P supporting a t-wise uniform distribution is equivalent to the
feasibility of a certain linear program; hence one can show that P is not t-wise supporting by
exhibiting a certain dual object, namely a polynomial. This appears, e.g., in work of Austrin and
H̊astad [AH09, Theorem 3.1]. Herein we will extend this fact by giving a dual characterization of
being far from t-wise supporting.

Definition 3.1.8. Let 0 < δ < 1. For a multilinear polynomial Q : {−1, 1}k → R, we say that Q
δ-separates P : {−1, 1}k → {0, 1} if the following conditions hold:

• Q(z) ≥ δ − 1 ∀z ∈ {−1, 1}k;
• Q(z) ≥ δ ∀z ∈ P−1(1);

• Q̂(∅) = 0, i.e., Q has no constant coefficient.

We now provide the quantitative version of the aforementioned [AH09, Theorem 3.1]:

Lemma 3.1.9. Let P : {−1, 1}k → {0, 1} and let 0 < δ < 1. Then P is δ-far from t-wise supporting
if and only if there is a δ-separating polynomial for P of degree at most t.

Proof. The proof is an application of linear programming duality. Consider the following LP, which
has variables D(z) for each z ∈ {−1, 1}k.
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minimize
∑

z∈{−1,1}k
(1−P (z))D(z) (3.1)

s.t.
∑

z∈{−1,1}k
D(z)zS = 2k · D̂(S) = 0 ∀S ⊆ [k] 0 < |S| ≤ t (3.2)

∑
z∈{−1,1}k

D(z) = 1 (3.3)

D(z) ≥ 0 ∀z ∈ {−1, 1}k

Constraint (3.3) and the nonnegativity constraint ensure that D is a probability distribution
on {−1, 1}k. Constraint (3.2) expresses that D is t-wise uniform (see Remark 2.1.12). The ob-
jective (3.1) is minimizing the probability mass that D puts on assignments in P−1(0). Thus the
optimal value of the LP is equal to the smallest γ such that P is γ-close to t-wise supporting;
equivalently, the largest γ such that P is γ-far from t-wise supporting.

The following is the dual of the above LP. It has a variable c(S) for each 0 < |S| ≤ t as well as
a variable ξ corresponding to constraint (3.3).

maximize ξ (3.4)

s.t.
∑
S⊆[k]

0<|S|≤t

c(S)zS ≤ 1− P (z)− ξ ∀z ∈ {−1, 1}k. (3.5)

Observe that a feasible solution ({c(S)}S , ξ) is precisely equivalent to a multilinear polynomial Q
of degree at most t, namely Q(z) = −

∑
S c(S)zS , that ξ-separates P .

Thus P is δ-far from t-wise supporting if and only if the LP’s objective (3.1) is at least δ, if
and only if the dual’s objective (3.4) is at least δ, if and only if there is a δ-separating polynomial
for P of degree at most t.

From this proof we can also derive that if P fails to be t-wise supporting then it must in fact
be Ωk(1)-far from being t-wise supporting:

Corollary 3.1.10. Suppose P : {−1, 1}k → {0, 1} is not t-wise supporting. Then it is in fact δ-far

from t-wise supporting for δ = 2−Õ(kt) (or δ = 2−Õ(2k) when t = k).

Proof. Let K = 1 +
∑t

i=1

(
k
t

)
be the number of variables in the dual LP from Lemma 3.1.9, so

K ≤ kt+1 in general, with K ≤ 2k when t = k. By assumption, the objective (3.4) of the dual LP’s
optimal solution is strictly positive. This optimum occurs at a vertex, which is the solution of a
linear system given by a K×K matrix of ±1 entries and a “right-hand side” vector with 0, 1 entries.
By Cramer’s rule, the solution’s entries are ratios of determinants of integer matrices with entries
in {−1, 0, 1}. Thus any strictly positive entry is at least 1/N , where N is the maximum possible
such determinant. By Hadamard’s inequality, N = KK/2 and the claimed result follows.

Using Corollary 3.1.10, we obtain the following corollary of Theorem 1.5.1.

Corollary 1.5.2 ([AOW15]). Let P be a k-ary Boolean predicate for which there exists no t-wise
uniform distribution supported on satisfying assignments. Let I be a random instance of CSP(P )
with m = Õ(nt/2) constraints. Then with high probability, constant-degree SOS (weakly) refutes I.
Furthermore, a refutation can be found in polynomial time.
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3.1.3 Certifying independence number and chromatic number of random hy-
pergraphs

Coja-Oghlan, Goerdt, and Lanka [COGL07] also use their CSP refutation techniques to certify
that random 3- and 4-uniform hypergraphs have small independence number and large chromatic
number. We extend these results to random k-uniform hypergraphs.

Theorem 3.1.11. For a random k-uniform hypergraph H, there is a polynomial time algorithm
certifying that the independence number of H is at most β with high probability when H has at least

Õ
(
n3k/2

βk

)
hyperedges.

Theorem 3.1.12. For a random k-uniform hypergraph H, there is a polynomial time algorithm
certifying that the chromatic number of H is at least ξ with high probability when H has at least
Õ
(
ξknk/2

)
hyperedges.

The proofs of these theorems follow the outline of [COGL07]. We show Theorem 3.1.11 using
a slightly more general form of Theorem 3.1.1. Theorem 3.1.12 follows almost directly from The-
orem 3.1.11 using the fact that every color class of a valid coloring is an independent set. Details
are given in Section 3.6.

3.2 Quasirandomness and its implications for refutation

3.2.1 Strong refutation of k-XOR

In this section, we state our result on strong refutation of random k-XOR instances with m =
Õ
(
nk/2

)
constraints. (Recall that essentially this result was very recently obtained by Barak and

Moitra [BM16].) We actually have a slightly more general result, allowing variables and coefficients
to take values in [−1, 1] and not just in {−1, 1}.

Theorem 3.2.1. For k ≥ 2 and p ≥ n−k/2, let {w(T )}T∈[n]k be independent random variables such

that for each T ∈ [n]k,

E[w(T )] = 0 (3.6)

Pr[w(T ) 6= 0] ≤ p (3.7)

|w(T )| ≤ 1. (3.8)

Then there is an efficient algorithm certifying that∑
T∈[n]k

w(T )xT ≤ 2O(k)√pn3k/4 log3/2 n.

for all x ∈ Rn such that ‖x‖∞ ≤ 1 with high probability.

In this form, the theorem is not really about CSP refutation at all. It says that the value of a
polynomial with random coefficients is close to its expectation when its inputs are bounded.

We obtain strong refutation of k-XOR as a simple corollary.

Corollary 3.2.2. For k ≥ 2, let I ∼ Fk-XOR(n, p). Then, with high probability, there is a degree-2k

SOS proof that Opt(I) ≤ 1
2 + γ when m ≥ 2O(k)nk/2 log3 n

γ2 .
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Proof. We can write the k-XOR predicate as

k-XOR(z) =
1−

∏k
i=1 zi

2
,

so for a k-XOR instance I ∼ Fk-XOR(n, p),

ValI(x) =
1

2
− 1

2m

∑
T∈[n]k

∑
c∈{±1}k

1{(T,c)∈I}x
T
∏
i∈[k]

ci =
1

2
+

2k−1

m

∑
T∈[n]k

w(T )xT ,

where w(T ) = −2−k
∑

c∈{±1}k 1{(T,c)∈I}
∏
i∈[k] ci. The w(T )’s are random variables depending on

the choice of I; observe that E[w(T )] = 0, Pr[w(T ) 6= 0] ≤ 2kp, and |w(T )| ≤ 1 for all T ∈ [n]k.
By Theorem 3.2.1, there is an algorithm certifying that

Opt(I) ≤ 1

2
+

2O(k)√pn3k/4 log3/2 n

m
.

with high probability when p ≥ n−k/2. Since m = (1 + o(1))m with high probability, choosing

m ≥ 2O(k)nk/2 log3 n
γ2 gives the desired result.

As an example, we can choose γ = 1
logn and certify that Opt(I) ≤ 1

2 +o(1) when m = Õk(n
k/2).

3.2.2 Quasirandomness and strong refutation of any k-CSP

Next, we will use the algorithm of Theorem 3.2.1 to certify that an instance of CSP(P ) is quasir-
andom. This will immediately give us a strong refutation algorithm.

In order to certify quasirandomness, Lemma 2.1.13 implies that it suffices to certify each Fourier
coefficient of DI,x has small magnitude.

Lemma 3.2.3. Let ∅ 6= S ⊆ [k] with |S| = s. There is an algorithm that, with high probability,
certifies that ∣∣∣D̂I,x(S)

∣∣∣ ≤ 2O(s) max{ns/4,
√
n} log5/2 n

m1/2

for all x ∈ {−1, 1}n, assuming also that m ≥ max{ns/2, n}.

To prove this lemma, we need another lemma certifying that polynomials whose coefficients are
sums of 0-mean random variables have small value.

Lemma 3.2.4. Let S ⊆ [k] with |S| = s > 0. Let τ ∈ N and let {wU (i)}U∈[n]s,i∈[τ ] be independent

random variables satisfying conditions (3.6), (3.7), and (3.8) for some p ≥ 1
τns/2

. Then there is an
algorithm that certifies with high probability that

∑
U∈[n]s

xU
τ∑
j=1

wU (j) ≤

{
2O(s)√τp · n3s/4 log5/2 n if s ≥ 2

4 max{√τp, 1} · n log n if s = 1.

for all x ∈ Rn such that ‖x‖∞ ≤ 1.

The proof is straightforward and we defer it to Section 3.2.4.
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Proof of Lemma 3.2.3. Without loss of generality, assume 1 ∈ S. Applying definitions, we see that

D̂I,x(S) = E
z∼DI,x

[
zS
]

=
1

m

∑
U∈[n]s

∑
T∈[n]k

TS=U

∑
c∈{±1}k

1{(T,c)∈I}c
SxU =

1

m

∑
U∈[n]s

xU
∑
T∈[n]k

TS=U

∑
c′∈{±1}k−1

wS(T, c′).

(3.9)
where we define wS(T, c′) = 1{(T,(1,c′))∈I}(c

′)S\{1}− 1{(T,(−1,c′))∈I}(c
′)S\{1} and recall that TS is the

projection of T onto the the coordinates in S. It is clear that E[wS(T, c′)] = 0, Pr[wS(T, c′) 6=
0] ≤ p, and |wS(T, c′)| ≤ 1. There are τ = 2k−1nk−s terms in each sum of wS(T, c′)’s and we
can apply Lemma 3.2.4. When s = 2, we plug in these values and see that we can certify that

D̂I,x(S) ≤ 2O(s)ns/4 log5/2 n

m1/2 . When s = 1, m ≥ n implies that τp ≥ 1
2 and we can certify that

D̂I,x(S) ≤ 2O(s)√n logn

m1/2 . The lower bound can be proved in exactly the same way by considering the

random variables −wS(T, c′).

The existence of an algorithm for certifying quasirandomness follows from Lemmas 2.1.13 and 3.2.3.

Theorem 3.2.5. There is an efficient algorithm that certifies that an instance I ∼ FP (n, p) of

CSP(P ) is γ-quasirandom with high probability when m ≥ 2O(k)nk/2 log5 n
γ2 .

Since γ-quasirandomess implies that Opt(I) ≤ E[P ] + γ, this algorithm also strongly refutes
CSP(P ).

Theorem 3.2.6. There is an efficient algorithm that, given an instance I ∼ FP (n, p) of CSP(P ),

certifies that Opt(I) ≤ E[P ] + γ with high probability when m ≥ 2O(k)nk/2 log5 n
γ2 .

3.2.3 (ε, t)-quasirandomness and Ω(1)-refutation of non-t-wise-supporting CSPs

If a predicate is not t-wise supporting, a weaker notion of quasirandomness suffices to obtain Ω(1)-
refutation.

Definition 3.2.7. An instance I of CSP(P ) is (ε, t)-quasirandom if DI,x is (ε, t)-wise uniform for
every x ∈ {−1, 1}n.

Fact 2.1.6 shows that random instances with Õ(n) constraints are (o(1), t)-quasirandom for all
t ≤ k with high probability. Lemma 3.2.3 directly implies that we can certify (ε, t)-quasirandomness
when m ≥ Õ(nt/2).

Theorem 3.2.8. There is an efficient algorithm that certifies that an instance I ∼ FP (n, p) of

CSP(P ) is (γ, t)-quasirandom with high probability when m ≥ 2O(t)nt/2 log5 n
γ2 and t ≥ 2.

We now reach the main result of this section, which states that if a predicate is δ-far from t-wise
supporting, then we can almost δ-refute instances of CSP(P ).

Theorem 3.2.9. Let P be δ-far from t-wise supporting. There is an efficient algorithm that, given

an instance I ∼ FP (n, p) of CSP(P ), certifies that Opt(I) ≤ 1−δ+γ w.h.. when m ≥ kO(t)nt/2 log5 n
γ2

and t ≥ 2.

We give two proofs of this theorem. In Proof 1, the theorem follows directly from certification
of (γ, t)-quasirandomness and Lemma 2.1.13.
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Proof 1. Run the algorithm of Theorem 3.2.8 to certify that I is (γ/kt, t)-quasirandom with high
probability. By definition, we have certified that DI,x is (γ/kt, t)-wise uniform for all x ∈ {−1, 1}n,.
Lemma 2.1.13 then implies that for all x there exists a t-wise uniform distribution D′x such that
dTV(DI,x,D′x) ≤ γ. Now define Dsat to be an arbitrary distribution over satisfying assignments to
P . Since P is δ-far from being t-wise supporting, we know that dTV(D′,Dsat) ≥ δ for any t-wise
uniform distribution D′. The triangle inequality then implies that dTV(DI,x,Dsat) ≥ δ − γ for all
x ∈ {−1, 1}n and the theorem follows.

Proof 2 gives a slightly weaker version of Theorem 3.2.9, requiring the stronger assumption that

m ≥ 2O(k)nt/2 log5 n
γ2 . It is based on the dual polynomial characterization of being δ-far from t-wise

supporting. While perhaps less intuitive than Proof 1, Proof 2 is more direct. It only uses the
XOR refutation algorithm and bypasses [AGM03]’s connection between (ε, t)-wise uniformity and
ε-closeness to a t-wise uniform distribution. We were able to convert Proof 2 into an SOS proof (see
Section 3.4.3), but we did not see how to translate Proof 1 into an SOS version. Proof 2 requires
Plancherel’s Theorem, a fundamental result in Fourier analysis.

Theorem 3.2.10 (Plancherel’s Theorem). For any f, g : {−1, 1}k → R,

E
z∈Uk

[f(z)g(z)] =
∑
S⊆[k]

f̂(S)ĝ(S).

Proof 2. Since P is δ-far from t-wise supporting, there exists a degree-t polynomial Q that δ-
separates P . The definition of δ-separating implies that P (z)− (1− δ) ≤ Q(z) for all z ∈ {−1, 1}k.
Summing over all constraints, we get that for all x ∈ {−1, 1}n,∑

T∈[n]k

∑
c∈{±1}k

1{(T,c)∈I}P (xT ◦ c)−m(1− δ) ≤
∑
T∈[n]k

∑
c∈{±1}k

1{(T,c)∈I}Q(xT ◦ c),

or, equivalently, ValI(x)− (1− δ) ≤ Ez∈DI,x [Q(z)].

It then remains to certify that Ez∈DI,x [Q(z)] ≤ γ. Observe that

E
z∈DI,x

[Q(z)] = E
z∈Uk

[DI,x(z)Q(z)] =
∑
∅6=S⊆[k]

D̂I,x(S)Q̂(S),

where the second equality follows from Plancherel’s Theorem. Since Q ≥ −1 and E[Q] = 0,
Q ≤ 2k and hence |Q̂(S)| ≤ 2k for all S. To finish the proof, we apply Lemma 3.2.3 to certify that∣∣∣D̂I,x(S)

∣∣∣ ≤ γ
22k for all S.

With Corollary 3.1.10, Theorem 3.2.9 implies that we can Ωk(1)-refute instances of CSP(P )
with Õk(n

t/2) constraints when P is not t-wise supporting.

Corollary 3.2.11. Let P be a predicate that does not support any t-wise uniform distribution.
Then there is an efficient algorithm that, given an instance I ∼ FP (n, p) of CSP(P ), certifies that

Opt(I) ≤ 1− 2−Õ(kt) with high probability when m ≥ 2Õ(kt)nt/2 log5 n and t ≥ 2.

3.2.4 Proof of Lemma 3.2.4

Recall the statement of the lemma.
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Lemma 3.2.4. Let S ⊆ [k] with |S| = s > 0. Let τ ∈ N and let {wU (i)}U∈[n]s,i∈[τ ] be independent

random variables satisfying conditions (3.6), (3.7), and (3.8) for some p ≥ 1
τns/2

. Then there is an
algorithm that certifies with high probability that

∑
U∈[n]s

xU
τ∑
j=1

wU (j) ≤

{
2O(s)√τp · n3s/4 log5/2 n if s ≥ 2

4 max{√τp, 1} · n log n if s = 1.

for all x ∈ Rn such that ‖x‖∞ ≤ 1.

The proof uses Bernstein’s Inequality.

Theorem 3.2.12 (Bernstein’s Inequality). Let X1, . . . , XM be independent 0-mean random vari-
ables such that |Xi| ≤ B. Then, for a > 0,

Pr

[
M∑
i=1

Xi > a

]
≤ exp

(
−1

2a
2∑M

i=1 E[X2
i ] + 1

3Ba

)
.

Proof of Lemma 3.2.4. First, we define

vU =

τ∑
j=1

wU (i).

Observe that the vU ’s are independent and that each one is the sum of τ mean-0, i.i.d. random
variables with magnitude at most 1. Noting that

∑τ
i=1 E[wU (i)2] ≤ τp, we can use Bernstein’s

Inequality to show that the |vU |’s are not too big with high probability. If s ≥ 2, Theorem 3.2.1
then implies that the desired algorithm exists. If s = 1, we are simply bounding a linear function
over ±1 variables. We consider two cases: Small p and large p.

Case 1: p ≤ 1
4τ . Choosing a = 2s log n in Bernstein’s Inequality, we see that Pr[|vU | ≥ 2s log n] ≤

n−2s. A union bound over all U then implies that Pr[any |vU | > 2s log n] ≤ n−s. If s ≥ 2, we
observe that Pr[vU 6= 0] ≤ τp, scale the vU ’s down by 2s log n, and apply Theorem 3.2.1 to get the
stated result. If s = 1, we obtain the second bound by observing that∑

i∈[n]

vixi ≤
∑
i∈[n]

|vi| ≤ 2n log n. (3.10)

Case 2: p > 1
4τ . We set a = 4s

√
τp log n and get that Pr[any |vU | > 4s

√
τp log n] ≤ n−s as

above. If s ≥ 2, we can then divide the vU ’s by 4s
√
τp log n and apply Theorem 3.2.1. If s = 1, we

get a bound of 4
√
τp · n log n in the same way as (3.10).

3.3 Hardness of learning implications

Recent work by Daniely et al. [DLSS14] reduces the problem of refuting specific instances of CSP(P )
to the problem of improperly learning certain hypothesis classes in the Probably Approximately
Correct (PAC) model [Val84]. In this model, the learner is given m labeled training examples
(x1, `(x1)), . . . , (xm, `(xm)), where each xi ∈ {−1, 1}n, each `(xi) ∈ {0, 1}, and the examples
are drawn from some unknown distribution D on {−1, 1}n × {0, 1}. For some hypothesis class
H ⊆ {0, 1}{−1,1}n we say that D can be realized by H if there exists some h ∈ H such that
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Pr(x,`(x))∼D[h(x) 6= `(x)] = 0. In improper PAC learning, on an input of m training examples
drawn from D such that D can be realized by some h ∈ H, and an error parameter ε, the algo-
rithm outputs some hypothesis function fh : {−1, 1}n → {0, 1} (not necessarily in H) such that
Pr(x,`(x))∼D[fh(x) 6= `(x)] ≤ ε. In improper agnostic PAC learning, the assumption that D can
be realized by some h ∈ H is removed and the algorithm must output a hypothesis that performs
almost as well as the best hypothesis in H. More formally, the hypothesis fh must satisfy the follow-
ing: Pr(x,`(x))∼D[fh(x) 6= `(x)] ≤ minh∈HPr(x,`(x))∼D[h(x) 6= `(x)] + ε. In improper approximate
agnostic PAC learning, the learner is also given an approximation factor a ≥ 1 and must output a
hypothesis fh such that Pr(x,`(x))∼D[fh(x) 6= `(x)] ≤ a ·minh∈HPr(x,`(x))∼D[h(x) 6= `(x)] + ε.

Daniely et al. reduce the problem of distinguishing between random instances of CSP(P ) and
instances with value at least α as a PAC learning problem by transforming each constraint into a
labeled example. To show hardness of improperly learning a certain hypothesis class in the PAC
model, they define a predicate P that is specific to the hypothesis class and assume hardness of
distinguishing between random instances of CSP(P ) and instances with nd constraints and value
at least α for all d > 0. They then demonstrate that the sample can be realized (or approximately
realized) by some function in the hypothesis class if the CSP instance is satisfiable (or has value
at least α). They also show that if the given CSP instance is random, the set of examples will
have error at least 1

4 (in the agnostic case 1
5) for all h in the hypothesis class with high probability.

Using this approach, they obtain hardness results for the following problems: improperly learning
DNF formulas, improperly learning intersections of 4 halfspaces, and improperly approximately
agnostically learning halfspaces for any approximation factor.

3.3.1 Hardness assumptions

The hardness assumptions made in [DLSS14] are the same as those presented in Section 3.1.1,
except for a few minor differences. First, their model fixes the number of constraints rather than
the probability with which each constraint is included in the instance. It is well-known that results
in one model easily translate to the other. We include a proof in Section 3.8 for completeness.
Additionally, SRCSP Assumptions 1 and 2 purport hardness of distinguishing random instances of
CSP(P ) from satisfiable instances, even when the algorithm is allowed to err with probability 1

4
over its internal coins. The algorithms presented in the preceding sections never err on satisfiable
instances; further, they only fail to certify random instances with probability o(1). As a result,
our refutation algorithms also falsify weaker versions of both SRCSP Assumptions, wherein the
allowed probability of error is both lower and one-sided. For each predicate presented in [DLSS14],
we falsify the appropriate SRCSP assumption using the following approach. For each predicate P
and corresponding δ > 0 , we define a degree-t polynomial that δ-separates P . Using the refutation
techniques presented in the preceding sections, we deduce that Õ(nt/2) constraints are sufficient
to distinguish random instances of CSP(P ) from those that are satisfiable (or have value at least
α). In order to simplify the presentation, we begin with simpler versions of the polynomials and
then scale them to attain the appropriate values of δ. The following lemma will be of use for this
scaling.

Lemma 3.3.1. For predicate P : {−1, 1}k → {0, 1}, let Q : {−1, 1}k → R be an unbiased multi-
linear polynomial of degree t such that there exist θ1 > 0, θ0 < 0 not dependent on z for which the
following holds: Q(z) ≥ θ1 for all z ∈ P−1(1) and Q(z) ≥ θ0 for all z ∈ {−1, 1}k. Then there exists
a degree-t polynomial Q : {−1, 1}k → R that θ1

θ1−θ0 -separates P .

Proof. Define Q(z) = Q(z)
θ1−θ0 . Clearly Q is also unbiased and has degree t. Then for all z ∈ P1,

Q(z)
θ1−θ0 ≥

θ1
θ1−θ0 . Similarly, for all z, Q(z)

θ1−θ0 ≥
θ0

θ1−θ0 = − θ1−θ0
θ1−θ0 + θ1

θ1−θ0 = −1 + θ1
θ1−θ0 .
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We now demonstrate that the above can be applied to the predicates suggested in [DLSS14] by
defining separating polynomials and applying Theorem 3.2.9

3.3.2 Huang’s predicate and hardness of learning DNF formulas

In order to obtain hardness of improperly learning DNF formulas with ω(1) terms, Daniely et al.
use the following predicate, introduced by Huang [Hua13]. Huang showed that it is hereditarily
approximation resistant; Daniely et al. also observed that its 0-variability is Ω(k1/3) [DLSS14].

Definition 3.3.2. Let k = κ +
(
κ
3

)
for some integer κ ≥ 3. For z ∈ {−1, 1}k, index z as follows.

Label the first κ bits of z as z1, . . . , zκ. The remaining
(
κ
3

)
bits are indexed by unordered triples of

integers between 1 and κ. Each T ⊆ [κ] with |T | = 3 is associated with a distinct bit of the remaining(
κ
3

)
bits, which is indexed by zT . We say that z strongly satisfies the Huang predicate iff for every

T = {zi, zj , z`} such that zi, zj , z` are distinct elements of [κ], zizjz` = z{i,j,`}. Additionally, we say

that z satisfies the Huang predicate iff there exists some z′ ∈ {−1, 1}k such that z has Hamming
distance at most κ from z′ and z′ strongly satisfies the Huang predicate. Define Hκ : {−1, 1}k →
{0, 1} as follows: Hκ(z) = 1 if z satisfies the Huang predicate and Hκ(z) = 0 otherwise.

Daniely et al. reduce the problem of distinguishing between random instances of CSP(Hκ)
with 2nd constraints and satisfiable instances to the problem of improperly PAC learning the class
of DNF formulas with ω(1) terms on a sample of O(nd) training examples with error ε = 1/5
with probability at least 3

4 . Here we show that there exists a polynomial time algorithm that
refutes random instances of CSP(Hκ) by demonstrating that Hk does not support a 4-wise uniform
distribution and applying Theorem 3.2.9.

Theorem 3.3.3. Assume κ ≥ 9. There exists a degree-4 polynomial Q : {−1, 1}k → R that
1
8 -separates Hκ. Consequently, Hκ is 1

8 -far from supporting a 4-wise uniform distribution.

Proof. As a notational shorthand, write zabc for z{ia,ib,ic}. Define ζ : [κ]6 × {−1, 1}k → [−5, 5] as
follows:

ζ(i1, i2, i3, i4, i5, i6, z) = z126z134z235z456 + z256z146z345z123 + z136z236z145z245

+ z124z234z356z156 + z125z135z346z246.
(3.11)

Observe that for each monomial zT1zT2zT3zT4 of ζ, for every j ∈ [6],
∑4

i=1 1{Ti3j} = 2. Further,
for each T ⊆ [6] with |T | = 3, zT appears exactly once in ζ. Let Z6 be the set of all ordered 6-tuples
of distinct elements of [κ]. For an ordered tuple I, we use ∈() to denote membership in I.

Define Q : {−1, 1}k → R as follows. Our final polynomial Q will be a scaled version of Q.

Q(z) = avg
I∈Z6

ζ(I, z).

Observe that Q does not depend on any of z{1}, . . . z{κ}. By construction, Q contains no constant

term, so Q̂(∅) = 0. Clearly Q(z) ≥ −5 for all z because (3.11) is always at least −5.
Now we lower bound the value of Q on all z that satisfy Hκ. We first show that for any z′

that strongly satisfies the Huang predicate, Q(z′) = 5, then bound Q(z′) − Q(z) for any z with
Hamming distance at most κ from z′. By definition, for each z′Ti , we have that z′Ti

∏
j∈Ti z

′
j = 1.

So for each monomial of Q,

1

|Z6|
z′T1

z′T2
z′T3

z′T4
=

1

|Z6|

4∏
i=1

∏
j∈Ti

z′j

=
1

|Z6|
∏

j∈T1∪T2∪T3∪T4

(z′j)
2 =

1

|Z6|
,
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where the last line follows from the fact that
∑4

1=1 1{Ti3j} = 2. Because there are 5 · |Z6| monomials
in Q, their sum is 5.

Now we consider the case where z does not strongly satisfy the Huang Predicate, but Hκ(z) = 1.
Any singleton index on which z and z′ differ will not change the value of Q. Let N = {T : zT 6= z′T }.
We lower bound Q by counting the number of monomials in which each zT appears and

Q(z) ≥ 5− 2

|Z6|
∑
T∈N

∑
I∈Z

1{
∧
zi∈T

i∈()I}.

For fixed T , the number of monomials containing the variables of zT is∑
I∈Z

1{
∧
zi∈T

i∈()I} = 120(κ− 3)(κ− 4)(κ− 5)

because there are exactly 120 ways to permute the three indices of T in I and the remaining κ− 3
indices are permuted in the remaining 3 positions of I. So

Q(z) ≥ 5− 240κ

|Z6|
(κ− 3)(κ− 4)(κ− 5) = 5− 240

(κ− 1)(κ− 2)
. (3.12)

For κ ≥ 9, (3.12) is at least 5− 30
7 . Applying Lemma 3.3.1, there exists Q : {−1, 1}k → R that

1
8 -separates Hκ.

From this and the fact that Hκ = 2Õ(k1/3)−k (see [Hua13]), we obtain the following corollary.

Corollary 3.3.4. For sufficiently large n and k ≥ 93, there exists an efficient algorithm that
refutes random instances of CSP(Hκ) with Õ(n2) constraints with high probability. This falsifies
Assumption 3.1.1 in the case of the Huang predicate.

Remark 3.3.5. If we instead choose to scale Q by a factor of 1
5 ·

κ2−3κ+2
2κ2−6κ−44

rather than substituting

κ = 9 into (3.12), we can achieve a better separation of δ = κ2−3κ−46
2κ2−6κ−44

. For κ ≥ 9, this expression

is strictly increasing and it approaches 1
2 as κ grows.

3.3.3 Hamming weight predicates

The remaining predicates we would like to examine are symmetric, meaning they are functions only
of their Hamming weights. Again for each predicate P we present a multivariate polynomial that
δ-separates P for some 0 ≤ δ ≤ 1. Each of these polynomials can also be written as a univariate
polynomial on the Hamming weight of its input, which we will use to show that each of the following
polynomials δ-separates its predicate for the appropriate value of δ. We give the construction below.

Definition 3.3.6. For z ∈ {−1, 1}k where z = z1, . . . , zk, define Sz =
∑k

i=1 zi and call Sz the
Hamming weight of z.

Note that this is analogous to the notion of a Hamming weight of a vector in {0, 1}k, but differs
in that it is not simply the count of the number of 1’s. We define a general predicate that is satisfied
when Sz is at least some fixed threshold value θ.

Definition 3.3.7. For all odd k and any θ ∈ {−k,−k + 2, . . . , k − 2, k}, define the predicate
Thrθk : {−1, 1}k → {0, 1} as follows:

Thrθk(z) =

{
1 if Sz ≥ θ
0 otherwise
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For example, Majk is the same as Thr1
k and Thr−kk is the trivial predicate satisfied by all

z ∈ {−1, 1}k.
Because the multilinear separating polynomials we will use are symmetric, we present a trans-

formation to an equivalent univariate polynomial on the Hamming weight of the original input.

Lemma 3.3.8. Let Q : {−1, 1}k → R be of the following form for some a, b, c, d ∈ R:

Q(z) = a
∑
T⊆[n]
|T |=1

zT + b
∑
T⊆[n]
|T |=2

zT + c
∑
T⊆[n]
|T |=3

zT + d
∑
T⊆[n]
|T |=4

zT . (3.13)

Define Qu : R→ R as follows:

Q(z) =
d

24
S4
z +

c

6
S3
z +

(
b

2
+
d

3
− dk

4

)
S2
z +

(
a+

c

6
· (−3k + 2)

)
Sz −

bk

2
+
dk

24
(3k − 6).

Then Q(z) = Qu(Sz) for all z ∈ {−1, 1}k.

Proof. We can write (3.13) as follows:

Q(z) = aK1

(
k − Sz

2
; k

)
+ bK2

(
k − Sz

2
; k

)
+ cK3

(
k − Sz

2
; k

)
+ dK4

(
k − Sz

2
; k

)
, (3.14)

where Ki(ν; k) =
∑i

j=0(−1)j
(
ν
i

)(
k−ν
i−j
)

denotes the Krawtchouk polynomial of degree i [Kra29,

KL96]. Substituting ν = k−Sz
2 , yields the following expressions. In [KL96] the first three expressions

are given explicitly and the fourth can be easily obtained by applying their recursive formula.

K1

(
k − Sz

2
; k

)
= Sz, K3

(
k − Sz

2
; k

)
=
S3
z − (3k − 2)Sz

6
,

K2

(
k − Sz

2
; k

)
=
S2
z − k

2
, K4

(
k − Sz

2
; k

)
=
S4
z + (8− 6k)S2

z + 3k2 − 6k

24
.

Finally, substituting these expressions into (3.14) and by some algebra,

Q(z) =
d

24
S4
z +

c

6
S3
z +

(
b

2
+
d

3
− dk

4

)
S2
z +

(
a+

c

6
· (−3k + 2)

)
Sz −

bk

2
+
dk

24
(3k − 6). (3.15)

As a consequence, by choosing values of a, b, c, and d, we can work with a univariate polynomial
while ensuring that its multivariate analogue is unbiased and has degree at most 4 (degree 3 when
d = 0).

Almost-Majority and hardness of learning intersections of halfspaces

Definition 3.3.9. Daniely et al. define the following predicate in order to show hardness of im-
properly learning intersections of four halfspaces.

I8k =

(
3∧
i=0

Thr−1
k (zki+1 . . . zki+k)

)
∧ ¬

(
7∧
i=4

Thr−1
k (zki+1 . . . zki+k)

)
.
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The reduction relies on the assumption that for all d > 0, it is hard to distinguish random
instances of CSP(I8k) with nd constraints from satisfiable instances. Because the input variables
to each instance of Thr−1

k above are disjoint, it is sufficient to show that each of the first four
groups of k variables cannot support a 3-wise uniform distribution and consequently neither can
I8k; therefore, from Theorem 3.2.9 we deduce that there exists an efficient algorithm that refutes
random instances of CSP(I8k) with Õ(n3/2) constraints with high probability. Daniely et al. define a
pairwise uniform distribution supported on I8k as well as a pairwise uniform distribution supported
on Thr−1

k , so t = 3 is optimal.

Theorem 3.3.10. Assume k ≥ 5 and k is odd. There exist δ = δ(k) > 0 where δ is Ω(k−4) and
a degree-3 multilinear polynomial Q : {−1, 1}k → R that δ-separates Thr−1

k . Consequently, Thr−1
k

does not support a 3-wise uniform distribution.

Proof. Let

Q(z) = (k2 − k − 1)
∑
T⊆[n]
|T |=1

zT + (1− k)
∑
T⊆[n]
|T |=2

zT + (1 + k)
∑
T⊆[n]
|T |=3

zT

and define Qu : R→ R as follows:

Qu(s) =
1 + k

6
s3 +

(
1− k

2

)
s2 +

(
k2 − k − 1 +

1 + k

6
· (−3k + 2)

)
s− (1− k)k

2

=
1 + k

6
s3 +

(
1− k

2

)
s2 +

(
3k2 − 7k − 4

6

)
s− (1− k)k

2
.

Then by Lemma 3.3.8, for all z ∈ {−1, 1}k, Q(z) = Qu(Sz). It therefore suffices to lower bound
Qu(s) both when s ≥ −1 and for all s ∈ [−k, k].

First we show that Qu is monotonically increasing in s.

dQu
ds

= k+1
2 s2 + (1− k)s+ 3k2−7k−4

6

= 1
6

[
(k − 4)

(
3(s− 1)2 + 2

3 + 3k
)

+ 15
((
s− 3

5

)2
+ 53

75

)]
,

which is evidently positive for k ≥ 5.

Because Q is monotonically increasing in s, Qu(s) ≥ Qu(−k) for all s ∈ [−k, k].

Qu(−k) =
−k − 1

6
k3 +

(
1− k

2

)
k2 −

(
3k2 − 7k − 4

6

)
k − (1− k)k

2

= −1
6

[
k4 + 7k3 − 13k2 − k

]
, (3.16)

= −1
6

[
k(k − 2)(k2 + 9k + 5) + 9k

]
, (3.17)

which is clearly negative for k ≥ 5. Now it just remains to lower-bound Qu(s) for s ≥ −1. Again,
since Qu is monotonically increasing in s, we use the value Qu(−1):

Qu(−1) = −k−1
6 +

(
1−k

2

)
−
(

3k2−7k−4
6

)
− (1−k)k

2 = 1.

By applying Lemma 3.3.1, there exists an unbiased multilinear polynomial Q : {−1, 1}k → R of
degree 3 that 6

k4+7k3−13k2−k+6
-separates Thr−1

k .
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Because VAR0(I8k) is evidently Ω(k) and I8k <
1
7 for all k ≥ 5, we have the following Corollary.

Corollary 3.3.11. For odd k ≥ 5 and sufficiently large n, there exists an efficient algorithm
that distinguishes between random instances of CSP(I8k) with Õ(n3/2) constraints and satisfiable
instances with high probability.

Remark 3.3.12. Thr−1
3 is the same as 3-OR and Thr−1

5 is the same as is the same as 2-out-of-5-
SAT, so this approach can be used to Ωk(1)-refute 3-SAT instances and 2-out-of-5-SAT instances
with Õk(n

3/2) constraints, which improves upon the O(n3/2+ε) constraints required for refutation
of 2-out-of-5-SAT in [GJ02, GJ03].

3.3.4 Majority and hardness of approximately agnostically learning halfspaces

Daniely et al. show that approximate agnostic improper learning of halfspaces is hard for all ap-
proximation factors φ ≥ 1 based on the assumption that for all d > 0 and for sufficiently large
odd k, it is hard to distinguish between random instances of CSP(Thr1

k) with nd constraints and
instances with value at least 1− 1

10φ . This is based on the fact that maxD Ez∼D [Thr1(z)] = 1− 1
k+1 ,

where D is a pairwise independent distribution on {−1, 1}k, and applying SRCSP Assumption 2.
Here we show that for odd k ≥ 25, Thr1

k is 0.1-far from supporting a 4-wise uniform distribution.
The value 0.1 is not sharp, but is chosen as a compromise between a reasonably large value and a
reasonably simple proof.

Theorem 3.3.13. There exists a degree-4 multilinear polynomial Q : {−1, 1}k → R that 0.1-
separates Thr1

k for all odd k ≥ 25.

Proof. Let

Q(z) =
8

27
√
k

∑
T⊆[n]
|T |=1

zT − 5

9k3/2

∑
T⊆[n]
|T |=3

zT +
4

3k2

∑
T⊆[n]
|T |=4

zT

and let

Qu(s) =
1

18k2
s4 − 5

54k3/2
s3 +

(
− 1

3k
+

4

9k2

)
s2 +

(
31

54
√
k
− 5

27k3/2

)
s+

1

6
− 1

3k
(3.18)

=
1

54

[
3

k2
s4 − 5

k3/2
s3 +

(
−18

k
+

24

k2

)
s2 +

(
31√
k
− 10

k3/2

)
s+ 9− 18

k

]
.

Then by Lemma 3.3.8, for all z ∈ {−1, 1}k, Q(z) = Qu(Sz). To simplify Q, let σ = sk−1/2. Then
we can rewrite (3.18) as follows:

Qu(s) = 1
54

[
3σ4 − 5σ3 +

(
−18 + 24

k

)
σ2 +

(
31− 10

k

)
σ + 9− 18

k

]
. (3.19)

First we lower-bound Qu(s) for all σ ∈ R using the following expression, which is equivalent
to (3.19) by some algebra.

Qu(s) = 1
54

[
3(σ + 29

18)2(σ − 22
9 )2 + 383

108

(
σ + 1832

1149

)2 − 38987378
837621 + 24

k

(
(σ − 5

24)2 − 457
576

)]
> 1

54

[
3(σ + 29

18)2(σ − 22
9 )2 + 383

108

(
σ + 1832

1149

)2 − 47 + 24
k

(
−457

576

)]
> −48

54 = −8
9 ,

where the last inequality follows from the fact that k ≥ 24 and the first two terms are always
nonnegative.
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Next we lower-bound Qu(s) for s > 0.

Qu(s) = 1
54

[
3σ4 − 5σ3 +

(
−18 + 24

k

)
σ2 +

(
31− 10

k

)
σ + 9− 18

k

]
= 1

54

[
3(σ − 1

4)2(σ − 25
12)2 + 41

120((σ − 839
410)2 + 21507

1344800 + 27
4 + 9σ(σ − 21

10)2
]
> 1

8 .

Applying Lemma 3.3.1, there exists Q : {−1, 1}k → R such that Q has degree 4 and Q 9
73 -separates

Thr1
k.

Corollary 3.3.14. For sufficiently large n and k, there exists an efficient algorithm that distin-
guishes between random instances of CSP(Thr1

k) with Õ(n2) constraints and instances with value
at least 0.9 with high probability.

3.3.5 Predicates satisfied by strings with Hamming weight at least −Θ(
√
k).

In light of the fact that the threshold based predicates above are not 4-wise supporting, one may
attempt to find another threshold-based predicate. Here we show that a symmetric threshold
predicate that is 4-wise supporting must be satisfied by all strings with Hamming weight at least

−
√
k

2 . Furthermore, there exists a symmetric threshold predicate that is 4-wise supporting with a

threshold of −Θ(
√
k) and we sketch its construction.

We also consider the predicate Thr
−1

2

√
k

k . While it is not used in [DLSS14], we show that it
does not support a 4-wise uniform distribution in the interest of obtaining a tighter bound for the
Hamming weight above which an unbiased, symmetric predicate is not 4-wise supporting. The
threshold of −1

2

√
k is particularly interesting in that it asymptotically matches the threshold θ

below which Thrθk is 4-wise supporting.

Theorem 3.3.15. Assume k ≥ 99 and k is odd. Then there exists a degree-4 polynomial Q :

{−1, 1}k → R that 1
225 -separates Thr

−1
2

√
k

k . Consequently, Thr
−1

2

√
k

k is 1
255 -far from 4-wise support-

ing.

Proof. Define Q : {−1, 1}k → R and Qu : R→ R as follows:

Q(z) = 3
2k
−1/2

∑
T⊆[n]
|T |=1

zT + 1
2k
−1
∑
T⊆[n]
|T |=2

zT + 2k−3/2
∑
T⊆[n]
|T |=3

zT + 8k−2
∑
T⊆[n]
|T |=4

zT

Qu(s) = s4

3k2 + s3

3k3/2 +
(
− 7

4k + 8
3k2

)
s2 +

(
1

2k1/2 + 2
3k3/2

)
s+ 3

4 −
2
k

Again, for simplicity we set σ = sk−1/2 and obtain the following expression:

Qu(s) = 1
3σ

4 + 1
3σ

3 − 7
4σ

2 + 1
2σ + 3

4 + 1
k

(
8
3σ

2 + 2
3σ − 2

)
. (3.20)

Observe that for k ≥ 99, 1
k

(
8
3σ

2 + 2
3σ − 2

)
= 2

3k

((
2σ − 1

4

)2 − 49
16

)
> − 1

48 . We now lower-bound

the value of Qu for s ≥ −1
2k

1/2, or equivalently, σ ≥ −1
2 :

Qu(s) = 1
3σ

4 + 1
3σ

3 − 7
4σ

2 + 1
2σ + 3

4 + 1
k

(
8
3σ

2 + 2
3σ − 2

)
= 1

3

(
σ − 35

29

)2 (
σ + 1

2

) (
σ + 200

69

)
+ 61

12006

(
σ + 1

2

) ((
σ + 4631

3538

)2
+ 1526073

12517444

)
+ 1

k

(
8
3σ

2 + 2
3σ − 2

)
+ 1

24 .

The first two terms are clearly nonnegative when σ ≥ −1
2 , so

> 1
24 −

1
48 = 1

48 .
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We also show that Qu(s) ≥ −14
3 for all s ∈ R.

Qu(s) = 1
3σ

4 + 1
3σ

3 − 7
4σ

2 + 1
2σ + 3

4 + 1
k

(
8
3σ

2 + 2
3σ − 2

)
=
(
σ + 19

9

)2 (
σ − 29

18

)2
+ 211

486

(
σ + 397

211

)2
+ 195823

8306226 + 1
k

(
8
3σ

2 + 2
3σ − 2

)
− 14

3

≥
(
σ + 19

9

)2 (
σ − 29

18

)2
+ 211

486

(
σ + 397

211

)2
+ 1079081

365473944 −
14
3 .

The first three terms are always nonnegative, so Qu(s) ≥ −14
3 .

Applying Lemma 3.3.1, T
−1

2

√
k

k is 1
255 -far from supporting a 4-wise uniform distribution.

Now we demonstrate that there exists a 4-wise uniform distribution supported on Thr1−2
√
k+1

k

when k = 2m − 1 for some integer m ≥ 3.

Claim 3.3.16. Assume k = 2m − 1 for some integer m ≥ 3. Then there exists a 4-wise uniform
distribution supported only on z ∈ {−1, 1}k such that Sz ≥ 1− 2

√
k + 1.

Proof. Let C be a binary BCH code of length k with designed distance 2ι + 1 and let C⊥ be its
dual. Then the uniform distribution on the codewords of C is 2ι-wise uniform [ABI86, MS77]; see
also [AS04, Chapter 16.2].

Let c = c1 . . . ck be a codeword of C⊥, where each ci ∈ {−1, 1}. The Carlitz-Uchiyama
bound [MS77, page 280] states that for all c ∈ C⊥,

k∑
i=1

1
2(1− ci) ≤ k+1

2 + (ι− 1)
√
k + 1.

Observe that the quantity 1
2(1− ci) simply maps ci from {−1, 1} to {0, 1} so that we can write the

bound to match the presentation in [MS77]. Therefore,

Sc =
k∑
i=1

ci

= k − 2
k∑
i=1

1
2(1− ci)

≥ k − (k + 1)− (2ι− 2)
√
k + 1

= −1− (2ι− 2)
√
k + 1.

Setting ι = 2, we can obtain 4-wise uniformity on this distribution and each string in the support
of the distribution has Hamming weight at least −1− 2

√
k + 1.

Remark 3.3.17. In order to construct a 4-wise uniform distribution for any value of k, one could
simply express k as a sum of powers of 2, construct separate distributions on disjoint variables
as described above for each power of 2 (down to the minimum length for which we can achieve
distance at least 5, after which point we use the uniform distribution, and obtain a 4-wise uniform
distribution. The total Hamming weight of a vector supported by this distribution would then be
at least −O(

√
k).
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3.4 SOS refutation proofs

3.4.1 SOS certification of quasirandomness

All of our SOS results rely on the following theorem, which is the SOS version of Theorem 3.2.1.

Theorem 3.4.1. For k ≥ 2 and p ≥ n−k/2, let {w(T )}T∈[n]k be independent random variables such

that for each T ∈ [n]k,

E[w(T )] = 0 (3.21)

Pr[w(T ) 6= 0] ≤ p (3.22)

|w(T )| ≤ 1. (3.23)

Then, with high probability,

{x2
i ≤ 1}i∈[n] `2k

∑
T∈[n]k

w(T )xT ≤ 2O(k)√pn3k/4 log3/2 n.

This theorem was essentially proven by Barak and Moitra [BM16]. We give a proof in Ap-
pendix 3.5.3. We first use this theorem to show that an SOS version of Lemma 3.2.4 holds.

Lemma 3.4.2. Let S ⊆ [k] with |S| = s > 0. Let τ ∈ N and let {wU (i)}U∈[n]s,i∈[τ ] be independent

random variables satisfying conditions (3.6), (3.7), and (3.8) for some p ≥ 1
τns/2

. Then, with high
probability,

{x2
i ≤ 1}i∈[n] `2s

∑
U∈[n]s

xU
τ∑
j=1

wU (j) ≤

{
2O(s)√τp · n3s/4 log5/2 n if s ≥ 2

4 max{√τp, 1} · n log n if s = 1.

Proof. We sketch the differences from the proof of Lemma 3.2.4 given in Section 3.2.4. For s ≥ 2,
the lemma follows by using Theorem 3.4.1 instead of Theorem 3.2.1. If s = 1, it suffices to show
that

{x2
i ≤ 1} `2 v(i)xi ≤ |v(i)| .

for any v since summing over all i as in (3.10) finishes the proof. If vi ≥ 0, observe that

|vi| − v(i)xi =
|v(i)|

2
(xi − 1)2 +

|v(i)|
2

(1− x2
i ).

If v(i) < 0, we use (xi + 1)2 instead of (xi − 1)2.

The lemma implies an SOS version of Lemma 3.2.3. To make this precise, we define a specific
polynomial representation of D̂I,x(S):

D̂I,x(S)poly =
1

m

∑
T∈[n]k

∑
c∈{±1}k

1{(T,c)∈I}c
SxST ,

where xST =
∏
i∈S xTi . Note that this is a polynomial in the xi’s.

We can show these polynomials are not too large.
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Lemma 3.4.3. Let ∅ 6= S ⊆ [k] with |S| = s. Then

{x2
i ≤ 1}i∈[n] `2s D̂I,x(S)poly ≤ 2O(k) max{ns/4,

√
n} log5/2 n

m1/2

{x2
i ≤ 1}i∈[n] `2s D̂I,x(S)poly ≥ −2O(k) max{ns/4,

√
n} log5/2 n

m1/2
.

with high probability, assuming also that m ≥ max{ns/2, n}.

Proof. The proof is essentially the same as that of Lemma 3.2.3. The expression we bound in that
proof is exactly D̂I,x(S)poly. We use Lemma 3.4.2 instead of Lemma 3.2.4 to show that this can be
done in degree-2s SOS.

Based on Lemma 2.1.13, we will think of Lemma 3.4.3 as giving an SOS proof of quasirandom-
ness. Below, we use it to prove SOS versions of Theorems 3.2.6 and 3.2.9.

3.4.2 Strong refutation of any k-CSP

We now define the natural polynomial representation of ValI(x):

Valpoly
I (x) =

1

m

∑
T∈[n]k

∑
c∈{±1}k

1{(T,c)∈I}

∑
S⊆[k]

P̂ (S)cSxST

 ,

where xST is as above.
We can then give an SOS proof strongly refuting CSP(P ).

Theorem 3.4.4. Given an instance I ∼ FP (n, p) of CSP(P ),

{x2
i ≤ 1}i∈[n] `2k Valpoly

I (x) ≤ E[P ] + γ

with high probability when m ≥ 2O(k)nk/2 log5 n
γ2 .

Proof. By rearranging terms, we see that

Valpoly
I (x) = E[P ] +

∑
∅6=S⊆[k]

P̂ (S)D̂I,x(S)poly.

Note that this is just Plancherel’s Theorem in SOS. The theorem then follows from Lemma 3.4.3
and the observation that

∑
S⊆[k] |P̂ (S)| ≤ 2O(k).

3.4.3 Ω(1)-refutation of non-t-wise supporting CSPs

Theorem 3.4.5. Let P be δ-far from being t-wise supporting. Given an instance I ∼ FP (n, p) of
CSP(P ),

{x2
i = 1}i∈[n] `max{k,2t} Valpoly

I (x) ≤ 1− δ + γ.

with high probability when m ≥ 2O(k)nt/2 log5 n
γ2 and t ≥ 2.

To prove this theorem, we will need to following claim, which says that any true inequality in
k variables over {−1, 1}k can be proved in degree-k SOS. Recall that the multilinearization of a
monomial zs11 z

s2
2 · · · z

sk
k ∈ R[z1, . . . , zk] is defined to be zs1 mod 2

1 zs2 mod 2
2 · · · zsk mod 2

k , i.e., we replace
all z2

i factors by 1. We extend this definition to all polynomials in R[z1, . . . , zk] by linearity.
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Claim 3.4.6. Let f : {−1, 1}k → R such that f(z) ≥ 0 for all z ∈ {−1, 1}k and let fpoly be the
unique multilinear polynomial such that f(z) = fpoly(z) for all z ∈ {−1, 1}k. Then

{z2
i = 1}i∈[k] `k fpoly(z) ≥ 0.

Proof. Since f(x) ≥ 0, there exists a Boolean function g : {−1, 1}k → R such that g(z)2 = f(z)
for all z ∈ {−1, 1}k. Let gpoly be the unique multilinear polynomial such that g(z) = gpoly(z) for
all z ∈ {−1, 1}k. Since gpoly(z)2 = fpoly(z) for all z ∈ {−1, 1}k, uniqueness of the multilinear
polynomial representation of f implies that the multilinearization of (gpoly)2 is equal to fpoly.
Written another way, we have that {z2

i = 1}i∈[k] `k fpoly(z) = gpoly(z)2. This implies that

{z2
i = 1}i∈[k] `k fpoly(z) ≥ 0.

Proof of Theorem 3.4.5. The proof is an SOS version of Proof 2 of Theorem 3.2.9 above. Claim 3.4.6
implies that for Q of degree at most t that δ-separates P ,

{z2
i = 1}i∈[k] `k Q(z)− P (z) + 1− δ ≥ 0.

Summing over all constraints, we get

{x2
i = 1}i∈[n] `k Valpoly

I (x)− (1− δ) ≤ 1

m

∑
T∈[n]k

∑
c∈{±1}k

1{(T,c)∈I}

∑
S⊆[k]

Q̂(S)cSxST

 ,

Rearranging terms as in the proof of Theorem 3.4.4, we see that the right hand side is equal to∑
S⊆[k]

Q̂(S)D̂I,x(S)poly.

Since Q has mean 0, |Q| ≤ 2k and
∑

S⊆[k] |P̂ (S)| ≤ 2O(k). The theorem then follows from
Lemma 3.4.3.

With Corollary 3.1.10, the theorem implies that we can Ωk(1)-refute any CSP(P ) in SOS when
P is not t-wise supporting.

Corollary 3.4.7. Let P be a predicate that does not support any t-wise uniform distribution. Given
an instance I ∼ FP (n, p) of CSP(P ),

{x2
i = 1}i∈[n] `max{k,2t} ValI(x) ≤ 1− 2−Õ(kt) + γ

with high probability when m ≥ 2Õ(kt)nt/2 log5 n and t ≥ 2.

3.5 Proof of Theorem 3.2.1

We restate Theorem 3.2.1:

Theorem 3.2.1. For k ≥ 2 and p ≥ n−k/2, let {w(T )}T∈[n]k be independent random variables

such that for each T ∈ [n]k,

E[w(T )] = 0 (3.24)

Pr[w(T ) 6= 0] ≤ p (3.25)

|w(T )| ≤ 1. (3.26)
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Then there is an efficient algorithm certifying that∑
T∈[n]k

w(T )xT ≤ 2O(k)√pn3k/4 log3/2 n. (3.27)

for all x ∈ Rn with ‖x‖∞ ≤ 1 with high probability.

The proof of this theorem constitutes the remainder of this section. It will often be convenient
to consider T ∈ [n]k to be (T1, T2) ∈ [n]k1 × [n]k2 with k1 +k2 = k. In such situations, we will write
w(T ) = w(T1, T2). For intuition, the reader can think of the special case of w(T ) ∈ {−1, 0, 1} for
all T and y ∈ {−1, 1}n. Under these additional constraints,

∑
T∈[n]k w(T )xT is Opt(I) − 1

2 for a
random k-XOR instance I so we are certifying that a random k-XOR instance does not have value
much bigger than 1

2 .

3.5.1 The even arity case

When k is even, we can think of
∑

T∈[n]k w(T )xT as a quadratic form:∑
T∈[n]k

w(T )xT =
∑

T1,T2∈[n]k/2

w(T1, T2)yT1yT2 , (3.28)

where yU = xU . We give two methods to certify that the value of this quadratic form is at most
Ok(
√
pn3k/4 log n). The first method uses an SDP-based approximation algorithm and works only

for x ∈ {−1, 1}n. The second method uses ideas from random matrix theory and works for any x
with ‖x‖∞ ≤ 1.

Approximation algorithms approach. If x ∈ {−1, 1}n, we can apply an approximation al-
gorithm of Charikar and Wirth [CW04] for quadratic programming. They prove the following
theorem:

Theorem 3.5.1. [CW04, Theorem 1] Let M be any n × n matrix with all diagonal elements 0.
There exists an efficient randomized algorithm that finds y ∈ {−1, 1}n such that

E[y>My] ≥ Ω

(
1

log n

)
max

x∈{−1,1}n
x>Mx.

By Markov’s Inequality, this statement holds with probability at least 1/2. We can run the
algorithm O(log n) times to get a high probability result. To apply Theorem 5.2.3, we separate out
the diagonal terms of (3.28), rewriting it as∑

T1 6=T2∈[n]k/2

w(T1, T2)yT1yT2 +
∑

U∈[n]k/2

w(U,U)y2
U . (3.29)

We can certify that each of the two terms in this expression is at most O(
√
pn3k/4 log n). For the

first term, we will need the following claim.

Claim 3.5.2. With high probability, it holds that∑
T1,T2∈[n]k/2

w(T1, T2)yT1yT2 ≤ O(
√
pn3k/4).
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This follows from applying Bernstein’s Inequality (Theorem 3.2.12) for fixed y and then taking

a union bound over all y ∈ {−1, 1}nk/2 . Using the claim, we see that Theorem 5.2.3 allows us to
certify that the value of the first term in (3.29) is at most O(

√
pn3k/4 log n).

We will use the next claim to bound the second term of (3.29).

Claim 3.5.3. With high probability, it holds that∑
U∈[n]k/2

|wU,U | ≤ O(
√
pn3k/4).

Since the |wT | ≤ 1 and Pr[wT 6= 0] ≤ p, the claim follows from the Chernoff Bound. The
second term of (3.29) is upper bounded by

∑
U∈[n]k/2 |wU,U | and we can compute this quantity in

polynomial time to certify that its value is at most O(
√
pn3k/4).

Random matrix approach. Observe that (3.28) is y>By for a matrix B indexed by U ∈ [n]k/2

so that BU1,U2 = w(U1, U2). Then y>By ≤ ‖B‖ ‖y‖2. To certify that y>By is small, we compute
‖B‖. We need to show that ‖B‖ is small with high probability. First, note that ‖B‖ is equal to
the norm of the 2nk/2 × 2nk/2 symmetric matrix

B̃ =

(
0 B
B> 0

)

For example, this appears as (2.80) in [Tao12]. The upper triangular entries of B̃ are independent
random variables with mean 0 and variance at most p by the properties of the wS ’s. We can then
apply a standard bound on the norm of random symmetric matrices [Tao12].

Proposition 3.5.4. [Tao12, Proposition 2.3.13] Let M be a random symmetric matrix n×n whose
upper triangular entries Mij with i ≥ j are independent random variables with mean 0, variance at
most 1, and magnitude at most K. Then, with high probability,

‖M‖ = O(
√
n log n ·max{1,K/

√
n}).

Let B̃′ = 1√
pB̃. The upper triangular entries of B̃′ are independent random variables with mean

0, variance at most 1, and magnitude at most 1/
√
p. Applying Proposition 3.5.4 to B̃′ shows that

‖B‖ = O
(
knk/4

√
p log n ·max

{
1, 1√

pnk/4

})
with high probability. Since ‖y‖∞ ≤ 1 by assumption,

‖y‖2 ≤ nk/2 and (3.28) is at most O(k
√
pn3k/4 log n) with high probability when p ≥ n−k/2.

3.5.2 The odd arity case

Fix an assignment x ∈ [−1, 1]n. For i ∈ [n], the monomials containing xi can contribute at most

Wi :=
∣∣∣∑T∈[n]k−1 w(T, i)xT

∣∣∣ to the objective if xi is set optimally. By Cauchy-Schwarz,

∑
T∈[n]k

w(T )xT ≤
∑
i∈[n]

Wi ≤
√
n

√∑
i∈[n]

W 2
i , (3.30)
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so it suffices to bound
∑

i∈[n]W
2
i . We will write this as a quadratic polynomial and then bound it

using spectral methods:∑
i∈[n]

W 2
i =

∑
T,U∈[n]k−1

∑
i∈[n]

w(T, i)w(U, i)xTxU

=
∑

T ′1,T
′
2,U
′
1,U
′
2∈[n]

k−1
2

∑
i∈[n]

w(T ′1, U
′
1, i)w(T ′2, U

′
2, i)x

(T ′1,T
′
2)x(U ′1,U

′
2). (3.31)

Define the nk−1 × nk−1 matrix A indexed by [n]k−1:

A(i1,i2),(j1,j2) =

{∑
`∈[n]w(i1, j1, `)w(i2, j2, `) if (i1, j1) 6= (i2, j2)

0 otherwise,
(3.32)

where we have divided the indices of A into 2 blocks of k−1
2 coordinates each. Define x⊗k−1 ∈ R[n]k−1

so that x⊗k−1(T ) = xT . Then (5.2) is equal to

(x⊗k−1)>Ax⊗k−1 +
∑

T,U∈[n]
k−1

2

(xT )2(xU )2
∑
i∈[n]

w(T,U, i)2. (3.33)

The first term is at most ‖A‖nk−1 since the variables are bounded. We can compute ‖A‖ to certify
this. With high probability, ‖A‖ is not too big.

Lemma 3.5.5. Let k ≥ 3 and p ≥ n−k/2. Let {w(T )}T∈[n]k be indepedent random variables
satisfying conditions (3.6), (3.7), and (3.8) above. Let A be defined as in (3.32). With high
probability,

‖A‖ ≤ 2O(k)pnk/2 log3 n.

We can therefore certify that the first term is 2O(k)pn3k/2−1 log3 n. We will prove the lemma in
Section 3.5.4.

The second term of (3.33) is at most
∑

T∈[n]k w(T )2. We can easily compute this and the

Chernoff Bound implies that its value is at most pn3k/2−1 with high probability.

So far, with high probability we can certify that
∑

i∈[n]W
2
i = 2O(k)pn3k/2−1 log3 n. Plugging

this bound into (3.30) concludes the proof.

Remark 3.5.6. It would have been more natural to have written
∑

i∈[n]W
2
i = (x⊗k−1)>A′x⊗k−1

for A′ such that A′T,U =
∑

i∈[n]w(T, i)w(U, i). However, ‖A′‖ could be too large because of the
contribution of the second term in (3.33). We use the additional assumption that ‖x‖∞ ≤ 1 to get
around this issue.

Remark 3.5.7. We have defined A so that A(i1,i2),(j1,j2) =
∑

`∈[n]w(i1, j1, `)w(i2, j2, `), not Ai,j =∑
`∈[n]w(i, `)w(j, `). The reduces the correlation among entries w(b, c) and w(b, c′) for c 6= c′.

Intuitively, A looks more like a random matrix with independent entries, so we can bound its norm
using the trace method. See the proof of Lemma 3.5.5 in Section 3.5.4.

3.5.3 An SOS version

In this section, we will prove the SOS version of Theorem 3.2.1.
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Theorem 3.4.1. For k ≥ 2 and p ≥ n−k/2, let {w(T )}T∈[n]k be independent random variables

such that for each T ∈ [n]k,

E[w(T )] = 0

Pr[w(T ) 6= 0] ≤ p
|w(T )| ≤ 1.

Then, with high probability,

{x2
i ≤ 1}i∈[n] `2k

∑
T∈[n]k

w(T )xT ≤ 2O(k)√pn3k/4 log3/2 n.

Rather than writing out the full proof, we will indicate the small changes required to convert
the above proof of Theorem 3.2.1 into SOS form.

Even arity. The random matrix proof for the even case can easily be converted into an SOS proof
with degree k. When O(k

√
pnk/4 log n)I − B � 0, there exists a matrix M such that M>M =

O(k
√
pnk/4 log n)I −B. Then

O(k
√
pnk/4 log n) ‖y‖2 − y>By = (My)>(My) =

∑
T∈[n]k/2

 ∑
U∈[n]k/2

MT,UyU

2

so
{x2

i ≤ 1}i∈[n] `k
∑
T∈[n]k

w(T )xT ≤ O(k
√
pn3k/4 log n).

Odd arity. A couple of additional issues arise in the odd case. First of all, the square root in
(3.30) is not easily expressed in SOS, so we instead prove the squared version ∑

T∈[n]k

w(T )xT

2

≤ 2O(k)n3k/2 log3 n. (3.34)

By a simple extension of [OZ13, Fact 3.3], (3.34) implies (3.27) in SOS :

Fact 3.5.8.
X2 ≤ b2 `2 X ≤ b.

Proof.
1

2b
(b2 −X2) +

1

2b
(b−X)2 =

b

2
− 1

2b
X2 +

b

2
−X +

1

2b
X2 = b−X.

Secondly, we do not know how to prove the Cauchy-Schwarz inequality (3.30) in SOS. However,
O’Donnell and Zhou show that a very similar inequality can be proved in SOS [OZ13, Fact 3.8]:

Fact 3.5.9.

`2 Y Z ≤
1

2
Y 2 +

1

2
Z2.

Using this fact instead of Cauchy-Schwarz to prove the squared version of (3.30), we can follow
the argument above to show that

{x2
i ≤ 1}i∈[n] `2k

 ∑
T∈[n]k

w(T )xT

2

≤ n
(
x⊗k−1

)>
Ax⊗k−1 + n

∑
T∈[n]k

w(T )2.

The norm bound can be proven in SOS exactly as in the even case.
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3.5.4 Proof of Lemma 3.5.5

We restate the definition of the matrix A and the statement of the lemma.

Lemma 3.5.5. Let k ≥ 3 and p ≥ n−k/2. Let {w(T )}T∈[n]k be indepedent random variables

satisfying conditions (3.6), (3.7), and (3.8) above. Let A be the [n]k−1 × [n]k−1 indexed by [n]k−1

that is defined as follows:

A(i1,i2),(j1,j2) =

{∑
`∈[n]w(i1, j1, `)w(i2, j2, `) if (i1, j1) 6= (i2, j2)

0 otherwise.

Then with high probability,
‖A‖ ≤ 2O(k)pnk/2 log3 n.

The proof closely follows the arguments of [COGL04, Lemma 17] and [BM16, Section 4]. Both
proofs use the trace method: To bound the norm of a symmetric random matrix M , it suffices to
bound E[tr(M r)] for large r. For non-symmetric matrices, we can instead work with MM>. In
our particular case, we have the following.

Claim 3.5.10. If E[tr((AA>)r)] ≤ nO(k)2O(r)r6rp2rnkr, then ‖A‖ ≤ 2O(k)pnk/2 log3 n with high
probability.

Proof. Observe that ‖A‖2r ≤ tr((AA>)r). By Markov’s Inequality, Pr[‖A‖ ≥ B] ≤ E[tr((AA>)r)]
B2r .

We get the claim by plugging in r = Θ(log n) and setting constants appropriately.

Remark 3.5.11. We can get arbitrarily small 1/poly(n) probability of failure: This proof shows
that ‖A‖ ≤ K2O(k)pnk/2 log3 n with probability at most n− logK .

In the the remainder of this section, we will bound E[tr((AA>)r)].

Lemma 3.5.12. Under the conditions of Lemma 3.5.5, E[tr((AA>)r)] ≤ nO(k)2O(r)r6rp2rnkr with
high probability.

Proof. Recall that we index A by elements of nk−1 divided into two blocks of k−1
2 coordinates each.

First, note that

tr((AA>)r) =
∑

i1,...,i2r∈[n]
k−1

2

(AA>)(i1,i2),(i3,i4)(AA
>)(i3,i4),(i5,i6) · · · (AA>)(i2r−1,i2r),(i1,i2).

Expanding this out using the definition of A and setting wT = w(T ), we get that

tr((AA>)r) =
∑

wi1,j1,`1wi2,j2,`1wi3,j1,`2wi4,j2,`2 · · ·wi2r−1,j2r−1,`2r−1wi2r,j2r,`2r−1wi1,j2r−1,`2rwi2,j2r,`2r ,

where the sum is over `1, . . . , `2t ∈ [n] and i1, . . . , i2t, j1, . . . , j2t ∈ [n]k−1 satisfying

(is, js) 6= (is+1, js+1) for 1 ≤ s ≤ 2r − 1 (3.35)

(is+2, js) 6= (is+3, js+1) for 1 ≤ s ≤ 2r − 3 (3.36)

(i1, j2r−1) 6= (i2, j2r). (3.37)

Let Ω be the set of all (i1, . . . , i2r, j1, . . . , j2r) ∈ ([n]
k−1

2 )4r satisfying (3.35), (3.36), and (3.37). Then
for J ∈ Ω and L = (`1, . . . , `2r) ∈ [n]2r, define

PJ,L = wi1,j1,`1wi2,j2,`1wi3,j1,`2wi4,j2,`2 · · ·wi2r−1,j2r−1,`2r−1wi2r,j2r,`2r−1wi1,j2r−1,`2rwi2,j2r,`2r . (3.38)

44



Let |J | = |{i1, . . . , i2r, j1, . . . , j2r}| be the number of distinct elements of [n]
k−1

2 in J and define
|L| = |{`1, . . . , `2r}| similarly. We then have

E[tr((AA>)r)] =
∑
J∈Ω

∑
L∈[n]2r

E[PJ,L] =

4r∑
a=1

2r∑
b=1

∑
J∈Ω
|J |=a

∑
L∈[n]2r

|L|=b

E[PJ,L].

To bound this sum, we will start by bounding E[PJ,L]. We will need two claims.

Claim 3.5.13. The number of distinct wi,j,` factors in PJ,L is at least 2|L|.

Proof. For each ` ∈ L, (3.38) shows that PJ,L contains a pair of the form wis,js,`wis+1,js+1,` or
wis+2js,`wis+3,js+1,`. Since J ∈ Ω, we know that (is, js) 6= (is+1, js+1) or (is+2, js) 6= (is+3, js+1), so
each of these pairs must have two distinct wi,j,` factors. We then have at least 2|L| distinct wi,j,`
factors.

Claim 3.5.14. The number of distinct wi,j,` factors in PJ,L is at least |J | − 2.

Proof. Consider looking over the factors of PJ,L from left to right in the order of (3.38) until we
have seen all elements of J . The first pair wi1,j1,`1wi2,j2,`1 contains at most four previously-unseen
elements of J . Every subsequent pair of factors wis,js,`swis+1,js+1 or wis+2js,`s+1wis+3,js+1,`s+1 in PJ,L
shares two variables of J with its preceding pair. Each such pair can then contain at most two new
elements of J . After seeing u wi,j,`’s, we have therefore seen at most 4 + 2

(
u−2

2

)
distinct elements

of J . To get all |J | elements of J , we must have seen at least |J | − 2 wi,j,`’s and these must be
distinct.

Since Pr[wi,j,` 6= 0] ≤ p, E[PJ,L] ≤ p#{distinct wi,j,` factors in PJ,L}. It then follows that

E[PJ,L] ≤ pmax{2|L|,|J |−2}.

The two claims also imply two other facts we will need below.

Claim 3.5.15. If |L| > r, then E[PJ,L] = 0.

Proof. We will show that if |L| > r, there is an wi,j,` factor in PJ,L that occurs exactly once. Since
E[wi,j,`] = 0, this proves the claim.

Assume for a contradiction that |L| > r and every wi,j,` factor occurs at least twice. Since there
are at least 2|L| distinct wi,j,`’s, there must be at least 4|L| > 4r total wi,j,`’s. However, looking at
(3.38), PJ,L has at most 4r wi,j,` factors.

Claim 3.5.16. If |J | > 2r + 2, then E[PJ,L] = 0.

This can be proved in exactly the same manner.

Next, observe that the number of choices of J with |J | = a is at most n
a(k−1)

2 a4r ≤ n
a(k−1)

2 (4r)4r.
The number of choices of L with |L| = b is at most nbb2r ≤ nb(2r)2r. All together, we can write

E[tr((AA>)r)] ≤
2r+2∑
a=1

r∑
b=1

210rr6rn
a(k−1)

2
+bpmax{2b,a−2}.

We bound each term of the sum.
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Claim 3.5.17.

n
a(k−1)

2
+bpmax{2b,a−2} ≤ nkr+k−1p2r.

Proof. If 2b > a− 2,

n
a(k−1)

2
+bpmax{2b,a−2} ≤ n

(2b+2)(k−1)
2

+bpmax{2b,a−2} = nk−1(nkp2)b.

If 2b ≤ a− 2,

n
a(k−1)

2
+bpmax{2b,a−2} ≤ n

a(k−1)
2

+a
2
−1pa−2 = nk−1(nkp2)a/2−1.

Recall that we assumed nkp2 ≥ 1. Since a ≤ 2r + 2 and b ≤ r, the claim follows.

To conclude, observe that

E[tr[(AA>)r]] ≤
2r+2∑
a=1

r∑
b=1

210rr6rnkr+k−1p2r ≤ nO(k)2O(r)r6rp2rnr

Remark 3.5.18. If we did not have conditions (3.35), (3.36), and (3.37), we would only have been
able to show that |L| ≤ 2r. This would have led to a weaker bound of O(

√
n).

3.6 Certifying that random hypergraphs have small independence
number and large chromatic number

First, we recall some standard definitions. Let H = (V,E) be a hypergraph. We say that S is an
independent set of H if for all e ∈ E, it holds that e /∈ S. The independence number α(H) is then
the size of the largest independent set of H. A q-coloring of H is a function f : V → [q] such that
f−1(i) is an independent set for every i ∈ [q]. The chromatic number χ(H) is the the smallest
q ∈ N for which there exists a q-coloring of H.

We define H(n, p, k) to be the distribution over n-vertex, k-uniform (unordered) hypergraphs
in which each of the

(
n
k

)
possible hyperedges is included independently with probability p. Let m

be the expected number of hyperedges p
(
n
k

)
.

Coja-Oghlan, Goerdt, and Lanka used CSP refutation techniques to show the following results
[COGL07]:

Theorem 3.6.1. (Coja-Oghlan–Goerdt–Lanka [COGL07, Theorem 3]). For H ∼ H(n, p, 3), there
is a polynomial time algorithm certifying that α(H) < εn with high probability for any constant
ε > 0 when m > n3/2 ln6 n and m = o(n2).

Theorem 3.6.2. (Coja-Oghlan–Goerdt–Lanka [COGL07, implicit in Section 4]). For H ∼ H(n, p, 4),
there is a polynomial time algorithm certifying that α(H) < εn with high probability for any constant

ε > 0 when m ≥ O
(
n2

ε4

)
.

Theorem 3.6.3. (Coja-Oghlan–Goerdt–Lanka [COGL07, Theorem 4]). For H ∼ H(n, p, 4), there
is a polynomial time algorithm certifying that χ(H) > ξ with high probability for constant ξ when
m ≥ O(ξ4n2).

We generalize these results to k-uniform hypergraphs:
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Theorem 3.6.4. For H ∼ H(n, p, k), there is a polynomial time algorithm certifying that α(H) < β

with high probability when m ≥ Ok
(
n3k/2 log3 n

βk

)
.

Theorem 3.6.5. For H ∼ H(n, p, k), there is a polynomial time algorithm certifying that χ(H) > ξ
with high probability when m ≥ Ok

(
ξknk/2 log3 n

)
.

The proofs are simple extensions of the k = 3 and k = 4 cases from [COGL07]. We will first
prove Theorem 3.6.4 using Theorem 3.2.1 and this will almost immediately imply Theorem 3.6.5.

Proof of Theorem 3.6.4. Recall that Theorem 3.2.1 deals with k-tuples, not sets of size k. It is easy
to express a hypergraph in terms of k-tuples rather than sets of size k. For a set S and t ∈ Z≥0,

recall the notation
(
S
t

)
= {T ⊆ S | |T | = t}. For each possible hyperedge e ∈

([n]
k

)
, we associate an

arbitrary tuple Te from among the k! tuples in [n]k containing the same k elements. To draw from
H(n, p, k), we include each Te independently with probability p and include all other T ∈ [n]k with
probability 0.

For T ∈ [n]k, we define the random variable w(T ) as follows:

w(T ) =

{
p− 1{e∈E} if T = Te for some e ∈

([n]
k

)
0 otherwise.

Let x ∈ {0, 1}n be the indicator vector of an independent set I so that xT = 1 if T ⊆ I and xT = 0
otherwise. First, observe that∑

T∈[n]k

w(T )xT = p
∑

S∈([n]
k )

xS −
∑

e∈([n]
k )

1{e∈E}x
e = p

(
|I|
k

)
,

where the second term is 0 because I is an independent set. We proceed in a similar manner to
the proof of Theorem 3.2.1, except with a few small changes. First, note that the Cauchy-Schwarz
Inequality implies that ∑

T∈[n]k

w(T )xT ≤
∑
i∈[n]

|xi|Wi ≤
√
|I|
√∑
i∈[n]

W 2
i . (3.39)

Continuing as in the proof of Theorem 3.2.1, we bound
∑

i∈[n]W
2
i by

(x⊗k−1)>Ax⊗k−1 +
∑

T,U∈[n]
k−1

2

∑
i∈[n]

(xT )2(xU )2w(T,U, i)2.

The first term is upper bounded by ‖A‖ |I|k−1. Lemma 3.5.5 implies that this quantity is at most
2O(k)|I|k−1pnk/2 log3 n.

To bound the sum, note that it has at most
( |I|

(k−1)/2

)2
≤ |I|k−1 nonzero terms. Using (3.7)

and (3.8), its expected value is then at most |I|k−1np. Each term is independent, and, since

m ≥ Ok
(
n3k/2 log3 n

βk

)
and 1 ≤ |I| ≤ n imply that |I|k−1pnk/2 ≥ 1, the Chernoff Bound implies that

the total value is at most |I|k−1pnk/2 log n with high probability. Therefore, the bound∑
i∈[n]

W 2
i ≤ 2O(k)|I|k−1pnk/2 log3 n
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holds with high probability. Plugging this into (3.39), we see that we can certify that

p

(
|I|
k

)
≤ 2O(k)|I|k/2√pnk/4 log3/2 n.

Rearranging, we get

|I| ≤ Ok

(
n3/2 log3/k n

m1/k

)
and plugging in the value of m from the statement of the theorem completes the proof.

Proof of Theorem 3.6.5. For a coloring of a hypergraph H, each color class is an independent set
of H. If χ(H) ≤ ξ, then there exists a color class of size at least n

ξ and therefore α(H) ≥ n
ξ . We

can then certify that α(H) < n
ξ using Theorem 3.6.4.

3.7 Extension to larger alphabets

3.7.1 Preliminaries

CSPs over larger domains. We begin by discussing CSPs over domains of size q > 2. We
prefer to identify such domains with Zq, so our predicates are P : Zkq → {0, 1}. The extensions of
the definitions and facts from Section 2.1 are straightforward; the only slightly nonobvious notion
is that of a literal. We take the fairly standard [Aus08] definition that a literal for variable xi is
any xi + c for c ∈ Zq. Thus there are now qk possible “negation patterns” c for a P -constraint. We
denote by Fq,P (n, p) the distribution over instances of CSP(P ) in which each of the qknk constraints
is included with probability p; the expected number of constraints is therefore m = qknkp. We
have the following slight variant of Fact 2.1.6.

Fact 3.7.1. Let I ∼ Fq,P (n, p). Then the following statements hold with high probability.

1. m = |I| ∈ m ·
(

1±O
(√

logn
m

))
.

2. Opt(I) ≤ E[P ] ·
(

1 +O
(√

log q
E[P ] ·

n
m

))
.

3. I is O
(√

qk log q · nm
)

-quasirandom.

Fourier analysis over larger domains. Let Uq is the uniform distribution over Zq. We con-
sider the space L2(Zq,Uq) of functions f : Zq → R equipped with the inner product 〈f, g〉 =
Ez∼Uq [f(z)g(z)] and its induced norm ‖f‖2 = Ez∼Uq [f(z)2]1/2. Fix an orthonormal basis χ0, . . . , χq−1

such that χ0 = 1.
Now let L2(Zkq ,Ukq ) be the space of functions f : Zkq → R, where Ukq is the uniform distribution

over Zkq and we have the analogous inner product and norm. Then, for σ ∈ Zkq , define χσ : Zkq → R

such that
χσ(x) =

∏
i∈[k]

χσi(xi).

The set {χσ}σ∈Zkq forms an orthonormal basis for L2(Zkq ,Ukq ) [Aus08, Fact 2.3.1] and we can write

any function f : Zkq → R in terms of this basis:

f(x) =
∑
σ∈Zkq

f̂(σ)χσ(x).
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Orthonormality once again gives us Plancherel’s Theorem in this setting:

Theorem 3.7.2.

〈f, g〉 =
∑
σ∈Zkq

f̂(σ)ĝ(σ).

For σ ∈ Zkq , define supp(σ) = {i ∈ [k] | σi 6= 0} and |σ| = |supp(σ)|. Then we define the degree

of f to be max{|σ| | f̂(σ) 6= 0}. Note that this is the degree of f when it is written as a polynomial
in the χa’s for a ∈ Zq.

Given a k-tuple T and σ ∈ Zkq , we use T (σ) to denote the |σ|-tuple formed by taking the
projection of T onto the coordinates in supp(σ). Similarly, use T (σ) to denote the (k − |σ|)-tuple
formed by taking the projection of T onto coordinates in [k] \ supp(σ).

See [O’D14, Aus08] for more background on Fourier analysis over larger domains.

3.7.2 Conversion to Boolean functions

To more easily apply our above results, we would like to rewrite a function f : Zkq → R as a Boolean

function f b : {0, 1}k′ → R for some k′. It will actually be more convenient to define f b on a subset
of {0, 1}k′ . In particular, consider the set Ωk = {v ∈ {0, 1}[k]×Zq |

∑
a∈Zq v(i, a) = 1 ∀i ∈ [k]}.

Note there is a bijection φ between Zkq and Ωk: For z ∈ Zkq , (φ(x))(i, a) = 1{zi=a}. In the other
direction, given v ∈ Ωk set φ−1(v)i =

∑
a∈Zq a · v(i, a).

For a function f : Zkq → R, we can then define its Boolean version f b : Ωk → R as

f b(v) =
∑
α∈Zkq

f(α)
∏
i∈[k]

v(i, αi),

Observe that f(z) = f b(φ(z)) for z ∈ Zkq . Also, note that if f(z) = g(z) for all z ∈ Zkq , f b = gb over

all Rk by construction. f b is a multilinear polynomial and its degree is defined in the standard
way. The degree of f is defined as in the previous section.

Claim 3.7.3. The degree of f b is equal to the degree of f .

Proof. Abbreviate supp(σ) as s(σ) and denote supp(σ)’s complement with respect to [k] as s(σ).
Applying the definition and writing f ’s Fourier expansion, we see that f b(v) is equal to

∑
α∈Zkq

∑
σ∈Zkq

f̂(σ)χσ(α)
∏
i∈[k]

v(i, αi) =
∑
σ∈Zkq

f̂(σ)
∑

α′∈Z|σ|q

χσ(α′)

|σ|∏
i=1

v(s(σ)i, α
′
i)

∑
α′′∈Zk−|σ|q

k−|σ|∏
i=1

v(s(σ)i, α
′′
i ).

Now observe that ∑
α′′∈Zk−|σ|q

k−|σ|∏
i=1

v(s(σ)i, α
′′
i ) =

k−|σ|∏
i=1

∑
a∈Zq

v(s(σ)i, a) = 1

by the assumption that v ∈ Ωk. The degree of f b is therefore |σ|.
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3.7.3 Quasirandomness and strong refutation

To prove quasiandomness and strong refutation results for CSPs over larger alphabets, we proceed
exactly as in the binary case. We used the t = k case of Lemma 2.1.13 (the Vazirani XOR Lemma
[Vaz86, Gol11]) to certify quasirandomness for binary CSPs. A generalization of this case holds for
Abelian groups [Rao07, Lemma 4.2].

Lemma 3.7.4. Let G be an Abelian group and let UG be the uniform distribution over G. Also,
let {χσ}σ∈G be an orthonormal basis for L2(G,UG) and let D : G→ R be a distribution over G. If
D̂(σ) ≤ ε for all σ ∈ G, then dTV(D,UG) ≤ 1

2 |G|
3/2ε.

Viewing the induced distribution density DI,x(σ) as a function of x ∈ Znq for fixed σ ∈ Zkq , we

will consider Db
I,y(σ) : Ωn → R. As before, we can certify that Db

I,y has small Fourier coefficients.

Lemma 3.7.5. Let σ ∈ Zkq such that σ 6= 0 and |σ| = s. There is an algorithm that with high
probability certifies that ∣∣∣D̂b

I,y(σ)
∣∣∣ ≤ qO(k) max{ns/4,

√
n} log5/2 n√

m

for all y ∈ {0, 1}[n]×Zq when m ≥ max{ns/2, n}.

Proof. The proof is essentially identical to the proof of Lemma 3.2.3. We highlight the differences.
First of all, we can write

D̂b
I,y(σ) =

∑
x∈Znq

D̂I,x(σ)
∏
i∈[n]

y(i, xi) =
1

m

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
x∈Znq

χσ(xT + c)
∏
i∈[n]

y(i, xi).

Since χσ only depends on coordinates in supp(σ), we can rearrange and use the fact that
∑

a∈Zq yi,a =
1 to get

D̂b
I,y(σ) =

1

m

∑
α∈Z|σ|q

∑
U∈[n]|σ|

|σ|∏
i=1

y(Ui, αi)
∑
T∈[n]k

T (σ)=U

wσ,α(T ),

where wσ,α(T ) =
∑

c∈Zkq 1{(T,c)∈I}χσ(α + c(σ)). Observe that E[wσ,α(T )] = 0 and Pr[wσ,α(T ) 6=
0] ≤ qkp. Since ‖χσ‖ = 1, observe that the Cauchy-Schwarz Inequality implies that |χσ| ≤ qk/2 for
all σ. Then |wσ,α(T )| ≤ q3k/2 for all α and σ. For every α, we can then apply Lemma 3.2.4 just as
in the proof of Lemma 3.2.3.

These two lemmas then imply the larger alphabet versions of the quasirandomness certification
and strong refutation results above.

Theorem 3.7.6. There is an efficient algorithm that certifies that an instance I ∼ Fq,P (n, p) of

CSP(P ) is γ-quasirandom with high probability when m ≥ qO(k)nk/2 log5 n
γ2 .

Theorem 3.7.7. There is an efficient algorithm that, given an instance I ∼ Fq,P (n, p) of CSP(P ),

certifies that Opt(I) ≤ E[P ] + γ with high probability when m ≥ qO(k)nk/2 log5 n
γ2 .
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3.7.4 Refutation of non-t-wise supporting CSPs

We will show that the dual polynomial characterization of being far from t-wise supporting described
in Section 3.1.2 generalizes to larger alphabets. We extend the definitions of t-wise supporting and
δ-separating polynomials to the Zq case in the natural way.

Lemma 3.7.8. For P : Zkq → {0, 1} and 0 ≤ δ < 1, there exists a polynomial Q : Zkq → R of degree
at most t that δ-separates P if and only if P is δ-far from supporting a t-wise uniform distribution.

Proof. The proof uses the following dual linear programs exactly as in the proof of Lemma 3.1.9.

minimize
∑
z∈Zkq

(1−P (z))D(z) (3.40)

s.t.
∑
z∈Zkq

D(z)χσ(z) = qkD̂(σ) = 0 ∀σ ∈ Zkq 0 < |σ| ≤ t (3.41)

∑
z∈Zkq

D(z) = 1

D(z) ≥ 0 ∀z ∈ Zkq

maximize ξ

s.t.
∑
σ∈Zkq

0<|σ|≤t

c(S)χσ(z) ≤ 1− P (z)− ζ ∀z ∈ Zkq .

To prove Lemma 3.1.9, we needed to show in the binary case that feasible solutions to the primal
LP (3.1) were t-wise uniform. We now argue that the constraint (3.41) is a sufficient condition for
t-wise uniformity of D in the q-ary case. For a distribution D over Zkq and S ⊆ [k], define DS to be

the marginal distribution of D on (Zkq )S , i.e., DS(z) =
∑

z′∈Zkq ,z′S=z D(z′). We need to show that

(3.41) implies that DS = U |S|q for all S ⊆ [k] with 1 ≤ |S| ≤ t.
Fix such an S and let |S| = s. Consider the basis {χα}α∈Zsq . Lemma 3.7.4 implies that it

suffices to show that Ez∼Usq [DS(z)χα(z)] = 0 for all α ∈ Zsq. Observe that Ez∼Usq [DS(z)χα(z)] =

Ez′∼Ukq [D(z′)χσ(z′)] for σ ∈ Zkq such that σi = αi for i ∈ S and σi = 0 otherwise. Since |S| ≤ t, we

know that |σ| ≤ t and (3.41) implies Ez′∼Ukq [D(z′)χσ(z′)] = 0.

The rest of the proof is exactly as in the binary case.

We can again use these separating polynomials to obtain almost δ-refutation for predicates that
are δ-far from t-wise supporting.

Theorem 3.7.9. Let P be δ-far from being t-wise supporting. There exists an efficient algorithm
that, given an instance I ∼ Fq,P (n, p) of CSP(P ), certifies that Opt(I) ≤ 1 − δ + γ with high

probability when m ≥ qO(k)nt/2 log5 n
γ2 and t ≥ 2.

The proof is essentially identical to Proof 2 of Theorem 3.2.9.

Corollary 3.2.11 also extends to larger alphabets.
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Corollary 3.7.10. Let P be a predicate that does not support any t-wise uniform distribution.
Then there is an efficient algorithm that, given an instance I ∼ Fq,P (n, p) of CSP(P ), certifies that

Opt(I) ≤ 1− 2−Õ(qtkt) with high probability when m ≥ 2Õ(qtkt)nt/2 log5 n and t ≥ 2.

This follows directly from Theorem 3.7.9 and the following extension of Corollary 3.1.10 to
larger alphabets.

Corollary 3.7.11. Suppose P : Zkq → {0, 1} is not t-wise supporting. Then it is in fact δ-far from

t-wise supporting for δ = 2−Õ(qtkt).

The proof is essentially identical to the proof of Corollary 3.1.10: Observe that the LP (3.40)
has at most qtkt variables and proceed exactly as before.

3.7.5 SOS proofs

Here we give SOS versions of our refutation results for larger alphabets.

Certifying Fourier coefficients are small. To give an SOS proof that Fourier coefficients of

Db
I,y are small, we again need to define a specific polynomial representation of D̂b

I,y(σ).

D̂I,y(σ)poly =
1

m

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
α∈Z|σ|q

χσ(α+ c(σ))

|σ|∏
i=1

y(T (σ)i, αi).

Lemma 3.7.12. Let 0 6= σ ∈ Zkq with |σ| = s. Then

{y(i, a)2 ≤ 1} i∈[n]
a∈Zq

`max{2s,k} D̂I,y(σ)poly ≤ qO(k) max{ns/4,
√
n} log5/2 n

m1/2

{y(i, a)2 ≤ 1} i∈[n]
a∈Zq

`max{2s,k} D̂I,y(σ)poly ≥ −q
O(k) max{ns/4,

√
n} log5/2 n

m1/2
.

with high probability, assuming also that m ≥ max{ns/2, n}.

Proof. In the proof of Lemma 3.7.5, we certify that |D̂I,y(σ)| is small by certifying that
∣∣∣D̂I,y(σ)poly

∣∣∣
is small. The proof of Lemma 3.7.5 relies only on Lemma 3.2.4; we can replace this with its SOS
version Lemma 3.4.2.

Remark 3.7.13. We stated the lemma with the weaker set of axioms {y(i, a)2 ≤ 1}i∈[n],a∈Zq .
Since y(i, a)2 = y(i, a) implies y(i, a)2 ≤ 1 in degree-2 SOS, the lemma holds with the axioms
{y(i, a)2 = y(i, a)}i∈[n],a∈Zq as well.

Strong refutation of any k-CSP. From our SOS proof that the Fourier coefficients D̂b
I,y(σ)

are small, we can get SOS proofs of strong refutation for any k-CSP. To do this, we need to define
a specific polynomial representation of ValbI(y) for an instance I of CSP(P ):

ValI(y)poly =
1

m

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
α∈Zkq

P (α+ c)
∏
i∈[k]

y(Ti, αi).
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Theorem 3.7.14. Given an instance I ∼ Fq,P (n, p) of CSP(P ),

{y(i, a)2 = y(i, a)} i∈[n]
a∈Zq

∪

∑
a∈Zq

y(i, a) = 1


i∈[n]

`2k ValI(y)poly ≤ E[P ] + γ

with high probability when m ≥ qO(k)nk/2 log5 n
γ2 .

Proof. First, use the Fourier expansion of P to write

ValI(y)poly =
1

m

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
α∈Zkq

∑
σ∈Zkq

P̂ (σ)χσ(α+ c)
∏
i∈[k]

y(Ti, αi).

For each T ∈ [n]k, c ∈ Zkq , and σ ∈ Zkq , we have a term of the form
∑

α∈Zkq χσ(α+c)
∏
i∈[k] y(Ti, αi).

Note that χσ only depends on the coordinates in supp(σ). We can then write this as ∑
α∈Z|σ|q

χσ(α+ c(σ))

|σ|∏
i=1

y(T (σ)i, αi)


k−|σ|∏

i=1

∑
a∈Zq

y(T (σ)i, a)


Using the axioms

∑
a∈Zq yi,a = 1, the second term is equal to 1 and we have∑

a∈Zq

y(i, a) = 1


i∈[n]

`k
∑
α∈Zkq

χσ(α+ c)
∏
i∈[k]

y(Ti, αi) =
∑
α∈Z|σ|q

χσ(α+ c(σ))

|σ|∏
i=1

y(T (σ)i, αi).

Summing over all T , c, and σ, we obtain the following.∑
a∈Zq

y(i, a) = 1


i∈[n]

`k ValI(y)poly =
1

m

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
σ∈Zkq

P̂ (σ)
∑
α∈Z|σ|q

χσ(α+c(σ))

|σ|∏
i=1

y(T (σ)i, αi).

This is equal to

E[P ] +
∑

0 6=σ∈Zkq

P̂ (σ)D̂I,y(σ)poly.

Since |P (z)| ≤ 1 and |χσ(z)| ≤ qO(k),
∑

σ∈Zkq |P̂ (σ)| ≤ qO(k). We can then apply Lemma 3.7.12 for

each σ to complete the proof.

SOS refutation of non-t-wise supporting CSPs.

Theorem 3.7.15. Let P be δ-far from being t-wise supporting. Then, given an instance I ∼
Fq,P (n, p) of CSP(P ),

{
y(i, a)2 = y(i, a)

}
i∈[n]
a∈Zq
∪{y(i, a)y(i, b) = 0} i∈[n]

a6=b∈Zq
∪

∑
a∈Zq

y(i, a) = 1


i∈[n]

`max{k,2t} ValI(y)poly ≤ 1−δ+γ.

with high probability when m ≥ qO(k)nt/2 log5 n
γ2 and t ≥ 2.
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To prove this theorem, we need a version of Claim 3.4.6 for larger alphabets.

Claim 3.7.16. Let f : Zkq → R such that f(z) ≥ 0 for all z ∈ Zkq and let f b(v) =
∑

α∈Zkq f(α)
∏
i∈[k] v(i, αi).

Then {
v(i, a)2 = v(i, a)

}
i∈[k]
a∈Zq

∪ {vi,avi,b = 0} i∈[k]
a6=b∈Zq

`k f b(v) ≥ 0.

Proof. Since f(z) ≥ 0 for all z ∈ Zkq , there exists a function g : Zkq → R such that g2(z) = f(z)

for all z ∈ Zkq . We then write gb(v) =
∑

α∈Zkq g(α)
∏
i∈[k] v(i, αi). Using v(i, a)2 = v(i, a), it follows

that

gb(v)2 =
∑
α∈Zkq

g(α)2
∏
i∈[k]

v(i, αi) +
∑

α′ 6=α′′∈Zkq

g(α′)g(α′′)
∏
i∈[k]

v(i, α′i)v(i, α′′i )

The first term is equal to f b(σ). For the second term, note that each of the products
∏
i∈[k] v(i, α′i)v(i, α′′i )

must contain factors v(i, a)v(i, b) with a 6= b since α′ 6= α′′. We have the axiom v(i, a)v(i, b) = 0,
so the second term is 0. Then f b = (gb)2 and the claim follows.

With this claim, the proof of the theorem exactly follows that of Theorem 3.2.9.

Proof of Theorem 3.7.15. Claim 3.7.16 implies that

{
v(i, a)2 = v(i, a)

}
i∈[k]
a∈Zq
∪{v(i, a)v(i, b) = 0} i∈[k]

a6=b∈Zq
∪

∑
a∈Zq

v(i, a) = 1


i∈[k]

`k P b(v)−(1−δ) ≤ Qb(v)

Summing over all constraints, we get that

A `k mValI(y)poly −m(1− δ) ≤
∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
α∈Zkq

Q(α+ c)

k∏
i=1

y(i, αi)

where A =
{
y(i, a)2 = y(i, a)

}
i∈[n]
a∈Zq

∪ {y(i, a)y(i, b) = 0} i∈[n]
a6=b∈Zq

∪
{∑

a∈Zq y(i, a) = 1
}
i∈[n]

. Using

the Fourier expansion of Q, we see that the right-hand side of the inequality is

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
α∈Zkq

∑
σ∈Zkq

Q̂(σ)χσ(α+ c)
k∏
i=1

y(Ti, αi)

Just as in the proof of Theorem 3.7.14, we can rewrite this in degree-k SOS as

∑
T∈[n]k

∑
c∈Zkq

1{(T,c)∈I}
∑
σ∈Zkq

Q̂(σ)
∑
α∈Z|σ|q

χσ(α+ c(σ))

|σ|∏
i=1

y(T (σ)i, αi).

We then rearrange to get ∑
06=σ∈Zkq

Q̂(σ)D̂I,y(σ)poly.

Since E[Q] = 0 and Q ≥ −1, we know that |Q| ≤ qO(k) and therefore |Q̂(σ)| ≤ qO(k). We can then
apply Lemma 3.7.12 for each σ to complete the proof.
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3.8 Simulating FP (n, p) with a fixed number of constraints

The setting of [DLSS14] fixes the number of constraints in a CSP instance, whereas the model
described in Chapter 2 includes each possible constraint in the instance with some probability p.
Here we show that results from our setting easily extend to that of [DLSS14] by giving an algorithm
that simulates the behavior of our model when the number of constraints is fixed.

Recall that an instance I ∼ FP (n, p) is generated as follows. For each S ∈ [n]k and each
c ∈ {−1, 1}k, constraint (c, S) is included with probability p, so the expected number of constraints
is p · (2n)k.

In the model where the number of constraints is fixed, the instance is guaranteed to have m
distinct constraints for some value of m. The instance J is chosen uniformly from all subsets of
{−1, 1}k × [n]k with size exactly m

Theorem 3.8.1. Suppose there exists an efficient algorithm R that, on a given CSP instance
I ∼ FP (n, p), for all p ≥ pmin, certifies that Opt(I) ≤ η for some 0 ≤ η < 1 with high probability.
Then there exists an efficient algorithm A that certifies that a random instance J of CSP(P ) with

µ constraints has Opt(J ) ≤ η + 2
(
µ−1 lnµ

)1/2
with high probability when µ

(
1−

(
µ−1 lnµ

)1/2) ≥
(2n)kpmin.

Proof. On a random instance with µ constraints, we can generate an instance I that simulates
this behavior by choosing an appropriate value for p, drawing m ∼ Binomial

(
p, (2n)k

)
and then

discarding µ −m of the constraints. For brevity, let d =
(
µ−1 lnµ

)1/2
. Algorithm 1 describes the

behavior of A.

Algorithm 1

Algorithm A
1: p← µ(1− d)(2n)−k.
2: draw m ∼ Binomial

(
p, (2n)k

)
3: if m > µ or m < µ(1− 2d) then
4: return “fail.”
5: end if
6: I ← J
7: for i = m+ 1 . . . µ do
8: Remove a random constraint from I chosen uniformly
9: end for

10: Run R on I
11: if R certifies that Opt(I) ≤ η then
12: return “Opt(J ) ≤ η + 2d.”
13: else
14: return “fail.”
15: end if

The fraction of removed constraints is at most 2d, so even if all of the removed constraints
would have been satisfied, their contribution to Opt(J ) is at most 2d. Consequently, A will never
incorrectly output “Opt(J ) ≤ η + 2d.”

Furthermore, the probability of failing to refute an instance with value at most 1− η + 2d due
to exiting at step 2 is ok,t(1). We treat m as a sum of (2n)k independent Bernoulli variables with
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probability p and denote E[m] by m. Applying a Chernoff bound yields the following.

Pr[m > µ] = Pr[m > m/(1− d)]

= Pr[m > m(1 + d
1−d)]

≤ exp
(
−µ−1µ lnµ(1−(µ lnµ)−1/2)

3

)
< exp (−Θ(lnµ)) = 1/poly(µ).

Similarly,

Pr[m < µ(1− 2d)] = Pr[m < m(1− d
1−d)]

≤ exp (−Θ(lnµ)) = 1/poly(µ).

If µ(1 −
(
µ−1 lnµ

)1/2
) ≥ (2n)kpmin, then p ≥ pmin and R will be able to certify Opt(I) ≤ η with

high probability.
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Chapter 4

Sum of squares lower bounds for
refuting any CSP

4.1 Overview of results

In this chapter, we prove lower bounds on the SOS degree required to refute random instances of
CSP(P ). Actually, our results hold in a slightly more general model. Let Ω be a finite alphabet
and let P be a collection of nontrivial predicates Ωk → {0, 1}. An input I to the problem CSP(P)
consists of n variables x1, . . . , xn, along with a list E of m constraints (P, S), where P is a predicate
from P, and S ∈ [n]k is a scope of k distinct variables. We often think of the associated “factor
graph”: that is, the bipartite graph with n “variable-vertices”, m “constraint-vertices” of degree k,
and edges defined by the scopes. Typical examples involve a binary alphabet Ω = {0, 1}, a fixed
predicate P : {0, 1}k → {0, 1}, and P = P±, where by P± we mean the collection of all 2k

predicates obtained by letting P act on possibly-negated input bits (“literals”). The CSP(P )
problem introduced in Chapter 1 is CSP(P±) in the notation of this chapter. For example, if P is
the k-bit logical OR function, then CSP(P±) is simply the k-SAT problem.

Using this notation, we restate the results we will prove in this chapter.

Theorem 1.5.4 ([KMOW17]). Let P be a k-ary Boolean predicate and let 1 < t ≤ k. Let I be
a random instance of CSP(P±) with m = ∆n constraints. Then with high probability, degree-

Ω̃
(

n
∆2/(t−1)

)
SOS fails to (δP (t) + o(1))-refute I.

When δP (t) = 0, our result does not need the additive o(1) in refutation strength.

Theorem 1.5.5 ([KMOW17]). Let P be a k-ary predicate and let C(P ) be the minimum integer
3 ≤ τ ≤ k for which P fails to support a τ -wise uniform distribution. Then if I is a random

instance of CSP(P±) with m = ∆n constraints, with high probability degree-Ω̃
(

n
∆2/(C(P )−2)

)
SOS

fails to (weakly) refute I.

4.2 Technical framework

Up to this point, we described our results as being SOS lower bounds for random CSPs, with
constraints chosen randomly from a fixed predicate family P. However it is conceptually clearest
to divorce our results from the “random CSP” model as quickly as possible.
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• Our lower bound applies whenever the underlying factor graph (bipartite constraint/variable
graph) does not contain certain small forbidden subgraphs, which we call “implausible” sub-
graphs. Granted, the only examples we know of such graphs are random graphs (whp).
Further, the condition of “does not contain any implausible subgraphs” is highly related to
the condition of “has very good vertex expansion”. Still, we believe the right way to think
about the requirement is in terms of forbidden subgraphs.

• Our lower bound doesn’t really involve CSPs and constraints, per se. For each constraint-
vertex f in the underlying factor graph, rather than assuming it comes equipped with a
constraint predicate P applied to its vertex-variable neighbors, we assume it comes equipped
with a probability distribution µf on assignments to its vertex-variable neighbors. We can
have a different µf for every constraint-vertex f if we want (indeed, the constraints need not
even have the same arity).

• Our SOS lower bounds now take the following form: Assume we are given a factor graph G
with no implausible subgraphs, and assume each constraint-vertex f has an associated dis-
tribution µf that is t-wise uniform. Then the low-degree SOS proof system “thinks” that
there is a global assignment to the variables such that, at every constraint-vertex f , the local
assignment to the neighboring variable-vertices is in the support of µf . (Indeed, it “thinks”
that there is a probability distribution on global assignments such that for almost all f , the
marginal distribution on f ’s neighbors is equal to µf .)

Let us make some of these notions more precise.

4.2.1 Constraint satisfaction notation

Unlike our upper bounds in Chapter 3, our lower bounds have no dependence on alphabet size. We
therefore prove them for CSPs over arbitrary alphabets. Here, we introduce some notation.

Notation 4.2.1. We fix an alphabet Ω of cardinality q ≥ 2, and a maximum constraint arity K ≥ 3.

The reader is strongly advised to focus on the case q = 2, with Ω = {±1}, as the only real dif-
ficulty posed by larger alphabets is notational. Also, although we describe K as a maximum arity,
there will be no loss in thinking of every constraint as having arity K. Rather than our full Theo-
rem 1.5.4 concerning δ-refutation, the reader is advised to mainly keep in mind our Theorem 1.5.5,
which is concerned with (weak) refutation of CSPs for which the predicates support a (τ − 1)-wise
uniform distribution. Given our proof of Theorem 1.5.5, the more general Theorem 1.5.4 will fall
out fairly easily.

Notation 4.2.2. We fix an integer τ satisfying 3 ≤ τ ≤ K.

The reader is advised to focus on the simplest case of τ = 3 (corresponding to predicates
supporting pairwise-uniform distributions), as the value of τ makes no real difference to our proofs.

Notation 4.2.3 (Instance). The instance we work with consists of two parts: a factor graph and
its constraint distributions. The factor graph, denoted G, is a bipartite graph with edges going
between n variable-vertices and m constraint-vertices. For a constraint-vertex f we write N(f) for
the neighborhood of f , which we take to be an ordered list of the variable-vertices adjacent to f . We
assume that the degree (“arity”) of every constraint-vertex f satisfies τ −1 ≤ |N(f)| ≤ K. Finally,
each constraint-vertex f also comes with a constraint distribution µf on ΩN(f). It is assumed that
each µf is (τ − 1)-wise uniform.
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To orient the reader vis-à-vis our description of CSPs in Section 4.1, consider our Theorem 1.5.5
in which we have CSP(P±) instances, where P : {±1}k → {0, 1} is a k-ary Boolean predicate with
complexity C(P ) = τ . This means there exists some (τ − 1)-wise uniform distribution µ on {±1}k
supported on satisfying assignments for P . Note that for any “literal pattern” ` ∈ {±}k, the
distribution µ` gotten by negating inputs to µ according to ` is also (τ − 1)-wise uniform. In the
CSP(P±) instance, to every constraint with literal pattern ` the associated “constraint distribution”
will be µ`. (In the more general context of Theorem 1.5.4 where we have a k-ary predicate P with
δ = δP (t), this means there is some distribution µ on {±1}k which is t-wise uniform and which is
δ-close to being supported on P . We will take τ = t+ 1 and take the constraint distributions to be
µ` again.)

4.2.2 Plausible factor graphs

As mentioned earlier, our SOS lower bounds will hold whenever the factor graph G has no “im-
plausible” subgraphs. The meaning of this will be discussed in much greater detail in Section 4.4,
but here we will give the briefest possible definition.

Notation 4.2.4. We introduce two parameters: 1 ≤ SMALL ≤ n/2 and 0 < ζ < 1. (For the sake
of intuition, the reader might think of, e.g., SMALL = nΩ(1) and ζ = 1

logn .) The parameters are
assumed to satisfy K ≤ ζ · SMALL.

Plausibility Assumption. Henceforth the factor graph G is assumed to satisfy the following
property: Let H be an edge-induced subgraph in which every constraint-vertex has minimum de-
gree τ . Suppose H has c constraint-vertices, v variable-vertices, and e edges, with c ≤ 2 · SMALL.
Then (τ − ζ)c ≥ 2(e− v).

We call the subgraphs H for which the inequality holds plausible because they are indeed the
ones that may plausibly show up when the factor graph G is randomly chosen:

Proposition 4.2.5. (Roughly stated; see Theorem 4.4.12 for a precise statement.) A random G

with constraint density ∆ will satisfy the Plausibility Assumption whp provided SMALL� n

∆2/(τ−2−ζ) .

The Plausibility Assumption is highly similar to the assumption that G has good vertex-
expansion, and indeed our proof of Theorem 4.4.12 in Appendix 4.8 is a completely standard
variant of the well-known proof that random bipartite graphs have good vertex-expansion.

4.2.3 Main result

We can now describe our main result with the terminology and set-up developed above.

Theorem 4.2.6 (Roughly stated; cf. Theorem 4.6.1.). Suppose we are given an instance, with factor
graph G satisfying the Plausibility Assumption, and constraint distributions µf for each constraint-

vertex. Then for D = 1
3ζ · SMALL, there exists a degree-D pseudoexpectation Ẽ on global variable

assignments such that for every constraint-vertex f , the following (suitably encoded) polynomial
identity is satisfied: “The marginal distribution on assignments to the variable-neighbors of f is
supported within supp(µf ).” (Indeed, for almost all f , a stronger identity is satisfied, that the
marginal simply equals µf .)

In particular, if our instance comes from an actual random CSP with predicates, where for
each f the distribution µf is supported on satisfying assignments for the predicate at f , then the
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degree-D SOS algorithm “thinks” that the CSP is completely satisfiable. This is of course despite
the fact that, whp, the CSP is not satisfiable.

Given Proposition 4.2.5 and Theorem 4.2.6, we can now point out how the constraint density
vs. SOS-degree tradeoff arises in our Theorem 1.5.5. For CSP(P±) with C(P ) = τ and ∆n random
constraints, we get an SOS lower bound for degree roughly ζ · n

∆2/(τ−2−ζ) . The best choice of ζ is

roughly 1/ log ∆, and this indeed yields a degree bound of Ω̃
(

n
∆2/(C(P )−2)

)
. More precise details of

parameter-setting are given in Section 4.7.

4.3 Sketch of our techniques

Throughout this section, we describe our techniques in the context of CSPs on n Boolean variables
and k-ary predicates that are (τ − 1)-wise uniform. As stated before, almost all of our ideas are
present in this special case. Our goal is to build a degree-d pseudoexpectation operator Ẽ as
described in Theorem 4.2.6.

4.3.1 Constructing the pseudoexpectation

As in all previous works on CSP lower bounds for hierarchies, we use a variant of the natural
pseudoexpectation introduced by Benabbas et al. [BGMT12]. This pseudoexpectation is always
defined in terms of a certain “closure” operator on instance graphs; previous works have used
slightly different notions of “closure”. Our method introduces yet another definition of closure that
we believe is the “right” one; at the very least, it seems to be precisely the right definition for
facilitating our proofs.

Closures

We can describe a pseudoexpectation by prescribing its values on the basis of monomials of degree
at most d. We work with the Fourier basis; i.e., ±1 notation.

In the context of CSPs, a natural way to come up with a pseudoexpectation is via the idea of
local distributions. If Ẽ is a degree-d pseudoexpectation, then for every collection S of at most d/2
variables, Ẽ agrees with the expectation of an actual probability distribution. In particular, the
pseudoexpectation of a monomial xS :=

∏
i∈S xi for S ⊆ [n] (or indeed any function on S) can

then be described as the expectation of xS with respect to the local distribution ηS that Ẽ induces
on the set S of variables. For such a definition to make sense, the local distributions must satisfy
consistency : the pseudoexpectation of xT should equal the expectation of xT with respect to the
local distribution ηS for any S that includes T and is of size at most d.

We would like to choose local distributions ηS that are supported on satisfying assignments
of all constraints completely included in S (we call these the constraints covered by S). At first
blush, we could choose the uniform distribution over the set of satisfying assignments for the
constraints covered by S. However, this choice doesn’t satisfy the consistency constraints. The
t-wise uniform distributions that are supported on satisfying assignments of the predicate P now
come to our rescue: if we obtain a local probability distribution that induces µ on the literals of
any constraint in our CSP instance, we should intuitively expect be in good shape because t-wise
uniformity roughly guarantees that any constraint that intersects S in t or less variables has a
satisfying assignment that agrees with the assignment sampled for S. A natural choice is to define
the probability of an assignment to S to be the product of the probabilities (with respect to µ)
of the partial assignments corresponding to the constraints covered by S. This doesn’t work as-is,
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either: there could be constraints that intersect S in many variables and yet are not completely
contained inside S. A sample from ηS thus might already force such a constraint to not be satisfied.

To correct for this, we want to collect all such “dependencies” before choosing the local dis-
tribution. Benabbas et al. [BGMT12] make this idea precise by defining a notion of closure for a
set of variables S: intuitively, these are all the variables that one should care about when defining
the local distribution on S. Concretely, their closure maps S into a larger set S′ such that for any
T ⊇ S′, the marginal of ηT on S is equal to the marginal of ηS′ on S. We then choose ηS′ to be
the local distribution on S′ and define ηS to be the marginal of ηS′ on S. For such an effort to
be feasible, S′ shouldn’t be much bigger than S: if in the extreme case the closure happened to
be the whole set of variables [n], we cannot define a distribution on satisfying assignments of all
constraints covered by S′.

The closure of Benabbas et al. [BGMT12] guarantees local consistency as we wanted. Local
consistency is all that is required for showing a Sherali–Adams lower bound and is equivalent to
the following local positivity condition, which is weaker than positive semidefiniteness: Ẽ[p] ≥ 0
for p for every truly nonnegative polynomial p depending on at most d variables. However, when
trying to show that the more global Ẽ[p2] positive-semidefiniteness condition holds, the [BGMT12]
construction seems hard to analyze.

To address this problem, Barak, Chan, and Kothari [BCK15] introduced a simpler variant of the
[BGMT12] closure in order to show that the Ẽ defined above satisfies the positive-semidefiniteness
condition for certain pruned random instances of the CSP(P±), when P supports a pairwise-uniform
distribution. However, their definition of closure degenerates into the set of all variables with high
probability when the random CSP has ∆ = ω(1).

Our closure. One of the main innovations in our work is the introduction of a new, simpler
definition of closure that plays a key role in our proof of positive semidefiniteness and gives a
definition of Ẽ that works even when the number of constraints is superlinear in n. In addition,
our definition of closure enables us to extend our results to δ-refutation.

Our closure for a set of variables S is a subgraph of the factor graph of the CSP instance,
including both variables and constraints. We think of the closure of S as being the set of variables
and constraints that “matter” when defining the distribution ηS . Given that a predicate P sup-
ports a (τ − 1)-wise uniform distribution, any constraint that affects ηS must have at least τ − 1
variables in S. Otherwise, (τ − 1)-wise uniformity implies that we could ignore such a constraint
without changing ηS . Any variable v not in S that occurs in only one constraint isn’t necessary
for defining ηS , either. We could sum ηS over the two assignments to v to get a new distribution
that no longer depends on v. This leads to a natural choice of the closure as the union of all small
subgraphs of the factor graph such that each constraint contains at least τ − 1 variables and each
variable outside of S occurs in at least two constraints. For a formal definition, see Section 4.5.

4.3.2 Proving positivity

Once we have the definition of the pseudoexpectation, we get to the main challenge in showing
any SOS lower bound: arguing positive-semidefiniteness of the Ẽ constructed. The high level idea
in our analysis builds on the work of Barak, Chan and Kothari [BCK15]. Their idea of proving
positive-semidefiniteness is simple. They begin by observing that it suffices to verify positive-
semidefiniteness for a basis that satisfies orthogonality under Ẽ[·], meaning, the pseudoexpectation
of the product of any distinct pair of basis polynomials is 0.

Fact 4.3.1. Suppose there exists a basis f1, f2, . . . for degree-d polynomials such that the following
two properties hold:
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1. Ẽ[fifj ] = 0 for all i 6= j.

2. Ẽ[f2
i ] ≥ 0 for all i.

Then Ẽ[g2] ≥ 0 for all g of degree at most d.

Proof. Write g as
∑

i aifi. Then Ẽ[g2] =
∑
i,j

aiaj Ẽ[fifj ] =
∑
i

a2
i Ẽ[f2

i ] ≥ 0.

Notice that the standard Fourier monomial basis guarantees us positivity (since Ẽ satisfies the
local Sherali–Adams positivity condition by construction). However, it is not orthogonal in general.
How can we construct such a basis? One way to construct a basis that is orthogonal under Ẽ[·] is
to perform the Gram–Schmidt process on, say, the monomial basis 1, x1, x2, . . . , x1x2, . . . to get a
new basis f1, f2, . . . . Now, Property 1 above holds for this new basis by construction. However, the
Gram–Schmidt process is highly sequential and, in particular, the basis function towards the end
could depend on all n variables. Thus, we cannot appeal to local positivity of Ẽ in order to argue
positive-semidefiniteness of the newly generated basis. It appears that we have made no progress,
ensuring orthogonality but potentially losing positivity.

The idea of Barak et al. to escape this pitfall is to show that local orthogonalization is enough.
Before the start of the Gram–Schmidt process, we fix an order on basis vectors. In each step of
the process, one orthogonalizes a basis function against all previous basis functions in this order
by subtracting off its projection onto their span. Barak et al. analyze the variant of this process in
which one orthogonalizes a basis function xS by subtracting off its projection onto the span of all
basis functions the precede it in the order and are functions of variables that lie in a small “ball”
around S in the factor graph G of the instance. This lets them ensure that the new basis satisfies
positivity (since it now depends only on a small number of variables, one can appeal to the local
positivity of Ẽ), and they show that this relaxed variant of the Gram–Schmidt process still ensures
orthogonality.

Their proof, however, is highly combinatorial and requires various assumptions on the factor
graph of the instance that intuitively shouldn’t matter. In particular, they need that the factor
graph have no small cycles (girth should be logarithmic): while this can be ensured by pruning o(n)
fraction of the constraints in a random instance with Θ(n) constraints, this proof strategy breaks
down for super-linear number of constraints .

Our approach. Our main idea simplifies the analysis without requiring the assumptions of
[BCK15] and yields tight results. It also naturally extends to the case of t-wise uniform predi-
cates and further to δ-approximate t-wise uniform predicates. We next describe our key technical
ideas that makes this possible.

At a high level, our argument drops the local orthogonalization strategy of Barak et al. [BCK15]
and instead runs the Gram–Schmidt procedure “as-is”. Thus orthogonality of the resulting basis
functions is immediate, and we need only show positive-semidefiniteness. We show that for any
sequential ordering of the basis monomials in the Gram–Schmidt procedure, so long as it is of
increasing degree, whenever we orthogonalize a monomial xS , the result basis function depends
only on a small number of variables.

To see why such an assertion might be plausible, let us consider the task of orthogonalizing the
singletons. The monomial basis may not orthogonal under Ẽ[·]; e.g., consider the following 3-XOR
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instance:

x1x2x3 = 1 y1y2y3 = −1

x2x4x5 = 1 y2y4y5 = −1

x4x5x6 = 1 y4y5y6 = −1

x6x7x8 = 1 y6y7y8 = −1

x3x7x8 = 1 y3y7y8 = −1

Observe that x1 and y1 each appear in exactly one constraint and all other variables each occur in
exactly two constraints. Multiplying each block of constraints together, we see that if Ẽ[·] satisfies
all constraints then Ẽ[x1] = 1 and Ẽ[y1] = −1. So neither x1 nor y1 are orthogonal to 1. Since the
two sets of equations are disjoint, we also know that Ẽ[x1y1] = −1, so x1 and y1 are not orthogonal.
We note that many such blocks may occur in a random instance with m� n1.4 constraints. Let’s
try to understand what happens when we run the Gram–Schmidt procedure on this basis. Consider
an instance consisting of n such disjoint blocks of 5 constraints on 8n variables. Let xi1 be the
variables that is fixed in block i. Then every xi1 is not orthogonal to 1 and every pair xi1, xj1 is
not orthogonal. Intuitively, the variables xi1, xj1 behave independently, but are biased. To fix this

bias, consider the functions xi1 (where we use the notation z := z − Ẽ[z]). Now we have that xi1
is orthogonal to 1 and, by independence of the blocks, Ẽ[xi1 · xj1] = 0 for all i, j.

Ideally, we might hope this this new basis satisfies orthogonality when we move to degree 2, as
well. Unfortunately, in general the basis {1, x1, x2, . . . , xn, x1x2, . . .} again need not be orthogonal.
Consider a 3-XOR instance with n constraints x0xiyi = bi for i ∈ [n]; call this an n-star. Random
instances contain stars of superconstant size with high probability. For all

(
n
2

)
pairs i, j, it holds

that xiyi and xjyj are not orthogonal under Ẽ[·]:

Ẽ[xiyi · xjyj ] = Ẽ[xiyi · xjyj ]− Ẽ[xiyi] Ẽ[xjyj ] = bibj − 0 = bibj .

Instead, consider the basis

1̂ = 1, x̂0 = x0, x̂1 = x1, . . . , ŷ1 = y1, ŷ2 = y2, . . . , x̂1y1 = x1y1 − b1x0, x̂2y2 = x2y2 − b2x0, . . .

A simple calculation shows that these basis functions are orthogonal. Each basis function depends
on at most 3 variables, so the degree-3 Sherali-Adams positivity condition and Fact 4.3.1 imply
that degree-2 positive semidefiniteness holds. We give a proof of orthogonality of x̂iyi and x̂jyj
that illustrates the underlying intuition. Observe that x̂iyi and x̂jyj are independent conditioned
on x0 for all i 6= j, and we can write

Ẽ[x̂iyi · x̂jyj ] = E[x̂iyi · x̂jyj ] (Ẽ[·] is a valid expectation on small sets)

= E[E[x̂iyi · x̂jyj |x0]] (law of total expectation)

= E[E[x̂iyi|x0] ·E[x̂jyj |x0]] (conditional independence of x̂iyi and x̂jyj given x0).

Next, note that

E[x̂iyi|x0 = b] =
1

Pr[x0 = b]
E[x̂iyi · 1{x0=b}(x0)],

where 1{x0=b} is the indicator function for x0 = b. Since we have orthogonalized x̂iyi against
all degree-1 basis functions and 1{x0=b} is a degree-1 polynomial, this expression is equal to 0.
Therefore, E[x̂iyi|x0] = 0 and x̂iyi and x̂jyj are orthogonal. In this case, xiyi and xjyj are correlated
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because they are connected by x0. After subtracting off their correlation with x0, the resulting
functions are orthogonal and no longer correlated.

Let us now formalize this intuition and generalize it to higher degree. At a high level, our idea is
to show that the Gram–Schmidt process produces a basis such that each new basis element depends
only on a small number of variables. Let yS be the result of applying the Gram–Schmidt process
to xS . If yT appears in yS with a nonzero coefficient, then it must be the case that Ẽ[xS · yT ] 6= 0.
That is, xS and yT are correlated under Ẽ[·]. We show that this correlation is “witnessed” by some
small, “dense” subgraph containing many constraints covered by few variables. If yS has many
variables in its support, then there must be many such subgraphs. We show that the union of
these subgraphs is dense enough to be “implausible”. This means that yS cannot have too many
variables in its support.

Our witness can be seen as a generalization of the connected sets in the degree-2 case discussed
above. Call two sets of vertices c-connected if removing any set of c− 1 vertices cannot disconnect
them. In the degree-1 case, nonzero correlation between xS and yT with |S| = |T | = 1 is witnessed
by a small, dense, connected (1-connected) subgraph. In the degree-2 case after orthogonalizing
against degree-1 terms, we expect based on the star example that if S and T are only 1-connected,
then xS and yT will no longer be correlated. We show that nonzero correlation between xS and yT
with |S| = |T | = 2 is then witnessed by a small, dense, 2-connected subgraph. In general, we show
that nonzero correlation between xS and yT with |S| = |T | = d is witnessed by a small, dense, d-
connected subgraph. This stronger connectivity requirement enables us to show that these witness
subgraphs and their unions are dense enough to be implausible if the support of a basis function
grows too large. For details of this argument, see Section 4.6.

4.4 Forbidden subgraphs for the factor graph

Let us make a few definitions concerning factor graphs, after which we will elaborate on the “Plau-
sibility Assumption”.

Definition 4.4.1 (Subgraphs). We call H a subgraph of G if it is an edge-induced subgraph; i.e.,
H = G[A] for some subset A of the edges of G. We explicitly allow A = ∅ and hence H = ∅. The
subgraph H need not be connected.

Notation 4.4.2. For H a subgraph, we write vbls(H) for the set of variables appearing in H,
cons(H) for the set of constraints appearing in H, and edges(H) for the set of edges appearing
in H.

Notation 4.4.3. Given f ∈ cons(H), we write NH(f) = {i ∈ vbls(H) : (f, i) ∈ edges(H)}. Note
that this is not necessarily the same thing as N(f) ∩ vbls(H).

We will typically measure the “size” of a subgraph by the number of constraints in it:

Definition 4.4.4 (Small subgraphs). We say that subgraph H is small if |cons(H)| ≤ SMALL.

Now regarding the Plausibility Assumption, for intuition’s sake let us suppose we are concerned
with weak refutation and degree-O(1) SOS, as in Corollary 1.5.7. Thus we have some k-ary predi-
cate P with C(P ) = τ , and we are selecting a random CSP with slightly fewer than nτ/2 constraints;
say m = n(τ−ζ)/2. What does a random factor graph look like in this case? Which small subgraphs
may appear? A quick-and-dirty method to analyze this is as follows. Consider the fixed small
subgraph in Figure 4.1; call it H.
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Figure 4.1: An example small subgraph. Constraint-vertices are squares, variable-vertices are
circles.

What is the expected number of copies of H in a random factor graph G with n variable-vertices
and m = n(τ−ζ)/2 constraint-vertices? There are

(
m
2

)
≈ m2 choices for H’s 2 constraint-vertices

and
(
n
4

)
≈ n4 choices for H’s 4 variable-vertices. Thinking of each constraint-vertex as choosing

k = O(1) random neighbors, the chance that the 6 edges of H show up is roughly n−6. Thus, very
roughly, we expect about m2n4n−6 = n2·(τ−ζ)/2+(4−6) copies of H in a random G. Thus copies of H
“plausibly” show up if and only 2 · (τ − ζ)/2 + (4− 6) ≥ 0; i.e., if and only if τ ≥ 2 + ζ. Since τ ≥ 3
always, this means we should certainly expect copies of H in G.

For a general subgraph H with c = |cons(H)|, v = |vbls(H)|, e = |edges(H)|,

E[# copies of H] ≈ mcnvn−e = nc·(τ−ζ)/2+v−e =⇒ H “plausibly occurs” iff c·(τ−ζ)/2+(v−e) ≥ 0.
(4.1)

This inequality is precisely the one occurring in the Plausibility Assumption from Section 4.2.2.

Despite the simple form of the inequality, we will find it helpful to view it in a different way.
For reasons that will become clear in Section 4.5, we will be concerned almost exclusively with
subgraphs of G in which all constraint-vertices have degree at least τ :

Definition 4.4.5 (τ -subgraphs). Let H be a subgraph. We will call H a τ -subgraph if every
constraint-vertex in H has degree at least τ within H; i.e., |NH(f)| ≥ τ for all f ∈ cons(H).

Remark 4.4.6. The empty subgraph ∅ is always trivially a τ -subgraph. Also, if H and H ′ are
τ -subgraphs then so is H ∪H ′.

Definition 4.4.7 (Leaf vertices and interior vertices). Given a subgraph H, we classify the variable-
vertices in H as either leaf or interior depending on whether they have degree 1 or at least 2. (Since
H is an edge-induced subgraph, it does not have any isolated vertices.)

For τ -subgraphs, there is a different way to view the “plausibility inequality” that will be more
useful for us. We define it with some “accounting” terminology.

Definition 4.4.8 (Credit, debit, excess, revenue, cost, income). Let H be a τ -subgraph. For the
purposes of this definition, consider each of its edges to be two directed edges.

• For each variable-vertex, we assign it a credit of 1 if it is a leaf vertex. We’ll write ` for the
total credits.

• For each variable-vertex, any out-edges in excess of 2 are called excess, and we assign a debit
for each. We’ll write ev for the total number of these.

• For each constraint-vertex, any out-edges in excess of τ are called excess, and we assign a
debit for each. We’ll write ec for the total number of these, and e = ec+ ev for the total debit
(number of excess edges).

• The sum of credits minus the sum of debits, `−e, is called the revenue. We denote it by R(H).

• Each constraint-vertex has a cost of ζ. We write C(H) = ζ · |cons(H)| for the total cost.

• The income is I(H) = R(H)− C(H).
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Definition 4.4.9 (Plausible τ -subgraphs). Let H be a τ -subgraph. We say that H is plausible
if I(H) ≥ 0.

Remark 4.4.10. H being plausible implies (indeed, is equivalent to) |cons(H)| ≤ 1
ζ ·R(H). Thus

controlling a subgraph’s revenue is equivalent to controlling its size.

The next lemma implies that the inequality I(H) ≥ 0 is the same as the inequality appearing
in the Plausibility Assumption and in (4.1).

Lemma 4.4.11. Let H be a τ -subgraph with c = |cons(H)|, v = |vbls(H)|, e = |edges(H)|, and
I = I(H). Then e = τ−ζ

2 · c+ v − I
2 .

Proof. We count the number of “directed edges” in H. Counting those coming out of variable-
vertices, the ` leaf vertices contribute 1 each, and the v− ` interior vertices contribute 2(v− `)+ev.
Counting the directed edges coming out of constraint-vertices yields τc+ ec. Thus

# directed edges = 2e = `+ 2(v − `) + ev + τc+ ec = τc+ 2v − (`− e) = τc+ 2v − (ζc+ I),

since `− e = R(H) = C(H) + I(H). The claim follows.

In light of this, we may restate the Plausibility Assumption:

Plausibility Assumption, Restated. Henceforth we assume the factor graph G has the follow-
ing property: All τ -subgraphs H of G with |cons(H)| ≤ 2 · SMALL are plausible.

As mentioned earlier, for an appropriate choice of SMALL, the Plausibility Assumption holds for
a random instance. More precisely, in Appendix 4.8 we prove the below theorem. The reader is
advised that in this theorem, the first claim is the main one; it is used to show our Theorem 1.5.5
concerning weak refutation. The second claim (“Moreover. . . ”) is a technical variant needed to
extend our results to give Theorem 1.5.4 concerning δ-refutation.

Theorem 4.4.12. Let λ = τ − 2 ≥ 1. Fix 0 < ζ ≤ .99λ, 0 < β < 1
2 . Then except with probability

at most β, when G is a random instance with m = ∆n constraints, the Plausibility Assumption
holds provided

SMALL ≤ γ · n

∆2/(λ−ζ) ,

where γ = 1
K

(
β1/λ

2K/λ

)O(1)
. Moreover, assuming ζ < 1, except with probability at most β we have

#{nonempty τ -subgraphs H with cons(H) ≤ 2 · SMALL : I(H) ≤ τ − 1} ≤ ∆n
1+ζ

2 .

4.5 Defining the pseudoexpectation

4.5.1 Closures

In this section we define the “closure” of a set of variables. Roughly speaking, this can be thought
of as the smallest τ -subgraph of G that fully determines the distribution on S under a natural
“planted distribution”.

Definition 4.5.1 (S-closed subgraph). Let S be a set of variables. We say that a subgraph H is
S-closed if it is a τ -subgraph and all its leaf vertices are in S.
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Remark 4.5.2. For every constraint in G, if H is taken to be the full neighborhood of that
constraint, and S is the set of variables in that constraint, then H is S-closed.

Note that a union of S-closed τ -subgraphs is S-closed. This leads us to the following definition:

Definition 4.5.3 (Closure, cl(S)). Let S be a set of variables. We define the closure of S, written
cl(S), to be the union of all small S-closed τ -subgraphs H. Note that cl(S) is itself an S-closed
τ -subgraph.

Remark 4.5.4. A key warning to remember: we do not necessarily have S ⊆ vbls(cl(S)).

Remark 4.5.5. Let T ⊆ S. Then if H is T -closed, it is also S-closed. It follows that cl(T ) ⊆ cl(S).

Fact 4.5.6. The only plausible ∅-closed τ -subgraph H is H = ∅. It follows that cl(∅) = ∅.

Proof. If H is ∅-closed then its revenue is at most 0. Hence if it is plausible, its cost is 0.

We will now give an important generalization of this fact for S-closures, |S| > 0

Theorem 4.5.7. Let S be a set of variables with |S| ≤ ζ · SMALL. Then cl(S) is small and satisfies
R(cl(S)) ≤ |S|.

Proof. Since cl(S) is S-closed, all its leaf vertices are in S; thus cl(S) has at most |S| credits and so
R(cl(S)) ≤ |S|, as claimed. Observe that if H1, . . . ,Ht is the complete list of S-closed τ -subgraphs,
we may make the same deduction about H1 ∪ · · · ∪ Hj for any 1 ≤ j ≤ t, in particular deducing
that R(H1 ∪ · · · ∪Hj) ≤ ζ · SMALL for each j. The smallness of cl(S) is now a consequence of the
lemma that immediately follows.

Lemma 4.5.8. Suppose that H is a τ -subgraph formed as a union, H = H1 ∪ · · · ∪Ht, where each
Hj is small and where we have R(H1 ∪ · · · ∪Hj) ≤ ζ · SMALL for all 1 ≤ j ≤ t. Then H is small.

Proof. The proof is by induction on t, with the base case of t = 1 being immediate. In general,
suppose H ′ = H1∪· · ·∪Ht−1 is small. Since Ht is also small we have |cons(H ′)|, |cons(Ht)| ≤ SMALL
and hence |cons(H ′ ∪Ht)| ≤ 2 · SMALL. Thus H ′ ∪Ht is plausible and so

cons(H ′ ∪Ht) = (1/ζ) · C(H ′ ∪Ht) ≤ (1/ζ) ·R(H ′ ∪Ht) ≤ (1/ζ) · ζ · SMALL = SMALL,

showing that H ′ ∪Ht is small, completing the induction.

In proving Theorem 4.5.7, we iteratively formed the union of all small S-closed subgraphs,
at each step verifying that we have a small τ -subgraph of revenue at most |S|. Once we finish
producing cl(S) in this way, let V = vbls(cl(S)), and suppose we continue iteratively adding in
small τ -subgraphs that are (S∪V )-closed. This process cannot add any leaf vertices except possibly
in S; thus we will still have that revenue is bounded by |S| ≤ ζ · SMALL, and Lemma 4.5.8 will still
imply the resulting τ -subgraph is small. Thus we end up with a small, S-closed τ -subgraph— which
by definition is already contained in cl(S). Thus we have shown:

Theorem 4.5.9. Let S be a set of variables with |S| ≤ ζ · SMALL. Then cl(S ∪vbls(cl(S))) = cl(S).
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4.5.2 The planted distribution

Definition 4.5.10 (Planted distribution on a small subgraph). Let H be a small subgraph of G.
The planted distribution on H is a probability distribution on assignments x ∈ Ωn to the variables
of G, defined as follows: For each constraint f ∈ cons(H) we independently draw an assignment
wf ∈ ΩN(f) according to µf . We write its component associated to variable i ∈ NH(f) as wf,i, and
think of it as an assignment “suggested” for this variable. (Note that we will ignore the components
of wf correspoding to variables not in NH(f).) Now each variable i ∈ vbls(H) has one or more
assignments in Ω suggested by its adjacent constraints. We get a unique assignment xi for it by
conditioning on all the suggestions being consistent. (We will show later in (4.8) that this occurs
with nonzero probability.) Finally, assignments for variables not in H are chosen independently
and uniformly from Ω.

We’ll write ηH for the probability distribution on Ωn associated to this planted distribution
on H, and we’ll write EH [·] for the associated expectation.

Definition 4.5.11. For each i ∈ vbls(G) and each c ∈ Ω, we introduce an “indeterminate” 1c(xi)
that is supposed to stand for 1 if variable i is assigned c and 0 otherwise.

The key theorem about the planted distributions is that as soon as a subgraph H contains cl(S),
the marginal of ηH on S is determined. In some sense, this property is exactly the reason we defined
the closure the way we did.

Theorem 4.5.12. Let S be a set of variables and let H ⊇ cl(S) be a small subgraph. Then the
marginal of ηH on S is the same as the marginal of ηcl(S) on S.

Remark 4.5.13. Although the notation in the below proof looks cumbersome, the calculations
are actually fairly straightforward. We strongly encourage the reader to work through the proof in
the case of q = 2, Ω = {±1}, with “1c(xi)” replaced by cxi ∈ {±1}.
Proof. For brevity we write vH = |vbls(H)| and eH = |edges(H)|. We also introduce the notation
1c(xi) = q1c(xi) − 1. Recalling that ηH puts the uniform distribution on the n − vH variables
outside H, we have

pH(x) := Pr
w

[w suggestions consistent, and the assignment to vbls(H) they agree on is x]

= q−(n−vH) ·E
w

∏
(f,i)∈edges(H)

(
q−1(1 + 1wf,i

(xi)
)

= qvH−eH−n ·
∑
H′⊆H

E
w

∏
(f,i)∈edges(H′)

1wf,i
(xi) (4.2)

= qvH−eH−n ·
∑
H′⊆H

∏
f∈cons(H′)

E
wf∼µf

∏
i∈NH′ (f)

1wf,i
(xi), (4.3)

where we used that the draws wf ∼ µf are independent across f ’s. Now whenever f ∈ cons(H ′)
has |NH(f)| < τ , the (τ − 1)-wise uniformity of µf implies that

E
wf∼µf

∏
i∈NH′ (f)

1wf,i
(xi) = E

wf,i∼Ω
uniform, indep.

∏
i∈NH′ (f)

1wf,i
(xi) =

∏
i∈NH′ (f)

E
wf,i∼Ω
uniform

1wf,i
(xi) = 0,

since Ec∼Ω[1c(xi)] = 0 for any fixed value x ∈ Ω. Thus in (4.3) it is equivalent to sum over
τ -subgraphs H ′, and so returning to (4.2) we get

pH(x) = qvH−eH−n ·
∑
H′⊆H

H′ a τ -subgraph

E
w

∏
(f,i)∈edges(H′)

1wf,i
(xi). (4.4)
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Suppose now that T ⊆ [n] is a set of variables. We’ll decompose an x ∈ Ωn into its projection xT
onto the coordinates in T and xT onto the coordinates not in T . Then

pH(xT ) := Pr
w

[w suggestions consistent, and the assignment to T they agree on is xT ]

=
∑

xT∈ΩT

pH(xT , xT ) = qn−|T | · E
xT∼ΩT

uniform

[pH(xT ,xT )]

= qvH−eH−|T | ·
∑
H′⊆H

H′ a τ -subgraph

E
w

∏
(f,i)∈edges(H′)

i∈T

1wf,i
(xi) · E

xT∼ΩT

uniform

∏
(f,i)∈edges(H′)

i∈T

1wf,i
(xi), (4.5)

where we used (4.4). Now suppose the τ -subgraph H ′ has a leaf vertex j that is in T ; i.e., it’s not
in T . Then xj appears exactly once in the above, within the expression

E
xT∼ΩT

uniform

∏
(f,i)∈edges(H′)

i∈T

1wf,i
(xi). (4.6)

As xj is chosen uniformly and independently of all random variables, the above contains a factor of
the form Exj∼Ω[1wf,j

(xj)]. But for any fixed outcome of wf,j , this expectation is 0, meaning (4.6)
will vanish. Thus any summand H ′ in (4.5) will vanish if H ′ has a leaf variable outside T . Thus
we may equivalently sum only over T -closed H ′. That is,

pH(xT ) = Pr
w

[w suggestions consistent, and the assignment to T they agree on is xT ]

= qvH−eH−|T | ·
∑
H′⊆H

H′ is T -closed

E
w

∏
(f,i)∈edges(H′)

i∈T

1wf,i
(xi) · E

xT∼ΩT

uniform

∏
(f,i)∈edges(H′)

i∈T

1wf,i
(xi)

= qvH−eH−|T | ·
∑
H′⊆H

H′ is T -closed

E
w

E
x∼Ωn unif.,

condit. on xT=xT

∏
(f,i)∈edges(H′)

1wf,i
(xi). (4.7)

Suppose we took T = ∅ above. Since H is small, every subgraph H ′ is plausible and hence Fact 4.5.6
implies that the above has only one summand, corresponding toH ′ = ∅. The summand is trivially 1,
and hence

Pr
w

[w suggestions consistent] = qvH−eH . (4.8)

Observe that this does not depend at all on the µf ’s; in particular, it is easily seen to the be the
probability of consistent suggestions under completely uniform µf ’s. In any case, since (4.8) is
positive, as promised, we may condition on the associated event; thus from (4.7) we obtain

Pr
w

[the suggested assignment to S is xS | the suggestions w are consistent]

= q−|S| ·
∑
H′⊆H

H′ is S-closed

E
w

E
x∼Ωn unif.,

condit. on xS=xS

∏
(f,i)∈edges(H′)

1wf,i
(xi).

This formula visibly has the property that once H ⊇ cl(S), it does not depend on H.

4.5.3 Pseudoexpectations

In this section, we formally define the pseudoexpectation with which we will work.
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Definition 4.5.14. Given a polynomial expression p(x) in the indeterminates 1c(xi), we write

vbls(p) = {i : at least one 1c(xi) appears in p(x)},
degmlin(p) = max{|vbls(M)| : M(x) is a monomial in p(x)}.

We call the latter the multilinear-degree; note that degmlin(p) ≤ deg(p) always.

Recall that a pseudoexpectation on polynomials of degree at most D is a linear map Ẽ[·] sat-
isfying Ẽ[1] = 1. We can uniquely define it by specifying its values on all monomials of degree at
most D. Further, recall that if p(x) is a polynomial, we say that Ẽ[·] satisfies the identity p(x) = 0
if Ẽ[p(x) · q(x)] = 0 for all polynomials q(x) with deg(p · q) ≤ D.

Definition 4.5.15 (Our pseudoexpectation). We’ll define our pseudoexpectation Ẽ[·] on all poly-
nomials of multilinear-degree at most ζ · SMALL; in particular, this defines it for all polynomials of
(usual) degree at most ζ · SMALL. We define it by imposing that Ẽ[M(x)] = Ecl(vbls(M))[M(x)] for
all monomials M(x) having degmlin(M) ≤ ζ ·SMALL. (Here we are using the abbreviation EC [M(x)]
for Ex∼ηC [q(x)].) By Theorem 4.5.7, this makes sense in that cl(vbls(M)) will always be small.

Note that we have Ẽ[1] = Ecl(∅)[1] = 1, as required.

Theorem 4.5.16. Let p(x) be a polynomial expression of multilinear-degree at most ζ · SMALL. Let
H be any small subgraph containing

H ′ =
⋃
{cl(vbls(M)) : M(x) is a monomial of p(x)}.

For example, if cl(vbls(p)) is small then it would qualify for H. Then

Ẽ[p(x)] = E
H

[p(x)] = E
H′

[p(x)].

Proof. This is immediate from Theorem 4.5.12 and Remark 4.5.5.

Theorem 4.5.17. Let p(x) be a polynomial with S = vbls(p) satisfying |S| ≤ deg(p), |S| ≤ ζ·SMALL.
Assume that p(x) is identically zero for x ∼ ηcl(S). (Note that cl(S) is small by Theorem 4.5.7.)

Then our Ẽ[·] satisfies the identity p(x) = 0.

Proof. Let q(x) be a nonzero polynomial with deg(p · q) ≤ ζ · SMALL. Writing q(x) =
∑

jMj(x)
where each Mj(x) is a monomial, we have

Ẽ[p(x) · q(x)] =
∑
j

Ẽ[p(x) ·Mj(x)] =
∑
j

E
cl(S∪vbls(Mj))

[p(x) ·Mj(x)]. (4.9)

Here the last equality used Theorem 4.5.16 and the smallness of cl(S ∪ vbls(Mj)), which follows
from Theorem 4.5.7 and the fact that |S ∪ vbls(Mj)| ≤ deg(p) + deg(q) = deg(p · q) ≤ ζ · SMALL.
But since cl(S ∪ vbls(Mj)) ⊇ cl(S) (Remark 4.5.5), Theorem 4.5.12 tells us that p(x) has the
same distribution under ηcl(S∪vbls(Mj)) and ηcl(S); i.e., it is identically 0. Thus (4.9) vanishes, as
needed.

We have the following immediate corollaries:

Corollary 4.5.18. Our pseudoexpectation Ẽ[·] satisfies the following identities:
•
∑

c∈Ω 1c(xi) = 1 for all i ∈ [n] (i.e., the identity
∑

c∈Ω 1c(xi)− 1 = 0).
• 1c(xi)

2 = 1c(xi) for all c ∈ Ω, i ∈ [n].
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As an immediate consequence of the latter, we always have Ẽ[p(x)] = Ẽ[multilin(p(x))], where
multilin(p(x)) is defined by replacing any positive power of 1c(xi) in p(x) with just 1c(xi).

Another corollary is the following (cf. the rough statement of our main technical result, Theo-
rem 4.2.6):

Corollary 4.5.19. Our pseudoexpectation Ẽ[·] satisfies the identity

sf (x) :=
∑

~c∈supp(µf )

∏
i∈N(f)

1ci(xi) = 1

for all f ∈ cons(G); i.e., “Ẽ[·]’s distribution on N(f) is always in supp(µf )”.

Proof. We apply Theorem 4.5.17, with S = N(f), which satisfies |S| = deg(sf ) and |S| ≤ K ≤
ζ · SMALL. Note that if Hf denotes the τ -subgraph induced by all edges of G incident on constraint-
vertex f , then Hf is S-closed and so Hf ⊆ cl(S). It then follows from the definition of x ∼ ηcl(S)

that sf (x) ≡ 1, since the restriction of x to N(f) will always be supported on supp(µf ).

4.6 The proof of positive semidefiniteness

4.6.1 Setup

Throughout this section, fix a degree D satisfying 1 ≤ D ≤ 1
3ζ ·SMALL. Our goal will be to establish:

Theorem 4.6.1. If p(x) is a polynomial expression of degree at most D, then Ẽ[p(x)2] ≥ 0.

In light of Corollary 4.5.18, we may assume that p(x) is “multilinear” (i.e., does not con-
tain 1c(xi)

k for any k > 1). Another way to state this assumption is p(x) ∈ span(xS : S ∈ M≤D),
where we introduce the following notation:

Definition 4.6.2. A monomial index will be a set S of pairs (i, c) ∈ [n]×Ω, with no variable i ∈ [n]
occurring more than once. We write xS for the monomial

∏
(i,c)∈S 1c(xi), with the usual convention

that x∅ = 1. Finally, we write M≤D for the collection of monomial indices S with |S| ≤ D.

Notation 4.6.3. We abuse notation as follows: If a monomial index S occurs in a place where a
subset of variables is expected, we intend the subset of variables {i : (i, c) ∈ S for some c}.

Remark 4.6.4. All of the ideas in our proof of Theorem 4.6.1 are present in the q = 2 case; only
notational complexities arise for q > 2. Thus the reader is encouraged to keep the Boolean case
Ω = {false, true} in mind. In this case, since Ẽ[·] satisfies the identity 1false(xi) = 1− 1true(xi), one
can also ignore the indeterminate 1false(xi) (since 1 ∈ span(M≤0) already). Then one can more
naturally write the indeterminate 1true(xi) as xi and the monomial xS becomes

∏
i∈S xi.

4.6.2 Gram–Schmidt overview

Notation 4.6.5. Let � denote any total ordering on M≤D that respects cardinality, so that if T
and S are monomial indices with |T | < |S|, then T ≺ S. For S 6= ∅, let pr(S) denote the immediate
predecessor of S under �.
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Our goal in this section is to show that the modified Gram–Schmidt process from linear algebra
can be successfully applied to the monomials (xS : S ∈M≤D), in the ordering �, using Ẽ[·] as the
“inner product”: 〈p(x), q(x)〉 := Ẽ[p(x) ·q(x)]. Of course, we don’t know that this is a genuine inner
product (indeed, that’s essentially what we’re trying to prove). We will discuss this issue shortly,
but we first remind the reader that the modified Gram–Schmidt process would typically produce
a collection of polynomials yS = yS(x), for S ∈ M≤D, that are orthogonal under Ẽ[·] (meaning
Ẽ[yS · yS′ ] = 0 if S 6= S′) and that have the same span as (xS : S ∈ M≤D). As well, it would

produce “normalized” versions of these polynomials zS = yS/
√

Ẽ[y2
S ], satisfying Ẽ[z2

S ] = 1.

We now address the obviously difficulty that Ẽ[·] is not (known to be) an inner product, because
we don’t know it’s positive definite on the monomials of M≤D. Our goal will be to show that as
we follow the Gram–Schmidt process, it never encounters any “positive definiteness problems”, and
therefore “succeeds”. The main “positive definiteness problem” Gram–Schmidt might encounter
would be if it creates a polynomial yS with Ẽ[y2

S ] < 0. In this case, when it tries to produce the
normalized polynomial zS , it would certainly fail.

There is one additional potential problem, occurring if Gram–Schmidt produces a yS with
Ẽ[y2

S ] = 0. In the usual process from linear algebra this may indeed occur, and the Gram–Schmidt
algorithm copes by treating zS as 0 (effectively, throwing it out of the span). This is a valid strategy
because genuine inner products are strictly positive definite. However we only expect our “inner
product” Ẽ[·] to be positive semidefinite. We therefore need a different coping mechanism. For us,
when Ẽ[y2

S ] = 0 occurs, we will simply define its “normalized” version zS to be yS . The challenge
of this is that Gram–Schmidt’s guarantee of producing an orthogonal collection (yS : S ∈ M≤D)
relies syntactically on all the zS polynomials satisfying Ẽ[z2

S ] = 1. Thus we will have an additional

burden: we will have to “manually” show that Ẽ[y2
S ] = 0 implies that yS is orthogonal under Ẽ[·]

to all other polynomials. It will count as a “positive definiteness problem” if we are unable to
show this; we will call this the “pseudovariance zero problem”. We remark that the main positive
definiteness problem is fundamentally more important than this “pseudovariance zero problem”,
and the reader may wish to ignore the pseudovariance zero issue on first reading.

We now describe the modified Gram–Schmidt process in detail. The process works in stages,
named after the elements of M≤D and in order of �. At the end of stage S it creates a certain
polynomial zS . Stage ∅ always “succeeds” and simply consists of defining z∅ = 1. In some cases
it may happen that Ẽ[z2

S ] = 0. In this case we say that zS has pseudovariance zero, and the
Gram–Schmidt algorithm will add S to a growing collection called PvZ.

Each stage S is further divided into substages, associated to monomial indices T ≺ S in order
of �. Let us introduce some notation:

Notation 4.6.6. Let M≤D2 denote the collection of all pairs (S, T ) ∈ M≤D ×M≤D with T ≺ S.

We define a total ordering �2 on M≤D2 via

(S′, T ′) �2 (S, T ) ⇐⇒ S′ ≺ S, or S′ = S and T ′ � T.

Thus the overall progression of substages in Gram–Schmidt is through the elements ofM≤D2 in
order of �2. Substage (S, T ) creates a polynomial yS,T as follows:

yS,T =

{
xS − Ẽ[xS ] if T = ∅;
yS,pr(T ) − Ẽ[yS,pr(T ) · zT ]zT else.

Stage S ends just after substage (S, pr(S)). At this point, the Gram–Schmidt process defines

yS = yS,pr(S), zS =

{
yS
/ √

Ẽ[y2
S ] if Ẽ[y2

S ] > 0;

yS if Ẽ[y2
S ] = 0, in which case S is placed into PvZ.
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Of course, if Ẽ[y2
S ] < 0 then we have encountered a positive definiteness problem. Indeed, to be

conservative we will treat it as a problem if Ẽ[y2
S,T ] < 0 for any (S, T ) ∈M≤D2 .

It is a syntactic property of the usual modified Gram–Schmidt process that when yS,T is pro-

duced, it is orthogonal to zT under Ẽ[·]. However this relies on Ẽ[z2
T ] = 1, which fails for us if

T ∈ PvZ. Thus we will need to explicitly prove that T ∈ PvZ implies Ẽ[yS,pr(T ) · zT ] = 0. If this
doesn’t hold, we’ve encountered the pseudovariance zero problem. But assuming it does hold, yS,T
will simply become yS,pr(T ) and we will have the desired orthogonality of yS,T and zT . We remark
that the usual Gram–Schmidt property of yS,T being orthogonal to all zT ′ with T ′ � T follows by
induction in the usual way; this only needs the inductive property that the zT ’s are orthogonal (not
that they’re orthonormal).

We may now summarize the discussion so far:

Definition 4.6.7. A positive definiteness problem occurs at substage (S, T ) of modified Gram–
Schmidt if either Ẽ[y2

S,T ] < 0, or if T ∈ PvZ but Ẽ[yS,pr(T ) · zT ] 6= 0. (The latter is called a
pseudovariance zero problem.) We say that the modified Gram–Schmidt process succeeds through
substage (S, T ) if it encounters no positive definiteness problem at any substage (S′, T ′) �2 (S, T ).

Proposition 4.6.8. Suppose the modified Gram–Schmidt process succeeds through substage (S, T ).
Then we have:
• yS,T = xS − p(x) for some polynomial p(x) supported on monomials xT

′
with T ′ � T ;

• Ẽ[yS,T ·zT ′ ] = 0 for all T ′ � T , and hence Ẽ[yS,T ·q(x)] = 0 for all polynomials q(x) supported
on monomials xT

′
with T ′ � T ;

• Ẽ[y2
S,T ] ≥ 0.

In particular, if the process succeeds through stage S, we have:
• zS = c · xS − p(x) for some positive constant c > 0 and some polynomial p(x) supported on

monomials xT with T ≺ S;
• span(xS

′
: S′ � S) = span(zS′ : S′ � S);

• Ẽ[zS · zT ] = 0 for all T ≺ S, and hence Ẽ[zS · q(x)] = 0 for all polynomials q(x) supported on
monomials xT

′
with T ′ ≺ S;

• Ẽ[z2
S ] = 0 if S is put in PvZ, else Ẽ[z2

S ] = 1.

Our main Theorem 4.6.1 follows provided the modified Gram–Schmidt process succeeds through
all substages in M≤D2 . The reason is that then any multilinear p(x) of degree at most D can be
expressed as p(x) =

∑
|T |≤D cT zT . This implies

Ẽ[p(x)2] =
∑

|T |,|T ′|≤D

cT cT ′ Ẽ[zT · zT ′ ] =
∑
|T |≤D
T 6∈PvZ

c2
T ≥ 0,

using Proposition 4.6.8.

4.6.3 Advanced accounting

Definition 4.6.9. A τ -subgraph+ is defined to be a τ -subgraph, together with zero or more isolated
variable-vertices.

We still have that the union of τ -subgraphs+ is a τ -subgraph+. We extend the cons(H) and
vbls(H) notation to τ -subgraphs+, and also the planted distribution notation ηH (being the same
as ηH′ where H ′ is formed from H by deleting its isolated vertices).
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Definition 4.6.10. For a τ -subgraph+ H, we extend the definition of revenue by assigning two
credits for all isolated variable-vertices in H.

Remark 4.6.11. If H is a τ -subgraph+ and H ′ is the τ -subgraph formed by deleting isolated
vertices, then cons(H ′) = cons(H), C(H ′) = C(H), and R(H ′) ≤ R(H). Thus the Plausibility
Assumption immediately implies that all τ -subgraphs+ with at most 2 · SMALL constraints are also
plausible.

Lemma 4.6.12. Let H be a small τ -subgraph+ with R(H) ≤ r. Let H ′ be a small τ -subgraph with
at most s leaf variables that are not in H. Assume r + s ≤ ζ · SMALL. Then H ∪H ′ is small and
satisfies R(H ∪H ′) ≤ r + s.

Proof. Adding H ′ into H cannot remove any of the debits of H, and the only additional credits that
can be created come from the s leaf variables in H ′ that are not in H. (Since H ′ is only a τ -subgraph
it has no isolated variables.) This establishes R(H ∪H ′) ≤ r+ s. The smallness conclusion follows
immediately from Lemma 4.5.8 (here it does not matter that H is a τ -subgraph+).

A key aspect to our main theorem will be that in some cases this revenue bound can be improved:

Lemma 4.6.13. In the setup of Lemma 4.6.12, suppose also that H ′ has b edges that are “boundary”
for H, in the sense that each has exactly one endpoint in H. Then in fact R(H ∪H ′) ≤ r + s− b.

Proof. Let a be an edge in H ′ with exactly one endpoint, call it w, in H. We show that the addition
of this edge to H causes a drop of 1 in revenue. If w is a constraint-vertex, then this follows because
w already had degree at least τ in H, so a becomes a new excess edge in H, creating a new debit.
So suppose w is a variable-vertex. If w had degree at least 2 in H then a is again excess and creates
a new debit. If w had degree 1 in H then the addition of a changes w from a leaf variable to an
interior variable, removing 1 credit from H. Finally, if w was isolated in H then the addition of a
turns it into a leaf variable, again removing 1 credit from H. Repeating this argument for all b
boundary edges completes the proof.

4.6.4 The key lemma

Lemma 4.6.14. Let y = y(x) be a polynomial expression of degree d. Assume 2d ≤ ζ · SMALL and
that Ẽ[y ·p(x)] = 0 for all polynomials p of degree strictly less than d. Let H be a small τ -subgraph+

with vbls(H) ⊇ vbls(y) and R(H) ≤ r, where we assume r + d ≤ ζ · SMALL. Finally, suppose T is
a monomial index with |T | = d such that

Ẽ[y · xT ] 6= 0.

Then there exists a small τ -subgraph+ Hnew ⊇ H with vbls(Hnew) ⊇ vbls(y)∪ T and R(Hnew) ≤ r.
(In writing vbls(y) ∪ T , we are using the abuse described in Notation 4.6.3.)

Proof. Let us define

Tnew = T \ vbls(H), Told = T ∩ vbls(H), B = cl(vbls(H) ∪ T ), Hnew = H ∪B.

First, we show that the τ -subgraph+ Hnew is small; it follows that the τ -subgraph B is also small.

Claim 4.6.15. Hnew is small.
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Proof. Write cl(vbls(H) ∪ T ) = H ′1 ∪ · · · ∪H ′t for small (vbls(H) ∪ T )-closed τ -subgraphs H ′i. Let
H ′<j := H ′1∪· · ·∪H ′j−1, and let sj denote the number of leaves of Hj that are not in H∪H ′<j . Then

it is easy to see that
∑t

j=1 sj ≤ d. Now, iteratively apply Lemma 4.6.12 to H ∪H ′1, (H ∪H ′1)∪H ′2,
((H ∪H ′1) ∪H ′2) ∪H ′3, . . . to prove the claim.

Next, observe that we have vbls(Hnew) ⊇ vbls(H) ⊇ vbls(y); therefore to prove the lemma, it
suffices to show that vbls(Hnew) ⊇ Tnew and that R(Hnew) ≤ R(H).

For the first of these, given an (i, c) ∈ T we write xi = 1c(xi) − Ẽ[1c(xi)] and xT =
∏
i∈T xi.

Observe that xT −xT is a polynomial of degree strictly less than d; thus Ẽ[y · (xT −xT )] = 0 and so
Ẽ[y · xT ] 6= 0. Now using Theorem 4.5.16 and B ⊇ cl(vbls(H) ∪ T ) ⊇ cl(vbls(y · xT )), we conclude

E
B

[y · xT ] 6= 0. (4.10)

In light of this, we claim that every variable j ∈ Tnew must appear as a vertex in B (and hence in
vbls(Hnew), as needed). For if j 6∈ vbls(B), then xj is independent of all other random variables xi
under ηB, and so

E
B

[y · xT ] = E
B

[xj ] ·E
B

[y · xTold · xTnew\{j}] (using j /∈ vbls(H) ⊇ vbls(y))

= Ẽ[xj ] ·E
B

[y · xTold · xTnew\{j}] = 0 (using B ⊇ cl(T ) ⊇ cl({j}) and Ẽ[xj ] = 0)

in contradiction to (4.10).

It remains to show that R(Hnew) ≤ R(H), which we will do using Lemma 4.6.13 (with H ′ = B,
and s = |Tnew|, recalling that all of B’s leaves are in vbls(H)∪T ). We must show that the number
of “boundary edges” — i.e., edges in B that have exactly one endpoint in H — is at least |Tnew|.
Supposing otherwise, the set

V = {variable-vertices v ∈ B : v is incident on a boundary edge} ∪ Told

would satisfy |V | < |Tnew|+ |Told| = |T | ≤ d. We will show that this contradicts (4.10).

Claim 4.6.16. The deletion of variable-vertices V from B disconnects all variables in T from all
variables in vbls(H) within B. (Note that when a variable does not even appear in a subgraph, it
is trivially disconnected from all other variables.)

Proof. It suffices to show that deleting V disconnects Tnew from vbls(H) within B, as the vertices
of Told are already in V . Suppose j ∈ Tnew is connected to some variable i ∈ vbls(H) by a path
within B. Since j /∈ vbls(H), there must be some edge in this path that has exactly one endpoint
in H. This edge is a boundary edge, and hence the variable-vertex incident on it is in V . Thus we
have indeed established that every path within B from a variable in Tnew to a variable in vbls(H)
must pass through a variable in V .

Recall that the proof is complete once we show that |V | < d contradicts (4.10). Now

E
B

[y · xT ] = E
B

[
y · xT ·

∑
~c∈ΩV

1[xi = ci ∀i ∈ V ]
]

=
∑
~c∈ΩV

E
B

[
y · xT · 1[xi = ci ∀i ∈ V ]

]
. (4.11)

75



We claim that every summand above equals 0. The reason is that for each summand ~c, either
1[xi = ci ∀i ∈ V ] is always 0 under ηB (establishing the claim), or else we may condition on the
event, yielding

E
B

[
y · xT · 1[xi = ci ∀i ∈ V ]

]
= Pr

B
[xi = ci ∀i ∈ V ] ·E

B
[y · xT | xi = ci ∀i ∈ V ].

By Claim 4.6.16 and the definition of the planted distribution ηB (and vbls(y) ⊆ vbls(H)), we have
that y and xT are conditionally independent under ηB, conditioned on all (xi : i ∈ V ). Therefore

E
B

[y · xT | xi = ci ∀i ∈ V ] = E
B

[y | xi = ci ∀i ∈ V ] ·E
B

[xT | xi = ci ∀i ∈ V ].

Combining the previous two equations yields

E
B

[
y · xT · 1[xi = ci ∀i ∈ V ]

]
= E

B

[
y · 1[xi = ci ∀i ∈ V ]

]
·E
B

[xT | xi = ci ∀i ∈ V ].

Finally, using |V | < d we will show that the first factor above is 0 (thereby establishing the claim
that every term in (4.11) is 0, in contradiction to (4.10)). To see this, we have

E
B

[
y · 1[xi = ci ∀i ∈ V ]

]
= Ẽ

[
y ·
∏
i∈V

1ci(xi)
]

because cl(vbls(y) ∪ V ) ⊆ cl(vbls(H) ∪ vbls(B)) ⊆ B, where we used Theorem 4.5.9. But this
pseudoexpectation is indeed 0 by the lemma’s assumption, because

∏
i∈V 1ci(xi) is a polynomial

expression of degree at most |V | < d.

4.6.5 Gram–Schmidt details

We wish to show that Gram–Schmidt succeeds through substage (S, T ) for all (S, T ) ∈M≤D2 . We
will do this by induction along the order �2. The key to showing that no positive definiteness
problem is encountered at stage (S, T ) will be the existence of a witness:

Definition 4.6.17. A witness for substage (S, T ) ∈ M≤D2 is defined to be a small τ -subgraph+

HS,T with vbls(HS,T ) ⊇ vbls(yS,T ) and R(HS,T ) ≤ 2D.

Remark 4.6.18. For any substage of the form (S, ∅), we may always take as a witness the
τ -subgraph+ consisting of all variables in S as isolated vertices.

As the below proposition shows, witnesses are useful for showing that one kind of positive
definiteness problem does not occur. (They will also assist in showing the other kind does not
occur.)

Proposition 4.6.19. The existence of a witness HS,T for substage (S, T ) implies Ẽ[y2
S,T ] ≥ 0.

Proof. By Lemma 4.6.12, we have thatH := HS,T∪cl(vbls(yS,T )) is small. Thus Ẽ[y2
S,T ] = EH [y2

S,T ] ≥ 0,
using Theorem 4.5.16.

We now come to our main technical theorem:

Theorem 4.6.20. Let (S, T ) ∈M≤D2 . Then:

(i) Given any witness HS,∅ for substage (S, ∅), there is a witness HS,T for substage (S, T ) satis-
fying HS,T ⊇ HS,∅.

(ii) The Gram–Schmidt process succeeds through substage (S, T ).
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Proof. The proof will be by (strong) induction on (S, T ) along �2. Observe that in proving part (ii)
of the theorem, by induction we only need to show that no positive definiteness problem occurs at
substage (S, T ). Further, if we can inductively establish part (i) of the theorem, then Remark 4.6.18
and Proposition 4.6.19 imply that Ẽ[y2

S,T ] ≥ 0. Thus to also establish part (ii), it would only
remain to prove that no “pseudovariance zero problem” problem occurs. Also, observe that the
pseudovariance zero problem can never occur when T = ∅. Thus for substages (S, ∅), we only need
to establish part (i) of the theorem statement. But part (i) is trivial for (S, ∅) substages. Thus
all substages of the form (S, ∅) are taken care of, including the base case of the induction (namely
substage ({(i0, c0)}, ∅), where {(i0, c0)} is the first singleton in the order �).

Thus it remains to establish, for a particular substage (S, T ) with T 6= ∅, that part (i) of
the theorem statement holds, and also that no pseudovariance zero problem occurs. Given any
witness HS,∅ for substage (S, ∅), by induction we may obtain a witness HS,pr(T ) ⊇ HS,∅ for substage
(S, pr(T )). We now distinguish two cases.

Case 1: Ẽ[yS,pr(T ) · zT ] = 0. In this case, yS,T = yS,pr(T ) and therefore Ẽ[yS,T · zT ] = 0. Thus
certainly no pseudovariance zero problem occurs, and also we can establish part (i) of the theorem
statement simply by taking HS,T = HS,pr(T ). Thus the inductive step is completed in this case.

Case 2: Ẽ[yS,pr(T ) · zT ] 6= 0. This is where the main work in the proof occurs. First, we will
show in this case that T ∈ PvZ is impossible, and hence the pseudovariance zero problem cannot
have occurred. We can then complete the induction by finding a witness HS,T ⊇ HS,pr(T ) for sub-
stage (S, T ).

First, suppose for contradiction that T ∈ PvZ. We have that yS,pr(T ) = xS − q(x) for some

q(x) supported on monomials xT
′

with T ′ � pr(T ) ≺ T . By Proposition 4.6.8 and induction, zT is
orthogonal to all such polynomials. Thus we deduce

0 6= Ẽ[yS,pr(T ) · zT ] = Ẽ[xS · zT ] = Ẽ[xS · yT,pr(T )], (4.12)

the last equality because T ∈ PvZ and hence zT = yT = yT,pr(T ). By induction (and using Re-
mark 4.6.18), we have a witness HT,pr(T ) for yT,pr(T ). By Lemma 4.6.12 (using 2D + |S| ≤ 3D ≤
ζ · SMALL) we have that H := HT,pr(T ) ∪ cl(S) is small. (In writing cl(S) we used the abuse from

Notation 4.6.3.). Now vbls(H) ⊇ vbls(HT,pr(T )) ∪ S ⊇ vbls(xS · yT,pr(T )), so by Theorem 4.5.16 we
have

Ẽ[xS · yT,pr(T )] = E
H

[xS · yT,pr(T )], and also E
H

[y2
T,pr(T )] = Ẽ[y2

T,pr(T )] = Ẽ[z2
T ] = 0,

the last equality because we’re assuming T ∈ PvZ. But the second identity above shows that y2
T,pr(T )

is identically 0 under ηH , meaning the first expression above must be 0. This contradicts (4.12).
Having ruled out the pseudovariance zero problem, we can complete the induction by finding a

witness HS,T ⊇ HS,pr(T ) for substage (S, T ). By Proposition 4.6.8 we have that zT = c · xT − p(x)

for some constant c > 0 and some polynomial p(x) supported on monomials xT
′

with T ′ � pr(T ).
Furthermore, yS,pr(T ) is orthogonal to p(x) under Ẽ[·]. Thus, since we are in Case 2, we may deduce
that

Ẽ[yS,pr(T ) · xT ] 6= 0. (4.13)

We may now apply Lemma 4.6.14 (with y = yS,pr(T ), H = HS,pr(T ), and r = 2D) to obtain a
small τ -subgraph+ Hnew ⊇ HS,pr(T ) with vbls(Hnew) ⊇ vbls(yS,pr(T )) ∪ T and R(Hnew) ≤ 2D.
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This Hnew is almost able to serve as the witness for substage (S, T ). The only deficiency is that,
although it contains all the variables in yS,pr(T ) and xT , it doesn’t necessarily contain all the
variables appearing in zT — as it would need to in order to contain all variables in the new
yS,T = yS,pr(T ) − Ẽ[yS,pr(T ) · zT ]zT . However, we can fix this by induction; we apply the induction
hypothesis to substage (T, pr(T )), taking Hnew as the “given witness HT,∅”. This produces a
witness — call it H ′new — for substage (T, pr(T )) that satisfies H ′new ⊇ Hnew. This witness H ′new

now additionally contains all variables in yT,pr(T ) = zT , and therefore it can now serve as the needed
witness for substage (S, T ).

4.7 Wrapping things up by setting parameters

To prove our main result on weak refutation, Theorem 1.5.5, we simply need to combine Theo-
rems 4.4.12 and Theorem 4.6.1. Together these give us a pseudoexpectation defined up to degree

D = Ω(γ) · ζ · n

∆2/(λ−ζ) , where γ = βO(1/λ)

K·2O(K/λ) .

We need to decide how to best set parameters, which we do under the assumption that ∆ ≥ 10.

We start with the special but interesting case when λ is thought of very large; specifically, λ ≥
Ω(log ∆). This case arises, e.g., for high-arity K-SAT (where λ = K−2) with clause density 2Θ(K).
In this case, by choosing ζ = 1

2λ and β = e−O(K) for our probability bound, we get D = n/2O(K/λ).
Note that if λ = Θ(K), as it is in the case of K-SAT, then our SOS degree lower bound is linear
in n with absolutely no dependence on K = K(n) (all the way up to K = Ω(n))!

In the more general regime (e.g., when one thinks of K as “constant” and ∆ as asymptotically
large), a good choice for ζ is 1

log ∆ , which entails

D = Ω(γ) · n

∆2/λ log ∆
.

With this setting, Theorem 4.4.12 tells us that with high probability we get a pseudoexpectation
satisfying Corollaries 4.5.18, 4.5.19. Thus we have established the following more precise version of
Theorem 1.5.5:

Theorem 4.7.1. Let P be a k-ary Boolean predicate and let C(P ) be the minimum integer 3 ≤ τ ≤ k
for which P fails to support a τ -wise uniform distribution. Then if I is a random instance of
CSP(P±) with m = ∆n constraints (∆ ≥ 10), then except with probability at most β, degree-D
SOS fails to (weakly) refute I, where

D = βO(1/C(P ))

k·2O(k/C(P )) ·
n

∆2/(C(P )−2) log ∆
.

The result also holds if P is a predicate over an alphabet of size q > 2 (with an appropriate notion
of “literals”), with no change in parameters.

Proving our main result on δ-refutation, Theorem 1.5.4, requires just a little work. We now
imagine that our instance comes from a random CSP(P±) as in Theorem 1.5.4. As discussed at
the end of Section 4.2.1, given t and taking τ = t + 1, we have some t-wise uniform distribution
µ on {±1}k which is δ-close to being supported on P , where δ = δP (t). We assume that all of
the constraint distributions µf are now simply equal to µ, up to the appropriate negation pattern.
Thus a draw from µf satisfies the constraint at f except with probability at most δ.
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With the parameter settings chosen earlier, Theorem 4.4.12 tells us moreover that

#{nonempty τ -subgraphs H with |cons(H)| ≤ 2 · SMALL : I(H) ≤ τ−1} ≤ ∆n
1+1/ log ∆

2 = 2
logn

2 log ∆ · m√
n
.

(4.14)
Observe that this bound is always o(m), and in the very typical case that ∆ ≥ nΩ(1), the bound
is O( m√

n
). Let us see what this bound means for the pseudodistribution.

Supposing (4.14) holds, let f be any constraint-vertex in G, let S = N(f), and let Hf be the
(small) τ -subgraph induced by the edges between f and S. Certainly cl(S) ⊇ Hf , but we may ask
whether cl(S) is strictly bigger than Hf . Suppose this is the case; i.e., there is some small S-closed
H 6⊆ Hf . Then H ′ = Hf ∪ H is a τ -subgraph satisfying |cons(H ′)| ≤ 2 · SMALL. Furthermore,
the number of leaf variables in H ′ must be at least 1 (else H ′ is ∅-closed and hence empty by
Fact 4.5.6) and strictly less than K (else H \ Hf will be ∅-closed and hence empty). Finally, we
claim R(H ′) ≤ τ − 1. This is because R(Hf ) = τ , the addition of H cannot add any new credits
(since all its leaf variables are already in Hf ), and in fact the addition of H must cause a drop of
at least one in revenue since H must have at least one edge not in Hf . (This argument is similar
to Lemma 4.6.13.) We conclude that whenever cl(N(f)) 6= Hf , there must exist a nonempty
τ -subgraph H ′ with the following properties: (i) |cons(H ′)| ≤ 2 · SMALL; (ii) I(H ′) ≤ R(H ′) ≤ τ −1;
(iii) H ′ has at least one leaf variable; (iv) all leaves of H ′ are adjacent to f .

But (4.14) bounds the number of τ -subgraphs with the first two properties above, and every
τ -subgraph with the latter two properties uniquely determines f . Thus we conclude:

#{constraints f : cl(N(f)) 6= Hf} ≤ 2
logn

2 log ∆ · m√
n
.

Finally, when cl(N(f)) = Hf , observe that the planted distribution ηcl(N(f)) is just µf , and hence

Ẽ
[
1[x satisfies f ]

]
= Pr

x∼µf

[
1[x satisfies f ]

]
≥ 1− δ.

Combining the last two deductions yields

Ẽ
[
fraction of constraints satisfied

]
≥ 1− δ − 2

logn
2 log ∆ · 1√

n
.

In summary, we have proven the following more precise version of Theorem 1.5.4:

Theorem 4.7.2. Let P be a k-ary Boolean predicate and let 1 < t ≤ k. Let I be a random instance
of CSP(P±) with m = ∆n constraints. Then except with probability at most β, degree-D SOS fails
to (δP (t) + ε)-refute I, where

ε = 2
logn

2 log ∆ · 1√
n
, D = βO(1/t)

k·2O(k/t) ·
n

∆2/(t−1) log ∆
.

We remark that ε = o(1) always, and ε = O( 1√
n

) whenever ∆ = nΩ(1). Finally, the result also holds

if P is a predicate over an alphabet of size q > 2 (with an appropriate notion of “literals”), with no
change in parameters.

Remark 4.7.3. We should mention that in our δ-refutation result Theorem 4.7.2, our pseudoex-
pectation does not satisfy “solution value = 1 − δ0” as a constraint for any δ0 ≤ δ; it merely has
Ẽ[solution value] ≥ 1− δ. Achieving the (stronger) former condition is a direction for future work.
By contrast, for our weak refutation result Theorem 1.5.5, the pseudoexpectation does satisfy all
the constraints and hence also satisfies Ẽ[solution value] = 1 as a constraint.
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4.8 Proof that random graphs satisfy the Plausibility Assumption

Here we prove Theorem 4.4.12, which we restate for convenience:

Theorem 4.4.12 restated. Let λ = τ − 2 ≥ 1. Fix 0 < ζ ≤ .99λ, 0 < β < 1
2 . Then except

with probability at most β, when G is a random instance with m = ∆n constraints, the Plausibility
Assumption holds provided

SMALL ≤ γ · n

∆2/(λ−ζ) , (4.15)

where γ = 1
K

(
β1/λ

2K/λ

)O(1)
. Moreover, assuming ζ < 1, except with probability at most β we have

#{nonempty τ -subgraphs H with cons(H) ≤ 2 · SMALL : I(H) ≤ τ − 1} ≤ ∆n
1+ζ

2 . (4.16)

Proof. A remark before we begin: the expression in (4.15) was chosen precisely so that

c ≤ 2 · SMALL =⇒ 20K ·∆ ·
(
Kc
n

)λ−ζ
2 ≤ β/50K , (4.17)

provided the O(1) in the definition of γ is a sufficiently large universal constant.

The proof is a standard argument of the kind used to show that a random bipartite graph has
good expansion. Fixing I0 ∈ {0, τ − 1}, 1 ≤ c ≤ 2 · SMALL, and 1 ≤ v ≤ Kc, let us upper-bound

E[#{τ -subgraphs with c constraints, v vertices, and income at most I0}]. (4.18)

There are
(
m
c

)
choices for the constraints and

(
n
v

)
choices for the variables. Then by using Lemma 4.4.11,

(4.18) ≤
(
m

c

)(
n

v

)
Pr[fixed set of c constraints and v variables gets at least A edges], (4.19)

where A := τ−ζ
2 · c+ v− I0

2 . In (4.19), we may imagine that a constraint’s variables are chosen uni-
formly and independently (i.e., without conditioning on them being distinct), as this only increases
the probability in question. Now any fixed set of c constraints has at most Kc edges coming out it,
so the probability that some integer a > A of them will go into a fixed set of v variables is at most(

Kc

a

)
·
( v
n

)a
≤ 2Kc ·

( v
n

)a
≤ 2Kc ·

( v
n

)A
.

Thus

(4.19) ≤ 2Kc
(
m

c

)(
n

v

)( v
n

)A
≤ 2Kc

(em
c

)c (en
v

)v ( v
n

)A
=
(
e2Kev/c(v/c)

)c
·∆c ·

( v
n

)λ−ζ
2
·c−I0/2

≤
(
20K

)c ·∆c ·
(
Kc
n

)λ−ζ
2
·c−I0/2

, (4.20)

where the equality used the definition of A and the subsequent inequality used v ≤ Kc.
We now split into two cases, depending on whether I0 is 0 or τ − 1. When I0 = 0 we use

(4.18) ≤ (4.20) =
(

20K ·∆ ·
(
Kc
n

)λ−ζ
2

)c
≤
(

β
50K

)c
,
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using (4.17). Summing over the at most Kc possibilities for v gives

E[#{τ -subgraphs with c constraints and income at most 0}] ≤ Kc
(

β
50K

)c
.

Now summing this expression over all 1 ≤ c ≤ 2 · SMALL we get

E[#{implausible τ -subgraphs H : |cons(H)| ≤ 2 · SMALL}] ≤
∞∑
c=1

Kc
(

β
50K

)c
≤ β.

Thus Markov’s inequality implies that the Plausibility Assumption holds except with probability
at most β.

The analysis for I0 = τ − 1 is similar. In this case, we use

(4.18) ≤ (4.20) =
(

20K ·∆ ·
(
Kc
n

)λ−ζ
2

)c−1
· 20K ·∆ ·

(
n
Kc

) 1+ζ
2 ≤

(
β

50K

)c−1
· 20K ·∆n

1+ζ
2 ,

again using (4.17). We again sum this over the at most Kc possibilities for v. We also only need
to sum this over all c ≥ 2, since if cons(H) = 1 then I(H) = τ − ζ > τ − 1. We then obtain

E[#{nonempty small τ -subgraphs H with |cons(H)| ≤ 2 · SMALL : I(H) ≤ τ − 1}]

≤
∞∑
c=2

Kc
(

β
50K

)c−1
20K ·∆n

1+ζ
2 ≤ β · n

1+ζ
2 ,

and again Markov’s inequality establishes that (4.16) holds except with probability at most β.
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Chapter 5

Directions for future work

5.1 Upper bounds for more general random CSP models

It would be interesting to show analogous efficient refutation results for models of random CSP(P )
in which literals are not used. This would allow for results on, say, refuting q-colorability for
random k-uniform hypergraphs. For some predicates (e.g., monotone Boolean predicates), random
CSP instances are trivially satisfiable when there are no literals. However for such predicates one
could consider a “Goldreich [Gol00]-style” model in which each constraint is randomly either P
or ¬P applied to k random variables.

5.2 Upper bounds for refutation of semirandom CSPs

5.2.1 Previous work: Feige’s semirandom model for 3-SAT

The study of refutation of semirandom CSPs was initiated by Feige [Fei07]. He studied semirandom
3-SAT instances generated by starting with an arbitrary 3-SAT instance and flipping the polarity of
each literal in every clause independently with probability ε, called the noise. When m = Ω(ε−3n),
a Chernoff Bound argument shows that such a semirandom instance is unsatisfiable with high
probability. Feige showed that unsatisfiability can also be efficiently certified when m is large
enough.

Theorem 5.2.1 ([Fei07, Theorems 1.1 and 1.2]). For every n−1.4 < ε ≤ 1/2, there exists a constant
c such that a semirandom instance with noise value ε and m ≥ cε−2n1.5

√
log log n can be refuted

in polynomial time with high probability over the random choice of the instance and the random
choices of the algorithm.

5.2.2 Future work: Generalizing to arbitrary CSPs

We can also study Feige’s semirandom model for a CSP with an arbitrary k-ary predicate P . Again,
we begin with an instance of CSP(P ) and flip every literal independently with probability ε. It is
then natural to ask whether such instances can be refuted when m� nk/2.

Based on the framework of Chapter 3, it suffices to strongly refute induced XOR instances,
although these induced XOR instances are now semirandom. Strong refutation of semirandom k-
XOR instances would allow us to extend the results of [AOW15] to the semirandom case, implying
δP (t)-refutation of semirandom CSP(P ) instances when m� nt/2.
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Semirandom XOR refutation in the even arity case. For even arity, we can strongly refute
a semirandom k-XOR instance when m ≥ Õ(nk/2) using an SDP.

Proposition 5.2.2. Let k be even and let I be a semirandom k-XOR instance. Then there exists
a polynomial time algorithm that certifies that Opt(I) ≤ 1

2 + o(1) when m ≥ Õ(nk/2).

We sketch the proof. When m = ω(ε−kn), our instance has value 1/2 + o(1). As in the proof
of Theorem 3.2.1, we can reduce to 2-XOR by grouping the variables in each constraint two blocks
of k/2 variables each and replacing each block with a new variable. We thereby obtain a 2-XOR
instance with nk/2 variables. Charikar and Wirth proved that by solving an SDP, we can closely
approximate the value of a 2-XOR instance.

Theorem 5.2.3 ([CW04, Lemma 5]). If the optimal value of a 2-XOR instance is 1
2 + δ, then the

value of the SDP relaxation for the instance is at least 1
2 + Ω

(
δ

log(1/δ)

)
.

Given that our 2-XOR instance has value 1/2+δ, we can certify that it has value at most 1/2+
δ log n. Choosing m ≥ Õ(nk/2), we can make δ small enough that this is 1/2 + o(1).

Semirandom XOR refutation in the odd arity case. To obtain refutation of semirandom
instances of CSP(P ) with m ≥ Õ(nk/2), it remains to show that we can refute semirandom XOR
instances with odd arity. Interestingly, this case seems to be much more challenging than the even
arity case.

Question 5.2.4. Is it possible to strongly refute semirandom k-XOR instances with odd arity
when m ≥ Õ(nk/2)?

We will outline one approach to this question: Taking the an algorithm that works in the
random and showing that it works in the semirandom case as well.

An algorithm for random instances. As mentioned in Chapter 1, Barak and Moitra showed
that this is possible in the case of random instances [BM16]. Here is a high-level view of their
algorithm:

1. Construct a (2k − 2)-XOR instance Choose an index ` ∈ [k]. Create a (2k − 2)-XOR
instance by adding constraints that have the same variable in position `. For concreteness,
we will set ` = k. Given the constraints

xi1 ⊕ · · · ⊕ xik−1
⊕ x∗ = bi and xj1 ⊕ · · · ⊕ xjk−1

⊕ x∗ = bj ,

derive the constraint

xi1 ⊕ · · · ⊕ xik−1
⊕ xj1 ⊕ · · · ⊕ xjk−1

= bi ⊕ bj . (5.1)

Let R(I) be the (2k− 2)-XOR instance constructed in this way from the k-XOR instance I.

2. Construct a 2-XOR instance Form a 2-XOR instance on nk−1 variables (labeled yS for
S ∈ [n]k−1) by splitting the 2k−2 variables of each constraint into two tuples of size k−1 and
replacing each of the resulting sums of k − 1 variables with its corresponding new variable.
In particular, given constraint (5.1), we construct the 2-XOR constraint

yi1,...,i k−1
2
,j1,...,j k−1

2

⊕ yi k−1
2 +1

,...,ik−1,j k−1
2 +1

,...,jk−1
= bi ⊕ bj . (5.2)

Though this way of splitting the variables may look unnatural, it is necessary, as the instance
with equations of the form yi1,...,ik−1

⊕ yj1,...,jk−1
= bi ⊕ bj has value 1 − o(1) with high

probability. Call this 2-XOR instance M(R(I)).
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3. Refute the 2-XOR instance This is usually done by taking the spectral norm of the
corresponding quadratic form or solving the corresponding SDP relaxation and using Theo-
rem 5.2.3.

To show that this algorithm works, two steps are required. First, we need to show that strong
refutation of M(R(I)) implies strong refutation of I.

Theorem 5.2.5 ([BM16]). Let k be odd and let I be a random k-XOR instance. Then if Opt(M(R(I)) ≤
1
2 + δ, then Opt(I) ≤ 1

2 +O(δ).

For an instance J , it is clear that if Opt(M(J )) ≤ 1
2 + δ, then Opt(J ) ≤ 1

2 + δ; a solution to
J corresponds to a solution to M(J ) satsifying the same number of constraints. The interesting
part is to show that for random instances, if Opt(R(I)) ≤ 1

2 + δ, then Opt(I) ≤ 1
2 +O(δ).

The second part of the proof is to show that the M(R(I)) instance has small value when the
instance is random.

Theorem 5.2.6 ([BM16]). Let k be odd and let I be a random k-XOR instance. Then with high
probability Opt(M(R(I))) ≤ 1

2 + o(1) when m ≥ Õ(nk/2).

The semirandom model? Feige showed that the (2k− 2)-XOR instance induced by a semiran-
dom k-XOR instance also has small value [Fei15].

Proposition 5.2.7. Let I be a semirandom k-XOR instance with m = ω(n). Then, with high
probability, Opt(R(I)) ≤ 1

2 + o(1).

However, we don’t know how to prove that M(R(I)) has value 1
2 + o(1) for semirandom I.

Question 5.2.8. When I is semirandom, does it hold that Opt(M(R(I))) ≤ 1
2 + o(1)?

The argument we used in the even k case no longer works. Given a fixed assignment to the
variables of M(R(I)), each constraint is no longer satisfied independently of the others. The RHS
of each 2-XOR constraint depends on the random RHS’s of both k-XOR constraints from which it
was derived.

We also don’t know how to show that refuting M(R(I)) is sufficient to refute I.

Question 5.2.9. If Opt(M(R(I))) ≤ 1
2 + δ, does it hold that Opt(I) ≤ 1

2 + f(δ) for some function
f?

These two questions could be good steps toward resolving Question 5.2.4 and obtaining refuta-
tion algorithms for semirandom instances of CSP(P ).

5.3 Understanding nondeterministic refutation

In this section, we consider the question of determining the number of constraints required for
nondeterministic refutation of random instances of CSP(P ). First, we look at upper bounds.
Second, we would like to prove lower bounds on number of constraints required for nondeterministic
refutation in specific proof systems, including Resolution, SOS, and Cutting Planes.
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5.3.1 Upper bounds

Nondeterministic refutation with o(n1.4) constraints. Feige, Kim, and Ofek showed that
nondeterministic refutation of 3-SAT instances with many fewer than nC(k-SAT) = n1.5 constraints
is possible [FKO06].

Theorem 5.3.1 ([FKO06]). Given a random 3-SAT instance with O(n1.4) constraints, there exists
a polynomial-size certificate of unsatisfiability with high probability.

Question 5.3.2. Is nondeterministic refutation of 3-SAT possible for any m = o(n1.4)?

Completed work: Extending FKO to other binary predicates. With Feige, we showed
that we can extend Theorem 5.3.1 to arbitrary k-ary predicates P to get nondeterministic refutation
of random instances of CSP(P ) with m = o(nk/2).

Theorem 5.3.3 ([FW15]). Let P be any predicate of arity k and let I be a random instance

of CSP(P ) with m ≥ Õ
(
n
k
2
− k−2

2(k+2) log5 n
)

. Then with probability at least 0.9, there exists an

Õ
(
n
k
2
− k−4

2(k+2)

)
-size witness that I is unsatisfiable. Moreover, such a witness can be found in time

2Õ(n1/(k+2)).

In light of Corollary 1.5.2, we observe that this theorem is only interesting for k-ary predicates
that support a (k − 1)-wise uniform distribution over satisfying assignments. The proof is a gen-
eralization as Feige, Kim, and Ofek’s proof of Theorem 5.3.1 to arity-k predicates; we sketch it
here.

Proof sketch. First, we reduce weak refutation of CSP(P ) to δ-refutation of k-XOR. Then we use
the FKO strategy to δ-refute k-XOR with o(nk/2) constraints. As in Chapter 3, we will work in the
“G(n, p)-style” model in which each possible constraint is included independently with probability
p and we let m = pnk be the expected number of constraints. We will again use the notation
E[P ] = Ez∼{±1}k [P (z)].

Reduction to δ-refutation of k-XOR. Assume for a contradiction that there exists a satisfying
assignment x∗; we consider its induced distribution DI,x∗ . First, we use Theorem 3.2.8 to certify
that I is (δ, k − 1)-quasirandomness for some δ = o(1). By Lemma 2.1.13, this implies that there
exists a (k − 1)-wise uniform distribution D such that dTV(DI,x∗ ,D) ≤ 2kδ.

The only (k − 1)-uniform distributions are the uniform distribution on k bits Uk, the uniform
distribution on satisfying assignments to k-XOR (uniform distribution on odd-parity k-bit strings),
and the uniform distribution on satisfying assignments to the negation of k-XOR (uniform distri-
bution on even-parity k-bit strings). If D were Uk, then DI,x∗ would be 2kδ-close to the uniform
distribution, and x∗ would satisfy at most a E[P ] + 2kδ < 1 fraction of constraints.

Since x∗ is a satisfying assignment, it must therefore be 2kδ-close to either the uniform distribu-
tion over satisfying assignments to k-XOR or the uniform distribution over satisfying assignments
to the negation of k-XOR. If we 2kδ-refute k-XOR and its negation, then we have a contradiction
and x∗ cannot be a satisfying assignment. More formally, the following stronger claim holds.

Claim 5.3.4. Let P be any predicate of arity k. If there exists an ε-refutation algorithm for k-XOR,
then there exists an ε′-refutation algorithm for CSP(P ), where

ε′ = 2|P̂ ([k])|ε− η

and
η = Ok(m

−1/2n
k−1

4 log5/2 n).
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Refuting k-XOR with o(nk/2) constraints. Claim 5.3.4 implies that to weakly refute CSP(P ),

it suffices to δ-refute k-XOR for δ = Θk(m
−1/2n

k−1
4 log5/2 n). We will do this exactly as in [FKO06].

Thinking of a k-XOR instance as a k-uniform hypergraph, we wish to show that there exists a
collection of t 2-regular subhypergraphs {R1, . . . , Rt} such that the following hold:

1. Each Ri contains r vertices.

2. Each vertex in each Ri has degree 2, so each Ri contains 2r
k hyperedges.

3. Each hyperedge occurs in at most d of the Ri’s.

4. If 2r
k is even, then for every i the total number of negated literals occurring in constraints

of Ri is odd. If 2r
k is odd, then for every i the total number of negated literals occurring in

constraints of Ri is even.

Because of Condition 4, each Ri must have at least one violated constraint. Then Condition 3
implies that at least t

d constraints must be violated. We can ignore Condition 4: a constant
fraction of subhypergraphs satisfying the other three conditions will also satisfy this condition.
Let H(n, p, k) be the distribution over k-uniform hypergraphs in which each hyperedge is included
independently with probability p. To prove the theorem, it suffices to show the following:

Lemma 5.3.5. Let m ≥ O
(
n
k
2
− k−2

2(k+2) log5 n
)

and r = O
(
n

1
k+2

)
. With probability at least 0.9,

H ∼ H(n, p, k) has a set of Θ(m) 2-regular subhypergraphs on r vertices such that every hyperedge
is contained in at most m

r elements.

This can be proven in exactly the same way as the k = 3 case in [FKO06]. The algorithmic
statement in the theorem also follows exactly as in [FKO06].

FKO for larger alphabets. We can also ask if we can find FKO-style nondeterministic refuta-
tions when the alphabet is larger: instead of considering P : {0, 1}k → {0, 1}, we study predicates
P : [q]k → {0, 1}.

Question 5.3.6. Let P : [q]k → {0, 1}. Do nondeterministic refutations of random instances of
CSP(P ) exist when m� nk/2 exist for P : [q]k → {0, 1}?

Interactive refutation. We can also study stronger proofs. In particular, we can instead ask
if there exists a constant-round interactive proof refuting a random instance of 3-SAT with m =
o(n1.4).

Question 5.3.7. Does there exist a constant-round interactive proof refuting a random 3-SAT
instance with m = o(n1.4)?

In other words, is refutation of such instances in the class AM? In standard nondeterministic
refutation, we wanted to show that refuting a random 3-SAT instance, which is trivially in coNP,
is also in NP.

Algebraic methods for refutation. SOS requires about n
k
2 constraints to refute random in-

stances of k-XOR in polynomial time [Sch08], but it is easy to see that a random instance with
only O(n) constraints can be refuted in polynomial time using Gaussian elimination. In addition,
if P is a degree-d polynomial over F2, then we can use Gaussian elimination to refute instances
with O(nd) constraints by introducing new variables for every product of up to d variables and
performing Gaussian elimination on the linearized instance.
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Applebaum and Lovett [AL16] recently showed that the reach of algebraic techniques extends
far beyond these cases. They considered the slightly different “Goldreich’s function” model, in
which the scope of each constraint is still chosen randomly but there are no random negations on
inputs to constraints. Instead, each constraint has a random right-hand side. For example, the
constraints P (xS) = 0 and P (xS) = 1 are each included with equal probability. In this model, they
study two parameters of predicates.

1. Bit-fixing degree. P has r-bit fixing degree e if there exists an assignment to r inputs in P
such that the resulting restriction has degree e over F2.

2. Rational degree. The rational degree of P is the minimum degree of a non-zero polynomial
Q over F2 such that Q covers the roots of P or P ’s complement.

They prove that when either of these quantities is small, polynomial-time refutation is possible
using algebraic methods.

Theorem 5.3.8 ([AL16]).

1. If P has r-bit fixing degree e, then a random instance of CSP(P ) in the Goldreich’s function
model can be refuted when m� nr+e.

2. If P has rational degree e, then a random instance of CSP(P ) in the Goldreich’s function
model can be refuted when m� ne.

Applebaum and Lovett also point out that the 2r-ary predicate P (z) = z1 + · · ·+zr +
∏2r
i=r+1 zi

has C(P ) = r − 1 but has 1-bit fixing degree equal to 1. For this predicate, algebraic techniques
should allow for polynomial-time refutation at much lower densities than SOS. We ask the following
two questions.

Question 5.3.9.

1. Can Theorem 5.3.8 be proven in the uniform random model?

2. Is there a parameter that generalizes and unifies bit fixing degree and rational degree and for
which we can prove refutation results? (asked in [AL16])

5.3.2 Size lower bounds

In some cases, width or degree lower bounds imply lower bounds on the size of proofs. These
statements often have the following form.

If a refutation has width or degree r, then it must have size 2Ω(r2/n). (5.3)

Examples of such theorems include Impagliazzo et al.’s connection between degree and size in
polynomial calculus [IPS99], Ben-Sasson and Wigderson’s connection between Resolution size and
width [BSW99], Grigoriev et al.’s lower bound on size of SOS refutations of knapsack contradictions
based on degree lower bounds [GHP02], and Kojevnikov and Itsykson’s proof that high degree
implies large size for SOS refutations of Tseitin contradictions [KI06].

Understanding the relationship between size and width in Resolution refutations of
random k-SAT. In the Resolution proof system, introduced by Robinson [Rob65], each line of
a proof is a disjunction of literals. We begin with a set of clauses, which we can think of as the
clauses of an unsatisfiable random SAT instance, and apply the following rules.

A
A ∨B

A ∨ x A ∨ ¬x
A ∨B
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We can refute an instance if we can derive the empty clause from the clauses of the instance using
these two rules. The size of a Resolution proof is the number of clauses it contains. The width of a
clause is the number of literals it contains. The width of a Resolution proof is the maximum width
of any clause in the proof.

Resolution is probably the most well-studied proof system. Nevertheless, we still do not know
how many constraints are required for nondeterministic refutation of k-SAT in Resolution. Ben-
Sasson proved superpolynomial size lower bounds for Resolution when the number of clauses is
almost nk/2 [BS01] by proving that the rank is ω(

√
n) in this regime.

Theorem 5.3.10. Any Resolution refutation of an instance of random k-SAT with m = nk/2−ε

requires width Ω(n
1
2

+ ε
4(k−2) ).

Using Ben-Sasson and Wigderson’s connection between size and width [BSW99], the size lower
bound follows [BS01].

Theorem 5.3.11. Any Resolution refutation of an instance of random k-SAT with m = nk/2−ε

requires size 2n
Ω(ε)

.

However, Ben-Sasson’s rank lower bounds are superconstant for number of constraints almost
all the way up to nk−1.

Theorem 5.3.12. Any Resolution refutation of an instance of random k-SAT with m = nk−1−ε

constraints requires width Ω(n
ε

k−2 ).

Furthermore, we know that Resolution refutations can be found in polynomial time when m =
O(nk−1/ logk−2 n) [BKPS98, BKPS02].

Theorem 5.3.13 ([BKPS02, Theorem 6.1]). With high probability, a random instance of k-SAT
with m = O(nk−1/ logk−2 n) has a polynomial-size Resolution proof of unsatisfiability. Furthermore,
this proof can be found in polynomial time. 1

We can ask what happens for number of constraints between nk/2 and nk−1.

Question 5.3.14. Which of the following is true?

1. The rank of any Resolution refutation of a random instance of k-SAT with nk−1−ε constraints
is at least n1/2+Ω(ε).

2. The rank of any Resolution refutation of a random instance of k-SAT with nk−1−ε constraints
is smaller than

√
n but the size of any refutation is still superpolynomial.

3. There exists a polynomial-size Resolution refutation of a random instance of k-SAT with
m� nk−1−ε.

In this case, we know that there exist formulas based on ordering principles requiring Ω(n)
Resolution width but having polynomial-size Resolution proofs [BG01, AD08]. This means that
size-width tradeoff (5.3) cannot be improved in general. However, it is possible that in the special
case of random k-SAT, stronger size lower bounds based on width can be proven. On the other
hand, if (5.3) is optimal for random k-SAT, then the third case must hold.

1In fact, this proof can be found using ordered DLL, a restriction of Resolution. See Beame et al.’s introduction
for details [BKPS02].

89



Understanding the relationship between size and degree in SOS. To lower bound the
number of constraints required for nondeterministic refutation in a proof system, we need to prove
size lower bounds. If we use (5.3), we need degree Ω(n1/2+ε) to get superpolynomial size lower
bounds. A more careful analysis of the proof of the degree lower bounds in [Sch08] gives conditions
under which the techniques used in these works allow such a strong degree lower bound.

Theorem 5.3.15 ([Sch08]). Let P be a k-ary predicate whose satisfying assignments include all
those of k-XOR or all those of its negation. For all ε > 0, an SOS refutation of a random instance
of CSP(P ) with nt/6+2/3−ε constraints requires degree n1/2+δ(ε) with high probability.

As mentioned above, (5.3) holds for semialgebraic proof systems and we can derive the following
size lower bounds.

Theorem 5.3.16. Let P be a k-ary predicate whose satisfying assignments include all those of
k-XOR or all those of its negation. For all ε > 0, an SOS refutation of a random instance of
CSP(P ) with nt/6+2/3−ε constraints requires size 2n

Ω(ε)
with high probability.

We get superpolynomial size lower bounds up to much lower densities than those at which we
get superconstant rank lower bounds. We can then ask the following question.

Question 5.3.17. Let P be a k-ary predicate whose satisfying assignments include all those of
k-XOR or all those of its negation. Which of the following is true?

1. The degree of any SOS refutation of a random instance of CSP(P ) with nk/2−ε constraints is
at least n1/2+Ω(ε).

2. The degree of a SOS refutation of a random instance of CSP(P ) with nk/2−ε constraints is
smaller than

√
n but the size of any refutation is still superpolynomial.

3. There exists a polynomial-size static SOS refutation of a random instance of CSP(P ) with
m� nk/2−ε.

If either of the first two alternatives is true, then for m � nk/2, low-rank, polynomial-size
refutations of CSP(P ) exist and for m ≤ nk/2−ε, no polynomial-size refutations exist. In the first
case, the degree quickly drops from

√
n to a constant as m increases from nk/2−ε to nk/2 ·polylog(n).

Proving the second case would require new techniques for relating size and degree in SOS. If the
third alternative holds, then as the number of constraints increases, we pass through three phases:
For small enough m, not even nondeterministic refutation is possible. For intermediate values of m,
nondeterministic refutation is possible, but low-degree, polynomial time refutation is not possible
For large values of m, low-degree, polynomial-time refutation is possible.

For comparison, Atserias et al. showed that there exist formulas based on the Pigeonhole
Principle contradiction that require SA degree nδ and size nΩ(nδ) for some constant δ > 0 [ALN14].
Lauria and Nördstrom extended this result to SOS [LN15]. This shows that, in general, size
nO(r) is necessary and sufficient for degree r proofs. The above question can be thought of asking
whether this tight size-degree relation also holds for random CSPs: We know that degree-r static
semialgebraic proofs require size at least 2Ω(r2/n) and that nO(r) size is sufficient; our goal is to
close this gap.

Lower bounds for dynamic semialgebraic proof systems. We know comparatively few
lower bounds for dynamic semialgebraic proof systems. Indeed, such proof systems can be very
powerful, having the ability to, for example, simuate Gaussian elimination [Ats15].

We propose studying Cutting Planes as a first step toward understand the power of dynamic
semialgebraic refutation. In contrast with other dynamic semialgebraic proof systems, superpolyno-
mial size lower bounds are known for both Syntactic [Pud97] and Semantic [FHL] Cutting Planes.
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Question 5.3.18. Prove size lower bounds for syntactic or semantic Cutting Planes refutations of
random 3-SAT with m = O(n).

We could first try to prove this result for a weaker form of Cutting Planes. One way of doing
this is to restrict the values that coefficients in the proof can take. Large coefficients seems to make
it harder to prove lower bounds (e.g., [BPR97]) and easier to prove upper bounds (e.g., [FHL]). We
therefore want to start by studying Cutting Planes proofs in which all coefficients are in {−1, 0, 1}.

Question 5.3.19. Prove size lower bounds for Syntactic or Semantic Cutting Planes refutations
of random 3-SAT with m = O(n) when all coefficients are in {−1, 0, 1}.

One possible route toward proving this is to define an appropriate notion of width and try to
prove that short proofs must have low width as in [IPS99, BSW99].

Question 5.3.20. Is there a notion of width for Syntactic Cutting Planes for which short proofs
must have low width?

One candidate for such a measure is rank. Atserias et al. [ABL03] showed that low rank implies
short proofs: If a set of axioms has rank d, then there exists a Syntactic Cutting Planes refutation
of size O(nd). However, short proofs do not necessarily have low rank: They also show that there
exist formulas of rank nΩ(1) with refutations of size nO(1). This result means that size lower bounds
in Syntactic Cutting Planes cannot be proven using this notion of rank.

Another idea is apply Haken’s bottleneck counting method [Hak85]. Haken introduced this
technique to prove the first superpolynomial lower bounds on the size of Resolution proofs. For
every assignment, there must be a line of the proof that is violated. In the bottleneck counting
method, we find a large set of assignments to the variables such that there are not many possible
proof lines that can falsify a single assignment. Many of these falsifying proof lines must appear in
any refutation, so any refutation must be large. Perhaps the bottleneck counting can be applied to
Cutting Planes as well.
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[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. J. Assoc.
Comput. Mach., 35(4):759–768, 1988. 1.4, 1

[CW04] Moses Charikar and Anthony Wirth. Maximizing quadratic programs: extending
Grothendieck’s inequality. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science, pages 54–60, 2004. 3.5.1, 3.5.1, 5.2.3

[Dan15] Amit Daniely. Complexity Theoretic Limitations on Learning Halfspaces. CoRR,
abs/1505.05800, 2015. 1.2.3, 1, 2, 3.1.1, 3.1.1

[DFHS06] Erik D. Demaine, Uriel Feige, Mohammad Taghi Hajiaghayi, and Mohammad R.
Salavatipour. Combination can be hard: Approximability of the unique coverage
problem. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 162–171, 2006. 1.2.1

[DKMPG08] Josep Diaz, Lefteris Kirousis, Dieter Mitsche, and Xavier Perez-Gimenez. A new
upper bound for 3-SAT. In IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, volume 2, pages 163–174, 2008. 1.1

[DLSS13] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. More data speeds up training
time in learning halfspaces over sparse vectors. In Advances in Neural Information
Processing Systems, pages 145–153, 2013. 1.2.3, 3.1.1

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity
to improper learning complexity. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, pages 441–448. ACM, 2014. 1.1, 1.2.3, 1, 2, 3.1.1, 3.1.1,
3.1.1, 3.1.1, 3.3, 3.3.1, 3.3.1, 3.3.2, 3.3.5, 3.8

[DS14] Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning
DNF’s. Technical Report 1404.3378, arXiv, 2014. 1.2.3, 1, 2, 3.1.1, 3.1.1

[DSS15] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pages
59–68, 2015. 1.1

[Fei02] Uriel Feige. Relations Between Average Case Complexity and Approximation Com-
plexity. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
pages 534–543, 2002. 1.1, 1.2.1, 1.2.1, 1, 3

97



[Fei07] Uriel Feige. Refuting smoothed 3CNF formulas. In Proceedings of the 48th Annual
IEEE Symposium on Foundations of Computer Science, pages 407–417, 2007. 1.4,
5.2.1, 5.2.1

[Fei15] Uriel Feige. Personal Communication, 2015. 5.2.2

[FG01] Joel Friedman and Andreas Goerdt. Recognizing more unsatisfiable random 3-SAT
instances efficiently. In Automata, languages and programming, volume 2076 of Lecture
Notes in Comput. Sci., pages 310–321. Springer, Berlin, 2001. 1.4, 3.1
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[FK81] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combina-
torica, 1(3):233–241, 1981. 3.1

[FKO06] Uriel Feige, Jeong Han Kim, and Eran Ofek. Witnesses for non-satisfiability of dense
random 3CNF formulas. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 497–508, 2006. 4, 1.4, 5.3.1, 5.3.1, 5.3.1,
5.3.1

[FPV15] Vitaly Feldman, Will Perkins, and Santosh Vempala. On the Complexity of Random
Satisfiability Problems with Planted Solutions. In Proceedings of the 47th Annual
ACM Symposium on Theory of Computing, pages 77–86, 2015. 1.4

[Fri99] Ehud Friedgut. Sharp thresholds of graph properties, and the k-sat problem. J. Amer.
Math. Soc., 12(4):1017–1054, 1999. With an appendix by Jean Bourgain. 1.1

[Fu96] Xudong Fu. On the complexity of proof systems. PhD thesis, University of Toronto,
1996. 1.4

[FW15] Uriel Feige and David Witmer. Nondeterministic refutation of any CSP beyond spec-
tral methods. Unpublished manuscript, 2015. 5.3.3

[Gab16] Oliver Gableske. dimetheus. In Proceedings of SAT Competition 2016: Solver and
Benchmark Descriptions, pages 37–38, 2016. 1.1

[Gal77a] Zvi Galil. On resolution with clauses of bounded size. SIAM J. Comput., 6(3):444–459,
1977. 1

[Gal77b] Zvi Galil. On the complexity of regular resolution and the Davis-Putnam procedure.
Theoret. Comput. Sci., 4(1):23–46, 1977. 1

[GHP02] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semi-
algebraic proofs. In Proceedings of the 19th International Symposium on Theoretical
Aspects of Computer Science, pages 419–430, 2002. 5.3.2
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