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Abstract
The exchange of indivisible goods without money addresses a variety of con-

strained economic settings where a medium of exchange—such as money—is con-
sidered inappropriate. Participants are either matched directly with another participant
or, in more complex domains, in barter cycles and chains with many other participants
before exchanging their endowed goods. This thesis addresses the design, analysis,
and real-world fielding of dynamic matching markets and barter exchanges.

We present new mathematical models for static and dynamic barter exchange that
more accurately reflect reality, prove theoretical statements about the characteristics
and behavior of these markets, and develop provably optimal market clearing algo-
rithms for models of these markets that can be deployed in practice. We show that
taking a holistic approach to balancing efficiency and fairness can often practically
circumvent negative theoretical results. We support the theoretical claims made in this
thesis with extensive experiments on data from the United Network for Organ Sharing
(UNOS) Kidney Paired Donation Pilot Program, a large kidney exchange clearing-
house in the US with which we have been actively involved.

Specifically, we study three competing dimensions found in both matching markets
and barter exchange: uncertainty over the existence of possible trades (represented as
edges in a graph constructed from participants in the market), balancing efficiency
and fairness, and inherent dynamism. For each individual dimension, we provide new
theoretical insights as to the effect on market efficiency and match composition of
clearing markets under models that explicitly consider those dimensions. We support
each theoretical construct with new optimization models and techniques, and validate
them on simulated and real kidney exchange data. In the cases of edge failure and dy-
namic matching, where edges and vertices arrive and depart over time, our algorithms
perform substantially better than the status quo deterministic myopic matching algo-
rithms used in practice, and also scale to larger instance sizes than prior methods. In
the fairness case, we empirically quantify the loss in system efficiency under a variety
of equitable matching rules.

Next, we combine all of the dimensions, along with high-level human-provided
guidance, into a unified framework for learning to match in a general dynamic model.
This framework, which we coin FUTUREMATCH, takes as input a high-level objective
(e.g., “maximize graft survival of transplants over time”) decided on by experts, then
automatically (i) learns based on data how to make this objective concrete and (ii)
learns the “means” to accomplish this goal—a task that, in our experience, humans
handle poorly. We validate FUTUREMATCH on UNOS exchange data and make policy
recommendations based on it.

Finally, we present a model for liver exchange and a model for multi-organ ex-
change; for the latter, we show that it theoretically and empirically will result in greater
social welfare than multiple individual exchanges.
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There may be many people wanting, and many
possessing those things wanted; but to allow of
an act of barter, there must be a double coinci-
dence, which will rarely happen.

– William Stanley Jevons

1
Introduction

The exchange of indivisible goods without money addresses a variety of constrained economic
settings where a medium of exchange—such as money—is considered repugnant [181] or other-
wise inappropriate. One example setting is the allocation of donor organs to needy patients; while
the act of organ donation is laudable, the provision of monetary payments to those who donate
is often societally unacceptable and, in nearly all countries, illegal. In general, the removal of a
medium of exchange forces markets operating in such settings to rely on the “double coincidence
of wants” [121], where two participants must both exist simultaneously and be in possession of a
good that the other desires. This is typically quite restrictive, making the design and operation of
efficient markets without money theoretically and computationally challenging.

This thesis addresses the design, analysis, and—when appropriate—real-world fielding of
matching markets and barter exchanges through the lens of computer science. We focus on the
creation of new mathematical models for these markets that more accurately reflect reality, proofs
of statements about the characteristics of these markets in theory, and the development of prov-
ably optimal clearing algorithms for these models that can be deployed in practice. We show that
taking a holistic approach to balancing efficiency and fairness can often practically circumvent
negative theoretical results. We support the theoretical claims made in this thesis with extensive
experiments on data from the United Network for Organ Sharing (UNOS) Kidney Paired Donation
Pilot Program, a large kidney exchange clearinghouse in the US with which we have been actively
involved.

Thesis statement

Competing dimensions—equity, efficiency, and computational tractability—in dynamic
matching markets and barter exchanges can be balanced holistically through computational
optimization methods and informed by random graph models.
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The rest of this chapter introduces matching markets and barter exchange (§1.1), gives a brief
history of worldwide kidney exchange (§1.2), introduces basic terminology used throughout the
thesis (§1.3), and overviews the structure and high-level contributions of this thesis to matching
market design (§1.4).

1.1 Matching markets and barter exchange

In matching problems, a central clearinghouse pairs agents with other agents, transactions, or
contracts. While such matching—deciding who gets what, and why [182]—has been a central
part of human society for millennia, the formal mathematical study of matching markets is only
slightly over half a century old, having been initiated by Gale and Shapley [95] in 1962. Since then,
however, matching market designers hailing from Economics, Operations Research, and Computer
Science have used a growing academic literature on matching to aid in the design and fielding of
a variety of markets. For motivation, we now briefly overview recent applications of matching
market design, leaving the specification of a formal mathematical model until Section 1.3. For a
more in-depth overview of the theory and application areas of traditional matching markets, we
redirect the reader to a classic survey by Roth and Sotomayor [183] and to more recent surveys
by Abdulkadiroğlu and Sönmez [5], Manlove [153], and Sönmez and Ünver [197].

Two-sided matching markets. In two-sided matching, both sides of the market have preferences
over the other side. The classical example of a fielded two-sided matching market is the National
Resident Matching Program (NRMP) in the United States; here, graduating medical students are
matched as residents to training hospitals with limited capacity [180]. Other fielded classes of
two-sided markets include the following:
• School choice [4], where students are matched to schools with limited capacity, like those

implemented in Boston [2], New York City [1], and Israel [49];
• Labor markets, where workers are matched to firms (e.g., via an online service like Up-

work [214] or more traditional ad hoc application processes); and
• Rideshare and taxi services, where customers in need of transportation match with willing

drivers (e.g., through a service like Uber [211]).
Here, as in the markets discussed below, a key goal of the market designer is to promote efficient
matching by implementing a mechanism that provides market thickness—e.g., in the rideshare
case, ensuring that enough customers participate to make driver-side entrance worthwhile, and vice
versa—without too much market congestion [166]. We discuss building thickness in a centralized
market in greater depth in Chapters 6 and 8.

Given a set of participants, a designer also cares about handling other forms of short-term
uncertainty—e.g., in the labor market case, determining whether a worker and firm truly matched
and, if so, the quality of that match—and, finally, actually being capable of computing an efficient
matching in an appropriate amount of time. We discuss principled methods to compute efficient
matchings—with and without considering such uncertainty—in Chapters 3, 4, 5, and 8.
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One-sided matching markets. In one-sided matching, only one side of the market has prefer-
ences over the other [195]. This type of market often occurs when agents are being matched with
objects. Well-known classes of fielded one-sided matching markets include the following:
• Housing allocation, where humans are assigned to houses [116], or to rooms in public hous-

ing projects with limited capacity [127, 128, 205];
• Deceased-donor organ allocation, where needy patients are matched to cadaveric organs that

align with their medical needs [37, 56, 202, 223]; and
• Barter exchange, where agents exchange their endowed items by participating in cyclic or

chain-based swaps; we discuss this in greater depth below.
In these examples—as in the other matching market types we will discuss—there is a clear need
to balance fairness with economic efficiency, a topic we address more rigorously in Chapters 7, 8,
and 9.

Barter exchange. In barter exchange, agents enter the market with an initial endowment and then
choose to enter into exchanges with other agents. These markets lack the inherent “sidedness” of
the two-sided markets above; rather, any participant can—if deemed appropriate by both parties—
be matched with any other participant. Numerous barter exchanges are fielded, such as:
• House exchange, where participants seek to swap homes (e.g., Intervac [119] and Best House

Swap [38]);
• Room exchange, where college roommates simultaneously “trade up” to better roommates

(e.g., The Room Exchange at the University of Maryland [206]);
• Book exchange, where participants swap books after reading them (e.g., Read It Swap

It [177]);
• Shoe exchange, where participants who require only a single shoe or two shoes of different

sizes due to injury, disease, or genetic disorder can swap shoes with similar participants (e.g.,
the National Odd Shoe Exchange [164]);

• Shift exchange, where nurses or other shift workers swap shifts (typically an ad hoc process,
as seen in ZenDesk’s ShiftPlanning software [222]);

• Digital goods exchange, where agents swap digital goods but retain their original (digital)
endowment even after the exchange occurs (e.g., Factual [92] in the US or Datatang Tech-
nology [66] in China, as discussed by Fang et al. [93]); and

• General barter exchange, where participants can swap different classes of goods and services
(e.g., Swap.com [203], TradeAway [210], BarterQuest [31], and others).

In this thesis, we focus on the application area of kidney exchange, a recent innovation that
matches patients in need of a kidney to willing living donors. Chronic kidney disease is a life-
threatening health issue that affects millions of people worldwide; its societal burden is likened to
that of diabetes [165]. Damage from kidney disease can cause irreparable loss of organ function
and, eventually, kidney failure. Such failure requires either continual dialysis or an organ transplant
to sustain life. Demand for kidneys is far greater than supply [106]. Although receiving a deceased-
donor kidney is a possibility, as of mid-2016, there are roughly 100,000 people on the US national
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waiting list for kidneys,1 with 35,038 added in 2015 while only 17,881 left due to receiving a new
organ—from either a deceased or living donor. Kidney exchange allows patients who suffer from
terminal kidney failure, and have been fortunate enough to find a willing but incompatible kidney
donor, to swap donors. Indeed, it may be the case that two donor-patient pairs are incompatible,
but the first donor is compatible with the second patient, and the second donor is compatible with
the first patient; in this case a life-saving match is possible. As we discuss formally in Section 1.3,
sequences of swaps can even take the form of long cycles or chains.

1.2 A brief history of kidney exchange

The idea of kidney exchange was presented in 1986 by Rapaport [176]; important ethical discus-
sion was given by Ross et al. [179]. South Korea performed the first kidney exchange in 1991 [140],
followed by the first European exchange (in Switzerland) in 1999 [207]; these swaps were orga-
nized on a small scale and by hand. The first organized exchange market for kidneys, the New
England Paired Kidney Exchange (NEPKE), started in 2003–2004 in the US [184, 185, 186], while
the first “nationwide” exchange was launched in the Netherlands in 2004 [67]. NEPKE has since
ceased operations; its pool was merged into the United Network for Organ Sharing (UNOS) US-
wide kidney exchange, which started in 2010 and now includes 66% of the US transplant centers.

There are also two large private kidney exchanges in the US, the National Kidney Registry
(NKR) and the Alliance for Paired Donation (APD). They typically only work with large transplant
centers. Transplant centers can be part of multiple exchanges; Appendix E presents preliminary
results quantifying the effect on social welfare of this multi-registration and competition between
exchange clearinghouses. NKR makes their matching decisions manually and APD uses a com-
bination of algorithmic and manual decision making. There was also another large private kidney
exchange, the Paired Donation Network (PDN), which has ceased operations. In addition, there
are several smaller private kidney exchanges in the US. They typically only involve one or a couple
of transplant centers. These include an exchange at Johns Hopkins University and a single-center
exchange at the Methodist Specialty and Transplant Hospital in San Antonio.

Furthermore, there are now established kidney exchanges in the Netherlands, Canada, the
United Kingdom, Portugal, Australia, and Israel. International exchanges have been performed
on a case-by-case basis; recent work by Akbarpour et al. [10] investigates a theoretical model of
financing international exchange, but a fielded implementation of a large-scale organized interna-
tional exchange is not on the immediate horizon.

Kidney exchanges started with just using 2-cycles before also allowing 3-cycles and altruist-
initiated chains [187]. Since 2006, kidney exchanges have also incorporated never-ending chains,
where the last donor in a chain serves as an altruist in a later match run to initiate a new chain [178].
This approach is now included at least in the three leading kidney exchanges (UNOS, NKR, and
APD). Chapter 3 covers the methods used to clear exchanges under these different constraints, as
well as the effect on economic efficiency of restrictions on matching structures.

1http://optn.transplant.hrsa.gov.
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A brief overview of theoretical work in kidney exchange. Roth et al. [184, 186, 188] set
the groundwork for large-scale organized kidney exchange. These papers explored what effi-
cient matchings in a steady-state kidney exchange would look like; extensions by Ashlagi et al.
[23], Ashlagi and Roth [19], Sönmez and Ünver [199], and Ding et al. [82] address shortcomings in
those theoretical models that appeared as kidney exchange became reality. We overview this litera-
ture more and then augment those models substantially in Chapters 2, 3, 4, 5, 7, 9, and Appendix E.
Abraham et al. [6], Biró et al. [41], Manlove and O’Malley [152], Glorie et al. [100], Constantino
et al. [63], Anderson et al. [16], and Klimentova et al. [134] discuss complexity results related to
the clearing problem and present practical approaches to optimally clearing actual exchanges; we
overview this literature more and present novel contributions in this space in Chapters 3, 4, 5, 6,
and 8. Game-theoretic models of kidney exchange, where transplant centers are viewed as agents
with a private type consisting of their internal pools, were presented and explored by Ashlagi and
Roth [19], Toulis and Parkes [209], Ashlagi et al. [25], Carvalho et al. [55], and Blum et al. [45]; we
have ongoing work in this area with Hajaj et al. [104], but do not include it in this thesis. Various
forms of dynamism, like uncertainty over the possible future participants in the pool [9, 24, 213]
or uncertainty over the existence of particular potential transplants [14, 15, 43, 44, 75] have been
explored from both an economic and algorithmic efficiency point of view; we discuss this literature
in greater depth and our contributions to this space in Chapters 5, 6, and 8.

1.3 Preliminaries

In this section, we introduce basic mathematical terminology and a model of barter exchange that
will be used throughout this thesis. Most chapters augment the model in this section. As is common
throughout this thesis, we present the model as a kidney exchange, where patients bring willing
but incompatible donors to a large waiting pool; however, this model applies to any general barter
exchange where agents enter with an endowment.

We begin by describing the creation of a compatibility graph representing the space of possible
swaps among n agents (patients), each with an endowed item (willing donor). The construction of
the graph is based on traits of the candidates and donors. We then describe the clearing problem, a
formalization of the process used to determine an optimal set of swaps.

1.3.1 Compatibility graph

We begin by encoding an n-patient kidney exchange as a directed graphG(n). Construct one vertex
for each incompatible candidate-donor pair. Add an edge e from one candidate-donor vertex vi to
another vj , if the candidate at vj can take a kidney from the donor at vi. (Edges e can also be
associated with weights we, representing the utility to vj of obtaining vi’s item.)

Within the compatibility graph, a cycle c represents a possible swap, with each vertex in the
cycle obtaining the item of the next vertex. A matching is a collection of disjoint cycles; no vertex
can give out more than one item (e.g., more than one kidney). Cycles ensure that donors give
items if and only if their patients receive organs. Fielded kidney exchanges also gain great utility
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through the use of chains [22, 96, 178]. An altruistic donor initiates a chain by donating his organ
to a patient, whose paired donor donates her organ to another patient, and so on.

Figure 1.1 gives an example kidney exchange compatibility graph. Possible cycles include, for
example, the 2-cycles 〈(d2 → p3), (d3 → p2)〉 and 〈(d5 → p6), (d6 → p5)〉, or the longer 3-cycle
〈(d2 → p5), (d5 → p3), (d3 → p2)〉. Additionally, a single altruistic donor a exists in the pool and
is willing to give his or her kidney to a patient, whose paired donor will then donate a kidney to a
compatible patient in the pool (for example, via the chain 〈(a→ p1), (d1 → p4), (d4 → p7), (d7 →
·)〉, with the final donor d7 either donating to the deceased donor waiting list or remaining in the
pool as a future altruistic donor).

d3

p3

d1

p1

d2

p2

a

d4

p4

d5

p5

d6

p6

d7

p7

Figure 1.1: An example compatibility graph.

1.3.2 The clearing problem
The clearing problem is that of finding a maximum-cardinality matching consisting of disjoint
chains—possibly with some length cap K—and cycles of length at most some small constant
L. The cycle-length constraint is crucial since all operations in a cycle have to be performed
simultaneously. Were this not the case, a donor might back out after his incompatible partner has
received an organ. This backing out is legal because, in nearly all countries including the US, it
is illegal to form a binding contract over the exchange of organs. The availability of operating
rooms, doctors, and staff causes long cycles to be unexecutable. As is the practice in the US-wide
kidney exchange and most other real kidney exchanges, we let L = 3. Chains need not be limited
in length; were a donor to renege before giving an organ but after his paired patient had received
the organ, then no remaining pair in the pool has lost its “bargaining chip”—although the collapse
of the chain is not desired.

Lower length caps on both cycles and chains may have practical advantages. For example,
shorter cycles are less likely to fail after the algorithmic matching but before transplantation, and
thus may lead to improved matching in practice [75, 147]. Some fielded kidney exchanges explic-
itly favor shorter cycles over longer ones [152]. We address this dimension of kidney exchange in
Chapter 5, but do not discuss it further in this section.
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In the small example compatibility graph shown in Figure 1.1, with L = 3, a maximum cardi-
nality matching without chains (i.e., with K = 0) includes five pairs via the 3-cycle and 2-cycle:

{〈(d1 → p2), (d2 → p3), (d3 → p1)〉, 〈(d5 → p6), (d6 → p5)〉} .

With chains of unbounded length (i.e., by letting K increase with |V |) the cardinality of the
maximum matching increases to seven pairs. This is achieved by starting a chain by way of the
altruist a, as well as by using the same two 2-cycles as before:

{〈(a→ p1), (d1 → p4), (d4 → p7), (d7 → ·)〉, 〈(d2 → p3), (d3 → p2)〉, 〈(d5 → p6), (d6 → p5)〉} .

Quantifying the gain in match size due to the addition of altruistic donors, both in terms of a
random graph model and via realistic simulation, is addressed in Chapters 2; methods for clearing
exchanges in practice in the presence of long but finite chains are discussed in Chapters 3, 4, and 5.

While the clearing problem can be solved easily on very small graphs like that in Figure 1.1,
it quickly becomes intractable on larger graphs. The standard algorithmic method for optimally
clearing kidney exchanges is integer programming [188]; we discuss methods for clearing in much
greater depth in Chapter 3, but briefly overview a basic approach here. Formally, denote the set of
all chains of length no greater thanK and all cycles of length no greater than L by C(L,K). Let |c|
represent the number of candidate-donor pairs in a cycle or chain c. Then, given binary indicator
variables xc ∈ {0, 1} ∀c ∈ C(L,K), we must solve the following integer linear program:

max
∑

c∈C(L,K)

|c| xc s .t .
∑
c:v∈c

xc ≤ 1 ∀v ∈ V

The clearing problem with any fixed L > 2 is NP-complete [6, 41], APX-hard [40], and is
constant-factor inapproximable [150]. The cases L = 2 with no chains and L = ∞ can be solved
in polynomial time. Significantly better (i.e., higher cardinality) results are found with L = 3
over L = 2, so solving the NP-complete version of the problem is necessary in practice [188].
The problem, at least with respect to kidneys, can be solved optimally in practice at the steady-
state nationwide scale using a specialized tree search algorithm based on the branch-and-price
framework for integer programming [6, 75, 80]. That is one major contribution of this thesis and
is discussed in greater depth in Chapter 3.

More generally, define a matching M to be any collection of disjoint cycles and chain—
possibly obeying length restrictions or other arbitrary business constraints—in the graph G. Then,
given the set of all legal matchingsM, the general batch clearing problem is to find a matching
M∗ ∈M that maximizes some utility function u :M→ R. Formally:

M∗ = arg max
M∈M

u(M)

We attend to this more general version of the clearing problem in Chapters 5 and 7; we also
extend this further to the dynamic setting, where the clearinghouse wishes to maximize some
objective over time, in Chapters 6 and 8. Next, we overview the general structure of this thesis and
its contributions.
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1.4 Contributions & structure of this thesis

In this section, we discuss the structure of this thesis, along with the contributions of each chapter
and the overall contributions of the methods presented in the thesis. The thesis is divided into five
major parts.

Clearing deterministic exchanges. Part I of this thesis consists of Chapters 2, 3, and 4 and ad-
dresses the clearing problem in static, deterministic barter exchanges. A clearinghouse that does
not consider the future when matching in the present is said to solve the static clearing problem;
we relax this myopic outlook in Chapters 6 and 8. Similarly, a clearinghouse that does not consider
uncertainty over the existence of market participants, nor uncertainty over the existence of poten-
tial trades between participants, is said to solve the deterministic clearing problem; we relax this
outlook in Chapter 5. Yet, solving the static, deterministic clearing problem is of both theoretical
interest and practical importance, as it most accurately mimics the current reality of most fielded
kidney exchanges’ matching policies.

Chapter 2 begins by presenting the first of two random graph models of kidney exchange; it
augments the model of Ashlagi and Roth [19] to include altruistic donors, and then determines a
matching that only requires short cycles and chains to achieve global efficiency (in the large, with
high probability). Experimental evidence in the initial generative model of kidney exchange due
to Saidman et al. [191] supports this theoretical intuition. This theoretical result would hint that
simple matching strategies could be used in a large fielded kidney exchange, instead of needing to
rely on more elaborate mathematical programming techniques; yet, since publication, the reality
of kidney exchange has been shown to align with neither that initial theoretical model nor the
initial simulators. Chapter 2 shows on real data from the UNOS exchange that long chains can be
helpful in the static, deterministic setting; this is now an accepted viewpoint in the kidney exchange
community, and motivates the following two chapters’ focus on optimization methods for clearing
exchanges with longer chains.

Chapter 3 addresses methods for solving the static, deterministic clearing problem to optimal-
ity. It begins by overviewing previous approaches, most of which are integer-programming-based
solvers relying on either constraint generation or branch and price. It goes on to identify a bug
in the previously leading branch-and-price-based solvers and proves a hardness result showing
that these papers’ approaches are likely not to work in general. To counter this negative result, it
presents new models for kidney exchange that scale substantially better than the prior approaches
when clearing exchanges with long, finite chains—including the now provably non-optimal prior
leading solvers! Some of these new models are compact (polynomial with respect to the input
graph), while others are not; for the latter models, it presents a branch-and-price-based approach
such that the pricing problem is solved in polynomial time. It also presents various theoretical
results comparing the tightness of linear programming relaxations in different models.

Chapter 4 presents a novel model for kidney exchange in which, under a light assumption that
is true in reality, the clearing problem is solvable in polynomial time. While the polynomial-time
algorithm presented in that chapter is not yet empirically tractable in practice, the new model is
quite general and can be used to address some recent advances in kidney exchange—for example,
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the idea that patients and donors can pay some monetary or health cost to either temporarily or
permanently change (e.g., via immunosuppression) their initial attributes to increase the likelihood
of finding a match. We also provide experimental validation that our new model can accurately
mimic real kidney exchange.

Contribution

• Some prior state-of-the-art clearing engines were not correct; indeed, their approaches
are likely intractable by way of a new hardness result;

• We present the most scalable optimal clearing engine for barter exchange with short
cycles and long but finite chains, which accurately mirrors fielded exchanges; and

• A new model for kidney exchange can be used to computationally efficiently clear
exchanges, and can model new medical developments in kidney exchange.

Coauthors and relevant publications: Dickerson, Procaccia, and Sandholm [74], Dicker-
son, Kazachkov, Procaccia, and Sandholm [79], Dickerson, Manlove, Plaut, Sandholm, and
Trimble [80], Plaut, Dickerson, and Sandholm [174, 175]

Managing uncertainty in dynamic matching environments. Part II of this thesis consists of
Chapters 5 and 6 and relaxes the “static” and “deterministic” descriptors on the clearing problem
addressed in Part I. In practice, kidney exchange is dynamic, with vertices and edges in the com-
patibility graph arriving and departing over time; we address this in Chapter 6. Similarly, the actual
existence of edges in a compatibility graph is not known with perfect certainty; indeed, patients’
and donors’ attributes change over time and are also tested at variable levels of detail and accuracy.
Chapter 5 addresses this stochasticity from two complementary points of view.

Chapter 5 presents the failure-aware model of kidney exchange, which explicitly considers
edge failure probability in the clearing optimization problem. It shows that we can significantly
increase the number of successfully matched vertices (i) in theory, in a sparse random graph model
due to Ashlagi et al. [23]; (ii) on real data from kidney exchange match runs between 2010 and
2014; (iii) on synthetic data generated via a model of dynamic kidney exchange. It presents
a novel branch-and-price-based optimal clearing algorithm specifically for this probabilistic ex-
change clearing problem and shows that this new solver scales well on large simulated kidney
exchange data, unlike prior clearing algorithms. It shows experimentally that taking failed parts
from an initial match and instantaneously rematching them with other vertices still in the waiting
pool can result in significant gains. It also shows that the compact formulations of Chapter 3 can be
extended to the failure-aware setting under a simple assumption, and presents a polynomial-time
branch-and-price-based solver in this model.

Following the presentation of the failure-aware model, Chapter 5 then addresses a complemen-
tary approach for dealing with uncertainty in the existence of edges via pre-match edge testing.
Here, the problem is to identify some small set of edges to test for existence prior to the match
run such that the proposed algorithmic match will—after edge failures—be close in size to the
omniscient match that knows in advance the existence of all potential edges. Cast as a stochastic
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matching (for the 2-cycles-only case) or stochastic k-set packing (for cycles and chains with a max-
imum size of k) problem, experiments show that even a very small number of pre-match rounds of
edge testing—where at most one incoming edge per vertex can be tested per round—would result
in tremendous practical efficiency gains.

Chapter 6 addresses the dynamic barter exchange problem, where vertices and edges arrive
and depart over time, and the clearinghouse’s problem is to maximize some utility function in the
long run, possibly at the expense of immediate utility. In this chapter, we introduce a natural,
general policy parameterization approach and techniques for operationalizing it. Specifically, we
propose to learn potentials of elements (e.g., vertices, edges, cycles, and so on) of the current
problem. The potential represents an estimate of how much that element can contribute to the
objective in the future. The potentials can be viewed as policy parameters to be optimized using
a black box program; in the experiments of Chapter 6 and, later, Chapter 8, we learn them using
parameter tuning [113, 114]. Then, at run time, we simply run any offline matching algorithm
(e.g., [6, 14, 16, 63, 75, 78, 80, 100, 134, 147, 174]) at each time period, but subtracting out
in the objective the potentials of the elements used up in the matching. This causes the batch
optimizer—which is traditionally myopic, as discussed in Part I—to take the future into account
without suffering a run-time cost.

While potentials are a general technique for learning to match, we apply them to the kidney
exchange domain. We theoretically compare the power of using potentials on increasingly large
elements: vertices, edges, cycles, and the entire graph (optimum). Then, experiments show that by
learning vertex potentials, our algorithm matches more patients than the current practice of clearing
myopically. It scales to exchanges orders of magnitude beyond those handled by prior algorithms
for this (unsimplified) dynamic problem. (Potentials later form a large part of the FutureMatch
framework, presented in Part III.)

Contribution

• Uncertainty over the existence of potential trades in exchanges should be taken into
consideration explicitly in the clearing optimization;

• Even a small amount of pre-match edge existence testing would result in tremendous
efficiency gains in practice; and

• Considering long-term exchange dynamics via learning potentials for graph elements
results in further efficiency gains.

Coauthors and relevant publications: Blum, Dickerson, Haghtalab, Procaccia, Sandholm,
and Sharma [44], Dickerson, Procaccia, and Sandholm [73, 75]

Balancing equity and efficiency in dynamic matching environments. Part III, consisting of
Chapters 7 and 8, addresses the effect on various notions of fairness that the efficiency gains from
Parts I and II exert on the overall match structure. Chapter 7 focuses on improving access to
kidneys for highly-sensitized, or hard-to-match, patients. Toward this end, we formally adapt a
recently introduced measure of the tradeoff between fairness and efficiency—the price of fair-
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ness [35, 53]—to the standard kidney exchange model. We show that the price of fairness in the
standard theoretical model—that model due to Ashlagi and Roth [19] and augmented previously
in Chapter 2—is small. We then introduce two natural definitions of fairness and formally de-
fine them in the standard deterministic model of kidney exchange, and in the failure-aware model
presented in Chapter 5. The chapter concludes with an empirical exploration of the tradeoff be-
tween matching more hard-to-match patients and the overall utility of a utilitarian matching, on
data from the UNOS nationwide kidney exchange and simulated data from each of the standard
kidney exchange distributions.

Chapter 8 presents FUTUREMATCH, a framework for learning to match in a general dynamic
model. FUTUREMATCH takes as input a high-level objective (e.g., in the context of kidney ex-
change, “maximize graft survival of transplants over time”) decided on by experts, then automat-
ically (i) learns based on data how to make this objective concrete and (ii) learns the “means” to
accomplish this goal—a task, in our experience, that humans handle poorly. Chapter 8 gives an in-
stantiation of FUTUREMATCH that uses data from all live kidney transplants in the US since 1987
to learn the quality of each possible match; it then learns the potentials of elements in the graph (as
discussed in Chapter 6), translates these to weights, and performs a computationally feasible batch
matching that incorporates dynamic, failure-aware considerations through the weights (using the
failure-aware solver presented in Chapter 5). We validate FUTUREMATCH on UNOS exchange
data. It results in higher values of the objective. Furthermore, even under economically inefficient
objectives that enforce equity, it yields better solutions for the efficient objective (which does not
incorporate equity) than traditional myopic matching that uses the efficiency objective.

Contribution

• It is possible to theoretically and empirically quantify tradeoffs between “fair” and
“efficient” matching rules;

• In kidney exchange, the “price” to using a fair rule can be quite low; and
• FUTUREMATCH is a system that learns to match in a dynamic setting, taking into

account high-level value judgments from human experts while automatically creating
a low-level matching policy.

Coauthors and relevant publications: Dickerson and Sandholm [70, 71], Dickerson, Pro-
caccia, and Sandholm [77, 78]

New paradigms for barter exchange. Part IV, consisting of Chapter 9, addresses novel direc-
tions in generalized organ exchange. While fielded kidney exchanges see huge benefit from altru-
istic kidney donors, a significantly higher medical risk to the donor deters similar altruism with
livers. This chapter explores the idea of large-scale liver exchange, and shows on demographically
accurate data that vetted kidney exchange algorithms can be adapted to clear such an exchange
at the nationwide level. It then proposes cross-organ donation where kidneys and livers can be
bartered for each other. In two adaptations of random graph models—the first due to Ashlagi and
Roth [19] (augmented in Chapters 2 and 7) and the second due to Ashlagi et al. [23] (used in Chap-
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ter 5)—it shows theoretically that this multi-organ exchange provides linearly more transplants
than running separate kidney and liver exchanges; that linear gain is a product of altruistic kidney
donors creating chains that thread through the liver pool. We support this result experimentally on
demographically accurate multi-organ exchanges.

Contribution

• From a technology perspective, we are ready to field a liver exchange; and
• Combining kidney and liver exchanges into a multi-organ exchange would result in

substantial gains in theory and in practice relative to separate exchanges.

Coauthors and relevant publications: Dickerson and Sandholm [72]

Conclusions, open problems, and the appendices. We conclude the thesis with Part V, which
consists of conclusions and closing thoughts in Chapter 10 and a list of open problems in Chap-
ter 11. Both theoretical and experimental open problems are given for general matching, general
barter exchange, and—specifically—for kidney exchange. For each open problem, we provide a
list of good “starting papers” that an interested researcher could read to get a good foothold on the
history and current state of the art of each problem.

This thesis also includes five appendices. Appendix A contains additional theoretical results,
proofs, and tabulated experimental data for the position-indexed formulations of barter exchange
presented in Chapter 3. Appendix B gives the complete, formal proof of one of the main theoretical
results from Chapter 4. Appendix C provides additional experimental results for the adaptive pre-
match edge testing techniques described in Chapter 5. Appendix D gives details on the generator
we created to seed our realistic liver and multi-organ exchange experimental results in Chapter 9.
Finally, Appendix E details ongoing work with Sanmay Das and Zhuoshu Li at Washington Uni-
versity in St. Louis and Tuomas Sandholm at CMU; here, we extend a recent theoretical model
due to Akbarpour et al. [9] of a single dynamic matching market to the case where two markets
compete for agents who potentially co-register in both markets. This is motivated by, e.g., overlap-
ping rideshare markets like Uber and Lyft, or overlapping kidney exchanges like APD, NKR, and
UNOS in the United States. Our interest in this ongoing work is to quantify the effect on social
welfare that this competition creates; we show for a portion of the parameterization space of our
model that the loss in social welfare can be high relative to a single clearinghouse.
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PART I:

Optimization Methods for Optimal Batch
Clearing of Static, Deterministic Exchanges

13





All models are wrong—but some are useful.
– George Box

A map is not the territory it represents, but, if
correct, it has a similar structure to the terri-
tory, which accounts for its usefulness.

– Alfred Korzybski

2
Efficient clearing via random graph models

In this chapter, we address the clearing problem by way of a stylized random graph model of
kidney exchange. Specifically, we extend the first random graph model of kidney exchange, due
to Ashlagi and Roth [19], to include altruistic chains, a recent innovation for barter exchanges that
has been widely adopted for kidneys, but was—and, in many ways, still is—poorly understood.
Indeed, the research presented in this chapter set policy at the UNOS kidney exchange, effective
starting in 2012; however, many aspects of the effect on long-term efficiency of chains are still
not well understood from a theoretical point of view (with notable recent work by Anderson et al.
[15], Ashlagi et al. [23], and by the author [75], to be discussed in Chapter 5). We include this
chapter to motivate the need for non-trivial mathematical-programming-based approaches to clear-
ing real kidney exchanges as a complement to relying on purely theoretical analysis, an interaction
we discuss in greater depth throughout the rest of this thesis.

Section 2.1 reports results from early match runs in 2011 at the UNOS kidney exchange; these
real-world results clearly show the benefit of integrating chains into the clearing process. Sec-
tion 2.2 formalizes the theoretical benefit of chains as a kidney exchange scales to the large, and
Section 2.3 experimentally determines exactly what “large” means—critically, both of these mod-
els operate in a dense stylized model of kidney exchange that was popular early on [191], but
turned out to not mimic the present-day reality of fielded kidney exchange. Section 2.4 studies the
dynamics of kidney exchange over time, using an extension over the prior state-of-the-art dynamic
model to more accurately represent the realities of modern kidney exchange. We conclude with
some thoughts on the implications of these theoretical and experimental results, as well as areas
where they did not end up aligning with the current reality of kidney exchange. The rest of this
thesis focuses on building more accurate theoretical representations of kidney exchange, as well as
on scalable techniques to learn implementable matching policies that truly mimic reality.
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Related Publications

An early version of this work appeared at AAMAS-12 via a collaboration between Dicker-
son, Procaccia, and Sandholm [74].

2.1 Early results from the UNOS exchange

The UNOS nationwide kidney exchange pilot went live with 77 transplant centers in October 2010
and initially matched using only 2- and 3-cycles. Starting in May 2011, chains were incorporated
into the UNOS pilot program [163, 178, 187]. As discussed in Section 1.3, each chain is initiated
by an altruistic donor—that is, a donor who enters the pool, without a candidate, offering to donate
a kidney to any needy candidate in the pool. Chains start with an altruist donating a kidney to a
candidate, whose paired donor donates a kidney to another candidate, and so on. Chains can be
longer than cycles in practice because it is not necessary (although desirable) to carry out all the
transplants in a chain simultaneously; indeed, unlike in a cycle, if a chain breaks by some donor
backing out, the chain merely stops, but no patient-donor pair is out their “bargaining chip" (donor
kidney). A major question in fielded kidney exchanges is to what extent planning for longer chains
at each match run affects short- and long-term efficiency.
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Figure 2.1: Real data from the June/July 2011 UNOS match runs, optimized for maximum cardi-
nality.
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Figure 2.2: Real data from the June/July 2011 UNOS match runs, optimized for maximum total
weight.

Figures 2.1 and 2.2 show results for two real matches, for June and July 2011. To show the
efficacy of chains, we varied the chain cap from 1 (i.e., the altruistic donor donates directly to the
deceased waiting list) to 20. In Figure 2.1, we maximize the cardinality of the final matching. That
is, we ignore edge weights and assume all compatible matches are equally good, and determine
the matching that allocates kidneys to the most candidates. The size of the matching increases
significantly with chains up to length 9 (June) or 10 (July). Critically, with long chains we match
1.77 (June) and 2.55 (July) times the number of candidates than would have been matched with
2− and 3-cycles alone. We note that Ashlagi et al. [23] independently report similar findings from
real-world data sets from the NKR exchange.

The improvement from long chains is even more drastic when the edge weights are taken into
account, as is the case in the real UNOS match run. Figure 2.2 shows that in June of 2011, chains of
length up to 13 increase the objective value, while chains of length up to 12 increase the objective
of the matching in July. Overall, incorporating chains increases the objective value to 2.98 (June)
and 6.00 (July) times that of chains only (with a cycle cap of 3).

It is important to note that the structure of the compatibility graph, G(n) in this early pilot
program is special and, in many ways, computationally fortuitous—especially in the very early
months of the UNOS exchange, when the pool was still quite small. The UNOS pool at that time—
as well as now—consisted mainly of highly-sensitized patients—that is, patients that are difficult
to match based on their tissue type. Intuitively, these patients were too hard to match regionally
and in prior runs of the national exchange—so the input graph is very sparse. At the time, with
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a less sensitized and thus denser pool, clearing engines did not exist that could even solve the
current problem size (with long chains) because the input graph G(n) is not as sparse. (This is no
longer a problem due to work we will present in Chapter 3). Luckily, in the next section, we show
theoretical results stating that in large kidney pools drawn from the full set of candidates (i.e., not
just highly sensitized ones), long chains will have negligible effect on the overall cardinality of
the matching with high probability. Therefore, one may not need to consider long chains in the
clearing—if the pool ends up being drawn this way.

If sufficient to achieve efficiency, short chains would be further desirable in practice because
short chains are (1) computationally dramatically more tractable for the clearing algorithm (there
are fewer of them), (2) logistically easier to administer, and (3) less likely to fail due to a positive
crossmatch or some non-simultaneous donor backing out (these two issues will be discussed later
in this chapter, and in much greater depth in Part II).

2.2 Theoretical bounds on chains in a dense model

In this section, we prove that using chains of length more than 3 provides no benefit in large, dense,
random, unweighted candidate pools. We will prove this result in an adaptation of the first common
model of kidney exchange due to Ashlagi and Roth [19], based on a 2006 paper from the medical
community due to Saidman et al. [191]. We begin by describing the model.

2.2.1 Necessary background & the “dense” model of kidney exchange

The need for kidney exchange exists due to the myriad of immunological incompatibilities that
can be present between a candidate and any potential donor. For instance, the blood type of a
donor kidney can result in acceptance or outright rejection in a possible candidate. At a high level,
human blood is split into four types—O, A, B, and AB—based on the presence or absence of the
A and B proteins. While other complications may arise, a type O kidney can be transplanted into
any candidate; type A and B kidneys can be transplanted into A and B candidates respectively,
or an AB candidate; and type AB kidneys are limited to only type AB candidates. Therefore,
some candidates are more difficult to match with a random donor than others. O-candidates are the
hardest to match because only O-type kidneys can be given to them. Similarly, O-donors are the
easiest to match.

With this in mind, candidate-donor pairs in the matching pool can be labeled based on their
blood types using the ABO model; it is one of two de facto models for theoretical market design
work on kidney exchange (see, e.g., [19, 20, 54, 78, 209, 213]). An under-demanded pair is any
pair such that the donor is not ABO-compatible with the candidate. Furthermore, if these pairs
contain only type A and B blood (e.g., the candidate is type A and the donor is type B), the pair is
called reciprocal. Any pair in the pool such that the donor is ABO-compatible with the candidate
is called over-demanded. Furthermore, if a donor and candidate share the same blood type, they
are a self-demanded pair. Intuitively, under-demanded and reciprocal pairs are “harder” to match
than over-demanded and self-demanded pairs. In the ABO model, all compatible transplants are
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considered to be equally good (i.e., those edges have weight 1 each) and typically results in the
ABO model are derived in the limit, when the number of pairs of each kind approaches infinity.

If blood type compatibility were the only requirement for a successful kidney donation, over-
demanded and self-demanded pairs would have no need to enter the exchange pool because they
could simply conduct the transplant within the pair. However, further complications force their
hand: the people in a pair are usually incompatible due to tissue type. Tissue type, in particular
what is known as HLA type, is measured as a combination of six proteins. Each potential candidate
and potential donor must be tested for preformed antibodies against these six proteins; this needs
to be done at least once a month because the antibody state of a person changes over time. An
increase in the mismatches between donor and candidate HLA types decreases the likelihood of a
successful kidney transplant, and can render a donor and candidate incompatible. These kinds of
blood tests where measurements are taken separately from the donors and the patients are called
virtual crossmatch for reasons that will become obvious in the next paragraph.

An important challenge is that medical knowledge is incomplete: even if a patient and donor are
compatible based on the virtual crossmatch (so there is an edge in the input graph), in reality they
might not be compatible (i.e., the edge might not be usable). This is determined days before the
operation by conducting a test called a crossmatch: blood from the patient and blood from his/her
planned donor are mixed together and if the mixture coagulates, they are incompatible. Such an
unfortunate, but very common, occurrence is called a positive crossmatch. Positive crossmatch-
sensitive models have only recently begun to appear in the literature, and had not included a study
of chains at the time [19, 43, 82, 209]; later work by Ashlagi et al. [23] and by the author [75]
(discussed in Chapter 5) did.

We will say that if an altruist donates directly to the deceased-donor waiting list, that constitutes
a chain of length 1. If an altruist donates to a pair, whose donor donates to the deceased-donor
waiting list, that constitutes a chain of length 2. If an altruist donates to a pair, whose donor
donates to a pair, whose donor donates to the waiting list, that constitutes a chain of length 3, and
so on. We are now ready to prove the main theoretical result of this chapter.

2.2.2 Short chains suffice (in theory)
In this section, we use the canonical dense model for generating kidney exchange data [19]. It
works as follows. We start with G(n), a large compatibility graph representing a kidney exchange
as described above. The set of n incompatible patient-donor pairs is partitioned into subsets VX-Y

of type X-Y , for each combination of blood types X and Y of the patient and donor respectively.
For each blood type X we denote the set of altruistic donors with that blood type by VX , but make
no assumptions about the size of these sets. We assume that a donor and a patient who are blood
type compatible are tissue type incompatible with constant probability γ̄, corresponding to the
virtual crossmatch described above. The frequency of each blood type X is denoted by µX .

We are now ready to state our main theoretical result. It extends the recent results of Ashlagi
and Roth [19] to the setting with chains.
Theorem 1. Assume that γ̄ < 2/5, µO < 3µA/2, and µO > µA > µB > µAB. Then with high
probability G(n) has an efficient allocation (i.e., one that saves as many patients as possible) that
uses only cycles of length at most 3 and chains of length at most 3.
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The proof follows from three lemmas. The first lemma is a trivial simplification and extension
of Lemma 9.5 of Ashlagi and Roth [19], which is a generalization of a classic theorem by Erdös
and Rényi. To understand the lemma, denote by G(n, p) a random graph with n vertices where an
edge exists between two vertices with probability at least p. For a vector ~α = (α1, . . . , αr) where
αi ≥ 0 for i = 1, . . . , r let G(~α, n, p) be an r-partite graph with r sets of vertices V1, . . . , Vr where
|Vi| = αi ·n for i = 1, . . . , r, and a directed edge between v ∈ Vi and v′ ∈ Vi+1 for i = 1, . . . , r−1,
or between v ∈ Vr and v′ ∈ V1, exists with probability at least p. A perfect allocation in a graph
G(n, p) matches all the vertices; a perfect allocation in G(~α, n, p) (consisting of cycles of length
r) matches all the vertices in the smallest vertex set Vi for i = argminj|Vj|.

Deviating from [19], define G′(~α, n, p) similarly to G(~α, n, p), except that there are no edges
between Vr and V1. An allocation in G′(~α, n, p) consists of chains of length r that originate in a
vertex in V1. As before, a perfect allocation in G′(~α, n, p) matches all the vertices in the smallest
vertex set Vi for i = argminj|Vj|.
Lemma 1 (Ashlagi & Roth [19]). Let p > 0. Then G(n, p) admits a perfect allocation that uses
cycles of length at most 3 with high probability. In addition, for any vector ~α as above, the random
graphs G(~α, n, p) and G′(~α, n, p) admit a perfect allocation with high probability.

Using Lemma 1, we can assume that if we single out several large groups of vertices (in a
large random compatibility graph) that correspond to blood type compatible pairs, there will be
sufficiently many edges to admit a perfect matching. For example, if there are large sets of AB-
O pairs, O-A pairs, and A-AB pairs, then with high probability we can find an allocation that
consists of 3-cycles that matches all the vertices in the smallest set. Even if we consider several
such allocations sequentially, by applying the union bound we can see that they all exist with high
probability. This essentially allows us to assume in the proof of the next lemma that any two
vertices that are blood type-compatible are connected by an edge.
Lemma 2. Let G(n) be a random graph that admits the following allocation:

1. Every self-demanded pair is matched in 2-way or 3-way cycles with other self-demanded
pairs.

2. Every B-A pair is matched in a 2-way cycle with an A-B pair.
3. Every A-B pair that is not matched to a B-A pair is matched in a 3-way cycle with an O-A

pair and an A-AB pair.
4. For X ∈ {A,B}, every over-demanded pair X-O is matched in a 2-way cycle with an O-X

pair.
Then with high probability G(n) admits an efficient allocation that uses cycles of length at most 3
and chains of length at most 3.

Proof. We complete the allocation described in the lemma’s statement to an efficient allocation.
Figure 2.3 visualizes the augmented allocation; regular edges are assumed by the lemma’s formu-
lation while dashed edges are added during this proof. Let V 1 be the set of vertices not matched
by the initial allocation. First, as many A-donors as possible donate to A-AB pairs and as many
B-donors as possible donate to B-AB pairs (shown in Figure 2.3 by dashed edges from A-altruists
to A-AB pairs and from B-altruists to B-AB pairs). In both cases, one of the two vertex sets will be
exhausted. More formally, using Lemma 1 we find a perfect allocation for the subgraph induced
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by V 1
A and V 1

A-AB, and similarly we find a perfect allocation for the subgraph induced by V 1
B and

V 1
B-AB.

B-AB O-B

B

AB-B

O AB-O B-O

A-AB O-A A-B B-A

AB-A

A

A-O

Figure 2.3: Accompanying figure to Lemma 2. Altruists are shown as rectangles; candidate-donor
pairs as ovals. Over-demanded pairs are gray, under-demanded are white, and recip-
rocal pairs are black. Regular edges appear in the lemma’s formulation and dashed
edges are constructed in the proof.

Let V 2 be the vertices not matched by previous allocations. We first find as many 3-way
(ABO,O-A,A-AB) cycles as possible, that is, we find a perfect allocation for the subgraph in-
duced by V 2

ABO, V 2
O-A, and V 2

A-AB. It may be the case that V 2
A-AB = ∅. Let V 3 be the set of vertices not

matched by previous allocations. Next we find a perfect allocation with 3-way (ABO,O-B,B-AB)
cycles. It may be the case that V 3

ABO = ∅ or V 3
B-AB = ∅.

Let V 4 be the vertices not matched by previous allocations. The next component in the
constructed allocation matches as many O-donors as possible in chains of length 3 of the form
(O,O-A,A-AB) and then (O,O-B,B-AB). This is done sequentially as above. Finally, we match
the remaining O-donors and AB-O pairs with remaining under-demanded pairs via chains of length
2 or 2-way cycles (not shown in Figure 2.3).

Each of the allocations constructed above exists with high probability; thus (by applying the
union bound) they all exist with high probability. To complete the proof, we argue that our con-
struction gives rise to an efficient allocation. Since under our construction all over-demanded,
self-demanded, and reciprocally demanded pairs are matched, it is sufficient to show that no allo-
cation can match more under-demanded pairs.

Following Ashlagi and Roth [19], when vertex v participates in an exchange with under-
demanded vertex v′ we say that v helps v′. Self-demanded and reciprocally demanded pairs cannot
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help under-demanded pairs without involving donors or over-demanded pairs. Similarly, AB-
donors cannot help under-demanded pairs. In addition, only two types of vertices can help two
under-demanded pairs: AB-O pairs can participate in cycles with one of O-A and O-B and one of
A-AB and B-AB, and O-donors can start a chain with the same types. Any other vertex can help at
most one under-demanded pair, and in particular over-demanded pairs of type X-Y 6= ABO can
only help under-demanded vertices of type Y -X .

Now, A-donors can only help A-AB pairs, and B-donors can only help B-AB pairs. Therefore,
it is optimal to match these donors with their respective under-demanded pairs. Finally, in our con-
structed allocation as many AB-O pairs and O-donors as possible are helping two under-demanded
pairs each, while the rest are helping one under-demanded pair each.

The following lemma directly follows from Proposition 5.2 of [19], and holds under the as-
sumptions of Theorem 1.
Lemma 3 (Ashlagi & Roth [19]). G(n) has an allocation as in Lemma 2, up to symmetries between
A-B pairs and B-A pairs, with high probability.

2.2.3 Discussion

Theorem 1 follows from the proofs of the three lemmas in Section 2.2.2. The theorem itself is
motivated by the recent work of Ashlagi and Roth [19]. One has to be careful, though, not to use
the exact allocation constructed in Proposition 5.2 of their paper as a starting point for the efficient
allocation that involves altruistic donors. Indeed, given that |VA-B| ≥ |VB-A|, Ashlagi and Roth
match AB-O pairs in cycles (ABO,O-A,A-AB). However, because we are essentially making
no assumptions regarding |VA| and |VB|, it may be the (admittedly extreme) case that there are
many (say an infinite supply) of A-donors, few B-donors, few O-donors, and a large number of
unmatched under-demanded pairs of type O-B and B-AB. In that case we would rather have the
A-donors donate to A-AB pairs while creating cycles (ABO,O-B,B-AB). Therefore, we must
match AB-O pairs only after matching altruistic donors.

The presence of (even short) chains allows us to avoid a negative property of the efficient
allocation constructed by Ashlagi and Roth [19]: that it never matches O-AB pairs. These are,
in a sense, the “most” under-demanded pairs in that their candidates are hardest to match, while
their donors are least capable of finding a match. In our allocation, AB-O pairs and O-donors that
cannot participate in 3-cycles can donate to O-AB pairs without affecting the size of the matching.
More precisely, if there are sufficiently many donors to fully match one of the sets VO-A and VA-AB,
and one of the sets VO-B and VB-AB, then an efficient allocation can match O-AB pairs.

Independent work by Ashlagi et al. [23] attempts to explain the observed benefit of longer
chains by considering a theoretical model with highly sensitized patients—a model we will intro-
duce and extend in Chapters 5 and 9. Specifically, the probability of tissue type compatibility is
allowed to decrease with the size of the graph n. Among other results, it is shown that for any k
there exists a small enough probability of compatibility such that chains of length k+ 1 are strictly
better than chains of length k. However, to even derive such a statement for chains of length 5
versus chains of length 3, the probability must be as small as c/n for some constant c, whereas
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intuitively this probability should be a constant that does not depend on n. Hence, despite the
elegance of their results, the assumptions underlying their model may be hard to justify.

2.3 Experimental validation

The theoretical results from Theorem 1 are strong in that they limit the utility of chains to those
of length 3 or fewer—as the graph grows to infinity. In this section we study the disconnect
between that theorem and the real-world results from the early UNOS kidney match runs (shown
in Figures 2.1 and 2.2; we provide more recent results with long chains on UNOS graphs in the
succeeding chapters).

There are three potential reasons for this disconnect: (1) the theory applies in the large, and the
UNOS exchange is not yet large enough for the theory to have taken hold, (2) the model that each
blood type compatible edge fails tissue type compatibility independently and with equal probability
is a poor model of the (highly sensitized) UNOS pool, and (3) the theory assumes all edges have
equal weight, while in the UNOS exchange, edges are weighted.

The discrepancy between the theory and the fielded results cannot be explained solely by the
fact that the theory model uses unweighted edges while the real UNOS data has edge weights.
If that were the main difference, we would see the curves in Figure 2.1 reach their maxima at a
chain cap of 3. This is not the case. So, we see that even if all the weights were binary, long
chains would produce a significant benefit in practice. The difference can, in part, be attributed to
the highly structured and very small UNOS pool. This is a product of the newness of the UNOS
pilot program and other kidney exchange programs; as the exchanges mature, we may expect the
compatibility graph’s structure to converge to one more similar to our theoretical model.

In reality, the input graph G(n) cannot grow infinitely; specifically, in kidney paired donation,
it has been estimated that in steady state the fully fielded nationwide exchange will have around
10,000 pairs at any one time. In this section, we experimentally determine just how large the can-
didate pool needs to be for the chain cap prescribed by Theorem 1 to apply—under the assumption
that a steady-state pool would also be dense.

The minimum size of this compatibility graph needed for the theory to take hold depends on
the probability distribution of blood and HLA types in the candidate and altruist pools, the number
of candidates in the graph, and the number of altruists. We will vary both the number of candidates
and altruists, but choose to focus only on blood and HLA types representative of the US population
(which serves the current nationwide kidney exchange).

Here we generate candidate-donor pairs and altruists via the most commonly used dense data
generator for steady-state kidney exchange, by Saidman et al. [191]. This generator incorporates
the blood types from the ABO model discussed earlier. It also incorporates an abstract model of
tissue types to compute a type of score that quantifies the likelihood of a specific candidate being
tissue type compatible with a random donor. In other words, this tissue type model is more refined
than assuming all blood type compatible edges are tissue type incompatible with equal probability.
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2.3.1 Increasing the candidate pool size
In the first set of experiments, we explore the effect of a large number of candidates on the efficacy
of long chains. We hold the number of altruists constant at 1, 5, or 10 for each experiment.

Figures 2.4a, 2.4b, and 2.4c show that larger pools match a higher percentage of candidates,
leveling out at roughly 62% in compatibility graphs with a couple hundred candidates. At a high
level, this is a strong argument for a national kidney exchange to replace the set of smaller regional
exchanges; see [184] for similar arguments. These figures also make a case for the inclusion of
chains in pools at both the regional and national level. Figure 2.4b shows that, for generated
pools of size 256, the optimal matching with a chain cap of 1 (i.e., altruists donating directly to
the deceased waiting list, avoiding the paired candidate pool entirely) matches nearly 4% fewer
candidates overall than matching with a chain cap of 3. The case is more drastic as the number of
altruists increases; for instance, Figure 2.4c shows a 5% decrease on compatibility graphs of the
same size. The effect of altruists on the pool is discussed further in the next section.
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Figure 2.4: Total percentage of candidates matched as #candidates increases across various chain
caps, for various numbers of altruistic donors.
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Figure 2.5: Expected match cardinality increase over 3-chains for 4- and 5-chains, for various
numbers of altruistic donors.

From above, we can now ignore matchings that only include chains of length 1 and 2; capping
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chains at either of these levels would result in fewer candidates being matched. Figures 2.5a, 2.5b,
and 2.5c show the expected number of extra transplants resulting from matches incorporating
chains of length 4 and 5, compared to only considering chains of up to length 3. Clearly, the
maximum number of additional transplants offered by increasing the chain cap by 1 is propor-
tional to the number of altruists present in the graph. For example, for a graph with a altruists,
incorporating 5-chains can provide a benefit of at most 2a matches over incorporating at most 3-
chains; similarly, increasing the cap from 3 to 4 results in at most a extra matches. Figures 2.5a
and 2.5b show that at pool sizes of 256 with a = 1 and a = 5, the expected number of additional
transplants for either 4- or 5-chains is nil (over 100 generated compatibility graphs). Figure 2.5c
shows similar results while exemplifying another behavior: as the number of altruists increases,
the size of the pool required so that limiting the mechanism to 3-chains is satisfactory increases.
This behavior is explored further in the next section.

Figures 2.5b and 2.5c initially show an increase in the utility of longer chains as the graph size
moves from very small (e.g., 16 candidates) to slightly larger (e.g., 32–64 candidates).1 This is a
side effect of the number of altruists present relative to the size of the pool. With a high enough
ratio of altruists to candidates, altruists can “flood” the matching, an idea explored further in the
next section.

All of the experiments validate the theory: there seems to clearly be a pool size beyond which
long chains do not help.

2.3.2 Increasing the number of altruists
In the previous subsection, we held the number of altruists constant while increasing the size of
the candidate pool. We now explore the opposite, allowing ever increasing numbers of altruists to
enter candidate pools of constant size.

As the number of altruists increases relative to the size of the candidate pool, the expected
number of candidates matched rises to 100%, as shown in Figures 2.6a, 2.6b, and 2.6c. This full
flooding of the pool to create a complete matching, while interesting, is not presently a realistic
scenario; all three tested compatibility graph sizes would require around 50% as many altruists as
candidates in the pool (Figure 2.6c has the x-axis cut short). In our experience with UNOS, the
number of altruists is typically around 5% the size of the candidate pool—but, as we discuss in the
later chapters that cover dynamic kidney exchange, this can be a function of match cadence and
policy. Increasing this number could feasibly change as the exchange grows in size and publicity,
paying special notice to the ethical issues that arise in coercion of possible donors [219].

2.4 Dynamic kidney exchange
In the chapter thus far, we have studied static models. We now discuss the dynamics of a kidney
exchange running month to month; that cadence has since increased at the UNOS exchange and at

1In Figure 2.5c, the computational demands of this experiment precluded us from extending the dotted line past
128 candidates—a clear demonstration of why more scalable algorithms like those presented in Chapters 3 and 4 are
needed, as present-day kidney exchanges are larger than the simulated pools in these experiments!
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Figure 2.6: Total percentage of candidates matched as #altruists increases across various chain
caps, for various numbers of candidate-donor pairs.

many other exchanges, which we discuss more in Chapters 6 and 8. These early dynamic experi-
ments are included to whet the reader’s appetite, to introduce some of the additional complexities
handled by the work in the rest of this thesis, and for posterity’s sake in that they set early pol-
icy at the UNOS exchange and informed future research on both chains and dynamic matching in
general.

2.4.1 Augmenting the model

We augment the model in several ways to make it capture the nuances that have arisen in practice.

Dynamics. Most of the work in kidney exchange has focused on a single-shot optimization on
a static pool. This deviates from reality in that matching should occur dynamically. In reality,
candidates arrive and depart from the pool. Even with dialysis, only 12% of patients survive 10
years [215]; this gives us the monthly death rate we use in our experiments. Timeliness in matching
is clearly important. Our experimental results, discussed later, perform matching over 24 months
using a changing kidney pool.

We provide an in-depth review of related work in dynamic matching and dynamic kidney ex-
change in Chapter 6—before going on to discuss fully dynamic clearing—but overview one dis-
cussion from the medical community that was ongoing at the time of this work: chain execution
policies. Work by Gentry et al. [97] on simulated data and Ashlagi et al. [22] on real-world data
explores the trade-offs between two types of chain execution polices. The first chain type is ex-
ecuted in its entirety in one time period, with the leftover donor donating to the waiting list. An
alternative is to split long chains into segments with intra-segment simultaneous transplants, but
the segments execute one after another. The left over donor (aka bridge donor) from one segment
then serves as a virtual altruist for the next segment. These two types of chains perform differently
under the presence of renege rates—that is, when a bridge donor decides to leave the pool before
donating a kidney. However, no reliable quantification of a renege rate exists due to the infancy of
kidney exchanges.
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While Gentry et al. [97] do not explicitly consider chain caps, Ashlagi et al. [22] do; they
experimentally show that longer (up to length 6) chains can, in fact, help. Our work uses a similar
model with single-shot execution chains and, importantly, takes into account the policies of the
UNOS nationwide kidney exchange (as they were at the time—that policy has since changed due to
this work and other work that we discuss later in this thesis). As we will show, this addition results
in different matching behavior. We now discuss these UNOS-specific additions to the model.

Individual crossmatch sensitivity. As exemplified in the real, highly-sensitized UNOS candi-
date pool, candidates can have widely varying susceptibility to incompatibilities in kidney dona-
tion. The dense model due to Saidman et al. [191] from the previous section has a rather realistic
view of virtual crossmatch failures, and we use that model here.

In addition, here we do (non-virtual) crossmatches for all the planned transplants just before the
transplant takes place, as in reality. This is again done using the Saidman et al. [191] generator. It
provides for each candidate a probability that the candidate is tissue type compatible with a random
person. We use that probability to draw crossmatch success versus failure. If the crossmatch fails,
the transplant cannot proceed. If it is part of a cycle, the cycle does not execute; the pairs in the
cycle go back in the pool. The failed edge is permanently removed from the compatibility graph
G(n).

Crossmatching has a significant effect on the size of the “real” matching—a topic we explore
extensively in Parts II and III, first in isolation in Chapter 5, and then as part of a holistic matching
framework in Chapter 8. Briefly, assume an optimal matching (pre-crossmatch) yields a 3-cycle.
If any crossmatch fails between a candidate and potential donor, the entire cycle must be thrown
away—since we cannot force a donor to give a kidney if his accompany candidate does not receive
one. Even more drastic is the case of chains: if, for example, a pre-crossmatch matching yields a
20-chain, no transplants after the first crossmatch failure can be performed.

Because of this special case for chains, real-world exchanges have enacted policies for the
acceptance or rejection of chains based on their length and the quality of the altruistic donor. O-
type altruists are highly valued, as they can (potentially) donate to any blood type, so short chains
enabled by O-type altruists should (potentially) be rejected in favor of longer chains in the future.
Our experiments follow current UNOS policy which, along with some special cases discussed
below, states that (i) chains started by non-O-type altruists are always executed, while (ii) chains
triggered by an O-type altruist are executed only if they can be executed to length at least 5 (before
there is a crossmatch failure). We will experiment with varying the value away from 5; we will
call this parameter k.
Altruists are allowed choices. In the event that an O-type chain is shorter than length 5, the UNOS
policy allows for the altruist to decide that the chain be executed anyway. This is due to the fact
that altruists do not want to stay in the candidate pool indefinitely, but rather want to move on with
their lives and other plans. In UNOS’s experience running kidney exchange, altruists typically do
not wish to stay active in the pool for more than three months—instead opting to donate directly
to the deceased donor waiting list. While exact data on this phenomenon are too sparse at the
moment, our experiments use the anecdotal rates (received through UNOS): 75% probability of an
altruist requesting execution of a short chain, and a monthly altruist exit rate that corresponds to
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an expected presence of two months in the pool for each altruist. Our model executes each chain
in a single time segment.

2.4.2 Experimental results
We now present preliminary results simulating dynamic kidney exchange under the model de-
scribed above. Figure 2.7a shows the expected increase in transplants when including chains over
the cycles-only approach. The x-axis describes the total number of candidates available during at
least one time period over the entire simulation; between 15 and 20 candidates arrive every time
period and between 1 and 2 altruists arrive every time period. The initial pool (i.e., the pool at
time t = 0) is seeded with between 50 and 100 candidates and 5 altruists. These settings roughly
mimicked the state of the UNOS pilot program at the time; it has since grown substantially.
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Figure 2.7: Dynamic kidney exchange experiments using a myopic, deterministic clearing engine.

The results both remain true and (appear to) deviate from the theory in a number of ways. The
benefit of using chains is immediately obvious; in all cases, even using only 2-chains increases
the total number of transplants by 20 or more. However, in this new setting, chains of length
at most 3 (at least for the tested pool sizes, number of altruists, etc) do not provide equivalent
benefit to longer chains. While 3-chains do provide a net gain over 2-chains, considering longer
chains helps—sometimes by nearly 10 additional transplants. This increase is surprising because,
intuitively, longer chains are less likely to be executed in full (and thus likely to be canceled by
the UNOS policy) due to low crossmatch probability. Not executing a chain is dangerous because
altruists leave the pool entirely if they remain unmatched for more than a few months.

The results above can be explained by considering the effect of time on an evolving small-
scale pool of candidates. Over time, highly sensitized candidates will build up in the pool, since
they are often significantly harder to match—both because they have fewer connected edges in
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the generated compatibility graph and because they are more likely to fail during the crossmatch.
Through the real-world results detailed in Section 2.1, we have seen that the utility of (long) chains
increases tremendously in the presence of a small, highly sensitized pool. In Figure 2.7a, chains
of length greater than 3 are able to serve highly sensitized candidates because they do not need to
“close” the chain, as is the case with a cycle.

Surprisingly, allowing the optimizer to use chains of up to length 5 is strictly worse than con-
straining it to chains of length at most 4 (while a cap of 4 is better than 3). This suggests that there
is diminishing benefit to longer and longer chains, and at the same time there is increasing risk of
crossmatch failure (and thereby altruists leaving and candidates dying) with increasing chain cap.
The experiments here suggest that in the dynamic setting with these pool sizes (i.e., not in the very
large), a chain cap of 4 is best. In follow-up work discussed in Chapters 5, 6, and 8, we formally
explore how to more precisely strike this tradeoff from a theoretical and experimental point of
view; this chapter’s experiments reflect the fielded practice at the time.

We now expand our preliminary experiments to include the chain execution policy from UNOS
(see Section 2.4.1), and we will vary k (between 1 and the chain cap). Intuitively, a higher k will
prevent “wasting” a valuable O-altruist on short chains, favoring waiting for a longer, higher-
scoring chain instead. Figure 2.7b shows the effect of varying k as we increase the chain length
cap. When considering only short chains, a higher k increases the total number of transplants. In
contrast, when chains of length 4 and 5 are considered, it appears better to reduce k. The drop in
overall utility from allowing only long chains to execute is due to altruists’ propensity to leave the
pool; if an altruist is not used in an executed chain within a few time period, he/she is likely to
leave the pool (and thus be “wasted” by going straight to the deceased donor waiting list instead of
saving some lives in the pool first). Following the appearance of our initial paper presenting this
work [74], UNOS removed the rule that chains triggered by an O-type altruist are executed only if
they can be executed to length at least 5. Our experimental results were the reason for this change
in policy.

2.5 Conclusions & present-day implications

In this chapter, we considered altruist-initiated chains, a recent innovation in barter exchanges
that has seen wide adoption in regional and national kidney exchange. We showed that a real
kidney exchange can benefit, in a static, deterministic model of the world, from long chains that
are executed simultaneously. We then showed that, in the large, the benefit from chains longer
than 3 becomes negligible (with high probability) on random compatibility graphs drawn from
distributions that would mimic a steady-state kidney exchange drawing from the complete real-
world population. We supported these theoretical results by experiments using a state-of-the-art
dense instance generator due to Saidman et al. [191] to allow us to experiment on larger instances
than exist in current kidney exchanges. The theoretical results take hold in exchanges orders of
magnitude smaller than the expected steady-state of the nationwide kidney exchange assuming the
pool mimics a uniform draw from the United States population.

Finally, we experimented in the dynamic setting where the exchange clears every month. Com-
putational complexity precluded experiments in the large for the dynamic setting—which was fine
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for this initial work, because at the time kidney exchange pools were small—but in medium-sized
pools a chain cap of 4 was best (and strictly better than 5). At any given point in our largest dynamic
simulations, 100–150 candidates were present in the pool—others had already been matched, had
died, or had not entered the simulation yet. We showed in Section 2.3 that, at such a small size and
with so many altruists, we cannot expect 3-chains to suffice.

Thoughts on this work, five years down the line. We performed this research within the first
year of the initial fielding of the UNOS kidney exchange, and thus many of the assumptions made
did not turn out to be true as that exchange—and, indeed, the rest of the kidney exchange world—
evolved. In many ways, this work introduced more questions than it answered, thus motivating
further research in both the theory and practice of kidney exchange. How do we create theoretical
models that actually mimic fielded exchanges? How do we take short-term uncertainty (e.g., that
due to crossmatch failure) into account? Can we quantify its effect on efficiency, and mitigate that
effect? Will more efficient clearing engines harm specific classes of agents (e.g., highly-sensitized
patients) participating in the exchange, and can we quantify and mitigate that? Should we match
with an eye toward the future, or just maximize our utility function now? If so, how can we do
this scalably? How do we balance all of this in a way humans can understand? We aim to answer
many of these questions in this thesis.

First, though, we note that even the basic static, deterministic experimental results in this chap-
ter suffered from scalability issues due to chains; indeed, fielded kidney exchanges (including
UNOS) hit scalability problems as early as 2011, also due to the use of long chains in pools of
increasing size. We address this in the succeeding chapter by introducing a method for clearing
exchanges with short cycles and long chains that is dramatically more scalable than any prior
approach.
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A compact formulation of a MIP may have a
weak LP relaxation. Frequently, the relaxation
can be tightened by a reformulation that in-
volves a huge number of variables.

– Cynthia Barnhart et al.

3
Optimal batch clearing of deterministic barter

exchanges

3.1 Preliminaries & prior approaches to optimal clearing of
large barter exchanges

In this section, we briefly overview the two leading high-level approaches to solving integer pro-
gram (IP) models of the kidney exchange clearing problem. For a more in-depth coverage of
prior integer programming approaches to the kidney exchange problem, we redirect the reader to
the recent survey by Mak-Hau [151]. Following these preliminaries, in Section 3.2 we present a
bug in one state-of-the-art approach to solving the clearing problem, and show that a core facet
of that solver—solving the “pricing problem”—is theoretically harder to perform than previously
assumed. Following this, Section 3.3 presents a novel approach to optimally clearing exchanges
that is both correct and dramatically faster than prior approaches.

The first optimization-based approach to clearing kidney exchanges was described in the sem-
inal work of Roth et al. [186]; here, only 2-cycles were considered—that is, a pair could only
swap with a single other pair, disallowing longer cyclic swaps and any chains. In this case, the
problem reduces to classical matching; Roth et al. [186] used Edmonds’ algorithm [85] to clear
such exchanges in polynomial time. Segev et al. [192] also used Edmonds’ algorithm to investi-
gate the effect on match size of a national versus set of regional exchanges under the 2-cycles-only
paradigm. In follow-up work considering both 2- and 3-cycles, Roth et al. [188] give a basic IP
formulation—which we will refer to later as the “edge formulation”—that could optimally solve
very small exchanges without long chains, but was not scalable.

The two fundamental IP models for kidney exchange are the cycle formulation, which includes
one binary decision variable for each feasible cycle or chain, and the aforementioned edge formula-
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tion, which includes one decision variable for each compatible pair of agents [6, 188]. In the cycle
formulation, the number of constraints is sublinear in the input size, but the number of variables
is exponential. In the basic edge formulation, the number of variables is linear but the number of
constraints is exponential. Optimally solving these models has been an ongoing challenge for the
past decade. We overview both approaches here.

3.1.1 Constraint generation & the edge formulation
Constraint-generation-based approaches to kidney exchange have all variables of the appropriate
model in memory from the start, but bring in the constraints of the model incrementally. A basic
constraint generation form of the kidney exchange problem uses a decision variable for each edge
(i.e., only O(|V |2) variables) in the compatibility graph and solves a flow problem such that unit
flow into a vertex exists if and only if unit flow out of that vertex also exists [6, 188]. This relaxed
form of the full problem with only a polynomial number of constraints will not obey cycle or chain
caps, so constraints of that form are added until an optimal solution to the relaxed problem is also
feasible with respect to cycle and chain caps.

Anderson et al. [16] built the leading constraint-generation-based IP solver for the kidney ex-
change problem. Their solver builds on the prize-collecting traveling salesperson problem [28],
where the problem is to visit each city (patient-donor pair) exactly once, but with the additional
option to pay some penalty to skip a city. They maintain decision variables for all cycles of length
at most L, but build chains in the final solution from decision variables associated with individual
edges. Then, an exponential number of constraints is required to prevent the solver from including
chains of length greater than K; these are generated incrementally until optimality is proved. This
algorithm is particularly effective for solving instances where the cycle cap is 3 and there is no cap
on the length of chains, but it is outperformed by branch-and-price-based approaches if a finite cap
on chains is used, as is typically done in practice. We will compare our new solvers against this
algorithm, and others, in Section 3.3.

Constantino et al. [63] introduced the first two compact IP formulations for kidney exchange,
where compact means that the counts of variables and constraints are polynomial in the size of
the input. Their extended edge formulation was shown empirically to be effective in finding the
optimal solution where the cycle cap is greater than 3, particularly on dense graphs. However, each
of the compact formulations introduced in their work has a weaker linear program (LP) relaxation
than the cycle formulation, discussed below, even in the absence of altruistic donors.

The EE-MTZ model due to Mak-Hau [151], another compact formulation, uses the variables
and constraints of the extended edge formulation to model cycles and a variant of the Miller-
Tucker-Zemlin model [160] for the traveling salesperson problem to model chains. The same
paper introduces the exponentially-sized SPLIT-MTZ model, which adds redundant constraints to
the edge formulation in order to tighten the LP relaxation (LPR).

3.1.2 Branch and price & the cycle formulation

Given a set of vertices V = P ∪A, the number of cycles of length at most L isO(|P |L), the number
of uncapped chains is exponential in |P | ifA 6= ∅, and the number of capped chains of length (here,
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defined to be the number of constituent edges) at most K is O(|A||P |K). Let C(L,K) represent
the set of cycles of length at most L and chains of length at most K. With one decision variable
per cycle and chain c ∈ C(L,K), it is not clear that an integer program model cannot even be
written to main memory—much less solved—for even moderately-sized graphs. Indeed, Abraham
et al. [6] could not write down the full model for instances as small as 1000 patient-donor pairs
for C(3, 0), while Dickerson et al. [74]—the initial work discussed in Chapter 2—could not write
down the full model for instances as small as 256 pairs with just 10 altruists for C(3, 4). Thus, any
solver must maintain at most a reduced model (i.e., subset of columns and rows in the constraint
matrix) in memory.

Branch and price is a combination of standard branch and bound with column generation that
searches for and proves the optimality of a solution to an IP while maintaining only a reduced
model in memory [30]. For kidney exchange, the idea is as follows [6]. (We will loosely use
“cycles" to refer to both cycles and chains, except when explicitly distinguished. This is consistent
because both are represented as decision variables in the model, and because a chain is equivalent to
a cycle with an additional “dummy” zero-weight back-edge to an altruistic donor.) First, start with
some relatively small number of, or no, “seed” cycle variables in the model, and solve the linear
program (LP) relaxation of this reduced model. Next, generate positive price cycles—variables
that might improve the solution when brought into the model. For the maximum-weight clearing
problem, the price of a cycle c is given by

∑
(u,v)∈c(w(u,v)−δu), where δu is the dual value of vertex

u in the LP.
The pricing problem is to generate one or more positive price cycles to bring into the model,

or prove that none exist. While any positive price cycles exist at the current node in the branch
and bound search tree, optimality has not been proven for the LP. Solving the pricing problem can
be expensive in its own right, as we discuss in Sections 3.2 and 3.3, and later in a more general
model in Chapter 5. Once there are no more positive price cycles, if the LP solution is integral,
optimality is proved at that node in the search tree. However, if the LP is fractional, branching
occurs. Abraham et al. [6] branched on individual cycles c, creating one subtree that includes c
in the final solution and a second subtree that explicitly does not, and recursing in this way. (Our
solvers in Section 3.3 will necessarily uses more complex branching, when necessary.) These
branches are then explored in depth-first order until a provably optimal solution is found.

A number of kidney exchange algorithms use the cycle formulation with branch and price [6,
75, 100, 134, 174]. These have been some of the fastest algorithms to date for the kidney exchange
problem and are deployed in countries like the United States and the Netherlands; we will build on
them in the succeeding chapters.

3.2 Pricing cycles and chains in deterministic kidney exchange

In this section, we discuss solving the pricing problem used in branch-and-price-based approaches
to clearing large kidney exchanges. The pricing problem is to determine whether there exists a
positive price (i.e., promising) column. Once no more positive price columns exist, optimality
has been proven for that node in the branch-and-bound search tree, and the search can proceed
further in the tree. Quickly solving the pricing problem at nodes in the search tree is important
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for overall runtime. Recently, it was shown that determining whether a positive price cycle exists
can be solved in polynomial time [100, 174]. Both Glorie et al. [100] and Plaut et al. [174] also
use a variant of their cycle-pricing algorithms for chains. In this section, we show that not only
are those latter algorithms incorrect, but the underlying problem—determining whether a positive
price chain exists—is, in fact, NP-complete.

Related Publications

Initial versions of some of the work in this section appeared at AAAI-16, and an early ver-
sion of the rest is available on arXiv; it is an ongoing collaboration between Plaut, Dickerson,
and Sandholm [174, 175].

3.2.1 The pricing problem in kidney exchange

We begin with the standard model of static, deterministic kidney exchange, which is modeled as a
directed compatibility graphG = (V,E). In this section and the next, we explicitly partition the set
of all vertices V into P and A, where vertices in P represent patient-donor pairs and vertices in A
represent altruistic donors (aka “non-directed donors”). Under this partitioning, for each u, v ∈ P ,
the edge (u, v) exists if the donor of pair u is compatible with the patient of pair v. Similarly, for
each a ∈ A and v ∈ P , the edge (a, v) exists if altruist a is compatible with the patient of pair v.
These edges may also have weights, representing the relative value of a potential transplant.

In this section and the next, formally, we define a chain as a path beginning at an altruist, and
the length of a cycle or chain to be the number of edges it contains. The weight of a cycle or chain
is then the sum of its constituent edge weights.

As discussed informally in Section 3.1.2, the basic cycle formulation of the kidney exchange
problem is defined as follows. Let C(L,K) be the set of all cycles of length at most L and chains
of length at most K. Then, given a binary indicator variable xc ∈ {0, 1} for each c ∈ C(L,K), we
must solve the following integer linear program:

max
∑

c∈C(L,K)

wc xc s .t .
∑
c:v∈c

xc ≤ 1 ∀v ∈ V

We now formally define the pricing problem in the context of kidney exchange. The pricing
problem is to determine whether there exists a positive price cycle or chain. The price of a cy-
cle or chain c is

∑
(u,v)∈cw(u,v) −

∑
v∈c δv, where w(u,v) is the weight of edge (u, v), and δv is

the dual value of vertex v in the linear program (LP) relaxation. The initial branch-and-price-
based formulation due to Abraham et al. [6] solved the pricing problem by explicitly considering
every possible cycle and chain via an exhaustive depth-first search, taking time exponential in
max (L,K). This became a problem in practice as K increased to allow for longer chains. Re-
cently, Glorie et al. [100] showed how determining whether a positive price cycle in the compati-
bility graph G = (V,E) exists is equivalent to finding a negative weight cycle in a reduced graph
G′ = (V,E ′), where each edge e′ = (u, v) ∈ E ′ exists if and only if (u, v) ∈ E, and e′ has reduced
weight r(u,v) = δv − w(u,v).
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A similar equivalence holds for chains. We must be careful, however, since the number of
vertices in a chain exceeds the number of edges by 1. We now define r(u,v) as follows:

r(u,v) =

{
δv − w(u,v) u ∈ P
δu + δv − w(u,v) u ∈ A

Since an outgoing edge from an altruist will only ever be used in a chain, this ensures that a
chain has positive price in G if and only if it has negative weight in the reduced graph G′.

3.2.2 Counterexample to two prior algorithms
In this section, we provide counterexamples to the pricing algorithms of both Glorie et al. [100]
and the proposed fix to that algorithm by Plaut et al. [174]. Both previous algorithms use Bellman-
Ford-style search in the reduced graph, initiated from each altruist as the source, to find negative-
weight chains. Ideally, we would like to find the shortest paths using each vertex at most once, but
this is NP-hard in the presence of negative cycles. As discussed by Plaut et al. [174], this is via
reduction from the Hamiltonian cycle problem: set all edge weights to −1 and ask if the shortest
path from a source u to any neighbor v such that (v, u) ∈ E is of weight 1 − |V |. However, we
need not find the shortest paths beginning at each altruist: we only need to determine whether there
exists any negative path starting at any altruist.

In the presence of negative cycles, traditional Bellman-Ford may generate paths with internal
loops, which are invalid in our context. Plaut et al. [174] handle this by preventing Bellman-Ford
from looping during execution. As a result, the generated paths may not be the shortest, and a
given negative chain may not be found.

The full pseudocode for the method of Plaut et al. [174] is given as Algorithm 1, and is an
adaptation of the polynomial pricing algorithm provided by Glorie et al. [100]. In Algorithm 1,
for a fixed source, let di(v) represent the computed distance from that source to v after the ith step
of the algorithm, where d0(v) represents the distances before any steps are performed. Distance
is defined as the sum of the edge weights in the computed path. Let L and K be the maximum
allowable cycle and chain lengths, respectively. Finally, let A be the set of altruist donors and let P
be the set of donor-patient pairs. The function GETNEGATIVECYCLES is called with the reduced
graph G = (V,E), cycle cap L, and chain cap K.

For the version of Algorithm 1 for cycles, Plaut et al. [174] show that although there may be
negative cycles that are not found, at least one negative cycle will be found, if any exist. The proof
of the version of the algorithm for chains (i.e., Algorithm 1 as written here) is incorrect in general,
however, as it implicitly assumes that the chain length cap and cycle length cap are equal.

Plaut et al. [174] gave a counterexample to the algorithm of Glorie et al. [100]. Figure 3.1 gives
a counterexample to the algorithm of Plaut et al. [174]; this is also a counterexample to the original
algorithm due to Glorie et al. [100].

For cycle length cap L = 3 and chain length cap K = 5, there are no valid negative cycles
in the reduced graph, and there is a single valid negative chain in the graph: (a, p5, p2, p3, p4, p1).
Although (p1, p2, p3, p4) is a cycle with negative weight, it exceeds the cycle length cap of L = 3,
and thus is invalid.
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Algorithm 1 (Incorrect) pricing of cycles and chains via an adapted Bellman-Ford search.
1: function GETNEGATIVECYCLES(G = (V,E), L,K)
2: C ← ∅ . Accumulator set for negative weight cycles
3: for each s ∈ V do
4: N ← s ∈ A ? K − 1 : L− 1 . Set maximum step number based on chain or cycle cap
5: pred0(v) = ∅ ∀v ∈ V
6: d0(s) = 0 . Distance from source to source is zero
7: d0(v) =∞ ∀v 6= s ∈ V . Distance at step 0 to other vertices is infinite
8: for i ∈ {1, . . . , N} do
9: di(v) = di−1(v) ∀v 6= s ∈ V

10: pred i(v) = pred i−1(v) ∀v 6= s ∈ V
11: for each (u, v) ∈ E do
12: if v 6∈ TRAVERSEPREDS(u, pred , i− 1) then . Avoid loops in path
13: if di−1(u) + w(u, v) < di(v) then . If this step decreases the distance to

node
14: di(v)← di−1(u) + w(u, v) . Update to shorter distance
15: pred i(v)← (u, i− 1) . Store correct predecessor
16: for each v 6= s ∈ V do . Find negative weight cycles with s as the source
17: if dN(v) + w(v, s) < 0 then
18: C ← C ∪ TRAVERSEPREDS(v, pred , N)

19: return C
20: function TRAVERSEPREDS(v, pred , n)
21: c← [] . Start with an empty list (representing a cycle or chain)
22: curr ← v
23: while curr 6= ∅ do . Until we reach the source node ...
24: c← curr + c . Add predecessor to path
25: (u, i)← predn(curr) . Get predecessor of predecessor
26: curr ← u; n← i

27: return c

In the second iteration of the algorithm due to Plaut et al. [174], vertex p2 would store as its most
promising predecessor the path (a, p1, p2) with weightw [(a, p1, p2)] = 0, instead of (a, p5, p2) with
less promising weight w [(a, p5, p2)] = 1. However, this causes the algorithm to miss the overall
negative chain that would be found otherwise at iteration 5, since it cannot reuse vertex p1 (and thus
cannot use the sole negative-weight edge with sink p1). Critically, even though the path (a, p5, p2)
was not promising at an earlier iteration, following it instead of the more immediately promising
(a, p1, p2) would have led to a negative-weight chain—in this case, the only negative-weight chain.
The initial algorithm due to Glorie et al. [100] would also incorrectly return that no negative-weight
chains exist, by similar reasoning.

This shows a correctness error in both the algorithms of Glorie et al. [100] and the proposed
fix due to Plaut et al. [174]. Next, we show that, in general, such polynomial-time approaches are
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Figure 3.1: Example where the algorithm of Plaut et al. [174] fails to find a negative chain for
L = 3 and K = 5, although one exists. Here, vertex a is an altruist (a ∈ A) and the
rest of the vertices are incompatible donor-patient pairs ({p1, . . . , p5} ∈ P ).

hopeless: determining whether a positive price chain exists is NP-complete.

3.2.3 Main result: this form of pricing is not possible in polynomial time
We define the negative chain problem as follows: given a directed graph G = (V,E), where
V = P ∪ A, is there a path through P (using each vertex at most once) of negative weight, using
at most K edges, and starting at some vertex a ∈ A? We call such a path a negative chain.
Theorem 2. The negative chain problem is NP-complete.

Proof. The negative chain problem is trivially in NP: simply sum the edge weights in a proposed
path and check its sign. To show NP-hardness, we reduce from the directed Hamiltonian path
problem. Given some graph H = (V,E), the directed Hamiltonian path problem asks whether
there exists a directed path that visits each vertex exactly once. Let n = |V | and V = {v1, . . . , vn}.
Construct the graph G as follows: set we = −1 for each e ∈ E, and add a vertex a with an edge
(a, v) with w(a,v) = n − 2 for each v ∈ V . Figure 3.2 gives an example of the construction of the
graph G. Let P = V , A = {a}, and K = n.

v1 v2 vn

a

−1

. . .

−1

−1

n− 2 n− 2 n− 2

Figure 3.2: Example construction for the proof of Theorem 2.

Suppose h is a Hamiltonian path in H starting at vi. Let c = (a, vi) ∪ h. Since h has exactly
n− 1 edges, c contains n edges, thereby satisfying the length constraint. Since h visits each v ∈ V
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exactly once and never visits a, c visits each vertex in G at most once. Finally, since h has weight
1− n, c has weight n− 2 + 1− n = −1. Therefore c is a negative chain in G.

Suppose c is a negative chain in G. Then c must begin at a, so we can write c = (a, vi)∪ h, for
some vi ∈ V and path h. Let m be the number of edges in h. Then wc = n−2−m. Since wc < 0,
we have m > n − 2. Since c can use each vertex at most once, we have m ≤ n − 1. Therefore
m = n − 1. Because c visits each vertex at most once, h visits each vertex at most once. Since
h has n − 1 edges, h visits every vertex in V exactly once, making it a valid Hamiltonian path in
H .

The general pricing problem (where both cycles and chains are included) is to determine
whether there exists a positive price (negative weight) cycle of length at most L or a positive
price (negative weight) chain of length at most K. Note that solving the general pricing problem
does not necessarily solve the negative chain problem. If X is the set of negative chains and Y is
the set of negative cycles, the general pricing problem is to determine whether X ∪ Y = ∅. The
negative chain problem is to determine whether X = ∅: however, determining whether X ∪Y = ∅
does not necessarily determine whether X = ∅.

To show that the general pricing problem is NP-hard, we modify the above construction by
expanding each edge inH to a series of max(L, 1) edges whose weights sum to−1. Then any cycle
in G has length at least 2L, which violates the length constraint for L ≥ 2. For L < 2, there are no
valid negative cycles regardless. Since there are no valid negative cycles in G, the general pricing
problem becomes equivalent to the negative chain problem. Finally, we set K = n ·max(L, 1) to
ensure that any chain satisfying the length cap in the original construction remains valid. Therefore,
the general pricing problem is also NP-hard. Since the general pricing problem is also trivially in
NP, it is NP-complete.

3.2.4 Hardness in the branch and price context
The negative chain problem in general is NP-complete. However, it could be that the instances
which arise in the branch and price context necessarily have a certain structure, and form a subclass
which is not NP-complete. We now show that this is not the case.
Theorem 3. The negative chain problem, restricted to instances which occur in a kidney exchange
branch and price search tree, is NP-complete.

Proof. The problem remains trivially in NP. For NP-hardness, we will show that the hardness
proof of Theorem 2 can be achieved using only instances that occur as reduced graphs in branch
and price search trees for kidney exchange instances.

For an arbitrary graph H = (V,E), where V = {v1...vn}, construct G as in the proof of
Theorem 2. Construct the graph G′ as follows: starting from G, add vertices p1 and p2, and add
edges (a, p1) and (a, p2), each with weight 0. Set P = V ∪ {p1, p2}, A = {a}, and K = n.
This adds exactly two chains to G, both with weight 0. Thus the set of negative chains remains
unchanged. Therefore using G′ instead of G in the proof of Theorem 2 preserves correctness.

Construct the kidney exchange instance (not a reduced graph) G0 as follows: use the same
vertices and edges as G′, set w(a,p1) = w(a,p2) = n − 1, and set all other edge weights to 1.
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Figure 3.3 gives an example of the construction of the graph G0. We will now show that G0 yields
G′ as a reduced graph.

v1 v2 vn

a p2p1

1

. . .

1

1

1 1 1

n− 1n− 1

Figure 3.3: An instance of a kidney exchange compatibility graph that could arise in practice and
that yields a reduced graph equivalent to that used in the proof of Theorem 2.

The weights in the reduced graph depend on the dual values in the LP. The dual value of a
constraint is equal to the increase in the objective value of the LP optimum if that constraint were
relaxed by one unit, while all other constraints remain unchanged. In our case, each constraint
corresponds to a particular vertex, and ensures that that vertex is used at most once. The dual value
of vertex v refers to the dual value of the constraint corresponding to vertex v. Therefore the dual
value of a vertex v is the potential increase in the LP objective value if v were allowed to be used
at most twice, instead of at most once.

At the root of the search tree, if the only variables in the initially-seeded reduced model are
the two chains (a, p1) and (a, p2), any optimal solution to the LP is either {(a, p1)}, {(a, p2)}, or
a convex combination of the two. The LP objective value is n − 1. If vertex a could be used
twice instead of once, both (a, p1) and (a, p2) could be fully included in the solution, increasing
the objective value by n− 1 to 2n− 2. Therefore, the dual value of vertex a is n− 1. Since none
of vertices {v1, . . . , vn} are used by any variable in the model, allowing them to be used more than
once would have no effect on the objective value of the LP. Therefore, δvi = 0 for 1 ≤ i ≤ n.
Similarly, p1 and p2 each appear in a single chain, so allowing them to be used multiple times
would yield no benefit. Therefore δp1 = δp2 = 0.

Recall that the weight of an edge (u, v) in the reduced graph is r(u,v) = δv−w(u,v) if u ∈ P , and
r(u,v) = δu + δv−w(u,v) if u ∈ A. Therefore r(a,p1) = δa + δp1−w(a,p1) = n−1 + 0− (n−1) = 0.
By symmetry, r(a,p2) = 0. For each e = (vi, vj) ∈ E, re = δvj − we = 0 − 1 = −1. Finally,
r(a,vi) = δa + δvi − w(a,vi) = n− 1 + 0− 1 = n− 2. Therefore G0 yields G′ as a reduced graph.

Therefore, the negative chain problem, even restricted to instances which occur in a kidney
exchange branch and price search tree, is NP-complete.

The proof of Theorem 3 relies on weighted edges, so one may wonder if this result extends to
the unweighted case, where every edge in a kidney exchange instance has weight 1. The kidney
exchange instance G0 can be made unweighted by expanding each edge e with weight we > 1—in
this case, just (a, p1) and (a, p2)—to we edges, each with weight 1. This is possible because all
edge weights in G0 are integers. An example of this construction is given in Figure 3.4.
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v1 v2 vn
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1
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1

1

1 1 1

11 11. . . . . .

Figure 3.4: Translation of the weighted compatibility graph of Figure 3.3 to an unweighted ver-
sion; the proof of Theorem 3 then applies to this case almost directly.

Allowing vertex a to be used twice instead of once would still increase the LP objective value
by n − 1, keeping the dual value of vertex a unchanged. Thus, the set of negative chains remains
unchanged, so this modification preserves the correctness of the proof of Theorem 3. Therefore
the result of Theorem 3 holds even if only unweighted kidney exchange instances are considered.

3.2.5 Implications
We discussed branch-and-price-based approaches to the kidney exchange problem, and showed
that solving the pricing problem for chains, and thereby the pricing problem for cycles and chains
jointly, is NP-complete. This shows a correctness error in two leading branch-and-price-based
solvers. The results apply to other barter exchanges as well, as long as they use chains (potentially
with cycles as well).

Our hardness results show that a different approach for handling chains is necessary. Next, we
introduce models where chains are represented by position-indexed edge variables. Since there are
only a polynomial number of edge variables, they can be fully enumerated, removing the need for
branch and price for chains. Cycles in these models can still be handled via branch and price, or
via a different scheme.

3.3 Position-indexed formulations for kidney exchange

This section presents new scalable integer-programming-based approaches to optimally clearing
large kidney exchanges, including two models which can comfortably handle chain caps greater
than 10 for pools of sizes substantially larger than those in, e.g., Chapter 2. We focus specifically
on the realistic setting of small cycle caps L and large—but finite—chain caps K. We introduce
three integer program formulations for the kidney exchange problem, two of which are compact.
Model size (i.e., memory footprint) often constrains today’s kidney exchange solvers; critically, our
models are typically much smaller than the prior state of the art while managing to maintain tight
linear program relaxations (LPRs)—which in practice is quite important to proving optimality
quickly.

40



In Section 3.3.1, we introduce the position-indexed edge formulation (PIEF), a model for the
kidney exchange problem with only cycles that is substantially smaller than, yet has an LPR equiv-
alent to, the model with the tightest LPR for the cycles-only version of the problem [6, 188]. Sec-
tion 3.3.1 presents the position-indexed chain-edge formulation (PICEF) which compactly brings
chains into the model via a polynomial number of decision variables; the number of cycle deci-
sion variables is exponential in just the maximum cycle length (which is typically only 3 or 4 in
fielded exchanges). To address that latter exponential reliance on the cycle length, we also present
a branch-and-price-based implementation of PICEF. Finally, in Section 3.3.3 we present the hybrid
position-indexed edge formulation (HPIEF), which combines PIEF and PICEF to yield a compact
formulation.

Throughout, we prove new results regarding the tightness of the LPRs of our models relative
to the current state of the art. The tightness of these relaxations hints that our formulations will
be competitive in practice; toward that end, we provide extensive experimental evidence that they
are. In particular, we show that at least one of PICEF and HPIEF is faster than the best solver
from all those provably-optimal solvers contributed in earlier papers that we evaluated in 96.41%
of instances considered, with the speed-ups being most evident for larger instance sizes and larger
chain caps. In Section 3.3.5, we use real and generated data from two nationwide kidney exchange
programs—one in the UK, and one in the US—to compare our formulations against other com-
petitive solvers [6, 16, 134, 174]. Our new formulations are on par or faster than all other solvers,
outperforming all other solvers by orders of magnitude on many problem instances.

Finally, while we focus on the maximum-cardinality and maximum-weight cycle and chain
cover problems here, we note that our models can be extended to work with alternative objects.
One alternative objective for the kidney exchange problem is maximizing the expected number of
transplants subject to post-match edge and vertex failures [12, 75, 172]; we describe how our model
can be extended to this setting at the end of this chapter. Some fielded exchanges like those in the
UK and the Netherlands use lexicographic optimization of a hierarchy of objectives [100, 152]; we
note that our models would work under simple augmentation in these settings as well.

Related Publications

Some of the work in this section appeared at EC-16, and the rest can be found on arXiv; it
is a collaboration between Dickerson, Manlove, Plaut, Sandholm, and Trimble [80, 81].

We especially would like to thank Ross Anderson, Kristiaan Glorie, Xenia Klimentova,
Nicolau Santos, and Ana Viana for valuable discussions regarding this work and for making
available their kidney exchange software for the purposes of conducting our experimental
evaluation in Section 3.3.4.

3.3.1 PIEF: Position-Indexed Edge Formulation
We begin by presenting the first of our three new IP formulations, the position-indexed edge formu-
lation (PIEF). PIEF is a natural extension of the extended edge formulation (EEF) of Constantino
et al. [63]. For this formulation, we assume that the problem instance contains no altruistic donors;
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Figure 3.5: A kidney exchange instance G with |A| = 0 and |P | = 4, along with graph copies G1

(= G), G2, and G3. G4 = ({4}, {}) is not shown.

HPIEF (the hybrid PIEF) in Section 3.3.3 is a compact generalization of this formulation which
can be used for instances with altruistic donors.

The PIEF, like the EEF, uses copies of the underlying compatibility digraph G = (V,E). For
each vertex l ∈ V , let Gl = (V l, El) be the subgraph of G induced by {i ∈ V : i ≥ l}. The PIEF
ensures that at most one cycle is selected in each copy, and that a cycle selected in graph copy Gl

must contain vertex l.

The first directed graph in Figure 3.5 is an instance with four patients which we will use as an
example in this section. The figure shows graph copies G1 (= G), G2, and G3. The remaining
graph copy, G4 = ({4}, {}), contains no edges and is not shown.

The main innovation of the PIEF formulation is the use of edge positions to index variables; the
position of an edge in a cycle is defined as follows. Let c = (e1, . . . , e|c|) be a cycle represented as
a list of edges in E. Further, assume that we use the unique representation of c such that e1 leaves
the lowest-numbered vertex involved in the cycle. For 1 ≤ i ≤ |c|, we say that ei has position i.

We define K(i, j, l), the set of positions at which edge (i, j) is permitted to be selected in a
cycle in graph copy Gl. For i, j, l ∈ V such that (i, j) ∈ El, let

K(i, j, l) =


{1} i = l

{2, . . . , L− 1} i, j > l

{2, . . . , L} j = l.

Thus, an edge may be selected at position 1 in graph copy l if and only if it leaves vertex l, and
any edge selected at position L in graph copy l must enter l.

Now, create a set of binary decision variables as follows. For i, j, l ∈ P such that (i, j) ∈ El,
create variable xlijk for each k ∈ K(i, j, l). Variable xlijk takes the value 1 if and only if edge (i, j)

is selected at position k of a cycle in graph copy Gl. Returning to our example instance and letting
L = 3, we give x1

342 as an example of a variable in the model; this represents the edge (3, 4) being
used in position 2 of a cycle in graph copy 1. In full, the set of variables created for this instance is
x1

121, x1
212, x1

213, x1
232, x1

342, x1
412, x1

413, x1
422, x1

432 (in graph copy G1), x2
231, x2

342, x2
422, x2

423, x2
432 (in

graph copy G2), x3
341, x3

432, and x3
433 (in graph copy G3).
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The following integer program finds the optimal cycle packing.

max
∑
l∈V

∑
(i,j)∈El

∑
k∈K(i,j,l)

wijx
l
ijk (3.1a)

s.t.
∑
l∈V

∑
j:(j,i)∈El

∑
k∈K(j,i,l)

xljik ≤ 1 i ∈ V (3.1b)

∑
j:(j,i)∈El∧
k∈K(j,i,l)

xljik =
∑

j:(i,j)∈El∧
k+1∈K(i,j,l)

xli,j,k+1

l ∈ V,
i ∈ {l + 1, . . . , n},
k ∈ {1, . . . , L− 1}

(3.1c)

xlijk ∈ {0, 1} l ∈ V, (i, j) ∈ El, k ∈ K(i, j, l) (3.1d)

The objective (3.1a) is to maximize the weighted sum of selected edges. Constraint (3.1b) is
the capacity constraint for vertices: for each vertex i ∈ V , there must be at most one selected edge
whose target is i. Constraint (3.1c) is the flow conservation constraint. For each graph copy Gl,
each vertex i in Gl except the lowest-numbered vertex, and each edge position k < L, the number
of selected edges at position k with target i is equal to the number of selected edges at position
k + 1 with source i. Constraint (3.1d) ensures that no fractional solutions are selected. Theorem
17 in Section A.1.1 establishes the correctness of the PIEF model.

We note that PIEF is not the first IP model for a directed-graph program to use position-indexed
variables; Vajda [216] uses position-indexed variables for subtour elimination in a model for the
traveling salesman problem (TSP). Vajda’s model is substantially different from the PIEF; most
notably, graph copies are not required for Vajda’s model because any TSP solution contains exactly
one cycle.

Further reducing the size of the basic PIEF model

We now present methods for reducing the size of the PIEF model while maintaining provable op-
timality. These reductions are performed as a polynomial-time preprocess (prior to solving the
NP-hard kidney exchange clearing problem), and thus may result in practical run time improve-
ments.

Basic reduced PIEF. In typical problem instances, there are many (i, j, k, l) tuples such that xlijk
takes the value zero in any assignment that satisfies constraints (3.1b)-(3.1d). For example, suppose
that L = 4 and that Figure 3.6 is graph copy G1. Edge (6, 7) cannot be chosen at position 3 of a
cycle, since the edge only appears in one cycle and it is at position 2 of that cycle. Hence, if we
could eliminate variable x1

673 from the integer program it would not change the optimal solution.
Similarly, all variables for the edge (3, 4) within this graph copy could be eliminated, since this
edge does not appear in any cycle of length less than 5.

Following the approach used by Constantino et al. [63] for the extended edge formulation, we
eliminate variables as follows. For i, j ∈ V l, let dlij be the length of the shortest path in terms of
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Figure 3.6: A graph copy where the reduced PIEF decreases the number of variables in the integer
program

edges from i to j in Gl. For (i, j) ∈ El, let

Kred(i, j, l) = {k : 1 ≤ k ≤ L ∧ dlli < k ∧ dljl ≤ (L− k)}.

For any k /∈ Kred(i, j, l), no cycle in graph copy Gl of length less than or equal to L contains
(i, j) at position k, since either there is no sufficiently short path from l to i or there is no suffi-
ciently short path from j to l. Note that Kred(i, j, l) ⊆ K(i, j, l). We can substitute Kred(i, j, l) for
K(i, j, l) in (3.1a)-(3.1d), yielding a smaller integer program—PIEF-reduced (PIEFR)—with the
same optimal solution.

Elimination of variables at position 1 and L: the PIEFR2 formulation. In the PIEFR model
with L ≥ 3, variables at position 1 are redundant, since xllj1 = 1 if and only if xlji2 = 1 for some i.
Similarly, variables at position L are redundant; xljlK = 1 if and only if xlij(K−1) = 1 for some i.
We can eliminate variables at positions 1 and L from PIEFR as follows. Define a modified weight
function w′: for all i, j, l ∈ P such that (i, j) ∈ El and all k ∈ {2, . . . , L− 1}, let

w′(i, j, k, l) =


wij + wli k = 2

wij + wjl k = L− 1

wij otherwise.

With this weight function, a selected edge (i, j) at position 2 of a cycle in El contributes to the
objective value its own weight plus the weight of the implicitly selected edge (l, i). An edge (i, j)
at position L − 1 of a cycle in El contributes its own weight plus the weight of of the implicitly
selected edge (j, l).

For i, j, l ∈ P such that (i, j) ∈ El, define the restricted set of permitted edge positions:

Kred2
(i, j, l) = Kred(i, j, l) \ {1, L}.

For i, j, l ∈ P such that (i, j) ∈ El, and for each k ∈ Kred2
(i, j, l), create a binary variable xlijk.
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The following IP, denoted PIEFR2 (PIEF reduced twice), is solved.

max
∑
l∈V

∑
(i,j)∈El

∑
k∈Kred2

(i,j,l)

w′(i, j, k, l)xlijk subject to (3.2a)

∑
l∈V

 ∑
j:(j,i)∈El

∑
k∈Kred2

(j,i,l)

xljik +
∑

j:(i,j)∈El∧
2∈Kred2

(i,j,l)

xlij2

+
∑

h,j:j 6=i∧
(h,j)∈Ei∧

K−1∈Kred2
(h,j,i)

xihj(L−1) ≤ 1 i ∈ V (3.2b)

∑
j:(j,i)∈El∧
k∈Kred2

(j,i,l)

xljik =
∑

j:(i,j)∈El∧
k+1∈Kred2

(i,j,l)

xli,j,k+1

l ∈ V,
i ∈ {l + 1, . . . , n},
k ∈ {2, . . . , L− 2}

(3.2c)

xlijk ∈ {0, 1}
l ∈ V, (i, j) ∈ El,

k ∈ Kred2
(i, j, l)

(3.2d)

The constraints of PIEFR2 differ from those of PIEFR (3.1b-3.1d) in the following two respects.
First, the second term in parentheses in the PIEFR2 capacity constraint for vertex i (3.2b) ensures
that any selected edge (i, j) at position 2 of a cycle in Gl counts towards the capacity for i, since
it is implicit that the edge (l, i) is also chosen. The final term on the left-hand side of constraint
(3.2b) serves the same function for selected edges at position L − 1, since an edge at position
L is implicitly chosen. Second, the flow conservation constraint (3.2c) is not required for k ∈
{1, L− 1}, since edges at positions 1 and L are not modeled explicitly in PIEFR2.

Vertex-ordering heuristic. We can reduce the number of variables in the reduced PIEF model
by carefully choosing the order of vertex labels in the digraph G. We have found that relabelling
the vertices in descending order of total degree is an effective heuristic to this end. To estimate
the effect of this ordering heuristic on model size, we generated the PIEFR2 model for each of the
ten PrefLib instances [154] with 256 vertices and no altruistic donors—these were generated in
accordance with the dense model of Saidman et al. [191]. The heuristic reduced the variable count
by a mean of 38 percent, and reduced the constraint count by a mean of 60 percent.

PIEF has a tight LPR

We now compare the LPR bound of PIEF to those of other popular IP models. The tightness of
an LPR is typically viewed as a proxy for how well an IP model will perform in practice, due
to the important role the relaxation plays in modern branch-and-bound-based tree search. In this
section, we compare the LPR of PIEF against the IP formulation with the tightest LPR, the cycle
formulation due to Abraham et al. [6] and Roth et al. [188]; we also note that the formulation is
equivalent to that due to Anderson et al. [16] if chains are disallowed. While the number of decision
variables in the cycle formulation model is exponential in the cycle cap L, PIEF maintains an LPR
that is just as tight, but has far fewer variables if L > 3.
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LPR of PIEF. We now show that the LPR of PIEF is exactly as tight as that of the cycle formu-
lation. Formally, if A and B are two IP formulations for the kidney exchange problem, we write
that A weakly dominates B, denoted ZA � ZB, if for every problem instance, the LPR objective
value under A is no greater than the LPR objective value under B. Further, we say that A strictly
dominates B, denoted ZA ≺ ZB, if ZA � ZB and for some problem instance, the LPR objective
value under A is strictly smaller than the LPR objective value under B. Finally, we write ZA = ZB
if ZA � ZB and ZB � ZA. The following result is proved in Appendix A.1.2.
Theorem 4. ZCF = ZPIEF (without chains).

3.3.2 PICEF: Position-Indexed Chain-Edge Formulation
Our second new IP formulation, PICEF, uses a variant of PIEF for chains, and—like the cycle
formulation—uses one binary variable for each cycle. The idea of using variables for edges in
chains and a variable for each cycle was introduced in the PC-TSP-based algorithm of Anderson
et al. [16]. The innovation in our IP model is the use of position indices on edge variables, which
results in polynomial counts of constraints and edge-variables; this is in contrast to the exponential
number of constraints in the PC-TSP-based model.

Unlike PIEF, PICEF does not require copies of G. Intuitively, this is because a chain is a
simpler structure than a cycle, with no requirement for a final edge back to the initial vertex.

We define K′(i, j), the set of possible positions at which edge (i, j) may occur in a chain in the
compatibility graph G. For i, j ∈ V such that (i, j) ∈ E,

K′(i, j) =

{
{1} i ∈ A
{2, . . . , L} i ∈ P .

Thus, any edge leaving an altruistic donor can only be in position 1 of a chain, and any edge
leaving a patient vertex may be in any position up to the cycle-length cap L, except 1.

For each (i, j) ∈ E and each k ∈ K′(i, j), create variable yijk, which takes value 1 if and only
if edge (i, j) is selected at position k of some chain. For each cycle c in G of length up to L, define
a binary variable zc to indicate whether c is used in a packing.

For example, consider the instance in Figure 3.7, in which |A| = 2 and |P | = 4. Suppose
that L = 3 and K = 4, and suppose further that each edge has unit weight. The IP model
includes variables y131, y141, and y241, corresponding to edges leaving altruistic donors. For each
k ∈ 2, 3, 4, the model includes variables y34k, y45k, y56k, y64k, and y65k, corresponding to edges
between donor-patient pairs at position k of a chain. Finally, the model includes zc variables for
the cycles ((4, 5), (5, 6), (6, 4)) and ((5, 6), (6, 5)).

1

2

3 4

5

6

Figure 3.7: An instance with |A| = 2 and |P | = 4
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The following IP is solved to find a maximum-weight packing of cycles and chains.

max
∑

(i,j)∈E

∑
k∈K′(i,j)

wijyijk +
∑

c∈C(L,0)

wczc (3.3a)

s.t.
∑

j:(j,i)∈E

∑
k∈K′(j,i)

yjik +
∑

c∈C(L,0):i appears in c

zc ≤ 1 i ∈ P (3.3b)

∑
j:(i,j)∈E

yij1 ≤ 1 i ∈ A (3.3c)

∑
j:(j,i)∈E∧
k∈K′(j,i)

yjik ≥
∑

j:(i,j)∈E

yi,j,k+1

i ∈ P,
k ∈ {1, . . . , L− 1} (3.3d)

yijk ∈ {0, 1} (i, j) ∈ E, k ∈ K′(i, j) (3.3e)
zc ∈ {0, 1} c ∈ C(L, 0) (3.3f)

Inequality (3.3b) is the capacity constraint for patients: each patient vertex is involved in at
most one chosen cycle or incoming edge of a chain. Inequality (3.3c) is the capacity constraint
for altruists: each altruist vertex is involved in at most one chosen outgoing edge. The flow in-
equality (3.3d) ensures that patient-donor pair vertex i has an outgoing edge at position k + 1 of
a selected chain only if i has an incoming edge at position k; we use an inequality rather than
an equality since the final vertex of a chain will have an incoming edge but no outgoing edge.
Theorem 18 in Section A.2.1 establishes the correctness of the PICEF model.

We now give an example of each of the inequalities (3.3b–3.3d) for the instance in Fig-
ure 3.7. For i = 4, the capacity constraint (3.3b) ensures that y141 + y241 + y342 + y343 + y344 +
z((4,5),(5,6),(6,4)) ≤ 1. For i = 1, the altruist’s capacity constraint (3.3c) ensures that y131 + y141 ≤ 1.
For i = 5 and k = 2, the chain flow constraint (3.3d) ensures that z452 + z652 ≥ z563; that is, the
outgoing edge (5, 6) can only be selected at position 3 of a chain if an incoming edge to vertex 5
is selected at position 2 of a chain.

In our example in Figure 3.7, the optimal objective value is 4. One satisfying assignment that
gives this objective value is y131 = y342 = z((5,6),(6,5)) = 1, with all other variables equal to zero.

Practical implementation of the PICEF model

We now discuss methods for the practical implementation of PICEF, first by reducing the number
of decision variables via a polynomial-time preprocess, and second by tackling the large number of
decision variables for cyclic exchanges via a branch-and-price-based transformation of the model.

Reduced PICEF. We can reduce the PICEF model using a similar approach to the PIEF reduc-
tion in Section 3.3.1. For i ∈ P , let d(i) be length of the shortest path in terms of edges from some
j ∈ A to i. Since any outgoing edge from i cannot appear at position less than d(i) + 1 in a chain,
we can replace K′ in PICEF with Kred, defined as follows:
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Kred(i, j) =

{
{1} i ∈ A
{d(i) + 1, . . . , K} i ∈ P.

A branch and price implementation of PICEF. We now discuss a method for scaling PICEF
to graphs with high cycle caps, or large graphs with many cycles; this method maintains the full
set of edge decision variables, but only incrementally considers those corresponding to cycles.

Formally, for V = P ∪A, the number of cycles of length at most L is O(|P |L), making explicit
representation and enumeration of all cycles infeasible for large enough instances, as we discussed
earlier in this chapter. With one decision variable per cycle, Abraham et al. [6] could not even
write the full integer program in memory for instances as small as 1000 pairs, and—once chains
were introduced into the picture—our experimental work in Chapter 2 could not even scale to
substantially smaller pools.

Section 3.2 discussed how recent work by Glorie et al. [100], and a proposed bugfix to that
work by Plaut et al. [174], were both incorrect for the general problem of pricing both cycles
and chains. However, those algorithms are correct for pricing only cycles. In the case of PICEF,
we need only price cycles; the number of variables and constraints needed to represent chains
is polynomial in the input size and thus that part of the model can be represented in memory
completely. Thus, we are able to directly plug in cycle-only pricing algorithms to create a branch
and price implementation of PICEF—which we do in our experimental section. Appendix A.4.3
gives the correct version of that cycle pricer as Algorithm 4.

The LPR of PICEF is not as tight

As an analogue to Section 3.3.1, we now compare the LPR of PICEF against the cycle formulation
LPR. Unlike in the PIEF case, where Theorem 4 showed an equivalence between the two models’
relaxations, we show that PICEF’s relaxation can be looser than that of the cycle formulation.
Theorem 5 gives a simple construction showing this, while Theorem 6 presents a family of graphs
on which PICEF’s LPR is arbitrarily worse than that of the cycle formulation. The proofs of both
of these results are contained in Section A.2.2.
Theorem 5. ZCF ≺ ZPICEF (with chains).

Indeed, Theorem 6 shows that the ratio between the optimum objective value for the relaxations
of PICEF and the cycle formulation can be made arbitrarily large.
Theorem 6. Let z ∈ R+ be given. There exists a problem instance for which ZPICEF/ZCF > z,
where ZPICEF is the objective value of the LPR of PICEF and ZCF is the objective value of the LPR
of the cycle formulation.

While the results of Theorems 5 and 6 may be disheartening, in the following section, we give
experimental evidence that PICEF (as well as its branch-and-price-based interpretation) perform
extremely competitively on real and generated data.
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3.3.3 HPIEF: A hybrid formulation
In this section, we present a compact generalization of the PIEF model to kidney exchange graphs
with altruistics donors (also called non-directed donors). This stands in contrast to the the PICEF
formulation, which has polynomial counts of constraints and edge variables, but an exponential
number of cycle variables. By replacing the cycle variables in PICEF with the variables from PIEF
and modifying the constraints accordingly, we can create a compact formulation, the hybrid PIEF
(HPIEF). Let the variables xlijl and the index set K(i, j, l) be defined as in PIEF. Let the variables
yijk and the index set K(i, j) be defined as in PICEF. The HPIEF integer program is as follows.

max
∑
l∈P

∑
(i,j)∈El

∑
k∈K(i,j,l)

wijx
l
ijk +

∑
(i,j)∈E

∑
k∈K(i,j)

wijyijk (3.4a)

s.t.
∑
l∈P

∑
j:(j,i)∈El

∑
k∈K(j,i,l)

xljik +
∑

j:(j,i)∈E

∑
k∈K(j,i)

yjik ≤ 1 i ∈ P (3.4b)

Constraints (3.1c), (3.3c), and (3.3d)

xlijk ∈ {0, 1}
l ∈ P, (i, j) ∈ El,

k ∈ K(i, j, l)
(3.4c)

yijk ∈ {0, 1} (i, j) ∈ E, k ∈ K(i, j) (3.4d)

Inequalities (3.4b) and (3.3c) are the capacity constraints for patients and altruistic donors
respectively.

The reductions described in Sections 3.3.1 and 3.3.1 can also be applied to the xlijk in HPIEF.

3.3.4 Experimental comparison of state-of-the-art kidney exchange solvers
In this section, we compare implementations of our new models against existing state-of-the-art
kidney exchange solvers. To ensure a fair comparison, we received code from the author of each
solver that is not introduced in this chapter. We compare run times of the following state-of-the-art
solvers:
• BNP-DFS, the original branch-and-price-based cycle formulation solver due to Abraham

et al. [6];
• BNP-POLY, a branch-and-price-based cycle formulation solver with pricing due to Glorie

et al. [100] and Plaut et al. [174];1

• CG-TSP, a recent IP formulation based on a model for the prize-collecting traveling sales-
man problem, with constraint generation [16];

• PICEF, the model from Section 3.3.2 of this chapter;

1Section 3.2 of this chapter showed a correctness bug in both implementations of the BNP-POLY-style solvers due
to Glorie et al. [100] and Plaut et al. [174]; for posterity, we still include these run times. Furthermore, we note that
the objective values returned by BNP-POLY always equaled that of the other provably-correct solvers on all of our test
instances.
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• BNP-PICEF, a branch and price version of the PICEF model, as presented in Section 3.3.2
of this chapter;

• HPIEF, the Hybrid PIEF model from Section 3.3.3 of this chapter (which reduces to PIEF
for K = 0); and

• BNP-DCD, a branch-and-price algorithm using the Disaggregated Cycle Decomposition
model, which is related to both the cycle formulation and the extended edge formulation
[134].

A cycle-length cap of 3 and a time limit of 3600 seconds was imposed on each run. When a
timeout occurred, we counted the run-time as 3600 seconds.

We test on two types of data: real and generated. Section 3.3.4 shows run time results on
real match runs, including 286 runs from the UNOS US-wide exchange, which (at the time of
these runs) contained 143 transplant centers, and 17 runs from the NLDKSS UK-wide exchange,
which uses 24 transplant centers. Section 3.3.4 increases the size and varies other traits of the
compatibility graphs via a realistic generator seeded by the real UNOS data. We find that PICEF
and HPIEF substantially outperform all other models.

Real match runs from the UK- and US-wide exchanges

We now present results on real match run data from two fielded nationwide kidney exchanges:
The United Network for Organ Sharing (UNOS) US-wide kidney exchange where the decisions
are made by algorithms and software from CMU, and the UK kidney exchange (NLDKSS) where
the decisions are made by algorithms and software from Dr. Manlove’s group at the University of
Glasgow.2 The UNOS instances used include all the match runs starting from the beginning of the
exchange in October 2010 to January 2016. The exchange has grown significantly during that time
and chains have been incorporated. The match cadence has increased from once a month to twice
a week; that keeps the number of altruists relatively small. We will discuss this more in Chapters 6
and 8. On average, these instances have |A| = 2, |P | = 231, and |E| = 5021. The NLDKSS
instances cover the 17 quarterly match runs during the period January 2012–January 2016. On
average, these instances have |A| = 7, |P | = 201, and |E| = 3272.

Figure 3.8 shows mean run times across all match runs for both exchanges; Appendix A.5 gives
additional statistics like minimum and maximum run times, as well as their standard deviations.
Immediately obvious is that the non-compact formulations—BNP-DFS and CG-TSP—tend to
scale poorly compared to our newer formulations. Interestingly, BNP-PICEF tends to perform
worse than the base PICEF and HPIEF; we hypothesize that this is because branch-and-price-
based methods are necessarily more “heavyweight” than standard IP techniques, and the small size
of presently-fielded kidney exchange pools may not yet warrant this more advanced technique.
Perhaps most critically, both PICEF and HPIEF clear real match runs in both exchanges within
seconds.

In the NLDKSS results, the wide fluctuation in mean run time as the chain cap is varied can be

2Due to privacy constraints on sharing real healthcare data, the UNOS and NLDKSS experimental runs were nec-
essarily performed on different computers—one in the US and one in the UK. All runs within a figure were performed
on the same machine, so relative comparisons of solvers within a figure are accurate.
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explained by the small sample size of available NLDKSS instances, and the fact that the algorithms
other than HPIEF and PICEF occasionally timed out at one hour. By contrast, each of the HPIEF
and PICEF runs on NLDKSS instances took less than five seconds to complete. We also note that
the LP relaxation of PICEF and HPIEF are very tight in practice; the LPR bound equaled the IP
optimum for 614 of the 663 runs carried out on NLDKSS data.
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Figure 3.8: Mean run times for various solvers on 286 real match runs from the UNOS exchange
(left), and 17 real match runs from the UK NLDKSS exchange (right).

We remark that the BNP-DCD model due to Klimentova et al. [134] was run on all NLDKSS
instances where the chain cap K was equal to 0. Larger values of K could not be tested since the
current implementation of the model in our possession does not accept altruistic donors (and thus
will ignore potential chains) in the input. However for the case that K = 0 the BNP-DCD model
was the fastest for all NLDKSS instances.

Finally we note that the solver of Glorie et al. [100] was executed on the NLDKSS instances
with a chain cap of K, for 0 ≤ K ≤ 4. It was found that on average the execution time was
8.9 times slower than the fastest solver from among all the others executed on these instances as
detailed at the beginning of Section 3.3.4. PICEF was the fastest solver on 40% of occasions.

Scaling experiments on realistic generated UNOS kidney exchange graphs

As motivated earlier in the paper, it is expected that kidney exchange pools will grow in size as
(a) the idea of kidney exchange becomes more commonplace, and barriers to entry continue to
drop, as well as (b) organized large-scale international exchanges manifest. Toward that end, in
this section, we test solvers on generated compatibility graphs from a realistic simulator seeded
by all historical UNOS data; the generator samples patient-donor pairs and altruistic donors with
replacement, and draws edges in the compatibility graph in accordance with UNOS’ internal edge
creation rules.

Figure 3.9 gives results for increasing numbers of patient-donor pairs (each column), as well
as increasing numbers of altruist donors as a percentage of the number of patient-donor pairs (each
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row). As expected, as the number of patient-donor pairs increases, so too do run times for all
solvers. Still, in each of the experiments, for each chain cap, both PICEF and HPIEF are on par
or (typically) much faster—sometimes by orders of magnitude compared to other solvers. Ap-
pendix A.5 gives these results in tabular form, including other statistics—minimum and maximum
run times, as well as their standard deviations—that were not possible to show in Figure 3.9.
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Figure 3.9: Mean run time as the number of patient-donor pairs |P | ∈ {300, 500, 700} in-
creases (left to right), as the percentage of altruists in the pool increases |A| =
{1%, 2%, 5%, 25%} of |P | (top to bottom), for varying finite chain caps.
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In addition to their increased scalability, we note two additional benefits of the PICEF and
HPIEF models proposed in this chapter: reduced variance in run time, and relative ease of im-
plementation when compared to other state-of-the-art solution techniques. In both the real and
simulated experimental results, we find that the run time of both the PICEF and HPIEF formu-
lations is substantially less variable than the branch-and-price-based and constraint-generation-
based IP solvers. While the underlying problem being solved is NP-hard, and thus will always
present worst-case instances that take substantially longer than is typical to solve, the increased
predictability of the run time of these models relative to other state-of-the-art solutions—including
those that are presently fielded—is attractive. Second, we note that significant engineering effort is
involved in the creation of custom branch-and-price and constraint-generation-based codes, while
both PICEF and HPIEF are implemented with relative ease, relying on only a single call to a black
box IP solver.

3.3.5 Failure-aware kidney exchange

Real-world exchanges all suffer to varying degrees from “last-minute” failures, where an algorith-
mic match or set of matches fails to move to transplantationLeishman et al. [143]. This can occur
for a variety of reasons, including more extensive medical testing performed before a surgery, a
patient or donor becoming too sick to participate, or a patient receiving an organ from another
exchange or from the deceased donor waiting list; we discuss these reasons in greater detail in
Chapter 5.

To address these post-match edge failures, our work to be presented in Chapter 5 augments the
standard model of kidney exchange to include a success probability p for each edge in the graph.
We show how to solve that model using branch and price, where the pricing problem is solved
in time exponential in the chain and cycle cap. Prior compact formulations—and, indeed, prior
“edge formulations” like those due to Abraham et al. [6], Constantino et al. [63], and Anderson
et al. [16]—are not expressive enough to allow for generalization to this model. Intuitively, while
a single edge failure prevents an entire cycle from executing, chains are capable of incremental
execution, yielding utility from the initial altruistic donor to the first edge failure later in the chain.
Thus, the expected utility gained from an edge in a chain is dependent on where in the chain that
edge is located, which is not expressed in those models.

PICEF for failure-aware matching

With only minor modification, PICEF allows for implementation of failure-aware kidney exchange,
under the restriction that each edge is assumed to succeed with equal probability p. While this as-
sumption of equal probabilities is likely not true in practice, there is good reason why a fielded im-
plementation of this model would potentially choose to equalize all failure probabilities: namely,
so that already-sick patients—who will likely have higher failure rates—are not further marginal-
ized by this model. (We discuss this marginalization more in Chapter 7.) Thus, given a single
success probability p, we can adjust the PICEF objective function to return the maximum expected
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weight matching as follows:

max
∑

(i,j)∈E

∑
k∈K′(i,j)

pkwijyijk +
∑

c∈C(L,0)

p|c|wczc (3.5a)

Objective (3.5a) is split into two parts: the utility received from edges in chains, and the utility
received from cycles. For the latter, a cycle c of size |c| has probability p|c| of executing; otherwise,
it yields zero utility. For the former, if an edge is used at position k in a chain, then it yields a
pk fraction of its original weight—that is, the probability that the underlying chain will execute at
least through its first k edges.

Failure-aware polynomial pricing for cycles

The failure-aware branch-and-price work we will present in Chapter 5 generalizes the pricing strat-
egy of Abraham et al. [6], and thus suffers from a pricing problem that ran in time exponential in
cycle and chain cap. As shown in Section 3.2, Glorie et al. [100] and Plaut et al. [174] gave
polynomial pricing algorithms for cycles—but not chains—in the deterministic case. Using our
algorithm from Plaut et al. [174] as a subroutine (given explicitly as Algorithm 4 in Appendix A),
we present an algorithm which solves the failure-aware, or discounted, pricing problem for cycles
in polynomial time, under the restriction that all edges have equal success probability p.

As discussed in Section 3.2, in the deterministic setting, the price of a cycle c is
∑

(i,j)∈cwij −∑
j∈c δj , where wij is the weight of edge (i, j), and δj is the dual value of vertex j in the LP. The

discounted price of a cycle is p|c|
∑

(i,j)∈cwij −
∑

j∈c δj . Since the utility of an edge now depends
on what cycle it ends up in, we cannot collapse edge weights and dual values without knowing the
length of the cycle containing it.

With this motivation, we augment the algorithm to run O(L) iterations for each source vertex:
one for each possible final cycle length. On each iteration, we know exactly how much edge
weights will be worth in the final cycle, so we can reduce the discounted pricing problem to the
deterministic pricing problem.

Pseudocode for the failure-aware cycle pricing algorithm is given by GETDISCOUNTEDPOSI-
TIVEPRICECYCLES. Let w and δ be the edge weights and dual values respectively in the original
graph. The function GETNEGATIVECYCLES is the adaptation of the deterministic pricing algo-
rithm due to Glorie et al. [100] that we presented in Plaut et al. [174] which returns at least one
negative cycle of length at most K, or shows that none exist; we give that pseudocode explicitly in
Appendix A.4.3 as Algorithm 4.

The algorithm of Plaut et al. [174] has complexityO(|V ||A|L2). Considering all L−1 possible
cycle lengths brings the complexity of our algorithm to O(|V ||A|L3).
Theorem 7. If there is a discounted positive price cycle in the graph, Algorithm 2 will return at
least one discounted positive price cycle.
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Algorithm 2 Polynomial-time failure-aware pricing for cycles.
1: function GETDISCOUNTEDPOSITIVEPRICECYCLES(G = (V,E), L, p, w, δ)
2: C ← ∅
3: for each k ∈ {2, . . . , L} do . Consider all possible cycle lengths
4: wk(i, j)← δj − pkwij ∀(i, j) ∈ E . Reduction of Glorie et al. [100]
5: C ← C ∪ GETNEGATIVECYCLES(G, k, wk)

6: return C

3.3.6 Conclusions & final thoughts
In this chapter, we addressed the tractable clearing of kidney exchanges with short cycles and long,
but bounded, chains. This is motivated by kidney exchange practice, where chains are often long
but bounded in length due to post-match edge failure—which we will discuss in much greater
depth in Chapter 5. We introduced three IP formulations, two of which are compact, and favor-
ably compared their LPRs to a state-of-the-art formulation with a tight relaxation. Then, on real
data from the UNOS US nationwide exchange and the NLDKSS United Kingdom nationwide ex-
change, as well as on generated data, we showed that our new models outperform all other solvers
on realistically-parameterized kidney exchange problems–often dramatically. We also explored
practical extensions of our models, such as the use of branch and price for additional scalability,
and an extension to the failure-aware kidney exchange case that more accurately mimics reality.

Beyond the immediate importance of more scalable static kidney exchange solvers for use
in fielded exchanges, solvers like the ones presented in this chapter are of practical importance in
more advanced—and as yet unfielded—approaches to clearing kidney exchange. In reality, patients
and donors arrive to and depart from the exchange dynamically over time [213]. As we will see
in Chapters 6 and 8, approaches to clearing dynamic kidney exchange often rely on solving the
static problem many times [14, 27, 70, 73, 98]; thus, faster static solvers result in better dynamic
exchange solutions.
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Small changes in problem definition often
change the complexity of a problem from be-
ing solvable optimally in polynomial time to
being NP-hard.

– Samir Khuller

And if you think the bit is a big deal, consider
the atom.

– Uber PR 4
A new model for kidney exchange

In this chapter, we take a complementary approach to tackling the complexity of the clearing prob-
lem. Rather than choosing to solve the NP-hard clearing problem to optimality with techniques
like those described in Chapter 3, we instead introduce a novel model for kidney exchange that ex-
plicitly takes into account all attributes of the participating patients and donors in the formulation.
Under the assumption that real kidney exchange graphs can be represented using just a constant
number of attributes—like blood type, weight, various aspects of medical history, insurance de-
tails, and so on—we show that our model permits polynomial-time solutions to central NP-hard
problems in general kidney exchange. Inspired by classical results from intersection graph theory,
we give conditions on the representation of arbitrary graphs in our model, and generalize to the
case where participants are allowed to have a thresholded number of negative interactions between
attributes. Noting that real-life kidney exchange graphs are not arbitrary, we show on actual data
from the United Network for Organ Sharing (UNOS) US-wide kidney exchange that our model
permits lossless representation of true graphs with far fewer attributes than the worst-case theoret-
ical results require.

Related Publications

A version of the work in this chapter is available on arXiv, and is an ongoing collaboration
between Dickerson, Kazachkov, Procaccia, and Sandholm [79].

4.1 A new model for kidney exchange

In this section, we formalize our model of kidney exchange. We prove that under this model certain
well-known NP-hard problems in general kidney exchange are solvable in polynomial time. We
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also show that, given a compatibility graph, determining the best set of attributes to change (at
some cost) is solvable in polynomial time.

4.1.1 Notation & preliminaries
As in earlier chapters, we represent a kidney exchange by a directed compatibility graph G =
(V,E). Each patient-donor pair, or unpaired altruistic donor, forms a vertex v ∈ V , and a directed
edge exists from one vertex to another if the donor at the former can give to the patient at the latter,
i.e., are compatible [184, 185, 186].

We consider a model that imposes additional structure on an arbitrary compatibility graph. For
each vertex vi ∈ V , associate with its constituent donor and patient attribute vectors di and pi,
respectively. Here, the qth element dqi of di takes on one of a fixed number of types—for example,
one of four blood types (O, A, B, AB), or one of a few hundred standard insurance plans. Then,
for vi 6= vj ∈ V , we define a compatibility function f(di,pj), a boolean function that returns the
compatibility of the donor of vi with the patient of vj .

Given V and associated attribute vectors, we can uniquely determine a compatibility graph
G = (V,E) such that E = {(vi, vj) : f(di,pj) = 1 ∀vi 6= vj ∈ V }. We claim that this model
accurately mimics reality, and we later support that claim with strong experimental results on
real-world data. Furthermore, under this new model, certain complexity results central to kidney
exchange change (for the better), as we discuss next.

4.1.2 The clearing problem is easy (in theory)
We now tackle the central computational challenge of kidney exchange: the clearing problem. As
discussed earlier, the clearing problem on general graphs is NP-hard [6, 41]. We show that, in our
model, the clearing problem itself is solvable in polynomial time; later, we show that the restric-
tions imposed by our model to achieve this reduction in complexity do not preclude representation
of real kidney exchange graphs.

Formally, we are interested in a polynomial-time algorithm that solves the L-CYCLE-COVER

problem—that is, finding the largest disjoint packing of cycles of length at most L. For ease of
exposition, in this section we use “cycles” to refer to both cycles and chains; indeed, it is easy to see
that altruist donors are equivalent to standard patient-donor pairs with a patient who is compatible
with all non-altruist vertices in the pool. Then, a chain is equivalent to a cycle with a “dummy”
edge returning to the altruist. Also, again for ease of exposition, we assume the value of a chain of
length L is equal to a cycle of length L, due to the donor at the end of the chain giving to a patient
on the deceased donor waiting list.

Recall that we are working in a model where each vertex vi belongs to one of a fixed number
of types determined solely by its attribute vectors di and pi. Let Θ be the set of all possible types,
and θ ∈ Θ represent one such individual type. Then, with a slight abuse of notation, we can define
a type compatibility function f(θ, θ′) = 1 if and only if there is a directed edge between vertices
of type θ and θ′. (Note that this captures chains and altruist donors as described above.)

A key observation of this section is that any additional edge structure that is imposed on the
graph—such as a cycle cover—would be independent of the identity of specific vertices, rather, it
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would only depend on their types, as vertices of the same type have the exact same incoming and
outgoing neighborhoods. For example, in any cycle cover, if vi and vj are two vertices of the same
type, we can insert vj in place of vi, and vi in place of vj , and obtain a feasible cycle cover of the
same size. This observation drives our theoretical algorithmic results.

In more detail, for a vector of types θ = (θ1, . . . , θk) ∈ Θk, let us denote fC(θ) = 1 if and only
if f(θt, θt+1) = 1 for all t < k, and f(θk, θ1) = 1. In other words, fC(θ) = 1 if every k vertices
i1, . . . , ik of types θ1, . . . , θk, respectively, are involved in a cycle in the graph. Furthermore, for
L ≤ n = |V |, denote

T (L) = {θ ∈ Θk : k ≤ L and fC(θ) = 1}.
That is, T (L) contains all vectors of types that induce feasible cycles of length at most L.

Now consider the following algorithm for L-CYCLE-COVER in our model:

Algorithm 3 L-CYCLE-COVER

1. C∗ ← ∅
2. for every collection of numbers {mθ}θ∈T (L) such that

∑
θ∈T (L) mθ ≤ n

• if there exists cycle cover C such that ‖C‖V > ‖C∗‖V and for all θ ∈ T (L), C contains
mθ cycles consisting of vertices of the types in θ then C∗ ← C

3. return C∗

Here, ‖C‖V denotes the number of unique vertices matched in a cycle cover C. We claim that,
in our setting, Algorithm 3 is optimal and computationally efficient.
Theorem 8. Suppose that L and |Θ| are constants. Then Algorithm 3 is a polynomial-time algo-
rithm for L-CYCLE-COVER.

Proof. We start by verifying that Algorithm 3 is indeed optimal. Consider the optimal cycle cover
C∗. For each θ ∈ T (L), let m∗θ be the number of cycles in C∗ that are consistent with the types in
θ. Clearly

∑
θ∈T (L) m

∗
θ ≤ n, as there are only n vertices so there cannot be more than n cycles (in

fact, n/2 is also a valid upper bound). Therefore, Algorithm 3 considers the collection of numbers
m∗θ in Step 2. Because this collection of numbers does induce a valid cycle cover that is of the same
size as C∗, the algorithm would update its incumbent cycle cover if it was not already optimal.

We next analyze the running time of the algorithm. First, note that it is straightforward to check
whether the numbers {mθ}θ∈T (L) induce a valid cycle cover. Since T (L) consists only of valid
cycles according to the compatibility function fC , we just need to check that there are enough
vertices of type θ to construct all the cycles that require them. This simply amounts to multiplying
each mθ by the number of times type θ appears in θ, and verifying that the sum of these products
over all θ in T (L) is at most the number of vertices of type θ.

Second, we argue that there is only a polynomial number of possibilities to construct a col-
lection of numbers {mθ}θ∈T (L) such that

∑
θ∈T (L) mθ ≤ n. Indeed, this number is at most

(n + 1)|T (L)|. Moreover, |T (L)| ≤ L · |Θ|L. Because |Θ| and L are constants, |T (L)| is also
a constant. The expression (n+ 1)|T (L)| is therefore a polynomial in n.
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Even for constant L, the running time of Algorithm 3 is exponential in k. But this is to be
expected. Indeed, any graph can trivially be represented using a set Θ of types of size n, where
each vertex has a unique type, and a compatibility function fC that assigns 1 to an ordered pair
of types if the corresponding edge exists in G. Therefore, if the running time of Algorithm 3
were polynomial in n and k, we could solve the general L-CYCLE-COVER problem in polynomial
time—and that problem is NP-hard [6].

4.1.3 Flipping attributes is also easy (in theory)
While patients and donors in a kidney exchange are endowed with an initial set of attributes, it may
be possible in practice to—at a cost—change some number of those attributes to effect change in
the final matching. For example, the human body naturally tries to reject, to varying degrees, a
transplanted organ. Due to this, nearly all recipients of kidneys are placed on immunosuppres-
sant drugs after transplantation occurs.1 However, preoperative immunosuppression can also be
performed to increase transplant opportunity—but at some cost to the patient’s overall health.

With this in mind, we extend the model of Section 4.1.2 as follows. Associate with each pair of
types θ, θ′ ∈ Θ a cost function c : Θ×Θ→ R representing the cost of changing a vertex of type θ
to type θ′. Then, the L-FLIP-AND-CYCLE-COVER problem is to find a disjoint packing of cycles
of length at most L that maximizes the size of the packing minus the sum of costs spent changing
types. Building on Theorem 8, this problem is also solvable in polynomial time.
Theorem 9. Suppose that L and |Θ| are constants. Then L-FLIP-AND-CYCLE-COVER is solvable
in polynomial-time.

Proof sketch. For any type θi ∈ Θ, there are ni vertices. Then, for each of the (|Θ| − 1) choices of
which type θ 6= θi to switch to, choose how many vertices from θi will switch to a different type;
there are (ni + 1) choices. Do this for all |Θ| types, resulting in

∏
θi∈Θ[(ni + 1)(|Θ| − 1)] choices.

Note that
∑

θi∈Θ(ni + 1) = n + |Θ|, meaning
∏

θi∈Θ[(ni + 1)(|Θ| − 1)] ≤ ((n + |Θ|) · (|Θ| −
1)/|Θ|)|Θ| ≤ (n + |Θ|)|Θ|. Since |Θ| is a constant, this is polynomial in n; invoking an adaptation
of the polynomial time Algorithm 3 that subtracts out c(θ, θ′) for every vertex that switches from
θ to θ′, for each of the polynomially-many choices, concludes the proof.

4.2 A concrete instantiation: thresholding
As motivated in Chapter 1 and Section 4.1, compatibility in real kidney exchange graphs is deter-
mined by patient and donor attributes, such as blood or tissue type. In particular, if an attribute for
a donor and patient is in conflict, they are deemed incompatible. Motivated by that reality, in this
section, we associate with each patient and donor a bit vector of length k, and count incompatibil-
ities based on any shared activated bits between a patient and potential donor.

As a concrete example, consider human blood types. At a high level, human blood contains A
antigens, B antigens, both (type AB), or neither (type O). AB-type patients can receive from any
donor, A-type (B-type) can receive from O-type and A-type (B-type) donors, and O-type patients

1https://www.kidney.org/atoz/content/immuno
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can only receive from O-type donors. In our bit model, this is represented with k = 2, such that
a donor’s first (resp. second) bit is set if his blood holds A (resp. B) antigens. and a patient’s first
(resp. second) bit is set if she cannot receive from blood containing A (resp. B) antigens. Thus, the
type space Θ = 2{has-A,has-B} × 2{no-A,no-B}; in general, |Θ| = 22k.

Formally, unless otherwise stated, throughout this section G will refer to a directed graph with
vertex set V = [n] := {1, . . . , n} and edge set E, and with each i ∈ V associated with two k-bit
vectors di,pi ∈ {0, 1}k. Let Qd(i) = {q ∈ [k] : diq = 1} be the set of conflict bits for the donor
associated with vertex i ∈ V , and similarly let Qp(i) = {q ∈ [k] : piq = 1}. For i, j ∈ V such that
i 6= j, the threshold feasibility function f tthresh is defined as

f tthresh(di,pj) =

{
1 if |Qd(i) ∩Qp(j)| ≤ t,
0 otherwise.

.

Note that |Qd(i) ∩Qp(j)| ≤ t if and only if 〈di,pj〉 ≤ t.
Kidney exchange graphs constructed using threshold compatibility functions are closely related

to complements of intersection graphs [156], which are graphs that have a set associated with each
vertex and an edge between two vertices if and only if the sets intersect. Given a nonnegative
integer t, the function f tthresh is related to p-intersection graphs [62, 83], in which an edge exists
between two vertices if their corresponding sets intersect in at least p ≥ 1 elements.

In particular, our model is similar to that of intersection digraphs [194], or equivalently bi-
partite intersection graphs [105], both also considered in [170]. Both of these have mainly been
studied under the assumption that the sets used to represent the graph have the “consecutive ones”
property, i.e., each set is an interval from the set of integers. Our model is more general: we do not
place such an assumption on the set of conflict bits. Moreover, most treatments of intersection di-
graphs consider loops on the vertices, whereas in the thresholding model we have defined, whether
or not donor i and patient i are compatible is not considered. In addition, the directed and bipartite
intersection graph literature has focused on the case that t = 0 (in our terminology). To the best of
our knowledge, the work in this chapter is the first treatment p-intersection digraphs, and certainly
their first real-world application.

4.2.1 Existence of small representations
It is natural to ask for what values of t and k can we select vertices with bit vectors di and pi of
length k such that f tthresh can create any graph of a specific size?

Formally, we say that G is (k, t)-representable (by feasibility function f tthresh) if, for all i ∈ V
there exist di,pi ∈ {0, 1}k such that for all j1 ∈ V , j2 ∈ V \ {j1}, (j1, j2) ∈ E if and only if
f tthresh(dj1 ,pj2) = 1.

It is known [89] that any graph can be represented as an intersection graph with k ≤ n2/4. In
contrast, the next theorem shows that, in our model, k ≤ n suffices to represent any graph. It is
akin to a result on the term rank of the adjacency matrix of G [170, Theorem 6.6].
Theorem 10. Let G = (V,E) be a digraph on n vertices. Let n1 be the number of vertices with
outgoing edges, Let n2 be the number of vertices with incoming edges, and n′ = min{n1 + 1, n2 +
1, n}. Then G can be (n′, 0)-represented.
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Proof. We first show that the graph can be (n1 + 1, 0)-represented. Assume without loss of gen-
erality that vertices 1, . . . , n1 have outgoing edges. We show how to set di,pi ∈ {0, 1}n1+1 for
each vertex i in V . To set the donor attributes, for each i ∈ [n1], let di be ei, the ith standard basis
vector, i.e., the vector of length n1 + 1 with a 1 in the ith coordinate and 0 everywhere else. For
i > n1, set di to be en1+1. For the patient attributes of vertex j ∈ [n], for each i ∈ [n] such that
(i, j) ∈ E, set pji = 0, and set pji = 1 otherwise. Note that if all the vertices have outgoing edges,
then n1 = n unit vectors suffice. A similar approach works to (min{n, n2 + 1}, 0)-represent G,
by using the n2 unit vectors as the patient vectors of those vertices with incoming edges, and (if
needed) one additional unit vector for any remaining vertices. In both of these cases, 〈di,pj〉 = 0
if and only if (i, j) ∈ E, which represents G by f 0

thresh.

In particular, Theorem 10 implies that any graph is (n, 0)-representable. The next theorem
shows a matching lower bound. The same construction and bound also hold if loops are consid-
ered [194].
Theorem 11. For any n ≥ 3, there exists a graph on n vertices that is not (k, 0)-representable for
all k < n.

Proof. Define G to be the digraph on n vertices, V = [n], with an edge from vertex i, for each
i ∈ V , to every vertex except i− 1 (and itself), where vertex n is also referred to as vertex 0.

Assume that G is (k, 0)-representable, and consider vertex 1. Since (1, n) /∈ E, and (i, n) ∈ E
for all i /∈ {1, n}, there exists a conflict bit q1 ∈ Qd(1) ∩ Qp(n) such that q1 /∈ Qp(V \ {1, n}).
More generally, there exists such a conflict bit qi for all i ∈ V .

We claim that these conflict bits are all unique, which directly implies that k ≥ n. Indeed,
otherwise we can assume that q1 = qi for some i 6= 1 (without loss of generality, as the graph is
symmetric subject to cyclic permutations). But then (1, i− 1) and (i, n) do not appear as edges in
G, which is not true for any i ∈ V \ {1}.

More generally, it is easy to see that any graph that is (k, 0)-representable is also (k + t, t)-
representable for any t ≥ 0. Indeed, simply take the (k, 0)-representation of the graph, and ap-
pend t ones to every vector. Together with Theorem 10, this shows that any graph is (n + t, t)-
representable. However, the lower bound given by Theorem 11 does not extend to t > 0. We con-
jecture that for any n and t there exists a graph that can only be (k, t)-represented with k = Ω(n)—
this remains an open question.

4.2.2 Computational issues
Given any real compatibility graph with n vertices, we know by Theorem 10 that we can (k, 0)-
represent that graph for k = n. But, in practice, how large of a k do we actually need?

Various problems related to intersection graphs are NP-complete for general graphs [137, 170],
but we work in a setting with additional structure. And while we do not show that finding a
(k, t)-representation is NP-hard, we do show that a slightly harder problem, which we refer to as
(k, t)-REPRESENTATION WITH IGNORED EDGES, is NP-hard. Given an input of a directed graph
G = (V,E), a subset F of

(
V
2

)
, and integers k ≥ 1 and t ≥ 0, this problem asks whether there exist
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bit vectors di and pi of length k for each i ∈ V such that for any (i, j) ∈ F , we have (i, j) ∈ E if
and only if 〈di,pj〉 ≤ t.

Theorem 12. The (k, t)-REPRESENTATION WITH IGNORED EDGES problem is NP-complete.

The theorem’s nontrivial proof is given in its entirety in Appendix B. Here we give a proof
sketch. One major idea is the construction of a bit-grounding gadget Gk—a subgraph where the
bits are set uniquely (up to permutations) in any valid representation, and can be used to set the bits
in other vertices. The gadget has

(
k
2

)
vertices; we prove that there is a unique (up to permutations)

(k, 1)-representation of Gk, where each donor vector has a unique pair of ones, and similarly for
each patient vector. Figure B.1 shows G4.

Then, we prove NP-hardness by reduction from 3SAT. In the constructed instance of our prob-
lem, we set the threshold to 1. The crux of the reduction is to add a vertex for each clause in the
given 3SAT formula, where in the patient vector, the bit corresponding to each literal in the clause
is set to 1. This can be done by connecting the vertex to the bit-grounding gadget. Moreover, there
is a special vertex that does not have outgoing edges to any of the clause vertices. This means that
it must have a 1 in a position that corresponds to one of the literals in each clause. A different
part of the construction ensures that there is at most a single 1 in the two positions corresponding
to a variable and its negation. Therefore, a valid assignment of the donor bits corresponds to a
satisfying assignment for the 3SAT formula.

1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure 4.1: Gadget G4 with a subset of non-edges shown; all edges between circle vertices (those
in G2

4) are also not in E.
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4.3 Computing small representations of real kidney exchange
compatibility graphs

In this section, we test our hypothesis that real compatibility graphs can be represented by a sub-
stantially smaller number of attributes than required by the worst-case theoretical results of Sec-
tion 4.2. We begin by presenting general mathematical programming techniques to determine,
given k, t ∈ Z, whether a specific graph G = (V,E) is (k, t)-representable. We then show on
real and generated compatibility graphs from the UNOS US-wide kidney exchange that small k
suffices for (k, 0)-representation, and conclude by exploring the allowance of greater thresholds t
on match size. We find even small thresholds t > 0 result in substantial societal gain.2

4.3.1 Mathematical programming formulations

Implementation of f tthresh can be written succinctly as a quadratically-constrained discrete feasibil-
ity program (QCP) with 2k|V | binary decision variables, given as M1 below.

〈di,pj〉 ≤ t ∀(vi, vj) ∈ E
〈di,pj〉 ≥ (t+ 1) ∀(vi, vj) 6∈ E
di,pi ∈ {0, 1}k ∀vi ∈ V

(M1)

The constraint matrix for this program is not positive semi-definite, and thus the problem is
not convex. Exploratory use of heuristic search via state-of-the-art integer nonlinear solvers [46]
resulted in poor performance (in terms of runtime and solution quality) on even small graphs. With
that in mind, and motivated by the presence of substantially more mature integer linear program
(ILP) solvers, we linearize M1, presented as M2 below.

min
∑

vi∈V
∑

vj 6=vi∈V ξij
s.t. dqi ≥ cqij ∧ pqj ≥ cqij ∀vi 6= vj ∈ V, q ∈ [k]

dqi + pqj ≤ 1 + cqij ∀vi 6= vj ∈ V, q ∈ [k]∑
q c

q
ij ≤ t+ (k − t)ξij ∀(vi, vj) ∈ E∑
q c

q
ij ≥ (t+ 1)ξij ∀(vi, vj) ∈ E∑

q c
q
ij ≥ t+ 1− kξij ∀(vi, vj) 6∈ E∑

q c
q
ij ≤ k − (k − t)ξij ∀(vi, vj) 6∈ E

dqi , p
q
i ∈ {0, 1} ∀vi ∈ V, q ∈ [k]

cqij, ξij ∈ {0, 1} ∀vi 6= vj ∈ V, q ∈ [k]

(M2)

M2 generalizes M1; while M1 searches for a feasible solution to the (k, t)-representation prob-
lem, M2 searches for the “best” (possibly partially-incorrect) solution by minimizing the total
number of edges that exist in the solution but not in the base graph G, or do not exist in the solu-
tion but do in G. This flexibility may be desirable in practice to strike a tradeoff between small k
and accuracy of representation.

2All code for this section can be found at https://github.com/JohnDickerson/KidneyExchange.
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Interestingly, neither the fully general ILP nor its (smaller) instantiations for the special cases of
feasibility and/or threshold t = 0 were solvable by a leading commercial ILP solver [118] within
12 hours for even small graphs, primarily due to the model’s loose LP relaxation. Indeed, the
model we are solving is inherently logical, which is known to cause such problems in traditional
mathematical programming [109]. With that in mind, we note that the special case of t = 0 can be
represented compactly as a satisfiability (SAT) problem in conjunctive normal form, given below
as M3. ∧

q∈[k]

(¬dqi ∨ ¬pqj) ∀(vi, vj) ∈ E

(z1
ij ∨ z2

ij ∨ . . . ∨ zkij) ∧∧
q∈[k]

[
(¬zqij ∨ dqi ) ∧ (¬zqij ∨ pqj)

] ∀(vi, vj) 6∈ E
(M3)

This formulation maintains two sets of clauses: the first set enforces no bit-wise conflicts for
edges in the underlying graph, while the second set enforces at least one conflict via k auxiliary
variables z·ij for each possible edge (vi, vj) 6∈ E. M3 was amenable to parallel SAT solving [39].
Next, we present results on real graphs using this formulation.

4.3.2 (k, 0)-representations of real kidney exchange graphs
Can real kidney exchange graphs be represented by a small number of attributes? To answer that
question, we begin by testing on real match run data from the first two years of the United Network
for Organ Sharing (UNOS) kidney exchange. We translate each compatibility graph into a CNF-
SAT formulation according to M3, and feed that into a SAT solver [39] with access to 16GB of
RAM, 4 cores, and 60 minutes of wall time. (Timeouts are counted—conservatively against our
chapter’s qualitative message—as negative answers.)

Figure 4.2 shows a classical phase transition from unsatisfiability to satisfiability as k increases
as a fraction of graph size, as well as an associated substantial increase in computational intractabil-
ity centered around that phase transition. This phenomenon is common to many central problems
in artificial intelligence [59, 108, 218]. Indeed, we see that substantially fewer than |V | attributes
are required to represent real graphs; compare with the lower bound of Theorem 11.

Figure 4.3 explores the minimum k required to represent each graph as a function of |V |,
compared against the theoretical upper bound of k = |V |. The shaded area represents those values
of k where the SAT solver timed out; thus, the reported values of k are a conservative upper bound
on the required minimum, which is still substantially lower than |V |.

4.3.3 Thresholding effects on matching size
One motivation of this work is to provide a principled basis for optimally “flipping bits” of partici-
pants (via, e.g., immunosuppresion) in fielded kidney exchanges, in the hope that additional edges
in the compatibility graph will result in gains in the final algorithmic matchings. We now explore
this line of reasoning—that is, increasing the t in f tthresh instead of the k, which is now endogenous
to the underlying model—on realistic generated UNOS graphs of varying sizes.
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Figure 4.2: Classical hardness spike near the phase transition for (k, 0)-representation on real
UNOS compatibility graphs.

Figure 4.4 shows the effect on the percentage of patient-donor pairs matched by 2- and 3-
cycles as a global threshold t is raised incrementally from t = 0 (the current status quo) to t = 5.
Intuitively, larger compatibility graphs result in a higher fraction of pairs being matched; however,
a complementary approach—making the graph denser via even small increases in t—also results
in tremendous efficiency gains of 3–4x (depending on |V |) over the baseline for t = 1, and quickly
increasing to all pairs being matched by t = 5.

We note that any optimal matching found after increasing a global threshold t could also be
created by paying to change at most t bits per vertex in a graph; however, the practical selection
of the minimum-sized set of at most t bits per vertex such that the size of the resulting optimal
matching is equal to that found under the global threshold of t is a difficult two-stage problem and
is left as future research. The large efficiency gains realized by moving from f 0

thresh to even f 1
thresh

motivate this direction of research.

4.4 Conclusions & future research directions

Motivated by the increasing size of real-world kidney exchanges, in this chapter, we presented a
compact approach to modeling kidney exchange compatibility graphs. Our approach is intimately
connected to classical intersection graph theory, and can be viewed as the first exploration and
practical application of p-intersection digraphs. We gave necessary and sufficient conditions for
losslessly shrinking the representation of an arbitrary compatibility graph in this model. Real
compatibility graphs, however, are not arbitrary, and are created from characteristics of the patients
and donors; using real data from the UNOS US-wide kidney exchange, we showed that using only

66



40 60 80 100 120 140 160
|V |

0

20

40

60

80

100

120

140

160

k

Theoretical bound
Proved SAT
Proved UNSAT
Unknown

Figure 4.3: Comparison of number of bits (y-axis) required to (k, 0)-represent real UNOS com-
patibility graphs of varying sizes (x-axis). The theoretical bound of k = |V | is shown
in red; it is substantially higher than the conservative upper bound of k solved by our
SAT solver (upper dotted line).

a small number of attributes suffices to represent real graphs. This observation is of potential
practical importance; if all the real graphs can be represented by a constant number of attributes,
then central NP-hard problems in general kidney exchange are solvable in polynomial time.

The work in this chapter is still early stage, and is not yet ready to be deployed. For instance,
while Algorithm 3 runs in polynomial time, the order of that bounding polynomial is clearly quite
large. Furthermore, our exact methods for computing (k, t)-representations are still not scalable;
progress in that direction would allow us to shrink the exponent in that polynomial. Yet, we are
excited: an alternate representation for kidney exchange, such that the central problem (that of
finding the best disjoint cycle and chain packing) is theoretically easier than it is in the status
quo model, may allow us to more tractably approach problems in kidney exchange that are as-
yet unsolved—and thus not fielded. One of these is the optimal flipping of attributes—in kidney
exchange, via immunosuppression—at some cost, either in a static (as we briefly discussed in
Section 4.1.3) or dynamic model (left as future work). This is already being discussed at a number
of medical centers; a tractable computational approach to supporting that medical decision will be
of great practical aid.

This chapter only addresses the representation of static compatibility graphs; in reality, ex-
changes are dynamic, with patients and donors arriving and departing over time [213]; we dis-
cuss this further in Chapter 6. Extending the proposed method to cover time-evolving graphs
is of independent theoretical interest, but may also be useful in speeding up the dynamic clear-
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Figure 4.4: Pairs matched (%, y-axis) in generated UNOS graphs of varying sizes (lines), as t
increases (x-axis).

ing problem [14, 27, 70, 73, 98]. Better exact and approximate methods for computing (k, t)-
representations of graphs would likely be a prerequisite for that line of research. Furthermore,
adaptation of the theoretical results to alternate organ models like lung [90, 149], liver [91], and
multi-organ [72] exchange (discussed in Chapter 9) would be of practical use.
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PART II:

Managing Uncertainty in Dynamic Matching
Environments
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In real-world applications of Linear Program-
ming, one cannot ignore the possibility that
a small uncertainty in the data can make the
usual optimal solution completely meaning-
less from a practical viewpoint.
– Aharon Ben-Tal & Arkadi Nemirovski

5
Optimization in the face of edge failure

This part of the thesis addresses the management of both short-term and long-term uncertainty in
kidney exchange. In this chapter, we propose quantitative approaches to one of the main prob-
lems kidney exchanges face today: “last-minute" failures. We mean failures before the transplant
surgery takes place, not failures during or after it. Amazingly, most planned matches fail to go
to transplant! In the case of the UNOS exchange, roughly 90% of matches fail [131], and most
matches fail at other kidney exchanges as well [e.g., 22, 48, 143]. There are myriad reasons for
these failures, as we will detail in this chapter. We also address last-minute failures, albeit from a
complementary point of view where information is gathered before the matching algorithm is run
at all. Finally, Chapter 6 addresses longer-term uncertainty in kidney exchange, where vertices and
edges arrive and depart over multiple matching periods; we will refer to that as “dynamic” kidney
exchange.

To address last-minute failures, in this chapter we propose to move away from the determinis-
tic clearing model used by kidney exchanges today, and discussed extensively in Chapter 3, into a
probabilistic model where the input includes failure probabilities on possible planned transplants,
and the output is a transplant plan with maximum expected value. The probabilistic approach has
recently also been suggested by others [e.g., 61, 147]. They used a general-purpose integer pro-
gram solver (Gurobi) to solve their optimization models. We show that general-purpose solvers do
not scale to today’s real kidney exchange sizes. Then we develop a custom branch-and-price-based
integer program solver specifically for the probabilistic clearing problem, and show that it scales
dramatically better. We also present new theoretical and experimental results that show that the
probabilistic approach yields significantly better matching than the current deterministic approach.
We conduct experiments both in the static and dynamic setting with (to our knowledge) the most
realistic instance generators—one due to [191] and one that we created that uses real data from
all the UNOS match runs conducted so far—and simulator to date. Perhaps most interestingly, we
show that, even when higher edge failure rates are correlated with other marginalizing character-
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istics of a vertex, failure-aware matching can simultaneously increase both the overall number of
transplants and the number of transplants to these marginalized patients—in both the static and
dynamic settings, on real and simulated data.

Related Publications

An early version of some of the work in this chapter appeared at EC-13, and at medical con-
ferences like ATC-13 and WTC-14, with an extensively augmented version under revision
at a journal. It is a collaboration between Dickerson, Procaccia, and Sandholm [75, 76]. The
work in Section 5.10 appeared at EC-15, and is a collaboration between Blum, Dickerson,
Haghtalab, Procaccia, Sandholm, and Sharma [44].

5.1 Related work covering uncertainty in kidney exchange
We begin by overviewing related work in managing both short- and long-term uncertainty in kidney
exchange. We address long-term dynamism as “dynamic kidney exchange” in Chapter 6, while this
chapter and the next address short-term uncertainty.

Short-term uncertainty (to be addressed in this chapter). In the stochastic matching problem,
we are given an undirected graph G = (V,E), where we do not know which edges in E actually
exist. Rather, for each edge e ∈ E, we are given an existence probability pe. Of interest are
algorithms that first query some subset of edges to find the ones that exist, and based on these
queries, produce a matching that is as large as possible. The stochastic matching problem is a
special case of stochastic k-set packing, where each set exists only with some probability, and the
problem is to find a packing of maximum size of those sets that do exist. This problem is addressed
in Section 5.10.

Prior work has considered multiple variants of stochastic matching. A popular variant is the
query-commit problem, where the algorithm is forced to add any queried edge to the matching
if the edge is found to exist. Considering approximation ratios with respect to the omniscient
optimum, Goel and Tripathi [101] establish an upper bound of 0.7916 for graphs in which no
information is available about the edges, while Costello et al. [64] establish a lower bound of 0.573
and an upper bound of 0.898 for graphs in which each edge e exists with a given probability pe.
Similarly to the work on which Section 5.10 is based, these approximation ratios are with respect
to the omniscient optimum, but the informational disadvantage of the algorithm stems purely from
the query-commit restriction.

Within the query-commit setting, another thread of work [7, 29, 60] imposes an additional
per-vertex budget constraint where the algorithm is not allowed to query more than a specified
number, bv, of edges incident to vertex v. With this additional constraint, the benchmark that
the algorithm is compared to switches from the omniscient optimum to the constrained optimum,
i.e., the performance of the best decision tree that obeys the per-vertex budget constraints and the
query-commit restriction. In other words, the algorithm’s disadvantage compared to the benchmark
is only that it is constrained to run in polynomial time. Here, again, the best known approximation
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ratios are constant. A generalization of these results to packing problems has been studied by Gupta
and Nagarajan [103].

Blum et al. [43] consider a stochastic matching setting without the query-commit constraint.
They set the per-vertex budget to exactly 2, and ask which subset of edges is queried by the optimal
collection of queries subject to this constraint. They prove structural results about the optimal
solution, which allow them to show that finding the optimal subset of edges to query is NP-hard.
In addition, they give a polynomial-time algorithm that finds an almost optimal solution on a class
of random graphs (inspired by kidney exchange settings). Crucially, the benchmark of Blum et al.
[43] is also constrained to two queries per vertex. Section 5.10 will present recent work with Blum
et al. [44] that looks at a generalization of this problem.

This chapter addresses a complementary problem, where we have knowledge of the probability
of existence for each edge, but cannot test edges before running the match. Instead, our problem
is to select a set of edges that maximizes the expected utility from the subsequent matching (after
coins are flipped to determine if edges exist). Subsequent to the initial posting of the work in this
chapter, Anderson [14] studied the problem through the lens of two-stage stochastic optimization
(relevent work was also published by Anderson et al. [16] in an online appendix to that full publi-
cation). That approach is promising but runs into substantial scalability issues. As-yet-unpublished
work due to Glorie et al. [98] approaches the problem from a robust optimization point of view, and
considers post-match “failure” of both vertices and edges. Similarly, recent work by Klimentova
et al. [135] and subsequently by Pedroso and Ikeda [173] approaches the problem in a similar set-
ting, that of stochastic matching with within-structure (i.e., cycles and chains) recourse; critically,
they also provide effective search techniques to make the inclusion of recourse more scalable. Fi-
nally, in Chapter 8, we will build on techniques from this chapter, Chapter 6, and Chapter 7 to learn
using data how to match in a realistic model of dynamic kidney exchange.

Long-term dynamism (to be addressed in Chapter 6). There has been prior work on the dy-
namics of kidney exchange, but that work has largely focused on the dynamics driven by pairs
and altruists arriving into, and departing from, the exchange rather than on the dynamics driven by
failures [9, 15, 24, 26, 213]. We make a distinction here between dynamic exchange and work in
the (re)design of deceased-donor online allocation matching policies [37, 202]; we overview this
work in greater depth in Chapter 6.

On the theory side, Zenios [223] and Ünver [213] provided initial analysis of dynamic kidney
exchange; Ünver [213] shows that greedy matching is optimal in a simplified model, which, for
example, does not include transplant chains. Ashlagi et al. [24] work in a model with chains
and two types of vertices and characterize different matching policies based on batching policies,
where vertices of a certain type build up in the pool over time and eventually trigger a myopic
match. Anderson et al. [15] work in a similar model and show that greedy matching is generally
optimal with respect to minimizing average waiting time in the pool and does not marginalize hard-
to-match pairs. However, vertices in their model do not disappear for reasons other than getting
matched, which is not realistic, as we discuss in Section 5.8. Akbarpour et al. [9] also analyze a
dynamic pool—consisting of only 2-cycles and no chains, but with vertices that expire over time—
in the context of a utility function that reflects expected waiting time, and find that sometimes it
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is better to batch vertices before matching. Recent work by Ashlagi et al. [26] also investigates
building thickness in a dynamic random graph model.

On the practical side, Awasthi and Sandholm [27] use trajectory-based online optimization
methods that sample potential future states to inform the matching algorithm what the next action
should be. They explore different matching algorithms and batch sizes, and find that non-greedy
matching results in a long-term lift in the number of matches. Their method does not scale to very
long futures or very large pool sizes. In Chapter 6, we will present a more scalable approach that
learns the potentials of elements of the current input compatibility graph offline (e.g., potentials
of pairs based on features such as donor and patient blood types), translates these to edge weights,
and performs a computationally feasible weighted batch matching. None of these papers consider
post-algorithmic match failures in their theoretical analysis or in the optimization problem, as we
do in this chapter and the next.

As discussed in Chapters 1 and 2, analysis of kidney exchange using random graph models
is nowadays the typical method for providing theoretical guidance. Indeed, some of the dynamic
kidney exchange papers cited above work in dynamic random graph models [9, 15, 17, 24, 213].
In this chapter, we work with the model of Ashlagi et al. [23]; this is a “sparse” model, as opposed
to the related “dense” random models like those of Ashlagi and Roth [19] and Toulis and Parkes
[209], which we used in Chapter 2. Next, we discuss the model used in this chapter for “failure-
aware” kidney exchange, where post-match edge failure is considered directly in the optimization
problem—but edges cannot be queried before the algorithmic matching engine is run.

5.2 Modeling expected utility by considering edge, cycle, and
(partial or complete) chain failure

In this section, we augment the standard model of kidney exchange to include the probability of
edge, cycle, and chain failure. We formalize the discounted utility of an edge, cycle, and chain,
which represents the expected number of actual transplants (not just potential transplants). This
is used to define the discounted utility of an overall matching, which more accurately reflects its
value relative to other matchings.

We begin with the same model of deterministic kidney exchange used in the prior chapters,
which instantiates a directed compatibility graph G(n) by constructing one vertex for each patient-
donor pair. An edge e from vi to vj is added if the patient in vj wants the donor kidney (or item,
in general) of vi. A donor is willing to give her kidney if and only if the patient in her vertex vi
receives a kidney. Edges e can have associated weights we. A matching M is then a collection of
disjoint cycles and chains in the graph G.

In the basic kidney exchange model, the weight wc of a cycle or chain c is the sum of its edge
weights, and the weight of a matching M is the sum of the weights of the cycles and chains in the
matching. The clearing problem is then to find a maximum (weighted) matching M ; we presented
the current fastest method for doing this in Chapter 3. In reality, not all of the recommended
matches proceed to transplantation, due to varying levels of sensitization between candidates and
donors in the pool (represented by a scalar factor called CPRA), illness, uncertainty in medical
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knowledge, or logistical problems. As such, the weight of a cycle or chain as the sum of its
constituent parts does not fully characterize its true worth.

Associate with each edge e = (vi, vj) in the graph G a value qe ∈ [0, 1] representing the
probability that, if algorithmically matched, the patient of vj would successfully receive a kidney
from vi’s donor. We will refer to qe as the success probability of the edge, and 1 − qe as the
failure probability of the edge. Using this notion of failure probability, we can define the expected
(failure-discounted) utility of chains and cycles.

Discounted utility of a cycle

For any transplant in a k-cycle to execute, each of the k transplants in that cycle must execute. Put
another way, if even one algorithmically matched transplant fails, the entire cycle fails. Thus, for
a k-cycle c, define the discounted utility u(c) of that cycle to be:

u(c) =

[∑
e∈c

we

]
·
[∏
e∈c

qe

]

That is, the utility of a cycle is the product of the sum of its constituent weights and the probability
of the cycle executing. The simplicity of this calculation is driven by the required atomicity of
cycle execution—a property that is not present when considering chains.

Discounted utility of a chain

While cycles must execute entirely or not at all, chains can execute incrementally. For example, a
3-chain c = (a, v1, v2, v3) starting at altruist a might result in one of four numbers of transplants:
• No transplants, if the edge (a, v1) fails
• A single transplant, if (a, v1) succeeds but (v1, v2) fails
• Two transplants, (a, v1) and (v1, v2) succeed but (v2, v3) fails
• Three transplants, if all edges in the chain represent successful transplants. (In this case,

the donor at v3 typically donates to the deceased donor waiting list, or stays in the pool as
a bridge donor. Whether or not this additional transplant is included in the optimization
process is decided by each individual kidney exchange program.)

In general, for a k-chain c = (v0, v1, . . . , vk), where v0 is an altruist, there are k possible
matches (and the final match to, e.g., a deceased donor waiting list candidate). Let qi be the
probability of edge ei = (vi, vi + 1) leading to a successful transplant. Here, we assume we = 1
for ease of exposition; in Section 5.5, we show that relaxing this assumption does not complicate
matters.

Then, the expected utility u(c) of the k-chain c is:

u(c) =

[
k−1∑
i=1

(1− qi)i
i−1∏
j=0

qj

]
+

[
k

k−1∏
i=0

qi

]
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The first portion above calculates the sum of expected utilities for the chain executing exactly
i = {1, . . . , k − 1} steps and then failing on the (i + 1)th step. The second portion is the utility
gained if the chain executes completely.

Discounted utility of a matching

The value of an individual cycle or chain hinges on the interdependencies between each specific
patient and potential donor, as was formalized above. However, two cycles or chains in the same
matching M fail or succeed independently. Thus, define the discounted utility of a matching M to
be:

u(M) =
∑
c∈M

u(c)

That is, the expected number of transplants resulting from a matching M is the sum of the
expected number of transplants from each of its constituent cycles and chains.

For a (possibly weighted) compatibility graph G = (V,E), letM represent the set of all legal
matchings induced by G. Then, given success probabilities qe,∀e ∈ E, the discounted clearing
problem is to find M∗ such that:

M∗ = arg max
M∈M

u(M)

The distinction between M∗ and any maximum (non-discounted) weighted matching M ′ is
important, as we show in the rest of this chapter—theoretically in Section 5.3, on real data from
the fielded UNOS kidney exchange in Section 5.4, and on simulated data in Sections 5.7 and 5.8.

5.3 Maximum cardinality matching is far from maximizing the
expected number of transplants

In this section, we prove a result regarding the (in)efficacy of maximum cardinality matching
in kidney exchange, when the probability of a match failure is taken into account. We show
that in pools containing equally sensitized patient-donor pairs (and not necessarily equally sen-
sitized altruistic donors), with high probability there exists a discounted matching that has linearly
higher utility than all maximum cardinality matchings. This theoretical result motivates the rest
of the chapter; since current fielded kidney exchanges perform maximum cardinality or maximum
weighted matching, many potential transplants may be left on the table as a consequence of not
considering match failures.
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5.3.1 Random graph model of sensitization

We work with (a special case of) the model of Ashlagi et al. [23] (§4.2), which is an adaptation
of the standard dense theoretical kidney exchange model (on which we built in, e.g., Chapter 2) to
pools with highly and non-highly sensitized patient-donor pairs.

The model works with random compatibility graphs with n + t(n) vertices, pertaining to n
incompatible patient-donor pairs (denoted by the set P ), and t(n) altruistic donors (denoted by the
set A) respectively. Edges between vertices represent not just blood-type compatibility, but also
immunological compatibility—the sensitization of the patient. Given a blood type-compatible
donor, let p denote the probability that an edge exists between a patient and that donor.

Given uniform sensitization p for each of the n patients in the pool, random graphs from this
model are equivalent to those of Erdős and Rényi (1960) with parameters n and p. In Section 5.3.2,
we use techniques from random graph analysis to prove that maximum cardinality matching in
highly sensitized pools (with altruists) does not optimize for expected number of actual transplants.

5.3.2 Maximum cardinality matching in highly sensitized pools

Let G(n, t(n), p) be a random graph with n patient-donor pairs, t(n) altruistic donors, and prob-
ability p = Θ(1/n) of incoming edges. Such a p represents highly-sensitized patients. Let q be
the probability of transplant success that we introduced, such that q is constant for each edge e.
Note that for a chain of length k, the probability that t < k matches execute is qt(1 − q), and the
probability that k matches execute is qk. There is no chain cap (although we could impose one,
which depends on q). Given a matching M , let uq(M) be its expected utility in our model, i.e.,
expected number of successful transplants. Denote the set of altruistic donors by A, and denote the
vertex pairs by P .

The proof of the following theorem builds on techniques used in the proof of Theorem 5.4 of
[23], but also requires several new ideas.
Theorem 13. For every constants q ∈ (0, 1) and α, β > 0, given a large random graphG(n, αn, β/n),
with high probability there exists a matchingM ′ such that for every maximum cardinality matching
M ,

uq(M
′) ≥ uq(M) + Ω(n).

Proof. We consider subgraphs that we call Y-gadgets, with the following structure. A Y-gadget
contains a path (u, v1, . . . , vk) such that u ∈ A and vi ∈ P for i = 1, . . . , k for a large enough
constant k, to be chosen later. Furthermore, there is another altruistic donor u′ ∈ A with two
outgoing edges, (u′, v3) and (u′, v′) for some v′ ∈ P . Finally, the edges described above are the
only edges incident on the vertices of the Y-gadget. See Figure 5.1a for an illustration.

We first claim that it is sufficient to demonstrate that with high probability the graph G(n, αn,
beta/n) contains cn Y-gadgets, for some constant c > 0. Indeed, because each Y-gadget is discon-
nected from the rest of the graph, a maximum cardinality matching M must match all the vertices
of the Y-gadget, via a k-chain and a 1-chain. Let MY be the restriction of M to the Y-gadget (see
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Figure 5.1: Illustration of a Y-gadget with k = 5. The vertices of A are white and the vertices of
P are gray. Clearly |MY | > |M ′Y |, but (using Equation 5.1) uq(M ′Y ) − uq(MY ) >
q2 − 6q4; this difference is positive for q < 0.41, which is a realistic value.

Figure 5.1b). It holds that

uq(MY ) = (1− q)
k−1∑
i=1

iqi + kqk + q.

We next construct a matchingM ′
Y for the Y-gadget, via two chains: (u, v1, v2) and (u′, v3, . . . , vk),

i.e., vertex v′ remains unmatched (see Figure 5.1c). We obtain

uq(M
′
Y ) = (1− q)

k−3∑
i=1

iqi + (k − 2)qk−2 + q(1− q) + 2q2.

Therefore,

uq(M
′
Y )− uq(MY ) = q2 + (k − 2)qk−1 − (k − 1)(1− q)qk−1 − kqk > q2 − (k + 1)qk−1. (5.1)

Clearly if k is a sufficiently large constant, q2/2 > (k + 1)qk−1, and hence the right hand side
of Equation (5.1) is at least q2/2, which is a constant. By applying this argument to each of the cn
Y-gadgets we obtain a matching M ′ such that uq(M ′)− uq(M) > (q2/2)cn = Ω(n).

It remains to establish the existence of Ω(n) Y-gadgets. Consider a random undirected graph
with n+αn vertices. The edge probabilities are p = 2(β/n)(1−β/n)+(β/n)2, i.e., the probability
of at least one edge existing between a pair of vertices in P . A standard result on random graphs
(see, e.g., [120]) states that for every graph X of constant size, with high probability we can find
Ω(n) subgraphs that are isomorphic to X and isolated from the rest of the graph. In particular,
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with high probability our random graph has Ω(n) subgraphs that are isomorphic to the undirected,
unlabeled version of a Y-gadget.

There are two independent issues we need to address. First, these subgraphs are unlabeled, i.e.,
we do not know which vertices are in A, and which are in P . Second, the graph is undirected, and
may have some illegal edges between pairs of vertices in A. We presently address the first issue.
We randomly label the vertices asA or P , keeping in mind that ultimately it must hold that |P | = n
and |A| = αn. Assume without loss of generality that α ≤ 1. Consider an arbitrary vertex in one
of the special subgraphs. This vertex is in P with probability 1/(1 + α), and in A with probability
α/(1 + α). The label of the second vertex depends on the first. For example, if the first is in P
then the probabilities are (1− 1/n)/(1− 1/n+ α) for P and α/(1− 1/n+ α) for A.

We sequentially label the vertices of min{cn, (αn)/(10k)} gadgets, where cn is the number of
Y-gadgets, taking into account the previous labels we observed. (Note that we are labeling a linear
number of Y-gadgets, since k is constant.) Because we observed far fewer than αn/2 labels, in
each trial the probability of each of the two labels, conditioned on the previous labels, is at least
(α/2)/(1+α/2), which is a constant. This lower bound allows us to treat the labels as independent
Bernoulli trials. Thus, the probability that a gadget has exactly the right labels (two A labels in
the correct places, and P labels everywhere else) is at least r = ((α/2)/(1 + α/2))k+3, which is a
constant. The expected number of correctly labeled gadgets is therefore at least r ·min

{
cn, αn

10k

}
,

i.e., Ω(n). Using Chernoff’s inequality, with high probability we can find Ω(n) correctly labeled
gadgets.

We next address the second issue, that is, the directions of the edges. For each of the Ω(n)
correctly labeled gadgets, each undirected edge corresponds to a directed edge in one of the two
direction with probability

β
n

(
1− β

n

)
2β
n

(
1− β

n

)
+
(
β
n

)2 ≈
1

2
,

and corresponds to edges in both directions with the complement (small) probability. The
probability that each edge in a Y-gadget corresponds to a single edge in the correct direction is
therefore constant, and using similar arguments as above, with high probability a constant fraction
of the correctly labeled gadgets will have correctly oriented edges.

Finally, note that the labels of the vertices and the directions of the edges in each of the initially
unlabeled, undirected Y-gadgets are independently assigned. Given one of these initial (linearly
many) Y-gadgets, we have shown that the probability of that Y-gadget being labeled correctly is a
constant. Similarly, we have shown that the probability of that Y-gadget having all edges in exactly
the right orientations is a constant. Thus, since these events are independent, the probability that
both events occur is a constant, and we have a constant fraction of the linearly many initial Y-
gadgets with the correct orientation of edges and labels of nodes.

A possible concern at this point is that there are no edges between pairs of vertices in A, and
the probability of edges (u, v) where u ∈ A and v ∈ P is smaller than p. We first note that,
since we are looking at a denser graph, isolation is harder to achieve. Moreover, since a Y-gadget
has no adjacent vertices in A, we discard any such Y-gadgets, so the increased probability of
edges between such pairs does not help us. Finally, for pairs (u, v) where u ∈ A and v ∈ P , the
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probability of an edge (u, v) existing is equal to the probability of an edge existing in the undirected
graph and the edge being in the right direction; Y-gadgets where the edge is in the wrong direction
are discarded.

Importantly, while the proof of Theorem 13 only explicitly discusses chains (in the construction
of the Y-gadgets), the optimal matching also contains cycles—they are just not the driving force
behind this result. In the next section, we provide experimental validation of this theoretical result
using real data from the UNOS nationwide kidney exchange.

5.4 Experiences from, and experiments on, the UNOS kidney
exchange

Over the past decade, fielded kidney exchanges have begun appearing in the United States. This
section draws on data from the United Network for Organ Sharing (UNOS) exchange through July
2015, except when explicitly written otherwise. At that point, it matched on a biweekly basis,
and interacts nationwide with 143 transplant centers. In this section, we present experimental
results comparing discounted and non-discounted matching on real data from this exchange, using
multiple estimated distributions over edge failure probabilities.

5.4.1 Estimating edge failure probabilities

The UNOS kidney exchange computes a maximum weighted matching at each clearing. The
function used to assign weights to edges was determined by a committee of medical professionals,
and takes into account such factors as donor and patient location, health, and CPRA score. (We
will discuss new approaches to setting these weights in Chapters 6 and 8.) We have access to this
data, and use it in our experiments.

However, medical knowledge is incomplete; as such, we cannot determine the exact probability
q that a potential transplant will succeed. For our experiments, we use multiple distributions of
edge failure probabilities.

First, we draw from all the data from the match runs conducted in the UNOS exchange to date.
Figure 5.2 displays success and failure results for recommended matches from the UNOS kidney
exchange for matches between October 27, 2010 and November 12, 2012.1 Approximately 7% of
matches resulted in a transplant, while approximately 93% failed. Of the 93% that failed:
• 53% (49% of all matches) were not the reason for failure. The cycle or chain in which the

potential transplant was involved failed entirely (in the case of cycles) or before the patient’s
turn (in the case of chains).

• 47% (44% of all matches) were the reason for failure.

1The aggregate match data from which we infer crossmatch failure probabilities is available in a report from
the [131] and summarized by [143]. Updated aggregate data is now available in a report from the [132]; this most
recent data was not incorporated into our experiments, but is very similar to that which was.
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Successful Transplant
(7%, Negative CM)

Failed Transplant
(93%)

Failed: Not reason for failure
(49%, Unknown CM)

Failed: Reason for failure
(44%)

Failed: Tissue type mismatch
(16%, Positive CM)

Failed: Other
(28%, Unknown CM)

Figure 5.2: Determining the probability of a match failing is difficult because many potential
patient-donor pairs are not crossmatched. Of the aggregate UNOS data, we are only
sure that the 7% who successfully received a transplant and the 16% who explicitly
failed due to a positive crossmatch were tested.

36% of these (about 16% of the total) failed due to a positive crossmatch, signifying
blood-type incompatibility (beyond the ABO model).

64% failed due to a variety of other reasons, as discussed below.

Triggering a cycle or chain failure can occur for a variety of reasons, including:
• Receiving a transplant from the deceased donor waiting list
• Receiving a transplant from another exchange
• Patient or donor becoming too ill for surgery or expiring
• An altruistic patient “running out of patience” and donating elsewhere, or not at all
• A donor in a chain reneging (i.e., backing out after his patient received a kidney)
• Pregnancy or sickness changing a patient or donor’s antigen incompatibilities
In these cases, a patient and potential donor may or may not have received a crossmatch test.

In fact, the only sureties regarding crossmatches to be derived from the data above are that 7%
crossmatched negative (those who received transplants) and 16% crossmatched positive. Thus,
roughly 7/(16 + 7) ≈ 30% of these crossmatches came back negative. We use this value for our
first set of simulations, setting the probability of a crossmatch failing to be a constant 70%. This
70% expected failure is optimistic (i.e., too low) in that it ignores the myriad other reasons for
match failures. UNOS currently performs batch myopic matches, so—for these simulations—we
only simulated crossmatch failures. We take additional failure reasons into account in Sections 5.8
and 5.9.

Second, in the UNOS exchange and in others (see., e.g., [23]), patients tend to have either very
high or very low sensitization, i.e., there is a very low or very high probability that their blood
will pass a crossmatch test with a random organ. For highly-sensitized patients, finding a kidney
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is very difficult. Drawing from this and the 70% failure rate derived above, our second set of
experiments samples randomly from a bimodal distribution: 25% of edges have a low failure rate
(1 − qL) ∈ U [0.0, 0.2], while 75% have a high failure rate (1 − qH) ∈ U [0.8, 1.0], such that the
overall expected failure rate is 70%. Third, we systematically vary the variance of the underlying
failure probability distribution and explore its effect on the behavior of both matching methods.

5.4.2 UNOS results: Discounted matching is better in practice
We now simulate probabilistic matching on real data from UNOS. We performed simulations using
both the constant 70% failure rate and the bimodal failure rate. On the former, we can compute an
exact expected value for the discounted matching on each real UNOS matching. On the latter, we
simulated failure probabilities at least 100 times for each UNOS match run.
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Figure 5.3: Comparison of the expected number of transplants resulting from the maximum
weighted matching and discounted weighted matching methods, on 161 UNOS match
runs between October 2010 and November 2014, with a constant edge success proba-
bility.

Figures 5.3 and 5.4 show that, in both cases, taking failure probabilities into account results
in significantly more expected transplants.In the constant probability case, discounted matching
yields many more matches than (or in some cases the same number as) the status quo of maximum
weighted matching. (In cases where the expected utility of both matching methods was equal, the
matchings with equivalent compositions (i.e., same number of 2-cycles, 3-cycles, and k-chains)
were returned by both solvers.) The discounted matching performed better when the maximum
weighted matching included long chains, a frequent phenomenon in the UNOS pool (and other
fielded exchange pools in the US and abroad), as discussed by [74], [23], and [100].
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Figure 5.4: Comparison of the expected number of transplants resulting from the maximum
weighted matching and discounted weighted matching methods, on 161 UNOS match
runs between October 2010 and November 2014, with bimodal edge success probabil-
ities (some very high, some very low).

In the bimodal case, discounted matching shines, often beating the maximum cardinality match-
ing by a factor between 2 and 5, and again never doing worse in expectation. Here, the discounted
matching algorithm is able to pick cycles and chains that contain edges with very high probabilities
of success over those with very low probabilities of success.

Table 5.1 gives aggregate match data for both the current UNOS solver and our proposed
method on both the constant and bimodal underlying failure rate probability distributions. Across
all UNOS match runs using a constant edge failure probability of 0.7, the failure-aware method
results in an expected 0.15 more transplants per match run over the maximum weighted matching
solver. Using the bimodal distribution, the failure-aware method returns an expected additional
1.38 transplants per match run. Table 5.1 gives the results of both a paired t-test and a Wilcoxon
signed-rank test (a non-parameteric version of the t-test); we ran both on the expected number of
transplants from the 161 paired deterministic and failure-aware optimal matchings for each of the
UNOS match runs to test if their population means were different. Clearly, the gains seen under
both failure distributions are statistically significant.

5.4.3 Distributional diversity begets greater gains
Section 5.4.2 showed experimentally that (i) a statistically significant gain in expected matches
occurs under the consideration of match failure and (ii) a bimodal underlying failure probability
distribution resulted in more of a gain than a constant underlying failure probability distribution.
We delve deeper into this insight in this section.
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Current Ours t-test Wilcoxon Signed-rank
Distribution Average St. Dev. Average St. Dev t-statistic p-value Siegel’s T p-value

Constant 0.52 0.43 0.67 0.50 10.95 < 10−10 0 < 10−10

Bimodal 0.51 0.43 1.89 1.79 11.85 < 10−10 0 < 10−10

Table 5.1: Distributional difference between maximum weighted matching and failure-aware
matching on real UNOS data.
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Figure 5.5: Aggregate additional transplants over all UNOS match runs through November 2013,
for edge failure probabilities drawn randomly from N (µ = 0.7, σ ∈ {0.1, 0.2}). The
leftmost point “σ = 0.0” represents a constant failure rate of 70%.

We now investigate the effect that higher variance in edge failure probabilities has on the
overall value of both matching methods. For this section’s experiments, we sample from a normal
distribution with mean of 0.7 and varying standard deviation. If a sample returns an illegal failure
probability p (i.e., p < 0 or p > 1), we resample from the underlying distribution. In this way, we
expand the underlying distribution from a constant 0.7 toward a more uniform randomness.

Figure 5.5 shows the aggregate number of expected transplants (summed over all UNOS match
runs through November 2013) for varying levels of variance σ2, given a standard deviation of σ,
in the underlying distribution from which failure probabilities are sampled. For convenience, we
label the constant probability of 0.7 case as “σ = 0.0”. Positive crossmatches are simulated based
on an edge’s sampled probability of failure.

In the constant probability case, failure-aware matching results in an average expected 18.4%
increase in expected transplants. As the standard deviation of the underlying distribution increases,
so too does this expected boost: from 18.8% to 28.5% respectively, for σ = 0.10 and σ = 0.20,
respectively. An increase in variance also results in the maximum cardinality matching method
frequently missing the highest utility match by a large margin. For instance, the 80th and 95th
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percentiles increase from an additional 59.8% and 154.2% in the constant probability case to 94.6%
and 462.9% when σ = 0.20. Higher variance results in more opportunities for the maximum
cardinality matching to contain many matches with an extremely low probability of execution
(e.g., a 3-cycle with edges that are likely to fail instead of a smaller 2-cycle with more reliable
edges).

Next, in Section 5.5, we construct a solver that can optimally solve capable of clearing large
exchanges than those currently available at UNOS.

5.5 Building a scalable solver to clear failure-aware exchanges

Current kidney exchange pools are small, containing at most a few hundred patients at a time.
However, as kidney exchange gains traction, these pools will grow. As discussed by Abraham
et al. [6], the estimated steady-state size of a US nationwide kidney exchange is 10,000 patients;
more recent estimates vary, but the prospect of international exchange [10] and multi-organ ex-
change [72] will result in large pools.

Clearing pools of this size is a computational challenge, as we motived in Chapter 3. Abraham
et al. [6] showed that the undiscounted clearing problem is NP-hard. Since the undiscounted
clearing problem is a special case of the discounted clearing problem—that is, it is the discounted
clearing problem with constant success probability q = 1.0—it follows that the discounted clearing
problem is also NP-hard.

Proposition 1. The discounted clearing problem is NP-hard.

In the current UNOS solver, chains are incorporated by adding from the end of each potential
chain a “dummy” edge of weight 0 to every vertex that represents an altruist. Chains are generated
in the same fashion as cycles, and look identical to cycles to the optimization algorithm—with
one caveat. Recall that chains need not be executed atomically, and thus, in practice, the cycle
cap of 3 is not applicable to chains. Due to the removal of this length restriction, this approach
does not scale even remotely to the nationwide level—failing in exchanges of sizes as low as 200
in the undiscounted case (as shown in Chapter 2). We showed in Chapter 3 that this scalability
issue can be solved via compact models like PIEF and HPIEF, or non-compact-but-amenable-to-
faster-pricing models like PICEF, for the deterministic case. Indeed, we also showed how to extend
PICEF to a failure-aware model with uniform failure probabilities. We relax that assumption to the
fully-general case now.

In this section, we augment the current UNOS solver to solve the discounted clearing problem
on exchanges with edge failure probabilities. We first show that a powerful tool used in the current
solver—the technique used to upper bound the objective value—is no longer useful. We show how
to adapt the current solver’s lower bounding technique to our model. We then significantly improve
the core of the solver, which performs column generation, to only consider cycles and chains that
are useful to the optimal discounted matching, and provide failure-aware heuristics for speeding
up the column generation process.
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5.5.1 Why we cannot use the current UNOS solver

In integer programming, a tree search that branches on each integral decision variable is used to
search for an optimal solution. At each node, upper and lower bounds are computed to help prune
subtrees and speed up the overall search. In practice, these bounding techniques are critical to
proving optimality without exhaustively searching the space of all assignments.

Computing a good upper bound is hard

The current kidney exchange solver uses the cycle cover problem with no length cap as a heuristic
upper bound. This unrestricted clearing problem is solvable in polynomial time by encoding the
pool into a weighted bipartite graph and computing the maximum weighted perfect matching (see
reduction by [6]). This is useful in practice because the unrestricted bound often matches the
restricted (e.g., L ≤ 3) optimal objective value. Unfortunately, for the discounted version of this
problem, Proposition 2 shows that computing this bound is NP-hard.
Proposition 2. The unrestricted discounted maximum cycle cover problem is NP-hard.

Proof. We build on the proof of Theorem 1 from Abraham et al. [6], which shows that deciding if
G admits a perfect cycle cover containing cycles of length at most 3 is NP-complete. They reduce
from 3D-Matching. All the cycles in the constructed widgets in their proof are of length at least
3. Due to discounting, a perfect cover which uses only 3-cycles has higher utility than any other
cover, since each edge in a 3-cycle is worth more than a vertex in a k-cycle for k > 3 due to
discounting. The reduction of Abraham et al. [6] has the property that there is a perfect cover with
only 3-cycles if and only if there is a 3D-Matching. Determining this is NP-complete, and thus the
search problem is NP-hard.

Driven by this hardness result, our new solver can use one of two looser upper bounds. If chains
are to be executed in an “all-or-nothing” fashion—that is, either they execute in their entirety or
are completely cancelled if any edge fails—our solver uses a looser upper bound, solving the
unrestricted clearing problem on a graph G′ = (V,E ′) such that w′e = weqe, for each e ∈ E. If the
execution policy is incremental—as it is in practice, and in our experimental results—then an even
weaker upper bound ignoring qe is used.

Computing a good lower bound is not hard

The current UNOS solver uses the 2-cycle maximum matching problem (which is equivalent to
the undiscounted clearing problem for L = 2) as a primal heuristic, or lower bound. The new
solver uses the discounted version of the 2-cycle maximum matching problem as a primal heuristic
during the branch-and-price search. Solving this problem is still in polynomial time, as stated in
Proposition 3.
Proposition 3. The discounted clearing problem with cycle cap L = 2 is solvable in polynomial
time.
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Proof. Given a directed compatibility graph G = (V,E), construct an undirected graph G′ =
(V,E ′) such that an edge exists between two vertices in G′ if and only if there exists a two-cycle
between those vertices in G. Then, set the weight of every edge e′ = (vi, vj) in G′ to:

we′ = q(vi,vj) · q(vj ,vi)(w(vi,vj) + w(vj ,vi))

Now find the maximum weighted matching on G′, which can be done in polynomial time by
Edmond’s maximum-matching algorithm [84].

Incremental solving of very large IPs

The number of decision variables in the integer program formulation of the clearing problem grows
linearly with the number of cycles and chains in the pool; however, as discussed in Section 3.1.2,
the number of cycles of length at most L isO(|P |L), the number of uncapped chains is exponential
in |P | if A 6= ∅, and the number of capped chains of length (here, defined to be the number of
constituent edges) at most K is O(|A||P |K).

As a recap, the current UNOS solver uses an incremental formulation called column generation
to bring only some variables into the search tree at each node. The basic idea behind column
generation is to start with a reduced model of the problem, and then incrementally bring in variables
(and their constraints) until the solution value of this reduced model is provably the solution value
of the full (implicitly represented) model. This is done by solving the pricing problem, which
associates with each variable a real-valued price such that, if any constraint in the full model for
a variable c is violated, then the price of that variable is positive. In our case, the price of a cycle
or chain c is just the difference between the discounted utility u(c) and the dual value sum of the
vertices in that cycle or chain.

When no positive price cycles exist, we have proved optimality at this node in the search tree.
Proving this is hard, since the solver might have to consider each cycle and chain. Because we
are pricing both cycles and chains, we cannot use the fast pricing scheme from Section 3.2 applied
to PICEF in Section 3.3.5. We now present a method for “cutting off” a chain after we know its
expected utility is too low to improve the reduced problem’s objective value.

5.5.2 Iterative generation of only potentially “useful” chains.

Given a k-chain c = (v0, v1, . . . , vk), with v0 an altruist, we show a technique for curtailing the
generation of additions to c (while maintaining solution optimality). Consider the (k + 1)-chain
c′ = c+ {vk+1}. Then the additional utility of this chain over c is just:
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u(c′)− u(c) =
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That is, the additional utility is just the probability of c′ executing perfectly from start to finish
(times the weight of the new edge, if wk 6= 1).

Now, assume we are given some maximum success (minimum failure) probability qmax of the
edges left in the remaining total pool of patients V ′ (so for G = (V,E), the remaining pool is
V ′ = V \ c). Then, an upper bound on the additional utility of extending c to an infinitely long
chain c∞ is just the geometric series:

u(c∞)− u(c) <
∞∑
j=k

k−1∏
i=0

qi

j∏
i=k

qmax =
k−1∏
i=0

qi

(
∞∑
j=k

j∏
i=k

qmax

)
Since qmax < 1, this converges to:

u(c∞)− u(c) =k→∞
qmax

1− qmax

k−1∏
i=0

qi (5.2)

An upper bound on the expected utility of a (possibly infinite) chain c′, extended from some
base k-chain c = (v0, v1, . . . , vk), is given in Equation (5.2) above. We are interested in using this
computed value to stop extending c.

Let the dual value of a vertex v be dv. Furthermore, let dmin be the minimum dual value of any
vertex in V ′ = V − c. Then a lower bound on the “cost” of using this extended chain c′ is given
by dmin +

∑k
i=0 di.

By taking the optimistic upper bound on the utility of an infinite extension c′ and the lower
bound on the “cost” of using c′, a criterion for c′ not being useful is:(

qmax

1− qmax

k−1∏
i=0

qi

)
+ u(c) + `−

(
dmin +

k∑
i=0

di

)
≤ 0 (5.3)

Here, ` is the utility derived from the final donor in a chain donating his or her kidney to the
deceased donor waitlist. This is set by each individual kidney exchange.

Note that the sum of any finite subsequence of the infinite geometric series is less than the
sum of the infinite series. Then, the first segment of Equation 5.3 can be only lower for any finite
extension of c. Thus, if the inequality holds for the infinite extension, it must also hold for the
finite extension.
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Proposition 4. Given a k-chain c, if the infinite extension c∞ is not promising (i.e., Equation 5.3
holds), then no finite extension is promising, either.

We use Proposition 4 to stop generating extensions of chains during our solver’s iterative chain
(column) generation routine. We incrementally maintain the expected utility of the chain u(c) and
the sum of the dual values of vertices in that chain, and compute the infinite series’ convergence
of the infinite chain whenever an extension is considered. If Equation 5.3 holds, from Proposi-
tion 4, we know no finite (or infinite) extension of c can have positive price, and the solver cuts off
generating additions to c.

5.5.3 Heuristics for generating positive price chains and cycles.
During the column generation process, the optimizer iteratively brings positive price cycles and
chains into a reduced linear program (LP). Once no cycles or chains outside the reduced LP have
positive price, where the price of a cycle/chain c is defined to be u(c)−∑v∈c dv, we can determine
optimality from the reduced LP for the full LP.

In practice, the order in which positive price cycles and chains are brought into the reduced
problem drives solution time. One approach is to try to generate those cycles and chains with
lowest price. In our solver, we heuristically order the edges from which we start cycle or chain
generation toward this end.

Ordering the cycle generation

For cycles, where v is a patient-donor vertex and v′ is the vertex in v’s outgoing neighbors with
maximum discounted edge weight, we sort in descending order of ν:

νv = q̄inv q(v,v′)w(v,v′) − dv
Here, q̄inv is the average success probability of all incoming edges to v. Note that, for each

vertex v, the q̄inv q(v,v′)w(v,v′) term can be computed exactly once (at cost O(|V |2)), since these
values do not change. Then, at each iteration of column generation, we perform an O(|V | log |V |)
sort on the difference between this term and the current dual values.
Proposition 5. For any non-altruist v and next step v′, such that (q(v,v′)w(v,v′) − dv) ≤ 0, we need
not initiate cycle generation from v (which still guarantees all cycles are generated).

Proof. A cycle c involves at least two vertices, including v. If v has a non-positive dual-discounted
weight, then at least one other vertex v′ in the cycle must have positive dual-discounted weight.
If not, the cycle will have non-positive price and will not be considered in the column generation.
Starting a search from v′ will generate c.

Ordering the chain generation

For chains, where a is an altruist and v is the vertex corresponding to the initial edge from that
altruist, we sort in descending order of ν:
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CPLEX Ours Ours without chain curtailing
|P | Solved Time (solved) Solved Time (solved) Solved Time (solved)
10 127 / 128 0.044 128 / 128 0.027 128 / 128 0.052
25 125 / 128 0.045 128 / 128 0.023 128 / 128 0.049
50 105 / 128 0.123 128 / 128 0.046 125 / 128 0.057
75 91 / 128 0.180 126 / 128 0.072 123 / 128 0.066

100 1 / 128 1.406 121 / 128 0.075 121 / 128 0.071
150 0 / 128 – 114 / 128 0.078 95 / 128 0.098
200 0 / 128 – 113 / 128 0.135 76 / 128 0.096
250 0 / 128 – 94 / 128 0.090 48 / 128 0.133
500 0 / 128 – 107 / 128 0.264 1 / 128 0.632
700 0 / 128 – 115 / 128 1.071 0 / 128 –
900 0 / 128 – 38 / 128 2.789 0 / 128 –

1000 0 / 128 – 0 / 128 – 0 / 128 –

Table 5.2: Scaling results for our method versus CPLEX, timeout of 3600 seconds.

νa,v = q(a,v)w(a,v) − da
The intuition here is that chains with a high utility outgoing edge (at low cost, from da) are

more likely to be included in the final solution than those with low initial utilities. Note that we
must consider all first hops out of all altruists, including those such that νa,v ≤ 0. Due to this, each
iteration of column generation requires an O(|A||P | log(|A||P |)) sort. With |A| small, as in the
UNOS exchange, this is an allowable cost.

5.6 Scalability experiments

In this section, we test the ability of our new solver on kidney exchange compatibility graphs that
are larger than current fielded kidney exchange pools, with an eye toward the future where kidney
exchanges will be larger. We use data generated by the dense kidney exchange instance generator
by Saidman et al. [191], augmented to include altruistic donors. These graphs are significantly
denser than current kidney exchange pools, as discussed in Chapter 2, but may more accurately
represent future large exchange pools. We test in the static (that is, myopic batch matching) setting
here; in the next section, we expand to dynamic matching (albeit with a myopic optimizer, which
will be relaxed in Chapter 6). For the experiments in this section, we assume a constant failure
probability of 0.7 for each donor-patient edge.

We compare our novel solver against IBM ILOG CPLEX 12.2 [117], a recent version of a
state-of-the-art integer linear programming solver. Since CPLEX does not use branch-and-price, it
must solve the full integer program (with one decision variable per possible cycle and chain).

Table 5.2 shows runtime and completion results for both solvers on graphs of varying size.
Each graph has |P | patient-donor pairs and |A| = 0.1|P | altruistic donors. For example, a row
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labeled |P | = 50 corresponds to a graph with 50 patient-donor pairs and 5 altruists. We generated
128 such graphs for each value of |P |. Each solver was allocated 8GB of RAM and 1 hour of
solution time on Blacklight, a large cc-NUMA shared-memory supercomputer at the Pittsburgh
Supercomputing Center. (Blacklight was used solely to parallelize multiple runs for experimental
results; our solver does not require any specialized hardware. In fact, the current version of our
solver that runs the weekly matches at UNOS runs on commodity hardware.) CPLEX was unable
to solve instances of size 100 (except once) in under an hour, while our solver was able to solve (at
least some) instances of size 900.

To test how much speed was added by each of the improvements in this chapter to the cur-
rent UNOS solver, we deactivated the cycle and chain generation ordering heuristics (§5.5.3), as
well as the solver’s ability to cut off chain generation after the initial portion of a chain has been
proven not to be in an optimal match (§5.5.2). Interestingly, removing the cycle and chain order-
ing heuristics did not noticeably affect the runtime or number of instances solved by our solver.
Their low impact on performance is caused by the weak upper bounding performed during the IP
solve; since the bounding is weak, often optimality must be proved by considering all (discounted,
possibly “good”) chains and cycles, as opposed to being proved via bounding in the search tree.
We believe these ordering heuristics, or ones like them, will hold greater merit when better bound-
ing techniques are developed in the future. However, turning off the solver’s ability to reason
about the maximum additional discounted utility of a chain did significantly affect overall runtime
and number of instances solved; in fact, without this technique, only a single instance with 500
patient-donor pairs finished within the one hour time limit.

Table 5.2 also lists runtime results for those instances that did complete. When a solver was
able to solve an instance within an hour, the solution time was typically quite low. This is a
function of the upper and lower bounds becoming tight early on in the search tree. Overall, our
method of incrementally generating cycles and chains results in dramatically increased completion
percentages and lower runtimes than CPLEX.

5.7 Instantaneous rematching in the static model

Fielded kidney exchanges operate in the static setting, first performing a batch matching (typically
at a defined periodicity), then testing edges in that match, and finally performing successfully tested
transplants and placing patient-donor pairs with failed edges back in the pool. In this section, we
explore the effect of this policy in the static setting (which leads to Section 5.8 and the formulation
of a general dynamic model of kidney exchange).

A myopic optimization (using the failure-aware method described in this chapter) is performed
without taking into account the possibility of rematching. The leftover pool—together with the
positive crossmatches from the last match—are then instantaneously rematched. We are interested
in the additional expected transplants gained from this second (or third, or more) round of match-
ing. Note that this only makes sense in a model that includes match failures, as the maximum
weighted matching in a deterministic setting would leave no matchable vertices in the remaining
pool.

Figure 5.6 shows the effect of instantaneous rematching on both the size of the discounted
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Figure 5.6: Expected cardinality of the algorithmic match (dotted line) and number of trans-
plants (solid line) as the number of simultaneous rematches is increased, for |P | ∈
{50, 250, 500} and |A| = 0.1|V |.

|P | 1M Avg. (St. Dev.) 10M Avg. (St. Dev.) Percent Change
50 9.09 (2.56) 15.97 (3.98) +75.69%
100 18.25 (3.61) 36.95 (6.35) +102.02%
250 48.23 (5.69) 109.66 (9.84) +127.27%
500 92.00 (8.28) 235.00 (16.25) +155.43%

Table 5.3: Expected number of transplants given a single matching (“1M”) versus a single match-
ing and nine rematches (“10M”).

maximum matching and the expected number of resulting transplants, as the number of allowed
rematches is increased from zero (a single batch match) to nine (ten total matches, nine instanta-
neous rematches). While the size and value of subsequent matches decreases (as expected), the
results have a heavy tail; that is, even later rounds of rematching contribute nontrivially to the
aggregate expected transplants in large enough pools.

Table 5.3 quantifies the heavy tails shown in Figure 5.6. It compares the expected number of
transplants after a single batch matching against the aggregate expected value of a single batch
matching and nine instantaneous rematches. Even in a small pool with 50 patient-donor pairs
and 5 altruists, multiple rematches result in an expected additional 75.69% transplants. Greater
percentage-wise gains are realized for pools of larger size due to the remaining thickness in an
exchange, even after multiple vertex and edge removals.

5.8 A model for experimental dynamic kidney exchange

In this section, we explore failure-aware matching in the context of dynamic kidney exchange.
Kidney exchange is a naturally dynamic event, with patients, paired donors, and altruists arriving
and departing the pool over time. Section 5.4 enumerated some of the reasons we have seen in our
experiences with the UNOS nationwide exchange. Formally, a dynamic kidney exchange can be
explained by the evolution of its graph—that is, the addition and removal of its vertices and edges.

Table 5.4 formalizes the evolution of a compatibility graph over time. The only vertex and edge
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Vertex – Edge – Vertex/Edge +
Transplant, this exchange Matched, positive crossmatch Normal entrance
Transplant, deceased donor waitlist Matched, candidate refuses donor
Transplant, other exchange (“sniped”) Matched, donor refuses candidate
Death or illness Pregnancy, sickness changes HLA∗

Altruist runs out of patience
Bridge donor reneges

Table 5.4: Reasons for the arrival and departure of vertices and edges. ∗We do not consider edge
removal due to pregnancy/sickness because there are a variety of ways in which preg-
nancy and sickness can affect the immune system.

additions to the graph come in the form of new patients and donors arriving over time. Edges are
removed due to, e.g., crossmatch failures or donor refusals. Vertices are removed if the patient or
her respective donor must leave the pool, due to reasons ranging from a successful transplantation
to patient expiration.
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Figure 5.7: The evolution dynamics of a kidney exchange.

Figure 5.7 provides a snapshot of a compatibility graph over three points in time. The pool
at time t consists of unmatched patients and donors from time t − 1, any new pairs and altruists
entering the pool, and any vertices who were waiting for a successful match, but whose match
failed (due to, e.g., a positive crossmatch). Note that these patients are still formally in the pool,
just marked temporarily “inactive” until the status of their pending transplant is known. At each
time period t, vertices leave the pool permanently through any of the reasons in the first column of
Table 5.4, or are temporarily marked “inactive” through a pending match.
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5.8.1 Failure-aware matching in dynamic kidney exchange
We now present experimental results on dynamic kidney exchanges, taking transplant success
probabilities into account. We built a simulator that mimics the evolutionary diagram of Figure 5.7,
and used parameters learned from our work with UNOS. We vary the number of patient-donor
pairs and altruists entering the pool over time, and match on a weekly basis for 24 weeks. We
use the bimodal distribution of failure probabilities described in Section 5.4, as it more accurately
represents current kidney exchanges. The deceased-donor waitlist donation at the end of a chain is
counted in the expected number of transplants.

In our experience with UNOS at the time of this writing, typically the time between a match
offer and transplant success or failure is about 8 weeks. Thus, whenever a match is offered in
our simulator, involved patients and donors become inactive in the pool, but can still be removed
from the match for a variety of reasons (“sniping” by another exchange, patient illness, etc). Of
the 610 patients who had ever been listed in the UNOS exchange program when these experiments
were run (over a period of 106.7 weeks), 192 left for reasons other than receiving a kidney through
UNOS. Thus, for each time period, a vertex has a probability of 1 − e(ln 418/610)/106.7 ≈ 0.003536
chance of leaving (for a non-UNOS transplant reason). As in real kidney exchange, if a cycle
fails, or part of a chain fails, then the affected patients and donors are returned to the pool—or is
removed permanently, if the reason for failure was that patient-donor pair’s exit from the exchange.
Results from crossmatches that were done as part of a failed cycle or chain are maintained in the
pool; if a crossmatch was negative, then future crossmatches performed on that edge will also be
negative. We assume all crossmatches are done simultaneously for cycles and incrementally from
the initiating non-directed donor until the first failure for chains.
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Figure 5.8: Expected number of transplants per week for graphs of different sizes. From left to
right, 5 pairs and 1 altruist, 20 pairs and 4 altruists, and 25 pairs and 5 altruists (on
expectation) appear every week.

Figure 5.8 shows the number of expected transplants per week on graphs of three different
sizes, each generated from the [191] distribution of compatibility graphs. (In the following sec-
tion, we generate graphs from the UNOS distribution.) In expectation, 5, 20, or 25 pairs and 1,
4, or 5 altruists appear weekly in each of the three graphs. Discounted matching typically results
in roughly twice as many expected transplants than maximum cardinality matching. The slight
increase in weekly expected matches for both matching techniques is due to the buildup of un-
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matched patient-donor pairs and altruists in the pool over time; larger pools typically admit larger
matchings.
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Figure 5.9: Expected aggregate transplants over 24 weeks, for increasing |P | (and |A| = 0.1|P |).

Figure 5.9 gives aggregate results for total number of expected transplants over 24 weeks, for
graphs of varying size, for both discounted and maximum cardinality matching. Graphs have 10%
as many altruists on top of the patient-donor pool. The gap between discounted and non-discounted
matching widens as the activity level of the dynamic kidney exchange increases. For our largest
graphs, discounted matching improved expected transplants by a factor of three over maximum
cardinality matching. In the following section, we will explore how these global efficiency gains
change as we prioritize highly-sensitized patients and on graph distributions that more closely
mimic presently fielded exchanges.

5.9 Balancing efficiency and fairness in failure-aware kidney
exchange

So far, we have motivated a move to discounted kidney exchange optimization from a global effi-
ciency perspective. One might ask how this affects fairness. For example, a proposed transplant
to a highly-sensitized patient might intuitively fail with higher probability than one to a patient
of low sensitization due to coupled health issues (e.g., chronic illness) in the former, and thus the
discounted approach could disfavor highly-sensitized patients. While data from the UNOS kidney
exchange [132] does not show a correlation between post-match failure and CPRA, data from other
exchanges does show such a correlation [e.g., 22, 99]. Regardless, prioritizing highly-sensitized
patients is currently done explicitly or implicitly in fielded kidney exchanges, so we address that
here—and then in much greater depth in the next part of the thesis in Chapters 7 and 8.

In general, striking a balance between fairness and efficiency in kidney exchange is an increas-
ingly important line of work combining medical policy, economics, and optimization. Roth et al.
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[186] define a fair mechanism to be one that equalizes, to the greatest extent possible, patients’
chances of getting a match. While this is almost certainly too strict a fairness criterion to be fielded
in practice, the notion of prioritizing some patients—possibly at the cost of overall efficiency in the
exchange—is common (and is performed in the current UNOS exchange as well). Recent and par-
allel work by Bertsimas et al. [35, 36] and by Caragiannis et al. [53] studies the price of fairness,
a measure of the tradeoff between fairness and efficiency, in general resource allocation problems.
We will adapt that in greater depth to kidney exchange in Chapter 7, but overview the instantiation
of that adaptation in this chapter. Hooker and Williams [110] provide general Rawlsian equity op-
timization models that maximize the minimum utility of any one agent or set of agents. Bertsimas
et al. [37] design a realistic method for maximizing, given a set of user-defined fairness constraints,
some notion of efficiency in the deceased donor kidney transplantation problem, where patients on
a waiting list are allocated cadaveric kidneys. In general, accurate quantification of the theoretical
and empirical advantages and disadvantages of various fairness definitions would be of great value
to policymakers in the kidney exchange community.

In this section, we use a recent fairness criterion for kidney exchange, to be discussed in much
greater depth in Chapter 7. We show (experimentally) that the “price of fairness” in both static and
dynamic failure-aware models is also typically low. More importantly, we show that failure-aware
matching under well-chosen fairness criteria results in more expected transplants to both the global
pool and highly-sensitized patients than maximum cardinality matching. We conclude that there
is an enormous “price of using the wrong model” that is potentially more harmful to all patients—
and will present FUTUREMATCH in Chapter 8 as a method to automatically tune toward a “less
wrong” model.

5.9.1 Weighted fairness as a prioritization scheme for sensitized patients
One simple method to emphasize a certain class of patient-donor pairs—for us, those in the set of
highly-sensitized vertices VH—is to increase the weight of edges with a sink in VH . This definition
generalizes the policy UNOS currently applies to highly-sensitized patients in the fielded kidney
exchange, where incoming edges to patients above a certain CPRA threshold are given a positive
constant additive weight increase. We adopt a parameterized form of this rule here.

To implement this rule, in Chapter 7 we will build on the standard kidney exchange integer
programming formulation and rewrite the objective as follows:

max
∑

c v∆(c)xc

Here, v∆(c) is the value of a cycle or chain c (either the weight in the deterministic model or the
discounted utility in our failure-aware model) such that the weight of each edge e ∈ c is adjusted
by some re-weighting function ∆ : E → R.

A simple example re-weighting function is multiplicative:

∆β(e) =

{
(1 + β)we if e ends in VH

we otherwise

Intuitively, for some β > 0, this function scales the weight of edges ending in highly-sensitized
vertices by (1 + β). For example, if β = 0.5, then the optimization algorithm will value edges
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that result in a highly-sensitized patient receiving a transplant at 50% above their initial weight
(which may then be discounted by other factors like failure probability and chain position, as in
our chapter’s current model).

For any M ∈ M, let M ′ be the matching such that every cycle c ∈ M has augmented weight
v∆(c). Then define the weighted fairness rule u∆ in terms of the utilitarian rule u applied to the
augmented matching M ′, such that u∆(M) = u(M ′). Thus, the clearing problem is rewritten as
finding M∗ = arg maxM∈M u∆(M). We will discuss this rule and others in greater theoretical and
experimental depth in Chapter 7.

In the rest of this section, we explore the effect this weighted fairness rule has on the expected
number of transplants performed in the pool as a whole and by highly-sensitized patients in VH ,
under a variety of modeling assumptions.

5.9.2 Experiments in the static setting
We begin by studying the weighted fairness rule in the context of static kidney exchange. We do
this on both the 161 individual UNOS match runs to date, and on generated graphs that mimic
the UNOS graphs. The generator runs by loading all pairs and altruistic donors that have ever
been present in the UNOS pool into a set of vertices V , then drawing with replacement vertices
from that pool and running the UNOS edge existence algorithm on the sampled vertices to create
a compatibility graph. We test these real or sampled graphs under three probability distributions:
constant and bimodal as above, as well as a differently-distributed bimodal family that draws fail-
ure probabilities in accordance with those rates published by Ashlagi et al. [22]. Critically, this last
distribution correlates edge failure rate with patient CPRA; incoming edges to highly-sensitized
patients are much more likely to fail than incoming edges to the rest of the pool. Specifically,
they state that patients with a CPRA above 75 have a crossmatch failure probability of 0.5, while
those with lower CPRA values (reported in ranges [0–24], [25–49], and [50–74]) have much lower
probabilities of crossmatch failure (0.05, 0.2, and 0.35, respectively). They also experiment with
an additional additive exogenous failure rate varied between 0 and 0.16; we use 0.08 in our exper-
iments.

Constant failure rate

We begin by assuming that every edge fails with the same constant probability, as in previous
sections. This assumption, while not likely to hold in practice, is easily parameterized and allows
us to explore the differences in models as matchings become less reliable. Different exchanges
have different failure rates, and this exploratory analysis might serve as a useful tool to quantify
the marginal gains of decreasing edge failure rates.

Figure 5.10 compares the weighted fairness rule u∆ applied to the failure-aware model against
the utilitarian rule applied to the deterministic model, which computes a maximum cardinality
disjoint cycle cover without regard for edge failure. Figure 5.10(left) shows that the efficient
failure-aware matching always results in at least as many (typically more) expected transplants
as the efficient deterministic matching. However, interestingly, even matchings under the fair
rule u∆ in the failure-aware model often result in significant overall gains when compared to the
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utilitarian deterministic matching. Figure 5.10(right) shows that even the fully efficient matching
rarely results in a loss of highly-sensitized transplants, and that even slightly prioritizing sensitized
patients results in large gains (at low cost to global efficiency).
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Figure 5.10: Percentage change in expected number of transplants (left) and sensitized transplants
(right) for actual UNOS match runs using failure-aware matching—possibly with
fairness constraints—instead of maximum cardinality matching. The x-axis varies
constant edge failure probability from 0 to near 1.

For example, for β = 1.0—that is, when highly-sensitized patients are valued twice as much
as lowly-sensitized patients—we see a drop of only a couple of percentage points of expected
transplants when there is no probability of edge failure. This is countered by a very large (over
30%) gain in the expected number of highly-sensitized transplants. In fact, when the probability
of edge failure is at least 45%, valuing highly-sensitized transplants at 11x (β = 10.0) that of a
lowly-sensitized patient results in more expected total transplants than deterministic matching that
does not consider fairness.

Also, we see that efficient failure-aware matching almost always results in more expected sen-
sitized transplants than deterministic matching, with the exception of a small relative drop at failure
rates around 35–45%. This can be explained by comparing, given a failure probability p, the rela-
tive discounted utilities of a 2-cycle c2 (u(c2) = 2(1−p)2) and 3-cycle c3 (u(c3) = 3(1−p)3). When
p < 1

3
, u(c2) < u(c3), so the optimizer favors 3-cycles over 2-cyles. When p > 1

3
, u(c2) > u(c3),

so the optimizer favors 2-cycles. Highly-sensitized patients are often matched in 3-cycles; intu-
itively, if a highly-sensitized pair’s donor can donate to another pair, it is more likely that this pair
will not be able to connect back to the highly-sensitized pair directly (by virtue of that initial pair
being highly-sensitized and thus having low in-degree) via a 2-cycle but will rather connect back
through a lowly-sensitized pair via a 3-cycle). So, for p < 1

3
, failure-aware gains are only realized

by rearranging the low-probability tails of chains into 2- and 3-cycles, while for p > 1
3
, failure-

aware optimization may start to cannibalize 3-cycles (that likely contain highly-sensitized pairs).
Empirically, this is only an issue for p ∈ (1

3
, 0.45]; once p > 0.45, the efficient objective’s gains
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Figure 5.11: Percentage change in expected number of transplants (left) and sensitized transplants
(right) for generated UNOS match runs using failure-aware matching—possibly with
fairness constraints—instead of maximum cardinality matching. The x-axis varies
constant edge failure probability from 0 to near 1.

outweigh these losses. Furthermore, we see that a small prioritization (even β = 1) results in both
global and sensitized gains even for p ∈ (1

3
, 0.45] (and for other values of p).

This general behavior is supported in Figure 5.11, which shows the same experiments on gener-
ated data that mimics the UNOS distribution, for pools of size 250—roughly the size of the current
UNOS pool. We include these results because, in Section 5.9.3, we run dynamic experiments
on data that mimics the UNOS pool (unlike the results in Section 5.8, which used the generator
due to Saidman et al. [191]). The similarity of Figures 5.10 and 5.11 serves as validation of the
simulator.

It may be difficult to accurately estimate failure probabilities on edges in practice. Indeed, in
extreme cases, it may even be deemed unethical to allow vastly different failure probabilities to
be included in the optimization process, as the probabilities act as a prioritization tool. As these
experiments show, one could simply set all the probabilities in the optimization to be equal in
order to not disfavor patients with high failure probabilities. Even with this extreme approach, the
discounted framework strikes good endogenous tradeoffs between short chains, long chains, short
cycles, and long cycles—unlike the current undiscounted approach.

Bimodal failure rate

We now consider the weighted fairness rule in the static setting with bimodal failure probabilities.
We will refer to the prior bimodal failure distribution derived in Section 5.4, where edge failure
rates are not correlated with patient CPRA, as the “UNOS Bimodal” distribution. We also perform
experiments on a distribution derived from published failure rates from a different exchange, the
Alliance for Paired Donation (APD), where edge failures are correlated with patient CPRA [22].
We refer to this distribution as “APD Bimodal.” This difference in correlations could be due to
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Figure 5.12: Change in the expected number of transplants on average for actual UNOS match
runs when using failure-aware matching instead of maximum cardinality matching,
assuming bimodal edge failure rates derived from UNOS (left) and APD (right). The
x-axis varies the β fairness factor applied to the failure-aware matching algorithm.

highly-sensitized patients being less likely to find a match outside of the exchange (e.g., on the
deceased donor wait list or another exchange) but more likely to have a match fail due to medical
reasons such as crossmatch incompatibility—whereas an easy-to-match patient might quickly find
a living donor elsewhere, but be less likely to have a match fail for medical reasons. UNOS has
a slower matching cadence than some other exchanges like the National Kidney Registry (NKR),
which matches whenever the underlying compatibility graph changes, so easily-matched patients
may be “sniped” by such faster-moving exchanges. By lowering these non-medical reasons for
failure (e.g., by merging all exchanges into a single program to reduce inter-exchange competition),
the overall failure rate for highly-sensitized patients would probably become higher than that of
other patients.

Figure 5.12 shows expected gains in both the number of overall transplants (dashed line) and
sensitized transplants (dotted line) relative to a baseline of deterministic matching (solid line). The
expected number of failure-aware overall and highly-sensitized transplants are compared against
the expected number of deterministic overall and highly-sensitized transplants, respectively, as the
fairness factor β is increased from 0 (fully efficient matching) to 10 (highly biased matching).

Immediately visible is that, when failure rates are not correlated to CPRA, the gains seen by
failure-aware matching are quite large across the board. This aligns with our Saidman-generated
results from Section 5.8, as well. However, when failure rates are highly correlated with patient
CPRA, the situation becomes more delicate. Failure-aware matching without fairness considera-
tions does result in a large gain in overall expected transplants, but harms highly-sensitized pa-
tients. We can identify a “sweet spot” that balances these conflicting objectives; empirically, this
is approximately when β ∈ [2, 4] (depending on the underlying family of graphs; see Figures 5.12
and 5.13). When β is toward the lower end of this interval, the loss in marginalized transplants
is zero while the gain in global expected transplants is positive (approximately 10%). When β
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Figure 5.13: Change in the expected number of transplants on average for generated UNOS match
runs when using failure-aware matching instead of maximum cardinality matching,
assuming bimodal edge failure rates derived from UNOS (left column) and APD
(right column). The x-axis varies the β fairness factor applied to the failure-aware
matching algorithm.

is toward the higher end of this range, the global gain in transplants is zero while the gain in
marginalized transplants is positive (approximately 25%). Within the interval, we realize gains in
both objectives—a clear win.

As in the constant failure probability case, Figure 5.13 shows similar results on generated
UNOS compatibility graphs, under both failure rate distributions, for |V | = 250. This provides
validation for our simulator. In the rest of the section, we further explore the correlated failure rate
setting in the realistic dynamic kidney exchange simulator presented in Section 5.8 using these
equally realistic compatibility graphs, and show that this same balance of fairness and efficiency
can be struck so that both global efficiency and the expected number of transplants to highly-
sensitized patients increases.

5.9.3 Experiments in the dynamic setting
We now continue our exploration of the correlated failure probability case into a dynamic model.
This is important because, although we showed that a balance can be struck between efficiency and
fairness in the static case such that failure-aware matching results in gains in both objectives, it is
possible that this balance comes at the cost of matching “easier” hard-to-match pairs in the now
and leaving the “hardest” hard-to-match pairs for later. We show that this is not the case. Specifi-
cally, the same winning balance can be struck in the dynamic setting. (In the interest of space, we
do not include experiments in the non-correlated bimodal failure case, because even failure-aware
matching without fairness considerations results in large increases in both global and marginalized
transplants over time. In this sense, the experiments in this section on the correlated APD distri-
bution give a conservative estimate of the gains seen by failure-aware matching in dynamic kidney
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exchange.)
We perform experiments in the same dynamic model as Section 5.8, only this time using

the realistic UNOS graph generator validated above. We vary arrival rates over 24 time periods
with {12, 16 . . . , 32} pairs or altruistic donors arriving per time period, as sampled from the real
pairs and altruists. Tables 5.5 and 5.6 show the median overall absolute and percentage gains and
losses in number of transplants and number of sensitized transplants, respectively, aggregated over
all time periods by failure-aware matching for β ∈ {0, 1, . . . , 5} compared against deterministic
matching.
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|V | = 300 |V | = 400 |V | = 500 |V | = 600 |V | = 700 |V | = 800
Gain (%) Gain (%) Gain (%) Gain (%) Gain (%) Gain (%)

EFFICIENT +0 (0.0%) +5 (5.9%) +1 (1.9%) +2 (2.5%) +9 (7.1%) +5 (3.6%)
FAIR, β = 1 +2 (4.2%) +5 (6.7%) +1 (1.0%) +8 (8.1%) +8 (6.2%) +11 (7.3%)
FAIR, β = 2 +0 (0.0%) +3 (4.1%) +0 (-1.3%) +3 (2.4%) +2 (1.8%) +5 (3.4%)
FAIR, β = 3 +2 (4.3%) -1 (-2.1%) -1 (-1.1%) -1 (-1.3%) +3 (2.8%) +2 (1.5%)
FAIR, β = 4 +2 (4.3%) +2 (2.5%) +2 (2.5%) -1 (-1.3%) +1 (0.9%) +3 (2.3%)
FAIR, β = 5 +0 (-0.1%) +1 (2.0%) +3 (4.0%) +0 (-0.5%) -1 (-0.8%) -2 (-1.7%)

Table 5.5: Gains in expected number of transplants overall, for increasing values of fairness β and for different arrival rates.

|V | = 300 |V | = 400 |V | = 500 |V | = 600 |V | = 700 |V | = 800
Gain (%) Gain (%) Gain (%) Gain (%) Gain (%) Gain (%)

EFFICIENT -4 (-40.0%) -2 (-21.4%) -3 (-15.4%) -4 (-21.4%) -5 (-23.4%) -6 (-19.1%)
FAIR, β = 1 -2 (-26.1%) +0 (0.0%) -1 (-10.0%) +0 (0.0%) +0 (-1.3%) -1 (-4.4%)
FAIR, β = 2 +1 (9.5%) +3 (18.8%) +0 (1.2%) +2 (9.9%) +2 (11.2%) +5 (15.5%)
FAIR, β = 3 +0 (5.6%) +1 (10.8%) +1 (11.7%) +7 (35.1%) +8 (33.2%) +6 (20.3%)
FAIR, β = 4 +0 (5.6%) +3 (29.0%) +2 (11.0%) +8 (46.2%) +6 (23.9%) +8 (29.3%)
FAIR, β = 5 +0 (0.0%) +2 (22.6%) +2 (12.1%) +8 (43.7%) +6 (24.0%) +8 (23.9%)

Table 5.6: Gains in expected number of highly-sensitized transplants, for increasing values of β and for different arrival rates.
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Mirroring the static experiments above, we see that for low values of β, failure-aware match-
ing results in global gains and marginalized losses. However, as above, for β ≈ 2, a winning
balance is struck, with nonnegative gains in expected overall transplants and significant gains in
number of highly-sensitized transplants. Perhaps most excitingly, for higher values of β, the num-
ber of highly-sensitized transplants increases markedly (reaching +20%–+40% over deterministic
matching for higher arrival rates), while the overall effect on global efficiency is negligible. In
reality, kidney exchanges are often seen as a “last hope” for highly-sensitized patients; even with a
higher likelihood of pre-transplant match failure, we have shown that failure-aware matching can
increase successful match rates for these highly-prioritized patients at no cost to the global system
efficiency.

5.10 Pre-match edge testing complements failure-aware match-
ing

In this section, we present an approach to dealing with uncertainty over the (non)existence of edges
in a compatibility graph by querying for existence a small set of edges before running the matching
algorithm. The matching algorithm that is run after the testing phase can be one that takes edge
failure into account (or not); in this sense, the approach of this chapter is a complement to the
failure-aware matching model presented earlier in this chapter. Results from this section, as in the
rest of the chapter, are stated in the language of a stochastic matching problem, which is a special
case of stochastic k-set packing, where each set exists only with some probability, and the problem
is to find a packing of maximum size of those sets that do exist.

Without any constraints, one can simply query all edges or sets, and then output the maximum
matching or packing over those that exist—but this level of freedom may not always be available,
as is the case in kidney exchange. This chapter is interested in the real-world tradeoff between the
number of queries and the fraction of the omnisicient optimal solution achieved. Toward that end,
it works in settings where a clearinghouse can test edges adaptively in rounds, where test results
from one round can inform the succeeding rounds, and non-adaptively, where only a single batch
of edges can be tested prior to running the final matching algorithm.

In this section, we support the theoretical results of Blum et al. [44] with empirical simulations
from two kidney exchange compatibility graph distributions. We operate in the following model.
For any graph G = (V,E), let M(E) denote its maximum (cardinality) matching. (The notation
M(E) intentionally suppresses the dependence on the vertex set V , since we care about the maxi-
mum matchings of different subsets of edges for a fixed vertex set.) Given a set of edges X , define
Xp to be the random subset formed by including each edge xi of X independently with probability
pi ∈ p, the vector of edge failure probabilities for each edge in X .

Given a graph G = (V,E), define M(E) to be E[|M(Ep)|], where the expectation is taken
over the random draw Ep. In addition, given the results of queries on some set of edges T , define
M(E|T ) to be E[|M(Xp ∪ T ′)|], where T ′ ⊆ T is the subset of edges of T that are known to exist
based on the queries, and X = E \ T .

In the non-adaptive version of the problem, the goal is to design an algorithm that, given
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a graph G = (V,E) with |V | = n, queries a subset X of edges in parallel such that |X| =
O(n)—in our algorithms, a constant number of incident edges per vertex—and maximizes the
ratio M(X)/M(E).

In contrast, an adaptive algorithm proceeds in rounds, and in each round queries a subset of
edges in parallel. Based on the results of the queries up to the current round, it can choose the subset
of edges to test in the next round. Formally, an R-round adaptive stochastic matching algorithm
selects, in each round r, a subset of edges Xr ⊆ E, where Xr can be a function of the results of the
queries on

⋃
i<rXi. The objective is to maximize the ratio E[|M(

⋃
1≤i≤RXi)|]/M(E), where the

expectation in the numerator is taken over the outcome of the query results and the sets Xi chosen
by the algorithm.

As above, we test on the dense distribution due to Saidman et al. [191], as well as on real
kidney exchange compatibility graphs drawn from the first 169 match runs of the UNOS nation-
wide kidney exchange. While these two families of graphs differ substantially, we find that even
a small number R of non-adaptive rounds, followed by a single period during which only those
edges selected during the R rounds are queried, results in large gains relative to the omniscient
matching.

This section does not directly test the algorithms we presented in Blum et al. [44], which fo-
cuses solely on polynomial-time algorithms. For the 2-cycles-only case, we do directly implement
Algorithm 1 from the full paper with Blum et al. [44]. However, for the cases involving longer cy-
cles and/or chains, we do not restrict ourselves to polynomial time algorithms (unlike in the theory
part of this chapter), instead choosing to optimally solve matching problems using integer pro-
gramming during each round, as well as for the final matching and for the omniscient benchmark
matching. This decision is informed by the current practice in kidney exchange, where computa-
tional resources are much less of a problem than human or monetary resources (of which the latter
two are necessary for querying edges).

In our experiments, the planning of which edges to query proceeds in rounds as follows. Each
round of matching calls as a subsolver the failure-aware matching algorithm presented earlier in
this chapter, which includes edge failure probabilities in the optimization objective to provide a
maximum discounted utility matching. The set of cycles and chains present in a round’s discounted
matching are added to a set of edges to query, and then those cycles and chains are constrained
from appearing in future rounds. After all rounds are completed, this set of edges is queried, and
a final maximum discounted utility matching is compared against an omniscient matching that
knows the set of non-failing edges up front.

Appendix C.2 presents an algorithm that relaxes the assumption that all edges in a round
must be tested at once, and provides initial experimental results comparing against the round-
based algorithms in this chapter. That appendix provides an implementation of a basic “expected
improvement”-style algorithm (see, e.g., work by Jones et al. [122] for foundational work on gen-
eral expected improvement algorithms) for adaptive edge testing of barter exchange graphs. There,
we work under the assumption that testing can be performed and that information digested on an
edge-by-edge basis, as opposed to in larger batches as in this chapter; our experimental results
show that by relaxing the batch assumption, we can achieve the same expected match size as the
batch algorithms in this chapter by testing even fewer edges.
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5.10.1 Experiments on dense generated graphs due to Saidman et al. [191]
We begin by looking at graphs drawn from a distribution due to Saidman et al. [191]. Figure 5.14
presents the fraction of the omniscient objective achieved by R ∈ {0, 1, . . . , 5} non-adaptive
rounds of edge testing for generated graphs with 250 patient-donor pairs and no altruistic donors,
constrained to 2-cycles only (left) and both 2- and 3-cycles (right). Note that the case R = 0 cor-
responds to no edge testing, where a maximum discounted utility matching is determined by the
optimizer and then compared directly to the omniscient matching. The x-axis varies the uniform
edge failure rate f from 0.0, where edges do not fail, to 0.9, where edges only succeed with a 10%
probability. Given an edge failure rate of f in the figures below, we can translate to the p used in
the theoretical section of the paper as follows: 2-cycles exists with probability p2-cycle = (1− f)2,
while a 3-cycle exists with p3-cycle = (1− f)3. For example, in the case of f = 0.9, a 3-cycle exists
with very low probability p = 0.001.
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Figure 5.14: Saidman generator graphs constrained to 2-cycles only (left) and both 2- and 3-cycles
(right).

The utility of even a small number of edge queries is evident in Figure 5.14. Just a single
round of testing (R = 1) results in 50.6% of omniscient—compared to just 29.8% with no edge
testing—for edge failure probability f = 0.5 in the 2-cycle case, and there are similar gains in the
2- and 3-cycle case. For the same failure rate, setting R = 5 captures 84.0% of the omnisicient
2-cycle matching and 69.3% in the 2- and 3-cycle case—compared to just 22.2% when no edges
are queried. Interestingly, we found no statistical difference between non-adaptive and adaptive
matching on these graphs.

5.10.2 Experiments on real match runs from the UNOS kidney exchange
We now analyze the effect of querying a small number of edges per vertex on graphs drawn from
the real world. Specifically, we use the first 169 match runs of the UNOS nationwide kidney
exchange. These graphs, as discussed in Chapter 3, are substantially less dense than those produced
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by the Saidman generator. As shown in, e.g., Chapter 2 and later in Chapter 7, this disparity
between generated and real graphs has led to different theoretical results (e.g., efficient matching
does not require long chains in a deterministic dense model [19, 74] but does in a sparse model [23])
and empirical results (both in terms of match composition and experimental tractability [16, 63,
100]) in the past—a trend that continues here.

Figure 5.15 shows the fraction of the omniscient 2-cycle and 2-cycle with chains match size
achieved by using only 2-cycles or both 2-cycles and chains and some small number of non-
adaptive edge query rounds R ∈ {0, 1, . . . , 5}. For each of the 169 pre-test compatibility graphs
and each of edge failure rates, 50 different ground truth compatibility graphs were generated.
Chains can partially execute; that is, if the third edge in a chain of length 3 fails, then we include
all successful edges (in this case, 2 edges) until that point in the final matching. More of the om-
niscient matching is achieved (even for the R = 0 case) on these real-world graphs than on those
from the Saidman generator presented in Section 5.10.1. Still, the gain realized even by a small
number of edge query rounds is stark, with R = 5 achieving over 90% of the omniscient objective
for every failure rate in the 2-cycles-only case, and over 75% of the omniscient objective when
chains are included (and typically much more).
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Figure 5.15: Real UNOS match runs constrained to 2-cycles (left) and both 2-cycles and chains
(right).

Figure 5.16 expands these results to the case with 2- and 3-cycles, both without and with
chains. Slightly less of the omniscient matching objective is achieved across the board, but the
overall increases due to R ∈ {1, . . . , 5} non-adaptive rounds of testing is once again prominent.
Interestingly, we did not see a significant difference in results for adaptive and non-adaptive edge
testing on the UNOS family of graphs, either.

We provide additional experimental results in Appendix C. Code to replicate all experiments is
available at https://github.com/JohnDickerson/KidneyExchange; this codebase
includes graph generators but, due to privacy concerns, does not include the real match runs from
the UNOS exchange.
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Figure 5.16: Real UNOS match runs with 2- and 3-cycles and no chains (left) and with chains
(right).

5.11 Conclusions, future work, & implications

In this chapter, we addressed the problem of edges in a matching (e.g., recommended transplants
in a kidney exchange) failing after a matching algorithm has committed to them. This is a timely
problem; in the UNOS nationwide kidney exchange, very few of the algorithmically matched
patients actually receive a transplanted kidney through the exchange, and similar rates apply to
other kidney exchanges.

Failure-aware kidney exchange. We first introduced a failure probability to each edge in a com-
patibility graph, and defined an expected utility of edges, cycles, chains, and matches. This model
drives our main theoretical result, that (with high probability, in a random graph model) there ex-
ists a non-maximum cardinality matching that provides linearly more utility than any maximum
cardinality matching. We then ran simulations on real data from all UNOS match runs between
2010 and late 2014, and found that our failure-aware matching increases the number of expected
transplants dramatically.

Armed with this new model, we showed that the current state-of-the-art kidney exchange solver
(used in the UNOS kidney exchange) cannot be used for this problem because now each edge has
both a weight and a failure probability, and simply multiplying them to get a revised weight would
make the algorithm incorrect. We designed a branch-and-price-based optimal clearing algorithm
specifically for the probabilistic exchange clearing problem. It has many enhancements over the
prior best kidney exchange clearing algorithm. For one, we designed a failure-aware column gen-
erator that incrementally brings only “possibly good” chains into consideration. We showed exper-
imentally that this new solver scales well on large simulated data. We also explored the idea of im-
mediately reentering failed cycles and chain segments from an initial matching back into the wait-
ing pool and subsequently rerunning the matching algorithm again; this instantaneous rematching
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results in significant extra transplants and can be performed multiple times with relative ease. We
then developed a realistic model of dynamic kidney exchange based on our experiences with, and
data from, UNOS, and showed that failure-aware matching in dynamic graphs increases expected
transplants significantly. Finally, we explored the effect of failure-aware matching on marginalized
patients; it is possible to strike a balance between fair and efficient failure-aware matching that re-
sults in more expected transplants both globally and to marginalized patients specifically, in both
the static and dynamic cases, in a variety of graph distributions.

Experimentally, our solver would benefit from a better (i.e., tighter) upper bound on the dis-
counted clearing problem—the current bound is especially loose when failure probabilities are
high and when bounding the utility of long cycles and long chains. Tightening the upper bound
would decrease the size of the search tree and, in turn, reduce column generation and overall run-
time. The accuracy of our and others’ experimental results relative to real kidney exchange will
continue to improve as we work with more exchanges. The community’s understanding of the un-
derlying failure probabilities—especially on a patient-by-patient basis—will improve as more data
becomes available; some initial work has already been done by [99] using simple models driven
by individual patients’ data to predict crossmatch failures. Further quantitative analysis of both
international living donor and kidney exchange data would be of great help to both the science and
practice of kidney exchange.

Theoretically, exploring the efficacy of failure-awareness in a fully dynamic model of kid-
ney exchange (like that presented in Section 5.8, where vertices and edges arrive and depart over
time for a variety of reasons) would be of practical interest in designing dynamic matching al-
gorithms and in making high-level policy recommendations. Following seminal work by [213],
recent research [e.g., 9, 15, 24] explores different analytical models of dynamic deterministic kid-
ney exchange and finds different optimal (or near-optimal) policies in each model. Extending any
of these models to include post-algorithmic match failure and then observing the effect this has
on, e.g., optimal matching cadence would be of interest. Also, as we showed empirically in Sec-
tion 5.9, matching to blindly maximize efficiency (in this case, maximizing long-term number of
matches or transplants, or minimizing average waiting time) can further marginalize already hard-
to-match patients. Formalizing the tradeoff that we showed can be struck empirically between
efficient and fair short- and long-term matching in an analytical dynamic model with edge failures
would be extremely informative. In Chapter 7, we will go into greater depth on the so-called “price
of fairness” in kidney exchange; this work is a batch setting, and perhaps could be extended.

Finally, we note that balancing efficiency and fairness was done by hand in this section. Chap-
ter 8 will present FUTUREMATCH, a framework that learns to strike that balance automatically.

Adaptive pre-match edge testing. More accurate models are often not adopted quickly, if at all,
by exchanges. One reason for this is complexity—and not in the computational sense. Humans—
doctors, lawyers, and other policymakers who are not necessarily versed in optimization or the-
oretical economics and computer science—and the organizations they represent rightfully wish
to understand the workings of an exchange’s matching policy. The techniques described in this
chapter are particularly exciting in that they are quite easy to explain in accessible language and
they involve only mild changes to the status quo. At a high level, we are proposing to test some
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small number of promising potential matches for some subset of patient-donor pairs in a pool. As
Section 5.10.2 shows, even a single extra edge test per pair will produce substantially better results.

Any new policy for kidney exchange has to address three practical restrictions in this space:
(i) the monetary cost of crossmatches, (ii) the number of crossmatches that can be performed per
person, as there is an inherent limit on the amount of blood that can be drawn from a person, and
(iii) the time it takes to find the matches, as time plays a major role in the health of patients and
crossmatches become less accurate as time passes and the results get old. For both our non-adaptive
and adaptive algorithms, even a very small number of rounds (R ≤ 5) results in a very large gain
in the objective. This is easily within the limits of considerations (i) and (ii) above. Our non-
adaptive algorithm performs all chosen crossmatches in parallel, so the time taken by this method
is similar to the current approach. Our adaptive algorithm, in practice, can be implemented by a
one-time retrieval ofR rounds worth of blood from each donor-patient pair, then sending that blood
to a central wet laboratory. Most crossmatches are performed via an “immediate spin”, where the
bloods are mixed together and either coagulate (which is bad) or do not (which is good). These
tests are very fast, so a small number of rounds could be performed in a single day (assuming that
tests in the same round are performed in parallel). Therefore, the timing constraint (iii) is not an
issue for small R (such as that used in our experiments) for the adaptive algorithm.

Clearly, more extensive studies would need to be undertaken before an exact policy recom-
mendation could be made. These studies could take factors like the monetary cost of an extra
crossmatch test or variability in testing prowess across different medical laboratories into account
explicitly during the optimization process. Furthermore, various prioritization schemes could be
implemented to help, for example, hard-to-match pairs find a feasible match by assigning them a
higher edge query budget than easier-to-match pairs. The positive theoretical results presented in
our paper with Blum et al. [44], combined with the promising experimental results on real data
presented in this chapter, provide a firm basis and motivation for this type of policy analysis.
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Life can only be understood backwards; but it
must be lived forwards.

– Søren Kierkegaard

6
Dynamic kidney exchange

Chapter 5 dealt with “last-minute” failures in barter exchanges, where the optimizer is interested in
finding a good batch match within a single time period, but with no eye toward future match runs.
This is how fielded kidney exchange algorithms typically match patients to donors in a myopic
fashion, maximizing the number of candidates who get kidneys (usually on a weekly, monthly,
or bimonthly basis) in an offline fashion. However, this is sub-optimal, since patients and donors
arrive and leave the pool over time. Recent work shows that more candidates can be matched
over time by considering the future [9, 17, 24, 27, 213, 223]; those approaches are either overly
simplified or do not scale.

In this chapter, we introduce a method for informing myopic optimization (e.g., matching)
about the future in dynamic applications. It automatically learns potentials of elements of the
problem (e.g., of vertices or edges in a graph) offline, and then uses these potentials to guide
myopic matching at run time. The potential represents an estimate of how much that element can
contribute to the objective in the future. The potentials can be viewed as policy parameters to be
optimized using a black box program; we are able to leverage state-of-the-art automated algorithm
configuration tools to learn their values [113]. Then, at run time, we simply run an offline matching
algorithm at each time period, but subtracting out in the objective the potentials of the elements
used up in the matching. This causes the batch optimizer—which is traditionally myopic—to take
the future into account without suffering a run-time cost.

We apply these techniques to kidney exchange. We first prove bounds on the power of learning
potentials on vertices, edges, cycles, and the entire graph (which is optimal). Then, we learn
potentials for vertices using a state-of-the-art parameter learning package and kidney exchange
instance generator. We show that these learned potentials beget a greater number of matches than
simple myopic matching at nearly no run time cost across all the settings tested. The work in this
chapter will then be included in a general framework for dynamic matching, FUTUREMATCH, to
be presented in Chapter 8.
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Related Publications

A preliminary version of the work in this chapter appeared at AAAI-12; it is a collaboration
between Dickerson, Procaccia, and Sandholm [74].

6.1 Dynamic matching

In dynamic problems, the problem changes over time. In kidney exchange, patient-donor pairs
and altruists enter and expire. While fielded kidney exchanges currently operate under the static
paradigm described above, recent work in the kidney exchange community has shown that optimiz-
ing dynamically leads to higher cardinality matching overall. We now overview some related work
in dynamic matching and barter exchange, extending on the brief overview given in Section 5.1.

From a theoretical standpoint, Ünver [213] derives efficient dynamic mechanisms for general
barter exchanges such that the total exchange surplus is maximized. Those results are a generaliza-
tion of an abstracted kidney exchange. He derives dynamic dispatch policies for kidney exchange
in that abstract model; however, the model itself does not accurately reflect real-world kidney ex-
change. The results hinge on the assumption that one pair’s candidate will be compatible with
another pair’s donor if they are blood type (aka ABO) compatible, ignoring other aspects of the
potential match, most critically tissue type. His model also does not have chains. This is a key
difference: the setting he studies is sufficiently simple that optimal policies can be analytically
derived while in our setting even the batch problem is NP-complete, as explained above. [24] work
in a theoretical model with two classes of patients (based on tissue type but not blood type) and
batch matching. They characterize waiting times between batch match runs in this reduced model
for cases involving only 2-cycles, 2- and 3-cycles, and 2-cycles with a single chain. Anderson et al.
[15] and Ashlagi et al. [26] extend the results of that paper using a similar model, while Akbar-
pour et al. [9] investigates the effect of match cadence in a stylized dynamic model of traditional
matching.

Very few empirical results on non-myopic matching in unsimplified dynamic kidney exchange
are known. Most notable, prior to our work, was a paper by Awasthi and Sandholm [27] that uses
trajectory-based online stochastic optimization algorithms to inform the matching algorithm of
possible futures, thus potentially holding off matching some candidates and donors in an effort to
increase overall matches later. Their results are promising, but the algorithm does not scale beyond
fairly small exchanges due to the empirical complexity of sampling a large number of future world
states, and the memory requirements associated with storing those trajectories and optimizing what
to do in the present in light of them. Anshelevich et al. [17] perform simulations in a reduced model
of kidney exchange including only cycles of length two; they look at batch matching in this model
where pairs lose utility from waiting in the pool via a fixed discount parameter.

Many papers include experimental results on dynamic kidney exchange using myopic clear-
ing [22, 23, 65, 74, 75, 96, 97]; indeed, we gave such experimental results in Chapters 2 and 5.
This is useful due to the ubiquity of myopic matching in fielded kidney exchanges, but, as we show
in this chapter, ultimately the strategy is flawed. Myopic matching that is informed about the future
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results in more matches.
Finally, while we focus on kidney exchange in this work, the dynamic matching problem in

deceased organ allocation has been studied before. That problem is fundamentally different than
kidney exchange, but we briefly review that work here for completeness. Su and Zenios [202]
study the online allocation problem from a theoretical point of view, where patients and kidneys
have types, kidneys arrive over time, kidney types are not known ahead of time, and patients much
choose to accept or decline kidney offers. Bertsimas et al. [37] propose a data-driven allocation
policy for the deceased-donor kidney wait list; they work within today’s point-based allocation
framework, and balance efficiency over time with various notions of fairness. Alagoz et al. [11]
formulate the organ acceptance or rejection problem for the deceased-donor liver wait list as a
Markov decision process and study its properties using real data, while Akan et al. [8] derive
optimal policies for the liver wait list under a variety of settings.

Our Contributions. Our main contributions in this chapter are twofold:
• We introduce a method for informing myopic optimization about the future in dynamic prob-

lems. It automatically learns potentials of elements of the problem (e.g., of vertices or edges
in a graph) offline, and then uses these potentials to guide myopic optimization at run time.
The potential represents an estimate of how much that element can contribute to the objec-
tive in the future. The potentials can be viewed as policy parameters, so they are a natural,
fairly general way of parameterizing policies. They can be optimized using a black box
program; we are able to leverage state-of-the-art automated algorithm configuration tools to
learn their values. Then, at run time, we simply run an offline optimization algorithm at each
time period, but subtracting out in the objective the potentials of the elements used up in the
solution. This causes the batch optimizer—which is traditionally myopic—to take the future
into account without suffering a run-time cost.

• We successfully apply the approach to a recognized difficult dynamic matching problem,
kidney exchange. It is a significantly richer matching problem than traditional matching
(where the task is to pair vertices). We address the unsimplified problem. We first prove
bounds on the power of learning potentials on vertices, edges, cycles, and the entire graph
(which is optimal). Then, we learn potentials for vertices using a state-of-the-art parameter
learning package and kidney exchange instance generator. We show that these learned po-
tentials beget a greater number of matches than simple myopic matching at nearly no run
time cost across all the settings tested.

Estimating the potential—roughly, some quantification of the ability to “help” in the future—of
a structural element of a problem can be viewed through the lens of the reinforcement learning/-
Markov decision processes (MDP) as a policy search process (e.g., [47, 141]). For some problems,
however, estimating the value of a state is incredibly difficult. For example, in kidney exchange,
determining the static value (i.e., with no lookahead) of even a reasonably small pool involves
solving an integer program that cannot fit in memory [6], while estimating the value with even
limited lookahead requires searching over an infinite state space and an exponential (in the num-
ber of edges) action space, with highly-variable transition probabilities between states (due to the
probabilistic nature of the evolution of the pool (e.g., [75])).

113



For this reason, we turn to tools that have been purposefully designed to search over a large
state space where the objective value is highly instance-specific and non-deterministic: automated
algorithm parameter tuners [113]. Automated algorithm configuration tools are used primarily to
find the set of parameters to a black box algorithm that minimizes runtime (e.g., determining the
“best” set of command line parameters to pass to CPLEX or Gurobi). By viewing potentials as
parameters that determine the performance of a black box optimization algorithm—the total pro-
portion of patients matched over time by our myopic but potential-aware matching algorithm—we
are able to translate our problem to one more well-studied in a different space. To our knowledge,
this is the first such use of parameter tuning in dynamic optimization.

We experimentally support our technique on simulated kidney exchange problems. We show
that while the theoretical worst-case performance of potentials can be quite bad, in practice the
learning algorithm works well—even on relatively inexpressive structural elements (vertices). Our
technique shows statistically significant increases in the number of patients matched over a wide
variety of pool compositions, and scales to pools of size at least an order of magnitude larger than
the previous state-of-the-art in dynamic kidney exchange.

6.2 Using potentials to inform myopia

We now introduce the idea of potentials to capture the future into myopic matching. Given a
structural element (e.g., vertex, edge, cycle type, etc.) of the problem, a potential P ∈ R quantifies
the future expected usefulness to the exchange of that element.

For example, consider potentials on vertices. In terms of ABO compatibility, an O-type donor
can give to O-, A-, B-, and AB-type patients, an A-donor can give to A or AB, a B-donor can give
to B or AB, and an AB-donor can only give to AB. Therefore, an O-type altruistic donor typically
leads to more matched patients (i.e., has higher potential) than other types of altruist. Similarly,
an altruist with a given blood type tends to have higher potential than a patient-donor vertex with
that same donor type because the pair is harder to match, since it expects a kidney in return and
that kidney needs to be compatible with the pair’s patient. Intuitively, then, it might make sense to
not match an O-altruist until he or she can trigger a long chain of patient-donor pairs in the pool.
Similarly, if a feasible match for a hard-to-match patient-donor pair exists at the present time, it
might make sense to immediately match this pair since saving the pair for later would likely yield
no benefit (and would risk that pair never being matchable in the future). So, the altruist would
be given a high potential: by saving the O-type altruist until she triggered a long chain, more
lives would be saved overall. Similarly, the hard-to-match patient-donor pair would be given a low
potential to incentivize immediate matching.

As described in the introduction, the exchange clearing problem finds a maximum-weight ex-
change of disjoint cycles. Given the potential for a vertex, edge, or cycle type (where type is
defined by the ABO blood types of the donors and the patients in the vertices), we can easily trans-
late this information into a language the matching algorithm understands. For example, with vertex
potentials, the translation works as follows. Given vertex potentials PX and PY representing the
potentials of patient-donor pairs of ABO type X and Y, respectively, any edge e between vertices
of type X and Y receives weight we = f(PX , PY ), for some function f : R × R → R. Cycles
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in the exchange are then assigned weights as usual, as the sum of their edge weights. In this way,
the potentials assigned to specific elements affect the final maximum-weight exchange of disjoint
cycles.

A small example of potentials. We now provide an example of setting vertex potentials in a
reduced model of kidney exchange; note that, as described in our paper, we use a much richer set of
features in our experiments. We must first select a set Θ of features representing different element
types in the pool. Then, for each element type θ, assign some value Pθ ∈ R that represents the
expected potential usefulness of that kind of element to the pool over time. As an overly simplified
pedagogical example, let ΘALT = {ALT, PAIR}; potentials are assigned based on whether or not a
vertex is an altruist or a patient-donor pair. Intuitively, PALT ≥ PPAIR; altruistic donors tend to be
(much) easier to match because no returning edge is required to “close the cycle” at the end of a
chain. These potentials are then subtracted out for each element in the objective.

a

p1

p2p3

Figure 6.1: Example of potentials ΘALT. Pair p3 appears in the second period. Myopic match-
ing uses a to match two pairs; assigning a positive potential results in all three pairs
matched without using a.

Figure 6.1 shows a two time period example under ΘALT. Vertices a, p1, and p2 arrive in the
first time period, while vertex p3 arrives in the second time period. Assigning a (large enough)
potential PALT results in the chains 〈a, p1〉 and 〈a, p1, p2〉 having negative weight and thus not being
matched in the first time period. However, when p3 arrives, the chain 〈a, p1, p2, p3〉 may now have
positive value (i.e., the utility of matching three pairs outweighs the learned potential of holding a
back for another round) and can be matched, or the 3-cycle 〈p1, p2, p3〉 has higher positive value
and is matched instead, continuing to save the altruistic donor a for a longer chain in the future.

A more concrete example of ABO potentials. Returning to our initial example of learning
potentials over patient and donor blood types, say we have learned that P·−O = 2.1 and PO−AB =
0.1, representing the vertex potentials of an O-type altruist and an O-AB type patient-donor pair,
respectively. Furthermore, define f(PX , PY ) = 1− 1

2
(PX +PY ). (This formula assumes that edge

weights before taking potential into account are 1, as is the case in the generator due to Saidman
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et al. [191], which we use in this chapter. Some fielded kidney exchanges also set all edge weights
to 1, and others set them roughly equally. The methodology in this chapter applies to unequal
edge weights as well—which we discuss in the more realistic experiments using potentials via
FUTUREMATCH in Chapter 8.) Then, any edge e between an O-type altruist and an O-AB type
patient-donor pair will receive weight 1 − 0.5(2.1 + 0.1) = −0.1. Informally, this is telling the
matching algorithm that any chain c including edge e—triggered by the extremely valuable O-type
altruist—will need to be long (i.e., high weight) enough to offset the negative weight of e.

In the ABO model of kidney exchange, there are 20 possible vertex types: 4 types of altruists
(O-, A-, B-, and AB-type), and 16 types of patient-donor pairs (O-O, O-A, ..., AB-AB-type). If we
consider edge types, this number jumps to 244: 208 possible edges originating from patient-donor
pairs, and 36 originating from altruists. Allowing potentials to be learned for variable-length cycles
increases this number dramatically. Intuitively, there is a tradeoff between the expressive power of
the potentials (allowing potentials for larger structural elements such as edges, or cycles, or even
beyond, having more expressiveness) and the computational power needed to learn the potentials
(the hypothesis space being larger the more variables there are). To lend insight to this, in the next
section, we prove bounds that compare associating potentials with vertices, edges, cycles, or even
higher-level elements such as the entire graph.

6.3 How much can associating potentials to larger elements
help?

In this section, we prove bounds on the best-case benefit from associating potentials on larger ele-
ments compared to associating them with smaller elements. (However, as we will experimentally
show later in the paper, even properly setting vertex potentials works very well in practice.)

First, in Theorem 14 we compare the application of potentials to vertices and to edges and
show that edge potentials can do notably better. Second, Theorem 15 considers allowing potentials
to be applied to edges and cycles; again, we show that the finer-grained resolution of cycles can
allow better overall results than just edges. Finally, Theorem 16 shows that, in certain pathological
cases, even applying potentials to cycles can perform poorly compared to potentials on unlimited
graph elements (which is equivalent to comparing against an omniscient algorithm with perfect
foresight).

The constructions in the proofs are in the two- and three-stage setting and work even if the
clearing engine is omniscient about the future. To evaluate the quality of a choice of potentials, we
compute the number of matched pairs as follows: in the first stages the number of matched pairs
plus the potentials of leftover elements is maximized, and in the final stage the number of matched
pairs is maximized.

6.3.1 Vertex potentials versus edge potentials

We first consider associating potentials only to the vertices, in the two-stage model.
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Theorem 14 (Vertex potentials vs edge/graph potentials). We give results first for the cycles-only
case, and second for the case with cycles and chains.

1. For every k ∈ N there exists an input with cycles of length at most 2k + 4 and no chains
such that for any choice of vertex potentials the number of matched patients is at most a
(4k + 4)/(6k + 4)-fraction of the optimum.

2. For every k ∈ N there exists an input with 2-cycles and chains of length at most 2k + 5
such that for any choice of vertex potentials the number of matched patients is at most a
(4k + 5)/(6k + 5)-fraction of the optimum.1

In each of the three cases, the construction is such that the optimum is achievable using edge
potentials.

Proof. For case 1, given k ∈ N, consider the input illustrated in Figure 6.2. In stage 1 there is
a 2-cycle between AB-O and AB-A, a 2-cycle between A-A and A-O, k 2-cycles between AB-O
and A-O, and k 2-cycles between AB-A and A-A. In stage 2 the gray vertices disappear, and 2k
AB-AB vertices appear, so that a (2k + 4)-cycle is formed between the white and dashed vertices.
Note that an edge exists between two donor-patient pairs only if they are blood type compatible.

AB-O AB-A A-A A-O

AB-ABAB-ABAB-ABAB-AB
2k vertices

AB-O A-O AB-O A-O

k cycles

AB-A A-A AB-A A-A

k cycles

Figure 6.2: Example of Theorem 14. Vertices present in both stages are white. Vertices present
only in stage 2 are dashed. Vertices present only in stage 1 are gray.

The optimal solution matches all gray cycles in the first stage, and the long cycle in the second
stage, for a total of 6k + 4 pairs matched. This can easily be accomplished using edge potentials
but, as we will show, not vertex potentials.

To analyze the quality of the solution when using vertex potentials, first consider the case
where the 2-cycle between AB-O and AB-A and the 2-cycle between A-A and A-O both remain
unmatched at the end of the first stage. Because these cycles are disjoint from other cycles in the

1As is common practice, we say that the last donor in a chain donates to the deceased-donor wait list (not shown
in our illustrations). That is included in all our analyses and experiments. For example, if an altruist donates to a pair
that donates to the wait list, the chain length is 2 and the number of patients saved is 2.
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graph, they can remain unmatched only if the potential of their vertices is greater than their length;
formally, PABO + PAB-A > 2 and P + PA-O > 2. By summing these two inequalities we obtain the
inequality

PABO + PAB-A + P + PA-O > 4. (6.1)

It follows that PABO + PA-O > 2 or PAB-A + P > 2. Indeed, otherwise by summing we would
obtain that PABO +PAB-A +P+PA-O ≤ 4, in contradiction to Equation (6.1). Assume without loss
of generality that PABO + PA-O > 2. Therefore, in stage 1 the k cycles between AB-O and A-O
pairs are not matched. It follows that the number of pairs that are matched can be at most 4k + 4.

We now consider the case where the first-round matching includes either the 2-cycle between
AB-O and AB-A or the 2-cycle between A-A and A-O. In stage 2, the 2k AB-AB vertices in the
long cycle cannot be matched. Thus, the number of matched pairs is at most 4k + 4. We see that
the ratio between the number of patients matched under optimal vertex potentials and the optimum
is at most (4k + 4)/(6k + 4).

The input for case 2 is almost identical, and is obtained by removing the edge from AB-AB
to AB-O, and adding an altruistic donor (say with blood type O), who appears in stage 2, with an
edge to the white AB-O pair.

As k grows in Theorem 14, the ratio of vertex to edge (and optimal) potentials in parts 1 and 2
tend toward 2/3. This is a negative result in the high-stakes world of kidney exchange, where
losing 1/3 of the possible matches is highly undesirable. However, the results below shows that
worst-case performance is poor even if we allow potentials on edges.

6.3.2 Edge potentials versus cycle potentials
We now show that edge potentials can have poor performance compared to cycle potentials, tending
toward matching 1/2 of the matchable patients in a two-stage model. We allow the cycle potential
to be a function of all the ABO types of the vertices of the cycle.
Theorem 15 (Edge potentials vs cycle/graph potentials). As with Theorem 14, we give results first
for the cycles-only case, and second for the case with cycles and chains.

1. For every k ∈ N there exists an input with cycles of length at most 3k + 2 and no chains
such that for any choice of edge potentials the number of matched patients is at most a
(3k + 2)/(6k + 2)-fraction of the optimum.

2. For every k ∈ N there exists an input with 2-cycles and chains of length at most 3k + 3
such that for any choice of edge potentials the number of matched patients is at most a
(3k + 3)/(6k + 3)-fraction of the optimum.

In both of these cases, the construction is such that the optimum is achievable using cycle poten-
tials.

Proof. The construction in Figure 6.3 proves case 1.
Cycle potentials match the gray nodes and the long cycle, while edge potentials can match

either the gray and solid white vertices or only the long cycle. In this construction, every vertex
has the same ABO-type, so each edge must have the same potential P . Assume that the edge
weights before potential is taken into account are all 1. Now, if P > 1, the algorithm must match
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3k vertices

k cycles

Figure 6.3: Example of Theorem 15. Vertices present in both stages are white. Vertices present
only in stage 2 are dashed. Vertices present only in stage 1 are gray.

nothing in stage 1 while if P < 1, it must match the 2-cycle in stage 1 (along with the 3-cycles),
which precludes it from matching the long cycle in stage 2. The adjustment for case 2 is the same
as in Theorem 14.

6.3.3 Cycle potentials versus graph potentials

We now show that we cannot get optimal matching in the worst case even if we associate potentials
with entire cycles, in a three-stage model (where all vertices expire after the second stage).
Theorem 16 (Cycle potentials vs graph potentials). Denote by L the cap on cycle length. There
exists an input with cycles of length at most L (even with no altruistic donors) such that for any
choice of cycle potentials the number of matched patients is at most a 1/L-fraction of the optimum.

Proof. In Figure 6.4, the optimal solution is to pass on the L-cycle in stage 1, but to accept all the
L-cycles except the central one in stage 2. The cycle-potential algorithm cannot accomplish that
because it has to wait on all L-cycles or to take them all (since this construction assumes that all
edges have the same pre-potential weight, and all L-cycles have the same potential because all the
vertices have the same ABO type). It must either take the L-cycle in stage 1 or nothing in either
stage; the former choice is better.

While the theoretical results in this section show that there can be a significant benefit to as-
sociating potentials with larger elements, in the experiments that follow, we will use potentials on
vertices. This is motivated by there being fewer weights to learn. As we will show, even learning
that number of weights is challenging, but as we also show, the approach works well in practice.
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Figure 6.4: Example of Theorem 16. Vertices present in both stages are white. Vertices present
only in stage 2 are dashed.

6.4 Learning the values of potentials
In this section, we describe our technique for learning potentials for elements of kidney exchange.
We use ParamILS [113], which was at the time of this initial work a state-of-the-art algorithm
configuration package, to intelligently search through the parameter space for an optimal (or near-
optimal) instantiation of the potential variables. (In the more realistic and up-to-date experiments
via FUTUREMATCH in Chapter 8, we use SMAC [114], a successor to ParamILS.) The method
given is general enough to handle potentials on vertices, edges, cycles, and so on. However, due to
the computational complexity of learning potentials, we focus on learning vertex potentials only.

Given an objective function and a parameter space over which to search, ParamILS takes an
initial vector of parameter values and, using iterated local search, tries to optimize the objective
by adjusting the parameters. In our case, the parameters are 20 real-valued vertex potentials (16
patient-donor pair ABO types plus 4 altruist ABO types). Our objective function in ParamILS
was to maximize the number of patients matched as a fraction of the optimal number of patients
that could be matched in a full information model. This ratio is measured by running the myopic
kidney exchange solver using the vertex potentials as parameters.

ParamILS requires discretization of the parameters. We let each potential live in the space
{0, 0.2, . . . , 3.0}. (The highest value that ParamILS ended up with was 1.4.)

To learn the parameter values, ParamILS uses a training set and an internal test set. Our sets

120



contained 1500 and 300 kidney exchange graphs, respectively. Each graph had 95 patient-donor
pairs and 5 altruists total arriving over 25 months, and was generated using the standard kidney
exchange generator [191]. We amended the generator to generate altruists to correspond to fielded
kidney exchanges. The expiration rate of vertices was set according to the reality that 12% of
kidney patients survive 10 years [215]. The expiration rate for altruists was set to be the same. The
other ParamILS settings were: 1000 runs per random seed per graph, and 1000 random graphs per
parameter vector. The authors of ParamILS recommend running ParamILS multiple times with
different settings of the numRuns parameter; we ran 24 times with different values and ran for
three days on each. Finally, we chose the parameter vector with highest score across all runs.

None of the ParamILS iterated local search runs terminated. This is due to (a) the high vari-
ability in running dynamic match runs on the same compatibility graphs, (b) the high variability
between different compatibility graphs, and (c) the long run time required to solve each instance
(the clearing problem is NP-hard). However, as our results in the next section show, the learned
weights did, in fact, improve myopic matching significantly. Also, the relative sizes of the learned
parameter values made sense, with easier-to-match vertices receiving greater potentials.

6.5 Weighted myopic matching at run time
We now present extensive experimental results using the potentials learned on our training and
ParamILS-internal test data sets. We test on a new test set starting with the problem sizes used
for training and then testing on much larger instances. We conclusively show that the learned
vertex potentials increase the total number of matches made by the myopic matching algorithm.
Furthermore, once these potentials are learned, they do not seriously affect match run time. As
such, the scalability results of, e.g., the HPIEF and PICEF models of Chapter 3 remain applicable.

6.5.1 Comparing to optimal matching
We begin by comparing our weighted myopic algorithm and standard myopic algorithm to an
optimal matching. The optimal matching is computed in a full-information model where the opti-
mization algorithm is given access up front to exactly which patient-donor pairs and altruists will
be in the pool at each period. It is impossible for any algorithm to match more candidates—and
unlikely that any would be able to match equally many due to lack of full information about the
future.

As in prior experiments on dynamic kidney exchange, each simulation was conducted over 51
time periods, representing 4 years and 3 months of actual time. We vary the number of patient-
donor pairs from 110 to 710 and add 5% as many altruists as there are patient-donor pairs. For
example, with 510 pairs, there are 25 altruists in the pool.2 This number is motivated by the UNOS
pilot nationwide kidney exchange that we have been working to establish. Altruistic donors were
incorporated into that exchange in April 2011. At the time of these experiments, their number had
been roughly 5% of the number of patient-donor pairs—that percentage has dropped a bit in recent

2At each time period, the number of pairs and number of altruists are drawn from a normal distribution; this is
retried until the total number of each of the two across all 51 time periods is correct.
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years due to the increase in match cadence using up altruistic donors quickly. The absolute number
of altruists entering has increased.

Figure 6.5 shows the improvement gained by our weighted myopic matching algorithm, relative
to the difference between plain myopic matching and the optimal match size. For example, if the
standard myopic algorithm matched 300 candidates, the optimal matched 360, and the weighted
myopic algorithm matched 315, we report (315 − 300)/(360 − 300) = 25%. Clearly, vertex
potentials help. Interestingly, as the number of patient-donor pairs and altruists increases, the
weighted myopic algorithm tends toward the optimal solution more quickly than standard myopic
matching.
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Figure 6.5: Percentage gain of weighted over unweighted myopic matching relative to the optimal
match cardinality.

Table 6.1 gives the statistical significance of our results. Statistical significance testing was
done using a Wilcoxon signed-rank test, a more conservative, nonparametric version of a t-test.
The p-values clearly show the significance of the weighted matching algorithm’s gains.

6.5.2 Scaling to larger graphs

We now study how the approach scales to larger problems. Because the parameter learning was
complex already at a smaller problem size, we do not attempt to re-learn the parameters for the
larger problems.

Furthermore, calculating the optimal match size quickly becomes intractable, since the clearing
algorithm must consider an unrealistically large pool over all 51 time periods at once. Therefore,
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patient-donor pairs %improvement samples p-value
110 7.54 240 2.970e-204
210 9.04 240 6.240e-40
310 12.21 240 4.515e-37
410 17.74 240 5.994e-41
510 18.36 239 1.468e-41
610 21.44 66 1.400e-12
710 26.16 15 5.320e-04

Table 6.1: Statistical significance tests of our results for graphs with a variable number of patient-
donor pairs and 5% as many altruistic donors. The %improvement over unweighted is
relative to the optimal matching.

we only evaluate the efficacy of our algorithm against the myopic matching algorithm. We maintain
the test setup from the last section, with 5% as many altruists as there are patient-donor pairs.

Figure 6.6 gives sample cumulative distribution functions of the weighted myopic gains over
unweighted myopic in terms of total match size. White bars correspond to the weighted algorithm
matching more than unweighted. Black bars represent when our method was beaten by unweighted
myopic. Losses such as these are unavoidable in any non-full-information model; however, in our
experiments losses were rare and significantly smaller than respective gains.

Figure 6.7 shows the percentage gain of the weighted myopic algorithm relative to the match
cardinality of the unweighted myopic matching algorithm. While these percentages are relatively
small, it is important to note that (1) the full-information upper bound on the amount of room for
improvement is rather low and our algorithm captures a large percentage of that (Figure 6.5), (2)
these are improvements in real lives saved, so even small improvements are important, and (3) the
improvements are statistically significant as discussed above. Furthermore, some of the decline
in absolute percentage gain may be due to our learning vertex potentials on significantly smaller
graphs.

6.6 The role of altruistic donors

One significant unknown in kidney exchange is the ratio of altruistic donors to patient-donor pairs.
More altruists in the pool drastically increases the fraction of patients matched (see, for example,
Figure 2.6 of Chapter 2). In this section, we vary the percentage of altruists in the pool relative
to the number of patient-donor pairs. It turns out that our method works well when there are no
altruists, few altruists, or many altruists. This is despite the fact that we do not re-learn potentials
for a specific density of altruists.

For these experiments, we held the number of patient-donor pairs in the pool constant at 510,
and varied the number of altruists from 0 to 120. Figure 6.8a shows the absolute gain in the number
of candidates matched by our weighted myopic algorithm over the standard myopic algorithm. As
above, the absolute gain is 1–1.5%. Interestingly, the absolute gain percentage decreases as the
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Figure 6.6: CDFs of absolute gains of weighted versus unweighted myopic matching. White bars
correspond to the weighted approach outperforming the unweighted.
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Figure 6.7: Percentage gain of weighted over unweighted myopic matching relative to the myopic
match cardinality, for graphs with a variable number of patient-donor pairs and 5% as
many altruistic donors.

number of altruists increases; this can be explained by myopic matching being closer to optimal
when the number of altruists is large. Figure 6.8b shows the percentage gain of weighted myopic
matching relative to the gap between optimal matching and traditional myopic matching. We see
that using the vertex potentials learned earlier results in matching 10–25% of the candidates left
unmatched by unweighted myopic matching, regardless of the number of altruists in the pool.

Table 6.2 shows that the vertex potentials improve the matching with extremely high statistical
significance. Again, Wilcoxon signed-rank test methodology was used.

Potentials on altruists only. We also ran experiments where we learned and tested potentials
on altruists only. This significantly reduces the search space size to 4 parameters. ParamILS
learned the following potentials for O-, A-, B-, and AB-altruists, respectively: 0.8, 0.6, 0.4, and
0.2. This makes qualitative sense because O-altruists are easiest to match and AB-altruists the
hardest. Interestingly, the potential is less than 1 even for O-altruists. Perhaps surprisingly, this
approach led only to a tiny improvement over unweighted myopic matching across graph sizes.
For example, averaged over 1500 runs with 410 vertices each, the relative gain over unweighted
myopic was 0.06% while it was 16.3% when learning all 20 potentials (over patient-donor pairs
and altruists).
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(a) Absolute improvement.
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(b) Improvement relative to optimal.

Figure 6.8: Percentage gain of weighted myopic over unweighted myopic matching relative to the
myopic match cardinality (top) and optimal match cardinality (bottom), for graphs
with 510 pairs and a varying number of altruists.
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altruists %improvement samples p-value
0 7.29 369 2.507e-43

10 16.51 280 4.759e-45
20 18.97 280 1.304e-44
30 16.63 280 1.572e-40
40 17.77 280 1.863e-38
50 19.58 280 8.005e-42
60 18.00 280 1.906e-37
70 21.55 280 4.829e-44
80 20.43 280 2.407e-41
90 19.50 270 1.763e-41

100 21.10 160 5.974e-26
110 23.81 65 3.552e-12
120 17.51 49 1.769e-09

Table 6.2: Statistical significance tests for graphs with 510 patient-donor pairs and varying number
of altruistic donors. The %improvement over unweighted is relative to the optimal
matching.

6.7 Conclusions & future research

In this chapter, we introduced an automated, scalable method for informing myopic optimization
algorithms about the future in dynamic problems. It learns potentials of elements of the problem
offline and then uses the potentials to guide myopic optimization at run time. The potential rep-
resents an estimate of how much that element can contribute to the objective in the future. The
potentials can be viewed as policy parameters, so they are a natural, fairly general way of param-
eterizing policies. They can be optimized using a black box program; we were able to leverage
state-of-the-art automated algorithm configuration tools to learn their values. Then, at run time, we
simply run an offline optimization algorithm at each time period, but subtracting out in the objec-
tive the potentials of the elements used up in the solution. This causes the batch optimizer—which
is traditionally myopic—to take the future into account without suffering a run-time cost.

We applied these techniques to kidney exchange. We theoretically compared the power of
using potentials on increasingly large elements: vertices, edges, cycles, and the entire graph. Then,
experiments showed that by learning vertex potentials, our algorithm matches more patients than
the current practice of clearing myopically—at nearly no run-time cost. We experimented with
a variety of graph types; weighted myopic matching helped on them all. Furthermore, applying
potentials did not significantly affect the runtime of the clearing algorithm, so scalability results
from the static kidney exchange problem carry over to potentials-weighted myopic matching.

A clear direction for future research would be an empirical comparison of potentials learned
on vertices to larger elements. There is a tradeoff: on the one hand, as we proved, associating
potentials with larger elements has more power, but on the other hand, there are more parame-
ters to learn. ParamILS did not converge even on vertex potentials, and neither did its successor
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SMAC, which we will use in Chapter 8 for more realistic simulation experiments on UNOS-style
data via the FUTUREMATCH framework; we conjecture that a new learning method is required to
move beyond vertex potentials. This could involve using domain knowledge of partial ordering
of potentials. Furthermore, better automated methods for feature selection and classifier selec-
tion could be employed; this is an active area of research in knowledge discovery and data min-
ing [208]. Indeed, recent scalability advances in reinforcement learning may be applicable to this
problem [142, 161, 217], and are worth exploring in future work.
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PART III:

Balancing Equity & Efficiency in Dynamic
Matching Environments
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The dilemma over whether to pursue policies that em-
phasize equity (sometimes regarded as “fairness”) or
utilitarianism (“total good”) faces all societies. Such
policies are often in conflict ...

– Hooker & Williams

The primary purposes of the OPTN are to operate and
monitor an equitable system for allocating organs do-
nated for transplantation ...

– OPTN Charter 7
The price of fairness in kidney exchange

In Parts I and II, we address the clearing of exchanges under utilitarian matching rules. This
approach marginalizes certain classes of participants (in our case, patients) in an exchange. In
this chapter, we focus on improving access to kidneys for hard-to-match agents; in the kidney
exchange context, these are typically highly-sensitized patients. Toward this end, we formally
adapt a recently introduced measure of the tradeoff between fairness and efficiency—the price
of fairness—to the standard kidney exchange model. We show that the price of fairness in the
standard theoretical model is small. We then introduce two natural definitions of fairness and
empirically explore the tradeoff between matching more hard-to-match patients and the overall
utility of a utilitarian matching, on real data from the UNOS nationwide kidney exchange and
simulated data from each of the standard kidney exchange distributions.

As discussed in the motivation of failure-aware matching in Chapter 5, successful transplan-
tation of a kidney relies on tissue-type compatibility between the donor organ and patient, among
other noisy factors. Compatibility is determined through a tissue-type crossmatch between a po-
tential donor and patient’s blood; if the two types differ substantially, the patient’s body will reject
the donor organ. Some patients are highly-sensitized; there is a very low probability that their
blood will pass a crossmatch test with a random organ. For these patients, finding a kidney is
quite difficult (and median time on the waiting list jumps by a factor of three over less sensitized
patients [212]).

Roughly 17% of the adult patients on the waiting list for deceased donor kidneys are highly-
sensitized [107]. Yet, the percentage of highly-sensitized patients in fielded kidney exchanges is
quite high; roughly 60% of the UNOS nationwide kidney exchange is highly-sensitized, as shown
in Figure 7.1. This is due to kidney exchanges often being seen as a “last hope” for patients who
have not been matched through more traditional means.

Roth et al. [186] and Li et al. [146] investigate egalitarianism in the context of 2-cycle-only
exchange, with extensions to longer cycles by Yılmaz [221], but so far implementable fairness
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Figure 7.1: Composition of the UNOS national kidney exchange over time. For each of 96 match
runs (x-axis), the raw number of highly-sensitized patients, non-highly-sensitized pa-
tients, and altruists are plotted (left y-axis), as well as the percentage of patients who
are highly-sensitized as a percentage of the pool size (right y-axis).

rules in the context of realistic exchanges with longer cycles and chains has not been rigorously
discussed. In this chapter, we explore the price of fairness in kidney exchange—the relative loss in
total welfare from using a “fair” matching rule, instead of an overall utility-maximizing one [35].
Theoretically, we show that the price of fairness is small in the standard theoretical kidney ex-
change model. We then define two natural definitions of fairness in kidney exchange and empiri-
cally quantify the tradeoff between efficiency and fairness on real and simulated data. We find that,
on real data, prioritizing hard-to-match patients results in a price of fairness that is (often quite far
from) zero. While this chapter focuses on highly-sensitized patients, its techniques and results are
easily adaptable to other notions of fairness in kidney exchange.

Related Publications

Some of the work in this chapter appeared at AAMAS-14 and its workshops; it was per-
formed as a collaboration between Dickerson, Procaccia, and Sandholm [77, 78].

7.1 Fairness in kidney exchange
In this section, we extend the standard graph-based model of kidney exchange to include a notion
of sensitization, and formally define the price of fairness in the context of kidney exchange.
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A model of kidney exchange with sensitization. Given the set of all legal matchings M, the
general clearing problem in kidney exchange is to find a matching M∗ that maximizes some utility
function u :M→ R. Formally:

M∗ = arg max
M∈M

u(M)

As discussed in Chapter 3, in fielded kidney exchanges, one typically finds the maximum
weighted cycle cover (i.e., u(M) =

∑
c∈M

∑
e∈cwe). This utilitarian objective can favor certain

classes of patient-donor pairs while marginalizing others. We formalize this notion next.
In practice, the sensitization level of a patient is presented as a Calculated Panel Reactive

Antibody (CPRA) score that varies from 0 to 100. The CPRA score is an estimate of the percentage
of donors that are tissue-type incompatible with the patient (i.e., the percentage of donors with
whom a patient would have a positive, or failing, crossmatch).

Assume each non-altruistic vertex v has a sensitization level vs ∈ [0, 100], representing the
CPRA level of v’s patient. Altruistic vertices need no CPRA specification because they have no
associated patient. Let τ ∈ [0, 100] represent a threshold delimiting low from high sensitization;
in practice, τ ≥ 80. Partition V into {VL ∪ VH ∪ A}, such that:
• VL is not highly-sensitized: {v | v ∈ V \ A ∧ vs < τ}
• VH is highly-sensitized: {v | v ∈ V \ A ∧ vs ≥ τ}
• A are altruistic donors (with no patients)
Since the highly-sensitized patients will, by definition of CPRA, have fewer incoming edges

on average than lowly-sensitized patients, one worries that a mechanism maximizing overall effi-
ciency might favor easier-to-match vertices in VL to the detriment of those in VH . Similarly, if a
mechanism prioritizes harder-to-match vertices in VH , one worries that the overall efficiency of the
matching might drop.

The price of fairness. Bertsimas, Farias, and Trichakis recently defined the price of fairness
to be the “relative system efficiency loss under a fair allocation assuming that a fully efficient
allocation is one that maximizes the sum of [participant] utilities [35].” Caragiannis et al. defined
an essentially identical concept in parallel [53]. We adopt that notion here.

Let uf : M → R be a fair utility function. Formally, a utility function is fair when its
corresponding optimal match M∗

f is viewed as fair, where M∗
f is defined as:

M∗
f = arg max

M∈M
uf (M)

Given a fair utility function uf and the utilitarian utility function u, the price of fairness is
defined to be:

POF(M, uf ) =
u (M∗)− u

(
M∗

f

)
u (M∗)

That is, POF(M, uf ) is the relative loss in match efficiency (from the utilitarian point of view
u) due to the maximization of a fair utility function uf over some family of matchingsM.
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In the next section, we show that the price of fairness in the standard dense theoretical model for
kidney exchange is quite small, for any reasonable fair utility function uf . Then, in Sections 7.3
and 7.4, we present two families of fair utility functions motivated by our experiences with the
UNOS national kidney exchange; on real data, the price of fairness is frequently far from zero.

7.2 The (theoretical) price of fairness is low
In this section, we give bounds for the price of fairness under the standard model of kidney ex-
change. The price of fairness is upper-bounded by a small number of vertices (under reasonable
assumptions, with high probability).

7.2.1 Upper bound over all fair utility functions
Different notions of fairness may result in more (or less) of an effect on overall system efficiency.
As an extreme example, forcing a matching to include at least one highly-sensitized patient (if
possible) intuitively restricts the solution space less than forcing a matching to include as many
highly-sensitized patients as possible. We must consider this when stating theoretical bounds on
the price of fairness.

We derive our bound under the fair utility function uH�L that lexicographically ranks any
highly-sensitized vertex over any lowly-sensitized vertex. For any matching M ∈ M, let MH =
M ∩ VH be the subset of highly-sensitized vertices matched by M . Formally:

uH�L(M) =

{
u(M) if |MH | = maxM ′∈M |M ′

H |
0 otherwise

This utility function gives nonzero weight only to those matches that include the maximum pos-
sible number of highly-sensitized patients. We informally argue that price of fairness guarantees
on uH�L are upper bounds to the price of fairness of any “reasonable” fair utility function. Indeed,
any utility function that does not first maximize the number of highly-sensitized pairs matched
will leave a thicker remaining market in which non-highly-sensitized pairs have more options for
matching—and thus the resulting match will see less of an efficiency loss.

7.2.2 Model with ABO-blood types and two levels of sensitization
As in Chapter 2, and later in parts of Chapter 9, we work in a dense theoretical model that considers
blood types—but augment it now to include a notion of sensitization as well.

We draw random graphs in accordance with the canonical method introduced initially by Ash-
lagi and Roth [19]. As in Chapter 2, partition the n incompatible patient-donor pairs of some large,
directed compatibility graph G(n) into V X-Y of type X-Y , for each combination of blood types
X and Y of the patient and donor respectively. When required, we will further partition each set
V X-Y into V X-Y

L and V X-Y
H , the lowly- (highly-)sensitized pairs of type X-Y . The frequency of

each blood type X is denoted by µX . Note that vertices with blood type-compatible patient-donor
pairs may still enter the pool due to tissue-type incompatibility, as in Ashlagi and Roth [19]. We
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assume that a donor and a lowly-sensitized (highly-sensitized) patient who are blood type compat-
ible are tissue-type incompatible with constant probability pL (pH). Let p̄ represent the average
level of sensitization in the pool; that is, p̄ = λpL + (1− λ)pH , where λ is the fraction of the pool
that is lowly-sensitized.

Proposition 6 gives a bound on the price of fairness in random graphs in the ABO-model
parameterized in a realistic way for a steady-state exchange (i.e., p̄ mirrors that of a dense kidney
exchange pool, and the blood type distribution mimics that of the US population). The proposition
and proof sketch build on the efficiency result presented in §5 of Ashlagi and Roth [19]. Like their
work, Proposition 6 considers a model without chains.
Proposition 6. Assume that p̄ < 2/5, µO < 3µA/2, and µO > µA > µB > µAB, and λ ≥ (1 − p̄).
Denote byM the set of matchings in G(n). Then, almost surely as n→∞,

POF(M, uH�L) ≤ 2

33
.

(And this is achieved using only cycles of length at most 3.)

Proof. Let pairs of type A-B and B-A be called reciprocal pairs. Call any non-reciprocal pairX-Y
whose donor is not ABO-compatible with its patient an under-demanded pair, and any pair X-Y
such thatX 6= Y (X = Y ) and whose donor is ABO-compatible with its patient an over-demanded
(self-demanded) pair.

From the results of Ashlagi and Roth [19], with high probability there exists an efficient match-
ing M∗ in G(n) that matches all over- and self-demanded pairs, as well as all reciprocal pairs.
Trivially, all highly-sensitized pairs are also matched in these specific subgroups. Thus, we need
only consider highly-sensitized pairs in under-demanded pools. We do this exhaustively.

• In M∗, all pairs in V AB-B are matched to as many pairs in V B-AB as possible. If |V AB-B| ≥
|V B-AB
H |, then all highly-sensitized under-demanded B-AB pairs will be matched. Note
|V AB-B| ∝ p̄µBµAB and |V B-AB| ∝ (1 − λ)µBµAB. Then by the assumption on λ, p̄µBµAB ≥
(1− λ)µBµAB, and the above cardinality inequality holds almost surely.1

• We now match all highly-sensitized pairs in V O-A
H and V O-B

H to pairs in V A-O and V B-O, re-
spectively, using 2-cycles. This can be done by the same argument as above.
WLOG, assume |V B-A| ≤ |V A-B|. Then, in M∗, all reciprocal pairs in V B-A are matched
to as many pairs as possible in V A-B, leaving V A-B

r leftover reciprocal pairs. In M∗, these
leftover pairs in V A-B

r are fully matched through V B-O and V O-A in 3-cycles. By executing the
2-cycles above, we may prematurely exhaust V B-O and prevent up to |V A-B

r | 3-cycles from
executing. (Note that if V O-A is exhausted, the V A-B through V B-O cycle can be closed at
length 2 for no efficiency loss.)
By Lemma 5.1 of Ashlagi and Roth [19], the absolute difference in reciprocal pairs is o(n);
that is, |V A-B

r | is less than any other subgroup in the pool (since the size of any other subgroup
is linear in n). Therefore, the number of 3-cycles lost is sub-linear in n; thus, this term
(relative to price of fairness) is insignificant as n grows.

1As n→∞, the size of a set will be very close to its expectation.
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• Next, we match all pairs in V A-AB
H to over-demanded pairs in V AB-A; this leaves |V A-AB

L | ∝
λµAµAB remaining A-AB pairs.
In the efficient matchingM∗, all over-demanded pairs in V AB-O are matched through 3-cycles
with pairs in V A-AB and V O-A. If the remaining |V A-AB

L | vertices in V A-AB are exhausted before
V AB-O, then the remaining vertices in V AB-O can still be exhausted through 2-cycles to, e.g.,
V O-A at no efficiency loss. (Note |V O-A

L | ∝ λµOµA > λµOµAB ≥ (1− p̄)µOµAB > p̄µOµAB ∝
|V AB-O|, since p̄ < 2

5
< 1

2
.) This occurs unless the fair matching accrues efficiency loss

through highly-sensitized, under-demanded O-AB pairs, as explained next.
• Finally, we are left with highly-sensitized pairs in V O-AB, the hardest to match group. In

the efficient allocation, V O-AB is unmatched entirely. In a matching under uH�L, at most
|V O-AB
H | ∝ (1− λ)µOµAB could find a matching elsewhere, possibly cannibalizing a 3-cycle

through V AB-O to form a 2-cycle, or through V AB-B and V B-O or V AB-A and V A-O to form a
3-cycle at a cost of two 2-cycles. In any of these three (exhaustive) cases, every match of a
highly-sensitized O-AB pair results in an efficiency loss of one pair, or an overall absolute
efficiency loss proportional to (1− λ)µABµO pairs.

This exhausts all highly-sensitized pairs in the under-demanded subgroups not fully matched
by the efficient allocation M∗. All highly-sensitized pairs in self- and over-demanded subgroups
are still matched, as in the efficient allocation. Any newly unmatched reciprocal pairs are lowly-
sensitized. Thus, we have matched all highly-sensitized pairs in the pool. This came at an absolute
loss proportional to at most (1−λ)µABµO ≤ p̄µABµO pairs. Figure 7.2 visualizes this new matching
(and shows where losses occur with respect to the efficient matching M∗).

B-AB O-AB X-X

AB-B p̄µABµO AB-O A-O

AB-A A-AB O-A B-A

O-B B-O A-B o(n)

∀X

Figure 7.2: An example matching used in Proposition 6. Patient-donor pairs are ovals: under- and
self-demanded pairs are white, over-demanded pairs are gray, and reciprocal pairs are
black. Regular edges appear in the efficient matching, while dashed edges represent 3-
cycles from the efficient matching that may be disturbed via fair matching. Efficiency
loss is denoted with rectangular nodes.
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To determine a bound on the price of fairness, we must first determine the actual expected loss
in number of vertices (through normalization), and then determine the relative loss with respect to
the expected size of the efficient matching M∗.

The expected size of M∗ is at least E, such that:

E ∝ p̄ [2µABµB + 2µABµA + 3µABµO + 2µAµO

+ 2µBµO + µ2
O + µ2

A + µ2
B + µ2

AB

]
+ 2µAµB

This value is computed by counting only 2- and 3-cycles that are almost surely guaranteed to
execute in the efficient matching. Then, the expected size of a fair matching under uH�L is at least
F ∝ E − p̄µABµO, as calculated above.

An upper bound on the expected price of fairness is then E−F
E

:

POF(M, uH�L) ≤ (p̄µABµO) /

(p̄ [2µABµB + 2µABµA + 3µABµO + 2µAµO

+ 2µBµO + µ2
O + µ2

A + µ2
B + µ2

AB

]
+ 2µAµB

)
Note that the notion of proportionality can be dropped, since both the numerator (the size of

the fair matching, written in terms of the size of the efficient matching) and the denominator (the
size of the efficient matching) are normalized by the same constant.

We prove the statement by giving an upper bound on the right-hand side of the inequality
above. Considering the distribution constraint

∑
X∈{O,A,B,AB} µX = 1, and the ordering constraints

on each blood type, this is upper-bounded when p̄ = 2
5
, µO = 1

3
, and µAB = 2

9
(which forces

µA = µB = 2
9
). Using these values yields an upper-bound of POF(M, uH�L) ≤ 2

33
(with high

probability).

Different countries and regions within countries have different blood type distributions. From
Proposition 6, a more realistic bound for this model can be drawn from the United States distri-
bution of blood types (µO ≈ 0.44, µA ≈ 0.42, µB ≈ 0.10, µAB ≈ 0.04); this yields a bound of
POF(M, uH�L) . 1.5%.

A symmetric result follows if µB > µA, instead of µA > µB as assumed. We note that, from
the reasoning in [19], similar results can be derived for p̄ > 2/5—so long as pL, pH , and p̄ remain
constant.

7.3 How should we define fairness?
In this section, we present two definitions of fairness in kidney exchange—one using strict lexi-
cographic preferences and the other using a sliding scale weighting function. Critically, we feel
both definitions fit within the scope and practice of current policy in fielded exchange, a neces-
sary consideration when fielding new technology in medicine (as noted by those who designed the
recent deceased donor allocation scheme [37] and supported by our experience with the UNOS
exchange). We briefly discuss challenges in implementing either fairness rule, then experimentally
validate both rules in Section 7.4 on simulated and real exchange data.
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7.3.1 Lexicographic fairness
First, we consider a fairness criterion that assumes lexicographic preferences over classes of ver-
tices. This is a generalization of the uH�L utility function used in Section 7.2. Informally, this
fairness rule allows policymakers to state a hard preference for matchings containing a baseline
percentage of highly-sensitized patients and, if and only if this constraint is fulfilled, express a
secondary utilitarian preference. We present this rule below in the context of both deterministic
and probabilistic kidney exchange.

Deterministic model

Let α∗ be the maximum fraction of vertices in VH that could be matched overM, the set of possible
matchings on some compatibility graph G. That is,

α∗ =

(
max
M ′∈M

|M ′
H |
)
/ |VH |

For a given graph G, α∗ can be computed using a simple modification of the standard kidney
exchange cycle formulation integer program, discussed in Part I. (We note that the PIEF, HPIEF,
and PICEF models of Chapter 3 can be used in place of the cycle formulation via a similar tweak
to just their objective functions; for expositional ease, we present this section in the context of the
basic cycle formulation.)

α∗ = 1/ |VH | · max
∑

c h(c)xc
s.t.

∑
c|v∈c xc ≤ 1 ∀v

xc ∈ {0, 1} ∀c
Unless otherwise specified, vertices v range over the set V , while cycles and chains c range

over the set of all legal cycles and chains C(L,K) (for caps L and K, which may grow with |V |).
Here, xc is a binary variable that is set to 1 if cycle c is included in the final matching; otherwise, it
is 0. The constant h(c) is the number of highly-sensitized patients in a cycle or chain c. Formally,

h(c) = |{v | v ∈ c ∧ v ∈ VH}|
Note that h(c) = 0 if a cycle or chain does not contain any highly-sensitized patients, so only

those binary variables xc corresponding to cycles or chains with at least one highly-sensitized
patient need be included in the objective. However, all vertices belonging to at least one cycle or
chain that contains at least one highly-sensitized vertex must be included in the vertex-disjointness
constraints (to maintain the feasibility of the final disjoint cycle cover).

Given this setup, a match could be considered equitable if it satisfies some nonnegative, user-
defined parameter α ≤ α∗, such that the matching algorithm includes α · |VH | highly-sensitized
patients in the “optimal” match. E.g., if α = 0.5, any returned match would include at least 50% of
the number of highly-sensitized patients available. Formally, define the deterministic lexicographic
fairness rule uαH�L over any M ∈M as follows:

uαH�L(M) =

{
u(M) if |MH | ≥ α · |VH |

0 otherwise
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We implement this utility function by adding a single constraint to the standard integer pro-
gram, yielding:

max
∑

c |c| xc
s.t.

∑
c|v∈c xc ≤ 1 ∀v∑
c h(c)xc ≥ α · |VH |

xc ∈ {0, 1} ∀c

In the next section, we generalize this rule for probabilistic kidney exchange.

Probabilistic (failure-aware) model

As motivated in Chapter 5, most algorithmic matches in fielded kidney exchanges do not result in
an actual transplant, even if a patient and donor are seen as ABO- and tissue-type compatible by the
optimization software. A variety of issues arise, including sudden illness or death, improper med-
ical testing, a patient finding a deceased or alternate living donor outside of the kidney exchange,
or match failure due to more intensive (and expensive) post-match medical testing.

Recall that the failure-aware model maximize the expected number of transplants subject to
each edge e in the graph having some probability of success qe. In the lexicographic fairness
model we consider in this chapter, this is further constrained by ensuring some fraction of these
expected transplants are to highly-sensitized patients. Toward this end, define vh(c), the expected
number of transplants to highly-sensitized patients of a cycle or chain c, as follows:

Cycles. For cycles, the discounted utility is the same as in Chapter 5, but counting only those
vertices in the cycle that are highly-sensitized. Formally,

vh(c) = h(c)
∏
e∈c

qe

Chains. While cycles necessarily execute atomically, chains can execute partially and then fail—
thus making the calculation of vh a bit trickier. For a chain of length k, let ci represent the initial i
vertices in the chain (including the altruistic donor). Formally,

vh(c) =

[
k−1∑
i=1

(1− qi)h(ci−1)
i−1∏
j=0

qj

]
+

[
h(c)

k−1∏
i=0

qi

]

We now let N∗ be the maximum expected number of vertices in VH that could receive trans-
plants over all possible matchingsM on G. That is,

N∗ = max
M∈M

vh(M)

where for any matching M , vh(M) is defined as
∑

c∈M vh(c).
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Then for a given graph G, this failure-aware N∗ can be computed using a similar modification
of the failure-aware kidney exchange integer program as follows:

N∗ = max
∑

c v
h(c)xc

s.t.
∑

c|v∈c xc ≤ 1 ∀v
xc ∈ {0, 1} ∀c

Now, as above, the user can supply some parameter α ∈ [0, 1] that guarantees α fraction of
the maximum possible expected number of transplants for highly sensitized-patients. This prefer-
ence is enforced by adding a single constraint to the standard failure-aware kidney exchange IP as
follows:

max
∑

c v(c)xc
s.t.

∑
c|v∈c xc ≤ 1 ∀v∑
c v

h(c)xc ≥ α ·N∗
xc ∈ {0, 1} ∀c

Here, v(c) is defined similarly to vh(c), only including lowly-sensitized transplants in the expecta-
tion calculation as well.

A note on implementing this rule

Unfortunately, adding lexicographic preferences into the optimization model breaks the specific
branch-and-price structure on which the basic cycle formulation solvers rely (both in the deter-
ministic model [6] and in the probabilistic model of Chapter 5), as well as the branch-and-price
version of PICEF presented in Chapter 3. While a solver could still use column generation or
general branch-and-price to solve this new problem, the addition of a matching-wide constraint—
that a matching must contain cycles containing some fraction of a set of marked vertices—makes
solving the pricing problem (see [30] for details) much more difficult than in the utilitarian formu-
lation, where determining the price of a cycle not included in the current subproblem is relatively
simple. Indeed, with such an allocation-wide constraint, finding a positive price cycle at a node in
the search tree requires solving an integer program, whereas current solvers can use a depth-first
search—or, in the case of PICEF, a polynomial-time algorithm—to find a positive price cycle in
the standard kidney exchange model.

With these computational constraints in mind, in Section 7.3.2 we define a different fair util-
ity function that respects the constraints of current solvers. This utility function circumvents a
matching-wide fairness constraint. We will then compare both fair utility functions against the
utilitarian one on real and simulated data in Section 7.4.

7.3.2 Weighted fairness
We now present a different formalization of fairness that relaxes the strict lexicographic prefer-
ences from the previous section. This definition generalizes the policy UNOS currently applies
to highly-sensitized patients in their fielded kidney exchange, is what was used in the preliminary
experiments of Section 5.9, and is what will be used in our most realistic experiments in Chapter 8.

140



Building on the standard (deterministic or probabilistic) kidney exchange integer programming
formulation, we rewrite the objective as follows:

max
∑

c v∆(c)xc

Here, v∆(c) is the value of a cycle or chain c (either in the deterministic or probabilistic model)
such that the weight of each edge e ∈ c is adjusted by some re-weighting function ∆ : E → R.

A simple example re-weighting function is multiplicative:

∆β(e) =

{
(1 + β)we if e ends in VH

we otherwise

Intuitively, for some β > 0, this function scales the weight of edges ending in highly-sensitized
vertices by (1 + β). For example, if β = 0.5, then the optimization algorithm will value edges
that result in a highly-sensitized patient receiving a transplant at 50% above their initial weight
(possibly scaled by other factors like failure probability and chain position, as in the probabilistic
model). We will use this multiplicative re-weighting in our experiments in Section 7.4 and, later,
in Chapter 8 with the FUTUREMATCH framework.

For any M ∈ M, let M ′ be the matching such that every cycle c ∈ M has augmented weight
v∆(c). Then define the weighted fairness rule u∆ in terms of the utilitarian rule u applied to the
augmented matching M ′, such that u∆(M) = u(M ′).

A note on implementing this rule

Note that, unlike implementing the lexicographic fairness rule uαH�L, this definition of fairness does
not break the branch-and-price structure on which current scalable kidney exchange solvers rely.
Indeed, the u∆ rule, for simple re-weighting functions like the multiplicative example above, can
be implemented by first preprocessing a compatibility graph using ∆ to determine edge weights,
and then solving the maximization problem using any standard kidney exchange solver (branch-
and-price-based or otherwise).

7.4 Experimental validation

In this section, we compare the behavior of both the lexicographic fair rule uαH�L and weighted fair
rule u∆ (relative to the utilitarian rule u) on (a) real data from the first 73 UNOS kidney exchange
match runs, from October 2010 to August 2013, and (b) simulated data from the standard kidney
exchange compatibility graph models.

7.4.1 Results from the fielded UNOS exchange
We present fairness experiments on the first 73 match runs (through August of 2013) in this sec-
tion. The UNOS algorithm currently performs a utilitarian maximum weighted matching, where
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edge weights are set through a point-based system determined by a committee of doctors and pol-
icymakers. Highly-sensitized patients in the UNOS exchange (at the time these experiments were
run) are those with CPRA of at least 80.

Results are presented for both the deterministic (denoted NO-FAIL) and probabilistic versions
of the kidney exchange clearing problem. Motivated by Dickerson, Procaccia, and Sandholm [75],
we test the probabilistic model on two different edge failure probability distributions: one where
each edge has a constant 70% rate of failure (denoted CONSTANT), and the other with a bimodal
failure rate such that 25% of edge failures are drawn from U [0.0, 0.2] and the rest from U [0.8, 1.0]
(denoted BIMODAL). These distributions are derived from real data (see Section 5.4.1 for de-
tails). We use a cycle cap of L = 3, as does UNOS, and include chains.

Lexicographic rule. We begin with the strictest version of the lexicographic fair rule: u1.0
H�L.

With α = 1.0, this rule maximizes the number of highly-sensitized pairs in a match (which aligns
with the theory of Section 7.2).

Metric Minimum Average Maximum St. Dev.
Loss (Objective) % 0.00% 2.76% 19.04% 4.84%

Loss (Cardinality) % 0.00% 4.09% 33.33% 8.18%
Loss (Cardinality) 0 0.55 4 1.10

Table 7.1: Minimum, average, and maximum loss in objective value and match size due to u1.0
H�L,

across the first 73 UNOS match runs, in the deterministic model.

Table 7.1 presents results in the deterministic model. Under u1.0
H�L, the price of fairness in this

deterministic model is, on average, quite small; however, there are outlier cases in which large
relative losses in the objective (of 19%) and overall match size (of 33%) are observed. We now
explore this phenomenon in depth, in both the deterministic and probabilistic model.

Figure 7.3 presents cumulative distribution functions in efficiency loss with respective to the
UNOS-weighted objective value, for the NO-FAIL, CONSTANT, and BIMODAL models. In
each of the models, roughly half of all UNOS match runs see no efficiency loss when prioritiz-
ing highly-sensitized candidates. However, (a) in each model, there exist a nontrivial number of
matches with a nontrivial loss in efficiency, and (b) increasing the variability in failure rates in-
creases the price of fairness. Indeed, in the BIMODAL model, some runs have a nearly 100% loss
in efficiency! Intuitively, this is due to the optimizer being “forced” into including edges—possibly
with a very low chance of successful execution—that result in a potential highly-sensitized trans-
plant.

Weighted rule. We now give results for the weighted fair rule u∆, where edges are re-weighted
under the multiplicative rule ∆β defined in Section 7.3.2. Recall that ∆0.0 values highly-sensitized
transplants at the same rate as lowly-sensitized ones, ∆0.5 values them at 50% over their base value,
∆1.0 at 100% over their base value, etc.

The Pareto frontiers shown in Figure 7.4 represent the set of Pareto efficient matchings con-
strained by u∆ as β increases from 0, for each of the NO-FAIL, CONSTANT, and BIMODAL
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Figure 7.3: Cumulative distribution functions of the price of fairness under the lexicographic fair-
ness rule u1.0

H�L according to UNOS’ weighting policy, on 73 UNOS match runs since
the inception of the exchange.
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Figure 7.4: Pareto frontiers for u∆ under different failure probability distributions, for β ∈
{0.0, 0.05, . . . , 10.0}.

models. Intuitively, these plots visualize the relationship between favoring a subset of vertices ver-
sus the overall match efficiency. As with the lexicographic rule, higher diversity in the underlying
failure probability distribution begets a greater price of fairness.

7.4.2 Simulated results from random graphs
Fielded kidney exchanges are still young and have relatively small pools, containing at most a
couple of hundred pairs at a time. To explore fairness-aware matching behavior in larger pool
sizes, and to validate the theory developed in Section 7.2, we now turn to generated data. We look
at two models:

1. The most well-known dense model of kidney exchange is due to Saidman et al. [191]. It gen-
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eralizes the theoretical model in Section 7.2, and includes blood types, three tiers of CPRA
(low, medium, and high), and various other medical aspects that affect pool composition (see
Chapter 2 for details). We refer to the base Saidman model, which is parameterized with US
national data, as SAIDMAN (US). We also parameterize the model using blood type and
sensitization statistics from the 73 UNOS match runs (aggregate data is available in [132]),
and denote this SAIDMAN (UNOS).

2. Some recent theoretical work looks at kidney exchange graphs without blood types but with
increasing sparsity (in the size of the pool) for highly-sensitized candidates [23, 24]. For
these experiments, the probability of an incoming edge to a highly-sensitized pair isO(1/n).
(See Section 5.3.1 for details.) The probability of an incoming edge to lowly-sensitized pairs
is held constant, as before. We denote by HETEROGENEOUS this family of random graphs.

Size SAIDMAN (US) SAIDMAN (UNOS) HETEROGENEOUS

10 0.24% (1.98%) 0.00% (0.00%) 0.98% (5.27%)
25 0.58% (1.90%) 0.19% (1.75%) 0.00% (0.00%)
50 1.18% (2.34%) 1.96% (6.69%) 0.00% (0.00%)
100 1.46% (1.80%) 1.66% (3.64%) 0.00% (0.00%)
150 1.20% (1.86%) 2.04% (2.51%) 0.00% (0.00%)
200 1.43% (2.08%) 1.55% (1.79%) 0.00% (0.00%)
250 0.80% (1.24%) 1.86% (1.63%) 0.00% (0.00%)
500 0.72% (0.74%) 1.67% (0.82%) 0.00% (0.00%)

Table 7.2: Average (St. Dev.) percentage loss in efficiency for three families of random graphs,
under the strict u1.0

H�L rule.

Table 7.2 gives the average loss in efficiency for each of these models over multiple generated
pool sizes, with 40 runs per pool size per model, under the strict lexicographic rule u1.0

H�L. For
all but the smallest pools, HETEROGENEOUS graphs see no loss in efficiency at all. Efficiency
loss in the SAIDMAN (US) and SAIDMAN (UNOS) families of graphs are low (and statistically
indistinguishable), aligning with our earlier theoretical results (applied to the distribution of blood
types in the US).

7.5 Conclusions & future research

Fielded kidney exchanges use utilitarian or near-utilitarian matching rules, at the cost of marginal-
izing certain classes of patient-donor pairs. We addressed the utilitarian setting in depth in Parts I
and II. In this chapter, we focused on balancing overall exchange efficiency while improving access
to kidneys for highly-sensitized patients. We defined the price of fairness in the standard kidney
exchange model, and provided theoretical bounds in the major kidney exchange model. We intro-
duced two natural definitions of fairness—lexicographic and weighted—and empirically explored
the tradeoff between prioritizing hard-to-match patients and the overall efficiency of a utilitarian
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system, on real data from the UNOS nationwide kidney exchange and on simulated data from each
of the standard kidney exchange distributions.

How to prioritize highly-sensitized patients—if they should be prioritized at all—is currently
the most contentious issue regarding fairness in kidney exchange, which motivates this chapter
(and, indeed, Part III of this thesis in general). We note that the price of fairness concept applies
to valuing any subset of vertices—not just highly-sensitized ones—in the compatibility graph,
possibly under different prioritization rules. A clear next step would be developing analogous
theoretical results and empirical techniques applicable to fielded kidney exchange that generalize
the equity versus efficiency tradeoff presented here to other notions of fairness (while mimick-
ing present-day parameters of the compatibility pool, legal climate, and limits of medical knowl-
edge). Recent work in finding Lorenz-dominant matchings is promising [146, 186], but not yet
applicable to fielded kidney exchange due to its simple theoretical model (e.g., only 2-cycles, no
chains). Hooker and Williams [110] give a mathematical-programming-based approach to balanc-
ing equity—in the Rawlsian maximin sense—and efficiency in a general model; similar results
with different definitions of equity would be of theoretical and practical interest.

Finally, as discussed in Chapter 6, kidney exchange is naturally dynamic, where patients and
donors arrive to and depart from the pool over time. Developing accurate models and scalable al-
gorithms that consider the price of fairness in the dynamic setting will be of increasing importance
as fielded kidney exchanges move from static to dynamic matching. We present one such approach
in the succeeding chapter.
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When someone speaks of a good strategy or a bad
plan, they are making a prudential judgment about the
efficacy of the plan or strategy in question, that is,
whether it will achieve certain ends.

– Caroline Whitbeck

A lot of times, people don’t know what they want until
you show it to them.

– Steve Jobs 8
FUTUREMATCH: Learning to match in

dynamic environments

In this chapter, we combine a variety of dimensions discussed in previous chapters—scalable clear-
ing of deterministic and probabilistic exchanges (Chapters 3, 4, and 5), considering short-term
uncertainty explicitly in the optimization problem (Chapter 5), taking distributional information
about the future of the exchange when matching in the now (Chapter 6), and considerations re-
garding fairness (Chapter 7)—into a single, unified framework for learning to matching “well”
under a general objective function.

As a proof of concept for this thesis, we learn a novel transplant quality predictor from a
dataset consisting of all living-donor kidney transplant events in the US since Oct 1, 1987, and
discover that some present-day features of living-donor transplants do not align with older results
from deceased donation in the medical literature [168]. This is noteworthy since today’s exchange
priority policies have largely been inherited from the United Network for Organ Sharing (UNOS)
deceased-donor waiting list policies.

Motivated by our experience running the computational side of the UNOS nationwide kidney
exchange, we present FUTUREMATCH, a general framework for learning how to match in dynamic
environments. FUTUREMATCH separates the “means” from the “ends” of kidney exchange; it
takes as input from human experts an overarching objective, and automatically learns a matching
strategy to achieve this goal. We validate the framework on three example objective functions
on real data drawn from the UNOS exchange. We find that using FUTUREMATCH even with
economically inefficient objectives—like maximizing the match size subject to equity constraints,
as in Chapter 7—results in significantly higher efficiency than myopic matching with the explicit
objective of efficiency.
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Related Publications

Some of the work in this chapter appeared at AAAI-15; it was performed as a collaboration
between Dickerson and Sandholm [70].

8.1 Proposed method
We now present the FUTUREMATCH framework for learning to match in dynamic environments.
We begin by motivating and describing the framework at a high level in the first subsection. In
the following subsections we discuss the different parts of the framework in detail and how we
instantiated them for kidney exchange.

8.1.1 The FUTUREMATCH framework
We are interested in learning from demographically accurate data how to match in the present such
that some overarching objective function is maximized over time. Scalability is important: heavy
offline statistics can be computed and periodically updated, but the fielded clearing algorithm must
run quickly (within minutes or at most hours).

Offline Experts Historical
Data

Experts Current
State

Online

Historical
Data

Mine & Learn
w : E ! R+

Realistic
Simulator

Learn
Potentials

Clearing
Engine Match

Figure 8.1: The FUTUREMATCH framework.

Figure 8.1 graphically depicts the FUTUREMATCH framework. A domain expert (e.g., a com-
mittee of medical and legal professionals) begins by describing an overall objective function for the
exchange. Even measuring this objective can be difficult: for example, if the goal is to maximize
the number of days added to patients’ lives via kidney transplantation, then calculating the relative
quality of a proposed match requires knowing some notion of utility for each edge—representing
a potential transplant—in the compatibility graph. We propose to learn this edge weight function
w : E → R+ from data, and give examples for a variety of objective functions later.

The learned weight function w is then fed into a parameterized (kidney exchange) simulator,
calibrated by real data so that it mimics the underlying distribution. This generator in turn feeds
training and test sets into a system for learning the potentials of element classes in the compatibility
graph, by way of the method introduced in Chapter 6. Intuitively, given an element θ (e.g., vertex,
edge, cycle, or chain type), a potential Pθ ∈ R quantifies the expected utility to the exchange of
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that element in the future. Potentials are combined with w to quantify an edge-specific quality
rating. Here, as in Chapter 6, we learn potentials for the combinations of different blood types for
pairs under each of the weight functions we define—albeit with a different learning method than
in that previous chapter.

Finally, the fielded clearing algorithm incorporates the combined weight function w and set of
potentials PΘ into its myopic weighted matching algorithm. This incorporation comes at very low
or no cost to the runtime of the clearing algorithm; indeed, the final “potential-aware” input graph
is simply a re-weighted version of the original compatibility graph, using the weights that encode
the future.

In the rest of the section, we describe an in-depth implementation of FUTUREMATCH. Our
goals are twofold: first, to show the general applicability and tractability of the framework, and
second, to mimic a large fielded kidney exchange. Accomplishing this second goal, and leverag-
ing our involvement with fielded kidney exchanges, sets the stage for adoption of sustainability-
motivated technology that solves a problem clearly too difficult for humans—a success story for
computational sustainability practitioners.

8.1.2 Encoding an objective function
We now discuss in depth the process of defining an objective for FUTUREMATCH. We do this in
the context of kidney exchange, but note that the process is general.

The medical and legal communities in kidney exchange are concerned about a wide variety
of match characteristics. In our experience, the most frequently discussed include the number
of overall matches, the number of overall transplants, the quality of transplants, and whether or
not to prefer specific subgroups in the exchange (children, sensitized patients, underrepresented
ethnicities) and by how much. Other concerns could include notions of fair treatment among
participating centers and minimizing legal exposure.

In this chapter, we consider two different kidney exchange models—deterministic, where post-
algorithmic match failures are not quantified in the optimization problem and failure-aware, where
they are—and three matching objectives in each of the two models:

1. MAXCARD: Maximize the total number (i.e., cardinality) of patients who are algorithmi-
cally matched (in the deterministic model of Part I) or receive transplants in expectation (in
the failure-aware model of Chapter 5);

2. MAXCARD-FAIR: Maximize the total number of patients who are algorithmically matched
(in the deterministic model) or receive transplants in expectation (in the failure-aware model),
where “marginalized" patients are weighted in the objective by some constant factor β more
than others, as in Section 7.3.2; and

3. MAXLIFE: Maximize the total time algorithmically-matched (deterministic) or transplanted
(failure-aware) donor organs will last in patients.

Each of these objectives amounts to setting weights on edges in the input graph. Next, we
detail edge weighting algorithms for these example objectives.

In our experience, when committees debate priority points for today’s exchanges, the discus-
sions confound the goal and the means. For example, a goal could be to maximize matches and
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a means could be to prioritize sensitized patients because they are harder to match in the future.
On the other hand, many argue that sensitized patients should be inherently preferred, and it seems
that most do not make a clear distinction between means and ends. In contrast, FUTUREMATCH

clearly separates ends and means. Our objective (i.e., the “end") lives in the space of weights on
edges, which the committee can clearly debate. On the other hand, our framework automatically
optimizes, via learning, the potentials (the “means") that are used as the means for enabling the
algorithm to make good future-aware failure-aware decisions. The committee does not need to
debate these potentials, whose quantitative impact on performance is hard for a human to predict
or even understand.

Defining MAXCARD and MAXCARD-FAIR. The MAXCARD-FAIR objective can be viewed
as a generalized form of MAXCARD (that is, MAXCARD is just MAXCARD-FAIR with an empty
set of vertices who are preferred by the objective). A natural weighted fairness rule, adapted from
Chapter 7, adjusts edge weights by some re-weighting function ∆ : E → R+. A simple example
re-weighting function is multiplicative:

∆β(e) =

{
(1 + β)we if e ends in VP

we otherwise

Here, VP ⊆ V is the set of preferred vertices (in Chapter 7, these were vertices with highly-
sensitized patients; we will define a different subset in the experiments). Intuitively, for some
β > 0, this function scales the weight of edges ending in marginalized vertices by (1 + β). For
example, if β = 1.5, then the optimization algorithm will value edges that result in a marginalized
patient receiving a transplant at 250% of their initial weight (possibly scaled by factors such as
edge failure probability or chain position, as we discuss later).

For any M ∈ M, let M ′ be the matching such that every edge e ∈ E has augmented weight
∆β(e). Then the MAXCARD-FAIR utility function u∆ is defined in terms of the utilitarian MAX-
CARD utility function u applied to the augmented matching M ′, such that u∆(M) = u(M ′). In
the experiments, we vary the parameter β to empirically quantify its effects on each of the three
objective functions.

Optimizing for MAXLIFE via learning to predict graft survival from data. With the MAXLIFE

objective we are interested in maximizing how long the transplanted kidneys, in aggregate, survive
in the patients.1 To do so, we must first determine an empirically sound estimate of the lifespan of
a transplant as a function of donor and recipient attributes.

Delen et al. [69] compare a variety of techniques for predicting breast cancer survivability;
unlike their study, we are interested in predicting the survival length of a kidney graft, as opposed
to whether or not a patient survives treatment at all. Data mining models are also actively being
developed to predict the risk of readmission for congestive heart failure patients [157]. Most related
to our work is the Kidney Donor Profile Index (KDPI), which is currently under development by

1Another objective would be to maximize aggregate increase in life duration. This would involve subtracting out
the expected life duration without a transplant from the expected life duration with the transplant, and could incorporate
the possibility of additional transplants after graft failure.
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UNOS for use in the deceased donor allocation process [133]. The KDPI score of a deceased donor
kidney measures the estimated quality of the donor organ being allocated to the average recipient.
In contrast, our predictor, which we will describe next, provides a unique quality score not just
based on donor attributes but also based on attributes of the specific potential recipient.

We look at all 75,264 living donor transplant events in the US between October 1, 1987 and
June 30, 2013. This data includes medical characteristics of the recipient and donor at the time of
transplantation, as well as follow-up data regarding the health of the recipient and the recipient’s
new kidney; this follow-up data is updated at least annually.

Conditioned on a kidney graft being marked as failed in our dataset, the average graft lifetime
is about 1912.7 days, or slightly over 5 years. However, due in large part to the marked increase
in kidney failure since the late 1980s, nearly 75% of grafts in the dataset are not marked as failed.
This occurs because either (i) the recipient is still alive with a functioning donated kidney or (ii)
the recipient has died, but for a non-kidney-failure-related reason. Thus, we use survival analysis
to estimate the lasting power of a graft.

Features of both the recipient and donor have a large effect on graft survival. For example,
tissue type (HLA) testing measures the closeness of match between antigens in the cells of a donor
and patient. Figure 8.2 gives a Kaplan-Meier estimator of the survival functions of (i) kidney
transplants resulting from a donor and recipient being a perfect HLA match and (ii) those resulting
from imperfect HLA matchings. Clearly, a kidney that is a perfect tissue type match is more
desirable than an imperfectly matched one; indeed, the model estimates a median survival time of
5808 days for a perfect match compared to 4300 for an imperfect match. A log-rank test revealed
that the difference between the two distributions was significant (p� 0.0001).

In our experiments, we use a Cox proportional hazards regression analysis to explore the effect
of multiple features on survivability. At a high level, this method regresses the survival time of the
graft against explanatory features of the donor and recipient. More specifically, define the hazard
H at time t days after a transplant as follows:

H(t) = H0(t)× exp(b1X1 + b2X2 + . . .+ bkXk) (8.1)

Here, each Xi is a predictor variable corresponding to a single feature of the donor or recipient,
and H0(t) is a baseline hazard rate at time t for a recipient with Xi = 0 for i ∈ {1, . . . , k}. Then
H(t) represents the instantaneous risk of graft failure at time t. We want to learn this function.

To begin, we include the following features: recipient age, difference in donor and recipient’s
age, donor HLA profile, recipient HLA profile, donor and recipient blood type compatibility. The
HLA profile of a donor or recipient is separated into three integral features—HLA-A, HLA-B, and
HLA-DR—that can take values in {0, 1, 2}, representing 0, 1, or 2 mismatches. By separating the
general HLA mismatch feature into three separate mismatch features, we complicate (but increase
the power of) the model [168]; this separation is motivated by evidence that mismatches at the
HLA-A, -B, and -DR level have varyingly negative impact on survival.

We ran a Cox proportional hazards regression on this unpruned feature space. This used 74,244
live donor transplantations during which there were 18,714 graft failures (920 live donation events
were dropped due to one or more missing features). Our initial regression showed that increases in
the HLA-B mismatch feature did not have a significant effect on the dependent variable (p = 0.22).
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Figure 8.2: Kaplan-Meier estimator of the survival function for kidney transplants whose donors
have zero HLA mismatches versus those with at least one HLA mismatch, with 95%
confidence intervals.

Prior research from the mid-1980s on cadaveric donation found a significant relationship between
the combined feature of HLA-B and HLA-DR mismatches on graft outcome [168]; we find that
this does not hold on living donor data in the present. After selecting significant variables in this
initial run—that is, all of the attributes previously discussed except HLA-B mismatch—we re-ran
a Cox proportional hazard regression. Results are reported in Table 8.1.

feature exp(bi) SE(bi) z p
recipient age 1.00753 0.0008 9.715 < 2× 10−16

age diff. 1.00525 0.0007 7.766 8.10× 10−15

HLA-A 1.05273 0.0120 4.297 1.73× 10−5

HLA-DR 1.08680 0.0119 6.984 2.86× 10−12

ABO incomp. 1.37871 0.0748 4.295 1.74× 10−5

Table 8.1: Learned weights via Cox regression after feature pruning for statistical significance.

Table 8.1 gives the standard error, z-score, and corresponding p-value for each of our pruned
features; each clearly has a statistically significant effect on graft survival. To interpret the results,
as an example first consider the HLA-DR feature. We see that exp(bHLA-DR) ≈ 1.087; recalling
Equation 8.1, a unit increase in the HLA-DR mismatch feature will result in a factor of 1.087
increase over the baseline hazard rate. Varying either recipient age or the difference in donor and
recipient age was also statistically significant, with a unit increase in recipient age having a larger
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effect on the hazard rate. As might be expected, blood type compatibility plays the largest role in
hazard rate, where an incompatible (and thus heavily immunosuppressed) transplant has a factor
1.379 increase over the base hazard rate.

Using this data, we can estimate Se(t), the survival probability at time t for a potential trans-
plant e ∈ E between a recipient and donor with features xei , as follows:

Se(t) = exp

(
−H0(t)×

∑
i

xei bi

)
. (8.2)

Building on Equation 8.2, we define a weight function w : E → R+ as

w(e) ∝ exp

(
−
∑
i

xei bi

)
. (8.3)

Intuitively, the weight functionw assigns higher relative weight to edges with lower risk, in turn
biasing the optimizer toward transplants with longer expected graft survival. In our experiments,
we explicitly instantiate w(e) = 100× exp (−∑i x

e
i bi) to avoid numerical instability in our linear

program subsolvers as a byproduct of small floating point coefficients in the objective.

8.1.3 Learning the potentials
We learn potentials on the blood types of patients and donors, as in Chapter 6. There are 4×4 = 16
combinations of patient and donor blood types, and 4 possible blood types of altruists. So, we
have 20 different kinds of vertices. We want to learn a potential for each of those 20 vertex types.
Formally, the types of vertex are ΘABO = {O-O,O-A, . . . ,AB-B,AB-AB} ∪ {O, . . . ,AB}, and
we want to learn values Pθ for θ ∈ ΘABO.

We combine the learned potentials Pθ with the weight function w learned earlier using a func-
tion fw : E → R. It balances the myopic value of an edge encoded by w with the future value of
an edge encoded by potentials. The idea is that the revised weight, fw, of an edge is its immediate
value if matched minus the potentials of its vertices because if those vertices are matched now,
they cannot contribute to future matches. Specifically, fw(e) = w(e) · (1 − Pθd − Pθp), where d
and p are the vertices adjacent to edge e.

We use SMAC [114], a state-of-the-art model-based algorithm configuration tool that searches
through a parameter space to optimize a given objective. SMAC guides its navigation in the space
of parameter vectors by constructing a model that predicts algorithm performance as a function of
the parameter vector (e.g., g : ΘABO → R, where ΘABO is our space of potentials and R is the
aggregate evaluation of whatever objective is being used). We found the SMAC-based approach to
work substantially better than the ParamILS tuner used in Chapter 6.

In our setting, the parameter vector is the vector of potentials. At each parameter vector that
SMAC navigates to, we run a large number of trials of our simulator of a kidney exchange to
see how the batch matching algorithm would perform in a dynamic setting using that parameter
vector. That performance number is then fed back to SMAC, and SMAC navigates to the next
parameter vector to continue the search. We learned potentials in two models—deterministic, as
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in Part I, where post-algorithmic match failures are not quantified in the optimization problem and
failure-aware, as in Chapter 5, where they are—using a realistic dynamic simulator we built based
on historical data from the UNOS kidney exchange [132].

Figure 5.7 gives a graphical overview of the dynamic model we used. A matching is deter-
mined at each time period based on either a deterministic or failure-aware clearing algorithm.
Recall that both models compute an optimal matching M∗ = arg maxM∈M u(M), where u(M) =∑

c∈M u(c). Given the function fw that combines our learned potentials Pθ with the myopic edge
weighting function w, in the deterministic model, u(c) =

∑
e∈c fw(e): that is, the sum of the

weights of the constituent edges in a cycle or chain subject to the weight function w and potentials
learned earlier.

In the failure-aware model, given edge success probabilities qe ∈ [0, 1] for each edge e, the
potential-aware discounted utility for a cycle c is u(c) =

[∑
e∈c fw(e)

]
·
[∏

e∈c qe
]
, and the dis-

counted utility for a chain c = 〈e0, e1, . . . , ek−1〉 is

u(c) =

[
k−1∑
i=1

(1− qi)
i−1∑
j=0

fw(ej)
i−1∏
j=0

qj

]
+

[
k−1∑
i=0

fw(ei)
k−1∏
i=0

qi

]
.

8.2 Experiments
We validated FUTUREMATCH experimentally on data from the UNOS nationwide kidney ex-
change. We explore the effect each of the three objectives—MAXCARD, MAXCARD-FAIR, and
MAXLIFE—has on a variety of metrics under FUTUREMATCH and under myopic deterministic
matching, which is the fielded state of the art. The latter does not take edge failure or learned po-
tentials into account during optimization; as described earlier, it finds a maximum weight matching
(i.e., for each chain or cycle c, u(c) =

∑
e∈cwe) during each period separately.

In the fairness-weighted expariments, we adapt our matching algorithm using the re-weighting
function ∆β described earlier. The preferred set of vertices VP includes those with a pediatric
or highly-sensitized patient. These preferences are commonly used in kidney exchanges, albeit
not in sophisticated, quantitative ways. For kidney exchange it has explicitly been articulated
that pediatric patients should be preferred not only because they have a lot of life left (barring
their kidney disease) but also because having poor kidney function stunts growth. Similarly, some
patients are highly sensitized, which means they are extremely unlikely to be medically compatible
with a random organ. For these patients, finding a kidney is difficult [212]. In fielded exchanges,
both of these “marginalized” patient types are prioritized. We quantitatively explore how this
should be done and what the impact is.

8.2.1 Results
We compare FUTUREMATCH against a baseline of myopic deterministic matching under each of
the objectives. Conservatively, statistical significance was determined using the Wilcoxon signed-
rank test, which is a nonparametric alternative to the paired t-test. Table 8.2 shows the median
expected gain in the overall number of transplants from using FUTUREMATCH under each of the
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objectives. Each column labeled |V | = k corresponds to a simulation over k patient-donor pairs
and altruists; we test over increasing values of k because kidney exchanges (both in the US and
worldwide) are still expanding toward their steady-state sizes.
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|V | = 300 |V | = 400 |V | = 500 |V | = 600 |V | = 700 |V | = 800 |V | = 900
Total Gain p Gain p Gain p Gain p Gain p Gain p Gain p

MAXCARD +2 3 +4 3 +5 3 +6 3 +10 3 +11 3 +13 3

MAXCARD-FAIR, β = 1 +1 3 +4 3 +6 3 +8 3 +9 3 +11 3 +12 3

MAXCARD-FAIR, β = 2 +1 +2 3 +3 3 +3 3 +5 3 +6 3 +10 3

MAXCARD-FAIR, β = 3 +1 +0 +3 3 +1 +1 3 +3 3 +2
MAXCARD-FAIR, β = 4 -1 +1 +1 +1 +3 3 +3 +2
MAXCARD-FAIR, β = 5 +0 +0 +1 +1 +1 +2 +3

MAXLIFE +2 3 +3 3 +6 3 +8 3 +7 3 +11 3 +9 3

Table 8.2: Median gains in expected total number of transplants under FUTUREMATCH. A 3 or 7 represents statistical significance
(Wilcoxon signed-rank test, p� 0.01).

|V | = 300 |V | = 400 |V | = 500 |V | = 600 |V | = 700 |V | = 800 |V | = 900
Marginalized Gain p Gain p Gain p Gain p Gain p Gain p Gain p

MAXCARD -2 7 -2 7 -3 7 -4 7 -6 7 -7 7 -9 7

MAXCARD-FAIR, β = 1 -1 7 -1 7 -1 7 -2 7 -3 7 -3 7 -5 7

MAXCARD-FAIR, β = 2 +0 +0 +1 3 +1 3 +2 3 +1 +1
MAXCARD-FAIR, β = 3 +1 3 +1 3 +3 3 +3 3 +3 3 +5 3 +4 3

MAXCARD-FAIR, β = 4 +1 3 +2 3 +3 3 +4 3 +4 3 +5 3 +5 3

MAXCARD-FAIR, β = 5 +1 3 +2 3 +3 3 +4 3 +5 3 +7 3 +5 3

MAXLIFE -1 7 -3 7 -3 7 -5 7 -6 7 -6 7 -9 7

Table 8.3: Median gains in expected total number of marginalized transplants under FUTUREMATCH. A 3 or 7 represents statistical
significance (Wilcoxon signed-rank test, p� 0.01).
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Table 8.2 shows that the objectives that do not regard fairness—MAXCARD and MAXLIFE—
significantly beat myopic deterministic matching under the same objective. Interestingly, so too
does MAXCARD-FAIR for low values of β. As β increases, the gain in overall number of trans-
plants decreases (although it never drops below the deterministic matching algorithm with signif-
icance). This decrease in overall gain is incurred because marginalized patients, who (i) generally
have lower in-degree, and (ii) have a higher probability of match failure, are being weighted more
than easier-to-match pairs.

Table 8.3 explores this tradeoff between fairness and efficiency explicitly. For the fairness-
agnostic and lightly fairness-preferring objectives, a relative loss of a few marginalized transplants
is realized—although this loss of marginalized transplants is always less (typically much less) than
the overall gain in transplants. Increasing the optimizer’s preference for marginalized patients
results in statistically significant gains in the number of marginalized transplants at no statistically
significant loss in the overall expected number of transplants. In fact, for a middle ground around
β = 2, FUTUREMATCH often shows statistically significant gains in both overall transplant and
marginalized transplant counts—a clear win over myopia.

Our experiments support the following conclusions:

• FUTUREMATCH under MAXCARD and MAXCARD-FAIR with low β = 1 results in a sig-
nificant increase in the overall number of transplants compared to myopic, at the cost of a
smaller decrease in the number of marginalized transplants.

• FUTUREMATCH under MAXCARD-FAIR with high β results in a significant increase in
marginalized transplants, at no cost to the overall number of transplants under myopic
matching.

• For a middle ground around β = 2, FUTUREMATCH can result in both more overall expected
transplants and more marginalized transplants.

We note that we are not making policy recommendations; rather, we are giving a proof of
concept that our framework can effectively balance conflicting wants in an exchange. Indeed, the
exact fairness quantification β that most effectively balances efficiency and fairness is a function
of the underlying graph dynamics, which vertices are considered marginalized, and the ethical
and legal wants of an exchange. All of these dimensions can be effectively encoded, validated,
compared, and fielded through FUTUREMATCH.

8.3 Conclusions & future research

We presented FUTUREMATCH, a framework for learning to do complex matching in a general dy-
namic model. Motivated by our experience running the computational side of a large nationwide
kidney exchange, we showed how to instantiate FUTUREMATCH to mimic an exchange under three
different matching objectives and under two models of kidney exchange. We validated FUTURE-
MATCH on real data drawn from 94 match runs of the US nationwide exchange, between Oct. 2010
and Jan. 2014, and found that dynamic matching results in statistically significant increases in each
of these objectives. Perhaps most critically, we showed that the framework yields better efficiency
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and better fairness than deterministic myopic matching algorithms—which are the status quo class
of algorithm in practice.

With regard to future research, any improvents made to any of the modules in the FUTURE-
MATCH framework would be both easily incorporated into the greater framework, and of potential
real-world impact; indeed, since its initial presentation, FUTUREMATCH has been used to provide
sensitivity analysis of matching policies at the UNOS exchange. For instance, while the method
used for learning potentials in this chapter was an improvement over that used in the initial work
of Chapter 6, convergence still was not reached—even for just the 20 blood type potentials. Re-
cently, Kahng [124] adapted the FUTUREMATCH framework to a richer setting with both blood
type potentials and those associated with a vertex’s entrance time; given some knowledge of the
vertex’s eventual departure time, this allows FUTUREMATCH to become “timing aware” as well,
hopefully matching those patients who are likely to perish before they do, indeed, leave the pool.
That work finds that timing-aware matching can help reduce expected waiting time in the pool, but
operated in a reduced 2-cycles-only setting in part because the learning process took “prohibitively
long to converge” [124]. Better learning methods, like those discussed in the final section of Chap-
ter 6, would be of great help in expanding FUTUREMATCH to a setting with more expressive
potentials.
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PART IV:

New Paradigms for General Organ & Barter
Exchange
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The whole is other than the sum of the parts.
– Kurt Koffka

9
Liver & multi-organ exchange

In this chapter, we address general organ exchange. The transplantation of organs from a deceased
donor to a needy living candidate first occurred nearly sixty years ago, but only became popular
in the 1970s due to the introduction of immunosuppressants that help prevent the rejection of for-
eign organs in a patient’s body. Since then, the majority of transplantation has occurred through a
deceased donor waiting list consisting of needy patients who wait for any willing donor to die, re-
sulting in the harvesting and subsequent transfer of a compatible organ from the donor’s cadaver to
the living patient. There is a great supply shortage of cadaveric organs in most societies (including
the US), and the imbalance between supply and demand keeps growing. As of July 5, 2015, there
were 101,257 patients waiting for a kidney, 15,268 waiting for a liver, and 9073 for another organ
(e.g., pancreas, joint pancreas-kidney, heart, lung, intestine) in the US alone.

In recent years, live donation of organs has significantly increased the total number of organ
transplants. In live donation, a donor gives one of his two kidneys, one of his liver lobes, or
a part of an intestine, etc., to the patient so both the donor and patient can live. The effect of
live donation has been most prominent in kidney donation, where kidney exchange—which we
discussed extensively in Parts I, II, and III of this thesis—has provided renewed hope to even “hard
to match” patients.

We now explore the creation of living donor exchanges involving organs other than kidneys.
We first explore large-scale liver exchange, which is similar to kidney exchange in some ways, but
remains unexplored from a computational point of view.1 The major difference between kidney
and liver exchange rests in the increased risk to live donors, with very high rates of donor morbidity
(24%), “near-miss” events in surgery (1.1%), and mortality (0.2%) compared to live donor kidney
transplantation [58]. Fielded kidney exchanges derive significant value from altruistic donors, who

1Recently, small-scale liver exchanges have been manually arranged by medical professionals. In Korea, 16 candi-
dates swapped by hand willing donors in a single hospital over the course of six years [115]; similarly, in Hong Kong,
2 candidates hand-swapped willing donors [57]. This shows the feasibility of the idea at a small scale [193].
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enter the exchange without a paired needy candidate and trigger long “chains” of donations within
the pool. With such a high risk of complication from surgery in liver transplantation, we expect
significantly fewer (or no, if deemed unethical by the medical community) altruistic donors in liver
exchange. The lack of altruistic donation, along with novel characteristics of the (in)compatibility
of participants in a demographically-accurate liver exchange, leads to different matching behavior
in theory and in practice.

With this in mind, we propose multi-organ exchange, where candidates in need of either kid-
neys or livers can swap donors in the same pool. We show theoretically that this combination
provides linearly more transplants than running separate kidney and liver exchanges; this linear
gain is a product of altruistic kidney donors creating chains that thread through the liver pool, and
is present even when only a small but constant fraction of one side of the combined pool is willing
to donate to a pair on the other side. We support this result experimentally on demographically ac-
curate kidney, liver, and cross-organ exchanges. We conclude with thoughts regarding the fielding
of a nationwide liver or joint liver-kidney exchange from a legal and computational point of view.

This chapter provides the first foray into the theory and computational methods necessary to
set the groundwork for a fielded nationwide liver or multi-organ exchange. It is clear that such
exchanges would be highly beneficial for sustaining life and creating value in society.

Related Publications

Some of the work in this section appeared at AAAI-14; the rest will appear in the Jour-
nal of Artificial Intelligence Research (JAIR). It is a collaboration between Dickerson and
Sandholm [72].

9.1 Preliminaries

In order to develop a nationwide liver or multi-organ exchange, we must first accurately model
the realities of such an exchange. We now extend the compatibility graph model, used in earlier
sections of this thesis to represent a kidney-only exchange, to the case with two organs: kidneys
and livers. Patient-donor pairs then enter the pool in need of either a kidney or a liver.

As before, begin by encoding an n-patient organ exchange as a directed graph. Construct one
vertex for each incompatible candidate-donor pair. Add an edge e from one candidate-donor vertex
vi to another vj , if the candidate at vj can take a liver lobe or kidney from the donor at vi, and is
in need of the specific organ(s) being offered by the source vertex. We maintain that a matching
be a collection of disjoint cycles; no vertex can give out more than one item (e.g., more than one
kidney or liver lobe).

Due to significantly increased medical risk to living donors of livers, we do not expect many
(or possibly any) altruistic donors outside of kidney exchanges [58]. We build on this assumption
in depth throughout the chapter.

Figure 9.1—adapted from the kidneys-only compatibility graph given as Figure 1.1 in Sec-
tion 1.3.1—gives an example organ exchange compatibility graph, where pairs on the left, shown
with a dark boundary, have patients in need of a kidney while pairs on the right, shown with a light
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boundary, have pairs in need of a liver. Possible cycles exist entirely in either the kidney or liver
pool (for example, the 2-cycle 〈(d2 → p3), (d3 → p2)〉 and 2-cycle 〈(d5 → p6), (d6 → p5)〉, re-
spectively) or between the two pools (for example, the 3-cycle 〈(d2 → p5), (d5 → p3), (d3 → p2)〉,
which involves a single liver pair and two kidney pairs). Additionally, a single altruistic donor a
exists in the pool and is willing to give his or her kidney—but not liver—to a patient, whose paired
donor will then either donate a kidney or liver to a compatible patient in the pool (for example, via
the chain 〈(a → p1), (d1 → p4), (d4 → p7), (d7 → ·)〉, with the final donor d7 either donating to
the deceased donor waiting list or remaining in the pool as a future altruistic donor).

d3

p3

d1

p1

d2

p2

a

d4

p4

d5

p5

d6

p6

d7

p7

Kidney Pool Liver Pool

Figure 9.1: An example joint liver-kidney compatibility graph.

9.1.1 The clearing problem for multi-organ exchange
The clearing problem we wish to solve is still to find a maximum weight packing of cycles (possibly
with some length capL) and chains (possibly with or without a length capK). In the small example
compatibility graph shown in Figure 9.1, with L = 3, a maximum cardinality matching without
chains includes five pairs via the 3-cycle and 2-cycle:

{〈(d1 → p2), (d2 → p3), (d3 → p1)〉, 〈(d5 → p6), (d6 → p5)〉} .
With chains—but maintaining two separate pools instead of combining the pools into a joint

exchange—we can achieve a maximum cardinality matching with the same number of pairs but
with a lower cycle cap (L = 2 instead of L = 3) via one chain and two 2-cycles:

{〈(a→ p1), (d1 → ·)〉, 〈(d2 → p3), (d3 → p2)〉, 〈(d5 → p6), (d6 → p5)〉} .
Finally, if we allow a combined liver-kidney exchange, the cardinality of the maximum match-

ing increases to seven pairs. This is achieved by “threading” a chain started by the altruist a through
a kidney-needing pair into the greater liver pool to match two previously unmatchable pairs, as well
as by using the same two 2-cycles as before:

{〈(a→ p1), (d1 → p4), (d4 → p7), (d7 → ·)〉, 〈(d2 → p3), (d3 → p2)〉, 〈(d5 → p6), (d6 → p5)〉} .
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We will explore the expected gains from combining exchanges theoretically in Section 9.2, and
then via realistic simulation in Section 9.4.

9.1.2 Related work in multi-hospital kidney exchange
We are not the first to consider combining exchanges in general; rather, we are the first to con-
sider combining exchanges corresponding to different organs, and we are the first to approach the
intricacies of that combination from a theoretical and empirical point of view. Indeed, fielded cen-
tralized kidney exchanges typically consist of the merged pools of multiple participating hospitals.
For example, the United Network for Organ Sharing (UNOS) kidney exchange includes 143 hospi-
tals in the US. Each of these hospitals enters (possibly some subset of) the set of candidate-donor
pairs and altruistic donors that have registered at their center into the centralized exchange, and
then the exchange recommends a matching based on its clearing engine. Each hospital can be
seen as having its own private exchange; then, questions can be asked about the possible gains in
match efficacy based on the number or size of participating hospitals, or the truthfulness of their
reporting.

Ashlagi et al. [25] look at the multi-hospital exchange problem from a game-theoretic point
of view, where participating hospitals can manipulate the exchange by misreporting their private
set of candidate-donor pairs. They show that in the worst case no deterministic strategy-proof
mechanism can provide more than 1/2 of the truthful maximum matching, and no randomized
strategy-proof mechanism can provide more than 7/8 of the truthful maximum matching. That
bound was tightened for the two hospital case by Caragiannis et al. [54]. That model looks at
2-cycles only (represented as an undirected graph), while ours looks at 2- and 3-cycles and altruist-
initiated chains. They also operate in a dense theoretical model only, while we give results in both
dense and an arguably more realistic sparse model.

Ashlagi and Roth [19] and Toulis and Parkes [209] also analyze the multi-hospital exchange
problem from a game-theoretic point of view. Ashlagi and Roth [19] show that, in general, a lack
of participation of all hospitals can be very costly (although it is possible, at the cost of a few
“lost” matches, to guarantee individual rationality and strategy proofness). Those results are in
a dense model with both 2- and 3-cycles, but no chains. Toulis and Parkes [209] present a new
multi-hospital mechanism for multi-hospital exchange and compares against their results.

As we do not consider incentive issues in the present work, perhaps most related to our work is a
general matching result by Toulis and Parkes [209]. They show, in a dense kidney exchange model
(which we overview in Section 9.2.2), that givenm transplant centers, each with n candidate-donor
pairs, the expected gain in number of matches to an individual hospital by entering a centralized
exchange with full participation is roughly Ω(

√
n). This result is in a model without chains; indeed,

we will show that the inclusion of chains results in a linear gain in number of matches.
We are now ready to present the results of the chapter. Section 9.2 addresses liver and multi-

organ exchange in adaptations of the two most common theoretical models of kidney exchange,
and proves results in both models regarding the efficiency gains of multi-organ exchange over in-
dependent single-organ exchanges. Section 9.3 moves from theory to practice and presents our
method of generating demographically accurate kidney, liver, and joint kidney-liver compatibility
graphs. (Appendix D.1 provides more detail about this process, as well as a quantitative compar-
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ison of the resulting graphs against the status quo kidney exchange generator.) Section 9.3 also
presents the clearing algorithm we use to solve the multi-organ exchange problem in practice. Sec-
tion 9.4 shows experimental results on liver and multi-organ exchanges, and gives strong empirical
support to our earlier theoretical results showing that multi-organ exchange results in a greater
number of matches than two independent exchanges. (Appendix D.2 presents additional experi-
mental results.) We conclude in Section 9.5 with some thoughts on fielding a liver or multi-organ
exchange, as well as future research directions.

9.2 Combining exchanges yields linearly more matches
In this section, we prove that combining independent liver and kidney exchanges leads to a linear
gain in the aggregate number of matches. We do this in multi-organ adaptations of the two standard
models of kidney exchange. Section 9.2.1 works in a newer sparse model adapted from Ashlagi
et al. [23] (a similar model is used in Chapter 5), while Section 9.2.2 works in an older dense
model like that presented by Ashlagi and Roth [19]2 (and used in, e.g., Chapters 2 and 7). We
obtain similar—but not identical—theoretical results in both models.

9.2.1 Sparse model
We begin by adapting to the multi-organ exchange case a version of a recent random graph model
for kidney exchange due to Ashlagi et al. [23]. They adapt sparse Erdős-Rènyi graphs to a model
of kidney exchange with two classes of candidate: those with many incoming edges and those
with very few incoming edges (intuitively, “easy-to-match” and “hard-to-match” candidates). That
model mimics the basic structure of compatibility graphs seen in fielded kidney exchanges.

They build a random directed compatibility graphD(n, λ, t(n), pL, pH) with n candidate-donor
pairs, t(n) altruistic donors, a fraction λ < 1 of the n candidate-donor pairs—representing lowly-
sensitized, easy-to-match patients—who have probability pL of an incoming edge from each vertex
in the pool, and a fraction 1−λ > 0 of the n candidate-donor pairs—representing highly-sensitized,
hard-to-match patients—who have probability pH of an incoming edge from each vertex in the
pool. They assume pL > 0 is constant, and pH = c

n
for some constant c > 1; thus, the graph

induced by only those 1− λ fraction of (sensitized) vertices with incoming edge probability pH is
sparse.

We assume, for kidney exchange compatibility graphs DK with nK pairs, t(nK) > 0; however,
for liver exchange graphs DL with nL pairs, t(nL) = 0 (i.e., there are no altruistic liver donors).
Furthermore, we introduce an additional constant probability pK→L > 0 to address the likelihood
that some paired kidney donors will be unwilling in any scenario to donate a liver instead of
a kidney. For notational simplicity, we will not introduce the complementary probability pL→K ,
which would represent the probability that a paired liver donor would be willing to donate a kidney
if matched, because in practice we believe any potential liver donor would prefer donating the

2While the most recent publication date of Ashlagi and Roth [19] is after that of Ashlagi et al. [23], the former
paper appeared in 2011 as a conference paper, while the latter appeared as a conference paper in 2012 and is still under
submission as a final journal paper.
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vastly “easier” kidney to donating a liver (i.e., pL→K = 1 in practice). Still, were this not to be the
case, the qualitative results to follow would still hold. We do not assume that the pL (resp. pH)
for DK equals the pL (resp. pH) for DL. Formally, let pL,{K,L} ∈ (0, 1] be different constants and
pH,{K,L} = c{K,L}/n{K,L} for DK and DL and positive constants cK and cL. When the usage is
obvious from context, for expositional ease we will still use pH , pL, and c.

Now, define the graph join operator D = join(DK , DL, pK→L) between a kidney exchange
graph DK and liver exchange graph DL as follows. Flip a pK→L-weighted coin for each patient-
donor pair in DK ; if heads, this pair is willing to give a liver to a pair in DL if matched (or a
kidney to a different pair in DK), otherwise the paired donor is only willing to give a kidney. Next,
add directed edges between candidate-donor pairs in both pools in accordance with each pair’s
associated probability (e.g., pL,L from any kidney pair to a lowly-sensitized liver pair or pH,K
from any liver pair to a highly-sensitized kidney pair), except for those vertices with paired kidney
donors who are unwilling to donate livers. Do not add any edges from the t(nK) altruistic donors
in DK to vertices in DL (since altruistic kidney donors are unwilling to donate a liver).

In the following theoretical results, we consider cycles of length at most some constant but
chains of any length; this mimics current practice in kidney exchange, and would likely mimic that
of fielded liver exchange. Thus, an efficient matching allocates the maximum number of transplants
in cycles of size no more than some constant and chains of any length. Both results build on the
work of Ashlagi et al. [23], which considers only a single kidney exchange.

Proposition 7 assumes a linear (in the number of candidate-donor pairs) number of altruistic
donors, while Proposition 8 works with just a constant number of altruistic donors. We contrast
both theoretical results at the end of this section.
Proposition 7. Consider β > 0 and γ > 0, sparse kidney compatibility graph DK with nK
pairs and t(nK) = βnK altruistic donors, and sparse liver compatibility graph DL with nL =
γnK pairs. Then for any constant cycle cap and pK→L > 0, any efficient matching on D =
join(DK , DL, pK→L) matches Ω(nK) more pairs than the aggregate of any such efficient match-
ings on DK and DL (with probability approaching 1 as nK approaches∞).

Proof. The proposition follows from the proof of Theorem 5.4 of Ashlagi et al. [23], which directly
supports a similar result as Theorem 5.2 of Ashlagi et al. [23]. In that Theorem 5.4 (which assumes
a kidney exchange graph similar to ours, with no altruistic donors), they show that there are a linear
in n (n{K,L} for us) number of “good cycles” of some constant length z. These “good cycles” have
a single vertex u in the lowly-sensitized portion of D{K,L} that is only connected to a single vertex
v1 in the highly-sensitized portion of D{K,L} (and possibly other vertices in the lowly-sensitized
portion). From v1 there then exists a path 〈v1, . . . , vz−1〉 of highly-sensitized vertices with out-
and in-degree one such that vz−1 connects back to u. Finding that path 〈v1, . . . , vz−1〉 relies on a
well-known result (see, e.g., [120]) that there exist linearly many isolated tree-like structures in a
sparse graph (like the one induced by our highly-sensitized vertices). They show an additive linear
gain in increasing cycle caps by first taking some optimal cover of cycles of length at most z and
augmenting it to include enough of these “good cycles” of length at most z + 1—of which there
are linearly many in n—resulting in the gain.

We assume a constant cycle cap of z and no chain cap, which mimics real-world kidney ex-
changes and would probably be the case in a fielded liver exchange (if altruistic donors existed).
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Note that regardless of cycle cap, any efficient matching will match all lowly-sensitized pairs
(w.h.p. as n grows), via direct application of well-known matching results on dense Erdős-Rènyi
graphs (see, e.g., [120]). Under this constant cycle cap assumption, there exist a linear number
of highly-sensitized vertices in the liver pool DL that remain unmatched by an efficient matching
of cycles of length at most z (recall there are no chains in the liver pool). These are the linearly
many isolated highly-sensitized paths that are part of “good cycles” of length strictly greater than
z and thus cannot be legally matched. By gluing the two pools DL and DK together, these isolated
vertices gain access—through chains that start in DK , of which there are linearly many in nK—to
a linear number of altruists who, as in Theorem 5.2 of Ashlagi et al. [23], act as the u vertex in
“good cycles” of length greater than z that are now no longer required to connect back to u.

Formally, fix an efficient matchingM∗
K inDK alone and an efficient matchingM∗

L inDL alone,
which is disjoint fromM∗

K (by construction). The aggregate sizemI = |M∗
K∪M∗

L| = |M∗
K |+|M∗

L|
of these two matchings is the size of the efficient matching under the setting of independent liver
and kidney exchanges. We will show that by combining exchanges, all pairs matched in M∗

I =
M∗

K ∪M∗
L can be matched while also matching a linear number of previously unmatched pairs.
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Figure 9.2: A linear number of chains threading into the liver pool. Altruistic donors are shown
as a boxes, while pairs in DK and DL are shown as circles with inscribed Ks and Ls,
respectively. Pairs that are matched only when exchanges are combined are shown in
white.

Figure 9.2 overviews the augmented matching we will construct. On the left side is a linear-
in-nK number a of chains created from the t(nK) kidney altruists and only pairs in DK ; these
structures exist and are already in the efficient matching M∗

K—and thus in M∗
I [23]. Now, for

each of the a chains, consider the final kidney pair in the chain. By assumption, with constant
positive probability pK→L, that pair is willing to participate in a donation that crosses into the liver
pool. This preference is determined independently across all pairs, so in expectation (pK→L)a
chains will be willing to thread into the liver pool. We will extend these chains in our combined
matching, and will leave the remaining (1 − pK→L)a in expectation kidney-only chains allocated
as they were in the original matching M∗

K . These estimates are concentrated about their mean via
standard concentration bounds.

Given the original constant cycle cap z, for any larger constant integer z′ > z, there exist
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b = βnL ∈ Ω(nL) isolated paths in the liver pool as well, where β is a positive constant [23]; these
are shown on the right side of the graph in Figure 9.2. These consist entirely of pairs that are not
matched in M∗

L, and thus are not matched in M∗
I , either. Now, for each of those (pK→L)a kidney

pairs at the end of a chain in M∗
K who are willing to donate a liver, the probability p1 that at least

one edge exists from that pair to at least one liver pair at the head of one of the βnL isolated paths
of length z′ in DL is:

p1 = 1− (1− cL/nL)βnL =nL→∞ 1− e−cLβ ∈ O(1). (9.1)

This connectivity is determined independently for each of the (pK→L)a kidney pairs, leading to
p1(pK→L)a ∈ Ω(nK) in expectation pairs with at least one connection to a liver pair at the head
of an isolated path in DL. Edges that may exist between the two sets of paths—the chains in M∗

K

and the isolated unmatched paths in DL—are shown as dashed lines in Figure 9.2. Then all that is
left to do is lower bound the size of a maximum bipartite matching on the graph induced by those
dashed edges that actually exist, which we denote by G. We prove this bound with a balls and bins
argument.

As a lower bound on the size of that matching, assume that each of the p1(pK→L)a kidney
pairs with at least one edge crossing into the liver pool has exactly one edge crossing into the liver
pool, selected uniformly at random from its true set of edges. This induces an injective mapping
of kidney pairs to liver pairs, and also a subgraph G′ ⊂ G of the full bipartite graph over which
we are performing a maximum matching; thus, the cardinality of a maximum matching in this
reduced subgraph G′ is a lower bound on the cardinality of a maximum matching in the fully
realized bipartite graph G. Furthermore, the size of a maximum matching in this subgraph is equal
to the number of pairs on the liver side with at least one incoming edge. We calculate that now,
treating each kidney pair as one of p1(pK→L)a balls being dropped uniformly at random into one
of the βnL bins (representing a liver pair with at least one incoming edge in the full bipartite graph
G).

Formally, index the liver pairs [I] = {1, 2, . . . , βnL}, let random variable Y represent the
number of liver pairs with zero incoming edges in the subgraph G′, and let Xi be a binary random
variable that is set if pair i ∈ [I] has no incoming edges. Then E[Xi] = (1 − 1/βnL)p1(pK→L)a ∈
O(1). Thus, with constant E[Xi] < 1, and E[Y ] = E[

∑
i∈[I]Xi] =

∑
i∈[I] E[Xi] by linearity of

expectation, we have E[Y ] = βnLE[Xi], a constant fraction (strictly less than one) of the liver
pairs.

Finally, let random variable Z represent the number of liver pairs with at least one incoming
edge in the subgraph. Then βnL = Z + Y , and E[Z] = βnL−E[Y ] = βnL(1−E[Xi]) ∈ Ω(nL).
With E[Z] a constant positive fraction of the liver pairs, we have a maximum matching of size
Ω(nL) in G′, and thus a maximum matching of size Ω(nL) in G.

We now construct our final matching M∗
C in the combined pool. Take M∗

C = M∗
I . For those

kidney-only chains in M∗
K ⊆ M∗

I ending in (i) a kidney pair willing to donate a liver with (ii)
at least one edge into the liver pool, add edges in accordance with a fixed maximum matching in
G. Each of these Ω(nL) edges connects to an isolated path of length z′ > z ≥ 0 of previously
unmatched pairs in the liver pool. Add each of these pairs to M∗

C , resulting in a linear gain in
matching size over M∗

I .
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As shown in Proposition 7, the presence of a linear number of altruistic kidney donors in a
multi-organ exchange results in a linear gain in the overall number of pairs matched in an effi-
cient matching relative to the aggregate of efficient matchings in independent kidney and liver
exchanges. This is realized specifically by giving those highly-sensitized liver pairs who are un-
matchable using only cycles in the liver pool access to more flexible, longer altruist-initiated chains
that thread out of the kidney pool. In the following Proposition 8, we restrict the number of al-
truistic kidney donors to a constant and show that even in this constrained setting, with constant
positive probability, chains that thread out of the kidney pool into the liver pool allow for a linear
gain in overall number of matches.
Proposition 8. Consider γ > 0, sparse kidney compatibility graphDK with nK pairs and constant
t > 0 altruistic donors, and sparse liver compatibility graph DL with nL = γnK pairs. Then there
exists λ′ > 0 such that for all sensitization probabilities λ < λ′, for any constant cycle cap and
pK→L > 0, any efficient matching on D = join(DK , DL, pK→L) matches Ω(nK) more pairs
than the aggregate of any efficient matchings on DK and DL separately (with constant positive
probability).

Proof. For small enough λ and large enough cK , where pH,K = cK/nK , with high probability
there exists a set SK (of size at least nK/2) of highly-sensitized pairs in DK that are “too far”
away from lowly-sensitized pairs in DK to be matched in a cycle of capped length and must be
matched in a chain triggered by an altruist a or not matched at all [23]. By similar reasoning, for
large enough cL, where pH,L = cL/nL, there exists a set SL of pairs in DL that cannot be matched
in a cycle of constant capped length and would have to be matched in a chain or not matched at
all—since we assume that no altruists willing to directly donate a liver exist, these pairs would go
unmatched if exchanges for different organs operated independently.

A

K K K K K K K K K K K K K

LLLLLLLLL

`K/2 `K/2

`L

Figure 9.3: Relevant portion of the maximum matching for SK ⊆ DK and SL ⊆ DL in the
independent exchanges case. An altruist is shown as a box, while pairs in SK and SL
are shown as circles with inscribed Ks and Ls, respectively. Pairs that are matched with
constant positive probability are shown in gray. Note that no pairs in SL are matched.

To aid the reader, Figures 9.3 and 9.4 accompany the statements in this part of the proof;
Figure 9.3 corresponds to our status quo case of two separate kidney and liver exchanges, while
Figure 9.4 corresponds to the setting of this proof, where the exchanges are combined via the join
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`K/2 `K/2−O(1)

O(1)

`L/2`L/2

Figure 9.4: Relevant portion of the maximum matching for SK ⊆ DK and SL ⊆ DL in the
combined exchange case. An altruist is shown as a box, while pairs in SK and SL are
shown as circles with inscribed Ks and Ls, respectively. Pairs that are matched with
constant positive probability are shown in gray. Note that a linear portion of the chain
in SL is matched with constant positive probability.

operator. We will make use of a general result on sparse random directed graphs from Krivelevich
et al. [138]: as c{K,L} increases, a directed path of length approaching |S{K,L}| in S{K,L} exists.

We first show the existence of long paths of vertices that must be matched by chains in each
of DK and DL. Take the set SK ⊆ DK of kidney pairs that must be matched via chains or not at
all; then |SK | ≥ nK/2 ∈ Ω(nK) [23]. Similarly, take the set SL ⊆ DL of liver pairs that must be
matched via chains (threaded, in this case, through a willing kidney pair as determined by pK→L);
then |SL| ≥ nL/2 ∈ Ω(nK). Via the results of Krivelevich et al. [138], there exists a directed
chain CK of length `K ∈ Ω(|SK |) in SK , and similarly there exists a directed chain CL of length
`L ∈ Ω(|SL|) in SL. Then there exists constants αK and αL such that `K = αKnK (the length of
the chain in SK) and `L = αLnL (the length of the chain in SL), respectively.

Take the first `K/2 pairs in the head of CK ; then, the probability p1 that a given altruistic donor
has at least one outgoing edge to a pair in that head is

p1 = 1− (1− cK/nK)`K/2 = 1− (1− cK/nK)αKnK/2 =nK→∞ 1− e−cKαK/2 ∈ O(1). (9.2)

Then, with constant positive probability p1, the altruistic donor in the independent exchanges case
matches mI pairs, where `K/2 < mI ≤ `K ; exactly 0 pairs in the chain CL are matched. That
matching is visualized in Figure 9.3.

In the combined exchanges case, a given pair in CK has an outgoing edge to a given pair in CL
with probability pK→LcL/nL > 0. Take a positive constant t > 0 number of pairs in the tail of
the CK chain. Then, the probability p2 that at least one of the t pairs in that tail has at least one
outgoing edge to at least one pair in the first `L/2 pairs at the head of the liver chain CL is

p2 = 1−
[
(1− pK→LcL/nL)`L/2

]t
= 1−

[
(1− pK→LcL/nL)αLnL/2

]t
=nL→∞ 1−

[
e−pK→LcLαL/2

]t ∈ O(1).
(9.3)
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The independence assumptions above are valid because (i) the willingness of a kidney pair to give
a liver is determined independently via the pK→L parameter and (ii) the initial edge compatibility
check between pairs in DK and DL is independent of the results of the pK→L coin flip. Then, with
constant positive probability p1p2, the altruistic donor in the combined exchanges case matches
mC pairs, where mC > mI + `L/2 − t, the guaranteed matched pairs in CK minus a constant t
pairs in that tail plus the guaranteed matched pairs in the tail of CL. That matching is visualized in
Figure 9.4.

Recall `L/2 ∈ Ω(|SL|), and with constant t, `L/2 − t ∈ Ω(|SL|). So, the gain in matches
between the matching in Figure 9.3 and that in Figure 9.4 is

mC −mI > `2/2− t = αLnL/2− t = αLγnK/2− t ∈ Ω(nK) (9.4)

which occurs with constant probability at least p1p2 > 0, where p1 and p2 are given in Equations 9.2
and 9.3, respectively.

Discussion of theoretical results in the sparse model

Intuitively, Propositions 7 and 8 show the theoretical efficacy of combining kidney exchange with
alternate organ exchanges (where altruistic donation is less likely to be popular or deemed ethically
acceptable). While Proposition 8 may seem like a stronger result due to its relaxed reliance on
a constant number of altruistic kidney donors (instead of the linear number in Proposition 7),
the numerator c in pH = c/n may be required to be quite large (although still constant), the λ
sensitivity constant quite small, and the result also holds with merely constant positive probability
instead of holding with probability approaching one. We feel this makes Proposition 7 a more
relevant result overall than Proposition 8 for the composition (in terms of pool sensitization and
number of altruistic donors) of currently fielded kidney exchanges.

9.2.2 Dense model
Initial research on random graph models for organ exchange adapted dense (constant probability
of an edge existing) Erdős-Rènyi graphs to kidney exchange [19, 74]. Fielded exchanges have
proven to be somewhere in between dense—as we discuss now—and sparse—as in the theory
above—in practice, and thus actual pools and their optimal matchings do not align with these
dense models [23, 24, 75, 78]. Still, we show that the efficiency results in the dense model with
chains (Theorem 1 of Chapter 2) can be applied to independent liver exchange and multi-organ
exchange to yield efficient matchings with linear expected overall gain from combining the pools
(given a linear number of altruists) for large enough compatibility graphs. We derive these results
now.

We begin by refreshing the reader on some terminology from the dense model of kidney ex-
change, which models blood types for patients and donors. An under-demanded pair is any pair
such that the donor is not ABO-compatible with the patient. If an under-demanded pair contains
only type A and B blood (e.g., a pair with A-type patient and B-type donor, or vice versa), it is
called reciprocal. Any pair in the pool such that the donor is ABO-compatible with the candidate
is called over-demanded. Furthermore, if a donor and candidate share the same blood type, they
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are a self-demanded pair. Under-demanded and reciprocal pairs are intuitively “harder” to match
than over-demanded and self-demanded pairs. This is not necessarily the case if sensitization, the
probability of matching with a random donor, is considered. For example, an A-type patient who
is lowly sensitized is typically easier to match than an O-type patient who is highly-sensitized;
however, the dense model does not consider different degrees of sensitization. The dense model
critically assumes that a donor and patient who are blood-type compatible are tissue type incom-
patible with constant probability p̄. This differs from the model we used in Propositions 7 and 8,
where lowly-sensitized patients had a constant edge probability while highly-sensitized patients did
not. The dense model also denotes by µX the frequency of blood typeX , and assumes µO < 3µA/2
and an ordering µO > µA > µB > µAB. The United States national blood type distribution satisfies
these constraints. As in Chapter 7, we will use V X-Y

{K,L} to refer to the subset of vertices with patient
and donor of blood type X and Y , respectively, in the kidney and liver compatibility graphs, and
V X
{K,L} for the subset of vertices with altruistic donors with blood type X in the kidney and liver

compatibility graphs.
Under the realistic assumptions on blood type distributions stated above, but assuming no

chains and only patients who need kidneys, Proposition 5.1 of Ashlagi and Roth [19] states that
an efficient allocation exists (with high probability) that uses only cycles of length at most 3. That
result is proven only with respect to cycles; that is, it assumes there are no altruistic donors. The-
orem 1 of Chapter 2 extends that result into a pool that also has chains (but still only patients who
need kidneys), stating that an efficient allocation exists (with high probability) using only cycles
and chains of length at most 3. Both of these results are “in the large” and rely on the fact that
the size of a set S ∈ {V X-Y

{K,L}} ∪ {V X
{K,L}} for any blood types X and Y will be very close to its

expectation as |S| → ∞.

Only livers

We first look at dense liver exchange in this model. The blood type distributional requirement is
satisfied by patients in need of livers, just as it is with patients who need kidneys. Thus, under the
dense model, a liver-only compatibility graph looks exactly the same as a kidney-only compati-
bility graph (albeit with no chains). Thus, the efficiency result of Ashlagi and Roth [19] can be
applied directly to liver-only compatibility graphs. If altruistic liver donors existed in a liver-only
compatibility graph, then Theorem 1 would be directly applicable instead.

Multi-organ exchange

Next, we consider dense multi-organ exchange in this model. In this model, there will exist altru-
istic donors willing to give a kidney but not a liver, as motivated earlier in the chapter.

We assume the same blood type distribution and ordering as Ashlagi and Roth [19] for both
liver and kidney patients and donors. We also assume a directed multi-organ dense compatibility
graph D, with nK pairs needing a kidney and nL = γnK pairs needing a liver, for some constant
γ > 0. As motivated earlier in this chapter, altruistic kidney donors will not donate directly to liver
patients, but may trigger chains that result in a kidney pair donating to a liver pair. Each kidney pair
is willing to give to a compatible liver pair with some constant probability pK→L > 0. Thus, there
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are no outgoing edges in D from altruistic kidney donors to pairs needing a liver, but potentially
some edges from kidney pairs to compatible liver pairs.

In Proposition 9, we show that if there are enough altruistic kidney donors, the size of an effi-
cient matching onD is larger by an additive linear fraction than the size of the aggregate of efficient
matchings on DL and DK , the subgraphs induced by only the vertices consisting of pairs needing
livers and kidneys, respectively. We achieve this linear gain via a similar high-level strategy to
what was used in Propositions 7 and 8, which threaded kidney-altruist-initiated chains through
willing non-altruist kidney pairs into the liver pool. Formally, let V X

K be the subset of vertices in
DK containing only altruistic kidney donors of blood type X ∈ {O,A,B,AB}.
Proposition 9. Consider βA = µAµAB, βB = µBµAB, constants γ > 0 and pK→L > 0, dense
kidney compatibility graph DK with nK pairs, and dense liver compatibility graph DL with nL =
γnK pairs. If at least one of |V A

K | > βAnK or |V B
K | > βBnK , then any efficient matching on

D = join(DK , DL, pK→L) matches Ω(nk) more pairs than the aggregate of any such efficient
matchings on DK and DL (with probability approaching 1 as nK →∞).

Proof. We begin by adopting vocabulary from Ashlagi and Roth [19]; specifically, if a vertex v
participates in an exchange with some under-demanded vertex v′, then we say v helps v′. Pairs
denoted by X-Y have X-type patients and and Y -type donors, for X, Y ∈ {O,A,B,AB}. Note
that AB-altruists cannot help under-demanded pairs, A- and B-altruists can only help A-AB and
B-AB under-demanded pairs, respectively, and O-donors can trigger two types of chains of length
3 containing under-demanded pairs: 〈O-altruist, O-A pair, A-AB pair〉 or 〈O-altruist, O-B pair,
B-AB pair〉.

First, take the efficient matching result of Ashlagi and Roth [19] and apply it to DL. Only
(some) under-demanded liver vertices remain unmatched. Second, apply the efficient matching re-
sult of Theorem 1 to DK . Again, only (some) under-demanded kidney vertices remain unmatched.

Figure 9.5 provides a visual representation of the full allocation we will construct by augment-
ing the two allocations mentioned above.3 Altruists are shown as rectangles and candidate-donor
pairs as ovals; over-demanded pairs are gray; under-demanded and self-demanded pairs are white;
and reciprocal pairs are black. Solid edges represent donations that are in the original allocations,
while dashed edges are those added by the allocation we generate for the joint pool.

As in Theorem 1, since applying the two initial matchings results in all over-demanded, self-
demanded, and reciprocally-demanded pairs being matched (assuming |S| approaches its expec-
tation as |S| → ∞ for any set S ∈ V X-Y

{K,L}, X, Y ∈ {O,A,B,AB}), we must only exhaustively
consider all ways of matching under-demanded pairs. We do this in the list below: bolded items
trigger a linear gain in the combined efficient match, while all other items show no efficiency loss.
This guarantees a linear gain overall.

• AB-altruists: Altruistic AB-donors can only help over- and self-demanded (AB-AB) pairs,
both of which are matched entirely already in the separate exchanges.

3Figure 9.5 shows the full allocation up to symmetries between A-B and B-A pairs. By assumption, E[|V A-B
K |] =

E[|V B-A
K |] and E[|V A-B

L |] = E[|V B-A
L |], but it could be the case in practice that one subgraph is larger than the other. We

assume WLOG in Figure 9.5 that |V A-B
K | ≥ |V B-A

K | and |V A-B
L | ≥ |V B-A

L |.
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Figure 9.5: Our constructed matching that directly combines the allocations of Theorem 1
and Ashlagi and Roth [19]—which it applies initially to the kidney pool and liver
pool, respectively—and then threads leftover altruistic kidney donors through the kid-
ney pool into unmatched portions of the liver pool.

• A-altruists: Of the under-demanded pairs, altruistic A-donors can only help A-AB pairs.4 In
the matching from Theorem 1, A-donors donate to the A-AB pairs until one of the two sets
is exhausted. Under our assumption, |V A

K | > µAµABnK = |V A-AB
K |, so the A-AB set will be

exhausted, leaving some A-donors unallocated. These remaining A-donors can be threaded
into the liver pool through A-A kidney pairs to match with the remainder of under-demanded
A-AB liver pairs.
Given constant probability pK→L > 0 of a non-altruist kidney donor being willing to donate
a liver, and constant probability p̄ > 0 of an otherwise blood type compatible pair being
tissue type incompatible, a constant fraction of the pairs in V A-A

K , specifically pK→L|V A-A
K | =

pK→Lp̄µAµAnK pairs in expectation, are willing to give a liver to a liver pair. The use of
an A-A kidney pair via an A-altruist-initiated chain results in 0 efficiency loss relative to
the initial efficient matching, since there remains a perfect matching in V A-A

K by well-known
results on dense Erdős-Rènyi graphs (see, e.g., [120]). Thus, we gain 1 match for each of the
remaining

min
{
pK→L|V A-A

K |, |V A
K | − |V A-AB

K |
}

(9.5)

A-donors. The first input in the minimization in Equation 9.5 is of size Ω(nK), because a
constant fraction of a set that is linear in nK is still linear in nK . The second input is never

4In the original compatibility graph, altruistic A-donors can also help reciprocal A-B pairs; however, by the earlier
applications of the efficient matchings due to Ashlagi and Roth [19] to the liver pool and the efficient matching from
Theorem 1 to the kidney pool, all reciprocal pairs are already matched.
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negative and is potentially Ω(nK) by the theorem statement’s assumption on the number of
altruistic A-donors or B-donors; we address this uncertainty in the next paragraph.

• B-altruists: Of the under-demanded pairs, altruistic B-donors can only help B-AB pairs.
Under a symmetric argument as the A-donors above, combining pools yields

min
{
pK→L|V B-B

K |, |V B
K | − |V B-AB

K |
}

(9.6)

additional matches by threading through willing B-B kidney pairs into the unallocated under-
demanded liver pool. By similar logic to the above A-donor case, the first input to the
minimization in Equation 9.6 is again assuredly Ω(nK), while the second is never negative
and is potentially Ω(nK). The theorem statement ensures that at least one of the sets of A-
donors or B-donors is large enough—specifically, |V A

K | > µAµABnK or |V B
K | > µBµABnK—

to trigger a linear gain in at least one of Equations 9.5 or 9.6.
• O-altruists: In the matching of Theorem 1, some O-donors may be used in 2-chains with

remaining under-demanded pairs in DK . It is possible that these O-donors could be threaded
through an under-demanded kidney pair into an under-demanded liver pair to form a 3-chain
at utility gain of 1 (but not necessary for this proof). Similarly, because we are not making
assumptions on the number of O-donors, if there are so many O-donors inDK that all under-
demanded pairs (e.g., pairs of type O-AB in DK) are matched, then these O-donors can be
threaded directly into the liver pool by way of self-demanded O-O kidney pairs who are
willing to give livers (at no efficiency loss, as a perfect matching will remain in V O-O) for a
gain of at least 1 under-demanded match in DL (but this is also not necessary for this proof).

• Non-altruistic (i.e., paired) vertices: Self-demanded and reciprocally-demanded pairs can-
not help under-demanded pairs without involving altruistic donors or over-demanded pairs.
AB-O vertices are the only pairs that can help at most two under-demanded pairs (either
O-A and A-AB, or O-B and B-AB). In the Theorem 1 allocation, most AB-O pairs are used
in 3-cycles with two under-demanded pairs; however, some may be used in 2-cycles with a
single under-demanded pair. Reallocating these are not necessary for this proof.

Since at least one of the minimum size constraints on the set of altruistic A-donors (|V A
K | >

µAµABnK) or B-donors (|V B
K | > µBµABnK) is satisfied by the proposition statement’s assumptions,

we are guaranteed Ω(nK) additional matches by combining both pools by way of Equations 9.5
and 9.6.

The theoretical results presented in this section motivate the combination of independent kid-
ney and liver exchanges and show that such a joint exchange would allow for the use of altruistic
kidney donors at great gain to overall social welfare. Still, both models are significant simplifica-
tions of real organ exchange; the push for a fielded liver or multi-organ exchange in reality will
require extensive realistic simulations showing expected gains in number of matches, among other
statistics. We address this in the rest of the chapter. Section 9.3 describes our method for generat-
ing and clearing demographically accurate bi-organ compatibility graphs and Section 9.4 presents
experimental results on (i) liver exchange alone and (ii) independent liver and kidney exchanges
versus a combined multi-organ exchange.
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9.3 Generating and clearing demographically accurate pools

In this section, we describe our method for generating realistic organ exchange graphs for programs
in steady state, and compare these generated graphs to those produced by the current status quo
steady-state kidney exchange generator. We also briefly describe a generator built for early-stage
exchanges that have not yet reached steady state; this generator draws from real data from the
United Network for Organ Sharing (UNOS) nationwide kidney exchange. We then describe the
standard kidney exchange clearing algorithm and, motivated by generated realistic steady-state
liver and kidney exchange graphs, present a tweak to this algorithm to decrease liver exchange
solution time.

9.3.1 Data generation

In order to create an at-scale nationwide liver or multi-organ exchange, we first have to develop
a compatibility graph generator with which we can run simulations. First, we draw data from
reliable sources (here, specific to the US). Second, this data is fed into a graph creation algorithm
that probabilistically determines the existence of compatible and incompatible candidate-donor
pairs, as well as compatibility constraints between different candidate-donor pairs. In the large,
with high probability, graphs generated by this algorithm will mimic the demographics that would
prevail in a large-scale fielded exchange in the US. (Plugging different raw data (e.g., age, weight,
blood type distributions) into the generator algorithm would provide realistic generation of non-US
compatibility graphs.) These graphs will mimic organ exchange in steady state; in Section 9.3.3,
we will briefly describe the differences in compatibility graph composition that we have witnessed
in the creation of a nascent kidney exchange.

For our dense graph experiments, we generate kidney exchange compatibility graphs in ac-
cordance with Saidman et al. [191]; however, the compatibility of a potential liver donor with a
candidate differs from that of a potential kidney donor in three critical ways. While a donor and
candidate must be blood-type (ABO) compatible, (a) they need not be HLA-compatible,5 (b) the
age of the donor and candidate makes a significant difference in transplant success [86], and (c) the
portion of the donor liver that is cut out and transplanted into the candidate must be large enough
to keep the candidate alive, while the remainder of the liver in the donor must be large enough to
keep the donor alive. A proxy for liver size is the weight of the candidate or donor; intuitively,
larger people need larger livers. Thus, we assume a donor must be at least as heavy as his or her
matched candidate (or else the donor’s liver, which must be cut in two before transplantation, will
not be large enough to support the donor and candidate).

Graph generation is performed as follows. For each candidate and donor, we draw a gender
(from the 2010 US Census Report6); conditioned on gender, we then draw candidate blood types

5In kidney exchange, tissue type (HLA antibodies and antigens) are an important determinant of compatibility. A
candidate and donor sharing antigen encodings on the same locus are more likely to result in a rejected kidney. This is
a drastically less important factor in liver transplantation, and is typically not taken into account in liver transplantation
in practice or theory.

6http://www.census.gov/compendia/statab/cats/population.html
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from the OPTN (Organ Procurement and Transplantation Network7) distribution and donor blood
types from the overall US population.8 We sample ages (dependent on gender) for candidates from
the OPTN pool and for the donors from the 2010 US Census at a granularity level of one year.
Then, given the age and gender (generated separately from OPTN data for candidate and US Cen-
sus data for donors, as described earlier), we sample from a fine-grained table of weights released
by the Center for Disease Control [155]. For candidates requiring a kidney, HLA is sampled from
the OPTN databases. During edge generation, we include an exogenous “incompatibility factor”
f ∈ [0, 1] that randomly determines an edge failure even in the case of a compatibility success.
This factor is common in the kidney literature [22], and is used to account for incompleteness of
medical knowledge and temporal fluctuations in candidate-donor compatibility.

Appendix D.1 provides a much more in-depth detailing of the steps we take for data generation,
as well as a formal compatibility graph generation algorithm. Next, we compare steady-state liver
exchange graphs generated by our algorithm to kidney exchange graphs produced by the standard
steady-state generator due to Saidman et al. [191]. Our generator is a generalization of that one.

9.3.2 Comparison to steady-state kidney exchange

In most empirical kidney exchange research, traits of the family of compatibility graphs used in
experiments—like the average in- and out-degree of vertices or number of long paths in the graph—
have typically had a large effect on both the performance of clearing engines and the qualitative
results obtained (see, e.g., [14, 63, 75, 78, 134], or the discussion in Chapter 2). With that in
mind, we now compare our steady-state generator to the current state of the art kidney exchange
generator [191], which was meant to mimic a kidney exchange running in the United States in
steady state. While the generators and data are similar in spirit, the medical differences between
kidney and liver compatibility create distinctly different compatibility graphs both at the small and
large scale. We will discuss those differences below.

Figure 9.6 plots the average number of edges in the liver-only compatibility graphs, using
the generator in this chapter, against the average number of edges in the kidney compatibility
graphs generated by the state of the art, as the number of candidate-donor pairs increases. The
kidney compatibility graphs are, for graph sizes above 64, denser than comparably-sized liver
compatibility graphs. This is interesting because it shows that, even though the liver exchange
graphs do not need to take %PRA (i.e., HLA incompatibility) into account, their sensitivity to age
and weight distributions proves to be more constricting than HLA sensitivity! Regardless, neither
the liver nor the kidney graphs are sparse in the classical sense of the word: at |V | = 1024, the
number of edges in the liver graph is 26% of the total possible edges in a 1024-clique. This lack
of sparsity drives the experimental computational complexity of solving the real-world clearing
problem (as exemplified by, e.g., the initial experimental results in Chapter 2, where the clearing
problem with unbounded chains was easily solved on sparse real-world graphs, but the clearing
problem with even bounded chains became computationally intractable).

Figure 9.7 enumerates the differences in the out-degree of the vertices in compatibility graphs

7http://optn.transplant.hrsa.gov/data/
8http://bloodcenter.stanford.edu/about_blood/blood_types.html
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Figure 9.6: #Edges (in thousands) in generated liver and kidney compatibility graphs (100 graphs
per |V |). The generated kidney graphs are denser than the liver graphs.

for liver-only exchange generated using our algorithm (shown in white) and compatibility graphs
for kidney exchange from the Saidman et al. generator (shown in gray). The size of the graph,
|V |, is held constant along the rows, while the exogenous incompatibility rate (f ) between two
otherwise compatible candidates and donors is held constant in each column. We vary |V | and
f ∈ {0.0, 0.2, 0.4, 0.8, 0.9}. Note that there is no notion of an exogenous incompatibility rate in
the kidney graphs (although the %PRA virtual crossmatch simulation is similar to an exogenous
incompatibility rate, but not parameterized); as such, the kidney exchange graphs vary only in
terms of cardinality.

The cumulative distribution functions over the out-degrees of vertices, shown in Figure 9.7,
exhibit interesting behavior. For example, there are more vertices with low degree in the liver
exchange graphs than in the kidney exchange graphs. More interesting is the behavior exhibited by
the kidney exchange graphs as |V | increases. For instance, when |V | = 1024, we see three distinct
out-degree sections in the kidney exchange graphs. These are an artifact of the somewhat ad-hoc
method of doing %PRA virtual crossmatch tests in the Saidman et al. generator. The generator
groups pairs into three sensitivity levels (“high”, “medium”, and “low”). As |V | increases, those
patients who are highly sensitized tend toward very few edges, while those at the medium and low
sensitivity levels tend toward a medium and high number of edges, respectively. This is an artifact
of the generator by Saidman et al. [191] and is not representative of the real kidney exchange data.
Our generator (even if used for kidneys) does not have such coarse artifacting because it can bucket
sensitivity into finer-grained classes.

9.3.3 Sparse generated compatibility graphs

While the transplantation of each organ is unique in its own way, we can draw from the experience
of nascent kidney exchanges in the US and abroad when considering the makeup of a hypothetical
liver or multi-organ exchange. As discussed in Section 9.2.2, early theoretical models of kidney
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exchange ended up behaving substantially differently than fielded exchanges; indeed, as prac-
tioners uncovered logistical constraints and medical features of kidney exchange, economic and
computational models adapted to better reflect reality.

The data generation process described in Section 9.3.1 produces a “best guess” at what a steady-
state liver or multi-organ exchange would look like. That generation process can easily be adapted
to unforeseen features of those exchanges as they arise. Indeed, we address the unforeseen in
a general way using the exogeneous incompatibility rate f ∈ [0, 1]. This incompatibility rate
affects each pair independently. In reality, some pairs may be much harder to match than others,
sometimes for poorly-understood reasons from a medical point of view. This is the case in kidney
exchange (see discussions in, e.g., [23, 24, 75]).

With this in mind, in this chapter we also perform experiments directly on compatibility graphs
drawn from the United Network for Organ Sharing (UNOS) nationwide kidney exchange, which
is a large, fielded real-world kidney exchange that currently includes 143 transplant centers in
the US. In other kidney-exchange-specific work, the authors built a compatibility graph generator
that accurately mimics the UNOS nationwide exchange [77]. In the present work, we seed this
generator with the first 192 match runs (October 2010 through March 2015) of the UNOS exchange
and feed those graphs into our static and dynamic organ exchange simulators. To simulate multiple
organs, we mark pairs as needing either a kidney or liver using demographic information from the
most recent OPTN reports on waiting lists for kidneys and livers, respectively, and attach edges
from real-world altruists in the UNOS pool only to those pairs marked as needing kidneys.

Obviously, we would not expect compatibility graphs generated in this manner to adhere at a
fine-grained level to those of a fielded multi-organ exchange; indeed, these generated graphs con-
tain no notion of different organs (beside kidneys) beyond a simple coin flip. That said, using these
compatibility graphs allows us to remove the dependence on the exogeneous incompatibility factor
f ; indeed, it has already been taken into account by the real world in these graphs! Thus, by includ-
ing experimental results on this second distribution of graphs, we hope to show qualitatively if not
quantitatively that gains from multi-organ exchange still hold under a more intricate notion of ex-
ogeneous incompatibility rates—because certainly a fielded multi-organ exchange will encounter
unpredictable constraints at run time, as was the case in the nascency of kidney exchange.

In the experimental results of Section 9.4, we will refer to those dense compatibility graphs
(sparsified in a parameterized way using f and pK→L) generated in accordance with Section 9.3.1
as DENSE, and those exogeneously sparse compatibility graphs (sparsified further only by pK→L)
drawn from real data as described in this section as UNOS.

9.4 Experimental results

We now provide computational results for a hypothetical nationwide liver or multi-organ exchange,
using the realistic data generated above. First, we describe timing and matching results in the static
case, where the algorithm sees the problem in its entirety up front. Second, we describe results for
the dynamic case, where candidate-donor pairs arrive in the pool over time and are either matched
or expire while waiting. We show results at sizes mirroring an estimated steady-state size of a
US-wide liver exchange. Finally, we explore the possibility of a multi-organ exchange, where both
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liver- and kidney-needing candidates can swap donors in the same pool. This results in more lives
being saved than would be by running two separate nationwide liver and kidney exchanges.

9.4.1 Static liver exchange experiments
In the static case, the generator outputs a single graph and the optimization engine solves the clear-
ing problem on this graph exactly once. Figure 9.8 shows timing results on liver exchange graphs
of various sizes |V | and exogenous incompatibility rates f drawn from the DENSE distribution.
Intuitively, when f is low (or zero), the optimizer must consider many more edges than when f is
high, resulting in longer run times for denser graphs. As expected, the computation time increases
drastically with graph size—although our solver is still able to solve large problems to optimality.
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Figure 9.8: Median match run time (left) and median percentage of candidates matched (right),
varying incompatibility rate f and graph size |V |, with first and third quartile error
bars, for DENSE compatibility graphs.

Figure 9.8 also shows the percentage of candidates matched (the number of candidates matched
by the algorithm divided by the total number of candidates in the pool) as a function of compat-
ibility graph size |V | and exogenous incompatibility rate f . Intuitively, when f is held low, the
percentage of candidates matched is higher than when the incompatibility rate is high. Of interest
is the match behavior as |V | increases. Regardless of f , the percentage of candidates matched
increases with the size of the underlying compatibility graph. This behavior is similar to that seen
in kidney exchange and motivates the need for a large (nationwide or international) liver exchange.

Addressing the needs of society

The estimated steady-state monthly size of the nationwide kidney exchange is 10,000 candidate-
donor pairs [6]. The rate of live liver donation is 1/8th of the rate of live kidney donation (5% of
all liver transplants in the US involve live donors, compared to 40% for kidneys [50]), although
this number would hopefully increase due to the publicity of a successful exchange—we will
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conservatively estimate a factor of 1/2 as many live liver donors as kidney donors in steady-state.
With 101,257 candidates currently waiting for a kidney and 15,268 candidates waiting for a liver
in the US—and half as many live donors available—the steady-state for a US-wide liver exchange
can be estimated at approximately half of 15,268 / 101,257 ≈ 7.5% of 10,000, or roughly 750
candidates. So, our clearing algorithm should be able to handle batch runs of a nationwide liver
exchange.

9.4.2 Dynamic liver exchange experiments
In the dynamic case, a variable number of candidates enter and leave the pool over a period of mul-
tiple time units. While the fielded UNOS nationwide kidney exchange and others currently operate
under the static paradigm described earlier, recent work in the kidney exchange community—some
of which is presented in Chapters 6 and 8—has shown that optimizing in the dynamic setting leads
to both more realistic and higher cardinality matchings over time [9, 15, 17, 24, 27, 70, 73, 213].
Regardless of the optimization method used, organ exchange is inherently dynamic, with candi-
dates and donors arriving and departing over time; we work in such a setting here.

We start with a pool of |V | = 400 pairs assumed to contain highly-sensitized patients who
built up in the system over time. These are matched myopically at each time period, including the
final time period. Given a matched cycle by the algorithm, we then simulate that transplant actually
succeeding in real life via an exogenous parameter set to 0.7 (this post-match, pre-transplant failure
probability is drawn from real data, as motivated in Chapter 5). If any edge in a cycle fails,
that entire cycle fails, and all candidates are returned to the pool (with the failed edge or edges
removed). We simulate candidates leaving the pool (either through finding a transplant or dying).
While 12% of patients in need of a kidney will be alive after 10 years via dialysis while waiting for
a kidney [107], no such treatment exists for livers; thus, life expectancy drops to 1–2 years, which
we simulate. In expectation |Vnew | = 233 new candidates arrive in the pool per month, and the
algorithm continues. We test over 24 months.
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Figure 9.9: Number of candidates matched per time period in a dynamic setting over T = 24
months, for exogeneous incompatibility rates f ∈ {0.5, 0.7, 0.9}, for compatibility
graphs drawn from the DENSE distribution.

Figure 9.9 shows the number of candidates matched by the clearing engine at each time pe-
riod for dynamic graphs drawn from the DENSE distribution with exogeneous incompatibility rate
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f ∈ {0.5, 0.7, 0.9}. Shown in the figure is the number of candidates matched by the algorithm,
but before the virtual post-match failures are taken into account. Initially, there is a period of
a few months during which the dynamic pool builds density as more candidate-donor pairs en-
ter, followed by a relatively constant steady state. Intuitively, those simulated graphs with lower
incompatibility rates f result in a larger number of matches per time period and overall, which
qualitatively aligns with the static results of Section 9.4.1. Clearing times ranged between two and
three minutes per time period.

9.4.3 Dynamic bi-organ exchange experiments
In this section, we expand beyond simulating a dynamic liver exchange to the novel concept of
multi-organ exchange. In the long run, one could imagine exchanges of multiple different kinds
of organs. However, to our knowledge, only kidneys and livers have ever been swapped (and only
separately). Ongoing work by Ergin et al. [90] is attempting to exchange lungs, another related
but different organ exchange problem (e.g., typically two donors are required per candidate); it is
likely that the first such hand-organized exchange will take place in Japan. Therefore, in this sec-
tion we will focus on kidneys and livers. We show that combining an independent nationwide liver
exchange with a nationwide kidney exchange into a joint kidney-liver exchange results in a statis-
tically significant increase in the number of organ transplants, which aligns with Propositions 7, 8,
and 9.

We simulate a demographically accurate bi-organ exchange featuring candidates in need of
either a kidney or a liver who can swap donors in a combined candidate-donor pool. Approximately
85% of the candidates in the simulated pool need kidneys, while the other 15% need livers, as
determined by OPTN waitlist data. We mimic the experiments in the previous section, with a
starting pool size of |V | = 400 candidates who are highly sensitized and are assumed to have built
up in the pool over time; we also include 100 altruistic kidney donors who enter the combined
pool at an expected constant rate. We use the same post-match failure rate (0.7) as in the previous
section, and simulate candidate-donor pairs entering and exiting the pool in a similar fashion. For
DENSE experiments, to generate the candidates, we draw from the two different US distributions
based on whether the candidate needs a kidney or a liver. Naturally, donors are drawn from the
same US distribution in the two cases. For UNOS experiments, we draw from the UNOS generator
as described in Section 9.3.3. We test over 24 months.

Figure 9.10 shows the number of candidates matched each month in the combined bi-organ
exchange, as well as the aggregate number of candidates matched while keeping both liver- and
kidney-needing candidates in separate pools. We set pK→L = 0.5, but relax this assumption later.
Clearly evident is the loss of life resulting from keeping both the liver and kidney pools indepen-
dent, with the bi-organ exchange matching roughly 40 more candidates per month, depending on
exogeneous incompatibility rate f , when compared to the two independent exchanges.

When we compare the total number of matches made over the entire period simulated above,
the difference in lives saved between two independent pools and the combined bi-organ pool is
more stark. In the experiments of Figure 9.10 with pK→L = 0.5, the combined bi-organ pool pro-
duced roughly 20% more matches than the sum of the two independent organ pools—specifically,
19.3%, 18.8%, and 21.8% for each of f = 0.5, f = 0.7, and f = 0.9, respectively. Independent
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Figure 9.10: Number of matches per time period in independent liver and kidney exchanges and a
combined multi-organ exchange in a dynamic setting over T = 24 months, for graphs
drawn from the DENSE distribution with f ∈ {0.5, 0.7, 0.9} and pK→L = 0.5

samples t-tests revealed that the difference between the aggregate number of lives saved using in-
dependent, simultaneous liver and kidney exchanges and using a combined multi-organ exchange
was significant (t(73) = 44.141, t(42) = 38.872, and t(81) = 41.651 for each of f = 0.5, f = 0.7,
and f = 0.9, respectively, with two-tailed p � 0.0001 for each). Qualitatively, this behavior is
repeated for other values of pK→L ∈ (0, 1.0], which we explore next.
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Figure 9.11: Percentage gain in number of matches over two independent exchanges for a com-
bined exchange as pK→L increases, for generated graphs from the DENSE distribu-
tion and f ∈ {0.5, 0.7, 0.9}.

Figure 9.11 shows the percentage gain in total number of matches of a combined exchange
over two independent exchanges as pK→L, the probability of a kidney-paired donor being willing
to donate a liver, increases. As expected, higher rates of pK→L result in better aggregate matching
performance due to chains triggered by kidney-yielding altruists having more options to thread
into the liver pool, and as longer (i.e., more valuable) chains. The effect of the exogeneous in-
compatibility rate f on the immediacy of this increase in match performance is noticeable; the
relatively dense f = 0.5 DENSE graphs appear to maximize the use of chains for very low values
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of pK→L = 0.1, while the sparser compatibility graphs see an increase across the entire range of
values for pK→L > 0.
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Figure 9.12: Percentage gain in number of matches over two independent exchanges for a com-
bined exchange as pK→L increases, for generated graphs from the UNOS distribu-
tion.

Finally, Figure 9.12 shows similar results on dynamic graphs taken from the UNOS distribution
of graphs. While the absolute efficiency gains are less than in the DENSE experiments, gains of up
to 7.6% are witnessed. This lower gain may be due in part to other intricacies specific to the UNOS
generator, which mimics some of the operational constraints of the fielded UNOS exchange. For
example, pairs have the ability to specify a maximum cycle or chain length in which they would
be willing to participate; indeed, some pairs express a preference not to participate in chains at all,
which we honor in these simulations. If pairs in the liver pool choose not to participate in chains,
then the gains seen from combining pools will be lower than those that would be seen if all pairs
chose to participate in all potential matching structures. Donors also are associated with specific
transplant centers and can specify maximum travel distance or a list of (un)acceptable transplant
centers where a donation can take place; many donors in the UNOS pool take advantage of this
expressiveness, which further constrains the set of possible matches in graphs drawn from the
UNOS distribution.

Additional experimental results and tabulated statistical significance testing for the data in Fig-
ures 9.10, 9.11 and 9.12 are presented in Appendix D.2.

The curves in Figures 9.11 and 9.12 are in part a function of the number of altruistic donors
available in the pool. A greater number of altruists would result in lower necessary values of
pK→L. Participation rates of altruists in kidney exchange are still in flux, the value of pK→L is not
yet known, and the level and type of sparsity of a real-world multi-organ exchange cannot truly be
determined until one has been fielded; that said, the results of Figure 9.11 and 9.12 conclusively
support the gain in number of matches from combining exchanges across a large variety of values
for these unknown parameters.
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9.5 Conclusions & future research
We explored the possibility of extending large-scale organ exchange to include liver lobes, either
in conjunction with or independently of presently fielded kidney exchange. On demographically
accurate data, vetted kidney exchange clearing algorithms (with a small tweak) can also clear liver
exchanges at a projected US nationwide size. We explored the prospect of multi-organ exchange,
where candidates needing either a liver or kidney can swap willing donors in the same pool. We
showed that such a combination matches linearly more candidates than maintaining two separate
exchanges; this linear gain is a product of altruistic kidney donors creating chains that thread
through the liver pool. This result is supported experimentally on demographically accurate multi-
organ exchanges with high statistical significance.

The work in this chapter is intended as a first foray into automated liver and multi-organ ex-
change. As such, there is much room for future research (much of which is applicable to other
organ exchange and even to barter exchanges beyond organs), and is motivated by experiences
fielding the nationwide kidney exchange. One direction of future work is to take on the slow and
politics-laden task of founding a liver exchange, or including livers in currently fielded kidney ex-
changes. Recent and ongoing work by Ergin et al. [90] is attempting to do this for a lung exchange,
another related but different organ exchange problem (e.g., typically two donors are required per
candidate), with the first trial likely to occur in Japan. Recent work by Luo and Tang [149] ap-
proaches lung exchange from a game-theoretic point of view. Another direction is to develop
scalable computational methods for the dynamic problem in the context of other organs. Indeed,
due to the shorter expected maximum waiting time for candidates in need of a liver, such dynamic
models may result in greater relative gains in number of matches compared to static models.

Finally, this chapter (and most papers on kidney exchange) deals with optimizing algorithmic
organ matches; in reality, most algorithmic matches in fielded kidney exchanges do not result
in an actual transplant. We expect this would be the case in liver and multi-organ exchange as
well, although the exact failure rates for liver and multi-organ exchanges would be different than
the observed failure rates in currently fielded kidney exchanges due to the medical and logistical
differences in the organs and the transplant processes. Making organ exchange failure-aware is a
critical step toward improving yield; recent work by Glorie [99] is an initial foray into learning a
better estimate of the probability of a transplant failure between a patient and a donor, but much
is left to be done, especially with organs other than kidneys. Using failure-aware techniques like
those in Chapter 5, combined with techniques like those in Chapters 7 and 8, could both improve
overall yield while balancing some of the fairness issues that would arise when comparing the
different risk profiles of donating kidneys, livers, and other organs.

Regardless, the urgent societal need for liver exchange is there today, and we hope to be able
to address it through a dedicated or combined liver- or multi-organ exchange.
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PART V:

Conclusions & Future Research
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Where is this place?
– Jean-Luc Picard

Where none have gone before.
– Data

10
Conclusions

This thesis addressed the design, analysis, and real-world fielding of dynamic matching markets
and barter exchanges. We presented new mathematical models for static and dynamic barter ex-
change that more accurately reflect reality, proved theoretical statements about the characteristics
and behavior of these markets, and developed provably optimal market clearing algorithms for
models of these markets that can be deployed in practice. We showed that taking a holistic ap-
proach to balancing efficiency and fairness can often practically circumvent negative theoretical
results, and gave a unified framework—FUTUREMATCH—that automatically learns to strike this
balance in a dynamic environment. We supported the theoretical claims made in this thesis with
extensive experiments on data from the United Network for Organ Sharing (UNOS) Kidney Paired
Donation Pilot Program, a large kidney exchange clearinghouse in the US with which we have
been, and are still, actively involved.

In Part I, we focused on theoretical properties of, and optimal mathematical-programming-
based methods for solving, the static, deterministic clearing problem. A clearinghouse that does
not consider the future when matching in the present is said to solve the static clearing problem;
similarly, a clearinghouse that does not consider uncertainty over the existence of market partici-
pants, nor uncertainty over the existence of potential trades between participants, is said to solve
the deterministic clearing problem. Solving the static, deterministic clearing problem is of both
theoretical interest and practical importance, as it most accurately mimics the current reality of
most fielded kidney exchanges’ matching policies.

Chapter 2 introduced a dense random graph model of kidney exchange, proved a result about
efficient matchings in that model, and then showed on real and simulated data that this result
does not accurately mimic reality. This is a common story in matching market and kidney
exchange research, and motivates the following chapters’ focus on optimization methods for
clearing exchanges with longer chains.
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Chapter 3 addressed methods for solving the static, deterministic clearing problem to optimal-
ity. It first identified a bug in the previously leading branch-and-price-based solvers and
proved a hardness result showing that those papers’ approaches are likely not to work in
general. To counter this negative result, it presented new models for kidney exchange that
scale substantially better than the prior approaches when clearing exchanges with long, finite
chains—including the now provably non-optimal prior leading solvers!

Chapter 4 presented a novel model for kidney exchange in which, under a light assumption that
is true in reality, the clearing problem is solvable in polynomial time. This model is quite
general and can be easily augmented to accept new developments in the organ exchange
world, like how to optimally add edges via costly immunosuppression. We showed on real
data that this new model accurately mimics reality.

Next, in Part II, we relaxed both the “static” and “deterministic” aspects of the clearing problem
addressed by Part I. While fielded clearinghouses tend to solve the static, deterministic clearing
problem, there is building theoretical and experimental consensus that considering both short-term
and long-term uncertainty explicitly in the optimization model can result in tremendous gains in
efficiency.
Chapter 5 addressed short-term uncertainty by way of the failure-aware model of barter ex-

change, which explicitly considers edge failure probability in the clearing optimization prob-
lem. It showed that in theory and in practice this results in large gains over standard deter-
ministic clearing. It presented a novel branch-and-price-based optimal clearing algorithm
specifically for this probabilistic exchange clearing problem and showed that this new solver
scales well on large simulated kidney exchange data, unlike prior clearing algorithms. It also
showed experimentally that taking failed parts from an initial match and instantaneously re-
matching them with other vertices still in the waiting pool can result in significant gains,
and that using a very small number of rounds of either non-adaptive and adaptive pre-match
edge testing can help post-failure matching performance.

Chapter 6 addressed long-term uncertainty found in dynamic barter exchange, where vertices
and edges arrive and depart over time, and the clearinghouse’s problem is to maximize some
utility function in the long run, possibly at the expense of immediate utility. It introduced
a natural, general policy parameterization approach called potentials, and gave techniques
for operationalizing it via black box parameter tuning. It presented some theoretical results
comparing expressive power of different types of potentials. Experimentally, this method
scaled to orders of magnitude larger than previous state-of-the-art methods, and results in
gains in the objective relative to myopic optimization.

Part III addressed balancing the economic efficiency gained by techniques from Parts I and II
with other concerns, like equity or other human-created objectives, in a theoretically-sound and
computationally-tractable fashion.
Chapter 7 adapted the price of fairness metric to kidney exchange, and showed—in theory—that

the price of fairness under very strict “fair” rules should be far. However, on real data, the
price of fairness varies dramatically based on assumptions made (like the underlying sparsity
of the graph or the failure rates being correlated with already-marginalized participants).
It concluded with an empirical exploration of the tradeoff between matching more hard-
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to-match patients and the overall utility of a utilitarian matching, on data from the UNOS
nationwide kidney exchange and simulated data from each of the standard kidney exchange
distributions.

Chapter 8 presented FUTUREMATCH, a framework for learning to match in a general dynamic
model. FUTUREMATCH takes as input a high-level objective decided on by experts, then
automatically (i) learns based on data how to make this objective concrete and (ii) learns
the “means” to accomplish this goal—a task, in our experience, that humans handle poorly.
It instantiated FUTUREMATCH in the kidney exchange realm and validated it on UNOS
exchange data. FUTUREMATCH results in higher values of the objective. Furthermore,
even under economically inefficient objectives that enforce equity, like those presented in
the preceding Chapter 7, it yields better solutions for the efficient objective than traditional
myopic matching that uses the efficiency objective.

Finally, Part IV presented new directions in general organ exchange.
Chapter 9 presented a model for liver and for multi-organ exchange. It showed that the technol-

ogy to clear such exchanges in the large is ready to be fielded now. It also showed, through
both theoretical random graph models and realistic experimental results in a dynamic setting,
that combining separate liver and kidney exchanges into a unified multi-organ exchange will
result in efficiency gains over running two individual organ exchanges.

Throughout the thesis, we used theory to support new research directions in the practical clear-
ing and fielding of new exchange ideas; we also used our learnings from interaction with large
fielded matching markets like the UNOS nationwide kidney exchange to drive new theoretical
progress. We addressed various dimensions of fielded barter exchanges independently, and then
presented a framework that learns to balance these dimensions, keeping a group of human ex-
perts’ preferences in the loop at a high level. We showed theoretically and experimentally that this
balance can be struck, providing strong evidence for our initial thesis statement.

Thesis statement

Competing dimensions—equity, efficiency, and computational tractability—in dynamic
matching markets and barter exchanges can be balanced holistically through computational
optimization methods and informed by random graph models.
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We shall have to evolve
problem-solvers galore —
since each problem they solve
creates ten problems more.

– Piet Hein

11
Future research directions & open questions

In this chapter, we present some future research directions and a list of open questions that arose
from the research performed as part of this thesis, or from discussions with other researchers and
practioners in the area.

11.1 Managing uncertainty

In practice, deployed matching markets and barter exchanges are subject to a variety of types of
uncertainty, like uncertainty over the existence of potential trades (as addressed in Chapter 5) or
the longer-term future composition of the market (as addressed in Chapter 6). We list some future
research directions targeting the management of such short- and long-term uncertainty now.

• The failure-aware model introduced in Chapter 5 can be viewed as a form of stochastic
optimization with limited recourse. An alternate method due to Anderson et al. [16] that
appeared after that work was published looks at a two-stage model of kidney exchange,
where some edges are selected in the first stage, are shown to exist or not exist, and the goal
is to maximize the size of the matching in the second stage that is built from those edges that
were shown to exist. An alternative approach to optimization under uncertainty is robust
optimization [32, 34], which may be more scalable in some cases as well as less dependent
on having exact knowledge of, for example, the probability of edges or vertices existing in
the compatibility graph.
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Research Direction 1: Fully-robust clearing of barter exchanges

Formulate a good robust optimization model for kidney exchange. What is the uncer-
tainty set? How does it perform against stochastic optimization methods, in terms of
scalability and sensitivity to uncertainty?

Related papers: Anderson et al. [16], Bertsimas and Sim [33], Bertsimas et al. [34],
Dickerson et al. [75, 80], Glorie et al. [98], Manlove and O’Malley [152]

• We estimated edge failure rates roughly from data in Chapter 5; however, even the correlation
between a simple metric like CPRA and edge failure rate is still poorly understood [24, 99]—
and real edges have much more in-depth information associated with them than a single
number. As we saw repeatedly in simulation results using different edge failure distributions,
assumed failure rates can make a large difference in the recommended matching. Better
sensitivity analysis results would be helpful, as would more accurate methods for either
predicting edge failure rates from past data, or choosing a small set of edges to query in
advance of the matching as we did in Chapter 5 (see also work by Blum et al. [43, 44],
Ryzhov and Powell [190]).

Research Direction 2: Learning failure rates

Create a better predictor of edge failure and vertex failure (either domain specific or
general).

Related papers: Ashlagi et al. [24], De Klerk et al. [68], Dickerson et al. [75], Fumo
et al. [94], Glorie [99], Leishman et al. [144]

• The full dynamic optimization problem for kidney exchange and many barter exchange ap-
plications is quite difficult. In Chapters 6 and 8, we presented one approximate method for
computing good dynamic matching policies; however, in both of those chapters, our learning
method did not converge. One could potentially use adaptations of recent techniques from
reinforcement learning [136, 161, 217] to attempt to learn a policy.
Of both theoretical and likely practical interest would be further exploration of the dynamic
kidney exchange problem in the formal Markov Decision Process (MDP) setting. Here, we
can view the (infinitely-large) set of all possible compatibility graphs as the state space of
the MDP, the set of all feasible matchings for a particular compatibility graph as the action
space per state, the reward function as, e.g., the number of matched pairs in the deterministic
model or the expected number of transplants in the failure-aware model, and the transition
function as a function of both the matching chosen and the underlying exchange dynamics.
The discount factor would be set in accordance with, in the case of kidney exchange, the cost
to a patient’s health of waiting and, perhaps, the cost of dialysis as they wait.
We note that without abstraction this MDP has an infinite state space, and a set of feasible
actions that is exponential in the size of each state, so is likely intractable to solve exactly;
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yet, intuitively, the results from Chapter 6 hint that abstraction techniques could yield good
empirical results. Can we make any strong theoretical statements about this? Is there a level
of abstraction that is both fine-grained enough to yield good gains in efficiency but coarse
enough that learning the policy is tractable?

Research Direction 3: Better dynamic matching policies

Create better methods for learning dynamic matching policies, with better theoretical
guarantees.

Related papers: Akbarpour et al. [9], Anderson et al. [15], Ashlagi et al. [24], Dick-
erson and Sandholm [70]

• When humans are also in the decision making loop at a clearinghouse, the interpretability
of a proposed matching policy is important. While complex dynamic matching policies
may lead to greater long-term efficiency, such increased complexity may not be palatable to
decision makers—humans often wish to understand how a system works rather than simply
trusting a black box. This intuition, combined with our experience working with fielded
kidney exchanges, motivated the potentials idea in Chapter 6; after learning potentials, it is
easy to map, e.g., types of vertices or types of edges to a single weight, which can then be
presented to and discussed by a committee of human decision makers. Striking a balance
between the interpretability of a matching policy—or any other model used in the market,
like that which is used for edge failure prediction or potential trade quality assessment—and
its expressive power is of both theoretical and practical interest.

Research Direction 4: Better interpretable dynamic matching policies

Create better methods for learning dynamic matching policies that can be easily ex-
plained to humans.

Related papers: Dickerson and Sandholm [70]

11.2 Incentives and privacy

A major challenge in kidney exchange, and in market and mechanism design in general, is in-
centivizing participation—meaning either participation at all, or truthful participation. There are
many classes of agents who participate in an exchange; in the kidney exchange case, these may
include patients, donors (altruistic or paired), specific surgeons or chairs of surgery departments,
transplant centers, and the clearinghouses themselves.

• In kidney exchange, transplant centers hide some of their donor-patient pairs and altruistic
donors from the exchange and instead try to match them locally. This is a major problem
in practice. For example, of the pairs revealed to the UNOS exchange from its beginning
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in October 2010 to May 2012, none could have been locally matched in their transplant
centers [200]. In other words, the centers did not reveal any of their pairs that could be locally
matched to the exchange. There is no perfect mechanism design solution to that problem
when viewed in a deterministic, static setting (see, e.g., Ashlagi and Roth [19], Ashlagi et al.
[25], Sönmez and Ünver [198]); some ongoing research we have with Hajaj et al. [104]
works to circumvent these impossibility results by moving into a different model. Similarly,
recent work by Blum et al. [45] makes use of randomization to get good results in a static
setting. Yet, many open questions remain, and theoretically-sound ideas in that space that
are also able to be practically fielded have the potential to greatly impact today’s kidney
exchange landscape.

Research Direction 5: Increasing transplant center participation

Design mechanisms that both mimic reality and incentivize truthful (or otherwise
“good”) behavior by transplant centers.

Related papers: Ashlagi and Roth [19], Ashlagi et al. [25], Blum et al. [45], Carvalho
et al. [55], Hajaj et al. [104], Toulis and Parkes [209]

• Potential donors can also be incentivized to join exchanges—or, at an even simpler level, be
incentivized to register as deceased donors. In 2013, Chiquinho Scarpa, a wealthy Brazilian,
announced on Facebook that he would bury one of his luxury vehicles, a Bentley Flying
Spur, so that he might drive it in the afterlife.1 After some initial public outcry, he released
the following statement: “I have not buried my car, but everyone thought it absurd when I
said I’d do it. It is absurd to bury their bodies, which can save many lives. Nothing is more
valuable. Be a donor, tell your family.” While we may not all have luxury vehicles to bury,
nor the ability to make exotic statements like Mr. Scarpa, there are other effective methods
to increase donor participation in organ transplantation mechanisms.
Sites like Organize [169] use social network effects to publicize organ donation, and stream-
line the registration process, but are still in their nascency. A formal study of how social
network effects influence organ donation signups in kidney exchange is of interest; one pos-
sible step might be to interact with Facebook, a social networking site that allows users
to publicly state their (deceased) donor registration status, to see if trends like “cascading
donor signups” exist. The incentives in deceased donation are different than in paired dona-
tion; formalizing that dichotomy is also of interest. Furthermore, and obviously, fielding new
methods that increase donor signups would have great impact on the state of organ donation.

1http://www.irishtimes.com/business/media-and-marketing/
grotesque-burying-of-bentley-proves-winner-at-ad-oscars-1.1842354
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Research Direction 6: Donor participation

Increase donor participation in kidney exchange.

Related papers: Stoler et al. [201], Woodle et al. [219]

• Notions of stability have been central in matching market design; paying heed to the ability
of two or more agents participating in a centralized clearinghouse to deviate from that rec-
ommended matching is thought to have contributed to the prevention of market unraveling
in a variety of instances [167, 189]. There has been some work exploring notions of stability
in kidney exchange, but as yet this has been in reduced models of the full problem. Myr-
iad impossibility results abound with regard to achieving matchings that are both stable and
“good” for all involved parties in traditional matching markets like school choice; however,
recent work uses differential privacy to approximately circumvent some of these impossi-
bility results in traditional matching markets [126]. What do these (im)possibility results
look like in the context of barter exchange? Can we implement private barter exchange in
practice, if not in theory [112, 125]?

Research Direction 7: Private exchange & notions of stability

Explore practical notions of privacy and stability in barter exchange.

Related papers: Hsu et al. [112], Kannan et al. [125, 126], Liu et al. [148]

11.3 Other open questions & research directions

We now discuss other open research questions and future research directions that are related to the
topics covered in this thesis.

• Fairness in healthcare applications is of paramount importance. The work of Chapter 7
extended the general price of fairness to the kidney exchange setting; however, that work
explicitly considered orderings over classes of agents, and its theoretical results were not
particularly realistic. Hooker and Williams [110] give a general method for combining equity
and economic efficiency in a single mathematical programming model; applying this to the
barter exchange setting is of interest. One concrete first step would be to apply the work
of Hooker and Williams [110] to model the equity tradeoffs in joint kidney-liver exchange.
As discussed in Chapter 9, the risk of donating a liver is generally substantially higher than
donating a kidney; we modeled this via a coin flip stating whether or not a kidney-paired
donor would be willing to give a liver, but more general methods would be informative.
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Research Direction 8: Fairness in organ exchange

Create more general models of fairness in organ exchange. Analyze them theoreti-
cally. Emphasize models that can be deployed in practice.

Related papers: Bertsimas et al. [37], Dickerson and Sandholm [72], Hooker and
Williams [110], Li et al. [146]

• As the experiments of Chapter 3 showed, different solvers perform well (or not well) under
different models of kidney exchange; for example, the solver due to Anderson et al. [16] is
fastest with uncapped chains, but cannot solve even small instances for “long but capped”
chains. Similarly, the solver due to Klimentova et al. [134] was fastest for many real UK
instances without chains, which is not the current state of the art. Our PICEF model from
Chapter 3 was fastest for the current state of the practice in kidney exchange—that is, short
cycles and long but finite chains. However, there is currently no principled method for
selecting the “best” solver for the job, given a set of business constraints.
From a theoretical point of view, extending the comparison of LPRs to a complete ordering
of all LPRs amongst models of kidney exchange—especially for different parameterizations
of the underlying model, like the inclusion of chains or edge failures—would give insight
as to which solver is best suited for an exchange running under a specific set of business
constraints. From a practical point of view, using a portfolio-based approach to selecting the
right solver for a class of instances would be of interest. This approach has routinely worked
in the combinatorial optimization space (see, e.g., SATzilla for SAT [220], or sunny-cp
for Constraint Programming [13]). Indeed, one could parameterize static solvers and then
use similar black box tuning techniques to those we used in Chapter 6 to learn potentials.

Research Direction 9: When to use a specific solver

Create a complete ordering of linear program relaxations of various models under
different constraints (e.g., cycle size, chain size, etc).

Related papers: Abraham et al. [6], Anderson et al. [16], Constantino et al. [63],
Dickerson et al. [80], Mak-Hau [151]

• While the exchange of money for organs is viewed as repugnant in nearly all countries,
money nonetheless plays a large role in organ transplantation worldwide. Much of the math-
ematical work on kidney exchange has ignored entirely the presence of money in kidney
exchange. Effectively understanding the flow and power of money in kidney exchange could
lead to new mechanism design problems where the transplant centers’ utility functions take
not just number of matches into account, but also potential profit or loss; this adjustment
to the model is both more realistic and may allow us to circumvent some of the standard
impossibility results in mechanism design in kidney exchange.
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Research Direction 10: Financing barter exchanges

Create accurate models of the flow of money in realistic models of barter exchange.

Related papers: Akbarpour et al. [10], Fang et al. [93], Goldberg et al. [102]

• We showed in Chapter 9 that the technology exists to field general organ exchanges; yet, the
process to move from academic paper to, e.g., fielded liver exchange would be arduous and
likely different from that of fielding a kidney exchange (due, in part, to less demand and less
supply of livers, higher morbidity and mortality, and fewer transplant centers being willing
to perform liver transplants). That said, Chapter 9 showed that combining kidney and liver
exchanges would result in great gains in number of transplants, so the idea is worth seriously
considering.

Research Direction 11: Field new organ exchanges

Field a liver exchange. Field a multi-organ exchange.

Related papers: Dickerson and Sandholm [72], Ergin et al. [90, 91]
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A
Additional theoretical and experimental results

for position-indexed formulations

A.1 Additional proofs for the PIEF model
We now provide additional theoretical results pertaining to the position-indexed edge formulation
(PIEF) model, and proofs to theoretical results stated in Section 3.3.1 of Chapter 3.

A.1.1 Validity of the PIEF model

Lemma 4. Any assignment of values to the xlijk that respects the PIEF constraints yields a vertex-
disjoint set of cycles of length no greater than L.

Proof. We show this by demonstrating that in each graph copy, the set of selected edges is either
empty, or composes a single cycle of length no greater than L.

Let l ∈ P be given such that at least one edge is selected in graph copy Dl, and let kmax be
the highest position k such that xlijk = 1 for some i, j. Any selected edge (i, j) at position kmax

in graph copy Dl must point to l, as otherwise the flow conservation constraint (3.1c) would be
violated at vertex j. Furthermore, there must be no more than one edge selected at position kmax in
graph copy Dl, as otherwise the capacity constraint (3.1c) for vertex l would be violated.

The flow conservation constraints (3.1b) ensure that we can follow a path backwards from the
selected edge at position kmax to a selected edge at position 1, and also that at most one edge is
selected at each position. Since the edge at position 1 must start at vertex l by the construction of
K(i, j, l), we have shown that graph copy Dl contains a selected cycle beginning and ending at l,
and that this graph copy does not contain any other selected edges.

Constraint (3.1b) ensures that the vertex-disjointness condition is satisfied.

201



Lemma 5. For any vertex-disjoint set of cycles of length no greater than L, there is an assignment
of values to the xlijk respecting the PIEF constraints.

Proof. This assignment can be constructed trivially.

Theorem 17. The PIEF model yields an optimal solution to the kidney exchange problem.

A.1.2 Proofs for the LPR of PIEF
The following lemma is used in the proof of Theorem 4, and its proof is included here for com-
pleteness.
Lemma 6. Let a sequence of edges W = (a1, . . . , a|W |) in a directed graph D be given, such that
W is a closed walk—that is, the target vertex of each edge is the source vertex of the following
edge, and the sequence starts and ends at the same vertex. (It is permitted for an edge to appear
more than once in W .) Let X be the multiset {a1, . . . , a|W |}. Then we can partition X into
C = {c1, . . . , c|C|}, where each ci ∈ C is a set of edges that form a cycle in D.

Proof. The following algorithm can be used to construct the set C.

1. Let C = {}.
2. For each i ∈ {1, . . . , |W |}, let si be the source vertex of ai.
3. If the sequence (si)1≤i≤|W | contains no repeated vertices, then W must be a cycle; go to

step 5.
4. Choose i, j ∈ {1, . . . , |W |} with i < j, such that si = sj and all the sk are distinct for
i ≤ k < j. The edges (ak)i≤k<j form a cycle; remove these from W and add the set of
removed edges to C. (Observe that W remains a closed walk). Re-index the edges in the
new, shorter W as 1, . . . , |W |. Return to step 2.

5. Add {a : a appears in W} to C and terminate.

Theorem 4. ZCF = ZPIEF (without chains).

Proof. ZCF � ZPIEF . Let (z∗c )c∈C(L,0) be an optimal solution to the LPR of the cycle formulation,
with objective value ZCF . We will construct a solution to the LPR of PIEF whose objective value is
also ZCF . We translate the z∗c into an assignment of values to the xlijk in a natural way, as follows.
For each c ∈ C(L, 0), let l be the index of the lowest-numbered vertex appearing in c. Number the
positions of edges of c in order as {1, . . . , |c|}, beginning with the edge leaving l.

For each vertex l ∈ V , each edge (i, j) ∈ Al, and each position k ∈ K(i, j, l), let C(L, 0)(i, j, k, l)
be the set of cycles in C(L, 0) whose lowest-numbered vertex is l and which contain (i, j) at posi-
tion k. Let

xlijk =
∑

c∈C(L,0)(i,j,k,l)

z∗c .

This construction yields a solution which satisfies the PIEF constraints and has objective value
ZCF .
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ZPIEF � ZCF . Let an optimal solution (xlijk) to the LPR of PIEF be given, with objective
value ZPIEF . Our strategy is to begin by assigning zero to each cycle formulation variable zc(c ∈
C(L, 0)), and to make a series of decreases in PIEF variables and corresponding increases in cycle
formulation variables, ending when all of the PIEF variables are set to zero. We maintain three
invariants after each such step. First, the sum of the PIEF and cycle formulation objective values
remains ZPIEF . Second, the constraints of the relaxed PIEF are satisfied. Third, the following
vertex capacity constraint—which combines the capacity constraints from the PIEF and the cycle
formulation—is satisfied for each vertex.∑

l∈V

∑
i:(i,j)∈Al

∑
k∈K(i,j,l)

xlijk +
∑
c:j∈c

zc ≤ 1 j ∈ P

If any of the PIEF variables takes a non-zero value, then we can select i1, i2, l such that i1 = l
and xli1i21 > 0. By the PIEF flow conservation constraints (3.1c), we can select a closed walk W =
((i1, i2), (i2, i3), . . . , (ik′−1, ik′)) of at most L edges in Dl such that xlikik+1k

> 0 for 1 ≤ k < k′,
and such that i1 = ik′ . Let xmin be the smallest non-zero value taken by any of the xlikik+1k

.
By Lemma 6, the set of edge positions {1, . . . , k′ − 1} can be decomposed into a set of sets

C, such that for each c ∈ C we have that the edges {ak : k ∈ c} can be arranged to form a cycle;
we denote this as cyc(c). For each c ∈ C, we subtract xmin from xlikik+1k

for each k ∈ c, and
we add xmin to zcyc(c). This transformation strictly decreases the count of xlijk variables that take
a non-zero value. By repeatedly carrying out this step, we will reach a point where all of the xlijk
variables take the value zero, and where the zc variables respect the cycle formulation constraints
and give objective value ZPIEF .

A.2 Additional proofs for the PICEF model

We now provide additional theoretical results pertaining to the position-indexed chain-edge for-
mulation (PICEF) model, and proofs to theoretical results stated in Section 3.3.2 of Chapter 3.

A.2.1 Validity of the PICEF model
Lemma 7. Any assignment of values to the yijk that respects constraints (3.3c) and (3.3d) and
such that ∑

j:(j,i)∈A

∑
k∈K(j,i)

yjik ≤ 1 (A.1)

for all i ∈ P , yields a vertex-disjoint set chains of length no greater than K.

Proof. We say that edge (i, j) is selected at position k if and only if zijk = 1.
Our proof has three parts. We first give a procedure to construct a set S of chains of length no

greater than K, where each chain in S consists only of selected edges. We then show that these
chains are vertex-disjoint, and that any selected edge appears in some chain in S.

203



By constraint (3.3c), each i ∈ N has at most one selected outgoing edge. For each i ∈
N that has an outgoing edge (i, j1), we begin to construct chain c by letting c = ((i, j1))—a
sequence containing one edge. Vertex j1 has at most one selected outgoing edge at position 2, by
constraint (3.3d). If such an edge (j1, j2) exists, we add it to our chain. We continue to add edges
(j2, j3), (j3, j4), . . . , until we reach k such that a selected edge from jk at position k + 1 does not
exist. The chain c will therefore be a path of selected edges at positions 1, . . . , |c|, where the length
of c can be no greater than K since no variable in the model has position greater than K. Add the
chain c to S.

By constraint (3.3c), no vertex in N can appear in two chains in S. By constraint (3.3b), the
same is true for vertices in P . Hence, the chains in S are vertex disjoint.

To complete the proof, we show that any selected edge must be part of one of these chains in
S. Let a variable zijk taking the value 1 be given. By applying constraint (3.3d) repeatedly, we
can see that there must exist be a path of length k from an NDD h to j, containing only selected
edges. Let c ∈ S be the chain starting at h. Since no vertex in c has two selected outgoing edges,
there must must exist a unique path of length k from h, and (i, j) must therefore be the kth edge of
c.

Lemma 8. Any assignment of values to the yijk and zc that respects the PICEF constraints yields
a vertex-disjoint set cycles of length no greater than L and chains no greater than K.

Proof. We call a cycle c such that zc = 1 a selected cycle, and an edge (i, j) such that zijk = 1 for
some k a selected edge.

By (3.3b), the selected cycles are vertex disjoint. By Lemma 7 the selected edges compose a
set of vertex-disjoint chains, each of which has length bounded by L (The conditions of the lemma
are satisfied since constraint (3.3b) implies (A.1)).

It remains to show that no selected cycle shares a vertex with a selected edge. Suppose, to the
contrary, that some selected cycle c shares vertex i ∈ P with a selected edge a. Vertex i cannot be
the target of a, since constraint (3.3b) would be violated if i appears both in selected cycle c and
as the target of selected edge a. Hence a = (i, j) for some j ∈ P . By constraint (3.3d), i must be
the target of another selected edge, a′. Therefore, i appears in c and is the target of a′, violating
constraint (3.3b).

Lemma 9. For any valid set of vertex-disjoint cycles and chains, there is an assignment of values
to the yijk and zc respecting the PICEF constraints.

Proof. This assignment can be constructed trivially.

Theorem 18. The PICEF model yields an optimal solution to the kidney exchange problem.

A.2.2 Proofs for the LPR of PICEF

Theorem 5. ZCF ≺ ZPICEF (with chains).
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Proof. ZCF � ZPICEF . Consider an optimal solution to the LPR of the cycle formulation. We
show how to construct an equivalent (optimal) solution to the LPR of PICEF. For c ∈ C(L, 0), we
transfer the value of zc directly from the cycle formulation solution to the PICEF solution. For
each (i, j) ∈ A and each k ∈ K′(i, j), let

yijk =
∑

(i,j) appears at position k of c

zc.

This solution has the same objective value as the cycle formulation solution, and satisfies the
constraints of the LPR of PICEF.

ZCF ≺ ZPICEF . Figure A.1 shows a graph for which ZPICEF is strictly greater (i.e., worse)
than ZCF . Let L = 2 and K = 4. In this instance, N = {1} and P = {2, . . . , 7}.

In the cycle formulation, this instance has no admissible cycles, and the only admissible chains
are 1→ 2→ 3→ 4, 1→ 5→ 6→ 7, and their prefixes. Since the longest chain has length 3 and
any the sum of chain-variables containing vertex 1 may not exceed 1, we can see that the optimal
objective value to the LPR of the cycle formulation is 3.

We can achieve an objective value of 7/2 to the LPR of PICEF, by letting y121 = y232 = y343 =
y151 = y562 = y673 = y754 = 1/2.

1

2 3 4

5 6 7

Figure A.1: A graph where ZPICEF is strictly greater than ZCF .

Theorem 6. Let z ∈ R+ be given. There exists a problem instance for which ZPICEF/ZCF > z,
where ZPICEF is the objective value of the LPR of PICEF and ZCF is the objective value of the LPR
of the cycle formulation.

Proof. We give a family of graphs, parameterized by L and K, for which ZPICEF is strictly greater
than ZCF . Given a constant cycle cap of L and a chain cap of K (which can effectively be in-
finite, if K = |V |), the graphs are constructed as follows. For i ∈ [K − L − 1], create a cycle
〈vi1, vi2, . . . , viL+1〉 such that vi+1

1 = vi2 for each i ∈ [1, K − L − 2]; the cycle is otherwise disjoint
from the rest of the graph. Connect a single altruist a to v1

1; the altruist is otherwise disjoint from
the rest of the graph. Figure A.2 visualizes the constructed graph.

The maximum cardinality disjoint packing of cycles of length at most L and chains of length
at most K is the unique chain (a, v1

1, v
2
1, . . . , v

K−L−1
1 , vK−L−1

2 , . . . , vK−L−1
L+1 ). Thus, OPT = K,

where OPT is the optimal objective value to the integer program. Indeed, there are no legal cycles
of length at most L in the graph, and at most one chain can be in any feasible solution due to the
shared altruist a, so the (unique, by construction) longest chain is optimal.

The LPR of the PICEF representation of this instance will assign weight of 1/2 to each edge in
the graph, for a total objective of ZPICEF = 1/2 + (K + L− 1)(L+1

2
).
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a v1
1 v2

1 v3
1

. . .

K − L− 1 patient-donor pairs

L+ 1 L+ 1 L+ 1 L+ 1

Figure A.2: Family of graphs where ZPICEF is strictly looser than ZCF .

The LPR of the cycle formulation representation will create variables for each feasible cycle
and chain in the graph. There are no feasible cycles in the graph. All chains in the graph share the
edge (a, v1

1); thus all chains intersect and all chains contain a. Thus, the sole binding constraint in
the LPR of the cycle formulation is that the altruist node a appears in at most one chain. For chain
decision variables xc ∈ [0, 1], this problem can be rewritten as

max
∑
c

|c|xc subject to
∑
c

xc ≤ 1

This constraint matrix is totally unimodular, and thus the LP optimum is integral (and is the IP
optimum, or ZCF = OPT = K).

The ratio of ZPICEF to ZCF is thus

1

2K
+

(
1 +

L− 1

K

)(
L+ 1

2

)
which can be made arbitrarily large by increasing L.

A.3 Additional proofs for the HPIEF model

A.3.1 Validity of the HPIEF model

Lemma 10. Any assignment of values to the xlijk and yijk that respects the HPIEF constraints
yields a vertex-disjoint set cycles of length no greater than L and chains no greater than K.

Proof. (Sketch.) Clearly, if the HPIEF constraints are satisfied then the PIEF constraints (3.1b-
3.1d) are satisfied also. Therefore, by Theorem 4, the edges selected by the xlijk form a vertex-
disjoint set of cycles of length no greater than L.

By Lemma 7, the selected edges compose a set of vertex-disjoint chains, each of which has
length bounded by K.

It remains to show that the selected cycles and chains are vertex-disjoint. This can be showed
straightforwardly, along similar lines to the proof for Theorem 8.

Lemma 11. For any valid set of vertex-disjoint cycles and chains, there is an assignment of values
to the xlijk and yijk respecting the HPIEF constraints.
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Proof. This assignment can be constructed trivially.

Theorem 19. The HPIEF model yields an optimal solution to the kidney exchange problem.

A.3.2 LPR comparison of HPIEF and PICEF
Theorem 20. ZHPIEF = ZPICEF

The proof is similar to the proof for Theorem 4, and is therefore omitted.

A.4 Additional background and proofs for the failure-aware
PICEF model

In this section, we provide a proof of correctness of Algorithm 2—which implements polynomial-
time pricing of cycles for branch and price in the augmented failure-aware PICEF model—and
discuss by way of counterexample why the basic deterministic polynomial-time cycle pricing al-
gorithms of Glorie et al. [100] and Plaut et al. [174] cannot be directly used for this case.

A.4.1 Proof of Theorem 7
Theorem 7. If there is a discounted positive price cycle in the graph, Algorithm 2 will return at
least one discounted positive price cycle.

Proof. Let c = 〈v1, v2, . . . , vn〉 be a discounted positive price cycle. Then pn
∑

(i,j)∈cwij −∑
j∈c δj > 0. Therefore

∑
j∈c δj − pn

∑
(i,j)∈cwij < 0. Then by definition of wk, we have∑

(i,j)∈c(δj − pnwij) =
∑

(i,j)∈cwn(i, j) < 0.
This implies that c is a negative cycle in D on the k = n iteration of Algorithm 2. By the

correctness of GETNEGATIVECYCLES, if there is a negative cycle in the graph, GETNEGATIVE-
CYCLES(D,n,wn) will return at least one negative cycle of length at most n.

Let c′ be a returned cycle. Since c′ is negative in D on the k = n iteration, we have
∑

j∈c′ δj −
pn
∑

(i,j)∈c′ wij < 0. Therefore pn
∑

(i,j)∈c′ wij −
∑

j∈c′ δj > 0.
Since |c′| ≤ n by the correctness of GETNEGATIVECYCLES, we have p|c′| ≥ pn. Because all

edge weights in the original graph are nonnegative,
∑

(i,j)∈c′ wij ≥ 0. Therefore p|c′|
∑

(i,j)∈c′ wij ≥
pn
∑

(i,j)∈c′ wij . Then p|c′|
∑

(i,j)∈c′ wij−
∑

j∈c′ δj ≥ pn
∑

(i,j)∈c′ wij−
∑

j∈c′ δj > 0, so c′ is indeed
discounted positive price.

Therefore Algorithm 2 returns at least one discounted positive price cycle.

A.4.2 Insufficiency of previous algorithms for the failure-aware pricing prob-
lem

The pricing problem in the deterministic context, where post-match failures are not considered,
is known to be solvable in polynomial time for cycles [100, 174] but not chains [175]. In Sec-
tion 3.3.5, we presented Algorithm 2, a polynomial-time algorithm for the pricing problem for
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cycles in the failure-aware context, for uniform success probability. In this section, we show how
the basic algorithm for the deterministic pricing problem is not sufficient for the failure-aware
context.

The algorithm for the deterministic setting initiates a Bellman-Ford style search to find negative
cycles. Bellman-Ford is run P times: on each iteration a different vertex representing a donor-
patient pair is the source. After Bellman-Ford has been run from the source s for L − 1 steps,
suppose there is a path ρ from s to some vertex v with weight w(ρ), and there is an edge from v
back to s with weight wvs. If w(ρ) + wvs < 0, then ρ ∪ (v, s) is a negative cycle [100, 174].

For consistency, in this section we discuss finding discounted negative price cycles, which is
trivially equivalent to finding discounted positive price cycles by reversing the signs on all edge
weights and dual values. Therefore, we are looking for cycles c satisfying

∑
j∈c δj−pn

∑
(i,j)∈cwij <

0.
Consider a straightforward modification to the algorithm from the deterministic setting, where

each path now separately remembers its accumulated sum of dual values, sum of edge weights, and
length. All of these can be easily recorded during the Bellman-Ford update step without altering
the algorithm’s complexity.

The issue arises when comparing paths. Figure A.3 gives an example of this. Consider running
Bellman-Ford with s as the source and L = 3. The path (s, v2, v3) is preferable to (s, v1, v3),
since we will end with the 3-cycle 〈s, v2, v3〉 which has weight p3(−η

p3 ) + η − 1 = −1. However,
suppose L = 4, and we removed the edge (v3, s). Then 〈s, v2, v3〉 is no longer a cycle, and the path
(s, v1, v3, v4) will have weight p4( η

p3 − 1) + η − 1 = η − pη − p4 − 1 > 0, assuming η is large
and p is not close to 1. However, the path (s, v1, v3, v4) would lead to a discounted negative cycle
with weight −p4. The algorithm from the deterministic setting cannot compare two paths without
knowing the final cycle length.

s

v1

0

v2

η − 1

v3

0

v4

0

0

−η/p3

0

0

0

0

−1

Figure A.3: Example demonstrating that multiple possible final path lengths must be considered.

A.4.3 Pseudocode for the corrected polynomial pricing scheme
We provide as Algorithm 4 the full pseudocode for our adapted version of the polynomial pricing
algorithm provided by Glorie et al. [100]. This is called as a subroutine by the failure-aware PICEF
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adaptation in Section 3.3.5. As discussed in Chapter 3, this can be used to find positive price cycles
but not chains.

In Algorithm 4, for a fixed source, let di(v) represent the computed distance from that source
to v after the ith step of the algorithm, where d0(v) represents the distances before any steps are
performed. Distance is defined as the sum of the edge weights in the computed path. Let L be
the maximum allowable cycle length. Finally, let A be the set of altruist donors and let P be the
set of donor-patient pairs. The function GETNEGATIVECYCLES is called with the reduced graph
G = (V,E)—with altruistic donors and their incident edges removed—and cycle cap L.

Algorithm 4 Corrected polynomial-time Bellman-Ford search for negative weight cycles.
1: function GETNEGATIVECYCLES(G = (V,E), L)
2: C ← ∅ . Accumulator set for negative weight cycles
3: for each s ∈ P do
4: N ← L− 1 . Set maximum step number based on cycle cap
5: pred0(v) = ∅ ∀v ∈ P
6: d0(s) = 0 . Distance from source to source is zero
7: d0(v) =∞ ∀v 6= s ∈ P . Distance at step 0 to other vertices is infinite
8: for i ∈ {1, . . . , N} do
9: di(v) = di−1(v) ∀v 6= s ∈ P

10: pred i(v) = pred i−1(v) ∀v 6= s ∈ P
11: for each (u, v) ∈ E do
12: if v 6∈ TRAVERSEPREDS(u, pred , i− 1) then . Avoid loops in path
13: if di−1(u) + w(u, v) < di(v) then . If this step decreases the distance to

node
14: di(v)← di−1(u) + w(u, v) . Update to shorter distance
15: pred i(v)← (u, i− 1) . Store correct predecessor
16: for each v 6= s ∈ P do . Find negative weight cycles with s as the source
17: if dN(v) + w(v, s) < 0 then
18: C ← C ∪ TRAVERSEPREDS(v, pred , N)

19: return C
20: function TRAVERSEPREDS(v, pred , n)
21: c← [] . Start with an empty list (representing a cycle)
22: curr ← v
23: while curr 6= ∅ do . Until we reach the source node ...
24: c← curr + c . Add predecessor to path
25: (u, i)← predn(curr) . Get predecessor of predecessor
26: curr ← u; n← i

27: return c

Constrained to the case of finding cycles only—and recalling that Section 3.2 shows that this
algorithm cannot be used for chains—Algorithm 4 can be seen as a slightly modified version of
the pricing algorithm initially proposed by Glorie et al. [100]. They did not prove correctness for
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that algorithm; we do that now in Theorem 21 for our modified Algorithm 4.
Theorem 21. If there is a negative cycle in the graph, Algorithm 4 will return at least one negative
cycle.

Proof. We will show that if there is a negative cycle c that we do not find, there must exist a
negative cycle with strictly fewer vertices. Thus, for any negative cycle c that we do not return,
there must exist a negative cycle p∗q∗ with fewer vertices. So, there exists a negative cycle with no
negative cycles smaller than it, which our algorithm finds and returns.

Say c = 〈v1, v2, . . . , vn〉 is that negative cycle that we do not return. Without loss of generality,
assume that c contains the shortest path from v1 to vn; if it does not, then that cycle containing the
shortest path is also a negative cycle.

Consider running the modified Bellman-Ford method with v1 as the source. Since by assump-
tion the algorithm does not find c, it must compute a different path from v1 to vn than the one in c.
We know that the computed path is not shorter, since c contains the shortest path to vn. Without
loss of generality, assume it is strictly longer; were it equal in weight, we would be done (as this is
a negative cycle that is found by the algorithm as well).

The only way our modified Bellman-Ford method does not compute the shortest path to vn is
if there exists some vertex vsplit, where vsplit ∈ c, but the shortest path to vsplit is not in c. This can
occur due to the modification that prevents loops in shortest paths. Let p be the shorter path from
v1 to vsplit, and let pc be the path from v1 to vsplit in c. Let q be the path from vsplit to vn in c, plus
the edge (vn, v1). This is shown in Figure A.4.

v1 vsplit vn

pc

p

q \ (vn, v1)

(vn, v1) This edge is part of q.

Figure A.4: Widget with a negative cycle and existence of a shorter negative cycle. Dotted arrows
are paths that contain zero or more vertices (and thus one or more edges).

Then c = pcvsplitq. Also, since the weights on the paths are w(p) < w(pc), we have w(pq) <
w(pcq) = w(c) < 0.

We know that c = pcq satisfies the cycle size cap, since it is valid by assumption. For any path
ρ, let |ρ| represent the number of vertices in that path.

Claim 21.1. |p| ≤ |pc|.

Proof: By way of contradiction, assume |pc| < |p|. Then, the sequence of updates along pc
will reach vsplit before p does—which means we will have computed pc. Even though we may
compute p later, we will still be able to build off of path pc: this is because we maintain the full 2D
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predecessor array, which is necessary for other reasons. Therefore we will go on to compute the
full pcq, which is a contradiction.

This issue may arise again when computing a path to vn with pc as the base; in the process of
computing q with pc as the base, there may exist some vertex v′split that causes the same issue as
vsplit. In that case, our logic can be applied recursively until no such vertex like v′split exists. �

Using Claim 21.1, we can ignore the cycle cap for the rest of the proof, since all cycles dis-
cussed will have size |pq| ≤ |pcq| = |c|, which is legal by assumption.

At this point, we have p and q such that pq is a circuit (i.e., a path that starts and ends at the
same vertex but which might not be a cycle because it might visit some vertices more than once),
and w(pq) < 0. Claim 21.2 gives a tool that we will use to finish the proof of the theorem through
repeated use.

Claim 21.2. In a directed graph, if there exists a circuit π that is not a cycle and w(π) < 0, then
there exists a circuit π′ where w(π′) < 0 and |π′| < |π|.
Proof: Because π is a circuit but not a cycle, it must have an intersection. Therefore one can split
π into two non-empty paths, α and β, where α and β intersect. Thus there exists v∩ ∈ α where
v∩ ∈ β. Then α = α1v∩α2 and β = β1v∩β2, where α1, α2, β1, and β2 are nonempty.

We know that α1 is a path from some vertex u to v∩ and that β2 is a path from v∩ back to u.
Similarly, β1 is a path from some vertex u′ to v∩ and α2 is a path from v∩ back to u′.

This implies that both α1β2 and α2β1 are circuits. Because α1, α2, β1, and β2 are nonempty,
α1β2 does not contain u′, and α2β1 does not contain u. Therefore |α1β2| < |π| and |α2β1| < |π|.

Furthermore, since w(π) = w(α1β2) + w(α2β1) < 0, we know that at least one of α1β2 and
α2β1 must be negative. This shows the existence of a negative circuit with strictly fewer vertices.
�

We now return to the proof of the theorem. Recall that we have p and q such that pq is a circuit,
and w(pq) < 0.

By the claim above, the presence of a negative circuit pq implies that p and q do not intersect,
or that there exists a negative circuit p′q′ that has fewer vertices. If p and q were not intersecting, pq
would be a shorter path than pcq, which violates the assumption that c contains the shortest path.
Thus, p and q do intersect. Therefore, there exists a negative circuit p′q′ that has fewer vertices.

Since we can only shrink pq, p′q′, and so on in this fashion a finite number of times, there
must exist some negative circuit p∗q∗ where p∗q∗ does not self-intersect; so, the negative circuit is
a cycle.

A.5 Tabulated experimental results
In this section, we restate the experimental results shown in Figures 3.8 and 3.9 of Section 3.3.4 in
the body of the paper, but now including statistics that were not possible to show in that figure.
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Table A.1: Position-indexed formulation experiments on real UNOS match runs.

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 0.45 0.46 0.51 0.58 0.63 0.65 0.71 0.79 0.85 0.93 0.98

Stdev 0.06 0.10 0.12 0.17 0.25 0.28 0.32 0.44 0.48 0.63 0.62
Min 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
Max 0.62 0.97 1.02 1.42 1.72 2.12 2.22 3.12 3.52 4.82 3.62

HPIEF Mean 0.98 1.11 1.06 1.22 1.17 1.27 1.38 1.37 1.44 1.50 1.56
Stdev 0.39 0.42 0.44 0.49 0.53 0.52 0.59 0.55 0.61 0.67 0.73

Min 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
Max 1.87 1.97 2.37 2.57 3.27 2.62 3.58 3.07 3.42 4.07 4.32

BNP-POLY Mean 0.18 0.19 0.19 0.20 0.21 0.25 0.47 0.73 1.37 0.35 2.99
Stdev 0.06 0.07 0.08 0.09 0.10 0.56 3.78 8.25 11.60 1.52 45.28

Min 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Max 0.42 0.42 0.57 0.57 0.67 9.33 63.22 138.46 154.74 24.06 759.13

CG-TSP Mean 3.43 3.54 6.81 14.48 19.13 30.91 27.03 30.79 33.17 29.47 29.22
Stdev 0.46 1.04 30.62 116.81 215.58 303.41 249.35 303.51 306.18 302.89 302.87

Min 1.97 1.92 1.92 1.92 1.92 1.92 1.92 1.97 1.92 1.92 1.92
Max 4.68 13.34 410.07 1401.87 3600.09 3600.10 3600.08 3600.08 3600.13 3600.08 3600.04

BNP-DFS Mean 0.14 0.14 0.14 0.17 0.30 1.17 26.77 32.13 58.63 78.68 120.93
Stdev 0.04 0.04 0.06 0.16 1.01 6.17 289.50 263.92 401.73 461.29 605.34

Min 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Max 0.27 0.32 0.52 1.97 14.24 72.14 3600.00 3600.00 3600.00 3600.00 3600.00

BNP-PICEF Mean 0.25 0.40 0.55 0.77 1.05 1.52 2.55 3.10 3.84 5.98 8.16
Stdev 0.08 0.14 0.19 0.32 0.43 1.40 10.99 11.09 8.52 21.45 36.19

Min 0.03 0.06 0.07 0.06 0.07 0.12 0.12 0.11 0.11 0.11 0.17
Max 0.42 0.77 0.97 2.77 2.42 18.20 185.24 186.95 135.21 283.75 550.37
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Table A.2: Position-indexed formulation experiments on real NLDKSS match runs.

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 0.12 0.15 0.18 0.21 0.27 0.32 0.33 0.36 0.43 0.45 0.48

Stdev 0.02 0.03 0.04 0.05 0.10 0.21 0.12 0.16 0.22 0.19 0.18
Min 0.09 0.09 0.10 0.12 0.13 0.14 0.16 0.17 0.18 0.17 0.19
Max 0.17 0.24 0.28 0.37 0.54 1.13 0.69 0.92 1.21 1.05 1.00

HPIEF Mean 0.26 0.27 0.28 0.31 0.34 0.38 0.43 0.45 0.49 0.54 0.57
Stdev 0.04 0.05 0.06 0.07 0.09 0.15 0.20 0.17 0.20 0.26 0.25

Min 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.22 0.24 0.24 0.26
Max 0.35 0.40 0.43 0.49 0.57 0.93 1.13 0.97 1.12 1.29 1.40

BNP-POLY Mean 0.16 0.23 0.18 92.63 0.82 0.24 0.64 0.84 0.85 212.58 216.34
Stdev 0.06 0.27 0.07 369.70 2.00 0.15 1.11 1.20 1.45 846.86 846.07

Min 0.07 0.07 0.06 0.05 0.05 0.04 0.10 0.09 0.10 0.11 0.10
Max 0.28 1.27 0.34 1571.45 8.57 0.72 4.85 4.25 5.10 3600.00 3600.00

CG-TSP Mean 0.95 41.01 753.96 650.07 255.26 256.39 260.80 129.00 221.10 229.37 4.69
Stdev 0.42 141.39 1349.06 1167.96 846.22 845.67 844.40 418.79 845.20 843.49 9.84

Min 0.47 0.58 0.56 0.54 0.58 0.51 0.52 0.47 0.54 0.46 0.50
Max 2.12 604.14 3600.00 3600.00 3600.00 3600.00 3600.00 1780.46 3600.00 3600.00 42.72

BNP-DFS Mean 0.13 0.18 0.78 170.12 238.76 329.46 1090.72 1473.75 1888.86 2386.44 2506.19
Stdev 0.08 0.16 1.37 653.91 841.62 842.37 1430.36 1540.36 1649.63 1619.09 1540.93

Min 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04
Max 0.36 0.71 5.83 2784.96 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

BNP-PICEF Mean 0.19 0.23 0.30 233.49 53.32 0.83 215.66 5.25 3.18 4.89 19.68
Stdev 0.12 0.08 0.14 845.94 210.51 0.76 846.14 9.95 5.49 10.34 57.00

Min 0.09 0.09 0.11 0.23 0.27 0.33 0.41 0.47 0.41 0.53 0.65
Max 0.61 0.42 0.71 3600.00 895.37 3.65 3600.00 40.09 23.65 43.03 245.17
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Table A.3: Position-indexed formulation experiments for |P | = 300, |A| = 3

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 1.00 1.40 2.04 2.89 4.06 5.63 7.73 10.99 14.52 17.87 20.18

Stdev 0.12 0.32 0.51 0.77 0.92 1.28 2.23 3.13 4.54 5.90 6.89
Min 0.77 0.94 1.27 1.87 2.69 3.60 5.05 6.30 6.78 9.33 10.28
Max 1.37 2.42 3.80 5.42 6.76 8.24 13.00 18.33 25.50 33.84 36.46

CG-TSP Mean 8.44 184.96 918.97 1221.19 1709.03 1682.64 1632.00 1908.47 1839.85 1993.84 1903.64
Stdev 1.04 403.94 913.85 1031.16 1316.14 1132.89 1075.43 1206.85 1128.78 1173.08 1062.16

Min 6.48 9.07 12.71 12.07 18.49 22.77 35.26 131.48 86.87 21.13 28.67
Max 10.62 1804.94 2732.26 3600.07 3600.10 3600.09 3600.08 3600.11 3600.10 3600.10 3600.16

BNP-PICEF Mean 2.39 14.77 110.11 210.89 635.14 1088.77 1561.96 2420.79 1693.39 2514.56 2791.20
Stdev 5.18 63.60 330.96 444.70 827.57 869.08 1061.65 877.50 1312.65 1029.71 993.59

Min 0.72 1.17 1.82 3.10 5.65 12.17 14.63 538.04 37.81 48.04 67.38
Max 24.74 326.27 1451.10 1639.32 3043.01 3088.56 3601.15 3600.78 3600.65 3600.52 3600.42

BNP-DFS Mean 14.83 17.13 383.40 694.57 2644.81 3494.87 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 69.43 71.79 714.88 793.47 1026.37 285.67 0.00 0.00 0.00 0.00 0.00

Min 0.49 0.59 1.34 14.21 284.94 2632.71 3600.00 3600.00 3600.00 3600.00 3600.00
Max 354.99 367.77 1816.74 2166.63 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 3.04 3.47 4.16 5.14 6.52 8.12 10.40 13.67 16.74 20.59 22.29
Stdev 0.51 0.79 0.85 1.27 1.98 2.26 2.88 3.67 3.44 5.33 6.07

Min 2.44 2.52 2.87 3.40 4.35 5.17 6.96 8.83 12.16 9.93 10.11
Max 4.10 6.35 5.85 8.35 12.59 14.49 17.92 22.78 24.24 31.85 37.55

BNP-POLY Mean 2.08 81.96 238.82 306.05 631.69 1074.37 1000.78 2300.22 1328.40 2076.98 2515.60
Stdev 5.30 353.34 581.46 654.90 928.03 931.64 1080.38 1060.62 1174.75 1072.71 1347.17

Min 0.54 0.57 0.62 0.72 0.89 1.04 0.87 4.68 1.64 2.50 1.87
Max 26.56 1800.68 1801.42 1801.40 2890.70 3600.61 3600.72 3601.89 3600.86 3601.85 3602.00
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Table A.4: Position-indexed formulation experiments for |P | = 300, |A| = 6

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 1.45 2.14 2.96 4.36 5.86 8.03 10.02 12.69 17.82 23.35 26.19

Stdev 0.53 0.92 1.04 1.88 2.60 3.31 4.48 6.06 10.81 14.57 17.75
Min 0.92 1.24 1.89 2.49 3.45 4.47 4.95 6.45 8.45 9.83 12.49
Max 3.13 5.76 5.93 10.29 12.67 17.20 23.42 29.72 58.28 66.11 96.83

CG-TSP Mean 63.67 1783.81 2825.67 3274.28 3469.97 3528.59 3507.68 3493.12 3332.71 3320.82 3103.94
Stdev 249.48 1021.00 835.84 599.43 443.61 350.18 338.77 344.12 613.11 577.68 820.61

Min 8.01 32.68 1437.28 1811.15 1810.83 1813.06 1989.48 2012.35 1823.48 1821.29 975.77
Max 1285.66 3600.08 3600.09 3600.10 3600.11 3600.09 3600.08 3600.09 3600.10 3600.09 3600.11

BNP-PICEF Mean 2.09 124.04 871.35 1533.14 1902.03 2567.05 2786.84 2403.03 2456.11 2041.20 1273.52
Stdev 2.80 380.96 1139.42 1238.55 1272.68 1220.26 1066.82 1193.46 1212.64 952.01 1046.65

Min 0.79 1.19 1.97 3.65 7.76 14.43 21.98 43.21 78.77 112.14 168.46
Max 12.41 1600.58 3262.90 3580.66 3602.58 3601.76 3600.80 3600.62 3600.44 3600.37 3600.24

BNP-DFS Mean 2.34 440.67 974.91 2324.52 3540.79 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 4.92 765.51 1247.14 1097.18 290.09 0.00 0.00 0.00 0.00 0.00 0.00

Min 0.54 1.09 12.73 349.24 2119.63 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 22.03 1805.45 3600.25 3600.02 3600.01 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 3.22 3.78 4.84 6.44 8.78 13.51 19.45 25.49 53.11 58.12 55.49
Stdev 0.56 0.67 1.17 2.13 3.38 8.70 14.74 12.80 43.89 44.44 29.12

Min 2.49 2.92 3.42 4.00 4.80 5.22 6.60 6.90 11.34 11.09 16.52
Max 4.55 5.63 7.88 11.71 16.27 42.34 81.69 55.29 236.82 197.45 110.75

BNP-POLY Mean 73.01 222.84 815.13 1168.37 1902.71 2611.16 2513.36 2346.77 2470.76 2264.23 2140.75
Stdev 352.77 583.10 1171.55 1205.56 1263.29 1166.98 1282.07 1173.08 1073.70 846.97 1011.70

Min 0.57 0.64 0.74 0.89 1.09 2.14 2.44 12.42 25.30 264.09 94.33
Max 1801.19 1801.23 3602.15 3601.76 3601.45 3601.79 3601.75 3601.90 3601.85 3601.72 3600.67
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Table A.5: Position-indexed formulation experiments for |P | = 300, |A| = 15

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 1.36 2.00 2.93 5.06 7.44 14.52 17.20 21.79 24.90 31.46 29.79

Stdev 0.44 0.64 0.72 2.27 3.94 20.99 13.30 7.76 8.87 13.39 6.64
Min 1.04 1.49 2.17 2.79 3.87 4.50 5.75 9.18 11.01 15.21 18.42
Max 3.26 4.15 5.32 12.68 21.23 114.52 77.98 38.47 58.61 85.77 47.16

CG-TSP Mean 367.16 3515.05 3600.09 3600.09 3535.69 3529.94 3536.72 3430.70 3461.73 3279.96 3220.04
Stdev 640.14 346.51 0.04 0.03 315.51 343.66 310.45 462.86 469.31 642.91 613.91

Min 16.67 1857.78 3600.06 3600.06 1990.03 1846.38 2015.84 1948.32 1833.44 1838.52 1968.78
Max 1822.65 3600.17 3600.20 3600.16 3600.25 3600.21 3600.20 3600.18 3600.15 3600.24 3600.16

BNP-PICEF Mean 149.79 445.86 856.61 1712.61 1095.22 535.43 201.36 178.40 162.61 159.80 218.11
Stdev 487.53 754.76 854.16 1192.86 1126.06 803.12 479.10 343.89 83.78 70.62 111.01

Min 0.87 1.42 2.62 4.75 9.64 18.01 28.09 48.20 70.51 53.85 79.26
Max 1802.03 1803.15 1830.94 3602.67 3601.98 1867.16 1832.55 1843.38 404.82 339.64 523.09

BNP-DFS Mean 141.93 683.49 1274.19 3401.45 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 476.11 850.91 966.39 410.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 0.74 3.95 81.43 2091.66 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 1801.39 1842.76 3600.22 3600.04 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 3.11 3.85 4.72 6.33 10.18 13.13 18.62 24.36 29.43 31.45 32.13
Stdev 1.02 1.57 2.09 3.26 5.96 8.86 13.97 16.56 16.73 17.77 17.75

Min 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32
Max 4.85 7.20 9.52 13.59 20.95 35.23 68.89 73.93 67.31 58.72 66.14

BNP-POLY Mean 74.83 611.66 991.62 1663.90 1419.18 632.51 283.39 366.94 475.84 1038.21 1230.37
Stdev 353.01 867.89 872.00 1390.32 1210.69 837.82 770.75 616.38 623.12 1099.15 1025.71

Min 0.74 0.89 1.07 1.57 0.39 0.37 0.37 0.37 0.37 0.37 0.37
Max 1804.07 2318.25 1805.02 3601.10 3600.77 1817.17 3600.05 2021.28 2109.74 3600.14 3600.01
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Table A.6: Position-indexed formulation experiments for |P | = 300, |A| = 75

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 2.06 2.97 4.03 5.42 6.96 8.90 10.38 12.41 13.75 15.14 16.95

Stdev 0.70 1.13 1.18 1.91 2.41 3.78 2.70 2.53 2.86 2.31 3.40
Min 1.37 1.97 2.64 3.54 4.32 5.30 6.93 7.75 8.55 10.36 10.34
Max 4.47 7.43 8.08 13.19 16.37 25.68 17.05 18.69 23.80 19.35 26.39

CG-TSP Mean 3168.00 3600.18 3544.38 3451.82 3110.08 3056.40 2575.13 2339.98 2222.51 1524.77 1122.56
Stdev 828.44 0.07 191.05 409.89 539.91 560.83 671.91 799.95 929.42 1030.21 881.64

Min 523.02 3600.11 2812.72 2097.94 2237.32 2001.36 1339.74 238.59 410.76 22.79 20.75
Max 3600.25 3600.36 3600.38 3600.43 3600.41 3600.33 3600.61 3600.32 3600.41 3600.16 2753.27

BNP-PICEF Mean 1.76 2.12 3.51 5.61 7.96 12.27 14.82 18.70 21.42 27.41 33.25
Stdev 0.11 0.27 1.19 2.12 2.73 3.70 4.64 4.29 5.82 8.47 10.15

Min 1.52 1.69 1.82 3.05 2.97 6.81 7.46 10.26 11.22 13.93 17.36
Max 2.05 3.02 5.96 10.74 16.08 19.74 27.74 28.28 37.68 43.10 55.48

BNP-DFS Mean 4.66 78.58 1984.70 3600.01 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 0.99 22.89 748.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 3.15 34.57 776.95 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 6.70 122.86 3143.17 3600.02 3600.01 3600.00 3600.01 3600.01 3600.01 3600.01 3600.00

HPIEF Mean 3.85 4.70 5.88 7.38 8.81 11.55 13.47 16.08 18.44 19.86 20.05
Stdev 1.32 1.38 1.74 2.46 2.75 3.77 3.80 4.08 4.46 4.44 4.78

Min 2.72 3.17 3.80 4.50 5.15 6.00 7.18 7.78 9.63 11.01 12.66
Max 9.64 9.98 12.42 16.14 17.15 21.58 20.98 22.90 26.86 28.19 31.60

BNP-POLY Mean 2.61 3.36 4.41 4.91 5.42 6.97 9.74 20.70 67.07 155.99 223.71
Stdev 0.19 0.34 0.67 0.94 1.03 2.52 6.76 31.39 94.52 379.20 426.11

Min 2.17 2.80 3.42 3.63 3.87 3.55 3.80 4.48 6.88 5.25 8.64
Max 3.02 4.08 5.53 7.36 8.21 14.15 33.77 166.95 398.11 1812.22 1806.62
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Table A.7: Position-indexed formulation experiments for |P | = 500, |A| = 5

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 3.33 5.69 9.68 16.06 29.55 49.75 79.13 101.60 161.25 324.80 378.28

Stdev 0.60 1.25 2.73 4.38 10.00 16.02 23.53 32.33 78.74 309.10 405.84
Min 2.67 4.17 6.35 9.61 12.19 17.20 21.20 24.36 36.23 41.63 50.26
Max 4.92 8.58 17.21 24.63 50.08 70.96 126.06 160.64 345.49 1333.83 1864.47

CG-TSP Mean 86.08 1519.67 2888.52 3307.18 3500.92 3542.08 3600.09 3600.09 3600.09 3600.09 3600.10
Stdev 163.39 1194.67 827.72 675.52 356.92 267.64 0.01 0.01 0.01 0.01 0.02

Min 17.80 43.13 1528.27 1445.40 1937.79 2233.38 3600.07 3600.07 3600.07 3600.07 3600.07
Max 870.78 3600.22 3600.18 3600.18 3600.15 3600.13 3600.13 3600.13 3600.14 3600.14 3600.16

BNP-PICEF Mean 489.87 408.98 1033.60 1748.72 1900.07 2549.32 2856.84 3275.68 3360.62 3546.67 3600.09
Stdev 915.90 712.01 1148.29 1281.58 1060.35 1105.73 841.48 652.43 561.54 261.92 0.04

Min 3.05 4.65 8.98 22.14 47.29 98.88 1832.39 1868.01 1892.93 2263.54 3600.02
Max 3601.12 1805.88 3601.60 3602.22 3600.93 3600.99 3600.45 3600.39 3600.36 3600.21 3600.16

BNP-DFS Mean 584.00 609.09 1578.12 3595.49 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 978.95 969.92 962.98 22.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 3.02 8.48 220.63 3487.09 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 3600.25 3600.31 3600.07 3600.01 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 13.14 15.33 17.49 20.30 24.34 30.93 40.59 50.92 102.03 187.22 246.18
Stdev 2.89 3.46 3.24 3.55 3.62 6.46 10.33 19.93 88.83 175.34 310.59

Min 9.78 11.01 12.53 14.49 17.72 19.15 22.78 30.32 42.70 34.58 36.96
Max 23.73 24.60 24.29 26.37 30.25 49.24 73.30 135.55 475.85 831.95 1494.91

BNP-POLY Mean 476.19 398.72 987.34 1995.51 1882.08 2376.94 2595.14 3027.64 3313.34 3529.60 3600.32
Stdev 924.35 875.52 1015.36 1191.54 1290.49 1216.20 1025.58 974.20 657.83 346.79 0.08

Min 2.07 2.24 2.52 3.82 4.10 5.00 10.44 53.25 1804.95 1830.66 3600.12
Max 3600.11 3600.10 3600.21 3600.42 3600.36 3600.61 3600.61 3600.67 3600.57 3600.50 3600.45
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Table A.8: Position-indexed formulation experiments for |P | = 500, |A| = 10

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 3.87 6.41 10.22 16.54 26.81 54.10 111.83 321.99 286.20 392.19 323.20

Stdev 0.92 2.03 3.55 6.36 10.77 39.64 124.63 297.04 224.94 280.57 198.14
Min 2.72 4.12 6.35 9.33 12.19 15.67 19.18 26.11 33.20 67.86 70.61
Max 6.20 13.39 21.53 33.38 55.39 190.56 518.68 1142.68 879.51 1182.30 927.75

CG-TSP Mean 406.15 3116.63 3600.10 3600.11 3600.11 3600.11 3600.10 3600.11 3600.11 3600.11 3600.12
Stdev 630.53 844.15 0.02 0.02 0.02 0.04 0.01 0.03 0.02 0.04 0.07

Min 53.28 517.29 3600.07 3600.07 3600.07 3600.08 3600.08 3600.08 3600.07 3600.08 3600.07
Max 1839.96 3600.18 3600.17 3600.16 3600.17 3600.28 3600.13 3600.24 3600.16 3600.29 3600.40

BNP-PICEF Mean 829.37 873.28 1593.51 2389.64 2910.67 3534.89 3056.63 2928.76 2817.08 2619.23 2645.57
Stdev 1340.08 1029.25 1054.00 1206.53 1075.62 320.66 1044.62 932.67 988.09 763.68 660.52

Min 3.20 6.28 11.97 26.78 90.19 1963.99 177.12 520.29 820.70 1037.74 1193.26
Max 3601.57 3601.87 3601.30 3601.08 3600.76 3600.50 3600.32 3600.23 3600.18 3600.05 3600.04

BNP-DFS Mean 727.04 1249.56 2754.81 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 992.61 827.81 682.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 2.90 19.27 1571.31 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 3438.77 1826.38 3600.07 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 12.79 15.37 19.41 29.69 45.92 94.99 242.75 434.08 484.99 884.31 568.17
Stdev 1.42 2.33 3.64 7.00 18.54 72.01 268.11 309.07 327.06 695.32 469.58

Min 11.04 12.04 14.09 16.02 18.48 21.61 28.04 31.14 36.64 127.14 66.01
Max 16.11 20.78 26.40 41.07 113.75 374.04 1250.39 1096.22 1167.39 2230.86 2155.83

BNP-POLY Mean 600.79 726.93 1514.72 2378.45 2816.66 3528.67 3034.58 3051.69 2965.69 3229.29 3437.41
Stdev 969.67 877.81 1099.85 1215.75 1132.17 351.68 1092.85 943.16 868.24 611.16 443.14

Min 2.27 2.90 3.67 4.28 9.79 1805.82 15.00 76.72 398.26 1948.58 2135.48
Max 3600.17 1802.41 3600.26 3600.46 3600.59 3600.71 3600.59 3600.52 3600.37 3600.34 3600.25
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Table A.9: Position-indexed formulation experiments for |P | = 500, |A| = 25

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 5.13 8.81 14.79 31.28 55.40 91.01 159.51 210.90 263.30 326.07 321.93

Stdev 3.10 4.88 7.90 16.29 31.14 40.02 74.17 106.60 110.04 128.59 115.14
Min 3.22 5.65 8.10 14.42 18.82 28.81 48.51 51.74 74.37 81.94 90.87
Max 18.24 23.86 40.36 69.45 130.15 172.46 319.40 494.03 520.89 520.57 530.59

CG-TSP Mean 3148.56 3600.21 3600.23 3600.20 3600.21 3600.22 3600.21 3600.21 3600.20 3600.24 3600.31
Stdev 728.91 0.14 0.19 0.14 0.13 0.16 0.15 0.16 0.13 0.17 0.18

Min 1009.67 3600.10 3600.11 3600.10 3600.12 3600.12 3600.11 3600.12 3600.11 3600.09 3600.04
Max 3600.17 3600.64 3600.85 3600.73 3600.63 3600.66 3600.66 3600.68 3600.59 3600.75 3600.67

BNP-PICEF Mean 513.65 881.36 1955.77 1417.19 557.22 454.23 677.44 1179.01 1496.40 1578.70 1627.19
Stdev 804.07 1023.76 1423.30 1143.07 686.23 201.31 347.69 493.79 579.61 534.03 515.77

Min 3.15 6.13 20.00 47.80 105.26 207.65 292.64 654.54 583.22 720.50 798.70
Max 1803.61 3601.50 3601.39 3600.55 2011.26 1138.30 2126.49 2554.51 2904.98 2730.44 2797.31

BNP-DFS Mean 796.98 1108.07 3599.33 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 890.74 975.82 3.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 4.40 78.78 3582.91 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 1811.33 3600.28 3600.03 3600.01 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 13.64 16.70 25.11 50.19 64.58 88.26 125.61 171.61 223.86 231.21 207.82
Stdev 2.96 3.36 7.83 46.74 25.11 33.30 57.05 64.98 75.50 76.25 67.91

Min 9.86 11.91 14.81 19.35 29.36 42.41 47.14 56.01 67.62 90.86 105.80
Max 21.23 24.67 44.65 229.70 122.98 155.02 248.62 286.95 357.62 369.33 312.53

BNP-POLY Mean 610.17 939.96 1883.09 1242.21 621.96 428.89 618.50 896.95 1988.17 2418.15 2784.83
Stdev 823.88 1032.01 1470.65 1100.86 957.44 721.69 879.42 957.15 1234.27 1160.63 942.70

Min 3.12 4.00 6.65 9.96 13.62 14.65 21.21 31.33 39.06 68.33 151.56
Max 1802.71 3600.11 3600.38 3600.47 3600.23 2307.41 3600.21 3600.13 3600.09 3600.27 3600.16
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Table A.10: Position-indexed formulation experiments for |P | = 500, |A| = 125

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 7.08 9.33 13.04 17.54 22.90 28.08 36.50 43.25 52.92 64.75 75.29

Stdev 1.56 1.61 2.52 3.43 5.08 5.70 5.79 7.13 10.70 11.86 20.55
Min 4.53 6.40 9.09 11.87 16.00 19.19 25.22 27.78 34.55 49.41 48.34
Max 11.31 13.87 18.28 24.26 38.67 38.91 44.74 59.57 76.93 91.35 107.55

CG-TSP Mean 3600.55 3600.76 3600.71 3600.81 3600.80 3600.69 3600.86 3467.07 3328.12 3206.21 2258.82
Stdev 0.34 0.46 0.41 0.36 0.45 0.38 0.54 454.31 625.70 708.71 1165.52

Min 3600.15 3600.26 3600.27 3600.28 3600.21 3600.21 3600.24 1838.14 1825.68 1847.26 102.74
Max 3601.35 3601.98 3601.80 3601.61 3601.98 3601.54 3602.45 3602.05 3601.67 3601.78 3601.04

BNP-PICEF Mean 78.89 8.18 13.75 26.74 37.15 48.15 80.05 100.20 140.66 187.31 238.27
Stdev 351.95 1.51 5.48 7.94 9.18 11.02 19.44 22.66 34.57 37.81 46.79

Min 5.68 6.31 6.76 10.52 20.57 22.27 53.48 56.36 76.52 122.53 145.24
Max 1803.09 11.65 26.37 39.92 54.66 70.94 126.77 140.54 219.19 254.26 332.33

BNP-DFS Mean 125.75 2029.37 3600.01 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Stdev 346.25 466.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 32.45 1048.41 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00
Max 1821.02 2831.76 3600.02 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00 3600.00

HPIEF Mean 14.00 17.78 23.48 32.89 44.44 61.14 79.91 103.76 139.35 174.60 193.66
Stdev 3.08 5.18 5.83 11.61 13.89 23.56 27.10 37.86 53.76 64.40 72.27

Min 10.83 13.29 16.17 19.70 22.02 25.65 30.00 35.09 39.42 46.47 59.89
Max 26.49 39.65 42.38 73.79 68.14 126.82 117.08 163.35 230.51 255.93 291.70

BNP-POLY Mean 87.19 18.76 97.20 28.25 38.46 100.95 205.02 148.89 661.64 908.36 1020.85
Stdev 350.96 1.91 350.66 3.94 27.81 188.11 491.05 201.06 767.87 852.81 752.28

Min 11.04 14.57 19.19 22.15 24.80 25.13 26.05 32.74 35.45 38.06 133.57
Max 1805.96 22.00 1815.00 35.22 171.97 928.79 1897.63 847.83 1892.30 2474.09 2765.64
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Table A.11: Position-indexed formulation experiments for |P | = 700, |A| = 7

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 9.81 16.64 27.03 45.15 85.77 132.08 221.64 476.49 746.67 1060.93 1391.81

Stdev 3.96 8.86 14.48 15.45 36.51 54.10 143.49 473.81 674.82 624.99 953.63
Min 6.10 10.23 16.92 28.10 46.56 64.96 83.36 123.93 153.49 229.89 310.20
Max 22.29 48.46 79.24 96.61 170.04 236.84 752.40 2045.09 2417.46 2157.87 3600.01

BNP-PICEF Mean 1597.19 1239.85 1970.94 2557.71 2661.05 3094.01 3426.76 3436.00 3551.63 3566.88 3600.04
Stdev 1054.23 1099.56 1112.42 1099.13 1262.80 738.47 469.54 444.97 237.36 162.52 0.01

Min 10.47 18.77 41.81 114.79 183.42 1959.23 2143.36 2172.23 2388.82 2770.72 3600.01
Max 3601.19 3601.02 3600.93 3601.05 3600.62 3600.34 3600.21 3600.14 3600.10 3600.10 3600.06

HPIEF Mean 47.46 60.30 71.00 93.18 141.93 194.25 301.22 851.62 874.49 1214.84 1688.33
Stdev 20.40 31.39 35.59 51.30 125.99 128.11 286.29 784.70 735.08 978.75 1196.99

Min 24.81 28.72 34.29 42.88 52.14 77.45 86.79 89.34 101.09 175.17 149.92
Max 89.99 130.90 142.10 189.76 649.25 583.77 1232.76 2557.22 3057.21 3600.02 3600.02

BNP-POLY Mean 1521.97 1159.34 1734.26 2239.58 2454.59 2979.44 3269.40 3274.71 3518.71 3459.88 3420.45
Stdev 976.24 1121.69 1074.63 1364.66 1328.86 834.51 809.68 656.30 316.35 475.76 496.20

Min 6.95 7.16 8.84 11.51 12.04 1807.77 323.14 1812.67 2037.16 1826.98 1819.21
Max 3600.07 3600.06 3600.08 3600.23 3600.37 3600.37 3600.38 3600.46 3600.32 3600.55 3600.81
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Table A.12: Position-indexed formulation experiments for |P | = 700, |A| = 14

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 14.57 23.52 38.46 65.49 143.29 340.24 694.99 1085.51 1036.88 1016.48 1027.84

Stdev 5.69 9.43 15.64 28.21 119.45 267.07 540.55 756.88 521.12 390.71 412.54
Min 7.45 12.76 20.75 28.59 46.11 53.92 65.29 170.95 354.81 290.44 385.99
Max 30.89 55.16 82.82 128.23 656.89 1078.52 2192.32 2548.76 2269.19 1769.58 1887.18

BNP-PICEF Mean 1264.28 1612.64 2407.02 2921.08 3412.63 3390.81 3346.30 3378.98 3478.75 3586.62 3600.02
Stdev 1295.03 1272.61 1189.48 960.60 509.38 436.66 396.00 313.42 305.45 58.48 0.01

Min 9.71 18.89 76.04 208.48 1957.17 2259.70 2220.26 2502.96 2166.24 3302.37 3600.01
Max 3600.80 3600.83 3600.68 3600.62 3600.37 3600.24 3600.15 3600.08 3600.07 3600.05 3600.05

HPIEF Mean 39.05 51.21 62.70 93.00 240.20 564.15 1038.49 1413.02 1444.70 1473.19 1283.89
Stdev 9.05 23.86 24.46 43.04 249.84 484.44 719.21 952.48 816.46 716.48 527.02

Min 30.31 32.43 40.51 45.95 62.73 102.38 105.83 232.39 281.55 335.61 516.76
Max 63.12 134.94 129.85 208.47 1241.43 1786.57 2751.71 3600.02 2877.35 2757.60 2371.12

BNP-POLY Mean 1017.01 1519.12 2381.49 2884.76 3315.11 3266.22 3348.78 3119.47 3418.67 3600.08 3600.08
Stdev 1250.38 1406.13 977.20 1011.44 653.27 670.13 578.91 723.61 447.02 0.05 0.04

Min 6.83 8.59 22.14 28.53 1814.72 1822.70 1894.07 1842.47 2084.25 3600.02 3600.02
Max 3600.06 3600.13 3600.21 3600.34 3600.43 3600.38 3600.39 3600.30 3600.26 3600.21 3600.17
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Table A.13: Position-indexed formulation experiments for |P | = 700, |A| = 35

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 13.13 23.38 55.18 99.27 203.74 317.91 547.05 797.67 1116.34 1293.25 1282.57

Stdev 7.45 11.99 34.73 34.95 49.29 70.34 181.52 242.31 516.93 432.45 501.84
Min 8.25 14.21 24.31 42.27 72.62 113.05 131.92 179.43 239.43 264.00 315.97
Max 47.76 75.74 194.49 208.56 276.76 462.41 940.13 1179.01 2736.66 1896.02 2673.03

BNP-PICEF Mean 1020.98 969.54 1190.59 833.25 1222.95 1820.27 2533.52 3101.86 3430.50 3472.62 3294.55
Stdev 1249.82 1137.59 975.36 712.50 476.76 701.44 481.35 412.11 251.68 241.88 380.11

Min 13.18 25.06 98.13 260.07 587.42 815.88 1277.61 2278.87 2662.25 2886.00 2357.03
Max 3600.62 3600.69 3600.35 2321.96 2240.81 3600.02 3600.02 3600.03 3600.07 3600.04 3600.05

HPIEF Mean 34.37 48.26 110.16 186.29 305.20 507.13 826.60 1171.59 1566.82 1763.52 1506.63
Stdev 3.00 11.15 77.52 45.19 60.17 108.26 238.30 248.72 313.97 509.08 605.57

Min 29.09 36.88 54.65 95.82 220.89 352.13 449.15 825.67 1012.74 1000.12 502.45
Max 39.79 87.52 420.49 353.66 499.14 770.13 1652.82 1810.44 2481.68 2796.51 2489.86

BNP-POLY Mean 946.39 968.40 1175.60 489.31 408.89 987.92 1204.20 1807.54 1940.38 2415.57 3181.40
Stdev 1147.60 1134.31 1114.13 758.29 656.11 843.59 947.76 931.08 1101.74 903.48 679.19

Min 10.57 14.50 28.51 33.90 37.49 43.77 86.42 101.46 139.30 244.96 1887.27
Max 3600.14 3600.09 3600.35 1894.51 1866.21 1977.77 3600.26 3600.20 3600.18 3600.13 3600.15

224



Table A.14: Position-indexed formulation experiments for |P | = 700, |A| = 175

Method K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10 K = 11 K = 12
PICEF Mean 29.54 43.30 71.41 105.27 151.55 203.83 286.35 374.32 467.57 560.50 681.95

Stdev 13.36 16.27 29.08 44.51 66.12 87.99 125.80 166.32 215.48 271.71 370.30
Min 14.44 19.95 28.55 33.10 44.67 58.77 82.04 104.68 119.57 156.31 137.36
Max 63.37 72.10 112.54 161.79 261.19 336.25 493.77 644.54 807.41 990.81 1278.76

BNP-PICEF Mean 18.37 25.95 58.41 101.92 133.68 200.45 298.62 396.98 625.76 963.66 1079.16
Stdev 2.09 6.89 19.69 25.51 28.12 46.29 57.63 99.96 274.92 353.71 359.13

Min 14.32 17.54 25.16 43.12 69.15 121.50 199.20 255.27 360.26 513.35 569.38
Max 23.72 38.25 100.01 146.01 205.94 278.30 477.24 656.46 1539.05 2064.30 2096.84

HPIEF Mean 39.67 55.28 93.24 137.82 200.39 277.33 378.82 533.55 642.43 874.87 908.95
Stdev 5.51 13.00 34.40 43.98 73.27 105.09 146.86 233.83 266.91 385.84 363.31

Min 31.07 37.56 45.29 55.53 69.20 84.06 103.58 114.62 130.30 165.84 169.59
Max 57.05 94.99 182.11 211.11 331.98 512.84 602.28 870.66 1023.77 1297.35 1350.16

BNP-POLY Mean 50.03 77.46 96.51 102.51 146.29 294.77 712.95 936.95 1281.41 1608.44 2130.64
Stdev 6.49 12.00 13.69 16.35 95.95 464.74 769.68 807.90 871.01 1016.13 1106.75

Min 36.48 55.54 67.21 80.60 92.13 102.89 126.45 127.95 153.58 293.59 257.74
Max 61.19 100.42 124.90 130.75 603.92 1880.82 2189.93 2001.10 3600.04 3600.05 3600.04

225



226



B
Additional theoretical results for a new kidney

exchange model

In this appendix, we provide the full proof of Theorem 12 from Chapter 4. Recall the (k, t)-
REPRESENTATION WITH IGNORED EDGES: given an input of a directed graph G = (V,E), a
subset F of E, and integers k ≥ 1 and t ≥ 0, this problem asks whether there exist bit vectors di
and pi of length k for each i ∈ V such that the {i, j} ∈ F if and only if 〈di,pj〉 ≤ t.

Consider the gadget Gk defined as follows on a graph on
(
k
2

)
+ k vertices. Let G1

k be the
graph defined in Theorem 11 on

(
k
2

)
vertices, i.e., the complement of a directed cycle on this many

vertices. Associate with each vertex u ∈ G1
k a unique element from

(
[k]
2

)
(all subsets of [k] of size

2). Let G2
k be an independent set of k vertices. For each vertex i ∈ G2

k, i ∈ [k], add an incoming
edge into i from u ∈ G2

k if and only if i ∈ Su. Figure B.1 shows G4.
Denote the donor neighborhood of i ∈ V by Nd(i) = {j ∈ V : (i, j) ∈ E, i 6= j}, i.e.,

the set of patients compatible with donor i. Similarly, the patient neighborhood of j ∈ V is
Np(j) = {i ∈ V : {i, j} ∈ E, i 6= j}.
Lemma 12. There is a unique (up to permutations) (k, 1)-representation of Gk.

Proof. First consider G1
k. For all u ∈ V (G1

k), since {u, u − 1} /∈ E(G1
k), and the compatibility

function is f 1
thresh, there exist two distinct conflict bits qu1 and qu2 inQd(u)∩Qp(u−1). Moreover, for

any u, v distinct, {qu1 , qu2} 6= {qv1 , qv2}. Otherwise, {qu1 , qu2} ⊆ Qp(v− 1) and {qv1 , qv2} ⊆ Qp(u− 1),
but at least one of the edges {u, v − 1} or {v, u− 1} exists in G1

k.
In addition, |Qd(u)| = 2 for all u ∈ V (G1

k). Suppose not, and there exists a third distinct (from
qu1 and qu2 ) conflict bit qu3 in Qd(u). As the number of vertices is

(
k
2

)
, there exists a vertex v1 with

{qv1
1 , q

v1
2 } = {qu1 , qu3}, and a (different) vertex v2 with {qv2

1 , q
v2
2 } = {qu2 , qu3}. Then {u, v1 − 1} and

{u, v2 − 1} are both not in E(G1
k). However, u has edges to all vertices except itself and u − 1,

which is a contradiction, as u, v1, and v2 are all distinct. From this, it also follows that |Qp(u)| = 2.
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1

2

3

4

1

d1 : 1100
p1 : 1010

2

d2 : 1010
p2 : 1001

3
d3 : 1001
p3 : 0110

4

d4 : 0110
p4 : 0101

5

d5 : 0101
p5 : 0011

6
d6 : 0011
p6 : 1100

Figure B.1: Gadget G4 with a subset of non-edges shown; all edges between circle vertices (those
in G2

4) are also not in E.

We have thus shown that every vertex u ∈ G1
k has exactly two bits set to one in its donor

attribute vector, with a unique pair of bits per vertex, and Qd(u) = Qp(u − 1). However, without
more structure, it is not possible to tell in which donor vectors a particular conflict bit appears. The
additional graph G2

k allows us to identify this, up to permutations.
Since there are no outgoing edges from any of the vertices in G2

k, and every pair of bits in(
[k]
2

)
appears in exactly one patient vector of a vertex in G1

k, each donor vector in G2
k must be the

all-ones vector of length k.
Consider vertex i ∈ [k] in G2

k. It has an incoming edge from each vertex u ∈ V (G1
k) such that

i ∈ Su and it is missing the
(
k−1

2

)
other possible incoming edges from G1

k (note that the labeling
of the vertices, as well as the choices of the sets Su, are made without any knowledge of the bit-
vectors associated with the vertices). We next show that

∣∣∩u∈Np(i)Qd(u)
∣∣ = 1. That this quantity

is at most 1 is clear, as Qd(u) and Qd(v) intersect in at most one conflict bit for all u, v ∈ V (G1
k),

u 6= v. If this quantity were 0, then for some u, v ∈ Np(i), Qd(u) ∩ Qd(v) = ∅. But then at least
two zeroes would appear in Qp(i), which is a contradiction as it implies that i would have more
than k incoming edges. Thus, the patient vector pi for i ∈ V (G2

k) has exactly one zero and ones
elsewhere. Moreover, since Np(i) 6= Np(j) for any distinct i, j ∈ [k], it follows that pi 6= pj , so
each patient vector is distinct and the position of its only zero is unique.

Lemma 13. Consider a digraph G having Gk as a subgraph and an additional vertex x /∈ V (Gk).
We use the compatibility function f 1

thresh and seek to find a (k, 1)-representation for the induced
subgraph G[V (Gk) ∪ {x}]. Let U ⊆ V (G1

k) having that property that if v ∈ V (G1
k) with Qd(v) ⊆

∪u∈UQd(u), then v ∈ U . Let U ′ = {u ∈ V (G1
k) : u+ 1 ∈ U}. Let Q = ∪u∈UQd(u).

If Np(x) = V (Gk
1) \ U , then Qp(x) = Q. If Nd(x) = V (Gk

1) \ U ′, then Qd(x) = Q.

Proof. We use the fact that there are exactly two bits set to one in the donor and patient vectors
of each vertex in Gk in any (k, 1)-representation. For the first statement, since x has no edge from

228



u ∈ U , Qp(x) ⊇ Qd(u). Thus Qp(x) ⊇ Q. Now let v ∈ V (G1
k) \ U and qv ∈ Qd(v) \ Q. If

qv ∈ Qp(x), then for each q ∈ Q, there exists a vertex w in G1
k with Qd(w) = {q, qv}, so that

{w, x} would also not be an edge of G, a contradiction. Hence, Qp(x) = Q. The second statement
follows analogously.

Theorem 12. The (k, t)-REPRESENTATION WITH IGNORED EDGES problem is NP-complete.

Proof. Consider a 3SAT formula on n variables and with m clauses. Set k = 2n+ 2, and build the
following graph on 2 + n+m+

(
k
2

)
+ k vertices. The first two vertices are labeled v and u. Then

there is a vertex vi for each variable i ∈ [n], a vertex c for each clause c ∈ [m]. Call the subgraph
induced by these 2 + n+m vertices G′. The last vertices come from the gadget Gk.

The vertices in G2
k ground the k bits used in each donor and patient vector.. We think of the k

bits, in order, as corresponding to the n positive literals, then their n negations, followed by two
“extra” bits. Then the index of literal xi will be i, and the index of literal x̄i will be n + i. For i
and j distinct in V (G2

k), |Np(i) ∩Np(j)| = 1 within Gk. Denote this vertex of G1
k by v(i, j), and

without loss of generality we can assume that Qd(v(i, j)) = {i, j}.
The edges among vertices in the induced subgraph Gk are already defined; we define (a subset)

of the rest of the edges. Together, these comprise precisely the subset F of the edges and non-edges
specified as an input the instance we are creating of (k, t)-REPRESENTATION WITH IGNORED

EDGES.
Vertex v has no incoming edges, and the only outgoing edges from v to V (G′) are to every

variable vertex vi, i ∈ [n]. The rest of the vertices that are not in Gk have no outgoing edges at
all, to either V (G′) or V (Gk), and the only incoming edges are from vertices of G1

k. Vertex u has
an incoming edge from every vertex of G1

k except v(2n + 1, 2n + 2). For each variable vertex vi,
i ∈ [n], it has an incoming edge from every vertex in V (G1

k) except v(i, n + i). For each clause
c ∈ [m], let {c1, c2, c3} be the indices of the three literals that appear in c. Let C ⊂ V (G1

k) be
{v(c1, c2), v(c1, c3), v(c2, c3), v(c1, k), v(c2, k), v(c3, k)}. Then the vertex corresponding to c has
an incoming edge from every vertex in V (G1

k) \ C.
Every vertex of V (G′) except for v will have a donor vector with every bit set to one because

there are no outgoing edges to any vertex of G1
k, and v will have an all-ones patient vector because

it has no incoming edges from G1
k. By Lemma 13, in any (k, 1)-representation of G, vertex u will

have Qp(u) = {2n+ 1, 2n+ 2}. Variable vertex vi, i ∈ [n], will have Qp(vi) = {i, n+ i}. Clause
vertex c ∈ [m] will have Qp(c) = {c1, c2, c3, 2n+ 2}.

Since the graph does not have an edge from v to u, {2n + 1, 2n + 2} ⊆ Qd(v) (these are the
only two conflict bits in Qp(u) and the threshold is 1). Since the graph has an edge from v to each
variable vertex vi, i ∈ [n], Qd(v) must contain at most one of the indices corresponding to the
variable or its negation (there are no conflicts from the extra bits, which are set to 0 in the patient
vector of vi). Since the graph does not have an edge from v to any of the clause vertices, it has to
have at least one conflict bit in a position corresponding to one of the three literals in the clause
(the other conflict comes from the extra bit 2n+ 2).

Thus, finding a suitable (k, 1)-representation that satisfies the adjacencies of edges that appear
in F would involve finding an appropriate set Qd(v), which we have shown corresponds to choos-
ing at most one value for each xi, as well as choosing at least one literal that appears in each clause.
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This is the same as the problem of finding a satisfying formula for the initial instance of 3SAT.
As an example, consider the 3SAT formula x1 ∨ x̄2 ∨ x3. Figure B.2 shows the most relevant

part of the graph used in the reduction. One possible (k, 1)-representation may have Qd(v) =
{1, 7, 8}, indicating x1 = 1 and the rest of the variables are arbitrary. Another example of a
possible representation is Qd(v) = {1, 3, 5, 7, 8}, meaning x1 = 1, x2 = 0 (index 5 appears), and
x3 = 1.

v

c

u

v1

v2

v3

v(x1, x3) 10100000

v(x1, x̄2) 10001000

v(x3, x̄2) 00101000

v(x1, 8) 10000001

v(x3, 8) 00100001

v(x̄2, 8) 00001001

v(x1, x̄1) 10010000

v(x2, x̄2) 01001000

v(x3, x̄3) 00100100

v(7, 8) 00000011

Figure B.2: Example of 3SAT reduction to (k, t)-representation.
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C
Additional experimental results for pre-match

edge testing

C.1 Additional experimental results on UNOS graphs

In this appendix, we include additional experimental results on the same 169 compatibility graphs
drawn from the real UNOS kidney exchange used in the adaptive and non-adaptive edge testing
experiments of Section 5.10. These experiments mimic those of Section 5.10.2, only this time
including in the analysis empty omniscient matchings. If an omniscient matching is empty, then
our algorithm will achieve at most zero matches as well. In Section 5.10, we removed these
cases from the experimental analysis because achieving zero matches (using any method) out of
zero possible matches trivially achieves 100% of the omniscient matching; by not including those
cases, we provided a more conservative experimental analysis. In this section, we include those
cases and rerun the analysis.

Figure C.1 mimics Figure 5.15 from Section 5.10 in the body of this thesis. It shows results for
2-cycle matching on the UNOS compatibility graphs, without chains (left) and with chains (right),
for R ∈ {0, 1, . . . , 5} and varying levels of f ∈ {0, 0.1, . . . , 0.9}. We witness a marked increase
in the fraction of omniscient matching achieved as f gets close to 0.9; this is due to the relatively
sparse UNOS graphs admitting no matchings for high failure rates.

Figure C.2 shows the same experiments as Figure C.1, only this time allowing both 2- and
3-cycles, without (left) and with (right) chains. It corresponds to Figure 5.16 in Section 5.10,
and exhibits similar but weaker behavior to Figure C.1 for high failure rates. This demonstrates
the power of including 3-cycles in the matching algorithm—we see that far fewer compatibility
graphs admit no matchings under this less-restrictive matching policy.
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Figure C.1: Real UNOS match runs, restricted matching of 2-cycles only, without chains (left)
and with chains (right), including zero-sized omniscient matchings.
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Figure C.2: Real UNOS match runs, matching with 2- and 3-cycles, without chains (left) and with
chains (right), including zero-sized 0 matchings.

C.2 Myopic incremental edge testing

In this section, we present a basic algorithm for incrementally testing edges in a non-batch setting;
that is, we work under the assumption that testing can be performed and that information digested
on an edge-by-edge basis. We compare against the batch adaptive edge testing algorithm from
Section 5.10. By allowing the algorithm to receive and react to new information at a faster pace,
this comparison allows us to measure, in some sense, the “cost of batching” in our initial adaptive
algorithm. Indeed, while it may not be the case that immediate feedback without batching is
realistic in the kidney exchange context, research in this direction may allow for even sparser
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batches of edge testing in the context of the original batch algorithms.
Algorithm 5 implements a basic “expected improvement”-style algorithm (see, e.g., work

by Jones et al. [122] for foundational work on general expected improvement algorithms) for adap-
tive edge testing of barter exchange graphs. It is initialized with a directed graph with edges that
may or may not exist; it then tests edges one by one until an improvement-based stopping condi-
tion is met, or it runs out of edges to test. Iteratively, it myopically tests for existence the edge that
improves the expected utility of the current optimal failure-aware matching—taking all previous
edge tests into account—the most. This is determined by iterating over every edge e, with proba-
bility of existence pe, calculating the expected utility of matching with that edge existing (denoted
o+
e ) and without it existing (denoted o−e ), and finding the edge e∗ with highest weighted average
o∗ = pe∗o

+
e∗ + (1− pe∗)o−e∗ . That edge is then tested for existence and then set to exist or not exist

(depending on the test) for all remaining iterations.
Code for Algorithm 5, as well as for the succeeding experiments, can be found at https:

//github.com/JohnDickerson/KidneyExchange in the kpd.rematch package.
We now perform an experimental comparison of Algorithm 5 and the batch adaptive algo-

rithm of Section 5.10. We operate in essentially the same environment as the experiments of Sec-
tions 5.10.2 and C.1—drawing generated graphs that mimic the UNOS exchange by way of seeding
a generator with the first 314 real UNOS match runs. The experiments are performed as follows.
Draw a graph from the generator; in our experiments, we draw graphs such that |V | = 100. Deter-
mine probabilistically which edges exist and do not exist. First, determine the optimal matching
given omniscience, that is, complete knowledge of edges’ existence. Next, run the adaptive batch
algorithm for 5 batch matches (as in the experiments in of Sections 5.10.2 and C.1), recording
the match utilities realized for each number of batches and the number of edges tested. Then, run
Algorithm 5—which tests edges one by one—and record the match utility at every step. Under
all algorithms, simulated edge failures are exactly the same; that is, the underlying graph and its
dynamics are identical.

Figure C.3 shows experimental results on the same set of generated graphs both allowing chains
and not allowing chains. (In both sets of experiments, we allow 2- and 3-cycles, as is the case in
most experiments in this thesis, and in most kidney exchange clearinghouses in practice.) The
y-axis shows, for each number of rematches R ∈ {1, 2, 3, 4, 5}, the number of edges used by
Algorithm 5 to achieve at least the utility of the batch algorithm, as a fraction of the number of
edges used by the batch adaptive algorithm. For example, if the batch algorithm for R = 2 used
20 edges to achieve objective oR=2

B , and Algorithm 5 achieved objective oA ≥ oR=2
B using just 10

edges, then this would appear on Figure C.3 as a point 10/20 = 0.5 for the R = 2 line, for a
given underlying failure rate. We vary on the x-axis uniform failure rates in {0.0, 0.1, . . . , 1.0} as
in previous experiments. Thus, “lower is better“ in Figure C.3 in the sense that lower values show
Algorithm 5 performing substantially fewer edge tests to achieve at least the same utility as the
batch adaptive algorithm.

Figure C.3 shows that Algorithm 5 results in the greatest gains when the failure rates for edges
are very low or very high. This is intuitive: when failure rates are low, most edges exist, and the
batch adaptive algorithm will be too conservative, needlessly testing many edges that will likely
exist in reality. When the failure rate is very high, the amount of information gained from testing a
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Algorithm 5 Myopic edge test policy
1: function DOMYOPICMATCHING(G = (V,E))
2: E+ = ∅;E− = ∅
3: while E+ ∪ E− 6= E do
4: o∗ = MATCH(G,E+, E−)
5: (o, e) = GETBESTEDGE(G,E+, E−)
6: if o > o∗ ∧ e 6= ∅ then
7: if EDGEEXISTS(e) then
8: E+ = E+ ∪ {e}
9: else

10: E− = E− ∪ {e}
11: else
12: break
13: return (E+, E−)

14: function GETBESTEDGE(G = (V,E), E+, E−)
15: e∗ = ∅; o∗ = 0
16: for each e ∈ E \ (E+ ∪ E−) do
17: o+

e = MATCH(G,E+ ∪ {e}, E−)
18: o−e = MATCH(G,E+, E− ∪ {e})
19: oe = peo

+
e + (1− pe)o−e

20: if oe > o∗ then
21: o∗ = oe; e∗ = e

22: return (o∗, e∗)

23: function MATCH(G = (V,E), E+, E−)
24: Performs optimal matching using the failure-aware algorithm from Section 5.5, with fail-

ure probabilities for edges in E+ set to 0.0 and all edges in E− removed (or set to fail with
probability 1.0), and all other as-of-now untested edges existing probabilistically.

25: return the utility of the matching minus
∑

e∈E+∪E− re, the amount we have spent testing
edges so far. (For our experiments, we ignore edge testing costs.)
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Figure C.3: Real UNOS match runs, matching with 2- and 3-cycles, without chains (left) and with
chains (right), not including zero-sized 0 matchings.

single edge and finding out that it exists is extremely high, and can be used to immediately guide
the search toward other parts of a potential matching.

For realistic edge failure rates around 0.5, Algorithm 5 still provides a large gain (saving
roughly 50% of edge tests) for R = 1; however, as we increase the number of rematches R,
that gain tapers off. This is due in part to the number of edges tested by the batch matching algo-
rithm in each round also tapering off as the number of rounds increases. As that algorithm tests
and finds that parts of a matching exist, it will potentially include those tested edges (and cycles
and chains) in future batch matchings; we do not count edge tests in a batch matching after the
initial test, so the batch matching algorithm in some sense approaches the incremental edge testing
strategy of Algorithm 5 as the number of batch rematches increases.
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D
Additional liver and multi-organ exchange

methodology and experimental results

D.1 A parameterized, realistic compatibility graph generator

In this section, we provide a more in-depth enumeration of the steps taken to generate realistic liver
or multi-organ exchange compatibility graphs; a shorter explanation was given in Section 9.3.1.
Section D.1.1 describes the process of drawing data from reliable sources (here, specific to the
US), while Section D.1.2 shows how we feed this generated data into a graph creation algorithm
that probabilistically determines the existence of compatible and incompatible candidate-donor
pairs, as well as compatibility constraints between different candidate-donor pairs. As noted in
Chapter 9, in the large and with high probability, graphs generated by this algorithm will mimic
the demographics that would prevail in a large-scale fielded exchange in the US. (Plugging different
raw data (e.g., gender, age, weight, blood type distributions) into the generator algorithm would
provide realistic generation of non-US compatibility graphs.) Our generator is a generalization of
(i.e., more powerful than) the current standard generator proposed by Saidman et al. [191].

D.1.1 Sampling from real-world data

Current medical knowledge is incapable of exactly predicting the compatibility of a particular
donor and candidate. However, many attributes are known that can guide doctors—and algorithms—
toward a realistic quantification of the chance of organ rejection. In this section, we describe these
factors and the open source data sets that our algorithm uses to realistically sample the US pop-
ulation. In the discussions ahead, we use “OPTN” to refer to the data available from the Organ
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Procurement and Transplantation Network.1 All OPTN data is current as of November 11, 2011.

Gender

While a donor of one gender can donate an organ to a candidate of another gender, we must take
gender into account during graph generation. This is because other traits that affect the probability
of a transplant’s success (e.g., weight or age) depend on a person’s gender. We draw candidate
genders from the OPTN data set, and donor genders from the greater US population through the
2010 US Census report.2 Table D.1 shows the distributions of liver-needing candidates and the
natural US population as donors. Men are very over-represented in the candidate pool. (Note
that similar distributions can be obtained for kidney-needing candidates, and used in a multi-organ
generator.)

Male Female

Candidate 61.71 38.29

Donor 48.53 51.47

Table D.1: Distribution of (liver) candidate and donor genders, drawn from OPTN and 2010 US
Census data, respectively.

Blood type

A candidate and donor must be ABO blood type compatible (e.g., an A-type donor is compati-
ble with A- and AB-type candidates), although blood type suppression through drugs is a recent
advance that has the potential to remove this constraint [204]. We draw candidate blood types
from the OPTN distribution (dependent on gender), and donor blood types from the overall US.3

The OPTN distribution is roughly equal across genders, and both distributions are roughly equal
to each other. Nevertheless, it is important to have this parameterized capability in the generator
in the event that, for instance, some “harder” blood type (e.g., AB) gets over-represented in the
candidate pool. Table D.2 shows the exact distribution and the ABO-compatibility matrix, with
percentages shown for liver-needing candidates.

Age

Age plays a role in transplantation, but we were unable to find any specific quantification of the
amount by which increased donor or candidate age (or, in the case of children, decreased candidate
age) affects this success rate. Even without this information, age is important to model because
it will allow us to generate a realistic distribution of candidate and donor weights, a trait whose

1http://optn.transplant.hrsa.gov/data/
2http://www.census.gov/compendia/statab/cats/population.html
3http://bloodcenter.stanford.edu/about_blood/blood_types.html
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Donor Candidate
ABO O A B AB

O 3 3 3 3

A 7 3 7 3

B 7 7 3 3

AB 7 7 7 3

Male Female
ABO Cand. Donor Cand. Donor

O 47.83 44 48.91 44

A 38.39 42 37.08 42

B 11.37 10 11.41 10

AB 2.40 4 2.58 4

Table D.2: Left: ABO blood type compatibility matrix. Marks indicate a donor (row) as ABO-
compatible with a candidate (column). Right: ABO percentages for candidates and
donors.

effect is easily quantified. We sample ages (dependent on gender) for candidates from the OPTN
pool and for the donors from the 2010 US Census at a granularity level of one year. To save space,
Table D.3 does not separate the population into one-year segments as rows, while our generator
does. In our generator we also take into account the constraint that organ donors must be 18 years
old, and we normalize the distributions accordingly.

Male Female
Age Candidate Donor Candidate Donor

< 1 0.259 – 0.465 –

1–5 0.837 – 1.220 –

5–10 0.568 – 1.075 –

11–17 0.717 – 1.444 –

18–34 4.193 31.883 5.554 29.357

35–49 14.851 27.798 14.976 26.617

50–64 64.851 25.066 57.079 25.053

≥ 65 13.725 15.252 18.186 18.972

Table D.3: Probability distribution of ages, respective of candidate and donor gender.
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Weight

Unlike in kidney exchange, the physical weight of both the candidate and donor play an enormous
role in the feasibility of liver transplantation.4 Intuitively, the size of a liver is generally propor-
tional to the size of the person who grew it. In live liver donation, the donor’s liver is cut in two
(one lobe is removed). For both donor and candidate to remain healthy, the slice of liver left in the
donor must be large enough to maintain her life, and the slice of liver given to the candidate must
be large enough to maintain his. Thus, a general rule of thumb that the donor must weigh as much
as (or more than) the candidate is in place in live liver donation. We adopt that convention for liver
exchange.

Given the age and gender (generated separately from OPTN data for candidate and US Census
data for donors, as described earlier), we sample from a fine-grained table of weights recently
released by the Center for Disease Control [155]. This data, given on a by-year basis until age
20 and in increments of 5 years thereafter, includes mean weights, sample errors, and sample
sizes. From this, we calculate a standard deviation and sample from a normal distribution with
this mean and standard deviation. While there are issues with this method—most notably that the
candidate weights may be drawn from a different distribution than the general US public, and that
human weights are not distributed normally but are skewed toward weighing more—we feel that
this sampling approach provides a reasonable starting point for future generation techniques. The
full table of weights is omitted due to space.

HLA antibodies and antigens

In kidney exchange, tissue type (HLA antibodies and antigens) are another very important determi-
nant of compatibility. A candidate and donor sharing antigen encoding on the same locus possibly
results in a positive virtual crossmatch across antigens. A positive virtual crossmatch means that
the system can detect incompatibility. In kidney exchange graph generation, this is quantified
by the probability that the candidate is not tissue-type compatible with a randomly drawn donor.
This probability is called %PRA for panel reactivity antibody [191]. Furthermore, tissue type can
change over time, resulting in the need for contingency plans after the time of algorithmic match-
ing but before the surgery. For example, if the candidate comes down with a cold or flu days before
surgery, the surgery may need to be rescheduled or permanently canceled.

In liver exchange, %PRA plays less of a role due to the use of suppressant drugs. As such, while
the generator supports %PRA (and can use sampled data from the OPTN databases5), we exclude
%PRA in our liver experiments. However, %PRA is included in our multi-organ experiments for
kidney candidates.

4Large weight differences between donor and candidate can factor into kidney exchange as well, but this has not
been taken into account in either the current state of the art generator or the weighting algorithms used in the fielded
US-wide kidney exchange.

5The relationship (e.g., parent-child, spousal) between candidate and donor can yield information on HLA compat-
ibility (e.g., due to inheritance of HLA from each parent or changes in HLA antibodies due to pregnancy; see Saidman
et al. [191] for details), and is supported by the generator of Saidman et al. and our generator.
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D.1.2 Generator algorithm
We now give the method for generating the compatibility graph from data sampled from the sources
given in the previous section. Note that the probability distributions from the previous section (and
the organs to which they pertain) can be swapped without affecting the correctness of the algorithm
beyond the “is compatible” checks described below.

Algorithm 6 Compatibility graph generator

1: G := (V = ∅, E = ∅)
2: while |V | < n do
3: c = candidate, d = donor
4: c.drawOrganType()
5: {c, d}.drawGender()
6: {c, d}.drawBlood(gender)
7: {c, d}.drawAge(gender)
8: {c, d}.drawTissueType(gender)
9: {c, d}.drawWeight(gender , age)

10: if ¬isCompatible(c, d) then
11: V = V ∪ {vc,d}
12: for vi, vj ∈ V s.t. Vi 6= Vj do
13: if isCompatible(vcj , v

d
i ) and x ∈ U [0, 1] > f then

14: if isWilling(vi, vj) then
15: E = E ∪ {(vi, vj)}
16: return directed compatibility graph G

Algorithm 6 gives a two-step process for generating a compatibility graph G = (V,E), given
a number n, such that |V | = n. First, sample from real-world data until n incompatible candidate-
donor pairs are generated. When generating a liver exchange, one would set the algorithm to
sample from the liver data given above; however, when generating a multi-organ exchange consist-
ing of livers and kidneys, one would include the proper proportions of kidney and liver candidates
and sample from the appropriate real-world data per organ. When we ran the liver and multi-organ
experiments in Section 9.4, the kidney waitlist was 5.84 times longer than the liver waitlist, which
was reflected in this algorithm. (When the experiments for Chapter 9 were run, the kidney waitlist
was 6.50 times longer than the liver waitlist.)

If needed, the algorithm can easily be augmented to keep track of any compatible candidate-
donor pairs generated. As is common practice in kidney exchange, these pairs are assumed to
match on their own, and do not enter the pool. Recent kidney exchange research suggests that
incentivizing even compatible pairs to join a nationwide exchange could result in better match-
ings [19, 178]. Other additions could be made to the algorithm as data becomes available (e.g.,
correlating donor and candidate characteristics under the assumption that a donor may likely come
from the candidate’s family).

After n incompatible candidate-donor pairs are generated, the algorithm steps through each
pair vi, vj of candidate-donor pairs and, if the latter’s candidate vcj is compatible with the former’s
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donor vdi , then a directed edge is added from vi to vj . Note the inclusion of an exogenous “incom-
patibility factor” f ∈ [0, 1] that, if prescribed, randomly determines an edge failure even in the
case of a compatibility success. This factor is common in the kidney literature [22], and is used to
account for incompleteness of medical knowledge and, during simulation, temporal fluctuations in
candidate-donor compatibility.

Algorithm 6 calls a function isCompatible(c,d). In the liver case, this checks whether two
patients are ABO-compatible and whether the donor’s weight is greater than or equal to the can-
didate’s weight. In the kidney case, this checks whether two patients are ABO-compatible and
whether a virtual crossmatch based on tissue type returns negative. As better medical knowledge
and data become available, this function can be generalized to take new compatibility aspects into
account. The algorithm also calls a function isWilling(vi, vj), which returns true if the donor at vi
is willing to give an organ of the type needed by the patient in vj . This corresponds to, e.g., the
probabilities pK→L and pL→K used in Chapter 9 theoretical and experimental sections.

D.2 Additional experimental results
In this section, we provide statistical significance testing for the dynamic bi-organ experiments
of Section 9.4.3. The tables are organized as follows. Each table corresponds to a different dis-
tribution of compatibility graphs. Tables D.4, D.5, and D.6 give results for DENSE graphs with
exogeneous incompatibility rates f = 0.5, f = 0.7, and f = 0.9, respectively. These tables sup-
port Figures 9.10 and 9.11 in the body of the paper. Table D.7 gives results for the UNOS family
of graphs. This table supports Figure 9.12 in the body of the paper.

Each row in a table corresponds to a different value of pK→L; the value of pK→L is specified
in the first column of the table. From left to right, the columns represent: n, the number of
independent runs used to support the results in this row; the average number of patients matched
in total for an independent liver and independent kidney exchange; the standard deviation of the
previous; the average number of patients matched in total for a combined bi-organ exchange; the
standard deviation of the previous; the percentage gain in number of matched patients achieved by
combining exchanges; t-statistic from an independent samples t-test; the associated two-tailed p-
value for the previous; U -statistic from a Mann-Whitney U test (roughly, a non-parametric version
of the independent samples t-test); and the associated one-tailed p-value for the previous.
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f = 0.5 Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 90 5143.7 (129.9) – – – – –

0.1 41 – – 6059.4 (155.0) 17.80% 34.884 � 0.001 0.0 � 0.001

0.2 53 – – 6109.3 (153.3) 18.77% 39.825 � 0.001 0.0 � 0.001

0.3 63 – – 6110.4 (149.0) 18.79% 42.332 � 0.001 0.0 � 0.001

0.4 79 – – 6102.4 (143.9) 18.64% 45.240 � 0.001 0.0 � 0.001

0.5 73 – – 6137.5 (155.7) 19.32% 44.141 � 0.001 0.0 � 0.001

0.6 83 – – 6114.5 (126.2) 18.87% 49.491 � 0.001 0.0 � 0.001

0.7 81 – – 6156.4 (153.2) 19.69% 46.472 � 0.001 0.0 � 0.001

0.8 77 – – 6140.8 (140.3) 19.38% 47.364 � 0.001 0.0 � 0.001

0.9 79 – – 6182.7 (143.7) 20.20% 49.060 � 0.001 0.0 � 0.001

1.0 81 – – 6135.3 (133.2) 19.28% 48.953 � 0.001 0.0 � 0.001

Table D.4: Statistical significance testing for DENSE distribution graphs with f = 0.5.

f = 0.7 Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 99 4979.6 (127.6) – – – – –

0.1 90 – – 5655.3 (146.6) 13.57% 33.685 � 0.001 0.0 � 0.001

0.2 69 – – 5819.3 (116.5) 16.86% 43.215 � 0.001 0.0 � 0.001

0.3 50 – – 5838.9 (134.3) 17.25% 37.874 � 0.001 0.0 � 0.001

0.4 35 – – 5898.4 (143.0) 18.45% 35.188 � 0.001 0.0 � 0.001

0.5 42 – – 5914.6 (134.5) 18.78% 38.872 � 0.001 0.0 � 0.001

0.6 32 – – 5964.0 (119.9) 19.77% 38.196 � 0.001 0.0 � 0.001

0.7 33 – – 6011.4 (175.6) 20.72% 36.094 � 0.001 0.0 � 0.001

0.8 36 – – 6006.9 (134.4) 20.63% 40.476 � 0.001 0.0 � 0.001

0.9 40 – – 6010.4 (152.2) 20.70% 40.419 � 0.001 0.0 � 0.001

1.0 36 – – 6051.4 (156.8) 21.52% 40.192 � 0.001 0.0 � 0.001

Table D.5: Statistical significance testing for DENSE distribution graphs with f = 0.7.
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f = 0.9 Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 79 3708.4 (113.2) – – – – –

0.1 79 – – 4089.6 (113.3) 10.28% 21.018 � 0.001 19.5 � 0.001

0.2 81 – – 4298.0 (108.0) 15.90% 33.501 � 0.001 0.0 � 0.001

0.3 82 – – 4396.4 (121.8) 18.55% 36.866 � 0.001 0.0 � 0.001

0.4 81 – – 4430.6 (133.8) 19.47% 36.577 � 0.001 0.0 � 0.001

0.5 81 – – 4514.9 (129.4) 21.75% 41.651 � 0.001 0.0 � 0.001

0.6 81 – – 4591.5 (139.0) 23.81% 43.721 � 0.001 0.0 � 0.001

0.7 78 – – 4603.2 (133.8) 24.13% 44.977 � 0.001 0.0 � 0.001

0.8 78 – – 4641.6 (153.0) 25.16% 43.200 � 0.001 0.0 � 0.001

0.9 78 – – 4675.2 (112.6) 26.07% 53.307 � 0.001 0.0 � 0.001

1.0 79 – – 4695.1 (121.2) 26.61% 52.553 � 0.001 0.0 � 0.001

Table D.6: Statistical significance testing for DENSE distribution graphs with f = 0.9.

UNOS Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 82 4003.8 (108.3) – – – – –

0.1 86 – – 4099.5 (108.3) 2.39% 5.689 � 0.001 1959.5 � 0.001

0.2 84 – – 4162.9 (124.6) 3.97% 8.719 � 0.001 1154.5 � 0.001

0.3 80 – – 4211.5 (119.3) 5.19% 11.538 � 0.001 617.5 � 0.001

0.4 79 – – 4210.4 (109.2) 5.16% 11.978 � 0.001 561.0 � 0.001

0.5 74 – – 4252.8 (103.6) 6.22% 14.539 � 0.001 306.5 � 0.001

0.6 76 – – 4263.4 (115.3) 6.48% 14.501 � 0.001 303.0 � 0.001

0.7 76 – – 4304.1 (112.8) 7.50% 16.961 � 0.001 185.5 � 0.001

0.8 62 – – 4313.6 (124.6) 7.74% 15.813 � 0.001 143.0 � 0.001

0.9 67 – – 4298.3 (121.2) 7.36% 15.544 � 0.001 181.0 � 0.001

1.0 68 – – 4304.3 (120.7) 7.51% 15.949 � 0.001 163.0 � 0.001

Table D.7: Statistical significance testing for UNOS distribution graphs.
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“But there’s a lot of strategy involved as
well—I use both apps, I go back and forth ...”
– YouTube user “Anthony D”, driver for both

Uber and Lyft

E
Competing dynamic matching markets

E.1 Introduction

In matching problems, a central clearinghouse pairs agents with other agents, transactions, or
contracts. Most classical matching problems—matching medical residents to hospitals, match-
ing students to schools—are static, where agents and items exist at the same time, are matched,
and then the market disappears; however, many real-world matching problems are dynamic, with
agents arriving and departing over time in a persistent market. In Chapters 6 and 8, we explored
optimization-based approaches to learning matching policies for a single dynamic matching mar-
ket; this appendix presents ongoing work that addresses a generalization of that setting.

Many dynamic matching applications involve multiple competing clearinghouses with over-
lapping sets of participants. For example, a lonely graduate student may register on two dating
websites (e.g., Match.com and OkCupid), or choose to only register on one. Thus, a member of
both sites can be matched to any member of either site, while single-site members can only be
matched to members of their specific dating market. The clearinghouses then compete on a metric
like total number of matches. It is also common for patient-donor pairs in kidney exchange to
register on multiple exchanges, an application we explore in detail later.

In this chapter, we explore, in a dynamic matching setting, how rival clearinghouses affect
global social welfare in terms of total agents matched relative to a world in which all agents enter
exactly one market, which can optimize for how to match them independently. This is early-stage
work with Sanmay Das and Zhuoshu Li at Washington University in St. Louis; a preliminary
version of this research appeared at AMMA-2015 [65].
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E.1.1 Our contribution
This chapter’s major contribution is the extension of a recent framework of dynamic matching due
to Akbarpour et al. [9] to two rival matching markets with overlapping pools. Specifically, we
formalize a two-market model where agents enter one market or both markets; they can then be
matched to other agents who have joined the same market or both markets. The markets adhere
to different matching policies, with one matching greedily and the other building market thickness
through a patient policy. We provide an analytic lower bound on the loss, or the expected fraction of
vertices who enter and leave the pool without finding a match, of the two-market model and show
that it is higher than running a single “patient” market. We also provide a quantitative method for
determining the loss of the two-market model.

Our work draws motivation from kidney exchange, an instantiation of barter exchange where
patients paired with willing but medically incompatible donors swap those donors with other pa-
tients. In the United States, multiple fielded kidney exchanges exist, and patient-donor pairs are
entered simultaneously into one or more of these markets, based on geographical location, travel
preferences, home transplant center preferences, or other logistical reasons. Individual kidney ex-
change clearinghouses have incentive to compete on number of matches performed within their
specific pools; yet, fragmenting the market across multiple exchanges operating under different
matching policies may lower global welfare. We provide the first experimental evidence on dy-
namic kidney exchange graphs showing that this may indeed be the case.

E.1.2 Related work
Most related to our work is a recent paper by Akbarpour et al. [9], which presents a general frame-
work for bilateral dynamic matching in a single market and analyzes the efficacy of a variety of
matching policies over time. We build directly on that framework and delay a more in-depth review
of that work until Section E.2.

Dynamic matching in a single market has been explored in many domain-specific applications.
Some examples are given below for both one-sided and two-sided traditional matching markets, as
well as for barter exchanges; this list is not exhaustive.
One-sided markets. In these settings, only one side (the agents) has preferences over the other
(the items). Waiting lists are used in many applications as a mechanism for allocating the items,
which are scarce resources, to agents. Both agents and items arrive over time, and an agents’
priority for an arriving item can be set by a variety of factors. Examples of waiting list applications
include public housing assignment [127, 128, 145] and cadaveric organ allocation [37, 202, 223].
In a two-period dynamic housing allocation problem, agents can either apply for a public good
(e.g., a house) in the first stage and receive priority in that stage, or opt out in the first stage and
receive priority in the second stage [3]. Other variants of the dynamic housing allocation problem
have also been addressed where, e.g., agents arrive and depart and, upon departure, an agent’s
allocated item is then given to an existing agent in the waiting pool [42, 139].
Two-sided markets. In two-sided markets, participating agents belong to one of two disjoint sets
(e.g., “firms” or “workers”), but an agent on either side will have preferences over those on the
other. In online labor marketplaces like Upwork, employers and applicants arrive and depart over
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time and are interested in finding an acceptable match [18, 123]. In the dynamic school choice
problem, schools exist permanently and indefinitely, but students arrive and depart periodically in
a discrete time model [130]. Students matched to a school at one time period may be matched to
a new school at a different time period. Schools and students have preference orderings over each
other, based on the utility provided to one side by being allocated an element or elements of the
other. Finally, generalizations of the online bipartite matching problem as originally introduced
by Karp et al. [129] have recently seen great real-world impact in Internet ad allocation [158, 159].

We note that our work does not assume a bipartite structure in the matching graph—as in [3, 18,
42, 111, 123, 127, 128, 130, 139, 145, 202, 213, 223] and much of the static matching mechanism
design literature—and involves more than a single market.
Barter exchange. In barter exchange, agents can directly swap goods with other agents in cycles of
length greater than or equal to two. One fielded example is kidney exchange [184], where patients
with end-stage renal failure and willing but incompatible paired donors swap those donors with
other patients. Ünver [213] was the first to address dynamic kidney exchange, where patient-donor
pairs arrive and depart over time, with recent follow-up work by Ashlagi et al. [24] and Anderson
et al. [15]. All three papers look at matching policies that aim to maximize (discounted) social
welfare. Particularly relevant to real-world kidney exchanges are batching policies, where a market
clearing occurs at a fixed interval; some theoretical and empirical explorations of this class of
policy has been performed [15, 17, 24, 27]. Learning approaches have also been used to determine
more complex matching policies that adhere to specific data distributions [70, 73]; some of these
approaches were discussed in Chapters 6 and 8.

To our knowledge, no work in the general barter exchange or kidney exchange literature has
addressed multiple competing exchanges, a problem that is especially relevant in the US now, and,
as kidney exchanges move to international swapping, will soon become relevant worldwide.

Interacting mechanisms have been studied in a variety of domains like auctions [52, 162],
adaptations of settings from the classical multi-agent systems literature [196], and in two-sided net-
works that typically exhibit winner-take-all dynamics, where only one or a few large players (e.g.,
credit card companies, computer operating systems, HMOs) prevail due to network effects [87].
Recent work by Ostrovsky [171] generalizes traditional two-sided matching to a supply chain
model with interconnected markets represented as nodes in a path, such that an “upstream” neigh-
bor’s supply overlaps with its “downstream” neighbor’s demand. Relatively little work focuses on
markets competing based on variable scheduling or clearing policies, with notable exceptions in
cloud or grid computing [21] and in financial markets [51]. To the best of our knowledge, no work
looks at competition between two markets in a general framework of dynamic bilateral matching,
as this chapter does.

E.2 Greedy and patient exchanges

We begin by restating some of the most important results of Akbarpour et al. [9], which will serve
as the foundation for our model of competing exchanges. Akbarpour et al. analyze “greedy” and
“patient” matching policies—and interpolations between the two—by building stochastic continuous-
time bilateral matching models of exchanges running these policies, then measuring the efficacy
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of the policies in terms of discounted social welfare.
More specifically, an exchange is running in the continuous-time interval [0, T ], with agents

arriving according to a Poisson process with rate parameter m ≥ 1. The exchange determines
whether potential bilateral transactions between agents are either acceptable or unacceptable. The
probability of an acceptable transaction existing between any pair of distinct agents is defined as
d/m, 0 ≤ d ≤ m, and is independent of any other pair of agents in the market. Each agent a
remains in the market for a sojourn s(a) drawn independently from an exponential distribution
with rate parameter λ = 1; the agent becomes critical immediately before her sojourn ends, and
this criticality is known to the exchange. An agent leaves either upon being matched successfully
by the exchange or upon becoming critical and remaining unmatched, at which point she perishes.

At any time t ≥ 0, the network of acceptable transactions among agents forms a random graph
Gt = (At, Et), where the agents in the exchange at time t form the vertex setAt, and the acceptable
transactions between agents forms the edge set Et. We assume A0 = ∅. Let Ant denote the set of
agents who enter the exchange at time t, such that with probability 1, |Ant | ≤ 1 for any t ≥ 0.
Finally, let A = ∪t≤TAnt .

Akbarpour et al. [9] present a parameterized space of online matching policies, with a focus
specifically on two: Patient and Greedy. (In the next section, we will present a novel model of two
overlapping exchanges, one running the Patient policy and the other running the Greedy policy.)
As described above, vertex arrivals are treated as a continuous-time stochastic process. These
policies behave as follows.
Greedy. The Greedy matching algorithm attempts to match each entering agent immediately by
selecting one of its neighbors (if a neighbor exists at the time of entry) uniformly at random. One
obvious consequence of this is that the remaining graph of unmatched agents at any instant is
always empty. We refer to a market running this policy as the Greedy market or simply Greedy for
the rest of the chapter.
Patient. The Patient matching algorithm attempts to match each agent only at the instant she
becomes critical. As with Greedy, if a critical agent has multiple neighbors, only one is selected
uniformly at random. We refer to a market running the Patient policy as a Patient market or simply
Patient when appropriate.

If the random graph model is Erdős-Rényi [88] when not considering arrivals, departures, and
matching, then the remaining graph at any instant is also Erdős-Rényi with parameter d/m; fur-
thermore, d is the average degree of the agents. Both the Patient and Greedy policies maintain this
observation.

The main result of Akbarpour et al. [9] is that waiting to thicken the market can be substantially
more important than increasing the speed of transactions. Formally, the Patient exchange dramat-
ically reduces the number of agents who perish (and thus leave the exchange without finding a
match) compared to the Greedy exchange.

In the Akbarpour et al. [9] paper, an agent a receives zero utility if she perishes, or u(a) =
0. If she is matched, she receives a utility of 1 discounted at rate δ, or u(a) = e−δs(a). In
this work, we focus on the special case of δ = 0 (i.e., we only consider whether or not an
agent is matched), and leave the δ 6= 0 case for future research. Let ALG(T ) := {a ∈ A :
a is matched by ALG by time T}. Then, in this model, the loss of an algorithm ALG is defined
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as the ratio of the expected number of perished agents to the expected size of A, as shown in
Equation E.1.

L(ALG) =
E[|A− ALG(T )− AT |]

E(|A|) =
E[|A− ALG(T )− AT |]

mT
(E.1)

At any time t ∈ [0, T ], let Zg,t, Zp,t represent the size of the pools under the Greedy and Patient
matcing policies, respectively. Then, Akbarpour et al. [9] proved that the Markov chain on Z·,t has
a unique stationary distribution under either of those policies. Furthermore, let πg, πp : N → R+

be the unique stationary distribution of the Markov chain on Zg,t, Zp,t, respectively, and let ξg :=
EZg∼πg [Zg], ξp := EZp∼πp [Zp] be the expected size of the pool under the stationary distribution
under Greedy and Patient. Then, the following observations can be made.
Loss of Greedy. If a Greedy exchange is run for a sufficiently long time, then L(Greedy) ≈
ξg
m

. The intuition here is that the Greedy pool is (almost) always an empty graph. Equation E.2
formalizes the loss.

L(Greedy) =
1

mT
E
[∫ T

0

Zg,tdt

]
=

1

mT

∫ T

0

E [Zg,t] dt (E.2)

Loss of Patient. If a Patient exchange is run for a sufficiently long time, at any point in time it is an
Erdős-Rényi random graph. So once an agent becomes critical, she has no acceptable transaction
with probability (1 − d/m)Zp,t−1. Thus, L(Patient) ≈ ξp(1−d/m)ξp−1

m
. Equation E.3 formalizes the

loss of a Patient market.

L(Patient) =
1

mT
E
[∫ T

0

Zp,t(1− d/m)Zp,t−1dt

]
=

1

mT

∫ T

0

E
[
Zp,t(1− d/m)Zp,t−1

]
dt

(E.3)

E.3 Overlapping exchanges
The key result of Akbarpour et al. [9] is that a greedy dynamic matching market leads to signifi-
cantly lower global social welfare than a patient matching market with full knowledge of criticality.
The central question of this chapter is what happens in a situation where a greedy exchange and
a patient exchange exist simultaneously and compete with each other to match some shared por-
tion of the population. Agents in this overlapping subset of the population join both exchanges
simultaneously and accept the first match offer from either of the constituent exchanges.

Drawing on Section E.2, we model this in a similar stochastic, continuous-time framework as
follows. Agents arrive at the Competing market (a model for the whole system, incorporating both
the Greedy and Patient exchanges) at some rate m according to a Poisson process. For each agent,
the probability of entering both the Greedy exchange and the Patient exchange is γ, the probability
of entering the Greedy exchange alone is (1 − γ)α, and the probability of entering the Patient
exchange alone is (1− γ)(1− α), where γ, α ∈ [0, 1]. The probability that a bilateral transaction
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between each pair of agents is acceptable remains d/m, conditioned on both agents being mutually
“visible” to an exchange. The agents’ rates of perishing, received utility for being (un)matched,
and other settings are otherwise the same as in Section E.2.

We analyze the Competing market as three separate evolving pools:

Greedyc is the pool consisting of agents who enter the Greedy exchange only (with probability
α(1− γ)).

Patientc is the pool consisting of agents who enter the Patient exchange only (with probability
(1− α)(1− γ)).

Bothc is the pool consisting of agents who enter both exchanges (with probability γ).

We use Ẑg,t, Ẑp,t and Ẑb,t to denote the size of Greedyc, Patientc and Bothc, respectively, at any
time t. Similar to an exchange running a single Greedy or Patient matching policy, the Markov
chain on Ẑ·,t also has a unique stationary distribution. Let π̂· : N → R+ be the unique stationary
distribution of the Markov chain on Ẑ·,t, and let ξ̂· := EẐ·∼π̂· [Ẑ·] be the expected size of the pool
under the stationary distribution. Using this, we will define the loss of Greedyc, L̂(Greedyc), the
loss of Patientc, L̂(Patientc), and the loss of Bothc, L̂(Bothc).

First, note that the graph formed by the agents in Greedyc is empty, so the loss—as in Equa-
tion E.2—can be approximated by L̂(Greedyc) ≈ ξ̂g

m
.

Next, we consider the agents in Bothc. If an edge exists between an agent in Bothc and an
existing agent in Greedyc or another agent in Bothc, she will be matched immediately by the
Greedy exchange (and thus does not contribute to the loss). Similar to the Greedyc case, at any
point in time t, the Bothc pool is an empty graph; thus, any unmatched agents who become critical
in Bothc will only be matched to agents in Patientc. Thus, these leftover agents in Bothc have no
acceptable transactions with probability (1 − d/m)Ẑp,t . Since each agent becomes critical with

rate 1, letting Competing market run for a sufficiently long time results in L̂(Bothc) ≈ ξ̂b(1−d/m)ξ̂p

m
,

where ξ̂b, ξ̂p are the previously defined expected sizes of Bothc and Patientc.
Finally, we consider the Patientc pool. At any time t, the agents who remain in Patientc po-

tentially have acceptable transactions with only the agents in Bothc and the agents in Patientc.
Hence, in Ẑp,t, once an agent is critical, she has no acceptable transactions with probability
(1 − d/m)Ẑp,t+Ẑb,t−1. Similarly, each agent becomes critical with rate 1; thus, if we allow the

Competing market a sufficiently long execution window, L̂(Patientc) ≈ ξ̂p(1−d/m)ξ̂p+ξ̂b−1

m
.

Because the three pools of agents—Greedyc, Patientc, and Bothc—are disjoint (although they
may be connected via possible transactions in the ways listed above), we can define the total loss
of the Competing market as follows.

L(Competing) ≈ ξ̂g + ξ̂p(1− d/m)ξ̂p+ξ̂b−1 + ξ̂b(1− d/m)ξ̂p

m
. (E.4)

A more precise version of Equation E.4 follow as Equation E.5; we will make use of this form
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in Section E.5.

L(Competing) =
1

mT
E
[∫ T

0

Ẑp,t(1− d/m)Ẑp,t+Ẑb,t−1

+ Ẑb,t(1− d/m)Ẑp,t + Ẑg,tdt

]
=

1

mT

∫ T

0

E
[
Ẑp,t(1− d/m)Ẑp,t+Ẑb,t−1

+ Ẑb,t(1− d/m)Ẑp,t + Ẑg,t
]
dt

(E.5)

Unfortunately, we do not have a closed form expression for the stationary distribution or the
expected size of the pool under the stationary distribution. We note that each of ξ̂g, ξ̂p, and ξ̂b can be
approximated well using Monte Carlo simulations—thus, Equation E.4 can be solved numerically.
We do this in Section E.5.1 for two parameterizations of the rival market setting.

E.4 A bound on total loss
While we do not have a closed form for the exact expected loss of the Competing market as
described by Equation E.4, we can provide bounds on the overall loss. In this section, we give one
such bound for the global loss under the constraint that Greedyc is more likely to receive agents
than the overlapping Bothc exchange. Formally, this occurs when γ ≤ 0.5 and α ≥ γ

1−γ . We also
impose some loose requirements on the arrival rate of vertices to the exchange and the probability
of an acceptable transaction existing between two agents; intuitively, the exchange cannot be “too
small” or “too sparse,” which we formalize below. Under these assumptions, we use the bound to
prove Theorem 22, which states that a single Patient market outperforms the Competing market.
Theorem 22. Assume γ ≤ 0.5, m > 10d, and α(1 − γ) ≥ max

{
γ, 1

2
e−d/2(1 + 3d)

}
. Then, as

m→∞ and T →∞, almost surely

L(Competing) > L(Patient).

Proof. We prove the theorem by giving a lower bound on L̂(Greedyc), the loss of only the greedy
portion of the Competing market. In our model, the fraction of agents entering only the Greedyc
side of the market is α(1 − γ); for notational simplicity, we use x := α(1 − γ) in this proof.
Similarly, the fraction of agents entering Bothc is γ; again, for notational simplicity, we use y := γ
throughout this proof.

As before, let Ẑg,t be the size of Greedyc at any t ∈ [0, T ], and τ̂ the expected size of the
Greedyc pool. Similarly, let Ẑb,t be the size of Bothc at any t ∈ [0, T ], and η̂ the expected size of
the Bothc pool. That is,

τ̂ := E
t∼unif[0,T ]

[
Ẑg,t

]
and η̂ := E

t∼unif[0,T ]

[
Ẑb,t

]
.

By assumption, α(1− γ) ≥ γ; that is, the arrival rate of Greedyc is greater than or equal to the
arrival rate of Bothc. In this case, τ̂ ≥ η̂; the Greedy matching policy removes verties from both
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Bothc and Greedyc, while the Patient matching policy removes vertices from only Bothc, which
means the matching rate for Bothc is greater than the matching rate for Greedyc.

From Akbarpour et al. [9], we know the expected rate of perishing of the individual Greedy
exchange is equal to the pool size because the Greedy matching policy does not react to the crit-
icality of an agent at any time t in its pool and each critical agent will perish with probability 1.
Therefore, we can draw directly on Equation E.2 to write

L̂(Greedyc) =
1

xmT
E[

∫ T

t=0

dt Ẑg,t] =
τ̂

xm
. (E.6)

We know x and m, so lower bounding τ̂ will result in an analytic lower bound on L̂(Greedyc).
Following the ideas of Akbarpour et al. [9], we do this by lower bounding the probability that an
agent a does not ever have an acceptable transaction for the duration of her sojourn s(a). Because
these agents cannot be matched by any matching policy, this directly gives a lower bound on
L̂(Greedyc). Toward this end, fix an agent a ∈ A who enters Greedyc at time t0 ∈ unif[0, T ] and
draws a sojourn s(a) = t. Let fsa(t) be the probability density function at t of s(a). Then we can
write the probability that a will never have a neighbor (i.e., possible match) as

P [N(a) = ∅] =

∫ ∞
t=0

fsa(t)E
[
(1− d/m)Ẑg,t0+Ẑb,t0

]
E
[
(1− d/m)|AG

n
t0,t0+t+AB

n
t0,t0+t|

]
dt,

whereAGn
t0,t0+t (resp. ABn

t0,t0+t) denotes the set of agents who enter Greedyc (resp. Bothc) in time
interval [t0, t0 + t]. The first expectation captures the probability that agent a has no matching at
the moment of entry and the second expectation considers the probability that no new agents that
can match with a arrive during her sojourn.

Using Jensen’s inequality, we have

P [N(a) = ∅] ≥
∫ ∞
t=0

e−t(1− d/m)E[Ẑg,t0+Ẑb,t0 ]

(1− d/m)E[|AGnt0,t+t0+ABnt0,t+t0
|]dt

=

∫ ∞
t=0

e−t(1− d/m)τ̂+η̂(1− d/m)(x+y)mtdt.

From the assumptions in the theorem statement, d
m
< 1

10
, so 1− d/m ≥ e−d/m−d

2/m2 . Also, as
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described earlier, τ̂ ≥ η̂ (when γ ≤ 0.5 and α ≥ γ
1−γ , as assumed). Therefore,

L̂(Greedyc) ≥ P [N(a) = ∅]
≥ e−(τ̂+η̂)(d/m+d2/m2)

×
∫ ∞
t=0

e−t−(x+y)td−(x+y)td2/mdt

≥ 1− (τ̂ + η̂)(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m

≥ 1− 2τ̂(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m
,

(E.7)

where the third inequality is obtained from the fact that e−z ≥ 1 − z when z ≥ 0, here z =
(τ̂ + η̂)(d/m+ d2/m2).

Combining Equation E.6 and Equation E.7,

L̂(Greedyc) =
τ̂

xm
≥ 1− 2τ̂(1 + d/m)d/m

1 + (x+ y)d+ (x+ y)d2/m
,

which gives us a lower bound for τ̂ ,

τ̂ ≥ xm

1 + (3x+ y)d+ (3x+ y)d2/m
.

Thus, as m→∞, we get,

L̂(Greedyc) ≥
1

1 + (3x+ y)d+ (3x+ y)d2/m

≥ 1

1 + 3d
.

We are interested in bounding the total loss of the Competing market, which is L(Competing) =
xL̂(Greedyc) + (1− α)(1− γ)L̂(Patientc) + yL̂(Bothc). By definition, both L̂(Patientc) ≥ 0 and
L̂(Bothc) ≥ 0, and by Equation E.4, L̂(Greedyc) ≥ 1

1+3d
. Thus,

L(Competing) ≥ x

1 + 3d
.

Akbarpour et al. [9] showed that running an individual Patient market results in exponentially
small loss L(Patient) < 1

2
e−d/2. Thus, as T,m→∞, we can get,

L(Competing) > L(Patient). (E.8)

We note that the result of Theorem 22 holds for only a section of the possible parameterizations
of a Competing market—specifically, when γ ≤ 0.5 and α ≥ γ

1−γ . In the next section, we will give
numerical results showing that this result—that the loss of the Competing market is greater than
the loss of an individual Patient exchange—appears to hold for a vastly larger space of values of
γ and α. Indeed, experimentally, we will see that the loss of the Competing market is sometimes
greater than the loss of an individual Greedy exchange, which itself is substantially greater than
the loss of an individual Patient exchange.
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E.5 Experimental validation

In this section, we provide experimental validation of the theoretical results presented in Sec-
tions E.3 and E.4. Section E.5.1 quantifies the loss due to competing markets as described by
Equation E.4, while Section E.5.2 expands the model to kidney exchange and draws from realistic
data to quantify the loss of competing kidney exchange clearinghouses.

E.5.1 Dynamic matching

In Section E.3, we gave a method for computing the expected loss due to competing markets
as Equation E.4; however, we were unable to derive closed forms for the expected size of the
competing, patient, and greedy pools (ξ̂b, ξ̂p, and ξ̂g, respectively) under the stationary distribution.
These quantities can be estimated using Monte Carlo simulation for different entrance rates m. We
do that now.

Figures E.1a and E.1b simulate agents entering the Greedyc, Bothc, and Patientc markets ac-
cording to a Poisson process with rate parameter m = 1000 and remaining for a sojourn drawn
from an exponential distribution with rate parameter λ = 1. An agent chooses to enter Bothc
with probability γ, only Greedyc with probability α(1 − γ), and only Patientc with probability
(1 − α)(1 − γ), as in the theory above. We vary α ∈ {0, 0.1, . . . , 1} and γ ∈ {0, 0.1, . . . , 1}, and
plot the global loss realized for each of these parameter settings.
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Figure E.1: Average loss as the probability α of entering Patientc or Greedyc (left) or the overlap
between the two markets γ (right) changes, with entrance rate parameter m = 1000
and d = 2. The loss of individual Patient and Greedy markets are shown as thick
black and thick dashed bars, respectively.
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Immediately obvious is that running a single Patient market results in dramatically less loss
than competing markets, for all different values of α and γ. Furthermore, we see that the loss
of a single Greedy market is also dramatically higher than the loss of a single Patient market, as
predicted by Akbarpour et al. [9]. Indeed, from Equation E.3 we would expect the single Patient
market to have essentially zero loss, so these experiments show that adding in a rival Greedyc
market increases loss. In fact, as the left side of Figure E.1a and the right side of Figure E.1b
show, it is the case that if the markets do not overlap substantially (i.e., γ is low) and agents are
more likely to enter the greedy side of the market (i.e., α is near 1), then the loss of the competing
market is worse than running a single Greedy market! This is due in part to the decrease in market
thickness on the Patientc side of the market—a behavior we will see exacerbated below and in the
kidney exchange experiments of Section E.5.2.

Figure E.2 decreases the rate parameter of the entrance Poisson process to m = 100, while
holding the probability of an acceptable transaction between two agents at that of Figures E.1a
and E.1b (so d = 2, leading to 2/100 = 2%). With fewer participants in the market overall, all the
qualitative results of the m = 1000 markets above are amplified. The individual Greedy market’s
loss is now 5.9% worse than the individual Patient market (as opposed to 3.3% in the m = 1000
case); both individual markets’ losses are substantially higher as well. Similarly, the parameter
settings for which the competing market scenario has higher loss than either individual market are
much broader than the m = 1000 case, which is a product of market thinness.
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Figure E.2: Average loss as the probability α of entering Patientc or Greedyc (left) or the overlap
between the two markets γ (right) changes, with entrance rate parameter m = 100
and d = 2. The loss of individual Patient and Greedy markets are shown as thick
black and thick dashed bars, respectively.

E.5.2 Dynamic kidney exchange
In this section, we expand our matching model to one of barter exchange, where agents endowed
with items participate in directed, cyclic swaps of size greater than or equal to two. One recently-
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fielded barter application is kidney exchange, where patients with kidney failure swap their willing
but incompatible organ donors with other patients. We focus on that application here. Dynamic
barter exchange generalizes the matching model presented above, so we would not expect the
earlier theoretical results to adhere exactly. Interestingly, as we show in Sections E.5.2 and E.5.2,
the qualitative ranking of matching policy loss (with a patient market outperforming a greedy
market, both of which outperform two rival markets) remains.

This section’s experiments draw from two kidney exchange compatibility graph distributions.
One distribution, which we call SAIDMAN (US), was designed to mimic the characteristics of
a nationwide exchange in the United States in steady state [191]. Yet, kidney exchange is still
a nascent concept in the US, so fielded exchange pools do not adhere to this model. With this
in mind, we also include results performed on a dynamic pool generator that mimics the United
Network for Organ Sharing (UNOS) nationwide exchange, drawing data from the first 193 match
runs of that exchange. We label the distribution derived from this as UNOS.

Formally, we represent a kidney exchange pool with n patient-donor pairs as a directed com-
patibility graph G = (V,E), such that a directed edge exists from patient-donor pair vi ∈ V to
patient-donor pair vj ∈ V if the donor at vi can give a kidney to the patient at vj . Edges exist or
do not exist due to the medical characteristics (blood type, tissue type, relation, and many others)
of the patient and potential donor, as well as a variety of logistical constraints. Our generators
take care of these details; for more information on how edge existence checking is done in the
SAIDMAN (US) and UNOS distributions, see Saidman et al. [191] or Chapter 8 of this thesis,
respectively. Importantly, under either distribution, there is no longer a costant probability “d/m”
of an acceptable transaction existing between any two agents.

Vertices arrive via a Poisson process with rate parameter m = 100 and depart according to
an exponential clock with rate parameter λ = 1 as before, and choose to enter either exchange
or both with the previously-defined probabilities γ and α. However, a “match” now only occurs
when a vertex forms either a 2-cycle or 3-cycle with one or two other vertices, respectively.1 Sec-
tion E.5.2 performs experiments on 2-cycles alone, which adheres more closely to the theoretical
setting above (2-cycles can be viewed as a single undirected edge between two vertices), while
Section E.5.2 expands this to both 2- and 3-cycles.

Code to replicate the experiments in this section is available at github.com/JohnDickerson/
KidneyExchange. This codebase includes our experimental framework, dynamic exchange
simulator, and graph generators but, due to privacy concerns, does not include the real match runs
from the UNOS kidney exchange.

Kidney exchange with 2-cycles only

We now present results for dynamic matching under competing Patientc and Greedyc kidney ex-
changes, both of which use only 2-cycles. Figure E.3a and Figure E.3b show losses incurred in

1In fielded kidney exchange, cycles longer than some short cap L (e.g., L = 3 at the UNOS exchange and many
others) are typically infeasible to perform due to logistical constraints, and thus are not allowed. We adhere to that
constraint here. Fielded exchanges also realize gains from chains, where a donor without a paired patient enters the
pool and triggers a directed path of transplants through the compatibility pool. We do not include chains in this work.
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our parameterized market when run on SAIDMAN (US)-generated and UNOS-generated pools,
respectively.
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Figure E.3: Average loss under various values of γ and α with 2-cycles only.

While the barter exchange environment under either the SAIDMAN (US) or UNOS distribu-
tions clearly breaks the structural properties of the stationary distribution of the underlying Markov
process used in our theoretical results, the qualitative results of these experiments align with the
traditional dynamic matching results of Section E.5.1. The overall loss realized by UNOS is
substantially higher than that realized by SAIDMAN (US) because, in general, UNOS-generated
graphs are more sparse than those from the SAIDMAN (US) family. Similarly, in either distribution
there exist “highly-sensitized” vertex types that are extremely unlikely to find a match with another
randomly selected vertex, and thus almost certainly create loss. Indeed, both Figure E.3a and E.3b
exhibit higher loss than the similarly-parameterized Figure E.2 of Section E.5.1.

Kidney exchange with both 2- and 3-cycles

We now extend our experiments to allow for “matches” that include both 2- and 3-cycles. Unlike
Section E.5.1 or E.5.2, where a matched edge was chosen uniformly at random from the set of all
acceptable transactions between a distinguished vertex and its neighbors, in these results we may
wish to distinguish a potential match from others (for example, by choosing a 3-cycle before a
2-cycle, as the former results in a larger myopic decrease in the market’s loss). Thus, given a set of
possible 2- and 3-cycle matches, we consider two matching policies: UNIFORM selects a cycle at
random from the set of possible matches, regardless of cycle cardinality, while UNIFORM3 selects
a 3-cycle randomly (if one exists), otherwise a random 2-cycle.
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Figures E.4a and E.4b show results for the SAIDMAN (US) and UNOS distributions, respec-
tively, under the UNIFORM match selection policy. Intuitively, one might expect the loss of a
matching policy run in the 2- and 3-cycle case to be less than the same policy run in the 2-cycle
case alone, as the set of possible matches weakly increases in the former case. We see this behavior
when comparing the SAIDMAN (US) results of Figure E.4a to the earlier 2-cycle-only SAIDMAN

(US) results of Figure E.3a, witnessing a drop in global loss of around 4% for any parameter set-
ting. We see a similar decrease in loss when comparing the new UNOS results of Figure E.4b to
those in the 2-cycle case shown in Figure E.3b.
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Figure E.4: Average loss under various values of γ and α, with both 2- and 3-cycles, under the
UNIFORM matching policy.

We now consider the UNIFORM3 matching policy, which would likely be closer to how a
fielded exchange would act. Figures E.5a and E.5b show results for the SAIDMAN (US) and
UNOS families of compatibility graphs, respectively. The loss of the individual Patient market
does not change in either distribution, which is likely a byproduct of the thicker markets induced
by its match cadence. Curiously, the loss of the individual Greedy market drops dramatically—to
around the Patient loss in the UNOS case, and below Patient in the SAIDMAN (US) case. This
large drop in Greedy loss is likely due in part to Greedy now “poaching” larger 3-cycles from
the leftover market from which the Patient policy draws. The other qualitative results of earlier
sections are repeated, with rival markets hurting global loss relative to either individual market for
nearly all settings of γ and α.
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Figure E.5: Average loss under various values of γ and α, with both 2- and 3-cycles, under the
UNIFORM3 matching policy.

E.6 Conclusion & future research

Our main goal is to study the impact of competition between exchanges in a dynamic matching
setting. In this chapter, we extended the recent dynamic matching model of Akbarpour et al. [9]
to two rival matching markets with overlapping pools. Specifically, we formalized a two-market
model where agents enter one market or both markets; they can then potentially be matched to
other agents who have joined the same market or both markets. The markets, called Greedy and
Patient, adhere to different matching policies. We provided an analytic lower bound on the loss of
the two-market model and showed that it is higher than running a single Patient market. We also
provided a quantitative method for determining the loss of the two-market model. We supported
these theoretical results with extensive simulation. We also looked at competing kidney exchanges,
and provided (to our knowledge) the first experimental quantification of the loss in global welfare
in a setting with two clearinghouses using realistic kidney exchange data drawn from a generator
due to Saidman et al. [191] and another based on the United Network for Organ Sharing (UNOS)
program.

We see competing dynamic matching markets as fertile ground for future research, with a trove
of both theoretical and practical questions to answer. First, the model of Akbarpour et al. [9] dis-
counts the utility of a match by the time the matching agent has already waited in the pool; this
is well motivated in a variety of settings, including kidney exchange. Our results in this chapter
assume a discount factor of zero, so it would be valuable to consider the impact on discounted loss
for non-zero cases. Second, in our model the choice of market to enter is exogenously determined
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for each agent. In reality, agents with different levels of knowledge, wealth, etc. may make strate-
gic decisions on which markets to enter. Thus, one could approach this dynamic matching problem
from a game-theoretic point of view. Similarly, taking network effects (where more popular ex-
changes have an easier time attracting agents, lower operating costs, higher probabilities of two
agents forming an acceptable transaction, and other advantages) into account would make these
models more applicable to many real-world settings. Finally, we only looked at two overlapping
markets; generalizing this to any number of overlapping markets would also be of interest.

In terms of barter exchange and, specifically, kidney exchange, the question of how clear-
inghouses interact is a timely one. In the United States and, eventually, elsewhere, multi-center
and single-center exchange clearinghouses are already competing, each drawing from some (of-
ten overlapping) subset of the full set of patient-donor pairs available. Indeed, the dynamic barter
exchange problem in a single market is still not fully understood (barring very promising recent
work due to Anderson et al. [15]). We saw in Section E.5.2 that including 3-cycles in the matching
process results in lower loss, even when two markets overlap, compared to including only 2-cycles
(a result that has been shown repeatedly in the static [188] and dynamic [15] single clearinghouse
setting), so extending the theoretical underpinnings of our framework to a more general setting
would be of great value. Finally, it is curious that the UNIFORM3 policy had such a large effect
on the loss of the individual Patient and Greedy exchanges compared to the UNIFORM policy;
further exploration of different matching policies (including those that use a strong prior to con-
sider possible future states of the pool when matching now) would be helpful in making policy
recommendations to fielded exchanges.
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[5] A. Abdulkadiroğlu and T. Sönmez. Matching markets: Theory and practice. Advances in
Economics and Econometrics, 1:3–47, 2013. 2

[6] D. Abraham, A. Blum, and T. Sandholm. Clearing algorithms for barter exchange markets:
Enabling nationwide kidney exchanges. In Proceedings of the ACM Conference on Elec-
tronic Commerce (EC), pages 295–304, 2007. 5, 7, 10, 32, 33, 34, 41, 45, 48, 49, 53, 54,
58, 60, 85, 86, 113, 140, 181, 198

[7] M. Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Infor-
mation Processing Letters, 111(15):731–737, 2011. 72

[8] M. Akan, O. Alagoz, B. Ata, F. S. Erenay, and A. Said. A broader view of designing the
liver allocation system. Operations Research, 60(4):757–770, 2012. 113

[9] M. Akbarpour, S. Li, and S. O. Gharan. Dynamic matching market design. In Proceedings
of the ACM Conference on Economics and Computation (EC), page 355, 2014. 5, 12, 73,
74, 109, 111, 112, 182, 195, 246, 247, 248, 249, 252, 253, 255, 259

[10] M. Akbarpour, A. Nikzad, and A. Roth. Financing transplants’ costs of the poor: A dynamic
model of international kidney exchange, 2016. Working paper. 4, 85, 199

[11] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. Determining the acceptance
of cadaveric livers using an implicit model of the waiting list. Operations Research, 55(1):
24–36, 2007. 113

[12] F. Alvelos, X. Klimentova, A. Rais, and A. Viana. A compact formulation for maximizing
the expected number of transplants in kidney exchange programs. In Journal of Physics:
Conference Series, volume 616. IOP Publishing, 2015. 41

[13] R. Amadini. Portfolio approaches in constraint programming. PhD thesis, Università di

261



Bologna, 2015. 198

[14] R. Anderson. Stochastic models and data driven simulations for healthcare operations. PhD
thesis, Massachusetts Institute of Technology, 2014. 5, 10, 55, 68, 73, 177

[15] R. Anderson, I. Ashlagi, D. Gamarnik, and Y. Kanoria. A dynamic model of barter ex-
change. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1925–
1933, 2015. 5, 15, 73, 74, 109, 112, 182, 195, 247, 260

[16] R. Anderson, I. Ashlagi, D. Gamarnik, and A. E. Roth. Finding long chains in kidney
exchange using the traveling salesman problem. Proceedings of the National Academy of
Sciences, 112(3):663–668, 2015. 5, 10, 32, 41, 45, 46, 49, 53, 73, 107, 193, 194, 198

[17] E. Anshelevich, M. Chhabra, S. Das, and M. Gerrior. On the social welfare of mechanisms
for repeated batch matching. In AAAI Conference on Artificial Intelligence (AAAI), pages
60–66, 2013. 74, 111, 112, 182, 247

[18] N. Arnosti, R. Johari, and Y. Kanoria. Managing congestion in decentralized matching
markets. In Proceedings of the ACM Conference on Economics and Computation (EC),
page 451, 2014. 247

[19] I. Ashlagi and A. E. Roth. Free riding and participation in large scale, multi-hospital kidney
exchange. Theoretical Economics, 9(3):817–863, 2014. xx, 5, 8, 11, 15, 18, 19, 20, 21, 22,
74, 107, 134, 135, 137, 164, 165, 171, 172, 173, 174, 196, 241

[20] I. Ashlagi, F. Fischer, I. Kash, and A. D. Procaccia. Mix and match. In Proceedings of the
ACM Conference on Electronic Commerce (EC), pages 305–314, 2010. 18

[21] I. Ashlagi, M. Tennenholtz, and A. Zohar. Competing schedulers. In AAAI Conference on
Artificial Intelligence (AAAI), 2010. 247

[22] I. Ashlagi, D. S. Gilchrist, A. E. Roth, and M. Rees. Nonsimultaneous chains and dominos
in kidney-paired donation—revisited. American Journal of Transplantation, 11(5):984–994,
2011. 6, 26, 27, 71, 95, 97, 99, 112, 177, 242

[23] I. Ashlagi, D. Gamarnik, M. Rees, and A. E. Roth. The need for (long) chains in kidney
exchange. NBER Working Paper No. 18202, July 2012. 5, 9, 11, 15, 17, 19, 22, 74, 77, 81,
82, 107, 112, 144, 165, 166, 167, 168, 169, 170, 171, 180

[24] I. Ashlagi, P. Jaillet, and V. H. Manshadi. Kidney exchange in dynamic sparse heterogenous
pools. In Proceedings of the ACM Conference on Electronic Commerce (EC), pages 25–26,
2013. 5, 73, 74, 109, 111, 112, 144, 171, 180, 182, 194, 195, 247

[25] I. Ashlagi, F. Fischer, I. A. Kash, and A. D. Procaccia. Mix and match: A strategyproof
mechanism for multi-hospital kidney exchange. Games and Economic Behavior, 91:284–
296, 2015. 5, 164, 196

[26] I. Ashlagi, M. Burq, P. Jaillet, and V. Manshadi. On matching and thickness in heteroge-
neous dynamic markets. In Proceedings of the ACM Conference on Economics and Com-
putation (EC), 2016. 73, 74, 112

[27] P. Awasthi and T. Sandholm. Online stochastic optimization in the large: Application to
kidney exchange. In Proceedings of the 21st International Joint Conference on Artificial

262



Intelligence (IJCAI), pages 405–411, 2009. 55, 68, 74, 111, 112, 182, 247

[28] E. Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.
32

[29] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra. When LP is the cure
for your matching woes: Improved bounds for stochastic matchings. Algorithmica, 63(4):
733–762, 2012. 72

[30] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations Re-
search, 46(3):316–329, 1998. 33, 140

[31] BarterQuest. URL http://www.barterquest.com. [Online; accessed 18-June-
2016]. 3

[32] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University
Press, 2009. 193

[33] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53,
2004. 194

[34] D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimiza-
tion. SIAM Review, 53(3):464–501, 2011. 193, 194

[35] D. Bertsimas, V. F. Farias, and N. Trichakis. The price of fairness. Operations Research, 59
(1):17–31, 2011. 11, 96, 132, 133

[36] D. Bertsimas, V. F. Farias, and N. Trichakis. On the efficiency-fairness trade-off. Manage-
ment Science, 58(12):2234–2250, 2012. 96

[37] D. Bertsimas, V. F. Farias, and N. Trichakis. Fairness, efficiency, and flexibility in organ
allocation for kidney transplantation. Operations Research, 61(1):73–87, 2013. 3, 73, 96,
113, 137, 198, 246

[38] Best House Swap. URL http://besthouseswap.com. [Online; accessed 18-June-
2016]. 3

[39] A. Biere. Yet another local search solver and lingeling and friends entering the SAT Com-
petition 2014. SAT Competition, 2014:2, 2014. 65

[40] P. Biró and K. Cechlárová. Inapproximability of the kidney exchange problem. Information
Processing Letters, 101(5):199–202, 2007. 7

[41] P. Biró, D. F. Manlove, and R. Rizzi. Maximum weight cycle packing in directed graphs,
with application to kidney exchange programs. Discrete Mathematics, Algorithms and Ap-
plications, 1(04):499–517, 2009. 5, 7, 58

[42] F. Bloch and D. Cantala. Markovian assignment rules. Social Choice and Welfare, 40(1):
1–25, 2013. 246, 247

[43] A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma. Harnessing the power of two cross-
matches. In Proceedings of the ACM Conference on Electronic Commerce (EC), pages
123–140, 2013. 5, 19, 73, 194

263

http://www.barterquest.com
http://besthouseswap.com


[44] A. Blum, J. P. Dickerson, N. Haghtalab, A. D. Procaccia, T. Sandholm, and A. Sharma. Ig-
norance is almost bliss: Near-optimal stochastic matching with few queries. In Proceedings
of the ACM Conference on Economics and Computation (EC), pages 325–342, 2015. 5, 10,
72, 73, 104, 105, 110, 194

[45] A. Blum, I. Caragiannis, N. Haghtalab, A. D. Procaccia, E. B. Procaccia, and R. Vaish.
Opting into optimal matching, 2016. Working paper. 5, 196

[46] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann, C. D. Laird, J. Lee,
A. Lodi, F. Margot, N. Sawaya, et al. An algorithmic framework for convex mixed integer
nonlinear programs. Discrete Optimization, 5(2):186–204, 2008. 64

[47] S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference
learning. Machine Learning, 22(1-3):33–57, 1996. 113

[48] M. Bray, W. Wang, P. X.-K. Song, A. B. Leichtman, M. A. Rees, V. B. Ashby, R. Eikstadt,
A. Goulding, and J. D. Kalbfleisch. Planning for uncertainty and fallbacks can increase the
number of transplants in a kidney-paired donation program. American Journal of Trans-
plantation, 2015. 71

[49] S. Bronfman, N. Alon, A. Hassidim, and A. Romm. Redesigning the israeli medical intern-
ship match. In Proceedings of the ACM Conference on Economics and Computation (EC),
pages 753–754. ACM, 2015. 2

[50] R. S. Brown. Live donors in liver transplantation. Gastroenterology, 134(6):1802–1813,
2008. 181

[51] E. B. Budish, P. Cramton, and J. J. Shim. The high-frequency trading arms race: Frequent
batch auctions as a market design response, 2015. Working paper. 247

[52] R. Burguet and J. Sákovics. Imperfect competition in auction designs. International Eco-
nomic Review, 40(1):231–247, 1999. 247

[53] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou. The efficiency of fair
division. International Workshop on Internet and Network Economics (WINE), 2009. 11,
96, 133

[54] I. Caragiannis, A. Filos-Ratsikas, and A. D. Procaccia. An improved 2-agent kidney ex-
change mechanism. Theoretical Computer Science, 589:53–60, 2015. 18, 164

[55] M. Carvalho, A. Lodi, J. P. Pedroso, and A. Viana. Nash equilibria in the two-player kidney
exchange game. Mathematical Programming, pages 1–29, 2016. 5, 196

[56] J. M. Cecka. The UNOS scientific renal transplant registry–ten years of kidney transplants.
Clinical transplants, pages 1–14, 1996. 3

[57] S. C. Chan, C. M. Lo, B. H. Yong, W. J. Tsui, K. K. Ng, and S. T. Fan. Paired donor
interchange to avoid ABO-incompatible living donor liver transplantation. Liver Transplan-
tation, 16(4):478–481, 2010. 161

[58] Y. L. Cheah, M. A. Simpson, J. J. Pomposelli, and E. A. Pomfret. Incidence of death and
potentially life-threatening near-miss events in living donor hepatic lobectomy: A world-
wide survey. Liver Transplantation, 19(5):499–506, 2013. 161, 162

264



[59] P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. In Proceed-
ings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI), pages
331–337, Sydney, Australia, 1991. 65

[60] N. Chen, N. Immorlica, A. R. Karlin, M. Mahdian, and A. Rudra. Approximating matches
made in heaven. In Proceedings of the International Conference on Automata, Languages,
and Programming (ICALP), pages 266–278, 2009. 72

[61] Y. Chen, Y. Li, J. D. Kalbfleisch, Y. Zhou, A. Leichtman, and P. X.-K. Song. Graph-
based optimization algorithm and software on kidney exchanges. IEEE Transactions on
Biomedical Engineering, 59:1985–1991, 2012. 71

[62] M. S. Chung and D. B. West. The p-intersection number of a complete bipartite graph
and orthogonal double coverings of a clique. Combinatorica, 14(4):453–461, 1994. ISSN
0209-9683. 61

[63] M. Constantino, X. Klimentova, A. Viana, and A. Rais. New insights on integer-
programming models for the kidney exchange problem. European Journal of Operational
Research, 231(1):57–68, 2013. 5, 10, 32, 41, 43, 53, 107, 177, 198

[64] K. P. Costello, P. Tetali, and P. Tripathi. Matching with commitment. In Proceedings of
the International Conference on Automata, Languages, and Programming (ICALP), pages
822–833, 2012. 72

[65] S. Das, J. P. Dickerson, Z. Li, and T. Sandholm. Competing dynamic matching markets.
In Proceedings of the Conference on Auctions, Market Mechanisms and Their Applications
(AMMA), 2015. 112, 245

[66] Datatang Technology Company. URL http://datatang.com. [Online; accessed 18-
June-2016]. 3

[67] M. De Klerk, K. M. Keizer, F. H. Claas, M. Witvliet, B. J. Haase-Kromwijk, and W. Weimar.
The Dutch national living donor kidney exchange program. American Journal of Transplan-
tation, 5(9):2302–2305, 2005. 4

[68] M. De Klerk, J. Kal-van Gestel, B. Haase-Kromwijk, F. Claas, and W. Weimar. Eight years
of outcomes of the Dutch living donor kidney exchange program. Clinical Transplants,
pages 287–290, 2010. 194

[69] D. Delen, G. Walker, and A. Kadam. Predicting breast cancer survivability: A comparison
of three data mining methods. Artificial Intelligence in Medicine, 34(2):113–127, June 2005.
150

[70] J. P. Dickerson and T. Sandholm. FutureMatch: Combining human value judgments and
machine learning to match in dynamic environments. In AAAI Conference on Artificial
Intelligence (AAAI), pages 622–628, 2015. 11, 55, 68, 148, 182, 195, 247

[71] J. P. Dickerson and T. Sandholm. Uncertainty in dynamic matching with application to
organ exchange. In Machine Learning for Healthcare (MLHC) workshop at NIPS-2015,
2015. 11

[72] J. P. Dickerson and T. Sandholm. Multi-organ exchange: The whole is greater than the sum

265

http://datatang.com


of its parts. Journal of Artificial Intelligence Research, 2016. To appear. 12, 68, 85, 162,
198, 199

[73] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Dynamic matching via weighted myopia
with application to kidney exchange. In AAAI Conference on Artificial Intelligence (AAAI),
pages 1340–1346, 2012. 10, 55, 68, 182, 247

[74] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Optimizing kidney exchange with trans-
plant chains: Theory and reality. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 711–718, 2012. 9, 16, 29, 33, 82, 107, 112, 171

[75] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Failure-aware kidney exchange. In
Proceedings of the ACM Conference on Electronic Commerce (EC), pages 323–340, 2013.
5, 6, 7, 10, 15, 19, 33, 41, 72, 112, 113, 142, 171, 177, 180, 194

[76] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Results about, and algorithms for, robust
probabilistic kidney exchange matching. In American Transplant Congress (ATC), 2013.
Poster abstract. 72

[77] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Empirical price of fairness in failure-
aware kidney exchange. In Towards Better and more Affordable Healthcare: Incentives,
Game Theory, and Artificial Intelligence (HCAGT) workshop at AAMAS-2014, 2014. 11,
132, 180

[78] J. P. Dickerson, A. D. Procaccia, and T. Sandholm. Price of fairness in kidney exchange. In
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages
1013–1020, 2014. 10, 11, 18, 132, 171, 177

[79] J. P. Dickerson, A. M. Kazachkov, A. D. Procaccia, and T. Sandholm. Small representations
of big kidney exchange graphs. CoRR, abs/1605.07728, 2016. 9, 57

[80] J. P. Dickerson, D. Manlove, B. Plaut, T. Sandholm, and J. Trimble. Position-indexed for-
mulations for kidney exchange. In Proceedings of the ACM Conference on Economics and
Computation (EC), 2016. 7, 9, 10, 41, 194, 198

[81] J. P. Dickerson, D. Manlove, B. Plaut, T. Sandholm, and J. Trimble. Position-indexed for-
mulations for kidney exchange. CoRR, abs/1606.01623, 2016. 41

[82] Y. Ding, D. Ge, S. He, and C. Ryan. A non-asymptotic approach to analyzing kidney
exchange graphs. In Proceedings of the ACM Conference on Economics and Computation
(EC), pages 257–258, 2015. 5, 19

[83] N. Eaton, R. J. Gould, and V. Rödl. On p-intersection representations. J. Graph The-
ory, 21(4):377–392, 1996. ISSN 0364-9024. doi: 10.1002/(SICI)1097-0118(199612)
23:4<377::AID-JGT7>3.0.CO;2-O. URL http://dx.doi.org/10.1002/(SICI)
1097-0118(199612)23:4<377::AID-JGT7>3.0.CO;2-O. 61

[84] J. Edmonds. Maximum matching and a polyhedron with 0,1 vertices. J. Res. Nat. Bur.
Standards, B(69):125–130, 1965. 87

[85] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965. 31

266

http://dx.doi.org/10.1002/(SICI)1097-0118(199612)23:4<377::AID-JGT7>3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-0118(199612)23:4<377::AID-JGT7>3.0.CO;2-O


[86] H. Egawa, F. Oike, L. Buhler, A. Shapiro, S. Minamiguchi, H. Haga, K. Uryuhara, T. Kiuchi,
S. Kaihara, and K. Tanaka. Impact of recipient age on outcome of ABO-incompatible living-
donor liver transplantation. Transplantation, 77(3):403, 2004. 176

[87] T. Eisenmann, G. Parker, and M. W. Van Alstyne. Strategies for two-sided markets. Harvard
Business Review, 84(10):92, 2006. 247
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