
Mining Large Multi-Aspect
Data: Algorithms and

Applications

Evangelos E. Papalexakis
CMU-CS-16-124

August 12, 2016

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos, Chair

Tom Mitchell
Jeff Schneider

Nicholas D. Sidiropoulos, University of Minnesota

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2016 Evangelos E. Papalexakis

Research was supported by the National Science Foundation Grant No. IIS-1247489, CNS-1314632, IIS-1408924, the Defense Threat
Reduction Agency under contract No. HDTRA1-10-1-0120, the Army Research Office (ARO) and Defense Advanced Research
Projects Agency (DARPA) under Contract Number W911NF-11-C-0088, the Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-09-2-0053, the National Institute of Health under grant number R01GM108339,
and Google. I would also like to thank the Open Cloud Consortium (OCC) and the Open Science Data Cloud (OSDC). The views
and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: data mining, multi-aspect, multi-modal, matrix, tensor, tensor decomposi-
tion, tensor factorization, PARAFAC, Tucker, CORCONDIA, scalability, unsupervised
learning, unsupervised analysis, exploratory analysis, brain data analysis, social network
analysis, web search,PARCUBE,TURBO-SMT,PARACOMP,AUTOTEN

In loving memory of my father.

iv

Abstract
What does a person’s brain activity look like when they read the word

apple? How does it differ from the activity of the same (or even a different
person) when reading about an airplane? How can we identify parts of the
human brain that are active for different semantic concepts? On a seemingly
unrelated setting, how can we model and mine the knowledge on web (e.g.,
subject-verb-object triplets), in order to find hidden emerging patterns? Our
proposed answer to both problems (and many more) is through bridging
signal processing and large-scale multi-aspect data mining.

Specifically, language in the brain, along with many other real-word pro-
cesses and phenomena, have different aspects, such as the various semantic
stimuli of the brain activity (apple or airplane), the particular person whose
activity we analyze, and the measurement technique. In the above exam-
ple, the brain regions with high activation for “apple” will likely differ from
the ones for “airplane”. Nevertheless, each aspect of the activity is a signal
of the same underlying physical phenomenon: language understanding in
the human brain. Taking into account all aspects of brain activity results
in more accurate models that can drive scientific discovery (e.g, identifying
semantically coherent brain regions).

In addition to the above Neurosemantics application, multi-aspect data
appear in numerous scenarios such as mining knowledge on the web, where
different aspects in the data include entities in a knowledge base and the links
between them or search engine results for those entities, and multi-aspect
graph mining, with the example of multi-view social networks, where we
observe social interactions of people under different means of communication,
and we use all aspects of the communication to extract communities more
accurately.

The main thesis of our work is that many real-world problems, such as the
aforementioned, benefit from jointly modeling and analyzing the multi-aspect
data associated with the underlying phenomenon we seek to uncover. In this
thesis we develop scalable and interpretable algorithms for mining big multi-
aspect data, with emphasis on tensor decomposition. We present algorithmic
advances on scaling up and parallelizing tensor decomposition and assess-
ing the quality of its results, that have enabled the analysis of multi-aspect
data that the state-of-the-art could not support. Indicatively, our proposed
methods speed up the state-of-the-art by up to two orders of magnitude, and
are able to assess the quality for 100 times larger tensors. Furthermore, we
present results on multi-aspect data applications focusing on Neurosemantics
and Social Networks and the Web, demonstrating the effectiveness of multi-
aspect modeling and mining. We conclude with our future vision on bridging
Signal Processing and Data Science for real-world applications.

Acknowledgements
This thesis would have never existed if it hadn’t been for quite a few great people

that are in my life and have supported, inspired, and influenced me and my work.
First and foremost, I am greatly indebted to my advisor Christos Faloutsos who has
been the best mentor, advisor, and friend I could have asked for my PhD studies.
We first met at ICDM 2010 in Sydney, even before I started my PhD, and little did I
know how great of a role he would play in my life. He has been there, every step of
the way, and literally any hour of the day, staying up before every single deadline,
offering advice and support until the last minute! He has tirelessly shaped me into a
(hopefully) better researcher and academic in general, and his support and advice
especially during the last year of the job search have been invaluable. In addition to
an advisor and a mentor, he is also a great friend; countless times I would enter a
meeting stressed, and by the end of the meeting I would exit laughing loudly with
all the negativity lifted. I will be forever grateful to Christos for all the opportunities
and freedom he gave me generously: even as early as my first year, as a token of
gratitude for helping out with a grant proposal, he paid for me to go to CIKM 2012
(without having any paper there, whatsoever) which “happened” to be located in
Maui, Hawaii (and after that, he empowered me to travel literally all around the
world, talking about my research, but that is a whole story on its own...). I could
spend many pages expressing my gratitude to Christos, but in the interest of space I
will just say that he is the greatest advisor who knows best how to inspire, nurture,
and grow a student into a well-rounded academic citizen, and above all he is an
amazing person.

None of what I have done so far would have happened if another great person,
Nikos Sidiropoulos, had not been in my life. We started working together back at
the Technical University of Crete for my undergraduate thesis, and subsequently
my masters thesis. He is the one who first kindled my passion for research (and
tensors!), and he is the one who enabled my first steps in academia, supporting
my trip to ICDM 2010 (despite the economic hardships that Greek universities had
started facing at the time) that, in retrospect might have been the most important
milestone in my early academic life. He has always been an amazing mentor and a
friend, and I am truly grateful for everything he has given me.

I would also like to thank the rest of my thesis committee, Tom Mitchell and Jeff
Schneider. Tom is a role model to me both as an academic and as a person, and I feel
extremely humbled and privileged to have been able to work with him (as a sidenote,
the weekly meetings with Christos, Nikos, and Tom have been by far my favorite
time of the week). I would especially like to thank Jeff for his amazing feedback for
my thesis, which has given me food for thought for years to come.

In addition to my CMU activities, I was fortunate to work with great people in the
industry. I am forever grateful to Rakesh Agrawal who offered me absolute freedom
and countless thought-provoking hours of discussions during my 2014 internship at
MSR, and is a fantastic mentor and subsequently collaborator, Ariel Fuxman, who
offered me my first industry internship at MSR, Alon Halevy and Steven Whang who
made my summer of 2015 at Google extremely enjoyable and definitely indulged
my coffee drinking habits, and Stelios Paparizos who may have not been an official
internship host, but has been a good friend and mentor.

vi

I am blessed with many academic siblings from the Database group at CMU. I
especially would like to thank Alex Beutel (my official conference roommate, my
designated “group-therapy” coffee co-drinker, and my academic “little brother”, just
to name a few titles for this awesome guy), Danai Koutra (who has witnessed me
multiple times order an “excessive amount” of espresso shots in a single beverage,
has helped me beat a time-sharing company in Hawaii in exchange for a snorkelling
trip, has cheered me up on numerous occasions, and who thinks that Alex and I will
not play the Beijing videos to a venue of our choosing when she least expects it),
Leman Akoglu (my sweet big sister who is always there for me). I would also like to
thank my other older academic siblings: Aditya Prakash, Polo Chau, U Kang, Jimeng
Sun, Spiros Papadimitriou, Hanghang Tong, Jure Leskovec, Tim Pan, Lei Li, and Fan
Guo for all their advice and mentorship, the younger ones: Neil Shah, Miguel Araujo,
Hemank Lamba, Hyun-Ah Song, Bryan Hooi, and Dhivya Eswaran, as well as all
the amazing visitors we have had over the years, and especially: Yasuko Matsubara,
Yasushi Sakurai, SunHee Kim, Stephan Günnemann, Meng Jiang, Gonzalo Mateos,
and Srijan Kumar.

Outside of the Database group, I would like to thank all of my friends at CMU:
my two awefficemates Anna Gommerstadt and John Dickerson (who bring the
awesome to the aweffice), my SCS friends and especially the two Davids (Naylor and
Witmer), Dougal Sutherland, Richard Wang, Nico Feltman, Jay-Yoon Lee, Dana and
Yair Movshovitz-Attias, Walter Lasecki, and many more, Andy Pavlo for his advice
especially during my job search, Christina Cowan, Catherine Copetas and my Greek
gang in Pittsburgh, especially Elina Karnezi (aka the good cat) for being an amazing
friend and being always there for me, Eleni Katrini, Antonis Tasoglou, Anthony
Platanios, Nick Katsipoulakis, Nikos Lappas, and Maria Tomprou.

CMU would be a totally different place for me if it weren’t for Marilyn Walgora.
Anything I write here will never do justice to how much of an amazing person
Marilyn is! In addition to the fact that she is probably the most efficient administrative
assistant that ever existed, she rightfully deserves the title of my “American Mom”,
having supported me during these five years, and I am eternally grateful to her. I
would also like to thank Deb Cavlovich who has always been there, making sure my
studies at CMU run smoothly.

I would like to thank all of my collaborators and academic friends that I have
not mentioned yet. I especially would like to thank Kostas Pelechrinis who in
addition to a great collaborator is also a very good friend, Tina Eliassi-Rad who is
an amazing mentor, collaborator, and honorary academic cousin to me (as well as
Branden Fitelson, who is not a collaborator yet, but is a great friend and mentor),
Tanya Berger-Wolf, Michalis Faloutsos, Nitesh Chawla, Partha Pratim Talukdar,
Seza Dogruoz, Brian Murphy, Evimaria Terzi, Behzad Golshan, Alona Fyshe, Dino
Ienco, Eric Mao, Kejun Huang, Xiao Fu, Panos Adamopoulos, Vilma Georgia Todri,
Panos Ipeirotis, Marios Kokkodis, Marialena Kyriakidi, Orestis Polychroniou Alex
Labrinidis, Panos Chrysanthis, my conference buddies Xiao Yu, Jessie Zhenhui Li,
and Airalee Studley and my Chemometrics/Tensor gang: Rasmus Bro and Evrim
Acar. A special thank you goes to everyone who has hosted me as an invited speaker:
Mohammad Hammoud at CMU Qatar, David Lo and Hady Lauw at Singapore
Management University, Sofus Macskassy at Facebook, Peng Cui at Tsinghua, Ping

vii

Luo at Chinese Academy of Sciences, and Yu Zheng at Microsoft Research Asia.
Before my life at CMU, I was at the Technical University of Crete (TUC) where I

met some incredible people. I would like to especially thank my good friends Dimitra
Tzanetatou, Angelica Topalidou-Kyniazopoulou, Foivos Gypas, Kostas Apostolou,
George Dalaperas, Pavlos Malakonakis, Alexander Sklikas and many more who
have been there for me for over a decade, as well as my professors back there,
and especially Athanasios Liavas, Minos Garofalakis, George Karystinos, Michail
Lagoudakis, Antonis Deligiannakis, and Aggelos Bletsas.

I would like to especially thank Nini Liao who has been my closest and dearest
friend in Pittsburgh, with whom I have shared countless moments of joy. Last but
not least, I would like to thank my family and especially my parents, Vasiliki Galliaki
and Evangelos Papalexakis (yes, same name!), for their selfless sacrifice, love, and
support. Anything that is good in my life is due to them. Unfortunately, my father
passed away during the last year of my PhD. It pains me greatly that he cannot see
the culmination of my academic studies, something that he had been fighting for,
been proud of, and anticipating for the last 28 years of his life. I can only hope that I
lived up to his dream and I dedicate this thesis to him as a tiny token of how much I
loved him, and how much my Mom (whom I love unconditionally) and I miss him.

viii

Contents

1 Introduction 1
1.1 Overview of Contributions and Impact . 1
1.2 Thesis Organization . 9

2 Background 11
2.1 Introduction . 11
2.2 Preliminary Definitions & Notation . 11
2.3 Introduction to PARAFAC, TUCKER, and CMTF 14
2.4 Conclusions . 19

3 Survey of Advance Topics in Tensors and Data Fusion 21
3.1 Introduction . 21
3.2 Tensor Decompositions . 22
3.3 Data Mining Applications . 39
3.4 Scaling Up Tensor Decompositions . 50
3.5 Conclusions . 58

I Algorithms - Scalability and Efficiency 59

4 PARCUBE: Sparse Parallelizable PARAFAC Decomposition 61
4.1 Introduction . 61
4.2 Proposed Method . 62
4.3 Experimental Evaluation . 72
4.4 PARCUBE at work . 80
4.5 Conclusions . 84

5 TURBO-SMT: Parallel Coupled Sparse Matrix-Tensor Factorization 85
5.1 Introduction . 85
5.2 Preliminaries . 87
5.3 Proposed Method . 88
5.4 Further Optimizations . 94
5.5 Experimental Evaluation . 97

ix

5.6 Conclusions . 102

6 PARACOMP: A Parallel Algorithm for Big Tensor Decomposition Using Ran-
domly Compressed Cubes 107
6.1 Introduction . 107
6.2 Tensor Decomposition Preliminaries . 109
6.3 Tensor Compression . 112
6.4 Stepping-stone results . 115
6.5 Main results . 116
6.6 Experimental Evaluation . 122
6.7 Conclusions . 125

II Algorithms - Unsupervised Quality Assessment 127

7 Fast and Scalable Core Consistency Diagnostic for the PARAFAC Decomposi-
tion for Big Sparse Tensors 129
7.1 Introduction . 129
7.2 Background & Problem Formulation . 131
7.3 Problem Definition & Proposed Method . 132
7.4 Experimental Evaluation . 135
7.5 Results on Real Data . 135
7.6 Conclusions . 137

8 Automatic Tensor Mining with Unsupervised Quality Assessment 139
8.1 Introduction . 139
8.2 Background . 141
8.3 Proposed Methods . 142
8.4 Experimental Evaluation . 147
8.5 Data Mining Case Study . 149
8.6 Related Work . 152
8.7 Conclusions . 153

III Applications: Neurosemantics 155

9 Coupling Brain Measurements with Semantic Information 157
9.1 Introduction . 157
9.2 Data Description & Problem Formulation 158
9.3 Discoveries . 160
9.4 Related Work . 162
9.5 Conclusions . 162

10 Good-Enough Brain Model: Challenges, Algorithms and Discoveries in Multi-
Subject Experiments 163

x

10.1 Introduction . 163
10.2 Problem Definition . 166
10.3 Problem Formulation and Proposed Method 167
10.4 Experimental Setup . 174
10.5 Discoveries & Discussion . 176
10.6 Related Work . 181
10.7 Conclusions . 182

IV Applications: Social Networks and the Web 185

11 Do more Views of a Graph help? Community Detection and Clustering in
Multi-View Graphs 187
11.1 Introduction . 187
11.2 Related Work . 189
11.3 Problem Definition . 190
11.4 Our First Attempt: MULTICLUS . 190
11.5 Proposed Method: GRAPHFUSE . 192
11.6 Experiments . 194
11.7 Conclusions . 198

12 Homogeneity in Web Search Results: Diagnosis and Mitigation 199
12.1 Introduction . 199
12.2 Related Work . 201
12.3 Analytical Tools . 205
12.4 Experimental Setup . 209
12.5 Overlap Between Web Results . 212
12.6 Overlap Between Web and Social Results 215
12.7 User Study . 218

V Conclusions and Future Directions 229

13 Conclusions 231
13.1 Summary of Contributions . 231
13.2 Broader impact . 232

14 Future Directions 235
14.1 Long-Term Vision: Big Signal Processing for Data Science 235
14.2 Future Directions in Tensor Mining . 236
14.3 Future Directions in Applications . 237

Bibliography 239

xi

xii

Chapter 1

Introduction

1.1 Overview of Contributions and Impact
What does a social graph between people who call each other look like? How does it
differ from one where people instant-message or e-mail each other? Social interactions,
along with many other real-word processes and phenomena, have different aspects, such
as the means of communication. In the above example, the activity of people calling
each other will likely differ from the activity of people instant-messaging each other.
Nevertheless, each aspect of the interaction is a signature of the same underlying social
phenomenon: formation of social ties and communities. Taking into account all aspects
of social interaction results in more accurate social models (e.g, communities).

Our main thesis is that many real-world problems benefit from jointly modeling and
analyzing the multi-aspect data associated with the underlying phenomenon we
seek to uncover.

The overarching theme of our work is focusing on scalable and interpretable algorithms
for mining big multi-aspect data by bridging Signal Processing and Data Science for
real-world applications.

This thesis is broken down to algorithms with contributions in tensor analysis and multi-
aspect data mining applications.

1.1.1 Algorithms
The primary computational tool in this thesis is tensor decomposition. Tensors are multidi-
mensional matrices, where each aspect of the data is mapped to one of the dimensions
or modes. Chapter 2 is a comprehensive survey of existing tensor models, algorithms,
and applications, for the interested reader. In order to analyze a tensor, we compute a
decomposition or factorization (henceforth we use the terms interchangeably), which
gives a low-dimensional embedding of all the aspects. We primarily focus on the Canonical
or PARAFAC decomposition, which decomposes the tensor into a sum of outer products

1

X

a1

b1

c1

aR

bR

cR

≈ +…+

!!!Latent!
Concept!1!

!!!Latent!
Concept!R!

Figure 1.1: Canonical or PARAFAC decomposition into sum of R rank-one components. Each
component is a latent concept or a co-cluster.

of latent factors (see also Figure 1.1):

X ≈
R∑
r=1

ar ◦ br ◦ cr

where ◦ denotes outer product, i.e., [a◦b◦c](i, j, k) = a(i)b(j)c(k). Informally, each latent
factor is a co-cluster of the aspects of the tensor. The advantages of this decomposition
over other existing ones are interpretability (each factor corresponds to a co-cluster),
and strong uniqueness guarantees for the latent factors.Tensor decompositions are very
powerful tools, with numerous applications (see details in Chapters 2 and 3). There is
increasing interest in their application to Big Data problems, both from academia and
industry. However, algorithmically, there exist challenges which limit their applicability
to real-world, big data problems, pertaining to scalability and quality assessment of the
results. Below we outline how this thesis addresses those challenges, towards a broad adoption of
tensor decompositions in big data science.

1.1.1.1 Parallel, and Scalable Tensor Decompositions
Consider a multi-aspect tensor dataset that is too big to fit in the main memory of a
single machine. The data may have large “ambient” dimension (e.g., a social network
can have billions of users), however the observed interactions are very sparse, resulting
in extremely sparse data. This data sparsity can be exploited for efficiency. In Chapter 4
we formalize the above statement by proposing the concept of a triple-sparse algorithm
where 1) the input data are sparse, 2) the intermediate data that the algorithm is manip-
ulating or creating are sparse, and 3) the output is sparse. Sparsity in the intermediate
data is crucial for scalability. Sparsity in the results is a great advantage, both in terms
of storage but most importantly in terms of interpretability, since sparse models are
easier for humans to inspect. None of the existing state of the art algorithms, before [PFS12]
when the peer-reviewed version of Chapter 4 first appeared, fulfilled all three requirements for
sparsity.

2

In Chapter 4 we propose PARCUBE, the first triple-sparse, parallel algorithm for tensor
decomposition. Figure 1.2(a) depicts a high-level overview of PARCUBE. Suppose that we
computed a weight of how important every row, column, and “fiber” (the third mode in-
dex) of the tensor is. Given that weight, PARCUBE takes biased samples of rows, columns,
and fibers, extracting a small tensor from the full data. This is done repeatedly with
each sub-tensor effectively explores different parts of the data. Subsequently, PARCUBE
decomposes all those sub-tensors in parallel generating partial results. Finally, PARCUBE
merges the partial results ensuring that partial results corresponding to the same latent
component are merged together. The power behind PARCUBE is that, even though the
tensor itself might not fit in memory, we can choose the sub-tensors appropriately so that
they fit in memory, and we can compensate by extracting many independent sub-tensors.
PARCUBE converges to the same level of sparsity as [PSB13] (the first tensor decomposi-
tion with latent sparsity) and furthermore PARCUBE’s approximation error converges to
the one of the full decomposition (in cases where we are able to run the full decomposi-
tion). This demonstrates that PARCUBE’s sparsity maintains the useful information in
the data. In Chapter 5, we extend the idea of PARCUBE, introducing TURBO-SMT, for the
case of Coupled Matrix-Tensor Factorization (CMTF), where a tensor and a matrix share
one of the aspects of the data, achieving up to 200 times faster execution with comparable
accuracy to the baseline, on a single machine [PMS+14]. Subsequently, in Chapter 6 we

X"

X1"

Xr#

�#

�#

…
#

(a) The main idea behind PARCUBE (Chapter 4) : Using biased
sampling, extract small representative sub-sampled tensors, de-
compose them in parallel, and carefully merge the final results into
a set of sparse latent factors.

102 103 104 10510−4

10−2

100

102

104

I = J = K

Ti
m

e
(s

ec
)

Baseline−1
Baseline−2
ICASSP 15

 100x larger data!

Quality Assessment Scalability!

(b) Scalable Quality Assess-
ment (Chapter 7): Computing
the decomposition quality for
tensors for two orders of magni-
tude larger tensor than the state
of the art (I, J,K are the tensor
dimensions).

Figure 1.2: Overview of our algorithmic results.

propose PARACOMP, a novel parallel architecture for tensor decomposition in similar
spirit as PARCUBE. Instead of sampling, PARACOMP uses random projections to compress
the original tensor to multiple smaller tensors. Thanks to compression, in Chapter 6 we
prove that PARACOMP can guarantee the identifiability of the results. This is a very strong

3

guarantee on the correctness and quality of the result.

In addition to Chapters 4, 5, and 6 which introduce a novel paradigm for parallelizing and
scaling up tensor decomposition, in [KPHF12] we developed the first scalable algorithm
for tensor decompositions on Hadoop which was able to decompose problems larger
by at least two orders of magnitude than the state of the art. Subsequently [BKP+14]
we developed a Distributed Stochastic Gradient Descent method for Hadoop that scales
to billions of parameters. We provide a description of those methods in Section 3.4 of
Chapter 3.

1.1.1.2 Unsupervised Quality Assessment of Tensor Decompositions
Real-world exploratory analysis of multi-aspect data is, to a great extent, unsupervised.
Obtaining ground truth is a very expensive and slow process, or in the worst case impos-
sible; for instance, in Neurosemantics where we research how language is represented in
the brain, most of the subject matter is uncharted territory and our analysis drives the
exploration. Nevertheless, we would like to assess the quality of our results in absence of
ground truth. There is a very effective heuristic in Signal Processing and Chemometrics
literature by the name of “Core Consistency Diagnostic” (see Chapter 7) which assigns
a “quality” number to a given tensor decomposition and gives information about the
data being inappropriate for such analysis, or the number of latent factors being incor-
rect. However, this diagnostic has been specifically designed for fully dense and small
datasets, and is not able to scale to large and sparse data. In Chapter 7, exploiting sparsity,
we introduce a provably exact algorithm that operates on at least two orders of magnitude
larger data than the state of the art (as shown in Figure 1.2(b)), which enables quality
assessment on large real datasets for the first time. Subsequently, in Chapter 8, we extend
the Core Consistency Diagnostic under the KL-Divergence loss, which assumes a Poisson
distribution for the data. It has been shown that such an assumption is more accurate
for sparse, count data, the types of which we are mostly dealing with. In addition, we
conduct a large-scale study of the decomposition quality of many real datasets, which
to the best of our knowledge is the first of its kind. Finally, we propose AUTOTEN, a
comprehensive unsupervised and automatic tensor mining method that provides quality
assessment of the results. AUTOTEN outperforms state-of-the-art approaches in deter-
mining the number of components in a tensor, which is an extremely hard problem, and
of utmost importance to solve for real-world applications.

Impact - Algorithms

• PARCUBE [PFS12] is the most cited paper of ECML-PKDD 2012 with over 60
citations at the time of writing, whereas the median number of citations for ECML-
PKDD 2012 is 5. Additionally, PARCUBE has already been downloaded over 125
times by universities and organizations from 23 countries.

• PARCUBE has been featured in an article by the Army Research Laboratory Six
Potential Game-Changers in Cyber Security: Towards Priorities in Cyber Science and
Engineering [KSM15] which was also presented as a keynote talk at the NATO

4

Symposium on Cyber Security Science and Engineering 2014.
• TURBO-SMT [PMS+14] was selected as one of the best papers of SDM 2014, and

appeared in a special issue of the Statistical Analysis and Data Mining journal
[PMS+16].

• PARACOMP [SPF14] has appeared in the prestigious IEEE Signal Processing Maga-
zine.

• Our SDM 2016 paper introducing AUTOTEN [Pap16] won the NSF Travel Award
and Best Student Paper Award.

1.1.2 Applications
The two main application areas of this thesis are: 1) Neurosemantics and 2) Social Networks
and the Web

1.1.2.1 Neurosemantics
How is knowledge represented in the human brain? Which regions have high activity
and information flow, when a concept such as “food” is shown to a human subject?
Do all human subjects’ brains behave similarly in this context? Consider the following
experimental setting, where multiple human subjects are shown a set of concrete English
nouns (e.g. “dog”, “tomato” etc), and we measure each person’s brain activity using
various techniques (e.g, fMRI or MEG). In this experiments, human subjects, semantic
stimuli (i.e., the nouns), and measurement methods are all different aspects of the same
underlying phenomenon: the mechanisms that the brain uses to process language.

In Chapter 9 we seek to identify coherent regions of the brain that are activated for a
semantically coherent set of stimuli. To that end we combine fMRI measurements with
semantic features (in the form of simple questions, such as Can you pick it up?) for the
same set of nouns, which provide useful information to the decomposition which might
be missing from the fMRI data, as well as constitute a human readable description of the
semantic context of each latent group. A very exciting example of our results can be seen
in Figure 1.3(a), where all the nouns in the “cluster” are small objects, the corresponding
questions reflect holding or picking such objects up, and most importantly, the brain
region that was highly active for this set of nouns and questions was the premotor cortex,
which is associated with holding or picking small items up. This result is entirely
unsupervised and agrees with Neuroscience. This gives us confidence that the same
technique can be used in more complex tasks and drive Neuroscientific discovery.

In a similar experimental setting, where the human subjects are also asked to answer
a simple yes/no question about the noun they are reading, in Chapter 10 we seek to
discover the functional connectivity of the brain for the particular task. Functional con-
nectivity is an information flow graph between different regions of the brain, indicating
high degree of interaction between (not necessarily physically connected) regions while
the person is reading the noun and answering the question. [EFS+] we propose GEBM,
a novel model for the functional connectivity which views the brain as a control system
and we propose a sparse system identification algorithm which solves the model. Figure

5

50 100 150 200 250

50

100

150

200

250

300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

50 100 150 200 250

50

100

150

200

250

300
0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250

50

100

150

200

250

300
0

0.01

0.02

0.03

0.04

0.05

Premotor Cortex

50 100 150 200 250

50

100

150

200

250

300

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Group1 Group 2 Group 4Group 3

beetle can it cause you pain?
pants do you see it daily?
bee is it conscious?

beetle can it cause you pain?
pants do you see it daily?
bee is it conscious?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?bear does it grow?

cow is it alive?
coat was it ever alive?

bear does it grow?
cow is it alive?
coat was it ever alive?

glass can you pick it up?
tomato can you hold it in one hand?
bell is it smaller than a golfball?’

glass can you pick it up?
tomato can you hold it in one hand?
bell is it smaller than a golfball?’

bed does it use electricity?
house can you sit on it?
car does it cast a shadow?

bed does it use electricity?
house can you sit on it?
car does it cast a shadow?

6

50 100 150 200 250

50

100

150

200

250

300 0

0.01

0.02

0.03

0.04

0.05

Pre$motor(cortex(

(a) Unsupervised Discovery of
Semantically Coherent Brain
Regions (Chapter 9): The pre-
motor cortex, having high acti-
vation here, is associated with
motions such as holding and
picking small items up.

“apple”!

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

voxel 1!

voxel 2!

voxel 306!

MEG!

18

4 3

2324

1

16

19

3 2

84 1

Frontal lobe!
(attention)!

Parietal lobe!
(movement)!

Temporal lobe!
(language)!

Occipital lobe!
(vision)!

“Is it edible?” (y/n)!

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting

Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
LS
CCA

Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:

“knife”!“Can it hurt you?” (y/n)!

…
"

…
"

…
"

…"

…"

FL! PL!
TL! OL!

(b) Estimating Brain Functional Connectivity (Chapter 10):
Given MEG measurements (time series of the magnetic activity
of a particular region of the brain), GEBM learns a graph be-
tween physical brain regions. Furthermore, GEBM simulates
the real MEG activity very accurately.

Figure 1.3: Overview of results of the Neurosemantics application.

1.3(b) shows an overview of GEBM: given MEG measurements (time series of the mag-
netic activity of a particular region of the brain), we learn a model that describes a graph
between physical brain regions, and simulates real MEG activity very accurately.

Impact - Neurosemantics

• GEBM [EFS+] is taught in class CptS 595 at Washington State University.
• Our work in [PMS+14] (appearing in Chapter 9) was selected as one of the best

papers of SDM 2014

1.1.2.2 Social Networks and the Web
This second class of applications focuses on extracting useful knowledge from social
networks and the web by exploiting the multiple aspects of the data and using tensors.
In this thesis we include two representative pieces of a long line of work in this thrust
(Chapters 11 and 12), however, in the following lines we also briefly cover a broader set
of works.

In Chapter 11 we introduce GRAPHFUSE, a tensor based community detection algorithm
which uses different aspects of social interaction and outperforms state of the art in
community extraction accuracy. Figure 1.4 shows GRAPHFUSE at work, identifying
communities in Reality Mining, a real dataset of multi-aspect interactions between

6

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(a) calls

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(b) proximity

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(c) sms

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(d) friends

Figure 1.4: Consistent communities across views (Chapter 11): Results on the four
views of the Reality Mining multi-graph. Red dashed lines outline the clustering
found by GRAPHFUSE.

students and faculty at MIT. The communities are consistent across aspects and agree
with ground truth. Another aspect of a social network is time. In [APG+14] we introduce
COM2, a tensor based temporal community detection algorithm, which identifies social
communities and their behavior over time. This work is not included as a chapter of
this thesis, however, the key results are summarized in Chapter 3, Section 3.3.1. In
[ED15] we consider language as another aspect, where we identify topical and temporal
communities in a discussion forum of Turkish immigrants in the Netherlands. We
observe interesting variations of how bilingual or monolingual each community is
based on the topic of discussion (which was automatically extracted) e.g., sports were
discussed primarily in Turkish while trendy matters were discussed in Dutch. Adding
to language, location is one aspect that has become extremely pervasive recently, with
virtually all smartphones allowing for the geolocation of the user, and most on-line social
platforms enabling the location tagging of a user’s activity. In [PPF15] we explore data
from Foursquare, identifying spatial and temporal patterns of users’ physical and social
activity. In addition to the aforementioned works, we include more results on analyzing
time-evolving social networks in Section 4.4 of Chapter 4. Our work is not necessarily
restricted to social networks, e.g., we have also analyzed multi-aspect computer networks,
detecting anomalies and network attacks [MWP+14].

In addition to Social Networks, in this part we also focus on extracting knowledge from
the Web, which also has multiple aspects: real-world entities such as Barack Obama and
USA are usually linked in multiple ways, e.g., is president of, was born in, and lives in.
Modeling those multi-aspect relations a tensor, and computing a low rank decomposition
of the data, results in embeddings of those entities in a lower dimension, which can help
discover semantically and contextually similar entities, as well as discover missing links.
In [PFS12] we discover semantically similar noun-phrases in a Knowledge Base coming
from the Read the Web project at CMU: http://rtw.ml.cmu.edu/rtw/. Results from
this analysis are included in Section 4.4 of Chapter 4.

Yet another aspect of an real-world entity on the web is the set of search engine results for
that entity, which is the biased view of each search engine, as a result of their crawling,

7

http://rtw.ml.cmu.edu/rtw/

indexing, ranking, and potential personalization algorithms, for that query. In [AGP15a]
we introduce TENSORCOMPARE, a tool which measures the overlap in the results of
different search engines. We conduct a case study on Google and Bing, finding high
overlap. Given this high overlap, how can we use different signals, potentially coming
from social media, in order to provide diverse and useful results? In [AGP15b] we
follow-up designing a Twitter based web search engine, using tweet popularity as a
ranking function, which does exactly that. This result has huge potential for the future of
web search, paving the way for the use of social signals in the determination and ranking
of results. We combine the results of those two papers in Chapter 12.

Impact - Social Networks and the Web

• COM2 [APG+14] won the best student paper award at PAKDD 2014.
• GRAPHFUSE [PAI13] has been downloaded over 100 times from 21 countries.
• Our work in [MWP+14] (which is based on our scalable tensor analysis tools)

is deployed by the Institute for Information Industry in Taiwan, detecting real
network intrusion attempts.

• Our work in [AGP15a] was selected to appear in a special issue of the Journal of
Web Science [AGP+16], as one of the best papers in the Web Science Track of WWW
2015.

8

1.2 Thesis Organization
The rest of this document is organized as follows. Chapter 2 introduces the necessary
notation and tensor decompositions used throughout this thesis. Chapter 3 is a detailed
and concise introduction to tensor decompositions from a practitioner’s point of view,
covering different decomposition models that are referenced throughout this thesis, as
well as data mining applications and scalable algorithms, providing an overview of the
algorithms proposed in this thesis, in comparison to existing methods and subsequent
work that followed. Chapter 3 is not essential for following the concepts behind this
thesis, however, serves as a reference to the interested reader who wishes to delve deeper
into tensor decompositions.

For Parts I, II, III, and IV, each chapter is preceded by an executive summary in blue
frame.

Part I contains three chapters on scalable tensor decomposition algorithms (Chapters
4, 5, and 6), and Part II contains two chapters on scalable quality assessment of the
decomposition results (Chapters 7 and 8).

Each application class has its own part: Part III contains our work on Neurosemantics,
where Chapter 9 identifies semantically coherent regions of the brain, and Chapter 10 uses
control theory to model the functional connectivity of the brain. Part IV demonstrates
our work on the Social Networks and the Web application, with Chapter 11 exploring the
effect of multiple views of a social network to community detection, and Chapter 12
outlining our results on comparing search engines using tensors, and using social media
as an alternative to traditional web search.

Finally, in Chapter 13 we draw the collective conclusion of this thesis, highlighting
its broader impact, and in Chapter 14 we sketch future research directions in tensor
algorithms and applications, as well as our future vision on bridging Signal Processing
and Data Science for real-world applications.

9

10

Chapter 2

Background

Chapter based on material to be published in [PFS].

In this Chapter we provide the necessary notation and definitions of tensor decom-
positions used throughout this thesis.

2.1 Introduction
Tensors are multi-dimensional extensions of matrices. Because of their ability to express
multi-modal or multi-aspect data, they are very powerful tools in applications that
inherently create such data. For instance, in on-line social networks, people tend to
interact with each other in a variety of ways: they message each other, they post on each
others’ pages, and so on. All these different means of interaction are different aspects of
the same social network of people, and can be modeled as a three-mode tensor, a “data-
cube”, of (user, user, means of interaction). Given this tensor, there exists a rich variety of
tools called tensor decompositions or factorizations, which are able to extract meaningful,
latent structure in the data. In this Chapter, we describe the tensor decompositions that
we use throughout this thesis. In Section 2.2 we provide the necessary notation, and in
Section 2.3 we introduce PARAFAC, TUCKER and Coupled Matrix-Tensor Factorization
(CMTF).

2.2 Preliminary Definitions & Notation
In this section we provide a few necessary definitions and describe our notation. Table
2.1 summarizes our notation throughout this thesis. The notation on Table 2.1 is uni-
versal throughout the entire thesis, however, in some chapters we introduce additional
notation.
Definition 1. Outer product: Given two vectors a ∈ RI×1 and b ∈ RI×1 their outer
product is an I × J matrix and is denoted as a ◦ b. Its (i, j)-th entry is equal to a(i)b(j).
This definition can be extended to an arbitrary number of vectors.
Definition 2. Kronecker product: Given two matrices A ∈ RI×J and B ∈ RK×L, their

11

Symbol Definition
X,X,x, x Tensor, matrix, column vector, scalar

R The set of real numbers
x ∈ RI×1 Definition of an I-dimensional vector (same for matrices and tensors)
◦ Outer product

vec() Vectorization operator
diag(A) Diagonal of matrix A
Diag(a) Diagonal matrix with a in the diagonal
⊗ Kronecker product
� Khatri-Rao product
∗ � Element-wise multiplication and division
×n n-mode product
X(n) n-mode matricization of tensor X
A−1 Inverse of A
A† Moore-Penrose Pseudoinverse of A

DKL(a||b) KL-Divergence
‖A‖F Frobenius norm
x(i) i-th entry of x (same for matrices and tensors)
x(I) Spans the elements of x corresponding to indices in set I

X(:, i) Spans the entire i-th column of X (same for tensors)
X(i, :) Spans the entire i-th row of X (same for tensors)

reshape() Rearrange the entries of a given matrix or tensor to a given set of dimensions
numel() For an I1 × I2 · · · × IN tensor, returns

∏N
n=1 In

MTTKRP Matricized Tensor Times Khatri-Rao Product

Table 2.1: Table of symbols

12

Kronecker product is an IK × JL matrix equal to:

A⊗B =

A(1, 1)B · · · A(1, j)B · · · A(1, J)B

... · · · ... · · · ...
A(i, 1)B · · · A(i, j)B · · · A(i, J)B

... · · · ... · · · ...
A(I, 1)B · · · A(I, j)B · · · A(I, J)B

Definition 3. Khatri-Rao product: Given two matrices A and B, their Khatri-Rao prod-
uct is defined as the column-wise Kronecker product:

A�B =
[
A(:, 1)⊗B(:, 1) · · · A(:, j)⊗B(:, j) · · · A(:, J)⊗B(:, J)

]
Definition 4. N -mode product: Given an N -mode tensor X ∈ RI1×I2×···×IN and a matrix
A ∈ RIn×R, the n-mode product of X and A is denoted as Y = X ×n A where Y ∈
RI1×···In−1×R×In+1×···×IN , and

Y(i1, · · · , in−1, r, in+1, · · · , in) =
In∑
j=1

X(i1, · · · , in−1, j, in+1, · · · iN)A(j, r)

Definition 5. N -mode matricization: An N -mode tensor can be unfolded or matri-
cized into a matrix in N ways, one for each mode. The n-mode matricization of
X ∈ RI1×I2×···×IN is denoted as X(n) ∈ RIn×I1···In−1In+1···IN and is taken by keeping the
n-th mode intact and concatenating the slices of the rest of the modes into a long matrix.
Figure 2.1 shows an example of a three-mode tensor and its 1-mode matricization. Note
that, as mentioned in [KB09], there exist various definitions of the order in which the
slices are concatenated during the matricization, however, the end result is the same, as
long as the order is consistent across different matricizations.

X(:,:,1)&

X(:,:,2)&
X(:,:,K)&

X(:,:,1)& X(:,:,2)& X(:,:,K)&…&

X"(I&x&J&x&K)"
X(1)&(I&x&JK)"

Figure 2.1: 1-mode matricization of X to matrix X(1).

Property 2.1. Vectorization and Khatri-Rao product:
property of the vec operator and the Khatri-Rao product [Bre78]

vec
(
ADBT

)
= (B�A) diag (D)

13

2.3 Introduction to PARAFAC, TUCKER, and CMTF
2.3.1 PARAFAC Decomposition

The Polyadic, CP or PARAFAC decomposition (henceforth referred to as PARAFAC) was
independently proposed by [Hit27], [CC70a] and[Har70]. In addition to those previous
names, we also find this decomposition named trilinear (or multilinear in the case of
a tensor with more than three modes). Given a three-mode tensor X ∈ RI×J×K its
PARAFAC decomposition is defined as the decomposition of the tensor into a sum of R
rank-one tensors, or equivalently as the sum of R outer products of three vectors:

X ≈
R∑
r=1

ar ◦ br ◦ cr (2.1)

where ar ∈ RI×1,br ∈ RJ×1, cr ∈ RK×1, and (ar ◦ br ◦ cr) (i, j, k) = ar(i)br(j)cr(k).
When R is equal to the rank of the tensor, then Eq. 2.1 is exact equality, and when R
is smaller, it is an approximation. As a result, the PARAFAC decomposition can reveal
the rank of X which is defined as the minimum R to perfectly reconstruct X using the
components of the decomposition. For compactness, the PARAFAC decomposition is
usually denoted by the the factor matrices A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R, whose
columns contain ar,br, and cr respectively. Figure 2.2 shows a pictorial representation of
the decomposition. Often, we may assume that the columns of A,B,C are normalized,
and in this case, each latent component is accompanied by a scalar λr which absorbs the
scaling for ar,br, and cr.

X A
B

a1 aR

b1 bR

c1 cR

≈ =

I x J x K I x R

J x R

+…+

Figure 2.2: The PARAFAC decomposition.

In the case of an N -mode tensor, we can readily extend the PARAFAC decomposition by
adding a set of factor vectors per additional mode. When N > 3, for notational simplicity
we denote the factors as A(N), and we write

X ≈
R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

PARAFAC is one of the most highly used tensor decompositions, in part due to its ease
of interpretation. Each rank-one component of the decomposition serves as a latent

14

“concept” or cluster in the data, and the factor vectors for that component serve as the
soft memberships of each row, column, and fiber of the tensor, to that latent cluster. As
one of the papers that introduces PARAFAC [Har70] states, this is an explanatory model.
As such, it is suitable for exploratory data mining, as we will also see in the applications
section (Sec. 3.3)

In addition to admitting a very intuitive interpretation, PARAFAC enjoys important
theoretical properties. In particular, it is shown that PARAFAC is essentially unique,
under very mild conditions, up to scaling and permutation of the R components [Kru77,
SB00, tBS02, JS04, StBDL06, CO12].

This is in sharp contrast to Matrix Factorization where we generally have

X ≈
R∑
r=1

arb
T
r ≈ ABT = AQQ−1BT = ÃB̃T

for any invertible Q, i.e., there exist multiple such decompositions of X that yield the
same approximation error.

In practice, this means that in applications where not only care about approximating
the original data well, but we also care about interpreting the latent factors, PARAFAC
guarantees that the returned factors are the ones that generated the variation in the data
that we seek to interpret and understand.

Practitioner’s Guide

Strengths: Explanatory model, essentially unique under mild conditions, and easy
to interpret.

Weaknesses: Hard to determine the appropriate rank and the global minimum.

When to use?: Extracting latent factors for interpretation, explanatory clustering,
and etc.

2.3.2 TUCKER Decomposition
Another extremely popular decomposition is the TUCKER Decomposition, originally
proposed by [Tuc66]. In fact, [Tuc66] proposed three different models, but we are going
to focus on the third, also known as Tucker-3 (henceforth referred to as TUCKER). [KB09]
provides an excellent overview of Tucker-1 and Tucker-2. The TUCKER decomposition
was further popularized by [DLDMV00], wherein the authors pose the decomposition as
an extension of the Singular Value Decomposition for tensors, naming the decomposition
Higher-Order Singular Value Decomposition (HOSVD). Subsequently, [HDLL08] show
that HOSVD can be used as K-means clustering for higher-order data, popularizing
TUCKER models in the data mining community.

15

In contrast to PARAFAC, TUCKER decomposes a three mode tensor X ∈ RI×J×K into
three factor matrices U1 ∈ RI×R1 ,U2 ∈ RJ×R2 ,U3 ∈ RK×R3 , which are also multiplied by
a core tensor G.

X ≈ G×1 U1 ×2 U3 ×3 U3 (2.2)

Alternatively, the decomposition can be written element-wise as:

X(i, j, k) ≈
R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

G(r1, r2, r3)U1(i, r2)U2(j, r2)U3(k, r3)

A pictorial example of TUCKER is shown in Figure 2.3. The core tensor captures interac-
tions between the columns of Ui. Furthermore, we can assume that Ui are orthogonal
matrices, and as stated in [AABB+07], they reflect the main subspace variation in each
mode assuming a multi-linear structure.

TUCKER is generally non-unique, in contrast to PARAFAC. As in the matrix factorization
case, we can rotate the factors without affecting the reconstruction error. However,
TUCKER yields a good low rank approximation of a tensor in terms of squared error.
This approximation can be also seen as compression, since the core tensor G is the
best compression of the original tensor with respect to squared error, a property that
we will revisit in Section 3.4.1 when discussing ways of speeding up the PARAFAC
decomposition.

X U1

U2 ≈ G

I x J x K I x R1

J x R2 R1 x R2 x R3

Figure 2.3: The TUCKER Decomposition

A very interesting observation is that PARAFAC can be written as a restricted TUCKER
model. In particular, we can view PARAFAC as a TUCKER model whereR1 = R2 = R3 = R
(allowing R to be as high as min(IJ, JK, IK)) and the core G is super-diagonal, i.e., the
only non-zero elements of G are in the (i, i, i) positions. This is shown pictorially in
Figure 2.4. This observation is crucial in estimating the model order of PARAFAC, as we
will see in Section 3.2.8

16

=
X A

B ≈ G

I x J x K I x R

J x R R x R x R

a1

b1

c1

+…+

G(1,1,1) *

aR

bR

cR

G(R,R,R) *

=

Figure 2.4: PARAFAC can be seen as restricted TUCKER, when the core is super-diagonal.

Practitioner’s Guide

Strengths: Captures non-trilinear variation and compresses a tensor optimally.

Weaknesses: Non unique and hard to interpret, especially if the core tensor is
dense.

When to use? Tensor compression (see 3.4.1 of Chapter 3), analyzing data where
relations between latent components is expected, and estimating missing values
(since it can capture variation that PARAFAC cannot). Note here that if the data have
low-rank multilinear structure, PARAFAC may be better than TUCKER at compressing
that data, however, TUCKER can compress well datasets that do not necessarily have
low tensor rank.

2.3.3 Data Fusion & Coupled Matrix/Tensor Models
2.3.3.1 Definition

In a wide variety of applications, we have data that form a tensor and have side informa-
tion or meta-data which may form matrices or other tensors. For instance, suppose we
have a (user, product, date) tensor that indicates which user purchased which product
and when. Usually, stores also have some meta-data on the user which can form a (user,
features) matrix, as well as meta-data on the products which for a (product, features) ma-
trix. In this case, the tensor and the two matrices are coupled in the “user” and “product”
mode respectively, since there is a one-to-one correspondence of users in the tensor and
the matrix (and accordingly for the products).

In Chemometrics, this concept was first introduced by [SWB00], and [BBM07] apply
this concept to data mining. There has been significant development of such coupled
model, either when matrices are coupled together [SG08, AGR+12], or when matrices
and tensors are coupled (a tensor can be coupled with another matrix or even another
tensor) [LSC+09, ZCZ+10, AKD11, APY12, NHTK12, YCY12, WZX14, EAC15]

One of the most popular models is the so-called Coupled Matrix-Tensor Factorization
(CMTF) [AKD11] where one or more matrices are coupled with a tensor. In the case
where we have one coupled matrix in the “rows” mode, and we impose a PARAFAC

17

model on the tensor, we have:

min
ar,br,cr,dr

‖X−
R∑
r=1

ar ◦ br ◦ cr‖2F + ‖Y −
R∑
r=1

ard
T
r ‖2F (2.3)

The CMTF decomposition with PARAFAC on the tensor consists of matrices A,B,C,D.
Notice that the factor matrix A corresponding to the rows of X and Y is the same. This
ensures that the two datasets are decomposed jointly and share the same latent space,
effectively fusing the two datasets.

Instead of a PARAFAC model, we can have CMTF that assumes a TUCKER model
[EAC15]:

min
U1,U2,U3,G,D

‖X−G×3 U3 ×2 U2 ×1 U1‖2F + ‖Y −U1D
T‖2F (2.4)

≈ X

I x J x K

Y

I x L

A B

a1 aR

b1 bR

c1 cR

=

I x R

J x R

+…+

a1 aR

d1 dR

+…+ A D

I x R

L x R
=

≈

Figure 2.5: Coupled Matrix-Tensor Factorization with a PARAFAC model on the tensor.
Notice that the ar vectors are the same between the tensor and the matrix factorization.

An important issue when we have two or more heterogeneous pieces of data coupled
with each other is the one we informally call “drowning”, i.e., when one of the datasets
is vastly denser or larger than the other(s) and thus dominates the approximation error.
In order to alleviate such problems, we have to weight the different datasets accordingly
[WCVM09].

18

Practitioner’s Guide

Strengths: Jointly analyzes heterogeneous datasets that have one of their modes in
common, and incorporates side-information and meta-data to the analysis.

Weaknesses: When the heterogeneous datasets are vastly different in terms of size
and volume, we need to apply appropriate weighting in order to avoid one dataset
“drowning” the rest.

When to use? In applications where meta-data are present and can be modeled as
side-information matrices, as well as when having two (or more) heterogeneous
pieces of data that refer to the same physical entities.

2.4 Conclusions
In this Chapter we presented the necessary notation used throughout this thesis, as well
as the definitions for PARAFAC, TUCKER, and CMTF, which are the decompositions used
in this thesis. In the next Chapter, we delve deeper into PARAFAC, TUCKER, and CMTF as
well as other tensor decompositions providing algorithmic details and a broad selection
of applications.

19

20

Chapter 3

Survey of Advance Topics in
Tensors and Data Fusion

Chapter based on material to be published in [PFS].

Here we delve deeper into advanced topics in tensor decompositions. This chapter
is not essential for understanding the basic concepts behind this thesis (and can, in
fact be skipped), but serves as a reference to the interested reader who wishes to
explore further and develop a working knowledge of tensor decompositions from a
practitioner’s point of view.

3.1 Introduction
In this Chapter we provide a survey on advanced topics in tensor decompositions,
including applications and algorithmic advancements. This survey is by no means
the first attempt to summarize tensor decompositions. In fact, [KB09] is probably the
most concise and most cited survey that contains a very detailed overview of different
tensor decompositions. Subsequently, more survey papers have been published, some of
them focusing on the applications [AY09] and some on the algorithms [CZPA09, LPV11,
GKT13, CMDL+15]. All the aforementioned surveys are great summaries of the work
in a vast research area that spans the fields of Chemometrics, Psychometrics, Signal
Processing, Data Mining, and Machine Learning.

However, we feel that the present survey differs from the existing ones in the following
two ways: 1) we strongly emphasize the implications of the works we summarize from a
practitioner’s point of view, both in terms of describing the decompositions, as well as
in terms of volume and breadth of the applications that this survey contains, and 2) the
field is evolving very fast and many of the advances either in applications or in scalable
algorithms have been published after most of the existing surveys; however, the current
state of the art is sufficiently mature for this survey to summarize and draw abstractions
from, especially with respect to scalable algorithms.

21

In Section 3.2, picking up where we left off in Chapter 2, we continue the discussion
on advanced topics for PARAFAC and TUCKER, and present a variety of other tensor
decompositions that have been used in data mining. As before, we summarize each
decomposition from a practitioner’s point of view at the end of each sub-section. In
Section 3.3, we outline the application of tensor decompositions in a broad variety of
real-world applications, outlining the particular ways that tensors have been used in each
case. Subsequently, in Section 3.4 we provide a concise summary of scalable methods
for tensor decompositions, which have recently witnessed a significant growth, and
have made tensor decompositions applicable to big data. Finally, in Section 3.5 we
conclude.

3.2 Tensor Decompositions
There is a rich variety of tensor decompositions in the literature. In this Section, we
provide a comprehensive overview of the most widely used decompositions in data
mining, from a practitioner’s point of view.

3.2.1 PARAFAC Decomposition
We saw the definition of PARAFAC in Section 2.3.1 of Chapter 2. Here we provide
more details about theoretical properties of the decomposition, algorithms, and various
extensions.

3.2.1.1 Theoretical properties of PARAFAC
As we saw in Chapter 2, PARAFAC is essentially unique, under very mild conditions.
Formally, if Ao is the true latent factor matrix for the first mode, and A is the result of
PARAFAC, then

A = AoΠΛ

where Π is a permutation matrix that allows for switching the order of the columns of
Ao, and Λ is a diagonal matrix that scales each column of Ao. Same holds for the rest
of the factor matrices. It is beyond the scope of this survey to delve deeper into the
theoretical underpinnings of PARAFAC uniqueness, however, the relevant work, put into
context, is as follows: [Kru77] gave the first such uniqueness result and [SB00] extended
that to tensors with four or more modes. It was known that the condition of [Kru77] is
sufficient but not necessary, however [JS04] showed that it is far from necessary when
one mode is full column rank. [StBDL06] used [JS04] to derive an almost-sure uniqueness
result. Finally, [CO12] provided the most relaxed conditions to date, using algebraic
geometry.

3.2.1.2 Algorithms
In this section we will elaborate on the Alternating Least Squares (ALS) algorithm for
PARAFAC, which is probably the most widely used algorithm. We also mention in passing
first-order gradient approaches. For a detailed comparison of algorithms for PARAFAC,
[TB06] and [KB09] are excellent sources.

22

In order to solve for PARAFAC, we usually minimize the sum of squares of the difference
between the tensor X and the model:

min
ar,br,cr

‖X−
R∑
r=1

ar ◦ br ◦ cr‖2F

Notice that the above function is non-convex, however, if we fix two of the three vectors
of PARAFAC, it is linear with respect to the third one. This is a key observation which we
will use in order to derive the ALS algorithm in the following lines.

In addition to Equation 2.1, PARAFAC can be also written in the “slab” format, relating
each “slice” of the tensor to the factor matrices A,B,C. In particular, the k-th slice of an
I × J ×K tensor X can be written as follows:

X(:, :, k) = ADiag(C(k, :))BT

where Diag(C(k, :)) is a diagonal matrix with the k-th row of C in the diagonal. Using
Property 2.1, after vectorizing the k-th slice of the tensor into a long IJ × 1 vector, we
can write:

vec(X(:, :, k)) ≈ (B�A) C(k, :)

and gathering all the slices together, we can write:[
vec(X(:, :, 1)) vec(X(:, :, 2)) · · · vec(X(:, :, K))

]
≈ (B�A)

[
C(1, :) C(2, :) · · · C(K, :)

]
which finally gives:

XT
(3) ≈ (B�A) CT

or
X(3) ≈ C (B�A)T

where matrix X(3) is the third-mode matricization of the tensor and is equal to

X(3) =
[
vec(X(:, :, 1)) vec(X(:, :, 2)) · · · vec(X(:, :, K))

]T
.

By symmetry of the PARAFAC model, we can write the first and second mode slabs of
the tensor in similar ways:

X(1) ≈ A (C�B)T , X(2) ≈ B (C�A)T , X(3) ≈ C (B�A)T

The above observation is very crucial, because it offers three linear equations that relate
a matricized version of the tensor (which is known), to one of the factor matrices. Thus,
assuming that (B�C) is fixed, we can solve for A as

Â = X(1) (C�B)†

which, after using a property of the Khatri-Rao product, turns into:

Â = X(1) (C�B)
(
CTC ∗BTB

)†
23

For the general N -mode case, where we have factors A1 · · ·AN , the ALS solution is:

Â(n) =X(n) (AN � · · · �An+1 �An−1 � · · · �A1)(
AT
NAN ∗ · · · ∗AT

n+1An+1 ∗AT
n−1An−1 ∗ · · · ∗A(1)TA(1)

)†
This gives rise to the ALS algorithm for the PARAFAC decomposition, which does exactly
that: At each step, it assumes that two out of the three matrices are fixed and solves
for the third, and does so iteratively until a convergence criterion is met, e.g., when the
approximation error stops decreasing, or when a certain number of iterations is reached.
The ALS algorithm is a type of block coordinate descent algorithm and is guaranteed
to decrease the approximation error monotonically. A listing of ALS is in Algorithm
3.1.

Algorithm 3.1: Alternating Least Squares for PARAFAC

Input: Tensor X ∈ RI×J×K and rank R.
Output: PARAFAC decomposition A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R

1: Initialize A,B,C (e.g., at random)
2: while convergence criterion is not met do
3: A← X(1) (C�B)

(
CTC ∗BTB

)†
4: B← X(2) (C�A)

(
CTC ∗ATA

)†
5: C← X(3) (B�A)

(
BTB ∗ATA

)†
6: end while

It is important to note that the operation

Y = X(1) (C�B) (3.1)

has a special name: Matricized Tensor Times Khatri-Rao Product or MTTKRP for short. It
can be similarly defined for X(2) and X(3) matricizations, as per the Alternating Least
Squares Algorithm. This operation is key for scalability, as we will discuss in Section
3.4.1.

In addition to the ALS algorithm, another popular approach is a first-order gradient
algorithm [ADK11] where we optimize over all the variables all at once. In order to do
that, [ADK11] define the gradient of the objective function, and given the gradient, they
use a first-order gradient optimization solver to solve for PARAFAC.

3.2.1.3 Handling Missing Values
When dealing with real data, there are many reasons why one should expect some pieces
of the data to be missing. Either because of corruption, or faulty measurements, or cases
where a data point has not been observed yet (e.g., in Recommender Systems), there is
a need to equip our algorithms with the ability to handle missing data. The traditional

24

way for doing so is by operating only on the observed data, ignoring every entry that is
missing. Mathematically, this is translated to:

min
ar,br,cr

‖W ∗

(
X−

R∑
r=1

ar ◦ br ◦ cr

)
‖2F

where

W(i, j, k) =

{
1 if (i, j, k) element is present
0 if (i, j, k) elemeng is missing

Intuitively, the element-wise multiplication of the difference between the data and the
model with this mask tensor W, disregards entries that are missing from the optimization
process. The works of [TB05, ADKM10] show how this can be done algorithmically.
Furthermore, [TB05] describes and Expectation-Maximization approach, where one starts
by ignoring the missing values, computes a model without the missing values, uses
the reconstructed tensor to estimate those missing values and iterates until the missing
values converge.

3.2.1.4 Extensions
Due to its popularity, there exist a variety of extensions to the PARAFAC decomposition,
inspired by real-world constraints.

Non-negative Tensor Factorization

In their seminal paper [LS99], the authors demonstrate that enforcing non-negativity
constraints on the factors of a matrix factorization can lead to more interpretable and
intuitive results. Conceptually, when we are dealing with data that can be expressed as a
“sum-of-parts”, then incorporating non-negativity constraints successfully expresses this
property. In tensors, there exist algorithms that enforce non-negativity constraints on the
values of A,B,C and have been shown to be more effective in terms of interpretability
[SH05, CZPA09].

25

Sparsity on the latent factors

Another type of constraints that has been typically in exploratory mining to enhance
interpretability is sparsity. When the latent factors have only a few non-zero entries,
then it is more immediate and easy for an analyst to simply inspect those, ignoring
the zero entries, and try to understand the result of the decomposition. In addition to
interpretability, [PSB13] show that sparsity on the latent factors of PARAFAC actually
leads to higher-way co-clustering, which in contrast to plain clustering, simultaneously
groups rows, columns, and third mode fibers (in case of a three-mode tensor), into
so-called co-clusters. In order to achieve sparsity on the latent factors, it has been shown
that adding penalties on the `1 norm of the factors, i.e., the sum of their absolute values,
achieves that:

min
ρr,ar,br,cr

‖X−
R∑
r=1

ρrar ◦ br ◦ cr‖2F + λa
∑
i,r

|ar(i)|+ λb
∑
j,r

|br(j)|+ λc
∑
k,r

|cr(k)|

On the above decomposition, the columns of A,B,C are normalized to unit norm.
Furthermore, another interesting observation in [PSB13] is that by having sparse latent
factors, PARAFAC in “deflation” mode produces numerically accurate results, as the
extraction of the factors is done all-at-once. Deflation refers to the process of extracting
one rank-one component, subtracting it from the data and iterating for all desired
components. As we will see in Section 3.4.1, this idea is one way of speeding up
PARAFAC, and if we impose sparsity on the latent factors, because of the fact that they
are nearly orthogonal, it works accurately.

Boolean PARAFAC Decomposition

Oftentimes, tensors contain binary relations (e.g., when we are recording whether two
people spoke on the phone or not on particular day). In [Mie11], the authors proposes
a set of Boolean tensor decompositions (PARAFAC and TUCKER), where binary tensors
are decomposed using models that operate in the Boolean algebra (e.g., 1 + 1 = 1).
The advantage of this approach is that for tensors that contain binary relations, such
representation is more appropriate and respects that nature of the data.

Modelling sparse count data

In a wide variety of data mining applications, we are dealing with sparse “count” data,
.e.g, how many times did two people on a social network interact during a week. Tradi-
tionally, tensor algorithms seek to minimize the Frobenius norm of the difference between
the data and the model, which has proven to be quite effective in defining robust and
well studied algorithms. However, using the Frobenius norm assumes that the data
are normally distributed. In the case of sparse count data, this assumption is not well
suited and may lead to results that misrepresent the data. On the other hand, postulating
a Poisson distribution for the data turns out to be a more realistic assumption, which
implies the use of the KL-Divergence as an objective function. The works of [LSC+09]
and [CK12] demonstrate the effectiveness of this assumption.

26

Incremental Decomposition

Finally, in many real-world scenarios, the tensor is not a static piece of data, but is
generated dynamically and updated over time. Suppose, for instance, that the third
mode of the tensor is being updated by new slices of data, e.g., new interactions on a
time-evolving social network. Instead of re-computing the PARAFAC decomposition of
the updated data every time a new slice arrives, [NS09] propose a method that tracks
the decomposition, updating the factors given the new data, avoiding the overhead of
re-running the full-algorithm for every update.

3.2.2 TUCKER Decomposition
We saw the definition of TUCKER in Section 2.3.2 of Chapter 2. Here we elaborate on
algorithms and various extensions.

3.2.2.1 Algorithms
There exist two very popular algorithms for computing the TUCKER decomposition.
The first one is called Higher Order Singular Value Decomposition [DLDMV00] and the
main idea behind it is that for each Ui, it computes the Ri leading singular vectors of the
i-th matricization of tensor X. Having computed all Ui this way, it then computes the
core tensor G conditioned on those matrices. In order to find the solution for G, we can
rewrite the TUCKER model as:

vec (X) ≈ (U3 ⊗U2 ⊗U1) vec (G)

The least squares solution for vec (G) is

vec
(
Ĝ
)

= (U3 ⊗U2 ⊗U1)
† vec (X)

which due to a property of the Kronecker product becomes

vec
(
Ĝ
)

=
(
U†3 ⊗U†2 ⊗U†1

)
vec (X)

By orthogonality of the columns of Un, it holds that U†n = UT
n , therefore

vec
(
Ĝ
)

=
(
UT

3 ⊗UT
2 ⊗UT

1

)
vec (X)

and by folding back the vectorized tensor to its original form, we have

Ĝ = X×3 UT
3 ×2 UT

2 ×1 UT
1

With the above equation, we conclude the computation of TUCKER using the HOSVD
algorithm. A listing of HOSVD is shown in Algorithm 3.2. Note that HOSVD is not
computing the optimal solution to the decomposition and does not compute joint sub-
spaces of the tensor. However, it has been widely used due to its simplicity.

27

Algorithm 3.2: Higher Order Singular Value Decomposition (HOSVD)
Input: N−mode tensor X ∈ RI1×···×IN and ranks R1, · · · , RN .
Output: TUCKER factors U1 ∈ RI1×R1 , · · ·UN ∈ RIN×RN and core tensor G ∈ RR1×···×RN

1: for n = 1 · · ·N do
2: [U,Σ,V]← SVD(X(n))
3: Un ← U(:, 1 : Rn), i.e., set Un equal to the Rn left singular vectors of X(n)

4: end for
5: G← X×N UT

N ×N−1 UT
N−1 · · · ×1 UT

1

The solution of HOSVD can also be used as a starting input for the second algorithm for
TUCKER, an ALS method called Higher Order Orthogonal Iteration (HOOI). In order
to derive HOOI, we need to compute the conditional update of Ui given the rest of the
factor matrices. After manipulating the objective function (a detailed derivation can be
found in [KB09]), it turns out that in order to solve for U1 we need to maximize:

max
U1

‖UT
1

(
X(1) (U3 ⊗U2)

)︸ ︷︷ ︸
W

‖2F

The optimal solution to the above maximization are the top R1 singular vectors of
W = X(1) (U3 ⊗U2). By symmetry of the model, in order to solve for U2 we take the top
R2 singular vectors of X(2) (U3 ⊗U1), and for U3, we take the top R3 singular vectors of
X(3) (U2 ⊗U1). For the N -mode case, the solution for Un is by taking the top Rn singular
vectors of

X(n) (UN ⊗ · · ·Un+1 ⊗Un−1 ⊗ · · · ⊗U1) .

Combining the above updates with the update for G that we showed earlier for HOSVD,
we have HOOI, outlined in Algorithm 3.3.

Algorithm 3.3: Higher Order Orthogonal Iteration (HOOI) for TUCKER

Input: N−mode tensor X ∈ RI1×···×IN and ranks R1, · · · , RN .
Output: TUCKER factors U1 ∈ RI1×R1 , · · ·UN ∈ RIN×RN and core tensor G ∈ RR1×···×RN

1: Initialize U1, · · ·Un (e.g., at random or using Algorithm 3.2).
2: while convergence criterion is not met do
3: for n = 1 · · ·N do
4: W← X×N UT

N · · · ×n+1 UT
n+1 ×n−1 UT

n+1 · · · ×1 UT
1

5: [U,Σ,V]←SVD(W(n))
6: Un ← U(:, 1 : Rn)
7: end for
8: end while
9: G = X×N UT

N ×N−1 UT
N−1 · · · ×1 UT

1

3.2.2.2 Handling Missing Values
TUCKER can handle missing values the same way as PARAFAC, by introducing the weight
tensor W that masks the missing entries from the optimization. In addition to handling

28

missing values, TUCKER has been shown to be generally more effective at estimating
missing values, compared to PARAFAC [KABO10]. The reason for this behavior is the
fact that TUCKER, by virtue of its core that models interactions between components, can
capture variation in the data that is not strictly tri-linear.

3.2.2.3 Extensions
Boolean TUCKER Decomposition

As we saw in PARAFAC, [Mie11] introduce Boolean tensor decomposition using the
TUCKER model as well.

Incremental Decomposition

In cases where the tensor is dynamically created, or viewed as a stream of incoming slices,
[STF06] introduce an algorithm that can track the decomposition without re-computing
it for every incoming slice.

Handling Time

Finally, the work of [STH+08] shows how to effectively handle time as one of the modes of
the tensor. Due to the fact that time is treated as any other categorical attribute in a tensor
(and the decompositions work as well if we permute the time positions), oftentimes
time has to be treated carefully, especially when such permutation freedom violates the
assumptions of the application. In [STH+08] the authors show how to model time using
a wavelet decomposition, and incorporate that to a TUCKER decomposition.

3.2.3 DEDICOM and related models
3.2.3.1 Definition

In many real data applications we have relations between entities (such as people in a
social network) that are inherently asymmetric. For instance, when we are recording
the number of e-mails that someone sent to a person, this (sender, receiver) relation is
asymmetric. In order to analyze such data, there exists a tensor decomposition called
DEDICOM which is able to capture such asymmetries. The decomposition was first
proposed in [Har78] and was later on used in [BHK07] In DEDICOM, we write an
I × I ×K tensor (note that the first two modes have the same size), as:

X ≈ ADRDAT

A is the loading or embedding matrix for the rows and columns of X, which correspond
to the same entities. The columns of A correspond to latent components, and as [BHK07]
states, they can be thought of as roles that an entity in the rows of X participates in. Each
slice of D is an I×I diagonal matrix, giving weights to the columns of A, and R captures
the asymmetric relations, and according to [BHK07] it captures the aggregate trends over
the third mode (which in that particular paper is time, but can be anything else). The
model is shown pictorially in Figure 3.1.

29

X A
AT

≈ D R D

I x I x K I x R

R x I R x R x K R x R x K R x R

Figure 3.1: The three-mode DEDICOM decomposition.

A more recent variation of DEDICOM is called RESCAL and can be found in [NTK11].
RESCAL was especially proposed for modeling multi-relational data. The RESCAL
decomposition is:

X ≈ ARAT

and the resemblance to DEDICOM is apparent, however, R is not restricted to a particular
form, and can capture more complex relations. An interesting observation here is that
RESCAL is a restricted and symmetric TUCKER model, where W is the identity matrix
(leaving the corresponding mode uncompressed), and U = V = A; TUCKER models
where one of the modes is uncompressed are also known as Tucker-2 [Tuc66, KB09] The
decomposition is also shown in Figure 3.2.

X A
AT

≈ R

I x I x K I x R

R x R x K
R x I

Figure 3.2: The RESCAL decomposition.

According to [NTK12], its advantage over other tensor decompositions is that it can
exploit a collective learning effect when applied to relational data. Collective learning
refers to the automatic exploitation of attribute and relationship correlations across
multiple interconnections of entities and relations.

3.2.3.2 Algorithms
In this section we will provide the latest ALS algorithm for DEDICOM, which is an
improvement upon the original ALS algorithm introduced in [Kie93]. Algorithm 3.4
is called ASALSAN and was proposed in [BHK07]. As all ALS algorithms, ASALSAN
consists of conditional updates of A,R, and D, until convergence. We omit the derivation
of the update rules which can be found in [BHK07].

30

Algorithm 3.4: ASALSAN algorithm for DEDICOM
Input: Tensor X ∈ RI×I×K and latent dimension R.
Output: DEDICOM model A,R,DI×I×K

1: Initialize A,R,D at random (or per [BHK07]).
2: while convergence criterion is not met do

3: A←

(
K∑
k=1

(
X(:, :, k)AD(:, :, k)RTD(:, :, k) + X(:, : k)TAD(:, :, k)RD(:, :, k)

))
(

K∑
k=1

(Bk + Ck)

)−1
, where

Bk = D(:, :, k)RD(:, : k)
(
ATA

)
D(:, :, k)RTD(:, :, k)

Ck = D(:, :, k)RTD(:, :, k)
(
ATA

)
D(:, :, k)RD(:, :, k)

4: vec (R)←

(
K∑
k=1

(
D(:, :, k)ATAD(:, :, k)

)
⊗
(
D(:, :, k)ATAD(:, :, k)

))−1
K∑
k=1

vec
(
D(:, :, k)ATX(:, :, k)AD(:, :, k)

)
5: Solve for D using Newton’s method:

min
D(:,:,k)

‖X(:, :, k)−AD(:, :, k)RD(:, :, k)AT ‖2F
6: end while

Practitioner’s Guide

Strengths: Can model multi-relational data that also exhibit asymmetries. The
DEDICOM model is also unique.

Weaknesses: Restricted to multi-relational data

When to use? When modeling social network data that exhibit asymmetric relations,
Knowledge Bases relations or Linked Data.

3.2.4 Hierarchical Tucker Decomposition (H-Tucker)
3.2.4.1 Definition

So far, we have mostly used three-mode tensors in our examples, mostly for ease of
exhibition. However, in many real world scenarios (as we will also see in Section 3.3), we
have tensors of higher order. When the tensor order (i.e., the number of modes) increases,
supposing that we would like to compute a TUCKER model, the number of variables we
need to estimate increases exponentially to the number of modes. For example, assuming
an I × I × I × I four-mode tensor, its (R,R,R,R) TUCKER decomposition requires the
computation of R4 values for the core tensor G.

This curse of dimensionality, however, can be avoided in a number of ways. The first
way is the so-called Hierarchical Tucker Decomposition (H-Tucker) [HK09, Gra10, KT12,

31

BGK13] .

The basic idea behind H-Tucker is the following: Suppose we have a binary tree of
hierarchies of the modes of the tensor that can be potentially be given to us by the
application (e.g., see overview of [PCVS15] in Section 3.3.7). Given this binary tree
hierarchy, H-Tucker creates a set of generalized matricizations of the tensor according
to each internal node of the tree. These matricizations are defined over a set of indices
indicated by the particular node of the tree: for instance, given an I × J ×K × L tensor,
if node t splits the modes into two disjoint sets {I, J} and {K,L}, then the generalized
matricization X(t) will create an IJ × KL matrix where slices of the modes that are
compacted into a single mode are stacked in a systematic fashion. Details on how this
matricization is done can be found in [KT12].

For each internal node of the tree it computes a “transfer” core tensor which requires
the estimation of much fewer values than in the TUCKER case. The core tensor Bt is
computed via:

Ut = (Utl ⊗Utr) Bt,

where Bt is a rtlrtr × rt matrix and Ut contains the rt left singular vectors of the X(t)

matricization. Finally, the leaf nodes contain the factor matrices that are similar to the
ones that TUCKER would give.

A pictorial example of a binary tree hierarchy and its corresponding H-Tucker decompo-
sition is shown in Figure 3.3.

≈

X(:,:,:,1)

X(:,:,:,2)

I x J x K x L

X(:,:,:,L)

…
 R12 x R34 x 1

B12

B34

U1 I x R1

U2

U3

U4

J x R2

K x R3

L x R4

B1234

R1 x R2 x R12

R3 x R4 x R34

Figure 3.3: The H-Tucker decomposition.

32

3.2.4.2 Algorithms
The algorithm for computing H-Tucker is described in [KT12], and here we provide an
outline, in Algorithm 3.5.

Algorithm 3.5: H-Tucker Algorithm
Input: N −mode tensor X, ranks R1, · · · , RN , and a binary tree T of the matricizations of X.
Output: H-Tucker Decomposition U1, · · ·UN , Bt where t ∈ N (T) (i.e., the non-leaf nodes of

binary tree T).
1: for n = 1 · · ·N do
2: [U,Σ,V]← SVD(X(n))
3: Un ← U(:, 1 : Rn), i.e., set Un equal to the Rn left singular vectors of X(n)

4: end for
5: Starting from the root of tree T , select a node t.
6: tl is the left child, tr is the right child.
7: Bt ←

(
UT
tl
⊗UT

tr

)
Ut

where Bt is a rtlrtr × rt matrix, and Ut contains the rt left singular vectors of the X(t)

matricization.
8: Reshape Bt into a rtl × rtr × rt tensor.
9: Recurse on tl and tr until tl and tr are singletons.

Practitioner’s Guide

Strengths: Approximates well high-order tensors (with number of modes much
larger than three) without suffering from the curse of dimensionality.

Weaknesses: Requires a-priori knowledge of a binary tree of matricizations of the
tensor.

When to use? For very high-order tensors, especially when the application at hand
provides an intuitive and natural hierarchy over the modes.

3.2.5 Tensor-Train Decomposition (TT)
3.2.5.1 Definition

Along the same lines as H-Tucker, there is the Tensor-Train decomposition proposed
in [Ose11], which tackles the curse of dimensionality in very high order tensors by
imposing a parsimonious model. In contrast to H-Tucker, Tensor-Train does not require
prior knowledge of a hierarchy of the modes. Tensor-Train decomposes a given tensor
into a matrix, followed by a series of three-mode “transfer” core tensors (as in the case
of the core tensors in H-Tucker), followed by a matrix. Each one of the core tensors is
“connected” with its neighboring core tensor through a common reduced mode Ri. For a
four-mode tensor, the Tensor-Train decomposition can be written as:

X(i, j, k, l) ≈
∑

r1,r2,r3

G1(i, r1)G2(r1, j, r2)G3(r2, k, r3)G4(r3, l)

33

A pictorial illustration of the four-mode Tensor-Train decomposition is shown in Figure
3.4. For the general d-mode case, we have:

X(i1, · · · , id) ≈
∑

r1,r2···rd−1

G1(i, r1)G2(r1, j, r2) · · ·Gd−1(rd−2, d− 1, rd−1)Gd(rd−1, d)

≈

X(:,:,:,1)

X(:,:,:,2)

I x J x K x L

X(:,:,:,L)

…

G1

I x R1

G2
R1 x J x R2

G3
R2 x K x R3

G4
R3 x L

R1# R2# R3#

Figure 3.4: Tensor-Train Decomposition of a four-mode tensor. The circled variables
indicate the reduced dimension that connects the core tensors.

3.2.5.2 Algorithms
Algorithm 3.6 outlines the computation of the Tensor-Train decomposition, as introduced
in [Ose11]. Notice that the user is not required to explicitly define the reduced dimensions
Ri; they are automatically calculated (line 7) by keeping the singular vectors that respect
the approximation tolerance ε defined by the user. Of course, we can re-define the
algorithm where instead of ε, the user explicitly provides the Ri dimensions, if this is
more appropriate for a given application. Also, note that in Algorithm 3.6, for notational
freedom, even if a tensor has one singleton dimension, we denote it as a tensor.

34

Algorithm 3.6: Tensor-Train Decomposition
Input: N -mode tensor X and approximation tolerance ε.
Output: Tensor-Train Decomposition G1,G2 · · ·GN−1 · · ·GN .

1: Compute δ = ε√
N−1‖X‖F as the truncation parameter.

2: C← X(1) (select an arbitrary matricization of X for initialization).
3: r0 = 1
4: for k = 1 · · ·N do
5: C← reshape

(
C, [rk−1Ik,

numel(C)
rk−1Ik

]
)

6: Compute a truncated SVD [U,Σ,V] of C such that the approximation error e ≤ δ.
7: rk ← rank of the SVD that achieves the above approximation.
8: Gk ←reshape(U, [rk−1, Ik, rk])
9: C← ΣVT

10: end for
11: GN ← C

Practitioner’s Guide

Strengths: Approximates well high-order tensors (with number of modes much
larger than three) without suffering from the curse of dimensionality.

Weaknesses: Hard to interpret the core tensors, especially when they are dense.

When to use? For approximating very-high order tensors and there is no prior
hierarchical information on the modes.

3.2.6 Data Fusion & Coupled Matrix/Tensor Models
We saw the definition of Data Fusion and Coupled Matrix-Tensor Factorization (CMTF)
in Section 2.3.3 of Chapter 2. Here we present algorithms for those models, as well as
discussion on advanced topics.

3.2.6.1 Algorithms
As in the case of PARAFAC, in CMTF we can also define an ALS algorithm, where we fix
all but one of the matrices we are seeking to estimate. If, say, we seek to solve for A, it
turns out that we need to concatenate the two pieces of data, whose rows refer to matrix
A, i.e., the matricized tensor X(1) and matrix Y1, and we can then solve for A as:

A =

[
X(1)

Y1

]T ([
(B�C)

D

]†)T

Algorithm 3.7 shows the ALS algorithm for CMTF when a tensor X is coupled with three
matrices Y1,Y2,Y3. We refer the user to [AKD11] for a gradient based approach.

35

Algorithm 3.7: Alternating Least Squares (ALS) Algorithm for CMTF
Input: X of size I × J ×K, matrices Yi, i = 1 · · · 3, of size I × I2, J × J2, and K ×K2

respectively, number of factors F .
Output: A of size I × F , B of size J × F , C of size K × F , D of size I2 × F , G of size J2 × F , E

of size K2 × F .
1: Initialize A, B, C using PARAFAC of X. Initialize D,G,E as per the model (e.g.

D = Y1

(
A†
)T).

2: while convergence criterion is not met do

3: A =

[
X(1)

Y1

]T ([
(B�C)

D

]†)T

4: B =

[
X(2)

Y2

]T ([
(C�A)

G

]†)T

5: C =

[
X(3)

Y3

]T ([
(A�B)

E

]†)T
6: D = Y1

(
A†
)T , G = Y2

(
B†
)T , E = Y3

(
C†
)T

7: end while

3.2.6.2 Shared and Individual Components in Coupled Decompositions
A fairly recent extension of the CMTF model has to do with shared and individual latent
components between the datasets that are being jointly analyzed. For instance, in the
coupled matrix-tensor case, we may assume that some of the latent components are
exclusive to the tensor, some are exclusive to the matrix, and some of them are shared; this
assumption gives relative freedom to the joint analysis to uncover useful structure that is
jointly present in both datasets, without falsely imposing structure from one dataset to
the other that perhaps does not exist. In [ALR+13, APR+14] the authors introduce such
flexible coupled decompositions, In a nutshell, they introduce distinct scalar weights on
the components of the tensor and the matrix and they enforce a sparsity constraint on
those weights, driving some of them to zero. A zero weight for, say, a component of the
tensor indicates that this component is not present in the tensor and is individual to the
matrix.

3.2.7 PARAFAC2 and Decomposition of Multiset Data
3.2.7.1 Definition

Closely related to the coupled datasets that we talked about in the previous section is
the concept of “multiset” data, which however merits its own discussion, because of its
prevalence. A multiset dataset is a collection of matrices {Xk} for k = 1 · · ·K, that have
one mode in common. These matrices can be seen as nearly forming a tensor, however,
the non-shared mode has different dimensions, and thus it has to be handled carefully.
The PARAFAC2 decomposition, introduced in [Har72b], is specifically designed for such
cases. Given a multiset dataset {Xk}, where the matrices share the columns but have

36

different numbers of rows, PARAFAC2 decomposes each matrix in the multiset as:

Xk ≈ UkHSkV
T

PARAFAC2 acknowledges the differences in the rows, by introducing a set of Uk row fac-
tor matrices, but imposes a joint latent structure on the columns and the third mode, sim-
ilar to PARAFAC. A pictorial representation of PARAFAC2 is shown in Figure 3.5.

X1

X2

X3
X4

U1

U2

U3
U4

≈
AT

H S

Figure 3.5: The PARAFAC2 decomposition.

3.2.7.2 Algorithms
As in many tensor decompositions, the most popular algorithm for PARAFAC2 is based
on ALS [Kie93]. On Algorithm 3.8, we present an improvement upon the algorithm of
[Kie93], which is proposed by [CBKA07]

Practitioner’s Guide

Strengths: Can jointly analyze heterogeneous pieces of data that cannot be expressed
as a tensor.

When to use? When we have a set of matrices that nearly form a tensor, but they do
not match one of the modes.

3.2.8 Model Order Selection
An important issue in exploratory data mining using tensors is selecting the order of the
model, in other words the rank of the decomposition in models such as PARAFAC, or
the dimensions of the core tensor in Tucker-based models. This is generally a very hard
problem, especially in the presence of noisy data, however there exist heuristic methods
that work well in practice.

3.2.8.1 PARAFAC
For the PARAFAC decomposition, considerations about the quality of the decomposition
date as early as 1984 where [Har84] outlines strategies that can reveal the quality of the
decomposition. The most intuitive and popular heuristic for model order selection is the

37

Algorithm 3.8: ALS algorithm for PARAFAC2
Input: Multiset {Xk} for k = 1 : K and rank R.
Output: PARAFAC2 Decomposition of {Xk}: {Uk},H,S,V.

1: Initialize:

V← R principal eigenvectors of
K∑
k=1

XT
kXk

H← I
2: for k = 1 · · ·K do
3: S(:, :, k)← I, for k = 1 · · ·K.
4: end for
5: while convergence criterion is not met do
6: for k = 1 · · ·K do
7: [Pk,Σk,Qk]← truncated SVD of HSkV

TXT
k at rank R

8: Uk ← QkP
T
k

9: end for
10: for k = 1 · · ·K do
11: Compute Y(:, :, k) = UT

kXk

12: end for
13: Run a single iteration of PARAFAC ALS (Algorithm 3.1) on Y and compute factors H,V, Ŝ.
14: for k = 1 · · ·K do
15: S(:, :, k)← Diag

(
Ŝ(k, :)

)
16: end for
17: end while

so-called Core Consistency Diagnostic or CORCONDIA [Bro98, BK03]. CORCONDIA is
based on the observation we highlighted in Section 2.3.2 and Figure 2.4, observing that
PARAFAC can be written as a restricted TUCKER model with super-diagonal core. Based
on that observation, CORCONDIA Given a tensor X and its PARAFAC decomposition
A,B,C computes a TUCKER model where A,B,C are the factors (which are known) and
G is the core tensor (which is unknown). The core tensor G holds important information:
if it is exactly or nearly super-diagonal, then A,B,C is a “good” PARAFAC decomposition
(hence the chosen model order is correct), otherwise there is some problem either with
the chosen rank, or with the data lacking multi-linear structure. After computing G, the
Core Consistency diagnostic can be computed as

c = 100

(
1−

∑F
i=1

∑F
j=1

∑F
k=1 (G(i, j, k)− I(i, j, k))2

F

)
,

where I is a super-diagonal tensor with ones on the (i, i, i) entries. For a perfectly super-
diagonal G (i.e. perfect modelling), c will be 100. For rank-one models, the metric will
always be 100, because the rank-one component can produces a a single scalar, which is a
trivial super-diagonal core. Therefore, CORCONDIA can be used for ranks higher than 2.
In [dCHR08], the authors extend the aforementioned idea, making it more robust in the
presence of noise. For big tensor data, naive computation of CORCONDIA cannot scale.

38

However, recently [PF15] proposed a scalable algorithm for computing the diagnostic,
especially for big sparse tensors.

In addition to CORCONDIA, various other methods have been proposed, ranging from
Minimum Description Length (MDL) [APG+14, MM15], to Bayesian [MH09, ZZC15].

3.2.8.2 TUCKER
For the TUCKER decomposition, one of the first methods for determining the model
order (i.e., the size of the core tensor) is the so-called DIFFIT (DIFFerence in FIT) method
[TK00]. In a nutshell, DIFFIT tries different combinations of the dimensions R1, R2, R3

of the core tensor, such that R1 + R2 + R3 = s for various values of s ≥ 3. For each
given s, DIFFIT finds the combination of dimensions that gives the best fit-complexity (as
measured by the number of fitted parameters) trade-off. Subsequently, DIFFIT compares
different values of s, choosing the one sc = R1 +R2 +R3 that yields the best fit. DIFFIT
requires the computation of multiple TUCKER decompositions, fact that may slow down
the estimation of the model order. In [KK03] the authors propose a method that computes
a single TUCKER decomposition and is shown to perform comparably to DIFFIT. Finally,
as in the PARAFAC case, [MH09] can also estimate the model order of TUCKER employing
a Bayesian framework.

3.3 Data Mining Applications
Tensors are very powerful and versatile tools, as demonstrated by the long list of their ap-
plications in data mining. In this Section, we cover a wide spectrum of such applications:
Social & Collaboration Network Analysis, Web Mining & Web Search, Knowledge Bases,
Information Retrieval, Topic Modeling, Brain data analysis, Recommendation Systems,
Urban Computing, Healthcare & Medical Applications, Computer Networks, Speech
& Image Processing, and Computer Vision. For each application, we focus on what the
problem formulation is, how is a tensor modeled and which decomposition is used, and
discuss the results.

3.3.1 Social & Collaboration Network Analysis
Social & collaboration network analysis can benefit from modeling data as tensors in
various ways: when there exist multiple “views” of the network (e.g., who-calls-whom,
who-texts-whom and so on), this can be expressed as a three-mode tensor with each
frontal slice being an adjacency matrix of the network for a particular view. Furthermore,
tensors have been used in modeling time-evolving networks, where each frontal slice of
the tensor is a snapshot of the network for a particular point in time.

Tensor applications in social networks dates back to [AcCKY05] which is also one of the
earliest tensor applications in data mining. In this particular work, the authors analyze
IRC chat-room data, and create also a synthetic tensor data generator that mimics the
properties of real chat-room data. The tensors are of the form (user, keyword, time)
and for the purposes of demonstrating the utility of expressing the data as a tensor,
the authors also create (user, keyword) and (user, time) matrices. Subsequently, they

39

compare SVD (on the matrices), and TUCKER and PARAFAC for noiseless and noisy data;
TUCKER seems to outperform the rest of the tools for noisy data, because of its flexibility
to have different number of latent components per mode. The paper also touches upon
two very important issues 1) temporal granularity of the data, indicating cases where
the analysis breaks down due to inappropriate resolution in the “time” mode, and 2)
model order selection, highlighting that using solely the approximation error as a guide
to select the number of components does not necessarily imply better interpretation of
the data.

In [BHK06, BHK07], the authors analyze the Enron e-mail exchange data, creating an
(employee, employee, month) tensor, recording the number of emails sent from one
employee to another. Given the asymmetry of the relation, the authors use DEDICOM
to decompose the tensor and identify latent roles for the employees (with the roles
discovered being labelled as “Executive”, “Government Affairs”, “Legal”, “Pipeline”) ,
as well as the communication pattern between roles. The strength of DEDICOM is its
ability to discover asymmetric communication patters, e.g., executives tend to receive
more emails than they send

In [KS08] model the DBLP collaboration network as a tensor of (author, keyword, confer-
ence) and use the TUCKER decomposition to identify groups of authors who publish on
similar topics and on similar conferences.

In addition to the social interactions, [LSC+09] demonstrates that using the context
behind those interactions can improve the accuracy in discovering communities. In
this work the authors define a “Metagraph”, a graph that encodes the context of social
intercations, and subsequently propose a Metagraph Factorization, which essentially
boils down to a coupled tensor and matrix factorization, involving all the various tensors
and matrices that capture relations in the Metagraph. They apply their algorithm to a
dataset from Digg where they record six relations in the data. They demonstrate that their
proposed technique outperforms simple approaches that use the interaction frequency,
as well as tensor methods that ignore the context of the interaction.

In [PFS12] and [PSB13], the authors apply the PARAFAC decomposition to the Enron e-
mail exchange data, again forming an (employee, employee, month) tensor. They identify
cliques of interaction, which concur with the roles identified by [BHK07]. Furthermore,
[PFS12] applies the PARAFAC decomposition to a Facebook Wall posts datase that forms a
(wall owner, wall poster, day) tensor and identify interesting patterns and their temporal
evolution.

The authors of [AGH+14] show that orthogonal PARAFAC can be used to estimate la-
tent factor models such as Latent Dirichlet Allocation (LDA) and Mixed Membership
Block Models (MMBM), using the method of moments. In [HNHA13] the authors use
orthogonal PARAFAC for recovering a Mixed Membership Block Model that detects
overlapping communities in social networks, and apply it to a Facebook social network
dataset (two-mode). This is a very interesting alternative perspective because the authors
use the tensor decomposition to identify a model on a two-mode graph, and do not use

40

the tensor decomposition on the graph itself.

[PAI13] introduce a PARAFAC based community detection algorithm in multi-view social
networks. They analyze two different datasets: 1) “Reality-Mining”, a multi-view social
network with four views: phone-call, text, bluetooth (indicating proximity), and physical
friendship, and 2) a network of researchers in DBLP having three views: co-author, using
same keywords in publications, and citation of each others’ work. The algorithm is able
to identify communities with better accuracy than approaches that do not use all the
views or do not exploit the higher order structure of the data.

In [APG+14], the authors use a PARAFAC based decomposition to identify communities in
time-evolving graphs. They use Minimum Description Language (MDL) for identifying
the number of communities that can be extracted from the data. They apply the algorithm
to a dataset of phone-calls over time for a very large city, and identify various patterns of
communities. Among the most frequent patterns were: 1) “Flickering Stars” which are
star-like communication patterns that have a varying number of receivers over time, and
2) “Temporal Bipartite Cores” which are near bipartite cores of people communicating
with each other over time.

[JCW+14] model user behavior over time and have two case studies: 1) behavior of aca-
demic researchers, and 2) behavior of “mentions” in tweets. In order to do identify user
behavior over time, the authors model the problem as the decomposition of a series of
tensors, each one for a particular point in time. For instance, for the tweets data we have
a tensor of (source user, target user, keyword), for each time-tick. The authors propose to
decompose each one of those tensors using a TUCKER-like model and impose regulariza-
tion to tackle sparsity. Furthermore, in order to reduce the computational complexity, the
authors propose an algorithm that carries out the decomposition incrementally, using
the model from the previous time-point to estimate the new one. Theys showcase their
algorithm in datasets from Microsoft Academic Search and Weibo, identifying interesting
user behavior patterns over time.

Finally, in [SPBW15], the authors use dyadic events between countries in order to dis-
cover multilateral relations among them. In particular, they propose a Bayesian version
of the PARAFAC decomposition, postulating a Poisson distribution on the data, which
has been shown to be more effective when dealing with sparse, count data. They apply
their proposed decomposition to a four mode tensor of (country-A, country-B, event-
type, time-stamp) and evaluate the effectiveness of their approach by identifying well
documented multilateral country relations in recent history.

3.3.2 Web Mining & Web Search
The authors of [KBK05] extend Kleinberg’s HITS algorithm for authoritativeness and
hubness scores of web-pages, including context information on the link. In particular, for
each link, they use the anchor text as the context. This creates a three-mode tensor of (web-
page, web-page, anchor text), and the PARAFAC decomposition gives the authoritativness
and hubness scores (A are the authorities and B are the hubs, and C encodes the topic

41

of each set of hubs and authorities). This in contrast to plain HITS (which can be seen
as an SVD of the hyperlink matrix) provides more intuitive interpretation. The authors
demonstrate the superiority of the approach in identifying topically coherent groups of
web-pages by applying it to a custom crawl of the Web, emulating what a commercial
search engine does.

In [SZL+05] the authors personalize web search by using historic click-through data of
users. They construct a (user, query, page) tensor that records the clicks of a user to a
particular result of a query, and they use HOSVD to take a low rank factorization of the
click-through tensor. By reconstructing the tensor from its HOSVD they fill-in missing
values, which can then be used as personalized result recommendations for a particular
user.

In [AGP15a] the authors model the comparison between the results of different search
engines using tensors. For a set of queries, they create a (query, keyword, date, search
engine) tensor, and use the PARAFAC decomposition to create latent representations of
search engines in the same space. They apply this tool to compare Google and Bing
web search, and find that for popular queries, the two search engines have high overlap.
Subsequently, in [AGP15b] the authors apply the same methodology to compare Google
and Twitter based search, finding that the overlap is lower, showing the potential for
social media based web search.

3.3.3 Knowledge Bases, Information Retrieval & Topic Modeling
The authors of [CBKA07] tackle the problem of Cross-language Information Retrieval,
where we have parallel documents in different languages and we need to identify latent
topics like in Latent Semantic Analysis (LSA)[DDF+90]; in a nutshell, LSA refers to taking
a low-rank Singular Value Decomposition of a (term, document) matrix, and exploiting
the low-rank structure to identify synonyms). Doing simply LSA on the concatenated
set of terms for all languages and documents ignores the fact that parallel documents
have same structure and ought to be clustered similarly to latent topics. To that end, the
authors use the PARAFAC2 decomposition which is applied to multi-set data on a set of
(term, document) matrices (terms can be different from language to language, that’s why
we don’t have a tensor). The authors demonstrate the superiority of their approach by
applying it on a set of translations of the Bible and achieving better performance than
traditional LSA.

In [KPHF12] and [PFS12], the authors apply the PARAFAC decomposition to data coming
from the Read The Web [RTW16] project. In particular, the data are in form (noun-phrase,
noun-phrase, context-phrase). Using the PARAFAC decomposition, the authors identify
latent topics that are semantically and contextually coherent, coming from each one
of the rank-one components of the decomposition. Furthermore, the factor matrices
of the PARAFAC decomposition define latent embeddings of the noun-phrases to a
concept space; the authors find similar noun-phrases in that concept space, which are
essentially “contextual synonyms”, e.g., noun-phrases that can be used in the same
semantics/context.

42

[JPKF15] apply the TUCKER decomposition to a particular snapshot of the Freebase
knowledge base that contains entities and relations about music. The authors use the
factor matrices of TUCKER as latent embeddings (as in the case of the PARAFAC factor
matrices) and identify semantically coherent latent concepts entities and relations (e.g.,
“Classic Music” and“Pop/Rock Music”.

In [NTK12] the authors model semantic data of type (entity1, entity2, relation) as a
three-mode tensor. They analyze it using the RESCAL model, whose advantage is that
it captures attribute and relationship correlations across multiple interconnections of
entities and relations. They apply it to the YAGO[FGG07] Knowledge Base and show
better performance in 1) predicting unknown triples, 2) collective learning (defined
as “automatic exploitation of attribute and relationship correlations across multiple
interconnections of entities and relations”), and 3) learning taxonomies on the knowledge
base.

A higher-order extension of LSA can be found in [CYM13], where the authors integrate
multiple relations between words from different information sources. They essentially
use a TUCKER decomposition and they absorb the W factor matrix of figure 2.3 by multi-
plying it with the core tensor G creating a different core tensor S, showing the analogy
of this TUCKER representation and the SVD (where now they have two factor matrices
and one core tensor). The authors demonstrate the performance of their proposed LSA
extension by identifying antonyms and is-a relations more accurately than the state of
the art.

Following the examples of [NTK12], the authors of [CYYM14] use a RESCAL-inspired
decomposition to model and analyze knowledge base data. The new addition to the
model are type constraints: each entity of a knowledge base has a known type (e.g.,
“person”) , therefore, these type constraints are explicitly included in the model by
excluding triples of entity-relation-entity with incompatible types from the optimization.
This both saves computation and produces a more accurate result.

Finally, in a similar spirit to [HNHA13, AGH+14], in [HMA+14] the authors use the
PARAFAC decomposition to compute the Latent Dirichlet Allocation (LDA) [BNJ03] via
the method of moments. In addition to showing how LDA is computed using PARAFAC,
the authors provide a distributed algorithm on the distributed platform REEF.

3.3.4 Brain data analysis
[AABB+07] analyze Electroencephalogram (EEG) data from patients with epilepsy, in
order to localize the origin of the seizure. To that end, they model the EEG data using
a three-mode tensor (time-samples, scales, electrodes) tensor (after pre-processing the
EEG measurements via a wavelet transformation). In order to analyze the EEG tensor,
they use the PARAFAC decomposition: when they identify a potential seizure (which has
signatures on the time and frequency domains), they use the factor vector of the third
mode (the “electrodes” mode) to localize that activity. In some cases, the data contain
artifacts that may shadow the seizures from the PARAFAC decomposition (such as activity

43

caused by the movement of the eyes), and therefore have to be removed. In order to
remove those artifacts, the authors use the TUCKER decomposition which can capture
the subspace variation for each mode better than PARAFAC (due to its increased degrees
of freedom which in turn make it harder to interpret). They identify the artifacts in the
TUCKER components and they use them to remove the artifacts from the data.

When dealing with brain measurements such as EEG or Functional Magnetic Resonance
Imaging (fMRI), usually researchers average data from multiple trials EEG measures
different electrodes on the brain and fMRI measures 3-D pixels (or voxels in the literature).
If we have access to the measurement data from different trials over time, instead of
averaging, we can model the measurements as a three-mode tensor (voxel, time, trial).
In brain measurements, it is not unusual for time shifts to happen, due to physical
phenomena in the brain. If we analyze the tensor without accounting for those shifts, the
solution may be degenerate and therefore not very useful to interpret. To solve that, the
authors of [MHA+08], following up on [HHL03], propose a modification to the PARAFAC
model, the shift invariant CP (Shift-CP) which takes the time shift into account. The
model is:

X(i, j, k) =
R∑
r=1

A(i, r)B(j − τ (k), r)C(k, r)

where τ is a vector of time-shifts which is also learned during the optimization. In
[MHA+08] the authors show that this can recover the latent components of fMRI and
EEG data more accurately, avoiding degenerate solutions.

A generalization of the above Shift-CP model is given in [MHM11] where the authors
propose the Convolutional CP (Conv-CP) model. The idea behind that model is that,
unlike Shift-CP which allows for a single time delay per trial, Conv-CP can accommodate
an arbitrary number of such delays per trial, within the length of the convolutive filter
used (T). The Conv-CP decomposition is:

X(i, j, k) =
R∑
r=1

T∑
τ=1

A(i, r)B(j − τ, r)C(k, r, τ).

In this case, C which serves as the convolutive filter for each trial is a tensor. The authors
show that for both simulated and real data, Conv-CP outperforms Shift-CP since it is a
more general and flexible model.

In [DGCW13] the authors have fMRI measurements over time and wish to estimate
regions of the brain and the connections between them. They model the data as a tensor
(x-coordinates, y-coordinates, time), and assume that using a PARAFAC decomposition,
each rank-one tensor gives a particular region of the brain (the first two modes in space
and the third in time). In order to guide the decomposition to find the right structure
in the brain, they use linear constraints for the spatial factors of the decomposition
according to groups of voxels in the brain that are known to behave in a coherent manner.
Applying those constraints, the authors are able to detect nodes and the network between
those nodes with higher accuracy.

44

[HKP+14] extend supervised learning models such as Support Vector Machines to oper-
ate on tensors as opposed to vectors or points. They leverage the fact that data such as
fMRI brain scans have an inherent tensor structure that should be exploited, and propose
a Kernel SVM that uses the PARAFAC decomposition of the data points as a compact
representation that preserves the structure. They apply their approach in classifying
fMRI brain scans from patients with Alzheimer’s disease, ADHD, and brain damage due
to HIV, and demonstrate the effectiveness of exploiting the higher-order structure of the
data rather than ignoring it.

Finally, in [PMS+14] the authors seek to identify coherent regions of the brain, among
different individuals, that have exhibit activity for groups of semantically similar stimuli.
They use fMRI data from nine different people, when shown 60 different simple English
nouns (e.g., “dog”, “airplane”, “hammer”) forming a (noun, voxel, person) tensor. They
also use semantic feautres for those same nouns, represented by a (noun, feature) matrix,
and they use Coupled Matrix-Tensor Factorization to identify latent clusters of nouns,
voxels, people, and noun features. In an unsupervised way they identify sets of seman-
tically similar nouns that activate coherent regions of the brain such as the pre-motor
cortext which is activated when holding small things or picking things up.

3.3.5 Recommendation Systems
One of the first attempts to apply tensors to collaborative filtering and recommendation
systems is [XCH+10]. The authors propose to extend Bayesian Probabilistic Matrix
Factorization (BPMF) [SM08] which is widely use in Recommendation Systems in the
case where we have temporal information. They propose a Bayesian Probabilistic Tensor
Factorization (BPTF) which is based on the PARAFAC model. In experimental evaluation,
they show that BPTF outperforms BPMF, demonstrating that using temporal information
and exploiting the higher order structure it induces on the data proves beneficial for
recommendation.

In a similar spirit as above and around the same time, the authors of [KABO10] propose
to use context (such as time) in traditional user-item recommendation scenarios by
modeling the data as a tensor. The difference is that they use HOSVD to take a low
rank decomposition of the data (only on the observed values) and use the reconstructed
values for the missing values. The method beats Matrix Factorization techniques as well
as other Context Aware Techniques that may (partially) ignore the higher order structure
of the data that the tensor decomposition exploits.

[RST10] propose the Pairwise Interaction Tensor Factorization (PITF) model, as a method
for tag recommendation on the web. The scenario is as follows: users tag items (web-
pages, pictures, products etc) over time, and we would like to recommend new items
they would like to tag. The proposed PITF model is a special case of both TUCKER and
PARAFAC. It explicitly models the pairwise interactions between users , tags, and items.
In order to follow the original paper’s notation, we rename the A,B,C PARAFAC factor
matrices to U, I,T corresponding to the users, items, and tags respectively. To model
the pairwise interactions, we divide those factor vectors as U =

[
U(I) U(T)

]
, where

45

each one of the column blocks of U interacts with the corresponding columns of I and T.
Then, the PITF model is defined as

X(u, i, t) =
R∑
r=1

U(T)(u, r)T(U)(t, r) +
R∑
r=1

I(T)(i, r)T(I)(t, r) +
R∑
r=1

U(I)(u, r)I(U)(i, r)

The authors evaluate the proposed model in comparison to PARAFAC and TUCKER,
where it obtains higher prediction accuracy faster. Furthermore, PITF won the ECML/
PKDD Discovery Challenge 2009.

In [Ren10], the author introduces Factorization Machines, a generalization of Support
Vector Machines which parametrizes the data internally using a factorization model,
instead of using the raw data. The Factorization Machine can have degree 2 or higher. In
the case of degree 2, the internal factorization is a bilinear matrix factorization, whereas
for higher degrees, it uses a PARAFAC model. Factorization Machines combine the
benefits of SVMs and Factorization Models, especially in scenarios of highly sparse data
(such as in Collaborative Filtering) where simple SVM fails. In experiments, the author
shows that Factorization Machines achieve same recommendation quality as the PITF
method described above.

The authors of [PZZW10] work on a similar social-tagging scenario to [RST10] where
they design a tag recommendation system on a (user, item, tag) tensor. In this paper,
the authors propose an HOSVD based dimensionality reduction. They compare their
proposed recommendation scheme against methods that do not fully exploit the inherent
higher order structure and demonstrate better performance.

In [ZCZ+10, ZZXY12] the authors attack the problem of location-based activity rec-
ommendation to users, using side information for users, activities, and locations. In
particular, the data in the problem include a tensor (user, location, activity), a (user, user)
matrix of user similarities in a social network, a (location, feature), a (user, location)
matrix that encodes information of a user being present at a location without a specified
activity, and an (activity, activity) matrix containing the activities similarities. The authors
propose to jointly decompose these datasets using a flavor of Coupled Matrix-Tensor
Factorization, imposing additional proximity constraints of the involved entities in the
latent space. They show that by integrating all these pieces of auxiliary information, they
outperform recommendation systems that include a part of these additional sources, or
none of them.

Finally, in [PK15] the authors work on image and tag recommendation on Flickr. They
model the data as a multi-set where we have three matrices: (image, feature), (image,
tag keyword), and (image, user). Since the data do not strictly form a tensor, the au-
thors apply PARAFAC2 to this dataset and demonstrate its ability to obtain a joint
low rank representation of this dataset which can provide high quality image and tag
recommendations.

46

3.3.6 Urban Computing
Urban Computing refers to a class of applications that study human activity and mobility
within a city, with ultimate goal to improve the livability of an urban environment.

[MDMT11] use historical data from a metropolitan area in order to forecast areas with
potential future crime activity. They model the data as a four mode tensor where the first
three modes are (longitude, latitude, time) and the fourth mode consists of features such
as residential burglary information, social events, and offender data. They use a form of
TUCKER decomposition to obtain a low-rank representation of that tensor, and they use
that representation for linear discriminant analysis, to predict future crime activity.

In [WZX14] the problem the authors solve is the one of estimating the travel time of a
particular trajectory in a city road network. In order to do so, they use real GPS data
of travel times by a set of drivers. The issue that arises with these types of data is the
high degree of sparsity, since many road segments may have not been traversed at all
(or sometimes ever), thus, trying to estimate travel times for all road segments this
way may result in inaccurate measurements. To alleviate this data sparsity, the authors
propose to use historical data for those GPS trajectories, as well as side information
about time-slots and road segments, to fill-in missing travel time values. In the heart
of their proposed method lies a Coupled Matrix Tensor Factorization: they form a
(road segment, driver, time-slot) tensor, with each entry containing the travel time that
a driver did on a particular road segment during a particular time-slot, a (time-slot,
time-slot) matrix capturing the similarities between time-slots, and a (road segment,
geographical features) matrix, providing additional information for the road segments.
Interestingly, the proposed Coupled Matrix Tensor Factorization here imposes a TUCKER
model on the tensor part (as opposed to the PARAFAC model shown in Fig. 2.5) and this
is because the primary purpose of this low rank decomposition is to complete missing
values, where TUCKER can capture more non-trilinear variation in the data. Using this
tensor decomposition scheme to enrich the data, the authors show that their method
outperforms state of the art baselines.

[ZLW+14] analyze noise complaint data from New York City, in order to identify the
major sources of noise pollution in the city, for different times of the day and the week.
The issue with the human generated complaints is that they result in very sparse data
where some regions are overrepresented and some are underrepresented or not present
at all. In a similar spirit as [WZX14], in order to overcome the data sparsity problem,
the authors form a tensor out of the noise complaint data with modes (region, noise
category, time-slot) and couple it with matrices with additional information for regions,
noise categories and time slots. Subsequently, they decompose it using a Coupled Matrix
Tensor Factorization with a TUCKER model on the tensor, and complete missing values of
noise information in areas and time-slots with few or no complaints at all. The resulting
dataset is an accurate representation of New York City’s noise signature.

Finally, the work of [ZYW+15] addresses the problem of exploring, analyzing, and
estimating drivers’ refueling behavior in an urban setting for better planning (e.g.,

47

placement of gas stations), and recommendation of nearby gas stations with minimal
wait time. As before, the problem with the existing data created by volunteer drivers
is sparsity, and the authors tackle it through low rank factorization and reconstruction
of a (gas station, hour, day) tensor. In particular, they propose a flavor of HOSVD
decomposition, which also incorporates context features including features of the gas
station and the weather. The proposed HOSVD extension is

X(i, j, k) =
∑

r1,r2,r3

G(i, r1)H(j, r2)D(k, r3)S(r1, r2, r3) +
L∑
l=1

B(l, cl)

where B(l, cl) captures the effect of feature l under condition cl in the reconstructed
tensor.

3.3.7 Healthcare & Medical Applications
In [HGS14], the authors use a tensor-based technique to automatically derive phenotype
candidates from Electronic Health Records. Intuitively, the problem is to automatically
identify groups of patients who have similar diagnoses and have undergone similar
procedures. In order to do that, they propose a tensor decomposition based on the
PARAFAC model, where each phenotype candidate is a rank-one component of the
PARAFAC decomposition of a (patient, diagnosis, procedure) tensor. Interestingly, the
proposed decomposition, MARBLE, has a twist from the traditional PARAFAC model. In
addition to the sum of rank one tensors, the proposed model also contains a rank-one
“bias” tensor, as shown in the equation below:

X =

(
R∑
r=1

λrar ◦ br ◦ cr

)
+
(
u(1) ◦ u(2) ◦ u(3)

)
.

In the above model, the ar,br, cr factors are constrained to be sparse, and the bias factor
vectors are normally dense. In that sense, the above model can be seen as an (R+ 1) rank
PARAFAC model, where some of the columns of the factor matrices are constrained. The
role of the rank-one bias tensor is to capture global and constant variation in the data
that is not specific to a particular phenotype. Having this rank-one bias tensor proves
instrumental in identifying good local structure in the data. In addition to the proposed
model, [HGS14] also proposes to fit the above model under a KL-divergence loss and
imposing non-negativity constraints, resulting in sparse and non-negative factors that
are easier to interpret.

The work of [PCVS15] is the first data mining application of the Hierarchical Tucker
(H-Tucker) model of Section 3.2.4. In particular, the authors propose a sparse version of
H-Tucker (which is presented in more detail in Section 3.4.3) and apply it to a disease
phenotyping problem, much like the one addressed by [HGS14]. The difference is that
here, the authors use co-occurrence data of patients exhibiting the same disease, within a
large database of medical records. The need for using H-Tucker, which handles tensors
of very high order more gently than TUCKER or PARAFAC, is because the number of

48

disease types for which the authors compute co-occurrences for is as high as 18 (which
is the top-level number of disease types as defined by the International Classification
of Diseases hierarchy). Thus, the tensor they operate on is as high-order as 18-mode.
Using H-Tucker and interpreting the factor matrices on the leaves, the authors are able
to identify meaningful phenotypes for diseases, concurring with medical experts.

3.3.8 Computer Networks
The authors of [MGF11] use the PARAFAC decomposition to analyze network traffic data
from Lawrence Berkeley National Labs (LBNL) forming a tensor of (source IP, destination
IP, port #, time-stamp) where each entry indicates a connection between the two IP
addresses, on a given port for a given time-tick. Using the factor matrix corresponding
to the “time-stamp” mode, the authors propose a spike detection algorithm on the
temporal profile of the latent components of the decomposition, identifying anomalous
connections in the data.

Subsequently, [PFS12] analyze the same LBNL dataset as in [MGF11], identifying com-
ponents of normal activity, as well as anomalous components, such as one that indicates
a port scanning network attack (where the attacker serially probes a wide range of ports
in a machine, aiming to discover potential security holes).

Finally, in [MWP+14] the authors analyze two types of network data: 1) Honeynet Data
of (source IP, destination IP, time-stamp) and 2) Intrusion Detection System (IDS) logs of
(event type, timestamp, target IP). They apply the PARAFAC decomposition and using
clustering methods on the factor matrices, for different temporal resolutions, they are
able to identify anomalous events, outperforming state of the art IDS systems.

3.3.9 Speech and Image Processing & Computer Vision
The authors of [NMSP10] use the PARAFAC decomposition to conduct Blind Source
Separation (BSS). BSS is the problem of estimating a set of signals that are mixed by
an unknown channel (hence “blind”), using solely the information on the receiver’s
end as measured by a set of sensors. This problem arises in scenarios such as speech
separation where each signal refers to an individual’s speech, and sensors refer to
microphones. The authors show that using PARAFAC can outperform other baselines,
and furthermore, PARAFAC’s uniqueness properties can give guarantees for the harder,
under-determined version of the problem where we have more speakers (signals) than
microphones (sensors).

In [LMWY13] the authors propose a tensor-based method for completing missing val-
ues in series of images. In order to do so, they define the trace norm for the tensor
case, and extend matrix completion algorithms that use the matrix trace norm. The au-
thors compare their proposed method against TUCKER, PARAFAC, and SVD each tensor
slice separately, and they demonstrate that their proposed method achieves superior
performance.

Pioneering the use of tensors in computer vision, [VT02] introduce TensorFaces, a

49

methodology that uses tensors to analyze collections face images into principal compo-
nents across many different modes of a picture (e.g., different pose, different illumination,
or different facial expression). 28 male subjects photographed in 5 poses of 3 illumina-
tions, and 3 expressions and 7943 pixels per image. They apply HOSVD to this ensemble
of images and identify the principal variation of every picture with respect to all the
modes of the data.

Finally, in [TSL+08] the authors propose a Bayesian version of HOSVD and use it in
order to tackle model 3-D face data. In particular, using their proposed decomposition
in ensembles of 3-D face images, they compute a parsimonious representation of the
3-F faces in the form of core tensor which captures latent characteristics of the 3-D faces,
which is sufficient to later reconstruct any particular face with a given expression.

3.4 Scaling Up Tensor Decompositions
With the advent of big data, tensor decompositions have faced a set of challenges that
needed to be addressed before tensors can be used for truly big data applications. In
the recent years, this particular sub-field of designing scalable tensor decompositions
has witnessed a remarkable growth and is currently at a sufficiently mature stage,
where tensor decompositions can be deployed in the big data scale. In this section, we
present such advances, mostly in chronological order, and draw high level abstractions,
summarizing the key ideas and insights behind each method.

At a high level, the algorithms that we survey here can be categorized as using one or
more of the following strategies in order to achieve scalability and speed:

• Compression: Coming up with a compressed version of the tensor and decompos-
ing it instead of the full data is one of the earliest approaches, which has also been
a recurring theme in recent works.

• Exploiting Sparsity: In many applications, the tensor is highly sparse (i.e., many
of the values are 0), because of the very nature of the application (e.g., in Facebook,
people are usually friends with a few hundreds of people, out of the 2 billion people
who use Facebook, therefore such a graph would have very few connections).
Exploiting this sparsity in various ways, either by re-designing the algorithm
so that it carries out sparse matrix multiplications, or used in conjunction with
sampling (which is the next major category), has been a very popular way of
achieving scalability and efficiency.

• Sampling: Either via drawing a sample of a few entries of the tensor, or through
extracting sampled sub-tensors from the data, sampling has been instrumental in
creating approximate algorithms which achieve good accuracy (often comparable
to exact algorithms), while being much more lightweight in terms of computation.

• Parallel/Distributed Computation: In conjunction with the rest of the techniques,
many recent works have taken advantage of parallelization of the algorithms, or the
use of existing high-end distributed computation environments (e.g., Hadoop/MapRe-
duce), and thus achieve scalability.

50

In the next few lines, we will summarize the advances for the PARAFAC, TUCKER, and
H-Tucker decompositions, for which there exist scalable algorithms. Furthermore, Tables
3.1 and 3.2 classify the algorithms we summarize with respect to the aforementioned
strategies.

3.4.1 PARAFAC
Perhaps the earliest method that, by using compression, speeds up the PARAFAC de-
composition is the one proposed in [BA98]. The authors use the observation that for a
given PARAFAC model of a three-mode tensor, [A,B,C], the factor matrices span the
subspaces of that tensor; if we call [U1,U2,U3] the bases for those subspaces, we can
then write A = U1Ã, B = U2B̃, and C = U2C̃, where Ã, B̃, C̃ are much smaller factor
matrices. This gives rise to the algorithm which first computes a TUCKER decomposition
on the original tensor X, obtaining core G and subspace basis matrices [U1,U2,U3]. The
core is a compressed version of X. The algorithm then computes a PARAFAC decom-
position on G, obtaining the compressed factors Ã, B̃, C̃, and then using the TUCKER
matrices, it projects those factors back to the original subspace of the tensor. The above
works because it can be shown that, this is a CANDELINC [CPK80] model, essentially a
PARAFAC model with linear constraints on the factors, and it can proved that matrices
Ã, B̃, C̃ preserve the variation of the data. Subsequently, [CFC15] based on the same
principle, derive a TUCKER compression based algorithm to speed up PARAFAC with
non-negativity constraints.

Subsequently, [KBK05] define a greedy algorithm for PARAFAC which is based on the
computation of multiple rank-one components. In order to do so, they define the below
recursive equations:

x(t+1) = X×2 y(t) ×3 z(t)

y(t+1) = X×1 x(t+1) ×3 z(t)

z(t+1) = X×1 x(t+1) ×2 y(t)

The above recursion is called higher-order power method and converges to vectors
x∗,y∗, z∗ which can be shown to be equal to the rank-one PARAFAC decomposition of X,
assuming that X is rank-one and noise-free. The power method for tensors dates back to
[KR02], wherein the authors propose that method for the symmetric case of x = y = z.
The power method is very advantageous for sparse tensors, since its complexity is in the
order of number of non-zero entries in X.

This gives us a way of computing a single rank-one component, therefore, in [KBK05]
the authors adopt a “deflation” technique where they compute a rank-one component at
every iteration, remove it from the data, and continue iterating until all R components
are extracted. This approach is not optimal, since PARAFAC factors are not orthogonal,
however, it has been shown that for sparse factors, deflation numerically converges to
the same factors as if they were calculated all at the same time [PSB13].

Later on, [APG+14] used the same principle of rank-one component calculation via

51

higher-order power method, and deflation, with the addition of a Minimum Description
Length (MDL) cost function, which dictates the termination of the deflation (and chooses
the number of components) automatically.

A significant portion of the literature is devoted to scaling up the ALS algorithm for
PARAFAC. In Section 3.2.1.2 and Equation 3.1 we define the operation MTTKRP as

Y = X(1) (C�B) .

When the dimensions I × J × K of X are big, materializing the Khatri-Rao product
(C�B) and carrying out MTTKRP can be prohibitive. This turns out to be a scalability
problem of the Alternating Least Squares algorithm, which we will henceforth refer to
as “Intermediate Data Blowup” or“Intermediate Data Explosion” (a term first coined
by [KS08] and later by [KPHF12]), since (C�B) is an interim piece of data which is
a by-product of the algorithm and not the output, which, however, requires immense
storage and computational resources.

The “Intermediate Data Explosion” issue was first identified and addressed by [BK07],
wherein the authors define a suite of operations for sparse tensors with specific focus in
Matlab. This later became the widely used Tensor Toolbox for Matlab [BK+15], which
specializes in the manipulation of sparse tensors. Sparsity is key in order to achieve
scalability, since it allows for the manipulation of the non-zero values of X in operations
such as MTTKRP, which leads to far more efficient algorithms. In particular, in [BK07],
the authors show how instead of computing the Khatri-Rao product, this expensive
operation can be carried out for every column of C and B independently. In this column-
wise view of the operation, the computation simply reduces to n-mode products of X
and the columns of C and B:

Y(:, r) = X×3 C(:, r)×2 B(:, r)

for r = 1 · · ·R. The n-mode products of a sparse tensor X with the columns of C and
B can be carried out efficiently, without ever computing (C�B), which makes the
proposed algorithm in [BK07] very efficient for sparse tensors.

Subsequently, [KPHF12] propose a mathematically equivalent way of avoiding the
Intermediate Data Explosion which is more appropriate for distributed computation,
proposing the first PARAFAC ALS algorithm for the Map/Reduce framework. Instead of
using n-mode products, the authors decouple the Khatri-Rao product between C and
B, separately compute products of each column C(:, r) and B(:, r) with X(1), and then
combine the results using Hadamard (element-wise) products. The reason why [KPHF12]
follows this way, is because it is more amenable to the Map/Reduce programming model
which they use in order to distribute the computation of the ALS algorithm among
a cluster of machines. In addition to implementing an efficient MTTKRP operation,
[KPHF12] also introduces Map/Reduce optimizations that further enable scalability for
tensors that do not fit in memory. Recently, they follow up with [JPKF15] which is more
efficient than [KPHF12] in the Map/Reduce framework.

52

More recently, [CV14] provide another efficient algorithm for computing the MTTKRP
operation for sparse tensors. In particular, the authors show that the MTTKRP of
Equation 3.1 can be equivalently computed in a column-wise manner as follows:

M = XT
(2)B(:, r)

Y(:, r) = MC(:, r)

All of the above operations are very efficient assuming that X is sparse. Furthermore, the
authors implement the ALS algorithm using this version of MTTKRP in a shared-memory
parallel architecture, efficiently scaling up the decomposition.

In [RSSK14], the authors provide a memory-efficient algorithm for MTTKRP that ex-
ploits sparsity and has memory requirements in the order of the non-zero entries of the
tensor.

The latest work that is improving upon the MTTKRP operation is [SRSK15] wherein
the authors, instead of computing the result of MTTKRP in a column-wise fashion, as
the rest of the existing methods, they compute each row Y(i, :) at a time, which has
the advantage that it requires a single traversal of the elements of the sparse tensor X,
and indeed results in more efficient computation, compared to the previous solutions to
MTTKRP.

In a different spirit, [PC09] propose a block PARAFAC decomposition, where they parti-
tion the original tensor into smaller sub-tensors, they distribute the computation of the
sub-tensors potentially into different machines in a shared-memory architecture, and fi-
nally merge the factor matrices resulting from each individual sub-tensor by introducing
multiplicative updates. The idea behind [PC09] tackles the Intermediate Data Explosion
by reducing the dimensions of the tensor in a way that the intermediate data created by
the ALS algorithm are no longer an issue to scalability. A potential issue, however, with
[PC09] is, especially in the case of very sparse tensors, is that it is very likely that many
sub-tensors will be almost entirely zero or rank-deficient, which may result in degenerate
solutions.

A few years later [PFS12] introduce a parallel PARAFAC decomposition which uses biased
sampling to extract sub-tensors from the data. Suppose that we have a sample of rows
which is a set of indicesI, and accordingly J and K for the columns and third-mode
fibers. Then, each sub-tensor Xp is defined as

Xp = X(I,J ,K)

The algorithm extracts many different sub-tensors Xp which are in turn decomposed in
parallel. In the end [PFS12] merges the individual partial results from the sub-tensors
by filling-in the values in the indices of the factors that have been sampled in the first
step. This has the fortuitous by-product that the resulting factors will be sparse by
construction, which is very desirable both for storage and interpretability. Furthermore,
[PFS12] provably guarantees that the different samples will be merged to the correct
corresponding components. The fundamental difference from [PC09] is that sampling

53

selects sub-tensors that are more likely to lead to high quality solutions. Furthermore,
[PFS12] processes fewer sub-tensors than [PC09], especially when the tensor is sparse.
The idea of [PFS12] is later on extended in the case of Coupled Matrix-Tensor Factoriza-
tion in [PMS+14], showing significant speedups.

In the realm of Boolean tensor decompositions, [EM13] propose an algorithm which
bears a few similarities with [PFS12] in the sense that it uses randomization to select
dense blocks of within a tensor, and decomposes those blocks. In contrast to [PFS12],
[EM13] uses random walks to identify dense blocks in a binary tensors. The authors
define a graph where the nodes are the non-zero elements of the tensor, and the edges
connect elements that share at least two indices (in a three-mode tensor). The blocks that
the random walk finds correspond to rank-one components of a Boolean PARAFAC de-
composition, thus the method returns the Boolean decomposition of the most important
blocks in the data.

As we saw, [PFS12] uses sampling to reduce the dimensionality of the data, and paral-
lelizes the decomposition. In a follow-up work [SPF14] propose an alternative scheme,
where instead of sampling, they use random projection matrices U1,U2,U3 (not to be
confused with the TUCKER matrices of [BA98]) and compress the original tensor X into
a smaller tensor Xp as

Xp = X×1 U1 ×2 U2 ×3 U3.

As in [PFS12], they create multiple compressed tensors Xp which are decomposed in
parallel, and at the end, solving a least squares problem they are able, under mild
conditions, to identify the true factors of X up to column permutations and scaling, which
is a very important theoretical guarantee of correctness. [SPF14] build upon the result
of [SK12] where the authors show that one can reconstruct the original A,B,C from a
single compressed replica, provided that the latent factors are sparse (requirement which
is not posed by [SPF14]). Subsequent work by [RSSK14] shows how the compression of
X into Xp can be done in a memory-efficient fashion.

In [DAK+14] we find a parallel approach which builds upon the idea of breaking down
the tensor into a grid, such as in [PC09], and parallelizing the computation. The novelty
in [DAK+14] is the fact that the communication between different machines that are
working on separate tensor blocks is very important, especially so that machines that
work on blocks that correspond to the same part of the latent factors can collaborate.
Choosing the connectivity right, by using multi-layer graphs to define connectivity
between machines, can speed up the ALS algorithm, while ending up in solutions that
under assumptions are identifiable.

Most of the methods above, with the exception of [PFS12] and[CFC15], are focused on
the “vanilla” PARAFAC decomposition, without imposing any types of constraints. In
[LS15], the authors propose a paralellizable algorithm for PARAFAC based on the Alter-
nating Direction of Multipliers Method (ADMM) [BPC+11], which can accommodate a
wide variety of constraints, and is particularly well suited for distributing parts of the
optimization variables over different machines.

54

So far, all the scalable algorithms that we have seen, either explicitly or implicitly, use
the ALS algorithm. The work of [BKP+14], however, is introducing a Map/Reduce
algorithm based on Distributed Stochastic Gradient Descent. The algorithm first splits
the tensor into disjoint blocks, or “strata”, which correspond to disjoint parameters in
the factor matrices. Each stratum is distributed to a different computer, and for each
stratum, the algorithm uses Stochastic Gradient Descent (SGD) updates, to estimate the
parameters of the factors corresponding to that stratum. In order to correctly cover all the
data, the algorithm creates different sets of disjoint blocks and iterates over those block
configurations. SGD is a very efficient, stochastic algorithm, which uses a randomly
selected data point at every different update, instead of using the entire data as other
gradient based approaches do. As a framework SGD, and as a result [BKP+14], is very
flexible and can accommodate different objective functions (e.g., KL-Divergence instead
of Frobenius norm), or regularizations such as `1 norm penalties. One subtle issue to
note here is that SGD is sampling from the “observed” values at random, there is an
inherent assumption that 0 values in the data are considered “unobserved” or “missing”,
a fact that we also touch upon in Section 3.2.1.3.

Subsequently, [SK14] propose two distributed methods for Map/Reduce, one based on
ALS and one based on Coordinate Descent. The ALS-based method works on sets of
columns of the factor matrices, and updates entire rows at a time. Coordinate Descent on
the other hand, updates individual coefficients of the factor matrices, in a column-wise
fashion. The authors demonstrate that both methods scale well, both in terms of tensor
dimensionality and number of non-zeros, and show that their ALS-based method is
more efficient in terms of convergence speed, whereas the Coordinate Descent method
offers significant memory gains.

Finally, the work of [KC12] is quite different in flavor, and draws from the domain of
Relational Databases. The basic idea behind the proposed method is as follows: An
N -mode tensor can be seen as a “relation” or table in a relational database, where each
mode is a different column. A widely used operation in databases is the so-called
“normalization”, where one splits up a relation with many columns (or alternatively a
high order tensor) into smaller relations, where one of those columns is shared. This
is exactly what [KC12] does to split up a large and high order tensor into smaller ones,
computes the PARAFAC decomposition on the “normalized” relations/tensors, and in
the end, merges the factors using a “joining”, another widely used database operation,
which takes two relations with a column in common, and joins the remaining columns
based on matching entries for that common column.

3.4.2 TUCKER
As we mention in the previous subsection, [KS08] was the first work to mention the issue
of Intermediate Data Blowup. In the particular case of the TUCKER decomposition, the
problem refers to the operation of line 4 of Algorithm 3.3:

Y ← X×N UT
N · · · ×n+1 UT

n+1 ×n−1 UT
n+1 · · · ×1 UT

1

55

Algorithm Compression Exploits Sparsity Sampling Dist. / Parallel
[BA98] X

[KBK05] X
[BK07] X
[PC09] X
[KC12] X

[KPHF12] X X
[PFS12] & Chapter 4 X X X

[EM13] X X X
[DAK+14] X

[CV14] X X
[APG+14] X
[BKP+14] X X X

[SPF14] & Chapter 6 X X
[LS15] X
[SK14] X X

[RSSK14] X
[SRSK15] X X
[CFC15] X
[JPKF15] X X

Table 3.1: Classification of scalable algorithms for PARAFAC with respect to the strategies
they employ.

56

The above operation creates a series of intermediate results, first of which being X×N UT
N .

If tensor X has large dimensions, then this intermediate piece of data will be dense (since
the TUCKER factors are dense matrices) and large, which creates the Intermediate Data
Blowup problem. In order to tackle this problem, the authors propose to handle these
N -mode products of the above operation element-wise for one or more modes of the
tensor.

Especially in the cases where the tensor is sparse, executing the product element-wise for
a given mode can be done more efficiently, since the computational complexity depends
on the number of non-zero entries in the data. As a result of the above, the algorithm in
[KS08] requires much less storage and is able to compute the TUCKER decomposition of
very large tensors. A side-effect of handling one or more modes element-wise is that in
some cases, this algorithm tends to be slower than Algorithm 3.3, however the gains in
terms of memory requirements are up to 1000-fold.

Subsequently, the work of [Tso10] uses sparsification of a tensor in order to achieve
scalability. In particular, the author proves that by randomly sampling non-zero entries
of the tensor, and scaling appropriately, the expected approximation error does not suffer
a lot. Thus, by sparsifying the tensor, the author demonstrates that we can compute the
TUCKER decomposition (using either Algorithm 3.2 or Algorithm 3.3) much faster, while
still capturing the variation of the full data.

In [CC10] the authors propose an extension to the matrix CUR decomposition [DKM+06]
for tensors, different and more efficient from the Tensor-CUR decomposition [MMD08];
in a nutshell, CUR decomposes a matrix X ≈ CUR, where C contains sampled columns
of the X, R contains sampled rows, and U is computed such as the squared error is
minimized. In this work, the authors introduce an adaptive algorithm for selecting
the rows, columns, and third-mode fibers of the tensor which can be done efficiently,
resulting in the fast computation of a TUCKER-like model.

Fairly recently, [JPKF15] follow-up the work in [KPHF12], which is PARAFAC ALS for
Map/Reduce, by introducing a unified decomposition framework with operations that
are applicable both for PARAFAC and TUCKER decompositions. In particular, [JPKF15]
introduces a scalable and distributed implementation of the N -mode product, which
is essential to both PARAFAC (as [BK07] demonstrates) and TUCKER computations, by
decoupling its steps in a way that is suited for the Map/Reduce framework. As an
extension of [JPKF15], the same research group provides a scalable implementation of
Coupled Matrix-Tensor Factorization in [JJK16].

Finally, the most recent work that is speeding up the TUCKER decomposition is by
[ABK16], where the authors propose the first distributed memory implementation of
Algorithms 3.2 and 3.3. They identify the basic bottlenecks algorithms, essentially the
N -mode product and the computation of the R leading singular vectors of a matricized
tensor (which they do by computing the eigenvectors of a symmetric matrix created from
the matricized tensor). The proposed implementation is very scalable and was able to
decompose (and ultimately compress, by using TUCKER) multiple terabytes of scientific

57

data expressed as high-order tensors.

Algorithm Exploits Sparsity Sampling Dist. / Parallel
[KS08] X
[CC10] X
[Tso10] X X

[JPKF15] X X
[ABK16] X

Table 3.2: Classification of scalable algorithms for TUCKER with respect to the strategies
they employ. We omit compression, since this has been an overarching theme for scaling
up PARAFAC (often using TUCKER to obtain such compression).

3.4.3 H-Tucker
To the best of our knowledge, [PCVS15] is the first (and currently the only) scalable algo-
rithm for the Hierarchical Tucker Decomposition. The main computational bottleneck,
especially for very high order tensors, is the fact that the matricizations that Algorithm
3.5 is doing will have a prohibitively large dimension, since it will be the product of the
sizes of all but one of the dimensions. This, in turn, makes the computation of the leading
singular vectors per matricization an extremely hard problem, which makes Algorithm
3.5 unable to scale for very large and high-order tensors. The main idea behind [PCVS15]
is to use a sampling approach inspired by CUR , where instead of using the very high
dimensional matricizations, the authors sample a small number of columns (and make
sure that the sampling is consistent across matricizations). Assuming that the original
tensor is very sparse, the algorithm in [PCVS15] ensures that all the data in the algorithm,
both intermediate and results, are sparse, thus making the computations much faster
and scalable.

3.5 Conclusions
Tensors decompositions are very versatile and powerful tools, ubiquitous in data mining
applications. As we saw, they have been successfully integrating in a rich variety of
real-world applications, and due to the fact that they can express and exploit higher
order relations in the data, they tend to outperform approaches that ignore such struc-
ture. Furthermore, recent advances in scaling up tensor decompositions has employed
practitioners with a strong arsenal of tools that can be applied to many big multi-aspect
data problems.

58

Part I

Algorithms - Scalability and
Efficiency

59

Chapter 4

PARCUBE: Sparse Parallelizable
PARAFAC Decomposition

Exploiting sparsity and sampling for
paralellizing and speeding up PARAFAC.

Chapter based on material published in [PFS12] and [PFS15].

How can we efficiently decompose a tensor into sparse factors, when the data does
not fit in memory? In this Chapter, we propose PARCUBE, a new, triple-sparse and
highly parallel method for speeding up tensor decompositions that is well-suited
to producing sparse approximations. Experiments with even moderately large data
indicate over 90% sparser outputs and 14 times faster execution, with approximation
error close to the current state of the art irrespective of computation and memory
requirements.

4.1 Introduction
Tensors and tensor decompositions have recently attracted considerable attention in
the data mining community. With the constantly increasing volume of today’s multi-
dimensional datasets, tensors are often the ‘native’ format in which data is stored, and
tensor decompositions the natural modeling toolset - albeit still suffering from major
scalability issues. The state of the art toolboxes for tensors [BK+15, AB00] still operate on
main memory and cannot possibly handle disk-resident tensor datasets, in the orders of
millions or billions of non-zeros.

Motivated by the success of random sampling - based matrix algorithms such as [DKM+06],
it is natural to ask whether we can we use similar tools in the case of tensors. Is it possible
to randomly under-sample a tensor multiple times, process the different samples in par-
allel and cleverly combine the results at the end to obtain high approximation accuracy

61

at low complexity and main memory costs? There exists important work on how to use
sampling in order to achieve a sparse matrix decomposition, the CUR decomposition
[DKM+06]; this method has also been extended in order to handle tensors [MMD06].
However, both these methods are tied to a specific decomposition, while we desire to
disconnect sampling from the specific decomposition that follows.

This chapter introduces PARCUBE, a fast and parallelizable method for speeding up
tensor decompositions by leveraging random sampling techniques. A nice side-benefit
of our algorithm is its natural tendency to produce sparse outer-product approximations,
i.e., the model-synthesized approximation of the given tensor data is naturally very
sparse, which is a desirable property in many applications. For instance, PARCUBE
produces over 90% sparser results than regular PARAFAC, while maintaining the same
approximation error. Figure 4.1 shows a high-level overview of how PARCUBE works
(described in detail in Section 4.2.

Our core contribution is in terms of the merging algorithm that collects the different
‘punctured’ decompositions and combines them into one overall decomposition in an
efficient way. We provide theoretical guarantees for the correctness of our approach.

Furthermore, we apply PARCUBE on four different, real datasets, reporting our discover-
ies and demonstrating the remarkable flexibility and versatility of Tensor Analysis as a
Data Mining tool.

An earlier version of the present work has appeared in the proceedings of ECML-PKDD
2012 [PFS12]. In this extended version, in addition to the contributions of [PFS12], we
provide a thorough experimental analysis of the algorithm, investigating scalability of
PARCUBE in a variety of scenarios; additionally, we complement our description of
PARCUBE with an intuitive explanation behind the main idea, and

In order to promote and encourage reproducibility of the results, we provide a very
efficient parallel implementation which we make publicly available at http://www.cs.
cmu.edu/~epapalex/src/parCube.zip.

4.2 Proposed Method
In this section we introduce PARCUBE, a novel, parallel algorithm for PARAFAC decom-
position.

A scalar is denoted by a lowercase, italic letter, e.g. x. A column vector is denoted by a
lowercase, boldface letter, e.g. x. A matrix is denoted by an uppercase, boldface letter, e.g.
X. A three-way tensor is denoted by X. Let I be a set of indices, e.g. I = {1, 4, 7}; then,
a(I) denotes {a(1), a(4), a(7)}; a(:) spans all the elements of a. This notation naturally
extends to matrices and tensors, i.e., A(I, :) comprises all columns of A restricted to
rows in I. By NNZ() we denote the number of non-zeros

Before we proceed with the description of PARCUBE, first we define a class of algorithms
that we desire our method to fall under:

62

http://www.cs.cmu.edu/~epapalex/src/parCube.zip
http://www.cs.cmu.edu/~epapalex/src/parCube.zip
http://www.cs.cmu.edu/~epapalex/src/parCube.zip
http://www.cs.cmu.edu/~epapalex/src/parCube.zip

X"

X1"

Xr#

�#

�#

…
#

Figure 4.1: The main idea behind PARCUBE: Using biased sampling, extract small
representative sub-sampled tensors, decompose them in parallel, and carefully merge
the final results into a set of sparse latent factors.

Definition 6. Triple-sparse: An algorithm is triple-sparse when 1) the input of the
algorithm is sparse, 2) the intermediate data during the lifetime of the algorithm is
sparse, and 3) the final output of the algorithm is sparse.

In the above definition, the input of the algorithm need not necessarily be sparse; how-
ever, a triple-sparse algorithm still satisfies the second and third requirement, by operat-
ing on a sparse, representative subset of the data. We, thus, call PARCUBE, a triple-sparse
algorithm. We have to note that we consider the intermediate data that the algorithm
manipulates to be sparse with respect to the original data, and not necessarily sparse with
respect to the sample size. In addition to storage and efficiency, a major benefit of sparsity
is interpretability: when most of the coefficients of the factors are zero, it is easier for a
person to inspect the non-zeros and identify patterns in the results. Additionally, hav-
ing sparse latent factors has been shown to be equivalent to higher order co-clustering
[PS11, PSB13] which is a very useful and highly interpretable tool in exploratory data
mining.

In addition to PARCUBE being a triple-sparse algorithm, we design the method with the
following three main goals in mind: G1: Relative simplicity, speed, and parallelizable ex-
ecution; G2: Ability to yield sparse latent factors and a sparse tensor approximation; and
G3: provable correctness in merging partial results, under appropriate conditions.

4.2.1 Sampling for PARCUBE
The first step of PARCUBE is to sample a very high dimensional tensor and use the
sampled tensor in lieu of the original one, bearing three important requirements in mind:
R1 The need to significantly reduce dimensionality; R2 The desire that sampling should

63

be decomposition-independent - we should be able to apply any decomposition we
desire after sampling, and be able to extrapolate from that; and R3: Sampling should
maintain linear complexity on the number of non-zero entries.

The first thing that comes to mind in order to satisfy requirement R1 is to take a uniform
random sample of the indices of each mode, i.e., take a uniform random sample of
the index sets {1 · · · I}, {1 · · · J}, and {1 · · ·K}. However, this naive approach may
not adequately preserve the data distribution, since the random index samples may
correspond to entirely arbitrary rows/columns/fibers of the tensor. We performed initial
tests using this naive method, and the results were consistently worse than the proposed
method’s. We thus propose to do biased sampling: If we, somehow, determine a measure
of importance for each index of each mode, then we may sample the indices using this
measure as a sampling weight/probability. For the purposes of this work, let us assume
that our tensor X has non-negative entries (which is the case in huge variety of data
mining applications); if we were to deal with tensors containing real values, we should
consider the element-wise absolute value of the tensor for the notions that we introduce
in the sequel.

A reasonable measure of importance is the marginal sum of the tensor for each mode,
however we can also use the sum of squares of instead, as a measure of energy. Namely,
the measure of importance for the indices of the first mode is defined as: xa(i) =
J∑
j=1

K∑
k=1

X(i, j, k) for i = 1 · · · I.

Similarly, we define the following importance measures for modes 2 and 3:

xb(j) =
I∑
i=1

K∑
k=1

X(i, j, k),xc(k) =
I∑
i=1

J∑
j=1

X(i, j, k)

for j = 1 · · · J and k = 1 · · ·K.

Intuitively, if xa(i) is high for some i, then we would desire to select this specific index
i for our sample with higher probability than others (which may have lower xa value).
This is the very idea behind PARCUBE: We sample the indices of each mode of X without
replacement, using xa, xb and xc to bias the sampling probabilities.

We define s to be the sampling factor, i.e. if X is of size I × J ×K, then Xs derived by
PARCUBE will be of size I

s
× J

s
× K

s
. We may also use different sampling factors for each

mode of the tensor, without loss of generality.

In order to obtain the sample we 1) Compute set of indices I as random sample without

replacement of {1 · · · I} of size I/s with probability pI(i) = xa(i)/
I∑
i=1

xa(i). 2) Compute

set of indices J as random sample without replacement of {1 · · · J} of size J/s with prob-

ability pJ (j) = xb(j)/
J∑
j=1

xb(j). 3) Compute set of indices K as random sample without

64

replacement of {1 · · ·K} of size K/s with probability pK(k) = xc(k)/
K∑
k=1

xc(k).

The PARCUBE method defines a means of sampling the tensor across all three modes,
without relying on a specific decomposition or a model. Therefore, it satisfies requirement
R3. Algorithm 4.1 provides an outline of the sampling for PARCUBE.
Lemma 4.1.:
The computational complexity of Algorithm 4.1 is linear in the number of non zero
elements of X.

Proof. Suppose we have a representation of X in quadruplets of the form (i, j, k, v) where
X(i, j, k) = v, for v 6= 0 and v ∈ NNZ(X). For each of these quadruplets, we may
compute the density vectors as:

xa(i) = xa(i) + v,xb(j) = xb(j) + v,xc(k) = xc(k) + v

This procedure requires 3 O(1) additions per element v, therefore the total running time
is O(NNZ(X)). �

By making use of the above Lemma, and noticing that sampling of the elements, after
having computed the densities of each mode is a linear operation on the number of
non-zeros, we conclude that requirement R3 is met, i.e. our computation of the biases
and biased sampling are linear on the number of non-zeros. Furthermore, sampling
pertains to Goal G1 which calls for a fast algorithm.

Algorithm 4.1: BIASEDSAMPLE

Input: Original tensor X of size I × J ×K, sampling factor s.
Output: Sampled tensor Xs, index sets I,J ,N .

1: Compute

xa(i) =
J∑
j=1

K∑
k=1

X(i, j, k), xb(j) =
I∑
i=1

K∑
k=1

X(i, j, k), xc(k) =
I∑
i=1

J∑
j=1

X(i, j, k).

2: Compute set of indices I as random sample without replacement of {1 · · · I} of size

I/s with probability pI(i) = xa(i)/
I∑
i=1

xa(i). Likewise for J ,K.

3: Return Xs = X(I,J ,K).

4.2.2 Non-negative PARAFAC decomposition using PARCUBE
Now, let us demonstrate how to apply PARCUBE in order to scale up the popular
PARAFAC decomposition, with non-negativity constraints. We choose to operate under
the non-negativity regime since the vast majority of applications of interest naturally
impose this type of constraint.

65

Algorithm 4.2 demonstrates the most basic approach in which one extracts a sample
from the original tensor, runs the PARAFAC decomposition on that (significantly) smaller
tensor and then redistributes the factor vectors to their original positions, according to
the sampled indices I,J ,K. Note that many of the coefficients of the resulting PARAFAC
factor matrices will be exactly zero, since their corresponding indices will not be included
in the sample and consequently, they will not receive an updated value. This implies
that a natural by-product of our approach is sparsity on the factors by construction, thereby
satisfying Goal G2.

However, Algorithm 4.2 relies on a sole sample of the tensor and it might be the case that
some significant portions of the data, depending on the sampling factor and the data
distribution, may be left out. To that end, we introduce Algorithm 4.3 which is our main
contribution. Algorithm 4.3 generates many samples and correctly combines them, in
order to achieve better extraction of the true latent factors of the data tensor.

The key idea behind Algorithm 4.3 is the method by which all the different samples are
combined in order to output the decomposition matrices; more specifically, intuitively
we enforce all the different samples to have a common set of indices Ip,Jp,Kp, where
p ∈ [0, 1] is a fraction of the sampled indices per mode. For example, for a mode of
size I and sampling factor s, the common set of indices will be of size Ip is pI/s. This
p fraction of indices is selected to be the indices with the highest density, as indicated
by the weights that we compute. After we select these common indices, the rest of the
sampling is being conducted on the remaining indices. Having this common basis, we
are able to combine the samples using Algorithm 4.4. In section 4.2.3, we elaborate on
the proposed merging scheme, and provide an illustrative example.

Note that the generation of the r distinct samples of X, as well as the PARAFAC decompo-
sition of each of them may be carried out in parallel; thus satisfying Goal G1. Regarding
Goal G3, note that correctness of the merge operation requires certain conditions; it
cannot be guaranteed when the individual random samples do not satisfy PARAFAC
identifiability conditions, or when the common piece that is used as a reference for
merging is too small (p is too low). Proposition 4.1 provides a first correctness result for
our merging algorithm.

4.2.3 Merging explained
The component permutation problem

Suppose we want to merge the partial factor matrices Ai i = 1 · · · r into the full-sized fac-
tor matrix A. The ordering of the PARAFAC components is arbitrary, since the PARAFAC
decomposition is unique up to scaling and component permutations. Since any ordering
is good, we have to, arbitrarily, agree on an ordering for the components/columns of
A. A problem that arises when we are about to merge the partial factors Ai into A is
the fact that each Ai has its own arbitrary ordering of columns which, sometimes, is not
consistent for all i. We, thus, have to first agree on a single ordering, and then permute
the columns of all Ai such that they obey that ordering.

66

The key idea

Key to identifying the correct correspondence of columns between different Ai is the
common set of sampled indices Ip,Jp,Kp. By fixing these indices, we force the rows of
matrices Ai that correspond to indices Ip to be approximately the same, and accordingly
for the rows of Bi and Jp, as well as Ci and Kp. We will elaborate more in subsection
4.2.4 about the conditions that need to be met, in order for the rows that correspond
to the same subset of indices to be approximately equal, but we may assume that this
is the case, for the purposes of explaining the merging algorithm (Algorithm 4.4). It is
important to note here that we normalize every column of Ai in such a way that the
‖A(Ip, j)‖F = 1 for j = 1 · · ·F (we do the same for Bi and Ci).

The basic idea of Algorithm 4.4 is the following: We arbitrarily choose the columns of
A1 as the reference ordering. After doing that, we update the columns of A (the final
matrix), which originally contains all zero values, using the values of Ai. The way we
update is described in Algorithm 4.2. In the next iteration of Algorithm 4.4, we first
need to permute the columns of A2 so that they match the (arbitrary) ordering of the
columns of A1 that we decided upon. In order to do that, we take the inner products
of combinations of the common parts of the columns of A1 and A2. Because of the
way we have normalized, the parts of the matrices that correspond to the common set
of indices will have unit norm; thus, for the matching pair, the inner product will be
approximately equal to 1, whereas for the rest of the pairs it will be close to 0. We prove
this claim in subsection 4.2.4. After we establish the correct ordering, we update only the
non-zero coefficients of A using A2. We choose to update only the non-zero values, since
averaging values that happen to correspond to different samples was not retaining the
correct scaling of the factors.

After we establish the correct correspondence for the columns of Ai, we can apply the
same permutation to the columns of Bi and Ci, instead of computing the correspondence
seperately. In addition to the factor matrices, we have to also reorder the λi vector at
every merging step.

Illustrative example & discussion

An illustrative example of our merging scheme, for two partial factor matrices, is shown
in Fig. 4.2. Here, we describe the merging procedure. Say that the small matrices shown
on the leftmost part the figure are the Ai i = 1 · · · r matrices (where r = 2 in the example).
Each color corresponds to a distinct latent component; different shades of the same
color denote the fact that two vectors belong to the same rank-one component of the
non-sampled tensor, however they correspond to a different set of sampled indices.
Notice that there are component permutations across matrices which need to be resolved
in order to merge correctly. Without loss of generality, assume that the upper part of
each component is the common part, defined by the shared sample of indices. The
common part is denoted by a dark shade of the color of each component, in Fig. 4.2.
Then, Algorithm 4.4 will do the following steps: starting from A1, it will redistribute the
values of the factors to the original index space. The ordering of components imposed

67

!!"

!#"

$%&&%'"
()*+"

" !"."
,%*"&)+-./'0"-%&(%'1'+23"

,%*"'%'4&)+-./'0"-%&(%'1'+23"

"##$%&'%()*+,&(-&+(..(#&'/%,01&

55" !"."
2!345678698&

!&

Figure 4.2: Example of merging two partial factor matrices to the final matrix, while
accounting for potential column permutations. (Best viewed in color)

by A1 (shown in different colors in Fig. 4.2) is the order that Algorithm 4.4 will impose
to the rest of the partial results. In Fig. 4.2, the second partial factor matrix A2 has
a different ordering of the last two components, therefore the algorithm will use the
common part in order to identify this discrepancy, and reorder the columns of A2 before
merging its values to the final result. The algorithm proceeds this way, until all partial
matrix columns have been reordered to match the ordering of A1.

A fairly subtle issue that arises is how to overcome scaling disparities between factors
coming from two different samples. Key here, as described in line 5 of Algorithm 4.3, is
to counter-scale the two merge candidates, using only the norms of the common parts
indexed by Ip,Jp,Kp; by doing so, the common parts will be scaled to unit norm, and the
rest of the vectors will also refer to the correct, same scaling, thereby effectively resolving
scaling correspondence.

Finally, we must note that our merging scheme is equivalent to the very well know
Hungarian Algorithm [Kuh55], used to efficiently solve combinatorial assignment prob-
lems.

Algorithm 4.2: Basic PARCUBE for Non-negative PARAFAC

Input: Tensor X of size I × J ×K, number of components F , sampling factor s.
Output: Factor matrices A,B,C of size I × F , J × F , K × F respectively.

1: Run BIASEDSAMPLE (X, s) (Algorithm 4.1) and obtain Xs and I,J ,K.
2: Run Non-Negative PARAFAC (Xs, F) and obtain As,Bs,Cs of size I/s× F , J/s× F

and K/s× F .
3: A(I, :) = As, B(J , :) = Bs, C(K, :) = Cs

4.2.4 Correctness
In the following lines, we prove that when we have multiple repetitions, the FAC-
TORMERGE Algorithm is going to find the right correspondence between the compo-

68

Algorithm 4.3: PARCUBE for Non-negative PARAFAC with repetition
Input: Tensor X of size I × J ×K, number of components F , sampling factor s, number

of repetitions r.
Output: PARAFAC factor matrices A,B,C of size I × F , J × F , K × F respectively and

vector λ of size F × 1 which contains the scale of each component.
1: Initialize A,B,C to all-zeros.
2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1]) indices
Ip,Jp,Kp to be common across all repetitions.

3: for i = 1 · · · r do
4: Run Algorithm 4.2 with sampling factor s, using Ip,Jp,Kp as a common reference

among all r different samples and obtain Ai,Bi,Ci. The sampling is made on the
set difference of the set of all indices and the set of common indices.

5: Calculate the `2 norm of the columns of the common part: na(f) = ‖Ai(Ip, f)‖2,
nb(f) = ‖Bi(Jp, f)‖2, nc(f) = ‖Ci(Kp, f)‖2 for f = 1 · · ·F . Normalize columns of
Ai,Bi,Ci using na,nb,nc and set λi(f) = na(f)nb(f)nc(f). Note that the common
part will now be normalized to unit norm.

6: end for
7: A =FACTORMERGE (Ai)
8: B =FACTORMERGE (Bi),C =FACTORMERGE (Ci) without computing the ordering

from scratch. Use the ordering obtained for the Ai.
9: Apply the same ordering to λi.

10: λ = average of λi.

Algorithm 4.4: FACTORMERGE

Input: Factor matrices Ai of size I × F each, where i = 1 · · · r, and r is the number of
repetitions, Ip: set of common indices.

Output: Factor matrix A of size I × F .
1: Set A = A1

2: for i = 2 · · · r do
3: for f1 = 1 · · ·F do
4: for f2 = 1 · · ·F do
5: Compute similarity v(f2) = (A(Ip, f2))T (Ai(Ip, f1)))
6: end for
7: c = arg maxc′ v(c′)
8: Update only the zero entries of A(:, c) using vector Ai(:, f1).
9: end for

10: end for

nents of the intermediate results, and thus, improve the approximation of the original
data.
Proposition 4.1.:
Let (A,B,C) be the PARAFAC decomposition of X, and assume that A(Ip, :) (A restricted

69

X"
a1"

b1"

c1"

ar"

br"

cr"

Xs,1"

…
"

a1"

b1"

c1"

Xs,r"

Figure 4.3: Example of rank-1 PARAFAC using PARCUBE (Algorithm 4.3). The procedure
described is the following: Create r independent samples of X, using Algorithm 4.1. Run
the PARAFAC- ALS algorithm for K = 1 and obtain r triplets of vectors, corresponding to
the first component of X. As a final step, combine those r triplets, by distributing their
values to the original sized triplets, as indicated in Algorithm 4.3.

to the common I-mode reference rows) is such that any two of its columns are linearly
independent; and likewise for B(Jp, :) and C(Kp, :). Note that if A(Ip, :) has as few as 2
rows (|Ip| ≥ 2) and is drawn from a jointly continuous distribution, this requirement on
A(Ip, :) is satisfied with probability 1. Further assume that each of the sub-sampled mod-
els is identifiable, and the true underlying rank-one (punctured) factors are recovered, up
to permutation and scaling, from each sub-sampled dataset. Then Algorithm 4.4 is able
to merge the factors coming from the different samples of the tensor correctly, i.e., is able
to find the correct correspondence between the columns of the factor matrices Ai,Bi,Ci.

Proof. Consider the common part of the A-mode loadings recovered from the different
sub-sampled versions of X: under the foregoing assumptions, the Ai(Ip, :) will be
permuted and column-scaled versions of A(Ip, :). After scaling the common part of each
column to unit norm, Algorithm 4.4 seeks to match the permutations by maximizing
correlation between pairs of columns drawn from Ai(Ip, :) and Aj(Ip, :). From the
Cauchy-Schwartz inequality, correlation between any two unit-norm columns is ≤ 1,
and equality is achieved only when the correct columns are matched, because any two
distinct columns of the underlying A(Ip, :) are linearly independent. Furthermore, by
normalizing the scales of the matched columns to equalize the norm of the common
reference part, the insertions that follow include the correct scaling too. This shows that
Algorithm 4.4 works correctly in this case. �

The above proposition serves as a sanity check for correctness. In reality, there will be
noise and other imperfections that come into play, implying that the punctured factor
estimates will at best be approximate. This implies that a larger common sample size
(|Ip| ≥ 2, |Jp| ≥ 2, |Kp| ≥ 2) will generally help Algorithm 4.4 to correctly merge the
pieces coming from the different samples. We have carried out extensive experiments
verifying that Algorithm 4.4 works well in practice, under common imperfections. A
reasonable value for p is about 10-20 percent of the sampled indices, depending on
the application at hand. Those experiments also suggest that increasing the number of
samples, r, reduces the PARAFAC approximation error.

70

A good rule of thumb on selecting the number of repetitions r is to set it equal to double
the sampling factor, since this will, empirically, allow for PARCUBE to explore most of
the variation in the data. The exact values for s, r depend on the sparsity of the original
tensor; if the tensor is highly sparse, then only a few, small samples may suffice. In
Chapter 6 we propose PARACOMP, a formal extension of PARCUBE, were we are able to
prove identifiability of the decomposition, as well as give precise guidelines on the size
of the sample and the number of repetitions.

4.2.5 Parallel Algorithm
A great advantage of the proposed PARCUBE method is the fact that on its first phase,
it produces r independent tensors which are significantly smaller in size. Each one of
those r tensors, can be consequently decomposed independently from the rest, and as a
result, all r tensors can be decomposed in parallel (assuming that we have a machine
with r cores). In other words, in our parallel implementation of PARCUBE, lines 3-6 of
Algorithm 4.3 are executed entirely in parallel. In the case that a machine has less than r
cores/workers (say w), then w decompositions are carried out in parallel at any given
point in time, until the number of repetitions is met.

4.2.6 On Sparsity
As we outline in the Introduction as well as in the requirements for the algorithm, PAR-
CUBE produces factors which are sparse. In fact, at any given point in time throughout
the lifetime of the algorithm, PARCUBE operates on a sub-sampled portion of the data,
and hence, operates on sparse data. This is not generally true for tensor decomposition
methods: for instance, the ALS algorithm for PARAFAC, which iteratively computes
estimates of the factor matrices, operates on dense data, even if the original data and the
true latent factors are sparse, since least squares estimates tend to be dense.

Typically, sparsity in the factors is obtained through regularization using the `1 norm
(e.g., [PSB13]), as a convex relaxation of the `0 norm. Contrary to this line of work,
PARCUBE achieves sparsity in a more direct way, by ignoring a portion of the parameters
altogether: if an index is not sampled by PARCUBE, then the corresponding value of any
factor for that index will be zero.

The nature of PARCUBE’s sparsity is approximate, and it comes as a side benefit of the
sampling that PARCUBE uses. We must note that if the number of sampled tensors
is rather small, in the sense that they capture only a small part of the variation of the
data, then there will be parameters in the factors that will be left zero, even though the
optimal solution to the problem (minimizing the `0 norm of the factors) would possibly
yield a non-zero value for them. However, if we increase the number of independent
sampled tensors that we decompose (i.e. parameter r), as we empirically demonstrate in
Section 4.3.2, PARCUBE’s solution will converge to the solution that directly optimizes
for sparsity.

71

4.2.7 Extension to other models
Even though the focus of the present chapter is the PARAFAC decomposition, the same
methodology can be applied in order to accelerate and parallelize other tensor decom-
position models. For instance, in Chapter 5, we illustrate how the same principles can
help accelerate the Coupled Matrix-Tensor Factorization (CMTF).The CMTF model is
very similar to the PARAFAC model, and thus, our algorithms can carry through without
loosing the correctness guarantees.

On the other hand, extending PARCUBE to models such as TUCKER is not straightforward.
In Section 4.2.4 we invoke the uniqueness of the PARAFAC factors in order to show that the
merging will be correct; however, TUCKER is highly non-unique, and therefore we cannot
apply the same claim that PARCUBE will work correctly. This is not to say, however,
that the key concepts behind PARCUBE cannot be used for TUCKER, but simply that this
needs to be done carefully, in light of the differences of TUCKER from PARAFAC.

4.3 Experimental Evaluation
In this section we provide experimental evaluation of our proposed method. First, we
evaluate the performance of PARCUBE, compared to the current state of the art for
handling sparse tensors in Matlab, i.e. the Tensor Toolbox for Matlab [BK+15]. Since our
algorithm, by construction, tends to output sparse factors, we also evaluate the validity
of that claim by comparing the degree of sparsity of the output to the one given by the
Tensor Toolbox and the one given by PARAFAC-SLF [PSB13], which is the state of the art
for PARAFAC decompositions with sparsity on the latent factors. The results of Section
4.3.1 were measured on a 2.7 GHz Intel Core i5 with 4GB of RAM.

Additionally, we evaluate how PARCUBE scales as the input and the parameter size
grows, the benefits of executing PARCUBE in parallel, as well as how PARCUBE compares
against TUCKER compression accelerated PARAFAC decomposition. The aforementioned
experiments correspond to Sections 4.3.3 - 4.3.6 and were carried out on a machine with
4 Intel Xeon E74850 2.00GHz, and 512Gb of RAM.

Finally, in Section 4.4 we apply our approach in order to analyze real datasets presented
in Table 4.1.

Name Description Dimensions NNZ
ENRON [ENR14] (sender, recipient, month) 186× 186× 44 9838
LBNL [PAB+05] (src, dst, port #) 65170× 65170× 65327 27269
Facebook [VMCG09] (wall owner, poster, day) 63891× 63890× 1847 737778
NELL [RTW16] (noun-phrase, noun-phrase, context) 14545× 14545× 28818 76879419

Table 4.1: Datasets analyzed

We implemented PARCUBE in Matlab and Java, and we make it publicly available1. We

1Download PARCUBE at www.cs.cmu.edu/~epapalex/src/parCube.zip

72

www.cs.cmu.edu/~epapalex/src/parCube.zip

furthermore use the Tensor Toolbox for Matlab [BK+15] as our core PARAFAC decompo-
sition implementation. In our experiments, we use both synthetic and real data. The real
dataset we use is ENRON [ENR14], a 186× 186× 44 tensor of (sender, recipient, month)
with 9838 non-zero entries, coming from the Enron e-mail exchange dataset.

4.3.1 Performance & Speedup Evaluation
In the following lines, we evaluate the performance of PARAFAC using PARCUBE (Al-
gorithm 4.2). As a performance metric, we use the relative cost of the PARAFAC model,
i.e. the cost of the model using our sampling approach, divided by the cost of fitting a
PARAFAC model using the original tensor. As a reminder, we refer the reader to Equation
2.1 for the approximation cost of PARAFAC. In Fig. 4.4, we measure the relative cost as
a function of the speedup incurred by using our PARCUBE, for different values of the
sampling factor; this experiment was carried out on 100× 100× 100 randomly generated,
synthetic tensors, as we required full control over the true number of components and
the degree of sparsity for each component. We did 50 iterations of the experiment, and
we report the means. We observe that even for a relatively high sampling factor, the
relative cost is very good, and can be further improved using more parallel repetitions
which will not harm the speedup achieved.

In Fig. 4.5, we show the relative cost using the ENRON dataset, for various numbers of
repetitions (i.e. distinct samples). We see, in this case, that as the number of repetitions
increases, the approximation improves, as expected, from our theoretical result. In
both cases of Fig. 4.5, the approximation error improves as the number of repetitions r
increases, as expected from our theoretical analysis of Section 4.2.4.

4.3.2 Factor Sparsity Assessment
In Fig.4.6, we measure the relative output size (i.e. the relative degree of sparsity) between
PARCUBE and Tensor Toolbox non-negative PARAFAC. As before, we carried out 50
iterations of the experiment and report mean values. The output size is simply defined
as NNZ(A) +NNZ(B) +NNZ(C), which clearly reflects the degree of sparsity in the
decomposition factors. We observe that PARCUBE yields 90% sparser results than plain
PARAFAC, while maintaining the same approximation error. This empirically shows
that sparsity introduced by sampling in PARCUBE, albeit unconventional, produces
meaningful representations of the data.

In Fig. 4.7 we measure the relative output size between PARCUBE and PARAFAC-SLF, as
a function of the sampling factor s, for different values of the sparsifying parameter λ
used by PARAFAC-SLF [PS11, PSB13] 2. This further provides evidence on the validity of
the sparsity introduced by PARCUBE.

2Code is available at http://www.cs.cmu.edu/~epapalex/src/PARAFAC_SLF.zip

73

http://www.cs.cmu.edu/~epapalex/src/PARAFAC_SLF.zip

2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4

s = 1.5

s = 2

s = 2.5

s = 3

Relative cost

E
x
e

c
u

ti
o

n
 T

im
e

 S
p

e
e

d
u

p
I=J=K = 100, F = 10, avg. fraction of non−zeros = 0.058158

(a)

20 25 30 35 40 45
2

3

4

5

6

7

8

9

s = 1.5

s = 2

s = 2.5

s = 3

Relative cost

E
x
e

c
u

ti
o

n
 T

im
e

 S
p

e
e

d
u

p

I=J=K = 100, F = 10, avg. fraction of non−zeros = 0.306845

(b)

Figure 4.4: PARCUBE is faster than ALS-PARAFAC: Speedup vs Relative cost (PARCUBE/
ALS-PARAFAC) for 1 repetition, for varying sampling factor and different degrees of
sparsity. We observe that even for a relatively high sampling factor, we get relatively
good relative cost, which may be further improved using repetition. Key here is that by
using repetition, because this procedure may be carried out in parallel, we may improve
the accuracy and maintain similar speedup.

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

No. of repetitions

R
e
la

ti
v
e
 c

o
s
t

Reative cost vs no. of repetitions (varying s)

s = 2
s = 3
s = 4
s = 5
s = 6

(a) ENRON: Relative error vs No. of repetitons
(varying s)

0 2 4 6 8 10
1

1.5

2

No. of repetitions

R
e
la

ti
v
e
 c

o
s
t

Relative cost vs no. of repetitions (varying F)

 F = 1

F = 2

F = 3

F = 4

(b) ENRON: Relative error vs No. of repetitons
(varying F)

Figure 4.5: PARCUBE reduces the PARAFAC approximation error: (a) Approximation
cost vs number of repetitions for varying s, where r = 2s (b) Approximation cost vs
number of repetitions for varying F and fixed s = 5. In both cases, the approximation
improves as r increases, as expected

74

0 1 2 3 4 5 6 7
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

s = 1.5, r = 3

s = 2, r = 4

s = 2.5, r = 5

s = 3, r = 6

s = 5, r = 10

s = 10, r = 20

Relative cost

R
e

la
ti
v
e

 o
u

tp
u

t
s
iz

e

I = J = K = 100, F = 10, avg. fraction of non−zeros = 0.008543

(a)

0 1 2 3 4 5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

s = 1.5, r = 3
s = 2, r = 4

s = 2.5, r = 5

s = 3, r = 6

s = 5, r = 10

s = 10, r = 20

Relative cost

R
e

la
ti
v
e

 o
u

tp
u

t
s
iz

e

I = J = K = 100, F = 10, avg. fraction of non−zeros = 0.001173

(b)

Figure 4.6: PARCUBE outputs sparse factors: Relative Output size (PARCUBE/ ALS-
PARAFAC) vs Relative cost. We see that the results of PARCUBE are more than 90%
sparser than the ones from Tensor Toolbox, while maintaining the same approximation
error.

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

Sampling factor

R
e

la
ti
v
e

 o
u

tp
u

t
s
iz

e ENRON, F = 5, avg. fraction of non−zeros = 0.006604

 lambda = 30

lambda = 40

lambda = 50

lambda = 60

Figure 4.7: PARCUBE outputs sparse factors: Relative Output size (PARCUBE/ PARAFAC-
SLF) vs sampling factor s (where no. of repetitions is r = 2s.

75

4.3.3 Parallelizability
As we discuss earlier, PARCUBE is inherently a parallel algorithm. Here we investigate
the speedup gained through parallelism, as a function of the data size (measured in
number of non-zeros) and the number of cores/parallel workers. We set the number of
repetitions r to be equal to the number of parallel workers.

Figure 4.8 shows our results: Subfigure 4.8(a) contains the speedup for different number
of parallel workers, as the number of non-zeros increases. We observe that when as
the number of non-zeros increases, the speedup due to parallelizability becomes more
pronounced; intuitively, this result makes sense, since the more dense the original data
is, the more dense the samples will be, and therefore, the longer it takes for the PARAFAC
decomposition to be computed for each sample. For this particular test case, we observe
a monotonic increase of the speedup as the number of non-zeros increases.

Subfigure 4.8(b) shows the speedup as a function of the parallel workers for a fixed
number of non-zeros (the largest one we used for this particular experiment). Here we
observe near linear speedup, indicating that the overhead induced by the serial part of
the parallel version of PARCUBE is not a bottleneck, and therefore the parallel version of
PARCUBE scales very well, especially for large input data.

−5 0 5 10 15

x 10
5

0.5

1

1.5

2

2.5

3

3.5

Number of non−zeros

S
p

e
e

d
u

p

Parallel vs. Serial ParCube, I=10
4
, s=10

r = 4

r = 3

r = 2

r = 1

r = 5

(a)

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

Number of cores

S
p

e
e

d
u

p

Parallel vs. Serial ParCube, I=10
4
, NNZ=10

6
, s=10

(b)

Figure 4.8: PARCUBE scales well with number of workers: Serial vs. Parallel PARCUBE

4.3.4 Scalability in terms of data & parameter size
In addition to measuring PARCUBE’s performance with respect to speeding up a state
of the art solver for PARAFAC, we also measure PARCUBE’s ability to scale in three
axes:

1. Input data size (measured in number of non-zeros): In Fig. 4.9, we see how
PARCUBE scales as the number of non-zeros grows. We have r = 4 repetitions, and
equal number of cores, I = J = K = 107, and the sampling factor is 104, essentially
resulting in the parallel decomposition of 4 103 × 103 × 103 tensors. We can see that
PARCUBE scales near-linearly with the number of non-zeros.

76

2. Input dimensionality (measured in the mode sizes of the tensor): In Fig. 4.10,
we test how can PARCUBE scale as the dimensions of the tensor grow. In order
to keep other things constant, we keep the number of non-zeros equal to 106; as
I = J = K grow, this results in increasingly sparser tensors, which from a data
analysis point of view might not offer useful information. However, from the
viewpoint of testing PARCUBE’s scalability, this experiment provides an insight on
how PARCUBE behaves on very high dimensional tensors. Indeed, PARCUBE scales
near-linearly as the dimensionality of the tensor grows.

3. Decomposition rank: Fig. 4.11 demonstrates how PARCUBE scales as the rank of
the decomposition increases. In scenarios where the tensor dimensions are in the
orders of 107 (as in Fig. 4.11) it is reasonable to seek a decomposition of rank larger
than, say, 10 or 20. As the Figure shows, PARCUBE is able to handle the growth
of the rank without experiencing a significant increase in the execution time, thus
being scalable in the decomposition rank.

We ran the above experiments 5 independent times, and as the error-bars indicate, the
variability of the results is minimal, thus PARCUBE is consistent in terms of scalabil-
ity.

10
4

10
6

10
8

10
10

10
1

10
2

10
3

10
4

Number of non−zeros

T
im

e
 (

s
e
c
)

Running time vs. Number of non−zeros, I=J=K=10
7
, s=10

4
, r=4

Figure 4.9: Scalability with respect to the number of non-zeros.

4.3.5 Accuracy as a function of tensor density
Here, we experimentally demonstrate that PARCUBE’s performance is consistent for
tensors of varying density. In particular, we created a series of randomly generated
102 × 102 × 102 tensors, with varying number of non-zeros, ranging from fully dense (i.e.
106 non-zeros), to 0.99 percent sparse (104 non-zeros). In order to estimate the stability of

77

10
2

10
4

10
6

10
8

10
10

10
1

10
2

10
3

10
4

10
5

I = J = K

T
im

e
 (

s
e
c
)

Running time vs. Mode size, NNZ(X)=10
6
 ,s=100, r=4

Figure 4.10: Scalability with respect to the tensor dimensions I = J = K.

0 20 40 60 80 100 120
10

1

10
2

10
3

Rank F

T
im

e
 (

s
e
c
)

Running time vs. Rank, I=10
7
, s=10

3
, r=4

Figure 4.11: Scalability with respect to the decomposition rank.

78

our results, we ran 50 independent iterations of this experiment, for all different tensors.
In Figure 4.12 we present the results of this experiment (where F = 3, the sampling
factor is s = 2 and the number of repetitions were r = 10). We observe that the relative
cost remains very close to 1 for all different densities that we examined, and the results
seem to be very consistent, as indicated by the small error-bars around each point of the
figure. Therefore, PARCUBE is able to perform well in a wide range of scenarios, from
fully dense tensors, to very sparse ones, as well as for tensors within that spectrum.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Relative cost vs. density (I=J=K=10
2
)

Density d, where NNZ = dIJK

R
e
la

ti
v
e
 c

o
s
t

Figure 4.12: Relative errors as a function of the density of the tensor, for F = 3, sampling
factor s = 2 and r = 10 repetitions. The density d is defined as NNZ(X) = dIJK.

4.3.6 Comparison against TUCKER compression
As we highlighted in Chapter 3, one approach of reducing the size of the tensor into
a smaller, compressed version is via the TUCKER decomposition. We compare against
the method introduced in [BSG99], where the tensor is first compressed using TUCKER,
PARAFAC is fitted in the compressed data and the factor matrices of the TUCKER model
are used to decompress the results. In order to compute the TUCKER decomposition, we
use the highly optimized Memory Efficient Tucker (MET) algorithm [KS08], included in
the Tensor Toolbox for Matlab

In order to ensure a fair comparison, we chose the parameters of both algorithms so
that we have the same size for the reduced-size tensor(s). More specifically, we choose
s = 100 for PARCUBE, and P = Q = R = 100 the dimensions of the TUCKER core, while
the original tensor is of dimensions 104 × 104 × 104.

Figure 4.13 clearly shows that PARCUBE is orders of magnitude faster than TUCKER
compression. The reason why this behavior is observed is because computing the
TUCKER decomposition on the full data entails a similar Alternating Least Squares
algorithm such as the one used for PARAFAC; therefore, it suffers from similar issues,
becoming the bottleneck, even when using a highly optimized algorithm such as MET.
On the other hand, the sampling step of PARCUBE is, in practice, much faster than
computing the TUCKER decomposition on the full data, and thus PARCUBE ends up

79

being significantly faster.

2 4 6 8 10
10

1

10
2

10
3

10
4

Rank F

T
im

e
 (

s
e
c
)

ParCube vs. Tucker3 Compression,

NNZ(X)=10
6
, I=J=K=10

4

Parallel ParCube, r=4, s=100

Tucker3 Compression, P=Q=R=100

Figure 4.13: PARCUBE is orders of magnitude faster than TUCKER-based compression:
Parallel PARCUBE against TUCKER compression accelerated PARAFAC.

4.4 PARCUBE at work
In this section we present interesting patterns and anomalies, that we were able to dis-
cover in the datasets of Table 4.1, demonstrating that our proposed algorithm PARCUBE
is both practical and effective for data mining practitioners. So far, we don’t have an
automated method for the selection of parameters s, r, and p, but we leave this for future
work; the choice is now made empirically.

4.4.1 ENRON
This very well known dataset contains records for 44 months (between 1998 and 2002) of
the number of emails exchanged between the 186 employees of the company, forming
a 186 × 186 × 44 of 9838 non-zero entries. We executed Algorithm 4.3 using s = 2
and r = 4 and we applied similar analysis to the resulting factors as the one applied
in [BHK06, PSB13]. In Figure 4.14 we illustrate the temporal evolution of the 4 most
prevailing groups in our analysis for every month, having annotated the figure with
important events, corresponding to peaks in the communication activity. Labelling of the
groups was done manually; because the factors were not very sparse we filtered out very
low values on each factor. This issue most certainly stems from the fact that this dataset
is not particularly large and therefore by applying the regular ALS-PARAFAC algorithm
to the samples (which is known to yield dense factors), we end up with dense sample
factors, which eventually, due to repetition, tend to cover most of the data points. This,

80

however, was not the case for larger datasets analyzed in the following lines, for which
the factors turned out to be extremely sparse.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Temporal evolution of ENRON groups

Legal

Legal

VP/Govt. Affairs

Trading

Investigation startsCEO change

Enron goes
bankrupt

Figure 4.14: Temporal evolution of 4 groups in the ENRON dataset: We have labelled
the groups, according to the position of the participants in the company. The labels of
the extracted groups are consistent with other works in the literature albeit they have
been extracted with somewhat different order. We have also discovered 2 Legal groups
that behave slightly differently over time, a fact probably stemming from the different
people involved in each group.

4.4.2 LBNL Network Traffic
This dataset consists of (source, destination, port #) triplets, where each value of the
corresponding tensor is the number of packets sent. The snapshot of the dataset we
used, formed a 65170× 65170× 65327 tensor of 27269 non-zeros. We ran Algorithm 4.3
using s = 5 and r = 10 and we were able to identify what appears to be a port-scanning
attack: The component shown in Fig. 4.15 contains only one source address (addr. 29571),
contacting one destination address (addr. 30483) using a wide range of near-consecutive
ports (while sending the same amount of packets to each port), a behaviour which should
certainly raise a flag to the network administrator, indicating a possible port-scanning
attack.

4.4.3 Facebook Wall posts
This dataset 3 first appeared in [VMCG09]; the specific part of the dataset we used consists
of triplets of the form (Wall owner, Poster, day), where the Poster created a post on the
Wall owner’s Wall on the specified timestamp. By choosing daily granularity, we formed
a 63891×63890×1847 tensor, comprised of 737778 non-zero entries; subsequently, we ran
Algorithm 4.3 using s = 100 and r = 10. In Figure 4.16 we present our most surprising
findings: On the left subfigure, we demonstrate what appears to be the Wall owner’s
birthday, since many posters posted on a single day on this person’s Wall; this event may
well be characterized as an “anomaly”. On the right subfigure, we demonstrate what
“normal” Facebook activity looks like.

3Download Facebook at http://socialnetworks.mpi-sws.org/data-wosn2009.html

81

http://socialnetworks.mpi-sws.org/data-wosn2009.html

0 1 2 3 4 5 6 7

x 10
4

0

10

20

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 1 2 3 4 5 6 7

x 10
4

0

0.05

0.1

Src

Dst

Port Scaning AttackPort

Figure 4.15: Anomaly on the LBNL data: We have one source address (addr. 29571),
contacting one destination address (addr. 30483) using a wide range of near-consecutive
ports, possibly indicating a port scanning attack.

4.4.4 NELL
This dataset consists of triplets of the form (noun-phrase, noun-phrase, context). which
form a tensor with assorted modes of size 14545× 14545× 28818 and 76879419 non-zeros,
and as values the number of occurrences of each triplet. The context phrase may be
just a verb or a whole sentence. The PARAFAC decomposition is able to give us latent
concepts of noun-phrases that are contextually similar. We used PARCUBE to compute a
F = 50 component PARAFAC decomposition of this dataset. The sampling factor was
set to s = 50 and the number of repetitions r = 20, and we used 12 workers. Since this
dataset is significantly larger than the other three we analyzed, it is worth mentioning
that the total running time was 86 minutes. The factors produced were very sparse, with
their relative sparsity being:

NNZ(A) +NNZ(B) +NNZ(C)

IF + JF +KF
= 0.2

We were not able to compute the exact PARAFAC decomposition on a single machine,
and thus, we estimate the number of non-zeros of a fully dense matrix A as IF (and
accordingly for the remaining factors).

After computing the PARAFAC decomposition we computed the noun-phrase similarity
matrix AAT + BBT and out of that, we were able to discover contextual synonyms to
noun-phrases, that we report on Table 4.2; the relationship between the words in that
table can be viewed as being contextually similar. Additionally, in Table 4.3, we show
10 out of the 50 components that we extracted (in particular, we show the top-3 noun-
phrases and context terms). Each row of the Table corresponds to a single concept, and
the way to interpret it is the following: The first column shows the top-3 noun-phrases
in the first position, the second column contains the second noun-phrase, and the third

82

0 1 2 3 4 5 6 7

x 10
4

0

10

20

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 500 1000 1500 2000
0

0.5

1

Wall Owner

Posters

Day

(a) Facebook anomaly (Wall owner’s birthday)

0 1 2 3 4 5 6 7

x 10
4

0

5

10

0 1 2 3 4 5 6 7

x 10
4

0

0.5

1

0 500 1000 1500 2000
0

0.5

1

Posters

Day

Wall Owner

(b) Facebook normal activity

Figure 4.16: Results for Facebook using s = 100, r = 10, F = 15. Subfigure (a):
Facebook “anomaly”: One Wall, many posters and only one day. This possibly in-
dicates the birthday of the Wall owner. Subfigure(b): Facebook “normal” activity:
Many users post on many users’ Walls, having a continuous daily activity

83

column contains the context phrase that connects these two noun-phrases. We observe
that the concepts extracted are coherent and meaningful.

Noun-phrase Potential Contextual Synonyms
computer development
period day, life
months life
facilities families, people, communities
rooms facilities
legs people
communities facilities, families, students
company community, life, family
groups people, companies, men
life experience, day, home
data information, life, business
people members, companies, children
countries people, areas, companies
details part, information, end
clients people, children, customers
ability order, life, opportunity

Table 4.2: NELL: Potential synonym discovery

Noun-phrase 1 (np1) Noun-phrase 2 (np2) Context between np1 & np2
day, time, events year, month, week np1 throughout np2, np1 during np2, np1 last np2
information, data, details site, program, research np2 and contact np1, np1 on our np2, np1 provided by np2
information, services, data use, value, variety np1 through np2, np2 of their np1, p1 to make np2
family, friend, company support, home, one np2 of my np1, np2 of their np1, np2 of her np1
areas, countries, communities services, work, people np2 in various np1, np2 within np1, np1 such as np2
knowledge, development, needs students, members, users np1 of our np2, np1 of their np2, np1 of his np2
business, internet, data information, system, services np1 management np2, np1 software np2, np2 including np1
access, changes, information services, site, students np1 to our np2, np1 to my np2, np1 through np2
customers, clients, members quality, value, success np2 of their np1, np2 of our np1, np2 of my np1
community, country, company information, services, issue np2 within np1, np2 in our np1, np2 across np1

Table 4.3: NELL: Concepts of noun-phrases and context words

4.5 Conclusions
In this chapter we have introduced PARCUBE, a novel, fast, parallelizable tensor de-
composition which produces sparse factors by construction. Furthermore, it enables
processing of large tensors that may not fit in memory. We provide theoretical results
that indicate correctness of our algorithm; one of our core contributions pertains to the
correct merging of the individual samples. We have demonstrated its merits with respect
to sparsity and speedup, compared to the current state of the art, through extensive
experimentation. Moreover, we provide a publicly available, highly scalable parallel
implementation. Finally, we highlight the practicality of PARCUBE by analyzing four
different real datasets, discovering patterns and anomalies.

84

Chapter 5

TURBO-SMT: Parallel Coupled
Sparse Matrix-Tensor
Factorization

Exploiting sparsity and sampling for
paralellizing and speeding up CMTF.

Chapter based on material published in [PMS+14, PMS+16].

In this Chapter we introduce TURBO-SMT, a tripe-sparse algorithm capable of boost-
ing the performance of any Coupled Matrix-Tensor Factorization (CMTF) algorithm
so that it can operate on very large datasets that may not fit in main memory. TURBO-
SMT parallelizes any CMTF algorithm, producing sparse and interpretable solutions
(up to 65 fold).

5.1 Introduction
How is knowledge mapped and stored in the human brain? How is it expressed by
people answering simple questions about specific words? If we have data from both
worlds, are we able to combine them and jointly analyze them? In a very different
scenario, suppose we have the social network graph of an online social network, and we
also have additional information about how and when users interacted with each other.
What is a comprehensive way to combine those two pieces of data? Both, seemingly
different, problems may be viewed as instances of what is called Coupled Matrix-Tensor
Factorization (CMTF), where a data tensor and matrices that hold additional information
are jointly decomposed into a set of low-rank factors.

The CMTF framework is by no means a new concept, with one of its earliest applications
dating back to 2007 where the authors of [BBM07] define a clustering algorithm on data

85

that form Matrix/Tensor couples and apply it to movie recommendation and newsgroup
articles settings. Subsequently, there has been a lot of work, both on the algorithmic side
[WCVM09, AKD11] and on the application side, ranging from metabolomics [ARS+13]
to social network analysis [LSC+09], where usually the data were of small to medium
scale. However, we envision applications of the framework where the data scale renders
the current state of the art a bottleneck to the analysis. Such an example of application is
the one of Neurosemantics, where people are shown stimuli (which can range from single
words to entire books) and their brain activity is recorded. These measurements can
easily span multiple gigabytes of data, and their size and grows as the complexity of the
stimulus increases. In fact, in Chapter 9, we will demonstrate a successful application of
TURBO-SMT in Neurosemantics. In this Chapter, however, we are concerned with the
design of an algorithm for CMTF that is fast, parallelizable, and is able to handle data
that may not fit in the main memory of a machine.

0 0.2 0.4 0.6 0.8 1
01

5

10

15

20

25

30

40

50

60

70

Relative run time

R
e
la

ti
v
e
 c

o
s
t

Parameter s taking values in [2 5 10 20]

CMTF−OPT, F=10, 8 cores
CMTF−OPT, F=10, 4 cores
ALS, F=2, 8 cores
ALS, F=10, 1 core

~200x speedup

Ideal

Baseline

Figure 5.1: TURBO-SMT is up to 200 times faster than standard, state-of-the-art baselines.

In this Chapter, we introduce TURBO-SMT, a parallel, scalable, and sparsity promoting
CMTF meta-algorithm. Figure 5.1 shows a snapshot of TURBO-SMT’s performance,
where it was measured to be up to 200 times faster than standard baselines. In Section
8.4 we present a very detailed experimental evaluation of TURBO-SMT.

Our main contributions are the following:

• Parallel & triple-sparse algorithm: We provide an approximate, novel, scalable, and
triple-sparse (see Sec. 5.3.1) meta-method, TURBO-SMT, that is able to parallelize
and scale-up any CMTF core algorithm. Additionally, we improve upon the ALS
core CMTF algorithm, making it faster and able to handle missing values (see Sec.
5.3.1 for details on the algorithm, and Sec. 5.5 for experimental evaluation).

86

• Reproducibility: Our code is publicly available 1.

5.2 Preliminaries
5.2.1 A note on notation

The notation used here follows Chapter 2 but we augment it with a few symbols used
particularly in this Chapter. Table 5.1 contains symbols and essential notation that is
henceforth used throughout the text.

Symbol Description
CMTF Coupled Matrix-Tensor Factorization
ALS Alternating Least Squares

CMTF-OPT Algorithm introduced in [AKD11]
x,x,X,X scalar, vector, matrix, tensor (respectively)

A�B Khatri-rao product.
A⊗B Kronecker product.
A ∗B Hadamard (elementwise) product.

A† Pseudoinverse of A
‖A‖F Frobenius norm of A.

a ◦ b ◦ c (a ◦ b ◦ c) (i, j, k) = a(i)b(j)c(k)
(i) as superscript Indicates the i-th iteration

Ai
1, ai1 series of matrices or vectors, indexed by i.

X(i) i-th mode unfolding of tensor X (see [Kie00]).
I Set of indices.

x(I) Spanning indices I of x.
BIASEDSAMPLE a biased random sample of the data tensor.

Table 5.1: Table of symbols

5.2.2 Coupled Matrix-Tensor Factorization
As we saw in Chapter 2, oftentimes, two tensors, or a matrix and a tensor, may have
one mode in common; consider the example that we mentioned earlier, where we have
a word by brain activity by human subject tensor, we also have a semantic matrix that
provides additional information for the same set of words. In this case, we say that the
matrix and the tensor are coupled in the ’word’ mode, and the problem is instance of
Coupled Matrix-Tensor Factorization (CMTF) [BBM07, WCVM09, AKD11] which is an
active field of research, aiming to jointly analyze datasets (in the form of tensors and
matrices) that share a subset of their modes.

In this work we focus on three mode tensors, however, everything we mention extends
directly to higher modes. In the general case, a three mode tensor X may be coupled
with at most three matrices Yi, i = 1 · · · 3, in the manner illustrated in Figure 5.2 for one

1www.cs.cmu.edu/~epapalex/src/turbo_smt.zip

87

www.cs.cmu.edu/~epapalex/src/turbo_smt.zip

X

voxels

words

persons

Y1

questions

words

Figure 5.2: Coupled Matrix - Tensor example: Tensors often share one or more modes (with thick,
wavy line): X is the brain activity tensor and Y is the semantic matrix. As the wavy line indicates,
these two datasets are coupled in the “word” dimension.

mode. The optimization function that encodes this decomposition is:

min
A,B,C,D,E,G

‖X−
∑
k

ak ◦ bk ◦ ck‖2F + (5.1)

‖Y1 −ADT ‖2F + ‖Y2 −BET ‖2F + ‖Y3 −CGT ‖2F

where ak is the k-th column of A. The idea behind the coupled matrix-tensor decompo-
sition is that we seek to jointly analyze X and Yi, decomposing them to latent factors
who are coupled in the shared dimension. For instance, the first mode of X shares the
same low rank column subspace as Y1; this is expressed through the latent factor matrix
A which jointly provides a basis for that subspace.

For more details on algorithms for CMTF, we refer the reader to Chapter 3.

5.3 Proposed Method
5.3.1 Algorithm Description

There are three main concepts behind TURBO-SMT (outlined in Algorithm 5.1):

Phase 1 Obtain a sample of our data by using biased sampling.
Phase 2 Fit CMTF to the reduced data (possibly on more than one samples)
Phase 3 stitch the partial results

Phase1: Sampling An efficient way to reduce the size of the dataset, yet operate on a
representative subset thereof is to use biased sampling. In particular, given a three-mode
tensor X we sample as follows. We calculate three vectors as shown in equations (5.2),
one for each mode of X (and respectively Equations 5.3 and 5.4 for the two modes of the
matrix).

These vectors, which we henceforth refer to as density vectors are the marginal absolute
sums with respect to all but one of the modes of the tensor, and in essence represent the
importance of each index of the respective mode. We then sample indices of each mode
according to the respective density vector. For instance, assume an I × J ×K tensor;
suppose that we need a sample of size I

s
of the indices of the first mode. Then, we just

define pI(i) = xA(i)/
I∑
i=1

xA(i) as the probability of sampling the i-th index of the first

88

xA(i) =

J∑
j=1

K∑
k=1

|X(i, j, k)|+
I1∑
j=1

|Y1(i, j)|, xB(j) =

I∑
i=1

K∑
k=1

|X(i, j, k)|+
I2∑
i=1

|Y2(j, i)|, xC(k) =

I∑
i=1

J∑
j=1

|X(i, j, k)|+
I3∑
j=1

|Y3(k, j)|,

(5.2)

y1,A(i) =

I1∑
j=1

|Y1(i, j)| y2,B(j) =

I2∑
i=1

|Y2(j, i)|, y3,C(k) =

I3∑
j=1

|Y3(k, j)| (5.3)

y1,D(j) =

I∑
i=1

|Y1(i, j)|, y2,G(i) =

J∑
j=1

|Y2(j, i)|, y3,E(i) =

K∑
k=1

|Y3(k, i)| (5.4)

mode, and we simply sample without replacement from the set {1 · · · I}, using pI as
bias. The very same idea is used for matrices Yi. Doing so is preferable over sampling
uniformly, since our bias makes it more probable that high density indices of the data
will be retained on the sample, and hence, it will be more representative of the entire
set.

Suppose that we call I,J ,K the index samples for the three modes of X. Then, we may
take Xs = X(I,J ,K) (and similarly for matrices Yi) to form a sample of the data; which
essentially is a small, yet representative, sample of our original dataset, where the high
density blocks are more likely to appear on the sample. It is important to note that the
indices of the coupled modes are the same for the matrix and the tensor, e.g. I randomly
selects the same set of indices for X and Y1. This way, we make sure that the coupling is
preserved after sampling.

In cases where the data have very different dimensions per mode (e.g. one mode is
significantly smaller than the rest), we may use different sampling factors in order to
account for this imbalance.

Finally, Phase 1 can be executed very efficiently, since both the calculation of sample
biases, as well as the sampling of indices require only 2 passes on the non-zero elements
of the (usually, highly sparse) data.

Phase 2: Fit CMTF to samples The next step of TURBO-SMT is to fit a CMTF model
to each sample, and then, based on the sampled indices, redistribute the result to the
original index space. As we have already discussed, TURBO-SMT is not restricted in
any way to a specific CMTF solver; in fact, we provide experiments using both an ALS
and a first order gradient approach. In more detail, suppose that As is the factor matrix
obtained by the aforementioned procedure, and that jointly describes the first mode of
Xs and Y1,s. The dimensions of As are going to be |I| × F (where ||̇ denotes cardinality
and F is the number of factors). Let us further assume matrix A of size I × F which
expresses the first mode of the tensor and the matrix, before sampling; due to sampling,
it holds that I � |I|. If we initially set all entries of A to zero and we further set
A(I, :) = As we obtain a highly sparse factor matrix whose non-zero values are a ’best
effort’ approximation of the true ones, i.e. the values of the factor matrix that we would
obtain by decomposing the full data.

89

So far, we have provided a description of the algorithm where only one repetition of
sampling is used. However, the approximation quality of TURBO-SMT improves as
we increase the number of repetitions. To that end, we allow for multiple sampling
repetitions in our algorithm, i.e. extracting multiple sample tensors Xs and side matrices
Yi,s, fitting a CMTF model to all of them and combining the results in a way that the true
latent patterns are retained. We are going to provide a detailed outline of how to carry
the multi-repetition version of TURBO-SMT in the following.

While doing multiple repetitions, we keep a common subset of indices for all different
samples. In particular, let p be the percentage of common values across all repetitions
and Ip denote the common indices along the first mode (same notation applies to the
rest of the indices); then, all sample tensors Xs will definitely contain the indices Ip on
the first mode, as well as (1− p) I

s
indices sampled independently (across repetitions) at

random. This common index sample is key in order to ensure that our results are not
rank deficient, and all partial results are merged correctly. As we discuss in Phase 3, it
suffices to keep a set of common “anchor” indices just for first mode, however, we also
describe a method that uses common in all modes of the tensor (i,e, Ip,Jp,Kp), that is,
however, more expensive computationally.

We do not provide an exact method for choosing p, however, as a rule of thumb, we
observed that, depending on how sparse and noisy the data is, a range of p between 0.2
and 0.5 works well. This introduces a trade-off between redundancy of indices that we
sample, versus the accuracy of the decomposition; since we are not dealing solely with
tensors, which are known to be relatively more well behaved in terms of decomposition
uniqueness (in contrast to matrices), it pays off to introduce some data redundancy
(especially when TURBO-SMT runs in a parallel system) so that we avoid rank-deficiency
in our data.

Let r be the number of different sampling repetitions, resulting in r different sets of
sampled matrix-tensor couples X(i)

s and Y
(i)
j,s (i = 1 · · · r, j = 1 · · · 3). For that set of

coupled data, we fit a CMTF model, using a CMTF solver, obtaining a set of factor
matrices A(i) (and likewise for the rest).

Phase 3: Stitching partial results After having obtained these r different sets of partial
results, as a final step, we have to merge them together into a set of factor matrices that
we would ideally get had we operated on the full dataset.

In order to make the merging work, we first introduce the following scaling on each
column of each factor matrix: Let’s take A(i) for example; we normalize each column
of A by the `2 norm of the common part, as described in line 8 of Algorithm 5.1. By
doing so, the common part of each factor matrix (for all repetitions) will be unit norm.
This scaling is absorbed in a set of scaling vectors λA (and accordingly for the rest of the

90

factors). The new objective function is shown in Equation 5.5

min
A,B,C,D,E,G

‖X−
∑
k

λA(k)λB(k)λC(k)ak ◦ bk ◦ ck‖2F (5.5)

+ ‖Y1 −A diag(λA ∗ λD) DT ‖2F
+ ‖Y2 −B diag(λB ∗ λE) ET ‖2F
+ ‖Y3 −C diag(λC ∗ λG) GT ‖2F

A problem that is introduced by carrying out multiple sampling repetitions is that the
correspondence of the output factors of each repetition is very likely to be distorted. In
other words, say we have matrices A(1) and A(2) and we wish to merge their columns
(i.e. the latent components) into a single matrix A, by stitching together columns that
correspond to the same component. It might very well be the case that the order in which
the latent components appear in A(1) is not the same as in A(2).

The sole purpose of the aforementioned normalization is to resolve the correspondence
problem. In Algorithm 5.2, we merge the partial results while establishing the correct
correspondence of the columns.

Algorithm 5.2 can be seen as a greedy algorithm for solving the correspondence problem
between columns. Provided that the factor matrices are not collinear, the algorithm
usually finds the correct correspondence. In reality, where data might be noisy, we can
use the Hungarian Method [Kuh55], which will slightly increase the computational cost
of the overall algorithm but solve the problem optimally.

In order to see why this happens, we follow the example of r = 2 of the previous
paragraph, according to Algorithm 5.2, we compute the inner product of the common
parts of each column of A(1) and A(2). Since the common parts of each column are
normalized to unit norm, then the inner product of the common part of the column
of A(1) with that of A(2) will be maximized (and exactly equal to 1) for the matching
columns, and by the Cauchy-Schwartz inequality, for all other combinations, it will
be less than 1. Additionally, elimination of the already used columns operates as a
tie-breaker.

The non-collinearity assumption implies that the matrix/tensor pair of each sample
contains data that fit the CMTF model (for the given decomposition rank) well. If either
the data do not obey the model, or the rank is too high, the partial factors to be merge
might end up being collinear, in which case we have to either decrease the decomposition
rank, discard the particular sample that produces collinear factors, or readjust s and r so
that the sample chosen has “good” structure (where “good” is used in the sense that it
fits the CMTF model well).

Note that in the way that we describe the stitching, we only need to keep common
“anchor” indices for the A matrix, establish the correspondence on A and then propagate
the column permutation to the remaining factor matrices. Since TURBO-SMT can be

91

used for data whose dimensions span millions or billions, a set of anchor indices can
easily span thousands or even tens of thousands, thus, saving only a set of anchor indices
for matrix A results in memory and communication savings. Phase 3, due to its low
complexity, can be executed very efficiently. In particular, the FACTORMERGE algorithm
requires O(rF 2) steps, where, both r and F are, for most practical cases, very small,
compared to the data dimensionality.

For the sake of completeness, here we also describe a theoretically more accurate, but
more computationally and memory intensive way to stitch the components. Suppose we
have a set of common indices for all A,B,C. We may, thus, perform the stitching jointly
for A,B,C and then propagate the permutation that we computed to matrices D,E,G.
This joint matching can be done as follows: Consider the following product:

A(Ip, :)�B(Jp, :)�C(Kp, :),

where � is the Khatri-Rao product, as define earlier. This results in a matrix with F
columns, where the f -th column is equal to

A(Ip, f)⊗B(Jp, f)⊗C(Kp, f).,

where ⊗ is the Kronecker product. Because of the definition of the PARAFAC decom-
position, the above is simply the vectorized f -th rank one component of the PARAFAC
decomposition defined by A(Ip, :),B(Jp, :),C(Kp, :), i.e. the pieces of the partial results
that correspond to the same “anchor” indices. Thus, the problem of finding the corre-
spondence between, say, the first sample and the second sample reduces to the problem
of finding the optimal column correspondence between matrices

A(1)(Ip, :)�B(1)(Jp, :)�C(1)(Kp, :)

and
A(2)(Ip, :)�B(2)(Jp, :)�C(2)(Kp, :)

which can, again, be solved using the Hungarian Method [Kuh55]. However, as we
mentioned earlier, the size of Ip,Jp,Kp, in cases where we are dealing with big tensors
and matrices, can be in the orders of thousands or tens of thousands. Thus, computing
the above Khatri-Rao products may incur high computational and memory overhead
during the stitching step, thus, in Algorithm 5.1 we show TURBO-SMT when using the
lightweight version of stitching (Algorithm 5.2).

5.3.2 Sparsity through Sampling
Besides data size reduction, one merit of sampling is sparsity on the latent factors. Every
time TURBO-SMT does one repetition, it operates on a sub-sampled version of the data.
Consequently, in the third phase of the algorithm, where the results are re-distributed
to their indices in the original, high dimensional space, most of the indices of the latent
factors are going to be exactly zero, thus resulting in latent factor sparsity. In this way,
TURBO-SMT always operates on a sparse set of data, through the entire lifetime of the

92

Algorithm 5.1: TURBO-SMT: Sparse and parallel CMTF
Input: Tensor X of size I × J ×K, matrices Yi, i = 1 · · · 3, of size I × I2, J × J2, and K ×K2

respectively, number of factors F , sampling factor s, number of repetitions r.
Output: A of size I ×F , b of size J ×F , c of size K ×F , D of size I2×F , G of size J2×F , E of

size K2 × F . λA, λB , λC , λD, λE , λG of size F × 1.
1: Initialize A,B,C,D,E,G to all-zeros.
2: Randomly, using mode densities as bias, select a set of 100p% (p ∈ [0, 1]) “anchor” indices Ip to

be common across all repetitions. For example, Ip is sampled with probabilities with

pI(i) = xA(i)/
I∑
i=1

xA(i).

3: for i = 1 · · · r do
{Phase 1: Obtain samples through biased sampling}

4: Compute densities as in equations 5.2, 5.3, 5.4.
Compute set of indices I(i) as random sample without replacement of {1 · · · I} of size

I/ (s (1− p)) with probability pI(i) = xA(i)/

I∑
i=1

xa(i). Likewise for J ,K,, I1, I2, and I3.

Set I(i) = I ∪ Ip.
5: Get sample X

(i)
s = X(I(i),J (i),K(i)), Y

(i)
1s = Y1(I(i), I(i)1) and likewise for Y

(i)
2s and Y

(i)
3s .

Note that the same index sample is used for coupled modes.
{Phase 2: Fit the model on each sample}

6: Run a CMTF solver for X
(i)
s and Y

(i)
js , j = 1 · · · 3 and obtain As,Bs,Cs,Ds,Gs,Es.

7: A(i)(I(i), :) = As. Likewise for the rest.
8: Calculate the `2 norm of the columns of the common part: λ(i)

A (f) = ‖A(i)(Ip, f)‖2, for
f = 1 · · ·F . Normalize columns of A(i) using λ

(i)
A (likewise for the rest). Note that the

common part of each factor will now be normalized to unit norm.
9: end for

{Phase 3: Stitch partial results}
10: A =FACTORMERGE (Ai

1). When stitching partial results for A, record the column
correspondences for different nuclei

11: Using the above correspondence, stitch the partial factors of B,C,D,E,G, without
performing the full FACTORMERGE algorithm, but simply reordering the columns.

12: Using the above column/component correspondence, reorder λA,λB,λC ,λD,λE ,λG for
each repetition.

13: λA = average of λAi1. Likewise for the rest.

algorithm, a thing which is not true for the majority of the algorithms both for tensor
and coupled decompositions, which usually operate on dense factors (even when the
final output is sparse), and have very high and unnecessary storage needs.

5.3.3 Parallelization
TURBO-SMT is, by its nature, parallelizable; in essence, we generate multiple samples of
the coupled data, we fit a CMTF model to each sample and then we merge the results. By

93

Algorithm 5.2: FACTORMERGE: Given partial results of factor matrices, merge them
correctly

Input: Factor matrices Ai
1 of size I × F each, and r is the number of repetitions, Ip: set of

common indices.
Output: Factor matrix A of size I × F .

1: Set A = A(1)

2: Set ` = {1 · · ·F}, a list that keeps track of which columns have not been assigned yet.
3: for i = 2 · · · r do
4: for f1 = 1 · · ·F do
5: for f2 in ` do
6: Compute similarity v(f2) = (A(Ip, f2))T

(
A(i)(Ip, f1))

)
7: end for
8: c∗ = argmaxc v(c) (Ideally, for the matching columns, the inner product should be

equal to 1; conversely, for the rest of the columns, it should be considerably smaller)
9: A(:, c∗) = A(i)(:, f1)

∣∣
A(:,c∗)=0

, i.e. update the zero entries of the column.
10: Remove c∗ from list `.
11: end for
12: end for

carefully observing Algorithm 5.1, we can see that lines 3 to 9 may be carried out entirely
in parallel, provided that we have a good enough random number generator that does
not generate the very same sample across all r repetitions. In particular, the r repetitions
are independent from one another, since computing the set of common indices (line 2),
which is the common factor across all repetitions, is done before line 3.

5.4 Further Optimizations
5.4.1 Speeding up the ALS algorithm

In addition to our main contribution in terms of speeding CMTF in general, we are able
to further speed the ALS algorithm up, by making a few careful interventions to the core
algorithm (Algorithm 3.7).
Lemma 5.1.:
We may do the following simplification to each pseudoinversion step of the ALS algo-
rithm (Algorithm 3.7):[

A�B
M

]†
=
(
ATA ∗BTB + MT ∗M

)† [
(A�B)T ,MT

]
Proof. For the Moore-Penrose pseudoinverse of the Khatri-Rao product, it holds that
[Bro98, LT08]

(A�B)† =
(
ATA ∗BTB

)†
(A�B)T

Furthermore [Bro98] (A�B)T (A�B) = ATA∗BTB For a partitioned matrix P =

[
P1

P2

]
,

94

it holds that its pseudoinverse may be written in the following form [HM75][
P1

P2

]†
=
(
PT

1 P1 + PT
2 P2

)† [
PT

1 , PT
2

]
Putting things together, it follows:[

A�B
M

]†
=
(
ATA ∗BTB + MT ∗M

)† [
(A�B)T ,MT

]
which concludes the proof. �

The above lemma implies that substituting the naive pseudoinversion of
[
A�B

M

]
with

the simplified version, offers significant computational gains to Algorithm 3.7. More
precisely, if the dimensions of A,B and M are I×R, J×R and I×I2, then computing the
pseudoinverse naively would costO (R2 (IJ + I2)), whereas our proposed method yields
a cost of O (R2 (I + J + I2)) because of the fact that we are pseudoinverting only a small
R×R matrix. We have to note here that in almost all practical scenariosR� I, J, I2.

Table 5.2 provides a solid impression of the speedup achieved on the core ALS algorithm,
as a result of the simplification of the pseudo-inversion step, as derived above. In short,
we can see that the speedup achieved is in most realistic cases 2x or higher, adding up to
being a significant improvement on the traditional algorithm.

R I = 10 I = 100 I = 1000 I = 10000 I = 100000
1 2.4686 ± 0.3304 2.4682 ±0.3560 2.4479 ± 0.2948 2.4546 ± 0.3214 2.4345 ± 0.3144
5 2.2496 ± 0.3134 2.2937 ± 0.1291 2.2935 ± 0.1295 2.2953 ± 0.1291 2.2975 ± 0.1318
10 2.6614 ± 0.1346 2.6616 ± 0.1368 2.6610 ± 0.1380 2.6591 ± 0.1377 2.6593 ± 0.1428

Table 5.2: Pseudoinversion speedup (100000 runs)

5.4.2 Making ALS robust to missing values
In many practical scenarios, we often have corrupted or missing data. For instance, when
measuring brain activity, a few sensors might stop working, whereas the majority of the
sensors produce useful signal. Despite these common data imperfections, it is important
for a data mining algorithm to be able to operate. The work of Tomasi et. al [TB05]
provides a very comprehensive study on how to handle missing values for plain tensor
decompositions. A very clean and straightforward way of handling missing values is to
ignore them throughout the optimization process, both with respect to the original data
and with respect to the model. This can be achieved through masking the missing values,
hiding them from the optimization. Notice that is not the same as simply zeroing out all
missing values, since 0 might have a valid physical interpretation.

95

In this section, we show how this masking can be applied to the ALS algorithm for the
CMTF model. In [AKD11], the authors show how this can be achieved for the CMTF-
OPT algorithm. In any case, this masking approach is very important because besides
enabling the analysis of incomplete datasets, it can also serve as stepping stone for
estimating those missing values: When obtaining a low rank model of the incomplete
dataset after masking the missing values, we can reconstruct the original data and our
reconstruction will contain imputations for the missing values. This can be seen as the
first iteration of an Expectation-Maximization scheme introduced in [TB05].

Following the formulation of [ADK11, AKD11] we define a ’weight’ tensor W which
has ’0’ in all coefficients where values are missing, and ’1’ everywhere else. Similarly,
we introduce three weight matrices Wi for each of the coupled matrices Yi. Then, the
optimization function of the CMTF model becomes

min
A,B,C,D,E,G

‖W ∗

(
X−

∑
k

ak ◦ bk ◦ ck

)
‖2F +

‖W1 ∗
(
Y1 −ADT

)
‖2F + ‖W2 ∗

(
Y2 −BET

)
‖2F +‖W3 ∗

(
Y3 −CGT

)
‖2F

As we show in Algorithm 3.7, we may solve CMTF by solving six least squares problems
in an alternating fashion. A fortuitous implication of this fact is that in order to handle
missing values for CMTF, it suffices to solve

min
B
‖W ∗

(
X−ABT

)
‖2F (5.6)

where W is a weight matrix in the same sense as described a few lines earlier.

Our solution draws from a similar derivation in [PSB13] (Section 3.B) On our way tackling
the above problem, we first need to investigate its scalar case, i.e. the case where we are
interested only in B(j, f) for a fixed pair of j and f . The optimization problem may be
rewritten as

min
B(j,f)

‖W(:, j) ∗X(:, j)− (W(:, j) ∗A(: f)) B(j, f)T‖ (5.7)

which is essentially a scalar least squares problem of the form: minb ‖x − ab‖22 with
solution in analytical form: b = xT a

‖a‖22
. The reader may notice that the dimensions of W

and A are incompatible, however, in the scalar case of Eq. 5.7, we multiply element-wise
the columns of W and A, which are of the same dimensions.

We may, thus, solve this problem of Equation 5.6 using coordinate descent, on B itera-
tively, until convergence. Therefore, with the aforementioned derivation, we are able to
modify our original algorithm in order to take missing values into account.

So far, we have described how to make ALS robust against missing values, however a
few modifications to TURBO-SMT are required in order to be able to use the robust ALS

96

core solver. In particular, in order to use the masking scheme for TURBO-SMT, during
sampling, we have to take into account that some values in the data are missing: when
we compute the weights for the biased sampling (i.e. Equations 5.2, 5.3, 5.4) we have to
hide the missing values. In order to do that, we compute the weights on

Xm = W ∗X

and
Y1m = W1 ∗Y1

where the weights W and W1 are defined above (and accordingly for Y2,Y3). This is
equivalent to assuming that the missing values are equal to 0, and because computation
of the weights is calculated through addition, treating the missing values as 0 in this
context is equivalent to ignoring them. After these modifications, TURBO-SMT can be
used along with the robust to missing values ALS algorithm for large and incomplete
datasets.

5.5 Experimental Evaluation
5.5.1 Experimental Setup

We implemented TURBO-SMT in Matlab. Our implementation of the code is publicly
available.2 For the parallelization of the algorithm, we used Matlab’s Parallel Computing
Toolbox. For tensor manipulation, we used the Tensor Toolbox for Matlab [BK+15]
which is optimized especially for sparse tensors (but works very well for dense ones
too). We use the CMTF-ALS and the CMTF-OPT [AKD11] algorithms as baselines,
i.e. we compare TURBO-SMT when using one of those algorithms as their core CMTF
implementation, against the plain execution of those algorithms. In order to make this
comparison possible, all datasets we used were within the capabilities of the Tensor
Toolbox for Matlab.

We implemented our version of the ALS algorithm, and we used the CMTF Toobox3

implementation of CMTF-OPT. All experiments were carried out on a machine with
4 Intel Xeon E74850 2.00GHz and 512Gb of RAM. The version of Matlab was R2013a
(8.1.0.604) 64-bit. In the appendix, we show timing experiments on a less powerful
machine, in order to demonstrate that the principle behind TURBO-SMT is applicable
to a variety of platforms. Whenever we conducted multiple iterations of an experiment
(due to the randomized nature of TURBO-SMT), we report error-bars along the plots. For
all the following experiments we used either portions of the dataset analyzed in Chapter
9 (henceforth referred to as BRAINQ dataset), or the whole dataset.

5.5.2 Run time
As we have already discussed in the Introduction and shown in Fig. 10.1, TURBO-SMT
achieved a speedup of 50-200 on the BRAINQ dataset; For all cases, the approximation

2http://www.cs.cmu.edu/~epapalex/src/turbo_smt.zip
3http://www.models.life.ku.dk/joda/CMTF_Toolbox

97

http://www.cs.cmu.edu/~epapalex/src/turbo_smt.zip
http://www.models.life.ku.dk/joda/CMTF_Toolbox

cost is either same as the baselines, or is larger by a small factor, indicating that TURBO-
SMT is both fast and accurate. Key facts that contribute to this observed speedup are:
1) dimensionality reduction through sampling, 2) the fact that TURBO-SMT operates
on sparse data throughout its lifetime, and 3) that TURBO-SMT is highly parallelizable.
Figure 5.1 illustrates this behaviour. It is crucial to note that the speedup achieved is
very significant: The ALS algorithm required more than 24 hours to be computed, and
the CMTF-OPT algorithm took about 12 hours; TURBO-SMT was able to successfully
boost both algorithms, while being almost as accurate. In the appendix, Section 5.A.1 we
include more detailed experiments for the interested reader.

5.5.3 Accuracy
In this sub-section, we evaluate how accurately TURBO-SMT approximates the original
data. In Figure 5.3 we demonstrate that the algorithm operates correctly, in the sense
that it reduces the model error (Equation 5.1) when doing more repetitions. In particular,
the vertical axis displays the relative error, i.e. TURBO-SMT error

baseline error (with ideal being equal
to 1) and the horizontal axis is the number of repetitions in the sampling. We use
60× 200× 9 portion of the BRAINQ tensor and the entire matrix, to ensure that both the
baseline (CMTF-OPT in this case) and TURBO-SMT run in a short amount of time. We set
s =

[
10 20 1

]
. We run the experiment 1000 times and we keep the solutions achieving

the minimum error. As Figure 5.3 shows, TURBO-SMT’s relative error decreases as a
function of the repetitions, indicating that TURBO-SMT generally reduces the CMTF
approximation error with every repetition. As the decomposition rank increases, the
number of repetitions needed increases as well, since the model to be captured becomes
more complex. Because we are operating on smaller pieces of data, we aim for very low
rank decompositions, in order to avoid overfactoring (i.e. choosing a higher number
than the rank of the data) which may cause problems with the stitching and lead to
instabilities. Additionally, due to the fact that TURBO-SMT operates on random samples
of the data, convergence of the approximation error is noisier than deterministic methods
such as ALS.

It is important to note that given a large dataset, during the first few repetitions of
TURBO-SMT, the accuracy may be comparable to the null model’s (i.e. the all-zero
model), as shown in Figure 5.3; this is because TURBO-SMT starts with a null model
and progressively builds it up. However, the important take home point here is that
given a machine or a cluster of machines with enough amount of cores, we can enable
the baselines to work on very large datasets that may not fit in main memory, and by
running more repetitions, we explore more of the data and improve the approximation
accuracy of the model.

In the appendix of this chapter (Sec. 5.A.2) we have included additional results on the
accuracy of TURBO-SMT for the interested reader.

98

0 5 10 15 20
01

10

20

30

40

50

Number of repetitions

R
e
la

ti
v
e
 c

o
s
t

F = 1

F = 2

F = 3

F = 4

(a) Full range of relative error

0 5 10 15 20
0

1

10

Number of repetitions

R
e
la

ti
v
e
 c

o
s
t

 F = 1

F = 2

F = 3

F = 4

(b) Magnified for clarity

Figure 5.3: TURBO-SMT generally reduces the approximation error of the CMTF
model: The relative error of the model, as a function of the number of repetitions r
is decreasing.

5.5.4 Sparsity
One of the main advantages of TURBO-SMT is that, it is triple-sparse, i.e. starting from
(possibly) sparse data, every intermediate result of TURBO-SMT is sparse, as well as
the final output. In Fig. 5.4 we demonstrate the sparsity of TURBO-SMT’s results by
introducing the relative sparsity metric; this intuitive metric is simply the ratio of the
output size of the baseline algorithm, divided by the output size of TURBO-SMT. The
output size is simply calculated by adding up the number of non-zero entries for all
factor matrices output by the algorithm. We use a portion of the BRAINQ dataset in order
to execute this experiment. We can see that for the relatively dense BRAINQ dataset, we
obtained significantly more sparse results;, e.g. up to 65 times more sparse with almost
same approximation error, for the case of CMTF-OPT. We observe a large difference of
result sparsity when using CMTF-OPT, as opposed to ALS; most likely, this difference
is due to the fact that, according to [AKD11], CMTF-OPT converges to a better local
minimum than ALS. The results of Fig. 5.4 indicate that our triple-sparse algorithm is
able to capture the most useful variation of the data, successfully suppressing noise.

5.5.5 Comparison to TUCKER Compression
One existing approach used for speeding up the PARAFAC decomposition is based on
the CANDELINC theorem [CPK80] and has been used in [BA98, BSG99]; roughly, the
method first uses TUCKER in order to compress the original tensor to a smaller, core
tensor, then fits the PARAFAC decomposition on the core tensor, and finally, projects
the factor matrices to the original space. In Section 5.3 of [KB09], it is implied that one
could do the same for the CMTF problem. Before proceeding with a brief sketch of the
approach which, to the best of our knowledge, has not been published yet, we provide a
brief overview of the TUCKER decomposition.

99

0 20 40 60 80

0
1

5

10

15

relative sparsity
R

e
la

ti
v
e
 r

e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

ALS
CMTF−OPT

s = 200

s = 100

s = 20

s = 5

s = 10

s = 5

s = 10
s = 100 s = 500

 65 times sparser

same reconstr. error

Figure 5.4: Up to 65x sparser results for same accuracy: The relative output size vs. the
relative cost indicates that, even for very dense datasets such as BRAINQ, we are able to
get up to 65 fold (for CMTF-OPT) decrease in the output size, while maintaining almost
same approximation error as the baseline.

Consider the I × J ×K tensor X. Then, its {Q,R, P} TUCKER decomposition consists of
a P ×Q×R core tensor, say, G and three assorted, unitary, matrices U,V,Z with sizes
I × P , J ×Q and K ×R respectively. The TUCKER objective function is:

min
G,A,B,C

‖X−
P∑
p=1

Q∑
q=1

R∑
r=1

G(p, q, r)up ◦ vq ◦ zr‖2F

and we may write the decomposition, compactly, as:

X ≈
[
G(P×Q×R),U(I×P),V(J×Q),Z(K×R)

]
Having a tensor X coupled with matrices Yi, i = 1 · · · 3, we may first obtain the TUCKER
decomposition of X. Consequently, we may use U in order to project Y1 to the com-
pressed space, and respectively V for Y2 and Z for Y3. We, thus, obtain a new set of
coupled data: the core tensor G, and the projected side matrices. Then, we fit a CMTF
model to the compressed data, and as a final step, we use U in order to project A,D to
their original dimension (and accordingly for the rest of the factor matrices).

This method, however, lacks a few key features that TURBO-SMT has:

• TUCKER is now a bottleneck; its computation (even though there exist memory
efficient implementations in the literature [BK+15], [KS08], which we use in our
implementation) is very costly, compared to the simple sampling scheme that
TURBO-SMT is using. Even though alternatives to TUCKER could be used for
the compression (e.g. HOSVD [DLDMV00]), the authors of [BA98] state that the
algorithm is better off using TUCKER compression, quality-wise, whenever TUCKER
is able to be computed.

100

• This method, in contrast to TURBO-SMT, is not parallelizable, at least not in an
obvious way, that would make its computation more efficient.

• This compression-based technique is not triple-sparse: The output of TUCKER is
dense, hence the core tensor G and the projected side matrices are going to be
dense. Additionally, both ALS and CTMF-OPT [AKD11] produce dense factors.
Therefore, this technique is prone to storage and interpretability issues.

We implemented this compression-based technique, using Tensor Toolbox’s [BK+15]
memory efficient implementation of the TUCKER decomposition. In Fig. 5.5, we illustrate
the wall-clock time of this approach, compared to TURBO-SMT, on the entire BRAINQ
dataset; we chose s = 5 for TURBO-SMT, and we chose P = Q = R = 60 for the
compression-based technique. We observe that TURBO-SMT performs significantly
better, while, additionally, producing sparse outputs.

F = 1 F = 5 F = 10
0

1000

2000

3000

4000

5000

6000

7000

8000

T
im

e
 (

s
e
c
)

Turbo−SMT

Compression

Figure 5.5: TURBO-SMT significantly outperforms TUCKER-based compression
method: Comparison of TURBO-SMT and a compression-based technique, that uses the
TUCKER decomposition, as described in Sec. 5.5.5.

5.5.6 Performance of ALS with missing values
In order to measure resilience to missing values we define the Signal-to-Noise Ratio (SNR)
as simply as SNR =

‖Xm‖2F
‖Xm−X0‖2F

, where Xm is the reconstructed tensor when am fraction of
the values are missing. In Figure 5.6, we demonstrate the results of that experiment; we
observe that even for a fair amount of missing data, the algorithm performs reasonably
well, achieving high SNR. Moreover, for small amounts of missing data, the speed of the
algorithm is not degraded, while for larger values, it is considerably slower, probably
due to Matlab’s implementation issues. However, this is encouraging, in the sense that if
the amount of missing data is not overwhelming, TURBO-SMT is able to deliver a very
good approximation of the latent subspace. This experiment was, again, conducted on a
portion of BRAINQ.

101

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
x 10

4

fraction of missing values

S
N

R

F = 1

F = 2

Figure 5.6: TURBO-SMT handles missing values: This Figure shows the Signal-to-
Noise ratio (SNR)-as defined in the main text- as a function of the percentage of missing
values. We can observe that, even for a fair amount of missing values, the SNR is quite
high, signifying that TURBO-SMT is able to handle such ill-conditioned settings, with
reasonable fidelity.

5.6 Conclusions
The main contributions of our work are:

• Parallel & triple-sparse algorithm: TURBO-SMT is able to parallelize any CMTF solver,
producing much sparser results. Moreover, the way that TURBO-SMT is defined, it
can operate on data that do not fit in main memory, thus enabling state of the art
CMTF solvers to work on such data, even though they are not specifically designed
to do so.

• Reproducibility: We make our code public, enabling reproducibility and re-usability
of our work.

Appendix: Additional Experimental Results
5.A.1 Run-time

In this section, we measure the execution time on the BRAINQ data for a variety of
different configurations of TURBO-SMT, and for two different baselines (CMTF-OPT and
CMTF-ALS). In particular, while keeping the number of repetitions r fixed to 4, we vary
the sampling factor s for values {2, 5, 10, 20}. Because BRAINQ is highly imbalanced, the
actual sampling factors we use are

[
s
2

s 1
]
. We also vary the decomposition rank F for

1, 5, and 10.

The reason why we keep r fixed to 4 is because we conducted the same experiment
on a machine with 4 cores (showing the results in the appendix) and for consistency
purposes we chose the same r for both experiments. In Section 5.5.3 we show, however,
that increasing r is improving the accuracy and if we use a machine with as many cores

102

CMTF%OPT(run(,mes(

Avg. time (5 runs) Max time (5 run)

1.00E+00&

1.00E+01&

1.00E+02&

1.00E+03&

1.00E+04&

1.00E+05&

1.00E+06&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100&

iter&=&1000&

iter&=&10000&

(a) CMTF_OPT

CMTF%ALS(run(,mes(

Avg. time (5 runs) Max time (5 runs)

1&

10&

100&

1000&

10000&

100000&

1000000&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100&

iter&=&1000&

iter&=&10000&

(b) CMTF_ALS

Figure 5.7: Run time (in seconds) for the baselines, on the full BRAINQ dataset. The
results shown are over 5 full runs of the algorithm.

Turbo%SMT(using(CMTF%OPT(run(,mes(

Avg. time (5 runs) Max time (5 runs)

1&

10&

100&

1000&

10000&

100000&

1000000&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100,&s&=2&

iter&=&100,&s&=&5&

iter&=&100,&s&=&10&

iter&=&100,&s&=&20&

iter&=&1000,&s&=&2&

iter&=&1000,&s&=&5&

iter&=&1000,&s&=&10&

iter&=&1000,&s&=&20&

iter&=&10000,&s&=&2&

iter&=&10000,&s&=&5&

iter&=&10000,&s&=&10&

(a) TURBO-SMT using CMTF_OPT

Turbo%SMT(using(CMTF%ALS(run(,mes(

Avg. time (5 runs) Max time (5 runs)

1&

10&

100&

1000&

10000&

100000&

1000000&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100,&s&=2&

iter&=&100,&s&=&5&

iter&=&100,&s&=&10&

iter&=&100,&s&=&20&

iter&=&1000,&s&=&2&

iter&=&1000,&s&=&5&

iter&=&1000,&s&=&10&

iter&=&1000,&s&=&20&

iter&=&10000,&s&=&2&

iter&=&10000,&s&=&5&

iter&=&10000,&s&=&10&

(b) TURBO-SMT using CMTF_ALS

Figure 5.8: Run time (in seconds) for TURBO-SMT when using each of the baselines as
core solver. The results shown are over 5 full runs of the algorithm. For every value of F ,
the bars on the plot starting from left to right, correspond to the parameters shown on
the legend. The number of repetitions r was set to 4.

as r, then we may do so entirely in parallel, without significantly deviating from the
timings that we report in this section.

When we compare TURBO-SMT against one of the two baselines, we make sure that
we use the corresponding baseline as the core solver for TURBO-SMT. We observed
a certain variation of solutions achieved by the baselines, depending on the number
of iterations of the algorithm. Thus, we chose to experiment for three different limits
for the number of iterations for the baselines (also enforcing the same limit in the core
solver of TURBO-SMT). In particular, all the experiments are executed for 100, 1000, and

103

10000 iterations 4. Note that this number indicates the maximum number of iterations
(denoted by iter), however the baseline algorithm may terminate before reaching this
number of iterations, depending on its (random) initialization. The termination criterion
for both baselines was either meeting the maximum number of iterations iter, or the
difference of the objective function between two consecutive iterations to be less than
10−8. Finally, for every combination of rank, sampling factor, and number of iterations,
we run TURBO-SMT and the corresponding baseline 5 times, in order to account for
multiple local minima as well as variation in the execution times.

Figure 5.7 shows the run times for CMTF-OPT and CMTF-ALS. In particular, we show
the average run time, as well as the maximum run time, in order to account for the worst
case scenario. As expected, the run time for both baselines increases as the decomposition
rank, and the number of iterations increase. There are a few cases where the runtime
for iter=1000 is larger than that of iter=10000, however, since iter is merely the
maximum number of iterations, and the problem being solved is a highly non-convex one,
it is very likely that a run from the batch where iter was 10000 converged faster than a
run from the batch of iter=1000. In Figure 5.8 we show the corresponding run times
for TURBO-SMT, using both baselines. We observe the general trend of the run time
increasing with the rank and the number of iterations, however, the run time decreases
as the sampling factor decreases.

5.A.2 Accuracy
During the experiment described in Section 5.A.1, in addition to run time, we also
measured the reconstruction error for each method and each combination of parameters.
In Figure 5.9 we show the reconstruction errors for the two baselines, and in Figure 5.10
the error for TURBO-SMT. A first observation is that the error is fairly high for both the
baselines and TURBO-SMT, fact that possibly indicates that the structure of the data is
not exactly the one being imposed by CMTF, however, a low rank approximation is still
useful for exploratory analysis.

Figures 5.10 assumes that the number of repetitions r is fixed to 4, which is a rather
small number, considering the size of the data. When we, however, increase r, the
approximation improves.

410000 iterations is the default for CMTF-OPT, according to the documentation.

104

CMTF%OPT(error(

Avg. error (5 runs) Min error (5 runs)

1.00E+00&

1.00E+01&

1.00E+02&

1.00E+03&

1.00E+04&

1.00E+05&

1.00E+06&

1.00E+07&

1.00E+08&

1.00E+09&

1.00E+10&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100&

iter&=&1000&

iter&=&10000&

(a) CMTF_OPT

Avg. error (5 runs) Min error (5 runs)

CMTF%ALS(error(

1.00E+00&

1.00E+01&

1.00E+02&

1.00E+03&

1.00E+04&

1.00E+05&

1.00E+06&

1.00E+07&

1.00E+08&

1.00E+09&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100&

iter&=&1000&

iter&=&10000&

(b) CMTF_ALS

Figure 5.9: Reconstruction error of the tensor and the matrix (as measured by the objective
function of the problem) for the two baselines. for r = 4.

Turbo%SMT(using(CMTF%OPT(error(

Avg. error (5 runs) Min error (5 runs)

1.00E+00&
1.00E+01&
1.00E+02&
1.00E+03&
1.00E+04&
1.00E+05&
1.00E+06&
1.00E+07&
1.00E+08&
1.00E+09&
1.00E+10&
1.00E+11&
1.00E+12&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100,&s&=2&

iter&=&100,&s&=&5&

iter&=&100,&s&=&10&

iter&=&100,&s&=&20&

iter&=&1000,&s&=&2&

iter&=&1000,&s&=&5&

iter&=&1000,&s&=&10&

iter&=&1000,&s&=&20&

iter&=&10000,&s&=&2&

iter&=&10000,&s&=&5&

iter&=&10000,&s&=&10&

(a) TURBO-SMT using CMTF_OPT

Turbo%SMT(using(CMTF%ALS(error(

Avg. error (5 runs) Min error (5 runs)

1.00E+00&

1.00E+02&

1.00E+04&

1.00E+06&

1.00E+08&

1.00E+10&

1.00E+12&

1.00E+14&

1.00E+16&

1.00E+18&

F&=&1& F&=&5& F&=&10& F&=&1& F&=&5& F&=&10&

iter&=&100,&s&=2&

iter&=&100,&s&=&5&

iter&=&100,&s&=&10&

iter&=&100,&s&=&20&

iter&=&1000,&s&=&2&

iter&=&1000,&s&=&5&

iter&=&1000,&s&=&10&

iter&=&1000,&s&=&20&

iter&=&10000,&s&=&2&

iter&=&10000,&s&=&5&

iter&=&10000,&s&=&10&

(b) TURBO-SMT using CMTF_ALS

Figure 5.10: Reconstruction error for TURBO-SMT.

105

106

Chapter 6

PARACOMP: A Parallel Algorithm
for Big Tensor Decomposition
Using Randomly Compressed
Cubes

Parallelizing PARAFAC with
identifiability guarantees using random
compression.

Chapter based on material published in [SPF14].

In Chapters 4 and 5 we presented PARCUBE and TURBO-SMT which work remark-
ably well in practice and we provide guarantees for merging correctness. In this
Chapter, we introduce PARACOMP, a novel architecture for parallel and distributed
computation of low-rank tensor decomposition that is based on parallel processing of
a set of randomly compressed replicas of the big tensor, which additionally provides
identifiability guarantees of the final result.

6.1 Introduction
Tensors are becoming increasingly important, especially for analyzing big data, and
tensors easily turn really big, e.g., 1000 × 1000 × 1000 = 1 billion entries. Memory
issues related to tensor computations with large but sparse tensors have been considered
in [BK07], [KS08], and incorporated in the Tensor Toolbox for Matlab [BK+15] which
specializes in handling sparse tensors. The main idea in those references is to avoid
intermediate product “explosion” when computing sequential tensor - matrix (“mode”)
products, but the assumption is that the entire tensor fits in memory, and the mode

107

products expand (as opposed to reduce) the size of the ‘core’ array that they are multiplied
with. Adaptive tensor decomposition algorithms for cases where the data is serially
acquired (or ‘elongated’) along one mode have been developed in [NS09], but these
assume that the other two modes are relatively modest in size. More recently, a divide-
and-conquer approach for decomposing big tensors has been proposed in [PC11]. The
idea of [PC11] is to break the data in smaller ‘boxes’ which can be factored independently,
and the results subsequently concatenated using an iterative process. This assumes that
each smaller box admits a unique factorization (which cannot be guaranteed from ‘global’
uniqueness conditions alone), requires reconciling the different column permutations
and scalings of the different blocks, and entails significant communication and signaling
overhead.

All of the aforementioned techniques require that the full data be stored in (possibly
distributed) memory. Realizing that this is a show-stopper for truly big tensors, in
Chapter 4 we proposed PARCUBE, a random sampling approach, wherein judiciously
sampled significant parts of the tensor are independently analyzed, and a common
piece of data is used to anchor the different permutations and scalings. PARCUBE
works very well in practice for sparse tensors and provides theoretical guarantees for
merging correctness as we saw in Chapter 4, however, does not offer identifiability
guarantees.

A different approach was taken in [SK12], which proposed randomly compressing a big
tensor down to a far smaller one. Assuming that the big tensor admits a low-rank decom-
position with sparse latent factors, such a random compression guarantees identifiability
of the low-rank decomposition of the big tensor from the low-rank decomposition of
the small tensor. This result can be viewed as a generalization of compressed sensing
ideas from the linear to the multi-linear case. Still, this approach works only when the
latent low-rank factors of the big tensor are known to be sparse - and this is often not the
case.

This Chapter considers appropriate compression strategies for big (sparse or dense)
tensors that admit a low-rank decomposition, whose latent factors need not be sparse.
Latent sparsity is usually associated with membership problems such as clustering and
co-clustering [PSB13]. A novel architecture for parallel and distributed computation of
low-rank tensor decomposition that is especially well-suited for big tensors is proposed.
The new architecture is based on parallel processing of a set of randomly compressed,
reduced-size ‘replicas’ or the big tensor. Each replica is independently decomposed, and
the results are joined via a master linear equation per tensor mode. The approach enables
massive parallelism with guaranteed identifiability properties: if the big tensor is indeed
of low rank and the system parameters are appropriately chosen, then the rank-one
factors of the big tensor will indeed be recovered from the analysis of the reduced-size
replicas. Furthermore, the architecture affords memory / storage and complexity gains
of order IJ

F
for a big tensor of size I × J ×K of rank F with F ≤ I ≤ J ≤ K. No sparsity

is required in the tensor or the underlying latent factors, although such sparsity can be
exploited to improve memory, storage and computational savings.

108

Notation: The notation used here is the same as the one shown in Table 2.1 of Chapter 2,
but we repeat and augment it here for the purposes of this chapter, and for readability
purposes.

A scalar is denoted by an italic letter, e.g. a. A column vector is denoted by a bold
lowercase letter, e.g. a whose i-th entry is a(i). A matrix is denoted by a bold uppercase
letter, e.g., A with (i, j)-th entry A(i, j); A(:, j) (A(i, :)) denotes the j-th column (resp.
i-th row) of A. A tensor (three-way array) is denoted by an underlined bold uppercase
letter, e.g., X, with (i, j, k)-th entry X(i, j, k). X(:, :, k) denotes the k-th frontal I × J
matrix ‘slab’ of X, and similarly for the slabs along the other two modes. Vector, matrix
and three-way array size parameters (mode lengths) are denoted by uppercase letters,
e.g. I . ◦ stands for the vector outer product; i.e., for two vectors a (I × 1) and b (J × 1),
a◦b is an I×J matrix with (i, j)-th element a(i)b(j); i.e., a◦b = abT . For three vectors, a
(I×1), b (J×1), c (K×1), a◦b◦c is an I×J×K three-way array with (i, j, k)-th element
a(i)b(j)c(k). The vec(·) operator stacks the columns of its matrix argument in one tall
column; ⊗ stands for the Kronecker product; � stands for the Khatri-Rao (column-wise
Kronecker) product: given A (I × F) and B (J × F), A�B is the JI × F matrix

A�B =
[
A(:, 1)⊗B(:, 1) · · ·A(:, F)⊗B(:, F)

]
For a square matrix S, Tr(S) denotes its trace, i.e., the sum of elements on its main
diagonal. ||x||22 is the Euclidean norm squared, and ||A||2F , ||X||2F the Frobenius norm
squared - the sum of squares of all elements of the given vector, matrix, or tensor.

6.2 Tensor Decomposition Preliminaries
Here, we revisit some of the relevant notions and definitions that we also outlined in
Chapter 2.

Rank decomposition: The rank of an I × J matrix X is the smallest number of rank-one
matrices (vector outer products of the form a ◦ b) needed to synthesize X as

X =
F∑
f=1

af ◦ bf = ABT ,

where A := [a1, · · · , aF], and B := [b1, · · · ,bF]. This relation can be expressed element-
wise as

X(i, j) =
F∑
f=1

af (i)bf (j).

The rank of an I × J ×K three-way array X is the smallest number of outer products
needed to synthesize X as

X =
F∑
f=1

af ◦ bf ◦ cf .

109

This relation can be expressed element-wise as

X(i, j, k) =
F∑
f=1

af (i)bf (j)cf (k).

In the sequel we will assume that F is minimal, i.e., F = rank(X), unless otherwise noted.
The tensor X comprises K ‘frontal’ slabs of size I × J ; denote them {Xk}Kk=1, with Xk :=
X(:, :, k). Re-arranging the elements of X in a tall matrix X := [vec(X1), · · · ,vec(XK)], it
can be shown that

X = (B�A)CT ⇐⇒ x := vec(X) = (C�B�A) 1,

where, A, B are as defined for the matrix case, C := [c1, · · · , cF], 1 is a vector of all 1’s,
and we have used the vectorization property of the Khatri-Rao product vec(AD(d)BT)
= (B�A) d, where D(d) is a diagonal matrix with the vector d as its diagonal.

PARAFAC: The above rank decomposition model for tensors is known as parallel factor
analysis (PARAFAC) [Har70, Har72a] or canonical decomposition (CANDECOMP) [CC70b],
or CP (and CPD) for CANDECOMP-PARAFAC (Decomposition), or canonical polyadic
decomposition (CPD, again), as we introduced in Section 2.3.1. PARAFAC is usually
fitted using an alternating least squares procedure based on the model equation X =
(B �A)CT . In practice we will have X ≈ (B �A)CT , due to measurement noise and
other imperfections, or simply because we wish to approximate a higher-rank model
with a lower-rank one. Fixing A and B, we solve

min
C
||X− (B�A)CT ||2F ,

which is a linear least squares problem. We can bring any of the matrix factors to the
right by reshuffling the data, yielding corresponding conditional updates for A and B.
We can revisit each matrix in a circular fashion until convergence of the cost function,
and this is the most commonly adopted aproach to fitting the PARAFAC model, in good
part because of its conceptual and programming simplicity, plus the ease with which we
can incorporate additional constraints on the columns of A, B, C [BS98].

TUCKER: PARAFAC is in a way the most basic tensor model, because of its direct relation-
ship to tensor rank and the concept of rank decomposition; but other algebraic tensor
models exist, and the most notable one is known as TUCKER, as also seen in Section 2.3.2.
Like PARAFAC, TUCKER is a sum of outer products model, involving outer products of
columns of three matrices, A, B, C. Unlike PARAFAC however, which restricts interac-
tions to corresponding columns (so that the first column of A only appears in one outer
product involving the first column of B and the first column of C), TUCKER includes all
outer products of every column of A with every column of B and every column of C.
Each such outer product is further weighted by the corresponding entry of a so-called
core tensor, whose dimensions are equal to the number of columns of A, B, C.

110

Consider again the I × J ×K three-way array X comprising K matrix slabs {Xk}Kk=1,
arranged into the tall matrix X := [vec(X1), · · · ,vec(XK)]. The Tucker3 model can be
written in matrix form as

X ≈ (B⊗A)GCT ,

where G is the core tensor in matrix form, and A, B, C can be assumed orthogonal
without loss of generality, because linear transformations of A, B, C can be absorbed in
G. The non-zero elements of the core tensor determine the interactions between columns
of A, B, C. The associated model-fitting problem is

min
A,B,C,G

||X− (B⊗A)GCT ||2F ,

which is usually solved using an alternating least squares procedure. The TUCKER model
can be fully vectorized as vec(X) ≈ (C⊗B⊗A) vec(G).

Identifiability: The distinguishing feature of the PARAFAC model is its essential unique-
ness: under certain conditions, A, B, and C can be identified from X up to a common
permutation and scaling / counter-scaling of columns [CC70b, Har70, Har72a, Kru77,
SB00, JS04, SS07, CO12]. In contrast, Tucker3 is highly non-unique; the inclusion of
all possible outer products of columns of A, B, C results in over-parametrization that
renders it unidentifiable in most cases of practical interest. Still, TUCKER is useful as
an exploratory tool and for data compression / interpolation; we will return to this
shortly.

Consider an I × J ×K tensor X of rank F . In vectorized form, it can be written as the
IJK × 1 vector x = (A�B�C) 1, for some A (I × F), B (J × F), and C (K × F) - a
PARAFAC model of size I × J ×K and order F parameterized by (A,B,C). (Notice the
slight abuse of notation: we switched from x = (C�B�A) 1 to x = (A�B�C) 1.
The two are related via a row permutation, or by switching the roles of A, B, C.) The
Kruskal-rank of A, denoted kA, is the maximum k such that any k columns of A are
linearly independent (kA ≤ rA := rank(A)).
Theorem 6.1.:
[Kru77] Given X (⇔ x), (A,B,C) are unique up to a common column permutation
and scaling (e.g., scaling the first column of A and counter-scaling the first column of B
and/or C, so long as their product remains the same), provided that kA+kB+kC ≥ 2F+2.
An equivalent and perhaps more intuitive way to express this is that the outer products
af ◦ bf ◦ cf (i.e., the rank-one factors of X) are unique.

Note that we can always reshuffle the order of these rank-one factors (e.g., swap a1 ◦
b1 ◦ c1 and a2 ◦ b2 ◦ c2) without changing their sum X =

∑F
f=1 af ◦ bf ◦ cf , but this

is a trivial and inherently unresolvable ambiguity that we will ignore in the sequel.
Theorem 6.1 is Kruskal’s celebrated uniqueness result [Kru77], see also follow-up work
in [SB00, JS04, SS07]. Kruskal’s result applies to given (A,B,C), i.e., it can establish
uniqueness of a given decomposition. Recently, more relaxed uniqueness conditions
have been obtained, which only depend on the size and rank of the tensor - albeit they

111

cover almost all tensors of the given size and rank, i.e., except for a set of measure zero.
Two such conditions are summarized next.
Theorem 6.2.:
[StBDL06] (see also [JS04]) Consider an I × J ×K tensor X of rank F . If

rC = F (which implies K ≥ F)

and
I(I − 1)J(J − 1) ≥ 2F (F − 1),

then the rank-one factors of X are almost surely unique.
Theorem 6.3.:
[CO12] Consider an I × J × K tensor X of rank F . Order the dimensions so that
I ≤ J ≤ K. Let i be maximal such that 2i ≤ I , and likewise j maximal such that 2j ≤ J .
If F ≤ 2i+j−2, then the rank-one factors of X are almost surely unique. For I, J powers
of 2, the condition simplifies to F ≤ IJ

4
. More generally, the condition implies that if

F ≤ (I+1)(J+1)
16

, then X has a unique decomposition almost surely.

Before we proceed to discuss big data and cloud computing aspects of tensor decomposi-
tion, we state two lemmas from [SK12] which we will need in the sequel.
Lemma 6.1.:
[SK12] Consider Ã := UTA, where A is I × F , and let the I × L matrix U be randomly
drawn from an absolutely continuous distribution (e.g., multivariate Gaussian with a
non-singular covariance matrix). Then kÃ = min(L, kA) almost surely (with probability
1).
Lemma 6.2.:
[SK12] Consider Ã = UTA, where A (I × F) is deterministic, tall/square (I ≥ F) and
full column rank rA = F , and the elements of U (I × L) are i.i.d. Gaussian zero mean,
unit variance random variables. Then the distribution of Ã is absolutely continuous
(nonsingular multivariate Gaussian).

6.3 Tensor Compression
When dealing with big tensors X that do not fit in main memory, a reasonable idea is to
try to compress X to a much smaller tensor that somehow captures most of the systematic
variation in X. The commonly used compression method is to fit a low-dimensional
orthogonal Tucker3 model (with low mode-ranks) [SBGW04, Kro08], then regress the
data onto the fitted mode-bases. This idea has been exploited in existing PARAFAC
model-fitting software, such as COMFAC [BSG99], as a useful quick-and-dirty way to
initialize alternating least squares computations in the uncompressed domain, thus
accelerating convergence. A key issue with TUCKER compression of big tensors is that it
requires computing singular value decompositions of the various matrix unfoldings of
the full data, in an alternating fashion. This is a serious bottleneck for big data. Another
issue is that Tucker3 compression is lossy, and it cannot guarantee that identifiability
properties will be preserved. Finally, fitting a PARAFAC model to the compressed data

112

I

Lp

I

J

J

K

Np

Lp

K

Mp

X

N

 Y
_

_

Up
T

V
T

Wp
T

p

Figure 6.1: Schematic illustration of tensor compression: going from an I × J × K
tensor X to a much smaller Lp ×Mp × Np tensor Yp via multiplying (every slab of) X
from the I-mode with UT

p , from the J-mode with VT
p , and from the K-mode with WT

p ,
where Up is I × Lp, Vp is J ×Mp, and Wp is K ×Np.

can only yield an approximate model for the original uncompressed data, and eventually
decompression and iterations with the full data are required to obtain fine estimates.

Consider compressing x into y = Sx, where S is d × IJK, d � IJK. Sidiropoulos
& Kyrillidis [SK12] proposed using a specially structured compression matrix S =
UT ⊗VT ⊗WT , which corresponds to multiplying (every slab of) X from the I-mode
with UT , from the J-mode with VT , and from the K-mode with WT , where U is I × L,
V is J ×M , and W is K ×N , with L ≤ I , M ≤ J , N ≤ K and LMN � IJK; see Fig. 6.1.
Such an S corresponds to compressing each mode individually, which is often natural,
and the associated multiplications can be efficiently implemented as we show in Section
6.3.1 Due to a fortuitous property of the Kronecker product [Bre78],(

UT ⊗VT ⊗WT
)

(A�B�C) =
(
(UTA)� (VTB)� (WTC)

)
,

from which it follows that

y =
(
(UTA)� (VTB)� (WTC)

)
1 =

(
Ã� B̃� C̃

)
1.

i.e., the compressed data follow a PARAFAC model of size L × M × N and order F
parametrized by (Ã, B̃, C̃), with Ã := UTA, B̃ := VTB, C̃ := WTC.

6.3.1 Complexity of multi-way compression
Multiplying a dense L× I matrix UT with a dense vector a to compute UTa has complex-
ity LI . Taking the product of UT and the first I × J frontal slab X(:, :, 1) of the I × J ×K
tensor X has complexity LIJ . Pre-multiplying from the left all frontal slabs of X by UT

(computing a mode product) therefore requires LIJK operations, when all operands are
dense. Multi-way compression as in Fig. 6.1 comprises three mode products, suggesting
a complexity of LIJK+MLJK+NLMK, if the first mode is compressed first, followed
by the second, and then the third mode. Notice that the order in which the mode prod-
ucts are computed affects the complexity of the overall operation; but order-wise, this is

113

O(min(L,M,N)IJK). Also notice that if I, J,K are of the same order, and so are L,M,N ,
then the overall complexity is O(LI3).

If a is sparse with NZ(a) nonzero elements, we can compute UTa as a weighted sum
of the columns of UT corresponding to the nonzero elements of a. This reduces matrix-
vector multiplication complexity to LNZ(a). It easily follows that if X has NZ (X)
nonzero elements, the complexity of pre-multiplying from the left all frontal slabs of X
by UT can be reduced to LNZ (X). The problem is that, after computing the first mode
product, the resulting tensor will be dense! - hence subsequent mode products cannot
exploit sparsity to reduce complexity. Note that, in addition to computational complex-
ity, memory or secondary storage to save the intermediate results of the computation
becomes an issue, even if the original tensor X is sparse.

In scalar form, the (`,m, n)-th element of the tensor Y after multi-way compression can
be written as

Y(`,m, n) =
I∑
i=1

J∑
j=1

K∑
k=1

U(i, `)V(j,m)W(k, n)X(i, j, k)

Claim 6.1.:
Suppose that X is sparse, with NZ (X) nonzero elements, and suppose that it is stored as
a serial list with entries formatted as [i, j, k, v], where v is the nonzero value at tensor posi-
tion (i, j, k). Suppose that the list is indexed by an integer index s, i.e., [i(s), j(s), k(s), v(s)]
is the record corresponding to the s-th entry of the list. Then the following simple Al-
gorithm 6.1 will compute the multi-way compressed tensor Y in only LMNNZ (X)
operations, requiring only LMN cells of memory to store the result, and IL+ JM +KN
cells of memory to store the matrices U, V, W.

Algorithm 6.1: Efficient Multi-way Compression
Input: Tensor X in list format with nonzero values in v(see text), compression matrices U,V,W

for each respective mode
Output: Randomly compressed tensor Y

1: for ` = 1 · · ·L do
2: for m = 1 · · ·M do
3: for n = 1 · · ·N do
4: Y(`,m, n) + U(i(s), `)V(j(s),m)W(k(s), n)v(s)
5: end for
6: end for
7: end for

Notice that, even if X is dense (i.e., NZ (X) = IJK), the above algorithm only needs to
read each element of X once, so complexity will be LMNIJK but memory will still be
very modest: only LMN cells of memory to store the result, and IL+ JM + KN cells
of memory to store the matrices U, V, W. Contrast this to the ‘naive’ way of serially
computing the mode products, whose complexity order is O(min(L,M,N)IJK) but

114

whose memory requirements are huge for dense U, V, W, due to intermediate result
explosion - even for sparse X. We see a clear complexity - memory trade-off between the
two approaches for dense data, but Algorithm 1 is a clear winner for sparse data, because
sparsity is lost after the first mode product. Notice that the above algorithm can be fully
parallelized in several ways - by splitting the list of nonzero elements across cores or
processors (paying in terms of auxiliary memory replications to store partial results for Y
and the matrices U, V, W locally at each processor), or by splitting the (`,m, n) loops - at
the cost of replicating the data list. As a final word, the memory access pattern (whether
we read and write consecutive memory elements in blocks, or make wide ‘strides’) is the
performance-limiting factor for truly big data, and the above algorithm makes strides in
reading elements of U, V, W, and writing elements of Y. There are ways to reduce these
strides, at the cost of requiring more memory and more floating point operations.

6.4 Stepping-stone results
Given the result of Section 6.3, we are now interested in answering the following two
questions:

1. Under what conditions on A, B, C and U, V, W are (Ã, B̃, C̃) identifiable from y?
2. Under what conditions, if any, are A, B, C identifiable from (Ã, B̃, C̃)?

We start by answering the first question in this section.
Theorem 6.4.:
Let x = (A�B�C) 1 ∈ RIJK , where A is I × F , B is J × F , C is K × F , and con-
sider compressing it to y =

(
UT ⊗VT ⊗WT

)
x =

(
(UTA)� (VTB)� (WTC)

)
1 =(

Ã� B̃� C̃
)

1 ∈ RLMN , where the mode-compression matrices U (I × L,L ≤ I), V

(J ×M,M ≤ J), and W (K ×N,N ≤ K) are independently drawn from an absolutely
continuous distribution. If

min(L, kA) + min(M,kB) + min(N, kC) ≥ 2F + 2,

then Ã, B̃, C̃ are almost surely identifiable from the compressed data y up to a common
column permutation and scaling.

Proof. Theorem is a direct consequence of Lemma 6.1 and Kruskal’s uniqueness condition
in Theorem 6.1. �

More relaxed conditions for identifiability of Ã, B̃, C̃ can be derived from Lemma 6.2,
and Theorems 6.2 and 6.3.
Theorem 6.5.:
For x,A,B,C,U,V,W, and y as in Theorem 6.4, if F ≤ min(I, J,K), A, B, C are all full
column rank (F), N ≥ F , and

L(L− 1)M(M − 1) ≥ 2F (F − 1),

then Ã, B̃, C̃ are almost surely identifiable from the compressed data y up to a common
column permutation and scaling.

115

Proof. The proof follows by combining Lemma 6.2, and Theorems 6.2 and 6.3. �

Theorem 6.6.:
For x,A,B,C,U,V,W, and y as in Theorem 6.4, if F ≤ min(I, J,K), A, B, C are all full
column rank (F), L ≤M ≤ N , and

(L+ 1)(M + 1) ≥ 16F,

then Ã, B̃, C̃ are almost surely identifiable from the compressed data y up to a common
column permutation and scaling.

Proof. The proof follows by the remark below:
Remark 6.1.:
F ≤ min(I, J,K)⇒ full column rank A, B, C almost surely, i.e., tall matrices are full
column rank except for a set of measure zero. In other words, if F ≤ min(I, J,K)
and A, B, C are themselves considered to be independently drawn from an absolutely
continuous distribution with respect to the Lebesgue measure in RIF , RJF , and RKF ,
respectively, then they will all be full column rank with probability 1.

�

6.5 Main results
Theorems 6.4, 6.5, 6.6 can establish uniqueness of Ã, B̃, C̃, but we are ultimately inter-
ested in A,B,C. We know that Ã = UTA, and we know UT , but, unfortunately, it is a
fat matrix that cannot be inverted. In order to uniquely recover A, we need additional
structural constraints. Sidiropoulos & Kyrillidis [SK12] proposed exploiting column-wise
sparsity in A (and likewise B,C), which is often plausible in practice1. Sparsity is a
powerful constraint, but it is not always valid (or a sparsifying basis may be unknown).
For this reason, we propose here a different solution, based on creating and factoring a
number of randomly reduced ‘replicas’ of the full data. The majority of the theoretical
work in this section as it originally appears in [SPF14] is attributed to co-author Nicholas
D. Sidiropoulos. Here we present a concise subset of those results that demonstrate the
theoretical underpinnings behind PARACOMP.

Consider spawning P randomly compressed reduced-size “replicas”
{
Yp

}P
p=1

of the
tensor X, where Yp is created using mode compression matrices (Up,Vp,Wp), see Fig.
6.2. Assume that identifiability conditions per Theorem 6.5 or Theorem 6.6 hold, so that
Ãp, B̃p, C̃p are almost surely identifiable (up to permutation and scaling of columns)
from Yp. Then, upon factoring Yp into F rank-one components, we obtain

Ãp = UT
p AΠpΛp, (6.1)

1A need only be sparse with respect to (when expressed in) a suitable basis, provided the sparsifying
basis is known a priori.

116

I

J

K

X _

(U2,V2,W2)

…

M1

L1

N1

 Y _ 1

M2

L2

N2

 Y _ 2

MP

LP

NP

 Y _ P

…

(A2,B2,C2) ~ ~ ~

…

(A,B,C)
join

(LS)
fork

Figure 6.2: Schematic illustration of the PARACOMP fork-join architecture: The fork
step creates a set of P randomly compressed reduced-size ‘replicas’

{
Yp

}P
p=1

. Each Yp

is obtained by applying (Up,Vp,Wp) to X. Each Yp is then independently factored
(all P threads can be executed in parallel). The join step collects the estimated mode
loading sub-matrices

(
Ãp, B̃p, C̃p

)
from the P threads, and, after anchoring all to a

common permutation and scaling, solves a master linear least squares problem per mode
to estimate the full mode loading matrices (A,B,C).

where Πp is a permutation matrix, and Λp is a diagonal scaling matrix with nonzero
elements on its diagonal. Assume that the first two columns of each Up (rows of UT

p) are
common, and let Ū denote this common part, and Āp denote the first two rows of Ãp.
We therefore have

Āp = ŪTAΠpΛp.

Dividing each column of Āp by the element of maximum modulus in that column, and
denoting the resulting 2× F matrix Âp, we obtain

Âp = ŪTAΛΠp.

Notice that Λ does not affect the ratio of elements in each 2× 1 column. If these ratios are
distinct (which is guaranteed almost surely if Ū and A are independently drawn from
absolutely continuous distributions), then the different permutations can be matched by
sorting the ratios of the two coordinates of each 2× 1 column of Âp.

In practice using a few more “anchor” rows will improve the permutation-matching
performance, and is recommended in difficult cases with high noise variance. When S
anchor rows are used, the optimal permutation matching problem can be cast as

min
Π
||Â1 − ÂpΠ||2F ,

where optimization is over the set of permutation matrices. This may appear to be a hard
combinatorial problem at first sight; but it is not. Using

||Â1 − ÂpΠ||2F = Tr
(

(Â1 − ÂpΠ)T (Â1 − ÂpΠ)
)

=

117

||Â1||2F + ||ÂpΠ||2F − 2Tr(ÂT
1 ÂpΠ) =

||Â1||2F + ||Âp||2F − 2Tr(ÂT
1 ÂpΠ).

It follows that we may instead
max

Π
Tr(ÂT

1 ÂpΠ),

over the set of permutation matrices. This is what is known as the Linear Assignment
Problem (LAP), and it can be efficiently solved using the Hungarian Algorithm.

After this column permutation-matching process, we go back to (6.1) and permute its
columns to obtain Ăp satisfying

Ăp = UT
p AΠΛp.

It remains to get rid of Λp. For this, we normalize each column by dividing it with its
norm. This finally yields

Ǎp = UT
p AΠΛ.

For recovery of A up to permutation and scaling of its columns, we then require that the
matrix of the linear system Ǎ1

...
ǍP

 =

 UT
1

...
UT
P

AΠΛ (6.2)

be full column rank. This implies that

2 +
P∑
p=1

(Lp − 2) ≥ I

i.e.,
P∑
p=1

(Lp − 2) ≥ I − 2.

Note that every sub-matrix contains the two anchor rows which are common, and
duplicate rows clearly do not increase the rank. Also note that once the dimensionality
requirement is met, the matrix will be full rank with probability 1, because its non-
redundant entries are drawn from a jointly continuous distribution (by design).

Assuming Lp = L, ∀p ∈ {1, · · · , P} for simplicity (and symmetry of computational load),
we obtain P (L− 2) ≥ I − 2, or, in terms of the number of threads

P ≥ I − 2

L− 2
.

Likewise, from the corresponding full column rank requirements for the other two
modes, we obtain

P ≥ J

M
, and P ≥ K

N
.

118

Notice that we do not subtract 2 from numerator and denominator for the other two
modes, because the permutation of columns of Ãp, B̃p, C̃p is common - so it is enough to
figure it out from one mode, and apply it to other modes as well. In short,

P ≥ max

(
I − 2

L− 2
,
J

M
,
K

N

)

Note that if, say, A can be identified and it is full column rank, then B and C can be
identified by solving a linear least squares problem - but this requires access to the full
big tensor data. In the same vein, if A and B are identified, then C can be identified
from the full big tensor data even if A and B are not full column rank individually - it is
enough that A�B is full column rank, which is necessary for identifiability of C even
from the big tensor, hence not restrictive. PARACOMP-based identification, on the other
hand, only requires access to the factors derived from the small replicas. This is clearly
advantageous, as the raw big tensor data can be discarded after compression, and there
is no need for retrieving huge amounts of data from cloud storage.

We have thus established the following theorem:
Theorem 6.7.:
The data for each thread yp := vec

(
Yp

)
can be uniquely factored, i.e.,

(
Ãp, B̃p, C̃p

)
is

unique up to column permutation and scaling. If, in addition to the above, we also have
P ≥ max

(
I
L
, J
M
, K−2
N−2

)
parallel threads, then (A,B,C) are almost surely identifiable from

the thread outputs
{(

Ãp, B̃p, C̃p

)}P
p=1

up to a common column permutation and scaling.

Proof. We can pick the mode used to figure out the permutation ambiguity, leading to
the symmetrized condition P ≥ min {P1, P2, P3}with

P1 = max

(
I − 2

L− 2
,
J

M
,
K

N

)

P2 = max

(
I

L
,
J − 2

M − 2
,
K

N

)
P3 = max

(
I

L
,
J

M
,
K − 2

N − 2

)
If the compression ratios in the different modes are similar, it makes sense to use the
longest mode for this purpose; if this is the last mode, then

P ≥ max

(
I

L
,
J

M
,
K − 2

N − 2

)

In reference to Fig. 6.2, assume x := vec (X) = (A�B�C) 1 ∈ RIJK , where A is I × F ,
B is J × F , C is K × F (i.e., the rank of X is at most F). Assume that F ≤ I ≤ J ≤ K,
and A, B, C are all full column rank (F). Further assume that Lp = L, Mp = M , Np = N ,

119

∀p ∈ {1, · · · , P}, L ≤M ≤ N , (L+ 1)(M + 1) ≥ 16F , the elements of {Up}Pp=1 are drawn
from a jointly continuous distribution, and likewise for {Vp}Pp=1, while each Wp contains
two common anchor columns, and the elements of {Wp}Pp=1 (except for the repeated
anchors, obviously) are drawn from a jointly continuous distribution. �

The above result is indicative of a family of results that can be derived, using different
PARAFAC identifiability results. Its significance may not be immediately obvious, so it
is worth elaborating further at this point. On one hand, Theorem 6.7 shows that fully
parallel computation of the big tensor decomposition is possible – the first such result, to
the best of our knowledge, that guarantees identifiability of the big tensor decomposition
from the intermediate small tensor decompositions, without placing stringent additional
constraints. On the other hand, the conditions appear convoluted, and the memory /
storage and computational savings, if any, are not necessarily easy to see. The following
claim nails down the take-home message.
Claim 6.2.:
Under the conditions of Theorem 6.7, if K−2

N−2 = max
(
I
L
, J
M
, K−2
N−2

)
, then the memory /

storage and computational complexity savings afforded by the architecture shown in Fig.
6.2 relative to brute-force computation are of order IJ

F
.

Proof. Each thread must store LMN elements, and we have P = K−2
N−2 threads in all,

leading to a total data size of order LMK versus IJK, so the ratio is IJ
LM

. The condition
(L+1)(M+1) ≥ 16F only requires LM to be of order F , hence the total compression ratio
can be as high as O

(
IJ
F

)
. Turning to overall computational complexity, note that optimal

low-rank tensor factorization is NP-hard, even in the rank-one case. Practical tensor
factorization algorithms, however, typically have complexity O(IJKF) (per iteration,
and overall if a bound on the maximum number of iterations is enforced). It follows that
the practical complexity order for factoring out the P parallel threads is O(PLMNF)
versus O(IJKF) for the brute-force computation. Taking into account the lower bound
on P , the ratio is again of order IJ

LM
, and since the condition (L+ 1)(M + 1) ≥ 16F only

requires LM to be of order F , the total computational complexity gain can be as high as
O
(
IJ
F

)
. �

Remark 6.2.:
The complexity of solving the master linear equation (6.2) in the final merging step for A
may be a source of concern - especially because it hasn’t been accounted for in the overall
complexity calculation. Solving a linear system of order of I equations in I unknowns
generally requires O(I3) computations; but closer scrutiny of the system matrix in (6.2)
reveals interesting features. If all elements of the compression matrices {Up} (except for
the common anchors) are independent and identically distributed with zero mean and
unit variance, then, after removing the redundant rows, the system matrix in (6.2) will
have approximately orthogonal columns for large I . This implies that its left pseudo-
inverse will simply be its transpose, approximately. This reduces the complexity of
solving (6.2) to I2F . If higher accuracy is required, the pseudo-inverse may be computed
off-line and stored. It is also important to stress that (6.2) is only solved once for each

120

mode at the end of the overall process, whereas tensor decomposition typically takes
many iterations. In short, the constants are such that we need to worry more about the
compression (fork) and decomposition stages, rather than the final join stage.

Finally, the following theorem demonstrates the conditions for identifiability of PARA-
COMP’s result:
Theorem 6.8.:
In reference to Fig. 6.2, assume x := vec (X) = (A�B�C) 1 ∈ RIJK , where A is I × F ,
B is J × F , C is K × F (i.e., the rank of X is at most F). Assume that I ≥ F , J ≥ F (K
can be < F), and pick Lp = L, Mp = M , Np = N , ∀p ∈ {1, · · · , P}, with L = M = F , and
N = 3. The compression matrices are chosen as in Theorem 6.7. If P ≥ max

(
I
L
, J
M
, K − 2

)
,

then (A,B,C) is identifiable from
{(

Ãp, B̃p, C̃p

)}P
p=1

, for almost every (A,B,C) and

almost every set of compression matrices. When I
L

= max
(
I
L
, J
M
, K − 2

)
, the total storage

and complexity gains are of order JK
F

; whereas if K − 2 = max
(
I
L
, J
M
, K − 2

)
, the total

storage and complexity gains are of order IJ
F 2 .

Proof. Theorem 6.7 assumes F ≤ min(I, J,K) in order to ensure (via Lemma 6.2) absolute
continuity of the compressed factor matrices, which is needed to invoke almost sure
uniqueness per [CO12]. Cases where F > min(I, J,K) can be treated using Kruskal’s
condition for unique decomposition of each compressed replica

min(L, kA) + min(M,kB) + min(N, kC) ≥ 2F + 2.

It can be shown that kA = min(I, F) for almost every A (except for a set of measure zero
in RIF); and likewise kB = min(J, F), and kC = min(K,F), for almost every B and C.
This simplifies2 the above condition to

min(L, I, F) + min(M,J, F) + min(N,K, F) ≥ 2F + 2.

Assume I ≥ F , J ≥ F , but K < F , and pick L = M = F , and N = 3. Then the condition
further reduces to

2F + min(3, K) ≥ 2F + 2,

which is satisfied for any K ≥ 2 (i.e., for any tensor). We also need

P ≥ max

(
I

L
,
J

M
,
K − 2

N − 2

)
,

which in this case (N = 3) reduces to

P ≥ max

(
I

L
,
J

M
,K − 2

)
.

2Meaning: if the simplified condition holds, then PARAFAC decomposition of each reduced replica is
unique for almost every (A,B,C) and almost every set of compression matrices (U,V,W).

121

When I
L

= max
(
I
L
, J
M
, K − 2

)
, then there are I

L
parallel threads of size LMN = 3F 2 each,

for total cloud storage 3IF , i.e., order IF ; hence the overall compression ratio (taking
all replicas into account) is of order IJK

IF
= JK

F
. The ratio of overall complexity orders

is also IJKF
IF 2 = JK

F
. This is the same type of result as the one we derived for the case

F ≤ min(I, J,K). On the other hand, when K − 2 = max
(
I
L
, J
M
, K − 2

)
, there are K − 2

parallel threads of size LMN = 3F 2 each, for total cloud storage 3F 2(K − 2), i.e., order
KF 2; hence the overall compression ratio is IJK

KF 2 = IJ
F 2 , and the ratio of overall complexity

orders is also IJKF
KF 3 = IJ

F 2 . We see that there is a penalty factor F relative to the case
F ≤ min(I, J,K); this is likely an artifact of the method of proof, which we hope to
improve in future work. �

6.5.1 Latent sparsity
If latent sparsity is present, we can exploit it to reduce P . Assume that every column of
A (B,C) has at most na (resp. nb, nc) nonzero elements. A column of A can be uniquely
recovered from only 2na incoherent linear equations [DE03]. Therefore, we may replace
the condition

P ≥ max

(
I

L
,
J

M
,
K − 2

N − 2

)
,

with

P ≥ max

(
2na
L
,
2nb
M

,
2nc − 2

N − 2

)
. (6.3)

Assuming
2nc − 2

N − 2
= max

(
2na
L
,
2nb
M

,
2nc − 2

N − 2

)
,

it is easy to see that the total cloud storage and complexity gains are of order IJ
F

K
nc

- improved by a factor of K
nc

. It is interesting to compare this result with the one in
Sidiropoulos & Kyrillidis [SK12], which corresponds to using P = 1 in our present
context. Notice that (6.3) implies L ≥ 2na

P
, M ≥ 2nb

P
, N − 2 ≥ 2nc−2

P
⇒ N ≥ 2nc

P
+ 2(1− 1

P
)

⇒ N ≥ 2nc

P
. Substituting P = 1 we obtain L ≥ 2na, M ≥ 2nb, N ≥ 2nc, which is exactly

the condition required in [SK12]. We see that PARACOMP subsumes [SK12], offering
greater flexibility in terms of choosing P to reduce the size of replicas for easier in-
memory processing, at the cost of an additional merging step at the end. Also note that
PARACOMP is applicable in the case of dense latent factors, whereas [SK12] is not.
Remark 6.3.:
In practice we will use a higher P , i.e.,

P ≥ max

(
µna
L
,
µnb
M

,
µnc − 2

N − 2

)
,

with µ ∈ {3, 4, 5} instead of 2, and an `1 sparse under-determined linear equations solver
for the final merging step for A. This will increase complexity from O(I2F) to O(I3.5F),
and the constants are such that the difference is significant. This is the price paid for the
reduced memory and intermediate complexity benefits afforded by latent sparsity.

122

6.6 Experimental Evaluation
Our theorems ensure that PARACOMP works with ideal low- and known-rank tensors,
but what if there is measurement noise or other imperfections, or we underestimate
the rank? Does the overall approach fall apart in this case? In this section, we provide
indicative results to illustrate what can be expected from PARACOMP and the effect of
various parameters on estimation performance.

In all cases considered, I = J = K = 500, the noiseless tensor has rank F = 5, and is
synthesized by randomly and independently drawing A, B, and C, each from an i.i.d.
zero-mean, unit-variance Gaussian distribution (randn(500,5) in Matlab), and then
taking their tensor product; i.e., computing the sum of outer products of corresponding
columns of A, B, and C. Gaussian i.i.d. measurement noise is then added to this
noiseless tensor to yield the observed tensor to be analyzed. The nominal setup uses
L = M = N = 50 (so that each replica is 0.1% of the original tensor), and P = 12 replicas
are created for the analysis (so the overall cloud storage used for all replicas is 1.2% of
the space needed to store the original tensor). S = 3 common anchor rows (instead
of S = 2, which is the minimum possible) are used to fix the permutation and scaling
ambiguity. These parameter choices satisfy PARACOMP identifiability conditions without
much additional ‘slack’. The standard deviation of the measurement noise is nominally
set to σ = 0.01.

50 100 150

10
−7

10
−6

10
−5

10
−4

10
−3

L=M=N

||
A

−
A

h
a
t|
| F2

I=J=K=500; F=5; sigma=0.01; P=12; S=3

PARACOMP

Direct, no compression

32% of full data

1.2% of full data
(P=12 processors,
each w/ 0.1 % of full
data)

Figure 6.3: PARACOMP is accurate: MSE as a function of L = M = N .

Fig. 6.3 shows the total squared error for estimating A, i.e., ||A− Â||22, where Â denotes
the estimate of A obtained using PARACOMP, as a function of L = M = N . The
baseline is the total squared error attained by directly fitting the uncompressed 500 ×
500 × 500 tensor using the ALS algorithm (as we saw in Section 3.2.1.2 of Chapter
2) - the size of the uncompressed tensor used here makes such direct fitting possible,
for comparison purposes. We see that PARACOMP yields respectable accuracy with

123

20 30 40 50 60 70 80 90 100 110

10
−7

10
−6

10
−5

10
−4

10
−3

P

||
A

−
A

h
a
t|
| F2

I=J=K=500; L=M=N=50; F=5; sigma=0.01; S=3

PARACOMP

Direct, no compression

12% of the full data
in P=120 processors
w/ 0.1% each

1.2% of the full data
in P=12 processors
w/ 0.1% each

Figure 6.4: Increasing replicas improves PARACOMP accuracy: MSE as a function of P ,
the number of replicas / parallel threads spawned.

10
−8

10
−6

10
−4

10
−2

10
0

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

sigma
2

||
A

−
A

h
a
t|
| F2

I=J=K=500; F=5; L=M=N=50; P=12; S=3

PARACOMP

Direct, no compression

Figure 6.5: PARACOMP works for well for noisy data: MSE as a function of additive
white Gaussian noise variance σ2.

only 1.2% of the full data, and is just an order of magnitude worse than the baseline
algorithm when L = M = N = 150, corresponding to 32% of the full data. This is one
way we can trade-off memory/storage/computation versus estimation accuracy in the
PARACOMP framework: by controlling the size of each replica. Another way to trade-off
memory/storage/computation for accuracy is through P . Fig. 6.4 shows accuracy as a
function of the number of replicas (computation threads) P , for fixed L = M = N = 50.
Finally, Fig. 56.5 plots accuracy as a function of measurement noise variance σ2, for

124

L = M = N = 50 and P = 12.

6.7 Conclusions
We have reviewed the basics of tensors and tensor decomposition, and presented a novel
architecture for parallel and distributed computation of low-rank tensor decomposition
that is especially well-suited for big tensors. It is based on parallel processing of a set of
randomly compressed, reduced-size ‘replicas’ of the big tensor. Our main contributions
are:

• Efficient Algorithm: PARACOMP affords memory / storage and complexity gains
of order up to IJ

F
for a big tensor of size I × J × K of rank F . No sparsity is

required, although such sparsity can be exploited to improve memory, storage and
computational savings.

• Flexible Scalable Architecture: Each replica is independently decomposed, and
the results are joined via a master linear equation per tensor mode. The number of
replicas and the size of each replica can be adjusted to fit the number of computing
nodes and the memory available to each node, and each node can run its own
PARAFAC software, depending on its computational capabilities. This flexibility is
why PARACOMP is better classified as a computational architecture, as opposed to
a method or algorithm.

• Identifiability guarantees: PARACOMP enables massive parallelism with guaran-
teed identifiability properties: if the big tensor is indeed of low rank and the system
parameters are appropriately chosen, then the rank-one factors of the big tensor
will indeed be recovered from the analysis of the reduced-size replicas.

125

126

Part II

Algorithms - Unsupervised
Quality Assessment

127

Chapter 7

Fast and Scalable Core
Consistency Diagnostic for the
PARAFAC Decomposition for Big
Sparse Tensors

Judging the quality of the PARAFAC
decomposition for two orders of magnitude
larger data.

Chapter based on material published in [PF15].

The Core Consistency Diagnostic (CORCONDIA) (see also Section 3.2.8 of Chapter
3) is a very intuitive and simple heuristic for determining the quality of PARAFAC
decomposition. However simple, computation of this diagnostic proves to be a very
daunting task even for data of medium scale. In this Chapter we derive a fast and
exact algorithm for CORCONDIA which exploits data sparsity and scales very well
as the tensor size increases. Our algorithm operates on data that are at least 100 times
larger than what the state-of-the-art can handle.

7.1 Introduction
Multilinear analysis and tensor decompositions have been increasingly popular in a very
wide variety of fields, ranging from signal processing to data mining.

The majority of existing applications of tensor decompositions in fields such as Chemo-
metrics, focus on dense data, where most of the values of a tensor are observed and
non-zero [Bro97]. However, recently, there has emerged an increasing interest in apply-

129

ing tensor decompositions on sparse data, where most of the coefficients of the tensor are
unobserved; examples of such data can be links between web-pages [KB06, KS08], com-
puter networks [KS08, MGF11, PFS12], Knowledge Base data [KPHF12, PFS12], citation
networks [KS08] and social networks [BHK06, KS08, PFS12].

As a running motivating example we choose that of social networks. Consider an online
social network platform such as Facebook, which records relations and interactions
between its users. Throughout the vast amount of Facebook users (estimated to be
around 1.3 Billion), it is physically impossible for all users to interact with each other;
i.e. a certain user interacts with a very small fraction of the total number of users. Thus,
suppose that we observe a tensor of user interactions over time (i.e. the modes are (user,
user, time)), the number of non-zero values of this tensor will be very small, resulting in
a highly sparse tensor with very high dimensions.

There are many challenges posed by the aforementioned type of tensors. In particu-
lar, traditional dense methods that assume that all data can (and should) be stored in
main memory fall short. Computation of tensor decompositions in such scenarios was
pioneered by Kolda and Bader in [KB06] and [BK07], where they introduce efficient in-
memory computations for sparse tensors, taking advantage of the sparse structure and
avoiding storing the entire data into memory. Subsequently, in [KPHF12], the authors
apply this principle in a distributed cloud setting, where a tensor can span terabytes of
storage.

Coming back to the example of the large sparse tensor that represents the time-evolving
social network, the rank of its PARAFAC decomposition [Har70], i.e. the number of
rank-one factors that we extract from the data, reflects the near cliques or communities
in that network [PAI13]. Thus, it is important to be able to determine the decomposition
rank efficiently. Unfortunately, even determining the true rank of a tensor, contrary to
the matrix case (where the solution is given to us by the Singular Value Decomposition,
in polynomial time), is an NP-hard problem [HL13]. Fortunately, however, there exist
heuristic methods which, given an R rank decomposition, are able to provide a diagnostic
that captures how well this decomposition models the tensor data. The first such heuristic,
CORCONDIA, appeared in [Bro98] and subsequently described in detail in [BK03]; there
exist more recent approaches which further extend the main idea of CORCONDIA
[dCHR08].

The state of the art algorithms for CORCONDIA, so far have focused on dense and
relatively small datasets; however, when we shift our attention to data of much larger
scale (such as the running example of the time-evolving social network), state of the
art approaches suffer, understandably so, from scalability issues. In this chapter, we
make such diagnostics available for the analysis of very large tensors. In particular, our
contributions are

• We derive an equivalent formula for computing CORCONDIA, and propose an
efficient algorithm, able to scale on very high dimensional sparse tensors.

• We apply our algorithm to a big real-world time-evolving social network dataset,

130

demonstrating its practicality in the analysis of big tensor/graph data.
• We make our code publicly available at http://www.cs.cmu.edu/~epapalex/
src/efficient_corcondia.zip

102 103 104 10510−4

10−2

100

102

104

I = J = K

Ti
m

e
(s

ec
)

Baseline−1
Baseline−2
ICASSP 15

 100x larger data!

Quality Assessment Scalability!

Figure 7.1: Our algorithm is able to analyze the quality for at least 100 times larger
tensors of dimensions I × I × I and I non-zeros.

A snapshot of our results is shown in Fig. 7.1, where our algorithm was able to run on
100 times larger data than the state-of-the-art for sparse tensors.

7.2 Background & Problem Formulation
Here we repeat necessary notation and definitions that also appear in Chapter 2.

7.2.1 A Note on Notation
Notation used here follows Table 2.1. A tensor is denoted by X. A matrix is denoted
by X. A vector is denoted by x. The symbol ◦ denotes the outer product. The symbol
⊗ denotes the Kronecker product. The symbol † denotes the Moore-Penrose pseudoin-
verse. The symbol vec () denotes the vectorization operation. Finally, the operation of
a series of Kronecker products times a vector, i.e., (A1 ⊗A2 ⊗ · · · ⊗Ak) x is denoted by
KRONMATVEC ({A1 ⊗A2 ⊗ · · · ⊗AN},x).

7.2.2 Brief Introduction to Tensor Decompositions
Given a I×J×K tensor X, we can decompose it according to the PARAFAC decomposition
[Har70] as a sum of rank-one tensors:

X ≈
R∑
r=1

ar ◦ br ◦ cr

131

http://www.cs.cmu.edu/~epapalex/src/efficient_corcondia.zip
http://www.cs.cmu.edu/~epapalex/src/efficient_corcondia.zip

where the (i, j, k) entry of ar ◦ br ◦ cr is ar(i)br(j)cr(k). Usually, PARAFAC is represented
in its matrix form [A,B,C], where the columns of matrix A are the ar vectors (and
accordingly for B,C). The PARAFAC decomposition is especially useful when we are
interested in extracting the true latent factors that generate the tensor.

Another very popular Tensor decomposition is the TUCKER model [KDL80], where a
tensor is decomposed into rank-one factors times a core tensor:

X ≈
P∑
p=1

Q∑
q=1

R∑
r=1

G(p, q, r)up ◦ vq ◦wr

where U,V,W are orthogonal. The TUCKER model is especially used for compression.
Furthermore, PARAFAC can be seen as a restricted TUCKER model, where the core tensor
G is super-diagonal, i.e. non-zero values are only in the entries where i = j = k. This
observation will be useful in order to motivate the CORCONDIA diagnostic.

7.2.3 Brief Introduction to CORCONDIA
As outlined in the Introduction and Chapter 3, there exist a few diagnostics/heuristics
for assessing the modelling quality of the PARAFAC decomposition. In this work, we
will focus on CORCONDIA [Bro98, BK03], which is the simplest and most intuitive to
describe. However, [dCHR08] which builds upon CORCONDIA can also benefit from
our proposed algorithm.

In a nutshell, the idea behind CORCONDIA is the following: Given a tensor X and
its PARAFAC decomposition A,B,C, one could imagine fitting a TUCKER model where
matrices A,B,C are the loading matrices of the TUCKER model and G is the core tensor
(which we need to solve for). Since, as we already mentioned, PARAFAC can be seen as a
restricted TUCKER model with super-diagonal core tensor, if our PARAFAC modelling of
X using A,B,C is good, core tensor G should be as close to super-diagonal as possible.
If there are deviations from the super-diagonal, then this is a good indication that our
PARAFAC model is somehow flawed (either the decomposition rank is not appropriate,
or the data do not have the appropriate structure).

As it is highlighted in [Bro98], since matrices A,B,C are not orthogonal, we may not
use typical algorithms that are used to fit the TUCKER model (e.g page 72 of [Bro98]).
Instead, we can pose the problem as the following least squares problem:

min
G
‖vec (X)− (A⊗B⊗C) vec (G) ‖2F

with solution: vec (G) = (A⊗B⊗C)† vec (X)

7.3 Problem Definition & Proposed Method
Albeit simple and elegant, the solution of the Least Squares problem that lies in the heart
of CORCONDIA suffers in the case of high dimensional data. In particular, this straight-
forward solution requires to first compute and store (A⊗B⊗C) and then pseudoinvert

132

it. Consider a 104 × 104 × 104 tensor; even for a very low rank decomposition of R = 10,
the aforementioned Kronecker product will be of size 1012 × 103, a fact which renders
computing and storing such a matrix highly impractical (if not outright impossible), and
subsequently, computing its pseudoinverse largely intractable. Even if the factor matrices
A,B,C are sparse [PSB13] (resulting in a sparse Kronecker product), pseudoinverting a
matrix of such large dimensions is very computationally challenging.

In this section, we describe our proposed algorithm. Our “wish-list” of properties for
our algorithm is the following:

1. Avoid materializing any Kronecker product.
2. Avoid directly pseudo-inverting the (potentially huge) aforementioned Kronecker

product.
3. Exploit any sparse structure in the factor matrices A,B,C and/or the tensor X.

In order to achieve the above, we need to reformulate the computation of CORCON-
DIA.
Proposition 7.1.:
The pseudoinverse (A⊗B⊗C)† can be rewritten as

(Va ⊗Vb ⊗Vc)
(
Σa
−1 ⊗Σb

−1 ⊗Σc
−1) (Ua

T ⊗Ub
T ⊗Uc

T
)

where A = UaΣaVa
T, B = UbΣbVb

T, and C = UcΣcVc
T (i.e. the respective Singular

Value Decompositions).

Proof. For compactness, we show the two matrix case, but the extension to three matrices
is straightforward. Using basic properties of the Kronecker product from [Neu69], and
rewriting A,B using their SVD, we may write

(A⊗B) =
[(

UaΣaVa
T
)
⊗
(
UbΣbVb

T
)]

=
[
(UaΣa)⊗ (UbΣb) (Va ⊗Vb)T

]
=
[
(Ua ⊗Ub) (Σa ⊗Σb) (Va ⊗Vb)T

]
By invoking properties shown in [Loa00], we can show that show that (Ua ⊗Ub) is
orthonormal and (Σa ⊗Σb) is diagonal with non-negative entries.

Then,because the SVD is unique, then

A⊗B =
[
(Ua ⊗Ub) (Σa ⊗Σb) (Va ⊗Vb)T

]
is the SVD of A⊗B .

Since the above is the SVD, then the Moore-Penrose pseudoinverse will be

133

(Va ⊗Vb)
(
Σa
−1 ⊗Σb

−1) (Ua
T ⊗Ub

T
)

�

In [FF94] the authors first show an equivalent formulation of the Kronecker product
pseudoinverse, which is however not expressed via the SVD, and thus suffers from
numerical instabilities. Subsequently, they introduce a more complicated reformulation
of the pseudoinverse of Kronecker products, where SVD is applied after computing the
QR decomposition of the matrices involved. In this work we prefer the reformulation of
Claim 1 since it is usually more efficient to compute in our case. In order to substantiate
this claim we conducted the following experiment: Using Matlab (which to the best of
our knowledge is the state of the art when it comes to efficient dense and sparse matrix
computations in main memory), we computed the QR decomposition and the economy
version of the SVD for a series of random matrices with increasing number of rows and
fixed number of columns (a scenario which resembles the case where we have a tensor
of increasing dimensions but we have a fixed rank). Figure 7.2 indicates the efficiency of
SVD.

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Row dimension I

T
im

e
 (

s
e

c
)

QR vs SVD for Ix50 matrix

QR

SVD

Figure 7.2: QR vs. SVD

It is important to note here that in the case that the factors A,B,C are sparse, we can
exploit that fact using SVD for sparse matrices, to further speed up the computation. The
straightforward algorithm that computes (A⊗B⊗C) cannot take advantage of factor
sparsity. Now, we can solve CORCONDIA without materializing any of the Kronecker
products. Instead we observe that the equation we need to solve is

vec (G) = (Va ⊗Vb ⊗Vc)
(
Σa
−1 ⊗Σb

−1 ⊗Σc
−1) (Ua

T ⊗Ub
T ⊗Uc

T
)
vec (X)

which is a KRONMATVEC operation. e, The fact that we transformed the operation to
an equivalent one that contains a KRONMATVEC computation is extremely important,

134

because KRONMATVEC can be carried out very efficiently, on-the-fly. In fact, [BD96] pro-
vide an efficient algorithm that does not materialize the (potentially very large) Kronecker
product, and is able to efficiently compute KRONMATVEC ({A1 ⊗A2 ⊗ · · · ⊗Ak}) x.

We use the algorithm of [BD96] in our proposed Algorithm 7.1. When the tensor is
sparse, the above computations can be carried out very efficiently, using sparse ma-
trix multiplication, resulting in huge gains in scalability, as we will show in the next
Section.

Algorithm 7.1: Efficient CORCONDIA
Input: Tensor X and PARAFAC factor matrices A,B,C.
Output: CORCONDIA diagnostic c.

1: Compute A = UaΣaVa
T

2: Compute B = UbΣbVb
T

3: Compute C = UcΣcVc
T

4: Calculate y =
(
Ua

T ⊗Ub
T ⊗Uc

T
)
vec (X) using Algorithm of [BD96].

5: Calculate z =
(
Σa
−1 ⊗Σb

−1 ⊗Σc
−1)y using Algorithm of [BD96].

6: Calculate vec (G) = (Va ⊗Vb ⊗Vc) z using Algorithm of [BD96].

7: c = 100

(
1−

∑F
i=1

∑F
j=1

∑F
k=1(G(i,j,k)−I(i,j,k))2

F

)
(where I is a super-diagonal tensor with ones

on the (i, i, i) entries).

7.4 Experimental Evaluation
We implemented Algorithm 7.1 in Matlab, using the Tensor Toolbox [BK+15] (available at:
http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html), which
provides efficient manipulation and storage of sparse tensors. We make our code pub-
licly available1. For comparisons, we used two baselines: the implementation of the
N-way Toolbox for Matlab[AB00] (available at: http://www.models.life.ku.dk/
nwaytoolbox), and the implementation of the PLS Toolbox (available at: http://www.
eigenvector.com/software/pls_toolbox.htm). The PLS Toolbox is commercial,
and is considered the state of the art for computing CORCONDIA, however, we include
comparisons with the N-way Toolbox since it is freely available. All experiments were
run on a workstation with 4 Intel(R) Xeon(R) E7- 8837 and 1TB of RAM.

Figure 7.3 shows the execution time as a function of the tensor mode dimension I for
I × I × I tensors for three cases: (a) very sparse tensors (with I non-zero values), (b)
moderately sparse (with I2 non-zero values), and (c) fully dense (with I3 non-zero
values). In Fig. 7.3(a), we see that our proposed algorithm is generally much faster than
both baselines (note that the figures are in log-scales), while it keeps working for I = 104

where the baselines run out of memory. However, our proposed algorithm is able to
scale up to 105 × 105 × 105 tensors. In Fig. 7.3(b) we observe similar behavior, where

1Download our code at http://www.cs.cmu.edu/~epapalex/src/efficient_corcondia.
zip

135

http://www.sandia.gov/~tgkolda/TensorToolbox/index-2.5.html
http://www.models.life.ku.dk/nwaytoolbox
http://www.models.life.ku.dk/nwaytoolbox
http://www.eigenvector.com/software/pls_toolbox.htm
http://www.eigenvector.com/software/pls_toolbox.htm
http://www.cs.cmu.edu/~epapalex/src/efficient_corcondia.zip
http://www.cs.cmu.edu/~epapalex/src/efficient_corcondia.zip

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

I=J=K

T
im

e
 (

s
e
c
)

I non−zeros

Nway

PLS

Efficient

(a) Very Sparse

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

I=J=K
T

im
e
 (

s
e
c
)

I
2
 non−zeros

Nway

PLS

Efficient

(b) Sparse

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

I=J=K

T
im

e
 (

s
e
c
)

I
3
 non−zeros

Nway

Efficient

PLS

(c) Dense

Figure 7.3: Our proposed method scales very well on sparse data: This Figure shows
time (sec) vs I = J = K, and for varying number of non-zeros. We see that especially
in the very sparse case, our method is able to run on at least 100 times larger tensors
compared to the two baselines.

136

the overall performance (for all three algorithms) is slightly lower, due to the existence
of more non-zero values. Finally, in Fig. 7.3(c), as expected, we see that our proposed
algorithm has the same performance as the state of the art PLS Toolbox implementation,
since there is no sparsity to take advantage of.

7.5 Results on Real Data
In this section, we use our proposed algorithm in order to determine the appropriate num-
ber of components for the PARAFAC decomposition of a big real-world dataset. In particu-
lar, we chose a time-evolving social network dataset, more specifically a snapshot of Face-
book (available at: http://socialnetworks.mpi-sws.org/data-wosn2009.html).
This dataset records which user posted on another user’s Wall and what date, forming a
three-mode (User, User, Date) tensor, with dimensions: 63891× 63890× 1847 and 737778
non-zero values. Despite the very large dimensions of the tensor, our algorithm is able
to compute the CORCONDIA diagnostic for different values of the rank, as shown
in Fig. 7.4(a). For each rank, we compute CORCONDIA 100 times and we show the
maximum value attained, which reflects the best possible decomposition among those
100 iterations. In Fig. 7.4(b) we show the average time it took to compute the diagnostic
for each rank.

2 4 6 8 10

−50

0

50

100

R

C
O

R
C

O
N

D
IA

CORCONDIA vs. rank for the Facebook data

(a) CORCONDIA vs. Rank

0 5 10 15
10

2

10
3

10
4

R

T
im

e
 (

s
e
c
)

Time (sec) vs. rank for the Facebook data

(b) Time (sec) vs. Rank

Figure 7.4: Analyzing the Facebook tensor

7.6 Conclusions
In this chapter we propose an efficient algorithm for computing the CORCONDIA
diagnostic, especially for large sparse tensors. The important take-home point is that in
cases where either the tensor or the factors or both are sparse, our proposed algorithm
significantly outperforms the state of the art baselines and scales very well as the data
size grows. In the fully dense scenario, our proposed algorithm is as good as the state of
the art.

137

http://socialnetworks.mpi-sws.org/data-wosn2009.html

138

Chapter 8

Automatic Tensor Mining with
Unsupervised Quality
Assessment

Automating PARAFAC in a data driven
and unuspervised way.

Chapter based on material published in [Pap16].

How can we automatically decide how many PARAFAC components to extract,
without having any ground truth? In this Chapter, building upon the results of
Chapter 7 we introduce AUTOTEN, a novel automatic unsupervised tensor mining
algorithm with minimal user intervention. We extensively evaluate AUTOTEN’s
performance on synthetic and real data, outperforming existing baselines.

8.1 Introduction
Tensor decompositions and their applications in mining multi-aspect datasets are ubiq-
uitous and ever increasing in popularity. Data Mining application of these techniques
has been largely pioneered by [KBK05] where the authors introduce a topical aspect to
a graph between webpages, and extend the popular HITS algorithm in that scenario.
Henceforth, the field of multi-aspect/tensor data mining has witnessed rich growth with
prime examples of applications being social networks [KS08, LSC+09, JCW+14], citation
networks [KS08], and computer networks [KS08], to name a few.

Tensor decompositions are undoubtedly a very powerful analytical tool with a rich
variety of applications. However there exist research challenges in the field of data
mining that need to be addressed, in order for tensor decompositions to claim their
position as a de-facto tool for practitioners.

139

One challenge, which has received considerable attention, is the one of making tensor
decompositions scalable to today’s web scale. However, recently and especially for
sparse tensors, there has been a substantial body of work with the first pioneering step
by Kolda et al. [KBK05, BK07] exploiting sparsity for scalability; subsequently there
have been distributed approaches based on the latter formulation [KPHF12], and other
scalable approaches [PFS12, EM13]. By no means do we claim that scalability is a solved
problem, however, we point out that there has been significant attention to it.

The main focus of this work, however, is on another, relatively less explored territory;
that of assessing the quality of a tensor decomposition. In a great portion of tensor data
mining, the task is exploratory and unsupervised: we are given a dataset, usually without
any sort of ground truth, and we seek to extract interesting patterns or concepts from the
data. It is crucial, therefore, to know whether a pattern that we extract actually models
the data at hand, or whether it is merely modelling noise in the data. Especially in the
age of Big Data, where feature spaces can be vast, it is imperative to have a measure of
quality and avoid interpreting noisy, random variation that always exists in the data.
Determining the number of components in a tensor is a very hard problem [HL13]. This
is why, many seminal exploratory tensor mining papers, understandably, set the number
of components manually [KBK05, STF06, KS08]. When there is a specific task at hand, e.g.
link prediction [DKA11], recommendation [RST10], and supervised learning [HKP+14],
that entails some measure of success, then we can use cross-validation for selecting a
good number of latent components which unfortunately cannot generalize to the case
where labels or ground truth are absent.

However, not all hope is lost. There exists highly influential work in the Chemometrics lit-
erature [BK03] that introduces heuristics for determining the quality of a decomposition,
taking into account properties of the PARAFAC decomposition [Har70] and being applica-
tion independent, requiring no prior knowledge about the data. Inspired by and drawing
from [BK03], we provide a comprehensive method for mining large and potentially
sparse multi-aspect datasets using tensor decompositions.

Our contributions are:

• Technology Transfer To the best of our knowledge, this is the first data mining
work that employs the Core Consistency Diagnostic for the quality assessment of
a tensor decomposition; our sincere hope is to popularize such approaches in the
data mining community, conducting a technology transfer from the Chemometrics
community.

• Algorithms We propose AUTOTEN, a comprehensive, parallelizable methodology
on mining multi-aspect datasets using tensors, which minimizes manual trial-and-
error intervention and provides quality characterization of the solution (Section
8.3.2). Furthermore, we extend the Core Consistency Diagnostic of [BK03] assuming
KL-divergence loss, which is more effective in modelling highly sparse, count data
[CK12] (Section 8.3.1).

• Evaluation & Discovery We conduct a large scale study on 10 real datasets, explor-
ing the structure of hidden patterns within these datasets (Section 8.5.1). To the

140

best of our knowledge, this is the first such broad study. As a data mining case
study, we use AUTOTEN on real data discovering meaningful patterns (Section
8.5.2). Finally, we extensively evaluate our proposed method on synthetic data
(Section 8.4).

In order to encourage reproducibility, most of the datasets used are public, and we make
our code publicly available at http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip.

8.2 Background
The notation used in this Chapter follows the general notation introduced in Chapter 2.
Table 10.1 provides an overview of the symbols used in this Chapter in particular, some
of which are specific to this Chapter.

Symbol Definition
X,X,x, x Tensor, matrix, column vector, scalar
◦ Outer product

vec() Vectorization operator
⊗ Kronecker product
∗ � Element-wise multiplication and division
A† Moore-Penrose Pseudoinverse of A

DKL(a||b) KL-Divergence
‖A‖F Frobenius norm

KRONMATVEC
Efficient computation of

y = (A1 ⊗A2 ⊗ · · · ⊗An) x [BD96]
x(i) i-th entry of x (same for matrices and tensors)

X(:, i) Spans the entire i-th column of X (same for tensors)
x(k) Value at the k-th iteration

CP_ALS Frobenius norm PARAFAC [BK+15]
CP_APR KL-Divergence PARAFAC [CK12]

Table 8.1: Table of symbols

What we have seen so far, in Chapter 7 , is the extension of CORCONDIA to large
and sparse data, assuming Frobenius norm loss. This assumption postulates that the
underlying data distribution is Gaussian. However, recently [CK12] showed that for
sparse data that capture counts (e.g. number of messages exchanged), it is more beneficial
to postulate a Poisson distribution, therefore using the KL-Divergence as a loss function.
This has been more recently adopted in [HGS14] showing very promising results in
medical applications. Therefore, one natural direction, which we follow in the first part
of the next section, is to extend CORCONDIA for this scenario.

141

http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip

8.3 Proposed Methods
In exploratory data mining applications, the case is very frequently the following: we are
given a piece of (usually very large) data that is of interest to a domain expert, and we are
asked to identify regular and irregular patterns that are potentially useful to the expert
who is providing the data. Very often, this is done in a entirely unsupervised way, since
ground truth and labels are either very expensive or hard to obtain. In our context of
tensor data mining, our problem, thus, is given a potentially very large and sparse tensor,
and its F component decomposition, compute a quality measure for that decomposition.
Subsequently, using that quality metric, we would like to identify a “good” number
F of components, and throughout this process, we would like to minimize human
intervention and trial-and-error fine tuning.

In order to attack the above problem, first, in Section 8.3.1 we describe how we can
derive a fast and efficient measure of quality for KL-Divergence loss. Finally, in 8.3.2, we
introduce AUTOTEN, our unified algorithm for automatic tensor mining with minimal
user intervention, and quality characterization of the solution.

8.3.1 Quality Assessment with KL-Divergence
As we saw in the description of the Core Consistency Diagnostic with Frobenius norm
loss, its computation requires solving a least squares problem. In the case of the CP_APR
modelling, where the loss function is the KL-Divergence, the minimization problem that
we need to solve is:

min
x
DKL(y||Wx), W = A⊗B⊗C. (8.1)

Unlike the Frobenius norm case, where the solution to the problem is the Least Squares
estimate, in the KL-Divergence case, the problem does not have a closed form solution.
Instead, iterative solutions apply. The most prominent approach to this problem is via
an optimization technique called Majorization-Minimization (MM) or Iterative Majorization
[Hei95]. In a nutshell, in MM, given a function that is hard to minimize directly, we derive
a “majorizing” function, which is always greater than the function to be minimized,
except for a support point where it is equal; we minimize the majorizing function, and
iteratively update the support point using the minimizer of that function. This procedure
converges to a local minimum. For the problem of Eq. 8.1, [FI11] and subsequently
[CK12], employ the following update rule for the problem, which is used iteratively until
convergence to a stationary point.

x(j)(k) = x(j)(k−1)(

∑
i W(i, j)(y(j)

ỹ(j)(k−1))∑
i W(i, j)

) (8.2)

where ỹ(k−1) = Wx(k−1), and k denotes the k-th iteration index.

The above solution is generic for any structure of W. Remember, however, that W has
very specific Kronecker structure which we should exploit. Additionally, suppose that
we have a 104 × 104 × 104 tensor; then, the large dimension of W will be 1012. If we

142

attempt to materialize, store, and use W throughout the algorithm, it will be catastrophic
to the algorithm’s performance. We can exploit the Kronecker structure of W so that we
break down Eq. 8.2 into pieces, each one which can be computed efficiently, given the
structure of W. The first step is to decompose the expression of the numerator of Eq. 8.2.
In particular, we equivalently write x(k) = x(k−1) ∗ z2 where z2 = WTz1 and z1 = y � ỹ.
Due to the Kronecker structure of W:

z2 = KRONMATVEC({AT ,BT ,CT}, z1)

Therefore, the update to x(k) is efficiently calculated in the three above steps. The
normalization factor of the equation is equal to: s(j) =

∑
i W(i, j). Given the Kronecker

structure of W however, the following holds:
Claim 8.1.:
The row sum of a Kronecker product matrix A⊗B can be rewritten as

(∑I
i=1 A(i, :)

)
⊗(∑J

j=1 B(j, :)
)

Proof. We can rewrite the row sums
∑I

i=1 A(i, :) = iTI A and
∑J

j=1 B(j, :) = iTJB where
iI and iJ are all-ones column vectors of size I and J respectively. For the Kronecker
product of the row sums and by using properties of the Kronecker product, and calling
A⊗B = W we have

(
iTI A

)
⊗
(
iTJB

)
= (iI ⊗ iJ)

T (A⊗B) = iTIJW =
IJ∑
i=1

W(i, :)

which concludes the proof. �

Thus, s = (
∑

i A(i, :))⊗
(∑

j B(j, :)
)
⊗ (
∑

n C(n, :)) .

Putting everything together, we end up with Algorithm 8.1 which is an efficient solution
to the minimization problem of Equation 8.1. As in the naive case, we also use Iterative
Majorization in the efficient algorithm; we iterate updating x(k) until we converge to a
local optimum or we reach a maximum number of iterations. After computing the core
tensor, we then calculate the Core Consistency Diagnostic as before, by measuring its
deviation from the super-diagonal tensor.

8.3.2 AutoTen: Automated Unsupervised Tensor Mining
At this stage, we have the tools we need in order to design an automated tensor mining
algorithm that minimizes human intervention and provides quality characterization
of the solution. We call our proposed method AUTOTEN, and we view this as a step
towards making tensor mining a fully automated tool, used as a black box by academic
and industrial practitioners. AUTOTEN is a two step algorithm, where we first search
through the solution space and at the second step, we automatically select a good solution

143

Algorithm 8.1: Efficient Majorization – Minimization for solving
minxDKL(y|| (A⊗B⊗C) x)

Input: Vector y and matrices A,B,C.
Output: Vector x

1: Initialize x(0) randomly
2: ỹ = KRONMATVEC({A,B,C},x(0))

3: s = (
∑

i A(i, :))⊗
(∑

j B(j, :)
)
⊗ (
∑

n C(n, :))

4: while convergence criterion is not met do
5: z1 = y � ỹ
6: z2 = KRONMATVEC({AT ,BT ,CT }, z1)
7: x(k) = x(k−1) ∗ z2
8: ỹ = KRONMATVEC({A,B,C},x(k))
9: end while

10: Normalize x(k) using s

based on its quality and the number of components it offers. A sketch of AUTOTEN
follows, and is also outlined in Algorithm 8.2 and in Figure 8.2.

Solution Search The user provides a data tensor, as well as a maximum rank that
reflects the budget that she is willing to devote to AUTOTEN’s search. We neither have
nor require any prior knowledge whether the tensor is highly sparse, or dense, contains
real values or counts, hinting whether we should use, say, CP_ALS postulating Frobenius
norm loss, or CP_APR postulating KL-Divergence loss.

Fortunately, our work in this Chapter, as well as in the previous Chapter 7 has equipped
us with tools for handling all of the above cases. Thus, we follow a data-driven approach,
where we let the data show us whether using CP_ALS or CP_APR is capturing better
structure. For a grid of values for the decomposition rank (bounded by the user pro-
vided maximum rank), we run both CP_ALS and CP_APR, and we record the quality
of the result as measured by the Core Consistency diagnostic into vectors cFro and cKL
truncating negative values to zero.

Result Selection At this point, for both CP_ALS and CP_APR we have points in two
dimensional space (Fi, ci), reflecting the quality and the corresponding number of com-
ponents. Given points (Fi, ci) we need to find one that maximizes the quality of the
decomposition, as well as finding as many hidden components in the data as possible.
Intuitively, we are seeking a decomposition that discovers as many latent components
as possible, without sacrificing the quality of those components. Essentially, we have a
multi-objective optimization problem, where we need to maximize both ci and Fi. How-
ever, if we, say, get the Pareto front of those points (i.e. the subset of all non-dominated
points), we end up with a family of solutions without a clear guideline on how to select
one. We propose to use the following, effective, two-step maximization algorithm that

144

gives an intuitive data-driven solution:

• Max c step: Given vector c, run 2-means clustering on its values. This will essen-
tially divide the vector into a set of good/high values and a set of low/bad ones. If
we call m1,m2 the means of the two clusters, then we select the cluster index that
corresponds to the maximum between m1 and m2.

• Max F step: Given the cluster of points with maximum mean, we select the point
that maximizes the value of F . We call this point (F ∗, c∗).

Figure 8.1 shows pictorially the output of this two-step algorithm for a set of points taken
from a real dataset. Note that the choice of the above algorithm, intuitively, is a good
compromise between the quality of the decomposition, as indicated by the CORCONDIA
value, as well as the number of latent patterns that we uncover.

0 10 20 30 40 50
0

20

40

60

80

100

Points

Pareto Front

Our Solution

Figure 8.1: Example of choosing a good point

Another alternative is to formally define a function of c, F that we wish to maximize,
and select the maximum via enumeration. Coming up with the particular function to
maximize, considering the intuitive objective of maximizing the number of components
that we can extract with reasonably high quality (c), is a hard problem, and we risk
biasing the selection with a specific choice of a function. Nevertheless, an example such
function can be g(c, F) = logclogF for c > 0, and g(0, F) = 0; this function essentially
measures the area of the rectangle formed by the lines connecting (F, c) with the axes (in
the log-log space) and intuitively seeks to find a good compromise between maximizing
F and c. This function performs closely to the proposed data-driven approach and we
defer a detailed discussion and investigation to future work.

After choosing the “best” points (F ∗Fro, c
∗
Fro) and (F ∗KL, c

∗
KL), at the final step of AUTOTEN,

we have to select between the results of CP_ALS and CP_APR. In order do so, we can use
the following strategies:

145

1. Calculate
sFro =

∑
f

cFro(f)

and
sKL =

∑
f

cKL(f),

and select the method that gives the largest sum. The intuition behind this data-
driven strategy is choosing the loss function that is able to discover results with
higher quality on aggregate, for more potential ranks.

2. Select the results that produce the maximum value between c∗Fro and c∗KL. This
strategy is conservative and aims for the highest quality of results, possibly to the
expense of components of lesser quality that could still be acceptable for exploratory
analysis.

3. Select the results that produce the maximum value between F ∗Fro and F ∗KL. Contrary
to the previous strategy, this one is more aggressive, aiming for the highest number
of components that can be extracted with acceptable quality.

Empirically, the last strategy seems to give better results, however they all perform very
closely in synthetic data. Particular choice of strategy depends on the application needs,
e.g. if quality of the components is imperative to be high, then strategy 2 should be
preferred over strategy 3.

Algorithm 8.2: AUTOTEN: Automatic Unsupervised Tensor Mining
Input: Tensor X and maximum budget for component search Fmax
Output: PARAFAC decomposition A,B,C of X and corresponding quality metric c∗.

1: for f = 2 · · ·Fmax, in parallel do
2: Run CP_ALS for f components. Update cFro(f) using Algorithm in Chapter 7.
3: Run CP_APR for f components. Update cKL(f) using Algorithm 8.1.
4: end for
5: Find (F ∗Fro, c

∗
Fro) and (F ∗KL, c

∗
KL) using the two-step maximization as described in the text.

6: Choose between CP_ALS and CP_APR using the strategy described in the text.
7: Output the chosen c∗ and the corresponding decomposition.

Discussion As we’ve mentioned above, the maximum number of components Fmax is
chosen by the user according to the computational budget. However, there also exist
rigorous theoretical bounds on Fmax that can help guide the choice. In particular, the
main result in, as we have also seen in Chapters 2 and 6, [CO12] states that for a tensor
of dimensions I × J ×K, assuming I ≤ J ≤ K, the maximum number of components
that can be uniquely identified using the PARAFAC decomposition is Fmax ≤ (I+1)(J+1)

16
,

which is an upper bound to the choice of the Fmax parameter in AUTOTEN. We point
out that lines 2-3 of Algorithm 8.2, i.e. all the Fmax computations, can be run entirely in
parallel, speeding up the computation of each individual decomposition. Finally, it is

146

X

X

a1

b1

c1

aF*

bF*

cF*

≈ +…+

Best candidate!
Good candidate!

✖! Eliminated candidate!

✖!
✖!✖!

components !

qu
al

ity
 !

Frobenius Norm Scoreboard!

✖! ✖!✖! ✖!✖!

components !

qu
al

ity
 !

KL-Divergence Scoreboard!

CP_ALS! CP_APR!

F = 1! F = Fmax!…! F = 1! F = Fmax!…!

! in parallel "!

Choose best among solutions (see text for strategies) !

Figure 8.2: High-level pictorial description of AUTOTEN.

important to note that AUTOTEN not only seeks to find a good number of components
for the decomposition, combining the best of both worlds of CP_ALS and CP_APR, but
furthermore is able to provide quality assessment for the decomposition: if for a given
Fmax none of the solutions that AUTOTEN sifts through yields a satisfactory result, the
user will be able to tell because of the very low (or zero in extreme cases) c∗ value.

8.4 Experimental Evaluation
We implemented AUTOTEN in Matlab, using the Tensor Toolbox [BK+15], which provides
efficient manipulation and storage of sparse tensors. We use the public implementation
for the algorithm of [PF15], and we make our code publicly available1. The online version
of our code contains a test case that uses the same code that we used for the following
evaluation. All experiments were carried out on a workstation with 4 Intel(R) Xeon(R)
E7- 8837 and 512Gb of RAM.

8.4.1 Evaluation on Synthetic Data
In this section, we empirically measure AUTOTEN’s ability to uncover the true number
of components hidden in a tensor. We create synthetic tensors of size 50× 50× 50 in the

1Download our code at http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip

147

http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip

two following ways that model realistic data mining scenarios where we have highly
sparse data: 1) using the function create_problem of the Tensor Toolbox for Matlab
as a standardized means of generating synthetic tensors, we generate sparse random
factors with integer values, with total number of non-zeros equal to 500, 2) following the
synthetic data generation methodology of [CK12], which generates poisson distributed
sparse factors. We generate these for true rank Fo ranging from 2-5.

We compare AUTOTEN against four baselines:

• Baseline 1: A Bayesian tensor decomposition approach, as introduced very recently
in [ZZC15] which automatically determines the rank.

• Baseline 2: This is a very simple heuristic approach where, for a grid of values for
the rank, we run CP_ALS and record the Frobenius norm loss for each solution. If
for two consecutive iterations the loss does not improve more than a small positive
number ε (set to 10−6 here), we declare as output the result of the previous iteration.

• Baseline 3: Same as Baseline 2 with sole difference being that we use CP_APR
and accordingly instead of the Frobenius norm reconstruction error, we measure
the log-likelihood, and we stop when it stops improving more than ε. We expect
Baseline 3 to be more effective than Baseline 2 in sparse data, due to the more
delicate and effective treatment of sparse, count data by CP_APR.

• Baseline 4: A Bayesian framework based on Automatic Relevance Determination
(ARD) that is adapted to the rank estimation of PARAFAC and TUCKER models
[MH09]. According to [MH09] this baseline works comparably to Core Consistency
in the cases the authors examined.

AUTOTEN as well as Baselines 2 & 3 require a maximum bound Fmax on the rank; for
fairness, we set Fmax = 2Fo for all three methods. In Figures 8.3(a) and 8.3(b) we show
the results for both test cases. The error is measured as |Fest − Fo| where Fest is the
estimated number of components by each method. Due to the randomized nature of the
synthetic data generation, we ran 100 iterations and we show the average results. We
calculated statistical significance of our results (p < 0.01) using a two-sided sign test. We
observe that AUTOTEN generally achieves lower error in estimating the true number of
components. There is a single instance in Fig. 8.3(b) where the log likelihood criterion
(Baseline 3) works slightly better than the proposed method, and this is probably because
the criterion of Baseline 3 is highly in sync with the generative model of the synthetic
data, however, overall we conclude that AUTOTEN largely outperforms the baselines in
synthetic data that emulates realistic tensor mining applications. The problem at hand is
an extremely hard one, and we are not expecting any tractable method to solve it perfectly.
Thus, the results we obtain here are very encouraging and show that AUTOTEN is a
practical solution that, as we demonstrate in the next Section, can help data mining
practitioners.

148

2 3 4 5
0

1

2

3

4

5

Rank

E
rr

o
r

AutoTen

Baseline
1

Baseline
2

Baseline
3

Baseline
4

(a) Sparse count data with integer factors

2 3 4 5
0

1

2

3

4

5

Rank

E
rr

o
r

AutoTen

Baseline
1

Baseline
2

Baseline
3

Baseline
4

(b) Data generated as described in [CK12]

Figure 8.3: AUTOTEN outperforms baselines: Rank estimation error on synthetic data.

8.5 Data Mining Case Study
Section 8.5.1 takes 10 diverse real datasets shown in Table 8.2 and investigates their rank
structure. In Section 8.5.2 we apply AUTOTEN to one of the datasets of Table 8.2 and we
analyze the results, as part of an exploratory data mining study.

Name Description Dimensions Number of nonzeros
ENRON (sender, recipient, month) 186× 186× 44 9838
Reality Mining [EPL09] (person, person, means of communication) 88× 88× 4 5022
Facebook [VMCG09] (wall owner, poster, day) 63891× 63890× 1847 737778
Taxi [YZXS11, WZX14] (latitude, longitude,minute) 100× 100× 9617 17762489
DBLP [PAI13] (paper, paper, view) 7317× 7317× 3 274106
Netflix (movie, user, date) 17770× 252474× 88 50244707
Amazon co-purchase [LK14] (product, product, product group) 256× 256× 5 5726
Amazon metadata [LK14] (product, customer, product group) 10000× 263011× 5 441301
Yelp (user, business, term) 43872× 11536× 10000 10009860
Airport (airport, airport, airline) 9135× 9135× 19305 58443

Table 8.2: Datasets analyzed

8.5.1 Rank Structure of Real Datasets
Since exploration of the rank structure of a dataset, using the Core Consistency diagnostic,
is an integral part of AUTOTEN, we deem necessary to dive deeper into that process.
In this case study we are analyzing the rank structure of 10 real datasets, as captured
by the Core Consistency under Frobenius norm loss (using our algorithm from [PF15],
as well as Core Consistency with KL-Divergence loss (introduced here). Most of the
datasets we use are publicly available. ENRON2 is a social network dataset, recording the
number of emails exchanged between employees of the company for a period of time,
during the company crisis. Reality Mining [EPL09] is a multi-view social network
dataset, recording relations between MIT students (who calls whom, who messages
whom, who is close to whom and so on). Facebook [VMCG09] is a time evolving

2http://www.cs.cmu.edu/~enron/

149

http://www.cs.cmu.edu/~enron/

snapshot of Facebook, recording people posting on other peoples’ Walls. Taxi3 is a
dataset of taxi trajectories in Beijing; we discretize latitude and longitude to a 100× 100
grid. DBLP is a dataset recording which researcher to researcher connections, from three
different viewpoints (first view is co-authorship, second view is citation, and third view
records whether two authors share at least three keywords in their title or abstract of
their papers). Netflix comes from the Netflix prize dataset and records movie ratings
by users over time. Amazon co-purchase data records items bought together, and the
category of the first of the two products. Amazon metadata records customers who
reviewed a product, and the corresponding product category. Yelp contains reviews of
Yelp users for various businesses (from the data challenge4). Finally, Airport5 contains
records of flights between different airports, and the operating airline.

We note that in this Chapter we are mainly investigating the structure of the above
datasets. However, we also conduct data mining case studies for the majority of the
aforementioned datasets in various chapters: we analyze ENRON and Facebook in
Chapter 4 and Reality Mining and DBLP in Chapter 11.

20 40
0

50

100

Enron

(a)
20 40

0

50

100
Reality−Mining

(b)
20 40

0

50

100

Facebook

(c)
20 40

0

50

100

Taxi
100x100

(d)
0 50 100

0

50

100

DBLP

(e)

0 50 100
−1

0

1

Netflix

(f)
20 40

0

50

100
Amazon Co−purchase

(g)
20 40

0

50

100

Amazon

(h)
20 40

0

50

100
Yelp

(i)
20 40

0

50

100
Airport

(j)
Figure 8.4: Core Consistency for CP_ALS

We ran our algorithms for F = 2 · · · 50, and truncated negative values to zero. For KL-
Divergence and datasets Facebook, Netflix, Yelp, and Airport we used smaller
versions (first 500 rows for Netflix and Yelp, and first 1000 rows for Facebook and
Airport), due to high memory requirements of Matlab; this means that the correspond-
ing figures describe the rank structure of a smaller dataset, which might be different
from the full one. Figure 8.4 shows the Core Consistency when using Frobenius norm as
a loss, and Fig. 8.5 when using KL-Divergence. The way to interpret these figures is the
following: assuming a CP_ALS (Fig. 8.4) or a CP_APR (Fig. 8.5) model, each figure shows
the modelling quality of the data for a given rank. This sheds light to the rank structure

3http://research.microsoft.com/apps/pubs/?id=152883
4https://www.yelp.com/dataset_challenge/dataset
5http://openflights.org/data.html

150

http://research.microsoft.com/apps/pubs/?id=152883
https://www.yelp.com/dataset_challenge/dataset
http://openflights.org/data.html

20 40
0

50

100

Enron

(a)
20 40

0

50

100
Reality−Mining

(b)
20 40

0

50

100

Facebook−small

(c)
20 40

0

50

100

Taxi
100x100

(d)
0 50 100

0

20

40

DBLP

(e)

0 50 100
0

20

40

60

Netflix−small

(f)
20 40

0

50

100
Amazon Co−purchase

(g)
20 40

0

50

100

Amazon

(h)
20 40

0

50

100
Yelp−small

(i)
20 40

0

50

100
Airport−small

(j)
Figure 8.5: Core Consistency for CP_APR

of a particular dataset (although that is not to say that it provides a definitive answer
about its true rank). For the given datasets, we observe a few interesting differences in
structure: for instance, ENRON and Taxi in Fig. 8.4 seem to have good quality for a few
components. On the other hand, Reality Mining, DBLP, and Amazon metadata
have reasonably acceptable quality for a larger range of components, with the quality
decreasing as the number gets higher. Another interesting observation is that Yelp
seems to be modelled better using a high number of components. Figures that are all-zero
merely show that no good structure was detected for up to 50 components, however,
this might indicate that such datasets (e.g. Netflix) have an even higher number of
components. Finally, contrasting Fig. 8.5 to Fig. 8.4, we observe that in many cases
using the KL-Divergence is able to discover better structure than the Frobenius norm
(e.g. ENRON and Amazon co-purchase).

8.5.2 AutoTen in practice
We used AUTOTEN to analyze the Taxi dataset shown in Table 8.2.The data we have
span an entire week worth of measurements, with temporal granularity of minutes.
First, we tried quantizing the latitude and longitude into a 1000× 1000 grid; however,
AUTOTEN warned us that the decomposition was not able to detect good and coherent
structure in the data, perhaps due to extreme sparsity. Subsequently, we modelled
the data using a 100 × 100 grid and AUTOTEN was able to detect good structure. In
particular, AUTOTEN output 8 rank-one components, choosing Frobenius norm as a loss
function.

In Figure 8.6 we show 4 representative components of the decomposition. In each sub-
figure, we overlay the map of Beijing with the coordinates that appear to have high
activity in the particular component; every sub-figure also shows the temporal profile
of the component. The first two components (Fig. 8.6(a), (b)) spatially refer to a similar
area, roughly corresponding to the tourist and business center in the central rings of

151

(a) Tourist & Business Center: High activity during
weekdays, low over the weekend

(b) Downtown: Consistent activity throughout the
week

(c) Olympic Center: Activity peak during the week (d) Airport: High activity during weekdays, low
over the weekend

Figure 8.6: Latent components of the Taxi dataset, as extracted using AUTOTEN.

the city. The difference is that Fig. 8.6(a) shows high activity during the weekdays and
declining activity over the weekend (indicated by five peaks of equal height, followed by
two smaller peaks), whereas Fig. 8.6(b) shows a slightly inverted temporal profile, where
the activity peaks over the weekend; we conclude that Fig. 8.6(a) most likely captures
business traffic that peaks during the week, whereas Fig. 8.6(b) captures tourist and
leisure traffic that peaks over the weekend. The third component (Fig. 8.6(c)) is highly
active around the Olympic Center and Convention Center area, with peaking activity
in the middle of the week. Finally, the last component (Fig. 8.6(d)) shows high activity
only outside of Beijing’s international airport, where taxis gather to pick-up customers;
on the temporal side, we see daily peaks of activity, with the collective activity dropping
during the weekend, when there is significantly less traffic of people coming to the city
for business. By being able to analyze such trajectory data into highly interpretable
results, we can help policymakers to better understand the traffic patterns of taxis in big
cities, estimate high and low demand areas and times and optimize city planning in that
respect. There has been very recent work [WZX14] towards the same direction, and we
view our results as complementary.

8.6 Related Work
We have already covered model order selection in Chapter 2, however, for the reader’s
convenience, we outline here the most relevant references. As we have mentioned
throughout the text, CORCONDIA [BK03] is using properties of the PARAFAC decompo-

152

sition in order to hint towards the right number of components. In [PF15], the authors
introduce a scalable algorithm for CORCONDIA (under the Frobenius norm). Moving
away from the PARAFAC decompostion, Kiers and Kinderen [KK03] introduce a method
for choosing the number of components for TUCKER. There has been recent work using
Minimum Description Length (MDL): In [APG+14] the authors use MDL in the context
of community detection in time-evolving social network tensors, whereas in [MM15],
Metzler and Miettinen use MDL to score the quality of components for a binary tensor
factorization. Finally, there have also been recent advances using Bayesian methods
in order to automatically decide the number of components: in particular [ZZC15]
does so for the PARAFAC decomposition, and [MH09] (based on Automatic Relevance
Determination) does so for both PARAFAC and TUCKER models.

8.7 Conclusions
In this Chapter, we work towards an automatic, unsupervised tensor mining algorithm
that minimizes user intervention. We encourage reproducibility by making our code pub-
licly available at http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip. Our
main contributions are:

• Technology Transfer This is the first work to apply ideas such as the Core Con-
sistency Diagnostic [BK03] in data mining, aiming to popularize it within the
community.

• Algorithms We propose AUTOTEN, a novel automatic, parallel, and unsupervised
tensor mining algorithm, which can provide quality characterization of the solution.
We extend the Core Consistency Diagnostic of [BK03] for KL-Divergence loss and
provide a novel and efficient algorithm.

• Evaluation & Discovery We evaluate our methods in synthetic data, showing their
superiority compared to the baselines, as well as a wide variety of real datasets.
Finally, we apply AUTOTEN to two real datasets discovering meaningful patterns
(Section 8.5.2 and supplementary material).

153

http://www.cs.cmu.edu/~epapalex/src/AutoTen.zip

154

Part III

Applications: Neurosemantics

155

Chapter 9

Coupling Brain Measurements
with Semantic Information

Unsupervised discovery of semantically
coherent brain regions.

Chapter based on material published in [PMS+14, PMS+16].

Consider the following experimental setting, where multiple human subjects are
shown a set of concrete English nouns (e.g. “dog”, “tomato” etc), and we measure
each person’s brain activity using functional Magnetic Resonance Imaging (fMRI).
Here we identify regions of the brain that are activated for a semantically coherent
set of stimuli using Coupled Matrix-Tensor Factorization and TURBO-SMT (Chapter
5). Our analysis produces results that agree with Neuroscience and does so without
supervision.

9.1 Introduction
How is knowledge represented in the human brain? Which regions have high activity,
when a person sees a concept such as “animal” or “food”? In order to answer the above
questions, we consider the following experiment: multiple human subjects are shown a
set of concrete English nouns (e.g. “dog”, “tomato” etc), and we measure each person’s
brain activity using functional Magnetic Resonance Imaging (fMRI). In this experiment,
human subjects and semantic stimuli (i.e., the nouns) different aspects of the same
underlying phenomenon: the mechanisms that the brain uses to process language.

We seek to identify coherent regions of the brain that are activated for a semantically
coherent set of stimuli. To that end we couple the above fMRI measurements with
semantic features for the same set of nouns, which offer another aspect of the data
and provide useful information to the analysis which might be missing from the fMRI
data.

157

In the following lines we describe the data we use and the way we formulate the problem
of identifying semantically coherent brain regions (Sec. 9.2), we present our discoveries
(Sec. 9.3) and conclude outlining the importance of our results.

9.2 Data Description & Problem Formulation
Our data consists of two parts, the fMRI brain scans and the semantic information for
the stimuli of the experiment.

9.2.1 fMRI Brain Scans
We record the brain activity of 9 human subjects when shown each of 60 concrete nouns
(5 in each of 12 categories, e.g. dog, hand, house, door, shirt, dresser, butterfly, knife,
telephone, saw, lettuce, train). The human subjects were balanced in terms of gender and
demographics, and were all right-handed. We use fMRI for the measurements; fMRI
measures slow changes in blood oxygenation levels, reflecting localized changes in brain
activity. The data produced consists of 3× 3× 6mm voxels (3D pixels) corresponding to
fixed spatial locations across participants. Recorded fMRI values are the mean activity
over 4 contiguous seconds, averaged over multiple presentations of each stimulus word
(each word is presented 6 times as a stimulus). Further acquisition and preprocessing
details are given in [MSC+08]. This dataset is publicly available1.

For each human subject, noun pair we take the fMRI image and we “flatten” it to a long
vector that contains the intensity values for all the voxels. Using this representation,
we create a (noun, voxel, human subject) tensor X of dimensions 60 × 77775 × 9 with
over 11 million non-zeros, that contains the measurements for all human subjects and all
stimuli.

9.2.2 Semantic Information
So far, we have represented the experiment as a tensor, however, we are still lacking
a notion of semantics. By taking a low-rank, sparse PARAFAC decomposition of X we
will obtain subsets of nouns that activate similar parts of the brain for similar subsets
of human subjects. However, we further need a means of understanding the semantic
coherence of each one of those latent groups.

To that end, we use a separate piece of data that contains crowd-sourced numerical
responses to 218 questions (such as “can you buy it?”, “does it fly”?, and“is it smaller
than a golfball?"), for each of the 60 nouns. This dataset has been used before in works
such as [MTM12], [PPHM09]. We stress that the set of people who gave the answers to
the above questions is different from the 9 human subjects of our brain scans. However,
using this dataset is beneficial for our analysis in the following ways:

• The questions are semantic features that constitute a human-readable description of a
noun or a group of nouns. Thus, if we can correlate the brain scan data with the

1http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

158

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html

questions, we can have an annotation of the latent cluster with a set of semantic
features that describes the semantic concept of the cluster.

• The fMRI data are usually noisy and if we can use any additional, structured,
side information (such as the questions), this will enable more robust discovery of
meaningful structure in the fMRI data.

We must note here that this particular choice of semantic features for the nouns is not the
only one. Another example of such side information could be corpus statistics for the
nouns, or ontology/knowledge base information.

The questions form a (noun, question) matrix Y of dimensions 60× 218.

9.2.3 Problem Formulation
As we describe in the lines above, we have represented the fMRI brain scans as a (noun,
voxel, human subject) tensor X, and the questions as a (noun, questions) matrix Y. A
crucial observation is that X and Y share the “nouns” mode (since the nouns in both
datasets have one-to-one correspondence), hence they are coupled in the noun dimension.
As we saw in Chapter 2, there exists a class of models by the name of Coupled Matrix-
Tensor Factorizations (CMTF) that can handle such coupled data.

In our case, we seek to identify co-clusters of nouns, brain voxels, human subjects, and
questions, thus a CMTF model with a PARAFAC model for the tensor X is the most
appropriate. Figure 9.1 demonstrates our analysis.

≈ X Y
A B

a1 aR

b1 bR

c1 cR

= +…+

a1 aR

d1 dR

+…+ A D
=

≈
Ques1ons&

N
ou

ns
&

fMRI&voxels&

Figure 9.1: Neurosemantics as Coupled Matrix-Tensor Factorization: We couple the
fMRI tensor X and the questions matrix Y, and we analyze the two datasets using
Coupled Matrix Tensor Factorization. Each set of latent variables {ar,br, cr,dr} gives a
subset of nouns, voxels, human subjects, and questions, identifying semantically coherent
regions of the brain that responds similarly to a set of nouns, and for a particular set of
people.

159

9.3 Discoveries
We use TURBO-SMT for analyzing X and Y, choosing r = 5 and sI = 3, sJ = 86, sK = 1
for the tensor and sI for the questions dimension of the matrix 2. In the following lines
we present our discoveries.

9.3.1 Simultaneous Clustering of Words, Questions and Regions of
the Brain

One of the strengths of CMTF is its expressiveness in terms of simultaneously soft-
clustering all involved entities of the problem. By taking a low rank decomposition of
coupled data , we are able to find groups that jointly express words, questions and brain
voxels (we can also derive groups of human subjects; however, it is an active research
subject in neuroscience, whether brain-scans should differ significantly between people,
and is out of the scope of the present work).

In Figure 9.2, we display four such groups of brain regions that are activated given a
stimulus of a group of similar words; we also display the most prominent words, along
with groups of similar questions that were highly correlated with the words of each
group. Moreover, we were able to successfully identify high activation of the premotor
cortex in Group 3, which is associated with concepts that have conventional manual uses
(such as holding, or picking up).

The above results is very important and encouraging because it is entirely unsupervised
and it agrees with what Neuroscience knows about the premotor cortex. This gives confi-
dence to our model and its potential to be used in data from more complex experiments,
where it can directly help and inform Neuroscientific research.

9.3.2 Predicting Brain Activity from Questions
In addition to soft-clustering, the low rank joint decomposition of the data offers another
significant result. This low dimensional embedding of the data into a common semantic
space, enables the prediction of, say, the brain activity of a subject, for a given word,
given the corresponding vector of question answers for that word. In particular, we
use this linear transformation in order to map the question answer vector to the latent
semantic space and then expanding it to the brain voxel space, we obtain a fairly good
prediction of the brain activity. This linear transformation is reminiscent of the mapping
done in Latent Semantic Analysis (LSA) [DDF+90], where the authors compute a low
rank embedding of terms and documents, and given a query consisting of terms, they
project it to the latent dimension, taking advantage of the compaction offered by the low
rank approximation. In the case of LSA, the embeddings used are orthonormal (since
they are computed using SVD), and thus the “mapping” is a proper projection to the
subspace. In our case, we do not restrict the embeddings to be orthonormal, and thus we
perform a linear transformation.

2We may use imbalanced sampling factors, especially when the data is far from being ’rectangular’.

160

50 100 150 200 250

50

100

150

200

250

300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

50 100 150 200 250

50

100

150

200

250

300
0

0.01

0.02

0.03

0.04

0.05

50 100 150 200 250

50

100

150

200

250

300
0

0.01

0.02

0.03

0.04

0.05

Premotor Cortex

50 100 150 200 250

50

100

150

200

250

300

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Group1 Group 2 Group 4Group 3

beetle can it cause you pain?
pants do you see it daily?
bee is it conscious?

beetle can it cause you pain?
pants do you see it daily?
bee is it conscious?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?

Nouns Questions Nouns Questions

Nouns Questions
beetle can it cause you pain?bear does it grow?

cow is it alive?
coat was it ever alive?

bear does it grow?
cow is it alive?
coat was it ever alive?

glass can you pick it up?
tomato can you hold it in one hand?
bell is it smaller than a golfball?’

glass can you pick it up?
tomato can you hold it in one hand?
bell is it smaller than a golfball?’

bed does it use electricity?
house can you sit on it?
car does it cast a shadow?

bed does it use electricity?
house can you sit on it?
car does it cast a shadow?

6

50 100 150 200 250

50

100

150

200

250

300 0

0.01

0.02

0.03

0.04

0.05

Pre$motor(cortex(

Figure 9.2: Unsupervised discovery of semantically coherent brain regions: TURBO-
SMT finds meaningful groups of words, questions, and brain regions that are (both
negatively and positively) correlated, as obtained using TURBO-SMT. For instance,
Group 3 refers to small items that can be held in one hand, such as a tomato or a glass,
and the activation pattern is very different from the one of Group 1, which mostly refers
to insects, such as bee or beetle. Additionally, Group 3 shows high activation in the
premotor cortex which is associated with the concepts of that group.

To evaluate the accuracy of these predictions of brain activity, we follow a leave-two-out
scheme, where we remove two words entirely from the brain tensor and the question
matrix; we carry out the joint decomposition, in some very low dimension, for the
remaining set of words and we obtain the usual set of matrices A,B,C,D. Due to the
randomized nature of TURBO-SMT, we did 100 repetitions of the procedure described
below.

Let qi be the question vector for some word i, and vi be the brain activity of one human
subject, pertaining to the same word. By left-multiplying qi with DT , we map qi to
the latent space of the decomposition; then, by left-multiplying the result with B, we
map the result to the brain voxel space. Thus, our estimated (predicted) brain activity is
obtained as v̂i = BDTqi

Given the predicted brain activities v̂1 and v̂2 for the two left out words, and the two
actual brain images v1 and v2 which were withheld from the training data, the leave-two-
out scheme measures prediction accuracy by the ability to choose which of the observed
brain images corresponds to which of the two words. After mean-centering the vectors,
this classification decision is made according to the following rule:

‖v1 − v̂1‖2 + ‖v2 − v̂2‖2 < ‖v1 − v̂2‖2 + ‖v2 − v̂1‖2
Although our approach is not designed to make predictions, the results are very encour-
aging: Using only F=2 components, for the noun pair closet/watch we obtained mean

161

accuracy of 0.82 for 5 out of the 9 human subjects. Similarly, for the pair knife/beetle, we
achieved accuracy of about 0.8 for a somewhat different group of 5 subjects. For the
rest of the human subjects, the accuracy is considerably lower, however, it may be the
case that brain activity predictability varies between subjects, a fact that requires further
investigation.

9.4 Related Work
As we have outlined in Chapter 3, there has been substantial related work, which
utilizes tensors for analyzing brain data. In [AABB+07] Acar et al. apply the PARAFAC
decomposition on EEG measurements in order to detect epileptic seizures. Morup et al.
in [MHA+08] introduce a variation of the PARAFAC decomposition that is able to handle
temporal shifts across brain measurements. In [CZPA09], the authors describe how one
can use non-negative tensor factorization for source separation and analysis of brain
signals, and finally, in [DGCW13] et al. introduce a constrained PARAFAC model in order
to identify the connectivity between different brain regions.

9.5 Conclusions
In this Chapter we identify semantically coherent brain regions, using fMRI brain scans and
semantic features for the stimuli used during the experiment. Our main contributions
are:

• Problem formulation: To the best of our knowledge, this is the first study to
formulate the problem as an instance of Coupled Matrix-Tensor Factorization.

• Unsupervised discovery: Our findings are entirely unsupervised and agree with
Neuroscience. This gives confidence that our formulation can be extended for more
complex tasks where Neuroscience does not have the full picture yet, and thus help
and inform Neuroscientific research

162

Chapter 10

Good-Enough Brain Model:
Challenges, Algorithms and
Discoveries in Multi-Subject
Experiments

Inspired by Control Theory & System
Identification to estimate the functional
connectivity of the human brain.

Chapter based on material published in [EFS+] and [PFS+14b].

Given a simple noun such as “apple”, and a question such as “is it edible?”, what are
the interactions between (groups of) neurons, also known as functional connectivity?
In this Chapter we introduce a simple, novel good-enough brain model (GEBM)
which effectively models the dynamics of the neuron interactions and captures the
functional connectivity. We evaluate GEBM using real brain data and our results
agree with Neuroscience.

10.1 Introduction
Consider human subject ’Alice’, who is reading a typed noun (e.g. apple) and has to
answer a simple yes/no question (e.g. can you eat it?). How do different parts of Alice’s
brain communicate during this task? This type of communication is formally defined as
functional connectivity of the human brain and is an active field of research in Neuroscience.
Coming up with a comprehensive model that captures the dynamics of the functional
connectivity is of paramount importance. Achieving that, will effectively provide a better
understanding of how the human brain works and can have a great impact both on ma-

163

chine and human learning. In this work, we tackle the above problem in a scenario where
multiple human subjects are shown simple nouns and answer a set of questions for each
noun, and we record their brain activity using magentoencephalography (MEG).

Although this might seem like a problem that is of sole interest to the field of Neuro-
science, in fact, can also benefit from a Big Data approach. For each human subject,
what we essentially have is a set of MEG sensors recording a time series of the magnetic
activity of their brain, and our ultimate goal is to infer a (hidden) underlying network
between different regions of their brain. Effectively, we are dealing with a problem of
the broad family of Network Discovery, which is an active field of Big Data research; for
instance, in [VVA+06] the authors induce a communication network between VoIP users
through time-series analysis, while in [SKB12] the authors infer a friendship network
between Twitter users by using various signals of user behavior.

Besides the nature of the problem itself, the data involved in our problem call for Big
Data techniques: For each human subject an experiment involves recording of their brain
activity for all combinations of nouns and questions, which results in a big number of
data points that need to be processed, summarized and analyzed; as the task becomes
more complicated (e.g. the subject has to read an entire sentence, or even a book instead
of a single typed noun, or even look at a picture), the data volume and complexity
explode. In addition to that, different measurement techniques have complementary
strengths (e.g. MEG has fine time granularity but poor spatial resolution, and conversely
fMRI has very high, 1mm spatial resolution but poor temporal resolution) and we
would like to collect and exploit all potential benefits from all techniques, a factor that
significantly increases the size of the problem; for instance, even for a small number of
human subjects, all measurements span hundreds of Gigabytes. Thus, it is important to
view this problem through a Big Data analytics lens, and this article constitutes a step
towards this direction.

Our approach: Discovering the multi-billion connections among the tens of billions
[WH88, ACG+09] of neurons would be the holy grail, and clearly outside the current
scientific and technological capabilities. How close can we approach this ideal? We
propose to use a good-enough approach, and try to explain as much as we can, by assuming
a small, manageable count of neuron-regions and their interconnections, and trying to
guess the connectivity from the available MEG data. In more detail, we propose to
formulate the problem as ’system identification’ from control theory, and we develop
novel algorithms to find sparse solutions.

We show that our good-enough approach is a very good first step, leading to a tractable, yet
effective model (GEBM), that can answer the above questions. Figure 10.1 gives the high-
level overview: at the bottom-right, the blue, dashed-line time sequences correspond
to measured brain activity; the red lines correspond to the guess of our GEBM model.
Notice the qualitative goodness of fit. At the top-right, the arrows indicate interaction
between brain regions that our analysis learned, with the weight being the strength of
interaction. Thus we see that the vision cortex (’occipital lobe’) is well connected to the
language-processing part (’temporal lobe’), which agrees with neuroscience, since all our

164

“apple”!

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0.05

0.1

0.15

0.2

0.25

0.3

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

voxel 1!

voxel 2!

voxel 306!

MEG!

18

4 3

2324

1

16

19

3 2

84 1

Frontal lobe!
(attention)!

Parietal lobe!
(movement)!

Temporal lobe!
(language)!

Occipital lobe!
(vision)!

“Is it edible?” (y/n)!

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Real and predicted MEG brain activity

0 20 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
GeBM

equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting

Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
LS
CCA

Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:

“knife”!“Can it hurt you?” (y/n)!

…
"

…
"

…
"

…"

…"

FL! PL!
TL! OL!

Figure 10.1: Big picture: our GEBM estimates the hidden functional connectivity (top
right, weighted arrows indicating number of inferred connections), when given multiple
human subjects (left) that respond to yes/no questions (e.g., edible?) for typed words
(e.g., apple). Bottom right: GEBM also produces brain activity (in solid-red), that matches
reality (in dashed-blue).

experiments involved typed words.

Our contributions are as follows:

• Novel analytical model & Algorithm: We propose the GEBM model (see Section
10.3, and Eq (10.2)-(10.3)). We also introduce SPARSE-SYSID, a novel sparse system-
identification algorithm (see Section 10.3).

• Effectiveness: Our model can explain psychological phenomena, such as habitua-
tion and priming (see Section 10.5.4); it also gives results that agree with experts’
intuition (see Section 10.5.1)

• Multi-subject analysis: Our SPARSE-SYSID, applied on 9 human subjects (Section
10.5.2), showed that (a) 8 of them had very consistent brain-connectivity patterns
while (b) the outlier was due to exogenous factors (excessive road-traffic noise
during his experiment).

• Cross-disciplinary connections: Our GEBM highlights connections between mul-
tiple, mostly disparate areas: 1) Neuroscience, 2) Control Theory & System Identi-
fication, and 3) Psychology. Additionally, we provide insights on the relation of
GEBM to Recurrent Neural Networks, a field that is gaining increasing popularity
among Big Data techniques especially with the rise of Deep Learning, pointing out
ways that both can benefit from each other.

Reproducibility: Our implementation is publicly available 1. Due to privacy reasons,

1http://www.cs.cmu.edu/~epapalex/code.html

165

http://www.cs.cmu.edu/~epapalex/code.html

we are not able to release the MEG data, however, in the online version of the code we
include the synthetic benchmarks, as well as the simulation of psychological phenomena
using GEBM.

The present chapter is an extension upon our work that appeared in the ACM KDD
2014 conference [PFS+14a]. In addition to [PFS+14a], in this manuscript, we provide
further cross-disciplinary connections of our work to other fields (and more specifically
to Recurrent Neural Networks), provide intuitive explanations behind the key concepts
introduced in the original paper, as well as emphasize the practical applications of our
work.

10.2 Problem Definition
As mentioned earlier, our goal is to infer the brain connectivity, given measurements of
brain activity on multiple yes/no tasks, of multiple subjects. We define as yes/no task the
experiment where the subject is given a yes/no question (like, ‘is it edible?’, ’is it alive?’),
and a typed English word (like, apple, chair), and has to decide the answer.

Throughout the entire process, we attach m sensors that record brain activity of a human
subject. Here we are using Magnetoencephalography (MEG) data, although our GEBM
model could be applied to other types of measurement (fMRI, etc). In Section 10.5 we
provide a more formal definition of the measurement technique.

Thus, in a given experiment, at every time-tick t we have m measurements, which we
arrange in an m× 1 vector y(t). Additionally, we represent the stimulus (e.g. apple) and
the task (e.g. is it edible?) in a time-dependent vector s(t), by using feature representation
of the stimuli; a detailed description of how the stimulus vector is formed can be found
in Section 10.5. For the rest of the chapter, we shall use interchangeably the terms sensor,
voxel and neuron-region.

First and foremost, we are interested in understanding how the brain works, given a
single subject. Informally, we have:
Informal Problem 10.1.: - Given: The input stimulus; and a sequence of m× T brain

activity measurements for the m voxels, for all timeticks t = 1 · · ·T
- Estimate: the functional connectivity of the brain, i.e. the strength and direction of

interaction, between pairs of the m voxels, such that
1. we understand how the brain-regions collaborate, and
2. we can effectively simulate brain activity.

After solving the above problem, we are also interested in doing cross-subject analysis,
to find commonalities (and deviations) in a group of several human subjects.

For the particular experimental setting, prior work [SPP+12] has only considered trans-
formations from the space of noun features to the voxel space and vice versa, as well as
word-concept specific prediction based on estimating the covariance between the voxels
[FFDM12].

166

Next we formalize the problems, we show some straightforward (but preliminary) solu-
tions, and finally we give the proposed model GEBM, and the estimation algorithm.

10.3 Problem Formulation and Proposed Method
There are two over-arching assumptions in our design:

• Linearity: Linear models, however simplifying, are a good “first order approxima-
tion” of the functional connectivity we seek to capture.

• Stationarity: The connectivity of the brain does not change, at least for the time-
scales of our experiments.

The above assumptions might sound very simplifying, however, this work is a first step
towards this direction, and our linear, time-invariant model proves to be “good-enough”
for the task at hand Non-linear/sigmoid models are a natural direction for future work;
and so is the study of neuroplasticity, where the connectivity changes.

We must note that however simple GEBM is, there are simpler approaches which seem
more natural at first, which do not perform well. Such an approach, which we call
MODEL0, is presented in the next subsection, before the introduction of GEBM.

10.3.1 First (unsuccessful) approach: Model0
Since our Informal Problem Definition does not strictly define the brain regions whose
connectivity we are seeking to identify, a natural first step is to assume that each MEG
voxel (e.g. region measured by an MEG sensor) is such a brain region.

Given the linearity and static-connectivity assumptions above, we may postulate that
the m× 1 brain activity vector y(t+ 1) depends linearly, on the activities of the previous
time-tick y(t), and, of course, the input stimulus, that is, the s× 1 vector s(t).

Formally, in the absence of input stimulus, we expect that

y(t+ 1) = Ay(t).

where A is the m×m connectivity matrix of the m brain regions. Including the (linear)
influence of the input stimulus s(t), we reach the MODEL0:

y(t+ 1) = A[m×m] × y(t) + B[m×s] × s(t) (10.1)

The B[m×s] matrix shows how the s input signals affect the m brain-regions.

In [PFS+14a] we show how we can solve for this model using Least Squares (LS) and
Canonical Correlation Analysis (CCA) [SGL07]. However intuitive, the formulation of
MODEL0 turns out to be rather ineffective in capturing the temporal dynamics of the
recorded brain activity. As an example of its failure to model brain activity successfully,

167

Real and predicted MEG brain activity

0 10 20 30 40
0

0.1

0.2

0.3

0.4

real

LS

CCA

Figure 10.2: MODEL0 fails: True brain activity (dotted blue) and the model estimate
(pink, and black, resp., for the least squares, and for the CCA variation).

Fig. 10.2 shows the real brain activity and predicted activity for a particular voxel. The
solutions fail to match the trends and oscillations.

The conclusion of this subsection is that we need a more sophisticated yet parsimonious
model, which leads us to GEBM, next.

10.3.2 Proposed approach: GeBM
Before we introduce our proposed model, we should introduce our notation, which is
succinctly shown in Table 10.1.

Symbol Definition
n number of hidden neuron-regions
m number of MEG sensors/voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n×n] connectivity matrix between neurons (or neuron regions)
C[m×n] summarization matrix (neurons to voxels)
B[n×s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 10.1: Table of symbols

Formulating the problem as MODEL0 is not able to meet the requirements for our desired
solution. However, we have not exhausted the space of possible formulations that live

168

within our set of simplifying assumptions. In this section, we describe GEBM, our
proposed approach which, under the assumptions that we have already made in Section
10.2, is able to meet our requirements remarkably well.

In order to come up with a more accurate model, it is useful to look more carefully
at the actual system that we are attempting to model. In particular, the brain activity
vector y that we observe is simply the collection of values recorded by the m sensors,
placed on a person’s scalp. In MODEL0, we attempt to model the dynamics of the
sensor measurements directly. However, by doing so, we are directing our attention
to an observable proxy of the process that we are trying to estimate (i.e. the functional
connectivity). Instead, it is more beneficial to model the direct outcome of that process.
Ideally, we would like to capture the dynamics of the internal state of the person’s brain,
which, in turn, cause the effect that we are measuring with our MEG sensors.

Let us assume that there are n hidden (hyper-)regions of the brain, which interact with
each other, causing the activity that we observe in y. We denote the vector of the hidden
brain activity as x of size n × 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t+ 1) = A[n×n] × x(t) + B[n×s] × s(t)

A subtle issue that we have yet to address is the fact that x is not observed and we have no
means of measuring it. We propose to resolve this issue by modelling the measurement
procedure itself, i.e. model the transformation of a hidden brain activity vector to its
observed counterpart. We assume that this transformation is linear, thus we are able to
write

y(t) = C[m×n]x(t)

Putting everything together, we end up with the following set of equations, which
constitute our proposed model GEBM:

x(t+ 1) = A[n×n] × x(t) + B[n×s] × s(t)

y(t) = C[m×n] × x(t)

(10.2)
(10.3)

The key concepts behind GEBM are:

• (Latent) Connectivity Matrix: We assume that there are n regions, each containing
1 or more neurons, and they are connected with an n× n adjacency matrix A[n×n].
We only observe m voxels, each containing multiple regions, and we record the
activity (eg., magnetic activity) in each of them; this is the total activity in the
constituent regions

• Measurement Matrix: Matrix C[m×n] is an m × n matrix, with ci,j =1 if voxel i
contains region j

• Perception Matrix: Matrix B[n×s] shows the influence of each sensor to each neuron-
region. The input is denoted as s, with s input signals

169

• Sparsity: We require that our model’s matrices are sparse; only few sensors measure
a specific brain region. Additionally, the interactions between regions should not
form a complete graph, and finally, the perception matrix should map only few
activated sensors to neuron regions at every given time.

An interesting aspect of our proposed model GEBM is the fact that if we ignore the notion
of the summarization, i.e. matrix C = I, then our model is reduced to the simple model
MODEL0. In other words, GEBM contains MODEL0 as a special case. This observation
demonstrates the importance of hidden states in GEBM.

Figure 10.3: Sketch of GEBM

A pictorial representation of GEBM is shown in Fig. 10.3. Starting from left to right,
we have the triangle shaped nodes; these nodes represent the sensors of the human
subject, which capture the stimulus s(t). For instance, these sensors could correspond
at a high level to different visual sensors that map the stimulus to the internal, hidden
neuron regions; the mapping between the human sensor nodes to the latent brain regions
is encoded in matrix B. The hidden neuron regions are denoted by black circles, and
the connections between them comprise matrix A, which is effectively the functional
connectivity of these latent regions. Finally, the latent region activity x(t) is measured
by the MEG sensors, which are denoted by black squares in Fig. 10.3; this measurement
procedure is encoded in matrix C.

10.3.3 Algorithm
Our solution is inspired by control theory, and more specifically by a sub-field of control
theory, called system identification. We refer the interested reader to the appendix of our
KDD paper [PFS+14a], and references therein, for an overview of traditional system
identification. However, the matrices we obtain through this process are usually dense,
counter to GEBM’s specifications. We, thus, need to refine the solution until we obtain
the desired level of sparsity. In the next few lines, we show why this sparsification has to
be done carefully, and we present our approach.

Crucial to GEBM’s behavior is the spectrum of its matrices; in other words, any operation
that we apply on any of GEBM’s matrices needs to preserve the eigevnalue profile (for
matrix A) or the singular values (for matrices B,C). Alterations thereof may lead GEBM
to instabilities. From a control theoretic and stability perspective, we are mostly interested

170

in the eigenvalues of A, since they drive the behavior of the system. Thus, in our
experiments, we heavily rely on assessing how well we estimate these eigenvalues.

As a reminder to the reader, here we provide a short explanation why eigenvalues are
crucial. Say we focus on one of the eigenvalues λ of our matrix A. If λ is real and positive,
then the response of the system (associated to λ) will increase exponentially. Conversely,
if λ is real and negative, the respective response will decay exponentially. Finally, if
λ is complex, then the response of the system will be some type of oscillation, whose
frequency and trend (decaying, increasing or constant) depends on the actual values
of the real and the imaginary parts. The response of the system is, thus, a mixture of
the responses that pertain to each eigenvalue. Say that by transforming our system’s
matrices, we force a complex eigenvalue to become real; this will alter the response of
the system severely, since a component that was oscillating, will now be either decaying
or increasing exponentially, after the transformation.

In SPARSE-SYSID, we propose a fast greedy sparsification scheme Iteratively, for all three
matrices, we delete small values, while maintaining ther spectrum within ε from the
one obtained through system identification. Additionally, for A, we also do not allow
eigenvalues to switch from complex to real and vice versa. This scheme works very well
in practice, providing very sparse matrices, while respecting their spectrum. Doing so
is important, because eigenvalues determine the dynamical behavior of our model. In
Algorithm 10.1, we provide an outline of the algorithm.

Algorithm 10.1: SPARSE-SYSID: Sparse System Identification of GEBM
Input: Training data in the form {y(t), s(t)}Tt=1, number of hidden states n.
Output: GEBM matrices A (hidden connectivity matrix), B (perception matrix), C

(measurement matrix), and Av (voxel-to-voxel matrix).
1: {A(0),B(0),C(0)} = SYSID

(
{y(t), s(t)}Tt=1, n

)
2: A = EIGENSPARSIFY(A(0))
3: B = SINGULARSPARSIFY(B(0))
4: C = SINGULARSPARSIFY(C(0))
5: Av = CAC†

10.3.4 Obtaining the voxel-to-voxel connectivity
So far, GEBM as we have described it, is able to give us the hidden functional connectivity
and the measurement matrix, but does not directly offer the voxel-to-voxel connectivity,
unlike MODEL0, which models it explicitly. However, this is by no means a weakness of
GEBM, since there is a simple way to obtain the voxel-to-voxel connectivity (henceforth
referred to as Av) from GEBM’s matrices. We highlight the importance of Av, since this
matrix essentially maps abstract latent brain areas to physical brain regions.
Lemma 10.1.:
Assuming that C is full column rank, the voxel-to-voxel functional connectivity matrix
Av can be defined and is equal to Av = CAC†

171

Algorithm 10.2: EIGENSPARSIFY: Eigenvalue Preserving Sparsification of System
Matrix A.

Input: Square matrix A(0).
Output: Sparsified matrix A.

1: λ(0) =EIGENVALUES(A(0))

2: Initialize d
(0)
R = 0, d

(0)
I = 0. Vector d

(i)
R holds the element-wise difference of the real

part of the eigenvalues of A(i). Similarly for d
(i)
I and the imaginary part.

3: Set vector c as a boolean vector that indicates whether the j-th eigenvalue in λ(0) is
complex or not. One way to do it is to evaluate element-wise the following boolean
expression: c =

(
IMAG(λ(0)) 6= 0

)
.

4: Initialize i = 0
5: while d

(i)
R ≤ ε and d

(i)
I ≤ ε and

(
IMAG(λ(i)) 6= 0

)
== c do

6: Initialize A(i) = A(i−1)

7: {v∗i , v∗j} = arg minvi,vj |A(i−1)(vi, vj)|
s.t. A(i−1)(vi, vj) 6= 0.

8: Set A(i)(v∗i , v
∗
j) = 0

9: λ(i) =EIGENVALUES(A(i))

10: d
(i)
R = |REAL(λ(i))− REAL(λ(i−1))|

11: d
(i)
I = |IMAG(λ(i))− IMAG(λ(i−1))|

12: end while
13: A = A(i−1)

Algorithm 10.3: SINGULARSPARSIFY: Singular Value Preserving Sparsification

Input: Matrix M(0).
Output: Sparsified matrix M

1: λ(0) =SINGULARVALUES(A(0))

2: Initialize d
(0)
R = 0 which holds the element-wise difference of the singular values of

A(i).
3: Initialize i = 0
4: while d

(i)
R ≤ ε do

5: Initialize M(i) = M(i−1)

6: {v∗i , v∗j} = arg minvi,vj |M(i−1)(vi, vj)|
s.t. M(i−1)(vi, vj) 6= 0.

7: Set M(i)(v∗i , v
∗
j) = 0

8: λ(i) =SINGULARVALUES(M(i))

9: d
(i)
R = |λ(i) − λ(i−1)|

10: end while
11: M = M(i−1)

Proof. The observed voxel vector can be written as

y(t+ 1) = Cx(t+ 1) = CAx(t) + CBs(t)

172

Matrix C is tall (i.e. m > n) and full column rank, thus we can write: y(t) = Cx(t) ⇔
x(t) = C†y(t) Consequently, y(t + 1) = CAC†y(t) + CBs(t) Therefore, it follows that
CAC† is the voxel-to-voxel matrix Av. �

One of the key concepts behind GEBM is sparsity, which, in the context of the voxel-
to-voxel functional connectivity can be interpreted in the same way as in the case of
the latent functional connectivity matrix A. However, even though matrices A,C are
sparse, the product CAC† is not necessarily sparse, since C† is more dense than C and
therefore the product is dense. In order to obtain a more interpretable, sparse voxel-to-
voxel connectivity matrix, we apply the same sparsification technique that we use for
the GEBM matrices A,B,C; since we are not interested in using matrix Av in a control
system context, but rather as a means of interpreting the derived functional connectivity,
we may use Algorithm 10.3 which retains the singular values of the matrix.

There is another, important distinction of GEBM’s Av from a great amount of prior art
which focuses on functional connectivity estimation, where the notion of the functional
connectivity is associated with computing a covariance or correlation matrix from the
sensor measurements (e.g. [SPL+09]). By doing so, the derived connectivity matrix is
symmetric, which dictates that the relation between the regions covered by sensors A and
B is exactly reciprocal. Our proposed connectivity matrix, on the other hand, as it is evi-
dent by the formula Av = CAC† is not necessarily symmetric, and it allows for skewed
communication patterns between brain regions. As we point out in our discoveries
(Section 4), there is potential value in not imposing symmetry constraints.

10.3.5 Connection to Recurrent Neural Networks
In this subsection, we point out an interesting connection of our proposed model GEBM,
and a flavor of Artificial Neural Networks, called Recurrent Neural Networks (RNNs).
Our proposed model GEBM consists of a layer of sensor neurons which transfer the
stimulus to the internal, latent neural regions. At the end, there is a measurement that
transforms the hidden brain activity into the observed signal. In the most popular variant
of Artificial Neural Networks (ANNs), the Feed-Forward Neural Networks we encounter
a superficially similar structure, where we have an input layer, a hidden layer, and an
output layer.

GEBM on the other hand, as also depicted in Fig. 10.3 besides this three-layer layout,
allows for connections between the hidden neural regions (depicted by black dots in
Fig. 10.3), violating the structure of an FFNN. However, there is a different category of
ANNs, the so called Recurrent Neural Networks (RNNs)[Jae02b] which are, in principle,
structured exactly like Fig. 10.3; connections between neurons of the hidden layer are
allowed, leading to a more expressive model.

We are particularly interested in a specific variant of RNNs, called Echo State Networks
(ESNs) [Jae07, Jae01] In ESNs, we have the mapping of an input signal into a set of
neurons that comprise the dynamical reservoir. There can exist connections between
any of these neurons, or reservoir states. The output of the reservoir, at the last step,

173

is transformed into the output signal, which is also referred to as teacher signal. The
parallelism between ESNs and GEBM is as follows: if we consider the reservoir states to
correspond to the latent neuron regions of GEBM, then the two models look conceptually
very similar, in this high level of abstraction.

To further corroborate to the connection of our proposed model GEBM to ESNs, usually
the connections between reservoir states are desired to be sparse, which is reminiscent of
GEBM’s specification for A to be sparse.

In order to formalize the connection between GEBM and ESNs, here we provide the
system equations that govern the behavior of an ESN [Jae07]

x(t+ 1) = f
(
Wx(t) + Winu(t+ 1) + Wfby(t)

)
y(t) = g

(
Wout

[
x(t) u(t)

])
where f and g are typically sigmoid functions. Vector x(t) is the so-called reservoir
state, W is the connectivity between the reservoir states, Win is the input transformation
matrix, Wfb is a feedback matrix, and Wout transforms the hidden reservoir states to the
observed output signal of vector y(t).

If we set f and g to be identity, set Wfb = 0, and set the part of Wout that multiplied u(t)
to be zero as well, then the above ESN equations correspond to GEBM.

By pointing out this connection between GEBM and ESNs, we believe that both ends can
benefit:

• In this work we introduce a novel sparse system identification algorithm which, as
we show in the lines above, is able to solve a particular case of an ESN model very
efficiently, thus contributing, indirectly, towards algorithms for training ESNs.

• ESNs usually don’t assume linear functions in the system; GEBM does so in the
good-enough spirit, however, our intention is to extend GEBM so that it can handle
non-linear functions, and capture all the dynamics that our linear assumptions
currently fail to. To that end, we can benefit from ESN research (e.g. [Jae02a]).

10.4 Experimental Setup
The code for SPARSE-SYSID has been written in Matlab. For the system identification
part, initially we experimented with Matlab’s System Identification Toolbox and the
algorithms in [Lju99]. These algorithms worked well for smaller to medium scales,
but were unable to perform on our full dataset. Thus, in our final implementation, we
use the algorithms of [Ver94]. Our code is publicly available at http://www.cs.cmu.
edu/~epapalex/src/GeBM.zip. The interested reader can also find experimental
evaluation of our proposed algorithm in Section 4 of our KDD paper [PFS+14a].

Dataset Description & Formulation We are using real brain activity data, measured
using MEG. MEG (Magnetoencephalography) measures the magnetic field caused by

174

http://www.cs.cmu.edu/~epapalex/src/GeBM.zip
http://www.cs.cmu.edu/~epapalex/src/GeBM.zip

many thousands of neurons firing together, and has good time resolution (1000 Hz) but
poor spatial resolution. fMRI (functional Magnetic Resonance Imaging) measures the
change in blood oxygenation that results from changes in neural activity, and has good
spatial resolution but poor time resolution (0.5-1 Hz). Since we are interested in the
temporal dynamics of the brain, we choose to operate on MEG data.

All experiments were conducted at the University of Pittsburgh Medical Center (UPMC)
Brain Mapping Center. The MEG machine consists of m = 306 sensors, placed uniformly
across the subject’s scalp. The temporal granularity of the measurements is 5ms, resulting
in T = 340 time points; after experimenting with different aggregations in the temporal
dimension, we decided to use 50ms of time resolution, because this yielded the most
interpretable results.

For the experiments, nine right handed2 human subjects were shown a set of 60 concrete
English nouns (apple, knife etc), and for each noun 20 simple yes/no questions (Is it edible?
Can you buy it? etc). The subject were asked to press the right button if their answer
to each question was ’yes’, or the left button if the answer was ’no’. After the subject
pressed the button, the stimulus (i.e. the noun) would disappear from the screen. We
also record the exact time that the subject pressed the button, relative to the appearance
of the stimulus on the screen. A more detailed description of the data can be found in
[SPP+12].

In order to bring the above data to the format that our model expects, we make the
following design choices: In lack of sensors that measure the response of the eyes to the
shown stimuli, we represent each stimulus by a set of semantic features for that specific
noun. This set of features is a superset of the 20 questions that we have already mentioned;
the value for each feature comes from the answers given by Amazon Mechanical Turk
workers. Thus, from time-tick 1 (when the stimulus starts showing), until the button
is pressed, all the features that are active for the particular stimulus are set to 1 on our
stimulus vector s, and all the rest features are equal to 0; when the button is pressed, all
features are zeroed out. On top of the stimulus features, we also have to incorporate
the task information in s, i.e. the particular question shown on the screen. In order
to do that, we add 20 more rows to the stimulus vector s, each one corresponding to
every question/task. At each given experiment, only one of those rows is set to 1 for
all time ticks, and all other rows are set to 0. Thus, the number of input sensors in our
formulation is s = 40 (i.e. 20 neurons for the noun/stimulus and 20 neurons for the
task).

As a last step, we have to incorporate the button pressing information to our model;
to that end, we add two more voxels to our observed vector y, corresponding to left
and right button pressing; initially, those values are set to 0 and as soon as the button is
pressed, they are set to 1.

2We place emphasis on the right-handedness of the human subjects, because differences in handedness
is known cause for inconsistencies in experimental results. To that end, we made sure that all our subjects
were right handed.

175

Finally, we choose n = 15 for all the results we show in this section. The results are not
very sensitive with respect to small changes in n, thus we chose a relatively small n that
yielded interpretable results. In our KDD paper [PFS+14a], we provide insights on how
to choose n.

10.5 Discoveries & Discussion
This section is focused on showing different aspects of GEBM at work. In particular, we
present the following discoveries:

D1: We provide insights on the obtained functional connectivity from a Neuroscientific
point of view.

D2: Given multiple human subjects, we discover regularities and outliers, with respect
to functional connectivity.

D3: We demonstrate GEBM’s ability to simulate brain activity.
D4: We show how GEBM is able to capture two basic psychological phenomena.

10.5.1 D1: Functional Connectivity Graphs
The primary focus of this work is to estimate the functional connectivity of the human
brain, i.e. the interaction pattern of groups of neurons. In the next few lines, we
present our findings in a concise way and provide Neuroscientific insights regarding the
interaction patterns that GEBM was able to infer.

In order to present our findings, we post-process the results obtained through GEBM in
the following way:

We first obtain the MEG-level functional connectivity matrix Av = CAC†, and sparsify
it, as described in the previous section. As we noted earlier, this matrix is not symmetric,
which implies that we may observe skewed information flow patterns between different
brain regions. In order to have an estimate of the degree that our matrix is not symmetric,
we did the following: We measure the norm ratio

r =
‖upper (Av)− lower (Av)

T ‖F
‖Av‖F

where upper () takes the upper triangular part of a matrix, and lower () takes the lower
triangular part. If Av is perfectly symmetric, then r = 0, since the upper and lower
triangular parts would be equal. However, in our case, r = 0.6, indicating that there is a
considerable amount of skew in the communication between MEG sensors.

The data we collect come from 306 sensors, placed on the human scalp in a uniform
fashion, and the connectivity between those sensors is encoded in matrix Av. Each of
those 306 sensors is measuring activity from one of the four main regions of the brain,
i.e.

- Frontal Lobe, associated with attention, short memory, and planning.
- Parietal Lobe, associated with movement.

176

- Occipital Lobe, associated with vision.
- Temporal Lobe, associated with sensory input processing, language comprehen-

sion, and visual memory retention.

Even though our sensors offer within-region resolution, for exposition purposes, we
chose to aggregate our findings per region; by doing so, we are still able to provide useful
neuroscientific insights.

Figure 10.4 shows the functional connectivity graph obtained using GEBM. The weights
indicate the strength of the interaction, measured by the number of distinct connections
we identified. These results are consistent with current research regarding the nature
of language processing in the brain. For example, Hickock and Poeppel [HP04] have
proposed a model of language comprehension that includes a “dorsal” and “ventral”
pathway. The ventral pathway takes the input stimuli (spoken language in the case
of Hickock and Poeppel, images and words in ours) and sends the information to the
temporal lobe for semantic processing. Because the occipital cortex is responsible for
the low level processing of visual stimuli (including words) it is reasonable to see a
strong set of connections between the occipital and temporal lobes. The dorsal pathway
sends processed sensory input through the parietal and frontal lobes where they are
processed for planning and action purposes. The task performed during the collection of
our MEG data required that subjects consider the meaning of the word in the context
of a semantic question. This task would require the recruitment of the dorsal pathway
(occipital-parietal and parietal-frontal connections). In addition, frontal involvement
is indicated when the task performed by the subject requires the selection of semantic
information [BD11], as in our question answering paradigm. It is interesting that the
number of connections from parietal to occipital cortex is larger than from occipital to
parietal, considering the flow of information is likely occipital to parietal. This could,
however, be indicative of what is termed “top down” processing, wherein higher level
cognitive processes can work to focus upstream sensory processes. Perhaps the semantic
task causes the subjects to focus in anticipation of the upcoming word while keeping the
semantic question in mind. It is important to note here that we were able to notice this
“top down” processing pattern, thanks to fact that GEBM does not impose symmetry
constraints in the connectivity matrix.

10.5.2 D2: Cross-subject Analysis
In our experiments, we have 9 participants, all of whom have undergone the same
procedure, being presented with the same stimuli, and asked to carry out the same tasks.
Availability of such a rich, multi-subject dataset inevitably begs the following question:
are there any differences across people’s functional connectivity? Or is everyone, more
or less, wired equally, at least with respect to the stimuli and tasks at hand?

By using GEBM, we are able (to the extent that our model is able to explain) to answer
the above question. We trained GEBM for each of the 9 human subjects, using the entire
data from all stimuli and tasks, and obtained matrices A,B,C for each person. For the
purposes of answering the above question, it suffices to look at matrix A (which is the

177

Frontal lobe!
Attention, short memory!
planning, motivation!
Parietal lobe!
Movement!

Occipital lobe!
Vision!
Temporal lobe!
Sensory input processing,!
language comprehension,!
visual memory retention!
!

Frontal lobe!
(attention)!

Parietal lobe!
(movement)!

Occipital lobe!
(vision)!

Temporal lobe!
(language)!

18

4 3

2324

1

16

19

3 2

84 1

1"

FL! PL!

TL! OL!

Figure 10.4: The functional connectivity derived from GEBM. The weights on the
edges indicate the number of inferred connections. Our results are consistent with
research that investigates natural language processing in the brain.

hidden functional connectivity), since it dictates the temporal dynamics of the brain
activity. At this point, we have to note that the exact location of each sensor can differ
between human subjects, however, we assume that this difference is negligible, given
the current voxel granularity dictated by the number of sensors.

In this multi-subject study we have two very important findings:

- Regularities: For 8 out of 9 human subjects, we identified almost identical GEBM
instances, both with respect to RMSE and to spectrum. In other words, for 8 out
of 9 subjects in our study, the inferred functional connectivity behaves almost
identically. This fact most likely implies that for the particular set of stimuli and
assorted tasks, the human brain behaves similarly across people.

- Anomaly: One of our human subjects (#3) deviates from the aforementioned
regular behavior.

In Fig. 10.5(a) & (b) we show the real and imaginary parts of the eigenvalues of A. We
can see that for 8 human subjects, the eigenvalues are almost identical. This finding
agrees with neuroscientific results on different experimental settings [TV12], further
demonstrating GEBM’s ability to provide useful insights on multi-subject experiments.
For subject #3 there is a deviation on the real part of the first eigenvalue, as well as a
slightly deviating pattern on the imaginary parts of its eigenvalues. Figures 10.5(c) & (d)
compare matrix A for subjects 1 and 3. There is a unique fact pertaining to Subject #3’s
connectivity matrix: there is a negative value on the diagonal (blue square at the (8, 8)
entry), in other words a negative self-loop in the connectivity graph, which causes the
differences in the behavior of Subject #3’s system.

According to Neuroscientific studies (e.g. [HZJ+06]), the first "culprit" for causing such a
discrepancy in the estimated model would be the handedness of Subject 3. However, as
we highlighted in the beginning of the section, all 9 human subjects were right handed, and
thus, difference in handedness cannot be a plausible explanation for this anomaly.

We subsequently turned our attention to the conditions under which the experiment was

178

conducted, and according to the person responsible for the data collection of Subject
#3:

There was a big demonstration outside the UPMC building during the scan, and I
remember the subject complaining during one of the breaks that he could hear the
crowd shouting through the walls.

This is a plausible explanation for the deviation of GEBM for Subject #3.

0 5 10 15
−1

−0.5

0

0.5

1

Eigenvalue index

E
ig

e
n

v
a

lu
e

Real part of the eigenvalues of A

Subject #1

Subject #2

Subject #3

Subject #4

Subject #5

Subject #6

Subject #7

Subject #8

Subject #9

Subject #3 is
an anomaly

(a) Real part of eigenval-
ues

0 5 10 15
−0.4

−0.2

0

0.2

0.4

Eigenvalue index

E
ig

e
n

v
a

lu
e

Imaginary part of the eigenvalues of A

Subject #1

Subject #2

Subject #3

Subject #4

Subject #5

Subject #6

Subject #7

Subject #8

Subject #9

Subject #3 is
an anomaly

(b) Imaginary part of
eigenvalues

(c) Subject #1 (d) Subject #3

Figure 10.5: Multi-subject analysis: Sub-figures (a) and (b), show the real and imaginary
parts of the eigenvalues of matrix A for each subject. For all subjects but one (subject
#3) the eigenvalues are almost identical, implying that the GEBM that captures their
brain activity behaves more or less in the same way. Subject #3 on the other hand is an
outlier; indeed, during the experiment, the subject complained that he was able to hear
a demonstration happening outside of the laboratory, rendering the experimental task
assigned to the subject more difficult than it was supposed to be. Sub-figures (c) and
(d) show matrices A for subject #1 and #3. Subject #3’s matrix seems sparser and most
importantly, we can see that there is a negative entry on the diagonal, a fact unique to
subject #3.

10.5.3 D3: Brain Activity Simulation
An additional way to gain confidence on our model is to assess its ability to simulate/pre-
dict brain activity, given the inferred functional connectivity. In order to do so, we trained
GEBM using data from all but one of the words, and then we simulated brain activity
time-series for the left-out word. In lieu of competing methods, we compare our pro-
posed method GEBM against our initial approach (whose unsuitability we have argued
for in Section 10.3, but we use here in order to further solidify our case). As an initial state
for GEBM, we use C†y(0), and for MODEL0, we simply use y(0). The final time-series
we show, both for the real data and the estimated ones are normalized to unit norm,
and plotted in absolute values. For exposition purposes, we sorted the voxels according
to the `2 norm of their time series vector, and we are displaying the high ranking ones
(however, the same pattern holds for all voxels)

In Fig. 10.6 we illustrate the simulated brain activity of GEBM (solid red), compared
against the ones of MODEL0 (using LS (dash-dot magenta) and CCA (dashed black)), as
well as the original brain activity time series (dashed blue) for the four highest ranking

179

voxels. Clearly, the activity generated using GEBM is far more realistic than the results
of MODEL0.

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
0

0.1

0.2

0.3

0.4
Real and predicted MEG brain activity

0 20 40
0

0.1

0.2

0.3

0.4

real

GeBM

LS

CCA

Figure 10.6: Effective brain activity simulation: Comparison of he real brain activity
and the simulated ones using GEBM and MODEL0, for the first four high ranking voxels
(in the `2 norm sense).

10.5.4 D4: Explanation of Psychological Phenomena
As we briefly mentioned in the Introduction, we would like our proposed method to
be able to capture some of the psychological phenomena that the human brain exhibits.
We by no means claim that GEBM is able to capture convoluted still little-understood
physiological phenomena , however, in this section we demonstrate GEBM’s ability
to simulate two very basic phenomena, habituation and priming. Unlike the previous
discoveries, the following experiments are on synthetic data and their purpose is to
showcase GEBM’s additional strengths.

Habituation In our simplified version of habituation, we observe the demand behaviour:
Given a repeated stimulus, the neurons initially get activated, but their activation levels
decline (t = 60 in Fig. 10.7) if the stimulus persists for a long time (t = 80 in Fig. 10.7).
In Fig. 10.7, we show that GEBM is able to capture such behavior. In particular, we
show the desired input and output for a few (observed) voxels, and we show, given
the functional connectivity obtained according to GEBM, the simulated output, which
exhibits the same, desired behavior. In order to simplify the training data generation, we
produce an instantaneous "switch-off" of the activity in the desired output, which is a
crude approximation of an gradual attenuation, which is expected. Remarkably, though,
GEBM (using Algorithm 10.1) is able to produce a very realistic, gradually attenuating
activity curve.

Priming In our simplified model on priming, first we give the stimulus apple, which
sets off neurons that are associated with the fruit ’apple’, as well as neurons that are
associated with Apple Inc. . Subsequently, we are showing a stimulus such as iPod;
this predisposes the regions of the brain that are associated with Apple inc. to display
some small level of activation, whereas suppressing the regions of the brain that are
associate with apple (the fruit). Later on, the stimulus apple is repeated, which, given the
aforementioned predisposition, activates the voxels associated with Apple (company)
and suppresses the ones associated with the homonymous fruit.

Figure 10.8 displays is a pictorial description of the above example of priming; given

180

Desired Output!

Desired Input!

Simulated Output!

equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting

Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
LS
CCA

Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:

20 40 60 80 100
0

0.5

1

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5 −0.5

0

0.5

20 40 60 80 100
0

0.5

1

0.5 1 1.5 2 2.5

1

2

3 −0.4

−0.2

0

0.2

20 40 60 80 100
0

0.2

0.4

0.6

−0.2

0

0.2

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

1 2 3

0.5

1

1.5

2

2.5

20 40 60 80 100
0

0.5

1

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5 −0.5

0

0.5

20 40 60 80 100
0

0.5

1

0.5 1 1.5 2 2.5

1

2

3 −0.4

−0.2

0

0.2

20 40 60 80 100
0

0.2

0.4

0.6

−0.2

0

0.2

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

1 2 3

0.5

1

1.5

2

2.5

20 40 60 80 100
0

0.5

1

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5 −0.5

0

0.5

20 40 60 80 100
0

0.5

1

0.5 1 1.5 2 2.5

1

2

3 −0.4

−0.2

0

0.2

20 40 60 80 100
0

0.2

0.4

0.6

−0.2

0

0.2

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

1 2 3

0.5

1

1.5

2

2.5

Functional Connectivity A !
!of Hidden Neurons!

Figure 10.7: GEBM captures Habituation: Given repeated exposure to a stimulus, the
brain activity starts to fade.

desired input/output training pairs, we derive a model that obeys GEBM using our
proposed Algorithm 10.1, such that we match the priming behavior.

Desired Input!

Desired Output!

Simulated Output!

Functional Connectivity A !
!of Hidden Neurons!

equation in its matrix form:

Y0 �
⇥
A B

⇤ Y
S

�

There are a few distinct ways of formulating the optimization
problem of finding A,B. In the next lines we show two of the
most insightful ones:

• Least Squares (LS):
The most straightforward approach is to express the problem
as a Least Squares optimization:

min
A,B

kY0 �
⇥
A B

⇤ Y
S

�
k2

F

and solve for
⇥
A B

⇤
by (pseudo)inverting

Y
S

�
.

• Canonical Correlation Analysis (CCA): In CCA, we are
solving for the same objective function as in LS, with the
additional constraint that the rank of

⇥
A B

⇤
has to be equal

to r (and typically r is much smaller than the dimensions of
the matrix we are solving for, i.e. we are forcing the solution
to be low rank). Similar to the LS case, here we minimize
the sum of squared errors, however, the solution here is low
rank, as opposed to the LS solution which is (with very high
probability) full rank.

However intuitive, the formulation of MODEL0 turns out to be
rather ineffective in capturing the temporal dynamics of the recorded
brain activity. As an example of its failure to model brain activity
successfully, Fig. 2 shows the real and predicted (using LS and
CCA) brain activity for a particular voxel (results by LS and CCA
are similar to the one in Fig. 2 for all voxels). By minimizing
the sum of squared errors, both algorithms that solve for MODEL0

resort to a simple line that increases very slowly over time, thus
having a minimal squared error, given linearity assumptions.

Real and predicted MEG brain activity

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

real
LS
CCA

Figure 2: Comparison of true brain activity and brain activity gen-
erated using the LS, and CCA solutions to MODEL0. Clearly,
MODEL0 is not able to capture the trends of the brain activity,
and to the end of minimizing the squared error, produces an almost
straight line that dissects the real brain activity waveform.

3.2 Proposed approach: GeBM
Formulating the problem as MODEL0 is not able to meet the re-

quirements for our desired solution. However, we have not ex-
hausted the space of possible formulations that live within our set
of simplifying assumptions. In this section, we describe GEBM,
our proposed approach which, under the assumptions that we have
already made in Section 2, is able to meet our requirements remark-
ably well.

In order to come up with a more accurate model, it is useful to
look more carefully at the actual system that we are attempting to

Symbol Definition
n number of hidden neuron-regions
m number of voxels we observe (306)
s number of input signals (40 questions)
T time-ticks of each experiment (340 ticks, of 5msec each)
x(t) vector of neuron activities at time t
y(t) vector of voxel activities at time t
s(t) vector of input-sensor activities at time t
A[n⇥n] connectivity matrix between neurons (or neuron regions)
C[m⇥n] summarization matrix (neurons to voxels)
B[n⇥s] perception matrix (sensors to neurons)
Av connectivity matrix between voxels
REAL real part of a complex number
IMAG imaginary part of a complex number
A† Moore-Penrose Pseudoinverse of A

Table 1: Table of symbols

model. In particular, the brain activity vector y that we observe is
simply the collection of values recorded by the m sensors, placed
on a person’s scalp.

In MODEL0, we attempt to model the dynamics of the sensor
measurements directly. However, by doing so, we are directing our
attention to an observable proxy of the process that we are trying
to estimate (i.e. the functional connectivity). Instead, it is more
beneficial to model the direct outcome of that process. Ideally, we
would like to capture the dynamics of the internal state of the per-
son’s brain, which, in turn, cause the effect that we are measuring
with our MEG sensors.

Let us assume that there are n hidden (hyper)regions of the brain,
which interact with each other, causing the activity that we observe
in y. We denote the vector of the hidden brain activity as x of
size n ⇥ 1. Then, by using the same idea as in MODEL0, we may
formulate the temporal evolution of the hidden brain activity as:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

Having introduced the above equation, we are one step closer to
modelling the underlying, hidden process whose outcome we ob-
serve. However, an issue that we have yet to address is the fact that
x is not observed and we have no means of measuring it. We pro-
pose to resolve this issue by modelling the measurement procedure
itself, i.e. model the transformation of a hidden brain activity vec-
tor to its observed counterpart. We assume that this transformation
is linear, thus we are able to write

y(t) = C[m⇥n]x(t)

Putting everything together, we end up with the following set of
equations, which constitute our proposed model GEBM:

x(t + 1) = A[n⇥n] ⇥ x(t) + B[n⇥s] ⇥ s(t)

y(t) = C[m⇥n] ⇥ x(t)

Additionally, we require the hidden functional connectivity ma-
trix A to be sparse because, intuitively, not all (hidden) regions of
the brain interact directly with each other. Thus, given the above
formulation of GEBM, we seek to obtain a matrix A sparse enough,
while obeying the dynamics dictated by model. Sparsity is key in
providing more insightful and easy to interpret functional connec-
tivity matrices, since an exact zero on the connectivity matrix ex-
plicitly states that there is no direct interaction between neurons; on
the contrary, a very small value in the matrix (if the matrix is not
sparse) is ambiguous and could imply either that the interaction is
negligible and thus could be ignored, or that there indeed is a link
with very small weight between the two neurons.

The key ideas behind GEBM are:

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4apple!
iPod!

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

apple (fruit)!

iPod!

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

Apple-inc!

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

1

2

3

4
−0.5

0

0.5

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

1 2 3 4

0.5
1

1.5
2

2.5
3

3.5 0

0.2

0.4

0.6

20 40 60 80 100 120 140
−1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

Top to bottom: (Left) Inputs, Outputs, Simulated Outputs (Right) Matrices A, C, B

0.5 1 1.5 2 2.5

1

2

3

4

Figure 10.8: GEBM captures Priming: When first shown the stimulus apple, both neurons
associated with the fruit apple and Apple Inc. get activated. When showing the stimulus
iPod and then apple, iPod predisposes the neurons associated with Apple inc. to get
activated more quickly, while suppressing the ones associated with the fruit.

10.6 Related Work
Brain Functional Connectivity Estimating the brain’s functional connectivity is an active
field of study of computational neuroscience. Examples of works can be found in [Sak11,
GKRM03, FFDM12]. There have been a few works in the data mining community as well:
In [SPL+09], the authors derive the brain region connections for Alzheimer’s patients,
and recently [DGCW13] that leverages tensor decomposition in order to discover the
underlying network of the human brain. Most related to the present work is the work
of Valdes et al [VSSBLC+05], wherein the authors propose an autoregressive model
(similar to MODEL0) and solve it using regularized regression. However, to the best
of our knowledge, this work is the first to apply system identification concepts to this
problem.

Psychological Phenomena A concise overview of literature pertaining to habitutation
can be found in [TS66]. A more recent study on habitutation can be found in [RAB+09].

181

The definition of priming, as we describe it in the lines above concurs with the definition
found in [FSF99]. Additionally, in [PB98], the authors conduct a study on the effects of
priming when the human subjects were asked to write sentences. The above concepts of
priming and habituation have been also studied in the context of spreading activation
[And83, CL75] which is a model of the cognitive process of memory.

Control Theory & System Identification System Identification is a field of control theory.
In the appendix we provide more theoretical details on subspace system identification,
however, [Lju99] and [VV07] are the most prominent sources for system identification
algorithms.

Network Discovery from Time Series Our work touches upon discovering underlying
network structures from time series data; an exemplary work related to the present
chapter is [VVA+06] where the authors derive a who-calls-whom network from VoIP
packet transmission time series.

10.7 Conclusions
In this chapter, we make the following contributions:

• Analytical model & Algorithm : We propose GEBM, a novel model of the human
brain functional connectivity. We also introduce SPARSE-SYSID, a novel sparse
system identification algorithm that estimates GEBM

• Effectiveness: GEBM simulates psychological phenomena (such as habituation
and priming), as well as provides valuable neuroscientific insights.

• Validation: We validate our approach on real data, where our model produces
brain activity patterns, remarkably similar to the true ones.

• Multi-subject analysis: We analyze measurements from 9 human subjects, identi-
fying a consistent connectivity among 8 of them; we successfully identify an outlier,
whose experimental procedure was compromised.
• Cross-disciplinary connections: We highlight connections between disparate ar-

eas: 1) Neuroscience, 2) Control Theory & System Identification, and 3) Psychology,
and we provide insights on the relation of GEBM to Recurrent Neural Networks.

The problem of identifying the functional connectivity of the human brain is very im-
portant in the field of Neuroscience, as it contributes to our knowledge about how the
human brain operates and processes information. However, solving this problem can
have applications that go far beyond Neuroscience:

• Improving Artificial Intelligence & Machine Learning: Having a better under-
standing of how the human brain processes information is of paramount impor-
tance in the design of intelligent algorithms; in particular, such understanding can
be greatly beneficial especially to fields that are inspired by the way that the human
brain operates, with a prime example of Deep Learning [Sch14], which is gaining
increasing attention.

182

• Detecting & ameliorating learning disorders: On a different spin, understanding
the functional connectivity of the brain can be used in order to detect learning
disorders in children, at a very early stage, in a non-invasive way. If we have a
model for the functional connectivity, as well as an understanding of how different
learning disorders may perturb that model, we might be able to, first, detect
the disorder, and subsequently, by targeting the child’s education and closely
monitoring changes in the connectivity, we may be able to ameliorate the effects of
certain disorders.

183

184

Part IV

Applications: Social Networks
and the Web

185

Chapter 11

Do more Views of a Graph help?
Community Detection and
Clustering in Multi-View
Graphs

Using different views of a social network
results in more accurate community
detection.

Chapter based on material published in [PAI13].

Given a network with multiple types (or views) of edges (e.g., collaboration, citation,
friendship), can community detection and graph clustering benefit? In this Chapter,
we propose MULTICLUS and GRAPHFUSE, two multi-graph clustering techniques
powered by Minimum Description Length and Tensor analysis, respectively. Our
results on real and synthetic data demonstrate higher clustering accuracy than state-
of-the-art baselines that do not exploit the multiple views of our data.

11.1 Introduction
Many data types, nowadays, can be represented by a network in which entities corre-
spond to nodes and relationships between entities correspond to edges between nodes.
However, as the data complexity increases the standard definition of a simple graph
falls short to represent the complex semantics that reside in real world networks. More
specifically, we can have multiple sources of information describing different types of
relationships associated with the nodes in a network. For example, a set of users may
have various communication channels (e.g. phone, email, messaging, etc.) or researchers

187

in a field may have different dimensions of interaction (co-authorship, citations, using
similar keywords). As a result different information networks, involving the same set
of objects, can be inferred. In both scenarios users (researchers) are the nodes of the
network while each relation (dimensions of interaction) represents a different semantic
relationship between two objects in the graph. These multiple semantics (or dimensions)
cannot be described with only one simple graph but they may be expressed by a set
of different graphs sharing the same set of nodes. These multi-source networks are
often referred to as multi-view graphs, multi-dimensional graphs, multi-layer graphs, or
simply multi-graphs[TWL12].

Due to the popularity of networks, mining network patterns has become an important
task in different domains such as computer science, physics, economy, sociology, biology,
and chemistry. One of the most important and challenging research problems that
attracts much attention is graph clustering [HSH+10, XYFS07, XKW+12]. The goal of
this task is to obtain groups of nodes that are similar w.r.t. some structural or node
attribute information. Many approaches were proposed in the context of single graph
clustering[AW10, LLM10, vL07] while the problem of clustering multi-dimensional
graphs has gained interest only recently[TLD09].

Multi-graph clustering aims to fully exploit the interactions among different dimensions
of a given network and is able to take into account the correlations among them, whereas
standard approaches that manage each graph independently cannot leverage the corre-
lated information coming from the different dimensions. Moreover, information coming
from multiple sources may have different characteristics and value. For example, the
citation information among papers is highly valuable for clustering, however it may be
quite sparse. On the other hand, the co-term information are plenty, however it may be
noisy as two papers having similar terms is not directly indicative that they belong to
the same topic (e.g., the term cluster in the data mining field or in the cloud computing
area). The motivation behind multi-graph clustering is exactly to combine and blend in
informative-but-sparse and plenty-but-noisy information holistically to strengthen each
other and improve the clustering performance.

In this Chapter we propose two new methods for clustering multi-view graphs:

1. Our first proposed method, MULTICLUS, is based on an information theoretical
approach, where the formulation aims to simultaneously “describe” all the views of
the network using as few bits as possible. The developed algorithm strives to find
the clustering that can best compress the multi-graph at all views. The advantage
of our first method is that it requires no user-defined parameters, i.e. can determine
the number of clusters automatically. On the other hand, it can work only with
binary, i.e. unweighted, graphs.

2. Our second proposed method, GRAPHFUSE, is based on a tensor factorization
approach, which can handle weighted graphs and uses search heuristics to find
the best number of clusters. The code for GRAPHFUSE can be found at http:
//www.cs.cmu.edu/~epapalex/src/GraphFuse.zip.

188

http://www.cs.cmu.edu/~epapalex/src/GraphFuse.zip
http://www.cs.cmu.edu/~epapalex/src/GraphFuse.zip

We compare our methods against two baseline strategies on both synthetic and real-world
multi-graphs, and show that MULTICLUS and GRAPHFUSE yield superior performance
over competitors in all clustering tasks.

The rest of this paper: related work on multi-graph clustering (Sec. 12.2), our problem
formulation (Sec. 11.3), proposed methods (Sec. 11.4 & Sec. 11.5), quantitative and
qualitative results on both synthetic and real data (Sec. 11.6), and concluding remarks
(Sec. 11.7).

11.2 Related Work
Multi-dimensional networks allow for the representation of complex data with different
semantic relations between objects. For instance in the context of social network analysis,
[BCG11] introduces the problem of community detection over multi-dimensional graphs.
The authors model the different relationships between two nodes using different types of
edges. Based on this model, they introduce a new community detection algorithm.

In [TWL12], the authors perform interaction analysis among communities over hetero-
geneous multi-dimensional social networks like Del.icio.us, Flickr, and YouTube. They
show the usefulness of this rich representation to model real complex interaction between
users. In order to extract interaction behavior from multi-graph data, [BGHS12] presents
a graph mining approach to extract quasi-clique structures from multi-dimensional
graphs. More specifically the work is devoted to extract multi-dimensional coherent
quasi-cliques which define clusters of vertices that are densely connected by edges
belonging to the same dimension.

A first approach that cope with the issue of clustering multi-dimensional networks is pro-
posed in [ZB07]. In this work a generalization of normalized cut for multi-dimensional
graphs is developed. The framework leads to a mixture of Markov chains defined over
each dimension of the multi-dimensional graph. In [RP11] a meta-clustering that deals
with multi-dimensional networks is introduced. They do not focus on a specific clus-
tering algorithm that directly deals with the multi-dimensionality, on the contrary they
introduce a meta strategy that aggregates the independent clusterings derived by the
different dimensions.

In [TLD09] the authors propose a factorization method based on linked matrices to solve
the multi-graph clustering problem. In this model, each graph is approximated by a
graph-specific factor with a common factor shared by all the graphs. This common
factor is used as a link among the different dimensions. In [SM12a] a new variational
Bayesian framework for clustering multi-graphs is proposed. This approach is based
on a probabilistic generative model based on variational Bayesian estimation. The algo-
rithm is mainly tested over biological networks in which different interaction networks
associated with the same set of genes are built. As the method is based on a generative
model, the approach requires extra parameters (e.g., hyper-parameter of the Dirichlet
distribution).

189

Our proposed work, in contrast to heuristic approaches, is based on theoretical foun-
dations of information theory and tensor decompositions, and is perfectly suitable for
3-mode multi-graph data (nodes × nodes × views).

11.3 Problem Definition
A multi-graph G is a set of m graphs defined over the same set of nodes. More formally,
G = {Gl}ml=1 where each graph Gl = (V,El) consists of the set of nodes V and a set of
edges El : V × V . n denotes the number of nodes |V |.

In Fig. 11.1(a) a simple example is shown. The multi-graph in (a) is defined over 5 nodes
V = {A,B,C,D,E} connected by 3 different types of edges represented by solid, dotted,
and dashed lines. Each dimension represents one of the 3 different edge-semantics and can
be associated with a standard adjacency matrix (Fig. 11.1(b), 11.1(c) and 11.1(d)).

Given the above notation, the multi-dimensional graph clustering problem can be stated
as follows: Given a multi-graph G, find a partitioning C of the nodes in V such that
∀Ci,Cj∈CCi ∩ Cj = ∅, and

⋃
iCi = V . The primary goal of the partitioning is to often

optimize an objective function that aims to minimize inter-cluster cross-edges while
yielding well-connected dense clusters with high intra-cluster connectivity, at all graph
dimensions.

In this work, we formulate (1) a description-length-based, and (2) a tensor-decomposition-
based objective function to address this goal. We describe our proposed solutions in
detail next.

(a)

A B C D E
A 0 0 0 0 1
B 0 0 1 1 0
C 0 1 0 0 1
D 0 1 0 0 0
E 1 0 1 0 0

(b)

A B C D E
A 0 1 0 1 0
B 1 0 0 0 0
C 0 0 0 1 0
D 1 0 1 0 1
E 0 0 0 1 0

(c)

A B C D E
A 0 0 0 0 0
B 0 0 1 1 0
C 0 1 0 1 0
D 0 1 1 0 0
E 0 0 0 0 0

(d)

Figure 11.1: (a) Example multi-dimensional graph. Each different dimension (i.e. edge-
type) is represented as a matrix: solid (-) (b), dashed (- -) (c) and dotted (..) edges
(d).

11.4 Our First Attempt: MULTICLUS
As a first attempt for multi-graph clustering, we generalize earlier work on automatic
cross-associations [Cha04] so that it can handle multiple graphs at the same time.
[ATMF12] recently extended cross-associations to attributed graphs. Following sim-
ilar ideas, we formulate the problem as a data compression task for multiple adjacency
matrices, each defined w.r.t. a different view of the network.

190

More specifically, our solution is based on the Minimum Description Length (MDL)
principle [Ris83]. That is, we formulate an objective function based on the total number
of bits required to “describe” the multiple adjacency matrices based on a common
clustering. We define our formulation in detail next.

11.4.1 Objective Function Formulation
Simply put, MDL is a model selection principle which is based on lossless compression.
When regarded as encoding the data by a “sender” to describe it to a “receiver”, the
formulation consists of (1) model, and (2) data description given the model, such that the
“receiver” could fully decode the original data. The goal is to use as few bits as possible
such that the description cost is minimized.

As we are dealing with graph clustering, our models consist of a set of possible clusterings.
In addition, our data consists of “blocks” in each input adjacency matrix, defined by a
given clustering that is the same for all matrices. Our goal then is to find the clustering
that would minimize the total model and data description cost (in bits). We explain each
description cost below.

Model Description Cost consists of encoding the number of node clusters as well as the
corresponding assignment of nodes to their respective clusters:

• The number of nodes n requires log∗ n bits, where log∗ is the universal code length
for integers [Ris83].

• The number of node clusters k requires log∗ k bits.
• The node cluster assignments with arithmetic coding requires nH(P) bits, where
H denotes the Shannon entropy function, P is a multinomial random variable with
the probability Pi = ri

n
and ri is the size of the ith node cluster, 1 ≥ i ≥ k. The

cluster assignments for all views of the network is the same (shared clustering),
and will be described once.

Data Description Cost consists of encoding the matrix blocks, for each Gl:

• For each block Bl
i,j , i, j = 1, ..., k and l = 1, ...,m, n1(B

l
ij) is the number of 1s in the

sub-matrix, which requires log∗ n1(B
l
ij) bits.

• Having encoded the summary information about the rectangular blocks, we next
encode the actual blocks Bl

ij . We can calculate the density Pij(1) of 1s in Bl
ij using

the description code above as Pij(1) =
n1(Bl

ij)

n(Bl
ij)

, where n(Bl
ij) = n1(B

l
ij) + n0(B

l
ij) =

ri × rj , where n0(B
l
ij) and n1(B

l
ij) are the number of 0s and 1s in Bl

ij , respectively.
Then the number of bits required to encode each block using arithmetic coding is:
E(Bl

ij) = −n1(B
l
ij) log2(Pij(1))− n0(B

l
ij) log2(Pij(0)) = n(Bl

ij)H(Pij).

191

11.4.2 Our Objective Function: Total Encoding Cost (length in bits)

MDLobjFunc = log∗ n+ log∗ k −
k∑
i=1

ri log2(
ri
n

) +
m∑
l=1

k∑
i=1

k∑
j=1

log∗ n1(B
l
ij) + E(Bl

ij)

Our objective function defines the total description, i.e. encoding, cost of our input
multiple graphs given a clustering. Our aim is to use an algorithm that will find the
clustering that minimizes the total cost. Finding the optimal clustering with the minimum
cost has been stated to be NP-hard in [SFPY07]. Therefore, we resort to a heuristic
iterative algorithm based on a top-down clustering approach as in [Cha04], with an
extension to consider total encoding cost over all input matrices. The main idea is to
iteratively increase the number of clusters and reassign each row and column, i.e. node,
to the cluster for which the reduction in total cost is the most. As such, the algorithm is
greedy and monotonic and often converges to a local optimum. In practice, however, it
has been shown to perform quite well on both synthetic and real-world graphs. We refer
to [ATMF12, Cha04, SFPY07] for more details.

11.5 Proposed Method: GRAPHFUSE
In this section, we introduce GRAPHFUSE, a method that treats all different views of a
multi-graph as a tensor; more specifically, we consider the adjacency matrix of each view
of the graph as a different slice of a three-way tensor, and we introduce a method that is
able to cluster the given graph, and additionally, identify the influence of each view on
each cluster extracted.

Notation A scalar is denoted by a lowercase, italic letter, e.g. x. A column vector is
denoted by a lowercase, boldface letter, e.g. x. A matrix is denoted by an uppercase,
boldface letter, e.g. X. A tensor is denoted by an uppercase, boldface, underlined letter,
e.g. X.

Brief introduction to tensors & tensor decompositions. An n-mode tensor is essentially
a multidimensional matrix, indexed by n variables. In this work, we focus on three-way
tensors, due to their immediate application to the concept of graphs with multiple views.
Namely, each slice of a tensor can be viewed as the adjacency matrix of a different view
of a particular graph.

PARAFAC decomposition [Har70] is a highly popular method for tensor analysis. Specif-
ically, the PARAFAC decomposition of a tensor X into F rank-one components is X ≈∑F

f=1 af ◦ bf ◦ cf , where a ◦ b ◦ c(i, j, k) = a(i)b(j)c(k).

Recently, PARAFAC-SLF [PS11] (SLF stands for sparse latent factors), a variation of the
PARAFAC decomposition was proposed. This decomposition imposes sparsity constraints
on the latent factors of the plain PARAFAC decomposition, i.e. the columns of matrices
A,B,C. By imposing sparsity, essentially one is able to do tensor co-clustering: The
non-zeros of the i-th column of A select which elements of the first mode of the tensor

192

belong to the i-th co-cluster, and so on. For a detailed survey of tensors and tensor
decompositions, see [KB09].

Description of GRAPHFUSE. In this section, we introduce our tensor based approach for
multi-graph clustering, called GRAPHFUSE. At the heart of our proposed method lies the
PARAFAC decomposition with Sparse Latent Factors (SLF) [PS11], which we described
above shortly.

PARAFAC-SLF is specifically tailored to soft co-clustering, in which we seek to find
(possibly overlapping) subsets of rows, columns, and fibers of a given tensor, possibly
ignoring some “noisy” data. On the contrary, for the task at hand, we need to assign every
node of the graph to one of the available clusters. This task definition, at first, makes the
direct application of PARAFAC-SLF to the problem seem inappropriate. However, in this
section, we introduce a few modifications to PARAFAC-SLF, in order to make it suitable
for hard multi-graph clustering. The modifications we applied are the following:

1) PARAFAC-SLF allows, by definition, overlapping, i.e. one row, column, or fiber of the
tensor to belong to more than one cluster. For the first two modes of the tensor, which
correspond to the nodes of the graph, this overlapping freedom needs to be restricted,
such that a node belongs to at most one cluster. In order to do that, for each node that
belongs to more than one clusters, we assign it to the one with the higher weight, i.e.
retain the maximum element of each row of A and B (line 6 of Algorithm 11.1). We do
not need to do the same for matrix C, since it captures the influence of each graph view
on each cluster, and we ideally require overlapping effects in this context.

2) Additionally, with PARAFAC-SLF being a soft technique, some nodes might have been
completely ignored in the result, as they may exhibit very low variation (and usually
being ultimately noise). In this setting, however, every node has to be assigned to exactly
one cluster. To this end, we first extract R − 1 components (line 1 of Algorithm 11.1).
This means that one arbitrary node of the graph either belongs to one of those R − 1
components (i.e. clusters) or is not assigned anywhere. If the latter occurs, we create an
R-th cluster, in which all “left-out” nodes are assigned.

In Algorithm 11.1 we provide the pseudo-code of our proposed algorithm, as thoroughly
described in the previous lines. Vectors αI and αJ indicate the clusters dictated by the
first and the second modes of the tensor respectively. If the graph is undirected, then
the two clustering results should be similar, if not identical, but if the tensor captures
non-reciprocal relations, then it is natural to expect variations between αI and αJ .

Connection of GRAPHFUSE to LMF [TLD09]. One of the recent existing approaches to
multi-graph clustering is introduced in [TLD09], where the authors propose a Linked
Matrix Factorization (LMF) model; this approach approximates every view Xk of the
graph as Xk ≈ PΛkP

T with Frobenius norm regularization on both Λk and P. In
this work, we show that LMF may, under certain conditions, be expressed as a tensor
decomposition which bears certain similarities to our approach but is differentiated
in some key points. Nevertheless, it is still of interest to investigate the theoretical
similarities of the two approaches.

193

Algorithm 11.1: GRAPHFUSE

Input: Multi-graph G in tensor form X of size I × J ×K, number of clusters R, sparsity penalty factor λ.
Output: Assigments to clusters αI and αJ . Matrix C of size K ×R that shows the contribution of each

one of the K views to each one of the R clusters.
1: {A,B,C} = PARAFAC SLF (X, R− 1, λ).
2: for i = 1 · · · I do
3: if A(i, :) = 0 then
4: αI(i) = R
5: else
6: αI(i) = argmaxA(i, :)
7: end if
8: end for
9: Repeat iteration 2-8 for all J rows of B. Labels are output in αJ .

Lemma 11.1.:
If matrices Λk of LMF are diagonal, then the LMF model can be expressed as a regularized
symmetric (in the first two modes) PARAFAC, or regularized INDSCAL [KB09] model.

Proof. The INDSCAL decomposition is simply a PARAFAC decomposition in which the
matrices A and B are identical. For simplicity, we drop the regularization terms from
all the equations discussed. If we express the k-th slice of the tensor as Xk, then for
INDSCAL we can write Xk ≈ Adiag(C(k, :))AT (where diag(C(k, :)) creates a diagonal
matrix using the k-th row of C). Similarly, LMF approximates each graph view (or slice
of the tensor) as Xk ≈ PΛkP

T . If we rename A to P (simply a variable substitution),
and in the case of matrices Λk being diagonal, the optimal solution of the two models is
concluded to be the same. �

Our approach, however, is based on an improvement of the PARAFAC model, which, by
imposing sparsity promoting constraints, is able to perform better in terms of clustering
quality, thus differentiating itself from the aforementioned models. In [TLD09], the
authors do not specify how often the Λk matrices are indeed diagonal, however, we
deem interesting to point out this connection.

11.6 Experiments
In this section, we provide both quantitative and qualitative results for our proposed
algorithms. For the quantitative evaluation, we compare the clustering quality of our
approaches to that of two widely used baselines which do not take advantage of the
multi-view nature of the data. To this end, we use 5 different datasets (3 synthetic, 2 real)
which we describe next.

194

Figure 11.2: (top) SYNTHETIC-2 SIM and (bottom) SYNTHETIC-3 DIF share the same
clustering scheme, with different amount of cross edges and cluster densities. DIF
multi-graph, by construction, is harder to cluster than SIM.

11.6.1 Data description
Synthetic data generation.

In order to study the performance of our algorithm on different types of graphs, we
generated synthetic multi-graphs with various number of views, containing various
density views, and with varying clustering quality. Our generative algorithm is based
on the planted partitions model [CK01]. Simply put, given the desired number of nodes
in each cluster we split the adjacency matrix into blocks defined by the partitioning.
For each block Bij , the user also provides a probability pij . Using a random process we
assign a 1, i.e. an edge, for each possible entry in the block, and 0 otherwise. In other
words, pij specifies the density of each block. We also add noise to all graphs; we use
pnoise = 0.05 in our experiments.

Using the planted partitions model, we generated 3 different multi-graphs. In SYN-
THETIC-1, we have 5 views and 5 clusters of various sizes. In view 1, clusters are dense
with few cross edges, in views 2-3 the clusters are dense with many cross edges, and the
views 4-5 have very sparse clusters with also sparse cross edges. Due to limited space,
we show the spy-plots for the views of only SYNTHETIC-2 and SYNTHETIC-3 in Fig. 11.2.
Notice that these two synthetic multi-graphs each have 5 views and 3 clusters, and they
share the same clustering. The difference between them is the amount of cross edges,
or noise, introduced. By construction, clustering SYNTHETIC-3 is expected to be harder;
hence we refer to these multi-graphs as SIM for simple and DIF for difficult to cluster,
respectively.

Real data description.
The two real datasets, DBLP-1 and DBLP-2 come from the DBLP online database1. More
specifically, each of the views of these two datasets corresponds to an author-author
graph. In the first view, each edge represents a citation from one author to the other.

1http://dblp.uni-trier.de/

195

(a) citation (b) co-auth. (c) co-term

Figure 11.3: Spy-plots of 3 views in DBLP-1

(a) citation (b) co-auth. (c) co-term

Figure 11.4: Spy-plots of 3 views in DBLP-2

The second view connects two authors if they co-author at least one paper together.
Finally, the third view connects two authors who share at least three terms in the title or
abstract of their publications. Both datasets are portions of a larger dataset, manually
extracted and labeled. In particular, DBLP-1 contains authors who published in venues
STOC+FOCS, AAAI, SIGIR, TODS and DBLP-2 contains those published in venues ICDE,
PODS, TKDE, CACM. That is, the ground truth clustering involves 4 author clusters for
each of our real multi-networks. We remind the reader that we have analyzed the rank
structure of DBLP-1 in Chapter 8.

In Fig.s 11.3 and 11.4 we illustrate the views for each one of our real datasets.

11.6.2 Clustering accuracy
In order to evaluate the performance of our proposed methods, we use the Normal-
ized Mutual Information, a widely used metric for computing clustering accuracy of a
method against the desired ground truth clustering [MRS08]. Moreover, we compare our
methods, in terms of NMI, with two baseline approaches, which we briefly describe in
the sequel:

BASELINE-1 algorithm sums all the adjacency matrices of a multi-graph obtaining a new
aggregate sum-matrix and applies a k-way spectral clustering over this aggregate [vL07].
The k-way spectral clustering is based on the k-means algorithm that is applied on the
Laplacian of the sum-matrix.

BASELINE-2 algorithm first constructs the spectral kernel for each graph view and then
sums the spectral kernels summarizing all the dimensions of the multi-graph. Suc-
cessively, the k-means algorithm is applied to the matrix containing the sum of the
kernels in order to obtain the final clustering. Details for this algorithm may be found in
[TLD09].

In Table 11.1 we show the NMI results on all datasets for all methods. We observe
that MULTICLUS always outperforms baseline methods on all synthetic datasets. As
for GRAPHFUSE, it has good performance over SYNTHETIC-1 and SYNT-2-SIM while,
for SYNT-3-DIF, the results are on par with the baselines. Recall that by construction
SYNT-3-DIF is difficult to cluster (see Fig.11.2 bottom), hence the drop in performance for
all methods.

With respect to the real datasets, GRAPHFUSE obtains the best scores over both DBLP-1
and DBLP-2, while MULTICLUS has comparable behaviour with the baselines. We notice

196

that NMI scores are overall lower on real datasets, as they have much less structure than
the synthetic ones (see Fig.11.3) in addition to a lot more noise (see Fig.11.4). Nevertheless,
GRAPHFUSE achieves significantly better accuracy compared to other methods. These
encouraging results underline the merits of modeling the multi-graph clustering problem
using tensors, as they seem to well exploit the interrelations of the views.

Dataset BASELINE-1 BASELINE-2 MULTICLUS GRAPHFUSE-1 GRAPHFUSE-2
SYNTHETIC-1 0.77 ± 0.11 0.96 ± 0.06 1 ± 0 1 ± 0 1 ± 0
SYNT-2-SIM 0.68 ± 0.12 0.97 ± 0.11 1 ± 0 1 ± 0 1 ± 0
SYNT-3-DIF 0.54 ± 0.01 0.56 ± 0.02 0.90 ± 0.01 0.51 ± 0.17 0.67 ± 0.12
DBLP-1 0.12 ± 0.00 0.08 ± 0.01 0.11 ± 0.01 0.30 ± 0.02 0.29 ± 0.02
DBLP-2 0.08 ± 0.01 0.04 ± 0.00 0.04 ± 0.00 0.12 ± 0.02 0.09 ± 0.02

Table 11.1: Proposed methods outperform the baselines: NMI clustering accuracy of
proposed methods and competitors on all datasets. Our proposed methods achieve
superior performance for all clustering tasks.

11.6.3 Do more graph views help?
This question is one of the fundamental motivations of this work. Simply put, we want
to understand whether the addition of more, different views of a given multi-graph is
beneficial to the overall clustering quality. As a convention, we assume that all views are
given a fixed number from 1 to K.

First, we want to evaluate if the mere presence of more views itself is beneficial, on
average, for the clustering accuracy. In order to do that, we simply iterate over all possible
combinations of r = 1 · · ·K views of varying number and measure the NMI based on
GRAPHFUSE. For DBLP-1 and DBLP-2, with only 2 views each, we measured average
NMI respectively equal to 0.3037 and 0.0948, whereas adding a third view improved
average accuracy to 0.3131 and 0.1208. Note that for this experiment, we report the
maximum NMI of the two modes I and J of the tensor (although the trend is followed
by both modes).

A second question we address is, how the clustering performance on a set of views R
and another set of views C compare to each other, when C ⊂ R. Intuitively we would
expect that the set R (the one with more views) allows us to obtain better results, in terms
of NMI, than the set C. Our tests of the above hypothesis on DBLP-1 showed that NMI
does not always increase monotonically with more views. For example, for view-1 and
view-2 we obtained NMI=0.2844 where adding view-3 increased NMI to 0.3010. On the
flipside, for a different ordering, we obtained NMI=0.3346 for two views and adding the
third view caused the NMI to drop to 0.3009. Same behaviour was observed for DBLP-2.
This demonstrates that while adding more views helps on average, adding a noisy view
to a set of informative views might hurt the clustering accuracy for certain cases.

197

11.6.4 Data mining case study: Reality Mining
In this section, we provide a data mining case study on the Reality Mining dataset.
We remind the reader that we analyze the rank structure of Reality Mining in Chapter
8. This dataset was introduced in [EPL09] and contains data collected by the MIT Media
Lab, including subjects (undergraduate and graduate CS and business students) whose
interactions were monitored by a pre-installed piece of software on their mobile devices.
The different views offered by the dataset pertain to the means of interaction between
a pair of subjects. Namely, CALL view refers to subjects calling each other, DEVICE
view contains Bluetooth device scans, SMS view is constructed based on text message
exchanges, and FRIEND view contains friendship claims.

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(a) CALL

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(b) DEVICE

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(c) SMS

0 20 40 60 80

0

20

40

60

80

Node Groups

N
o
d
e
 G

ro
u
p
s

(d) FRIEND

Figure 11.5: GRAPHFUSE outputs communities that agree with ground truth: Results
on the four views of the Reality Mining multi-graph. Red dashed lines outline the
clustering found by GRAPHFUSE.

In Fig.11.5, we show all four views of the dataset as clustered by GRAPHFUSE where
R = 6. Qualitatively, we see that the algorithm’s output agrees with the communities that
appear to be strong on the spy-plots of each view. For example, cluster 2 is a community
of business school students that are mostly isolated from the rest of the graph. Another
example is cluster 6 of size 1, which contains a single subject with many incoming calls
and many outgoing SMSs.

11.7 Conclusions
In this chapter we address the multi-graph clustering problem, where the goal is to find
well-defined clusters across all the views (a.k.a. dimensions, layers) of a given graph.
We propose two different solutions for clustering multi-graphs, based on Minimum
Description Length and Tensor-based decomposition principles, respectively. We validate
the effectiveness of our techniques over both synthetic and real DBLP networks, obtaining
better clustering accuracy than two competitor methods that ignore the multi-view aspect
of the networks. Our case study on the real Reality Mining data reveals interesting
clusters that agree with human intuition. Moreover, we show that our tensor-based
method is a generalization of a recent approach [TLD09], under appropriate conditions.
Finally, we asses how the clustering process benefits from the existence of multiple views.
In short, the presence of more views is beneficial on average, but for particular instances,

198

addition of noisy views may deteriorate clustering quality. This outcome paves the way
for interesting research questions, e.g. how to select only informative and non-redundant
views of the multi-graph or how to weigh the different dimensions appropriately to
obtain the best clustering accuracy.

199

200

Chapter 12

Homogeneity in Web Search
Results: Diagnosis and
Mitigation

Comparing semantically the results of
different search engines and using social
media signals to diversify web search.

Chapter based on material published in [AGP15a, AGP15b].

In this Chapter we propose two novel tools for comparing semantically the results
of different search engines. We present our empirical study over the search results
produced by Google and Bing that shows a large overlap. Fortunately, our study also
shows that by mining Twitter data one can obtain search results that are quite distinct
from those produced by Google and Bing. Additionally, through user studies, we
show that users found those results to be quite informative, presenting an potential
alternative to traditional web search.

12.1 Introduction
The fairness doctrine contends that citizens should have access to diverse perspectives as
exposure to different views is beneficial for the advancement of humanity [Fed49]. The
World Wide Web is now widely recognized as the universal information source. Content
representing diverse perspectives exist on the Web, on almost on any topic. However,
this does not automatically ensure that citizens encounter them [SM12b].

Search engines have become the primary tool used to access the web content [PBR12]. In
particular, it is the duopoly of Google and Bing that largely arbitrates which documents
people see, especially from the English language web (Yahoo’s web search is currently

201

powered by Bing). In the physical world, people gain access to diverse perspectives
by subscribing to different newspapers, listening to different radio stations, tuning into
different television channels, or manually selecting different publications and books. We
seek to study whether users can gain different perspectives by obtaining results for the
same query from different search engines.

In addition to the information about the documents that the search engine deems most
relevant to the query (the so called “organic results”), a search engine result page (SERP)
often contains a variety of other information. This may include inter alia sponsored
listings, images, videos, maps, definitions, or suggested search refinements. We focus
on comparing the top-10 organic results on the first SERP because they are the ones
that get most of the clicks [ESSF12]. Users unsatisfied with the top results frequently
retype a query, instead of looking at results at lower positions [GC07]. An organic result
normally includes the title of the document, a snippet of the document, and URL of the
full version. Thus, the first research question this Chapter investigates is how distinctive
are the organic web search results provided by Google and Bing.

In parallel, social networks have become immensely popular and have come to dominate
the zeitgeist of modern life. The second research question this Chapter investigates is
whether data mining of social networks can help web search engines diversify their
search results [CCSV11, MGD+09]. Not only the social results must be distinct from the
web results for the same query, the users must also find them useful. We use Twitter data
in this exploration because it is still possible to selectively crawl Twitter.

Contributions In this work, our main contribution lies in quantifying how distinctive
are the organic search results produced by Google, Bing, and Twitter. In order to achieve
that, we also make the following technical contributions:

• Visualization and exploratory analysis: We introduce TENSORCOMPARE, an ex-
ploratory tool for visualizing and analyzing pairwise differences between search
engines.

• Quantitative comparison of search engines results: We also introduce CROSSLEARN-
COMPARE, a tool that uses machine learning and quantifies the similarity of results
between two search engines by framing it as a prediction problem.

• Method Generality: While designed to effectively analyze search engine results,
our tools have broader applicability. For instance, consider a set of questions,
possibly coming from a Massive Open Online Course (MOOC) exam; these ques-
tions can either be multiple choice or in free-text form. In the setting of a MOOC,
there will be potentially hundreds, or thousands, of students responding to those
questions. There are also multiple exams, as well as multiple MOOCs on the same
subject, offered by different providers. Using these tools, we are able to quantify
the similarity of students across different MOOCs, as well as similarity of MOOCs
in terms of how students respond to exam questions (which could be an indicator
of how well students learn from a particular MOOC).

202

The Chapter is organized as follows. We begin by discussing related work in Section 12.2.
We then describe the new tools we designed in Section 12.3. Section 12.4 presents the
setup for the empirical evaluation. Section 12.5 presents the quantification of the overlap
between Google and Bing web results, while Section 12.6 presents this quantification for
their results and that of a simple search engine built over Twitter tweets. Section 12.7
presents the user study for assessing the usefulness of our findings. We conclude with a
discussion of the significance of the work and future directions in Section 10.7.

12.2 Related Work
More than four decades ago, Lancaster and Fayen [LF73] in 1973 listed six criteria for
assessing the performance of information retrieval systems: 1) Coverage, 2) Recall, 3)
Precision, 4) Response time, 5) User effort, and 6) Form of output. Since the advent
of search engines in early 90’s, there are several reported studies that evaluated their
performance on one or more these criteria. See [CR96] and references therein for examples
of some early studies. See [Lew12] for a recent compilation of various issues and studies
related to the evaluation of web search engines. We will focus our discussion on prior
works that studied the overlap of results between different search engines, the thrust of
our paper.

Three lines of research are most relevant to our work: i) overlap between the results of
web search engines, ii) social search technologies, and iii) integration of social search
results into web search. We review all three in this section. Note that we use the term
"social search" to mean searches conducted over databases of socially generated content,
although this term often refers broadly to the process of finding information online with
the assistance of any number of social resources such as asking others for answers or two
people searching together [TRM11].

12.2.1 Overlap in Web Search Results
An early overlap study is due to Ding and Marchionini, who measured the result overlap
between the then popular three search engines: InfoSeek, Lycos, and OpenText. Five
queries were used to conduct searches with these services. They observed a low level of
result overlap among the services [DM96]. Around the same time, Selberg and Etzioni
found that each of Galaxy, Infoseek, Lycos, OpenText, Webcrawler and Yahoo returned
mostly unique results [SE95]. Also in 1996, Gauch, Wang and Gomez found that a
metasearch engine that fused the results of Alta Vista, Excite, InfoSeek, Lycos, Open Text,
and WebCrawler provided the highest number of relevant results [GW96]. Bharat and
Broder estimated the overlap between the Websites indexed by HotBot, Alta Vista, Excite
and InfoSeek in November 1997 to be only 1.4% [BB98]. Lawrence and Giles, in their
study of AltaVista, Excite, HotBot, Infoseek, Lycos, and Northern Light published in 1998,
found that the individual engines covered from 3 to 34% of the indexable Web [LG98].
Spink et al. studied the overlap between the results of four search engines, namely MSN
(predecessor of Bing), Google, Yahoo and Ask Jeeves, using data from July 2005. They
found that the percent of total first page results unique to only one of the engines was

203

84.9%, shared by two of the three was 11.4%, shared by three was 2.6%, and shared by
all four was 1.1% [SJBK06]. In an update two years later, they noted that the first page
results of the four engines continued to differ from one another and in fact they included
fewer results in common in 2007 than in 2005 [SJW08].

More recently, Pirkola investigated how effectively the websites of Finnish, French, and
U.S. domains were being indexed by two US-based and three Europe-based search en-
gines [Pir09]. The results showed that Google and Live Search (predecessor of Bing)
indexed US sites more effectively than Finnish and French sites, the Finnish www.fi
indexed only Finnish sites and the French Voila only French sites, and the European
engine Virgilio indexed European sites more effectively than US sites. In another inter-
esting study, Wilkinson and Thelwall compared the results of seventeen random queries
submitted to Bing for thirteen different English geographic search markets at monthly
intervals [WT13]. They found there were almost no ubiquitous authoritative results: only
one URL was always returned in the top-10 for all search markets and points in time and
that results from at least three markets needed to be combined to give comprehensive
results. There also have been studies pointing out that the search engine results are not
stable even in short windows of time [BI04, Lew12].

We did not find much discussion in prior work of the techniques used for determining
if two result pages contained links to the same web document. For example, [SJBK06,
SJW08] simply state that this determination is done using string comparison of URLs. It
is not clear what URL normalization [LKH05, LCY+10], if any, was done before string
comparison. It is also not clear what, if anything, was done to address the problem of
DUST - Different URLs with Similar Text [BYKS09]. Finally, there is no mention of short
URLs, although the first notable URL shortening service, namely tinyURL, dates back to
2002 [APK+11].

To summarize, all of prior work found little overlap between the first page results
produced by different web search engines for very many queries. Some plausible reasons
have also been put forward for this low overlap. They include that the search engines
are constrained in the portions of the Web they index due to network bandwidth, disk
storage, computational power, or a combination of these items. Search engines use
different technologies to find pages and indexing them. And they deploy proprietary
algorithms to determine the ranking of the results and their presentation to the users.
Fingers have also been pointed at implicit personalization [HSMK+13].

One way the users dealt with low overlap was by manually executing the same query
on multiple search engines. Analyzing six months of interaction logs from 2008-2009,
White and Dumais [WD09] found that 72.6% of all users used more than one engine
during this period, 50% switched engines within a search session at least once, and
67.6% used different engines for different sessions. Their survey revealed three classes of
reasons for this behavior: dissatisfaction with the quality of results in the original engine
(dissatisfaction, frustration, expected better results, totaling 57%), the desire to verify
or find additional information (coverage/verification, curiosity, totaling 26%), and user
preferences (destination preferred, destination typically better, totaling 12%). Another

204

way the problem of low overlap was addressed was by developing metasearch engines
(e.g. InFind, MetaCrawler, MetaFerret, ProFusion, SavvySearch). A metasearch engine
automatically queries a number of search engines, merges the returned lists of results,
and presents the resulting ranked list to the user as the search of the query [AM01, GS05,
MYL02]. Note that with either manual or automated approach, the user ends up seeing
multiple perspectives.

In sharp contrast with prior work, our study conducted using data from June-July 2014
and presented here, finds large overlap between the top-10 search results produced
by Google and Bing. This overlap is even more pronounced in the top-5 results and
the results of head queries. Some plausible reasons for greater convergence in the
search results include deployment of greater amount of resources by search engines to
cover a larger fraction of indexable Web, much more universal understanding of search
engine technologies, and the use of similar features in ranking the search results. A
consequence of this convergence is that it becomes now harder for people to access
diverse perspectives.

12.2.2 Social Search
In addition to being considered a social media and a social network [KLPM10], Twitter
may also be viewed as an information retrieval system that people can utilize to produce
and consume information. Twitter today receives more than 500 million tweets per
day at the rate of more than 33,000 tweets per second. More than 300 billion tweets
have been sent since the founding of Twitter in 2006 and it receives more than 2 billion
search queries every day. Twitter serves these queries using an inverted index tuned
for real-time search, called EarlyBird, described in [BGL+12]. While this search service
excels at surfacing breaking news and events in real time and it does indeed incorporate
relevance ranking, it is a feature that the system designers themselves consider that they
have “only begun to explore”.1

The prevailing perception is that much of the content found on Twitter is of low qual-
ity [ACG+10] and the keyword search as provided by Twitter is not effective [TAHH12].
In response, there has been considerable research aimed at designing mechanisms for
finding good content from Twitter. In many of the proposed approaches, retweet count
alone or in conjunction with textual data, author’s metadata, and propagation informa-
tion play a prominent role [CMP11, DJQ+10, TAHH12, Web14]. The intuition is that if
a tweet is retweeted multiple times, then several people have taken the time to read it,
decide it is worth sharing, and then actually retweeted it, and hence it must be of good
quality [UC11]. But, of course, one needs to remove socware and other spam before
using retweet count [MRA13, RHMF12, SMML+14] Other approaches include using the
presence of a URL as an indicator [ACG+10], link analysis on the follows and retweet

1One of the problems with Twitter search has been that, while it is easy to discover current tweets and
trending topics, it is much more difficult to search over older tweets and determine, say, what the fans
were saying about the Seahawks during the 2014 Super Bowl. Beginning November 18, 2014, however, it
has become possible to search over the entire corpus of public tweets. Still, our own experiments indicate
that the ranking continues to be heavily biased towards recency.

205

graphs [RGAH11, YLLR12], clustering taking into account the size and popularity of a
tweet, its audience size, and recency [LNK10], and the semantic approaches including
topic modeling [YR14]. See overviews in [Web14, YR14] for additional references.

In this work, we are not striving to create the best possible social search engine, but
rather investigate whether the results obtained using signals from a social network could
be substantially different from a web search engine and yet useful. Thus, in order to
avoid confounding between multiple factors, we shall use a simple social search engine
that ranks tweets based on retweet analysis.

Contrary to the rich literature on overlap between the results produced by the web
search engines, the only prior work we could find on overlap between web and social
search results appears in Section 5 of [TRM11] (TRM Study). They extracted snippets
of all search results from Bing search logs for 42 most popular queries for one week
in November 2009. They also obtained all the tweets containing those queries during
the same period. They then computed per query average cosine similarity of each web
snippet with the centroid of the other web snippets and with the centroid of the tweets.
Similarly, they computed the per-query average cosine similarity of each Twitter result
with the centroid of the other tweets and with the centroid of the web snippets. All
averaging and comparisons are done in the reduced topic space obtained using Latent
Dirichlet Allocation (LDA) [BNJ03]. They found that the average similarity of Twitter
posts to the Twitter centroid was higher than the web results’ similarity to the web
centroid. The issue of usefulness of Twitter results is not addressed in their paper.

We shall see that our study considers head as well as trunk queries and encompasses both
Google and Bing. We also employ different data mining tools in our study. Specifically,
our TensorCompare uses tensor analysis to obtain low-dimensional representation of
search results since the method of moments for LDA reduces to canonical decomposition
of a tensor, for which scalable distributed algorithms exist [AGH+14, KPHF12]. Our
CrossLearnCompare, uses a novel cross-engine learning to quantify the similarity of
snippets and tweets. Additionally, we provide a user study demonstrating the usefulness
of the Twitter results. We will have more to say quantitatively about the TRM study
when we present our experimental results.

12.2.3 Integration of Web and Social search
Bing has been including a few tweets related to the current query on its search result
page, at least since November 2013. However, it is not obvious for what queries this
feature is triggered and what tweets are included. For example, on February 12, 2015 at
10:42AM, our query "Greece ECB" brought only one tweet on Bing’s result page, which
was a retweet from Mark Rauffalo from two days ago. Bing also offered a link titled "See
more on Twitter" below this tweet. Clicking this link took us to a Twitter page, where
the top tweet was from 14 minutes ago with the text "ECB raises pressure on Greece as
Tsipras meets EU peers"! Since June 2014, one can also search Bing by hashtag, look up
specific Twitter handles, or search for tweets related to a specific celebrity. Google is also
said have struck a deal with Twitter that will allow tweets to be shown in Google search

206

results sometime during 2015.

There is also research on how web search can be improved using signals from Twitter.
For example, Rowlands et al. [RHS10] propose that the text around a URL that appears
in a tweet may serve to add supplementary terms or add weight to existing terms in
the corresponding web page and that the reputation or authority of the tweeterer may
serve to weight both annotations and query independent popularity. Similarly, Dong
et al. [DZK+10] advocate using Twitter stream for detecting fresh URLs as well as for
computing features to rank them. We propose to build our future work upon some of
these ideas.

12.3 Analytical Tools
We designed two tools to be able to analyze and compare search engine results. One,
which we call TensorCompare, uses tensor analysis to derive low-dimensional compact
representation of search results and study their behavior over time. The other, which
we call CrossLearnCompare, uses cross-engine learning to quantify their similarity. We
discuss them next.

12.3.1 TensorCompare
Postulate that we have the search results of executing a fixed set of queries at certain fixed
time intervals on the same set of search engines. These results can be represented in a
four mode tensor X, where (query, result, time, search engine) are the four modes [KB09].
A result might be in the form of a set of URLs or a set of keywords representing the
corresponding pages. The tensor might be binary valued or real valued (indicating, for
instance, frequencies).

This tensor can be analyzed using the so-called canonical or PARAFAC decomposi-
tion [Har70, Bro97], which decomposes the tensor into a sum of rank-one tensors:
X ≈

∑R
r=1 λr ar ◦ br ◦ cr ◦ dr, where the (i, j, k, l)-th element of a ◦ b ◦ c ◦ d is sim-

ply a(i)b(j)c(k)d(l). The vectors ar,br, cr, dr are usually normalized, with their scal-
ing absorbed in λr. For compactness, the decomposition is represented as matrices
A,B,C,D.

The decomposition of X to A,B,C,D gives us a low rank embedding of queries, results,
timings, and search engines respectively, corresponding to the aforementioned clusters.
This implies that we are able to track the temporal behavior of a cluster of semantically
similar search engines for a set of queries. The factor matrix D projects each one of the
search engines to the R-dimensional space. Alternatively, one can view this embedding
as soft clustering of the search engines, with matrix D being the cluster indicator matrix:
the (i, j) entry of D shows the participation of search engine i in cluster j.

This leads to a powerful visualization tool that captures similarities and differences
between the search engines in an intuitive way. Say we take search engines A and B and
the corresponding rows of matrix D. If we plot these two row vectors against each other,
the resulting plot will contain as many points as clusters (R in our particular notation).

207

(0,1)"

(1,0)"Search"engine"A"

Se
ar
ch
"e
ng
in
e"
B"

(0,1)"

Search"engine"A"

Se
ar
ch
"e
ng
in
e"
B"

A!&!B!are!very!similar! A!&!B!are!dissimilar!
(a)" (b)"

(1,0)"

(0.5,0.5)"

(0,0)" (0,0)"

Figure 12.1: Visualization guide for TENSORCOMPARE.

The positions of these points are the key to understanding the similarity between search
engines.

Figure 12.1 serves as a guide. The (x, y) coordinate of a point on the plot corresponds
to the degree of participation of search engines A and B respectively in that cluster. If
all points lie on the 45 degree line, this means that both A and B participate equally in
all clusters. In other words, they tend to cluster in the exact same way for semantically
similar results and for specific periods of time. Therefore, Fig. 12.1(a) paints the picture of
two search engines that are very (if not perfectly) similar with respect to their responses.
In the case where we have only two search engines, perfect alignment of their results in a
cluster would be the point (0.5, 0.5). If we are comparing more than two search engines,
then we may have points on the lower parts of the diagonal. In the figure, we show
multiple points along the diagonal for the sake of generality.

Figure 12.1(b), on the other hand, shows the opposite behavior. Whenever a point lies on
either axis, this means that only one of the search engines participate in that cluster. If we
see a plot similar to this figure, we can infer that A and B are very dissimilar with respect
to their responses. In the case of two search engines, the only valid points on either axis
are (0, 1) and (1, 0), indicating an exclusive set of results. However, for generality, we
show multiple points on each axis.

Note, of course, the cases shown in Fig. 12.1 are the two extremes, and we expect to
observe behaviors bounded by those extremes. For instance, in the case of two search
engines, all points should lie on the line D(1, j)x + D(2, j)y = 1, where D(1, j) is the
membership of engine A in cluster j, and D(2, j) is the membership of engine B in cluster
j. This line is the dashed line of Fig. 12.1(a).

TENSORCOMPARE also allows us to track the behavior of clusters over time. In particular,
given the i-th group of semantically similar (query, result, search engine) cluster, as

208

given by the decomposition, the i-th column of matrix C holds the temporal profile of
that cluster. Suppose we have T days worth of measurements. If the search engines of
that cluster produce similar results for the given set of queries for all T , the temporal
profile will be approximately constant and each value will be approximately equal to
1
T

. Otherwise, there will be variation in the profile, correlated with the variation of the
particular results. In the extreme case where a result appeared only on a single day, the
time profile will have the value approximately equal to one corresponding to that day,
and approximately zero for the rest of the days.

Theoretical Foundation We next provide a Lemma that connects the plots provided
by TENSORCOMPARE to the degree of semantic overlap of two search engines. Suppose
that for a given cluster j, we denote the membership of search engine A as x = D(A, j)
and the membership of search engine B as y = D(B, j). For ease of exposition, consider
the case of two search engines and assume that we have a three mode tensor: (query,
result, search engine).
Lemma 12.1.:
Assume a binary (query, result, search engine) tensor that has exactly one rank one
component. Let search engine A correspond to the x coordinate, and search engine B
correspond to the y coordinate of a TENSORCOMPARE plot. For the particular component,
if search engine B has p1 fraction of queries in common with A, and p2 portion of the
result in common with A, then

y ≤ p1p2x.

!"#
!$#

%&'()#"# %&'()#$#

*#

+#

,"*#

,$+#

Figure 12.2: The two slices of X.

Proof. Consider a tensor X with dimensions I × J × 2 (in our case, the first mode corre-
sponds to queries, the second to results, and the third to search engines). Assume that X
is rank one, which means that there is one component in its PARAFAC decomposition. In
the frontal slice corresponding to the first search engine (Slice 1 in Fig. 12.2), we have Q
queries and T results forming a perfect block, which we assume to be filled with 1’s. The
second slice, which corresponds to the second search engine, has a block that spans only
a fraction of the queries and results of Slice 1.

209

Algorithm 12.1: CROSSLEARNCOMPARE

Input: RA,RB are instances of results of engines A and B. Each instance is in the form (query,
result representation in chosen feature space)

Output: Similarity measures cA,B and cB,A between search engines A, B.
1: Train a modelMA based on the instancesRA, using the query as a class label.
2: Train a modelMB based on the instancesRB , using the query as a class label.
3: For all instances inRB , use MA to predict the query. Set cA,B as a measure of the classifier’s

accuracy (e.g. Area Under the Curve).
4: For all instances inRA, use MB to predict the query. Set cB,A likewise.

We assume that the components a,b of the PARAFAC decomposition are normalized by
their `2 norm, and the scaling is absorbed in c. We further assume that the components
are non-negative.

Let â , b̂, ĉ be the optimal solution. An upper bound a,b, c to the optimal is the following:
The first Q elements of a will be equal to 1√

Q
(the rest are zero), and the first T elements

of b will equal 1√
T

. This implies that the coefficients of c =
[
c1 c2

]2, which multiply
abT in order to approximate the respective slices of X, will be proportional to the
respective densities of the blocks in either slice, i.e. c1 ∝ d1 and c2 ∝ d2 Making this
uniformity assumption for the non-zero elements of a,b allows us to bound the ratio
of the coefficients of ĉ by the ratio of the densities of the blocks in each slice. More
specifically, we have

ĉ1
ĉ2
≤ d1
d2

=
QT

p1Qp2T
=

1

p1p2
.

Hence, ĉ2 ≤ p1p2ĉ1. If we substitute y = ĉ2 and x = ĉ1, as they correspond in Fig. 12.1,
then we have shown the desired upper bound. �

In the case of a four-mode tensor, with p3 percent overlap in the time mode, the bound is
y ≤ p1p2p3x. The above Lemma provides an upper bound, however, we experimentally
validated that this bound is in practice tight.

12.3.2 CrossLearnCompare
An intuitive measure of the similarity of the results of two search engines is the pre-
dictability of the results of a search engine given the results of the other. Say we view
each query as a class label. We can then go ahead and learn a classifier that maps the
search result of search engine A to its class label, i.e. the query that produced the result.
Imagine now that we have results that were produced by search engine B. If A and
B return completely different results, then we would expect that classifying correctly
a result of B using the classifier learned using A’s results would be difficult, and our
classifier would probably err. On the other hand, if A and B returned almost identical
results, classifying correctly the search results of B would be easy. In cases in between,
where A and B bear some level of similarity, we would expect our classifier to perform in
a way that it is correlated with the degree of similarity between A and B.

210

Note we can have different accuracy when predicting search engine A using a model
trained on B, and vice versa. This, for instance, can be the case when the results of A are
a superset of the results of B. Algorithm 12.1 shows an outline of CROSSLEARNCOM-
PARE.

12.4 Experimental Setup
We next describe the experimental setup of the empirical study we performed, applying
the tools just described.

12.4.1 Social Pulse
For concreteness, we first specify a simple social search engine, which we shall henceforth
refer to as Social Pulse. We are not striving to create the best possible search engine,
but rather investigate whether the results obtained using signals from a social network
could be substantially different from a Web search engine and yet useful. Thus, instead
of employing a large set of features (see Section 12.2.2), we purposefully base the Social
Pulse’s ranker on one single feature in order to be able to make sharp conclusions and to
avoid confounding between multiple factors.

Social Pulse uses Twitter as the social medium. For a given query, Social Pulse first
retrieves all tweets that pertain to that query. Multiple techniques are available in
the literature for this purpose (e.g. [BKML13, NHF12, SFD+10, TT12]). We choose to
employ the simple technique of checking for the presence of the query string in the
tweet. Subsequently, Social Pulse ranks the retrieved tweets with respect to the number
of re-tweets (more precisely, the number of occurrences of the exact same tweet without
having necessarily been formally re-tweeted).

Arguably, one can restrict the attention to only those tweets that contain at least one
URL [ACG+10]. However, we have empirically observed that highly re-tweeted tweets,
in spite of containing no URL, usually provide high quality result. Hence, Social Pulse
uses these tweets as well.

12.4.2 Data Set
We conducted the study for two sets of queries. The TRENDS set (Table 12.1) contains the
most popular search terms from different categories from Google Trends during April
2014. We will refer to them as head queries. The MANUAL set (Table 12.2) consists of hand-
picked queries by the authors that we will refer to as trunk queries. These queries consist
of topics that the authors were familiar with and were following at the time. Familiarity
with the queries is helpful in understanding whether two sets of results are different and
useful. Queries in both the sets primarily have the informational intent [Bro02]. Many of
them are named entities, which constitute a significant portion of what people search.
The total number of queries was limited by the budget available for the study.

We probed the search engines with the same set of queries at the same time of the day for
a period 21 days for the TRENDS set, and 17 days for the MANUAL set, during June-July

211

Albert Einstein American Idol Antibiotics Ariana Grande
Avicii Barack Obama Beyonce Cristiano Ronaldo

Derek Jeter Donald Sterling Floyd Mayweather Ford Mustang
Frozen Game of Thrones Harvard University Honda
Jay-Z LeBron James Lego Los Angeles Clippers

Martini Maya Angelou Miami Heat Miami Heat
Miley Cyrus New York City New York Yankees Oprah Winfrey

San Antonio Spurs Skrillex SpongeBob SquarePants Tottenham Hotspur F.C.
US Senate

Table 12.1: TRENDS queries

Afghanistan Alternative energy Athens Beatles Beer
Coup Debt Disaster E-cigarettes Education

Gay marriage Globalization Gun control IMF iPhone
Iran Lumia Malaria Merkel Modi
Paris Polio Poverty Rome Russia

San Francisco Self-driving car Syria Tesla Ukraine
Veteran affairs World bank World cup Xi Jinping Yosemite

Table 12.2: MANUAL queries

2014. For Google, we used their custom search API (code.google.com/apis/console), and
for Bing their search API (datamarket.azure.com/dataset/bing/ search). Twitter data
consists of 1% sample of tweets obtained using Twitter API.

In all cases, we recorded the top-k results. The value of k is set to 10 by default, except
in the experiments studying the sensitivity of results to the value of k. Every time, we
ran the same code from the same machine having the same IP address to minimize noise
in the results. Because we were getting the results programmatically through the API,
no cookies were used and there was no browser information used by Google or Bing in
producing the results [HSMK+13].

12.4.3 Representation of Search Results
While our methodology is independent of the specific representation of search results, we
employ the snippets of the search results provided by the search engines for this purpose.
The snippet of a search result embodies the search engine’s semantic understanding of the
corresponding document with respect to the given query. The users also heavily weigh
the snippet in deciding whether to click on a search result [MGC10]. The alternative
of using URL representation must first address the well-known problems arising from
short URLs [APK+11], un-nomalized URLs [LKH05, LCY+10], and different URLs with
similar text [BYKS09]. Unfortunately, there is no agreed upon way to address them and
the specific algorithms deployed can have large impact on the conclusions. Furthermore,
the users rarely decide whether to look at a document based on the URL they see on
the search result page [MGC10]. In the case of Social Pulse, the entire text of a tweet

212

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

URL Similarity

C
o
s
in

e
 S

im
ila

ri
ty

 o
f
S

n
ip

p
e
ts

(a) TRENDS query set

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

URL Similarity

C
o
s
in

e
 S

im
ila

ri
ty

 o
f
S

n
ip

p
e
ts

(b) MANUAL query set

Figure 12.3: Comparing URL similarity with snippet similarity: snippet similarity is a
good proxy for real URL similariy, as judged by a human who manually visited each
URL.

(including hashtags and URLs, if any) is treated as snippet for this purpose. Snippets
and tweet texts respectively have also been used in the study of overlap between the
results of web search and social search in [TRM11].

More in detail, for a given result of a particular query, on a given date, we take the
bag-of-words representation of the snippet, after eliminating stopwords. Subsequently, a
set of results from a particular search engine, for a given query, is simply the union of the
respective bag-of-words representations. For TENSORCOMPARE, we keep all words and
their frequencies; binary features did not change the trends. For CROSSLEARNCOMPARE,
we keep the top-n words and have binary features. Finally, we note that the distribution
of the snippet lengths for Google, Bing, and Social Pulse was almost identical for all the
queries we tested. This ensures a fair comparison between them.

To assess whether snippets are appropriate for comparing the search results, we con-
ducted the following experiment. We inspect the top result given by Google and Bing for
a single day, for each of the queries in both TRENDS and MANUAL datasets. If for a query,
the top result points to the same content, we assign the URL similarity score of 1 to this
query, and the score of 0 otherwise. We then compute the cosine similarity between the
bag-of-word representations of the snippets produced by the two search engines for the
same query. Figure 12.3 shows the outcome of this experiment. Each point in this figure
corresponds to one query and plots the URL and snippet similarity scores for this query.
For clarity, the X and Y axes show ranges beyond [0,1].

We see that for most of the queries for which the snippet similarity is low, the results point
to different documents. On the other hand, when this similarity is high, the documents
are identical. In both TRENDS and MANUAL, there exist some outliers with pointers to
identical documents yet dissimilar snippets. Yet, overall, Fig. 12.3 indicates that snippets
are good vehicles for content comparison.

213

Note that we do not consider their ordering in our representation of the search results.
Instead, we study the sensitivity of our conclusions to the number of top results, including
top-1, top-3, and top-5 (in addition to top-10).

12.5 Overlap Between Web Results
We first study the overlap between the web results by Google and Bing.

12.5.1 Results of TensorCompare
Having chosen a bag-of-words representation for the results, the input tensor to TENSOR-
COMPARE has modes (query, term, date, search engine). Our data collection results in a
32× 36631× 21× 2 tensor for the TRENDS dataset and a 35× 39725× 17× 2 tensor for
the MANUAL set. For fitting the PARAFAC decomposition, we use the algorithm from
[CK12] that is appropriate for sparse, count data. More specifically, we use Tensor Tool-
box from Matlab [BK+15], which contains an efficient implementation of this algorithm.
The number of components we chose was R = 20; however, qualitatively similar behav-
ior was observed for various values for R. The results of TENSORCOMPARE analysis are
shown in Figs. 12.4 and 12.5. Figure 12.4 shows the similarity of search results, while
Fig. 12.5 shows the temporal profile of each one of the points in Fig. 12.4.

The first, immediate, observation is that the latent clusters for both query sets behave
similarly. This fact is encouraging because it shows that our analysis can be applied to
both head and trunk queries. In order to interpret the aforementioned plots, we consult
Fig. 12.1. We observe that Google and Bing produce similar results. This is indicated
by the fact that in Fig. 12.4, the majority of the points lie around the (0.5, 0.5) point (we
remind the reader that this point indicates almost exact similarity for the case of two
search engines), showing near equal participation of Google and Bing to the majority of
the latent clusters. This finding is quite surprising and is in sharp contrast with the past
studies. We further observe that there are somewhat more results unique to Google than
Bing since there are more clusters where Google has single participation.

Finally, with respect to the temporal variation of the results, as indicated by Fig. 12.5,
the temporal profile of each cluster is almost uniform across time. This, consequently,
means that for both search engines, either in cases where they agree or in cases where
they produce somewhat distinct results, their behavior is stable over time.

12.5.2 Results of CrossLearnCompare
We next present our analysis of the application of CROSSLEARNCOMPARE to the search
results of two engines. To obtain feature space for our instances, we remove terms that
are verbatim equal to or contain the query string and then take the 100 highest frequency
words for each search engine. We use the union of these two bags of words as the feature
space of the training and testing instances. Each such instance is, thus, the vector space
representation of a result for a given date and position in the result-set. We use a binary
representation, where 1 indicates that the corresponding word appears in the particular

214

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(a) TRENDS query set

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(b) MANUAL query set

Figure 12.4: Visualization of TENSORCOMPARE for Google and Bing for top-10 re-
sults: Values on the x-axis correspond to the membership of Google to a cluster, and
values on the y-axis correspond to the membership of Bing. Thus, an (x, y) point on this
plot represents one of the clusters of TENSORCOMPARE. The closer the points are to the
45-degree line, the more similar are the two search engines.

instance.

We train one-vs-all linear SVM classifiers for each query set, for each search engine. The
performance of the two classifiers of CROSSLEARNCOMPARE for the two query sets is
shown in Fig. 12.6; the measure of performance used is the standard Receiver Operating
Characteristic (ROC) curve [BD06]. There are four curves on the same figure, showing
the performance of predicting Bing using Google and vice versa, and for the two query
sets. Table 12.3 includes the Area Under the Curve (AUC) for the ROC curves shown in
Fig. 12.6.

Google- Bing TRENDS→ TRENDS← MANUAL→ MANUAL←
top-10 1.0 1.0 0.92 0.73
top-5 0.81 1.0 1.0 0.78
top-3 0.80 1.0 1.0 0.77
top-1 0.97 1.0 1.0 0.22

Table 12.3: Area Under the Curve (AUC) for CROSSLEARNCOMPARE. The right arrow→
indicates that we use the left search engine to predict the right one, and← the converse.

Firstly, we observe that the search results are mutually highly predictable for the TRENDS
query set. This implies that the top results for these popular queries for Google and Bing
are very similar. The same behavior continues to be observed for the MANUAL query set,
albeit Google results are somewhat less predictable from Bing results.

12.5.3 Sensitivity Analysis
One might wonder how sensitive are our conclusions to the fact that we analyzed the
top-10 search results. To this end, we apply TENSORCOMPARE and CROSSLEARNCOM-

215

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Day

A
ct

iv
ity

 o
f c

lu
st

er

(a) TRENDS query set

5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

Day

A
ct

iv
ity

 o
f c

lu
st

er

(b) MANUAL query set

Figure 12.5: Temporal profile of latent clusters given by TENSORCOMPARE: The y-axis
corresponds to the membership of the particular day to the cluster of interest. For both
query sets, the temporal profile of all clusters is approximately constant over time. In
particular, each value for TRENDS is ≈ 1/21 and for MANUAL it is ≈ 1/17. As stated in
Section 12.3.1, this indicates that both Bing and Google returned stable results. Due to
this uniformity, we overplot all clusters, without making any distinctions.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate

Google to Bing (Trends)

Bing to Google (Trends)

Google to Bing (Manual)

Bing to Google (Manual)

Figure 12.6: ROC curves produced by CrossLearnComparefor top-10 results (higher is
better in terms of classification accuracy). If two search engines were completely mutually
predictable, the ROC curve would be exactly on the (0, 0)− (0, 1) and (0, 1)− (1, 0) lines.
Conversely, if two search engines were completely mutually unpredictable, the ROC
curve would lie on the (0, 0)− (1, 0) and (1, 0)− (1, 1) lines. Finally, when the classifier is
random, the curve would lie on the 45-degree line.

PARE to the top-5, top-3, as well top-1 search results, for both TRENDS and MANUAL
query sets. Figure 12.7 shows the results of this analysis for TENSORCOMPARE. For
CROSSLEARNCOMPARE, we omit ROC curves to conserve space and only show the AUC

216

values in Table 12.3.

We see that our earlier findings are overall robust and consistent with the ones presented
here. A few specific remarks follow:

• For larger values of k, the clusters for top-k results have greater similarity, for both
Google and Bing. This behavior is as expected since a search result which is not
included in top-k of one search engine might be in its k + 1th position.

• For TRENDS queries, for values of k smaller than 10, it is easier to predict Google’s
results using a classifier trained on Bings’ results than vice versa. It indicates that
Bing exhibits relatively greater diversity in the results in earlier positions for these
queries.

• For MANUAL queries, on the other hand, we see an inverse trend. It indicates that
Google’s unique results for these queries are concentrated in the early positions.

• For the single top result, even though there is similarity, the top result is not
necessarily the same (but the manual inspection reveals that the top result of one is
almost always present in the top-5 of the other)

12.6 Overlap Between Web and Social Results
We next present the results of comparing search results of Social Pulse first to that of
Google and then Bing.

12.6.1 Social Pulse versus Google
Figure 12.8 and Table 12.4 show the results. We see from Figs. 12.8(a), 12.8(b):

1. There exists a number of results exclusive to either search engine as indicated by
multiple points around (0, 1) and (1, 0).

2. For the non-exclusive results, the points are not concentrated on (0.5, 0.5) (which
would have indicated similar results), but are rather spread out.

This suggests that Social Pulse and Google provide distinctive results to a great ex-
tent.

For the TRENDS dataset in Fig. 12.8(a), there is a cloud of clusters around (0.7, 0.3),
which indicates that Google has greater participation in these results than Social Pulse.
Figure 12.8(c) and AUC in Table 12.4 also show that using Google to predict Social Pulse
works relatively better than the converse for this dataset. This asymmetry suggests that
the Twitter users might not retweet much the readily-available, main-stream content on
popular topics.

In contrast, for the MANUAL dataset in Fig. 12.8(b), the non-exclusive points are relatively
more dispersed along the line that connects (0, 1) and (1, 0) and there are clusters in
which Social Pulse is more prominent. We also find that now predicting Google using
Social Pulse works better than the converse (Figs. 12.8(c) and 12.8(d)). Collectively,
they quantitatively validate the intuition that social networks might have content very
different from that indexed by web search engines for non-head queries.

217

TRENDS→ TRENDS← MANUAL→ MANUAL←
Google- Social Pulse 0.86 0.64 0.42 0.78

Table 12.4: AUC for CROSSLEARNCOMPARE comparing Google and Social Pulse for
top-10 results.

TRENDS→ TRENDS← MANUAL→ MANUAL←
Bing- Social Pulse 0.86 0.60 0.44 0.83

Table 12.5: AUC for CROSSLEARNCOMPARE comparing Bing and Social Pulse for top-10
results.

12.6.2 Social Pulse versus Bing
We repeated the preceding analysis, but by using Bing search results rather than Google
this time. Figure 12.9 and Table 12.5 show the results. These results are qualitatively
similar to those obtained using Google search results, which is not surprising given
the earlier finding that Google and Bing have significant overlap in their search results.
However, this sensitivity analysis employing another commercial search engine further
reinforces the conclusion that social search can yield results quite different from the ones
produced by the conventional Web search.

12.6.3 Query Level Analysis
In order to gain further insight into mutual predictability of web and social search, we
looked at three queries that have the highest and lowest predictability for each search
engine and query set, when using CROSSLEARNCOMPARE analysis. Tables 12.6 and 12.7
show the results with respect to Google; the insights gained were similar for Bing.

We see that the timely queries, like World cup or gay marriage, have high mutual pre-
dictability. Indeed, timeliness creates relevance; the same information gets retweeted
and clicked a lot. Queries like Maya Angelou and Albert Einstein are also highly mutually
predictable, in part because people tend to tweet quotes by them, which tend to surface
to Web search results as well.

On the other hand, queries such as globalization and poverty have low predictability. These
queries are informational queries with large scope. However, it seems that the content
people retweet a lot for these queries is not the same as what is considered authoritative
by the web search ranking algorithms. We shall see that the majority of users in our user
study found the results by Social Pulse for these queries to be very informative. This
suggests a potentially interesting use case of Social Pulse, where the user does not have
a crystalized a-priori expectation of the results and the search engine returns a set of
results that have been filtered socially.

12.6.4 Sensitivity Analysis
We repeated our analysis for top-5, top-3 and top-1 search results. The results for Bing
exhibited the same trend as Google, so we focus on presenting the results for Google.
Figures 12.10 and Table 12.8 show the results. Overall we observe that our results are

218

consistent, in terms of showing small overlap between Google and Social Pulse.

We also carried out another experiment in which we took the bottom five results from
the top-6 results produced by Social Pulse and treated them as if they were the top-5
results of Social Pulse. We then compared these results to Google’s top-5 results. Through
this experiment, we wanted to get a handle on the robustness of our conclusions to the
variations in Social Pulse’s ranking function and the errors in tweet selection. We again
found that the trends were preserved. We omit showing actual data.

12.6.5 Consistency with the TRM method
Recall our overview of the TRM method [TRM11], given in Section 12.2. In order to
study the consistency between our results with what one would obtain using the TRM
method, we conducted another sensitivity experiment. We first apply tensor analysis to
the Google and Social Pulse results to obtain their condensed representations. We then
compute the centroids for the Google and the Social Pulse results topics, and for every
result from Google and Social Pulse (for all queries and days), we compute its cosine
similarity to each centroid. While calculating the centroids, we ignore topics that are
shared between Google and Social Pulse and keep those that lie on the (0, 1) and (1, 0)
points of the TENSORCOMPARE plots. We present the results of this experiments in Table
12.9.

We again see that Google results in both query sets are more similar to the Google
centroid, and Social Pulse results to the Social Pulse centroid. This analysis, this time
employing a different method, further reinforces the conclusion that the social search
results can be quite different from the conventional Web search results.

Google→ Social Pulse Social Pulse→ Google

TRENDS

SpongeBob SquarePants Oprah Winfrey
Albert Einstein Maya Angelou

Tottenham Hotspur F.C. Albert Einstein

MANUAL

self-driving car World cup
gay marriage gay marriage
San Francisco World bank

Table 12.6: Queries exhibiting highest predictability.

Google→ Social Pulse Social Pulse→ Google

TRENDS

Honda Game of Thrones
Antibiotics Skrillex

Frozen Martini

MANUAL

coup coup
education iPhone

globalization poverty

Table 12.7: Queries exhibiting lowest predictability.

219

Google- Social Pulse TRENDS→ TRENDS← MANUAL→ MANUAL←
top-10 0.86 0.64 0.42 0.78
top-5 0.87 0.70 0.39 0.66
top-3 0.86 0.50 0.35 0.69
top-1 0.79 0.98 0.50 0.53

Table 12.8: AUC for CROSSLEARNCOMPARE comparing Google and Social Pulse for
different number of top results.

TRENDS
To Google centroid To Social Pulse centroid

From Google result 0.20 0.10
From Social Pulse result 0.05 0.10

MANUAL
To Google centroid To Social Pulse centroid

From Google result 0.22 0.10
From Social Pulse result 0.05 0.11

Table 12.9: Similarity from centroids

12.7 User Study
So far, we have discovered that the results of Social Pulse are different from Google
and Bing. However, one might wonder whether these different results are actually
useful, particularly given the apprehension that the content found on Twitter is of low
quality [ACG+10]. To this end, we conducted a user study on the Amazon Mechanical
Turk platform, following the best practices recommended in [Tur11]

12.7.1 HIT Design
Taking cue from the relevance judgment literature [CCSV11], the HIT (Human Intelli-
gence Task) presented to the users consists of a query and a text representing a search
result. The users are asked to select whether 1) the text is not informative, 2) the text is
informative, or 3) it is hard to tell. They are then asked to explain their answer; any HIT
that did not provide this explanation is rejected. Figure 12.11 shows a sample HIT.

We used the phrase "informative" rather than "relevant" in the instructions, after some
initial testing. The choice "not informative" was placed above the positive one to avoid
biasing the user’s response towards the positive answer. Requiring users to explain their
answer turned out to be important: users were forced to have a well justified reason
why they selected a particular answer, minimizing random responses and other forms of
noise.

Considering budget for the study, a subset of the queries were used. Both TRENDS and
MANUAL queries were included; the reader can see the complete list in Fig. 12.15. A HIT
was created for every query and each of the top-10 search results for the query. We asked
every HIT to be judged by ten users.

12.7.2 Inter-User Agreement
To ensure there is consistency in the judgments provided by the users, we measured the
inter-user agreement using the Fleiss’ kappa test [Fle71]. In a nutshell, Fleiss’ kappa (κ)
is a number that indicates the degree of agreement between judges that is statistically
significant and not attainable by chance. Its maximum value (for perfect agreement) is 1,
and where there is no agreement, it can also take negative values. In exploratory tasks

220

such as ours, a value in the range of 0.2-0.4 shows reasonable agreement and confidence
on the results.

Although we had sought 10 judgments for every HIT, the actual deployment yielded the
number of good judgments ranging from 4-10. Table 12.10 shows the κ values for our
user study. A column of this table shows the number of search results that were judged
exactly by the corresponding number of users as well the κ value. Thus, the column 1
of this table indicates that for twelve of the search results each was judged by exactly
four users. We observe that κ is reasonably good in all cases, signifying good inter-user
agreement.

Judges 4 5 6 7 8 9 10
Results 12 70 92 91 51 25 5

κ 0.19 0.29 0.27 0.26 0.32 0.43 0.22

Table 12.10: Inter-user agreement. A column of this table provides the number of search
results that were judged exactly by the corresponding number of users as well as the κ
value.

12.7.3 Sanity Checks
To further increase our confidence in the conclusions we arrive at, we did two sanity
checks: i) visual inspection of the tweets in the result sets, and ii) their quantitative
evaluation. We give below the results of both.

12.7.3.1 Visual Inspection
We examined top tweets for which there was high agreement amongst the judges as well
as those tweets that had split judgments. Figures 12.12−12.14 show the top tweets from
the two categories for which we had eight judgments each. It is readily apparent from
these figures that the users were quite diligent in arriving at their decisions.

Metric Google Social Pulse
Kincaid 11.3 7.1

ARI 13.5 9.5
Coleman-Liau 12.9 11.4
Flesch Index 52.9/100 71.2/100

Fog Index 14.2 10.0
SMOG-Grading 12.5 9.6

Lix 49.3 42.2
(school year 9) (school year 7)

Table 12.11: Readability of results.

12.7.3.2 Readability of the Result Tweets
It is a common belief that tweets are usually of bad quality, containing a lot of misspellings
and illegible terms. But does this belief hold water when we focus on highly retweeted

221

tweets? To quantitatively answer this question, we put the tweets in our result sets
through the unix style tool. Given a piece of text, this tool computes seven metrics that
have been extensively discussed in the literature and applied in practice [DuB04].

We conducted this study for Google and Social Pulse, for the same set of results that we
use for the user study. Due to the nature of the style tool, we strip the snippets off any
non alpha-numeric character, and we concatenate the snippets of each search engine into
a longer passage, and apply style to it. The results are shown in Table 12.11.

It is not surprising that tweets score lower than Web snippets. The latter are derived
from Web pages that are generally written much more formally whereas communication
on Twitter is relatively informal. Note also that a lower value of a readability metric does
not automatically imply lower understandability of the content. For example, the most
popular novels are written at the 7th-grade level and people read for recreation texts
that are two grades below their actual reading level [KB54]. Interestingly, we see from
Table 12.11 that Lix pegs the readability of the result tweets at the 7th-grade level.

12.7.4 Results of the User Study
We can now finally present the results of our user study. Figure 12.15 summarizes them.
We have plotted the usefulness index separately for each of the queries. For computing
the usefulness index for a query, we consider every search result for a query for which
we could get at least four judgments. We then check if a strict majority of users have
judged the result to be informative for the given query. Note that "hard to tell" is treated
as "not informative" for this purpose. The majority votes are then averaged over distinct
search results for a specific query. Since the inter-user agreement is quite good according
to Fleiss’ kappa, the majority vote is a good indicator of the result quality.

Overall, Fig. 12.15 demonstrates that most of the users found a large portion of Social
Pulse’s results informative with respect to the query in question, regardless of the query
category (TRENDS or MANUAL). This finding is remarkable given the fact that the sole
signal we use in order to discover and rank these results is the number of retweets.

222

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(a) TRENDS top-5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(b) MANUAL top-5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(c) TRENDS top-3

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(d) MANUAL top-3

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(e) TRENDS top-1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

B
in

g

(f) MANUAL top-1
Figure 12.7: TENSORCOMPARE sensitivity with respect to the number of results included
in the analysis

223

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
o
c
ia

l
P

u
ls

e

(a) TENSORCOMPARE for TRENDS

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
o
c
ia

l
P

u
ls

e

(b) TENSORCOMPARE for MANUAL

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate

Google to Social Pulse (Trends)

Social Pulse to Google (Trends)

(c) CROSSLEARNCOMPARE for TRENDS

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate

Google to Social Pulse (Manual)

Social Pulse to Google (Manual)

(d) CROSSLEARNCOMPARE for MANUAL

Figure 12.8: Social Pulse vs. Google for top-10 results

224

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Bing

S
oc

ia
l P

ul
se

(a) TENSORCOMPARE for TRENDS

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Bing

S
o
c
ia

l
P

u
ls

e

(b) TENSORCOMPARE for MANUAL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Bing to Social Pulse (Trends)

Social Pulse to Bing (Trends)

(c) CROSSLEARNCOMPARE for TRENDS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
po

si
tiv

e
ra

te

False positive rate

Bing to Social Pulse (Manual)
Social Pulse to Bing (Manual)

(d) CROSSLEARNCOMPARE for MANUAL

Figure 12.9: Social Pulse vs. Bing for top-10 results

225

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
o
c
ia

l
P

u
ls

e

(a) TRENDS top-5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
o
c
ia

l
P

u
ls

e

(b) MANUAL top-5

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
o
c
ia

l
P

u
ls

e

(c) TRENDS top-3

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
o
c
ia

l
P

u
ls

e

(d) MANUAL top-3

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
oc

ia
l P

ul
se

(e) TRENDS top-1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Google

S
oc

ia
l P

ul
se

(f) MANUAL top-1

Figure 12.10: TENSORCOMPARE sensitivity with respect to the number of results included
in the analysis

226

!"#$%&'$()*'+$%$,#'&-$.'&/$%+0$%$1+)22'.$"3$.'4.5$67""1'$87'.7'&$.7)1$2)'9'$"3$.'4.$)1$)+3"&/%:*'$
%;"#.$.7'$2%&:9#<%&$,#'&-$"&$+".5$=3$.7'$.'4.$9"+.%)+1$%$<)+>?$2<'%1'$9"+1)0'&$7"8$)+3"&/%:*'$.7'$
<)+>$)1$%1$8'<<5$
$

!"#$%&'()"#*

+,*-./*0&/%1*2#*34)%56*78"9:*8"6*$./*$/;$*2#<*
4)%56*78"9<*=2>.(">*'52?8$/*'.8">/*@)&56*A))#$*>5)A85*/')")?1*&B*$)*C,D*$%2552)"*8*1/8%**
.EB<FF$,')F5DG9"HII@J**

Figure 6: A sample HIT

Judges 4 5 6 7 8 9 10
Results 12 70 92 91 51 25 5

κ 0.19 0.29 0.27 0.26 0.32 0.43 0.22

Table 3: Inter-user agreement. A column of this table provides
the number of search results that were judged exactly by the corre-
sponding number of users as well the κ value.

response towards the positive answer. Requiring users to explain
their answer turned out to be important: users were forced to have
a well justified reason why they selected a particular answer, and
thus, we minimize random responses and other forms of noise.

Considering budget for the study, a subset of the queries were
used. Can we say anything meaning ful about how the selection
was done? Both TRENDS and MANUAL queries were included; the
reader can see the complete list in Fig. 7. A HIT was created for
every query and each of the top-10 search results for the query. We
asked every HIT to be judged by ten users.

Inter-User Agreement.
To ensure that only those judgments are used in the analysis for

which there is consistency in the judgments provided by the users,
we measured the inter-user agreement using the Fleiss’ kappa met-
ric [11]. In a nutshell, Fleiss’ kappa (κ) is a number that indicates
the degree of agreement between judges that is statistically signifi-
cant and not attainable by chance. Its maximum value (for perfect
agreement) is 1, and where there is no agreement, it can also take
negative values. In exploratory tasks such as ours, a value in the
range of 0.2-0.4 shows reasonable agreement and confidence on
the results.

Although we had sought 10 judgments for every HIT, the actual
deployment yielded the number of good judgments ranging from 4-
10. Table 3 shows the κ values for our user study. A column of this
table shows the number of search results that were judged exactly
by the corresponding number of users as well the κ value. These
results were not necessarily produced for the same query. Thus,
the column 1 of this table indicates that for twelve of the search
results each was judged by exactly four users. We observe that κ is
reasonably good in all cases, signifying generally good inter-user
agreement.

Results.
1. Make Y-axis go from 0-1 (not 1.2). 2. Label Y-axis - Use-

fulness index. 3. Drop the top label (Results Quality...) above the
figure

Fig. 7 summarizes the results of the user study. We have plotted
the usefulness index separately for each of the queries. For com-
puting the usefulness index for a query, we consider every search
result for a query for which we could get at least four judgments.
We then check if a strict majority of users have judged the result to
be informative for the given query. Note that "hard to tell" is treated
as "not informative" for this purpose. The majority votes are then
averaged over distinct search results for a specific query. Since the
inter-user agreement is quite good according to Fleiss’ kappa, the
majority vote is a good indicator of the result quality.

Overall, Fig. 7 demonstrates that most of the users found a large
portion of Social Pulse’s results informative with respect to the
query in question. This finding is remarkable given the fact that
the sole signal we use in order to discover and rank these results is
the number of retweets.

Which of these queries are MANUAL and which are TRENDS?
Group the results for two types of queries? Is their difference in the
usefulness of these two classes of queries?

5. CONCLUSIONS AND FUTURE WORK

6. REFERENCES
[1] Amazon Mechanical Turk, Requester Best Practices Guide.

Amazon Web Services, June 2011.
[2] R. Agrawal, B. Golshan, and E. Papalexakis. A study of

distinctiveness in web results of two search engines.
Technical Report TR-2015-001, Data Insights Laboratories,
San Jose, California, January 2015.

[3] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos,
S. Ioannidis, E. P. Markatos, and T. Karagiannis. we.b: The
web of short URLs. In 20th international conference on
World Wide Web, pages 715–724. ACM, 2011.

[4] B. W. Bader and T. G. Kolda. Matlab tensor toolbox version
2.2. Albuquerque, NM, USA: Sandia National Laboratories,
2007.

[5] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in
the DUST: different urls with similar text. ACM Transactions
on the Web, 3(1):3, 2009.

[6] C. D. Brown and H. T. Davis. Receiver operating
characteristics curves and related decision measures: A
tutorial. Chemometrics and Intelligent Laboratory Systems,
80(1):24–38, 2006.

[7] H. Chu and M. Rosenthal. Search engines for the world wide
web: A comparative study and evaluation methodology. In
American Society for Information Science, volume 33, pages
127–135, 1996.

[8] C. L. A. Clarke, N. Craswell, I. Soboroff, and E. M.
Voorhees. Overview of the TREC 2011 web track. Technical
report, NIST, 2011.

[9] E. Enge, S. Spencer, J. Stricchiola, and R. Fishkin. The art of
SEO. O’Reilly, 2012.

[10] Federal Communications Commission. Editorializing by
broadcast licensees. Washington, DC: GPO, 1949.

[11] J. L. Fleiss. Measuring nominal scale agreement among
many raters. Psychological bulletin, 76(5):378, 1971.

[12] Z. Guan and E. Cutrell. An eye tracking study of the effect of
target rank on web search. In SIGCHI conference on Human
factors in computing systems, pages 417–420. ACM, 2007.

@7'$.'4.$)1$+".$)+3"&/%:*'$

Figure 6: A sample HIT

Judges 4 5 6 7 8 9 10
Results 12 70 92 91 51 25 5

κ 0.19 0.29 0.27 0.26 0.32 0.43 0.22

Table 3: Inter-user agreement. A column of this table provides
the number of search results that were judged exactly by the corre-
sponding number of users as well the κ value.

response towards the positive answer. Requiring users to explain
their answer turned out to be important: users were forced to have
a well justified reason why they selected a particular answer, and
thus, we minimize random responses and other forms of noise.

Considering budget for the study, a subset of the queries were
used. Can we say anything meaning ful about how the selection
was done? Both TRENDS and MANUAL queries were included; the
reader can see the complete list in Fig. 7. A HIT was created for
every query and each of the top-10 search results for the query. We
asked every HIT to be judged by ten users.

Inter-User Agreement.
To ensure that only those judgments are used in the analysis for

which there is consistency in the judgments provided by the users,
we measured the inter-user agreement using the Fleiss’ kappa met-
ric [11]. In a nutshell, Fleiss’ kappa (κ) is a number that indicates
the degree of agreement between judges that is statistically signifi-
cant and not attainable by chance. Its maximum value (for perfect
agreement) is 1, and where there is no agreement, it can also take
negative values. In exploratory tasks such as ours, a value in the
range of 0.2-0.4 shows reasonable agreement and confidence on
the results.

Although we had sought 10 judgments for every HIT, the actual
deployment yielded the number of good judgments ranging from 4-
10. Table 3 shows the κ values for our user study. A column of this
table shows the number of search results that were judged exactly
by the corresponding number of users as well the κ value. These
results were not necessarily produced for the same query. Thus,
the column 1 of this table indicates that for twelve of the search
results each was judged by exactly four users. We observe that κ is
reasonably good in all cases, signifying generally good inter-user
agreement.

Results.
1. Make Y-axis go from 0-1 (not 1.2). 2. Label Y-axis - Use-

fulness index. 3. Drop the top label (Results Quality...) above the
figure

Fig. 7 summarizes the results of the user study. We have plotted
the usefulness index separately for each of the queries. For com-
puting the usefulness index for a query, we consider every search
result for a query for which we could get at least four judgments.
We then check if a strict majority of users have judged the result to
be informative for the given query. Note that "hard to tell" is treated
as "not informative" for this purpose. The majority votes are then
averaged over distinct search results for a specific query. Since the
inter-user agreement is quite good according to Fleiss’ kappa, the
majority vote is a good indicator of the result quality.

Overall, Fig. 7 demonstrates that most of the users found a large
portion of Social Pulse’s results informative with respect to the
query in question. This finding is remarkable given the fact that
the sole signal we use in order to discover and rank these results is
the number of retweets.

Which of these queries are MANUAL and which are TRENDS?
Group the results for two types of queries? Is their difference in the
usefulness of these two classes of queries?

5. CONCLUSIONS AND FUTURE WORK

6. REFERENCES
[1] Amazon Mechanical Turk, Requester Best Practices Guide.

Amazon Web Services, June 2011.
[2] R. Agrawal, B. Golshan, and E. Papalexakis. A study of

distinctiveness in web results of two search engines.
Technical Report TR-2015-001, Data Insights Laboratories,
San Jose, California, January 2015.

[3] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos,
S. Ioannidis, E. P. Markatos, and T. Karagiannis. we.b: The
web of short URLs. In 20th international conference on
World Wide Web, pages 715–724. ACM, 2011.

[4] B. W. Bader and T. G. Kolda. Matlab tensor toolbox version
2.2. Albuquerque, NM, USA: Sandia National Laboratories,
2007.

[5] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in
the DUST: different urls with similar text. ACM Transactions
on the Web, 3(1):3, 2009.

[6] C. D. Brown and H. T. Davis. Receiver operating
characteristics curves and related decision measures: A
tutorial. Chemometrics and Intelligent Laboratory Systems,
80(1):24–38, 2006.

[7] H. Chu and M. Rosenthal. Search engines for the world wide
web: A comparative study and evaluation methodology. In
American Society for Information Science, volume 33, pages
127–135, 1996.

[8] C. L. A. Clarke, N. Craswell, I. Soboroff, and E. M.
Voorhees. Overview of the TREC 2011 web track. Technical
report, NIST, 2011.

[9] E. Enge, S. Spencer, J. Stricchiola, and R. Fishkin. The art of
SEO. O’Reilly, 2012.

[10] Federal Communications Commission. Editorializing by
broadcast licensees. Washington, DC: GPO, 1949.

[11] J. L. Fleiss. Measuring nominal scale agreement among
many raters. Psychological bulletin, 76(5):378, 1971.

[12] Z. Guan and E. Cutrell. An eye tracking study of the effect of
target rank on web search. In SIGCHI conference on Human
factors in computing systems, pages 417–420. ACM, 2007.

@7'$.'4.$)1$)+3"&/%:*'$

Figure 6: A sample HIT

Judges 4 5 6 7 8 9 10
Results 12 70 92 91 51 25 5

κ 0.19 0.29 0.27 0.26 0.32 0.43 0.22

Table 3: Inter-user agreement. A column of this table provides
the number of search results that were judged exactly by the corre-
sponding number of users as well the κ value.

response towards the positive answer. Requiring users to explain
their answer turned out to be important: users were forced to have
a well justified reason why they selected a particular answer, and
thus, we minimize random responses and other forms of noise.

Considering budget for the study, a subset of the queries were
used. Can we say anything meaning ful about how the selection
was done? Both TRENDS and MANUAL queries were included; the
reader can see the complete list in Fig. 7. A HIT was created for
every query and each of the top-10 search results for the query. We
asked every HIT to be judged by ten users.

Inter-User Agreement.
To ensure that only those judgments are used in the analysis for

which there is consistency in the judgments provided by the users,
we measured the inter-user agreement using the Fleiss’ kappa met-
ric [11]. In a nutshell, Fleiss’ kappa (κ) is a number that indicates
the degree of agreement between judges that is statistically signifi-
cant and not attainable by chance. Its maximum value (for perfect
agreement) is 1, and where there is no agreement, it can also take
negative values. In exploratory tasks such as ours, a value in the
range of 0.2-0.4 shows reasonable agreement and confidence on
the results.

Although we had sought 10 judgments for every HIT, the actual
deployment yielded the number of good judgments ranging from 4-
10. Table 3 shows the κ values for our user study. A column of this
table shows the number of search results that were judged exactly
by the corresponding number of users as well the κ value. These
results were not necessarily produced for the same query. Thus,
the column 1 of this table indicates that for twelve of the search
results each was judged by exactly four users. We observe that κ is
reasonably good in all cases, signifying generally good inter-user
agreement.

Results.
1. Make Y-axis go from 0-1 (not 1.2). 2. Label Y-axis - Use-

fulness index. 3. Drop the top label (Results Quality...) above the
figure

Fig. 7 summarizes the results of the user study. We have plotted
the usefulness index separately for each of the queries. For com-
puting the usefulness index for a query, we consider every search
result for a query for which we could get at least four judgments.
We then check if a strict majority of users have judged the result to
be informative for the given query. Note that "hard to tell" is treated
as "not informative" for this purpose. The majority votes are then
averaged over distinct search results for a specific query. Since the
inter-user agreement is quite good according to Fleiss’ kappa, the
majority vote is a good indicator of the result quality.

Overall, Fig. 7 demonstrates that most of the users found a large
portion of Social Pulse’s results informative with respect to the
query in question. This finding is remarkable given the fact that
the sole signal we use in order to discover and rank these results is
the number of retweets.

Which of these queries are MANUAL and which are TRENDS?
Group the results for two types of queries? Is their difference in the
usefulness of these two classes of queries?

5. CONCLUSIONS AND FUTURE WORK

6. REFERENCES
[1] Amazon Mechanical Turk, Requester Best Practices Guide.

Amazon Web Services, June 2011.
[2] R. Agrawal, B. Golshan, and E. Papalexakis. A study of

distinctiveness in web results of two search engines.
Technical Report TR-2015-001, Data Insights Laboratories,
San Jose, California, January 2015.

[3] D. Antoniades, I. Polakis, G. Kontaxis, E. Athanasopoulos,
S. Ioannidis, E. P. Markatos, and T. Karagiannis. we.b: The
web of short URLs. In 20th international conference on
World Wide Web, pages 715–724. ACM, 2011.

[4] B. W. Bader and T. G. Kolda. Matlab tensor toolbox version
2.2. Albuquerque, NM, USA: Sandia National Laboratories,
2007.

[5] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not crawl in
the DUST: different urls with similar text. ACM Transactions
on the Web, 3(1):3, 2009.

[6] C. D. Brown and H. T. Davis. Receiver operating
characteristics curves and related decision measures: A
tutorial. Chemometrics and Intelligent Laboratory Systems,
80(1):24–38, 2006.

[7] H. Chu and M. Rosenthal. Search engines for the world wide
web: A comparative study and evaluation methodology. In
American Society for Information Science, volume 33, pages
127–135, 1996.

[8] C. L. A. Clarke, N. Craswell, I. Soboroff, and E. M.
Voorhees. Overview of the TREC 2011 web track. Technical
report, NIST, 2011.

[9] E. Enge, S. Spencer, J. Stricchiola, and R. Fishkin. The art of
SEO. O’Reilly, 2012.

[10] Federal Communications Commission. Editorializing by
broadcast licensees. Washington, DC: GPO, 1949.

[11] J. L. Fleiss. Measuring nominal scale agreement among
many raters. Psychological bulletin, 76(5):378, 1971.

[12] Z. Guan and E. Cutrell. An eye tracking study of the effect of
target rank on web search. In SIGCHI conference on Human
factors in computing systems, pages 417–420. ACM, 2007.

=.$)1$7%&0$."$.'<<$

C,*K5/8#/*/;B582"*1)&%*'.)2'/<*

L)&*?&#$*MNNOK-*$./*P!-*A/Q)%/*1)&*'8"*#&A?2$*$./*%/#&5$#,*

Figure 12.11: A sample HIT

!"#$%&#'($)*$+,#-./$01,$."#$.#2.$)*3$
4567*.055*#8#'#$#97176)9$,7:1.&'1*$0'#$;'#9#,#,$-($0$*"0';$')*#$)1$"7&*#"75,$,#-.$
"<;3==.>97=?&@ABC(D5?$$8),#7$
!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33E F$ E$

!"#$%&#'($)*$+G7'5,$9&;/$01,$."#$.#2.$)*3$
H)71#5$I#**)$)*$."#$J1,$4'K#1L1#$;50(#'$)1$")*.7'($.7$*97'#$)1$055$."'##$G7'5,$M&;$K'7&;$K06#*$
N9-5)8#$0'K$O8)0$7;.0P$
!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33J Q$ E$

!"#$%&#'($)*$+6050')0/$01,$."#$.#2.$)*3$
B"010$'#;7'.*$'#60'R0-5#$;'7K'#**$)1$I050')0$971.'75$"<;3==.>97=.S7QT!U(:V$8)0$
67,#'1K"010:#-$,#N#0.6050')0$
!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33E F$ E$

!"#$%&#'($)*$+W01$41.71)7$W;&'*/$01,$."#$.#2.$)*3$
!)6X&1901$.05R*$0-7&.$")*$,#9)*)71$.7$*.0($:)."$SY4$M"06;)71$W01$41.71)7$W;&'*$
"<;3==.>97=ITZV'J'@[7$$
!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33$\$?$ E$

Figure 12.12: Informative results with high judge agreement

227

!"#$%&#'($)*$+!#*,-.$-/0$1"#$1#21$)*3$
456!7$8#9,)2$!#*,-$!:);#'$<'=>?=2$@-/0='-$A?#'$@)/1#'#*1$7>=BC($6)'?/?$-$

!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33D E$ E$

!"#$%&#'($)*$+6/B?)=BF*.$-/0$1"#$1#21$)*3$
GH$1=$0=F1='*$1=$*##$-?=&1$1")*$,&I>$J$"-K#$1"-1$:=/$1$L=$-:-(M$N=>#$J$0=/$1$"-K#$1=$"-K#$I='#$
-/B?)=BF*$
!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33O E$ P$

!"#$%&#'($)*$+I-,-')-.$-/0$1"#$1#21$)*3$
7=J"-K#$Q-,-')-$:-"$-$?#-&BC&,$:-($1=$*1-'1$*&II#'$

!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33D E$ E$

!"#$%&#'($)*$+*#,CR0')K)/L$F-'.$-/0$1"#$1#21$)*3$
J$-I$'#-0($C='$-$L==L,#$*#,C$0')K)/L$F-'M$@,#-*#$1-S#$I($I=/#(MJ"-1#$0')K)/LM$

!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33O P$ E$

Figure 12.13: Not informative results with high judge agreement

!"#$%&#'($)*$+,-(-$./0#12&3$-/4$5"#$5#65$)*7$
89:#$1#-'/#4$5"-5$;-<)/0$-$1):)/0$)*$/25$5"#$*-;#$5")/0$-*$;-<)/0$-$1)=#>$,-(-$./0#12&$

!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33$?$?$ @$

!"#$%&#'($)*$+A#B$C2'<$C-/<##*3$-/4$5"#$5#65$)*7$
A#B$C2'<$C-/<##*$D#E20/)F)/0$!)/2$,-'G/#F$)*$-$H'#-5$!")/0$I'-4$J#//#'$KL.>>>$
"MN7OO5>E2O)&CPQ(RQ%I$$,2/&;#/5J-'<$!#-;;-5#S#'#<T#5#'$
!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33U ?$ V$

!"#$%&#'($)*$+0&/$E2/5'213$-/4$5"#$5#65$)*7$
H&/$Q2/5'21$"MN7OO5>E2OQB,BT&4-SW$$

!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33U ?$ V$

!"#$%&#'($)*$+S#'#<$T#5#'3$-/4$5"#$5#65$)*7$
PX.!$.$X8!$SYDYZ$TY!YD$XW,YDYS$

!"#$%#&%$'($)*%$')+*,-./0#$!"#$%#&%$'($')+*,-./0#$ 1%$'($".,2$%*$%#33$?$?$ @$

Figure 12.14: Results with poor judge agreement

228

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

U
se
fu
ln
es
s!I
nd

ex
!

(a) TRENDS

0"
0.1"
0.2"
0.3"
0.4"
0.5"
0.6"
0.7"
0.8"
0.9"
1"

U
se
fu
ln
es
s!I
nd

ex
!

(b) MANUAL

Figure 12.15: Usefulness index of search results produced by Social Pulse for various
queries

229

230

Part V

Conclusions and Future
Directions

231

Chapter 13

Conclusions

13.1 Summary of Contributions
Multi-aspect data are ubiquitous, spanning a wide variety of real-world applications.
In this thesis we introduce a set of tools that can efficiently and effectively model these
multi-aspect data and improve knowledge discovery in the respective application.

13.1.1 Algorithms
The primary tool that we use to model multi-aspect data in this thesis is tensor decompo-
sition. Our work has focused on

• Scalable tensor decomposition: Our work has focused on scaling up and parallelizing
tensor decompositions. The algorithms we propose in this thesis have enabled
processing of tensor datasets that the state of the art was unable to handle.

• Scalable unsupervised quality assessment: In addition to proposing fast and parallel
tensor decomposition algorithms, our work has contributed on measuring the
quality of those decompositions for much larger datasets (at least two orders of
magnitude) than what the state of the art could, while additionally making more
realistic assumptions for the distribution of the data.

13.1.2 Applications
• Neurosemantics: We pose the identification of semantically coherent brain regions

as a novel Coupled Matrix-Tensor Factorization application and we demonstrate
that such modeling can lead to discoveries that are known to Neuroscience in an
unsupervised way; this offers confidence to the ability of this method to help and
inform Neuroscientific research in scenarios where exploration is still under-way.
Furthermore, we are the first to pose the estimation of the functional connectivity
of the brain as a system identification problem, modeling the brain as a control
system. Our model is able to identify concepts consistent with Neuroscience and
can single out anomalies.

233

• Social Networks and the Web: We demonstrate that community detection and graph
exploration greatly benefit by exploiting the inherent multi-aspect nature of the
data. We achieve more accurate community detection by using different views of a
social graph, and we gain better and more detailed insights on a social network
by incorporating temporal and location information, as well as textual and lingual
signals.
Using our scalable tensor decomposition methods, we compute embeddings of
NELL, a very large Knowledge Base, which enables efficient detection of synony-
mous or similar entities in the Knowledge Base. Furthermore, we introduce tools
based on tensor analysis that measure the difference in the semantics of search
results between search engines; we measure the similarity of Google and Bing and
identify large overlap for popular queries. We, finally, propose a remedy to this
overlap by demonstrating that social media based web search (using Twitter) offers
diverse and useful search results.

13.2 Broader impact
The work presented in this thesis has already had significant impact which we categorize
in 1) Academic Impact, 2) Impact to the research community through code release, and
3) Application Impact.

13.2.1 Academic Impact
The work presented here has been previously published in top-tier outlets in Data Mining
and Signal Processing. We measure academic impact in terms of the citations, publication
venue, and distinctions that our work has received.

• PARCUBE [PFS12] is the most cited paper of ECML-PKDD 2012 with over 60
citations at the time of writing, whereas the median number of citations for ECML-
PKDD 2012 is 5.

• Our SDM 2016 paper introducing AUTOTEN [Pap16] won the NSF Travel Award
and Best Student Paper Award.

• TURBO-SMT [PMS+14] was selected as one of the best papers of SDM 2014, and
appeared in a special issue of the Statistical Analysis and Data Mining journal
[PMS+16].

• PARACOMP [SPF14] has appeared in the prestigious IEEE Signal Processing Maga-
zine.

• GEBM [EFS+] is taught in class CptS 595 at Washington State University.
• Our work in [AGP15a] was selected to appear in a special issue of the Journal of

Web Science [AGP+16], as one of the best papers in the Web Science Track of WWW
2015.

13.2.2 Impact through code release
Towards enabling reproducibility and extendibility of our work, we have publicly re-
leased the source code for the algorithms presented in this thesis. Their impact to the

234

research community is evidenced by the number of distinct universities, research orga-
nizations, and companies that have downloaded our code . Indicatively, as of June 25
2016:

• PARCUBE has been downloaded 125 times,
• GRAPHFUSE has been downloaded 105 times
• GEBM has been downloaded 80 times
• TURBO-SMT has been downloaded 64 times
• Our algorithm in [PF15] has been downloaded 33 times

13.2.3 Application Impact
Finally, we measure the impact of the proposed algorithms to real-world applica-
tions:

• PARCUBE has been featured in an article by the Army Research Laboratory Six
Potential Game-Changers in Cyber Security: Towards Priorities in Cyber Science and
Engineering [KSM15] which was also presented as a keynote talk at the NATO
Symposium on Cyber Security Science and Engineering 2014.

• Our work in [MWP+14] is deployed by the Institute for Information Industry in
Taiwan, detecting real network intrusion attempts.

235

236

Chapter 14

Future Directions

As more field sciences are incorporating information technologies (with Computational
Neuroscience being a prime example from a long list of disciplines), the need for scalable,
efficient, and interpretable multi-aspect data mining algorithms will only increase. Below,
we outline future research directions. First, we discuss our long-term and high-level
vision on Big Signal Processing for Data Science, and we conclude with concrete future
directions in Tensor Mining and Applications.

14.1 Long-Term Vision: Big Signal Processing for Data
Science

The process of extracting useful and novel knowledge from big data in order to drive
scientific discovery is the holy grail of data science. Consider the case where we view
the knowledge extraction process through a signal processing lens: suppose that a
transmitter (a physical or social phenomenon) is generating signals which describe
aspects of the underlying phenomenon. An example signal is a time-evolving graph
(a time-series of graphs) which can be represented as a tensor. The receiver (the data
scientist in our case), combines all those signals with ultimate goal the reconstruction
(and general understanding) of their generative process. The “communication channel”
wherein the data are transmitted can play the role of the measurement process where
loss of data occurs, and thus we have to account the channel estimation into our analysis,
in order to reverse its effect. We may consider that the best way to transmit all the data to
the receiver is to find the best compression or dimensionality reduction of those signals
(e.g., Compressed Sensing). There may be more than one transmitters (if we consider a
setting where the data are distributed across data centers) and multiple receivers, in
which case privacy considerations come into play. In my work so far we have established
two connections between Signal Processing and Data Science (Tensor Decompositions
& System Identification in Chapter 10), contributing new results in both communities
and have already had significant impact, demonstrated, for instance, by the amount
of researchers using and extending my work. These two aforementioned connections

237

are but instances of a vast landscape of opportunities for cross-pollination which will
advance the state of the art of both fields and drive scientific discovery. We envision our
future work as a three-way bridge between Signal Processing, Data Science, and high
impact real-world applications.

14.2 Future Directions in Tensor Mining
The success that tensors have experienced in data mining during the last few years by no
means indicates that all challenges and open problems have been addressed. Quite to
the contrary, there exist challenges, some of which we summarize in the next few lines,
which delineate very exciting future research directions:

• Modeling space and time: What is the best way to exploit spatial or temporal
structure that exists in the data? We saw examples in [DGCW13] where the au-
thors impose linear constraints that guide the decomposition according to prior
knowledge of the spatial structure, [MHA+08, MHM11] where the authors deal
with temporal issues in brain data, and [STH+08] where the authors use a wavelet
decomposition to represent time. Is there a generic way to incorporate such modifi-
cations in a tensor model and enable it to handle spatio-temporal data effectively?
Furthermore, another open problem in spatio-temporal data modeling is selecting
the right granularity for the space and time modes.

• Unsupervised model selection: In a wide variety of applications, ground truth is
not easy to obtain, however we need to have unsupervised means of understanding
which tensor decomposition is more appropriate (e.g., PARAFAC vs TUCKER vs
DEDICOM etc), and given a decomposition, what model order is most appropriate
for the data.

• Dealing with high-order data: Many real-world applications involve data that can
be represented as very high-order tensors. Works that use H-Tucker [PCVS15] have
shown the utility of such approaches, and in the future, work on understanding
and improving decompositions such as H-Tucker and Tensor-Train, in the context
of data mining, will be very important.

• Connections with Heterogeneous Information Networks: In Data Mining, there
exists a very rich line of work on Heterogeneous Information Networks (HINs),
which are graphs between different types of nodes, connected with various types
of edges. A HIN can be represented as a tensor, and in fact, a multi-view social
network is such a HIN. In the HIN mining literature, there exist concepts such as the
“Meta-path” [SHY+11] which is a path within the network that traverses multiple
types of nodes, in the same spirit as a random walk, aiming to find similar nodes in
the network (and has also been used for clustering). Outlining connections between
such works and tensor decompositions is a very interesting future direction that
aims towards unifying different data mining approaches.

238

14.3 Future Directions in Applications
14.3.1 Application: Urban & Social Computing

Social and physical interactions of people in an urban environment, is an inherent multi-
aspect process, that ties the physical and the on-line domains of human interaction. We
plan to investigate human mobility patterns, e.g. through check-ins in on-line social
networks, in combination with their social interactions and the content they create on-
line, with specific emphasis on multi-lingual content which is becoming very prevalent
due to population mobility. We also intend to develop anomaly detection which can point
to fraud (e.g., people buying fake followers for their account). Improving user experience
through identifying normal and anomalous patterns in human geo-social activity is an
extremely important problem, both in terms of funding and research interest, as well as
implications on revolutionizing modern societies.

14.3.2 Application: Neurosemantics
In the search for understanding how semantic information is processed by the brain,
we are planning to broaden the scope of the Neurosemantics applications, considering
aspects such as language: are same concepts in different languages mapped in the same
way in the brain? Are cultural idiosyncrasies reflected on the way that speakers of
different languages represent information? Furthermore, we may consider more complex
forms of stimuli (such as phrases, images, and video) and richer sources of semantic
information, e.g, from Knowledge on the Web. There is profound scientific interest
in answering the above research questions a fact also reflected on how well funded
of a research area this is (e.g., see Brain Initiative http://braininitiative.nih.
gov/)

14.3.3 Application: Knowledge on the Web
Knowledge bases are ubiquitous, providing taxonomies of human knowledge and facili-
tating web search. Many knowledge bases are extracted automatically, and as such they
are noisy and incomplete. Furthermore, web content exists in multiple languages, which
is inherently imbalanced and may result in imbalanced knowledge bases, consequently
leading to skewed views of web knowledge per language. We plan to pursue work on
web knowledge, devising and developing techniques that combine multiple, multilin-
gual, structured (e.g., knowledge bases) and unstructured (e.g., plain text) sources of
information on the web, aiming for high quality knowledge representation, as well as
enrichment and curation of knowledge bases.

239

http://braininitiative.nih.gov/
http://braininitiative.nih.gov/

240

Bibliography

[AABB+07] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent
Yener. Multiway analysis of epilepsy tensors. Bioinformatics, 23(13):i10–i18,
2007. 16, 43, 162

[AB00] C.A. Andersson and R. Bro. The n-way toolbox for matlab. Chemometrics
and Intelligent Laboratory Systems, 52(1):1–4, 2000. 61, 135

[ABK16] Woody Austin, Grey Ballard, and Tamara G. Kolda. Parallel tensor com-
pression for large-scale scientific data. In IPDPS’16: Proceedings of the 30th
IEEE International Parallel & Distributed Processing Symposium, May 2016.
57, 58

[ACG+09] Frederico AC Azevedo, Ludmila RB Carvalho, Lea T Grinberg,
José Marcelo Farfel, Renata EL Ferretti, Renata EP Leite, Roberto Lent,
Suzana Herculano-Houzel, et al. Equal numbers of neuronal and non-
neuronal cells make the human brain an isometrically scaled-up primate
brain. Journal of Comparative Neurology, 513(5):532–541, 2009. 164

[ACG+10] Omar Alonso, Chad Carson, David Gerster, Xiang Ji, and Shubha U Nabar.
Detecting uninteresting content in text streams. In SIGIR Crowdsourcing
for Search Evaluation Workshop, 2010. 203, 209, 218

[AcCKY05] Evrim Acar, Seyit A cCamtepe, Mukkai S Krishnamoorthy, and Bülent
Yener. Modeling and multiway analysis of chatroom tensors. In Intelligence
and Security Informatics, pages 256–268. Springer, 2005. 39

[ADK11] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. A scalable opti-
mization approach for fitting canonical tensor decompositions. Journal of
Chemometrics, 25(2):67–86, 2011. 24, 96

[ADKM10] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup.
Scalable tensor factorizations with missing data. In SDM, pages 701–712.
SIAM, 2010. 25

[AGH+14] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and
Matus Telgarsky. Tensor decompositions for learning latent variable

241

models. The Journal of Machine Learning Research, 15(1):2773–2832, 2014. 40,
43, 204

[AGP15a] Rakesh Agrawal, Behzad Golshan, and Evangelos Papalexakis. A study of
distinctiveness in web results of two search engines. In 24th international
conference on World Wide Web, Web Science Track. ACM, May 2015. 7, 8, 42,
199, 232

[AGP15b] Rakesh Agrawal, Behzad Golshan, and Evangelos Papalexakis. Whither
social networks for web search? In 21st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Sydney, Australia, August 2015. 7,
42, 199

[AGP+16] Rakesh Agrawal, Behzad Golshan, Evangelos Papalexakis, et al. Overlap
in the web search results of google and bing. The Journal of Web Science,
2(2):17–30, 2016. 8, 232

[AGR+12] E. Acar, G. Gurdeniz, M.A. Rasmussen, D. Rago, L.O. Dragsted, and R. Bro.
Coupled matrix factorization with sparse factors to identify potential
biomarkers in metabolomics. In IEEE ICDM Workshops, pages 1–8. IEEE,
2012. 17

[AKD11] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. All-at-once op-
timization for coupled matrix and tensor factorizations. arXiv preprint
arXiv:1105.3422, 2011. 17, 35, 86, 87, 95, 96, 97, 99, 100

[ALR+13] Evrim Acar, Anders J Lawaetz, Morten Rasmussen, Rasmus Bro, et al.
Structure-revealing data fusion model with applications in metabolomics.
In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual
International Conference of the IEEE, pages 6023–6026. IEEE, 2013. 36

[AM01] Javed A Aslam and Mark Montague. Models for metasearch. In 24th
annual international ACM SIGIR conference on Research and development in
information retrieval, pages 276–284. ACM, 2001. 203

[And83] J.R. Anderson. A spreading activation theory of memory. Journal of verbal
learning and verbal behavior, 22(3):261–95, 1983. 182

[APG+14] Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos
Faloutsos, Prithwish Basu, Ananthram Swami, Evangelos E Papalexakis,
and Danai Koutra. Com2: Fast automatic discovery of temporal (’comet’)
communities. In Advances in Knowledge Discovery and Data Mining, pages
271–283. Springer, 2014. 6, 8, 39, 41, 51, 56, 153

[APK+11] Demetris Antoniades, Iasonas Polakis, Georgios Kontaxis, Elias Athana-
sopoulos, Sotiris Ioannidis, Evangelos P Markatos, and Thomas Karagian-
nis. we.b: The web of short URLs. In 20th international conference on World
Wide Web, pages 715–724. ACM, 2011. 202, 210

242

[APR+14] Evrim Acar, Evangelos E Papalexakis, Morten A Rasmussen, Anders J
Lawaetz, Mathias Nilsson, Rasmus Bro, et al. Structure-revealing data
fusion. BMC bioinformatics, 15(1):239, 2014. 36

[APY12] E. Acar, G.E. Plopper, and B. Yener. Coupled analysis of in vitro and
histology tissue samples to quantify structure-function relationship. PloS
one, 7(3):e32227, 2012. 17

[ARS+13] Evrim Acar, Morten Arendt Rasmussen, Francesco Savorani, Tormod Næs,
and Rasmus Bro. Understanding data fusion within the framework of
coupled matrix and tensor factorizations. Chemometrics and Intelligent
Laboratory Systems, 129:53–63, 2013. 86

[ATMF12] Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Falout-
sos. PICS: Parameter-free identification of cohesive subgroups in large
attributed graphs. In SDM, pages 439–450, 2012. 190, 192

[AW10] Charu C. Aggarwal and Haixun Wang, editors. Managing and Mining
Graph Data, volume 40 of Advances in Database Systems. Springer, 2010. 188

[AY09] Evrim Acar and Bülent Yener. Unsupervised multiway data analysis: A
literature survey. Knowledge and Data Engineering, IEEE Transactions on,
21(1):6–20, 2009. 21

[BA98] Rasmus Bro and Claus A Andersson. Improving the speed of multiway
algorithms: Part ii: Compression. Chemometrics and Intelligent Laboratory
Systems, 42(1):105–113, 1998. 51, 54, 56, 100

[BB98] Krishna Bharat and Andrei Broder. A technique for measuring the relative
size and overlap of public web search engines. Computer Networks and
ISDN Systems, 30(1):379–388, 1998. 201

[BBM07] Arindam Banerjee, Sugato Basu, and Srujana Merugu. Multi-way cluster-
ing on relation graphs. In SDM, volume 7, pages 145–156. SIAM, 2007. 17,
85, 87

[BCG11] Michele Berlingerio, Michele Coscia, and Fosca Giannotti. Finding redun-
dant and complementary communities in multidimensional networks. In
CIKM, 2011. 189

[BD96] Paul E Buis and Wayne R Dyksen. Efficient vector and parallel manip-
ulation of tensor products. ACM Transactions on Mathematical Software
(TOMS), 22(1):18–23, 1996. 134, 135, 141

[BD06] Christopher D Brown and Herbert T Davis. Receiver operating character-
istics curves and related decision measures: A tutorial. Chemometrics and
Intelligent Laboratory Systems, 80(1):24–38, 2006. 213

[BD11] Jeffrey R Binder and Rutvik H Desai. The neurobiology of semantic
memory. Trends in cognitive sciences, 15(11):527–36, November 2011. 177

243

[BGHS12] Brigitte Boden, Stephan Günnemann, Holger Hoffmann, and Thomas
Seidl. Mining coherent subgraphs in multi-layer graphs with edge labels.
In KDD, 2012. 189

[BGK13] Jonas Ballani, Lars Grasedyck, and Melanie Kluge. Black box approx-
imation of tensors in hierarchical tucker format. Linear algebra and its
applications, 438(2):639–657, 2013. 31

[BGL+12] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Lucken-
bill, and Jimmy Lin. Earlybird: Real-time search at Twitter. In IEEE 28th
International Conference on Data Engineering, pages 1360–1369. IEEE, 2012.
203

[BHK06] B.W. Bader, R.A. Harshman, and T.G. Kolda. Temporal analysis of so-
cial networks using three-way dedicom. Sandia National Laboratories TR
SAND2006-2161, 2006. 40, 80, 130

[BHK07] Brett W Bader, Richard A Harshman, and Tamara G Kolda. Temporal
analysis of semantic graphs using asalsan. In Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on, pages 33–42. IEEE, 2007. 29,
30, 31, 40

[BI04] Judit Bar-Ilan. Search engine ability to cope with the changing web. In
Web dynamics, pages 195–215. Springer, 2004. 202

[BK03] Rasmus Bro and Henk AL Kiers. A new efficient method for determining
the number of components in parafac models. Journal of chemometrics,
17(5):274–286, 2003. 38, 130, 132, 140, 152, 153

[BK07] Brett W. Bader and Tamara G. Kolda. Efficient MATLAB computations
with sparse and factored tensors. SIAM Journal on Scientific Computing,
30(1):205–231, December 2007. 52, 56, 57, 107, 130, 140

[BK+15] Brett W. Bader, Tamara G. Kolda, et al. Matlab tensor toolbox version 2.6.
Available online, February 2015. 52, 61, 72, 97, 100, 107, 135, 141, 147, 212

[BKML13] Rabia Batool, Asad Masood Khattak, Jahanzeb Maqbool, and Sungyoung
Lee. Precise tweet classification and sentiment analysis. In IEEE/ACIS 12th
International Conference on Computer and Information Science, pages 461–466.
IEEE, 2013. 209

[BKP+14] Alex Beutel, Abhimanu Kumar, Evangelos Papalexakis, Partha Pratim
Talukdar, Christos Faloutsos, and Eric P Xing. Flexifact: Scalable flexible
factorization of coupled tensors on hadoop. In SIAM SDM, 2014. 4, 54, 55,
56

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. the Journal of machine Learning research, 3:993–1022, 2003. 43, 204

244

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
Distributed optimization and statistical learning via the alternating direc-
tion method of multipliers. Foundations and Trends R© in Machine Learning,
3(1):1–122, 2011. 54

[Bre78] J.W. Brewer. Kronecker products and matrix calculus in system theory.
IEEE Trans. on Circuits and Systems, 25(9):772–781, 1978. 13, 113

[Bro97] R. Bro. Parafac. tutorial and applications. Chemometrics and intelligent
laboratory systems, 38(2):149–171, 1997. 129, 205

[Bro98] Rasmus Bro. Multi-way analysis in the food industry: models, algorithms, and
applications. PhD thesis, 1998. 38, 94, 130, 132

[Bro02] Andrei Broder. A taxonomy of web search. ACM Sigir forum, 36(2):3–10,
2002. 209

[BS98] R. Bro and N.D. Sidiropoulos. Least squares regression under unimodality
and non-negativity constraints. Journal of Chemometrics, 12:223–247, 1998.
110

[BSG99] R Bro, ND Sidiropoulos, and GB Giannakis. A fast least squares algorithm
for separating trilinear mixtures. In Int. Workshop Independent Component
and Blind Signal Separation Anal, pages 11–15, 1999. 79, 100, 112

[BYKS09] Ziv Bar-Yossef, Idit Keidar, and Uri Schonfeld. Do not crawl in the DUST:
different urls with similar text. ACM Transactions on the Web, 3(1):3, 2009.
202, 210

[CBKA07] P.A. Chew, B.W. Bader, T.G. Kolda, and A. Abdelali. Cross-language infor-
mation retrieval using parafac2. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 143–
152. ACM, 2007. 37, 42

[CC70a] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences
in multidimensional scaling via an n-way generalization of âĂIJeckart-
youngâĂİ decomposition. Psychometrika, 35(3):283–319, 1970. 14

[CC70b] J.D. Carroll and J.J. Chang. Analysis of individual differences in multidi-
mensional scaling via an n-way generalization of âĂIJEckart-YoungâĂİ
decomposition. Psychometrika, 35(3):283–319, 1970. 110, 111

[CC10] Cesar F Caiafa and Andrzej Cichocki. Generalizing the column–row ma-
trix decomposition to multi-way arrays. Linear Algebra and its Applications,
433(3):557–573, 2010. 57, 58

[CCSV11] Charles L. A. Clarke, Nick Craswell, Ian Soboroff, and Ellen M. Voorhees.
Overview of the TREC 2011 web track. Technical report, NIST, 2011. 200,
218

245

[CFC15] Jeremy E Cohen, Rodrigo Cabral Farias, and Pierre Comon. Fast de-
composition of large nonnegative tensors. Signal Processing Letters, IEEE,
22(7):862–866, 2015. 51, 54, 56

[Cha04] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and
outlier detection. In PKDD, pages 112–124, 2004. 190, 192

[CK01] Anne Condon and Richard M. Karp. Algorithms for graph partitioning
on the planted partition model. Random Struct. Algorithms, 18(2):116–140,
2001. 194

[CK12] Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative
factorizations. SIAM Journal on Matrix Analysis and Applications, 33(4):1272–
1299, 2012. 26, 140, 141, 142, 148, 149, 212

[CL75] Allan M. Collins and Elizabeth F. Loftus. A spreading-activation theory
of semantic processing. Psychological Review, 82(6):407–428, 1975. 182

[CMDL+15] Andrzej Cichocki, Danilo Mandic, Lieven De Lathauwer, Guoxu Zhou,
Qibin Zhao, Cesar Caiafa, and Huy Anh Phan. Tensor decompositions for
signal processing applications: From two-way to multiway component
analysis. Signal Processing Magazine, IEEE, 32(2):145–163, 2015. 21

[CMP11] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. Information
credibility on twitter. In 20th international conference on World wide web,
pages 675–684. ACM, 2011. 203

[CO12] L. Chiantini and G. Ottaviani. On generic identifiability of 3-tensors of
small rank. SIAM. J. Matrix Anal. & Appl., 33(3):1018–1037, 2012. 15, 22,
111, 112, 121, 146

[CPK80] J Douglas Carroll, Sandra Pruzansky, and Joseph B Kruskal. Candelinc: A
general approach to multidimensional analysis of many-way arrays with
linear constraints on parameters. Psychometrika, 45(1):3–24, 1980. 51, 100

[CR96] Heting Chu and Marilyn Rosenthal. Search engines for the world wide
web: A comparative study and evaluation methodology. In American
Society for Information Science, volume 33, pages 127–135, 1996. 201

[CV14] Joon Hee Choi and S. Vishwanathan. Dfacto: Distributed factorization of
tensors. In Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 1296–1304. Curran Associates, Inc., 2014. 52, 56

[CYM13] Kai-Wei Chang, Wen-tau Yih, and Christopher Meek. Multi-relational
latent semantic analysis. In EMNLP, pages 1602–1612, 2013. 43

[CYYM14] Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. Typed
tensor decomposition of knowledge bases for relation extraction. In

246

Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1568–1579, 2014. 43

[CZPA09] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari.
Nonnegative matrix and tensor factorizations: applications to exploratory multi-
way data analysis and blind source separation. John Wiley & Sons, 2009. 21,
25, 162

[DAK+14] André LF De Almeida, Alain Y Kibangou, et al. Distributed large-scale
tensor decomposition. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, 2014. 54, 56

[dCHR08] Joao Paulo CL da Costa, Martin Haardt, and F Romer. Robust methods
based on the hosvd for estimating the model order in parafac models. In
Sensor Array and Multichannel Signal Processing Workshop, 2008. SAM 2008.
5th, pages 510–514. IEEE, 2008. 38, 130, 132

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society
for Information Science, 41(6):391–407, September 1990. 42, 160

[DE03] D.L. Donoho and M. Elad. Optimally sparse representation in gen-
eral (nonorthogonal) dictionaries via minimization. Proc. Nat. Acad. Sci.,
100(5):2197–2202, 2003. 122

[DGCW13] Ian Davidson, Sean Gilpin, Owen Carmichael, and Peter Walker. Network
discovery via constrained tensor analysis of fmri data. In Proceedings of
the 19th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 194–202. ACM, 2013. 44, 162, 181, 236

[DJQ+10] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and Heung-Yeung Shum.
An empirical study on learning to rank of tweets. In 23rd International
Conference on Computational Linguistics, pages 295–303. Association for
Computational Linguistics, 2010. 203

[DKA11] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. Temporal link
prediction using matrix and tensor factorizations. ACM Transactions on
Knowledge Discovery from Data (TKDD), 5(2):10, 2011. 140

[DKM+06] P. Drineas, R. Kannan, M.W. Mahoney, et al. Fast monte carlo algorithms
for matrices iii: Computing a compressed approximate matrix decomposi-
tion. SIAM Journal on Computing, 36(1):184, 2006. 57, 61, 62

[DLDMV00] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilin-
ear singular value decomposition. SIAM journal on Matrix Analysis and
Applications, 21(4):1253–1278, 2000. 15, 27, 100

247

[DM96] Wei Ding and Gary Marchionini. A comparative study of web search
service performance. In ASIS Annual Meeting, volume 33, pages 136–42.
ERIC, 1996. 201

[DuB04] W.H. DuBay. The principles of readability. Impact Information, 2004. 220

[DZK+10] Anlei Dong, Ruiqiang Zhang, Pranam Kolari, Jing Bai, Fernando Diaz,
Yi Chang, Zhaohui Zheng, and Hongyuan Zha. Time is of the essence:
improving recency ranking using twitter data. In Proceedings of the 19th
international conference on World wide web, pages 331–340. ACM, 2010. 205

[EAC15] Beyza Ermics, Evrim Acar, and A Taylan Cemgil. Link prediction in
heterogeneous data via generalized coupled tensor factorization. Data
Mining and Knowledge Discovery, 29(1):203–236, 2015. 17, 18

[ED15] Evangelos E. Papalexakis and A. Seza Dougruöz. Understanding multi-
lingual social networks in online immigrant communities. WWW Com-
panion, 2015. 7

[EFS+] Evangelos E. Papalexakis., Alona Fyshe, Nicholas D. Sidiropoulos,
Partha Pratim Talukdar, Tom M. Mitchell, and Christos Faloutsos. Good-
enough brain model: Challenges, algorithms and discoveries in multi-
subject experiments. In ACM KDD’14. 5, 6, 163, 232

[EM13] Dóra Erdos and Pauli Miettinen. Walk’n’merge: A scalable algorithm
for boolean tensor factorization. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on, pages 1037–1042. IEEE, 2013. 54, 56, 140

[ENR14] Enron e-mail dataset. http://www.cs.cmu.edu/~enron/, Last ac-
cessed: 9/9/2014. 72, 73

[EPL09] Nathan Eagle, Alex Sandy Pentland, and David Lazer. Inferring friendship
network structure by using mobile phone data. Proceedings of the National
Academy of Sciences, 106(36):15274–15278, 2009. 149, 197

[ESSF12] Eric Enge, Stephan Spencer, Jessie Stricchiola, and Rand Fishkin. The art of
SEO. O’Reilly, 2012. 200

[Fed49] Federal Communications Commission. Editorializing by broadcast li-
censees. Washington, DC: GPO, 1949. 199

[FF94] Donald W Fausett and Charles T Fulton. Large least squares problems
involving kronecker products. SIAM Journal on Matrix Analysis and Appli-
cations, 15(1):219–227, 1994. 134

[FFDM12] Alona Fyshe, Emily B Fox, David B Dunson, and Tom M Mitchell. Hi-
erarchical latent dictionaries for models of brain activation. In AISTATS,
pages 409–421, 2012. 166, 181

248

http://www.cs.cmu.edu/~enron/

[FGG07] MS Fabian, K Gjergji, and W Gerhard. Yago: A core of semantic knowledge
unifying wordnet and wikipedia. In 16th International World Wide Web
Conference, WWW, pages 697–706, 2007. 43

[FI11] Cédric Févotte and Jérôme Idier. Algorithms for nonnegative matrix
factorization with the β-divergence. Neural Computation, 23(9):2421–2456,
2011. 142

[Fle71] Joseph L Fleiss. Measuring nominal scale agreement among many raters.
Psychological bulletin, 76(5):378, 1971. 218

[FSF99] Angela D Friederici, Karsten Steinhauer, and Stefan Frisch. Lexical inte-
gration: Sequential effects of syntactic and semantic information. Memory
& Cognition, 27(3):438–453, 1999. 182

[GC07] Zhiwei Guan and Edward Cutrell. An eye tracking study of the effect
of target rank on web search. In SIGCHI conference on Human factors in
computing systems, pages 417–420. ACM, 2007. 200

[GKRM03] Michael D Greicius, Ben Krasnow, Allan L Reiss, and Vinod Menon. Func-
tional connectivity in the resting brain: a network analysis of the default
mode hypothesis. PNAS, 100(1):253–258, 2003. 181

[GKT13] Lars Grasedyck, Daniel Kressner, and Christine Tobler. A literature sur-
vey of low-rank tensor approximation techniques. GAMM-Mitteilungen,
36(1):53–78, 2013. 21

[Gra10] Lars Grasedyck. Hierarchical singular value decomposition of tensors.
SIAM Journal on Matrix Analysis and Applications, 31(4):2029–2054, 2010. 31

[GS05] Antonio Gulli and Alessio Signorini. Building an open source meta-search
engine. In 14th international conference on World Wide Web, pages 1004–1005.
ACM, 2005. 203

[GW96] Susan Gauch and Guijun Wang. Information fusion with profusion. In 1st
World Conference of the Web Society, 1996. 201

[Har70] R.A. Harshman. Foundations of the parafac procedure: Models and
conditions for an" explanatory" multimodal factor analysis. 1970. 14, 15,
110, 111, 130, 131, 140, 192, 205

[Har72a] R.A. Harshman. Determination and proof of minimum uniqueness condi-
tions for PARAFAC-1. UCLA Working Papers in Phonetics, 22:111–117, 1972.
110, 111

[Har72b] Richard A Harshman. Parafac2: Mathematical and technical notes. UCLA
working papers in phonetics, 22(3044):122215, 1972. 36

[Har78] Richard A Harshman. Models for analysis of asymmetrical relationships
among n objects or stimuli. In First Joint Meeting of the Psychometric Society

249

and the Society for Mathematical Psychology, McMaster University, Hamilton,
Ontario, 1978. 29

[Har84] Richard A Harshman. How can i know if it’s real? A catalog of diagnostics
for use with three-mode factor analysis and multidimensional scaling, pages
566–591, 1984. 37

[HDLL08] Heng Huang, Chris Ding, Dijun Luo, and Tao Li. Simultaneous tensor
subspace selection and clustering: the equivalence of high order svd and
k-means clustering. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge Discovery and Data mining, pages 327–335. ACM,
2008. 15

[Hei95] Willem J Heiser. Convergent computation by iterative majorization: theory
and applications in multidimensional data analysis. Recent advances in
descriptive multivariate analysis, pages 157–189, 1995. 142

[HGS14] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. Marble: high-throughput
phenotyping from electronic health records via sparse nonnegative tensor
factorization. In Proceedings of the 20th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 115–124. ACM, 2014. 48,
141

[HHL03] Richard A Harshman, Sungjin Hong, and Margaret E Lundy. Shifted
factor analysisâĂŤpart i: Models and properties. Journal of chemometrics,
17(7):363–378, 2003. 44

[Hit27] Frank L Hitchcock. The expression of a tensor or a polyadic as a sum of
products. Journal of Mathematics and Physics, 6(1):164–189, 1927. 14

[HK09] Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor
representation. Journal of Fourier Analysis and Applications, 15(5):706–722,
2009. 31

[HKP+14] Lifang He, Xiangnan Kong, S Yu Philip, Ann B Ragin, Zhifeng Hao, and
Xiaowei Yang. Dusk: A dual structure-preserving kernel for supervised
tensor learning with applications to neuroimages. matrix, 3(1):2, 2014. 44,
140

[HL13] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-
hard. Journal of the ACM (JACM), 60(6):45, 2013. 130, 140

[HM75] C. Hung and T.L. Markham. The moore-penrose inverse of a partitioned
matrix m= adbc. Linear Algebra and its Applications, 11(1):73–86, 1975. 95

[HMA+14] Furong Huang, Sergiy Matusevych, Anima Anandkumar, Nikos Karam-
patziakis, and Paul Mineiro. Distributed latent dirichlet allocation via
tensor factorization. 2014. 43

250

[HNHA13] Furong Huang, UN Niranjan, Mohammad Umar Hakeem, and Ani-
mashree Anandkumar. Fast detection of overlapping communities via
online tensor methods. arXiv preprint arXiv:1309.0787, 2013. 40, 43

[HP04] Gregory Hickok and David Poeppel. Dorsal and ventral streams: a frame-
work for understanding aspects of the functional anatomy of language.
Cognition, 92(1-2):67–99, 2004. 177

[HSH+10] Jianbin Huang, Heli Sun, Jiawei Han, Hongbo Deng, Yizhou Sun, and
Yaguang Liu. Shrink: a structural clustering algorithm for detecting
hierarchical communities in networks. In CIKM, pages 219–228, 2010. 188

[HSMK+13] Aniko Hannak, Piotr Sapiezynski, Arash Molavi Kakhki, Balachander Kr-
ishnamurthy, David Lazer, Alan Mislove, and Christo Wilson. Measuring
personalization of web search. In 22nd international conference on World
Wide Web, pages 527–538. ACM, 2013. 202, 210

[HZJ+06] Yong He, Yufeng Zang, Tianzi Jiang, Gaolang Gong, Sheng Xie, and Jiangxi
Xiao. Handedness-related functional connectivity using low-frequency
blood oxygenation level-dependent fluctuations. Neuroreport, 17(1):5–8,
2006. 178

[Jae01] Herbert Jaeger. The âĂIJecho stateâĂİ approach to analysing and training
recurrent neural networks-with an erratum note. Bonn, Germany: German
National Research Center for Information Technology GMD Technical Report,
148:34, 2001. 173

[Jae02a] Herbert Jaeger. Adaptive nonlinear system identification with echo state
networks. In Advances in neural information processing systems, pages 593–
600, 2002. 174

[Jae02b] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT,
RTRL, EKF and the" echo state network" approach. GMD-Forschungszentrum
Informationstechnik, 2002. 173

[Jae07] H. Jaeger. Echo state network. 2(9):2330, 2007. revision 138672. 173, 174

[JCW+14] Meng Jiang, Peng Cui, Fei Wang, Xinran Xu, Wenwu Zhu, and Shiqiang
Yang. Fema: flexible evolutionary multi-faceted analysis for dynamic
behavioral pattern discovery. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 1186–
1195. ACM, 2014. 41, 139

[JJK16] ByungSoo Jeon, LSI Jeon, and U Kang. Scout: Scalable coupled matrix-
tensor factorizationâĂŤalgorithm and discoveries. In ICDE. IEEE, 2016.
57

251

[JPKF15] Inah Jeon, Evangelos E Papalexakis, U Kang, and Christos Faloutsos.
Haten2: billion-scale tensor decompositions. In ICDE, 2015. 42, 52, 56, 57,
58

[JS04] T. Jiang and N.D. Sidiropoulos. Kruskal’s permutation lemma and the
identification of CANDECOMP/PARAFAC and bilinear models with
constant modulus constraints. IEEE Transactions on Signal Processing,
52(9):2625–2636, 2004. 15, 22, 111

[KABO10] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria
Oliver. Multiverse recommendation: n-dimensional tensor factorization
for context-aware collaborative filtering. In Proceedings of the fourth ACM
conference on Recommender systems, pages 79–86. ACM, 2010. 29, 45

[KB54] G. R. Klare and B. Buck. Know Your Reader: The scientific approach to
readability. Heritage House, 1954. 220

[KB06] T.G. Kolda and B.W. Bader. The tophits model for higher-order web
link analysis. In Workshop on Link Analysis, Counterterrorism and Security,
volume 7, pages 26–29, 2006. 130

[KB09] T.G. Kolda and B.W. Bader. Tensor decompositions and applications.
SIAM review, 51(3), 2009. 13, 15, 21, 22, 28, 30, 100, 192, 194, 205

[KBK05] Tamara G Kolda, Brett W Bader, and Joseph P Kenny. Higher-order
web link analysis using multilinear algebra. In Data Mining, Fifth IEEE
International Conference on, pages 8–pp. IEEE, 2005. 41, 51, 56, 139, 140

[KC12] Mijung Kim and K Selccuk Candan. Decomposition-by-normalization
(DBN): leveraging approximate functional dependencies for efficient ten-
sor decomposition. In Proceedings of the 21st ACM international conference
on Information and knowledge management, pages 355–364. ACM, 2012. 55,
56

[KDL80] Pieter M Kroonenberg and Jan De Leeuw. Principal component analysis
of three-mode data by means of alternating least squares algorithms.
Psychometrika, 45(1):69–97, 1980. 132

[Kie93] Henk AL Kiers. An alternating least squares algorithm for parafac2 and
three-way dedicom. Computational Statistics & Data Analysis, 16(1):103–118,
1993. 30, 37

[Kie00] H.A.L. Kiers. Towards a standardized notation and terminology in multi-
way analysis. Journal of Chemometrics, 14(3):105–122, 2000. 87

[KK03] Henk AL Kiers and Albert Kinderen. A fast method for choosing the
numbers of components in tucker3 analysis. British Journal of Mathematical
and Statistical Psychology, 56(1):119–125, 2003. 39, 153

252

[KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is
twitter, a social network or a news media? In 19th international conference
on World wide web, pages 591–600. ACM, 2010. 203

[KPHF12] U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos.
Gigatensor: scaling tensor analysis up by 100 times-algorithms and dis-
coveries. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 316–324. ACM, 2012. 4, 42, 52,
56, 57, 130, 140, 204

[KR02] Eleftherios Kofidis and Phillip A Regalia. On the best rank-1 approxi-
mation of higher-order supersymmetric tensors. SIAM Journal on Matrix
Analysis and Applications, 23(3):863–884, 2002. 51

[Kro08] P.M. Kroonenberg. Applied multiway data analysis. Wiley, 2008. 112

[Kru77] J.B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear decom-
positions, with application to arithmetic complexity and statistics. Linear
Algebra and its Applications, 18(2):95–138, 1977. 15, 22, 111

[KS08] Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for
multi-aspect data mining. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, pages 363–372. IEEE, 2008. 40, 52, 55, 57, 58, 79,
100, 107, 130, 139, 140

[KSM15] Alexander Kott, Ananthram Swami, and Patrick McDaniel. Six potential
game-changers in cyber security: Towards priorities in cyber science and
engineering. arXiv preprint arXiv:1511.00509, 2015. 4, 233

[KT12] Daniel Kressner and Christine Tobler. htucker–a matlab toolbox for tensors
in hierarchical tucker format. Mathicse, EPF Lausanne, 2012. 31, 32

[Kuh55] Harold W Kuhn. The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955. 68, 91, 92

[LCY+10] Tao Lei, Rui Cai, Jiang-Ming Yang, Yan Ke, Xiaodong Fan, and Lei Zhang.
A pattern tree-based approach to learning URL normalization rules. In
19th international conference on World Wide Web, pages 611–620. ACM, 2010.
202, 210

[Lew12] Dirk Lewandowski. Web search engine research. Emerald Group Publishing,
2012. 201, 202

[LF73] F. W. Lancaster and E. G. Fayen. Information Retrieval On-Line. Melville
Publishing Co., 1973. 201

[LG98] Steve Lawrence and C Lee Giles. Searching the world wide web. Science,
280(5360):98–100, 1998. 201

[Lju99] Lennart Ljung. System identification. Wiley Online Library, 1999. 174, 182

253

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014. 149

[LKH05] Sang Ho Lee, Sung Jin Kim, and Seok Hoo Hong. On URL normalization.
In Computational Science and Its Applications–ICCSA 2005, pages 1076–1085.
Springer, 2005. 202, 210

[LLM10] Jure Leskovec, Kevin J. Lang, and Michael W. Mahoney. Empirical com-
parison of algorithms for network community detection. In WWW, pages
631–640, 2010. 188

[LMWY13] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor com-
pletion for estimating missing values in visual data. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 35(1):208–220, 2013. 49

[LNK10] Hady W Lauw, Alexandros Ntoulas, and Krishnaram Kenthapadi. Es-
timating the quality of postings in the real-time web. In Proc. of SSM
conference, 2010. 204

[Loa00] Charles F Van Loan. The ubiquitous kronecker product. Journal of compu-
tational and applied mathematics, 123(1):85–100, 2000. 133

[LPV11] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopou-
los. A survey of multilinear subspace learning for tensor data. Pattern
Recognition, 44(7):1540–1551, 2011. 21

[LS99] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788–791, 1999. 25

[LS15] Athanasios P Liavas and Nicholas D Sidiropoulos. Parallel algorithms
for constrained tensor factorization via alternating direction method of
multipliers. Signal Processing, IEEE Transactions on, 63(20):5450–5463, 2015.
54, 56

[LSC+09] Yu-Ru Lin, Jimeng Sun, Paul Castro, Ravi Konuru, Hari Sundaram, and
Aisling Kelliher. Metafac: community discovery via relational hypergraph
factorization. In Proceedings of the 15th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 527–536. ACM, 2009. 17,
26, 40, 86, 139

[LT08] S. Liu and G. Trenkler. Hadamard, khatri-rao, kronecker and other matrix
products. International Journal of Information and Systems Sciences, pages
160–177, 2008. 94

[MDMT11] Yang Mu, Wei Ding, Melissa Morabito, and Dacheng Tao. Empirical
discriminative tensor analysis for crime forecasting. In Knowledge Science,
Engineering and Management, pages 293–304. Springer, 2011. 47

[MGC10] Mari-Carmen Marcos and Cristina González-Caro. Comportamiento de
los usuarios en la página de resultados de los buscadores. un estudio

254

http://snap.stanford.edu/data

basado en eye tracking. El profesional de la información, 19(4):348–358, 2010.
210

[MGD+09] Vincenzo Maltese, Fausto Giunchiglia, Kerstin Denecke, Paul Lewis, Cor-
nelia Wallner, Anthony Baldry, and Devika Madalli. On the interdisciplinary
foundations of diversity. University of Trento, 2009. 200

[MGF11] K. Maruhashi, F. Guo, and C. Faloutsos. Multiaspectforensics: Pattern
mining on large-scale heterogeneous networks with tensor analysis. In
Proceedings of the Third International Conference on Advances in Social Network
Analysis and Mining, 2011. 49, 130

[MH09] Morten Mørup and Lars Kai Hansen. Automatic relevance determination
for multi-way models. Journal of Chemometrics, 23(7-8):352–363, 2009. 39,
148, 153

[MHA+08] Morten Mørup, Lars Kai Hansen, Sidse Marie Arnfred, Lek-Heng Lim,
and Kristoffer Hougaard Madsen. Shift-invariant multilinear decompo-
sition of neuroimaging data. NeuroImage, 42(4):1439–1450, 2008. 44, 162,
236

[MHM11] Morten Mørup, Lars Kai Hansen, and Kristoffer Hougaard Madsen. Mod-
eling latency and shape changes in trial based neuroimaging data. In
Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the
Forty Fifth Asilomar Conference on, pages 439–443. IEEE, 2011. 44, 236

[Mie11] Pauli Miettinen. Boolean tensor factorizations. In Data Mining (ICDM),
2011 IEEE 11th International Conference on, pages 447–456. IEEE, 2011. 26,
29

[MM15] Saskia Metzler and Pauli Miettinen. Clustering Boolean tensors. Data
Mining and Knowledge Discovery 29(5), page 1343âĂŞ1373, 2015. 39, 153

[MMD06] M.W. Mahoney, M. Maggioni, and P. Drineas. Tensor-cur decompositions
for tensor-based data. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 327–336. ACM,
2006. 62

[MMD08] Michael W Mahoney, Mauro Maggioni, and Petros Drineas. Tensor-cur
decompositions for tensor-based data. SIAM Journal on Matrix Analysis
and Applications, 30(3):957–987, 2008. 57

[MRA13] Juan Martinez-Romo and Lourdes Araujo. Detecting malicious tweets
in trending topics using a statistical analysis of language. Expert Systems
with Applications, 40(8):2992–3000, 2013. 203

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Intro-
duction to Information Retrieval. Cambridge University Press, 2008. 196

255

[MSC+08] T.M. Mitchell, S.V. Shinkareva, A. Carlson, K.M. Chang, V.L. Malave, R.A.
Mason, and M.A. Just. Predicting human brain activity associated with
the meanings of nouns. Science, 320(5880):1191–1195, 2008. 158

[MTM12] Brian Murphy, Partha Talukdar, and Tom Mitchell. Selecting corpus-
semantic models for neurolinguistic decoding. In First Joint Conference on
Lexical and Computational Semantics (* SEM), pages 114–123, 2012. 158

[MWP+14] Ching-Hao Mao, Chung-Jung Wu, Evangelos E Papalexakis, Christos
Faloutsos, and Tien-Cheu Kao. MalSpot: Multi2 malicious network be-
havior patterns analysis. In PAKDD 2014, 2014. 7, 8, 49, 233

[MYL02] Weiyi Meng, Clement Yu, and King-Lup Liu. Building efficient and
effective metasearch engines. ACM Computing Surveys, 34(1):48–89, 2002.
203

[Neu69] H Neudecker. A note on kronecker matrix products and matrix equation
systems. SIAM Journal on Applied Mathematics, 17(3):603–606, 1969. 133

[NHF12] Kyosuke Nishida, Takahide Hoshide, and Ko Fujimura. Improving tweet
stream classification by detecting changes in word probability. In 35th in-
ternational ACM SIGIR conference on Research and development in information
retrieval), pages 971–980. ACM, 2012. 209

[NHTK12] Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, and Hisashi Kashima.
Tensor factorization using auxiliary information. Data Mining and Knowl-
edge Discovery, 25(2):298–324, 2012. 17

[NMSP10] Dimitri Nion, Kleanthis N Mokios, Nicholas D Sidiropoulos, and Alexan-
dros Potamianos. Batch and adaptive parafac-based blind separation of
convolutive speech mixtures. Audio, Speech, and Language Processing, IEEE
Transactions on, 18(6):1193–1207, 2010. 49

[NS09] Dimitri Nion and Nicholas D Sidiropoulos. Adaptive algorithms to track
the parafac decomposition of a third-order tensor. Signal Processing, IEEE
Transactions on, 57(6):2299–2310, 2009. 27, 108

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In Proceedings of the
28th international conference on machine learning (ICML-11), pages 809–816,
2011. 30

[NTK12] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing
yago: scalable machine learning for linked data. In Proceedings of the 21st
international conference on World Wide Web, pages 271–280. ACM, 2012. 30,
43

[Ose11] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific
Computing, 33(5):2295–2317, 2011. 33, 34

256

[PAB+05] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A first
look at modern enterprise traffic. In Proceedings of the 5th ACM SIGCOMM
conference on Internet Measurement, pages 2–2. USENIX Association, 2005.
72

[PAI13] Evangelos E Papalexakis, Leman Akoglu, and Dino Ienco. Do more views
of a graph help? community detection and clustering in multi-graphs. In
Information Fusion (FUSION), 2013 16th International Conference on, pages
899–905. IEEE, 2013. 8, 41, 130, 149, 187

[Pap16] Evangelos E Papalexakis. Automatic unsupervised tensor mining with
quality assessment. In SIAM SDM, 2016. 5, 139, 232

[PB98] Martin J Pickering and Holly P Branigan. The representation of verbs: Ev-
idence from syntactic priming in language production. Journal of Memory
and Language, 39(4):633–651, 1998. 182

[PBR12] Kristin Purcell, Joanna Brenner, and Lee Rainie. Search engine use 2012.
Pew Internet & American Life Project, 2012. 199

[PC09] A.H. Phan and A. Cichocki. Block decomposition for very large-scale
nonnegative tensor factorization. In Computational Advances in Multi-
Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE International Workshop
on, pages 316–319. IEEE, 2009. 53, 54, 56

[PC11] A.H. Phan and A. Cichocki. Parafac algorithms for large-scale problems.
Neurocomputing, 74(11):1970–1984, 2011. 108

[PCVS15] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. Sparse
hierarchical tucker factorization and its application to healthcare. In Data
Mining (ICDM), 2015 IEEE 15th International Conference on. IEEE, 2015. 32,
48, 57, 58, 236

[PF15] E.E. Papalexakis and C. Faloutsos. Fast efficient and scalable core consis-
tency diagnostic for the parafac decomposition for big sparse tensors. In
Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International
Conference on. IEEE, 2015. 39, 129, 147, 149, 153, 233

[PFS] E.E. Papalexakis, C. Faloutsos, and N.D. Sidiropoulos. Tensors for data
mining and data fusion: Models, applications, and scalable algorithms.
ACM Trans. on Intelligent Systems and Technology. 11, 21

[PFS12] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
ParCube: Sparse parallelizable tensor decompositions. In Machine Learning
and Knowledge Discovery in Databases, pages 521–536. Springer, 2012. 2, 4,
7, 40, 42, 49, 53, 54, 56, 61, 62, 130, 140, 232

[PFS+14a] Evangelos E Papalexakis, Alona Fyshe, Nicholas D Sidiropoulos,
Partha Pratim Talukdar, Tom M Mitchell, and Christos Faloutsos. Good-

257

enough brain model: challenges, algorithms and discoveries in multi-
subject experiments. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 95–104. ACM, 2014.
166, 167, 170, 174, 176

[PFS+14b] Evangelos E Papalexakis, Alona Fyshe, Nicholas D Sidiropoulos,
Partha Pratim Talukdar, Tom M Mitchell, and Christos Faloutsos. Good-
enough brain model: Challenges, algorithms, and discoveries in multisub-
ject experiments. Big Data, 2(4):216–229, 2014. 163

[PFS15] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
Parcube: Sparse parallelizable candecomp-parafac tensor decomposition.
ACM Transactions on Knowledge Discovery from Data (TKDD), 10(1):3, 2015.
61

[Pir09] Ari Pirkola. The effectiveness of web search engines to index new sites
from different countries. Information Research: An International Electronic
Journal, 14(2), 2009. 202

[PK15] Evangelia Pantraki and Constantine Kotropoulos. Automatic image tag-
ging and recommendation via parafac2. In Machine Learning for Signal
Processing (MLSP), 2015 IEEE 25th International Workshop on, pages 1–6.
IEEE, 2015. 46

[PMS+14] Evangelos E Papalexakis, Tom M Mitchell, Nicholas D Sidiropoulos, Chris-
tos Faloutsos, Partha Pratim Talukdar, and Brian Murphy. Turbo-smt: Ac-
celerating coupled sparse matrix-tensor factorizations by 200x. In SIAM
SDM, 2014. 3, 5, 6, 45, 53, 85, 157, 232

[PMS+16] Evangelos E Papalexakis, Tom M Mitchell, Nicholas D Sidiropoulos, Chris-
tos Faloutsos, Partha Pratim Talukdar, and Brian Murphy. Turbo-smt:
Parallel coupled sparse matrix-tensor factorizations and applications. Sta-
tistical Analysis and Data Mining: The ASA Data Science Journal, 2016. 5, 85,
157, 232

[PPF15] Evangelos E Papalexakis, Konstantinos Pelechrinis, and Christos Falout-
sos. Location based social network analysis using tensors and signal
processing tools. IEEE CAMSAP, 15, 2015. 7

[PPHM09] Mark Palatucci, Dean Pomerleau, Geoffrey Hinton, and Tom Mitchell.
Zero-shot learning with semantic output codes. Advances in neural infor-
mation processing systems, 22:1410–1418, 2009. 158

[PS11] E.E. Papalexakis and N.D. Sidiropoulos. Co-clustering as multilinear
decomposition with sparse latent factors. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on, pages 2064–2067.
IEEE, 2011. 63, 73, 192

258

[PSB13] Evangelos E Papalexakis, Nicholas D Sidiropoulos, and Rasmus Bro. From
k-means to higher-way co-clustering: multilinear decomposition with
sparse latent factors. Signal Processing, IEEE Transactions on, 61(2):493–506,
2013. 3, 26, 40, 51, 63, 71, 72, 73, 80, 96, 108, 133

[PZZW10] Jing Peng, Daniel Dajun Zeng, Huimin Zhao, and Fei-yue Wang. Col-
laborative filtering in social tagging systems based on joint item-tag rec-
ommendations. In Proceedings of the 19th ACM international conference on
Information and knowledge management, pages 809–818. ACM, 2010. 46

[RAB+09] Catharine H Rankin, Thomas Abrams, Robert J Barry, Seema Bhatna-
gar, David F Clayton, John Colombo, Gianluca Coppola, Mark A Geyer,
David L Glanzman, Stephen Marsland, et al. Habituation revisited: an
updated and revised description of the behavioral characteristics of habit-
uation. Neurobiology of learning and memory, 92(2):135–138, 2009. 181

[Ren10] Steffen Rendle. Factorization machines. In Data Mining (ICDM), 2010
IEEE 10th International Conference on, pages 995–1000. IEEE, 2010. 46

[RGAH11] Daniel M Romero, Wojciech Galuba, Sitaram Asur, and Bernardo A Hu-
berman. Influence and passivity in social media. In Machine learning and
knowledge discovery in databases, pages 18–33. Springer, 2011. 203

[RHMF12] Md Sazzadur Rahman, Ting-Kai Huang, Harsha V Madhyastha, and
Michalis Faloutsos. Efficient and scalable socware detection in online
social networks. In USENIX Security Symposium, pages 663–678, 2012. 203

[RHS10] Tom Rowlands, David Hawking, and Ramesh Sankaranarayana. New-
web search with microblog annotations. In 19th international conference on
World wide web, pages 1293–1296. ACM, 2010. 205

[Ris83] J. Rissanen. A universal prior for integers and estimation by minimum
description length. The Annals of Statistics, 11(2):416–431, 1983. 190, 191

[RP11] Matthew Rocklin and Ali Pinar. Latent clustering on graphs with multiple
edge types. In WAW, pages 38–49, 2011. 189

[RSSK14] Niranjay Ravindran, Nicholas D Sidiropoulos, Shaden Smith, and George
Karypis. Memory-efficient parallel computation of tensor and matrix
products for big tensor decomposition. In Signals, Systems and Computers,
2014 48th Asilomar Conference on, pages 581–585. IEEE, 2014. 53, 54, 56

[RST10] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor
factorization for personalized tag recommendation. In Proceedings of the
third ACM international conference on Web search and data mining, pages
81–90. ACM, 2010. 45, 46, 140

[RTW16] Read the web. http://rtw.ml.cmu.edu/rtw/, Last accessed:
2/13/2016. 42, 72

259

http://rtw.ml.cmu.edu/rtw/

[Sak11] Vangelis Sakkalis. Review of advanced techniques for the estimation
of brain connectivity measured with eeg/meg. Computers in biology and
medicine, 41(12):1110–1117, 2011. 181

[SB00] N.D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decompo-
sition of N-way arrays. Journal of chemometrics, 14(3):229–239, 2000. 15, 22,
111

[SBGW04] A.K. Smilde, R. Bro, P. Geladi, and J. Wiley. Multi-way analysis with applica-
tions in the chemical sciences. Wiley, 2004. 112

[Sch14] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
CoRR, abs/1404.7828, 2014. 182

[SE95] Erik Selberg and Oren Etzioni. Multi-service search and comparison using
the metacrawler. In 4th international conference on World Wide Web, 1995.
201

[SFD+10] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and
Murat Demirbas. Short text classification in twitter to improve informa-
tion filtering. In 33rd international ACM SIGIR conference on Research and
development in information retrieval, pages 841–842. ACM, 2010. 209

[SFPY07] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu.
Graphscope: parameter-free mining of large time-evolving graphs. In
KDD, 2007. 192

[SG08] Ajit P Singh and Geoffrey J Gordon. Relational learning via collective
matrix factorization. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 650–658. ACM,
2008. 17

[SGL07] Ioannis D Schizas, Georgios B Giannakis, and Zhi-Quan Luo. Distributed
estimation using reduced-dimensionality sensor observations. IEEE TSP,
55(8):4284–4299, 2007. 167

[SH05] Amnon Shashua and Tamir Hazan. Non-negative tensor factorization
with applications to statistics and computer vision. In Proceedings of the
22nd international conference on Machine learning, pages 792–799. ACM,
2005. 25

[SHY+11] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim:
Meta path-based top-k similarity search in heterogeneous information
networks. VLDB, 2011. 236

[SJBK06] Amanda Spink, Bernard J Jansen, Chris Blakely, and Sherry Koshman. A
study of results overlap and uniqueness among major web search engines.
Information Processing & Management, 42(5):1379–1391, 2006. 202

260

[SJW08] Amanda Spink, Bernard J Jansen, and Changru Wang. Comparison of
major web search engine overlap: 2005 and 2007. In 14th Australasian
World Wide Web Conference, 2008. 202

[SK12] N.D. Sidiropoulos and A. Kyrillidis. Multi-way compressed sensing for
sparse low-rank tensors. IEEE Signal Processing Letters, 19(11):757–760,
2012. 54, 108, 112, 113, 116, 122

[SK14] Kijung Shin and U Kang. Distributed methods for high-dimensional
and large-scale tensor factorization. In Data Mining (ICDM), 2014 IEEE
International Conference on, pages 989–994. IEEE, 2014. 55, 56

[SKB12] Adam Sadilek, Henry Kautz, and Jeffrey P Bigham. Finding your friends
and following them to where you are. In Proceedings of the fifth ACM
international conference on Web search and data mining, pages 723–732. ACM,
2012. 164

[SM08] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix
factorization using markov chain monte carlo. In Proceedings of the 25th
international conference on Machine learning, pages 880–887. ACM, 2008. 45

[SM12a] Motoki Shiga and Hiroshi Mamitsuka. A variational bayesian frame-
work for clustering with multiple graphs. IEEE Trans. Knowl. Data Eng.,
24(4):577–590, 2012. 189

[SM12b] Natalie Jomini Stroud and Ashley Muddiman. Exposure to news and
diverse views in the internet age. ISJLP, 8:605, 2012. 199

[SMML+14] Igor Santos, Igor Miñambres-Marcos, Carlos Laorden, Patxi Galán-García,
Aitor Santamaría-Ibirika, and Pablo García Bringas. Twitter content-
based spam filtering. In International Joint Conference SOCO’13-CISIS’13-
ICEUTE’13, pages 449–458. Springer, 2014. 203

[SPBW15] Aaron Schein, John Paisley, David M Blei, and Hanna Wallach. Bayesian
poisson tensor factorization for inferring multilateral relations from sparse
dyadic event counts. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1045–1054. ACM,
2015. 41

[SPF14] N Sidiropoulos, E Papalexakis, and C Faloutsos. Parallel randomly com-
pressed cubes: A scalable distributed architecture for big tensor decompo-
sition. Signal Processing Magazine, IEEE, 31(5):57–70, 2014. 5, 54, 56, 107,
116, 232

[SPL+09] Liang Sun, Rinkal Patel, Jun Liu, Kewei Chen, Teresa Wu, Jing Li, Eric
Reiman, and Jieping Ye. Mining brain region connectivity for alzheimer’s
disease study via sparse inverse covariance estimation. In ACM SIGKDD,
pages 1335–1344. ACM, 2009. 173, 181

261

[SPP+12] G. Sudre, D. Pomerleau, M. Palatucci, L. Wehbe, A. Fyshe, R. Salmelin, and
T. Mitchell. Tracking neural coding of perceptual and semantic features of
concrete nouns. NeuroImage, 2012. 166, 175

[SRSK15] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George
Karypis. Splatt: Efficient and parallel sparse tensor-matrix multiplication.
In 29th IEEE International Parallel & Distributed Processing Symposium, 2015.
53, 56

[SS07] A. Stegeman and N.D. Sidiropoulos. On Kruskal’s uniqueness condition
for the CANDECOMP/PARAFAC decomposition. Linear Algebra and its
Applications, 420(2-3):540–552, 2007. 111

[StBDL06] A. Stegeman, J.M.F. ten Berge, and L. De Lathauwer. Sufficient conditions
for uniqueness in CANDECOMP/PARAFAC and INDSCAL with random
component matrices. Psychometrika, 71(2):219–229, 2006. 15, 22, 111

[STF06] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 374–383. ACM,
2006. 29, 140

[STH+08] Jimeng Sun, Charalampos E Tsourakakis, Evan Hoke, Christos Faloutsos,
and Tina Eliassi-Rad. Two heads better than one: pattern discovery in
time-evolving multi-aspect data. Data Mining and Knowledge Discovery,
17(1):111–128, 2008. 29, 236

[SWB00] A.K. Smilde, J.A. Westerhuis, and R. Boque. Multiway multiblock compo-
nent and covariates regression models. Journal of Chemometrics, 14(3):301–
331, 2000. 17

[SZL+05] J.T. Sun, H.J. Zeng, H. Liu, Y. Lu, and Z. Chen. Cubesvd: a novel approach
to personalized web search. In Proceedings of the 14th international conference
on World Wide Web, pages 382–390. ACM, 2005. 42

[TAHH12] Ke Tao, Fabian Abel, Claudia Hauff, and Geert-Jan Houben. Twinder:
a search engine for twitter streams. In Web Engineering, pages 153–168.
Springer, 2012. 203

[TB05] Giorgio Tomasi and Rasmus Bro. Parafac and missing values. Chemomet-
rics and Intelligent Laboratory Systems, 75(2):163–180, 2005. 25, 95, 96

[TB06] Giorgio Tomasi and Rasmus Bro. A comparison of algorithms for fitting
the parafac model. Computational Statistics & Data Analysis, 50(7):1700–
1734, 2006. 22

[tBS02] Jos MF ten Berge and Nikolaos D Sidiropoulos. On uniqueness in cande-
comp/parafac. Psychometrika, 67(3):399–409, 2002. 15

262

[TK00] Marieke E Timmerman and Henk AL Kiers. Three-mode principal com-
ponents analysis: Choosing the numbers of components and sensitivity
to local optima. British journal of mathematical and statistical psychology,
53(1):1–16, 2000. 39

[TLD09] Wei Tang, Zhengdong Lu, and Inderjit S. Dhillon. Clustering with multiple
graphs. In ICDM, pages 1016–1021, 2009. 188, 189, 194, 196, 198

[TRM11] Jaime Teevan, Daniel Ramage, and Merredith Ringel Morris. # twit-
tersearch: a comparison of microblog search and web search. In Fourth
ACM international conference on Web search and data mining, pages 35–44.
ACM, 2011. 201, 204, 211, 217

[TS66] Richard F Thompson and William A Spencer. Habituation: a model
phenomenon for the study of neuronal substrates of behavior. Psychological
review, 73(1):16, 1966. 181

[TSL+08] Dacheng Tao, Mingli Song, Xuelong Li, Jialie Shen, Jimeng Sun, Xindong
Wu, Christos Faloutsos, and Stephen J Maybank. Bayesian tensor ap-
proach for 3-d face modeling. Circuits and Systems for Video Technology,
IEEE Transactions on, 18(10):1397–1410, 2008. 50

[Tso10] Charalampos E Tsourakakis. Mach: Fast randomized tensor decomposi-
tions. In SDM, pages 689–700. SIAM, 2010. 57, 58

[TT12] Hikaru Takemura and Keishi Tajima. Tweet classification based on their
lifetime duration. In 21st ACM international conference on Information and
knowledge management, pages 2367–2370. ACM, 2012. 209

[Tuc66] L.R. Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966. 15, 30

[Tur11] Amazon Mechanical Turk, Requester Best Practices Guide. Amazon Web
Services, June 2011. 218

[TV12] Dardo Tomasi and Nora D Volkow. Resting functional connectivity of lan-
guage networks: characterization and reproducibility. Molecular psychiatry,
17(8):841–854, 2012. 178

[TWL12] Lei Tang, Xufei Wang, and Huan Liu. Community detection via heteroge-
neous interaction analysis. Data Min. Knowl. Discov., 25(1):1–33, 2012. 188,
189

[UC11] Ibrahim Uysal and W Bruce Croft. User oriented tweet ranking: a filtering
approach to microblogs. In 20th ACM international conference on Information
and knowledge management, pages 2261–2264. ACM, 2011. 203

[Ver94] Michel Verhaegen. Identification of the deterministic part of mimo state
space models given in innovations form from input-output data. Automat-
ica, 30(1):61–74, 1994. 174

263

[vL07] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, 2007. 188, 196

[VMCG09] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi.
On the evolution of user interaction in facebook. In Proceedings of the 2nd
ACM SIGCOMM Workshop on Social Networks (WOSN’09), August 2009.
72, 81, 149

[VSSBLC+05] Pedro A Valdés-Sosa, Jose M Sánchez-Bornot, Agustín Lage-Castellanos,
Mayrim Vega-Hernández, Jorge Bosch-Bayard, Lester Melie-García, and
Erick Canales-Rodríguez. Estimating brain functional connectivity with
sparse multivariate autoregression. Philosophical Transactions of the Royal
Society B: Biological Sciences, 360(1457):969–981, 2005. 181

[VT02] M. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles:
Tensorfaces. Computer Vision ECCV 2002, pages 447–460, 2002. 49

[VV07] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a
least squares approach. Cambridge university press, 2007. 182

[VVA+06] Olivier Verscheure, Michail Vlachos, Aris Anagnostopoulos, Pascal
Frossard, Eric Bouillet, and Philip S Yu. Finding "who is talking to whom"
in voip networks via progressive stream clustering. In IEEE ICDM, pages
667–677. IEEE, 2006. 164, 182

[WCVM09] T. Wilderjans, E. Ceulemans, and I. Van Mechelen. Simultaneous analysis
of coupled data blocks differing in size: A comparison of two weighting
schemes. Computational Statistics & Data Analysis, 53(4):1086–1098, 2009.
18, 86, 87

[WD09] Ryen W White and Susan T Dumais. Characterizing and predicting search
engine switching behavior. In 18th ACM conference on Information and
knowledge management, pages 87–96. ACM, 2009. 202

[Web14] William M Webberley. Inferring Interestingness in Online Social Networks.
PhD thesis, Cardiff University, 2014. 203, 204

[WH88] Robert W Williams and Karl Herrup. The control of neuron number.
Annual review of neuroscience, 11(1):423–453, 1988. 164

[WT13] David Wilkinson and Mike Thelwall. Search markets and search results:
The case of Bing. Library & Information Science Research, 35(4):318–325,
2013. 202

[WZX14] Yilun Wang, Yu Zheng, and Yexiang Xue. Travel time estimation of a
path using sparse trajectories. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’14,
pages 25–34, New York, NY, USA, 2014. ACM. 17, 47, 149, 152

264

[XCH+10] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff G Schneider, and Jaime G
Carbonell. Temporal collaborative filtering with bayesian probabilistic
tensor factorization. In SDM, volume 10, pages 211–222. SIAM, 2010. 45

[XKW+12] Zhiqiang Xu, Yiping Ke, Yi Wang, Hong Cheng, and James Cheng. A
model-based approach to attributed graph clustering. In SIGMOD, pages
505–516, 2012. 188

[XYFS07] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger.
Scan: a structural clustering algorithm for networks. In KDD, pages
824–833, 2007. 188

[YCY12] Tatsuya Yokota, Andrzej Cichocki, and Yukihiko Yamashita. Linked
parafac/cp tensor decomposition and its fast implementation for multi-
block tensor analysis. In Neural Information Processing, pages 84–91.
Springer, 2012. 17

[YLLR12] Min-Chul Yang, Jung-Tae Lee, Seung-Wook Lee, and Hae-Chang Rim.
Finding interesting posts in twitter based on retweet graph analysis. In
35th international ACM SIGIR conference on Research and development in
information retrieval, pages 1073–1074. ACM, 2012. 203

[YR14] Min-Chul Yang and Hae-Chang Rim. Identifying interesting twitter con-
tents using topical analysis. Expert Systems with Applications, 41(9):4330–
4336, 2014. 204

[YZXS11] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowl-
edge from the physical world. In Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 316–
324. ACM, 2011. 149

[ZB07] Dengyong Zhou and Christopher J. C. Burges. Spectral clustering and
transductive learning with multiple views. In ICML, pages 1159–1166,
2007. 189

[ZCZ+10] Vincent Wenchen Zheng, Bin Cao, Yu Zheng, Xing Xie, and Qiang Yang.
Collaborative filtering meets mobile recommendation: A user-centered
approach. In AAAI, volume 10, pages 236–241, 2010. 17, 46

[ZLW+14] Yu Zheng, Tong Liu, Yilun Wang, Yanmin Zhu, Yanchi Liu, and Eric Chang.
Diagnosing new york city’s noises with ubiquitous data. In Proceedings
of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, pages 715–725. ACM, 2014. 47

[ZYW+15] Fuzheng Zhang, Nicholas Jing Yuan, David Wilkie, Yu Zheng, and Xing
Xie. Sensing the pulse of urban refueling behavior: A perspective from
taxi mobility. ACM Transactions on Intelligent Systems and Technology (TIST),
6(3):37, 2015. 47

265

[ZZC15] Q Zhao, L Zhang, and A Cichocki. Bayesian CP factorization of incomplete
tensors with automatic rank determination. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 37:1751 – 1763, 2015. 39, 148, 153

[ZZXY12] Vincent W Zheng, Yu Zheng, Xing Xie, and Qiang Yang. Towards mobile
intelligence: Learning from gps history data for collaborative recommen-
dation. Artificial Intelligence, 184:17–37, 2012. 46

266

	1 Introduction
	1.1 Overview of Contributions and Impact
	1.2 Thesis Organization

	2 Background
	2.1 Introduction
	2.2 Preliminary Definitions & Notation
	2.3 Introduction to Parafac, Tucker, and CMTF
	2.4 Conclusions

	3 Survey of Advance Topics in Tensors and Data Fusion
	3.1 Introduction
	3.2 Tensor Decompositions
	3.3 Data Mining Applications
	3.4 Scaling Up Tensor Decompositions
	3.5 Conclusions

	I Algorithms - Scalability and Efficiency
	4 ParCube: Sparse Parallelizable PARAFAC Decomposition
	4.1 Introduction
	4.2 Proposed Method
	4.3 Experimental Evaluation
	4.4 ParCube at work
	4.5 Conclusions

	5 Turbo-SMT: Parallel Coupled Sparse Matrix-Tensor Factorization
	5.1 Introduction
	5.2 Preliminaries
	5.3 Proposed Method
	5.4 Further Optimizations
	5.5 Experimental Evaluation
	5.6 Conclusions

	6 Paracomp: A Parallel Algorithm for Big Tensor Decomposition Using Randomly Compressed Cubes
	6.1 Introduction
	6.2 Tensor Decomposition Preliminaries
	6.3 Tensor Compression
	6.4 Stepping-stone results
	6.5 Main results
	6.6 Experimental Evaluation
	6.7 Conclusions

	II Algorithms - Unsupervised Quality Assessment
	7 Fast and Scalable Core Consistency Diagnostic for the PARAFAC Decomposition for Big Sparse Tensors
	7.1 Introduction
	7.2 Background & Problem Formulation
	7.3 Problem Definition & Proposed Method
	7.4 Experimental Evaluation
	7.5 Results on Real Data
	7.6 Conclusions

	8 Automatic Tensor Mining with Unsupervised Quality Assessment
	8.1 Introduction
	8.2 Background
	8.3 Proposed Methods
	8.4 Experimental Evaluation
	8.5 Data Mining Case Study
	8.6 Related Work
	8.7 Conclusions

	III Applications: Neurosemantics
	9 Coupling Brain Measurements with Semantic Information
	9.1 Introduction
	9.2 Data Description & Problem Formulation
	9.3 Discoveries
	9.4 Related Work
	9.5 Conclusions

	10 Good-Enough Brain Model: Challenges, Algorithms and Discoveries in Multi-Subject Experiments
	10.1 Introduction
	10.2 Problem Definition
	10.3 Problem Formulation and Proposed Method
	10.4 Experimental Setup
	10.5 Discoveries & Discussion
	10.6 Related Work
	10.7 Conclusions

	IV Applications: Social Networks and the Web
	11 Do more Views of a Graph help? Community Detection and Clustering in Multi-View Graphs
	11.1 Introduction
	11.2 Related Work
	11.3 Problem Definition
	11.4 Our First Attempt: MultiCLUS
	11.5 Proposed Method: GraphFuse
	11.6 Experiments
	11.7 Conclusions

	12 Homogeneity in Web Search Results: Diagnosis and Mitigation
	12.1 Introduction
	12.2 Related Work
	12.3 Analytical Tools
	12.4 Experimental Setup
	12.5 Overlap Between Web Results
	12.6 Overlap Between Web and Social Results
	12.7 User Study

	V Conclusions and Future Directions
	13 Conclusions
	13.1 Summary of Contributions
	13.2 Broader impact

	14 Future Directions
	14.1 Long-Term Vision: Big Signal Processing for Data Science
	14.2 Future Directions in Tensor Mining
	14.3 Future Directions in Applications

	Bibliography

